W Durham
University

AR

Durham E-Theses

A knowledge based system to assist in the selection of
appropriate geotechnical field tests

Moula, Marina

How to cite:

Moula, Marina (1993) A knowledge based system to assist in the selection of appropriate geotechnical
field tests, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk,/5549/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5549/
 http://etheses.dur.ac.uk/5549/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

A KNOWLEDGE BASED SYSTEM TO ASSIST IN THE SELECTION OF
APPROPRIATE GEOTECHNICAL FIELD TESTS

A thesis submitted to the

School of Engineering and Computer Science

University of Durham

‘The copyright of this thesis rests with the author.
No quotation from it should be published without

his prior written consent and information derived
for the degree of

from it should be acknowledged.

Doctor of Philosophy

by

Marina Moula

March, 1993

To my parents

DECLARATION

I hereby declare that the work reported in this thesis has not been previously submitted for

any degree. All material in this thesis is original except where indicated by reference to

other work.

STATEMENT OF COPYRIGHT

The copyright of this thesis rests with the author. No quotation from it should be
published without her prior written consent and information derived from it should be

acknowledged.

iii

ABSTRACT

The variety in geological conditions and range of geotechnical problems has led to the development of a
considerable number of different in-situ test methods. The correct selection of the appropriate in-situ

tests allows a safer and cost-efficient design to be achieved.

A prototype Knowledge-Based System has been developed to assist in the selection of appropriate
geotechnical in-situ tests. The system is model-based and has been implemented using PDC Prolog on a
Personal Computer to perform two functions: i) general querying of the knowledge bases which it

incorporates and ii) advise on selecting in-situ tests.

The system consists of two knowledge bases (the Ground Knowledge Base and the Tests Knowledge
Base), an Extended Inference Mechanism consisting of search rules developed to allow inheritance and
transitivity inferences (as well as information retrieval facilities), an advisory rule developed for
offering assistance in the selection of appropriate field tests, and a menu driven user interface to achieve
ease of use. The Extended Inference Mechanism, and the user interface implemented for it, form a

basic expert system shell.

The knowledge required to be included in the system was obtained in two ways: i) from technical
literature and ii) from a small knowledge elicitation exercise in the form of a questionnaire. The
representation scheme adopted is the same for both knowledge bases and allows modifications

(additions or deletions) of the existing knowledge to be easily made.

Towards the completion of this research program, a comparative exercise was performed by
re-implementing part of the system using the PROKAPPA software on a Sun Sparkstation 2 (both of
which became available at that time). Throughout this exercise, the differences between the two
implementation schemes were evaluated and the advantages and disadvantages of each of the schemes

were identified.

iv

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dr D.G.Toll, for his support and guidance throughout the course of
this work and for our collaboration during my time spent in Durham as an Erasmus student. It was the
prospect of undertaking further studies with Dr. Toll that encouraged me to return to Durham for

postgraduate research.

Also, I would like to thank the members of staff of the School of Engineering and Computer Science,
Applied Mechanics Division, and in particular Professor P.B Attewell for his youthful and humorous
attitude. During my stay in England on the Erasmmus scheme the helpfulness and understanding of
Professor Attewell were crucial factors in my decision to return to Durham University for further

studies. Foremost, I have been very fortunate to work with such a distinguished scientist.

Bernard McEleavey's continual humorous assistance during the laboratory demonstration ensured that
they were both instructive and entertaining. In addition, the warmth and generosity of Bernard and his
wife Lesley gave me a jolly insight into English family life and reduced my feelings of being away from

home.

I would like to thank Trevor Nancarrow for his computing support whenever needed and Wendy Lister
for her administrational assistance and for being always caring. My thanks also go to Brian Scurr, Alan

and Judith Swann, Steve Richardson and, Lesley and Olive Graham,

It is difficult to express the depth of my feelings and gratitude to Nikitas Vaptismas. In any aspect of my
life throughout my time in Durham, his presence and continuous support were of greatest importance to
me. Nikita, I know you said it first, but I was very fortunate in having you share my office, my work,

my thoughts and most importantly my life.

My sincerest thanks go to Andy Oliver for his friendship and non-stop assistance. I would like to
acknowledge Andy for our collaboration during the development of the PROKAPPA application
presented in this thesis. Working with Andy was both productive and entertaining. Andy, stay as you

are!

Many thanks go to Kalliope Tsarouhi whose companionship was invaluable during the writing up of our
theses; we shared a tiring but enjoyable experience. In particular, I found our lengthy late night

conversations about the intricates of life both amusing and enlightening.

Thanks also to my friends, Antonis Giolas, for his companionship, sincerity and warmth.; Nicholas
Antoniun for his thoughtfulness, genecrosity and artistic sensibilities; Panagiotis Dounis for his
D.J.abilities, support and advices; Elias Papadimitropoulos for his indie style and outlook; Vicky
Malandraki for her sweet taste and company and Alex Bedford for her independent and optimistic

attitude.

I would also like to thank Sandra Mavroidi, Kostas Panou, Aris Koubarelis and Kim Nissan whose
friendship made my residence in Durham more interesting. In addition, my thanks go to my colleagues
in the department and all the friends I made in Durham. I also thank Paulette for her loyalty and

outstanding performance and Ikaria for being what it is.

Finally, I would like to express my sincere thanks to Professor A. Anagnostopoulos of the National
Technical University of Athens for giving me the opportunity to study for some period in Durham under
the Erasmus scheme and become familiar with university life in England. Also I would like to thank

Professor A. Anagnostopoulos for his support and guidance before and during the course of this work,

vi

Page
T (O OO OO PP OPOOUSOEUIOPOPTOR i
AADSITACE 1vvveevrervriieesseeeessessssinessessinssesessssisesaeseossessssnsssssssesssstsessesssssarssstesssessnastonstossossanstossesteassnons v
ACKNOWIEAZEIMENS 1.1 eeveererreeniereererteneetestareisnststiat st s st e bbb s s st s e s s sn b astssasnasresstaseatsaneseastsanbidanantsns v
CONEENS. 1o vreeteiteiuesseessanseensessesssassassessassessnssiasstssesstsessstonsisssssessasernesssssssssrsserssesssentensesserssnstsensansans vii
Chapter 1 TREEOAUCEION 1veeivinrisrrcrierserrersee s e esssaa s sirsssseesssa e serasbebb s e s an s s st sssbbessaaasstnbesnnnanas 1
O R €1 11 v | (OO OO PSPPSR 1
1.2 Overview of the thesiS. et 2
Chapter 2 Application of knowledge-based system technology in geotechnical
ENZINEEIINZ 1 ureeeeerrereeirceie et s e b b e s st e st st b et s s reat o8 4
2.1 INEFOQUCHION coverererieecesiereecreeeraeonasssssrtssseorsassseisnesansss s st ssessssestnessssnnsssans 4
2.2 Knowledge-based SYSIemS.....ccoocevivineniiiiniiniieiiiininssisnsnenessssesennens 5
221 INMIOAUCHON ...cccvircrersirinieiirieiies it eit s sses s iee e esn s s saassenssmneaans 5
2.2.2 Architecture of 3 KBScooiviiiniiiininninnenenn. 6
2.2.3 Implementation of a KBSccccoiviiiiiiinimnininiiinnnnnn. 7
2.2.4 Tools for developing a KBS ..., 8
2.3 Knowledge-based systems in geotechnical engineering......ovvevieeenerannns 10
2.3.1 Site characterisation ...t sneee s 11
2.3.2 Foundation engineering ...ccoevcnienininnneneennens 16
2.3.3 Earth retaining StrUCIUTES....covvivieernriniiieiniersinsssinssssnessnsiseens 22
2.3.4 Slope stability analysis ...coceriviniiienni . 25
2.3.5 SOil IMPrOVEMENLcocviveeereentesreirerirecrnrisessssessessessessesssssssessnats 27
2.3.6 GeoSYNHNEICS .vevveresiiesscririmiesstiiiieiiesinsis e tssassressasstsssaesenens 28
2.3.7 DM SEEPALE coveverrrenreerrieneensesisissiesisiesesst s et s s aneneass 29
2.3.8 Other geotechnical areas.......covvvvveniimniiiinnnninnneenenenn. 31
2.4 DISCUSSION.1iivtecrrretrerarnniuesirrereeeirtosiasisresiitosstasiesatresssaestastnasstassesssenessasarasss 34

CONTENTS

vii

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

3

4

5

6

7

8

Representing the groundcccciiiiicniiicicnssecrers e 41
3.1 INETOQUCHION wircteeieerieerieesinreeescersienise e sistes e e st sttt s sanesssassbnsanessanessnasaassanas 41
3.2 Information included in the ground knowledge basecovvvvvviinnincinnennnne 41
3.3 Implementation of ground information in Prologccccceecvvvmvrvniinieranninas 48
1075 70 R (311 (0o 1Tl ToY 1 DO RO P URPROt 48
3.3.2 Prolog programming language......cceeeevimveenenenieninnniennnenenenand 49
3.3.3 Facts: Ground knowledge baseceeeevviiccriinicinenncnneninirccnnees 51
334 Rules: Extended inference mechanism ..o 59
Representing geotechnical ficld teSts v 68
4.1 INOUCLION .oveveirriiiiesiirrese et et a s be e n s n e saesansareas 68
4.2 Hierarchy of in-SifU tESS .oouvvevviniriiiiniiiiiie it ieeseeseesessenes 68
4.3 Knowledge elicitation EXEICISecvirvvinriseniinioniniiniessiene s sisessnnsnns 76
4.3.2 Knowledge identified in published literatureceeeovvivneiannnes 78
43,3 Knowledge obtained from the quesHONNAIIEoevveerinreecereirnsens 81
4.4 Implementation in Prolog......ccciciiiviniiiinininionnnsniesnnrssinnssenees 95
A knowledge-based system to assist in the selection of in-situ testsceeeerrns 113
5.1 INOQUCHON .eoveeireresccstesiisins e st sttt e e b s s e b e bsenens 113
5.2 General description of the SYSIEM ... 115
5.2.1 Knowledge Dases........ccccevrimiinnviiiiiinniiinmnniennieese s, 115
5.2.2 GeNeriC RUIES .cciricrecerenrienniinisieninisiniisrsisinessnesssssssssssones 117
5.2.3 Extended inference mechanismcoeeevivninniinnenninninn 118
5.24 AdVISOIY TUlC....coieiieiecvrercsmniinitieieisr e sassesssssans 118
5.2.5 User interface facilities......c.uvviiiivrininniniinenne ., 122
5.3 Example consultations with the SYSIEMccovveviniminnneininnecninssenean 124
Implementation of ground information in PROKAPPA - A comparative
EXETCISE 1rververserersuvreersanisrassessenstneensmessssssssassessatsssnsessesssessnnessressiassanornessiensssannnes 138
6.1 INTOAUCHION w.veveeerriecrcritesiesiiicrnrenis e an e a e s e s s ras e s e s ae s anas 138
6.2 PROKAPPA in general ...ccocveniniinniiiiiininiiiniie s nnmeniesssenes 139
6.3 IMPIEMENIALION....cceeeeiinririreiriiienc st re s sas s rse s et s st ssneses s s sassnase 146
6.4 Example consultations with the SyStemccoveviiininciannianien. 155
6.5 Comparative comments on the implementation in Prolog and
PROKAPPAcooitiirtcrrenitiie et ee s eieces s st b st bsssassesnsnnonsares 161
DISCUSSION 1veevveeeeeeieteresrnerresretesrrsrsessasssesesssssssesssssnesssssssssnssssssesasssnsstnessassassnenss 166
CONCIUSIONS L.evriiiiiciireeereericrirreee s cssr i irasse s sb s e s e e e e e s e s e s s e s e reasaa e beeansas 175

viii

References

Appendix
Appendix
Appendix

Appendix

Appendix

Appendix

.. 177
PrOlOZ PIOZIAIM ..eiueieiiererrrirresecsoriesisesrisimistismsinsessitssstsassssstsassssinsssassnsssssssansosss Al
PDC ProlOg faX....cooveereriienininerereseenimnsiseinnomsessinsnmnsssssnsssssesansssssrasssans Bl
Different versions of the in-situ tests hierarchycocovvminncnncnnnecsennicn, Cl
Description of IN-8iU ESIS ..vciererererrscarisriniii et e s s nassn e D1
RETETEINCES c.verueeerereriesrenseerrrresesessmerrenerstssnesstes e st b e sassr bbb e bssssasanesassbasnsasess D29
QUESTIOTINAIIE. 1vevvveurieciaeiririreeieasseassrasseesreeereessnesstssnssssrossresibnssasssrsssnesansssassrans El
PROKAPPA PrOZIAM ..cccvvrrirrrieieenerrrensirenesneertsiinesssssssissiessansssassiossasssnssrans Fl

ix

CHAPTER 1

INTRODUCTION

1.1 General

Geotechnical Engineering involves the study of earth materials for construction purposes.
Natural materials (soil and rock) are highly variable and complex and often have properties which are
undesirable from the point of view of a proposed structure. The decision to develop a particular site
cannot often be taken on the basis of its complete suitability from engineering point of view; therefore

geotechnical problems occur and require geotechnical parameters for their solution.

The objective of any subsurface exploration program is to determine the stratigraphy and the relevant
physical properties of the ground that are appropriate to the project. This can be achieved by in-situ
testing (in conjuction with laboratory testing) which is a major source of both qualitative and
quantitative data relating to ground conditions and forms an essential part of a site investigation

programme,

The variety in geological conditions and range of geotechnical problems has led to the development of a
considerable number of different in-situ test methods. Correct selection of appropriate in-situ tests

allows a more efficient and cost-effective design to be performed.

The fundamental aim of this research project is to apply knowledge-based system technology to an area
of geotechnical engineering that involves the selection of suitable field testing techniques.
Knowledge-based system technology provides a medium that can accommodate the representation and

use of the knowledge required to allow successful engineering decisions to be taken,

A Knowledge-Based System has been developed to provide assistance in the selection of appropriate
in-situ tests. The development of this system involved the identification, collection and representation
of the domain knowledge (information on both ground and in-situ tests had to be obtained to satisfy the
requirements of the system), the design and implementation of the process that makes use of the
available knowledge and finally the design and implementation of a user interface to facilitate the use of
the system. The derivation and organisation of the domain knowledge is considered to be the major
contribution of the system in the area of geotechnical engineering. The system has been implemented

using PDC Prolog on a Personal Computer.

Towards the completion of this research project the PROKAPPA software and a Sun Sparkstation 2
became available, thus enabling a comparative exercise to be carried out by implementing part of the

system (the ground information) in PROKAPPA as well.

A brief description of the contents of the chapters to follow, is presented in the next section.

1.2 Qverview of the Thesis

In Chapter 2, the basic concepts of knowledge-based system technology are outlined and a
comprehensive review of the existing applications of this technology in geotechnical engineering is

presented. A general discussion on the development of these systems then follows.

Chapter 3 is concerned with the design and implementation of the 'Representing the Ground' application
using PDC Prolog, which involved the development of the Ground Knowledge Base as well as the
development of the process that manipulates the knowledge included in the knowledge base. The
Ground Knowledge Base incorporates a model of the ground which corresponds to the needs of the
knowledge-based system for assisting in the selection of appropriate field tests. A brief description of
the main characteristics of the Prolog programming language and the Prolog 'dialect’ that was selected

as the implementation language of the system is also presented.

The design and implementation of the Representing Geotechnical Field Tests' application using PDC
Prolog is presented in Chapter 4. The in-situ tests hierarchy incorporated in the Tests Knowledge Base
is described and its subsequent development discussed. The knowledge concerning individual test
methods, required to be included in the knowledge base, is identified and the knowledge elicitation
exercise carried out to obtain this knowledge is presented. An integral part of this chapter is concerned
with brief descriptions of the tests included in the hierarchy; however, due to its size this is presented

separately in an appendix (Appendix D).

An overview of the knowledge-based system developed to aid the selection of in-situ tests is given in
Chapter 5. The parts that constitute the system are described, i.e. the Ground and Tests knowledge
bases, the process that manipulates the knowledge (consisting of the generic rules, the Extended
Inference Mechanism and the advisory rule) and the user interface. At the end of the chapter, example

consultations with the system are presented.

In Chapter 6, a comparative exercise is carried out by implementing the Representing the Ground'
application using the PROKAPPA software as well as PDC Prolog. Initially the main features of the
PROKAPPA system are described in order for the reader to become familiar with the capabilities of the
system and the terminology used. The actual implementation of the application is then described and
example consultations are given. Finally, the two implementation schemes are discussed in a

comparative way.

Chapter 7 consists of a general discussion of the work presented in this thesis. The main features of the

system are briefly reviewed, identifying possible future improvements.

Finally, the conclusions reached from the development of the knowledge-based system to assist in the
selection of appropriate in-situ tests and the comparative exercise between PDC Prolog and the

PROKAPPA system are presented in Chapter 8.

CHAPTER 2

APPLICATION OF KNOWLEDGE-BASED SYSTEM TECHNOLOGY
IN GEOTECHNICAL ENGINEERING

2.1 Introduction

Civil engineering is not only concerned with calculation and numeric analysis but also with
ideas, concepts, judgement and the deployment of experience which cannot be represented numerically.
Geotechnical engineering is the area of civil engineering most recognised for the use of expert
knowledge. The following quote by Peck (Tomlinson, 1986) expresses the view that knowledge of
precedents (experience) plays an important, and often decisive role, in the decision making process in
geotechnics:

" The everyday procedures now used to calculate bearing capacity, settlement, or factor of
safety of a slope, are nothing more than the use of the framework of soil mechanics to
organise experience. If the techniques of soil testing and the theories had not led to
results in accord with experience and field observations, they would not have been
adopted for practical, widespread use. Indeed, the procedures are valid and justified only
to the extent that they have been verified by experience. In this sense, the ordinary
procedures of soil mechanics are merely devices for interpolating among the specific
experiences of many engineers in order (o solve our own problems, or which we recognise

to fall within the limits of previous experience. "

Knowledge-Based Systems (KBS) are computer programs that contain domain-specific knowledge
(facts and/or heuristics) and employ a separate inference procedure to manipulate this knowledge in

order to solve a real-world problem. If these systems operate at an expert's level they are called Expert

Systems (ES) (Mullarkey, 1987; Adeli et al, 1988; Konigsberger and De Bruyn, 1990). Although these
terms are often used as synonyms in the literature, the term knowledge-based system is considered to

better represent most current systems.

Toll (1990) discusses the role of KBS in geotechnical engineering. Although knowledge-based system
technology seems to be the right approach in order to overcome the limitations of traditional computing,
it has not, as yet, had any major impact in geotechnical engineering. This is due to a number of reasons
(Adams et al, 1989), among which is the fact that most of the systems developed have not reached yet a

point where they can be distributed for practical use.

This chapter is concerned with the application of knowledge-based system technology in geotechnical
engineering problems. A brief account of KBS fundamentals is presented in section 2.2 and a
comprehensive review of existing KBSs applied in geotechnical engineering is given in section 2.3.

Finally, in section 2.4 a general discussion on the development of these systems is presented.

2.2 Knowledge-Based Systems (KBS)

2,2.1 Imtroduction

Knowledge-based system technology forms an area of research within Artificial Intelligence
(Al), a branch of computer science concerned wilh simulating humaa intelligence in a computing

machine.

Various definitions of KBSs exist in the Al literature; Adeli (1988) presents some of them. Maher and
Allen (1987) note that the definitions which are often given for KBS do not necessarily distinguish them
from many conventional computer programs, Some of the distinguishing characteristics between the
new technology and the traditional programs are presented by Adeli (1988), Maher and Allen (1987)

and Kpiketo xon IMootpa (1991).

For the purposes of this analysis, it is worth emphasising two of their differences: a) KBS are orientated
towards symbolic processing whereas conventional programs are efficient in numerical processing and
b) In KBS the knowledge is separated from the inference procedure (declarative programming) in
contrast to the traditional programs where knowledge and control are integrated (procedural
programming). The main advantages of the latter characteristic of these systems is the transparency in
programming and the ability to alter (add, delete or modify) the content of the knowledge base without

significantly affecting the remainder of the program.

2.2.2 Architecture of a KBS

In general a KBS consists of three main components:

° Knowledge base: the component of a KBS that contains all the information associated with the
domain in which the system is applied. This information may be documented definitions, facts
and rules as well as rules of thumb and heuristics.

° Context (also known as working memory, short term memory or fact base): the component of a
KBS that contains all the information about the problem currently being solved. Its content
changes dynamically and includes information that defines the parameters of the specific problem
and information derived by the system at any stage of the solution process.

o Inference mechanism (also known as inference engine, control mechanism or reasoning
mechanism). the component of a KBS that controls the reasoning process of the system. The
inference mechanism uses the knowledge base to modify and expand the context in order to solve

a specific problem.

Additional components such as a user interface and an explanation facility are required in order to
facilitate the use of a KBS and make the knowledge base more transparent to the user. A knowledge

acquisition facility is also desirable in order to ease the development of the knowledge base.

A variation of the basic architecture described above is the blackboard model, which is based upon the
separation of the knowledge base into independent knowledge sources and the use of a blackboard as a
dynamic global database (context), through which the knowledge sources communicate. The

blackboard monitors the changes made in the problem state until a solution is found.

2.2.3 Implementation of a KBS

Implementation of a KBS involves the choice of formalisms for the representation of the
domain knowledge and the inference models. These two topics are still very active areas of research in
Al and are discussed by Adeli (1988), Maher and Allen (1987), Mullarkey (1987), Kpixeio ko
IMootpo (1991) and Benchimol et al (1987) among others. The most common forms of knowledge
representation and inference mechanisms are briefly discussed below. Although the way in which the
domain knowledge is represented can be discussed independently from the problem-solving strategy,

these decisions are tightly coupled (Mullarkey, 1987).

Knowledge Representation

The main types of declarative knowledge representation are logic-based representation, rules
and network-based representation (Mullarkey, 1987). In logic-based representation the knowledge is
represented as assertions in logic. In rule-based representation the knowledge is represented in modular
rules which consists of an IF part (situation or condition) and a THEN part (action); these rules are
called production rules. In network-based representation, knowledge is represented as a collection of
nodes and links between them, explicitly representing the connectivity and hierarchy between pieces of
information. A special case of nodes, in a network-based representation, are frames that include not

only particular properties (slots) with values, but also pointers to other frames or procedures.

The inference mechanism of a KBS can employ one or more problem-solving strategies to
search for solutions. The two main inference mechanisms are forward chaining (also known as data-
driven control strategy or bottom-up strategy) and backward chaining (also known as goal-driven
strategy or top-down strategy). A forward chaining inference mechanism works from an initial state of
known facts to a goal state (conclusion or conclusions). A backward chaining inference mechanism
assumes a goal state or hypothesis and reasons back to known data or facts to support or discount the
assumed hypothesis. A combination of the two strategies described above, called mixed chaining

inference mechanism, can also be used (hybrid approach).

The strategies described above identify the rules that are applicable to a specific problem and can be
combined with other control strategies such as breadth first search and depth first search for selecting
the order in which the applicable rules should be activated. In a breadth first search all the applicable
rules are executed in turn before testing whether the halt condition has been satisfied, while in a depth
first search the first of the applicable rules is exhaustively explored before examining the next one.

However, both strategies are guaranteed to consider all possibilities.

A closely related concept to those outlined above is uncertainty in data and inference. Adeli (1988) has
discussed various methods that have been employed to deal with uncertain or incomplete information in
the knowledge base. The manipulation of uncertain and imprecise knowledge requires appropriate

models of inference (Mullarkey, 1987; Benchimol et al, 1987).

2.2.4 Tools for Developing a KBS

The tools which are available for developing a KBS can be divided into three main categories

along a spectrum of software complexity: a) General Purpose Programming Language (GPPR), b)

General Purpose Representational Languages (GPRL) and ¢) Expert Systemn Shells (Mullarkey, 1987).

Expert System Development Environments might be added to the upper range of this spectrum.

The first category includes the conventional procedural languages such as Fortran, C, Pascal etc. A
number of KBSs have been developed in procedural languages since they offer easy portability among
different types of computers and compatibility with numerous pieces of software available in these
languages (Adeli, 1987). However, as these languages are mainly orientated towards numerical

algorithmic computation they do not provide the most appropriate environment for the development of

KBS.

In the second category, symbol manipulation languages are included that have been developed for use in
building KBS. These languages (Al languages) are declarative languages in which information is
presented in a descriptive form. The most popular Al programming languages are LISP (LISt

Programming) and PROLOG (PROgramming in LOGic).

LISP is the most widely-used language among Al researchers in the United States and was one of the
first languages to be directed toward symbolic representation and list processing (Adeli, 1988).
PROLOG is a symbolic programming language based on predicate logic. It allows information to be
specified in a declarative style and includes a backward-chaining inference mechanism. The Prolog

language is discussed in more detail in section 3.3.2.

Another class of programming languages, the object-orientated languages, have recently been the
subject of very active research work in Al (Benchimol, 1987; Adeli,1988). An object-orientated
language is a language which in principle handles only autonomous entities of a single type called
objects. Each object is defined by data specific to it (its characteristics) as well as operations and

computations that it is able of executing when a message is sent to it.

Expert System Shells, which form the third category of tools, are software packages recently developed
in order to aid in the rapid prototyping of application KBSs. They consist of two of the three main
components of an expert system, i.e. an inference engine and a user interface. They usually provide one
or more knowledge representation forms and inference mechanisms, Expert system shells are easier to
use than Al programming languages but are less flexible. Adeli (1988), Kpiketo xon Maotpa (1991)
and Benchimol er al (1987) describe some of the more popular expert system shells. Allwood et al
(1987) draw attention to some experiences gained from evaluating a number of commercially available

expert system shells.

Expert System Development Environments are usually fully developed system building workbenches
providing capabilities (such as integrated editors, maintenance tools, debugging tools for all types of
available data representations, user interface development facilities, etc.) which are additional to those

provided by shells.

Detailed analysis of the fundamental characteristics of KBSs, the available techniques for their
development as well as their capabilities and potential applications are presented in the published

literature (Maher, 1987; Adeli, 1988; Kpixeto xon Iactpa, 1991; Benchimol et al, 1987).

2.3 Knowledge-Based Systems in Geotechnical Engineering

A number of KBSs have been developed that demonstrate the potential application of
knowledge-based system technology to problems encountered in geotechnical engineering. These
systems are briefly presented in this section, grouped into categories according to the areas of
geotechnical engineering to which they are applicable. In each group a chronological order has been

followed.

10

2.3.1 Site Characterisation
The term site characterisation is used here to describe the process by which geological,
geotechnical and other information relevant to the construction of a particular facility is determined.

Knowledge-based systems have been extensively developed to assist in the task of site characterisation.

Smith and Barker (1983) present an interactive system, the Dipmeter Advisor, that uses dipmeter
patterns (sequences of dip estimates from a dipmeter log, obtained by using a dipmeter tool) together
with knowledge about local geology to infer subsurface geologic structure. The system is made up of: i)
a knowledge base consisting of 90 production rules grouped into several distinct sets according to their
function (e.g. structural vs. stratigraphic rules), ii) a forward chaining inference engine that resolves
conflicts by rule order, iii) a set of feature detection algorithms for a preliminary interpretation of log
data and, iv) a menu-driven graphical user interface. The Dipmeter Advisor is written in INTERLISP

and operates on the Xerox 1100 Scientific Information Processor.

SITECHAR (Norkin, 1985; Rehak et al, 1985) is a KBS component of a geotechnical site
characterisation workbench (that includes other components such as databases, workstations and
graphics). The purpose of this expert system is to develop inferences on the depositional patterns of the
subsurface materials and their physical properties by interpreting field and laboratory data and taking
into account existing experience on geology and geomorphology of a specific site or similar ones. The
system uses a complex problem solving technique, the blackboard model expert system framework.
The initial SITECHAR system incorporates the following ruled-based knowledge modules: knowledge
of geometry and trends, matching soils by description, proximity (such as "near”, "above", etc.),
geomorphology (such as erosional surfaces, channel cutting, etc.), geology (such as faults, folds, etc.)
and searching for marker beds. Overall control, between the individual knowledge modules and the
blackboard to allow an overall problem solution, is provided through a single co-ordinating knowledge-
based supervisor. The inference engine supports both forward and backward chaining problem solving

techniques.

11

CONE (Mullarkey, 1986; Mullarkey and Fenves, 1986) is a KBS that interprets raw data from the cone
penetrometer (CPT) in order to perform an input and validity scan on the raw data, classification of the
soil types (including the profiling of layers) and inference of design paramneters with respect to the shear
strength of sands and clays. The soils are classified using two electric-CPT based classification systems,
the Dutch classification system and the Douglas and Olsen classification system. Another system was
also used which is a fuzzy set representation based on the raw database used to develop the Douglas and
Olsen system. The shear strength of sands and clays are estimated using empirically and rationally
based methods. Fuzzy sets are employed to treat uncertainty with respect to linguistic data (i.e. soil
classification), numeric data (i.e. determination of shear strength) and quality information (i.e.
appropriateness of a soil classification system, the accuracy of the system for certain soil types etc.).
The system has been implemented using OPSS rules and LISP functions. A typical run of CONE may

take up to 1.5 hours on a lightly loaded DEC-20.

SOILCON (Siller, 1987) is a KBS which has been developed for assisting the user in determining the
levels of geotechnical investigation necessary for a specific problem. This is based on the requirements
of a proposed structure and the level of information known about the site in order to reduce the risk
involved with the subsurface to an acceptable level. The system was implemented using the M.1 rule-
based expert system shell which provides a backward chaining control strategy. The knowledge base
contains 24 investigation techniques ranging from preliminary (e.g. reviewing topographical maps) to
more sophisticated (e.g. pressuremeter) that are used to make the ultimate recommendation. The
complexity of the recommended investigation increases when there is a large amount of site data
available. One of the limitations of the system is that it does not handle geometric descriptions of the

problem and site quantitatively.

Alim and Munro (1987) present a very simple prototype KBS on soil investigation. It offers guidance

on soil identification based on visual and physical observation of soil characteristics and provides

judgement concerning the most likely foundation type under given soil and loading conditions. Based

12

on these two conclusions it gives possible foundation problems and finally it combines ail this
information to suggest the most suitable sampling and drilling techniques for the particular investigation
scheme. The system was written in micro-PROLOG and uses the PROLOG expert system shell APES.
The system bandles uncertainty and imprecise knowledge using fuzzy logic to produce degrees of belief
which take numerical values from zero to unity. The paper presented by Alim and Munro was discussed
by Davey-Wilson, May and Tizani (1988) and some interesting comments arose such as the limitations
of the software used (micro-PROLOG and APES) and the danger which can arise from using a
numerical degree of belief (the system's solution will intrinsically suggest a higher degree of certainty

than is warranted by some of the data).

SITECLAS (Wong et al, 1989) is an expert system used to classify a site according to the Australian
Standard AS2870.1. The input required involves information about the natural soil or fill found at the
site. This system was developed by using SUCAM, a custom-made expert system shell. SUCAM was
built to explore the potential of applying expert system technology to geotechnical engineering by using
a custom-made shell. It is written in TURBO PROLOG and runs on an IBM PC or compatible
microcomputers under MS-DOS. Its main components are: i) a knowledge base, which stores the
knowledge about a subject domain in the form of IF-THEN or IF-THEN-ELSE rules, procedures, tables
and comments, ii) a fact base, which stores the consultation specifications, the input goals, the input
facts and the conclusions of the consultation, providing the advantage of being able to modify the input
facts without starting a new consultation, iii) an inference engine, based on backward chaining
reasoning, iv) a user interface, which is screen-driven making the system user-friendly, v) an
explanation facility, which allows Rule Explanation (why certain information is required), Rule file
Explanation (how a certain conclusion was reached), Help File Explanation (for further explanations,
comments, remarks, and notes) and vi) modules for different functions such as selecting the appropriate
Rule File (an ASCII file storing the domain knowledge), reading the Rule File, reading and writing the
Result File, specifying Consultation Control, goals and facts and showing results. SUCAM does not

deal with imprecise, uncertain or conflicting knowledge.

LOGS (Adams et al, 1989) is a KBS based on the ideas introduced in SITECHAR (Norkin, 1985; Rehak
et al, 1985), that treats information from several boring logs and provides the user with two dimensional
subsurface profiles. It is a rule-based forward chaining system written in the languages OPS5 and
Common LISP and implemented in the Knowledgecraft™ environment which provides a window and
graphics interface for graphically displaying subsurface cross sections. Knowledge about geology and
geomorphology is embodied in the system and is handled through heuristics that apply to a specific
region (Kane County Illinois). The system tries to identify marker beds, lenses (wedge-shaped deposits)
and lentils (strata with boundaries within the confines of the site). A soil may be identified as a
continuous layer even if it is not present in all borings, based on the knowledge of the area's geology.
The current version of LOGS comprises approximately 350 rules and future improvements suggested by
the authors are three dimensional interpretation and calibration against the judgement of experts. The

current version of the system is mainly site specific.

Smith and Oliphant (1991, 1992) describe a KBS for civil engineering site investigation. The primary
requirement of the system was to act as an adviser during any stage of the site investigation process and
especially during the planning stages (e.g. desk study, site reconnaissance etc.). The system has been
implemented to run on an I.B.M. compalible P.C. supporting MS-DOS. It was developed using the
shell Leonardo Development System, Level 3, produced by Creative Logic. The shell contains a text
editor used to create rules for the knowledge-base and an inference mechanism which mainly uses the
default technique of backward chaining, although forward chaining can be enforced where necessary.
Leonardo uses rulesets, objects and object frames to represent the knowledge for an application. The
system features a systematic data input facility in the form of multiple choice menus that helps
minimise oversights or omissions of relevant data. The information obtained is used by the system to
provide suggestions to the user on the following stage of a site investigation, the subsoil exploration
(possible locations of boreholes, trial pits, etc. and suitable types of soil testing). The information
obtained from the subsoil exploration stage is used to create a 2-D visual representation of the soil

layers. The strength characteristics of the various soil strata are used by the system to make

14

recommendations for the suitable foundation types based on the ground conditions present. The
prototype system is user friendly and can be used as a learning tool. It provides the facility for future

expansion and, the authors suggest, it has a cost saving capability.

Halim er al (1991) describe a KBS developed to assist engineers in performing site exploration
decisions and evaluation of geotechnical design concerning shallow foundations or slope stability, using
probabilistic analysis within an interactive user-friendly environment. The prototype system was
developed using the expert system development environment KEE on an Apollo DN3500 workstation.
The system has been implemented to perforin three major tasks: i) inference of prior estimates of soil
and anomaly characteristics (such as lenses or pockets of soft soils within the regular soil deposit) using
production rules, ii) selection of the most appropriate exploration program using probabilistic analysis
where anomalies and soil properties are represented by a set of attributes such as probability of anomaly
presence, and means and standard deviation of anomaly size and locations and iii) reliability evaluation
of the proposed geotechnical system. The inference mechanism of the system is forward chaining and
the knowledge incorporated is represented through a combination of frames and rules, that are both
features of the expert system shell used. The system's functionality is similar to that of SOILCON

(Siller, 1987) with additional capabilities to handle uncertainties of the ground conditions quantitatively.

A KBS framework is described by Carpaneto and Cremonini (1991) for the automation of the
geotechnical design site characterisation process. The system is based on an existing KBS (Righetti and
Cremonini, 1988) employed for stratigraphic soil characterisation. The system consists of several
databases where information is stored about the site under consideration, a knowledge base containing
the domain knowledge and an inference engine capable of interpreting the available data. The task of
characterising the site is divided into the four phases: i) an Input Phase where information from the
databases are used to make some preliminary inferences about the soil profile and its properties, ii) a
Comparison Phase where rules are used to filter the data obtained in the previous phase and to improve

on the possible soil profile, iii) a Reduction Phase where the construction of a best solution is carried out

and iv) an Output Phase where the best solutions detected for the borehole stratigraphy and the
corresponding design parameters are processed for appropriate display of the results. Some possible
future improvements of the system are also discussed, mainly for making soil profile inferences at sites

where limited data is available but where there is a general knowledge of the area.

2.3.2 TFoundation Engineering
Foundation engineering is an area where a number of systems are available. These systems
could be further categorised according to the specific task of foundation engineering for which they aim

to provide assistance.

General foundation desi

FOOTER (Adams et al, 1989) is a KBS that performs design synthesis for building foundations
and was also developed using the expert system shell EDESYN. The input to the system includes soil
conditions, water table location, depth of bedrock and the imposed loading conditions from the
structure. FOOTER decomposes the foundation design problem into several subproblems: i) selection
of foundation type, ii) selection of material type, iii) selection of casting type (when appropriate), iv)
selection of excavation type and iv) parametric design of foundation. The output comprises all feasible

foundation alternatives which are then evaluated by the user.

Rowlinson (1989) briefly describes Geotech, a KBS under development to assist in foundation design in
Hong Kong. The factors which should be considered during the development of the system and which
determine its structure are stressed. These are technical, legal and commercial factors as well as local
practice. The first module developed is a soil classification and foundation design module based on the
UK CP2004/BS8004 recommendations, amended where needed to take into account Hong Kong
Geoguide recommendations. An objective of the system is that all design must be constrained by all

relevant regulations. At a final stage Geotech should be able to indicate where local practice is likely to

16

differ from code of practice procedures. The influence of cost/time trade-offs, plant availability,

seasonal influences, safety, environmental effects should also be included.

Rashad et al (1991) present FOUNdation Design CONsultant (FOUNDCON), a modular knowledge-
based Computer-Aided Design (CAD) system under development to assist in foundation design.
Communication between modules is achieved using the "blackboard” architecture. The knowledge base
consists of the resource level, where knowledge is in the form of computational methods (for bearing
capacity, settlements etc.) and the expert's level, where knowledge is in the form of heuristics. The
knowledge is represented through frames and slots that have production rules or procedures attached to
them. Some of the problem-solving modules of the system (as these are envisaged), are: i) an
Interpretation Module that provides a preliminary validity check of the input data and performs soil data
interpretation, ii) a Preliminary Design Module that selects the most appropriate foundation system, iii)
a Modelling and Analysis Module that models the structural configuration proposed above, and predicts
its response to external conditions and iv) a Detailed Design Module that performs the final design,

ensuring that all constraints are satisfied.

Meyer (1992) describes a KBS that addresses the preliminary foundation design of multi-story buildings
using the expert system shell EDESYN which is based on hierarchical decomposition and constraint
direct search. The system uses preliminary soil data (SPT-N value for cohesionless soils, undrained
shear strength and Atterberg limits for fine grained soils) and the building's potential configuration, in
order to characterise the underlying soil and 10 produce a set of feasible solutions to the preliminary
foundation design problem. Economical alternatives are also considered. The implementation involves
decomposing the problem into three major systems : i) building system, ii) soil system which is further
decomposed into stratum systems and iii) foundation design system which is further decomposed into
the three major foundation types; shallow, compensated and deep. Lisp functions have also been
incorporated for the assignment of numerical values to dimensional or capacity attributes. Only static

axial loads are considered.

17

FOOT (Yehia and El-Hajj, 1987) is a KBS to assist in the selection and design of spread
footings. The program, implemented in FORTRAN-77, consists of four main modules, briefly
described below.

i) MAIN is the program module concerned with the problem-specific data such as number, distribution
and loading of the columns. The input is either directly from the user or through pre-prepared data files.
ii) DECIDE is the module corresponding to the inference engine of the program and receives the code
matrix and column numbering from MAIN. It must be noted, that the columns distribution must be
rectangular so if that is not the case, fictitious columns are incorporated in the site plan.

iif) GRAPH is the module that provides general plans of columns and footings, and also plots the
reinforcement details for single and double footings, only for the best choice because of memory
requirements,

iv) DESIGN performs the structural design after searching into its databank for similar cases. After every

run of the program its database becomes larger and so in future probleimns the solutions should improve.

GEOTECH (Parikh and Kameswara Rao, 1991) is a KBS that was developed using COMMON LISP
and can aid in shallow foundation design by calculating bearing capacity and settlement and producing
the corresponding foundation design. It considers several properties of the ground, like soil type, and
structural information, like load and column dimensions. The system incorporates the uncerlainty
involved in foundation design by using fuzzy logic. GEOTECH runs inside a geotechnical knowledge
rich environment, SOILTECH, that can be reached at any lime and includes soil data and information
relating to the domain of shallow foundations. The system can handle missing information by using a
special knowledge base created for that reason. It uses a forward-chaining inference mechanism and the

output is in the form of a list of the most promising alternatives with corresponding confidence factors.

18

PILE (Santamarina and Chameau, 1987) is a prototype expert system developed to aid the
selection of the appropriate type of pile foundation. The system's output is a list of the most promising
alternatives based on technical constraints. It is then up to the user to consider additional factors (e.g.
economical), in order to reach a final decision. PILE is a forward-chaining system written in LISP. It
contains knowledge in the form of rules on subjects like: soil characteristics (chemical environment,
groundwater conditions, interbedded soft layers, loose deposits and erratic stratigraphy), loads (per pile,
components, design stress), installation conditions (drilling, driving), context (environmental problems,
vibrations), material (wood, concrete, steel, composite), construction (predrilled, driven, cast in-situ),
improvement (displacement, non-displacement). The system runs in a knowledge-rich environment that
includes SOIL, a geolechnical database which can provide information on various aspects of
geotechnical engineering (e.g. soil parameters, soil improvement methods) at any time during an
execution or independently. PILE includes explanation capabilities, handles uncertainty, resolves
conflicts in data memory and incorporates commands that allow its use in instruction. The performance
of PILE has been successfully evaluated in a wide range of cases and its production system has been

proven efficient and sufficient for small tasks.

Wong ef al (1991) developed SUPILE, a rule-based KBS that assists in the evaluation of suitability of
different types of piles and in the estimation of the required pile size and length. SUPILE consists of a
Knowledge Base that contains pile design knowledge, a Fact Base that contains information about the
site under consideration and where the results are stored, an Inference Engine where pile dimensions
and suitability are estimated and a User Interface that consists of a Project File Manager, a Project
Information Editor, a Default Values Editor and a Report and Diagram Generator. The selection of a
pile type is performed by finding how many problems would exist if a specific type was used. These
problems are quantified in the form of a problem score and finally a suitability score is produced for

each pile type. It has a value between 0 and 99, where the higher the suitability score, the more suitable

19

the pile is. The system features a data-screen input method so that the user can input large amount of
information or modify existing information easily and quickly, SUPILE is written in TURBO PROLOG

and has been compiled as a stand alone programn.

PILEX (Elton and Brown, 1991) is an expert system for assisting in the selection of reliable pile types
by considering timber, concrete and steel piles. Spread footings are also considered, although they do
not represent a pile type. PILEX was written using the expert system shell program VP-Expert on an
IBM Personal Computer. The knowledge base contains information, in the form of rules, that was
obtained from literature, combined with experts' (practitioners' and academicians’) knowledge to take
into account geotechnical, geological, structural and environmental factors that influence the pile
selection. The inference engine that the shell supports is backward chaining. The system queries the
user about loading parameters, soil condition and groundwater conditions. Some of the fulure
improvements of PILEX are considered to be the inclusion of the cost parameter, lateral loads, heave of

adjacent piles and sheet piles.

Bridge Foundati

BABE (Bridge and Building Evaluation) developed by Zheng et al (1989) is a KBS to help the
user in preliminary investigations of a bridge substructure design. The main function of the system is to
aid the selection of the most appropriate type of foundation for a specific superstructure and a set of site
conditions. The system also makes suggestions for the superstructure design from a geotechnical point
of view and covers the preliminary design of bridge abutments and piers. BABE was developed using
the GEOTOX shell which consists of the inference mechanism and the user interface of the GEOTOX
knowledge-based system developed for evaluating waste disposal sites (Wilson et al, 1987). Some
modifications and additions have been made to the inference engine in order to simulate the expert's
reasoning in foundation design. The selection of the foundation type (footings, piles or caissons) to be

used is based on the loads, the superstructure conditions, geological and hydrogeological characteristics,

20

the potential problems in construction and the cost of the foundation. The type of foundation selected as
well as the loads and design criteria are considered by the system in order to achieve the optimum

design of abutinents and piers.

Stuckrath and Grivas (1990) present a KBS to aid the selection of bridge foundations at the planning and
preliminary design stages. The system has been developed using the NExpert Object rule-based expert
system shell that supports both forward and backward chaining. In addition this tool permits object-
orientated prograiming based on knowledge representation by frames. Based on user input concerning
structural (load applied directly to the foundation element, admissible settlement) and geotechnical
(ground type defined either by laboratory test results, if available or based on visual examination of the
site, stratigraphy, ground water) specifications the systemn presents preliminary design options such as
shallow foundations (isolated or strip footings and rafis), improved ground (through compaction or
grouting) and deep foundations (piles or combinations of piles and footings or rafts). Future
developments of the system envisage an extension of the knowledge base and development of interfaces

with other knowledge systems and databases.

A KBS is under development for determining the causes of foundation failures (Hadipriono et
al, 1991). The system is being developed using the expert system shell Personal Consultant Plus version
4.0, which features window oriented menus, mathematics library, external interfacing capabilities (for
graphics and additional computational software). An essential part of the system is its knowledge base
that consists of a frame, Foundation Failure, and several subframes, Soil Settlement, Expansive Soil,
Soil Erosion, Bearing Capacity Failure, Slope Instability and Foundation Corrosion (identified as the
possible causes for foundation failure). A frame or subframe groups production rules and parameters.
The system queries the user about the evidence showing a possible foundation failure (like crack

pattern, joint openings, wall deflection etc.) and about known soil information in order to identify the

21

cause of failure. A decision made to repair a damaged foundation usually follows an investigation of
the causes of failure. Hadipriono and Wolfe (1991) present the application of the concept of fuzzy logic

to assess the repairability of damaged foundations,

2.3.3 Earth Retaining Structures

The knowledge-based system technology has also been applied in the area of earth retaining

structures. The systems developed are presented below grouped in the same manner as above.

Hutchinson et al (1987) present RETWALL, a rule-based KBS for the selection and
preliminary design of earth retaining structures. It was implemented using the rule-based expert system
shell BUILD which is written in Quintus Prolog and runs on Sun Microsystems workstations. BUILD
supports both forward and backward chaining and provides explanation facilities. The system first
evaluates if a retaining wall is required or an embankment or cut would be satisfactory, guided by the
user's input about the type of application and topographical and soil conditions. If a wall is found
necessary, the systein evaluates which of the nine wall types that are included in its knowledge base
(brick wall, blockwork wall, crib wall, gabions, gravity wall, railway sleeper wall, reinforced earth,
reinforced concrete wall, sheet piling) is applicable in that specilic case. If more than one wall type is
applicable, the system bases its recommendations on the first satisfactory solution encountered. The
rules are ordered (allowing directed search) in a way that reflects the expert's preference of wall types.
In addition to recommending a wall type (higher level selection module), the system also has the
capability to perform the actual design for blockwork walls (lower level blockwork module) and to
produce design drawings. Quintus PROLOG allows RETWALL to use C language files to produce
graphical displays. Similar lower level modules could be developed for the remaining wall types

including embankments or cuts.

22

Oliphant and Blockley (1989) developed a KBS that advises the user on decisions concerning the
selection of earth retaining structures. The system has been written in a FRIL/PROLOG format and was
developed on a Vax 11/750 machine (under the UNIX operating system) using C-Prolog. It consists of
i) a knowledge base that contains rules for retaining wall selection. It is separated in three parts, the
construction process, the design process and environmental impact, ii) a database that allows input to
the knowledge base as subjective estimates (expressed as support pairs) of the truth or dependability of
all the facts for a given wall, iii) an inference engine that assigns unique support logic values using
either the multiplication or the minimum model and iv) a support logic program “shell” called FRISP,
that allows complete interrogation of the knowledge base, supports backward chaining incorporating a
depth-first search, provides explanation facilities and can handle uncertain and incomplete data by
either of the two existing inference models. The system includes 11 case studies of retaining structures
and provides a narrative of the history of each one in terms of why it was selected or considered as an

alternative, allowing the user to compare these with a proposed retaining wall,

A KBS for retaining wall selection and design is presented by Arockiasamy et al (1991) that was
developed using the M.1 shell. The shell is implemented in Prolog for use on a IBM compatible
Personal Computer. The knowledge is encoded in the system using facts and rules. The system consists
of two modules, the selection and the design modules. In the selection module a wall is selected based
on the given set of criteria. The selection is made from a list of ten wall types including concrete
gravity, cantilever, counterfort, gabions, reinforced-earth, crib, slurry, sheet-pile, tieback and soil nailed
walls. The user is asked to describe the site given a list of site locations. Then he/she is queried about
site geometry, wall height, project time, material and labour availability, equipment access, construction
familiarity and aesthetic considerations. Based on the information provided, the most appropriate wall
types are selected. The design module carries out the detailed design of the structure selected. For the
cantilever wall that is presented in the paper, the system can consider sloping backfill, surcharge, three

different soil layers and water table effects.

WADI (Chahine and Janson, 1987) is a KBS developed for the preliminary diagnosis of
retaining wall failures using the rule-based expert system shell TOPSI (written in Turbo Pascal). The
expert system is integrated into a database management systemn (DBMS) dBASE III and runs on a PC.
WADI is applicable to two types of retaining walls: cantilever reinforced concrete walls and gravity
concrete or rubble walls, having a maximum height of 8 metres. At the beginning of execution, input
information concerning the wall under examination, the backfill soil, the bearing soil, the angle of the
backfill and the failure symptoms of the wall is read from the different databases of the DBMS. After
the information has been transferred, WADI classifies the bearing and backfill soils in order to
determine their engineering design characteristics. Then, it performs some preliminary investigations of
the failure data in order to identify the general areas of retaining wall problems that may be relevant to
this failure, such as a footing problem, a drainage problem, weak bearing soil, a construction problem.
The expert system proceeds to a stability analysis of the retaining wall using conventional design
calculations and checking, through computation, a factor of safety against each type of failure
(overturning, sliding or settlement). Final conclusions on the causes of the failure observed and
recommendations on the actions that could be taken are given by the system by combining the

preliminary problems generated and the different unacceptable factors of safety.

RETAIN (Adams et al, 1989) is a KBS that allows categorisation and organisation of knowledge
relating to failure and rehabilitation of earth retaining walls. The system consists of a database
implemented in DBMS INFORMIX and a series of modules which integrate OPS83 production rules, C
language algorithmic functions and INFORMIX ESQL database queries. Each module completes a
subtask of the solution which is fired by the user from a menu. The modules treat site identification,
failure diagnosis, design synthesis and cost estimation. Upon completion of the failure diagnosis
module, a table of wall failure modes with associated certainties is stored in the database. Associated

with each failure mode is heuristic knowledge regarding design components that may be used for

24

rehabilitation. Each rehabilitation strategy is related to a set of soil and construction constraints and a
preliminary design is produced for each one of them. By combining these design components a

complete design is achieved.

2.3.4 Slope Stability Analysis

Knowledge-based systems developed in the area of slope stability analysis are presented-below.

Wislocki and Bentley (1989) describe the development of a KBS for the determination of planning
applications with respect to landslide hazard existing in South Wales. The system attempts to assess the
landslide hazard that may affect proposed development sites and it produces output in the form of
planning response options (which have been formulated to allow almost direct integration into the
planning process operated by Local Planning Authorities in UK). The expert systemn has been
developed using the expert system shell ESTA (Expert System Shell for Text Animation). The system
contains three knowledge bases which relate to: a) sites distant from documented landslides, b) sites in
close proximity to documented landslides, and c) sites on documented landslides. Planning response
options (i.e. approval, approval under conditions, refusal, call for additional information, etc.) are
formulated for each one of these. After an initial session of questioning, the system selects the
applicable knowledge base, performs the hazard assessment by a consultation process and praduces the

appropriate planning responses.

XPENT (Faure et al, 1991) is a KBS which is being developed to assist in slope stability analysis in a
high performance object-orientated environment that includes a generator of multi-expert systems
(SMECI), a programming language (LeLisp), an image language for the realisation of powerful user
interfaces (AIDA) and an interactive development tool for graphic interfaces (MASAI). The project is
being carried out on a SONY workstation with RISK architecture. The data concerning the analysis of
the problem are stored in a database through a complex but easy-to-use interface aimed at reducing

recording errors to a minimum when fully developed. The system also includes a module that permits

25

the realisation of a two-dimensional geometrical and geotechnical model of the slope (profile) that
could also be easily modified. The calculations required for slope stability analysis of this model are
being performed by software for slope calculations (called 'Nixes and Trolls'), linked to the system.
Simulation operations such as embankment, drainage and the consecutive evaluation of increase in

stability can be carried out on the original model.

Expert Slope Design System (ESDS) presented by Denby and Kizil (1991) is a KBS to assist
geotechnical engineers in the assessment of proposed slope designs in opencast coal operations in the
UK. It was developed using the expert system shell Xi-Plus on a PC. The system utilises a multi level
knowledge base structure with a number of sub-knowledge bases relating to the factors influencing
stability which are being controlled by a main knowledge base that manages the whole system, ESDS
provides explanation facilities. The system works interactively, querying the user about the geology on
the site, proposed slope design and proposed working method in order to provide an estimate of the
stability at a point. Although it can also work in automatic mode, the system has been re-programmed
in Pascal to speed up the site assessment process that requires the assessment of a large number of
points (which was slow using Xi-Plus). In automatic mode the system obtains geological information
(such as strata dip and dip direction, rock mass quality, groundwater condition, etc.) from a geological
model and planning information (such as slope conﬁgumtion(slope curvature condition, etc.) from a
design model. These models were created using two commercially available programming packages: i)
AutoCAD that allows existing plans and sections to be copied into the system and ii) the language
Pascal. ESDS can also be linked to NUmine, a Computer Aided Mine Design and Planning tool in
order to analyse the high risk areas in much more detail by applying different slope stability analysis

methods.
Gillette (1991) presents the Computerised Adviser on Soil Strength (CASS), a KBS to assist in the

selection of shear strength parameters for use in stability analysis. It was written using the rule-based

expert system shell Personal Consultant Plus (PC+) and runs on an AT-class PC with extended memory.

26

After the preliminary data entered by the user, the system starts trying the goals which are the shear
strength parameters ¢ and ¢, a recommendation about the strength representation in the analysis, advice
on soil behaviour and warnings about possible problems. The conclusions are reached using a
backward-chaining inference mechanism. Checks on the consistency and validity of the input

information are also performed by the system.

2.3.5 Soil Improvement

Soil improvement forms another potential area for applying knowledge-based system

techniques. Two systems developed for treating this topic are presented below.

Improve (Chameau and Santamarina, 1989) is a knowledge-based decision support system designed to
assist in the selection of soil improvement techniques. The knowledge of the system is represented
using a structure based on "windows". Windows are mathemalical representations of the restrictions to
the possible values a variable of an object can take (fuzzy sets). In this way the knowledge and its
uncertainty are combined in a unique entity. Each soil improvement method is represented by a stack
of windows, which correspond to those physical characteristics and parameters, called dimensions, that
restrict the use of the method. The searching algorithin of the system is based on the best-first search.
The system consists of four parts: i) the preprocessor, that helps the user decide if there is need for soil
improvement, ii) the classification system, that selects the best soil improvement technique but it
continues the scarch for less satisfactory solutions at the user's request iii) the case-based system selects
case histories that best resemble the project; it includes 50 case histories which are represented in the
same way as the techniques and iv) the postprocessor, a ruled-based system which provides final
information and suggestions. These modules have the same format and communicate with each other
through a common storage "blackboard”. Similar to the system PILE (Santamarina and Chameau,
1987) it retrieves guidelines on soil improvement techniques from the SOIL database. The system also

provides explanation capabilities.

27

The Expert System for Preliminary Ground Immprovement Selection (ESPGIS) developed by Motamed et
al (1991) is a menu-driven system that advises users in selecting ground improvement methods or to
evaluate the suitability of a user's preselected method, given the characteristics of the site. The system
was developed using the expert system shell VP-Expert version 2.02 on an IBM Personal Systém 12
Model 50-Z with 1 Mb of RAM running under MS-DOS version 4.0. The inference of the shell can be
forward, backward or mixed chaining. The shell allows for database, worksheet and external program
access and has the ability to implement confidence factors, explanation of reasoning, a friendly user
interface and an on-line editor. Knowledge was obtained from structured and unstructured interviews
and from a literature survey and is stored in a knowledge base in the form of rules. EPSGIS allows the
user to define the problem by specifying, with varying degrees of certainty, the nature of the ground
improvement need, subsurface conditions and other relevant parameters, It questions the user on
stratigraphy and simple index properties of the underlying soil and assigns typical values for design

parameters for the soils based on the soil's description and its index properties.

2.3.6 Geosynthetics

Geosynthetics (selection and design) is another geotechnical area where the new technology

has been applied. Two relevant systems are presented below.

A hybrid KBS is described by Maher and Williams (1991) that selects geosynthetic materials and
performs detailed designs for different geotechnical applications. The programs included in the system
were developed on an IBM-AT compatible microcomputer. The system comprises three components: i)
a KBS that was developed using the shell Rulemaster2 and contains rules on how to select the most
appropriate type of geosynthetic for an application, ii) a DBASE III database of geosynthetic product
information, mainly concerning information on the important performance parameters of various
geosynthetic products, that can be accessed using Structured Query Lmiguage and iii) geosynthetic
design programs written in the C programming language. The knowledge incorporated in the system

contains information about material selection for five different geosynthetic uses such as stabilisation to

28

reduce erosion, separation of soil layers, reinforcement to improve soil strength, drainage material to

remove water and filtration to reduce cross plain flow of soil particles.

Edge Drain by Expert System (EDxES) has been developed by Dimmick ef al (1991) to assist in the
design and specification of the geotextile component of the (pavement) edge drain. The shell used to
develop this system was Personal Consultant Plus from Texas Instruments. It is a backward chaining
shell that allows knowledge bases to be organised into frames. All knowledge is represented by rules
and facts within the frames. EDxES accepts raw site data as input, in the form of rainfall and native soil
characteristics, design requirements (consisting of subbase material characteristics, pavement system
and edge drain cross section information) and construction conditions. The system considers
commercially available geotextiles that are non-woven and perform the dual functions of drainage and
separation. The output consists of the required hydraulic and mechanical properties which are
determined using typical algorithmic solutions and a list of the ten thinnest (lightest) candidate products
arranged in ascending order. One limitation of the system is the underlying soils. It cannot handle soil

conditions that include gap-graded, intemally unstable silts.

2.3.7 Dam Seepage

Knowledge-based systems have also been developed to aid the diagnosis of dam seepage

problems.

Sieh er al (1988) describe a KBS developed to assist in the diagnosis of seepage from embankment
dams. The diagnostic expert system is part of the Operations and Maintenance Advanced Decision
Support System (OMADSS), a prototype personal computer based system for dam seepage analysis,
which also incorporates a database of case histories of facilities and a database of graphic images of
facilities. The expert system is written in Fortran 77 and is machine portable. It uses vendor supplied
run-time expert system software and was developed with the vendor development package. The

knowledge included in the system is in the form of rules. The user's input required is information on the

29

geographic location of the seepage, the location of the seepage with respect to the reservoir water
surface, the type of seepage (point source versus non-point), the time the seepage first appeared, the
monitoring frequency of the seepage, the status of the seepage (increasing, decreasing or steady), the
rate of seepage, and the sediment content of the water. If the system is able to reach a conclusion, the
problem type is stated (point source seepage, non-point seepage, sandboils, sinkholes, drainflow), the
seriousness of the problem explained (text explanation from the expert) and a recommended course of

action is prescribed (text explanation from the expert).

EXSEL (Asgian et al, 1988) is a KBS constructed as a diagnostic tool for seepage problems associated
with dams such as earth dams, rockfill dams, concrete dams and roller compacted dams. The system
queries the user with multiple choice questions in order to find out the symptoms of a problem (turbid
seepage or seepage carrying fines, localised seepage/wet spots/soft or quick spots, high piezometric
levels, boils, change in flow rate in drains, presence of holes or depressions, whirlpool in reservoir, mass
movement (slides, cracks, etc.)). It then determines the likely causes of the problem and makes
recommendations for potential remedial actions. EXSEL is valuable for preliminary assessments of
seepage problems because it handles only qualitative information (e.g. high piezometric levels, change
in flow rates, etc.) and not quantitative information (piezometric levels, flow rates, etc.) which are
necessary for final assessments. EXSEL uses the expert system shell ARITY PROLOG. The inference
engine of the shell manipulates the knowledge base using the backward chaining technique. The
knowledge is represented in the form of IF-THEN rules and frames. The system also gives the option to
the user to consult a database of case histories of dam seepage problems. EXSEL runs on a 512K IBM
XT compatible PC. If the case histories database is consulted in conjuction with the expert system then
a 640K IBM compatible PC is needed. The database can be accessed through the data management

computer program dBASE II1.

30

2.3.8 Other Geotechnical Areas

In the rest of this section a number of KBS are described, each one of which is involved with a

separate geotechnical task.

GroundWater eXpert (GWX) is a prolog-based KBS, presented by Davey-Wilson and May (1989) and
Davey-Wilson (1991), that has been developed to advise on appropriate methods for groundwater
control in excavations. The primary source of data for the system is the CIRIA report on groundwater
control methods. In its latest version (Davey-Wilson, 1991), the knowledge base contains information
on each of 27 possible methods. The choice of a method is based on 14 variable parameters from which
project type, ground type, excavation size and excavation depth are the most critical. Each parameter is
ranked (in the range -10 to 10) in respect to the methods, as a way of assessing its suitability. A negative
value indicates the unsuitability of the method for that parameter. A weighting is also attached to every
parameter, reflecting its relative importance. The system can use either preset settings or user defined
values. The system is menu driven and incorporates the use of comments so that the user can have a
qualitative measure of suitability in addition to the quantitative rankings. GWX has been developed for
use on a standard MS-DOS micro-computer using LPA PROLOG together with its interface facilities,

which enables menus and windows to be easily constructed.

A KBS was developed by Davey-Wilson (1991) for soil shear strength analysis using the object
orientated software HyperCard, running on an Apple Macintosh computer. HyperCard enables a highly
graphical interface to be easily constructed. HyperCard is a series of cards that can be filled in with
pictures or texts. Each card is a separate object and up to 32000 cards can form a stack (in other words,
can be part of the same application), while different stacks can easily be combined. When
programming is required, an object orientated language is provided, named HyperTalk, which
incorporates the use of several English words and phrases. The systemn developed uses soil descriptions
as input in order to infer their shear strength in degrees, to a maximum accuracy of 1°£1°. The user is

queried about the particle size distribution, the grain size, the in-situ density and homogeneity. The

input can be obtained either through a graphical interface or in the form of a'menu item selection or free
format description. The more detailed the answers, the higher the precision of the result. The
knowledge involved is in the form of simple if-then-clse rules. The same system is also used for
educational purposes to simulate the execution of the laboratory shear box test with step by step
interaction with the user, linking geotechnical theory to practice. The author suggests that the
educational part of the program could be further developed by adding sound effects or digitised

photographs or even by linking it with a video.

SOLES (Shyu and Hryciw, 1991) is a KBS to assist in the evaluation of liquefaction potential of soil
subjected to earthquake excitations. It is a menu-driven system written in Turbo Prolog for use on a
IBM-compatible PC. Forward chaining reasoning has been adopted. SOLES consists of three main
components : the Control Mechanism, the Blackboard Data Structure and the Knowledge Sources. The
Control Mechanism ensures that the desired control flow is followed. The Blackboard Data Structure
organises the domain knowledge and the problem solving strategy, The blackboard of SOLES is a
global database consisting of four sections which are the earthquake excitation, the soil properties, the
analysis results and the overall evaluation, and keeps the data in an hierarchical structure. The
Knowledge Sources provide information that will aid in the problem's solution and are represented by a
combination of algorithmic procedures and/or set of rules. When needed they modify the data existing
in the blackboard. If insufficient data is available SOLES performs the evaluation based on the limited
information available and additional inferred data. At present, no facility is provided to allow uncertain

data to be processed.

Juang and Lee (1989) describe Rock Mass Classification (RMC), a KBS developed for use on
microcomputers for rock mass classification. The system is based mainly on Bieniawski's
geomechanics classification scheme and is developed using the expert system shell FLOPS (Fuzzy
LOgic Production System). Some of the basic features of FLOPS is approximate reasoning with fuzzy

logic, the ability for either deductive or inductive reasoning, the support for both forward and backward

32

chaining inference mechanisms, and the use of blackboard architecture. The Rock Mass Classification
system starts by reading in knowledge stored in external databases. Then a total of 182 production rules
is generated from 11 user written rules. Next, the problem-specific data are entered through an external
program, GETDATA (written in C), which is compatible with FLOPS and provides user interface
facilities. By using the inductive reasoning (parallel processing) facility of FLOPS all rules that are
fireable are then fired at once, reaching a set of preliminary conclusions, which are processed by the
external program FUZZY (written in C) for establishing the final conclusions about the classification of

the rock mass after completing the fuzzy computation.

A KBS (Mi and Jieliang, 1989) has been developed to predict the value of surface settlement and the
degree of damage to corresponding buildings (brick structure, filled frame structure and infilled framne
structure having either shallow foundation or pile foundation) caused by shield-driven tunnelling and to
propose prevention and strengthening measures (local grouting of soil beneath the buildings or
underpinning, diaphragm wall or underground continuous wall). The expert system consists of a control
module, a user interface module, three subsystems (the expert inference method, the empirical formula
method and the FEM (finite element method)) used for the estimation of surface settlement and a
module that provides judgement about the building condition and proposes preventative and
strengthening measures. The expert inference subsystem consists of an interface for obtaining expert
knowledge, an inference engine, (based on fuzzy logic and used to compute the maximum value of
surface scttlement), a knowledge base and a unit for explaining expert knowledge. The knowledge base
stores information about the factors influencing the prediction of settlement (class of soil, ratio of tunnel
depth/diameter, stability ratio of soil, type of shield, condition of underground water, level of working
quality, transportation manner on the urban ground surface). Two more maximum values are produced
by the two other subsystems. The final maximum value of the surface settlement is determined by

applying weighting factors to the values obtained from the three different methods.

(98]
w

A KBS has been developed for providing assistance for the planning of safety precautions for a shallow
trench (less than 7.3 m deep) according to the soil conditions encountered (Siller, 1987). The system is
based on two new soil classification systems developed by the National Bureau of Standards in order to
increase the safety of this type of excavation. The system has been implemented using Personal
Consultant, an expert system shell developed by Texas Instruments for use on PCs. Personal Consultant
supports backward chaining reasoning and provides an explanation facility. The knowledge base
contains factual data and production rules that represent the heuristics for manipulating the data. The
knowledge base consists of two top level sections that permit repetitive consultations without exiting the
system. There are three sublevels that then handle the tasks of soil classification, design parameter

inference and trench bracing design.

A KBS, presented by Pearse and Rosenbaum (1986), is being developed for the evaluation of road
corridors taking into account engineering geological criteria. The evaluation is primarily in terms of
finance and safety. The system will give a cost for each potential road corridor and a probability of
failure within its design life, as well as a summary of the main advantages and disadvantages of each
alignment. The system allows manual interpretation and judgement for the selection of the optimum
solution since factors other than the engineering geological assessment (economical, social,
environmental) will contribute as well. The system is implemented in PROLOG and uses the PROLOG
expert system shell APES to provide inleractive, explanatory and inferential facilities. During an
evaluation asscssment the system will consider relevant aspects of the geology, topography, water
conditions and geotechnical properties of the ground along each potential route, as well as the

availability of construction materials.

2.4 Discussion

The relatively new technology of Knowledge-Based Systems has already been employed to

address a wide range of geotechnical engineering problems (such as site characterisation, foundation

34

design, design of earth retaining structures, slope stability analysis, ground improvement, dam seepage,
groundwater control, etc.) as discussed in section 2.3. To date, most of the existing systems could be
described either as demonstrational prototypes, developed mainly for research purposes (e.g. the system
presented by Alim and Munro (1987) on soil investigation, FOOTER (Adams et al, 1989), FOOT (Yehia
and El-Hajj, 1987), CASS (Gillette, 1991)) or as operational prototypes (representing the majority of the
systems described here), intended to be eventually used in the commercial market but not having been
fully developed to that stage (e.g. CONE (Mullarkey, 1986; Mullarkey and Fenves, 1986), SITECHAR
(Norkin, 1985; Rehak et al, 1985), PILE (Santamarina and Chameau, 1987), RETWALL (Hutchinson et
al, 1987), WADI (Chahine and Janson, 1987), the system described by Davey-Wilson and May (1989)
and Davey-Wilson (1991) concerning groundwater control, SOLES (Shyu and Hryciw, 1991)). Only a
small number of systems could be considered (according to their authors) to be near to commercial
exploitation (e.g. XPENT (Faure et al, 1991), PILEX (Elton and Brown, 1991)). KBSs have also been
developed for educational purposes (e.g. the system described by Davey-Wilson (1991) concerning
geotechnical laboratory test simulation). Whatever the objective of the development of these systems,
they all demonstrate the potential that knowledge-based system techniques have for successfully

addressing geotechnical engineering problems.

Several interesting points arose from the development process of these systems which are worthy of

further attention. These will be discussed briefly in the remainder of this section.

It is well recognised that the knowledge incorporated in a KBS is the most important part of the system
(Feigenbaum, 1983). However, it was identified that knowledge acquisition (in other words obtaining
that knowledge) is the most difficult task in the development of such a system, The majority of the
systems described in this chapter require further development in order to complete the knowledge
included in their knowledge bases (e.g. the system presented by Arockiasamy et al (1991) on retaining
wall selection, WADI (Chahine and Janson, 1987), the system presented by Maher and Williams (1991)

on geosynthetics, SOLES (Shyu and Hryciw, 1991)) or make it more general (e.g. LOGS (Adams et al,

2
wn

1989)). This was found to be a lengthy process since in most cases it is personal experience and

expertise that is missing, which can not usually be derived from published material.

A variety of methods have been adopted for acquiring the knowledge required for the development of
the KBSs described earlier in this chapter; however, it appears that no formal methodologies have yet
crystallised. The most common methods employed for the acquisition of expertise include: i) literature
review, including any published material such as textbooks, technical papers, codes of practice, etc.
(e.g. Geotech (Rowlinson, 1989), WADI (Chahine and Janson, 1987), the system described by Davey-
Wilson and May (1989) and Davey-Wilson (1991)), ii) structured or unstructured interviews with
domain experts (e.g. SITECHAR (Norkin, 1985; Rehak et al, 1985), the system described by Oliphant
and Blockley (1989) on earth retaining structures, the system described by Sieh et al (1988) on dam
seepage). In some systems both of the above techniques have been adopted (e.g. SITECLASS (Wong et
al, 1989), the system presented by Stuckrath and Grivas (1990) on bridge foundations, ESPGIS
(Motamed et al, 1991) or have been combined with a knowledge elicitation exercise in the form of
questionnaires (e.g. the system described by Hadipriono et al (1991) on foundation failures, RETWALL
(Hutchinson et al, (1987)). The knowledge incorporated in ESDS (Denby and Kizil, 1991) was obtained

from the analysis of actual case study data.

A vital factor in the design of any KBS which needs to be considered after the knowledge required
becomes available, is the selection of an adequate and appropriate knowledge representation scheme.
This requires that the nature of the domain knowledge is well understood. The three methodologies
most commonly used for representing the knowledge in the systems presented in section 2.3, are rule-
based representation (e.g. Dipmeter Advisor (Smith and Barker, 1983), SITECHAR (Norkin, 1985;
Rehak et al, 1985), WADI (Chahine and Janson, 1987), RETAIN (Adams et al, 1989)), logic-based
representation (e.g. the system described by Davey-Wilson and May (1989) and Davey-Wilson (1991),
the system presented by Oliphant and Blockley (1989) on earth retaining structures) and frame-based

representation (e.g. the system presented by Hadipriono et al (1991) on foundation failures). The

representation in the form of If-Then rules seems to be the favourite. Attempts have also been made to
develop hybrid systems using two (or more) knowledge representation schemes such as rules and frames
(e.g. the system described by Smith and Oliphant (1991, 1992) on site investigation, the system
presented by Halim et al (1991) on site exploration, FOUNDCON (Rashad et al, (1991), EDxES
(Dimmick et al, 1991), EXSEL (Asgian et al, 1989)). A number of systems have sufficient capacity to
accommodate uncertain or incomplete information in the knowledge base (e.g. CONE (Mullarkey,
1986; Mullarkey and Fenves, 1986), PILE (Santamarina and Chameau, 1987), RMC (Juang and Lee,
1989)). Chameau and Santamarina (1989) reported the use of another form of knowledge
representation, the window form, which combines the knowledge and its uncertainty in a unique entity.
According to the authors this formalism has many useful features (such as development of composite
solutions, search for lacunae (gaps in knowledge), etc.) not available in other systems. In addition to the
knowledge base some systems incorporate a database of case histories allowing the user to have access
to prior experiences (e.g. the system presented by Oliphant and Blockley (1989) on earth retaining
structures, Impove (Chameau and Santamarina, 1987), the system discussed by Sieh et al (1988) on dam

seepage, EXSEL (Asgian et al, 1989)).

Another critical issue concerning the development of these systems was found to be the choice of the
appropriate tools for building them. It must be noted that the selection of the implementation tool is
dependent upon the scheme employed to represent the knowledge. The majority of the systems
presented above have been implemented using an expert system shell (e.g. SITECLASS (Wong et al,
1989), the system described by Smith and Oliphant (1991,1992) on soil investigation, BABE (Zheng et
al, 1989), ESPGIS (Motamed et al, 1991), EDXES (Dimmick et al, 1991), EXSEL (Asgian et al, 1989),
RMC (Juang and Lee, 1989), the system described by Pearse and Rosenbaum (1986)); in certain cases
expert system development environments have been selected (e.g. LOGS (Adams et al, 1989), the
system discussed by Halim et al (1991) on site exploration, XPENT (Faure et al, 1991)). For a number
of systems the high level symbolic programming languages Lisp and Prolog have been selected as the

implementation tool with Prolog being the most popular (e.g. GEOTECH (Parikh and Kameswara Rao,

1991), PILE (Santamarina and Chameau, 1987), SUPILE (Wong et al, 1991), the system described by
Davey-Wilson and May (1989) and Davey-Wilson (1991) concerning groundwater control, SOLES
(Shyu and Hryciw, 1991)). A limited number of systems have been developed using procedural
languages (e.g. FOOT (Yehia and El-Hajj, 1987)), the system presented by Sieh et al (1988) on dam
seepage). Finally, some systems make use of tools that allow object-orientated programming (e.g. the
system described by Stuckrath and Grivas (1990) on bridge foundation, the system presented by Davey-

Wilson (1991) on geotechnical laboratory test simulation).

It appears that expert system shells are the favourite implementation tool for building knowledge-based
systems for use in geotechnical engineering. This is mainly due to the fact that by employing a shell,
users can concentrate on building the knowledge base. The system can be produced quickly by
someone without extensive Al programming experience but with understanding of the domain
knowledge (Wong ef al, 1989; Rosenman et al, 1989; Gillette, 1991). However, complex expert system
shells may require a large learning curve to fully utilise their potential. Nowadays many shells are
commercially available which vary from extremely simplistic to very complicated; Motamed et al
(1991) established general criteria for the selection of an expert system shell identified during the
selection process of the most suitable shell for the development of the ESPGIS. The limited preference
shown towards expert system development environments can be explained by the relatively high cost of
the software. A considerable number of developers still prefer the Lisp and Prolog languages as they
enable fast development of prototype knowledge-based systems. It is worth noting that although to date
the most popular language for ES implementation has been Lisp, interest has begun shifting recently
towards the use of Prolog. Traditional languages seem not to be widely accepted as the most
appropriate environment for the development of knowledge-based systems. However they have been
chosen in some cases as they offer easy portability among different types of computers, compatibility

with numerous pieces of software available in these languages and fast execution.

38

Selection of the most suitable implementation tool for the development of a KBS is important for the
successful development of a commercial systemn. Smith and Oliphant (1991) identified that although the
software tool used was found to be satisfactory for the development of the prototype system, it could
prove restrictive during the development of a commercial system. Also, Denby and Kizil (1991) note
that the original ESDS was developed in Prolog and although it was a success, problems of maintaining
the program and extending it to link with other packages resulted in the re-implementation of the system
(ESDS-X) using a suitable expert system shell. Moreover, ESDS-X has also been re-programmed in a
procedural language in order to allow quicker execution of one of its operations. Such problems can
also arise if large amounts of additional knowledge are required in order to transform a prototype into a
practical tool accepted by industry or if additional knowledge requires different knowledge
representation schemes not supported by the software selected for the implementation of the prototype.
From the discussion above it is apparent that converting a prototype into a near commercial system is

not always a straightforward process.

One of the most important and time consuming tasks in the development of a KBS is the creation of a
suitable user interface, which will enable the system to be easily used by individuals of varying degrees
of computer experience. The aim should be to develop a user interface that balances the needs of the
non-expert user and the familiarity available by the experienced one so that it will not discourage the
former or become cumbersome for the latter. Explanation facilities are desirable since they add to the
system's credibility and cnable the non-expert user to learn from the system. The prototypes described
earlier in this chapter are user friendly to different degrees and provide one or more explanation

facilities.

In order for a KBS to be accepted by practising engineers, it should be capable of communicating
successfully with already established databases, algorithmic programs and graphical packages. Such an

approach has been adopted in some of the systems presented in the previous section (e.g. SITECHAR

(Norkin, 1985; Rehak et al, 1985), WADI (Chahine and Janson, 1987), XPENT (Faure et al, 1991),

ESDS (Denby and Kizil, 1991), the system presented by Maher and Williams, 1991)).

It is worth noting that all the prototype systems described require the inclusion of soil information in
their knowledge base in different levels of detail according to the application area of the
knowledge-based system. For example, systems that address the problem of site characterisation require
an understanding of much more detailed soil descriptions than systems that are applied in other areas of

geotechnical engineering (such as foundation design, slope stability, groundwater control, etc.).

The existing knowledge-based systems demonstrate that such systems have a major role to play in
geotechnical engineering, firstly as a tool to assist experienced engineers and secondly as a means of
training inexperienced engineers. Another very important contribution of this approach is the gain of
knowledge by making explicit the heuristic rules that govern the decision making process of an
experienced geotechnical engineer, documenting and organising this knowledge (as well as knowledge
derived from published material) for a specific domain and identifying gaps in the knowledge obtained
or available. As knowledge-based system technology develops and familiarity with such systems
increases, the verification of these systems and the proper mechanisms for enhancing and distributing
them for use by practitioners should be addressed. The development of commercially acceptable KBSs

should be the direction to follow in the future.

40

CHAPTER 3

REPRESENTING THE GROUND

3.1 Introduction

Developing Knowledge-Based Systems in Geotechnical Engineering involves representing the
ground. The representation of the ground poses a particular problem for knowledge-based systems since
geological materials are highly variable and complex. Different levels of detail can be introduced in a
representation scheme according to the system's requirements. These requirements depend on the type
of information required by the engineer at different stages of a site investigation. These levels of
complexity may range from broad geological classifications to detailed soil descriptions and to the
determination of quantitative parameters that will allow more accurate estimates concerning the

engineering behaviour of a paricular material,

In this chapter a knowledge representation scheme concerning the ground, that corresponds to the
requirements of the knowledge-based system for assisting in the selection of appropriate in-situ tests, is
presented. In section 3.2 the knowledge included in the system is described. The implementation of the

‘Representing the Ground' application in PDC Prolog is then discussed in section 3.3.

3.2 Information Included in the Ground Knowledge Base

The Ground Knowledge Base developed in the system contains a model of the ground. Theé
level of detail introduced in accordance with the system's requirements, is a broad classification based
on the British Standards (BS 5930, 1981). The model of the ground is presented in Figure 3.1. In this

hierarchy the Ground is described at the highest level as either Soil or Rock.

41

punoib ay} Jo uoneolsser peolg

o] S pueg | | [9AesD) | |$9|qqoQ | | siepinog Jead
aul4 aulj-le|nuelr) 8sI1e0) osI1e0d Musp
aAISayo) Jejnueln)
ouetio-uoN
preH yos

%ooy

punoin

1'e ainbiq

Jyis-oluebip

Aepo-ouebip

pues-oiueblp

auy-oluebiQ | | suy-reinueib-ouebio

asieoo-oluebio

anlsayoo-oiuebip

Jejnuesb-oluebip

SISeM i

oiuebin

Hos

N

apew-uepy

42

Since the system is mainly concerned with soils, information concerning rock has not been represented
in detail. The only subdivisions currently applied o the Rock branch are given by the use of the
qualitative terms Soft and Hard Rock which cover the weak (very weak, weak, moderately weak) and
strong (moderately strong, strong, very strong, extremely strong) ranges expressing the uniaxial
compressive strength of rocks. Consequently, Soft Rock represents rock material having a uniaxial
compressive strength range of 0.6 - 12.5 MN/m? while the corresponding range for rock material
represented by the term Hard Rock is 12.5 - 400 MN/m?2 (BS 5930, 1981). The lower limit (0.6 MN/m?)
is suggested by Spink and Norbury (1991) and the higher limit (400 MN/m?2) by Auewell and Farmer
(1976). This subdivision is provided because knowledge concerning Soft and Hard Rock is included in

the Tests Knowledge Base.

A Sail can be subdivided into Man-made, Non-organic or Organic. Man-made Soil can consist of
Engineering Fill (compacted material) or Waste materials of various origins (non-compacted material),
Following the Non-organic branch, a Soil can be identified at the most detailed level by the dominant
soil type (Boulders, Cobbles, Gravel, Sand, Silt and Clay). The Organic branch culminates in the

organic dominant soil types (Organic Sand, Organic Silt, Organic Clay and Peat).

From Figure 3.1 it can be seen that Silt may be either a Fine Granular Soil or a Fine Cohesive Soil
depending on its behaviour, Silt is considered as a granular material if it does not display any plastic

properties and as a cohesive material if it does. The same definitions apply to Organic Silt.

This broad classification is based on knowledge about grading and plasticity. For example, Granular
soils have a grain size range of 0.002 - 2000 mm and are non plastic. Cohesive soils have a grain size
range of 0 - 0.06 mm and a liquid limit range (indicating plasticity) of 0 - 200 %. For the reason
mentioned above, the grain size ranges of Granular and Cohesive soils ovérlap. An upper limit of
200 % has been taken to give an indication of a maximum likely liquid limit. The grain size ranges

become more specific upon descending the hierarchy. For instance, the grain size range for Coarse

soils, a subdivision of Granular soils, becomes 60 - 0.06 min and for Sand, which is a subdivision of

Coarse soils, it becomes 2 - 0.06 mm.

The grain size and liquid limit ranges corresponding to the non-organic dominant soil types are given in
Table 3.1 (BS 5930, 1981). Organic Sand, Organic Silt and Organic Clay can be classified in the same
way as Sand, Silt and Clay if the organic material is removed or ignored, Peat is an organic material
with variable grain size and consequently there is no specified grain size range for it in this

representation scheme.

Dominant Grain Size Liquid Limit
Soil Type (mm) (%)
Boulders 2000 - 200 --
Cobbles 200 - 60 -~
Gravel 60-2 --
Sand 2-0.06 --
Silt 0.06 - 0.002 0-200
Clay 0.002-0 0 -200

Table 3.1. Grain size and liquid limit ranges corresponding to non-organic dominant soit types

In a more detailed representation the grain size ranges corresponding to Gravel, Sand and Silt can be
subdivided into the ranges shown in Table 3.2 (BS 5930, 1981). Silts and Clays can have a more

refined classification in relation to the liquid limit, which is presented in Table 3.3 (BS 5930, 1981).

As part of the more detailed representation, additional information relating to the dominant soil types is
included such as permeability, consistency and compressibility. The permeability ranges corresponding
to dominant soil types given by Fookes and Vaughan (1986) are shown in Table 3.4. The consistency
ranges corresponding to Sand and Gravel are expressed in terms of Standard Penetration Test N-values
and are presented in Table 3.5 (BS 5930, 1981). The consistency of Clay is usually expressed in terms

of undrained shear strength as shown in Table 3.6 (BS 5930, 1981). Silts can be described by the

consistency ranges used for granular soils if the sand proportion dominates, and by consistency ranges
used for cohesive soils, if the clay proportion is high (Weltman and Head, 1983). Therefore, Silt is
included in both Table 3.5 and Table 3.6. The compressibility ranges of different dominant soil types

are given in Table 3.7 (Weltman and Head, 1983).

Dominant Grain Size Modifier
Soil Type (inin)
60 - 20 Coarse
Gravel 20-6 Medium
6-2 Fine
2-06 Coarse
Sand 06-0.2 Medium
0.2 - 0.06 Fine
0.06 - 0.02 Coarse
Silt 0.02 - 0.006 Medium
0.006 - 0.002 Fine

Table 3.2. Subdivisions of grain size ranges

Dominant Liquid Limit Modifier
Soil Type (%)
0-35 Low plasticity
Silt 35-50 Intermediate plasticity
Clay 50-70 High plasticity
70 -90 Very high Plasticity
90 - 200 Extremnely high plasticity

Table 3.3. Subdivisions of liquid limit ranges for fine soils

Dominant Soil Type | Coefficient of Permeability Modifier
(m/s)
Boulders
Cobbles 1-103 High Permeability
Gravel
Sand 1073 - 107 Medium Permeability
1075 - 1077 Low Permeability
Silt 10 - 107 Low Permeability
10-7 - 109 Very Low Permeability
Clay 1020 Practically Impervious

Table 3.4 Dominant soil types and permeability ranges

45

Dominant Soil Type N-value Maodifier
0-4 Very Loose
Gravel 4-10 Loose
Sand 10-30 Medium Dense
Silt 30-50 Dense
50 - 100 Very Dense

Table 3.5 N-value ranges for granular soils

Dominant Undrained Shear Suength Modifier
Soil Type Cu (kN/mz)
0-20 Very Soft
Silt 20 -40 Soft
Clay 40-175 Firm
75-150 Stff
150 - 300 Very Stiff

Table 3.6. Undrained shear strength ranges for cohesive soils

Dominant Coefficient of Modifier
Soil Type volume compressibility
m,, (m</MN)
Sand 0-0.05 Very Low Compressibility
Silt
0-0.05 Very Low Compressibility
Non-organic Clays 0.05-0.1 Low Compressibility
0.1-03 Medium Compressibility
03-15 High Compressibility
Organic Clays 1.5-20 Very High Compressibility
Peat

Table 3.7 Coefficient of volume compressibility ranges corresponding to different dominant soil types

It should be noted that most soils in reality are a mixture of different sizes of materials (different soil
types). These can be identified by visual examination of the soil sample and/or by means of testing, and
are contained in the detailed engineering description of the soil. One (or more than one) of the different

components of the soil will be the dominant soil type(s) whose name is usually given in capitals in the

soil description. An example of such a description is:

slighty clayey, silty, very sandy GRAVEL

46

In this example the soil described consists of four different soil types: clay, silt, sand and GRAVEL
which is the dominant soil type. In the representation scheme put forward by Toll ef al (1991a) each
soil type participating in the composition of the soil is associated with an Amount. If the soil type is the
dominant soil type the Amount is given as Main (GRAVEL). For the descriptive term 'very' the
Amount is given as Major (sand). For the soil's name followed by the ending -y the Amount is given as
Secondary (silt). For the descriptive term 'slightly' the amount is given as Minor (clay). It is worth
noting that in a composite soil the Main soil type can indicate either the major constituent of the soil

mass or the soil's behavioural type.

A full engineering soil description can also contain additional information concerning the structure,
moisture and consistency of the soil mass as well as characteristics of each soil constituent such as

colour, shape, grading etc. (Toll et al, 1991a).

Although full engineering soil descriptions play an important role in the representation of soils, it is
normally the soil's behavioural type (the Main soil type) or broader classifications which are important
when decisions are being made about the most appropriate field test to be used. This will particularly
be the case at the early stages of a project when over-all feasibility is being considered and a detailed
investigation of the soils has not been carried out. For this reason, the model of the ground represented

here includes only the Main or dominant soil type, not the lesser constituents.

It is often the case however that the applicability of a certain in-situ technique is influenced by the
knowledge of the lesser consituents of a composite soil. The level af detail that such decisions usually
require is a composite soil consisting of the Main soil type and one lesser component that may be
indicative of the soil's behaviour (e.g silty Gravel). In this work, percentage ranges are defined for
Secondary soil types in accordance with the BS 5930 (1981) which refers to them for both coarse and

fine Main soil types and these are presented in Table 3.8.

47

Percentage Ranges of
Dominant Soil Type Secondary Soil Types Modifier
(%)

Gravel 5-20 Gravelly

Sand 5-20 Sandy

5-15 Silty

5-15 Clayey
Silt 35-65 Gravelly

Clay 35-65 Sandy

Table 3.8 Percentage ranges of secondary soil types

It should be noted however that several inconsistencies are present within BS 5930 (mmainly concerning
fine soils) which have been identified and discussed by Child (1986) and Vaptismas (1992). Norbury et
al (1986) have proposed a more consistent scheme for soil descriptions following the basic principles set

out in BS 5930.

The information included in the detailed representation of the ground relales to future development of
the system. Knowledge about grading, plasticity, compressibility, consistency and permeability of the
Main soil type as well as knowledge conceming the Secondary constituent of a composite soil in
addition to the Main soil type could be very useful. In some cases the applicability (or the limitations)
of a certain in-situ test method do depend on that level of detail. For instance, the Vane Test, although
having high applicability in clays, would have only medium applicability in stiff clays (Orchant et al,
1988) i.e. the consistency modifier does have an effect. In the system developed as part of this research

project, facilities have been provided for including and utilising this greater level of detail.

3.3 Implementation of Ground Information in Prolog

3.3.1 Introduction
In this section a brief description of the main characteristics of the Prolog programming
language is presented and the Prolog 'dialect’ that was chosen for the implementation of the system is

discussed. The actual implementation of the Representing the Ground' application in PDC Prolog is

48

then discussed in detail. The development of the Ground knowledge base as a set of facts is presented
in section 3.3.3 whereas the development of an exlended inference mechanism for accessing the

knowledge base is presented in section 3.3.4.

3.3.2 Prolog programming language

PROLOG (PROgramming in LOGic) is a symbolic programming language. The declarative
character of Prolog allows the programmer to concentrate on the description of the objects occuring in a
problem and the relationships between them rather than on the prescription of the sequence of steps

taken by a computer to solve the problem, as happens in procedural languages.

Prolog's syntax is based on first order predicate logic formulas written in clause form and further
restricted to Horn clauses. Deductive inferences in Prolog are based on the resolution principle for

mechanical theorem proving introduced by J. Alan Robinson.

Prolog's built-in inference mechanisin supports backward chaining reasoning and brute force depth first
search. The inference mechanism includes a pattern matcher, which corresponds (approximately) to
what is called unification in the formal definition of resolution (Clocksin and Mellish, 1981). Prolog
uses a backtracking mechanism to find all possible solutions to a given problem. This mechanism

allows non-deterministic programming in Prolog.

Prolog is not a purely logic programming language as it provides certain tools such as the fail predicate
and the cut that allow some control on the inference mechanism of a Prolog program but reduce its
clarity. It also provides tools to cover practical needs such as input or output. Consequently, Prolog

combines both declarative and procedural approaches providing a practical programming system.

The orientation towards the Prolog programming language as the implementation tool for the

development of the knowledge-based system presented in this thesis, was mainly due to some features

49

of the language that seem to be very suitable for the requirements of the system. These features are
outlined by Bratko (1990), who stated that "Prolog is especially well suited for problems that involve
objects - in particular, structured objects - and relations between them” and Marcellus (1989) who stated
that "Prolog shines in two major areas: search and pattern matching. These capabilities are features of

the language".

Prolog was first implemented by Alain Colmerauer at Marseilles in 1972 with Robert Kowalski at
Edinburgh contributing crucial theoretical work. The first efficient implementation was due to David
Warren at Edinburgh in 1977. Many Prolog systems are now commercially available, running on a

variety of computers.

The 'dialect’ of Prolog chosen for the iimplementation was Turbo Prolog (1986) via Borland, which is an
IBM PC-based Prolog compiler of relatively low cost that provides an easy to use environment similar
to that of Turbo PASCAL and Turbo C. It should be noted that a Personal Computer was the only

available hardware at that time.

Turbo Prolog differs from DEC-10 Prolog or Edinburgh Prolog (as described by Clocksin and Mellish,
1981) in several ways. Branbury and Woodward (1988) give a detailed list of the similarities, and
differences between the two dialects. The basic difference between them is that Turbo Prolog requires
type declarations for the arguments to all predicates, making Turbo Prolog a fast language and helping it
to detect programming errors. On the other hand, some advanced programming techniques (that exist in

Edinburgh Prolog) are not possible because of the limited nature of Turbo Prolog's type declarations.

In 1990 Borland International, distributor of Turbo Prolog, took a business decision to no longer
distribute and support the language. Since that date PDC Prolog has been available and supported via

the Prolog Development Center in Denmark. For this reason the implementation of the system achieved

up till then, has been transferred to PDC Prolog, which is fully supported and available under many

different operating systems.

Initial problems encountered of accessing sufticient memory were overcome using the Phar Lap Dos-
Extended version of PDC Prolog 3.30 (User's Guide,1992; Reference Guide, 1992) on a 286 Research

Machines Nimbus AX/2 Personal Computer with 3 Mbytes internal memory.

3.3.3 Facts: Ground Knowledge Base

The development of the Ground Knowledge Base was a progressive process. Initially the
knowledge base consisted of a set of Prolog clauses, called facts, used to define the classes of the
ground model (shown in Figure 3.1) by their members and properties, These facts were described by
the predicate class. The definition of the predicate class has been altered through the development
process in order to satisfy the system’s knowledge representation requirements. The progressive
development of the predicate class is discussed in detail later in this section. In the final stages of the
implementation a predicate, called modifier, was introduced to accomodate the more detailed
representation of the ground information described in section 3.2. A full listing of the final

implementation is given in Appendix A.

As was mentioned in section 3.2, the knowledge representation of the ground was based on the broad
classification shown in Figure 3.1. The model of the ground could be considered as a tree-like structure.
This structure could be described as a general tree that accepts the possibility of a node having more
than one parent. The tree is implicit. It does not exist anywhere except in the logical relations between

the classes.

The relations between the classes of the hierarchy were described by the predicate class. The predicate
class has three arguments. The first corresponds to the name of the class in the structure, the second

specifies its members and the third describes its properties. For example, the class: Ground, which is

the root of the tree has the members: Soif and Rock, and no properties. The member Soil forms another
class whose members are: Non-organic, Organic, Man-made and has the property: ground type that
takes the value Soil. All the classes of the structure are described in a similar way until the most
detailed level, the leaves (or instances) of the tree are reached. This level is formed by the dominant
soil types (Boulders, Cobbles, Gravel, Sand, Silt, Clay, Organic Sand, Organic Silt, Organic Clay,
Pear). Instances are represented in the same way as classes i.e. by the predicate class, the only

difference being that they have no members.

The initial form of the Prolog clauses for defining objects and in particular the root (top level class), a
node (subclass) and a leaf (instance) of the tree-like structure, as described in the previous paragraph, is

illustrated below:

a) The root: ground

class (ground, [soil, rock 1,{]).

b) A node: coarse
class (coarse, [gravel, sand], [coarseness, coarse, min_grain_size, "0.06",

max_grain_size, "60" }).

¢) A leaf: sand
class (sand, [], [soil name, sand, min_grain_size, "0.06",

max_grain_gsize, "2"]).

It can be observed from the above examples that the root of the hierarchy is described by the predicate
class having the third argument that represents its properties as an empty list, []. A leaf of the hierarchy
is also described by the predicate class having the second argument that represents its members as an

empty list, [].

52

As can be seen from the Prolog code presented above, the properties of each object were initially
identified using a straightforward pair of (attribute, value), e.g.:

Attribute: coarseness, Value: coarse

Attribute: min_grain_size, Value: "0.06"
It was found to be necessary to have two types of attribute: (i) Attributes which are identified once and
are carried down the structure to the current level, expressing general knowledge. These may also allow
identification of the exact position within the structure. (ii) Attributes which appear at several levels
within the structure and whose values change, becoming more specific upon descending the structure.

These are illustrated in Figure 3.2 which shows a path through the structure, from Ground to Sand.

Attributes Yalues
Ground
Soil Ground type Soil
Non-organic Soil nature Non-organic
Granular Soil character Granular
Min grain size 0.002 mm
Max grain size 2000 mm
Coarse Coarseness Coarse
Min grain size 0.06 mm
Max grain size 60 mm
Sand Soil name Sand
Min grain size 0.06 mm
Max grain size 2 mm

Figure 3.2 - A path through the soil classification hierarchy

53

The first type of attributes, ground type, soil nature, soil character etc. are identified at one level and
are passed down the hierarchy to apply to lower level objects by inheritance. In this example, all
attributes that are of the first type also allow identification of the exact position within the structure,
Hence, at the level of Coarse in the structure, it was known to be soil, non-organic and granular by
inheritance from above. The second type, min grain size and max grain size are redefined at a number
of levels. It is worth noting that it is possible to create an attribute at an instance level i.e. the attribute

soil name for the instance Sand.

This simple format of (attribute, value) pairs used initially for the representation of properties hides the
restriction that an attribute such as grain size had to be expressed as two attributes: min grain size and
max grain size, since it could take a range of values, detined by a minimum and maximum numerical
value. It was also found that the straightforward (attribute, value) pair could not easily handle a more
detailed representation of the soil. To overcome these problems a more complicated format was

introduced:

Attribute, [(Valuel), (Factorl)
(Value2), (Factor2)

"]

In this format the attribute does not need to (ake a unique value but can take a number of different

values depending on an external factor (or factors).

Consequently, the definition of the predicate class was modified in order to incorporate the new format
for representing the properties of an object. The Prolog clauses that define classes (objects) using the

complicated format for the representation of their properties are presented below:

a) A node: coarse
class (coarse, [sand, gravel],

[att (coarseness,

[val ([coarse], fact ([]))N
att (grain_size,
[val (["0.06", "60"], fact ([1) DD.

b) A leaf: sand
class (sand, {],

[att (soil_name,

[val ([sand], fact ([]) D,
att (grain_size,
[val (["0.06","2"], fact([]))s

val (["0.06", "0.2"], fact ([fine])),
val (["0.2", "0.6"], fact({medium])),
val (["0.6", "2"], fact([coarse]) D).

The first argument of the predicate class, that declares the name of the object, is of type 'symbol’. The
second argument that represents its members belongs to the list domain indicating a list of symbols. As
was previously stated, an empty list, {], indicates that the object is at the base of the structure since it
has no members (see example for Sand above). The third argument, that gives the properties of the
class, introduces a list of multi-level compound objects. The names aft, val and fact (which are usually
called functors) indicate the use of compound data objects in PDC Prolog and have been defined to

identify attribute, value and factor.

The functors are followed by a number of arguments in parenthesis which represent the objects
belonging to them. It can be observed from the examples above that the functor att has two arguments.
The first argument represents the attribute name and is of type 'symbol’. The second argument is a list
of multi-level compound objects identified by the functor val. The functor val has two arguments as
well. The first argument of the functor val consists of the attribute values represented as a list of

symbols. In the case of an attribute having numerical values (e.g. grain size) the numbers are entered as

strings (bound within double quotes) since PDC Prolog performs an automatic type conversion between
the string domain and the symbol domain. The second argument of the functor val is a compound
object represented by the functor fact. The functor fact has one argument which is defined as a list of
symbols and represents the factors (or modifiers) that correspond to specified attribute values. An
empty list, [], indicates that the attribute values are not dependent upon a factor, as happens when

general ranges of values are given (see examples for Coarse and Sand above).

The structure of one element in the list of the multi-level compound objects described above is
illustrated in Figure 3.3. Although this format may lock complex it has proved to be efficient in
representing the information structure required. In addition, it clarified the program and facilitated the

processing of the data.

s ~ T~
s ~ T -
v N T T~
attribfte-nzune va}\l e vzﬂ\N
| / N\ : / N\
e / \ : / \
grain_size vﬂues 1 faﬁtl ... va]qu N fa(it N

I I : I |

|] I | I
["0.06", "0.2"] faﬁtors 1 .. ["0.6", "2"] fact?rs N

I : I

I Z I

(fine] oo [coarse]

Figure 3.3 Structure of the multi-level compound object

In order to maintain the set of facts that describe the ground model (predicate class) at a more general
level in relation to the properties attached to each soil type (to the instances of the structure), another
level of detail was introduced in this knowledge representation scheme by defining the predicate
modifier. The predicate modifier now deals with information representing more refined classifications
such as coarse grained, medium grained, fine grained Sand (which used (o be included at the predicalte
class level), as well as additional information which is considered to be more specific such as
consistency, compressibility, permeability and percentage ranges for Secondary soil types. This
predicate has two arguments, the first corresponds to the name of the soil type concerned and is of
‘symbol' type. The second corresponds to properties of this soil type and is a list of multi-level

compound objects having exactly the same structure as the third argument of the predicate class.

An example is given below defining an instance of the hierarchy (e.g. Sand) after the introduction of the

predicate modifier.

The code in PDC Prolog for the predicate class defining the instance Sand becomes:

class (sand, [],

(att (soil_type,

{val ([sand], fact ([]) .
att (grain_size,
{val (["0.06","2"), fact([]) DD,

The more detailed representation of the instance Sand, as given by the predicate modifier, is presented

below:

modifier (sand,

[att (grain_size,

[val (["0.6","2"], fact ([coarse])),
val (["0.2", "0.6"], fact ([medium]))
val (["0.06", "0.2" 1, fact([fine]) 0,

att ("N_value",

[val(["0", "4" 1], fact ([very_loose])),
val (["4", "10" 1, fact ([loose 1)),
val (["10%,"30"], fact ([medium_dense]))
val (["30", 50"], fact ([dense])),
val ([50", "100"], fact ([very_dense]) .,

att (coefficient_of_permeability,

[val (["10e-5", "10e-3"], fact ([medium_permeability])),

val({ "10e-7", "10e-5"), fact ([low_permeability]) 0,
att (coefficient_of_volume_compressibility,
[val (["0", "0.05"], fact ([very_low_compressibility 1))]),
att (secondary_percent,
[val (["5","20"], fact ([gravelly]))
val (["5","15"], fact ([siley]))
val (["5","15"], fact ([clayey]) m D.

Looking at the example above, it could be argued that the functor fact in the predicate class is no longer
necessary, thus the nested structure to which it belongs could be redefined without it. Although this is
the case for all the facts described by the predicate class in the existing system, the compound structure
was kept the same for two reasons: (i) it provides a uniform representation scheme with the predicate
modifier, something that significantly facilitates the programming and (ii) it gives more flexibility to the

systemn for other applications or for modifications (alterations and/or additions) to the existing one.

It has been found possible to add or to delete information from the system without changing the over-all

structure, a feature which enhances the functionality of the system.

In the latest version of the systemn the facts no longer represent a static collection of information but
conslitute a dynamic database, called knowledge_base; a dynamic or internal database in PDC Prolog,
that is composed of facts that can be updated (added, removed or changed) at run time. The predicates
class and modifier that describe the facts are declared as predicates of the database but are accessed in
exactly the same way as normal predicates which are declared in the predicates section. This alteration
was suggested by PDC Prolog (Appendix B), due to a bug in Prolog that was detected during the
development of the system. It was also stated by PDC Prolog that is normally more efficient to declare

static facts as internal database predicates (see Appendix B).

Storing the facts in an internal database will allow the provision of facilities to the user for updating the

facts representing the knowledge in future development of the system.

3.3.4. Rules: Extended Inference Mechanism

The application described above requires a search-based approach. In order to retrieve
information about the classes and instances of the hierarchy a search needs to be carried out at many
levels within the two sets of facts (predicate class, predicate modifier) that describe them. Therefore
several rules were introduced to enable or facilitate the searching process. A full listing of these rules is
provided in Appendix A. These search rules can be divided into three categories according to the

inferences they allow:

o Inheritance rule (get_all_attributes)
o Transitivity rules (discover_members,
Jfind_ancestors)
o Information retrieval rules (find_attribute_and_value,
JSind_modifiers,

find_objects_and_modifiers)

It should be noted that a number of rules have been written, concerning list processing, which are used

by ‘higher level' rules such as the ones listed above. These generic rules are discussed in section 5.2.

Inheritance is very useful as it can extrapolate an explicit set of facts to a much larger implicit
set of facts, by inferences with rules. Therefore it becomes unnecessary to store information that can be

inherited. This is provided by the 'get_all_attributes' rule which acts as follows:

get_all_attributes
Input: Object-name (e.g. sand)
Search-origin point (e.g. ground)
Output: A list of the properties of the object (attributes-values-factors) defined by the predicate

class and the properties of the ancestors of the object

A list of the properties of the object (attributes-values-factors) defined by the predicate

modifier (if any)

It is apparent from the output that the rule searches for solutions in both sets of facts (class, modifier).

The rule makes use of the implied tree-like structure in order to allow the object to inherit its ancestors'
properties. The tree-like structure is implied by the logical connections between the facts represented
by the predicate class. The logical relation between these [acts is that all objects (except the top-level

class), described by them also appear as members of another object (second argument of the predicate

class).

Attribute inheritance can be divided into: i) attribute-name inheritance and ii) attribute-value
inheritance. If an atiribute is defined only once in the hierarchy then both the attribute-name and the
attribute-value are inherited by all the subclasses and instances of the object for which it is defined. If

an attribute is defined at several levels within the structure then the current level inherits the

60

atribute-name from the level for which the attribute was initially defined, but the value specified at the
original definition is overwritten at every lower level that this attribute is re-defined. Attribute

inheritance is performed in this way for both classes and instances.

Instances not only inherit attributes from higher level classes but can have attributes defined at their
level within the tree-like structure, as well as in the more detailed level of the predicate modifier (which
is independent of the structure). Hence, the first list of properties for an instance includes the inherited
attributes and the attributes defined at the instance's level. The second list contains the attributes that

are incorporated within the predicate modifier facts.

Transitivity explains relationships between things further apart from relationships between
things closer together. Like inheritance, transitivity is very useful because it saves tact space by storing
facts relating only the "closest” things. Transitivity inferences are provided in the system by the rules

‘discover_members' and 'find_ancestors’ which act as follows:

discover_members
Input: Object-name (e.g. coarse)
Output: A list of all possible members of the object (the members generated are instances,

€.g. gravel, sand)

The rule searches for solutions in the first set of facts, defined by the predicate class. This rule also
makes use of the second argument of the predicate class that declares the direct members (children-one
level below in the hierarchy) of an object in order to search down the hierarchy and to generate all the

instance-members of the input object.

61

As an example, the code of this rule is given below. Initially a predicate called discover_member is

defined which identifies all possible members of the object by backtracking.

discover_member(Name, Name):-
class(Name,],), !.

discover_member(Category, Name):-
class(Category, List, _), !,
members(Member, List),

discover_member(Member, Name).

The second clause for the predicate discover_member states that a class Name is member of a class
Category if it is a member of one of the members of the class Caregory. This recursive process is
continued until one member of the class Category is found to be an instance (this is declared at the first
clause). After finding the first solution Prolog backtracks to the last subgoal that offers alternatives (in

the above example the predicate members) in order to obtain all possible solutions.

A higher level predicate called discover_members is then defined in order to collect all the possible
solutions generated from backtracking into one list using the built-in predicate of PDC Prolog, findall.
The user defined generic predicate remove_duplicates is used to discard duplicate solutions that may be
present. These can arise in cases where a node has more than one parent (e.g. silt). The Prolog code for

this predicate is shown below:

discover_members(Category, Names):-
findall(Name, discover_member(Category, Name), Namelist),

remove_duplicates (Namelist,], Names).

find_ancestors

Input: Object-name (e.g. sand)

Output: A list of all the ancestors of the object (e.g. coarse, non-organic, soil, ground)

62

This rule also searches for solutions in the first set of facts, defined by the predicate class and makes use
of the second argument of the predicate class. A class is identified as ancestor of a chosen object if the
object is one of the direct members of the class. All the ancestors of the object are identified using

recursion.

In the system developed in the course of this research the information generated by the 'find_ancestors'
rule is provided by the 'get_all_attributes' rule. This is due to the fact that in the scheme for
representing the knowledge adopted here each class denotes an atlribute that has as its value the name of
the class. However, in order to allow for more general representation schemes where this principle may
not be appropriate, the rule 'find_ancestors' has also been defined that provides the facility to obtain

such information.

These rules analyse specific facts at different levels and retrieve information stored in them,

but without being dependent upon the relationship between given facts in the model.

find_attribute_and_value
Input: Object-name (e.g. sand)
Factor (e.g.coarse)

Output: Attribute and value(s) that correspond to the factor (e.g. grain_size of 0.6, 2 mm)

The rule searches for solution in the second set of facts (defined by the predicate modifier) because only

these facts have factors which are not described by an empty list, [].

find_modifiers
Input values: Object-name (e.g. sand)
Attribute-name (e.g. grain_size)
Attribute-value(s) (e.g. ["0.8", "2"])

Output values: The corresponding factor(s) (e.g. coarse)

This rule also searches for solutions in the second set of facts (defined by the predicate modifier). As
the values of an attribute in the model are either symbolic values or a numerical min-max pair (or
max-min pair) the rule is able to perform either a simple search, matching up symbolic values, or a
comparative information retrieval, checking if the entered values (which can be either one value or a
range of values not in a specific order) lie within the predefined ranges specified in the facts. It is also
possible to enter values that cover more than one predefined range (e.g. input values: ["0.1", “2"]). In
this case the rule will combine in an incremental way the factors that correspond to the predefined
ranges that each of the two entered values lie within, producing, for example, the following output

value: ‘fine _to_coarse'.

find_objects_and_modifiers
Input values: Attribute-name (e.g. grain_size)
Attribute-value(s) (e.g. ['1"])

Output values: The corresponding object(s) and factor(s) (e.g. coarse sand)

This rule searches for solutions in the second set of facts (defined by the predicate modifier) in which
there are factors specified. However, if no success have been achieved it then acquires solutions in the
first set of facts (defined by the predicate class). In a similar way to the 'find_modifiers' rule, this is also

able to perform a simple or a comparative search in the same way as described above.

This rule is triggered by a higher level rule defined by the predicate find_all_names_factors, that
collects all possible solutions in lists using the findall predicate. The latter rule also allows the

identification of solutions in the case where a numeric range of input values does not correspond 10 one

object, by treating the minimum and maximum values of the input range as distinct values and finding
the object(s) and the factor(s) (if any) that correspond to each of these objects. For example, if the
selected attribute is 'grain_size' and the input values are ["1","0"], ihe rule find_all_names_factors
identifies the fact that no single object corresponds to this range of values and consequently returns for
the minimum value (0), 'clay’ or 'organic_clay' with 'no modifiers' whereas for the maximum value (1) it

returns 'sand’ with modifier 'coarse’ or 'organic_sand' with modifier 'organic_coarse'.

In certain cases, higher level predicates have been defined in order to direct the output which is
produced by the rules. For example, the rule find_ancestors is called by a higher level predicate,
named find_all_ancestors, that collects all solutions generated by find_ancestors (e.g. for Silt two
solutions are found as it is the child of two parents) in a list and controls the way in which these are
displayed to the user. It should also be noted that in addition to the rule get_all_attributes a rule called
find _vallist has been written that returns the value(s) (specified at both predicate class and predicate
modifier levels) of a specific attribute of an object. This rule makes use of the get_all_attributes rule

and is triggered by the higher level predicate find_vallists which also directs its output.

The rules described above are structure dependent but not domain dependent. This means that they
could be used to search hierarchies that are described by facts having the same structure as those
described in section 3.3.3 without making any changes in relation to the knowledge being represented.
For this reason it could be considered that they provide an Extended Inference Mechanism on top of the

built-in inference engine of PDC Prolog. This is discussed in greater detail below.

Specifically the rules get_all_attributes, discover_members and find_ancestors are very general.
They could be applied in any other hierarchy describing a totally different knowledge domain. The
rules get_all_attributes, discover_members and find_ancestors provide facilities for inheritance and
transitivity for the system that could be used if required, as happens in the case of the get_all_attributes

rule that is utilised by the rule find vallist (which is also domain independent).

The rules find_attribute_and_value, find_modifiers and find_objects_and_modifiers have an
implicit domain dependency because they either search for solutions only at the second sets of facts
(described by the predicate modifier) or as in the case of the find_objects_and_modifiers rule, the
search is guided initially to the modifier facts and if there is no success, solutions are acquired in the
class facts. The weak domain dependency derives from the fact that in the present application of
Representing the Ground' there are no factors (modifiers) specified at the predicate class level; in this
way the searching space is reduced and the system becomes more time-efficient. This is not considered
to be total domain dependency as small additions are required to be made to the actual code in order to
achieve total domain independency. As an example of the simplicity of the modification which are
required in the code, the clause defining the high level predicate find_attribute_and_value is given
below for both cases (for the sake of simplicity, the definition of this predicate presented here does not
include calls to predicates concerned with the output format, as happens in the one presented in the

listing of the program, in Appendix A.):

o Clause defining the predicate find_attribute_and_value in order 1o search only the facts described

by the predicate modifier:

find_attribute_and_value(Naine, Factor, Old_atdist, All_attlist):-
modifier(Name, Attlist),
get_attrib_value(Factor, Attlist, Old_attlist, All_attlist).

e Maodification of the clause defining the predicate find_attribute_and_value in order to search both

sets of facts, described by the predicates class and modifier:

find_attribute_and_value(Name, Factor, Old_attlist, All_attlist):-
class(Name, -, Att_list),
get_attrib_value(Factor, Att_list, Old_attlist, Temp_attlist).
modifier(Name, Attlist),

get_attrib_value(Factor, Attlist, Temp_attlisi, All_attlist).

66

In the first case of the example presented above, Prolog searches for a match (with the first subgoal) in
the facts described by the predicate modifier and when unification is achieved with the appropriate one
(guided by the input value for the variable Name) PDC Prolog will call the second subgoal
get_attrib_value and will endeavour to satisfy it. The second subgoal will trigger the procedure (a
sequence of clauses defining the same predicate is called procedure in PDC Prolog) that defines the
predicate gef_attrib_value in order to find the attribute name and the attribute value(s) that correspond
to the inpﬁt value for the variable Faeror. The clauses for this predicate are not given as they remain
the same in both cases (these can be found in the Appendix A, where the program is listed). The
variable Old_attlist which is initially given the value of empty list, [], is used to collect every solution
generated at each recursive call of get_artrib_value and pass it down to next one. When all the
solutions generated from the recursive clauses of this predicate have been found the Old_attlist gets
bound to All_attlist (which is unbound until then). The value to which All_astlist is bound is then

returned to the call.

In the second case it is silnply necessary to add two subgoals in the body of the rule requesting PDC
Prolog to perform the process described above twice, once for the predicate class and once for the
predicate modifier. 1t is worth noting that in order to retain all the solutions generated from searching
both sets of facts the value that the Old_attlist variable obtains after the first search is recorded as
Temp_attlist which is passed down to the second search. The solutions generated from the second

search are appended to the Temp_list to give finally the All_aitlist.

67

CHAPTER 4

REPRESENTING GEOTECHNICAL FIELD TESTS

4.1 Imtroduction

The development of a Knowledge-Based System to assist in the selection of appropriate In-Situ
Tests requires the representation of knowledge regarding the individual tests that could influence such a
decision. This chapter describes a knowledge representation scheme suitable for geotechnical field

tests, that corresponds to the needs of such a system.

In section 4.2 the hierarchy of the in-situ tests incorporated in the system is presented and its
development is discussed. In section 4.3 the knowledge required to be included in the system is
identified and a knowledge elicitation exercise which was carried out is presented. Finally, in section

4.4 the implementation of this representation in PDC Prolog is discussed.

An integral part of this chapter is concerned with brief descriptions of the tests included in the

hierarchy; however, due to its size it is presented in Appendix D.

4.2 Hierarchy of In-Situ Tests

Testing in Geotechnical Engineering can be divided into In-situ testing, Large Scale Field
testing, Back Analysis, and Laboratory testing. The system, at present, is concerned with in-situ tests
performed mainly in soil, therefore only information about these tests is included. In further
developments of the system, field tests used in rock, along with the other three categories of testing

methads, could be analysed in a similar way to that described below.

68

A thorough review of in-situ testing has been conducted in an attempt to include recent developments.
The development of the in-situ tests hierarchy proved to be a lengthy process. The British Standard
Code of Practice for Site Investigation (BS 5930, 1981) and the Site Investigation Manual (Weltman
and Head, 1983) were adopted as the starting point for the review of in-situ testing. The code describes
methods of in-situ testing that were in regular use until the completion of drafting in about 1978 (Manby
and Wakeling, 1990). The Site Investigation Manual was written in close association with the code.
Since in-situ testing has developed rapidly in the last decade, it was quickly noted that most of the
recent developments were not included in the first version of the hierarchy produced. This first attempt
had to be revised eight times before the final version of the in-situ fest hierarchy was achieved. The

most critical stages of this process will be discussed in detail in this section.

The first version of the classification of in-sifu tests, based on the British Standards (BS 5930, 1981) and
the Site Investigation Manual (Weltman and Head, 1983), is presented in Appendix C. The tests were
grouped under four headings, Borehole tests, Probing tests, Non-borehole Field tests and Geophysical
Surveying (keeping almost the same groupings provided by the two sources of information). Each group
was expanded at the most detailed level to individual testing methods. For example, Borehole tests
were subdivided into Permeability tests, Standard Penetration test, Vane Test, Pressuremeter tests and
Plate tests. Standard Penetration test and Vane Test are individual testing methods whereas
Permeability tests, Pressuremeter tests and Plate tests represent groups of tests which could be further
divided into lower level groups and finally into individual testing methods. Consequently, Permeability
tests were subdivided into Open Borehole tests (subgroup) and Constant Head Test from Piezometers
(individual test); Open Borehole Tests were divided into Variable Head tests (subgroup) and Constant
Head test (individual test) and finally Variable Head tests were divided to Rising Head fest (individual

test) and Falling Head test (individual test).

Going through the literature, the first version of the in-situ test hierarchy was expanded by the inclusion

of recent test methods (e.g. Flat Plate Dilatometer Test) among which were a number of self-boring tests

69

(e.g. Self-boring Plate Test, Self-boring Ko meter Test, etc.). Alterations were also made to test names
trying to represent an in-situ testing technique by the name of the test method, rather than by the name
of a specific device that operates according to the principle of the test method. For example, the
Camkometer Test (name used by BS 5930 (1981) and Weltman and Head (1983), refering to a specific
self-boring pressuremeter device) was renamed the Self-boring Pressuremeter Test and the Stressprobe

Pressuremeter Test was renamed the Push-in Pressuremeter Test.

These changes led to the fourth version of the in-situ test hierarchy, presented in Appendix C, which

incorporates the following principal alterations:

i) The Borehole Tests were divided into two separate groups: Pre-bored Tests and Self-boring Tests.
The self-boring technique of insertion, which is a new method of investigating soil, causes minimal
disturbance and allows the possibility of "near perfect” testing of undisturbed soil (Wroth, 1984). For
this reason it should be treated separately from the pre-drilled borehole tests and the probing tests. This
proposed course of action is supported by the comments of Robertson (1985) and Bageulin et al (1978)
concerning the Self-boring Pressuremeter Test in comparison with the tests performed on the walls of

pre-bored boreholes or those which displace the soil during the insertion.

ii) The Probing Tests were significantly expanded in two ways. Firstly, the Static Cone Penetration Test
was divided into the Mechanical Cone Penetration Test and Electrical Cone Penetration Test which
were themselves further divided into distinct tests such as Mechanical Cone Resistance and Mechanical
Cone Resistance Friction tests, Electrical Cone Resistance, Electrical Cone Resistance Friction,
Piezocone and Piezocone Friction tests respectively. Secondly, special purpose penetrometer devices
which have been recently developed, were added, such as the Cone Pressuremeter Test, the Electrical

Density Probe Test, the Acoustic Cone Test, etc.

70

iii) Nuclear Density Tests were also expanded to individual tests such as the Backscatter Test, Direct

Transmission Test and Air Gap Test.

iv) Finally, the Geophysical Surveying Tests were also expanded in order to incorporate other tests in
addition to those discussed in British Standards (BS 5930, 1981), such as the Seismic Cross-Hole Test,

the Seismic Down-Hole Test and the Surface Wave Test.

A problem that arose in the early stages of the development process was an overlap between Borehole
Tests and Probing Tests, For example, the Vane Test is a borehole test because it is conducted at the
base of a borehole, but it can also be a probing test, penetrating the soil without the need for a borchole

(BS 5930, 1981; Weltman and Head, 1983).

Several other devices such as the Total Stress Cell, the Towa Stepped Blade, etc. could be utilised in
both ways according to the soil conditions, In addition, similar tests in nature such as Pressuremeters

were spread out in order to fit these categories.

In the introductory paragraph of the Tests in Boreholes' section in British Standards (BS 5930, 1981), it
is written: "Paragraphs 21.2 to 21.7 describe the various forms of test that are commonly conducted as
supplementary to a ground investigation carried out by borings. Inevitably, there is some overlap with
section five" (section five describes the Field Tests). Also, "Clause 21 and section five are in a sense
complementary to each other, and where a particular test is not described in one, it should be sought in

the other".

Therefore it was considered that the grouping of in-situ tests adopted could not lead to a consistent
hierarchy. It was thought that a more suitable way of organising them was to divide them into nine
categories according to the nature of the tests. In this way grouping of tests similar in principle, as well

as in their scope, is achieved.

71

Subsequent additions, deletions and rearrangements led to the final (eighth) version, presented in

Appendix C. The following points concerning the development of this final version may be observed:

i) The Constant Head Test from Piezometers was included in the Constant Head Test.

ii) The Penetration Tests were expanded according to the International Standards (ISSMFE, 1988).

More details are given in Appendix D.

iii) The Special Penetrometer Probes were separated from the Penctration Tests under the category
name Special Penetrometer Tests. The Flat Plate Dilatometer was included in this category because it
could be considered as a penetration tool and forms, with the Cone Pressuremeter Test, the sub-category
Expansion Penetration Tests. There are other special penetrometer devices that could be incorporated in
this category (Mitchell, 1988), although since a lot of these tests are not widely used yet (some are still
at the research stage), it was thought that the ones included here demonstrate the wide variety of the

recently developed penetrometer devices and their potential abilities.

iv) It was decided not to keep the different Plate Loading Tests shown in versions 1 and 4 separate since

they are all similar in principle.

The final (eighth) version of the in-situ tests hierarchy is shown graphically in Figures 4.1 and 4.2. The
in-situ tests have been organised into nine categories according to their nature, i.e. Penetration tests,
Special Penetrometer tests, Pressuremeter tests, In-situ Stress Measurement tests, Shear tests, Bearing
tests, In-situ Density tests, Permeability tests and Geophysical Surveying tests. Each category has been
expanded at the most detailed level to individual in-situ testing methods. Due to the large volume of
information, the test hierachy is presented in two figures, Figure 4.1 and Figure 4.2. As mentioned
earlier in this chapter, only the in-situ tests branch has been expanded in detail. In Figure 4.1 four

categories of the in-situ tests, Penetration, Pressuremeter, Shear and Permeability are fully developed

72

whereas in Figure 4.2 the Special Penetrometer, In-situ Stress Measurement, Bearing, In-situ Density

and Geophysical Surveying categories are presented in detail.

Each level of detail in the tests hierarchy denotes a property of the levels below it, This is shown in the
final version of the hierarchy (Appendix C) where the attribute names that correspond to different levels
are given (for the maximum possible number of levels existing in the present hierarchy). For example,
at the In-Sifu Tests level the attibute rest category is defined and inherited by all the levels below it, the
Penetration Tests level corresponds to the attribute fest nature and so on. Different paths through the

hierarchy incorporate different number of levels,

A difficulty that was identified through the development process of the in-situ tests hierarchy, was that
in many cases tests were described in the published literature under different names although the same
test method was implied. For example, the Cone Penetration Test is also referred to as Static

Penetration Test, Dutch Sounding Test (among other names).

In-situ testing has developed rapidly during the last few years and new developments are being achieved
at a quick pace, as the inlerest of the engineering community in it continues to increase. Hence, the list
of in-situ tests presented in this section (Figures 4.1, 4.2) is by no means exhaustive but it is believed
that it covers the major in-situ test mcthods used in subsurface exploration and provides a good
indication of the wide variety of in-situ tests that have been developed. Finally, it is thought that the
in-situ test hierarchy that has been developed provides the basis for the inclusion of further

developments.

As has already been mentioned in section 4.1, a brief description of all the tests included in the in-situ

test hierarchy is presented in Appendix D.

73

pesH Buied

Ayorelely sisa) nys-uj

pesp WUeBIsuo)D

peeH Buisiy

pesH sjqeueA

I’y einbi4

8u000ZeId

uonouU4 8Uo20ZaId

uolou4 [eauo9l3

Anes

Aneaiadng

— | =

auoQ jeouosl3

uonou4

BB

suep Buuod-jes

_ wbn _ uoljesjauad auoH

ajoyasog
deays nys-u
Jaewesuusd
Buucqg-yes
Buidwng Ieays ajoyaiog
Buikenng Aisuaqg nyis-u)
fesisAydoan)
_ Alojeioge] _ _ sisAfeuy xommﬁ pleI4 eleog ebue

Buipunog
wbiem

edA " preuapy
Jlweulg-ogels
ouen ur-ysnd
Buuog-jles uonesjeuad
puepuRlg
JUBWRINSEs N 13jawodjauad
sselg nys-u| [eloads

74

Ayolersly s)sey nys-uj Z2'v anby
Jajpuwaunssald
BjoH-sS0ID uonoajey fusuag meﬁ_%“m auo)
BjoH-uMmoQ - | !
o|wSH olWS| uonoelsy 18pulho
olsles \ustes wsieg oIWSIOS Buunoy abire 1ePWoreIg
aeld el
OABM 0q0id
eoBUNS dooog 1epuliAn Aususg [eouroel3
uolssiwsuel | Buunog jrews
oalg \ uonessuad
uoisuedxy
oisies uswaoeda
ﬂ ucmm apelg eqaid Aisueq
E paddais
i Mo / ou0D
oney Buueeg Auagonpuod
| onouben | E BIWIONERD NyS-Uj T o fungonce3 leoupe[3
Buuog-jles " reuuey)
ereld
uoojjeg Jeqqny Jaqureyn Buuog-jles
pazunssald ouoo
auon
E Kioreiqin onsnooy
Buumoe. 1120
o)e] %
;mLm oINEIPAL ssaig fejol
_Emeom_awm 181BM
auo)
Suo0 owsiag
Bupeo ssaig [auale]
Ajngsisay 1euno ted
al0)
181 Ul bl
Ageeuuad Jeays lejowainssalg —

—bouﬂonm._ _

| sshruy xoeg |

_bm_u_ e[eog m@ﬂ;

75

4.3 Knowledge Elicitation Exercise

4.3.1 Knowledge Required

The Tests Knowledge Base developed in the system contains the in-situ test hierarchy shown in
Figures 4.1 and 4.2, In order for the system to be able to provide assistance in the selection of the
appropriate field tests, knowledge about individual tests that could influence such a decision had to be
incorporated. It was identified, going through published literature, that the suitability of a given
technique is mainly governed by the following factors: geological conditions, project requirements and
method of analysis intended for design (Robertson, 1985; Marsland, 1986; Orchant er al, 1988). These

factors are briefly discussed below.

The geological conditions can vary from hard rock to soft soils and organics. Some of the in-situ tests
are applicable in a wide range of soils whilst others are only applicable to specific soil types. For
instance, Pressuremeter Tests and Plate Loading Tests, provide a means of obtaining shear strength

parameters in a much wider range of soils than the Vane Test (Marsland,1986).

Intuitively, the most important factor affecting the suitability of any in-situ technique is whether the test
provides the necessary information for the type of project under consideration, e.g. stratigraphic or
profile information or specific soil properties for foundation design (Orchant et al, 1988). The project
requirements and economics control the level of sophistication that should be adopted in the subsurface

exploration and method of design in order to achieve the required accuracy of the prediction.

Design methods can, in general, be divided into those that use direct empirical correlations from in-situ
tests measurements to design values, to those that employ soil properties in theoretically-based design
equations. Although designs based on succesful past local experience usually provide insurance that
unacceptable damage will not occur, they do not provide much guidance on the economy of the

construction or the degree of extrapolation which is possible (Marsland, 1986). With the increasing use

76

of microcomputers for analyses, there will be an increase in the requirement for determination of the

physical properties of the ground, such as shear strength and modulus (Robertson, 1985),

Two important factors, that are strictly connected with the performance of the in-situ test techniques,
can be identified in the above analysis; their ability to derive geotechnical information and their use in
different soil types. Knowledge about these two factors, if combined with the specific requirements of a
given project, can provide assistance on the planning of the subsurface exploration using in-situ test

techniques.

Hence, the knowledge included in the system about in-situ tests consists mainly of two types of
information:

o The applicability of a test in ditferent dominant soil types, and

o the reliability of a test to determine certain geotechnical parameters (assuming ideal ground

conditions and taking into account all necessary correlations).

Additional information that could influence the selection of in-situ test methods are the test objective,

unit cost, and test frequency. These are explained below.

The test objective could be defined by the type of information for which a test is primarily used for. In-
situ tests can be divided into logging test methods, specific test methods (Robertson, 1985; Orchant ef
al, 1988) and combined test methods (Robertson, 1985). The logging test methads (e.g. the Penetration
Tests), provide mainly stratigraphic information, although they may also be used to provide estimates of
the soil properties through empirical and semi-empirical correlations. The specific test methods (e.g.
the Pressuremeter Tests), are employed for the measurement of properties at a point and are usually
more specialized and so, are often slower and more expensive to perform than the logging methods.
The combined test methods, (e.g. the Cone Pressuremeter Test), form a new group of in-situ tests that

combine the good features of the logging and the specific test methods.

77

The ideal procedure for conducting a subsurface exploration using in-situ test methods, according to
Robertson (1983), is to first use a good logging test method to define the soil stratigraphy and to provide
estimates of geotechnical design parameters. Based on this data, critical areas (where specific data may
be required) are identified and if the additional information is considered necessary, specific in-situ test

methods should be selected.

Another factor in assessing the applicability of an in-situ test technique is the familiarity of the
engineering community with the method (Orchant et al, 1988). Tests must be field proven before
design engineers will accept the validity of their results. An indication of the familiarity of the
engineers with a test method could be obtained by knowing the frequency with which a test is used in

Site Investigations, i.e. if it is a routine test, less common test or a special purpose test.

The cost of an in-situ technique also influences the applicability of (he technique to a given project.
According to Orchant et al (1988), the main factors affecting the overall cost of performing a particular
test include the equipment and personnel requirements, capital cost of equipment, test duration,

interpretation requirements, and mobilization and access requirements,

Knowledge about these additional factors has also been included in the system, where available.

4.3.2 Knowledge identified in published literature

As has already been argued, the knowledge relating to in-situ tests mainly required for
inclusion in the system is their reliability in obtaining geotechnical parameters and their applicability in
different ground conditions. It has been found to be difficult to identify this type of knowledge from the
published literature for all the many types of field tests. The majority of the relevant publications, when
presenting a test method, usually concentrate on some of the limitations or applications of the test and
often discuss them in different levels of detail; as a result, the required knowledge in many cases is

missing or is difficult to identify. Davey-Wilson and May (1989), in the course of the development of a

78

KBS for the selection of groundwater control methods, recognized the difficulty of obtaining a
consistent knowledge base from published material. It is even more difficult to apply ratings in a
consistent way for all the tests under consideration just by going through the literature, without personal

experience, as each author expresses judgements in his own way.

The references that do provide relevant information in a suitable form are discussed below. In these
references the ability of a test to obtain various geotechnical information and/or its use in different

gound conditions, are graded using a 'four grade' rating of applicability:

High applicability
Moderate applicability
Limited applicability

Not applicable

Extensive use has been made of work by Robertson (1985, 1986). Robertson (1986) presents a table
listing the major in-situ test methods available, their perceived applicability for use in different ground
conditions (such as Hard rock, Soft rock-Till, Gravel, Sand, Silt, Clay and Peat-Organics), and their use
in obtaining various geotechnical information (such as Soil type, Profile, Piezometric pressure, Angle of
friction, Undrained shear strength, Density, Compressibility characteristics, Rate of consolidation,
Permeability, Modulus, In-situ stress, Stress history and Stress-strain curve). The author notes that the
grade assigned is based on his current personal experience and that it will vary according to one's own

experiences and applications.

Orchant et al (1988) present a table that provides information on the range of soil types (such as Gravel,

Sand, Silt and Clay) in which particular in-situ tests can be employed. Sand and Clay are divided in two

categories according to their consistency: loose Sand - dense Sand, soft Clay - stiff Clay.

79

Mullarkey (1985), presents a table that summarises the current and potential types of information that
the Cone Penetration Test and the Piczocone Penetration Test can provide. This information includes
logging capabilities (such as Soil rype and Soil profile), engineering parameters (such as Relative
density, Stress history, Coefficient of consolidation, Angle of friction and Undrained shear strength) and

design values (such as Bearing capacity of piles, Settlement, Liquefaction).

Knowledge about test objective was identified in Robertson's work (1985,1986) and Orchant's work
(1988). In Table 4.1 values of the attribute test objective for the various categories of tests (as
perceived by the author although based on the above references) are presented. Special Penetrometer
Tests are not included in Table 4.1 since a unique value does not apply to all the individual tests

belonging to this group; these are presented separately in Table 4.2,

Tests Test objective
Penetration Tests Logging test method
Pressuremeter Tests Specific test method
In-situ Stress Measurement Tests Specific test method
Shear Tests Specific test method
Bearing Tests Specific test method
In-situ Density Tests Specific test method
Permeability Tests Specific test method
Geophysical Surveying Tests Logging test method

Table 4.1 Perceived values of the attribute test objective for various categories of field tests

80

Special Penetrometer Tests Test objective

Flat Plate Dilatometer Test Logging test method
Cone Pressuremeter Test Combined test method
Lateral Stress Cone Test Combined test method
Seismic Cone Test Combined test method
Vibratory Cone Test Combined test method
Nuclear Density Probe Test Combined test method
Electrical Density Probe Test Combined test method
Electrical Conductivity Cone Test Combined test method
Thermal Conductivity Cone Test Combined test method

Acoustic Cone Test Logging test method

Table 4.2 Perceived values of the attribute test objective for Special Penctrometer Tests

Also, qualitative values (High, Medium, Low) of the unit cost of certain in-situ tests are given by

Orchant et al (1988).

4.3.3 Knowledge obtained from the Questionnaire
In order to expand the body of knowledge, found in published literature, for all the in-situ test
methods shown in Figures 4.1 and 4.2, and to incorporate other experts' impressions of the various field

tests, a knowledge elicitation exercise in the form of a questionnaire was carried out.

The questionnaire (Appendix E) was designed so that the in-situ tests under consideration are listed on
seven individual sheets, each containing related categories of test. It was felt that it would be difficult
for one person to complete the questionnaire for all tests; therefore the above form of presentation
would allow the distribution of the individual sheets of one questionnaire to experts having most
familiarity with the particular category of test method. These categories were based on the groupings

adopted in the final version of the test hierarchy (Appendix C).

81

The information required of the experts is to identify the reliability of the tests for obtaining
geotechnical information (assuming ideal ground conditions and taking into account all the necessary
correlations needed to derive the geotechnical information), and their applicability for use in different
ground conditions. Under the heading Geotechnical Information the most common soil parameters,
used in geotechnical design, are included in the way they were identified by Robertson (1986). The
same principle has been adopted for the dominant soil types included under the heading Ground
conditions. The questionnaire was based on Robertson's work in order to obtain results directly
comparable with his perceptions. Another reason was to allow Roberton's work and the results obtained

from the questionnaire to be complementary to each other.

The experts were also asked to specify the familiarity they have with each test, and how frequently these
tests are used in Site Investigation. This could provide a feel for the familiarity of the engineering

community with each of these tests.

The experts were required to give their expertise using the following ratings according to the heading

under examination:

Geotechnical Information Ground Conditions
H High reliability H High applicability
M Medium reliability M Medium applicability
L Low reliability L Low applicability
N None reliability N None applicability
Familiarity with Test Test Frequency
H High familiarity R : Routine test
M Medium familiarity L : Lesscommon test
L Low familiarity S : Special purpose test
N None familiarity

82

Space was provided on each individual sheet to be used by the experts for their comments. An appendix

was also provided giving alternative names for some of the tests in order to avoid confusion.

The questionnaire was sent to thirty experts as a pilot study. Only eight completed questionnaires were
received back. Three more questionnaires were made up, each containing the knowledge provided by

Robertson (1986), Mullarkey (1985), Orchant et al (1988) respectively.

The results obtained from the eleven questionnaires are presented in Tables 4.3-4.9. The method of

analysis is now discussed.

For each category of tests four sets of results were produced, shown in Tables E.1-E.21 (Appendix E): a)
sum of all available answers of the questionnaire, for all tests included in each test category, in
correspondance with the defined ratings (each fill-in box presents total numbers of answers that are in
favour of each of the applicable ratings (H, M, L, and N or R, L and S) for a particular question), b) sum
of the 'high familiarity' answers only (neglecting results where the experts indicated they had only
'medium’, ‘low' or 'none familiarity’ with a particular test), for all tests included in each test category, in
correspondance with the defined ratings, ¢) Average values of the results that take into account all
answers (Ay) and d) Average values of the results that take into account only the 'high familiarity’
answers (Ayp. It should be noted here that values provided by the references (made-up questionnaires)

were considered as ‘high familiarity' answers.

The average values for the reliability, applicability and test frequency were calculated using the

following numerical scales:

83

liability/Applicabili Test Frequency

H= R=1
M=2 L=2
L=3 S=3
N=4

The values produced were rounded up to the nearest integer. The scale was chosen so that on rounding

up the most conservative solution is obtained.

For example, the four sets of results produced for the Penetration Tests are presented in Tables E.1-E.3.
Table E.1 aggregates the answers obtained from all experts, independently of their familiarity with the
tests whereas Table E.2 shows only the answers obtained from the experts having high familiarity with
these tests. Finally, the average values (Ap) and (Ajp) of the results presented in Tables E.1 and E.2
respectively are given in Table E.3 . When all the experts which provided knowledge for this test have
high familiarity with it, one average value (A) is shown. For instance, for the Piezocone Test
concerning the angle of friction taking into account all answers (Table E.1) the following results have
been obtained: no 'high reliability’ answers (indicated by a hyphen), five 'medium reliability' answers,
one 'low reliability' answer and two 'none reliability’ answers. Taking into account only the 'high
familiarity' answers (Table E.2) the results are: four 'medium reliability' answers and no answers for the
other three applicable ratings. In Table E.3 the corresponding calculated average values are: low
reliability (Ap) and medium reliability (Ap). A hyphen in these sets of results indicates that there is no

information obtained to allow the computation of the corresponding average value.

The final value is taken as the average value of the 'high familiarity' answers (Agp), provided that the

difference between this value and the average value of all answers (Ap) is not more than one rating

(upwards or downwards); for the example discussed above, the final rating obtained for the Piezocone

84

Test concerning the angle of friction is medium reliability. When the difference between Ay and Apg
was more than one rating, individual cases had to be considered. These are discussed later on in this
section. When there were no ‘high familiarity' answers available, the final value was usually taken as
the average value of all answers unless the corresponding data were considered to be of suspicious
reliability. In the latter case it was assumed that no knowledge was obtained. A hyphen, (-), is used

where applicable, to indicate that there is no knowledge available.

In addition, the results obtained from all the experts for three test methods, the Standard Penetration
Test, the Electrical Penetrometer Friction Test and the Self-boring Pressuremeter Test are presented as
histograms in Figures 4.3-4.8. In these histograms different shading has been used, according to the
degree of familiarity (High, Medium, Low, None) of each answer as well as for the answers obtained

from the three references.

In general it can be observed from the histograms that there is reasonable agreement between the
experts. However there are cases where the answers are spread, covering the whole scale of
applicability/reliability, as happens for instance in the case of Self-boring Pressuremeter test for the
rating of its reliability to obtain piezometric pressure (Figure 4.7). It is also interesting to note that in
most cases the experts having high familiarity with a particular test seem to have common impressions
for it. This is not however always the case as can be seen from the answers given for the Standard

Penetration Test (Figures 4.3 and 4.4), where all the respondees say they have high familiarity with it.

Before going into further details on the analysis of the questionnaire it should be noted that the sample
is very small, therefore it is difficult at this stage to be confident about the results. An additional
problem was that none of the returned questionnaires (or the made-up questionnaires), were fully

completed, mainly due to the size of the questionnaire and the large amount of information required.

85

In the rest of this section the followings points will be discussed briefly:
1) Remarks on certain questionnaires

2) Problems identified in the analysis of the questionnaires

3) Comments expressed by the experts

4) Remarks on the results obtained from the exercise in general

1) Remarks on certain questionnaires

Made-up Questionnaires;

° Questionnaire 2 (Mullarkey's work):
Mullarkey provides ratings for the reliability of the Electrical Cone Penetration Test and the Piezocone
Penetration Test. It was assumed for the made-up questionnaire that the values given for the Piezocone

Test are applicable to the Piezocone Friction Penetration Test as well.

o Questionnaire 3 (Orchant et al's work):

The ratings for the applicability of in-situ tests in common soil conditions, given by Orchant ef al are
not directly applicable to the form of the questionnaire as the authors distinguish between loose Sand-
dense Sand and soft Clay-stiff Clay. The way this knowledge was incorporated in the form of the
questionnaire was to accept the highest applicability rating given for the same dominant soil type; the

other is considered as the exception and is included in the knowledge of the system as such.

It was also assumed that the values given for the Cone Penetration Test with pore pressure

measurements are applicable for both the Piezocone Penetration Test and the Piezocone Friction

Penetration Test.

86

Returned Questionnaires

A general remark is that in many cases there was no consistency in the way the respondees
completed the questionnaire. It was observed in 4 out of 8‘questionnaires that the experts left many
blanks in their answers about a test. In some cases this could be because they were not particularly
familiar with that specific test. In other cases, however, it seems as if they have been tired of filling in
boxes and assuming that it was obvious that certain answers were negative (i.e. None
applicability/reliability), due to the nature of the test, they left the corresponding boxes blank. It was
felt, however, that it would be more consistent to ignore the empty boxes in all cases in the analysis,

instead of guessing the experts' impressions about the tests.

o Questionnaire 4:
The respondee's answer for the Self-boring Ko meter Test is ignored since it was based on the
impression that this test is the same as the Self-boring Pressuremeter Test (identified by the respondee in

the comments section).

o Questionnaire 6:

In Special Penetrometer Tests the expert provides knowledge about the reliability of some test methods
to obtain geotechnical parameters for tests although he has no familiarity with them. In most cases
these answers are negative and are part of a general answer given for a certain parameter for the
corresponding sequence of tests (i.e. a column corresponding to a particular rating had been shown as a
particular rating for all tests on that page). In all these cases no knowledge is provided for the
applicability of the test in different ground conditions. These answers were taken into account, as

complete knowledge about the geotechnical information was provided for these tests.

A similar problem appeared in the expert's answers for some of the Shear and Bearing Tests. In these

cases, however, no knowledge was provided about geotechnical parameters that are of interest for the

87

particular tests; only negative answers given in the way discussed above were supplied. In this case the

answers for these particular tests were ignored,

o Questionnaire 7:
The partially completed answer for the Nuclear Air Gap Test was ignored for the same reasons

explained in Questionnaire 6 for the case of the Shear and Bearing Tests.

o Questionnaire 8:

The expert provided no knowledge for any of the Special Penetrometer Tests, apart from filling the first
three boxes under the heading Geotechnical Information for the Flat Plate Dilatometer Test. All the
three answers were negative. As he has no familiarity with any of these tests including the Flat Plate

Dilatometer Test his answers were ignored.

Also, the answers given for the Self-boring Ko meter Test were ignored as it seems that they are based

on the assumption that the test is the same as the Self-boring Pressuremeter Test.

2) Problems identified in the analysis of the questionnaires

Special Penetrometer Tests

o Cone Pressuremeter Test
There is only one 'high familiarity' answer available for this test. From the results given by the

respondee it seems that the contribution of the 'cone penetration part' of the test is ignored. For this

reason, a final value is taken as the average based on all answers (Ap).

o Vibratory Cone Test

None of the experts responding to the questionnaire had high familiarity with this test. Only one expert
provided information about the reliability of the test to obtain engineering parameters. This expert has
no familiarity with the test and provides no values for the applicability of the test to different ground
conditions. It was felt that there were not sufficient data provided for this test, therefore it was

considered that no knowledge is available for it.

o Electrical Conductivity Cone Test

The two averages calculated for the reliability with which the parameter densiry can be obtained from
the Electrical Conductivity Cone Test differ by more than one rating. The high familiarity average was
considered to be more reliable; therefore it was taken as the final value, It has to be said however, that

only two experts provided information on this test, hence the results are indicative only.

Pressuremeter and In-situ Stress Measurement Tests

o Push-in Pressuremeter Test
In four cases (soil type, piezometric pressure, rate of consolidation and permeability), the two calculated

averages differ more than one rating range. It was decided to take Ay as the final value.

o Hydraulic Fracturing Test
The same problem appears in the two averages calculated for the applicability of the test for use in

Clay. It was decided to take Ajp as the final value.

o Self-boring Ko meter Test

Two answers were ignored as they were based on the assumption that the Self-boring Ko meter Test is

the same as the Self-boring Pressuremeter Test.

89

In-situ Density Tests

In-situ Density Tests is a good example to demonstrate the problem identified earlier on in this section,

concerning the blank spaces left by the experts in their answers about a test.

o Water Replacement Test, Rubber Balloon Test

In both these tests there is one high familiarity answer that provides knowledge concerning the
reliability only for two parameters (which are of interest for these tests). Consequently, for these
parameters Ajr was taken as the final value. The knowledge concemning the reliability for the other

parameters is completed by Ay

Permeability Tests

o Pumping Tests
In one case (piezometric pressure), the two calculated averages differ more than one rating range. It

was decided to take Apy as the final value.

3) Comments obtained from the experts

Some interesling comments were received from the experts as part of their answers to the

questionnaire. These are briefly discussed below.

An interesting point on the content of the questionnaire was made by the experts answering
questionnaires 8 and 9. They recommend that the category soft rock - till existing under the heading
Ground Conditions, should be separated since Tills cover a wide range of strength and stiffness and they
have special problems due to cobbles and boulders. In questionnaire 4, the expert thinks that it may be

worth identifying permeabilty tests in piezometers separately.

90

Some confusion seemed to exist between the experts, relating to two test methods: The Self-boring Ko
meter Test and the Cone Pressuremeter Test. This became obvious either by their comments or their
responses. In questionnaires 4, 7 and 8 the experts are under the impression that the Self-boring Ko
meter Test is the same as the Self-boring Pressuremeter Test. The rest of the experts that responded to
this part of the questionnaire seem to recognise the difference between these two tests, A similar
problem occured in the case of the Cone Pressuremeter Test. One expert has based his answers on the
assumption that a piezocone is used (Questionnaire 4) whilst others that it is an electrical cone with no
pore pressure measurements facilities (Quetionnaires 5 and 6). In particular one of them (Questionnaire

6) seems to ignore completely the 'cone penetration part' of the test.

Four experts commented on existing restrictions concerning the applicability of some test methods in
certain ground conditions. The expert of the Questionnaire 6 remarks that the use of cone testing
(Penetration Tests) is restricted by risk of damage to probe and that its application in soil is restricted by
density. The same expert identifies the risk of damaging the cone probes used in Special Penetrometer
devices, in soft rock and gravel. The expert of the Questionnaire 9, identifies that Rising and Falling
Head Tests (Permeability Tests) are unsuitable for very compressible clays. Also the Rising Head Test
can cause piping in loose sands. Finally, he comments that permeability tests of any kind can be
difficult in very permeable gravels. Finally, in Questionnaires 6 and 7, the experts comment that the
applicability of the Geophysical Surveying Tests depends really on the amount of contrast between

different conditions on site.

A more general comment has been made by the expert of questionnaire 10, relating to the Nuclear

Backscatter Test. The expert reports that an ASTM standard exists for this test.

Finally, the expert of questionnaire 11 provides some interesting clarifications for some of his answers;

for example, he comments on the ‘high reliability’ ratings that he gave to the Standard Penetration Test

for obtaining information on soil rype and profile. He states that these answers are based on the

91

assumption that the material retained in the split barrel sampler is examined. Also in the case of the
Constant Head Test (Permeability Tests) he gave a 'high reliability' rating for deriving information on
rate of consolidation (c,, cp) assuming that the parameter is derived indirectly using the coefficient of
volume compressibility (mv) obtained from laboratory testing. Two more general comments that he
made were that the Mechanical Cone Penetration testing has largely been replaced by the Electrical

Cone Penetration testing and that drained or undrained In-situ Shear Tests may be carried out.

4) Remarks on the results obtained from the exercise in general

The results of the questionnaire could be summarized as follows:

o No knowledge has been collected for the following tests:
Weight-Sounding Test
Vibratory Cone Test
Pressurized Chamber Test
o Tests with partially available knowledge
Nuclear Air Gap Test
o No 'high familiarity' knowledge has been collected for the following tests
Lateral Stress Cone Test (not at all)
Thermal Conductivity Cone Test (not at all)
In-situ Shear Test (not at all)
Scoop Test (not at all)
Water Replacement Test (partially)
Rubber Balloon Test (partially)
Nuclear Air Gap Test (not at all)
Self-boring Permeameter Test (not at all)

Resistivity Test (partially)

92

Gravimetric Test (partially)

Magnetic Test (partially)

In general the results of the questionnaire were found promising because i) only for 4 tests out of 60 is
there no knowledge at all or there is incomplete knowledge available and ii) in the majority of the tests
examined there were not major disagreements between the experts. It must be noted, however, that the
sample (cleven questionnaires) is very limited to allow represenative results to be obtained. In addition
to that, in many tests (most of which were identified as less common or special purpose), not all the
experts provided answers. There were cases where two {or even just one) experts provided knowledge.
All these limitations make some of the results obtained from the knowledge elicitation exercise to be

only indicative.

Another factor that created difficulties in obtaining this knowledge is the large amount of information
required from the experts. Although this factor was taken into account when the questionnaire was
being designed, it was decided to go forward with this exercise for two main reasons. The first reason
was that this knowledge is essential for the system and there is no other means of obtaining it, as it is
mostly gained through experience. Secondly, it was thought to be a good exercise that would allow

useful observations and remarks to be noted.

An interesting point that has already been raised, is the evaluation of the raw data received from
questionnaires. It is usually very difficult to avoid inconsistencies in the way respondees give their
answers. The question that arises is to what level these raw data can be controlled or manipulated. It is
difficult to decide on the right approach in cases where there have been oversights by the respondee
(that could be assumed or ignored), or obvious errors (that could be ignored or accepted). Two

examples are given below.

93

It was mentioned earlier in this section that a common oversight of the respondees was to leave blanks
in places where it is most likely that the answer would be negative. Another example that demonstrates
this problem was identified in the questionnaire 6 in In-situ Density Tests, where the respondee uses
twice the letter M for answers relating to test frequency (R, L, S). All the other answers that he
provided for this category of tests concerning the test frequency were expressed either by the letter R or
the letter S. It could be assumed that the respondee meant to use the letter L for those two answers.

However, the approach adopted for this case was to ignore these answers.

An obvious error that was identified in questionnaire 4, is that the reliability of obtaining the
piezometric pressure for the Piezocone Test was given as None, although in the same questionnaire the
reliability of obtaining the piezometric pressure for the Piezocone Friction Test was given as High. Itis
believed that it is difficult to control the answers of the respondees at that level (checking for obvious
errors in each filled box), consequently this case and any other similar cases that were identified were

taken into account.

It is believed that most of the problems described above or mentioned earlier on in this section, would
be overcome (or minimised), by having a large number of responses. In addition, the knowledge
obtained with a larger sample would be more reliable. Due to time constraints, it was not possible to
circulate the questionnaire to a larger pool of experts; a complete knowledge elicitation exercise that
would take into account any relevant comments expressed by the éxperts, should be conducted in further

development of the system.

A relevant issue that could also be investigated in further developments of the system is the possible
application of existing models for the management of uncertain information from human sources in the
analysis of the questionnaire. A Source Control System (Bokma, 1991; Garigliano and Bokma, 1992)
has been developed based on the fundamental principle that the uncertainty of information from people
can, in the majority of situations, successfully be assessed through source models which record factors

concerning the respective source's abilities and trustworthiness.

94

4.4 TImplementation in Prolog

It has been possible to represent both the soil information (described in Chapter 3) and the test
information using the same structures. The Tests Knowledge Base is implemented in PDC Prolog, as
described in chapter 3 for the Ground Knowledge Base. Hence the implementation of the in-situ test

model will only be discussed briefly here. The reader should refer to section 3.3 for futher details.

The predicate class was used to describe the in-situ test hierarchy (Figures 4.1 and 4.2) and the
relationships between the classes of the hierarchy down to the most detailed level, the individual test
methods (Standard Penetartion Test, Flat Plate Dilatometer Test, Ménard-type Pressuremeter Test, Total
Stress Cell ’fest, Vane Test, Screw Plate Test, Small Pouring Cylinder Test, Rising Head Test, Seismic
Refraction Test, etc.). At the predicate class level, attributes that allow identification of the exact
position of an object within the structure (i.e. test category, test nature, test group, test type), as well as
attributes that express general knowleédge about an object of the struclure such as test objective, test
frequency and unit cost, were included. These are illustrated in Figure 4.9 that shows a path through the

structure, from Tests to Piezocone Test.

The attributes rest category, test nature, test group, test type, test objective, are identified at one level
and are passed down the hierarchy to apply to lower level objects by inheritance. The attributes fest

name, test frequency, unit cost are defined at an instance level.

In the case of the Special Penetrometer Tests the attribute fest objective is defined at the instance level,

because the same value does not apply to all the individual tests (instances) that form this category. For
example the attribute test objective takes the value combined test method for the Cone Pressuremeter

Test whilst the same attribute takes the value logging test method for the Flat Plate Dilatometer Test.

95

Altributes Yalues

Tests
In-situ Test category In-situ Tests
Penetration Test nat.ure_ Pene[.ratlon Tests
Test objective Logging test method
Cone Penetration Test group Cone Penctration Tests
Electrical Cone Test type Electrical Cone Penetration Tests
Piezocone Test name Piezocone Test
Test frequency Less Common
Unit cost Medium

Figure 4.9 - A path through the in-situ tests hierarchy

It can be observed from the example that the representation of the in-situ tests requires only one type of
attribute; there are no attributes which appear at several levels within the structure and whose values

become more specific upon descending the structure, as was the case for the Ground Knowledge Base.

The predicate modifier is also used to handle specific information concerning the individual in-situ tests
of the hierarchy, such as their reliabilty to obtain geotechnical parameters and their applicability in
different dominant soil types. Knowledge about their applicability in different dominant soil types

described by a modifier (e.g. dense sand), is also included where available,

96

The actual code in PDC Prolog for defining the class Penetration Tests at the predicate class level and
the instances Standard Penetration Test and Flat Plate Dilatometer Test using both predicates class and

modifier, is given below.

The definition of the class Penetration Tests is given by the predicate class as follows:

class (penetration_tests, [standard_penetration_test, dynamic_probing __tests,
cone_penetration_test, weight_sounding_test,
static_dynamic_penetration_test],
{att (test_nature,
{ val ([penetration_tests], fact ([]) D,
att (test_objective,

[val ([logging_test_method], fact([]) MD.

The definitions of the instances Standard Penetration Test and Flat Plate Dilatometer Test are given by

the predicate class as follows:

class (standard_penetration_test, [],

[att (test_name,

[val ([standard_penetration_test], fact ([1) .,
att (test_frequency,

[val ([routine], fact ([1) D))
att (unit_cost,

[val ([medium], fact ([1) .

class (flat_plate_dilatometer_test, [],

[att (test_name,

[val ([flat_plate_dilatometer_test], fact ([1) JI)R
att (test_frequency,

{ val ([special_purpose], fact ([]) M,
att (unit_cost,

[val ([low], fact ([]) DD.

97

The more detailed representation of the instances Standard Penetration Test and Flat Plate Dilatometer
Test, as given by the predicate modifier, is presented below. The values that are specified for the
attributes applicability and reliability have been taken from the results of the knowledge elicitation

exercise (Tables 4.3-4.9).

modifier (standard_penetration_test,

{att (applicability,

[val ([highl, fact([sand])),
val ([medium], fact ([soft_rock, gravel, silt, clay])),
val ([low], fact ([organic_sand, organic_silt, organic_clay, peat])),
val([none], fact([hard_rock]) D,

att (reliability,

[val ([high], fact([])),
val ([medium], fact ([soil_type, profile, angle_of friction, density, modulus,

undrained_shear_strengthj)),
val([low], fact ([compressibility })),

val ([none], fact ([piezometric_pressure, rate_of_consolidation, permeability,

in_situ_stress, stress_history, stress_strain_curve]))]) 1.

modifier (flat_plate_dilatometer_test,

{att (applicability,
[val ([high], fact ([sand, silt clay, organic_sand, organic_silt, organic_clay,
peat]))
val ([medium], fact ([dense_sand, stiff_clay])),
val ([low], fact([]))
val ([none], fact ([hard_rock, soft_rock, gravel]))R
att (reliability,
[val ([high], fact([])),
val ([medium], fact ([undrained_shear_strength, compressibility, in-situ_stress,
modulus, stress_history, stress_strain_curve])),
val ([low], fact ([soil_type, profile, angle_of_friction, density])),

val ([none], fact ([piezometric_pressure, rate_of_consolidation,

permeability]) D

98

The extended inference mechanism described in chapter 3, section 3.3.4 is directly applicable to the
Representing Geotechnical Field Tests' application. The search rules described there are also used for
the test model in order to allow inheritance and transitivity inferences as well as information retrieval

from the facts describing the in-situ tests.

99

S1S9 [uoNenaudJ Y1 10y dxmeuuonsanb ay) wolj paurerqo sSunel [eur] ¢y dqeL

Tasodmd 1eads ‘uotwod ssa7] ‘sunnoy] : [S "1 Ul

[suoN ‘mo] ‘wnpap ‘UBIH] : [N *T ‘W ‘H]

-AdY

W

Z

=

o}

1

“aom
i

==

=

Z |&|Z

==
by

-
—

==
o

.

=

z,
|z

Z

-

1591, UONENAUd]
stureu(- oneIs

=1

'-2

z
z
=
.
=

HE

1S3, SUIpUNOS.IYSIOM |

+

1S3, UONOLL] JU0J0ZIN]

- -

=2
z|af

=2

153 2U020Z31]

] O

Z

Z

Z

1= ==

z |5|=
s ==

z

z |s|=z

1S9, UOTIL |

AUTISISIY dU0)) [eIINNT

-

Z

Z .

-

Z
Z
-

= |= |5=

z

—
L

= |2 |3z

TR

DURISISHY DUO]) [EIIUTYII

~

R4

1= |= |s|s

159, Aaeoyradng
uqoig srreui (g

1189, AABOH dulqoid dureui(

IS3F, WINIPON 3UIQOL] dIUIUA(]

189, Y31 Juiqoid durui(q

1531 UONENoUa] PIEpUElS

Convowo-wva [l sisisls s =

AV"D'>§§§§§’

os|3|5|s(5s
anvs | B 2| 2| 2=

'EAWDEQEZE

913 “TTLL - ¥J0¥ 140S 2 A ._]

Wod quvH | & 2| Z| Z| & Z

[N *1'®W 'H} SNOLLIANOD ANNOYD

HANAD NIVHIS SSTULS | & Z 2| &=

(30) AYOISIH SSMUIS | | & Z|Z Z

(O3D SsTUS NUS N | Z| Z z|z Z

(8'D) S,ONNOA 2 WVaHS :SATNAON | Z| Z | 3 2]

G ausnaa | S| -] Al S 2 s |=l5|

() ALrngvawyad zzzzz

(1 *A2) NoLLVariosNoD20aLvY | Z| 2| Z | Z1 =
(30 *Aun) ALTTHISSIUINOD g =3z

(NS) HIONHUIS YVEHS GANIVEANA | 2] =3[2] 3| 2

SLSAL NOLLYYILANAL

($) NOLLORM JO TTONV 2 - _.1 2)

(n) ANssAUd ORUAWOZAI | | | =] |z

mo“d'ZES_:Z

AL TIOS 22 Al

[N *1 W *H) NOLLVIWYOJNI TVIINHOALOAD

{s*1'd] AONINOFUA 1SAL | ¢} | Il | n

[N *1'W 'H] 1S3L HLIM ALTEVFTIN VA

100

S1$9], 1919W0NUYJ [eroadg oy Joy armeuuonsanb om wory paurelqo sSunel feur] ¢ 3[qeL

[asedmd Jerdadg L:oEEou sso7 aunnoy) : [ST AT
[auoN ‘mo] ‘wampaly 'Y81H] : [N 1 'W 'H]

AAN -
,:, HIH|H]N|1]N N|TIN][T|[N{N]T][T]T]T|N]|N]NW 1S9 3U0D) oNsnody | §
, . 189
H|H|H|H|N|NI|N N|N|N|N|[N|N|N|N|N|N|N|N|N au0)) ANANONPUO)) [EULAYL | S
. , 1S9,
W[{H|H|{H|N|N|N T T TN T T{W|[H|T|[T|N|]W]|H auo)) AIANINPUO)) [BINNIIF | §
HIH[H|IH|IN[T|N NIN[{N]JTININ]T|JH]T|IWN]N|N]|RN 1531, 2q01d ANSUd([EINIJ[] | §
H|W{H]|H]|N|N[N TINJT]ININ|N[NJH|[N]|W][N][N][N 1591, 9Q0Id ANSU3(J JE3ON | S
- - - -] - - - i -1t-1-1- - - -0 - - -1 - - 1891 au0y AJoRIqIA | -
TWIW[WTT]T (W[T T[TIWIWININ]TTIN]T]IN]IN[NTN 1591 auo) ssangeroe] | S =
IHIHIH|H|T[T|N Tl T]{T|H|[T]T][T]T]T[T][TIH[N 159, u0) onusidg | § -
WIWIH|W|[T] T[N WIT]IT|I[W]TIW]T]TI[W][W[N]W]T 1S9, JPWAINSSAJ 3u0) | S
ITHIH|H|H|[N|[N][N WINW[W[WwIN[NIW]TTIW][T]IN]TT]T 189, JuIowei(Ae[d L] | S
3 T B o 2 8 q 7 .z g S T 2 8|8 s
EEREEHIIEER R R i
5 B E 2|2 é £ e & 3 o 5 2 g|E
3 = K19 m 2] m * £E 8 g © B 3 m m
Z : z e 3 B g2 3 : E T 2 & & g g
2 m 5 3 2 R 5 3 £ 3 i m B > g |2
% g - g ¢ » T 3 2 4 a % = |8
° @ < 3 g z 2 8 & g 14
F : 2o i 2 z 2|5
z a 3 = 3 = 3 Tl E
£ ~ _~ b 4 w
=z & 2 5 = '3
z z
Z
z

SLSAL AHLAWOULIANAL TVIDALS

SIS9 IUIWIAINSEIPN SSANG MIS-U] PUL JNIWIINSSII Y} JOJ dIreuuonsanb oy wosj paureiqo sfunel [eur 'y qeL

?..ﬁﬁia eadg 'uowwod vsa] dunpnoyl: —w.:— ~dl

[auoN ‘moT ‘wnipaly “YyBIH] : [N 7 ‘W ‘H]

SISAL LNAANNAS VA SSTHLS NLIS-NI Pus WAL ATAZNNSSTHd

AT
HIH B[N |N]N|N NJH|JH[N|[N|N[N|[N[N]|[N]N]JWN|[WN] _ 15155000y 300064735 | §
MIHEW[I[T1 [N N|W|W|N|T1|1|N|N|N[N|H|N[N 1591, SunmIoeL] SIUEIPAY | S
TW{H H[WIN|N]|N N|WN|[W|N|[NIN|N|N|[N|N|N[N|N 1531 opelg poddoIg TAO] | S
HlH T|NIN|N|N NIW|WR|N|N|N|N|N[NIN|N[N|N 1531 (19 S90S [W10L | §
H(H H|W]1|W]|1 W | T 0 [H [T 1] T 1[N | W[W[1] 1| 195 oeuamssalg 3u8oqIis | S
TARTH B[WIN| N[N T T| TN N|T| LT IR |[T[N[T] 71501 I10IINSsald UIUSng | S
| B} . - , , , 1591
WiH | W|w|n|la|n wltl1{w|n|In|NIN|w|w|N|Tla sorowainssalg adA1-preusp | §
: w o » a w 1 a) =) ’ ' @) c o] . [} b}
|88 8 F 8% E|¢ BEEREEREREEEEERE i |
2 7 g g £ 9 w G| m S B3 m m E
g TR g w m m 2 § g 58 5 § 3z 2 £ s | 3
| & g & x - m 8 m o= 9 3 g Z M
k L N A I n 1k
8 & 8 rmw - = M M <] 7~ m m K o
] g 2 0 : " 2 $ 2| 5
z g g g = z
z z
£
Z,

102

$159], Sulreag] pue IBaYS AN Joj drzuuoNsanb oy woxy paureqo sFunel [eur] 9y 9jqEL

[ssodmd teroads uowiod 553 aunnoy]: [S 1]
[ouoN "m0 ‘winipa ‘48] : [N 1 'W ‘HI

- AIX

2
HE
=

HE
=

-
Z

: .
et

] =4 Ras] fan fasl

]
iy

Z

A

Z.

=J
Z
Z
Z
Z
—
Z

-4

Z

z

1591 oney
Suwreaq eIWOJI[ED) NIIS-U]

-

1S9, JaquIey)) pazUNnssaly

159, AB[d JULI0Q-J[3S

1S9 1e[d M3IDS

1S9 JuIpeo’] Aeld

1S3, JeayS mis-uj

N2 Rl 1]

1S9, JeayS 9j0yaIog

1S3] aue A Suu0q-J[as

1S3 QUEA

SOINVDUO -V | B 1| I Z| S| = =
AVD D
BRI 2] P] 1 an o
anvs |2 =S Z| R TH =
v | Z| Z| 2| z| m|z|Z
912 “TILL -A3od Ldos | A ZI S| S = Z| =
xwumuzzﬁzfz2

[N “T'W *H} SNOLLIANOD QNIOYD

FAAND NIVALS ssauts | Z| & &f | =] 2=

(¥20) xvorsHssiis | Zf Al 2| Z] Z] S| =

(o3 ssmus nus w1 | Z |z z| |z | =

{3'0) S.ONNOA 7 AVEHS 'snnaon | Z| Z| 2| A F| = =

o) Aumavawdad | Z1 Z| Z| 2| Z] =
20 am) m’nmsséudwoa'z ZIZ|Z| 2| 2| =
0 ruswa | Z| 2| 2| Z| 2| 5| =

(YD *AD) NOLLVATIOSNODH03LVYH | Z| Z| Z| =] 3| =2} =
('S) HIONTMLS ¥vans ganvaann |4 G| | T 2| =) =

SLSUL ONIY VI pue ¥ VAHS

(6) NOLDNAAOFIONY | Z| Z| ST Z] = =2

(v) manssaud onawozad |z |z |z Z <Z Z|Z

FIHOUd .-1-1.-122—12

aaaros | Z| =zl 2zl el s

[N *1‘W ‘H] NOLLVWHOINI TVIINHIALOAD

[s*1 4] AONANDAYA 1sAl | X)X

[N*1'W ‘H] LSAL HLIM ALNMVITIKVA

103

SISO ANSUS(] Mis-uf 94 J0j dsreunonsanb Jy) woiy paureIqo sTunes [puLy /b AqeL

[sscdmd _a._uumm ‘GOWWO0d mm\..v,q 2unnoy} : [$ 7 i

[ouoN ‘moT ‘WO ‘YSIH] : (N “1'W ‘H]

L - ABM
R R N R S e - T -IwW] -1 -1T-1-T1 1591 deD Ny TLaPnN | S
I B ;) 1S9
CTIWIW N LW T NINAN|IN[N|N|N[W[N|N|N|N]|N|[uossuusuer wongropny | ¥
[TIWIW[W[W[W]1 NININ]JNIN[N[N|W|N|N|N]N]N 153, 19NEISYIRY JEAPON | Y -
Tl T[T T[T NN NIN|{N|N[N[N|IN|W]N|[N|N|N][W. 1S3 uoo[req Aqqny | S
N|T|[N|N|N[W[RN NINJN|N|N|N|[N|W|N[N]IN|N]T 1S9 JIWEIAAY Jorem | §
N|[N[N[N[N]T|®W NIN|N[N]JN[N|[NJW|[N|N[N[N][N 1S9 131B M ULIYSIOM | 7T
W[{H|T|[N|[N[T[N N[NIN|I[N[N[N[NJH|[N|[N|N[N[N 1S3 1NN A | A
TIW|{W]|W]T] T[N NYNJN|N|N|IN|]N[{W[N|IN|N|NTN 189 doodS | §
WIW[H|[H, W[HR [N NIN|N|N|[N|[N|NJH[N]N|N|N]|T 1531 13pul[A5 Guun0g 93re] | |
T H[H|H|{W|W[N NIN|ININ]ININ|[N|[H|N|[N|N|NT]T 159, Ioput[A)) Juunod [rews | J
, o @ o @ | o ’ g - : , g g T) =
gL B E 8§ ElE ¢4 4 8 FFEEczEogoEE |
: B2 z|E =5 gz 38 E ¢ g 2|4 3
2 g 2 z 5 & 2 B : S 3 7| B 2(E
: T8 mmmwmmmmmma Rk
= ~ 7 =
2 F E a 2 x & 3z £ 3 : g Z £ 5 3
. a ~ ~ =~ — z @ 2 oy
a Z E m M w g m s £ 3 7l A
£ e 2 o0 : 2 £ o | B
z o g - i = 3 &
z g ¢ 5 z £
z
z
SLSAL ALISNEC QLIS-NI

104

S1IS9 L, ANjiqeauiid 9y Joj aureuuonsonb o woiy paureqo sdunel feur ¢y 9qRL

[osodmd [erdadg “uounuos ssa “sunnoy] : Hm, 1l

[auoN ‘moT ‘winpay “YSIHL : [N T ‘W ‘HI

SILSIL ALI'TIEY AR

[N *1'W ‘H] NOILYWHOAIN]I TVIINHIALOAD

AdX
Tl T {WIH[H]IWN[NW NIN|N|{N|JOHO|[N|N|N}N|[N[HO[NT]N s189, suiduing |
TIWIH]IWIN] T[N NIN|N|NJH|N|NIN|[N|N]T[N]NT] ®soL00ucws] JuuoqjpRs | §
TT{WN[W|[W]T][]T NIN|[N|N[W[N]N|[N[N]N]T]N]|N 1591, peoH WeIsu0y | o
EREREO R E 'NIN|N|N[W[N[N[N[N|[N|N|NTN 159, peaj] suiffed |
T{T[HIH[H| T[T N[NIN|I|N|JWIN[N|[N[N[N]T|[N|N 159 PeoH SuUBSRy | o
A 2 2 g9 2 - a v v g) o c 3y
2P 8 £ 88 B8 83§ 858 ¢F:23¢8¢ :
S PR B¢ c:ig 5 28 F 3sozoe R d ;
3 = 213 2 2 £ 3 ¢ E 3 2
z m m -2 & E m m 2 @ 2 2 Q §
2 : 2 522 £ 2 £ 5 : 3 Z g
@ © bl m e o ~ > — o z @
° @ 5 2 3 3 2 2 3 7
= g 2 5 8 = 2 :

[N 1'% 'H} 1SAL BLIM ALVITIWYA

105

SIS, JutAaaing redisydoany sy 1oy dareunonsanb oy wolj paureiqo sunel feurj 6 SIqe].

Tmo&sn [e:3adg ‘uownuod 537 “sunnoy[: [S 1)

{ouoN 'm0 ‘wnmpay YBIH] : [N T ‘H)

SLSAL ONIATAMAS TYDISAHJIOTD

[N *1'W ‘H] NOLLVINHOANITVIINRDILOAD

AN
HIH[H]H]H[H][H N|[N|[N|[N|N]N[N[T]T]N[NJWN] T, 1531 onauTew | 1
H{H|H|H|H{HIH NIN|JN[N]IN|N|N|W|ININ{N]W][T" 1S9 dounaAeIsy |- §
Wl il fnwiy1 NININ|IN[N|IN|N[TIN]IN{|{TINI]1 1S9 [, ANATISISOY 1
HIH|H{H|H|H|H INININ|H|N|N|N|N[N|N|IN[T]T 1591, 9AB AN 20RNG | S
HIH| H|H|H{|{H|H NIYN|N|JH|N|N|[N|[N|[N N |N| T{T 1S9.L AOH-UMO JTWSIAS | §
HIiH|HIH|H]HTH ININ[NTH|[N|[N[N|N[N[N[N[T][T 1S3 [9J0OH-$5017) J1WISI3G | §
TIW| W|{W|H|H|(H NAN|INJT]ITIN|ITIWN|ININ|H]|]T 159, UonIIJayY dsdS. |]
[TIH[H|JH|H|H|H INIJN|IN|[TPTIN|T{W|N|N[{N{H] T 1S9 | BONORIJIY JWsiag | Y
(73 » 2) : = » o I = . -
I8 08¢ 88 El3 4 2 8 8 % 28 8% § ¢ B :
o= o B 5 & £ ¢ |

: "o EEEREEEEREEERE :
]l a = 9 [v] m m 14 g m m g a
z . Z 2 £ & £ m g B < 2 2 it 5
5 F 2 i X 42 FE 2 & 3 5 3 2 s
o g 2 2 p ¥ ¥ o = z 4 -
s & 8 = P 5 B m 3 B o
—_— % <] s poA r
= Z = &] g 3

z g € 5

[N*71'W ‘H} 1S3AL HLIM ALRIVITINVA

106

Stress Stréin
Curve

Stress History

In-situ Stress

Modulus

Permeability

Rate of
Consolidation

Compreés’ibility

Density

Undrained Shear
Strength

Geotechnical Information

Angle of
Friction

Piezometric
Pressure

Profile

Soil Type

None

Key High : Medium Low

No Familiarity : i
Low Familiarity
Medium Familiarity Reliability
High Familiarity
High Familiarity -
- References

Figure 4.3 Results obtained from the questionnaire for the SPT
concerning geotechnical information

107

Ground Conditions

Peat-Organics

Clay

Silt

Sand

Gravel

Soft Rock-Till

Hard Rock

Key High Medium Low None

GLont

No Familiarity
Low Familiarity
Medium Familiarity Appllcablllty
High Familiarity
High Familiarity -
- References

Figure 4.4 Results obtained from the questionnaire for the SPT
concerning the different ground conditions

108

Stress Strain
Curve

Stress History

In-situ Stress

Modulus

Permeability

Rate of
Consolidation

Compressibility

Density

Undrained Shear
Strength

Geotechnical Information

Angle of
Friction

Piez_ometric
Pressure

Profile

Soil Type

Key High { Medium Low ¢ None
No Familiarity : : {

Low Familiarity
Medium Famlliarity Hehablhty
High Familiarity
High Familiarity -
- References

Figure 4.5 Results obtained from the questionnaire for the electrical CPT
concerning geotechnical information

109

Peat-Organics

Clay

Silt

Sand

Gravel

Ground Conditions

Soft Rock-Till

Hard Rock

Key

No Familiarity
Low Familiarity
Medium Familiarity
High- Familiarity
High Familiarity -
- References

jae

|

High

Medium

Low

None

Applicability

Figure 4.6 Results obtained from the questionnaire for the electrical CPT

concerning the different ground conditions

110

Geotechnical Information

Stress Strain
Curve

R R

Stress History

In-situ Stress

Modulus

Permeability o

Rate of
Consolidation

Compressibility

]

Density

Undrained Shear
Strength

Angle of
Friction

Piezometric :
Pressure ' :

Profile :

Soil Type

Key High | Medium i Low | None

No Familiarity
Low Familiarity
Medium Familiarity Rellablllty
High Familiarity

High Familiarity -
- References

Figure 4.7 Results obtained from the questionnaire for the Self-boring Pressuremeter

concerning geotechnical information

111

Peat-Organics

Clay

Silt

Sand

Gravel

Ground Conditions

Soft Rock-Till

Hard Rock

Key

No Familiarity

Low Familiarity

Medium Familiarity

==® High Familiarity

g High Familiarity -
- References

High

Medium Low

R RRERREES

Applicability

Figure 4.8 Results obtained from the questionnaire for the Self-boring Pressuremeter
concerning the different ground conditions

112

CHAPTER 5

A KNOWLEDGE-BASED SYSTEM TO ASSIST IN THE SELECTION
OF IN-SITU TESTS

5.1 Introduction

A prototype knowledge-based system has been developed in order to assist in the selection of
appropriate geotechnical field tests. The system performs two functions:
1. General querying of the two knowledge bases,
2. Advise on selecting field tests.
On activating the knowledge-based system the user has the option to select one of these two functions

from a menu,

The first option allows the user to interrogate separately the two knowledge bases included in the system
in order to retrieve information from the facts that make up these knowledge bases. The user initiates
the searching process by selecting one out of six menu items activating the corresponding rule built into
the system. The rules included-in the system; as described in section 3.3.4, permit a search to be carried
out -at- many levels within the facts. The second option provides assistance in the selection of
appropriate field tests. The selection of this option activates a rule that queries sequentially both
knowledge bases in an alternating way, which produces information about possible in-situ tests
according to the user's input. The user's input in this case is only menu-driven. The user's input for the
system as a whole is mainly menu driven except in two cases where the user is prompted to input

numerical values. This type of user interface makes the system easy to use.

113

The system has been implemented using PDC Prolog on a Personal.Computer. It can be described as a
model-based knowledge=based system as it supports a model for representing the knowledge and rules
to-manipulate the included knowledge. The knowledge-based system consists of three files, The first
file is called KNOWBASE.PRO and contains the Ground and Tests knowledge bases as presented in
Chapters 3 and 4 respectively. The second file is called INFINT.PRO and contains the process that
manipulates the knowledge bases which consists of the Extended Inference Mechanism (described in
Chapter 3) and a rule for assistance in the selection of appropriate tests. INFINT.PRO also provides the
rules for the user interface developed for the system in order to facilitate the consultation process. The
third file, GENERIC.PRO contains all the generic rules required by the system. Full listings of these
three files are given in Appendix A. The knowledge-based system is superimposed on top of the

built-in Prolog inference mechanism that supports backward chaining and depth-first search.

An important feature of the system is considered to be the domain independent inference mechanism
used to interrogate both knowledge bases (that forms the Exténded Inference Mechanism). This
inference mechanism allows inheritance and transitivity inférences as well as information retrieval from
any set of facts represented in a similar way. The user interface has also been implemented at a general
level allowing any number of knowledge bases (relating to any domain) to be interrogated. The
inference mechanism and the user interface developed could be considered as a basic expert system
shell. However, in the current version no other facilities (such as help facilities) are provided.

Unlike the approach adopted for the development of the rules used to search_ the knowledge bases and
the corresponding user interface, the advisory rule and the user interface developed for it are domain

specific in order to produce efficient solutions.
The system has been implemented using the Phar Lap DOS-Extended version of PDC Prolog 3.30

(1992) on a 286 Nimbus AX/2 IBM-compatible Personal Computer. Initially PDC Prolog version 3.20

was used on the same PC with 1 Mbyte internal memory. This combination of software-hardware was

114

soon found inadequate to handle the requirements of the system as the execution of the program was
terminated during run time giving a "Heap Overflow' error. It was understood that Prolog did not have
enough addressable memory required due to the large amount of knowledge incorporated into the
system, as this Prolog version was not able to utilise any memory above 640 Kbytes allowed by the MS-
DOS operating system. The memory problems that were preventing continuation of the development of
the system were eliminated by using the Phar Lap DOS-Extended version and by expanding the PC's

internal memory to 3 Mbytes.

5.2 General Description of the System

Descriptions of each part that constitute the knowledge-based system developed are presented in the

following sections,

5.2.1 Knowledge Bases

Two knowledge bases have been implemented in the systein:
o The Ground Knowledge Base and

o The Tests Knowledge Base.

The knowledge included in the Ground Knowledge Base and its implementation in Prolog are

described in full detail in Chapter 3.
The Ground Knowledge Base contains a model of the ground. The level of detail introduced is a broad

classification based on the British Standards (BS 5930, 1981). The knowledge base contains the

relationships between the different levels of description used by this classification to describe the

115

ground - from the higher level classes (such as Soil or Rock) to the lowest level instances (such as Clay,

Silt, Sand etc.).

Knowledge about grain size, liquid limit, consistericy, permeability, compressibility and secondary soil
types is included as attributes attached to each object. These properties have been represented by the
use of multi-level compound data objects that allow the property values to be subdivided into - finer

ranges depending on descriptive terms,
sK B

The Tests Knowledge Base has been implemented applying the representation scheme used for

the Ground Knowledge Base.

As described in Chapter 4, the Tests Knowledge Base contains knowledge about the different types of
geotechnical tests that form the test hierarchy shown in figures 4.1 and 4.2, The knowledge consists
mainly of two types of information:

o The applicability of a test in different types of ground.

o The reliability of a test for obtaining specific geotechinical information (assuming ideal ground

conditions and taking into account all necessary correlations).

Additional knowledge conceming the fest objective, unit cost and test frequency of the various types of
in-situ tests has also been included. The knowledge has been obtained in two ways: i) from published
material and ii) carrying out a knowledge elicitation exercise in the form of a questionnaire. It should
be noted that the knowledge obtained and included in the system is not complete, mainly due to the

large volume of information required and time constraints.

116

5.2.2 Generic Rules

The file GENERIC.PRO contains the definition of some classic list-processing predicates that
the rules in the main program make use of. These predicates express relalipnships involving lists,
allowing useful concepts, such as the membership of a list, to be defined. The following list-processing

predicates have been defined:

o members(X, List), that generates all the individual elements from a list.

o member(X, List), that checks if an element is a member of a list.

o first(List, X), that finds the first item of a list.

o last(List, X), that finds the last item of a list,

) m‘in_number(lList, X), that computes the minimum of a list of numbers,

o max_number(List, X), that computes-the maximum of a list of numbers,

o append(Listl, List2, List3), that adds one list to another to make up a new list.

o reverse(Listl, List2); that reverse the order of the elements of a list.

o remove_duplicat:es(]Listl, List2, List3), that deletes all multiple occurences of the items of a list.

o split_list(X, List1, List2, List3), that divides a list into two sublists having as a criterion a specific
clement of the list.

o simplify_lists(List1, List2, List3), that converts a list of lists into a simple list.

o delete_item(X, List2, List3), that deletes an element of a list.

o delete_list(List1, List2, List3), that deletes a sub-list of a list.

The predicates that define the membership relationship, the first and last relationships, and the
minimum and maximum relationships are used to process the elements of a list in order to identify the
desired relationship. The predicates that define the append and the reverse relationships as well as the
predicates delete_item and delete_list are used to create a new list by processing the items of an existing
list. Finally the predicates remove_duplicates, split_list and simplify_lists have been defined making

use of other list predicates such as the member predicate, the append predicate and the first predicate.

117

5.2.3. Extended Inference Mechanism
The Extended Inference Mechanism consists of structure dependent rules that can be used to
search both the Ground and the Tests knowledge bases, as they have been represented using the same

structures. In general these rules are domain independent.

The rules, which are described in detail in Chapter 3, extend the built-in inference engine of PDC
Prolog, by providing facilities for inheritance and transitivity, as well as facilities for information

retrieval that could be used to search any knowledge base represented in a similar way (section 3.3.3).

The basic rules developed can be divided into three categories according to the inferences they allow:
a Inheritance rule (get_all_attributes)
o Transitivity rule (discover_members,
Jfind_ancestors)
° Information retrieval rules (find_attribute_and_value,
Sfind_modifiers,

Jind_objects_and_modifiers)

The rules get_all_anributes, discover_members and find_ancestors are totally domain independent
whereas the rules find_attribute_and_value, find_modifiers and find_objects_and_modifiers have a weak

domain dependency as described-in section 3.3.4.

5.2.4. Adyvisory Rule

The advisory rule, investigate, is used to assist in the selection of appropriate geotechnical

in-situ tests. The rule investigate acts as follows:

118

investigate

Input values:

Output values:

N times

(where N denotes the
number of alternative

solutions)

Object-name of the ground hierarchy - class or instance (e.g. coarse)

Geotechnical information required to be identified
(e.g. angle_of_friction)

Reliability desired for a test in obtaining the required geotechnical
information (e.g. high)

The names of test attributes that the user wants information on in addition to
the applicability and reliability (e.g. [test_objective])

The members of the ground hierarchy object - soil types (e.g. [gravel, sand])

The name of an in-situ test that can be used to obtain the required
geotechnical information with the desired reliability
(e.g. in_situ_shear_test)

The applicability of this test for use in each of the soil types
(e.g. [none, none])

The modified soil types, for which a different value of applicability applies
for this particular test (e.g. [], denoting that no such knowledge has
been specified for this test)

The applicability of this test for use in each of the modified soil types
(e.g.[D

The names of the additional attributes that are defined for this test
(e.g. [test_objective])

The value(s) of the additional attributes under consideration

(e.g. ([specific_test_method])

119

The advice rule is sequentially model dependent, interrogating each model as required. The way the
rule investigate acts is diagramatically shown in Figure 5.1. Initially it searches the ground model using
the rule discover_members in order to identify the members of the soil category (soil types) specified as
input value. A soil type, that has no members, can also be used as input. It then identifies, going
through the modifier facts of the Ground Knowledge Base, the modified soil types that could exist for
each soil type forming the soil category. Taking into account the geotechnical parameter required and
the desired reliability, it finds the first suitable in-situ test that it encounters in the Tests Knowledge
Base and provides its applicability for use in the derived soil types forming the soil category. For the
same test, the advisory rule also retrieves from the Tests Knowledge Base the modified soil types for
which a different applicability rating is applied as well as the applicability value defined for them.
Finally, taking into account the input additional attributes (if any), the rule returns those of the
additional attributes that are defined for this test and their value(s). All alternative in-situ test methods
that fulfil the requirements of the user are generated through backtracking. The same type of
information provided for the first test, is given for all the others. The user can then compare the
knowledge provided for each alternative test by the knowledge bases through the investigate rule and
also consider additional factors (not incorporated in the system) that he/she finds relevant in order to

make the final selection.

The investigate rule searches both sets of facts (predicates class and modifier) for both models. This
rule is domain dependent as it can only be applied to the two models included in the system. However,
it should be noted that addition or deletion of knowledge included in any of the two knowledge bases

will not affect the rule.

120

ajni sjebnsaaul jo uogeluasaidey onewayos 1'G ainbi4

N 156L Joj Indinp

¢ 1seL Jo} Inding

.....

TR TNT e}

Y s1s8L

Supjoeipioeq ybnoiyy
paeseusb suonnjos eAnewsd)y

(ev) indino o} Buipes| yred
(ev) indinp o} Buipes| yred
(Ly) indinp o) Buipesi yred
(v) inding o3 Buipes| yred

sbels olelpeuLIBlY|
aseg abpsimou
indinQ
indy

A

*,

‘@M punain

A

1

2

1

5.2.5. User Interface Facilities
A customised user interface has been developed using the tools provided by PDC Prolog (PDC

Prolog Toolbox, 1990). The user interface is menu driven. This provides ease of use and accessibility.

The following tools have been used for the development of the user interface:

o Status Lines, displayed at the bottom of the screen, which are used to guide the user.

o Longmenus, allowing the user to select an option scrolling through arbitrarily long lists of menu
items. More specifically, the longmenu_repeat toolbox predicate has been used in most cases as it
allows re-selections to be made. In one case the longmenu_mult predicale has been used that allows
multiple selection from the menu rather than a single selection.

o Lineinput, that accepts input from the user in a given screen field. The toolbox predicate
lineinput_repeat has been used as this allows new text input.

On invoking the system the uvser is presented with a menu listing the two options that the system can

offer:

® Query Knowledge Bases,

° Assist Selection of In-Situ Tests.

On selecting the first option, another menu appears listing the actions that the system can activate in
order to search a knowledge base included in the system. These actions activate the rules forming the
extended inference mechanism. On selecting one of the actions a third menu appears on the screen,
listing the knowledge bases currently included in the system. According to the action chosen, several
menus (and a lineinput in some cases), are presented to the user in order to collect the desired input

values required by the triggered rule.

It is interesting to note that the user interface implemented for the first option is domain independent.

In order to achieve this, additional domain independent search rules were implemented for use in

collecting information from the knowledge bases in order to enable the user to select its input values.

122

For example, the rule find_all_attrib_names retrieves all the attribute names of an object, the rule
get_all_names_with_factors finds all the objects that have attributes with factors specified, the rule
get_all_fact_list provides all the factors defined for an object, etc. In cases where the user is required
to enter numerical value(s), rules have been provided that produce the allowable input range. For
example, the rule find_all_num_value_attr produces the minimum and maximum value of an attribute
of an object whereas the rule find_all_general_range provides the minimum and maximum value that

an attribute can take within the whole model.

Also, the user interface is able to recognise (through the rules case and situation activated on selecting
the actions 'find modifiers' and 'find objects and modifiers' respectively) the attributes that have
numerical values and the ones that have symbolic values in order to display a lineinput or a menu of
selections to the user, allowing him/her to input the required attribute value(s). Additionally, in the
cases of a lineinput, a data validation is performed and an error message is displayed if the input value

is incorrect (rule condition, rule state).

A major advantage of the user interface is considered to be the fact that there is no need to specify how
many and which models are included as knowledge bases in the system. The roots of the existing
hierarchies can be recognised by the system (rule find_all_roots) and are presented to the user for
selection in order to get his/her preference on the knowledge base he/she desires to question. Using the
rule find_root_tree the set of facts that correspond to the chosen knowledge base can be recognised,

allowing the inspection only of these facts where necessary.

On selecting the second option a number of menus are presented to the user in order to collect the
desired input values required by the activated rule, which in this case is the investigate rule. The user
interface developed to assist in the selection of appropriate in-situ tests is domain dependent, as is the

investigate rule that it triggers.

At each level of the interrogation process the user is allowed to re-select an option from a given menu or
re-input value(s) or return to the previous menu. The user is always able to return to the main menu

(listing the two options offered by the system) and restart the consultation or exit the system,

The above are better illustrated in example consultations with the system, which are presented in the

following section.

5.3 Example consultations with the system

In this section example screen dumps generated during execution of the prototype system are
presented in Figures 5.2-5.8. In Figures 5.2-5.7 execution of the program is shown when the first
option, Query Knowledge Bases, has been selected whereas in Figure 5.8 the second function, Assist

Selection of In-situ Tests, has been activated.

In Figures 5.2a and 5.2b the user selects the action get attributes in order (o interrogate the knowledge
bases about the attributes of an object. In Figure 5.2a he/she is interested in searching the ground
knowledge base in order to find the attributes of the object sand and in particular he/she queries about
the values of the attribute grain_size, which are displayed in the Answer window. As can be observed
from the output, two levels of detail have been specified in the knowledge base for the attribute grain
size; the more general level is displayed to the user who is given the choice to query if he/she desires to
know information about the more detailed by typing the character 'y'. In a similar manner, the user
questions the tests knowledge base (Figure 5.2b) about the attributes of the standard_penetration_test
and in particular about the attribute applicability. It is interesting to note that in this case there is only
one level of detail defined in the knowledge base for this attribute (the more detailed one), which is

displayed to the user in the Answer window.

124

In Figure 5.3 the user interrogates the ground knowledge base selecting the action find ancestors in
order to find out the ancestors of the object silt. As silt has two parents, two alternative solutions are
displayed to the user in the Answer window. In Figure 5.4 the user sclects the action discover
members in order to search the tests knowledge base for the members-instances of the category

penetration_tests.

In Figures 5.5a and 5.5b the action find attribute and value is selected in order to discover the attribute
name and value(s) that correspond to a modifier of an inslance. In Figure 5.5a the user is interested in
searching the ground knowledge base to find the attribute name and value(s) that correspond to the
modifier loose of the instance gravel while in Figure 5.5b the tests knowledge base is interrogated in

relation to the modifier modulus of the instance self_boring_pressuremeter_test.

The screen dumps shown in Figures 5.6a and 5.6b are generated on selecting the action find modifiers.
In Figure 5.6a the ground knowledge base is interrogated and the modifier(s) that correspond to the
input range of values (50,80) kPa of the attribute undrained_shear_strength of the instance clay are
derived and displayed in the Answer window. In general all alternative solution are produced. The
input range of values in this case covers more than one predefined range, therefore the output produced
(firm_to_stiff) combines the modifiers firm and stiff defined in the knowledge base. In figure 5.6b the
user is interested in searching the tests knowledge base in order to find out the modifier(s) that

correspond fo the value high of (he atiribute reliability of the instance piezocone test.

In Figure 5.7 the user selects the action find objects and modifiers in order to learn which object(s) and
modifier(s) (if any) defined in the ground knowledge base correspond to input range of values (2,70)
mm of the attribute grain_size. All alternative solutions are generated and displayed to the user in the
Answer window. If the solution generated by the system requires more lines than the output window
automatic scrolling occurs, It can be observed from Figure 5.7 that due to scrolling the same

information can be seen into two subsequent Answer windows.

125

As can be noted from the examples presented in the last two cases (actions find modifiers and find
objects and modifiers), according to the type of attribute selected either a lineinput or a menu of
selection is provided to the user for hisfher input. In the case of a lineinput the relevant allowable range
of values is also given as guidance to the user. The user can input either one value or a range of values

that lie in the allowable input range.

Finally, in Figure 5.8 example screen dumps are generated of a consultation with the system for

assisting in the selection of in-situ tests. The user queries the system about possible applicable in-situ

test methods specifying that the ground conditions to be tested consist of fine soil, the geotechnical

parameter to be derived is the undrained_shear_strength and the reliability required is high. In

addition the user desires to consider other attributes as well for each test that will be generated, such as

the test_frequency, the unit_cost, the test_objective, and the test_nature. All alternative solutions

based on the parameter required and the reliability specified are derived and displayed in the Answer

window. For each of these tests the following information is presented:

o its applicability to the soil types-members of the category fine (silt and clay),

o its applicability to the modified soil types for which a different applicability rating has been defined
in the tests knowledge base, and

o the values of each of the additional attributes under consideration.

The user can then compare all the information provided by the system for each of these tests and taking

into account other factors as well (not incorporated in the knowledge bases), make his/her final

selection.

126

-actions

LeE=atiefl

find ancestors

discover members organic_f ine
find attribute and wvalue boulders
find modifiers cobbles
find objects and wodifiers||gravel
S e SRS]
silt
clay
attributes
rafiesflas o — e]
N_valus

coefficient_of _permeability
coefficient_of _wolume_compressibility
secondary_percent

s0il_nams

soil_character

firrow keys: Inspect itews Enter:Select

Esci:Return to previous menu or exit

Answer

rocessing knowledge. ..

rass any key

e attribute
varin=z
wnax=

to se@ the answusr

grain_size has the following range of values:
8.86
2

uld you like to see a wmore detalled representation? (y/mn)

In a more detailed representation scheme, the attribute grain_size gets the
ollowing ranges of values according to the wodifier:

vmin vnax rodif ier
?.6 2 coarse
8.2 6.6 ed ium
6.86 8.2 fine

press any key to return to the previous menu

Figure 5.2a Example screen dumps for interrogating the Ground Knowledge Base about the attributes of
an object. On selecting an attribute of the chosen object, the attribute values are displayed

in the Answer window.

127

opt ions

Muery Rnesledre Bases

Assist Selectnon of In—Sltu Tests

P actions

b@&—@ﬁﬁ@ﬂ&n@a@ - -1

find ancestors tests tree
discover members in_situ_stress_measurement_tests

find attribute and walue shaar_tosts

find wmpdifiers bearing_tests
find objects and wodifiers||in_situ_density_tests

Arrow keys: Inspect items Enter :Select

—kvnowledge bases permzability tests

ground geophysical_surveying_tests

besls-] stanlard venelrabion test———— - |
—attributes—)-
bl feabil ity]
reliability

test_category
test_nature
test_objective
test_naie
test_frequency

Esc:Return to previous menu or exit

Ansuer

ocessing knowledge...
rass any key to ses the answer

The attribute applicability has the following values according to the modif

1
va lue
high
mad lum

low

none

mpdif ier
sand
sof t_rock
gravel

silt

clay
peat
organic_sand
organic_silt
organic_clay
hard_rock

I

press any key to return to the previous menu

Figure 5.2b Example screen dumps for interrogating the Tests Knowledge Base about the attributes of

an object. On selecting an attribute of the chosen object, the attribute values are displayed

in the Answer window.

128

i options

fissist Selection of In-Situ Tests
actions

get atiributes
Pod-amssstors=——---__ || ———ground tree
discover cembers Very_coarse
find attribute and wvalus coarse
find modif iers granular_fine
Tind objects and modifiers||fine
—knowledge bases organic_coarse
yrod === = | organic_gramular_fine
tests organic_f{ine
boulders
cobbles
gravel
==
organic_sand
organic_silt

Arrow keys: Inspect items Enter:Select Esc:Return to previous menu or exit

finswer

rocessing knowledge...
ress any key to see results...

i1t has the following ancestor(s):
ground
soil
non_organic
granular
granular_f£ine

n alternative solution is:
ground
soil
non_organic
cohesive
fine

press any key to return to the previous menu

Figure 5.3 Example screen dumps for interrogating the Ground Knowledge Base about the ancestors of

an object

129

—opt lons
uery Knowledge Bases.

ssns't Selection of In-Situ Tests

actions
get attricutes

find ancestors < lasses
C °S | {tests

find attribute and value ﬂ.n _situ taests

find modifiers :

find objects and modifiers

_p emtem tests

—knowledge bases pressurerater_tests
ground in_situ_stress_measurement_tests
Festh: e 3 shzar_tests
bearing_ tests

in_situ_density_tests
perwmeability_tests
geophysical_surveying_tests
dynamic_probing_test
cone_penetration_test
expans lon_yenetration_tests
density_probe_teste

Arrow keus!Inspect items Enter:Select Esc :Return to previous menu or exit

Ansuer
The wmembers of the category penetration_tests are:

standard_penetration_test
dynamic_probing_light_test
duynamic_probing_medium_test
dynamic_probing_heauvy_test
dynamic_probing_superheawvy_test
mechanical_penetremeter friction_test
electrical_ penetrometer_friction_test
piezocone_test
piezocone_friction_test
weight_sounding_test
static_dynamic_penatration_test

press _any key to return to the previous menu

Figure 5.4 Example screen dumps for interrogating the Tests Knowledge Base about the members-

instances of an object

options

ey Mavledie Bases
Assist Selection of Im—Sltu Tbsts
actions
get attributes
find ancestors —instances having wodif iers
discover members peat
Find attritulte and wine || |mevsl]
find wodifiers sand
find objects and wodifiers||silt
—hknowledge bases— e lay
O] organic_sand
tests organic_silt
wodif lers
COAarse
med ium
fine
uan-g_lluose
==]
mzdium dense
dense

Arrow keys: Inspect items Enter:Select Esc :Return {to previous meEnu or exit

finswer
For the modifier loose the attribute N_wvalue
takes the following range of wvalues:
Umin= 4
Umax= 16

press _any key to return to the previous wmenu

Figure 5.5a Example screen dumps for interrogating the Ground Knowledge Base about the attribute
name and attribute value(s) of an instance, which correspond to a chosen modifier of that

instance

131

r optlions
[Il@rim@r BASeseE_——
fissist Selection of In-Situ Tests
actions
get atﬁributes
find ancestors ————instances having modifiers
discover niembers wenard_type_pressuremeter_test
P ind=aitiritntcand wilwe=]| [push_in pressuranster _tast
find mpdifiers 1B Darsiimg.; . L EEst -
find objects and wodif iers|(total_stress_cell_test
—knowledge bases iocwa_stepped_blade_test
ground hydraul ic_fracturing_test
= - self_boring_ko_meter_test
wpd if iers
sof t_rock
sand
gravel

hard_rock
in_situ_stre;s

stress_strain_curve

Arrow keys: Inspect items Enter:Select Esc:Return to previcus menu or exit

Answer
For the modifier mndulus the attribute reliability

takes the following walue:
Value= high

press any key to return to the previous menu

Figure 5.5b Example screen dumps for interrogating the Tests Knowledge Base about the attribute name

and attribute value(s) of an instance, which correspond to a chosen modifier of that instance

132

options
very Bnadledis ases - -1

fAssist Selection of In-Situ Tests

—actions
get attributes
find ancestors —instances having modif iers
discover cembers peat
find attribute and value graval
7 ind wodif lers 1| |sand
find objects and modifiers||silt
knowledge base elay - - |
JrEnw ~—— - | organic_sand
tests organic_silt
attributes
secondary_percent

coefff icient_of _volume_compressibility
coefficient_pf_permzahilit
ydra foed,_shear_strength]

liquid_limit

Enter valus(e) (6,388 @ 58,88

Type in a value or & range of uvalues (Ui,UZ)

rresponding wmodif ler(s):
) firm_to_stiff

press any key to return to the previous menu

Figure 5.6a Example screen dumps for interrogating the Ground Knowledge Base about the modifier(s)

that corresponds to an attribute name and attribute value(s) of a chosen instance

133

aptﬂuns

ﬁssnst Selection of Im—Sxtu Tests

actions
get attributes
find ancestors ———instances having modifiers
discover cembers selsmic_ref lection_test
find aﬁﬁmﬁbute amd ualue seismic_cross_hole_test
== seismic_down_hole_test
find objects and wodif iers| |surface _wave_tests

—knowledge bases

eﬂectrncaﬂ_pemetromater friction ﬁest
ground { :

pnezocone Erncﬁnum test

——attributes
bl

applncabllntg

Arrow keys: Inspect items Enter:Select Esc:Beturn to previous menu or exit

fAnswer

orresponding modifier(s):
soil_type
piezometric_pressure
angle_of _friction
undrainad_shear_strength
density
compressibility
rate_of_consolidation
modu lus

prress any key to return to the previous menu

Figure 5.6b Example screen dumps for interrogating the Tests Knowledge Base about the modifier(s)

that corresponds to an attribute name and attribute value(s) of a chosen instance

134

X Roozeol BaOex®RS - —2-. = - —c-nz
fAss ist Selection of In-Situ Tests
actions

get attributes

find ancestors —attributes def inad with modif iers—
discovoer cmambars coaff iciont_of _pemrmaability
ffind attribdbute and wvalue coaff icient_of _volura_conmpressibility

HEnteu\ valusls) (B,28683 : 2,76 []

Type in a walue or a range of wvalues (Vi,U2)

rocess ing knowledge. ..
ress any key to see mesults...
e inprut range of wvalues does mot correspond to a single objecte?
ess any kay to get answar(s) for the lower range...
e low=ary reange (2) corresponds to:
bJect grawvel
rraesponding modif far: £ ine
esa any key to coe altermative solutions...
l1ternatively.,
b jJect : sand

rresponding modilfier: coarsa

ess any key to see altermatiuvo solutions...

1ternatively,
bject: sand
rresponding modif ier: coarse

ess any key to see altermative solutions...
lternatively,

bject : organic_sand
orraspond ing medif ier: coarse

ess any key to get answer(s) for the upper range...

e upper range (Y)Y corresponds to:
b ject: cobbles
rresponding modif iers: No mpdifiers are def ined

press any key to return to the previocous menu

Figure 5.7 Example screen dumps for interrogating the Ground Knowledge Base about the object(s) and

modifier(s) that correspond to an attribute name and attribute value

135

options

Querg Mnawledga Basas

rcund conditions—
VBIrYy_COoarss
coarss

eotechnical information

granular_f{ ine
Pline

]
organic_coarse

modu lus

density —reliablilit
Joodlra B oweed]_sstmne_sstirmoug®d | [Pl
angle_of friction wed lum

prof ils Lo

sl l_tupe nona

——ﬂﬂditional atﬁributq& to b@ cnnsﬂderad
s {7 B X

tsst catagory

Bossst oot

Hultiple selection allowsd.

FiP-ond selections Esc-No selsctions

‘The mambers of the category fine are

silt
clay
accessing knowledgs.

ess any key to contiﬁue.
est name! wvane_test
e applicability of this test in

sfilt is madium

clay is high
It sheuld b noted though that the applicabil ity

in
stiff_clay is madium
ess any koey to continue...

£y
stiff_clay

—Inskar
ts madium
ress any keuy to continue. .

ditional attributes under consideration:

e attribute test_fregquency has the following value
va lue= routina

e attribute unit_cost has the following velue
value= madium

e attribute test_obJjective= has the following value:
value= specific_test_method

e attribute test_nature has the following value!:
value= shear_tests

rocessing knowledge. ..
ress any key to continue

Figure 5.8 Example screen dumps of a consultation for assisting the selection of in-situ tests

136

i DD

e attribute unit_cost has the follocwing value:
va lues med fuom

e attribute test_objective hasz the folliowing value!
va lue= specif ic_test_mathod

e attribute test_wnature has the following value:
value= shear_tests

ocessing knowledge. ..
ress any key to continue...

est namz: self_boring_wvane_test

e applicability of this test in
si1t is low
clay is high

ress any key to continue...

e applicability of this test in
silt is low
clay is high

ress any koy to continue. ..

dditional attributes under consideration:
e attribute test_frequency has the following wlue:
value= routine

o values have been specified for the attribute unit_cost
e attribute test_abjective has the following vwalus:
va lue= specific_test_mathod

e attribute test_nature has the following value:
value= shear_tests

rocassing knowledga.. .
ress any key to continue...

ess any key ¢te continue. ..

ast name: in_situ_shear_tast
e applicability of this test in
silt iz madium
clay is madium I

ess any key to continue...

dditional attridbutas under consideration:)
e attribute test_frequency has the following value:
value= special_purpose

o values have been specified for the attribute unit_cost
e attribute test_objective has the following vwalue:
value= specific_test_msthod

e attribute test_mnature has the following wvalue:
va lue= shear_tests

press any key to raturn to the previous menu

Figure 5.8 Example screen dumps of a consuvltation for assisting the selection of in-situ tests (Cont'd)

137

CHAPTER 6

IMPLEMENTATION OF GROUND INFORMATION IN PROKAPPA -
- A COMPARATIVE EXERCISE

6.1 Inmtroduction

The 'Representing the Ground' application as implemented in PDC Prolog on a Personal
Computer, has been presented in Chapters 3 and 5. Near the end of this project the PROKAPPA
software and a Sun Sparkstation 2 became available so a comparative exercise was carried out by

implementing the ground model in PROKAPPA.

The purpose of this exercise was not to implement a fully operational application offering all the
functionality of the Prolog program; it was to develop a rapid working protolype in order to appreciate
the differences between the two implementation schemes of the 'Representing the Ground' application
and to identify possible advantages and disadvantages that each one of them might offer. For this
reason, only a part of the ground information is included in the PROKAPPA application and the system
developed is not as general as that written in PDC Prolog. However, the same principle was followed of

developing domain independent functions.

In section 6.2 the main features of the PROKAPPA system are presented in order for the reader to
become familiar with the terminology used and to illustrate some of its capabilities that have been used
in the 'Representing the Ground' application. In section 6.3 the actual implementation of the application

is described in detail. Finally, in section 6.4 both implementations are discussed in a comparative way.

138

The Representing the Ground’ application model as implemented in the PROKAPPA environment, is
part of a knowledge-based system for the interpretation of site investigation information currently being
developed in the University of Durham (Toll ef al, 1992). It will be used in conjuction with a data
checking module in order to check that values of properties entered are consistent with qualitative

information from soil descriptions.

6.2 PROKAPPA in general

The PROKAPPA system provides an environment for developing and delivering multiplatform
software applications. It is a C-based software development system that integrates object-orientated
programming, rule-based reasoning and SQL database access in an easy to use graphical environment,
Some of the main features of the PROKAPPA system that were used in building the Representing the
Ground' application are discussed in some depth below, whilst the others are just introduced briefly. All

these are discussed in great detail in the PROKAPPA manuals (PROKAPPA User's Guide, 1991).

Object System.

In PROKAPPA the basic structure for representing data is called an object. Objects can hold
descriptive data about the entity, thing, item, concept, category or template being represented and can

contain special functions which define behaviour for the thing being represented.

The PROKAPPA system has two kinds of objects: classes and instances. Classes are templates for sets
of entities with common characteristics, and instances represent individual objects in the application
domain. Classes and instances are organised hierarchically, so that information specified in a class is
inherited by its instances. The terms subclass and superclass are used to describe relationships between
objects of a hierarchy; subclass denotes a class further down the hierarchy from a specified class and

superclass denotes a class further up the hierarchy from the specified class, Additional terms that serve

139

the same purpose are: parent, the class directly above a specified object (class or instance) in the
hierarchy, child, the object dircectly below a specified class in the hierarchy, ancestor, a class at some
level above a specified object in the hierarchy and finally, descendant an object at some level below a

specified class in the hierarchy.

Both classes and instances have slots which represent characteristics or attributes of objects. Slots
represent three type of information: i) Attributes or descriptive information about an object, ii) Actions,
called methods, that the object can perform, iii) Relationships to other objects in a system. There are
three kinds of slots: i) Single-value slots, which are used to store values as symbols, strings or numbers,
ii) Multi-value slots, which can hold an arbitrary number of values of any type represented as a list of

values and iii) Method slots which contain procedures that define the behaviour of an object.

The object system supports inheritance. There are two types of inheritance in PROKAPPA: a) slot
inheritance which is the inheritance of the existence of slots down the object hierarchy to lower level
objects and b) value inheritance which is the inheritance of slot values down the object hierarchy to
lower level objects that have inherited the slot. Slot inheritance, or value inheritance only, may be
blocked at any level in the object hierarchy preventing the slot or the slot value from being inherited
further down. Since slots represent structures common to all instances of a class, they can be created
only at class level; slot values only may be modified at instance level. Objects with multiple parents

inherit information from all parents.

Slots can be further described by the use of facers. Facets are descriptors attached to slots which allow
additional information about slots or slot values to be expressed. Like slots, facets have structures and
values (a single value or multiple values) and can be inherited. Facets can be created at class or

instance level.

140

The PROKAPPA object system supports arbitrarily complex hierarchies of objects. Object hierarchies
are stored in collections called object bases. Objects and object hierarchies may be static models as
well as dynamic as they can be created, modified and deleted at runtime. Also, information on objects
can be changed at runtime. The data in an object can be accessed and/or changed by functions, rules
and methods. The object system is supported by an extensive library of functions for creating and

manipulating objects.

ProTalk Language

In the PROKAPPA system two languages can be used to implement applications, the C

language as extended by PROKAPPA and the ProTalk langnage.

The PROKAPPA environment supports an ANSI standard compatible version of the C programming

language plus several libraries of C functions for use specifically within a PROKAPPA application.

The ProTalk language is a language developed for use in the PROKAPPA system which can be used as
an alternative to, or in combination, with C. It is particularly useful for writing code that expresses

relationships between objects and facts and performs searches over object bases.

The ProTalk language ‘incorporates a set of predefined functions for interacting with object bases and
manipulating objects and provides syntax for referring to information in an object base that can be used
for manipulating or retrieving information about objects, slots and facets. The ProTalk language also
offers several programming constructs such as assignment of values to variables, basic arithmetic
operations, comparison operators, conditional statements and iteration constructs. It has the ability to
call C functions and incorporate C code. In addition to all that, the ProTalk language is a non-

deterministic language which supports backtracking.

141

The syntax for referring to information in a object base forms a type of expression called knowledge
expression. The major types of knowledge expressions are:

o Slot values: object.slot

o Facet values: object.slot. facet

o Instances of a class: instanceof class

o Subclasses of a class until the instance level: subclassof class

o Ancestors of an instance: classof instance

o Ancestors of a class: superclassof class

The last four knowledge expressions can be modified by the use of direct, to restrict the expressions to

the direct (one level below or above) instances, classes, subclasses or superclasses,

In order to change or retrieve information from an object base, the knowledge expressions can be used
in conjuction with the value changing operators or the search modifiers respectively.

The search modifiers used with knowledge expressions for deterministic searches are:

no modifier: For use with single value slots and facets only. Generates a single value or Null if there is
no value,

all: Generates a single list of all the values, or the empty list if there are no values.

The search modifiers used with knowledge expressions for non-deterministic searches are:

findl: Generates one solution. Fails if there is no value.

find: Generates one solution each time the statement is executed. Fails if there is no solution.
Can be re-evaluated if the system backtracks to it.

find N: Generates one solution each time the statement is executed. Fails if there is no solution.

Can be re-evaluated if the system backtracks to it, at the most N times.

142

The ProTalk language is a hybrid language combining aspects of both procedural and rule-based

languages. It can be used for writing functions and rules.

A ProTalk function is made up of one or more ProTalk statements. Each simple statement ends in a
semi-colon. A compound statement is a sequence of zero or more statements wrapped in a pair of curly
brackets ({}). Each statement consists of some combination of ProTalk operators, expressions,
programming constructs, function calls and variables. In ProTalk there is no need to declare variables
before using them, as is required when writing code in C. A function is defined by placing the keyword
function in front of the function name, which is followed by a pair of parenthesis enclosing its

arguments separated by commas.

Rules can only be written in the ProTalk language. These are a combination of ProTalk statements
grouped together in rulesets and can be either forward chaining or backward chaining as well as mixed

forward /backward chaining rules.

User interface tools

The Prokappa system allows building customised end-user interfaces to applications and
provides two tools for their development:
o The Activelmages system

o The dialog box system

The ActiveImages system is a tool for building business and instrumentation images to represent slot
values graphically. The Activelmages library provides users with a variety of output (display
information only) and input images (display information and accept input information as well). This
tool has not been utilised in developing the user interface for the 'Representing the Ground' application,

therefore it will not be discussed in any more detail.

143

The dialog box system is used for obtaining arguments or options required by a command or process a
program is about to execute as well as to display information, for instance, on the progress of a
processing action. A PROKAPPA dialog box is a window that displays information or provides the
facility to input information. A dialog box allows the user to input information in a variety of formats,

using the keyboard or the mouse.

The components of a dialog box used to display information, accept information, or initiate action are
called controls. In effect, a dialog box gets its functionality from the dialog box controls. The dialog
boxes and each of its controls are implemented as instances of appropriate classes incorporated in a
system object base called DialogBoxApp. These classes represent the types of dialog boxes and dialog

box controls supported by the PROKAPPA system.

There are three categories of controls:

1. Display controls, that display a value or set of values to the user, but allow no input. These can be
divided into TextDisplay that displays text and PixmapDisplay which displays bitmap images.

2. Input controls, that allow information to be entered by typing or by selecting one or more items
from a list of choices. The input controls are: EnfryBox, RadioButtons, CheckButtons, ListBox and
OptionMenu. An EntryBox allows the user to type a value into the dialog box. The other four
controls provide a variety of ways to present lists of choices to the user. RadioButtons allow the
user to specify one choice out of many; only one button can be selected at a time. CheckButtons
allow the user to select several choices out of many. A ListBox holds a list of items which the user
can select. The display capacity of a list box can be set. It is also possible to specify whether
single or multiple selections are allowed. An OptionMenu displays the currently selected value out
of a number of possible values. The user can make a list of all possible values pop up and make a
new selection.

3. Action controls, that initiate actions when the user clicks the mouse on the control. It is possible to

have either a PushButton control or a PushButtonRow control. Whatever activity is associated with

144

the push button is performed at the time it is depressed. The push button row allows specification
of a row of push buttons with one object. The system creates as many push buttons as specified and
arranges them in a horizontal row. All dialog boxes have by default a push bution row control
which is called command row control, and contains two command buttons (push buttons), labelled
OK and Cancel. Additional command row buttons can be created and the labels of the default ones

can be changed. The buttons are used to either initiate or cancel the behaviour of the dialog box.

Each non-display control in a dialog box has an associated React! method which defines what happens

when the user interacts with that control, e.g. depressing a push button.

Additional features

The PROKAPPA object system supports monitors, which are objects attached to slots that
cause a function to be run when the slot value is changed or accessed. These monitors can be caused to

trigger before the data is entered into a slot, after, or on demand.

The PROKAPPA substrate supports a number of data types found in symbolic programming languages
but not native to C, like PROKAPPA lists which may be of arbitrary length and may contain any

number of elements of any data type including other lists.

The PROKAPPA system automatically allocates and deallocates memory for PROKAPPA data
structures through the substrate's memory management facilities. Automatic memory management can

be turned off, if required.

The PROKAPPA development environment supports an interactive Developer's User Interface for the

rapid prototyping and development of applications. The PROKAPPA Developer's User Interface

consists of the Application Browser, that manages the creation, editing, loading and compiling of the

145

different components of an application, the Object Browser which is a graphical environment for the
creation, modification, viewing and saving of objects, slots and facets, the C Workbench which is a code
interpreter as well as a source code C debugger, the ProTalk Workbench which is a too! for debugging
ProTalk code and the Interface Workbench that gives the ability to the developer to graphically create

dialog boxes for end-user interfaces.

The PROKAPPA Data Access System supports links to either flat files or SQL-based industry standard

relational databases through database mapping.

Before discussing the implementation of the Representing the Ground' application in the PROKAPPA
system it is worth explaihing that a PROKAPPA application is defined by its .app file. This file
contains the information required by the PROKAPPA system to correctly load all the relevant
components of the application (such as object bases, C files, ProTalk files, user defined modules, system

modules required by the application, etc.) into the development environment.

6.3 Implementation

The Representing the Ground' application comprises the user defined application Represent
and the user defined module RepresentUL. In the former the objects that make up the hierarchical
model of the ground are included whilst the latter contains the -objects required for the development of
the user interface of the application. These are illustrated in the .app file of the application which is
shown in Appendix F. It can be observed from the definition file that the system application
DialogBoxApp is also required. In addition, the definition includes ProTalk files (called GRinit.ptk,
GRfuncl.ptk, GRfunc2.ptk, GRfunc3.ptk, GRfunc4.ptk, GRmisc.ptk) which contain the functions
required to search the ground hierarchy and to implement the user interface of the application. The
development of the Ground Object Base and the implementation of the search routines and the user

interface module are described in detail in the rest of this section.

146

The object system that PROKAPPA supports, facilitated the representation of the ground. The object
base was created using the Object Browser and not programmatically. It consists of a hierarchical
structure starting with Ground as the top level class and culminating in specific instances of the
different soil types. The Ground hierarchy included in the Ground Object Base is presented in Figure
F.1 in Appendix F. The Non-Organic branch of the hierarchy leads to the instances Boulders, Cobbles,
Gravel, Sand, Silt, Clay which represent, as was said before, the non-organic dominant soil types. The
most detailed level following the Organic branch consists of the instances Organic Sand, Organic Silt,
Organic Clay and Peat. As the object system supports arbitrarily complex hierarchies it was possible to
represent the instance Silt as the child of two parents Granular-Fine and Fine which are subclasses of
Granular and Cohesive respectively. The same applies to Organic Silt. Utilising the PROKAPPA
system's inheritance facilities the slots were created once at the appropriate class level and they were
inherited by all the subclasses and instances of that class. The values assosiated with these slots became
more specific progressing further down the hierarchy, where necessary. The above are better illustrated
in the following example. It should be noted that only knowledge concerning grain size and liquid limit
has been included in the system. This information is not shown in Appendix F as it is not incorporated

in the application programmatically.

Following the branch of Non-Organic the slot grain size was created at the level of the class
Non-Organic as a multi-value slot and it was automatically inherited by all its subclasses Granular,
Cohesive, Very Coarse, Codrse, Granular-Fine and Fine and all its instances Boulders, Cobbles,
Gravel, Sand, Silt and Clay. The value of the slot grain size as defined at the level of the class
Non-Organic is the range 0 - 2000 mm. This range is actually represented as a list of values, (0, 2000).
The inherited slot at the level of the class Granular takes as value the range 0.002 - 2000 mm, whilst at
the level of the class Coarse the range becomes 0.06 - 60 mm. At the level of the instance Sand the
value of the inherited slot is again modified to the range 0.06 - 2 mm becoming even more specific.
The instance Silt, whose both parents have the same slot, inherits it only once and the slot's value is

defined at this level as the range 0.002 - 0.06 mm. The slot liquid limit on the other hand, was created

147

at the level of the class Cohesive having the structure of a multi-value slot and its value was defined as
the range 0 - 200 %. Both the slot and the slot value were inherited by the subclass Fine and the

instances Silt and Clay of the class Cohesive.

It was found that PROKAPPA can handle a more detailed representation scheme like the one described
in section 3.2, with the use of facets, which are in effect slots on slots. As was discussed before, the
instance Sand has inherited a multi-value slot called grain size whose values are the lower and upper
limit of the range 0.06 - 2. This range can be further subdivided into more specific ranges such as
0.6 - 2 for a coarse grained Sand, 0.2 - 0.6 for a medium grained Sand and 0.06 - 0.2 for a fine grained
Sand. Three multi-value facets were attached to the slot grain size of the instance Sand in order to
represent this additional information. The facets were named coarse, medium and fine after the
descriptive terms that the above ranges express, Each of these three facets has a list of values
containing the lower and upper limit of the corresponding range. The grain size subdivisions for the
instances Gravel and Silt were represented in the same way. The slot liquid limit can have a more
refined representation as well. The range 0 - 200 % can be subdivided into five smaller ranges. Five
facets have been attached to the slot liquid limit of the instances Silt and Clay, having the names low
plasticity, intermediate plastisity, high plasticity, very high plasticity and extremely high plasticity and

the values 0 - 35%, 35 - 50 %, 50 - 70 %, 70 - 90 % and 90 - 200 % respectively.

This model, when combined with functions that are able to retrieve information from it and a user
interface module, provides the functionality of a search-based application. The user is able to search the
hierarchy to provide solutions to questions of varying degrees of detail. As mentioned before, the
system developed provides a lot of flexibility as it is possible to make modifications to the model
(adding or deleting information) without changing the searching routines. The functions and the user
interface module developed are presented below. A full listing of the program, which is divided into

separate files for clarity, is given in Appendix F.

148

The process part of the application consists of functions that are user defined or provided by the
PROKAPPA system in order to retrieve information from the ground model. These were witten in the
ProTalk language which is suited to writing code that references, finds, modifies or reasons over

information stored in an object base (PROKAPPA User's Guide ,1991, pp. [6-13] - [6-15]).

Some system defined functions used in this implementation scheme to retrieve information stored in the

Ground Object Base, are presented below. These are included in the ProTalk function libraries.

Function ObjectSlots
Input values: The name of an object in the hierarchy

Output values: A list of the names of all slots in the object

Function GetValues
Input values: The name of an object in the hierarchy
The name of a slot in the object

Output values: The current list of the slot values

Function SlotFacets
Input values: The name of an object in the hierarchy
The name of a slot in the object

Output values: A list of the names of all facets in the slot in the object

Function GetFacetValues
Input values: The name of an object in the hierarchy
The name of a slot in the object
The name of a facet attached to this slot

Output values: The current list of the facet values

In order to fulfil the requirements of the application, additional information retrieval functions had to be
written to allow a more complicated search in the object base to be performed. These are described

below.

149

Function Find Ancestors
Input values: The name of an object in the hierarchy

Output values: A list of all the ancestors of the object

The function checks if the input object name is an instance or a class and finds its ancestors using the

classof or superclassof knowledge expressions (in conjuction with the a/l search modifier) respectively.

Function FindFacets

Input values: The name of an object in the hierarchy that contains slots with defined facets
The name of a slot in the object that has facets attached to it
A value of a facet attached to that slot

Output values: A list of the names of the facets (modifiers) that this value corresponds to.

The function carries out a comparative information retrieval by searching all the facets in the slot in the
object and checking in each one of them if the input value lies within the corresponding predefined

range included in the object hierarchy. Its implementation in the ProTalk language is shown below.

function FindFacets(?obj, ?slt, 7f_val)
{
bound inputs;
7ans_list ="();
facet_list = SlotFacets(?obj, ?slt);
for Macet_name inlist ?facet_list;
do
{
7f_vallist = GetFacetValues(?0bj, ?slt, ?7facet_name);
Mmin = ListFirst(?f_vallist);
Mmax = ListNth(?f_vallist, 1);
if
{
7f_val >= Tmin;
M _val <= Tmax;
}
then
{
Tans=AppendStrings(ConvertToString(?facet_name), " *, ConvertToString(?obj));
collect ?ans into ?ans_list;
}
}
return 7ans_list;

}

150

The function initially generates a list (?facet_list - the question mark denotes a ProTalk variable) with
the names of all facets in the slot (?slt) in the object (?obj) using the SlotFacets ProTalk function. For
each member (?facet_name) of the list (generated using the inlist operator that provides iteration over
elements) it checks whether the input facet value (?f_val) lies within the the minimum (?min) and
maximum (?max) values of the range specified in the object base for that facet. If it does, the facet
name is collected in a list (?ans_list), using the collect into operator. The corresponding values of the
facets are retrieved using the system defined function GetFacetValues. The for/do construct was used
to provide iteration over a statement. When all possibilities have been examined the list (?ans_list)

containing the required facet names is returned.

This function is not as general as the corresponding Prolog rule as it only accepts for input value one
numerical value., However it satisfies the purpose of this exercise which was to demonstrate the

application of the concepts developed in the PDC Prolog program in another tool.

Function FindObjectsAndFacets
Input values: The name of an object chosen as the search-origin point
The name of a slot in an object within the hierarchy
A value of that slot
Output values: The name(s) of the object(s) that correspond to the input slot name and value
A list of the names of the facet(s) in that slot in each object that this value

corresponds to (if any)

This function performs a guided search within the model, starting from the search-origin point and
identifying its subclass in which the input slot name is defined and has as values a range that
corresponds to the input value. This subclass becomes the new search-origin point and the same check
is repeated. This selective search ensures that the path leading to the solution(s) is always being

followed. In the same way the required instances are identified. For each of these instances the facet

151

name(s) (if any) that correspond to the input value are found, performing a comparative search in the

same way as described for the function FindFacets.

Additional functions were written which are used to collect information from the object base enabling
the user to make selections expected as input. For example, the function ListObjs finds all the objects
in the hierarchy; the function ListObjMods provides all the objects having slots defined, as well as all
the objects whose slots have facets attached to them; the function GetSlotList retrieves all the different
slot names existing in the model; finally, the function CheckSlots returns the slot names of all the slots
which are defined in an object having facets attached to them. Also, some functions provide allowable
input ranges in cases where the user is required to enter a numerical value. For example, the function
FindSlotRange finds the minimum and maximum value defined for a slot within the whole model.
These functions, as well as the functions described earlier in this section, support in general the main
functionality of the system which is the domain independency of the process mechanism. In the cases
where this was not achieved (due to time constraints), it is considered that no major changes are

required to allow complete domain independency.

It can be observed from the listing of the program (Appendix F) that some functions return a value or a
list of values (e.g. the function FindFacets), others set the value(s) of a control of a dialog box of the
user interface (e.g. the function FindObjectsAndFacets) while others set the value(s) of a slot in an
object created to serve as global variable storage (e.g. the function ListObjMods). This is mainly due
to the infamiliarity with the software and the limited time that was available for the development of the
‘Representing the Ground' application in PROKAPPA (that took place during the initial parts of the
learning curve). An interesting point that came out through these different approaches is that
PROKAPPA's main feature is its ability to create and manipulate object bases. Therefore, values being
stored as slot values of an object can be accessed at any point in the execution of a program very rapidly
and efficiently. It is also worth noting that the only way that the ProTalk language provides for global

variable storage is using objects and slots. Another advantage that was found using the latter approach

152

is that functions (such as the ListObjMods) that produce general information from the model, could be
triggered when the system is initiated. This information is then available to be utilised during the

consultation period, reducing the response time of the system.

The user interface module of the system is provided by dialog boxes, which are created through
PROKAPPA to provide full X window capabilities. The user interface module has been developed

programmatically, and not graphically by using the Interface Workbench.

The system is invoked by calling the function Main_Menu (). A dialog box, called Function Menu
appears on the screen, consisting of a ListBox input control that holds a list of all the options offered by
the system and a command row control that contains the OK command button. The user is then
required to select one of these options, listed below, and initiate the appropriate actions by clicking the

OK button.

o List Ancestors
The user is required to select an object from a ListBox holding all the objects (classes and
instances) of the hierarchy. The ancestors of the chosen object are identified.

o List Slots
The user is required to select an object from a ListBox listing all objects within the hierarchy that
contain slots. The slot names in that object are presented in a second ListBox and, if required by
the user, their values are retrieved.

o Find Object Modifiers
The input required by the user in this case is the name of an object (selection item in a ListBox
containing all objects having slots with defined facets), the name of a slot in that object (all slots
in that object are presented to the user after his/her first selection in a second ListBox, displaying
also their allowable input range) and a value within the allowable range (entered by the user in

an EntryBox). This option returns the modifier(s) (facet name(s)) that match the given data. A

153

data validation process is also performed and in the case of a wrong input value in the EntryBox
an error message appears.

o [Find Objects and Modifiers
On selecting this option, the user is required to input the name of a slot (selection item in a
ListBox containing all different slots existing within the object base; their allowable input ranges
are also given for guidance), and a value of that slot (entered by the user in an EntryBox). Data
checking occurs in this case, as well. This option produces the corresponding object and
modifier(s) (if any) to the input data. Alternative solutions are also generated.

o [Exit

Allows the user to exit the system,

These are better illustrated in section 6.4 that presents example consultations with the system.

The user interface module is a dynamic module, as the dialog boxes required are created when needed
at run time. On selecting any of the first four options the Function Menu dialog box is taken off the
screen and replaced by -an appropriate dialog box corresponding to the requirements of the selected
function. This secondary dialog box is constructed at run time, from arbitrary dialog box controls that
are already present in the interface module defined as instances. These secondary dialog boxes require
display windows for outputting the results of their function, these being constructed in-a similar manner.
This allows a minimum of dialog box controls to be defined for the interface module, as they can be
used in various combinations in all of the appropriate function interfaces. In this way the congestion of

the object base and its associated tools is prevented.

At each level of the system, the user has the option to either make a new selection or return to the

Function Menu dialog box to choose another option or exit the system.

154

6.4 Example Consultations with the System

In this section example screen dumps generated during execution of the 'Representing the
Ground' application are presented in Figures 6.1-6.4. In Figures 6.1a-6.1b the user selects the option
List Ancestors in order to retrieve from the object base the ancestors of an object. In Figure 6.1a the
instance Sand has been selected and its ancestors are displayed in the Display Ancestors dialog box. In
the screen dump illustrated in Figure 6.1b the ancestors of the instance Silt are identified. Silt has two
different sets of ancestors (Fine, Cohesive, Non_Organic, Soil and Ground - Granular_Fine, Granular,
Non_Organic, Soil and Ground); these are displayed in the Display Ancestors dialog box avoiding the

repetition of the common ones.

In Figure 6.2 the user is interested in searching the object base, selecting the action List Slots, in order
to find the attributes of the object Sand (which are displayed in the second ListBox) and then he/she
queries about the values of the attribute Grain_Size, which are displayed in the Display Slot Values

dialog box.

In Figure 6.3 the action Find Object Modifiers is selected that allows the user to retrieve the modifiers
that correspond to an input value of 50 % of the attribute Liquid_Limit of the instance Silt. These are

displayed in the Display Object Modifiers dialog box.

Finally, in Figure 6.4 the user selects the action Find Objects and Modifiers in order to interrogate the
object base about the object(s) and modifier(s) (if any) that correspond to an input value of 2 mm of the

attribute Grain_Size. These are displayed in the Display Objects and Modifiers dialog box.
As can be observed from the examples presented in the last two cases (actions Find Object Modifiers

and Find Objects and Modifiers) the relevant allowable range of values is also provided for each

attribute displayed, in order to guide the user to input an appropriate value.

155

.

Figure 6.1a Example screen dumps for interrogating the object base about the ancestors of an object

156

S T T T T T Y T e ey e S T T P S T T o T A e e P AV S v T S S ot |

mcestors of an object

o«
s

e

aboul th

ase

ating the object b

ample screen dumps for interrog

Ex

Figure 6.1b

57

s Sins

Figure 6.2 Example screen dumps for interrogating the object base about the attributes of an object

158

Figure 6.3 Example screen dumps for interrogating the object base about the modifier(s) that

corresponds to an attribute-name and attribute-value of a chosen instance

159

.
i

% (A 2 s G A S A
) e s

ind Object Modifiers:
CExit - o

e
Y
.,

Figure 6.4 Example screen dumps for interrogating the object base about the object(s) and modifier(s)

that correspond to an attribute-name and attribute-value

160

6.5 Comparative comments on the implementations in Prolog and PROKAPPA

Selecting the appropriate software and hardware for the development of a system is an
important and crucial task because this decision may determine the future of the application. It is often
the case however, that there is not much choice in the initial stages of the development of an application
when decisions need to be made. This is usually due to the fact that at these early stages it is very
difficult to identify the real needs of the system. Another common reason is a lack of financial

resources, which results in limiting the range of choices.

The model of the ground has been implemented in PDC Prolog on a 286 Nimbus AX/2 Personal
Computer (as presented in Chapters 3 and 5) and in PROKAPPA on a Sun Sparkstation 2 (as described
in section 6.3). As has already been said in section 6.1, this has been done for two reasons: i) as a
comparative exercise between the two software packages in implementing the 'Representing the Ground'
application and ii) because the ground knowledge base implemented in PROKAPPA wili be part of a
knowledge-based system for interpreting geotechnical information from a site investigation which is
currently under developement at the University of Durham (Toll e al, 1992). The main development

environment for this system is PROKAPPA.

The Representing the Ground' application could be considered as an object-orientated search-based
application. The knowledge domain has been represenied by a model of the ground consisting of
objects which are organised in a hierarchy and are defined by their properties using inheritance. Prolog
is a general purpose representational language (Maher and Allen, 1987) and search and pattern matching
are capabilities that the language features. It is worth noting as well that Ruggieri e al (1992) have
presented the implementation of a Prolog-based object-orientated environment. Another advantage of
Prolog is that in effect it is not just a programming language; it provides additional features such as a
database system, a backward chaining inference engine (Marcellus, 1989, Reintjes, 1992), although it is

not very expensive. PROKAPPA on the other hand, as it is an object-orientated software package, is

161

particularly suitable for this type of applications. It has to be mentioned though that PROKAPPA is an
expensive and complex piece of software that requires a lengthy process in order to become familiar
with it, as well as with the hardware required to run it and really being able to evaluate it. Its cost has to
be justified by the need of implementing a complex system such as the one presented by Toll et al

(1992).

In PDC Prolog, the hierarchy of the ground had to be described b; Prolog facts defining each object of
the hierarchy by its name, its members and its properties. The tree-like structure representing the
ground is implicit; it only exists through the logical relations between the classes. The model
represented is a general tree that accepts multiple parents. In the representation scheme achieved in
PDC Prolog it is possible to distinguish between three types of objects: a) the top level class which is
the root of the hierarchy and expresses the domain of the knowledge represented. No properties are
specified for this class. b) subclasses which are the nodes of the hierarchy. The properties of these
classes are inherited by their subclasses and instances. c¢) instances which are the leaves of the

hierarchy; instances have no members.

The properties of each object are represented using PDC Prolog’s multi-level compound objects in order
to allow an attribute to have multiple lists of values according to a list of factors. It is possible to define
properties at a class or instance level. Two types of attributes exist within the hierarchy: i) the attributes
that are defined only once and are inherited by the levels below in the hierarchy. These may also allow
identification of the position in the hierarchy and ii) the attributes that are defined at many levels and
become more specific going further down the hierarchy. In this case the current level inherits the
attribute name from the level the attribute was firstly defined but the value specified at the original

definition is overwritten by the value specified at the current level.

It was possible in PDC Prolog to achieve a representation scheme that has another level of detail,

introduced by the predicate modifier, to handle more detailed classifications concerning the instances of

162

the hierarchy. So, instances get their properties in three ways: they inherit properties from their
ancestors, they have properties, defined at their level within the structure and they have properties

defined in a more detailed level independently from the structure.

As PDC Prolog is a general purpose language it does not provide any facilities or tools for manipulating
objects or object hierarchies required in an object-orientated application. Hence, inheritance and

transitivity inferences, as well as information retrieval rules, had to be implemented by the developer.

A menu-driven user interface has been implemented for this application utilising the tools provided by
PDC Prolog. These tools are mainly text-based and they do not include a high level windowing toolkit.
For this reason the user interface developed, although is considered to be efficient, does not look

professional.

The PROKAPPA object system significantly facilitated the implementation of the 'Representing the
Ground' application. The model of the ground was created using the graphical environment that the
Object Browser provides. This facility enables the rapid creation of object bases, as it does not involve
any programming. The objects in the ground model are organised hierarchically starting with the top
level class (Ground), going through subclasses to instances (dominant soil types). As PROKAPPA
supports arbitrarily complex hierarchies the case of an object having multiple parents (e.g. Silt) was not

a constraint.

The PROKAPPA ground hierarchy consists of two types of objects: i) the classes and ii) the instances.
A special case of a class is considered the top level class that has no parents. Classes are defined by
their properties which can be inherited by their subclasses and instances. Instances can inherit
information from classes but it is not allowed to define properties at their level. However it is possible
to modify the value of an inherited property at that level or to block the inheritance of the property

totally. Properties are represented in PROKAPPA by slots, which can take one value or a list of values.

It was found possible to achieve in PROKAPPA the more detailed representation (implemented in
Prolog by the use of multi level compound symbols) using facets which are descriptors attached to slots.
The facet name corresponds o the factor in Prolog and the value(s) that a facet can have corresponds to
a subdivision of the general range of values defined at the slot level. As many facets can be attached to

the same slot, it becomes possible for a slot to have multiple values according to a factor,

In the PROKAPPA object system, instances may only exist as children of classes; so the second level of
detail introduced in PDC Prolog by the user defined predicate modifier in order to hold more refined
classifications of the instances (dominant soil types) was not possible in PROKAPPA. The information

hold at that level of detail in Prolog had to be incorporated within the hierarchy.

Inheritance inferences need not to be implemented by the developer as they are provided by the object
system. PROKAPPA also provides a number of functions for manipulating objects, slots and facets in a
rapid and efficient way enabling the programmer to concentrate on the implementation of specific

requirements of the application.

As the PROKAPPA interface directly utilises X-windows widgets, the user interface implemented in

PROKAPPA for this application provides the look, feel and functionality of the X-window system.

In conclusion it could be said that both PDC Prolog and PROKAPPA proved adequate for the
development of the Representing the Ground' application, each one providing different advantages to
the programmer and to the final system. PDC Prolog being a general purpose representational language
provides more flexibility, allowing the programmer to implement the application in the most
appropriate way, with the only constraints being those of the language. These constraints should be
appreciated at the initial stages of the development of an application, as they could prove critical at later
stages especially if the aim of the implementation is a commercial system. PROKAPPA on the other

hand being an object-orientated software package provides a more fixed way of implementing

164

applications, but offering to the developer a number of tools that significantly facilitate the development
of applications that require an object-orientated approach, such as the 'Representing the Ground'

application.

It is also worth noting a few more general points that arose during the implementation of this
application in PDC Prolog and in PROKAPPA. PDC Prolog, was found to be a tool well suited for cost-
effective, rapid prototyping of complex applications, whereas PROKAPPA being a complicated
software package requires a lot of familiarity to be developed in order to produce a working prototype.
Once the necessary level of familiarity has been achieved, however, the tools provided by the system
facilitate the development process, also reducing the implementation time of an application. It must be
stressed however, that committing to complex software without a good appreciation of their capabilities

and limitations may prove to be a critical factor in the future development of the application.

Finaily, both PDC Prolog and PROKAPPA provide tools for developing efficient customised user
interfaces. However, the functionality of the user interface developed in PROKAPPA for the
‘Representing the Ground' application looks more professional, a feature that is considered to be

important especially if the aim of an implementation is to produce a commercial system.

165

CHAPTER 7

DISCUSSION

Geotechnical Engineering is concerned with the study of the earth materials for construction
purposes. This involves the measurement of properties (such as strength, compressibility and

permeability) in-situ, as well as in the laboratory.

The interest of the engineering community in in-situ test methods has increased rapidly during the last
few years, as they provide a means of improving soil profiling and facilitating the rapid determination
of soil parameters. Several benefits can be realised by employing in-situ techniques, rather than
conventional drilling and laboratory tests, to obtain these data (Wroth, 1984; Robertson, 1985,1986;

Orchant et al, 1988,).

A wide variety of in-situ tests has been developed and is still developing, each of these tests having
different uses and limitations. The selection of appropriate in-situ tests allows a more efficient and cost-

effective design to be achieved.

Selecting suitable test methods, however, is not an easy task; it requires a considerable amount of
knowledge mainly gained through experience. Any computerised system that aims to assist in the
decision making process should be able to incorporate and provide this information to the user in order
to allow successful engineering judgements to be made. Knowledge-based system technology can be
applied to such geotechnical problems as it provides a medium that can accommodate the representation

and use of knowledge.

166

A Knowledge-Based System has been developed to assist in the selection of suitable geotechnical field
tests. The system allows appropriate decisions to be taken by providing knowledge on different in-situ
test methods. The system is not intended to replace a human expert; it should be considered as a

decision-support system and as a learning tool.

The system incorporates two knowledge bases (the Ground Knowledge Base and the Tests Knowledge
Base), an inference mechanism allowing the interrogation of the knowledge bases, an advisory rule
aiming to aid the selection of suitable test methods and a user interface facilitating its use. Each part of
the system will be briefly reviewed below and possible improvements will be discussed where

applicable.

The Ground Knowledge Base, as described in Chapter 3, contains a model of the ground. The level of
detail introduced in order to satisfy the system's requirements is a broad geological classification based
on the British Standards (BS 5930, 1981). In this hierarchy the ground is described at the higher level
by classes such as Soil or Rock and at the lowest level by instances such as Sand, Silt, Clay etc.
Knowledge about grain size, liquid limit, consistency, permeability, compressibility and secondary soil

types is included.

The Tests Knowledge Base, as described in Chapter 4, contains a test hierarchy at the most detailed
level of which individual in-situ test methods can be identified. Knowledge about these test methods,
that enables successful engineering decisions to be taken in respect to selecting appropriate tests, is
included in the knowledge base. This knowledge consists mainly of two types of information, the
reliability of a test for obtaining specific geotechnical information (assuming ideal ground conditions
and taking into account all necessary correlations) and the applicability in different types of ground. In

addition, knowledge concerning the test frequency, test objective, and unit cost has also been

incorporated for the various tests.

In accordance with what has been identified in Chapter 2, the most difficult and time consuming task in
the development of the system was found to be the knowledge acquisition. The knowledge required for
the Ground Knowledge Base has been derived from the relevant literature, a fairly straightforward
process. It was observed, however, that a consistent omission existed in the data; in most cases where a
scale was provided for defining an attribute (e.g. uniaxial compressive strength of rocks, undrained
shear strength of cohesive soils, etc.) the lower and the upper limits were not explicitly defined.
Wherever the missing values were not obvious (e.g. a "0" value being the lower limit of a scale),
additional references had to be consulted in order either to find the missing value explicitly stated or to

assume it from typical values presented.

The development of the in-situ test hierarchy incorporated in the Test Knowledge Base proved to be a
lengthy process. Since in-situ testing has developed rapidly during the last decade, most of the recent
developments were not included in published textbooks or relevant standards. Hence, a thorough
review of in-situ testing was conducted by identifying and consulting recent technical publications
(papers and reports). A difficulty that was recognised during this process, also mentioned in Chapter 4,
was that in many cases tests were described in the published literature under different names although
the same test method was implied. The in-situ tests hierarchy achieved is considered to be a valuable
compilation of Site Investigation procedures, providing a good indication of the wide variety of tests
that have been developed and at the same time a framework for the inclusion of further developments.
The list of the individual test methods included in it is by no means exhaustive; however, it
demonstrates the current state of the in-situ testing, covering the major field testing techniques already
accepted and used in the subsurface exploration industry, as well as the testing methods being at the late

stage of research.

The knowledge about each test method required to be included in the Test Knowledge Base was found

to be difficult to identify from published literature for all the many types of field tests, as this is mostly

gained through experience. Hence a knowledge elicitation exercise in the form of a questionnaire was

168

also carried out in order to collect the required expertise. Although the results of the survey were found
promising, providing the desired information for the vast majority of the individual test methods under
consideration, they lack statistical robustness. This is mainly due to two reasons: i) some of the more
‘exotic’ tests included in the questionnaire were unknown to most or all the respondents and ii) in
industry generally (and in the present recessionary climate in particular), the respondents did not feel
able to devote the time to completion of the complex and comprehensive questionnaire. However, it
would not have been satisfactory to dilute the questionnaire for industrial purposes. Having considered
all these factors the only changes that would have been made would perhaps have entailed a more

solicitous and earlier approach and this will be the case in further development of the system.

The system, as at present, is mainly concerned with in-situ tests performed in soil; hence, only these
tests are incorporated in the Tests Knowledge Base and only soil information is represented in detail in
the Ground Knowledge Base. In future development, the two knowledge bases should be completed by
including rock information in the Ground Knowledge Base and in-situ tests used in rock in the Tests
Knowledge Base. In this way expertise on field tests used in rock will also be provided by the system.
In addition, the Tests Knowledge Base could be expanded to incorporate knowledge on the other

categories of geotechnical testing, i.e. Large Scale Field testing, Back Analysis and Laboratory testing.

Both knowledge bases have been implemented in the same way. It is believed that the representation
scheme achieved in this implementation allows the incorporation of additional knowledge, as well as
the alteration of the existing knowledge, to be easily made without affecting the overall structure. This
enhances the functionality of the system because it allows the existing knowledge to be completed or
amended at a later stage of development as well as additional knowledge that has not been considered in

the course of this research to be incorporated.

The Ground and Tests knowledge bases developed for this system are to be part of a Knowledge-Based

System currently being developed at the University of Durham for interpreting geotechnical information

169

from a site investigation (Toll et al, 1992). The system is implemented in the PROKAPPA development
environment and it is the intention to convert the Tests Knowledge Base implemented in PDC Prolog
for use in the same environment, as happened to the Ground Knowledge Base. The development of the
system is being done in a modular manner, operating around a central database of site investigation
information and making use of general knowledge about geotechnical engineering organised in

individual knowledge bases.

The inference mechanism of the system, as described in Chapter 3, allows inheritance and transitivity
inferences as well as information retrieval facilities from the Ground and Tests knowledge bases. The
rules developed are only structure dependent, they are not domain dependent. As both of the knowledge
bases included in the system have been represented using the same structure, the same rules are used for
their interrogation. This is considered to be an important feature as it makes the system general,
providing the facility of searching any other knowledge base (independently of the knowledge being
represented) as long as the knowledge it contains can be represented using this structure. For this
reason, the inference rules implemented in the system could be considered as an Extended Inference

Mechanism, on top of the built-in inference engine of PDC Prolog.

In the present version of the system information on units has not been incorporated for the attributes that
take numerical values. The fact that the system is general, as discussed above, requires a general
approach to be adopted in order to include such information in the knowledge bases. Although it is
considered feasible to achieve this in the existing system, it has not been implemented due to time

constraints,

Assistance in the selection of appropriate field tests is provided by the advisory rule that has been
developed (rule investigate). This rule is sequentially model dependent, interrogating the two
knowledge bases as required. The system, through this rule, is able to offer to the user possible suitable

tests, that enable the derivation of the required geotechnical parameter with the desired reliability (both

170

of which are specified by the user). The system also provides the user with the applicability of each of
these tests in the ground conditions that he/she specifies that the test is going to be performed in.
Modified soil types are also considered (e.g. dense Sand, silty Clay, etc.). Moreover, the user is given
the option to query additional information that has been included in the Tests Knowledge Base about
these tests, The user can then compare the knowledge provided for each alternative test by the
knowledge bases through the advisory rule, and also consider other factors, not incorporated in the

system, that he/she finds relevant in order to make the final selection,

The advisory rule, as at present, does not perform any check for compatibility between the input values.
For example, the user may input that the test is going to be performed in coarse soil and select the
geotechnical parameter required as the undrained shear strength. Although these two values in reality
are not compatible, the investigate rule will still produce possible solutions. An enhanced version of the

rule should be able to recognise incompatible input values and inform the user about it.

In the current version of the system, the suitability of a specific test method is mainly based on the
knowledge of the reliability with which the test is able to derive engineering soil parameters and of its
applicability in different ground conditions. The ability of a test to relate to the type of project under
consideration could also influence such a decision, as discussed in Chapter 4. As identified by
Robertson (1985), Marsland (1986) and Orchant et al (1988) the appropriate tests should also be
relevant to the particular problems being considered. For example, when deformation or strenglh
parameters are required for the design, the stresses applied on the soil tested should be as close as
possible to the stress conditions which occur on the soil in the full scale situation (Marsland, 1986).
Knowledge of the foundation or earthwork problem being considered could also determine the degree of
accuracy required in the determination of the relevant soil parameters. The relation between tests and

type of construction has not been considered in the present implementation, due to time constraints,

171

In future developments of the system, this additional factor can also be incorporated without major
changes in the current version. An additional knowledge base could be included without affecting the
rest of the program, containing a hierarchy of possible types of construction, defining different
applications. For each application included in this hierarchy, knowledge about the soil parameters
required for the design, the reliability with which these parameters should be measured (for this type of
application) and the test methods that are relevant to this type of construction can then be added. The
advisory rule will be modified in order to accept, as input at the highest level, the application type under
consideration and the type of the ground influenced by the construction. Searching initially the
Applications Knowledge Base, the parameter(s) required to be measured, the tests that are likely to
provide these parameters and the reliability required for their determination will be identified. The
system, however, should also allow the user (if he/she desires) to specify the reliability with which the
parameters need to be measured. The information derived could then be used as input to the existing
advisory rule in order to identify which of the input tests provide the required reliability and the
applicability of these tests in the type of the ground being considered. It is believed that major changes
would not be required to enhance the existing advisory rule due to the modular way in which it has been

implemented.

The user interface developed for the system is mainly menu driven providing ease of use to all potential
users. On invoking the system the user is given the option (o either query the knowledge bases, hence
using the system as a learning tool or to seek assistance in the selection of in-situ tests, therefore using
the system as decision support tool. The first function of the system when selected allows the activation
of the rules forming the Extended Inference Mechanism. The user interface implemented for this option
is domain independent as are the rules it triggers. The second function of the system activates the

advisory rule. In this case the user interface developed is domain dependent as is the advisory rule.

An important feature of the prototype KBS, presented in this thesis, is considered to be the domain

independent, extended inference mechanism and user interface implemented to be used for the

172

interrogation of the knowledge bases included in the system, This characteristic of the system allows
the interrogation of any number of knowledge bases incorporated in it, relating to any domain. The
Extended Inference Mechanism and the corresponding user interface could be considered as a basic

expert system shell.

Possible improvements of the system in order to enhance the functionality of the expert system shell
would entail the provision of a help facility to guide the non-familiar with the system user, a knowledge
acquisition facility to enable the modification (addition or deletion) of the information incorporated in
the existing knowledge bases, as well as the definition of additional knowledge bases. A hypertext
facility in order to include additional information on the objects defined in the knowledge bases could

also be useful.

In the existing system, such facilities would allow easy completion of the Ground and Tests knowledge
bases as well as the incorporation of another knowledge base (e.g. the Applications Knowledge Base) by
a domain expert and would make additional knowledge available to the user (such as detailed test

procedures and information on the factors affecting the results of the various test methods).

During, as well as after, the development of any system, it is important to get feed back from potential
users while consulting it. At present the only validation to the system has been done by colleagues, not
necessarily familiar with the system. The general feeling was positive, stressing the fact that it seems 10
be a robust piece of software. After incorporating into the system the additional features discussed
earlier in this chapter, the system should be validated by experienced and inexperienced engineers who
are working in this areca. In addition to that, when the knowledge included is complete, the system

should be tested against case studies in order to check the recommendations of the system in real

situations.

A final comment that is worth discussing concerns the comparative exercise carried out by
implementing the Representing the Ground' application in the PROKAPPA system as well as in PDC
Prolog. The purpose of this exercise, which is presented in Chapter 6, was to appreciate the differences
between the two implementation schemes and to identify possible advantages and disadvantages that

each one of them offers.

The interesting point of this exercise was that the implementation tools compared were a general
purpose programming language (that could also be considered as a flexible expert system shell, as
discussed by Marcellus (1989) and Reintjes (1992)) and an expert system development environment.
Usually comparisons are carried out between tools of similar nature, for example between expert system
shells (Adeli, 1988; Motamed et al, 1991). Through this exercise it was possible to identify a number of
general factors that should be considered, among others, if an implementation tool has to be selected.
These include the knowledge representation scheme and problem solving strategy required, type of
machine available, cost of tool, time available for the implementation of the application under

consideration and most importantly the aim of the implementation.

174

CHAPTER 8

CONCLUSIONS

In-situ testing has always played a major role in the art of geotechnical engineering. The
developments achieved during the last decade and the growing interest of the engineering community in
the use of field testing techniques during this time indicates that in-situ testing will play a progressively

more dominant and important role in geotechnical engineering in the years to come,

The application of knowledge-based system technology in geotechnical engineering is a recent
development. However, the existing KBSs demonstrate the potential of this technology to address a
wide range of geotechnical engineering problems involving knowledge and experience, overcoming the

limitations of algorithmic programming techniques.

A prototype Knowledge-Based System has been developed to assist in the selection of appropriate
geotechnical in-situ tests. The system is an interactive, menu driven model-based system that performs
two functions:

1. General querying of the knowledge bases,

2. Advising selection of in-situ tests.

The first option allows the user to interrogate separately the Ground and Tests knowledge bases that are
included in the system, by activating the search rules which have been developed to provide inheritance
and transitivity inferences as well as information retrieval facilities. These rules form an Extended
Inference Mechanism on top of the built-in inference engine of PDC Prolog. The Extended Inference

Mechanism, and the user interface implemented for it, form a basic expert system shell.

175

The second option provides assistance in the selection of appropriate field tests, by activating the
advisory rule developed for this purpose. The system, through this rule, is able to offer to the user
possible suitable tests, that enable the derivation of the required geotechnical parameter with the desired
reliability (both of which are specified by the user). The system also provides to the user the
applicability of each of these tests in the ground conditions that he/she specifies that the test is to be
performed in. Modified soil types are also considered (e.g. dense Sand, silty Clay, etc.). Moreover, the
user is given the option to query any other relevant information that has been included in the Tests
Knowledge Base about these tests. The final selection is made by the user who can compare the
information provided by the system on the alternative in-situ test methods, and consider at the same

time additional factors not yet incorporated in the system,

The most difficult and time consuming task in the development of the system was the knowledge
acquisition. The knowledge required was obtained in two ways: i) from technical literature and ii) from
a small knowledge elicitation exercise in the form of a questionnaire. The representation scheme
achieved is the same for both knowledge bases and allows modifications (additions or deletions) of the

existing knowledge to be easily made.

A comparative exercise has also been performed by implementing the Representing the Ground'
application in the PROKAPPA system as well as in PDC Prolog. Through this exercise, the differences
between the two implementation schemes were appreciated and advantages and disadvantages that each
one of them offers were identified. In addition, a number of general factors were identified (such as the
knowledge representation scheme and problem solving strategy required, type of machine available,
cost of tool, time available for the implementation of the application under considerartion and most
importantly the aim of the implementation) which should be considered among others in order to select

an appropriate implementation tool.

176

REFERENCES

Adams T.M., Christiano P. and Hendrickson C. (1989), Some expert system applications in geotechnical
engineering, in Foundation Engineering: Current principles and practices, ASCE, New York,
pp 885-902.

Adeli H. (1987), Knowledge-Based Systems in Structural Engineering, The Application of Artificial
Intelligence Techniques to Civil and Structural Engineering, pp 71-78.

Adeli H. (ed.) (1988) Expert Systems in Construction and Structural Engineering, Chapman and Hall,
London, England.

Alim S. and Munro J. (1987), PROLOG-Based Expert Systems in Civil Engineering, Proc. Instn. Civ,
Engrs., Part 2, vol. 83, pp 1-14.

Allwood R.J., Stewart D.J and Trimble E.G. (1987), Some Experiences from Evaluating Expert System
Shell Programs and Some Potential Applications, in Application of A.l. Techniques to Civil and
Structural, (ed. Topping B.H.V.), CIVIL-COMP Press, Edinburgh, pp 1-6.

Arockiasamy M., Radhakrishnan N., Sreenivasan G. and Lee S. (1991), KBES Applications to the
Selection and Design of Retaining Structures, Proceedings of the Geotechnical Engineering
Congress, in Geotechnical Special Publication, vol. 1, n. 27, (eds. McLean F.G., Campbell DW,
A. and Harris D.W.), ASCE, Boulder, Colorado, pp 391-402,

Asgian MLL,, Arulmoli K., Miller W.O. and Sanjeevan K. (1988), An expert system for diagnosis and
treatment of dam seepage problems, in Microcomputer knowledge-based expert systems in Civil

Eng. (ed. Adeli H.), ASCE, New York, pp 118-126.

Attewell P.B. and Farmer L.W. (1976), Principles of Engineering Geology, Chapman and Hall Ltd,

London.

Bageulin F,, Jézéquel J.F. and Shiclds D.H. (1978), The Pressuremeter and Foundation Engineering,
Series on Rock and Soil Mechanics, vol. 2, (1974/77), n. 4, Trans Tech Publications, 617 p.

177

Benchimol G., Levine P. and Pomerol J.C. (1987), Developing Expert Systems for Business, North
Oxford Academic Publishers Ltd, Oxford, England.

Bokma A.F. (1991), A Source Modelling System and its Use for Uncertainty Management, PhD thesis,

University of Durham,

Bradbury A. and Woodward R. (1988), Turbo Prolog User's Handbook, Version 2.0, McGraw - Hill
Book Company Ltd, London.

Bratko 1. (1990), PROLOG Progarmming for Artificial Intelligence, 2nd edition, Addison-Wesley.

British Standard 5930 (1981), Code of Practice for Site Investigations, British Standards Institution,

London.

Carpaneto R. and Cremomini M.G. (1991), Evaluation of Geotechnical Design Parameters by Expert
System Techniques, Proceedi_ngs of the Geotechnical Engincering Congress, in Geotechnical
Special Publication, vol. 1, no. 27, (eds. McLean F.G., Campbell DW. A. and Harris D.W),
ASCE, Boulder, Colorado, pp 422-433.

Chahine J.R. and Janson B.N. (1987), Interfacing Databases with Expert Systems: a Retaining Wall
Management Application, Microcomputers in Civil Eng., vol. 2, n. 1, pp 19-38,

Chameau J-L. and Santamarina J.C. (1989), Knowledge-Based System for Soil Improvement , Journal of
Computing in Civil Engineering, ASCE, vol. 3, n. 3, pp 253-267.

Child G.H. (1986), Soil Descriptions-Quo Vadis?, Site Investigation Practice: Assessing BS 5930,
Geological Society, Engineering Geological Special Publication No. 2, (ed. Hawkins A. B.),
pp 73-81.

Clocksin W.FE. and Mellish C.S. (1981), Programming in Prolog, 1st edition, Srpinger-Verlag, Berlin.

Davey-Wilson LE.G., May LM, Tizani W., Alim S. and Munro J. (1988), PROLOG-Based Expert
Systems in Civil Engineering-Discussion, Proc. Instn. Civ. Engrs., Part 2, vol, 85, pp 185-187.

178

Davey-Wilson LE.G. (1989), Development of a Prolog Based Expert System for Groundwater Control,
in Application of A.L. techniques to Civil and Structural Engineering (ed. Topping B.H.V.),
CIVIL-COMP Press, Edinburgh, pp 263-268.

Davey-Wilson LE.G. (1991), Geotechnical Laboratory Test Simulation using AI Technigues, in
Artificial Intelligence and Civil Engineering (ed. Topping B.H.V.), CIVIL-COMP Press,
Edinburgh, pp 119-124.

Davey-Wilson L.LE.G. and May L.M. (1989), Development of a knowledge-based system for the selection

of groundwater control methods, Computers and Geotechnics, 7, pp 189-203.

Denby B. and Kizil M.S. (1991), Application of Expert Systems in Geotechnical Risk Assessment for
Surface Coal Mine Design, in International. Journal of Surface Mining and Reclamation., vol. 5,
n. 2, pp 75-82.

Dimmick K., Bhatia S.K. and Hassett J. (1991), Geotextile Edge Drain Design and Specification by
Expert System, Proceedings of the Geotechnical Engineering Congress, in Geotechnical Special
Publication, vol. 1, n. 27, (eds. McLean F.G., Campbell DW. A, and Harris D.W.), ASCE,
Boulder, Colorado, pp 288-297.

Elton D.L. and Brown D.A. (1991), Expert System for Driven Pile Selection, Proceedings of the
Geotechnical Engineering Congress, in Geotechnical Special Publication, vol. 1, n. 27, (eds.

McLean F.G., Campbell DW. A. and Harris D.W.), ASCE, Boulder, Colorado, pp 253-263.

Faure R.M., Mascarelli D., Zelfani M., Charveriat L., Gandar J. and Mosuro O. (1991), XPENT: An
Expert System for Slope Stability, in Artificial Intelligence and Civil Engineering (ed. Topping
B.H.V.), CIVIL-COMP Press, Edinburgh, pp 143-147.

Feigenbaum E.A. (1983), Knowledge Engincering: The Applied Side, in Intelligent Systems; The
Unprecedented Opportunity, (ed. Hayes J.E.), Ellis Horwood Limited, Chichester, England,
pp 37-55.

Fookes P.G. and Vaughan P.R. (1986), A Handbook of Engineering Geomorphology, Surrey University
Press.

179

Garigliano R. and Bokma A. (1992), Uncertainty Management Through Source Control: A Heuristic
Approach, in Proceedings of Information Processing and Management of Uncertainty,

Springer-Verlag.

Gillette D.R. (1991), An Expert System for Estimating Soil Strength Parameters, Proceedings of the
Geotechnical Engineering Congress, in Geotechnical Special Publication, vol. 1, n. 27, (eds.
McLean F.G., Campbell DW. A. and Harris D.W.), ASCE, Boulder, Colorado, pp 276-287.

Hadipriono F.C., Diaz C.F. and Wolfe W.E. (1991), Toward the Development of a Knowledge Base
Expert System for Determining the Causes of Foundation Failures, Proc. of Conf. on

Computational Structures Technology, CIVIL-COMP Press, Herriot-Watt Univ., Edinbourgh.

Hadipriono F.C. and Wolfe W.E. (1991), Repairability Assessment of Damaged Foundations, in
Artificial Intelligence and Civil Engineering (ed. Topping B.H.V.), CIVIL-COMP Press,
Edinburgh, pp 137-141.

Halim 1.S., Tang W.H, and Garrett J.H.Jr, (1991), Knowledge-Assisted Interactive Probabilistic Site
Characterization, Proceedings of the Geotechnical Engineering Congress, in Geotechnical
Special Publication, vol. 1, n. 27, (eds. McLean F.G., Campbell DW. A. and Harris D.W.),
ASCE, Boulder, Colorado, pp 264-275.

Hutchinson P.J., Rosenman M.A. and Gero J.S.(1987), RETWALL: An Expert System for the Selection
and Preliminary Design of Earth Retaining Structures, Knowledge-based systems, vol. 1, n. 1,
pp 11-23.

ISSMFE (1988), Technical Committee on Penetration Testing, /nternational Reference Test Procedures,
in Proceedings of 1st International Symposium on Penetration Testing (ISOPT-1), Orlando, De

Ruiter J. (ed.), Balkema A.A., Rotterdam, vol. 1, pp 3-90.

Juang C.H. and Lee D.H. (1989), Development of an Expert System for Rock Mass Classification, Civil
Engineering Systems, vol.6, pp 147-156.

Konigsberger HK. and De Bruyn F.W.GM. (1990), Prolog from the Beginning, McGraw-Hill Book
Company (UK) Limited, London, England.

180

Kpwetog B.I. xon INootpog K.Z. (1991), Eyxepidio Ewsaywme ota Eumepa Zuvomuarto,
Exdofnke omo v Etapeio Avortuéng g Noavtkng Texvoloynog AE., Afnvo,
EAAodor.

Maher M.H. and Williams T.P. (1991), A Hybrid Expert System for Design with Geosynthetics,
Proceedings of the Geotechnical Engineering Congress, in Geotechnical Special Publication, vol.
1, n. 27, (eds. McLean F.G., Campbell DW. A, and Harris D.W.), ASCE, Boulder, Colorado, pp
241-252.

Maher M.L. (ed.) (1987) Expert Systems for Civil Engineers, American Society of Civil Engineers, New
York, U.S.A.

Maher M.L. and Allen R. (1987), Expert Systems Components, in Expert Systems for Civil Engineers,
(ed. Maher M.L.), American Society of Civil Engineers, New York, U.S.A., pp 3-14.

Manby C.N.D. and Wakeling T.R.M. (1990), Developments in Soft-Ground Drilling, Sampling and In-
Situ Testing, Trans. Institution of Mining and Metallurgy, Section A: Min. Industry, vol. 99,
May-August, pp A91-A97.

Marcellus D.H. (1989), Expert Systems Programming in Turbo Prolog, Prentice-Hall,Inc, New Jersey.

Marsland A. (1986), The Choice of Test Methods in Site Investigation, Site Investigation Practice:
Assessing BS 5930, Geological Society, Engineering Geological Special Publication No. 2, (ed.
Hawkins A. B.), pp 289-298.

Meyer S. (1992), Preliminary Foundation Design Using EDESYN, Optimisation and Artificial
Intelligence in Civil and Structural Engineering, (ed. Topping B.H.V.), Kluwer Academic
Publishers, Dordrecht, vol. 2, pp 333-354.

Mi Z. and Jieliang P, (1989), An Expert System of Predicting and Preventing Surface Settlement Caused
by Shield-Driven Tunneling in City, Proceedings of International Conference'89 on Expert

Systems in Engineering Applications, Huazhong University of Science and Technology Press, pp
466-472,

181

Mitchell 1.K. (1988), New developments in penetration tests and equipment, in Procecdings of Ist
International Symposium on Penetration Testing (ISOPT-1), Orlando, (ed. De Ruiter I.),
Balkema A.A., Rotterdam, vol. 1, pp 245-262.

Motamed F., Salazar G. and D'Andrea R. (1991), An Expert System for Preliminary Ground
Improvement Selection, Proceedings of the Geotechnical Engineering Congress, in Geotechnical
Special Publication, vol. 1, n. 27, (eds. McLean F.G., Campbell DW. A. and Harris D.W.),
ASCE, Boulder, Colorado, pp 379-390.

Mullarkey P.W. (1985) CONE - An Expert System for Interpretation of Geotechnical Characterization
Data from Cone Penetrometers, PhD thesis, Carnegie-Mellon University, Pitisburgh, PA.

Mullarkey P.W. (1986), A Geotechnical KBS Using Fuzzy Logic, in Applications of A.L in Engineering
Problems, 1st Int. Conf., Southampton University (eds. Sriram D, and Adey R.), Springer-Verlag,
vol. 2, pp 847-859.

Mullarkey P.W. (1987), Languages and Tools for Building Expert Systems, in Expert Systems for Civil
Engineers, (ed. Maher M.L.), American Society of Civil Engineers, New York, U.S.A., pp 15-34.

Mullarkey P.W. and Fenves S.J. (1986), Fuzzy logic in a geotechnical knowledge based system : CONE,
Civ. Eng. Syst vol. 3, n. 2, pp 58-81.

Norbury D.R., Child G.H. and Spink T.W. (1986), A Critical Review of Section 8 (BS§5930)-Soil and
Rock Description, Site Investigation Practice: Assessing BS 5930, Geological Society,

Engineering Geological Special Publication No. 2, (ed. Hawkins A. B.), pp 331-342.

Norkin D.D. (1985), Expert System for Geotechnical Site Characterisation, MSc dissertation, Carnegie-
Mellon University, Dept. of Civil Engineering,

Oliphant J. and Blockley D.I, (1989), Knowledge Based System: Advisor on the Selection of Earth
Retaining Structures, Proc. 4th Int. Conf. Al techniques and applications for Civil and
Structural Engineering Computing, CIVIL-COMP Press, Edinburgh, pp 253-262.

Orchant C.J., Kulhawy F.H. and Trautmann C.H. (1988), Reliability-Based Foundation Design for

Transmission Line Structures: Critical Evaluation of In-Situ Test Methods, Report EL-5507, vol,

2, Electric Power Research Institute, Palo Alto, 214 p.

182

Parikh S.A. and Kameswara Rao N.S.V. (1991), An Expert System for Civil Engineering Applications,
Proceedings of the Geotechnical Engineering Congress, in Geotechnical Special Publication, vol.
1, n. 27, (eds. McLean F.G., Campbell DW. A. and Harris D.W.), ASCE, Boulder, Colorado, pp
413-421.

PDC Prolog Reference Guide (1992), Version 3.30, Prolog Development Center, Copenhagen,

Denmark.
PDC Prolog Toolbox (1990), Version 3.20, Prolog Development Center, Copenhagen, Denmark,
PDC Prolog User's Guide (1992), Version 3.30, Prolog Development Center, Copenhagen, Denmark.

Pearse R., Rosenbaum M. and Hammond P. (1986), The Evaluation of Proposed Road Corridors by the
Use of an Expert System, in Applications of A.L. in Engineering Problems, 1st Int. Conf.,

Southampton University (eds. Srirvam D. and Adey R.), Springer-Verlag, vol. 2, pp 719-730.
PROKAPPA User's Guide (1991), IntelliCorp, Inc. Version 2.0, Public. No: PK2.0-UG-2, October.

Rashad M.M., Yehia N.A.B., Bazaraa A.S. and Dessouki A.l. (1991), Foundcon : A Conceptual Model
for the Integrated Knowledge-Based CAD Systems for Foundation Design, in Artificial
Intelligence and Civil Engineering (ed. Topping B.H.V.), CIVIL-COMP Press, Edinburgh,
pp 125-135.

Rehak D.R., Christiano P.P. and Norkin D.D. (1985), SITECHAR: An Expert System Component of a
Geotechnical Site Characterization Workbench, in Applications of knowledge-based systems to

engineering analysis and design (ed. Dym C.L.), Am. Soc. Mech. Eng., New York, pp 117-133.

Reintjes P. (1992), Elegant Technologies, Proc. of International Conference The Practical Application

of Prolog, April, London, vol. 2, Invited Paper.
Righetti G.A. and Cremonini M.G. (1988), The DAISY Environment and the Expert System GUESS, in

Artificial Intelligence in Engineering: Diagnosis and Learning, (ed. Gero J.S.), Elsevier,

Amsterdam.

183

Robertson P.K. (1985), In Situ Testing and its Application to Foundation Engineering, Soil Mechanics
Series No. 91, University of British Columbia, Department of Civil Engineering, Vancouver,
B.C.,212p.

Robertson P.K. (1986), In Situ Testing and its Application to Foundation Engineering, Canadian
Geotechnical Journal, vol. 23, pp 573-594.

Rosenman M.A., Balachandran B.M. and Gero J.S. (1989), The Place of Expert Systems in Civil
Engineering, in Civil Engineering Systems, Chapman and Hall Ltd, vol. 6, n. 1-2, pp 11-20.

Rowlinson S. (1989), Knowledge Based Systems: Potential in Design and Management, Proc. 4th Int,
Conf. Al techniques and applications for Civil and Structural Engineering Computing,
CIVIL-COMP Press, Edinburgh, pp 21-26.

Ruggieri C. and Sancassami M. (1992), A Ser of Prolog Programming Tools, Proc. of International
Conference The Practical Application of Prolog, April, London, vol. 1, Virtual Languages.

Santamarina J.C. and Chameau J.L. (1987), Expert Systems for Geotechnical Engineers, Inl. Computing
in Civil Eng., vol. 1, n. 4, pp 241-252.

Shyu G.C. and Hryciw R.D. (1991), SOLES: A Knowledge-Based Soil Liquefaction Potential Evaluation
System, Proceedings of the Geotechnical Engineering Congress, in Geotechnical Special
Publication, vol. 1, n. 27, (eds. McLean F.G., Campbell DW. A. and Harris D.W.), ASCE,
Boulder, Colorado, pp 403-412,

Sieh D., King D. and Gientke F. (1988), Dam Seepage Analysis Using Artificial Intelligence, Planning
Now for Irrigation and Drainage in the 215! Century, ASCE, pp 417-422.

Siller J.T. (1987), Expert Systems in Geotechnical Engineering, in Expert Systems for Civil Engineers:
Technology and Applications, (ed. Maher M.L.), ASCE, NY, pp 77-84.

Smith I.G.N. and Oliphant J. (1991), The Use of a Knowledge-Based System for Civil Engineering Site

Investigations, in Artificial Intelligence and Civil Engineering (ed. Topping B.H.V.), CIVIL-
COMP Press, Edinburgh, pp 105-112,

184

Smith I.G.N. and Oliphant J. (1992), The Use of a Knowledge-Based System for Civil Engineering Site

Investigations, (extended) in Computer Systems in Engineering, (to be published).

Smith R.G. and Baker J.D. (1983), DIPMETER ADVISOR System, Proc. 8th Int, Joint Conf, AL,
Karlsruhe, Germany, pp 122-129,

Spink T.W.and Norbury D.R. (1991), The Engineering Geological Description of Weak Rocks and
Overconsolidated Soils, Proceedings of the 26th Annual Conference of Engineering Geology

Group of the Geological Society of London.

Stuckrath L.A. and Grivas D.A. (1990), A Knowledge-Based System for Bridge Foundation Selection,
OECD Workshop on Knowledge-Based ExpertSystems in Transportation Part 1, in VTT
Symposium (Valtion Teknillinen Tutkimuskeskus), Technical Research Center of Finland,
Espoo, vol. 1, n. 116, pp 283-297.

Toll D.G. (1990), Do Georechnical Engineers need Expert Systems?, Ground Engineering, vol. 23,
n. 23, pp 32-36.

Toll D.G., Moula M. and Vaptismas N. (1991), Representing the Engineering Description of Soils in
Knowledge Based Systems, AIENG 6, Proc. of 6th Int. Conf. on Application of A.L in
Engineering, University of Oxford, July, pp 113-118.

Toll D.G., Moula M., Oliver A., and Vaptismas N. (1992), A Knowledge Based Sustem for Interpreting
Site Investigation Information, International Conference on Geotechnics and Computers, Paris,
September, pp 607-614.

Tomlinson M.J. (1986), Foundation Design and Construction, Fifth Edition, Longman Scientific and

Technical, Essex, England.

Turbo PROLOG - Owner's Handbook (1986), Borland International, Scotts Valley, CA.

Vaptismas N. (1992), A Methodology for the Interpretation of Ground Conditions from Borehole

Information, PhD thesis, University of Durham.

Weltman A.J. and Head J.M. (1983), Site Investigation Manual, CIRIA Special Publication 25,

Construction Industry Research and Information Association, London.

Wilson J.L, Mikroudis G.K. and Fang H.Y. (1987), GEOTOX: A Knowledge-Based System for
Hazardous Site Evaluation, in Artificial Intelligence, Computational Mechanics Publications,
vol. 2,n. 1, pp 23-32.

Wislocki A.P. and Bentley S.P. (1989), An Expert System for Landslide Hazard and Risk Assessment,
Proc. 4th Int. Conf. AL techniques and applications for Civil and Structural Engineering
Computing, CIVIL-COMP Press, Edinburgh, pp 249-252,

Wong K.C., Poulos H.G. and Thorne C.P. (1989), Site Classification by Expert Systems, Computers and
Geotechnics, 8, pp 133-156.

Wong K.C,, Poulos H.G. and Thorne C.P. (1991), Development of Expert Systems for Pile Foundation
Design, Trans. Inst. of Engineers, vol.CE33, n.2, pp 119-127.

Wroth C.P. (1984), The Interpretation of In-situ Soil Tests, Geotechnique 34, n.. 4, pp 449-489.

Yehia N.A.B. and El-Hajj A.H. (1987), A Knowledge Based Approach for the Design of Spread
Footings, in Application of A.L techniques to Civil and Structural Engineering (ed. Topping
B.H.V.), CIVIL-COMP Press, Edinburgh, pp 119-124,

Zheng H., Mikroudis G.K., Pamukcu S. and Hu Z.X. (1989), BABE: An Expert System for Structural

Design of Bridge Abutments and Piers, in Computer Utilization in Structural Engineering,

Proceedings of the sessions at Structures Congress '89, ASCE, NY, pp 372-381.

186

APPENDIX A

PROLOG PROGRAM

[k ook ook ok ok ok o ok ko ok ok

* File KNOWBASE.PRO *

Feske stk dodeskok skorokokskok ok dokok koo skskok skokok |

/* This file contains the two knowledge bases required to be incorporated in the system, the Ground
Knowledge Base and the Tests Knowledge Base. ¥/

domains

list=symbol*
fact=fact(list)
val=val(list, fact)
vallist=val*
att=att(symbol, vallist)
attlist=att*

database - knowledge _base

class(symbol, list, attlist)
modifier(symbol, attlist)

clauses

/*¥ GROUND Hierarchy %

class(ground, [soil, rock],
-
class(soil, [non_organic, organic, man_made},
[att(ground_type,
[val([soil], fact([1)DD.
class(rock, [soft_rock, hard_rock],
[att(ground_type,
[val([rock], fact([1))]),
att(uniaxial_compressive_strength,
[val(["600", "400000"], fact([)D1).
class(non_organic, [granular, cohesive],
[att(soil_nature,
[val([non_organic], fact([]))]),
att(grain_size,
[val(["0", "2000"], fact((1)D]).

Al

class(organic, [organic_granular, organic_cohesive, peat],
[att(soil_nature,
[val([organic], fact([I)])D)-
class(man_made, [fill, waste],
[att(soil_nature,
[val(fman_made], fact([(IHD]).
class(soft_rock, [},
[att(rock_name,
[val([soft_rock], fact([1)]),
att(uniaxial_compressive_strength,
[val(["0.6", "12.5"], fact((INDD.
class(hard_rock, (1,
[att(rock_name,
[val({bard_rock], fact({1))]),
att(uniaxial_compressive_strength,
{val(["12.5", "400"}, tact((IDD.
class(granular, [very_coarse, coarse, granular_fine],
[att(soil_character,
[val([granular], fact((I)]).
att(grain_size,
[val(["0.002", "2000"}, fact((DD.
class(cohesive, [fine],
[att(soil_character,
[val([cohesive), fact({D)D,
att(grain_size,
[val(["0", "0.06"], fact([1)HD),
att(liquid_limit,
[val(["0", "200"], fact([)DD.
class(organic_granular, [organic_coarse, organic_granular_fine],
[att(soil_character,
[val([organic_granular], fact([1)]),
att(grain_size,
[val(["0.002", "2"], fact((INDD.
class(organic_cohesive, [organic_fine],
fatt(soil_character,
[val(Jorganic_cohesive], fact({1))]),
att(grain_size,
[val(["0", "0.06"], fact([1D),
att(liquid_limit,
[val(["0", "200"], fact((])DD.
class(peat, [],
[att(soil_name,
[val([peat], fact((D)D).
class(fill, [],
[att(soil_name,
[val([fill], fact((D) D).
class(waste, [,
[att(soil_name,
[val([waste], fact([D)D]).
class(very_coarse, [boulders, cobbles],
[att(coarseness,
[val([very_coarse], fact({1))]),
att(grain_size,
[val(["60", "2000"], fact((IND]).

A2

class(coarse, [gravel, sand],
[att(coarseness,
[val([coarse], fact((1)]),
att(grain_size,
[val(["0.06", "60"], fact((1DD)-
class(granular_fine, [silt],
[att(coarseness,
[val([granular_fine], fact([1)]),
att(grain_size,
[val(["0.002", "0.06"], fact((INDD.
class(fine, [silt, clay],
[att(coarseness,
[val([fine], fact((I)]),
att(grain_size,
[val({"0", "0.06"}, fact((1NDD.
class(organic_coarse, [organic_sand],
[att(coarseness,
[val(forganic_coarse], fact([1))]),
att(grain_size,
[val([*0.06", "2"}, fact(LINDD).
class(organic_granular_fine, [organic_silt],
[att(coarseness,
[val([organic_granular_fine], fact([])]),
att(grain_size,
[val({"0.002", "0.06"], fact((INDD.
class(organic_fine, [organic_silt, organic_clay],
[att(coarseness,
[val([organic_fine], fact([1))]),
att(grain_size,
[val(["0", "0.06"], fact([(INDD.
class(boulders, [1,
[att(soil_name,
[val({boulders], fact({1]),
att(grain_size,
[val(["200", "2000"], fact((DIDD).
class(cabbles, (1,
[att(soil_name,
[val([cobbles], fact([I)]),
att(grain_size,
[val(["60", "200"], fact({DDD.
class(gravel, [],
[att(soil_name,
[val([gravel], fact([])D),
att(grain_size,
[val(["2", "60"], fact((INDD-
class(sand, [],
[att(soil_name,
[val([sand], fact({IND),
att(grain_size,
[val(["0.06", "2"], fact((DDD).

A3

class(silt, (1,
[att(soil_name,
[val([silt], fact([1))]),
att(grain_size,
[val({"0.002", "0.06"], fact((INDD-
class(clay, [,
[att(soil_name,
[val([clay], fact(()D),
att(grain_size,
[val({"0", "0.002"], fact((IHDD.
class(organic_sand, [],
[att(soil_name,
[val({organic_sand], fact({])1),
att(grain_size,
[val(["0.06", "2"], fact((D)DD.
class(organic_silt,],
[att(soil_name,
[val([organic_silt], fact([1)D),
att(grain_size,
{val(["0.002", "0.06"], fact((D)DD).
class(organic_clay, [],
[att(soil_naine,
fval(forganic_clay], fact({(1))]),
att(grain_size,
fval(["0", "0.002"], fact(LDIDD.

/* TESTS Hierarchy *

class(tests, [in_situ_tests, large_scale_field_tests, back_analysis_tests,
laboratory_tests],
.
class(in_situ_tests, [penetration_(ests, special_penetrometer_tests,
pressuremeter_tests, in_situ_stress_measurement_tests,
shear_tests, bearing_tests, in_situ_density_tests,
permeability_tests, geophysical_surveying_tests],
[att(test_category,
[val({in_situ_tests], fact((1)H D).
class(penetration_tests, [standard_penetration_test, dynamic_probing_test,
cone_penetration_test, weight_sounding_test,
static_dynamic_penetration_test],
[att{test_nature,
[val([penetration_tests), fact({1)]),
att(test_objective,
{val([logging_test_method], fact([]))DD.
class(special_penetrometer_tests, [expansion_penetration_tests, seismic_cone_test,
lateral_stress_cone_test, density_probe_tests,
electrical_conductivity_cone_test,
thermal_conductivily_cone_test,
acoustic_cone_test, vibratory_cone_test],
[att(test_nature,
[val([special_penetrometer_tests], fact([IHDD).

A4

class(pressuremeter_tests, [menard_type_pressuremeter_test,
push_in_pressuremeter_test,
self_boring_pressuremeter_test],
[att(test_nature,
[val([pressuremeter_tests], fact([I)]),
att(test_objective,
[val([specific_test_method], fact([1)DD).
class(in_situ_stress_measurement_tests, {total_stress_cell_test,
iowa_stepped_blade_test,
hydraulic_fracturing_test,
self _boring_ko_meter_test],
[att(test_nature,
[val([in_situ_stress_measurement_tests], fact({))),
att(test_objective,
[val([specific_test_method], fact([D)D]).
class(shear_tests, [vane_test, self_boring_vane_test, borehole_shear_test,
in_situ_shear_test],
[att(test_nature,
[val([shear_tests], fact((D)D),
att(test_objective,
{val([specific_test_method], fact({1))DD).
class(bearing_tests, [plate_loading_tests, screw_plate_test,
self_boring_plate_test, pressurized_chamber_test,
in_situ_california_bearing_ratio_test],
[att(test_nature,
[val([bearing_tests], fact([1))]),
att(test_objective,
[val([specific_test_method], fact([1))])]).
class(in_situ_density_tests, [sand_replacement_tests, core_cutter_test,
weight_in_water_test, water_replacement_test,
rubber_balloon_test, nuclear_tests],
[att(test_nature,
[val([in_situ_density_tests], fact((I)D),
att(test_objective,
[val([specific_test_method], fact([1))D]).
class(permeability__tests, [borehole_permeability_tests,
self_boring_permeameter_test, pumping_tests],
[att(test_nature,
[val([permeability_tests], fact([1))]).
att(test_objective,
[val([specific_test_method], fact(()D.
class(geophysical_surveying_tests, [seismic_tests, resistivity_test,
gravimetric_test, magnetic_test],
[att(test_nature,
{val([geophysical_surveying_tests], fact((IN1),
att(test_objective,
[val([logging_test_method], fact((1NDD.
class(standard_penetration_test, [],
[att(test_name,
[val([standard_penetration_test], fact([]))]),
att(test_frequency,
[val([routine], fact([1)]),
att(unit_cost,
[val([medium], fact((IHN).

class(dynamic_probing_test, [dynamic_probing_light_test,
dynamic_probing_medium_test,
dynamic_probing_heavy_test,
dynamic_probing_superheavy_test],
[att(test_group,
[val({dynamic_probing_test], fact([]))DD.
class(cone_penetration_test, [mechanical_penetrometer_friction_test,
electrical_cone_penetration_test],
(att(test_group,
[val([cone_penetration_test], fact([1))DD.
class(weight_sounding_test, [],
[att(test_name,
(val([weight_sounding_test], fact((1))]),
att(test_frequency,
[val([], fact({]ND),
att(unit_cost,
(val([], fact((DDD).
class(static_dynamic_penetration_test, {],
[att(test_name,
[val([static_dynamic_penetration_test], fact([1))]),
att(test_frequency,
[val([less_common], fact([1)]),
att(unit_cost,
[val({], fact((D)DD.
class(expansion_penetration_tests, [flat_plate_dilatometer_test,
cone_pressuremeter_test],
[att(test_group,
[val([expansion_penetration_tests], fact([1))D]).
class(seismic_cone_test, [],
[att(test_name,
[val([seismic_cone_test], fact([1)D),
att(test_objective,
[val{([combined_test_method], fact((1)]),
att(test_frequency,
[val([special_purpose], fact({1))]),
att(unit_cost,
[val([1, fact((DIDD).
class(lateral_stress_cone_test, [],
[att(test_name,
[val([lateral_stress_cone_test], fact([1))1),
att(test_objective,
[val([combined_test_method], fact([]))]),
att(test_frequency,
[val([special_purpose], fact([])}),
att(unit_cost,
[val([], fact((IHDD.
class(density_probe_tests, [nuclear_density_probe_test,
electrical_density_probe_test],
[att(test_group,
[val([density_probe_tests), fact([]))]),
att(test_objective,
[val([combined_test_method], fact((MND.

A6

class(electrical_conductivity_cone_test, [],
[att(test_name,

[val([electrical_conductivity_cone_test], fact([(I)]),
att(test_objective,

[val([combined_test_method], fact([1))]),
att(test_frequency,

[val([special_purpose], fact([1))D,
att(unit_cost,

[val([], fact([IDD.

class(thermal_conductivity_cone_test, {],

[att(test_name,

[val({thermal_conductivity_cone_test], fact([1))D,
att(test_objective,

[val([combined_test_method], fact({))]),
att(test_frequency,

[val([special_purpose], fact([]))D),
att(unit_cost,

[val([], fact({1IDD.
class(acoustic_cone_test, [],
[att(test_name,

[val{facoustic_cone_test], fact((1)D,
att(test_objective,

[val([logging_test_method], fact((1)]),
att(test_frequency,

fval([special_purpose], fact([1)]),
att(unit_cost,

[val([], fact([1))D]).
class(vibratory_cone_test, {],
[att(test_name,

[val([vibratory_cone_test], fact([]))]),
att(test_objective,

[val([combined_test_method], fact{({])1),
att(test_frequency,
[val([}, fact({D)D),
att(unit_cost,
[val([], fact(ID)DD.
class(imenard_type_pressuremeter_test,],
[att(test_name,

[val([menard_type_pressuremeter_test], fact([1))]),
att(test_frequency,

[val([special_purpose], fact([I)D),
att(unit_cost,
[val([medium], fact((D)DD).
class(push_in_pressuremeter_test, [],
[att(test_name,

[val([push_in_pressuremeter), fact([1))]),
att(test_frequency,

{val([special_purpose}, fact([1))]),
att(unit_cost,

[val(f], fact([ID).

Al

class(self_boring_pressuremeter_test, [],
[att(test_name,
[val([self_boring_pressumeter_test], fact([1))]),
att(test_frequency,
[val([special_purpose], fact((IN]),
att(unit_cost,
{val([high], fact([D)DD.
class(total_stress_cell_test, 1,
[att(test_name,
[val([total_stress_cell_test], fact({1))]),
att(test_frequency,
[val([special_purpose], fact((])]),
att(unit_cost,
[val([], fact((D)DD).
class(iowa_stepped_blade_test, [],
[att{test_name,
[val([iowa_stepped_blade_test], fact([1)]),
att(test_frequency,
[val([special_purpose], fact({1)]),
att(unit_cost,
[val([], fact([DIDD).
class(hydraulic_fracturing_test, [],
[att(test_name,
[val([hydraulic_fracturing_test], fact((])]),
att(test_frequency,
[val([special_purpose], fact([])]),
att(unit_cost,
[val([], fact([DD-
class(self_boring_ko_meter_test, [},
[att(test_name,
[val([self_boring_ko_ineter_test], fact([]))]),
att(test_frequency,
[val([special_purpose], fact({1))]),
att(unit_cost,
[val([], fact([1))D]).
class(vane_test, [,
[att(test_name,
[val([vane_test}, fact((IND),
att(test_frequency,
[val([routine], fact((IN]),
att(unit_cost,
[val({medium], fact((D) D).
class(self_boring_vane_test, [],
[att(test_name,
[val({self_boring_vane_test], fact([1)1),
att(test_frequency,
[val([routine], fact([1)]),
att(unit_cost,

[val({], fact([DIDD.

A8

class(borehole_shear_test, [],
[att(test_name,
[val([borehole_shear_test], fact([1)]),
att(test_frequency,
[val([], fact((IND),
att(unit_cost,
[val({], fact(I1DD.
class(in_situ_shear_test, [},
[att(test_name,
[val([in_situ_shear_test], fact([1))]),
att(test_frequency,
[val([special_purpose], fact([)]),
att(unit_cost,
[val(f], fact(IDD.
class(plate_loading_tests, [],
[att(test_name,
[val([plate_loading_tests], fact([]1))]),
att(test_frequency,
[val([special_purpose], fact([1))]),
att(unit_cost,
[val([], fact({DDD.
class(screw_plate_test, (1,
[att(test_name,
[val([screw_plate_test], fact((1)]),
att(test_frequency,
[val([special_purpose], fact([]))]),
att(unit_cost,
[val([], fact((ID]).
class(self_boring_plate_test, [],
[att(test_name,
[val([self_boring_plate_test], fact([])]),
att(test_frequency,
[val([], fact((ID,
att(unit_cost,
[val([], fact((DD.
class(pressurized_chamber_test, {],
[att(test_name,
[val([pressurized_chamber_test], fact([1)]),
att(test_frequency,
[val(], fact(ND,
att(unit_cost,
[val([], fact([1))DD).
class(in_situ_california_bearing_ratio_test, [],
[att(test_name,
[val([in_situ_california_bearing_ratio_test], fact([1))]),
att(test_frequency,
[val([less_common], fact([1))]),
att(unit_cost,
[val([], fact((1NDD.
class(sand_replacement_tests, [small_pouring_cylinder_test,
large_pouring_cylinder_test, scoop_test],
[att(test_group,
[val([sand_replacement_tests], fact((INDD).

A9

class(core_cutter_test, [],
[att(test_name,
[val([core_cutter_test], fact([1)]),
att(test_frequency,
[val([routine], fact([]))]),
att(unit_cost,
[val([], fact(ID)DD).
class(weight_in_water_test,],
[att(test_name,
[val(fweight_in_water_test], fact([I)H]),
att(test_frequency,
[val([less_common], fact{(1)]),
att(unit_cost,
[val([], fact(IDD.
class(water_replacement_test, [J,
[att(test_name,
[val([water_replacement_test], fact([1))]),
att(test_frequency,
[val([special_purpose], fact([1)]),
att(unit_cost,
[val([}, fact(IDHDD).
class(rubber_balloon_test, [],
[att(test_name,
[val([rubber_balloon_test], fact([1))1),
att(test_frequency,
[val([special_purpose], fact([1)]),
att(unit_cost,
[val([], fact(IDIDD.
class(nuclear_tests, [backscatter_test, direct_transmission_test, air_gap_test],
[att(test_group,
[val([nuclear_tests], fact((1)HDD).
class(borehole_permeability_tests, [variable_head_test, constant_head_test],
[att(test_group,
[val([borehole_permeability_tests], fact(|]1))D]).
class(self_boring_permeameter_test, [],
[att(test_name,
[val([self_boring_permeameter_test], fact([1))]),
att(test_frequency,
[val([special_purpose], fact([1)]),
att(unit_cost,
[val([], fact([HDD.
class(pumping_tests, {],
[att(test_name,
[val([pumping_tests], fact([IN]),
att(test_frequency,
[val([less_common], fact([1)]),
att(unit_cost,
[val(([], fact([1HND).
class(seismic_tests, [seismic_refraction_test, seismic_reflection_test,
seismic_cross_hole_test, seismic_down_hole_test,
surface_wave_test],
[att(test_group,
[val([seismic_tests], fact([1))D]).

Al10

class(resistivity_test, [],
[att(test_name,
[val([resistivity_test], fact([I)]),
att(test_frequency,
{val([less_common], fact((1)]),
att(unit_cost,
[val([low], fact((INDD.
class(gravimetric_test, [],
[att(test_name,
[val([gravimetric_test], fact({]1))]),
att(test_frequency,
[val([special_purpose], fact([I)]),
ati(unit_cost,
[val(([], fact((DIDD).
class(magnetic_test, [],
[att(test_name,
[val([magnetic_test], fact([(IN]),
att(test_frequency,
[val([less_common], fact({]D)]),
att(unic_cost,
[val([], fact((DDD-
class(dynamic_probing_light_test, [],
[att(test_name,
[val([dynamic_probing_light_test], fact({1))]),
att(test_frequency,
[val([special_purpose], fact([D)]),
att(unit_cost,
[val{fl, fact((DIDD-
class(dynamic_probing_medium_test, [],
[att(test_name,
[val([dynamic_probing_medium_test], fact{[I)1),
ati(test_frequency,
[val({less_common], fact([1))]),
att(unit_cost,
[val([], fact({DIDD.
class(dynamic_probing_heavy_test, [],
[att(test_name,
[val([dynamic_probing_heavy_test], fact([1))]),
att(test_frequency,
[val([special_purpose], fact([1))}),
att(unit_cost,
[val([], fact((D)DD.
class(dynamic_probing_superheavy_test, [],
[att(test_name,
[val([dynamic_probing_superheavy_test], fact([])]),
att(test_frequency,
[val([special_purpose], fact([1))]),
att(unit_cost,

[val(f], fact((D)DD).

All

class(mechanical_penetrometer_friction_test, [],
[att(test_name,
[val(mechanical_penetrometer_friction_test], fact({])]),
att(test_frequency,
[val(froutine}], fact([IDD),
att(unit_cost,
[val([low], fact((INDD.
class(electrical_cone_penetration_test, [electrical_penetrometer_friction_test,
piezocone_test, piezocone_{riction_test],
[att(test_type,
[val([electrical_cone_penetration_test], fact((INHD.
class(flat_plate_dilatometer_test, [],
[att(test_name,
[val([flat_plate_dilatometer_test], fact([1)]),
att(test_objective,
[val([logging_test_method], fact([1)1),
att(test_frequency,
[val([special_purpose], fact([I)]),
att(unit_cost,
[val([low], fact(())DD.
class(cone_pressuremeter_test, [],
[att(test_name,
[val([cone_pressuremeter_test], fact([1))1),
att(test_objective,
[val(Jcombined_test_method], fact([1))1),
att(test_frequency,
[val([special_purpose], fact([]1)]),
att(unit_cost,
[val({], fact((D)DD.
class(nuclear_density_probe_test, [],
[att(test_name,
{val([nuclear_density_probe_test], fact([1))]),
att(test_frequency,
[val([special_purpose], fact([])]),
att(unit_cost,
{val([], fact({DHDD.
class(electrical_density_probe_test, [],
[att(test_name,
[val([electrical _density_probe_test], fact([1))]),
att(test_frequency,
[val({special_purpose], fact((I)D),
att(unit_cost,
[val([], fact(ID)DD.
class(small_pouring_cylinder_test, [},
[att(test_name,
[val([small_pouring_cylinder_test}, fact({1))]),
att(test_frequency,
[val({routine], fact([1)]),
att(unit_cost,

[val(f], fact([DDD.

Al2

class(large_pouring_cylinder_test, (],
[att(test_name,
[val({large_pouring_cylinder_test], fact([1))1),
att(test_frequency,
[val([routine], fact([]))]),
att(unit_cost,
[val([], fact([D)DD).
class(scoop_test, [],
[att(test_name,
[val([scoop_test], fact{[1))]),
att(test_frequency,
[val([special_purpose], fact([1))D),
att(unit_cost,
[val([], fact({1)DD).
class(backscatter_test, [],
[att(test_name,
[val([backscatter_test], fact((D)D),
att(test_frequency,
[val([routine], fact([D)D,
att(unit_cost,
[val([], fact({1)DD).
class(direct_transmission_test, [],
[att(test_name,
[val([direct_transmission_test], fact([1))]),
att(test_frequency,
[val([routine], fact([1)]),
att(unit_cost,
[vai(], fact(ID)DD-
class(air_gap_test, {1,
[att(test_name,
[val([air_gap_test], fact((1))]),
att(test_frequency,
[val([special_purpose], fact([1))]),
att(unit_cost,
[val([], fact({1)DD).
class(variable_head_test, [rising_head_test, falling_head_test},
[ati(test_type,
[val([variable_head_test], fact((D)D].
class(constant_head_test, [],
[att(test_name,
[val([counstant_head_test], fact({]))]),
att(test_frequency,
[val([routine], fact([1)]),
att(unit_cost,
[val([], fact([1)DD).
class(seismic_refraction_test, [],
[att(test_name,
[val([seismic_refraction_test], fact([])1).
att(test_frequency,
[val([rouitne], fact([1))]),
att(unit_cost,

[val([low], fact([D)D).

Al3

class(seismic_reflection_test, [],
[att(test_name,
[val([seismic_reflection_test}, fact([1))]),
att(test_frequency,
[val([less_common], fact([1))]),
att(unit_cost,
{val({low], fact({IND).
class(seismic_cross_hole_test, [],
[att(test_name,
[val([seismic_cross_hole_test], fact({))D),
att(test_frequency,
[val([special_purpose], fact([])]),
att(unit_cost,
[val([], fact([DIDD).
class(seismic_down_hole_test, [],
[att(test_name,
[val([seismic_down_hole_test], fact([])]),
att(test_frequency,
[val([special_purpose], fact({]))]),
att(unit_cost,
fval([], fact((DIDD.
class(surface_wave_test, [],
[att(test_name,
{val([surface_wave_test], fact([]))]),
att(test_frequerncy,
[val([special_purpose], fact(())]),
att(unit_cost,
[val([], fact([})DD).
class(electrical_penetrometer_friction_test, [],
[att(test_name,
[val([electrical_cone_resistance_friction_test], fact([])}),
att(test_frequency,
[val([less_common], fact([1)]),
att(unit_cost,
[val([low], fact({INDD).
class(piezocone_test, [],
[att(test_name,
fval([piezocone_test], fact({)D),
att(test_frequency,
[val([less_common], fact([I)]),
att(unit_cost,
[val([medium], fact((INND.
class(piezocone_friction_test, [],
[att(test_name,
[val([piezocone_friction_test], fact([])]),
att(test_frequency,
[val({less_common], fact((1)]),
att(unit_cost,
[val(medium], fact((N) D).

Al4

class(rising_head_test, [],
[att(test_name,
[val([rising_head_test], fact((1))1),
att(test_frequency,
{val([routine], fact([IND),
att(unit_cost,
[val([], fact[IHDD-
class(falling_head_test, [1,
[att(test_name,
[val([falling_head_test], fact((D)]),
att(test_frequency,
[val([routine], fact({1))1),
att(unit_cost,

{val(T], fact([ND.

/* Detailed Representation of Dominant Soil Types

modifier(gravel,
[att(grain_size,
[val(["20", "60"], fact({coarse])),
val(["6", "20"], fact([medium])),
val(["2", "6"}, fact([fine]))]),
att("N_value",
[val(["0", "4"], fact([very_loose])),
val(["4", "10"], fact([loose])),
val(["10", "30"], fact([medium_dense])),
val(["30", "50"], fact([dense])),
val({"50", “100"], fact({very_dense]))}),
att(coefficient_of_permeability,
[val(["10e-3", "1"], fact([high_permeability])]),
att(secondary_percent,
{val(["s", "20"], fact([sandyl)),
val(["5", "15"], faci([silty])),

val(["5", "15"], fact([clayey]))]]).
modifier(sand,

{att(grain_size,
[val(["0.6", "2"], fact([coarse])),
val(["0.2", *0.6", fact({medium])),
val(["0.06", "0.2"], fact([fine])]),
att("N_value",
[val(["0", "4"], fact([very_loose])),
val{["4", "10"], fact([loose])),
val(["10", "30"], fact([medium_dense])),
val(["30", "50"], fact([dense])),
val{["50", "100"], fact([very_dense]))]),
att(coefficient_of_permeability,
[val(["10e-5", "10e-3"], fact([medium_permeability])),
val(["10e-7", "10e-5"], fact([low_permeability]))]),
att(coefficient_of_volume_compressibility,
[val(["0", "0.05"], fact([very_low_compressibility]}}]),

%

att(secondary_percent,

[val(["s", “20"], fact({gravelly])),

val(["5", "15"], fact([silty])),

val(["5", 15"}, fact([clayey]))D]).

modifier(silt,

[att(grain_size,

{val(["0.02", "0.06"], fact([coarse])),

val(["0.006", "0.02"], fact([medium])),

val(["0.002", "0.006"], fact([fine]))]),
att(liquid_limit,

[val(["0", "35"], fact([low_plasticity])),

val(["35", "50"], fact([intermediate_plasticity])),

val(["50", “70"], fact([high_plasticity])),

val(["70", "90", fact([very_high_plasticity])),

val(["90", "200"], fact([extremely_high_plasticity]))]),
att("N_value",

[val(["0", "4"1, fact([very_loose])),

val(["4", "10"], fact([loose])),

val(["10", "30"], fact([medium_dense})),

val(["30", "50"], fact([dense])),

val({“50", "100"], fact([very_dense]))}),
att(undrained_shear_strength,

[val(["0", "20"}, fact([very_soft}})),

val(["20", "40"], facL([soft])),

val(["40", “75"), fact({firm})),

val(["75", "150"], fact([stift])),

val([" 150", "300"), fact([very_stiff]))]),
att(coefficient_of_permeability,

[val(["10e-7", "10e-5"], fact([low_permeability])),

val(["10e-9", "10e-7"], fact([very_low_permeability))]),
att(coefficient_of_volume_compressibility,

[val(["0", "0.05"], fact([very_low_compressibility]))]),
att(secondary_percent,

[val(["35", "65"], fact([gravelly])),

val(["35", "65"], fact([sandy])DD.

modifier(clay,

[att(liquid_limit,

{val(["0", “35"1, fact([low_plasticityl)),

val(["35", "50"], fact([intermediate_plasticity])),

val(["s0", "70"], fact([high_plasticity]}),

val(["70", "90"], fact([very_high_plasticity])),

val([“90", "200"], fact([extremely_high_plasticity]))}),
att(undrained_shear_strength,

[val("0", "20"1, fact(Ivery_soft])),

val(["20", "40"], fact([soft])),

val(["40", "75"), fact({firm})),

val(["75", "150"], fact({stiff])),

val(["150", "300"], fact([very_stift]))]),
att(coefficient_of_permeability,

[val(["0", "10e-9"], fact([practically_impervious]))]),

Alo

att(coefficient_of_volume_compressibility,
[val(["0", "0.05"], fact([very_low_compressibilityl)),
val(["0.05", "0.1"], fact([low_compressibility])),
val(["0.1", "0.3"], fact([medium_compressibility])),
val(["0.3", "1.5"], fact([high_compressibility]))]),
att(secondary_percent,
[val({"35", "65"], fact([gravelly])),
val(["35", "65"], fact([sandy])]D]).
modifier(organic_sand,
[att(grain_size,
[val(["0.6", "2"], fact({coarse])),
val(["0.2", "0.6"], fact([medium])),
val(["0.06", "0.2"], fact([fine]))]),
att("N_value",
[val(["0", "4"), fact([very_loose])),
val(["4", "10"], fact([loose])),
val(["10", "30"], fact({medium_dense])),
val(["30", "50"], fact({dense])),
val(["50", "100"], fact([very_dense]))]),
att(coefficient_of_permeability,
[val(["10e-5", "10e-3"], fact([medium_permeability])),
val(["10e-7", "10e-5"], fact([low_permeability]))]),
att(coefficient_of_volume_compressibility,
[val(["0", "0.05"], fact([very_low_compressibility]))]),
att(secondary_percent,
[val(["5", "20"1, fact([gravelly])),
val({"s", "15"], fact({siltyl)),
val({"5", "15"}, fact({clayey]))DD.
modifier(organic_silt,
[att(grain_size,
[val(["0.02", "0.06"], fact([coarse])),
val(["0.006", "0.02"], fact([medium])),
val(["0.002", "0.006"], fact([fine]))]),
att(liquid_limit,
[val(["0", "35"], fact([low_plasticily])),
val(["35", "50"), fact([interinediate_plasticity])),
val(["50", "70"], fact([high_plasticity])),
val(["70", "90"], fact([very_high_plasticity])),
val(["90", "200"], fact([extremely_high_plasticity]))]),
att("N_value",
[val(["0", "4"], fact([very_loose])),
val(["4", "10"), fact([loose])),
val([*10", “30"], fact({medium_dense))),
val(["30", "50"], fact{{dense])),
val(["50", "100"), fact([very_dense]))]),
att(undrained_shear_strength,
[val(["0", “20"], fact([very_soft])),
val(["20", "40"], fact([soft])),
val(["40", "75"], fact([firm])),
val(["75", "150"], fact([stiff])),
val([*150", "300"], fact([very_stff]))]),
att(coefficient_of_permeability,
[val({*10e-7", “10e-5"], fact({low_permeability])),
val(["10e-9", "10e-7"], fact([very_low_permeability]))]),

Al7

att(coefficient_of_volume_compressibility,
[val(["0", "0.05"], fact([very_low_compressibility]})]),
att(secondary_percent,
{val(["35", "65"], fact([gravelly])),
val(["35", "65"], fact([sandy]))DD).
modifier(organic_clay,
[att(liquid_limit,
fval({"0", "35"], fact([low_plasticity])),
val(["35", "50"], fact([intermediate_plasticity])),
val({"50", "70"], fact([high_plasticity])),
val(["70", "90"], fact([very_high_plasticity])),
val({"90", "200"], fact([extremely_high_plasticity]))]),
att(undrained_shear_strength,
[val(["0", "20"], fact([very_soft])),
val(["20", "40"], fact([soft])),
val({"40", "75"], fact([firm])),
val(["75", "150"], fact([stift])),
val(["150", "300"], fact([very_stiff]))]),
att(coefficient_of_permeability,
[val(["0", “10e-9"], fact([practically_impervious])]),
att(coefficient_of_volume_compressibility,
[val(["1.5", "20"], fact([very_high_compressibility]))]),
att(secondary_percent,
[val(["35", "65"], fact([gravelly])),
val(["35", "65"], fact([sandy]))])]).
modifier(peat,
{att(coefficient_of_volume_compressibility,
[val(["1.5", "20"], fact{[very_high_compressibility]))D)]).

/* Detailed Representation of Individual In-situ Testing Methods *

modifier(standard_penetration_test,
fatt(applicability,
[val([high], fact([sand}}),
val([medium], fact([soft_rock, gravel, silt, clay])),
val([low], fact([peat, organic_sand, organic_silt, organic_clay])),
val([none}, fact([hard_rock D)D),
att(reliability,
[val([high], fact([])),
val([medium], fact([soil_type, profile, angle_of_friction, undrained_shear_strength,
density, modulus])),
val([low], fact({compressibility])),
val([none), fact([piezometric_pressure, rate_of_consolidation, permeability,
in_situ_stress, stress_history, stress_strain_curve]))]D1).
modifier(dynamic_probing_light_test,
[ati(applicability,
[val(fhigh], fact([]),
val([medium], fact([sand, silt, clay, peat, organic_sand, organic_silt, organic_clay])),
val([low], fact([soft_rock, gravel])),
val([none), fact([hard_rock]))}),

Al8

att(reliability,
[val([high], fact([profile})),
val({mediumy], fact([])),
val({low], fact([angle_of_{friction, undrained_shear_strength, density,
compressibility])),
val([none], fact([soil_type, piezometric_pressure, rate_of_consolidation,
permeability, modulus, in_situ_stress, stress_history,
stress_strain_curve])DD).
modifier(dynamic_probing_medium_test,
[att(applicability,
[val(Thigh], fact([1)),
val([medium), fact([gravel, sand, silt, clay, peat, organic_sand, organic_silt,
organic_clay])),
val([low], fact([soft_rock])),
val([none], fact([hard_rock]))}),
att(reliability,
[val(fhigh], fact((])),
val([medium], fact([profile])),
val([low], fact([soil_type, angle_of_friction, undrained_shear_strength, density,
compressibility, modulus})),
val([none], fact([piezomelric_pressure, rate_of_consolidation, permeabilily,
in_situ_stress, stress_history, stress_strain_curve]))])]).
modifier(dynamic_probing_heavy_test,
{att(applicability,
[val(fhigh], fact({]),
val([medium], fact([gravel, sand, silt, clay, peat, organic_sand, organic_silt,
organic_clay])),
val({low], fact([soft_rock])),
val([none], fact([hard_rock])]),
att(reliability,
[val([high], fact([profile])),
val({medium], fact([angle_of_friction])),
val{{low], fact([soil_type, undrained_shear_strength, density, compressibility,
modulus))),
val([none], fact([piezomeltric_pressure, rate_of_consolidation, permeability,
in_situ_stress, stress_history, stress_strain_curve]))1]).
modifier(dynamic_probing_superheavy_test,
[att(applicability,
{val(thigh], fac([sand])),
val([medium], fact([gravel, sill, clay, peat, organic_sand, organic_silt,
organic_clay))),
val({low], fact([soft_rock])),
val([none], fact([hard_rock})]),
ati(reliability,
[val([high], fact([]),
val([medium], fact({profile, density])),
val({low], fact([soil_type, angle_of_friction, undrained_shear_strength, modulus,
stress_strain_curvel)),
val([none), fact([piezometric_pressure, compressibility, rate_of_consolidation,
permeability, in_situ_stress, stress_history])]]).

Al9

modifier(mechanical_penetrometer_friction_test,
[att(applicability,
[val([high], fact([sand, silt, clay])),
val([medium], fact([soft_rock, peat, organic_sand, organic_silt, organic_clay,
dense_sand, stiff_clayl])),
val([low], fact([gravel])),
val([none], fact([hard_rock]))]),
att(reliability,
[val([high], fact([profile])),
val([medium], fact([soil_type, angle_of_friction, undrained_shear_strength,
density})),
val([low], fact([compressibility, modulus])),
val([none], fact([piezometric_pressure, rate_of_consolidation, permeability,
in_situ_stress, stress_history, stress_strain_curve]))]]).
modifier(electrical_penetrometer_friction_test,
[att(applicability,
[val([high], fact([sand, silt, clay, peat, organic_sand, organic_silt, organic_clay])),
val([medium], fact([dense_sand, stiff_clay])),
val([low], fact({soft_rock, gravel)])),
val([none], fact([hard_rock]))]),
att(reliability,
[val([high], fact([profile])),
val([medium], fact([soil_type, angle_of_friction, undrained_shear_strength, density,
compressibility, modulus})),
val([low], fact([])),
val([none], fact([piezometric_pressure, rate_of_consolidation, permeability,
in_situ_stress, stress_history, stress_strain_curve]))D]).
modifier(piczocone_test,
[att(applicability,
[val(fhigh), fact([sand, silt, clay, peat, organic_sand, organic_silt, organic_clay])),
val(fmedium], fact([dense_sand, stiff_clay])),
val([low], fact([soft_rock, gravel])),
val([none], fact([hard_rock]))]),
att(reliability,
[val([high], fact({profile])),
val({medium], fact([soil_type, piezometric_pressure, angle_of_friction,
undrained_shear_strength, density, compressibility, rate_of_consolidation,
modulus))),
val([low], fact({permeability, stress_history, stress_strain_curve])),
val([none], fact([in_situ-_stress]))HDD.
modifier(piezocone_friction_test,
[att(applicability,
[val([high], fact([sand, silt, clay, peat, organic_sand, organic_silt, organic_clay])),
val({medium], fact([dense_sand, stiff_clay])),
val([low], fact([soft_rock, gravel))),
val([none), fact([hard_rock]))}),
att(reliability,
[val([high], fact([soil _type, profile, piezometric_pressure])),
val([medium], fact([angle_of_friction, undrained_shear_strength, density,
compressibility, rate_of_consolidation, permeability, modulus,
stress_history])),
val([low], fact([in_situ_stress, stress_strain_curve])),

val([none], fact((NDD).

A20

modifier(weight_sounding_test,
[att(applicability,
[val([high], facW[D)),
val([medium], fact({])),
val([low], fact([1)),
val([none], fact([1)D),
att(reliability,
[val([high], fact({])),
val([medium), fact([1)),
val([low], fact([])),
val([none], fact((1)D1).
modifier(static_dynamic_penetration_test,
[att(applicability,
[val([high], fac«([}),
val(fmedium], fact([soft_rock, gravel, sand, silt, clay, peat, organic_sand,
organic_silt, organic_clay])),
val(f{low], fact({])),
val([none], fact([soft_rock1))]),
att(reliability,
[val([high], fact([])),
val([medium}, fact([profile, angle_of_friction, undrained_shear_strength,
compressibility, modulus])),
val([low], fact([soil_type, density])),
val([none], fact([piezometric_pressure, rate_of_consolidation, permeability,
in_situ_stress, stress_history, stress_strain_curve])}D].
modifier(flat_plate_dilatometer_test,
[att(applicability,
[val([high], fact([sand, silt, clay, peat, organic_sand, organic_silt, organic_clay])),
val([medium], fact([dense_sand, stiff_clay])),
val([low], fact([1)),
val([none], fact([hard_rock, soft_rock, gravel]))]),
att(reliability,
[val([high], fact([])),
val([medium], fact({undrained_shear_strength, compressibility, modulus,
] in_situ_stress, stress_history, stress_strain_curve])),
val([low], fact([soil_type, profile, angle_of_friction, density])),
val([none], fact([piezometric_pressure, rate_of_consolidation, permeability]))]).
modifier(cone_pressuremeter_test,
[att(applicability,
[val(fhigh], fact([sil(])),
val([medium], fact({sand, clay, peat, organic_sand, organic_silt, organic_clay])),
val([low], fact([soft_rock, gravel])),
val({none], fact([hard_rock]))]),
att(reliability,
[val([high], fact([1)),
val({medium]}, fact([profile, angle_of_{friction, undrained_shear_strength,
rate_of_consolidation, modulus, stress_strain_curvel)),
val([low], fact([soil_type, density, compressibility, permeability, in_situ_stress,
stress_history])),
val([none], fact([piezometric_pressure])])]).

A21

modifier(seismic_cone_test,
[att(applicability,
[val([high], fact{{sand, silt, clay, peat, organic_sand, organic_silt, organic_clay])),
val([medium}, fact([])),
val([low], fact([soft_rock, gravel])),
val([none], fact([hard_rock])))),
att(reliability,
[val([high], fact([profile, modulus])),
val({medium], faci([soil _type})),
val([low], fact([piezometric_pressure, angle_of_friction, undrained_shear_strength,
density, compressibility, rate_of_consolidation, permeability, in_situ_stress,
stress_history, stress_strain_curve])),
val([none], fact([D)ND.
modifier(lateral_stress_cone_test,
[att(applicability,
[val([high], fact([])),
val([medium], fact([soft_rock, silt, clay, peat, organic_sand, organic_silt,
organic_clay))),
val([low], fact([hard_rock, gravel, sand})),
val([none], fact([]))]),
att(reliability,
[val([high], fact({])),
val([medium], fact([inodulus, in_situ_stress])),
val([low}], fact([undrained_shear_strength, compressibility, stress_history,
stress_strain_curve))),
val({none], faci([soil_type, profile, piezomeltric_pressure, angle_of_friction, density,
rate_of_consolidation, permeability]))]1)]).
modifier(nuclear_density_probe_test,
[att(applicability,
[val([high], fact([sand, silt, peat, organic_sand, organic_silt, organic_clay])),
val{[medium], fact([clay])),
val({low], fact([])),
val([none), fact([hard_rock, soft_rock, gravel]))]),
att(reliability,
[val([high], fact([density])),
val([medium], fact([angle_of_friction])),
val([low], fact([in_situ_stress, stress_strain_curvel)),
val([none}, fact({soil_type, profile, piezometric_pressure, undrained_shear_strength,
compressibility, rate_of_consolidation, permeability, modulus,
stress_history]))D]).
modifier(electrical_density_probe_test,
[att(applicability,
[val([high], fact({sand, silt, clay, peat, organic_sand, organic_silt, organic_clay])),
val([medium], fact([])),
val([low}, fact([soft_rock])),
val([none), fact([hard_rock, gravel]))]),
att(reliability,
[val([high], fact([density])),
val([medium], fact({soil_type, profile, angle_of_friction])),
val([low], fact([undrained_shear_strength, compressibility, modulus})),
val([none), fact([piezometric_pressure, rate_of_consolidation, permeability,
in_situ_stress, stress_history, stress_strain_curve])]D]).

A22

modifier(electrical_conductivity_cone_test,
[att(applicability,
[val([high], fact([sand, silt, clay])),
val([medium], fact([peat, organic_sand, organic_silt, organic_clay])),
val([low], faci([])),
val([none], fact([hard_rock, soft_rock, gravel]))]),
att(reliability,
[val(|high), fact([soil _type, density])),
val([medium], fact([profile, compressibility, modulus])),
val([low], fact([angle_of_friction, undrained_shear_strength, rate_of_consolidation,
permeability, in_situ_stress, stress_history, stress_strain_curve])),
val([none], fact([piezometric_pressure]))])]).
modifier(thermal_conductivity_cone_test,
[att(applicability,
[val([high], fact([sand, silt, clay, peat, organic_sand, organic_silt, organic_clay])),
val([medium], fact([])),
val([low], fac([])),
val([none), fact([hard_rock, soft_rock, gravel]))]),
att(reliability,
[val([high], fact([])),
val([medium], fact([])),
val([low], fact([])),
val([none], fact([soil_type, profile, piezometric_pressure, angle_of_friction,
undrained_shear_strength, density, compressibility, rate_of_consolidation,
permeability, modulus, in_situ_stress, stress_history,
stress_strain_curve] D).
modifier(acoustic_cone_test,
[att(applicability,
[val([high], fact({sand, silt, clay, peat, organic_sand, organic_silt, organic_clay])),
val([medium], fact([])),
val({low], fact([soft_rock])),
val({none], fact([hard_rock, gravel]))]),
att(reliability,
[val({high], fact([1)),
val([medium], fact([soil_type, profile])),
val({low], fact([angle_of_friction, undrained_shear_strength, density, compressibility,
modulus, stress_history])),
val([none], fact([piezometric_pressure, rate_of_consolidation, permeability,
in_situ_stress, stress_strain_curve])D)).
modifier(vibratory_cone_test,
[att(applicability,
[val([high], fac([])),
val({medium], fact([1)),
val([low], faci([])),
val([none], fact({1)D),
att(reliability,
[val([high], fact([])),
val([medium], fact([])),
val([low], fact({])),
val({none], fact((;DD.

modifier(menard_type_pressuremeter_test,
[att(applicability,
[val([high], fact([soft_rock, clay, dense_sand])),
val([medium], fact([hard_rock, gravel, sand, silt, peat, organic_sand, organic_silt,
organic_clay))),
val([low], fact([1)),
val([none], fact([1)]),
att(reliability,
[val([high], fact([])),
val([medium}, fact([angle_of_friction, undrained_shear_strength, modulus,
stress_strain_curve})),
val([low], fact({soil_type, profile, in_situ_stress, stress_history])),
val([none], fact([piezometric_pressure, density, compressibility,
rate_of_consolidation, permeability]))}]).
modifier(push_in_pressuremeter_test,
[att(applicability,
fval([high], fact([silt, clay})),
val([medium], fact([sand, peat, organic_sand, organic_silt, organic_clay])),
val([low}], fact([])),
val([none], fact([hard_rock, soft_rock, gravel]))]),
att(reliability,
[val([high], fact([])),
val({medium], fact([undrained_shear_strength, modulus})),
val([low], fact([soil_type, profile, angle_of_friction, density, compressibility,
rate_of_consolidation, in_situ_stress, stress_history, stress_strain_curve})),
val([none], fact([piezometric_pressure, permeability])) D).
modifier(self_boring_pressuremeter_test,
[att(applicability,
[val([high], fact([silt, clay, peat, organic_sand, organic_silt, organic_clay])),
val([medium], fact({sand, soft_rock])),
val({low], fact([hard_rock, gravel])),
val([none], fact([1)1),
att(reliability,
[val([high], fact(fmodulus, in_situ_stress])),
val({medium]}, fact([piezometric_pressure, angle_of_friction,
undrained_shear_strength, stress_strain_curve))),
val([low], fact([soil_type, profile, density, compressibility, rate_of_consolidation,
permeability, stress_history])),
vai([none}, fact{((MN).
modifier(total_stress_cell_test,
[att(applicability,
fval([high], fact([clay, peat, organic_sand, organic_silt, organic_clay])),
val([medium], fact([1)),
val([low], fact([silt])),
val([none], fact([bard_rock, soft_rock, gravel, sand])]),
att(reliability,
[val(fhigh}, fact([D)),
val([medium], fact([in_situ_stress, stress_history])),
val([low}, fact({])),
val([none], fact([soil_type, profile, piezometric_pressure, angle_of_friction,
undrained_shear_strength, density, compressibility, rate_of_consolidation,
permeability, modulus, stress_strain_curve]))D]).

A24

modifier(iowa_stepped_blade_test,
[att(applicability,

[val(f{high], fact({silt, clay})),

val([medium], fact([sand, peat, organic_sand, organic_silt, organic_clay})),
val([low], faci(])),

val([none], fact([hard_rock, soft_rock, gravel]))]),
att(reliability,

(val({high], fact(()),

val([medium], fact([in_situ_stress, stress_history])),
val([low], fact([])),
val([none]}, fact([soil_type, profile, piezometric_pressure, angle_of_friction,
undrained_shear_strength, density, compressibility, rate_of_consolidation,
permeability, modulus, stress_strain_curve]))D]).
modifier(hydraulic_fracturing_test,
[att(applicability,
[val([high], fact([clay])),
val([medium], fact([hard_rock, soft_rock; silt])),

val([low], fact([gravel, sand, peat, organic_sand, arganic_silt, arganic_clay])),
val([none}, fact({1))1),

att(reliability,
[val([high}, fact([piezometric_pressure])),
val([medium], fact([in_situ_stress, stress_history])),
val([low], fact([rate_of_consolidation, permeability])),
val([none], fact([soil_type, profile, angle_ot_friction, undrained_shear_strength,

density, compressibility, modulus, stress_strain_curve]))])]).
modifier(self_boring_ko_meter_test,

[att(applicability,
[val([highl, fact([silt, clay, peat, organic_sand, organic_silt, organic_clay}])),
val([medium], fact{[sand])),
val([low], fact([1)),

val([none], fact([hard_rock, soft_rock, gravel]))]),
att(reliability,

[val([high], fact({in_situ_stress, stress_history])),
val([medium], fact([soil_type, profile])),
val({low], fact(f1)),
val([none], fact({piezometric_pressure, angle_of_friction, undrained_shear_strength,
density, compressibility, rate_of_consolidation, permeability, modulus,
stress_strain_curve]))DD).
maodifier(vane_test,
[attCapplicability,
[val({high), fact([clay))),
val([medium], fact(fsilt, stiff_clay, peat, organic_sand, organic_silt, organic_clay])),
val([low], fact([soft_rock]}),
val([none], fact([hard_rock, gravel, sand]))]),
att(reliability,
[val([high], fact(fundrained_shear_strength])),
val([medium], fact([1)),
val([low], fact([profile])),

val([none], fact([soil_type, piezometric_pressure, angle_of_friction, density,

compressibility, rate_of_consolidation, perieability, modulus, in_situ_stress,
stress_history, stress_strain_curvel))])}).

modifier(self_boring_vane_test,
[att(applicability,
[val([high], fact([clay])),
val(fmedium}, fact([1)),
val({low], fact([sand, silt, peat, organic_sand, organic_silt, organic_clay})),
val([none], fac([hard_rock, soft_rock, gravel]))]),
att(reliability,
{val{{high], fact([undrained_shear_strength))),
val([mediuin], fact([})),
val([low], fact([soil_type, profile, stress_history})),
val({none}, fact([piezometric_pressure, angle_of_friction, density, compressibility,
rate_of_consolidation, permeability, modulus, in_situ_stress,
stress_strain_curve])))]).
modifier(borehole_shear_test,
[att(applicability,
[val([high], fact({]),
val([medium]), fact([hard_rock, soft_rock, sand, silt])),
val([low], fact([gravel, clay, peat, organic_sand, organic_silt, organic_clay])),
val([none], fact((1))D),
att(reliability,
[val([high], fact([])),
val([medium], fact({angle_of_friction])),
val([low], fact([soil_type, profile, undrained_shear_strength, modulus,
stress_history])),
val([none], fact([piezometric_pressure, density, compressibility,
rate_of_consolidation, permeability, in_situ_stress, stress_strain_curve])))]).
modifier(in_situ_shear_test,
[att(applicability,
fval({high], fact([])),
val({medium], fact([soft_rock, silt, clay])),
val([low], fact([])),
val([none], fact([hard_rock, gravel, sand, peat, organic_sand, organic_silt,
organic_clay]))]),
att(reliability,
[val([high), fact([angle_of_friction, undrained_shear_strength))),
val({medium], fact([1)),
val([low], fact([rate_of_consolidation, modulus, stress_strain_curve))),
val([none), fact([soil_type, profile, piezometric_pressure, density, compressibility,
permeability, in_situ_stress, stress_history]))D]).
modifier(plate_loading_tests,
[att(applicability,
[val([high], fact([soft_rock, gravel, sand, silt, clay])),
val([medium], fact([hard_rock, peat, organic_sand, organic_silt, organic_clay}])),
val({low], fac([D),
val({none], fact([]))]),
att(reliability,
[val([high], fact([])),
val([medium], fact([undrained_shear_strength, compressibility, modulus,
stress_strain_curve})),
val({low], fact([rate_of_consolidation])),
val([none], fact([soil_type, profile, piezometric_pressure, angle_of_friction, density,
permeability, in_situ_stress, stress_history]))D]).

A26

modifier(screw_plate_test,
[att(applicability,
[val([high], fact([sand, silt, clay, peat, organic_sand, organic_silt, organic_clay])),
val([medium], fact([})),
val([low], fact([])),
val([none], fact([hard_rock, soft_rock, gravel]))]),
att(reliability,
[val([bigh], fact({modulus}])),
val([medium], fact([undrained_shear_strength, density, compressibility,
stress_history, stress_strain_curve])),
val([low], fact{[soil_type, profile, angle_of_{riction, rate_of_consolidation,
permeability, in_situ_stress))),
val([none], fact([piezometric_pressure]))])]).
modifier(self_boring_plate_test,
[att(applicability,
[val([high], fact([silt, clay])),
val([medium], fact([sand, peat, organic_sand, organic_silt, organic_clay])),
val([low], fact([])),
val([nonel, fact([hard_rock, soft_rock, gravel]))]),
att(reliability,
[val(fhigh], fact([mnodulus, stress_history])),
val([medium], fact([soil_type, profile, undrained_shear_strength, density,
compressibility, in_situ_stress])),
val([low], fact([angle_of_friction, rate_of_consolidation, permeability,
stress_strain_curve))),
val({none], fact([piezometric_pressure])))]).
modifier(pressurized_chamber_test,
[att(applicability,
[val([high], fact([1)),
val([medium]}, fact({1)),
val([low], fact([])),
val([none), fact({IN),
att(reliability,
[val([bigh], fact([])),
val([medium], fact({])),
val([low], fac[])),
val([none], fact((NIDD).
modifier(in_situ_california_bearing_ratio_test,
[att(applicability,
[val({high], fac([})),
val([medium], fact([gravel, sand, silt, clay])),
val([low], fact([soft_rock, peat, organic_sand, organic_silt, organic_clay])),
val([none}, fact([hard_rock]))]),
att(reliability,
[val(fhigh], faci([])),
val([medium), fact([])),
val([low], fact({undrained_shear_strength, modulus])),
val([none], fact({soil_type, profile, piezometric_pressure, angle_of_friction, density,
compressibility, rate_of_consolidation, permeability, in_situ_stress,
stress_history, stress_strain_curve]))])]).

A27

modifier(small_pouring_cylinder_test,
{att(applicability,
[val([high], fact([sand, silt, clay])),
val([medium], fact([soft_rock, gravel])),

val([low], fact([peat, organic_sand, organic_silt, organic_clay]}),
val([none], fact([hard_rock}))]),
att(reliability,

[val([high], fact([density])),
val([medium], fact([])),
val({low], fact([soil_type])),

val([none], fact([profile, piezometric_pressure, angle_of_friction,

undrained_shear_strength, compressibility, rate_of_consolidation,
perineability, modulus, in_situ_stress, stress_history,

stress_strain_curve))DD).
modifier(large_pouring_cylinder_test,

[att(applicability,
fval([high], fact([sand, silt])),

val([medium], facy([soft_rock, gravel, clay, peat, organic_sand, organic_silt,
organic_clay})),

val([low], fact([1)),

val([none], fact([hard_rock])]),
att(reliability,

fval([high], fact([density})),

val([medium], fact([1)),

val([low], fact([soil_typel)),

val([none), fact([profile, piezometric_pressure, angle_of_friction,

undrained_shear_strength, compressibility, rate_of_consolidation,
permeability, modulus, in_situ_stress, stress_history,

stress_strain_curve]))])]).
modifier(scoop_test,

[att(applicability,
[val([high], fact([])),
val([medium], fact([sand, silt, clay])),

val({low}, fact([soft_rock, gravel, peat, organic_sand, organic_silt, organic_clayl)),
val([none], fact([hard_rock]))]),
att(reliability,

[val([high], fact([1)),

val([medium], fact([density])),
val([low], fact((])),

val([none], fact([soil_type, profile, piezometric_pressure, angle_of_friction,

undrained_shear_strength, compressibility, rate_of_consolidation,
permeability, modulus, in_situ_stress, stress_history,

stress_strain_curve]))D1).
modifier(core_cutter_test,

[att(applicability,
{val([high], fact([clay])),

val([medium], fact([peat, organic_sand, organic_silt, organic_clay])),
val([low], fact([soft_rock, silt])),

val([none), fact([hard_rock, gravel, sand]))]),

A28

att(reliability,
[val([high], fact([density])),
val([medium], fact([])),
val([low], fact([])),

val([none), fact([soil _type, profile, piezometric_pressure, angle_of_friction,

undrained_shear_strength, compressibility, rate_of_consolidation,
permeability, modulus, in_situ_stress, stress_history,

stress_strain_curve]))D)).
modifier(weight_in_water_test,

{att(applicability,
[val([high], fact([])),
val([medium], fact({hard_rock])),
val([low], fact([soft_rock])),

val([none], fact([gravel, sand, silt, clay, peat, organic_sand, organic_silt,
organic_clay]))]),
att(reliability,

[val([high], fac({1)),

val([medium], fact([density])),
val(flow], fac([])),

val([none], fact({soil_type, profile, piezometric_pressure, angle_of_friction,

undrained_shear_strength, compressibility, rate_of_consolidation,
permeability, modulus, in_situ_stress, stress_history,

_stress_strain_curve])D]).
modifier(water_replacement_test,

[att(applicability,
[val([high], fact([])),
val([medium], fact([hard_rock, soft_rock])),
val([low], fact([clay])),

val([none], fact([gravel, sand, silt, peat, organic_sand, organic_silt, organic_clay]))]),
att(reliability,
[val([high}, fact([])),
val([medium], fact({density])),
val([low], fact([soil_type])),
val([none}, fact([profile, piezometric_pressure, angle_of_friction,

undrained_shear_strength, compressibility, rate_of_consolidation,
permeability, modulus, in_situ_stress, stress_history,

stress_strain_curve]))D1).
modifier(rubber_balloon_test,

[att(applicability,
[val([high], fac«[D)),

val([medium], fact([gravel, sand, silt, clay, peat, organic_sand, organic_silt,
organic_clayl)),
val([low], faci([])),

val([none], fact([hard_rock, soft_rock]))]),
att(reliability,

[val([high], fact((])),

val({medium], fact([soil_type, density})),
val([low], fac([])),

val([none], fact([profile, piezometric_pressure, angle_of_friction,

undrained_shear_strength, compressibility, rate_of_consolidation,
permeability, modulus, in_situ_stress, stress_history,
stress_strain_curve]))D).

A29

modifier(backscatter_test,
[att(applicability,
[val([high], fact([1)),
val([medium], fact([soft_rock, gravel, sand, silt, clay])),
val([low], fact([hard_rock, peat, organic_sand, organic_silt, organic_clay])),
val([nonel, fact([1))]),
att(reliability,
[val([high], fact([])),
val([medium], fact([density])),
val([low], fact([1)),
val([none], fact([soil_type, profile, piezometric_pressure, angle_of_{friction,
undrained_shear_strength, compressibility, rate_of_consolidation,
permeability, modulus, in_situ_stress, stress_history,
stress_strain_curve])) D).
modifier(direct_transmission_test,
[att(applicability,
[val([high], fact([1)),
val({medium], fact({soft_rock, gravel, sand, silt, clay])),
val({low], fact([hard_rock, peat, organic_sand, organic_silt, organic_clay})),
val([none], fact([1)D),
att(reliability,
[val([high], fact([])),
val([medium], fact([density])),
val(flow], fact([])),
val([none}, fact([soil_type, profile, piezometric_pressure, angle_of_friction,
undrained_shear_strength, compressibility, rate_of_consolidation,
permeability, modulus, in_situ_stress, stress_history,
stress_strain_curve]))DD).
modifier(air_gap_test,
[att(applicability,
[val({high], fact([])),
val([medium], fact([1)),
val([low], fact([hard_rock, soft_rock, gravel, sand, silt, clay, peat, organic_sand,
organic_silt, organic_clay])),
val([none}, fact({1))}),
att(reliability,
[val([high], fact([])),
val([medium], fact([density])),
val([low], fact([soil_type])),
val([nonc}, fact((]1)D).
modifier(rising_head_test,
[att(applicability,
[val([high], fact([gravel, sand, silt])),
val([medium], fact([1)),
val([low], fact([hard_rock, soft_rock, clay, peat, organic_sand, organic_silt,
organic_clay]))),
val([none], fact(()D,
att(reliability,
[val([high], fac([D)),
val([medium], fact([permeability])),
val([low], fact([piezometric_pressurel)),
val([none], fact([soil_type, profile, angle_of_friction, undrained_shear_strength,
density, compressibility, rate_of_consolidation, modulus, in_situ_stress,
stress_history, stress_strain_curve]).

A30

modifier(falling_head_test,
[att(applicability,
[val([high]}, fact([gravel, sand])),
val([medium], fact([silt]})),

val([low], fact([hard_rock, soft_rock, clay, peat, organic_sand, organic_silt,
organic_clay])),

val([none], fact([1)1),
att(reliability,

[val([bigh], fac([D),
val([medium], fact([permeability])),
val([low], fac({1)),
val([none], fact([soil_type, profile, piezometric_pressure, angle_of_{friction,
undrained_shear_strength, density, compressibility, rate_of_consolidation,
modulus, in_situ_stress, stress_history, stress_strain_curve]))D]).
modifier(constant_head_test,
[att(applicability,
[val([high], fact((])),
val([medium], fact({gravel, sand, silt])),

val([low], fact([hard_rock, soft_rock, clay, peat, organic_sand, organic_silt,
organic_clay])),

val([none}, fact([IN)1),
att(reliability,
[val([high], fact([])),
val([medium], fact({permeability])),
val([low], fact([piezometric_pressure])),
val([none], fact([soil_type, profile, angle_of_friction, undrained_shear_strength,

density, compressibility, rate_of_consolidation, modulus, in_situ_stress,

stress_history, stress_strain_curve]))])]).
modifier(self_boring_permeameter_test,

[att(applicability,
[val([high], fact([silt])),
val([medium], fact([sand, clay])),

val(flow), fact([soft_rock, peat, organic_sand, organic_silt, organic_clay])),
val([none}, fact([hard_rock, gravel]))]),
att(reliability,

[val([high], fact(Ipermeability]}),
val([medium], fact([])),
val([low], fact([piezometric_pressure])),

val([none], fact([soil_type, profile, angle_of_friction, undrained_shear_strength,

density, compressibility, rate_of_consolidation, modulus, in_situ_stress,

stress_history, stress_strain_curve]))D]).
modifier(pumping_tests,

[att(applicability,
[val([high], fact({gravel, sand])),
val([medium], fact({hard_rock, soft_rock, silt}])),
val([low], fact([clay, peat, organic_sand, organic_silt, organic_clay])),

val([none], fact((1)D),
att(reliability,

[val([high], fact([piezometric_pressure, permeability])),
val([medium], fact([1)),

val([low], faci([1)),

val({none), fact([soil_type, profile, angle_of_friction, undrained_shear_strength,

density, compressibility, rate_of_consolidation, modulus, in_situ_stress,
stress_history, stress_strain_curve]))])]).

A3l

modifier(seismic_refraction_test,
fatt(applicability,

[val([high], fact([hard_rock, soft_rock, gravel, sand, silt, clay])),
val([medium], fact([])),

val([low], fact([peat, organic_sand, organic_silt, organic_clay])),
val([none], fact({1))}),
att(reliability,
[val([high], fact([profile])),
val([medium], fact([density])),

val([low], fact([soil_type, compressibility, permeability, modulus])),
val([none], fact([piezometric_pressure, angle_of_friction, undrained_shear_strength,
rate_of_consolidation, in_situ_stress, stress_history, stress_strain_curve])D])
modifier(seismic_reflection_test,
[att(applicability,
[val([high], fact([bard_rock, soft_rock, gravel])),
val([medium], fact([sand, silt, clay})),

val([low], fact([peat, organic_sand, organic_silt, organic_clay])),
val([none], fact({])))),
att(reliability,
fval([high], fact([profile])),
val([medium], fact([density])),

val([low], fact([soil_type, compressibility, permeability, modulus))),
val([none], fact([piezometric_pressure, angle_of_friction, undrained_shear_strength,
rate_of_consolidation, in_situ_stress, stress_history, stress_strain_curve]))]]).
modifier(seismic_cross_hole_test,
[att(applicability,

[val([high], fact([hard_rock, soft_rock, gravel, sand, silt, clay, peat, organic_sand,
organic_silt, organic_clay])),
val([medium], fact([1)),

val([low], fact([1)),

val([none], fact([1))1),
att(reliability,

[val([high], fact({modulus])),

val([medium], fact([1)),

val([low], fact([soil_type, profile])),

val([none], fact([piezometric_pressure, angle_of_friction, undrained_shear_strengih,
density, compressibility, rate_of_consolidation, permeability, in_situ_stress,
stress_history, stress_strain_curve]))])]).
modifier(seismic_down_hole_test,

{att(applicability,

[val([high], fact([hard_rock, soft_rock, gravel, sand, silt, clay, peat, organic_sand,
organic_silt, organic_clay})),
val([medium], fact({])),

val([low], fact([])),
val([none], fact([1)]),
att(reliability,
[val([high], fact({modulus])),
val([medium], fact([1)),
val({low]), facl([soil_type, profile])),

val([none), fact([piezometric_pressure, angle_of_friction, undrained_shear_sirength,

density, compressibility, rate_of_consolidation, permeability, in_situ_stress,
stress_history, stress_strain_curve])1).

A32

modifier(surface_wave._test,
[att(applicability,
[val([high], fact([hard_rock, soft_rock, gravel, sand, silt, clay, peat, organic_sand,
organic_silt, organic_clay])),
val([medium], fact([])),
val([low], fact([])),
val([none], fact({])1).
att(reliability,
{val([high], fact([modulus}])),
val([medium]}, fact([])),
val([low], fact([soil _type, profile])),
val([none], fact([piezometric_pressure, angle_of_friction, undrained_shear_strength,
density, compressibility, rate_of_consolidation, permeability, in_situ_stress,
stress_history, stress_strain_curve]))])]).
modifier(resistivity_test,
[att(applicability,
[val([high], fact([gravel, sand, silt, clay])),
val([medium], fact([soft_rock, peat, organic_sand, organic_silt, organic_clay])),
val([low], fact([hard_rock])),
val([none], fact([1)D),
att(reliability,
[val([high], fact([])),
val([medium], fact([profile])),
val([low), fact{[soil_type, piezomelric_pressure, density])),
val([none}, fact([angle_of_friction, undrained_shear_strength, compressibility,
rate_of_consolidation, permeability, modulus, in_situ_stress, stress_history,
stress_strain_curve]))D]).
modifier(gravimetric_test,
[att(applicability,
[val([high], fact([hard_rock, soft_rock, gravel, sand, silt, clay, peat, organic_sand,
organic_silt, organic_clay})),
val([medium], fact([])),
val({low], fac([])),
val([none], fact([))]),
att(reliability,
[val([high], fact([])),
val([medium], fact([profile, density])),
val([low], fact([soil_type])),
val([none}, fact([piezometric_pressure, angle_of_friction, undrained_shear_strength,
compressibility, rate_of_consolidation, permeability, modulus, in_situ_stress,
stress_history, stress_strain_curve])])]).
modifier(nagnetic_test,
[att(applicability,
[val([high], fact({hard_rock, soft_rock, gravel, sand, silt, clay, peat, organic_sand,
organic_silt, organic_clay])),
val([medium), fact([])),
val([low], facy([1)),
val([none], fact([)))),

A33

att(reliability,
[val([highl, facl([])),
val([medium}, fact([profile]}),
val([low], fact([soil_type, undrained_shear_strength, density])),
val([none], fact([piezometric_pressure, angle_of_friction, compressibility,
rate_of_consolidation, permeability, modulus, in_situ_stress, stress_history,
stress_strain_curvel))]).

A34

[k kot sk okok dkolotokokokeok deokeotekoskok

* File GENERIC.PRO *

hokeokskoskkdokorokoskokodekokdkokokok ok kb

/* This file contains the generic rules, concerning list processing, used by the rules of the
main program. %

domains

vallists=vallist*
reallist=real*®
reallists=reallist*
lists=list*

predicates

append(attlist, attlist, attlist)
append(list, list, list)

append(list, stringlist, stringlist)
append(lists, lists, lists)
append(reallist, reallist, reallist)
append(stringlist, stringlist, stringlist)
append(vallist, vallist, vallist)
append(vallists, vallists, vallists)
delete_item(integer, integerlist, integerlist)
delete_item(symbol, list, list)
delete_item(symbol, stringlist, stringlist)
delete_item(vallist, vallists, vallists)
delete_list(list, list, list)
delete_list(list, stringlist, stringlist)
delete_list(vallists, vallists, vallists)
first(list, symbol)

first(stringlist, symbol)

last(list, symbol)

last(stringlist, string)
max_number(reallist, real)
member(att, atlist)

member(real, reallist)
member(string, stringlist)
member(symbol, list)
member(vallist, vallists)
members(att, attlist)
members(symbol, list)
min_number(reallist, real)
remove_duplicates(list, list, list)

remove_duplicates(list, stringlist, stringlist)
remove_duplicates(reallist, reallist, reallist)
remove_duplicates(stringlist, stringlist, stringlist)
remove_duplicates(vallists, vallists, vallists)
reverse(attlist, attlist)

reverse(list, list)

reverse(list, stringlist)

reverse(reallist, reallist)

reverse(stringlist, stringlist)

reverse(vallist, vallist)

simplify_lists(lists, list, list)
simplify_lists(reallists, reallist, reallist)
simplify_lists(vallists, vallist, vallist)
split_list(symbol, stringlist, stringlist, stringlist)
split_list(symbol, list, list, list)

clauses

members(Name, [Namel_]).
members(Name, [_[Tail]) :-
members(Name, Tail).

member(Name, [Namel_]):-!.
member(Name, [_{Tail]) :-
member(Name, Tail).

reverse([], [D.

reverse([Headl|Tail], List):-
reverse(Tail, Result),
append(Result, [Head], List).

append((], List, List).
append([XIL1], List2, (XIL3]):-
append(L.1, List2, L.3).

remove_duplicates([], List2, List2):-!,
remove_duplicates(List, List1, List2):-
List=[HITail],
member(H, Tail), !,
remove_duplicates(Tail, List1, List2).
remove_duplicates(List, Listl, List2):-
List=[HITail],
not(member(H, Tail)),
append([H], Listl, TempList),
remove_duplicates(Tail, Templist, List2).

A36

split_list(Name, List, L_front, L_back):-
append(L_front, L_back, List),
first(I._back, Name).

first([Firstl_], First).

last([Last], Last).
last([XIRest], Last):-
last(Rest, Last).

simplify_lists([], List, List).
simplify_lists(Lists, Old_list, List):-
Lists=[Head!Tail],
append(Head, Old_list, Temp_list),
simplify_lists(Tail, Temp_list, List),

max_number([X], X).

max_number([X|Tail], X):-
max_number(Tail, M),
X>M.

max_number([X|Tail}, M):-
max_number(Tail, M), X<=M.

min_number([X], X).

min_number([X|Tail], X):-
min_number(Tail, M),
X<M.

min_number([X|Tail}, M):-
min_number(Tail, M), X>=M.

delete_item(Item, [], [1).

delete_item(Item, [Ttem|Tail], List2):-!,
delete_item(Item, Tail, List2).

delete_item(Item, [HeadITail], [HeadlRest}):-
not(Item=Head),
delete_item(Item, Tail, Rest).

delete_list([], List, List).

delete_list([HIT), List1, List):-
delete_item(H, List1, Temp_list),
delete_list(T, Temp_list, List).

A37

[k okkok ok ok ook sodokokok

* File INFINT.PRO *

Fokkkkdkokkkdkdokdokk ko kkkok]

/* This file contains the Extended Inference Mechanism, the advisory rule developed to assist in the
selection of appropriate in-situ tests and the rules required for the development of the user interfuce. */

code=4100

include "\\pdcpro\toolbox\\ui\llongmenu.pro"
include "\\pdcpro\\toolbox\\uil\status.pro”
include "Wpdcpro\\toolbox\uitumenu.pro”
include "\pdcpro\\toolbox\Wuillineinp.pro”
include "\\pdcproph\\knowbase.pro"

include "\\pdcproph\\generic.pro”

domains

name=symbol
names=name*
vallistss=vallists*

predicates

case(symbol, symbol)

change_value(att, attlist, attlist, attlist)
check_attributes_left(list)

check_integer(list, integer, integer)
check_option(integer)

check_parameter(symbol, attlist, symbol)
check_selection(integer, string, stringlist)
check_soils_left(list)

check_val_list(vallist)

condition(symbol, symbol, list)

continue(char, symbol, vallist)
convert_input(string, list)
discover_member(symbol, symbol)
discover_members(symbol, list)
find_all_ancestors(symbol, list, lists)
find_all_attrib_names(symbol, symbol, stringlist)
find_all_general_range(symbol, reallist, reallist, reallist)
find_all_mod_attributes(string, stringlist, list)
find_all_mod_attributes(symbol, list, list)

A38

find_all_mod_attributes(symbol, stringlist, stringlist)
find_all_names_factors(symbol, list, list, lists)
find_all_num_value_attr(symbol, symbol, reallist)
find_all_roots(list)

find_all_roots(stringlist)

find_all_sym_values(string, stringlist)
find_all_test_attributes(list)
find_all_test_attributes(stringlist)
find_ancestors(symbol, list, list)
find_attrib_name(symbol, symbo}, list, symbol)
find_attribute_and_value(symbol, symbol, attlist, attlist)
find_attribute_data(symbol, list, list)
find_factors(attlist, list, list)

find_factors(attlist, stringlist, stringlist)
find_instances(list, list, list, list)
find_modifiers(symbol, symbal, list, lists)
find_num_values(vallist, reallist, reallist)
find_objects_and_modifiers(symbol, list, symbol, list)
find_root(symbol)

find_root_tree(string, stringlist, stringlist, stringlist)
find_root_tree(string, stringlist, list, list)
find_root_tree(symbol, list, list, list)
find_sym_values(vallist, list, list)
find_sym_values(vallist, stringlist, stringlist)
find_test_attributes(list, list)

find_test_attrs(symbol, list, list)
find_unique_attribute_data(symbol, list, list)
find_unique_attribute_data{symbol, stringlist, stringlist)
find_vallist(symbol, symbol, symbol, vallist, vallist)
find_vallists(symbol, symbol, symbol)
get_add_value(symbol, list, list, list, vallists, vallists)
get_all_attributes(symbol, symbol, attlist, attlist, attlist)
get_all_fact_list(string, string, stringlist)
get_all_fact_list(symbol, symbol, list)
get_all_names_with_factors(stringlist, symbol, stringlist)
get_attlist(symbol, attlist)

get_attrib_value(symbol, attlist, attlist, attlist)
get_attribute_data(vallist, list, list, list, list)
get_attribute_names(attlist, list, list)
get_attribute_names(attlist, stringlist, stringlist)
get_fact(vallist, list, list)
get_fact_attribute_list(symbol, list)
get_fact_attribute_list(symbol, stringlist)
get_fact_list(symbol, symbol, list, symbol)
get_factor(vallist, list, list)

get_factors(attlist, symbol, list, lists)
get_general_range(symbol, reallist, reallist)
get_members(symbol, list)

get_mod_attributes(string, stringlist, list)
get_mod_attributes(symbol, list, list)
get_mod_f(vallist, list, list)
get_modified_soil(symbol, list, list, list)
get_modified_value(symbol, lists, symbol, list, list, list, list)
get_name_factor(attlist, symbol, list, symbol, list)

get_names_values(vallist, list, list, list, list, list)
get_names_with_factors(symbol, symbol, stringlist)
get_order(list, list)

get_parents(symbol)

get_root_tree(string, stringlist, list, list)
get_root_tree(string, stringlist, stringlist, stringlist)
get_root_tree(symbol, list, list, list)
get_soil_value(vallist, symbol, list, list, list, list)
get_sym_values(symbol, list)
get_val_list(attlist, symbol, vallist)
give_value(symbol, list, symbol, list, list)
investigate(symbol, symbol, symbol, list, list, symbol, list, list, list, list, list, vallists)
match_choice(stringlist, integer, symbol)
match_choices(stringlist, integerlist, list, list)
modified_soil(symbol, list)
modified_soil_names(list, lists, lists)
num_matches(list, list)
num_value_attr(symbol, symbol, reallist, reallist)
output_modifiers(lists)
output_whole_range_modifiers(lists)
set_attribute(att, attlist, atlist)
set_attributes(attlist, attlist, attlist)
situation(symbol)

sort_test_name(symbol, symbol, symbol)
state(symbol, list)

sym_matches(list, list)

sym_value_autr(symbol, symbol, list)
sym_value_attr(symbol, symbol, stringlist)
user_interface

write_add_attr(list, vallists)
write_add_attributes(list, list, vallists)
write_app(list, list)

write_applicability(list, list, list)
write_attlist(attlist)

write_children(list, integer)

write_fact_list(list)

write_factor(list)

write_factor_list(list)

write_list(list)

write_lists(lists)

write_mod_app(list, list)
write_mod_applicability(list, list)
write_names_factors(list, lists)
write_non_app(list)

write_non_attr(list)

write_soil_names(list, symbol)
write_title(vallist)

write_v_list(vallist)

write_val_list(vallist)

write_vallist(vallist)

write_vallists(vallists)

write_values(val)

A40

clauses

/* The clauses below describe the rules that form the Extended Inference Mechanism. */

get_all_attributes(Root, Root, Old_attlist, Class_attlist, Mod_attlist):-
class(Root, _, Att_list),
set_attributes(Att_list, Old_attlist, New_attlist),
reverse(New_atlist, Class_attlist),
modifier(Root, Mod_atuist), !.

get_all_attributes(Root, Root, Old_attlist, Class_attlist, []):-
class(Root, _, Att_list),
set_attributes(Att_list, Old_attlist, New_attlist),
reverse(New_attlist, Class_attlist).

get_all_attributes(Root, Root, Att_list, Att_list, []):-
not(class(Root, _, _)).

get_all_attributes(Name, Root, Old_attlist, Attlist, Mod_attlist):-
class(Root, List, Att_list),
set_attributes(Att_list, Old_attlist, Temp_attlist),
members(Member, List),
get_all_attributes(Name, Member, Temp_attlist, Attlist, Mod_attlist).

set_attributes([], Att_list, Att_list).

set_attributes(At_list, Old_attlist, New_attlist):-
Att_list=[att(Attribute, Val_list)|Tail],
set_attribute(att(Attribute, Val_list), Old_attlist, Temp_attlist),
set_attributes(Tail, Temp_attlist, New_attlist).

set_attribute(att(Attribute, Val_list), Old_attlist, New_attlist):-
not(member(att(Attribute, _), Old_atdlist)),
append([att(Attribute, Val_list)], Old_attlist, New_attlist).
set_attribute(att(Attribute, Val_list), Old_attlist, New_attlist):-
member(att(Attribute, _), Old_atulist),
change_value (att(Attribute, Val_list), Old_atulist, [], New_attlist).

change_value(_, [], Att_list, Att_list).
change_value(att(Attribute, Val_list), Old_attlist, Vals, New_attlist):-
Old_atlist=[att(Aurib_1, _) ITail],
Attribute=Atirib_1,
Attlist=[att(Atrib_1, Val_list)|Vals],
change_value(att(Attribute, Val_list), Tail, Attlist, New_attlist).
change_value(att(Attribute, Val_list), Old_attlist, Vals, New_attlist):-
Old_attlist=[att(Aurib_1, Val_list_1) [Tail],
not(Attribute=Attrib_1),
Attlist=[att(Attrib_1, Val_list_1) [Vals],
change_value(att(Attribute, Val_list), Tail, Attlist, New_attlist).

Adl

find_vallists(Name, Root, Attribute):-
write(" Processing knowledge..."), nl,
findall(Class_vallist, find_vallist(Name, Root, Attribute, Class_vallist, Mod_vallist),
Class_val_lists),
simplify_lists(Class_val_lists, [], Class_vallists),
check_val_list(Class_vallists),
Mod_vallist={[], !,
write(” Press any key to see results..."), nl, nl,
readchar(),
write(" There is no available knowledge for the attribute ", Attribute, " for the ", Name), nl.
find_vallists(Name, Root, Attribute):-
findall(Class_vallist, find_vallist(Name, Root, Attribute, Class_vallist, Mod_vallist),
Class_val_lists),
Mod_vallist=(],
simplify_lists(Class_val_lists, [], Class_val_list),
not(check_val_list(Class_val_list)), !,
remove_duplicates(Class_val_lists, [], Class_vallists),
write(" Press any key to see results..."), nl, nl,
readchar(),
write(" The attribute “, Attribute, " has "),
write_vallists(Class_vallists).
find_vallists(Name, Root, Attribute):-
findall(Class_vallist, find_vallist(Name, Root, Attribute, Class_vallist, Mod_vallist),
Class_val_lists),
simplify_lists(Class_val_lists, [], Class_vallists),
not(Mod_vallist=[]),
check_val_list(Class_vallists), !,
write(" Press any key to see results..."), nl, ni,
readchar(_),
write(" The attribute ", Attribute, " has "),
write_v_list(Mod_vallist).
find_vallists(Name, Root, Attribute):-
findall(Class_vallist, find_vallist(Name, Root, Attribute, Class_vallist, Mod_vallist),
Class_val_lists),
simplify_lists(Class_val_lists, [], Class_val_list),
not(check_val_list(Class_val_list)),
not(Mod_vallist=[]),
remove_duplicates(Class_val_lists, [], Class_value_list),
delete_list({[]), Class_value_list, Class_vallists),
write(" Press any key to see results..."), nl, nl,
readchar(_),
write(" The attribute ", Attribute, " has "),
write_vallists(Class_vallists),
write(" Would you like to see a more detailed representation? (y/n)"), nl,
readchar(X), nl,
continue(X, Attribute, Mod_vallist).

find_vallist(Name, Root, Attribute, Class_vallist, Mod_vallist):-
get_all_attributes(Name, Root, [], Class_attlist, Mod_attlist),
get_val_list(Class_attlist, Attribute, Class_vallist),
get_val_list(Mod_attlist, Attribute, Mod_vallist),
not(Class_vallist=[]),
not(Mod_vallist=[]).

A42

find_vallist(Name, Root, Attribute, Class_vallist, Mod_vallist):-
get_all_attributes(Name, Root, [1, Class_attlist, Mod_attlist),
get_val_list(Class_attlist, Attribute, Class_vallist),
get_attribute_names(Mod_attlist, [], Mod_attrlist),
not(member(Attribute, Mod_attrlist)),
Mod_vallist=[].

find_vallist(Name, Root, Attribute, Class_vallist, Mod_vallist):-
get_all_attributes(Name, Roof, (], Class_attlist, Mod_attlist),
get_attribute_names(Class_attlist, [1, Class_attlist),
get_val_list(Mod_attlist, Attribute, Mod_vallist),
not(member(Attribute, Class_attrlist)),
Class_vallist=[].

check_val_list(Class_val_list):-
Class_val_list=[1.

check_val_list(Class_val_list):-
Class_val_list=[val([], fact([I)).

continue(X, Attribute, Mod_vallist):-
X="y', |,
write(" In a more detailed representation scheme, the attribute ", Attribute, " has "}, nl,
write_v_list(Mod_vallist).

continue('n', _, _).

get_val_list([att(Attribute, Val_list)]_], Attribute, Val_list):-!.
get_val_list([_ITail], Attribute, Val_list):-
get_val_list(Tail, Attribute, Val_list).

get_attribute_names([], Attrlist, Attrlist),

get_attribute_names([att(Attribute, _)ITail], Oldlist, Attrlist):-
append([Attribute], Oldlist, Templist),
get_attribute_names(Tail, Templist, Attrlist).

write_vallists([HeadITail]):-

Tail={],

write_v_list(Head).
write_vallists([HeadITail]):-

not(Tail=[]),

not(Tail=[[]]),

write_v_list(Head),

write(" Alternatively, it could have "),

write_vallists(Tail).

write_v_list((HI(1]):-
write_values(H).

write_v_list(Val_list):-
Val_list=[_IT],
not(T=[]),
write_title(Val_list),
write_vallist{Val_list).

A43

write_values(val([Vmin, Vmax], fact(F))):-
no(F=[]), !,
write("the following range of values:"), nl,
write(\t', "vmin= ", Vmin), nl,
write(\t', "vmax= ", Vmax), nl,
write("and the modifier is: "), nl,
write_list(F).
write_values(val([V], fact(F))):-
not(F=(]), !,
write("the following value:"), nl,
write(\t', "value=", V), nl,
write("and the factor is: "), nl,
write_list(F).
write_values(val([Vmin, Vmax], fact({]))):-!,
write("the following range of values:"), nl,
write(\t', "vmin= ", Vmin), nl,
write(\t', "vmax= ", Vmax), nl, nl.
write_values(val([V], fact([1))):-
write("the following value:"), nl,
write(\t", "value=", V), nl, nl.

write_title([val([_, _], factC)I_D):-
write("the following ranges of values according to the modifier:"), nl,
writef("\t%10s %10s %30s", vmin, vmax, modifier), nl.
write_title([val([_], fact{_DI_]):-
write("the following values according to the modifier:"), nl,
writef("\t%20s %30s", value, modifier), nl.

write_vallist([]).
write_vallist({val([Vmin, Vmax], fact(F))IRest}):-
not(F=[]),
F=[HIT],
writef("\t%10 %10 %30", Vmin, Vmax, H), nl,
write_factor(T),
write_vallist(Rest).
write_vallist([val{[Vmin, Vmax], fact([1))IRest]):-
writef("\t%10 %10 %30", Vmin, Vmax, "No modifiers specified"), nl,
write_vallist(Rest).
write_vallist([val([Value], fact(F))IRest]):-
not(F=[}),
F=[HIT],
writef("\t%20 %30 ", Value, H), n},
write_factor(T),
write_vallist(Rest).
write_vallist([val([Value], fact([]))IRest]):-
writef("\t%20 %30", Value, "No madifiers specified"), nl,
write_vallist(Rest).

write_factor([]).

write_factor([AlTail)):-
writef("\t%50", A), nl,
write_factor(Tail).

Ad4

find_all_ancestors(Name, O1d_list, Ancestor_lists):-
write(" Processing knowledge..."), nl,
findall(Ancestor_list, find_ancestors(Name, Old_list, Ancestor_list), Ancestor_lists),
not(Ancestor_lists={[1]), !,
write(" Press any key to see results..."), nl, nl,
readchar(),
write(" ", Name, " has the following ancestor(s): "), nl, nl,
write_lists(Ancestlor_lists), nl.
find_all_ancestors(Name, Old_list, Ancestor_lists):-
findall(Ancestor_list, find_ancestors(Name, Old_list, Ancestor_list), Ancestor_lists),
Ancestor_lists=[[1],
write(" Press any key to see results..."), nl, nl,
readchar(),
write(" ", Name, " is the root of the hierarchy.").

find_ancestors(Name, Ancestor_list, Ancestor_list):-
findall(List, class(_, List, _), Lists),
simplify_lists(Lists, [J, Simp_list),
not(member(Name, Simnp_list)).
find_ancestors(Name, Old_list, Ancestor_list):-
class(Parent, List, _),
member(Name, List),
append([Parent], Old_list, Temp_list),
find_ancestors(Parent, Temp_list, Ancestor_list).

write_lists(Ancestor_lists):-
Ancestor_lists=[Ancestor(Tail],
Tail=[], !,
write_list(Ancestor), nl.
write_lists(Ancestor_lists):-
Ancestor_lists=[Ancestor{Taill,
write_list{Ancestor), nl,
not(Tail=[]),
write(" An alternative solution is: "), nl, nl,
write_lists(Tail), nl.

write_list({]).

write_list([HIRest]):-
write(" ", H), ul,
write_list(Rest).

get_members(Category, Names):-
discover_members(Category, Names),
not(Names=[_I[1]), !,
write(" The members of the category ", Category, " are: "), nl, nl,
write_children(Names, 1).
get_members(Category, Names):-
discover_members(Category, Names),
write(" The category ", Category, " has one member which is:"), nl, nl,
write_children(Names, 1).

discover_members(Category, Names):-
findall(Name, discover_member(Category, Nane), Nameslist),
remove_duplicates(Nameslist, [], Namelist),
reverse(Namelist, Names).

discover_member(Name, Name):-
class(Name, [],), !.

discover_member(Category, Name):-
class(Category, List,), !,
members(Member, List),
discover_member(Member, Name),

write_children([], _):-!.
write_children(Soil_names, N):-
Soil_names=[HIT],
writef(" %30", H), nl,
TempN=N+1,
check_integer(T, TempN, NewN),
write_children(T, NewN).

check_integer(T, TempN, NewN):-
TempN>=15, nl,
not(T=[}), !,
write(" Press any key to see the rest..."), nl, nl,
readchar(),

NewN=1.
check_integer(T, TempN, NewN):-
TempN>=15, nl,

T=(, !,

NewN=TempN.
check_integer(T, TempN, NewN):-

TempN<15,

NewN=TempN.

find_attribute_and_value(Name, Factor, Old_attlist, All_attlist):-
modifier(Name, Attlist),
get_attrib_value(Factor, Attlist, Old_attlist, New_attlist),
reversc(New_attlist, All_attlist),
write(" For the modifier ", Factor),
write_attlist(All_attlist).

get_attrib_value(_, [], All_list, All_list).
get_attrib_value(Factor, List, Old_list, All_list):-
List=[att(Attribute, Val_list)ITail],
Val_list=[val(_, fact(Factors))IRest],
not(Rest=[]),
not(member(Factor, Factors)),
get_attrib_value(Factor, [att{(Attribute, Rest)[Tail], Old_list, All_list).

Ad6

get_attrib_vatue(Factor, List, Old_list, All_list):-
List=[att(Attribute, Val_list)ITail},
Val_list=[val(_, fact(Factors))IRest],
Rest=[],
not(member(Factor, Factors)),
get_attrib_value(Factor, Tail, Old_list, All_list).
get_attrib_value(Factor, List, Old_list, All_list):-
List=[att(Attribute, Val_list)iTail},
Val_list=[val(Value, fact(Factors))|_}],
member(Factor, Factors),
append([att(Attribute, [val(Value, fact(Factors))])], Old_list, New_list),
get_attrib_value(Factor, Tail, New_list, All_list).

write_attlist([]).

write_attlist([att(Attribute, Val_list)ITail]):-
write(" the attribute ", Attribute), nl,
write_val_list(Val_list),
write_attlist(Tail).

write_attlist(fatt(Attribute, Val_list)ITail)):-
Val_list=[val([], fact(_)],
write(\t', "has no values"), nl,
write_attlist(Tail).

write_val_list([]).

write_val_list([val([Vmin, Vmax], fact(_))Rest]):-
write(" takes the following range of values:"), nl,
write(\t', '\t', "Vmin= ", Vmin), nl,
write(\t', '\t', "Vmax=", Vmax), ul,
write_val_list(Rest).

write_val_list([val([Value], fact(_))IRest]):-
write(" takes the following value:"), nl,
write(\t', '\t', "Value=", Value), nl,
write_val_list(Rest).

find_modifiers(Name, Attribute, Value_list, Factors):-
modifier(Name, Attlist),
get_factors(Atist, Attribute, Value_list, Factors).

get_factors(Atdist, Attribute, Value_list, Factors):-
get_val_list(Attlist, Attribute, Val_list),
not(Val_list=[_I[1]),
findall(Factor, get_factor(Val_list, Value_list, Factor), Factors),
output_modifiers(Factors).
get_factors(Attlist, Attribute, Value_list, Factors):-
get_val_list(Attlist, Attribute, Val_list),
Val_list=[_I[]],
findall(Factor, get_factor(Val_list, Value_list, Factor), Factors),
output_whole_range_modifiers(Factors).

A47

get_factors(Attlist, Attribute, Value_list, Modified_factors):-
get_val_list(Attlist, Attribute, Val_list),
findall(Factor, get_factor(Val_list, Value_list, Factor), Factor_list),
Factor_list=[],
findall(Modified_factor, get_mod_f(Val_list, Vatue_list, Modified_factor), Modified_factors),
not(Modified_factors=[]),
write(" Corresponding modifier(s): "), nl,
write_lists(Modified_factors), nl.

get_factor([val(Values, fact(Factor))|_], Value_list, Factor):-
num_matches(Values, Value_list).
get_factor([val(Values, fact(Fact))l_], Value_list, Factor):-
not(num_matches(Values, Value_list)),
sym_matches(Values, Value_list),
Fact=Factor.
get_factor([_[Rest], Value_list, Factor):-
get_factor(Rest, Value_list, Factor),

get_mod_{f(Val_list, [V1, V2], Factor):-
get_order([V1, V2), [Lo, Hi)),
get_fact(Val_list, [Lo], [Factorl]),
get_fact(Val_list, [Hi], [Factor2]),
not(Factorl=Factor2),
concat(Factorl, "_to_", Temp_factor),
concat(Temp_factor, Factor2, Fact),
Factor=[Fact].

get_order([V1, V2], [Lo, Hi]):-
str_real(V1, V1r),
str_real(V2, V2r),
Vir<Vaor, |,
Vli=Lo,
V2=Hi.
get_order([V1, V2], [Lo, Hi)):-
V1=Hi,
V2=Lo.

num_matches([Min, Max], [V1, V2]):-
get_order([V1, V2], [Lo, Hi)),
str_real(Min, Vmin),
str_real(Max, Vimax),
str_real(Lo, Vio),
str_real(Hi, Vhi),
Vlo>=Vmin,
Vhi<=Vmax, !.

num_matches([Min, Max], [V1]):-
str_real(Min, Vmin),
str_real(Max, Vmax),
str_real(V, Vreal),
Vreal>=Vmin,
Vreal<=Vmax.

A48

sym_matches(_, []):-1.

sym_matches(Values, [HIT]):-
member(H, Values),
sym_matches(Values, T).

get_fact([val([Min, Max], fact(Factor1))_], [E], Factor1):-
num_matches([Min, Max}, {E]).
get_fact([_[Rest]}, [E], Factorl):-
get_fact(Rest, [E], Faclor1).

output_modifiers(Factors):-

Factors=[[]], !,

write(" There are no modifiers specified for the chosen value."), nl.
output_modifiers(Factors):-

not(Factors=[]),

write(" Corresponding modifier(s): "), ul, nl,

write_lists(Factors), nl.

output_whole_range_modifiers(Factors);-

Factors=[[]), !,

write(" There are no modifiers specified for the chosen value."), nl.
output_whole_range_modifiers(Factors);-

not(Factors=[]),

write(" Corresponding modifier(s): "}, nl, nl,

write_lists(Factors), nl, nl,

write(" The above modifier(s) applies to the whole range of values.”), nl.

find_all_names_factors(Attribute, Value_list, Names, Factors):-
write(" Processing knowledge..."), nl,
findall(Name, find_objects_and_tmodifiers(Attribute, Value_list, Name, _), Names),
findall(Factor, find_objects_and_modifiers(Attribute, Value_list, _, Factor), Factors),
not(Names=[}), !,
write(" Press any key to see results..."), nl, nl,
readchar(_),
write_names_factors(Names, Factors).

find_all_names_factors(Attribute, [V1, V2], Names, Factors):-
get_order([V1, V2], [Vmin, Vmax]),
findall(Name, find_objects_and_modificrs(Attribute, [Vmin], Name, _), Naines_min),
findall(Factor, find_objects_and_modifiers(Attribute, [Vmin], _, Factor), Factors_min),
findall(Name, find_objects_and_modifiers(Attribute, [Vmax], Name, _), Names_inax),
findall(Factor, find_objects_and_modifiers(Attribute, [Vmax], _, Factor), Factors_max),
append(Names_min, Names_max, Names),
append(Factors_min, Factors_inax, Faclors),
not(Names=[]), !,
write(" Press any key to see results...”), nl, nl,
readchar(_),
write(" The input range of values does not correspond to a single object!!"), nl, nl,
write(" Press any key to get answer(s) for the lower range..."), nl, nl,
readchar(),
write(" The lower range (", Vmin, ") corresponds to: "), nl,
write_names_factors(Names_min, Factors_mnin), nl, nl,
write(" Press any key to get answer(s) for the upper range..."), nl, nl,

A49

readchar(),

write(" The upper range (", Vmax, ") corresponds to: "), nl,

write_names_factors(Names_max, Factors_max), nl.
find_all_names_factors(Attribute, Value_list, Names, Factors):-

findall(Name, find_objects_and_modifiers(Attribute, Value_list, Name, _), Names),

findall(Factor, find_objects_and_modifiers(Attribute, Value_list, _, Factor), Factors),

Names=[],

fail.

find_objects_and_modifiers(Attribute, Value_list, Name, Factor):-

modifier(Name, Mod_attlist),

get_attlist(Attribute, Mod_attlist),

get_name_factor(Mod_attlist, Attribute, Value_list, Name, Factor).
find_objects_and_modifiers(Attribute, Value_list, Name, Factor):-

class(Name, [], Class_attlist),

not(modifier(Name, _)),

get_attlist(Attribute, Class_attlist),

get_name_factor(Class_attlist, Attribute, Value_list, Name, Factor).
find_objects_and_modifiers(Attribute, Value_list, Name, Factor):-

class(Name, [], Class_attlist),

modifier(Name, Mod_attlist),

not(get_attlist(Attribute, Mod_attlist)),

get_attlist(Attribute, Class_attlist),

get_name_factor(Class_attlist, Attribute, Value_list, Name, Factor).

get_attlist(Attribute, [att(Attribute, _)I_]):-!.
get_attlist(Attribute, [_[Tail]):-
get_attist(Attribute, Tail).

get_name_factor(Attlist, Attribute, Value_list, Name, Factor):-
get_val_list(Atdist, Attribute, Val_list),
get_factor(Val_list, Value_list, Factor).
get_name_factor(Attlist, Attribute, Value_list, Name, Factor):-
get_val_list(Attist, Attribute, Val_list),
findall(Fact, get_factor(Val_list, Value_list, Fact), Fact_list),
Fact_list=[],
get_mod_f(Val_list, Value_list, Factor).

write_names_factors(Names, Factors):-
Names=[NamelTail},
Tail=[], !,
write(" Object: "),
write(Name), nl,
Factors=[Factor_listlRest],
write_fact_list(Factor_list).

write_names_factors(Names, Factors):-
Names=[Name{Tail],
not(Tail=[]),
Factors={Factor_listIRest],
write(" Object: "),
write(Name), nl,
write_fact_list(Factor_list),
write(" Press any key to see allernative solutions..."), nl, nl,
readchar(),

ASO

write(" Alternatively, "), nl,
write_names_factors(Tail, Rest).

write_fact_list(Factor_list):-

Factor_list=[], !,

write(" Corresponding modifiers: No modifiers are defined "), nl, nl.
write_fact_list(Factor_list):-

Factor_list={FactorlRemaining],

Remaining=(], !,

write(" Corresponding modifier: ", Factor), nl, nl.
write_fact_list(Factor_list):-

Factor_list=[_IRemaining],

not(Remaining=[]),

write(" Corresponding modifiers: "), nl,

write_factor_list(Factor_list), nl.

write_factor_list({]):-1.
write_factor_list((HIT]):-
write(" *, H), nl,
write_factor_list(T).

/* The clauses below describe the advisory rule (rule investigate) developed to provide assistance in the
selection of appropriate in-sistu tests. */

investigate(Soil_category, Parameter, Accuracy, Add_attributes, Soil_names, Test_name, Names,

Values, Modified_names, Modified_values, Available_attributes, Available_vallists):-

discover_members(Soil_category, Soil_instances),

write_soil_names(Soil_instances, Soil_category), nl,

modified_soil_names(Soil_instances, [], Modilied_soil_instances),

reverse(Soil_instances, Soil_names),

findall(Method_name, sort_test_name(Parameter, Method_name, Accuracy), Method_names),

repeat,

sort_test_name(Parameter, Test_name, Accuracy),

write(" Processing knowledge..."), nl,

give_value(Test_name, Soil_names, applicability, Names, Values),

get_modified_value(Test_name, Modified_soil_instances, applicability, (], Modified_names,
[1, Modified_values),

get_add_value(Test_name, Add_attributes, [], Available_attributes, [], Available_vallists),

write(" Press any key to continue...”), nl, nl,

readchar(),

write(" Test name: ", Test_name), nl,

write_applicability(Soil _names, Names, Values),

write_mod_applicability(Modified_names, Modified_values), nl,

write_add_attributes(Add_attributes, Available_atiributes, Available_vallists), nl,

last(Method_names, Test),

Test_name=Test, !,

AS1

modified_soil_names({], Soil_instances_modifiers, Soil_instances_modifiers).
nodified_soil_names(Soil_instances, Old_list, Soil_instances_mnodifiers):-
Soil_instances=[Soil_instancelTail],
modified_soil(Soil_instance, Soil_instance_modifiers),
append([Soil_instance_modifiers], Old_list, Temp_list),
modified_soil_names(Tail, Temp_list, Soil_instances_modifiers).

modified_soil(Soil_name, Modified_soil_list):-
modifier(Soil_name, Attlist), !,
find_factors(Attlist,], Factor_list),
get_modified_soil(Soil_name, Factor_list, [], Modified_soil_list).
modified_soil(Soil_name, Modified_soil_list):-
not(modifier(Soil_name, _)),
Modified_soil_list=[].

get_modified_soil(_, [], Modified_soil_list, Modified_soil_list).
get_modified_soil(Soil_name, [Factor|Tail], Old_list, Modified_soil _list):-
concat(Factor, "_", Halfstring),
concat(Halfstring, Soil_name, Wholestring),
Modified_soil=[Wholestring],
append(Modified_soil, Old_list, Temp_list),
get_modified_soil(Soil_name, Tail, Temp_list, Modified_soil_list).

sort_test_name(Parameter, Test_name, Accuracy):-
maodifier(Test_name, Attlist),
check_parameter(Parameter, Attlist, Accuracy).

check_parameter(Parameter, Attlist, Accuracy):-
Attlist={att(reliability, [val([Accuracy], fact(Factors))i_]I_],
member(Parameter, Factors).

check_parameter(Parameter, [atl(Attribute, [_IRest])ITail], Accuracy):-
check_parameter(Parameter, [att(Attribute, Rest)ITail], Accuracy).

check_parameter(Parameter, {att(_, [])ITail], Accuracy):-
check_parameter(Parameter, Tail, Accuracy).

give_value(Test_name, Soil_names, applicability, Names, Values):-
modifier(Test_name, Attlist), !,
get_val_list(Attlist, applicability, Val_list),
Val_list=[val(Valuelist, fact(Parameter))IRest],
get_names_values(Val_list, Soil_names, [}, Names, [}, Values).

get_names_values(_, [], Names, Names, Values, Values).

get_names_values(Val_list, [Soil_namelTail], Old_name, Names, Old_value, Values):-
get_soil_value(Val_list, Soil_name, Old_name, Temp_names, Old_value, Temp_values),
get_names_values(Val_list, Tail, Temp_names, Names, Temp_values, Values).

get_soil_value([], Soil_name, Temp_name, Temp_name, Temp_value, Temp_value).
get_soil_value(Val_list, Soil_name, Old_name, Temp_name, Old_value, Temp_value):-
Val_list=[val(Valuelist, fact(Parameter))l_],
member(Soil_name, Parameter),
append([Soil_name], Old_name, Temp_name),
append(Valuelist, Old_value, Temp_value).

AS2

get_soil_value(Val_list, Soil_name, Old_name, Temp_name, Old_value, Temp_value):-
Val_list=[val(_, fact(Parameter))Rest],
not(member(Soil_name, Parameter)),
get_soil_value(Rest, Soil_name, Old_name, Temp_name, Old_value, Temp_value).

get_add_value(_, [], Attrlist, Attrlist, Vallist, Vallist).
get_add_value(Test_name, [AttributelTail], Otd_attrlist, Attrlist, OQld_vallist, Vallist):-
get_all_attributes(Test_name, tests, [], Class_attlist, Mod_attlist),
get_attribute_names(Mod_attlist, [], Mod_attrlist),
member(Attribute, Mod_attrlist),
get_val_list(Mod_attlist, Attribute, Mod_vallist),
append([Attribute], Old_attrlist, Temp_attrlist),
append([Mod_vallist], Old_vallist, Temp_vallist),
get_add_value(Test_name, Tail, Temp_attrlist, Attrlist, Temp_vallist, Vallist), !.
get_add_value(Test_name, [Attribute|Tail}, Old_attrlist, Attrlist, Old_vallist, Vallist):-
get_all_attributes(Test_name, tests, [}, Class_attlist, Mod_attlist),
get_attribute_names(Mod_attlist, [], Mod_attrlist),
not(member(Attribute, Mod_attrlist)),
get_attribute_names(Class_attlist, [], Class_attrlist),
member(Attribute, Class_attrlist),
get_val_list(Class_attlist, Attribute, Class_vallist),
append([Attribute], Old_attrlist, Temp_attrlist),
append([Class_vallist], Old_vallist, Temp_vallist),
get_add_value(Test_name, Tail, Temp_attrlist, Attrlist, Temp_vallist, Vallist), !.
get_add_value(Test_name, [AttributelTail], Old_attrlist, Attrlist, Old_vallist, Vallist):-
get_add_value(Test_name, Tail, Old_atirlist, Attrlist, Old_vallist, Vallist).

get_modified_value(_, [], _, Modified_names, Modified_names, Modified_values, Modified_values).
get_modified_value(Test_name, [Soil_name_modifiersITail], applicability, Old_names,
Modified_names, Old_values, Modified_values):-
not(Soil_name_modifiers=[]),
give_value(Test_name, Soil_name_modifiers, applicability, Mod_name_list, Mod_value_list),
append(Mod_name_list, Old_names, Temp_names),
append(Mod_value_list, Old_values, Temp_values),
get_modified_value(Test_name, Tail, applicability, Temp_names, Modified_names,
Temp_values, Modified_values).

get_modified_value(Test_name, [Soil_name_modifiersiTail], applicability, Old_names,
Modified_names, Old_values, Modified_values):-
Soil_name_modifiers={},
get_modified_value(Test_name, Tail, applicability, Old_names, Modified_names, Old_values,
Modified_values).

write_soil_names(Soil_names, Soil_category):-
not(Soil_names=[_I[1]), !
write(" The members of the category ", Soil_category, " are: "), nl, nl,
write_children(Soil_names, 1).
write_soil_names(Soil_names, Soil_category):-
Soil_names=[HI[]],
not(class(H, [1, L)), !,
write(" The category ", Soil_category, " has one member which is:"), nl, nl,
write_children(Soil_names, 1).
write_soil_names(_, _).

write_applicability(Soil_names, Soil_type, Applicability_value):-
write(" The applicability of this test in "), nl,
write_app(Soil_type, Applicability_value),
delete_list(Soil_type, Soil_names, Soils_left),
check_soils_left(Soils_left).

write_app([], []).

write_app([SoiliR1], [ApplicabilitylR2]):-
write(" ", Soil, " is ", Applicability), nl,
write_app(R1, R2).

check_soils_left(Soils_left):-
not(Soils_left=[]), !,
write_non_app(Soils_left).

check_soils_left([]).

write_non_app([]).

write_non_app({Soil_leftR]):-
write(" ", Soil_left, " is unspecified"), nl,
write_non_app(R).

write_mod_applicability([], [1:-!.

write_mod_applicability(Modified_soil _type, Modified_applicability_value):-
write(" It should be noted though that the applicability in "), nl,
write_mod_app(Modified_soil_type, Modified_applicability_value).

write_mod_app([], [1).

write_mod_app([Mod_soillR1], [Mod_ApplicabilitylR2]):-
write(" ", Mod_Soil, " is “, Mod_Applicability), nl,
write_mod_app(R1, R2).

write_add_attributes([], _, _):-!.

write_add_attributes(Add_attributes, Available_add_attribute, Available_add_vallist):-
not(Available_add_attribute=[]), !,
write(" Press any key to continue..."), nl, nl,
readchar(),
write(" Additional attributes under consideration: "), nl,
write_add_attr(Available_add_attribute, Available_add_vallist),
delete_list(Available_add_attribute, Add_attributes, Attributes_left),
check_attributes_left(Attributes_left).

write_add_attributes(Add_attributes, Available_add_attribute, Available_add_vallist):-
delete_list(Available_add_attribute, Add_attributes, Attributes_left),
check_attributes_lefi(Attributes_left).

write_add_atte([], [1):-!.

write_add_attr([AttributelR1}, [VallistiR2]):-
Vallist=[val([], fact((I)], !,
write(" No values have been specified for the attribute ", Attribute), nl,
write_add_attr(R1, R2).

AS4

write_add_attr([AttributelR1], [VallistiR2]):-
write(" The attribute ", Attribute, " has "),
Vallist=[HIT),
T=(l,
write_values(H),
write_add_attr(R1, R2).

check_attributes_left([]):-!.
check_attributes_left(Attributes_left):-
write_non_attr(Attributes_left).

write_non_attr([]).

write_non_attr([Attribute_leftT]):-
write(" The attribute ", Attribute_left, " is not defined for this test"), nl,
write_non_attr(T).

/* The clauses below describe additional search rules required by the user interface. */

find_all_roots(Roots):-
findall(Root, find_root(Root), Roots).

find_root(Root):-
class(Root, List, Attlist),
not(List=[]),
Atdist=[].

find_root_tree(Root, Roots, List, Root_tree):-
first(Roots, Root),
Roots={Root, Nextl_],
split_list(Next, List, Root_tree, _).
find_root_tree(Root, Roots, List, Root_tree):-
last(Roots, Root),
split_list(Root, List, _, Root_tree).
find_root_tree(Root, Roots, List, Root_tree):-
get_root_tree(Root, Roots, List, Root_tree).

get_root_tree(Root, Roots, List, Root_tree):-
Roots=[_, Root2, Root3IRest],
Root=Root2,
split_list(Root2, List, _, Lb),
split_list(Root3, Lb, Root_tree, _).

get_root_tree(Root, Roots, List, Root_tree):-
Roots=[_, Root2, Root3IRest],
Tail=[Root2, Root3IRest],
get_root_tree(Root, Tail, List, Root_tree).

find_all_attrib_names(Name, Root, Attributes):-

findall(Attribute, find_attrib_name(Name, Root, [], Attribute), Attrs),
remove_duplicates(Attrs, [], Attributes).

find_attrib_name(Name, Root, Oldlist, Attribute):-
get_all_attributes(Name, Root, [], Class_attlist, Mod_attlist),
get_attribute_names(Class_attlist, Oldlist, Class_attrlist),
get_attribute_names(Mod_attlist, Oldlist, Mod_attrlist),
append(Class_attrlist, Mod_attrlist, Attrlist),
members(Attribute, Attrlist).

get_parents(Parents):-
class(X, List,),
not(List=[]),
Parents=X,

get_all_names_with_factors(Names, Root, Rools):-
findall(F_name, get_names_with_factors(F_name, Root, Roots), F_names),
remove_duplicates(F_names, {], Names_list),
reverse(Names_list, Names).
get_names_with_factors(F_name, Root, Roots):-
findall(X, class(X, _, _), Names),
find_root_tree(Root, Roots, Names, Root_tree),
members(Name, Root_tree),
class(Name, _, List),
not(List=[]),
get_all_attributes(Name, Root, [], Class_attlist, Mod_attlist),
append(Class_attlist, Mod_attlist, Attlist),
find_factors(Attlist, [, Fact_list),
not(Fact_list=[]),
Name=F_name.

find_factors({], List2, List2).
find_factors(A_list, List1, List2):-
A_list=[att(Attribute, Vallist)ITail],
Vallist=[val(_, fact(Factors))IRest],
not(Rest=[1),
append(Factors, Listl, Templist),
find_factors([att(Attribute, Rest)|Tail], Templist, List2).
find_factors(A_list, List1, List2):-
A_list=[att(Attribute, Vallist) Tail],
Vallist=[val(_, fact(Factors))IRest],
Rest=[],
append(Factors, Listl, Templist),
find_factors(Tail, Templist, List2).

get_all_fact_list(Name, Root, Factors):-
findall(Factor, get_fact_list(Name, Root, (], Factor), Facts),
remove_duplicates(Facts, [], Factors),

AS56

get_fact_list(Name, Root, Oldlist, Factor):-
get_all_atuributes(Name, Root, [}, Class_attlist, Mod_attlist),
append(Class_attlist, Mod_attlist, Attlist),
find_factors(Attlist, Oldlist, Fact_list),
members(Factor, Fact_list).

get_fact_attribute_list(Name, Mod_attrlist);-
modifier(Name, Mod_attlist),
get_attribute_names(Mod_attlist, [], Mod_attrlist).

find_all_mod_attributes(Root, Roots, Mod_attributes_list):-
findall(Mod_attrlist, get_mod_attributes(Root, Roots, Mod_attrlist), Mod_attrlists),
simplify_lists(Mod_attrlists, [1, Mod_attr_list),
remove_duplicates(Mod_attr_list, [], Mod_attributes_list).

get_mod_attributes(Root, Roots, Mod_attrlist):-
findall(X, class(X, _, _), List),
find_root_tree(Root, Roots, List, Root_tree),
findall(Y, class(Y, [], _), Names),
find_instances(Names, Root_tree, {], Instances_list),
members(Instance, Instances_list),
modifier(Instance, Mod_attlist),
get_attribute_names(Mod_autlist, {], Mod_attrlist).

find_instances([], _, Instances_list, Instances_list).
find_instances([NamelRest], Root_tree, Old_list, Instances_list):-
member(Name, Root_tree),
append([Name], Old_list, Temp_list),
find_instances(Rest, Root_tree, Temp_list, Instances_list).
find_instances([NamelRest], Root_tree, Old_list, Instances_list):-
not(member(Name, Root_tree)),
find_instances(Rest, Root_tree, Old_list, Instances_list).

find_unique_attribute_data(Attribute, Values, Factors):-
findall(Value_list, find_attribute_data(Attribute, Value_list, _), Values_lists),
findall(Factor_list, find_attribute_data(Attribute, _, Factor_list), Factors_lists),
simplify_lists(Values_lists, [], Values_list),
simplify_lists(Factors_lists, [], Factors_list),
remove_duplicates(Values_list, [], Values),
remove_duplicates(Factors_list, [], Factors).

find_attribute_data(Attribute, Value_list, Factor_list):-
modifier(Name, Attlist),
get_val_list(Atist, Attribute, Vallist),
get_attribute_data(Vallist, [], Value_list, [], Factor_list).

get_attribute_data([], Value_list, Value_list, Factor_list, Factor_list).

AS7

get_attribute_data([val(Value, fact(Factor))IRest], Old_value, Value_list, Old_factor, Factor_list):-
append(Value, Old_value, Temp_value),
append(Factor, Old_factor, Temp_factor),
get_attribute_data(Rest, Temp_value, Value_list, Temp_factor, Factor_list).

find_all_test_attributes(Attributes):-
findall(Class_attrlist, find_test_attributes(Class_attrlist, _), Class_attrs),
findall(Mod_attrlist, find_test_attributes(_, Mod_attrlist), Mod_attrs),
simplify_lists(Class_attrs, [], Class_attribs),
simplify_lists(Mod_attrs, [], Mod_attribs),
remove_duplicates(Class_attribs, [], Class_attributes),
remove_duplicates(Mod_attribs, {], Mod_attributes),
append(Class_attributes, Mod_attributes, Attributes).

find_test_attributes(Class_attrlist, Mod_attrlist):-
findall(X, class(X, _, _), List),
find_all_roots(Roots),
find_root_tree(tests, Roots, List, Root_tree),
members(Name, Root_tree),
find_test_attrs(Name, Class_attrlist, Mod_attrlist).

find_test_attrs(Name, Class_attrlist, Mod_attrlist):-
modifier(Name, Mod_attlist), !,
class(Name, _, Class_attlist),
get_attribute_names(Class_attlist, [], Class_attrlist),
get_attribute_names(Mod_atdist, [], Mod_attrlist).

find_test_attrs(Name, Class_attrlist, Mod_attrlist):-
class(Name, _, Class_attlist),
get_attribute_names(Class_attlist, [], Class_attrlist),
Mod_attrlist=[].

find_all_general_range(Attribute, Old_list, Old_range, General_range):-
findall(Rangel, get_general_range(Attribute, Rangel, _), Ranges1),
findall(Range2, get_general_range(Attribute, _, Range2), Ranges2),
simplify_lists(Ranges1, (], Ranges1_list),
simplify_lists(Ranges2, [}, Ranges2_list},
append(Ranges1_list, Old_list, Temp_list),
append(Ranges2_list, Temp_list, Ranges),
remove_duplicates(Ranges, [}, Range_list),
min_number(Range_list, Min),
max_number(Range_list, Max),
append([Max], Old_range, Temp_range),
append([Min}, Temp_range, General_range).

get_general_range(Atiribute, Rangel, Range2):-
class(X, [], Class_attlist),
get_attribute_names(Class_attlist, [], Class_attrlist),
member(Attribute, Class_attrlist),
num_value_attr(X, Attribute, [], Rangel),
modifier(Name, Mod_attlist),

AS8

get_attribute_names(Mod_attlist, []J, Mod_attrlist),
member(Attribute, Mod_attrlist),
num_value_attr(Name, Attribute, [], Range2).
get_general_range(Attribute,], Range2):-
modifier(Name, Mod_attlist),
get_attribute_names(Mod_attlist, [1, Mod_attrlist),
member(Attribute, Mod_attrlist),
num_value_attr(Name, Attribute, [], Range2).

convert_input(Input, Values):-
fronttoken(Input, Input, "),
Values=[Input].

convert_input(Input, Values):-
fronttoken(Input, Vmin, Rest),
fronttoken(Rest, _, Vmax),
Values=[Vmin, Vmax].

find_all_num_value_attr(Name, Attribute, Ranges):-
findall(Range, num_value_attr(Name, Attribute, [], Range), Ranges_list),
simplify_lists(Ranges_list, [], Range_list),
remove_duplicates(Range_list, [], Rangelist),
reverse(Rangelist, Ranges).

num_value_attr(Name, Attribute, Old_range, Range):-
modifier(Name, Attlist),
get_val_list(Attlist, Attribute, Val_list),
find_num_values(Val_list, [], Value_list),
remove_duplicates(Value_list, [], Values),
min_number(Values, Vinin),
max_number(Values, Vmmax),
append([Vmax], Old_range, Temp_range),
append([Vmin], Temp_range, Range).

num_value_attr(Name, Attribute, Old_range, Range):-
class(Name, _, Attlist),
get_val_list(Attlist, Attribute, Val_list),
find_num_values(Val_list, [], Value_list),
remove_duplicates(Value_list, [], Values),
min_number(Values, Vinin),
max_number(Values, Vmax),
append([Vmax], Old_range, Temp_range),
append([Vmin], Temp_range, Range).

find_num_values([], Values, Values).
find_num_values([val([V1, V2], DIRest], Old_values, Values):-
str_real(V1, V1r),
str_real(V2, V2r),
append([V1r], Old_values, Temp_values),
append([V2r], Temp_values, New_values),
find_num_values(Rest, New_values, Values).

AS9

find_all_sym_values(Attribute, Value_list):-
findall(Values, get_sym_values(Attribute, Values), Values_lists),
simplify_lists(Values_lists, [], Values_list),
remove_duplicates(Values_list, {], Valuelist),
reverse(Valuelist, Value_list).

get_sym_values(Attribute, Values):-
modifier(Name, Mod_atilist),
get_attribute_names(Mod_atlist, [], Mod_attrlist),
member(Attribute, Mod_attrlist),
sym_value_attr(Name, Attribute, Values).

sym_value_attr(Name, Attribute, Values):-
modifier(Name, Aulist),
get_val_list(Attist, Attribute, Val_list),
find_sym_values(Val_list, [], Values),

find_sym_values({], Temp_values, Values):-
reverse(Temp_values, Values).
find_sym_values([val([Value], _IRest], Old_values, Values):-
not(str_real(Value, _)),
append([Value], Old_values, Temp_values),
find_sym_values(Rest, Temp_values, Values).

/* The clauses below describe the rules required to develop the user interface of the system. */

match_choices(_, [], New_list, Return_list):-
reverse(New_list, Return_list).
match_choices(Listl, [HeadIR], Old_list, Return_list):-
delete_item(0, R, Rest),
First=Head-1,
match_choice(Listl1, First, Item),
append({Item], Old_list, Temp_list),
match_choices(List1, Rest, Temp_list, Return_list).

match_choice([Iteml_}, 0, Itemn).

match_choice({_|Tail}, Length, Item):-
Lengthl=Length-1,
match_choice(Tail, Lengthl, Item).

user_interface:-
L=["Query Knowledge Bases", "Assist Selection of In-Situ Tests"],
makestatus(112, " Arrow keys:Inspect items Enter:Select Esc:Return to previous menu or
exit"),
longmenu_repeat(1, 3, 2, 7, 7, L, "options”, 1, Option),
check_option(Option),
fail.
user_interface.

A60

check_option(Option):-

Option=1,

removestatus,

Action_list={"get attributes", "find ancestors", "discover members", "find attribute and value",
"find modifiers", "find objects and madifiers"],

makestatus(112, " Arrow keys:Inspectitems Enler:Select Esc:Retum to previous menu or
exit"),

longmenu_repeat(4, 2, 6, 7, 7, Action_list, "actions", 1, Choice),

find_all_roots(Roots),

longmenu_repeat(11, 3, 5, 7, 7, Roots, "knowledge bases”, 1, Choicel),

Selection1=Choicel-1,

match_choice(Roots, Selection1, Root),

check_selection(Choice, Root, Roots).

check_option(Option):-

Option=2,

removestatus,

findall(X, class(X, _, _), Object_list),

split_list(tests, Object_list, Ground_objects, _),

makestatus(112, " Arrow keys:Inspect items Enter:Select Esc:Return to previous menu or
exit"),

longmenu_repeat(1, 43, 5, 7, 7, Ground_objects, "ground conditions”, 1, Choicel),

Selection1=Choicel-1,

match_choice(Ground_objects, Selectionl, Soil_category),

find_unique_attribute_data(reliability, Values, Factors),

longmenu_repeat(7, 5, 6, 7, 7, Factars, "geotechnical information”, 1, Choice2),

Selection2=Choice2-1,

match_choice(Factors, Selection2, Parameter),

longmenu_repeat(9, 35, 4, 7, 7, Values, "reliability", 1, Choice3),

Selection3=Choice3-1,

match_choice(Values, Selection3, Reliability),

find_all_test_attributes(Attribute_list),

delete_list([test_name, applicability, reliability}, Auribute_list, Additional_attributes),

makestatus(112, " Multiple selection allowed. F10:End selections Esc:No selections”),

longmenu_mult(16, 15, 5, 7, 7, Additional_attributes, "additional attributes to be considered"”,
[0], Choices),

match_choices(Additional_attributes, Choices, [], Selected_attributes),

makewindow(2, 79, 7, "Answer", 0, 1, 24, 78),

removestatus,

makestatus(112, "),

investigate(Soil_category, Parameter, Reliability, Selected_attributes, _, _, _, _, _, _, _, _),

removestatus,

makestatus(112, "press any key to return to the previous menu"),

readchar(),

removestatus,

removewindow.

A6l

check_selection(Choice, Root, Roots):-
Choice=1,
findall(X, class(X, _, _), List),
find_root_tree(Root, Roots, List, Root_tree),
Root_tree=[RootIRest],
concat(Root, " tree”, Label),
longmenu_repeat(6, 30, 7, 7, 7, Rest, Label, 1, Choice2),
Selection2=Choice2-1,
match_choice(Rest, Selection2, Object),
find_all_attrib_names(Object, Root, Attribute_list),
longmenu_repeat(14, 52, 7, 7, 7, Attribute_list, "attributes”, 1, Choice3),
Selection3=Choice3-1,
match_choice(Attribute_list, Selection3, Attribute),
makewindow(2, 79, 7, "Answer", 0, 1, 24, 79),
makestatus(112, "),
find_vallists(Object, Root, Attribute), nl, nl,
removestatus,
makestatus(112, "press any key to return to the previous menu"),
readchar(),
removestatus,
removewindow.

check_selection(Choice, Root, Roots):-
Choice=2,
findall(X, class(X, _,), List),
find_root_tree(Root, Roots, List, Root_tree),
concat(Root, " tree", Label),
longmenu_repeat(6, 30, 15, 7, 7, Root_tree, Label, 1, Choice2),
Selection2=Choice2-1,
match_choice(Root_tree, Selection2, Object),
makewindow(2, 79, 7, "Answer", 1, 1, 23, 78),
makestatus(112, ""),
find_all_ancestors(Object, [], _),
removestatus,
makestatus(112, "press any key to return to the previous menu"),
readchar(),
removestatus,
removewindow.

check_selection(Choice, Root, Roots):-
Choice=3,
findall(X, get_parents(X), List),
find_root_tree(Root, Roots, List, Root_tree),
longmenu_repeat(6, 30, 15, 7, 7, Root_tree, “classes”, 1, Choice2),
Selection2=Choice2-1,
match_choice(Root_tree, Selection2, Object),
makewindow(2, 79, 7, "Answer", 1, 1, 23, 78),
makestatus(112, "),
get_members(Object, _),
removestatus,
makestatus(112, "press any key to return to the previous menu"),
readchar(),
removestatus,
removewindow.

AG2

check_selection(Choice, Root , Roots):-
Choice=4,
removestatus,
makestatus(112, " Please wait..."),
get_all_names_with_factors(Names, Root, Roots),
removestatus,
makestatus(112, " Arrow keys:Inspect items Enter:Select Esc:Return to previous menu or
exit"),
longmenu_repeat(6, 30, 7, 7, 7, Names, “instances having modifiers", 1, Choice2),
Selection2=Choice2-1,
match_choice(Names, Selection2, Namne),
get_all_fact_list(Name, Root, Factors),
longmenu_repeat(14, 45, 7, 7, 7, Factors, "modifiers”, 0, Choice3),
Selection3=Choice3-1,
match_choice(Factors, Selection3, Factor),
makewindow(2, 79, 7, "Answer", 1, 1, 23, 78),
makestatus(112, "press any key to return to the previous menu"),
find_attribute_and_value(Name, Factor, (], _),
readchar(),
removestatus,
removewindow.

check_selection(Choice, Root, Roots):-
Choice=5,
removestatus,
makestatus(112, " Please wait..."),
get_all_names_with_factors(Names, Root, Roots),
removestatus,
makestatus(112, * Arrow keys:Inspect items Enter:Select Esc:Return to previous menu or
exit™),
longmenu_repeat(6, 30, 7, 7, 7, Names, "instances having modifiers”, 1, Choice2),
Selection2=Choice2-1,
match_choice(Names, Selection2, Name),
get_fact_attribute_list(Name, Mod_atulist),
longmenu_repeat(14, 45, 5, 7, 7, Mod_attrlist, "attributes”, 0, Choice3),
Selection3=Choice3-1,
match_choice(Mad_attrlist, Selection3, Attribute),
case(Name, Attribute).

check_selection(Choice, Root, Rools):-
Choice=6,
find_all_mod_attributes(Root, Roots, Attributes),
longmenu_repeat(6, 35, 4, 7, 7, Attributes, "attributes defined with modifiers", 1, Choice2),
Selection2=Choice2-1,
match_choice(Attributes, Selection2, Attribute),
situation(Attribute).

A63

case(Name, Attribute):-
find_all_num_value_attr(Name, Attribute, [Vininr, Vmaxr]), !,
str_real(Vmin, Vminr),
str_real(Vmax, Vmaxr),
concat("Enter value(s) (", Vmin, String1),
concat(Stringl, “, ", String2),
concat(String2, Vmax, String3),
concal(Suing3, ") : ", String4),
tempstatus(112, " Type in a value or a range of values (V1, V2)"),
lineinput_repeat(20, 25, 50, 7, 7, String4, "", Input),
convert_input(Input, Values),
makewindow(2, 79, 7, "Answer", 1, 1, 23, 79),
makestatus(112, "press any key to return to the previous menu"),
condition(Name, Attribute, Values).
case(Name, Attribute):-
sym_value_attr(Name, Attribute, Values),
makestatus(112, " Arrow keys:Inspect items Enter:Select Esc:Return to previous menu or
exit"),
longmenu_repeat(18, 55, 4, 7, 7, Values, "Values", 1, Selection2),
Choice3=Selection2-1,
match_choice(Values, Choice3, Value),
makewindow(2, 79, 7, "Answer", 1, 1, 23, 78),
makestatus(112, “press any key to return to the previous menu"),
find_modifiers(Name, Attribute, [Value], _),
readchar(),
removestatus,
removewindow.

condition(Name, Attribute, Values):-
find_modifiers(Name, Attribute, Values, _), !,
readchar(),
removestatus,
removewindow.

condition(Name, Attribute, Values):-
write(" sokoksokolok ook ")]
write(" * Error ") ul,
write(" sk dokokokadok'y] i, nl,
write(" Your input is incorrect!! Try again."), nl,
readchar(),
removestatus,
removewindow.

situation(Attribute):-
makestatus(112, " Please wait..."),
find_all_general_range(Attribute, [], [], [Vminr, Vmaxr]), !,
str_real(Vmin, Vminr),
str_real(Vmax, Vmaxr),
concat("Enter value(s) (", Vmin, String1),
concat(String1, ", ", String2),
concat(String2, Vmax, String3),
concat(String3,) : ", String4),
removestatus,
tempstatus(112, " Type in a value or a range of values (V1, V2)"),
lineinput_repeat(14, 25, 50, 7, 7, String4, """, Input),

Ac4

convert_input(Input, Values),
makewindow(2, 79, 7, "Answer", 1, 1, 23, 78),
makestatus(112, ""),
state(Attribute, Values).
situation(Attribute):-
find_all_sym_values(Attribute, Values),
removestatus,
longmenu_repeat(11, 45, 4, 7, 7, Values, "Values", 1, Selection2),
Choice3=S8Selection2-1,
match_choice(Values, Choice3, Value),
makewindow(2, 79, 7, "Answer", 1, 1, 23, 78),
makestatus(112, ""),
find_all_names_factors(Attribute, [Value], _,),
removestatus,
makestatus(112, "press any key to return to the previous menu"),
readchar(),
removestatus,
removewindow.

state(Attribute, Values):-
find_all_names_factors(Attribute, Values, _, _), !,
removestatus,
makestatus(112, "press any key to return to the previous menu"),
readchar(),
removestatus,
removewindow.
state(Attribute, Values):-
removestatus,
write(" *************"), I]],
write(" * Error *), nl,
write(" FRokkkkkckkokskk k) 1], nl, nl,
write(" Your input is incorrect!! Try again."), nl,
makestatus(112, "press any key to return to the previous menu"),
readchar(_),
removestatus,
removewindow.

GOAL

textmode(R, C), R1=R-1,
makewindow(1, 79, 0, "test", 0, 0, R1, C),
user_interface,

changestatus("End of execution").

APPENDIX B

PDC PROLOG FAX

PANEL i dbYY FeTheYI R Yhiltall TY YW LVEY Phy by B0 n, ¢

Technical Support

From: Praiog Development Center AJS To: Marina Moula
H.J, HolstVej Sa School of Enginigering any
DK 2605 Breendby Computer Science
Denmark Universily of Durham,
Fhone +45 36 72 10 22 South Road,
Facsimile <45 36 72 02 63 Ourham DH1 3LE, England

Phone; 09173742006 ext. 4235
Fax: + 44 91 374 2530
E-mall. manna.moula@durham,.ac.uk

Regeivea (date):09-11-82
Sent (date):12-11-92
8ervice Request No.; 11008

Question
Bug detected

Answer

We are sorry that the bug has causes you problems. We have detecled that there
is & bug, but it i3 riot fined yst.

You can avoid the bug by a littis ¢change in your file GRTESKB.PRO

1 Declare a dabace predicate:

predicates

class{symbo! list, attlist)
modifier(sy mhol.atilist)

database - modif % Suggested by POC
modif(symbol,altlist) % Suggested by PDC
clauses

2) change the modifier predicate to:

mudifier(organic_sand X):-
maodifier(sand.X).
modifier{organic_silt.XJ:-
modifier(silt.X).
modifizr{organic_clay.X):-
modifier(clay.X).
medifier(A.B):.-modii(A,B). % Sugiested by PDC

B1

TRV TRULYY

VEVLLYTHERT LIRILR 8 3G L9497

- &£

e-Z
——
-
—
L
Lo~
<nJ

-
.~
-~

nG, 2

3) Rename the rest of the modifier clauses to;

modif(rising_head_lest,
(att(applicapiiity,
{val({high),fact())},
val([medium].fact((})),
val([low],fact((]).
val([none).fact{In)).
att(reliability,
[val([highj,fact((})),
val({medwmj act{{]).
vai({low].Jact()),
vai(none} fact(pp.
modif(falling_nead_test,
[att{applicabliry,
{vai{(high].fact([]})),
val({medium],fact((})),

Extra questions

> 1) Al the moment all the facts required by the progrem are included in the
> GRTEEKB.PRO file. Weuld it be more appropriate to use internal dalabases for
> their storage sithough they reprezent static knowiedge, ¢r nct?

Yes it is normally more efficient 10 declare static tacts as internal databass
predicates.

The Service Request (SR) number given absve should be usce in all furiher correspondance
about this matter to FOC Technica! Support. POC Techaical Support uses the SR number for
proper lracking and.computing of your cosrespondances. Without this number. we cannot
propeacly service your requast.

Best Regargs
Leo Jensen

B2

P, 1

APPENDIX C

DIFFERENT VERSIONS OF THE IN-SITU TESTS HIERARCHY

IN-SITU TESTS (First Version)

Borehole Tests
Permeability Tests
Open Borehole Tests
Variable Head Test
Rising Head Test
Falling Head Test
Constant Head Test
Constant Head Test from Piezometers
Standard Penetration Test (SPT)
Vane Test
Pressuremeter Tests
Ménard-type Pressuremeter Test
Camcometer Test
Stressprobe Pressuremeler Test
Plate Tests
Large Diameter Borehole Plate Test

Small Diameter Borehole Plate Test

Probing Tests
Vane Test
Penetration Tests
Static Cone Penetration Test (CPT)
Dynamic Cone Penetration Test (DCP)
Static-Dynamic Penetration Test

Non-Borehole Field tests
Pumping Tests
In-situ Stress Measurements
Hydraulic Pressure Cells

Hydraulic Fracturing

C1

Bearing Tests
Vertical Loading Test
Lateral and Inclined Loading Tests
Pressurized Chamber Test
In-situ California Bearing Ratio Test (CBR)
In-situ Shear Test
In-situ Density Tests
Sand Replacement Tests
Small Pouring Cylinder
Large Pouring Cylinder
Scoop Test
Core Cutter Test
Weight in Water Test
Water Replacement Test
Rubber Balloon Test

Nuclear Tests

Geophysical Surveying
Seismic Tests
Seismic Refraction Test
Seismic Reflection Test
Resistivity Test
Gravimetric Test

Magnetic Test

C2

IN-SITU TESTS (Fourth Version)

Borehole Tests
Pre-bored Tests
Permeability Tests
Open Borehole Tests
Variable Head Test
Rising Head Test
Falling Head Test
Constant Head Test
Constant Head Test from Piezometers
Standard Penetration Test (SPT)
Vane Test
Borehole Shear Test
Pressuremeter Tests
M¢énard-type Pressuremeter Test
Push-in Pressuremeter Test
Plate Tests
Large Diameter Borehole Plate Test
Small Diameter Borehole Plate Test
Screw Plate Test (Field Compressometer Test)
Self-boring Tests
Pressuremeter Tests
Self-boring Pressuremeter Test
In-situ Stress Measurements
Ko meter Test
Self-boring Permeameter Test
Self-boring Vane Test
Plate Tests
Self-boring Plate Test

Probing Tests

Vane Test

Penetration Tests
Dynamic Cone Penetration Test (DCP)
Static Cone Penetration Test (CPT)
Mechanical Cone Penetration Test
Mechanical Cone Resistance Test
Mechanical Cone Resistance Friction Test
Electrical Cone Penetration Test
Electrical Cone Resistance Test
Electrical Cone Resistance Friction Test
Piezocone Test
Piezocone Friction Test
Static-Dynamic Penetration Test
Flat Plate Dilatometer Test
In-situ Stress Measurements
Total Stress Cell Test (Earth Pressure Cell)
Ko Stepped Blade Test (Iowa Stepped Blade)
Special Penetrometer Probes
Cone Pressuremeter Test (Pressio-Penetrometer)
Nuclear Density Probe Test
Electrical Density Probe Test
Electrical Conductivity Cone Test
Thermal Conductivity Cone Test

Acoustic Cone Test

Non-Borehole Field Tests

Pumping Tests

In-situ Suress Measurements
Hydraulic Fracturing

Bearing Tests
Vertical Loading Test
Lateral and Inclined Loading Tests
Pressurized Chamber Test
In-situ California Bearing Ratio Test (CBR)

In-situ Shear Test

C4

In-situ Density Tests

Sand Replacement Tests
Small Pouring Cylinder Test
Large Pouring Cylinder Test
Scoop Test

Core Cutter Test

Weight in Water Test

Water Replacement Test

Rubber Balloon Test

Nuclear Tests
Backscatter Test
Direct Transimission Test

Air Gap Test

Geophysical Surveying

Seismic Tests
Seismic Refraction Test
Seismic Reflection Test
Seismic Cross-Hole Test
Seismic Down-Hole Test
Surface Wave Test

Resistivity Test

Gravimetric Test

Magnetic Test

IN-SITU TESTS (Eighth Versionaninal) (test category)

Penetration Tests (test nature)
Standard Penetration Test (SPT) {test name)
Dynamic Probing Test (DP) {test group)

Dynamic Probing Light Test (DPL) (test name)
Dynamic Probing Medium Test (DPM) (test name)

Dynamic Probing Heavy Test (DPH) {test name)

Dynamic Probing Superheavy Test (DPSH) (test name)

Cone Penetration Test (CPT) (test group)

Mechanical Penetrometer Friction Test {test name)
Electrical Cone Penetration Tests (test type)

Electrical Penetrometer Friction Test (test name)

Piezocone Test (CPTU) (test name)

Piezocone Friction Test (test name)

Weight Sounding Test (WST) (test name)

Static-Dynamic Penetration Test (test name)

Special Penetrometer Tests (test nature)

Expansion Penetration Tests (test group)
Flat Plate Dilatometer Test (DMT) (test name)
Cone Pressuremeter Test (lest name)
Lateral Stress Cone Test (LSSCP) (test name)
Seismic Cone Test (SCPT) (test name)
Vibratory Cone Test (CPTV) (test name)
Density Probe Tests (test group)
Nuclear Density Probe Test (NCDT) (lest name)
Electrical Density Probe Test {test name)
Electrical Conductivity Cone Test (test name)
Thermal Conductivity Cone Test (test name)
Acoustic Cone Test (ACPT) (test name)

Pressuremeter Tests (test nature)
Ménard-type Pressuremeter Test (PMT) (test name)
Push-in Pressuremeter Test (PIP) (test name)
Self-boring Pressuremeter Test (SBP) (test name)

Co

In-situ Stress Measurement Tests (test nature)

Total Stress Cell Test (TSC) (test name)

Iowa Stepped Blade Test (ISB) {test name)
Hydraulic Fracturing Test (HFT) (test name)
Self-boring Ko meter Test (test name)

Shear Tests (test nature)
Vane Test (test name)
Self-boring Vane Test (test name)
Borehole Shear Test (BST) (test name)

In-situ Shear Test {test name)
Bearing Tests (test nature)
Plate Loading Tests (PLT) (iest name)

Screw Plate Test (SPLT)) (test name)
Self-boring Plate Test (test name)
Pressurized Chamber Test (test name)

In-situ California Bearing Ratio Test (CBR) (test name)
In-situ Density Tests (test nature)
Sand Replacement Tests (test group)

Small Pouring Cylinder Test (test name)

Large Pouring Cylinder Test (test nanie)

Scoop Test (test namie)

Core Cutter Test (test name)

Weight in Water Test (test name)

Water Replacement Test {test name)

Rubber Balloon Test (test name)

Nuclear Tests (test group)
Backscatter Test (test name)

Direct Transmission Test {test name)

Air Gap Test {test name)

C7

Permeability Tests

Borehole Tests
Variable Head Test
Rising Head Test
Falling Head Test

Constant Head Test
Self-boring Permeameter Test
Pumping Tests

Geophysical Surveying Tests

Seismic Tests
Seismic Refraction Test
Seismic Reflection Test
Seismic Cross-Hole Test (SCT)
Seismic Down-Hole Test (SDS)
Surface Wave Test

Resistivity Test

Gravimetric Test

Magnetic Test

C8

(test nature)
(test group)
(test type)

(test name)
(test name)
(test name)
(test name)

(test name)

(test nature)
(test group)
(test pame)
(test name)
(test name)
(test name)
(test name)
(test name)
(test name)

(test name)

APPENDIX D

DESCRIPTION OF IN-SITU TESTS

Brief Description of In-situ Tests

PENETRATION TESTS

Several penetration testing methods have been developed and are used at present all over the world
(Broms and Flodin, 1988)! . The interpretation of the results of penetration tests is mainly empirical.
As Meigh (1989) remarks, an empirical approach can only be successful if the test procedures are
standardised to a large degree. Recommended standards on the test methods were put forward by the
International Society of Soil Mechanics and Foundation Engineering Subcommittee on the penetration
test for use in Europe (ISSMFE, 1977). The subcommittee on the standardization of Penetration testing
in Europe recommended four standard penetration testing methods:

o Cone Penetration Test (CPT)

o Dynamic Probing Test (DP)

o Standard Penetration Test (SPT)

o Weight Sounding Test (WST)

A draft international reference test procedure for penetration testing, heading towards the finalization of
the standardization of penetration testing, was published in 1988 (ISSMFE, 1988). It is based on the
recommended standards of the European Subcommittee but includes recent developments, such as the

piezocone.

The test hierarchy presented in section 4.2, based on the recommendations given in the European and
the International standards, includes the penetration tests mentioned earlier, as well as an additional
penetration testing method, as is included in the British Standards (BS 5930, 1981), called:

o Static-Dynamic Penetration Test

A brief description of these tests is given below.

1 Note: Appendix D has a separate reference list.

D1

Cone Penetration Test (CPT)

The Cone Penetration Test consists of pushing into the soil, at a sufficiently slow rate, a series of
cylindrical rods with a cone at the base, and measuring continuously, or at selected depth intervals, the
penetration resistance, g, of the cone and if required the total penetration resistance and/or the friction

resistance, fg, on a friction sleeve.

The Cone Penetration Test includes what has been variously called the Static Penetration Test, the

Quasi Static Penetration Test and the Dutch Sounding Test.

Cone penetration tests are performed in order to obtain data on one or more of the following subjects:
1) the stratigraphy of the layers, and their homogeneity over the site
2) the depth to firm layers; the location of cavities, voids and other discontinuities
3) soil identification
4) mechanical soil characteristics

5) driveability and bearing capacity of piles

The cone penetrometers can be divided into three categories according to the system of measurement:
1) Electric Penetrometer, which uses electrical devices such as strain gauges and vibrating
wires, built into the tip
2) Mechanical Penetrometer, which uses a set of inner rods to operate the penetrometer tip
3) Hydraulic and Pneumatic Penetrometer, which uses hydraulic or pneumatic devices built

into the tip.

The above information, as well as other technical specifications, are presented in the international

reference test procedure (De Beer et al, 1988) covering the Cone Penetration Test,

D2

As the Hydraulic and Pneumatic Penetrometers are less common (Meigh, 1987), they are not included
in the in-situ tests hierarchy. The Mechanical and Electric Penetrometers can generally be further
divided into those for measurement of cone resistance only and those for measurement of both cone
resistance and local side friction (Meigh, 1987). However, it has become common practice to use
penetrometers with a friction sleeve, which are referred to as friction cones or friction penetrometers

(De Ruiter, 1982). Hence, only friction penetrometers are considered.

The Piezocone Test (cone penetration test with pore-pressure measurement - CPTU) has evolved from
the standard Electric Cone Test. It consists of a cone into which - or in the immediate vicinity of
which - a porous filter has been inserted to measure, by means of a pore-pressure sensor, the pore-water
pressure present at the interface between the penetrometer tip and the soil during penetration. This
pore-water pressure includes the excess pore-water pressure (positive or negative) arising from the
penetration of the cone and the push rods into the ground. In addition, the equilibrium piezometric
profile can be determined during a stop in penetration (Manby and Wakeling, 1990; Robertson and
Campanella, 1983b). Hence, the direct correlation between cone resistance, local side friction (when

available) and pore pressure can be studied.

The international reference test procedure (De Beer er al, 1988) includes the Piezocone Test without
standardizing any details such as the location and size of filter or the stiffness of the measuring sysiem,
as these areas are still under research. The Piezocone Test can be subdivided into those which provides
friction measurements and to those with no friction sleeve available. Both of them are included in the
test tree. The need for a friction sleeve though, when pore pressure data are available, was questioned

by some of the members of the committee on penetration testing (De Beer et al, 1988).

The Piezocone Test opens the way for an effective stress analysis of the cone resistance and for an

improved determination of soil parameters from CPT data (De Ruiter, 1982). However, it is in an early

stage of development and its applications should be used with caution (Meigh, 1987).

D3

Standard Penetration Test (SPT)

The Standard Penetration Test is the most widely used in-situ soil test worldwide. The test determines
the resistance of soils in a borehole to the penetration of a tubular steel sampler, and obtains a disturbed
sample for identification (Decourt ef al, 1988). It is performed by dropping a hammer weighing 63.5 kg
onto a drive head (screwed to the top of the drive rods) from a height of 760 mm (free fall). The
number of blows, N, required to achieve a penetration of 300 mm, after its penetration under gravity and
below a seating drive of 150 mm, is regarded as the penetration resistance, or N-value. Decourt et al

(1988) presented an international reference test procedure.

The main purpose of the test is to obtain an indication of the consistency of sands and gravels in terms
with relative density, D, of granular soils (BS 5930, 1981; Weltman and Head, 1983). This
interpretation of the penetration resistance still suffers a lot of critisism (Lunne et al, 1990). It is also
used to obtain an indication of the consistency of silts, clays and weak rocks in terms of undrained shear
strength (BS 5930, 1981; Weltman and Head, 1983). The penetration value can be related to other soil
characteristics in general use, such as angle of friction of granular soils and deformability, Engineering
applications of N-values include determination of settlement of granular soils, bearing capacity of
shallow and deep foundations, estimation of liquefaction potential and compaction control (Orchant et

al, 1988; Robertson, 1985, 1986; Lunne ef al, 1990).

Dynamic Probing Test (DP)

Dynamic Probing Test (or Dynamic Penetration Test) is probably the oldest penetration method for soil
exploration in the field of foundation engineering (Broms and Flodin, 1988). The test consists of
determining a driving resistance profile for a solid cone-shaped probe being driven into the soil by
means of regular blows from a hammer of mass M, dropped freely through a constant distance H, on to
an anvil at the top of the rods connected to the cone (Nixon, 1989). The number of blows required to

drive the penetrometer a defined distance is regarded as the penetration resistance.

D4

Four procedures are recommended by the ISSMFE Subcommittee (Stefanoff et al, 1988), classified
according to the mass of the hammer used:

o Dynamic Probing Light (DPL), corresponding to a hammer mass of 10 kg. The hammer should
fall freely from a height of 0.5 m. The investigation depth usually is not larger than about 8 m and the
number of blows should be recorded every 0.1 m (Nyg).

e Dynamic Probing Medium (DPM), corresponding to a hammer mass of 30 kg. The hammer
should fall freely from a height of 0.5 m. The investigation depth usually is not larger than about 20 to
25 m and the number of blows should be recorded every 0.1 m (N).

° Dynamic Probing Heavy (DPH), corresponding to a hammer mass of 50 kg. The hammer
should fall freely from a height of 0.5 m. The investigation depth usually is not larger than about 25 m
and the number of blows should be recorded every 0.1 m (N ().

L Dynamic Probing Superheavy (DPSH), corresponding to a hammer mass of 63.5 kg. The
hammer should fall freely from a height of 0.75 m. The investigation depth can be larger than 25 m and

the number of blows should be recorded every 0.2 m (Np).

The results of dynamic probing testing (Stefanoff et al, 1988), can be used mainly qualitatively for
general assessment of layering and types of subsoil and/or quantitatively to estimate engineering
parameters of cohesionless and cohesive soils, such as relative density, shear strength and
compressibilty. Some correlations also exist for the estimation of bearing capacity of deep and shallow
foundations. Applications are generally restricted to estimating pile length and for compaction control.
The Dynamic Probing Test is mainly used in cohesionless soils. Additional research is required in order
to get better correlations with soil properties and other testing methods (Nixon, 1989; Scarff, 1989; Card

et al, 1990)

Weight Sounding Test (WST)

The Weight Sounding Test originated in Sweden and became the most common penetration method in

the Scandinavian countries (Bergdahl er al, 1988; Broms and Flodin, 1988). According to Meigh (1989)

D5

it has never been used in UK, The weight penetrometer consists of a screw-shaped point, rods, weights
and a handle. The penetrometer is used as a static penetrometer in soft soils when the penetration
resistance is less than 1 kN and it is rotated when the resistance exceeds 1 kN. The point is penetrated
into the ground by the application of weights added in stages to maintain a constant rate of penetration,
and when it will not penetrate further under a weight of 1 kN, it is rotated. The number of half-turns
every 0.2 m of penetration is recorded (Nygyr). Due to the rotation of the screw-shaped point it can

penetrate even stiff clays and dense sands.

The Weight Sounding Test is primarily used to obtain a continuous profile and an indication of the layer
sequence, and of the lateral extent of different soil layers. The results can also be used to get an
indication of the relative density and angle of friction of cohesionless soils, as well as the shear strength
of cohesive soils. The degree of compaction can also be investigated. The bearing capacity of friction
piles and spread footings in cohesionless soils and the settlement of spread footings and rafts can be
determined as well. The above are discussed by Bergdahl er al (1988) and Broms and Flodin (1988).
Comparisons of the weight sounding penetration resistance with other penetration resistances have also
been carried out (Bergdahl et al, 1988; Bergdahl and Ottosson, 1988; Broms and Flodin, 1988;

Pitts, 1990).

Static-Dynamic Penctration Test

The Static-Dynamic Penetration Test combines the Standard Penetration testing method and the Cone
Penetration testing method (BS 5930, 1981, Weltman and Head, 1983). The equipment used is the
Dutch Cone Penetrometer. The penetrometer is driven directly into the ground and the number of
hammer blows is recorded for each 75 mm of penetration (dynamic part of the test). A static test is
carried out at intervals of 300 mm. The test is used for non-cohesive soils, particularly those with thin

coarse or dense layers.

D6

SPECIAL PENETROMETER TESTS

The electric cone penetrometer permits the incorporation of a variety of sensors, of which the data can
be recorded simultaneously with cone resistance and local side friction. A number of recent
developments have been reviewed by De Ruiter (1982), Meigh (1987), Manby and Wakeling (1990) and
Robertson(1986). A comprehensive report of these devices has been presented by Mitchell (1988).
Jamiolkowski and Robertson (1989) provide relevant references for a number of them. Some of them

are briefly discussed below.

Flat Plate Dilatometer Test (DMT)

The Flat Plate Dilatometer Test (or Marchetti Dilatometer Test) is considered to be a penetration tool
that performs a lateral expansion test. It consists of a stainless steel blade containing, on one face, a thin
flat circular expandable stainless steel membrane which is flush with the surrounding flat surface of the
blade (Marchetti, 1980). The blade is pushed into the ground usually using a penetrometer rig. At 20
cm depth intervals, the membrane is inflated by gas pressure. According to Marchetti (1980) two
measurements are taken at each test level: a) the pressure required to just begin to move the membrane
(reading A) and b) the pressure required to move its centre | mm into the soil (reading B). Campanella
et al (1985) suggested a modification to the test procedure, namely to record at each test level the
closing pressure (C reading) at which the membrane recontacts the plane of the blade, in addition to the
A and B readings. As this reading has only recently been introduced, its use has not been fully
investigated yet although it is claimed that it could be used to estimate pore water pressures

(Lutenegger, 1988).

These measurements are used to calculate three index parameters: material index, horizontal stress
index and dilatometer modulus. Soil profiling and identification as well as soil parameters such as
undrained shear strength of clays, friction angle of sands, density, overconsolidation ratio, lateral earth
pressure coefficient and stiffness can be derived from empirical correlations with dilatometer's index

parameters (Robertson, 1985; Jamiolkowski et al, 1985; Robertson, 1986; Orchant et al, 1988; Manby

D7

and Wakeling, 1990; Lunne et al, 1990). Luttenberg (1988) describes the current state-of-practice of

the test.

A dilatometer for offshore use has been developed at the Norwegian Geotechnical Institute that
incoprorates a pore pressure element (Mitchell, 1988; Lunne er al, 1990). A similar device has been

described by Campanella et al (1985).

Cone Pressuremeter Test

The Cone Pressuremeter is a penetration too] with a lateral expansion. The expansion tests are
performed after stopping the penetration at selected intervals This type of instrument has significant
future potential by combining the good logging capabilities of the CPTU and the good modulus
measurements of the pressuremeter. A number of systems have been developed or are under

development worldwide (Mitchell, 1988).

A device called Pressio-Penetrometer has been developed by Laboratoires des Ponts et Chaussées in
Paris (Amar et al, 1982). It consists of three modules, a penetrometer cone, a piezometer and a

pressuremeter cell, which are of 89 mm diameter. A friction sleeve can also be fitted.

Another device, which combines a piezometer, friction, bearing cone with a small size pressuremeter
element is discussed by Campanella et al (1985) and Robertson (1985,1986). The pressure expansion
test performed using the pressuremeter element is referred to as a Full- Displacement Pressuremeter

Test since the cone produces a full-displacement installation technique (Hughes and Robertson, 1985).

Lateral Stress Cone Test (LSSCP)
The Lateral Stress Cone consists of an electronic cone, the friction sleeve of which is instrumented with

a lateral stress sensing element to measure the normal stress acting on the sleeve (Robertson, 1986).

D8

Research is in progress to determine the relationship between the measured value of horizontal stress

and its initial value as a function of the initial relative density (Mitchell, 1988).

The development of the Lateral Stress Cone is discussed by Robertson (1986) and Mitchell (1988).

Jamiolkowski and Robertson (1989) provide references to relevant published work.

Seismic Cone Test (SCPT)

The Seismic Cone Test provides an economic means of determining shear and compression wave
velocities and hence permit the direct determination of dynamic shear modulus, Gy 4. Manby and
Wakeling (1990) discuss some of the systems that have been developed and are now in use

commercially.

Campanella et al (1985) and Robertson (1985, 1986) describe a system developed in North America.
This device combines a piezometer, friction, bearing cone with a set of miniature seismometers built
into the cone. The bearing, friction and pore pressure measurements are used to log the stratigraphy of a
site during penetration and a downhole seismic technique is performed during pauses in the penetration

to provide a profile of the in-situ shear wave velocity, Vg and hence the in-situ dynamic shear modulus,

Gmax-

Baldi et al (1988), describe a crosshole seismic piezocone penetration test in which the wave velocities
between two penetrometers (one with a source and one with a receiver) are measured. Hepton (1988),

reports downhole seismic testing using a seismic piezocone and a seismic flat dilatometer.

Vibratory Cone Test (CPTV)
The Vibratory Cone consists of a friction cone penetrometer equipped with an electrical vibrator and is
intended as a quick way for evaluating the susceptibility of cohesionless deposits to liquefaction by

defining a parameter D, which describes the relationship between the penetration resistance without

DI

vibration and the penetration resistance with vibration (Mitchell, 1988). More research is required to
establish quantitative correlations between D and liquefaction potential (Mitchell, 1988; Lunne et al,

1990).

Relevant references are given by Jamiolkowski and Robertson (1989).

Nuclear Density Probe Test (NCDT)

The Nuclear Density Probe consists of a cone penetrometer into which a nuclear source and detector are
incorporated. The Nuclear Density Probe Test enables the measurement of bulk density of the
penetrated geological materials using a gamma ray back scatter technique, with a radioactive source
near the point of the probe and a detector mounted a short distance above it, separated by a radiation
shield (De Ruiter, 1982; Meigh, 1987; Van Den Berg, 1987; Mitchell, 1988; Lunne et a/, 1990; Manbu
and Wakeling, 1990). Porosity and saturation can also be measured if both gamma and neutron rays are

used (Nieuwenhuis and Smits, 1982; Mitchell, 1988; Sully and Echezuria, 1988).

Further details on nuclear density probes and results obtained by their use can be obtained from Ledoux

et al (1982), Nieuwenhuis and Smits (1982) and Sully and Echezuria (1988).

Electrical Density Probe Test

The Electrical Density Probe Test (or Electrical Resistivity Probe Test) is used for the assessment of the
porosity or density. Meigh (1987), Van Den Berg (1987), Mitchell (1988), Lunne et al (1990) and
Manbu and Wakeling (1990) refer briefly to a two probe system for use in saturated sands. The first
probe, the soil probe, consists of a cone penetrometer into which four electrodes are fitted above the
friction sleeve. This device measures the electrical resistivity of the soil volume (soil plus water). The
second probe, the water probe, contains a measuring cell which is sucked full of water at selected

depths, and the resistivity of the water is determined. The readings are generally taken at 0.2 m

D10

intervals of depth. The ratio of the porewater resistivity to that of the saturated soil is related to the

porosity (and so to the in-situ density), by calibration tests performed in the laboratory.

Applications of the Electrical Density Probe Test are described by Kermabon et al (1969), Nelissen
(1988). Woeller et al (1991) describe a similar system, which measures the bulk resistivity of the soil

volume and the conductivity of the pore water for use in groundwater contaminant studies.

Electrical Conductivity Cone Test

The Electrical Conductivity Cone Test measures the electrical conductivity of the ground. Mitchell
(1988) and Lunne e al (1990) refer to an electrical conductivity probe that consists of a standard
clectric friction cone with electrodes fitted into an insulating body behind the friction sleeve. The test
can be used to detect salt water-fresh water boundaries and to locate contaminated groundwater

(Mitchell, 1988; Manby and Wakeling, 1990).

Thermal Conductivity Cone Test

The Thermal Conductivity Cone Test enables the measurement of soil temperatures and change in
temperature caused by the penetration process, by incorporating a temperature sensor (thermocouples or
thermisters) in the penetrometer. It is then possible for the thermal conductivity of the ground to be
computed from measurements of increase in temperature against time for a constant rate of heat input to

the heating element (De Ruiter, 1982; Mitchell, 1988; Manby and Wakeling, 1990; Lunne et al, 1990).

Acoustic Cone Test (ACPT)

The Acoustic Cone Test is still at a development stage but seems to be a promising, supplementary
in-situ testing method for site characterization. Results obtained so far suggest that the acoustic
response can provide useful information of the soil type and profile conditions (De Ruiter, 1982;

Meigh, 1987).

D1l

Tringale and Mitchell (1982) describe a friction cone penetrometer with a microphone located in the
cone and an accompanying data acquisition system recently developed (o receive, monitor, and record
the acoustic response generated by soil particles interacting with the penetrometer as it moves through

the soil.

Other acoustic cone penetrometer devices are discussed by Mitchell (1988).

PRESSUREMETER TESTS
The principle of pressuremeter testing is the expansion of a long cylindrical membrane installed in the
ground in order to measure a relationship between pressure and deformation for the soil. According to
the method of insertion, three categories of test can be distinguished (Mair and Wood, 1987):

a) Ménard- type Presuremeter Test (PMT)

b) Self-boring Pressuremeter Test (SBP)

¢) Push-in Pressuremeter Test (PIP)

Comprehensive reviews of pressuremeters have been provided by Baguelin, Jézéquel and Shields (1978)

and Mair and Wood (1987).

Ménard-type Pressuremeter Test (PMT)

The Ménard-type Pressuremeter Test consists of a long cylindrical probe covered with a rubber
membrane and connected (o a loading system and a measurement console. The device is lowered into a
pre-formed hole and the test is performed by injecting fluid under pressure into the probe which causes
expansion of the membrane into the soil. The volume injected as a function of the pressure applied is
measured which enables the strength and, mainly, the deformation characteristcs of the ground to be

investigated (Mair and Wood, 1987; Orchant ef al, 1988).

D12

However, it is believed that the Ménard-type Pressuremeter Test should not be considered as means of
obtaining fundamental soil properties, but as a testing method whose results should be used in direct

empirical design models for deep and shallow foundations (Baguelin ef al, 1978).

Because of lack of standardization, several varieties of pressuremeter are in current use, but they all
function on the same principle, as described above (Orchant et al, 1990; Mair and Wood, 1987;

Robertson 1985, 1986).

Self-boring Pressuremeter Test (SBP)

The Self-boring Pressuremeter has been developed both in the UK (Camkometer) and France (PAFSOR)
in order to overcome the problem of soil disturbance created by the insertion of the Ménard-type
Pressuremeters in pre-formed holes (Mair and Wood, 1987). The Self-boring Pressuremeter consists of
a part similar to the Ménard-type Pressuremeter and a small rotating boring tool incorporated at the tip
of the apparatus. The soil cuttings from the rotating action are slurried out to the surface via a double
string of rods. Load cells and transducers enable independent measurements of horizontal stress and

strain, equilibrium pore pressure and excess pore pressure (Lunne ef al, 1990).

The Self-boring Pressuremeter Test provides effective stress and deformation parameters when pore
water stress measurements are made, as well as a reasonable estimate of the in-situ horizontal strcss
(Orchant et al, 1988). An estimate of the coefficient of horizontal consolidation can be obtained from
pore pressure measurements (Mair and Wood, 1987). It should be noted though that there is limited

experience of these interpretation methods (Mair and Wood, 1987).

Push-in Pressuremeter Test (PIP)
The Push-in Pressuremeter, in which the device is pushed into the ground below the base of a borehole,
has been mainly developed for offshore use (Weltmann and Head, 1983; Mair and Wood, 1987; Lunne

et al, 1990). The device consists of a pressuremeter head, a spacer, a pressure developer and a control

D13

unit. The pressuremeter head consists of a hollow cylinder with an unrestricted passage through the
instrument similar to a sampling tube, enabling the extruded soil to slide into the head and finally into
the spacer, aiming to minimise the disturbance caused by the penetration action to the surrounding soils.
At the end of each test, a disturbed sample can be recovered. The membrane is inflated with oil
delivered under pressure by an electrical pump within the pressure developer and both volume increase
and pressure applied are monitored continuously. Therefore, the strength and the deformation
characteristics of the ground can be obtained. The test is not suitable for estimating the in-situ
horizontal stress (Mair and Wood, 1987). Huang and Haefele (1988), present a similar push-in

pressuremeter developed for on-shore use.

‘An alternative approach to the hollow push-in pressuremeter, discussed by Hughes and Robertson
(1985), is a closed-ended push-in pressuremeter, called a Full-Displacement Pressuremeter. Data from
self-boring and full-displacement pressuremeter tests in sand are also presented. Although this test
could be considered as a separate pressuremeter test, in this study its principle is demonstrated in the
Cone Pressuremeter Test described above, that incorporates a small diameter full-displacement

pressuremeter with a cone penetrometer.

Comparisons are presented by Huang and Haefele (1988) between test data obtained by the push-in

pressuremeter and a pre-bored, a self-boring, and a full displacement pressuremeter.

IN=-SITU STRESS MEASUREMENT TESTS

Total Stress Cell Test (TSC)

The Total Stress Cell (or Earth Pressure Cell) consists of pushing into the ground a spade-shaped, thin
cell and measuring the in-situ horizontal stress and stress changes. The principle of the test is that the
disturbance created by the insertion of the cell is allowed to dissipate with time, and the stresses

surrounding the pressure cell creep back to equilibrium (BS 5930, 1981; Ohya et al, 1983).

D14

Massarch (1975), presented a hydraulically operated total stress cell which permitted succesful
measurements of total lateral stress in soft clays. Tedd and Charles (1981), presented the application of
the technique to stiff clays. Lack of experience exists with the push-in spade-like total stress cell in
sands (Jamiolkowski et al, 1985). Lunne et al (1990), refer to a small total stress cell, that can be used

to measure both vertical and horizontal stresses from a borehole.

lowa Stepped Blade Test (ISB)

Handy et al (1982) presented the development and testing of the Iowa Stepped Blade Test (or K,
Stepped Blade Test). The concept of the test is that the disturbance caused by the insertion of any
device into the ground is unavoidable and that it varies as a function of the thickness of the device. The
test consists of pushing into the ground a series of pressure sensing membranes, each fixed to a blade of
increasing thickness. The pressure recorded on each total stress cell when positioned at the depth of
interest, is plotted versus the corresponding blade thickness. The plot is extrapolated to zero thickness
to give an estimate of the total lateral stress for the undisturbed state. In its present form the device
incorporates four total stress cells of different thicknesses (Mitchell, 1988; Lunne et al, 1990), instead of

three as reported by Handy et al (1982).

This device is an extension of the spade-shaped Total Stress Cell instrument, with the difference that,
according to Handy et al, (1982), it is not necessary in this case to wait for the equilibrium pressure to

be established in order to evaluate the in-situ lateral earth pressure (Jamiolkowski ef al, 1985).

Hydraulic Fracturing Test (HFT)

The principle of hydraulic fracturing is described by Bjerrum et al, (1972). The Hydraulic Fracturing
Test (Lunne ef al, 1990; Jamiolkowski e al, 1985; BS 5930, 1981} is usually performed by the use of
piezometers in soils and consists of gradually increasing the water pressure in a piczometer monitoring
the outflow rate for a few minutes at each pressure step, until a pressure is reached at which a large

increase in the flow rate occurs. This means that a crack has formed in the soil around the piezometer

D15

(perpendicular to the direction of the minor principal stress). When the pressure is reduced
incrementally, the width of the crack gradually decreases. The pressure at which the crack just closes is

assumed to correspond to the total in-situ horizontal stress. Hydraulic fracturing is also used in rocks.

Self-boring Ko meter Test

The Self-boring Ko meter is a device in which total pressure cells are installed in the sides of a square or
hexagonal self-boring probe in order to enable measurements of the total horizontal earth pressure in
two or three dimensions (Baguelin ef al, 1978). A Self-boring Ko meter, known as a Self-boring Lateral
Stress Cell, has been developed in UK. This device is also associated with the name Camkometer, as is

the Self-boring Pressuremeter developed in UK (Mair and Wood, 1987).

SHEAR TESTS

Vane Test

The Vane Test (BS 5930, 1981; Weltman and Head, 1983; Van Den Berg, 1987; Orchant et al, 1988)
consists of placing a four bladed vane in the undisturbed soil and rotating it from the surface. The
torque required to cause a cylindrical surface to be sheared by the vane is measured. The vane is
connected to the surface by steel torque rods. The test can be performed either at the bottom of a

borehole or to a limited depth by direct penetration using purpose-designed equipment.

The measured torque can be related to the undrained shear strength of the soil. The test can be extended
to measure the remoulded shear strength of the soil; hence, the Vane Test can also be used to investigate
the sensitivity of clays (Orchant et al, 1988; Lunne et al, 1990). The test is suitable for very soft to stiff
intact saturated cohesive soils (BS 1377, 1990). The interpretation of the results of the Vane Test is

discussed by Wroth (1984) and Lunne ef al (1990) among others.

D16

Lunne et al (1990) compare the requirements of the American, British and Norwegian national

standards for in-situ vane shear testing.

Self-boring Vane Test
In the Self-boring Vane Test (Baguelin er al, 1978), a length of the sides of the probe is fitted with
blades and this cylindrical part rotates on command once the probe is in position. The number and

height (projection) of the blades can be varied from one test to another.

Borehole Shear Test (BST)

The Borehole Shear Test is a test in which the shear resistance of the soil is determined in the borchole
by pressing two ridged plates horizontally against the borehole sides under a controlled pressure (normal
stress) and then pulling upwards on the shearing device at a constant rate until the maximum force is
reached (which can be converted to a maximum shear stress). The test is repeated at the same location
by increasing the pressure on the plates and again by pulling on the shearing device and hence
measuring the coresponding shear stress. Shear strength parameters ¢ and ¢ are determined by plotting
shear stress versus normal stress and drawing the Mohr-Coulomb failure envelope (Lamrechte and

Rixner, 1981).

The current BST equipment is lightweight and portable, requires no external power to operate it, and a

complele test can usually be accomplished in about an hour (Lutenegger and Hallberg, 1981).

In-situ Shear Test

The principle of this In-situ Shear Test (BS 5930, 1981; Weltman and Head, 1983) is similar to that of
the laboratory shear box test. A reinforced open box is moved laterally by a jacking system while a
normal stress is applied to the top by jacking from a fixed point, subjecting a sample of ground to direct
shear. The test is generally designed to measure the peak shear strength of the in-situ material as a

function of the stress normal to the sheared plane. Rates of shear vary according to whether total or

D17

effective parameters are required. More than one test is generally required to obtain a realistic design

value. Indication of the residual shear strength may be obtained by reversal and/or re-shear.

A detailed study of the results of undrained direct simple shear tests is presented by Wroth (1984).
Marsland (1990) examines the determination of effective strength parameters of stiff fissured clays

using large in-situ shear boxes.

BEARING TESTS

Plate Loading Tests (PLT)

The Plate Loading Tests (BS 5930, 1981; Weltman and Head, 1983; Robertson, 1985, 1986; Van Den
Berg, 1987) involve measuring the penetration of a rigid plate into a soil or weak rock caused by an
applied load. The plate is usually loaded through a column formed by a steel tube; the load is applied
to the column by means of a hydraulic jack operating against the resistance of kentledge, tension piles
or ground anchors. The penetration of the plate under load is generally transmitted to dial gauges at the
surface by means of a settlement measurement rod that is located within the steel tube by which the load
is applied. The test can be carricd out in shallow pits or trenches or at depth in the bottom of a
borehole, pit or adit. The diameter of the plate can vary according to the depth at which the test is
performed, the dimensions of the load in the real structure and on the grain size of the material to be

tested (Van Den Berg, 1987).

The test is used to determine the deformation characteristics of the material beneath the loading plate, as
well as the shear strength characteristics if the test is continued to failure. The test is usually carried out
either under a series of maintained loads (allowing consolidation before a further load increment is
applied) or at a constant rate of penetration depending on whether the drained or undrained strength and
deformation characteristics are required (BS 5930, 1981). To determine the variation of ground

properties with depth, it will generally be necessary to carry out a series of plate tests at different

D18

depths. The interpretation of Plate Loading Tests in order to obtain deformation parameters is discussed

by Jamiolkowski et al (1985).

Screw Plate Test (SPLT)

The Screw Plate Test (or Field Compressometer Test) (Weltman and Head, 1983; Robertson 1985,1986;
Orchant et al, 1990; Massarsch, 1986), is a recent variation of the conventional Plate Loading Test. The
test consists of the measurement of the load versus settlement and settlement versus time behaviour of a
helical plate screwed into the natural soil with a minimum of disturbance at any desired depth in
conjuction with a prebored hole (Mitchell and Kay, 1985). The plate is loaded in a similar manner to
the Plate Loading Test. The test can be performed with either load or displacement control. The Screw
Plate Test is used when it is required to perform tests at depth, since it is faster and less expensive than

Plate Loading Tests (Jamiolkowski ef al, 1985).

The Screw Plate Test has been utilised for the measurement of the in-situ deformability characteristics
for both cohesive and cohesionless soils and the undrained shear strength of cohesive soils. Parameters
for drained conditions can also be obtained (Kay and Parry, 1982). Test procedures and interpretation
of the results have been described by Selvadurai er al (1980), Kay and Parry (1982), Kay and Avalle
(1982) and Selvadurai (1986) amongst others. Jamiolkowski et al (1985) discuss the interpretation of

the Screw Plate Test for the determination of deformation parameters.

Self-boring Plate Test

Mori (1983) presents a self-boring instrument used for borehole loading tests that minimises the
disturbance of soil caused by installation. The instrument consists of a cylinder closed with a plate at its
lower end. A couple of blades scrape the soil beneath the loading plate when the cylinder is rotated and
provide a clean and smooth surface. Cuttings are forced into the space above the loading plate through
an opening between the plate and the blade. The plates are retracted into the loading plate when the

plate reaches the desired depth.

D19

The Self-Boring Plate Test is mainly applied to obtain design parameters for deep foundations resting
on dense sandy soils or stiff cohesive soils. Mori (1983) presents resuits of the test for dense sandy

soils.

Pressurized Chamber Test

The Pressurized Chamber Test (BS 5930, 1981), is carried out in an underground excavation or length
of tunnel and consists in charging a chamber with water under various pressures in order to obtain the
deformation moduli of the surrounding soil. The test is usually used in projects involving tunnels
carrying water under pressure. It is necessary to know the drainage conditions which apply during the

test in order to know whether the modulus obtained is drained, partially drained or undrained.

In-situ California Bearing Ratio Test (CBR)

The In-situ California Bearing Ratio Test (BS 5930, 1981; Weltman and Head, 1983; Van Den Berg,
1987) consists of pushing a cylindrical plunger into the soil at a given rate and comparing the
relationship between force and penetration into the soil to that of a standard material in order to obtain
the California Bearing Ratio (CBR) value of the penetrated soil. The test is an empirical method in

which design curves are used to estimate road pavement thickness appropriate to the CBR of the soil.

IN-SITU DENSITY TESTS

Most of the available methods depend on the removal of a representative sample of soil from the site
and then determining its mass and the volume it occupied before being removed. The tests based on
this principle that are briefly examined below, are the Sand Replacement Tests, the Core Cutter Test, the
Weight in Water Test, the Water Replacement Test, and the Rubber Ballon Test. The variations between
these methods lie in different procedures used for measuring the volume, according to the nature of the
soil being tested. In addition, Nuclear Tests are described that use gamma rays for the determination of

the in-situ density of soil.

D20

The tests determine bulk density. All methods are suitable for shallow depth investigations. Nuclear

probes have now been developed which can be lowered down boreholes for deeper investigations.,

Sand Replacement Tests

In the Sand Replacement Tests, dried graded sand is poured into the void from which the soil sample is
taken to determine its volume (Weltman and Head, 1983). BS 5930 (1981) refer to three variations on
the sand replacement method:

o Small Pouring Cylinder Test

o Large Pouring Cylinder Test

o Scoop Test

The first, employing a small pouring cylinder, is used for fine and medium grained soils. The second,
using a large pouring cylinder, is suitable for fine, medium and coarse grained soils. Both methods are
described in BS 1377 (1990). The third may be used for fine. medium, coarse grained soils but it is
essentially cruder than the first two and yields less reliable results; hence its use should be restricted to
situations where no pouring cylinder is available (BS 5930, 1981). This method is not included in the

revised BS 1377 (1990).

Core Cutter Test
In the Core Cutter Test a cylindrical cutter is driven into the soil and the known internal volume of the
cylinder is completely filled. The method, described in BS 1377 (1990) is restricted to cohesive soils

where a core may be cut and the sample does not fall out.

Water Replacement Test
In the Water Replacement Test the density of natural or compacted coarse-grained soils is measured by
using a circular density ring on the ground surface and a flexible plastic sheet to retain water to

determine the volume of an excavated hole (BS 1377, 1990).

D21

Weight in Water Test
The Weight in Water Test is applicable to any soil where representative samples occur in discrete lumps
which will not disintegrade during handling and submersion in water (BS 5930, 1981). This method is

not included in the revised BS 1377 (1990).

Rubber Balloon Test
The Rubber Balloon Test is a water replacement method with an inflated rubber membrane retaining the
liquid required to measure the volume of the test hole (BS 5930, 1981). The method is described in

ASTM D 2167 (1966).

Nuclear Tests

The Nuclear Tests (BS 1377, 1990; ASTM D2922, 1971) determine the density of soils through the use
of a nuclear gauge by the attenuation of gamma rays, where the gamma source or gamma detector (or
both) are placed at or near the surface. The rate at which the gamma rays arrive from the gamma source
through the material being tested to the gamma detector is determined. The relationship between the
nuclear-count rate and material density is determined by correlation tests of materials of known average

densities.

Three methods are examined, depending on the test geomeltry used:
o Backscatter Test
o Direct Transmission Test

o Air Gap Test

In the Backscatter Test both the source and the detector are placed on the material under test. Some
gauges include a nuclear moisture measuring system allowing the determination of in-situ dry density
and moisture content. The method is described in the British Standard (BS 1377, 1990), the American

Standard (ASTM D 2922, 1971) and the Australian Standard (AS 1289.E8.2, 1984).

D22

The Direct Transmission Test, which is also described in the British Standard, the American Standard
and the Australian Standard (AS 1289.E8.1, 1984), requires that either the gamma source or the detector
shall be housed in a probe for inserting in the material to be tested. Facilitiy for the determination of
dry density and moisture content could also be provided by a gauge operating in the direct transmission

mode (BS 1377, 1990; AS 1289.E8.1, 1984).

In the Air Gap Test the gauge will be supported by cradle or spacers at the optimum air gap, so both the
gamma source and the detector are at optimum height above the material being tested. This method,
described only in the American Standard (ASTM D 2922, 1971), requires taking one or more readings

in the backscatter position and the air gap position.

PERMEABILITY TESTS

Borehole Tests

The determination of in-situ permeability by tests in boreholes involves the application of a hydraulic
pressure head difference between water in the borehole and that in the ground to measure the resulting
flow. For more accurate measurements a piczometer is installed by surrounding it with a granular filter
to prevent erosion of the ground. According to whether the pressure in the borehole is kept constant or
not it is possible to distinguish the following types of test:

o Variable Head Test

o Constant Head Test.

The Variable Head Test (BS 5930, 1981; Weltman and Head, 1983; Van Den Berg, 1987) can be further
subdivided into:
o Rising Head Test

o Falling Head Test.

D23

In the Rising Head Test (or Outflow Test), the pressure in the borehole may be decreased by pumping
water out of it, whereas in the Falling Head Test (or Inflow Test), the pressure in the borehole may be
increased by introducing water into it. The head in the borehole is then allowed to equalise with that in
the ground, the actual head being measured at intervals of time from the beginning of the test. These

tests are suitable in medium and coarse grained soils.

The Constant Head Test (BS 5930, 1981; Weltman and Head, 1983; Van Den Berg, 1987) is usually
conducted as an inflow test in which the rate of flow of water into the ground is adjusted until a constant
head is achieved. The rate of flow required to maintain the constant water Ievel is measured. In
compressible soils such as silt or clay, a piezometer is usually installed. The Constant Head Tests are
likely to give more accurate results than Variable Head Tests but they are more complicated to perform.

They are used when the rise or fall of water is too rapid for accurate timing (Weltman and Head, 1983).

Self-boring Permeameter Test

In this test the self-boring technique is used for the installation of the piezometer with minimal
disturbance of the ground allowing at the same time the perfomance of the test without delay. The
Self-boring Permeameter Test (Bageulin er «f, 1974; Jéz8quel and Miecussens, 1975) consists of the
self-boring part, the filtering part and the ward cells. The filtering part consists of a porous cylinder
placed in a direct line behind the cutting edge. The ward cells, placed on either side of the filtering part,
consist of rubber membranes that dilate under pressure of water or gas and serve two purposes: i) to hold
in place the de-aerating cylinder around the piezometer, until the unit arrives at the water table and ii)

during the permeability test, to prevent leakage of water between the permeameter and the soil.

A constant head test is performed and the coefficients of permeability and consolidation are measured.
The horizontal earth pressure coefficient, and therefore K, can also be measured using hydraulic

fracturing (Bageulin et al, 1978; Jézéquel and Mieussens, 1975).

D24

Pumping Tests

A large scale Pumping Test (BS 5930, 1981; Weltman and Head, 1983) is the best, but most expensive
method, presently available to estimate the permeability in a relative pervious deposit (k>10'4 cm/sec)
(Jamiolkowski er al, 1985). In principle, a pumping test consists of pumping at a known constant rate
from a well and observing the drawdown effect on ground water levels at some distance away from the
pumped well. The test procedure is to bore a pumping well to the full depth of the aquifer to be tested
and install two lines of observation wells (four in minimum) perpendicular to each other and radially in

plan from it. The analysis of the results is discussed in detail in the British Standards (BS 5930, 1981).

GEOPHYSICAL SURVEYING TESTS

The Geophysical Surveying Tests are based on determining variations in a physical property of rock or
soil, such as velocity of shock waves (seismic methods), electrical conductivity (resistivity method),
variations in density (gravimetric method) or magnetic susceptibility (magnetic method) (BS 5930,
1981). When conducting a geophysical survey, subsurface conditions are examined indirectly by
interpreting the contrast in physical properties between different materials and their relationship with
engineering parameters. These methods are complementary to direct methods of subsurface

exploration.

Seismic Methods

The Seismic Methods involve the sudden release of energy by the use of an explosive charge in the
ground or from impacting or vibrating the ground in order to generate seismic shock waves to propagate
through the soil and the measurement of the velocities of the waves. These methods rely on the
differences in the velocity of the generated waves through different geological or man-made materials.
In general two types of waves are generated by a seismic disturbance, body waves (compressional and

shear) and surface waves (Rayleigh and Love). The main seismic methods are discussed briefly below.

D25

o Seismic Refraction Test

The Seismic Refraction Test (Clayton ef al, 1982) is one of the most frequently used geophysical
techniques which consists of producing seismic body waves, either from a small explosive charge or
from a mechanical source and accurately measuring the time required for them to travel from a source
to vibration detectors (geophones) at varying known distances away (BS 5930, 1981). The technique is

suitable for investigating shallow depths (Weltman and Head, 1983).

Seismic velocities have been correlated to malerial type (Orchant et al, 1988; Bell et al, 1990) and have
been used to determine the dynamic shear modulus (Woods, 1978). The greatest use of this technique is
in the determination of rockhead level (BS 5930, 1981). Applications of the Seismic Refraction Test

are discussed by Lee and De Freitas (1990), and McDowell (1990) among others.

o Seismic Reflection Test

The Seismic Reflection Test (Clayton et al, 1982) involves the generation of seismic body waves at or
near the surface and the reception of the energy reflected back to the geophones from acoustic
impedance contrasts at depth. The acoustic impedance is the product of seismic velocity and density
(Orchant er al, 1988). The Seismic Reflection Test, only recently used for land-based investigations to

shallow depth, is mainly used for accurate profiling of geological structures (Clayton et al, 1982).

o Seismic Cross-Hole Test (SCS)
The Seismic Cross-Hole Test (Woods, 1978; Clayton, 1982) consists of generating a source of seismic
energy in or at the bottom of one borehole and measuring the time required for that energy (body

waves) to travel to the detector placed in another borehole by the maost direct route.

From the borehole spacing and travel time the velocity of the scismic wave is computed, and it is then

used to compute the shear modulus. The technique is considered by many engineers to be the most

D26

reliable field method for obtaining the shear modulus. Anderson er al, (1978), Arango et al, (1978),

McDowell (1990), Pinches and Thompson (1990) discuss results obtained from cross-hole tests.

o Seismic Down-Hole Test (SDS)

The Seismic Down-Hole Test involves lowering one or more geophones into a borehole and clamping
them at preselected depths in predetermined orientations, An impulse is generated at the surface of the
ground near the top of the borehole and the times required for the body waves to travel between the
surface and down-hole receivers is measured (Woods, 1978). Results obtained from Down-Hole Tests

are discussed by Arango er al, (1978), McDowell (1990) and, Pinches and Thompson (1990).

o Surface Wave Test

The Surface Wave Test employ Rayleigh and Love waves (surface waves) for the determination of
shear modulus of near surface soils (Woods, 1978; Lunne et al, 1990). Using an electro-magnetic or
some other harmonic vibrator, a steady state R-wave can be generated and the output of a geophone
moved along the surface on a radius from the vibrator is compared to a reference or input signal and
in-phase points are identified. A plot of distance from source versus number of waves can be used to
determine the average wavelength for the R-wave from which the shear wave velocity can be
calculated. It has been shown that steady-state Love waves can be used to determine shear wave
velocities for a soil profile with a low velocity layer on top of a high velocity layer; Woods (1978)

comments that he knows of no large scale applications of this technique for engineering purposes.

Resistivity Test

The Resistivity Test (or Electrical Resistivity Test) (Clayton et a/, 1982; Weltman and Head, 1983; BS
5930, 1981; Orchant er al, 1988), used for investigating simpler geological problems, rely on measuring
subsurface variations of electrical current flow revealed by transmitting direct or alternating current into
the subsurface by two electrodes (current electrodes). Another pair of electrodes (potential electrodes)

measures the voltage in the soil generated by this current flow.

D27

The Electrical Resistivity Test is commonly used to map lateral and vertical changes in geological or
man-made materials, Lateral changes in resistivity are detected by using a fixed electrode spacing
(appropriate to the depth of interest) and moving the whole electrode array along a traverse between
each resistivity measurement (Profiling method). Vertical changes are measured by progressively
moving the electrodes outwards with respect to a fixed central point, increasing each time the depth of

penetration (Electrical Sounding method).

The method may also be used to determine the depth to the water table and to identify buried features.
The analysis of the results is done by curve matching using standard curves for various soil layer
configurations. Results obtained from the Electrical Resistivity Test are discussed by Frost and Dumble

(1986), Barker et al, (1990) amongst others,

Gravimetric Test

The Gravimetric Test (Clayton e al, 1982; BS 5930, 1981) involves measuring lateral changes in the
earth’s gravitational field. Such variations arc associated with near surface changes in density; therefore
they may be related to changes in soil or rock type. In ground investigation, gravity methods are limited

to locating large faults and the extent of large buried channels.

Magnetic Test

The Magnetic Test (Clayton, 1982, BS 5930, 1981) is based on the measurement of local variations in
the earth's magnetic field. Such variations are associated with differences in magnetic susceptibility
(the degree to which a body is magnetised) of rocks and soils or the presence of magnetised bodies.
Magnetic techniques are used to locate localised subsurface features of engineering interest such as

abandoned mine shafts, sink holes and buried services.

D28

References

Amar S., Baguelin F. and Jézéquel J.F. (1982), Pressio-Penetrometer for Geotechnical Surveys on Land
and Offshore, in Proceedings of the 2nd European Symposium on Penetration Testing, ESOPT I,
Amsterdam, May, Balkema A.A., Rotterdam, vol. 2, pp 419-423.

Anderson D.G., Espana C. and McLamore V.R. (1978), Estimating In Situ Shear Moduli at Competent
Sites, Earthquake Engineering and Soil Dynamics, Specialty Conference, Pasadena, CA, June, pp
181-197.

Arango I, Moriwaki Y. and Brown F. (1978), In-situ and Laboratory Shear Velocity and Modulus,

Earthquake Engineering and Soil Dynamics, Specialty Conference, Pasadena, CA, June, pp
198-212.

AS 1289.E8.1 (1984), Determination of Field Moisture Content and Field Dry Density of a Soil -
Method Using a Nuclear Surface Moisture-Density Gauge - Direct Transmission Mode, Methods
of Testing soils for Engineering Purposes, Part E - Soil Compaction and Density Tests,
Australian Standard, pp E8.1-1-E8.1-2.

AS 1289.E8.2 (1984), Determination of Field Moisture Content and Field Dry Density of a Soil -
Method Using a Nuclear Surface Moisture-Density Gauge - Backscatter Mode, Methods of
Testing soils for Engineering Purposes, Part E - Soil Compaction and Density Tests, Australian
Standard, pp E8.2-1-E8.2-2.

ASTM D2167-66 (1966), Density of Soil in Place by the Rubber-Balloon Method, American Society for
Testing Materials, pp 267-270.,

ASTM D2922-71 (1971), Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow
Depth), American Society for Testing Materials, pp 357-364.

Bageulin F., Jézéquel J.F. and Shields D.H. (1978), The Pressuremeter and Foundation Engineering,
Series on Rock and Soil Mechanics, vol. 2, (1974/77), n. 4, Trans Tech Publications, 617 p.

Bageulin F., and Jézéquel J.F.and Le Méhauté A. (1974), Le Perméamétre Autoforeur, Canadian
Geotechnical Journal, vol.11, pp 624-628.

D29

http://E8.l-l-E8.l-2
http://E8.2-l-E8.2-2

Baldi B., Bruzzi D., Superbo S., Battaglio M. and Jamiolkowski M. (1988), Seismic Cone in Po River
Sand, in Proceedings of 1st International Symposium on Penetration Testing (ISOPT-1), Orlando,
De Ruiter J. (ed.), Balkema A.A., Rotterdam, March, vol. 2, pp 643-650.

Barker R.D., Lerner D.N. and Rodrigeuz-Estrada H.V. (1990), Resistivity Sounding for a Landfill
Investigation at Bray, Berkshire, Field Testing in Engineering Geology, (eds. Bell F.G., Cripps
J.C., Culshaw M.G. and Coffey J.R.), Geological Society Engineering Geology Special
Publication No 6, pp 287-294.

Bell F.G., Cripps J.C., Culshaw M.G. and Coffey J.R. (eds) (1990), Field Testing in Engineering
Geology, Session 2: Pressuremeter Testing in Soils, Geological Society Engineering Geology
Special Publication No 6, pp 23-63.

Bergdahl U. and Ottosson E. (1988), Soil Characteristics from Penetration Test Results: A Comparison
Between Various Investigation Methods in Non-Cohesive Soils, in Proceedings of 1st
International Symposium on Penetration Testing (ISOPT-1), Orlando, (ed. De Ruiter 1.),
Balkema A.A., Rotterdam, vol. 1, pp 399-405.

Bjerrum L., Nash JK.T.L.,Kennard R.M. and Gibson R.E. (1972), Hydraulic Fracturing in Field
Permeability Testing, Géotechnique, vol. 22, n. 2, pp 319-332,

British Standard 1377 (1990), In-situ Tests, British Standard Methods of Test for Soils for Civil

Engineering Purposes, Part 9, British Standards Institution, London.

British Standard 5930 (1981), Code of Practice for Site Investigations, British Standards Institution,

London.

Broms B.B. and Flodin N. (1988), History of Soil Penetration Testing, in Proceedings of 1st
International Symposium on Penetration Testing (ISOPT-1), Orlando, (ed. De Ruiter J.),
Balkema A.A,, Rotterdam, vol. 1, pp 157-220.

Campanella R.G., Robertson P.K., Gillespie D.G. and Grieg J. (1985), Recent Developments in In-situ

Testing of Soils, in Proceedings of the 11th International Conference on Soil Mechanics and

Foundation Engineering (ISSMFE), San Francisco, Balkema A.A., Rotterdam, vol.2, pp 849-854.

D30

Card G.B., Roche D.P. and Herbert S.M. (1990), Applications of Continuous Dynamic Probing in
Ground Investigation, (eds. Bell F.G., Cripps J.C., Culshaw M.G. and Coffey J.R.), Geological
Society Engineering Geology Special Publication No 6, pp 129-135.

Clayton C.R.L., Simons N.E. and Matthews M.C. (1982), Site Investigation, Granada Publishing Lid,
p424.

De Beer E.E., Goelen E., Heynen W.J. and Joustra K. (1988), Cone Penetration Test (CPT):
International Reference Test Procedure, in Proceedings of 1st International Symposium on
Penetration Testing (ISOPT-1), Orlando, (ed. De Ruiter J.), Balkema A.A., Rotterdam, vol, 1,
pp 27-51.

De Ruiter J. (1982), The Static Cone Penetration Test, State of the Art Report, in Proceedings of the 2nd
European Symposium on Penetration Testing, ESOPT II, Amsterdam, May, Balkema A.A.,
Rotterdam, pp 389-405.

Decourt L., Muromachi T., Nixon LK., Schmertmann J.H., Thorburn S. and Zolkov E. (1988), Standard
Penetration Test (SPT): International Reference Test Procedure, in Proceedings of 1st
International Symposium on Penetration Testing (ISOPT-1), Orlando, (ed. De Ruiter 1),
Balkema A.A., Rotterdam, March, vol. 1, pp 3-26.

Frost F.B. and Dumble 1P, (1986), The Application of Ground Conductivity and Offset Wenner
Resistivity Soundings to Optimise the Investigation of a 300ha Site in the West Midlands, Site
Investigation Practice: Assessing BS 5930, Geological Society, Engineering Geological Special
Publication No. 2, (ed. Hawkins A. B.), pp 241-246.

Handy R. L., Remmes B., Moldt S., Lutteneger A.J. and Trott G. (1983), In-situ Stress Determination
by Towa Stepped Blade, Journal of Geotechnical Division, ASCE, vol. 109, GT11, pp 1405-1422.

Hepton P. (1989), Shear Wave Velocity Measurements During Penetration Testing, Proceedings of the
Geotechnology Conference on Penetration Testing in the UK, Birmingham, Institution of Civil
Engineers, Thomas Telford, London, pp 275-278.

Huang A. -B. and Haefele K.C. (1988), A Push-In Pressuremeter/Sampler, in Proceedings of 1st

International Symposium on Penetration Testing (ISOPT-1), Orlando, (ed. De Ruiter 1),
Balkema A.A., Rotterdam, March, vol. 1, pp 533-538.

D31

Hughes J.M.O. and Robertson P.K. (1985), Full-Displacement Pressuremeter testing in Sand, Canadian
Geotechnical Journal, vol. 22, n, 3, pp 298-307.

ISSMEFE, (1977), International Society for Soil Mechanics and Foundation Engineering, Report of the
Subcommittee on Standardization of Penetration Testing in Europe, in Proceedings of 9th
International Conference on Soil Mechanics and Foundation Engineering, Tokyo, vol. 3,

appendix 5, pp 95-152.

ISSMFE, (1988), Technical Committee on Penetration Testing, International Reference Test
Procedures, in Proceedings of 1st International Symposium on Penetration Testing (ISOPT-1),
Orlando, (ed. De Ruiter 1.), Balkema A.A., Rotterdam, vol. 1, pp 3-90.

Jamiolkowski M., Ladd C.C., Germaine J.T. and Lancellotta R. (1985), New Developments in Field and
Laboratory Testing of Soils, Theme Lecture, in Proceedings of the 11th International Conference
on Soil Mechanics and Foundation Engineering (ISSMFE), San Francisco, Balkema A.A,
Rotterdam, vol.1, pp 57-153.

Jamiolkowski M. and Robertson P.K. (1989), Future Trends for Penetration Testing, Closing Address,
Proceedings of the Geotechnology Conference on Penetration Testing in the UK, Birmingham,

Institution of Civil Engineers, Thomas Telford, London, pp 321-342,

Jézéquel J.F.and Micussens C. (1975), In Situ Measurement of Coefficients of Permeability and
Consolidation in Fine Soils, Proceedings of the Conference on In Situ Measurement of Soil

Properties, American Society of Civil Engineers, Raleigh, June, vol.1, pp 208-224.

Kay J.N. and Avalle D.L. (1982), Application of Screw Plate to Stiff Clays, Journal of Geotechnical
Engineering Division, January, ASCE, vol. 108. n. GT1, pp 145-154.

Kay J.N. and Parry R H.G. (1982), Screw Plate Tests in a Stiff Clay, Ground Engineering, September,
pp 22-30.

Kermabon A., Gehin C. and Blavier P. (1969), A Deep-Sea Electrical Resistivity Probe for Measuring

Porosity and Density of Unconsolidated Sediments, Geophysics, vol. 34, n. 4, August,
pp 554-571.

D32

Lambrechte J.R. and Rixner J.J. (1981), Comparison of Shear Strength Values Derived from Laboratory
Triaxial, Borehole Shear and Cone Penetration Tests, Laboratory Shear Strength of Soil, ASTM
STP 740, (eds. Yong R.N and Townsend F.C.), American Society for Testing and Materials,
pp 551-565.

Ledoux J.L., Menard J. and Soulard P. (1982), The Penetro-Gammadensimeter, in Proceedings of the
2nd European Symposiuvm on Penetration Testing, ESOPT I, Amsterdam, May, Balkema A.A.,
Rotterdam, pp 679-682.

Lee S.G. and De Freitas M.H. (1990), Seismic Refraction Surveys for Predicting the Intensity and Depth
of Weathering and Fracturing in Granitic Masses, Field Testing in Engineering Geology, (eds.
Bell F.G., Cripps J.C., Culshaw M.G. and Coffey J.R.), Geological Society Engineering Geology
Special Publication No 6, pp 240-256.

Lunne T., Lacasse S., Rad N.S. and Décourt L. (1990), SPT, CPT, Pressuremeter Testing and Recent
Developments on In Situ Testing of Soils, Norwegian Geotechnical Institute, General Report,
Publication NR. 179, Oslo.

Lutenegger A. J. (1988), Current Status of the Marchetti Dilatometer Test, in Proceedings of lst
International Symposium on Penetration Testing (ISOPT-1), Orlando, (ed. De Ruiter J.),
Balkema A.A., Rotterdam, March, vol. 1, pp 137-156.

Lutenegger A.J. and Hallberg G.R. (1981), Borehole Shear Test in Geotechnical Investigations,
Laboratory Shear Strength of Soil, ASTM STP 740, (eds. Yong R.N and Townsend F.C.),
American Society for Testing and Materials, pp 566-578.

Mair R.J. and Wood D.M. (1987), Pressuremeter Testing: Methods and Interpretation, CIRIA Ground
Engineering Report: In-situ Testing, Buiterworths, London, 160 p.

Manby C.N.D. and Wakeling T.R.M. (1990), Developments in Soft-Ground Drilling, Sampling and In-
situ Testing, Trans. Institution of Mining and Metallurgy, Section A: Min. Industry, vol. 99,

May-August, pp A91-A97,

Marchetti S. (1980), In Situ Tests by Flat Dilatometer, Journal of the Geotechnical Engineering
Division, ASCE, vol. 106, n. GT3, March, pp 299-320.

D33

Marsland A. (1990), Measurements of Effective Strength Parameters of Stiff Fissured Clays using Large
In Situ Shear Boxes, (eds. Bell F.G., Cripps J.C., Culshaw M.G. and Coffey J.R.), Geological
Society Engineering Geology Special Publication No 6, pp 217-228.

Massarsch K.R. (1975), New Method for Measurement of Lateral Earth Pressure in Cohesive Soils,

Canadian Geotechnical Journal, vol. 12, n. 2, pp 142-146.

Massarsch K.R. (1986), Field Exploration and Instrumentation Methods, Recent Developments in
Laboratory and Field Tests and Analysis of Geotechnical Problems, (eds. Balasubramaniam A.S,,

Chandra S. and Bergado D.T.), A.A. Balkema, Boston, pp 211-222,

McDowell PW (1990), The Determination of the Dynamic Elastic Moduli of Rock Masses by
Geophysical Methods, Field Testing in Engineering Geology, (eds. Bell F.G., Cripps J.C.,
Culshaw M.G. and Coffey J.R.), Geological Society Engineering Geology Special Publication
No 6, pp 267-274.

Meigh A.C. (1987), Cone Penetration Testing: methods and interpretation, CIRIA Ground Engineering
Report: In-situ Testing, Butterworths, London, 141 p.

Meigh A.C. (1989), Keynote Address, Proceedings of the Geotechnology Conference on Penetration
Testing in the UK, Birmingham, Institution of Civil Engineers, London, pp 1-8.

Mitchell J.K. (1988), New developments in penetration tests and equipment, in Proceedings of 1st
International Symposium on Penetration Testing (ISOPT-1), Orlando, (ed. De Ruiter J.),
Balkema A.A., Rotterdam, vol. 1, pp 245-262.

Mitchell P.W. and Kay J.N. (1985), Screw Plate and Cone Penetrometer as a Field Testing System, in
Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering
(ISSMFE), San Francisco, Balkema A.A., Rotterdam, vol.2, pp 913-915.

Mori H. (1983), In-situ Plate Loading Test for Dense Sandy Soils Using a Self-Boring Instrument,

Symposium International, Soil and Rock Investigations by In-situ Testing, Paris, vol. 2,
pp 353-357.

D34

Nelissen H.A.M. (1988), The Applications of the CPT and the Electrical Density Probe During the
Construction of the Eastern Scheldt Storm Surge Barrier, in Proceedings of 1st International
Symposium on Penetration Testing (ISOPT-1), Orlando, (ed. De Ruiter J.), Balkema A.A.,
Rotterdam, March, vol. 2, pp 881-885.

Nieuwenhuis J.K. and Smits F.P. (1982), The Development of a Nuclear Density Probe in a Cone
Penetrometer, in Proceedings of the 2nd European Symposium on Penetration Testing, ESOPT
II, Amsterdam, May, Balkema A.A., Rotterdam, pp 745-749.

Nixon, LK. (1989), Review Paper on Dynamic Probing, Proceedings of the Geotechnology Conference
on Penefration Testing in the UK, Birmingham, Institution of Civil Engineers, London,
pp 105-111.

Ohya S., Imai T. and Nagura M. (1986), Recent Developments in Pressuremeter Testing, In-situ Stress
Measurement and §-Wave Velocity Measurement, Recent Developments in Laboratory and Field
Tests and Analysis of Geotechnical Problems, (eds. Balasubramaniam A.S., Chandra S. and
Bergado D.T.), A.A. Balkema, Boston, pp 189-210.

Orchant C.J., Kulhawy F.H. and Trautmann C.H. (1988), Reliability-Based Foundation Design for
Transmission Line Structures: Critical Evaluation of In-situ Test Methods, Report EL-5507,

vol. 2, Electric Power Research Institute, Palo Alto, 214 p.

Pinches G.M. and Thompson R.P. (1990), Crosshole and Downhole Seismic Surveys in the UK Trias
and Lias, Field Testing in Engineering Geology, (eds. Bell F.G., Cripps J.C., Culshaw M.G. and
Coffey J.R.), Geological Society Engineering Geology Special Publication No 6, pp 299-308.

Pitts J. (1990), The Use of Swedish Ram Sounding and Weight Sounding in Residual Soils and
Weathered Rocks, Field Testing in Engineering Geology, (eds. Bell F.G., Cripps J.C., Culshaw
M.G. and Coffey J.R.), Geological Society Engineering Geology Special Publication No 6,
pp 161-171.

Robertson P.K. (1985), In Situ Testing and its Application to Foundation Engineering, Soil Mechanics

Series No. 91, University of British Columbia, Department of Civil Engineering, Vancouver,
B.C., 212 p.

D35

Robertson P.K. (1986), In Situ Testing and its Application to Foundation Engineering, Canadian
Geotechnical Journal, vol. 23, pp 573-594.

Scarff R.D. (1989), Factors Governing the Use of Continuous Dynamic Probing in UK Ground
Investigation, Proceedings of the Geotechnology Conference on Penetration Testing in the UK,

Birmingham, Institution of Civil Engineers, London, pp 129-132,

Selvadurai A.P.S., Bauer G.E. and Nicholas T.J.(1980), Screw Plate Testing of a Soft Clay, Canadian
Geotechnical Journal, November, vol. 17, n. 4, pp 465-472.

Selvadurai A.P.S. (1986), The Use of Auger Type-Devices for the In-situ Testing of Soft Sensitive Clays,
Recent Developments in Laboratory and Field Tests and Analysis of Geotechnical Problems,

(eds. Balasubramaniam A.S., Chandra S. and Bergado D.T.), A.A. Balkema, Boston, pp 223-230.

Stefanoff G., Sanglerat G., Bergdahl U. and Melzer K.J. (1988), Dynamic Probing (DP): International
Reference Test Procedure, in Proceedings of 1st International Symposium on Penetration Testing

(ISOPT-1), Orlando, (ed. De Ruiter J.}, Balkema A.A., Rotterdam, vol. 1, pp 53-70.

Stefanoff G., Sanglerat G., Bergdahl U. and Melzer K.J. (1988), Weight Sounding Test (WPT):
International Reference Test Procedure, in Proceedings of lst International Symposium on
Penetration Testing (ISOPT-1), Orlando, (ed. De Ruiter J.), Balkema A.A., Rotterdam, vol. 1,
pp 71-90.

Sully J.P. and Echezuria H.J. (1988), In Situ Density Measurement with Nuclear Cone Penetrometer, in
Proceedings of 1st International Symposium on Penetration Testing (ISOPT-1), Orlando, (ed. De
Ruiter J.), Balkema A.A., Rotterdam, March, vol. 2, pp 1001-1005.

Tedd P. and Charles J.A. (1981), In-situ Measurement of Horizontal Stress in Overconsolidated Clay
using Push-in Spade-Shaped Pressure Cells, Géotechnique, vol. 31, n. 4, pp 554-558.

Tringale P.T. and Mitchell J.K. (1982), An Acoustic Cone Penetrometer for Site Investigations, in
Proceedings of the 2nd European Symposium on Penetration Testing, ESOPT II, Amsterdam,

May, Balkema A.A., Rotterdam, vol. 2, pp 909-914.

Van Den Berg H.J. (1987), In-situ Testing of Soils, Ground Engineer's Reference Book, (ed. Bell F.G.),
Butterworths, London, pp 25/1-25/23.

D36

Weltman A.J. and Head J.M. (1983), Site Investigation Manual, CIRIA Special Publication 25,

Construction Industry Research and Information Association, London.

Woeller D.J., Weemees L., Kokan M., Jolly G. and Robertson P.K. (1991), Penetration Testing for
Groundwater Contaminants, Procecdings of the Geotechnical Engineering Congress, in
Geotechnical Special Publication, vol. 1, no. 27, (ed. McLean F.G., Campbell DW, A. and Harris
D.W.), ASCE, Boulder, Colorado, pp 76-87.

Woods R.D. (1978), Measurement of Dynamic Soil Properties, State of the Art Report, Earthquake
Engineering and Soil Dynamics, Specialty Conference, Pasadena, CA, June, pp 91-178.

Wroth C.P. (1984), The Interpretation of In-situ Soil Tests, Geotechnique 34, No. 4, pp 449-489.

D37

APPENDIX E

QUESTIONNAIRE

[asodmd [eadg ‘wownuod ss3 dunnoy] : S 1 4)

[suoN ‘moT ‘warpay ‘UBIH) : [N “1 ‘W ‘H)

AT

1891
uonensusdd swreui(- INelg

1S3 3UIpUNOS 1YI1OAN

1S9, UOTIOU] 9U0D0Zaig

159], 9U000231g

1S9] UONOLL]
" 9OUBISISNY dU0)) [BONID

1S3, UONIDLL]
QOUBISISTY UOT) [EIURYIIN

189
Kaeogaadng Suiqoi orureui(q

1891, AABSH 8UlqOIf d1mRUA(

1S9, WINIPA[A 3UIqO1d JTURUA(]

1591, Y31 suIqOld diureui(]

159, UoTIENnauUad prEpuUnIS

SOINVOYO - LV3d

AVID

118

ANVS

TIAVYED

19 “TTIL - 203 1408

A20d UvVH

[N *1‘W ‘H] SNOLLIGNOD ANAOHD

dAYND NIVULS SSTILS

(430) AYOLSIH SSTALS

(03]) SSHAULS NLLIS NI

(3'D) S,ONNOA 2 YVEHS SINAON

(1) ALrigvamwysd
(9D ‘Aw) ALITIGISSTEANOOD
(@) xusNad

(4D *AD) NOLLVATTOSNOD 0 4LVH

(Ng) HIONTULS dVAHS GANIVEANN

SLSHL NOLLVELANAL

() NOLLORIA 40 TIONV

(n) FANSSTId ORLINOZHId

TTEHOYd

AL TOS

[N *1'W ‘H] NOILVINHOJNI TVOINHDALO0ZD

[s*14] AONANOIUA LSAL

{N“1'W 'H] 1S31 HLIM ALIEVITIN YA

El

[esodmd [e102dg "wouwrwod ssa7 aunnoyf: [S 1yl

[suoN ‘moT wapdl "YSH) : [N “T'W ‘HI

AdH

1S9 2U0)) JNSNOIY

1597,
3u0)) ANANORPUO)) [BULIAY]

159
U0 ANANINPUO)) BRI

1S9, 2qQ0IJ ANISua([EI1HDa[F]

1S3 9q01d ANSU(] Ied[dnN

1S3], U0 AIORIQIA

1S9, 9UO]) SSANS [RIW'|

1S3, 2U0)) JIUISIAS

1531 INIWAINSSALJ oU0)

159, 103wOole(AB[d 1BL]

SOINVOYO - Lvad

AVD

LS

ANVS

THAVYED

92 “TIL - ¥20¥ 1JOS

X00d AYvH

[N “1°A 'H] SNOLLIANGD ANNOYD

FAYND NIVALS SSTYLS

(400) A¥OLSIH SSTYLS

(O3) SSTULS NLIS NI

(7'D) S, ONNOA % AVAHS 'SNTNAOKW
(%) ALrdvamdad

(% *AD) NOLLVATTOSNOD 40 ALVY
(3D *AW) ALITEISSTIdNOD

(A@) ALisNaa

(¢) NOLLORId 40 FTONV

(NG) HIDNMRLIS YVAHS GANIVYANN

SLSHL AULANOHLANIL TYIOAIS

(n) TANSSTAd IRLINOZHI

q1d0odd

3dAL TIOS

[N “T*W ‘H] NOILLVINYOJNI TVOINHIALOED

[s*1d] AONANOIUA 1SAL

[N 7 'W H} LS3L HLIM ALIMVITINVY

PRESSUREMETER and IN-SITU STRESS MEASUREMENT TESTS

SOINVOYO - Lvad

AVIDD

LTS

ANVS

THAVED

919 “TTLL - ¥20Y LJ10S

AD0Y YVH

[N 7' ‘H] SNOLLIANOD QNNOYD

JAYND NIVHLS SSTULS

(¥D0) AYOLSIH SSHALS

(O3) SSTULS N.LIS NI

(@'0) S,ONNOA @ AVAHS SNTNAOW
() ALrgvawgad

(4D *AD) NOLLVAITOSNOD 4O HLVY
(9D *Aw) ALITIAISSTAINOD

(&) ALSNAA

(NS) HIONHYILS ¥VHHS QANIVIANN
(¢) NOLLORid 40 FIONV

(n) T¥NSSTUd DRULIWOZAEId
TIH0dd

ddAL TOS

[N *1'W ‘H] NOILVIWYOJNI TYDINHDALOED

Ménard-type Pressuremeter

Test

Push-in Pressuremeter Test

Self-bon'ng Pressuremeter Test

Total Stress Cell Test

Iowa Stepped Blade Test

Hydraulic Fracturing Test

Self-boring Ko meter Test

[s*7'4] AONINOAUA LSAL

[N*1'W *H] 1S3L HLIM ALIMVITHNVA

E3

KEY
[H, M, L, N] : [High, Medium, Low, None]
[R, L, 8] : [Routine, L.ess common, Special purpose]

Comments.

file:///xiavniNvj

TESTS

M
9]

SHEAR and BEARING

SOINVOYO - LVad

AVD

LIS

ANVS

TEAVID

29 “TTLL - ¥D0¥ 1J0S

AD0d Q4VH

[N “T'W *H] SNOLLIGNOD ANNOYD

TFAYND NIVULS SSTALS

(400) AYOLSIH SSAILS

(O3 SSHYLS NULIS NI

(3'D) SONNOK ¥ ¥VIHS SATNCGON
(1) ALravawgad

(10 'AD) NOLLVATIOSNGO 40 ALVY
(3D *Aw) ALITIEISSTIIWOD

(Iq@) AUSNEQ

(0g) HIONTUILS ¥VAHS QANIVHANN
(¢) NOLLORI4 40 TTONV

(n) FUNSSTYd ONLLIWOZIL
TIHO¥d

3dAL TOS

KEY
[H, M, L, N] : [High, Medium, Low, None]
[R. L, S] : [Routine, Less common, Special purpose]

[N “T ‘W *H] NOILVINHOINI TVDINHIALOAD

Vane Test

Sclf-horing Vane Test
Borchole Shear Test
In-situ Shear Test

Plate Loading Tests
Screw Plate Test

Self-boring Plate Test

Pressurized Chamber Test

on
g
(>3
0
8
E
ok
2o
? g
5 &

(s 1'4] AONINOFUL 1SAL

[N “1'WH] L1S31 HLIM ALRVITINVA

Comments

fesodind (e10adg “wourwod sso ‘aunmoy] : [S 1]

{euoN ‘mo T ‘wntpapy “48rH] : [N T ‘W *H)

AR

159, der) Iry IedponN

159
UOISSIWSWe] 10311(] IRI[ONN

153 1911B0SyIBg JES[ONN

1S9, UOO[[By Jaqqny

1531 uswadeday] 191e

1S3, INBA\ UL IYTTOM

1531, 191103y 910))

159, doodg

1591 J9pUIA) SULNO 981e7]

1S9 JISpUI[A]) SULINO{ [[BWS

SDINVO¥O - Lvad

AVD

Rigih)

ANVS

TAAVED

219 V1L - ¥DOY 140§

AD0H T¥VH

[N *T'W *H] SNOLLIANOD dNQOYD

JAAND NIVYLS SSHULS

(430) AMOLSIH SSHULS

(O3} SSAUILS NLLIS NI

(3'D) S, ONNOA % YVEHS SNTNAOW

(1) xusnaa

(M) ALrmgvawyad
(YD *AD) NOLLVATIOSNOD 40 4LV
(3D Aw) ALINGISSTIdNOD

(0S) HIONTYLS ¥VAHS GENIVEANN

SLSHEL ALISNAO MLIS-NI

(0) NOLLORIA 40 TTONV

(n) FUNSSTU IRALIWOZHLd

ITHOEd

3dALTIOS

[N *1°W ‘H] NOLLVIWYOJNI TVIINHIALGED

[s 14} AONANOAUA ISAL

[N*1'W 'H] 1SALHLIM AL VITINVA

ES

ST'S

5
M

-

PERMEARBILITY T

~

SJOINVDYO - 1Lvad

AVD

Rty

TIAVED

912 “TILL - ¥DOY 1408

ND0¥ QWVH

[N *1°W ‘H}- SNOILIANOD ONNOUD

FAYND NIVRULS SSTULS

(3D0) A¥OLSIH SSEYLS

(O SSAULS N.LIS Ni

(3'D) SHONNOA 2 AVAHS SATNAON
(M) ALrTIEvaNYEd

(1 *A2) NOLLVATIOSNOD 40 ALvY
(9D "Aw) ALITMISSTIdROO

(4@ ALISNBQ

(0S) HIONTHLS YVIHS QINIVIANN
(9) NOLLORId 4O T1ONY

(n) TUNSSTI ORLLAWOZAN
TTHOUd

AL TOS

KEY
[H, M, L. N]: [High, Medium, Low, Nong}

.. 8] : [Routine, I.ess common, Special purpose]}

R.1

[N *1'W "H} NOLLVINHOJNI TVIINHDALOID

Rising Head Test

Falling Head Test

Constant Head Test

Self-boring Permeameter Test

Pumping Tests

{s "1 4] 1ONANOAUY LSAL

[N T W 'H} 1S31 HLIA ALIYVITINVS

E6

Comments

TESTS

~
I

GEOPHYSICAL SURVEYINC

SOINVOYO - Lvad

AVD

pigiiy

ANVS

TIAVED

29 "TILL - 300¥ 140§

AD0Y ¥VH

[N “1'W 'H} SNOLLIGNOD ONNOYD

KEY
[H, M, L, N] : [High, Medium, Low, None}
[R, L., 8] : [Routine, L.ess common, Special purpose]

JAYND NIVALS SSTULS

(420) A¥OLSIH SSTULS

(O3) SSHULS NLIS NI

(3'D) $,ONNOA » YVAHS 'SNTNAOKW

(M) ALTIEVINEEd

(4D *AD) NOLLVAITOSNOD 40 2LV

(39D ‘Aur) ALTTIEISSTINOD

(@) ALusnad

(AS) HIONTYIS ¥VAHS QANIVIANN

(0) NOLLDIA 10 FTONV

(n) FUNSSTUd OLIAWOZAH

Egitiat.]

3dAL TIOS

[N “1'W *H] NOLLVINYO4NI TVOINHDILOAD

Seismic Refraction Test
Seismic ReflectionTest

Seismic Cross-Hole Test
Seismic Down-Hole Test
Surface Wave Test
Resistivity Test

Gravimetric Test
Magnetic Test

[s*1°¥9) AONANOFUA LSAL

[N “T*IW 'H] 1S3 HLIM AL VITIWVA

E7

-
.

Comments

SIS9 |, UONENRUYG NP 10 PIULRIJO SITMSUE U [[E JO uonewwng |5 9|qeL
NT N1 s | N1
WH W 13 | wn | A9
b e AN AN AN IR I I EE I O IR I I T NN I oL uonenoudd | |-
te oo re o) R B KA R R A I R R e R A owreukq -onmig | . | -
¥
N A O R N SR R I R T R R R I I R R A 150], Sutpunog 1S | .- | -
S U IEEN I N PR PR P o-fee|zef-efrve|-vjuvefe-|--|on)|----]-- € |1e
isi-si-sjzofjen]-zf-- 1-Jv-Je-Js-Jervseje-Jo-]s-]o-Jes|ie]eys 1S3, UOTOLJ dU0D0Z3ld | ¢ | ¢
SO BEE IR AT I I VI o-lee|sefee|eefen]eefe-Juo-fev|i-]ro-]0- ¢ e
tsf{-8f-sfzoler|-2]-- 1-le-|--le-fe-Jovle-lo-bte-ls-tewles]|on 1S3, 3U03023td | ¢ |1
i |- fzelee] s-|oc|erfoeefe-|e-fvelz-|-1 v]e-f--1]-- SOLUONdILY . | ¢y
cvjus|isfee)zejuoof-- ol R B B BN R A RN R AN R E XA KR QAUBISISIY U0 IR | v ¢ | v s
st -Jrefee| s g- oz fer|re]le-fe-Jav]|e-]-t oo fe-f--1]-1 WL UOIOL | - | ¢
tvleejrefec |z o] -- i R B LA B EEE B XA PR AN RN KX A KX ODUTISISIY QU7 [EIWEYINW | v | ¢ v
S I AT SR A AR AR A I trte-fe-bovvfe-te- o) f-efjoele-f--qun 191 Aseadng | Ty
e-Je-Je-Jeiergpe-|our- R N N R e R R E AN R sutqosg omueuk(| - | ¢,
SR IR AR IER B IR A IR e-le-Je-fe-|e-fe-fove o |-e]-v]e-|--]z- t e
cie-Jevfon -] - o L s R AN N B R R RS N R A B 1531, AABay 3uiqord dtureud(| ;- | ¢ -
SR IR IR IEE O IR A A P vegv-de-|ei]v-fr-lve)ie]-e|-zfe-]--]e- ¢ | sz
tzjeceefoe)-ebe--- o e e b e s -z - e | oo | 9s9L wnipapy Suiqosd otureul(] | ¢ - | ¢ -
SN IER B IR O I N2 A vofv-|v-Je-|v-|v-fer)erfve]rofe-|--]¢- ¢ |oz
ciferfeefen |- - - B e R R R A N A B E A 131, 1431 duqord dwreukq | ;- | ¢ -
tr|-ef-1]--frr]-tex 6-fezle-|rzfsr|s-fze]l-tf-¢e]-z)e-|-1]1- -]
tilszlsv|-onferlveyu- e A N N XA A R R XA T 1S9, UONENAU™J PIBPUEIS | -5 | | 5
: p £ ¢ 2 ¢ Elg = § 3 ¢ 5 8 5 ¢ 3§ % 8¢ R
S 5 3 -8 5 £ s 3 E |8 g
3= S & z e o =
m = et m o O = 0 ! 5§ & g 2 4 2 =
2 8 g = & a Z 8 M TRl 8 z
] o ®|Q 3 P g e m @ S Z
2 . S g 2 5 2 : & § 5 g
= z % @ 8 ~ T ol >
g 4
a m < m = m & 3 = i | =
“ ! = g 2 R 72 5 8 & = <
" e bS] m =) -3 ~ 5 - Fod z 4] 2 —_ m
7 z s = 3 g 2 m - 3 ® 5
= S 2 o g - g 215
a A < & 4 - -
Zz v < m = =
r P p S
) o) @ z <
= & = e E 3
g =
-
z

(STHMSNV TIV) SLSAL NOLLVHLANA

359, GONEBIAUYJ Y JOJ PIUIEIQO SIamsue Auernue) Yy, oy} Jo uonewwIng 7'y 4L

N1 N1 S
WH WH 18 | w | AIX
A SR BERTN BRI A BEE I A AN EAN EAN K B2 KA TR I S B I B B I 1S9 uonenoudd |
tr e oo -- e N R R A I N A R olreuAg -onwg | - |
N I . : I S R U O IR A I I S I R e 1594, Sutpunogysam | -- | -
R - tfrrfe- (A ICE U I O 3 BEENN I S BEE IR B SRR EEE IR IR IR A 1
AR RS t-Je-Jr-Je-Jritez]e-Joe-|o-Jo-}-ef-¢+]uce 159 UONOL 2U030Zald | - ¢ | ¢
R IR IR A tjrer]e- e-|vvjer - e oo - -] |- -
el v f-v v oo - t-fe-f--le-fui-Jerle-fe-bo-fo-f-z]rie]en 1S9, 9U00Z3ld | 1 ¢ | ¢
S IEE IER IR R R e-jeeteif--e-te- oot |- -] 1S9 uomdy | -
el ce v low] -] - ol B e A R R R R N A R R kY QDULISISAY QUOT JEIMINY | | |
S OX BERT BEE BRI 2 IR A I e-feter|-zele-}e-|-e -] e 1S9 uonduy | -
st -v e e] I R e A I R B A 9OUEISISIY U0 [EIWEYNDWN | - ¢ | &
S R B - - 1o S O IR AT R O AT IO SN IE U I O T -1 1S9, AArayadng | .
R R S e el duiqosd ok | .- |
N A . - I P R I U R R I ST R R R R 1891, Aaval] Suiqoad otureudcy | - - | -
I U ; . I I S I R I ooy -- - | o], wnipapy Sulqoid dwareui(f | - .
S R . . N S I R I IO B O I R I A O 1891 4817 Suiqoid onureudq | .- | -
te e |- f-- 1]-2}st 8- oz |s-|rvfev)e-fpre]-v|-e|-vfe-f-u]n- -
trfve|vef-slevlec]- el sl -l e-ers-sel--fre]es 1S3 uonenaudd prepuer§ | -, | ¢
TP E £ B3 232 :6%%7%:§:323¢E|¢ 1]
- - [>] 2
! m b4 o m 1 @ m m o m W & k4 m M m |
: 2 §| ¢ s £ 3 5 ¢ £ B 2553 °" 8|k |t
9 T 2] 8 2 38 2§ § ¢ 3 z
zZ Z o] = < = a 8 B
= g z % @ 8 m T] g 4
< p —~ E
3 F 3 a2 2 3 2 4 3 3 7| 3
o m x m e, s 5 — Z & —_
_ 3 = o
E 2 2 0 2 : < A
z G @ 2 2 =
> B 9 B z £
= e e = T r
4 =z
-
Z

(SYIMSNV A LNVITINVA HOIH) SISAL NOLLYYLAN

E9

SIS [, UOTIEARUD M) J0J PORIND[ED sonfeA 9FUI0AY €51 g,

sIossue A)Lrer[iure] g3ty ofe

s1omsae AjLrerinre] 43Iy, Junosoe o SUTYE) anfeA s3eloay | Ly

SIomsue jje ‘onfea d8eiaay | v SIdmsUe [[e JUnoddse Ol Juiye) anjea aferoay | Iy
AT
“ 183], uonenauyd
WIWN|W|{W|[N]N|N M N|IN[N|WINI[N|W|T|W[N|N|W]|T oneud(- onels | 1
- -1 -1-1T-1-71"- -l -1-t-1-1-1-1T-T-71T-71- -1 - 159, Surpunog Wydm | -
H{H|HJH[T][T[N “ TIN][TIW|W|W|W|N]|W[W][H]JHI[H 1
H|I|H|HIH|T]1T[N ! NIT|TIWIW|[W][T][T|IWN|[W|[HH[WN 1S9, uondLL] 9u0%02z3Yd [T
H|I|H|H|H]T] 1[N T[TIN|[W][T[W[W|[N|N|[WN|[W][H|N T
H|H|H|{H[TT T[N NlTIN[T]l T[T TIlTIW][TIIININI 1S9, 2u020ZaY] |
Hjluulufu]i1] 1[N N|IN|IN|W[N[N|W[W|W[W|[NTH[K 1S9 ooy |]
W[I[H|[H]H][TIT[N N|IN|IN[T{N[N]TITW|W|[W[N]|H[N UEISISAY U0 e[y | T
WIH|H[H]T|W][N NIN[N|T|[NIN[TI[W][W][W|[N[HI[N 1S9 uondu |
Wlanfjulul1! 1N NIN|[N]JT|I[N[N]T|{WIWN[W[N[HWN]|N DUEISISIY O] [EIRUBYII | T
WIW|IW]|H][W] T[N TIN|N]JTIN|ININ|[W]T]TINIWN]T 1891, AAedysadng | -
WIWIWN|[AWN|W]HW]|N NIN[N]JTININ]T]IW][TI][TINIW] 1T duiqorg oneudq ['S
WNIW|WIN|WN|T[|N N[N[{N[TININ]T]lT][TTWRINTH]TT 1591, AA9Y Burqoid owreuiq | S
WIN[WIW|W]T|N N|[N[NJT|IN[N[T[T[T]TT|N|W]|[7] 1520 wnpapy Suigord srureuiq [1
WIN|WIW][T]T]N N|IN[N[N|N[N|[T]TA[T[TIN|[HIN 1S3 W3] 3urqoid owrmuiq [S
TIWIW[HIW]|WN]N NIN|IN|W|IN[N]T[W|[W[HW|[N|[W][KN E|
TIWIW | HIWN|HWN|N N|N{N|WN[I[N[NJT]R|[WNIW|[NIHWNIN 159, uonenouad prepuels |
%] Q [2] > "} [2]
N EERER TR RN R 1E
. m = et M] m m Q 2 m W b 4 [£
m 1 AR EEEEEE R 1
A ~ vo m .Q.u z =] .ﬂ m -
z Z 2 = < @ o g §
3 F 5 N : 2 E 3 s 3 3 3 5|3
S & i 2 M 5 m, m 3 m m w 3
G z 2 5 z 2 Z w |4
< o g ¥ e e | 1=
r a P P, S z
= & 2 g = I
z z
I
z

(SIOVIFAY) SLISAL NOLLYYILANI

E10

§1S9], J919WIONIUI [eLO3dS 91 10 PAUTLIqO SIIMSUE J) [{€ JO UOTIBWUWINS 5] S[qEL

N1 N1 S N1
WH WH 14 | wH | AHY
SR IR EE B I I I O I O e-frrfe- e fe-te-fen oo fe-fo-ya- T |or-
S R A I R e B R R O R I e I e e I 1891, quoyonsnoay | L] L,
1591
SR I B U IR TRTN BN IR B OCE I TN B U B IR I SR N SER I SRS BTSN NN ORI AR R ¢ |-
PR BN N I P O e N R I R R R B I I I I i Juo)) Ananodnpuo) reunsdyy | - |y -
. 1891
SR IR BTN BRI A RN A ST 30 O I O R U TR O O S A TR NIRRN O SO I SO HFAENN NP O A |-
tel-el-e - p-- - -- S R R RN R R B N T IR EETEE BRI I TN B 3u0)) ANANINPUOD) TeINN[| - | 1
SR IR EEET B SR I I 3 A tele-Je- o)e-le-puon -] 1 |-
A AR AN EEE B SR R R R R R B E R 1891, 2q01d Ansua(g eomdalg | -- |
e B R A erle-Jeefe-Je-fe-fe-|--Jevfe-]e-]e-]¢- v -
vzfre|-ef-efu-]--f-- o-|--b--l--f--1--1--fuve)--fue-A--01--]-- 1591, 3q01d ANSUdQ JEIPON | ¢ - | ¢4
PN IR IR I I N IR (AR O SR S I AL R S B SENN I SETN R SENN AN SRR R SRS B IUNN B SRR I O T |-
A R I P R R A B I I e RO PO B R R I BN B 19 au0]) Kuoreaqip | -- | --
SRt EEET BT IR O B B BN IO SR N SN R RS RN R ER N R B £ | o
- le- - b - ol L0 KA EAN BN BN LN B2 AR B B 183, 2u0]) ssang jesoe] | .. | -
L0 BEE EEE AR O RN I I I tifzv e - e ey ve ez - |- ' A
vz frefref-eju-le-f-- S A A N A N A R A R 1S9 quoy onusiog | - | . g
b e e e en A REA RN RSN EENEENEEEEX REN EEN EEN EENEE 9 |z
te|re]es-e|u-1z-]-- tede-|e-Jeel-tev)e-]-v]eu|ve]--|er]- 1S3, 1919WINSSALJ 2u0)) | - | ¢4
Sl IR IR N A B A SR IEE B IR B A N EEE R A N N XN R £ |91
A A IR R eteufeeen | --f--flen|--fen)e-f--t-2f- 1S9, JOI_WOBTIJ [VB[] | - | 1 ¢
g £ B £ 8 8 : & £ 8 B Z 8 |8 z
- =< = =]] m o 7] g g M z
< c e =
f m = b4 m & [= w w o z = M (™
- 8 8¢ EREEEEEEREERRIL 12
> ’ = Q 2] 2z & | O m m
z 2z o] T m » B < %] 2} [x] m -
= z " » jar!
; F |3 i 2 28 2 8§57 9 3 : 2| z
. Q ~ =} —_ = =
s | g :§ €25 ;I : |2
° “ 2 S g £ 2 8 7 z m
= Z 29 z 2 g “
Q) - -~ = —
S b e m m =
g G o 7 z <
= & z e - i
K o < F3 r
z z
I
z

(SYEMSNV TTV) SISAL YALANOMILANA TVIOHIS

Ell

S1$9], 19)9WORUI{ [e1dadS a1 103 PauIeIqo siomsue Ljurerjiurey 4Sig, 9 Jo uonewwng ¢ 7 9jqeRL

N1 N1 S N1
WH W 14 | wa | AHY
SR B N B I TR AR A I LSES S U I SRR N B R FENN B0 S NN B NS B N B I ! AR IR -
NS I T P I I R R R [R I I R R I I I R I 183, suo) ansnody | .. |
. 3L |
U AU I I U AR R N AR I e R U IO R B I P A U0 ANATONPUC)) [euldY { - - | -
1831,
S RIS BET B SN B AR I O RO IEN SN IEE BN BEEEE RS B AN S BRI BRI N O I 1 - .
-1 - AN SRR RN X B EEE R R REN EEE EEE R 5 RN IR I 1-]-1 2u0)) ANANDAPUOD) eI | - - | |
.- -1 - SR B SETN R B B O AET B TN I SN T O R SR R U B O ETER N O BT A -] - -
TN E = EE o R B KRN KX BN XN ER IR i - -] - 159, 3qo1d Ansua(q [ednddfe | - 1
S B N I I SR IR N IEE BN N RN AN R B AR I AR R I AR B A -]t -
SN I IR I R I A N N R R B Y . - 189 3qoxd Ansua(respan | - |
N I I IS R I R R N PO R RO BV I R I R 1891 auo] Asojeaqip | - - | -
S R -- A R U P I R I e I R I e N 189, 9uo)y ssang eey | .- | -
-l - el e O I I I IR AR TR A B A B I 1 - - 1
st e e e - -l e e oo |- -z 1S9 3U0) JIWSIdS | - - | ¢
Rl R R N I R SRR RN IR B BN R B BT B O BT A 1 t-]t 1
-1 |- e -] - A I R R R - - |- 159, 1313WAINSSAld duo) | .- - |
SN B B B I O IO A A IEEN IR IERN AN I A EEEE IEE AN BEE I 1 r-]1- 1
e e e e -] I A A R I R N I R R B 1531 J9)WmONeI(] Nefd Bl | -- | ¢
S E £ 2§ B|f 59 : 52 588¢%2368%13E|s AE
- = o z =
) m = - 7] @ m & o = w M & k4 m d = &
4] xR 7 2 B 8 g Q
> f] =) g & @ 3 Z =]
Z =] oo ¥ @ a o § ~
: | I I : 2|z
i r m =] —~ Fe m m w m o m — D =1
[} m z w 2 & > = z m Wm —_ =]
5 & I = g 2 m s B g = |3
- s : = Ia
T Z Z 9 z G g e 1”9
kS & e - m = m =
13 I~ ¥ - Z 4
z & 2 g z r
Z z
=
Z

(SHEMSNY ALNVITIAVA HOIH) SISHL YALTACHLANI TYIDIJS

El12

SIS [, JOIIONIND | [0S Y)Y J0J pANINOED $ONJLA DFCIOAY 9 [dYLY,

siomsue A)LIeiiure] yguj, ore

SIsmsue Allel[iure] Y3y, Junoode O)UT JUTYe) oN[eA ageldAy | 1y

slomsue [e ‘anjea adedAy | Vv SIOMSUE [[B JUNODDE O)UL Juiye) an[eA o3eIdAyY | ly
AT

N|T|N]J]T|N|IN|T|T]T|T|IN|N|N -
HIH|H|H | NJ|T|N N|IN|IN|N|N|N|N|N|NIN[N|T[T 1S9, U0} o1SNOdY | §
-1 -1-1T-71T-1-71- -1-1-1-1T-1-1-1-1-V-1-T1T-71- 1891, | -
Hi{iH{H|H|N{N]|N N|N|N|JN[N|N[NIN|N|N|[NJN|N auo) Aimandnpuo)) peuuayf, [§
WIHIH|H|N|N|N TIT]|TIW]|T)|T|W|{H|T|T|N|W|H BIL | -
WIH|H|H]N|NI|[N NIN|INJT|N|N|WN|T|N[N|[N|[T|N 2u0]) ANANINPUOY) [EIN0N | §
H|H|JH|[H|IN|T|N NIN[N|TI[N|IN|JT|[H|T|WN|[N|KN|N -
H|{H|H|H|N|N|N N|IN|N|N|N|N|N|NWNIN[T|IN|[T[1T 159, 3qoxd Ansud(q [eomd9fyg | S
IWITW]IHJIH|NJ]N]|N TIN|JT[N|NIN|N|H|[N[W|N|[N|N -
HI{H|H|H}T}|N|N N|IN|IN|IN|IN|IN|IN|JH|N|[T[N|[N[N 1839, 901 Ausud sedpdnN S
e e e e NIN|JN|N[N|N[NJN|N|N|[N]N|N 159, 9u0) AIOIRIQIA [§
WIWNIW|T[T|NW|T TITIWIW|IN|N|TIN|T|[N|[N|N|N 1S3, 3U07) SSANS [BINET] | §
HIHIH[H]|]T] T[N T(TJT{H]|T]T]T|T]T|T]|T|H|IN S
WIHJH|W{T]T]|N TITITIWN]ITIT] T T]IT{T]TIN|NW 1S3, U0 Swistas | §
Hi{H[H|H|N|®WN]N WININ|IWIN|W|{W|T|W|N|N|N|N S
W] W]IH|[W]{T|T|N Wl T TIW]T|IW]|T|T|WNIWN|[N|JWN]|T 159, JOIPUIDINSSAL] JU0)y | §
HIH|[H|H]N|N|N WIWN W W[I[N|N|JW]TIN|T|N] T[T S
H{HB{H[W]T|T|N WINIWI W[IN|IN|WITIWN|T|N|W]|" 153, JORUWOIH(] de[d L] | S

@ 2 2) @ Z o] o] > 3)]

2 E 885 B|E s 705 § ¢ § 2§ §:8¢8¢8¢ g | £

. m ® = |G c g e = 3 m b 2 m 3 m 2 3

m nil REEEEERERE ; it

: PR3 378 2 c 8 E g f g < | &

z Z 7] IS < @ O m -

3 ? : s 2 2 £ o2 3 s 3 3 2 213

. = ks’ o ~ o Z

Z i 8t Z 3 a o ¢ 2 73

= g s B = 5 2 - |8

® Z 29 Z £ g w | A

=) =y ~ ~ el —

z P 2 m 2 =

i =

z

(SHOVIHAY) SLSAL YALANOMLANIL TYIDALS

El3

SIS9J, JUILIDINSEIA] SSANS MIS-UJ PUR INDWIMSSIL) 20 PIUIRNGO SISMSUE 3 [[¥ JO UONBWWNS /5] Qe[

(SYAMSNV TTV) SLSAL INTWHANSVAN SSTRALS NLIS-NI Pue YA LANTANSSTHI

NT N1 s | N1
WH WH 13 | wu | ASA
- N IR AT B2 R e-|t-]--te-Je-Je-Je-[e-fe-e-|e-]e-|c- T 1ot
-zt - el TR RN IR 2 RN B BRI R PP ISP B PR RS B B 1S9, 1390w OY FuboqQ-js | - - |4
it t- el T T O T S I S NS OO TR A RO N S S S B TR IR [T g £ | 6-
R TN T N O SR T ETH T I I A ROt RO R R IO R 1591, Suumodesy ofneIpAfy | - - |
-] - SN R I SRR I S A O 30 IR T IS SRS (N TR B SR B SRR R IR SN SR BTSN R R 1 | or-
oot oo -] - SREEE RN EER R RN Y N 0 T I e e 159, perg paddagemoy | - - | -
-t - i - bavle-t e t- -} --pe-le-ye-le-yete-le-te-le-te- I
NP I T I O O I SF IR NI R (PO I (D IO D I O a1 Py ssang o), | - | -y
tef - R TN AR I I B B B A AN I O O IR 3 A A B I 2 P s |-
s l-ejrslev]--frvz| -1 to vz eolvefvilee v e-]orlie|ie|e-]c-] 100 I0WNSSIY ULOYIRS | - | ¢
- -1 tz|lez|s- rzfet|-v -2 |le-|ev]ee|ee|-z]-v]e-]zi]e T |9¢
ti|-efj-v e | --f---- et dvz - t-vbe-fa-te - - - Y 159, JappumaInssalg ui-ysag | ¢ - |
1el - etz fre)i)ee telvrf-s|-ele-f{st]evfee|-cl-s]e-]ee]st WL | ¢ fz-
tzle sefvele-]er |1t tefe-le-feel--fuv-Je-Juo-)wer o --|ov-}1- Ja1owaInssaly dA-preugiN | 5 - | ¢ p
2] e o = z |e «n % 2 2 ¥ S 3 8 o =
z = >
Setr iRl 333E130Biil3i[:
_ BRI 1
2 g8 R = g & g 8 3 | d
E Rk 23 5% 226§ 3¢ 5 |3
r4 -
5 B g g 2 2 B - 8 m g 4 2 £ 4
@« I m m — X) E o] m — D
o S] e » T ¥ 4 = z g z
s z M = 3 P~ = e)
@ ~ S o) < pA & = - w__
= m ~ & z B 5 @
x 3 e = g = 2 =
5 B e B 2 £
= = = € El r
z z
-
z

Ei4

S1S9], WOWDIASEIA] SSANG MIS-U] PUL JOIUIINSSIL) 0] PAUILIQO SIoMsue Ajueijiurey y3iy, oy Jo uoneuwung g7 9[qe].

N1 N1 s | N1
WH WH 13 | we | A9

R IR IEETE IEETN BT BN ORI I U IR IR B 2 AR I SR B AR AR TRRN I AR R A -] -
SE KSR RN EEE BN B B R R R R B R B 159, 1990w Oy Fuuoq-Jas | -- | -
S0 RN A I N IR O I B [N BN NS TR RN IR S I S I SRS I SR B SR B S AR A TR I -] -
U I I I IO I R I AP I IR IR IR (U I P U R 189, Suumoesy oynesphy | - | -,
S HEE EE B B IRT BN O SRR HCR N IS SR I SR I I N SET I SETN R I SR B R (S I O o
YRR BN B -- |1 N e R B BN B B B B B 1591, opeg paddaig emoy | .. | -
SRR RN AN O I A I SR B TR I LIENE RN NIRRT O SO NIRRT N OES AR IRSN B ANURT IR N -] --
NI RPN IR I I I N I N P IO I R I R I DR I 183, RO ssang oy, | - | -,
ST IR BT IR O [AR A 1SRN IEIENN B B I N O AR TENN B AN O B IR O A B 2 I e |-
v col-oteef--lue| - te |-z s sl fea]e-|vi{uiefii]e-]e-| 1591 JN0waImssold Juuog-as | - | -
SR B A B B S B S I O SCEE BN IR SRR BT BT IR B BRSO BN B O R B B - |-
S R R R e -1 |- I R N RS 1S9 Jelwainssaiqut-ysnd | - | -
S 3 IR SRR B A B B SRR R R R KR R EEE RN B WL v | --
ttjrefevfen]e-]-¢efun -1 | AN R R 2R R 1310waInssald adA1-prRugiy | 4 - | -
2 ¢ 2% 8§ 1|8 33 ;5 3528 31368 8¢6|8 AE
-3 %3 o jZ2] o] —
o & g 2 m g2 4 m £ 29 m 3 m m 2 F 24 3 £

a » 3 Iy g b = 3 2 . 5 & M A 2 &
3 T le 3 ¢ 5 ¢ 8 F S 2 % 2 e |3
z d g iz 2 F 2 85 7 E § 3 z 2 | =

%1 o m m —_ = = | 5 o m - D
o 3 5 8 <2 & < ¥ 7z & Z -_ m
° d a2 3 3 ? 4 2 z g .y
E : 22 i = : - |5
g P e 2| 2 T
e B B Z Z
= & g g = -
z z

r
z

(SYHMSNV ALVITIAVA HOIH) SLSHL INTWAHNSVAN SSTHYLS NLIS-NI Pue YHLAAHUNSSH dd

ElS

$159], JUSUIRINSEI[A] SSANS NIIS-U] PUE JIOUWIAINSSAL] Y] JOJ PARINOTED SINTRA 33eIdAY §'H 9Iqe]

i slomsue Ayueijiwej Y3y, ase s1omsue AjLrerjiure] g3y, juncdse ojul Juiye) anjea afelaay | Iy
s1omsue [[e ‘onfea a3eloay | v SISMSUE [[€ JUNOOJE OJUI JUIYE) IN[EA 9JEIGAY | Iy
AT
HIH|{H|W[N{|N|N NIH{H[N|N|IN|N|JN|N[N|N|N|K -
WIH|H|W|N]|T|N NITW|IH|NIN|IN|JN|N|N[N|[T]T|"I 1S9 1910w O Fuuog-jjas | S
TIHIW]| T[T NN W | N -
N|{T|[T[N|N|W|KW N[T]T|N|]T]|T|N|N|N|N|[H|N|N 1S9, SuumdeL] OYneIpky | S
W H [H|WINI|N|N N|W|W|N|N|[N|N|[N|N[N|N|N]|N 1531, 3peig paddaig emoy | §
H|JH}J]T|NIN]|N]|N NIW|IW|N|NIN|IN|J]N|N|]N|N|N|N -
WIHINW]T]IN]NI|N NITT|IWIN|N|IN|N|N|IN|N|N]|N|N ISAL 1R $saNS [0 | S
iR IH[W] T W] WITIH T T T TIW]IWIW T S
WiHnH{HH|{W] 1| Wl Wl T || T W W[T]IW]|WI[T]| T]"l B2 annuamssag] Funog-gay |8
WIHIHJW|N]|]NI|N T TITIH|WIHJT]|T|IW]T|W|NWIH -
WIH|H|WN|N|N]J]N T|IT|IT|AWIN]|T]IT|TIW]|TIN]T|T 1S9 Jorowamssald ui-gysnd | §
I WITH| | W|WN{WN]H]KW W]l T|T|W|IN|N|NIN|W|[W[IN|]T|"I 9L | S
I WIH|IRWRI{W]TIW]| T W|IT|{T{W[IN|IN|T|T{WN[T|N|]T|N 190waInssard adAr-preugiy [1
=] [=] b4 2} Z Q c [}]
288 E 85 B s 82§85 8% :38 8¢\¢ 3 |
- R P05 ;P gl i |E
tql & 2]
: L | SRR EEEREE : ;|3
3 E 3 s 2 2 £ 2 &5 5 3 2 3 M E
o =] = Q@ < e = ¥ =z 3 Z =18
& % 3 2 < 5 B M s & 8 F
2 S 2 = e & z - | g
= Z = 9 3 2 5 @ | A
z 5 7 ° e = 3 ~ =
~ ; - g p
2 R g - ;
z Z
=
Z

(SAOVHAAY) SLSAL INAATMASYIN SSTULS NLIS-NI Pue YALANTISSTY

El6

159 duireag pue 1e3yS A1 JOJ PIUILIGO SIIMSUR AP [[E JO UONEWWNS ()] H SIqRL

N7l N1 S N1
Wi WH 13 | wa | AN
7z - - -l 1|o- stfsti|st|eelsi{st]sv)o-|zev]|s-1o-]o-]o- ILONEY | 1+ | v
e Jtvfev]lev ez 1] i B e BN S B BN RN BB RN BN RN I duueag viwopey aus-uy [¢ [
U R P IV A R U I I DT U DR AU R A AU AU AU B 189] Jaqurey)) pazunssasg | .. | .
ot
- - - - -l SR TN I BT BE BETE T BN 2 SIS I SIS I O RSN P - -
1= l-r |- 2 B N N R R N A I R R A 1531 Jeld Suuogypas | - - | -
-- - - -l -l1- SRS B T I o O BN O (RSO S O TR N ARU IRSI AN B A IO O A 1 |6-
=2 A EAEA RN 1] - AN R R I A R R B B 1SOL ABIJ MIIIS | - - | 1
1t - - -] -l s lsi - frelze|-fs-]-elve]|o-|st]s v | v-
z¢ 3 s vlew v|ez sefo-|--Jev|--Jov|so]o-)oe-|--}--|--1}-- $1S9L JuipeoAeld | - [¢
T- - - N EE -l SR U I SET B ORO B O AR N O B AR I S IR B TN B T B I
A P O [AU B NN VU AU R AU U R A U (VRN A (DU Wy seoyg ans-ug | .. | ..
ol
-1 1 - BN IR - -- LAES I S I U N S (N SN 8 SR N6 SRR R SR S T TR B S BN A I - -
RO I N T P R e U S I I O I D U IO e (DO AU 159, eays doyasog | - | -,
t- - - “le-|z- |- e-fr-frele-pe-le-le-te---le-le-|o-]0- - le-
NI T S R TS RN T S S O O P e e e 1531, oue A SunoqJps | - | - ¢
11 - 1 -le- 1]sa- e-o-Jore-e-fe-e-fe-)--le-fe-Qee]on - e
vel-s]lsej--f--]-1}-- e R R R R R I R R R AL AUBA | 5|z,
@ o @ o 5 2 2 s 2 ® 3 8] 2@ m =
c = 2
P E 5 E 8§ E|E W m 4 : 3 z : 8§ c|E £
) m = m = 8 w b)
o) Q] 2 m 2
m ES o] m m = = m @ @ m 3
! g o - z g @ 2 a A §
z Z 5 <] 1] o] 2 = < 4] o a
5] m 2 % B~ 5 B 2 z 2| =
2 - 5 1 2 3 - ‘- gl =
o =] © m < & e Vﬂ =y z Z @ m o =
s &) o 5 3 5 = il
- g e 7 -
= m 9 o m)
£ v 2 7 2 = 3 =
[—_
: [B z X
= [z ;
- o m £ = [nd
z Z
-
2

(SYHMSNVY TTV) SISHAL NN VAL PUe YYAHS

El17

51891, Suireag pue Iesys A I0J pauIe)qo s1amsue Liurerprue) Y3y, oy Jo uonewwing |5 9jae].

N1 N7l s N1
WH WH 13 | we | AGH
cfi-fu-Jui-Ji-]e-]s- ve|lvr]vrfze]vi|vifoils-fiv]s-]s-]s-[s- 9L oney | 4 | --
tjre|lzefze st - R B R R R N B B B Suueog eruopie) NUS-Uf | ¢ | -
-1 1--1--1-T- T T- 11— -1-11-1T-1- 159 Joqurey) pazunssaid | - - | - -
A AR s R e R B I
- 1 -] - -] - e I N N R RN T 19, AB[d FULOQ-JIdS | -- | -4
Sl ey eI NI R R R -] -
1] - ! N I I R R e IO e[MY | - - | -
i e e ee v |- r-jefeels- vl € | --
v |ivire|zefze]en vifbv-)--fve]--fov]ecpo-fen)- -} 1891, guproqorld | 4 - | - ¢
N N R R I I B -t T--1T--T1T--1T--17--1--t--1--1--1-- 189 Jeoys ams-ug [oo -
1 B RN B N R eI N R B -] -
- li-F-1--Ti-1:- ol - T--1-1-1T-1--1T= 189, reays doyatoq | -- | -,
- |- - e-le-Je- z-fr-jurle-je-je-fe-Je-b--le-fe-Ju-fa- -] -
t)-z -1 R R A R R A R R R 159, 9ueA Suloq-Jids - | -;
- tfe-le-er]o- s-fr-dvi]s-Js-]s-fs-Je-{--|s-fs-|rz]v - |-
z L 1 -] - 1} -- B R RN BN RN B Bl B BN e B K 2N BN ISALOUEA | (| -,
g g a g o =
s tg28 g8 §i1iiiiiiBEl0E[S 1K
: P g gl i 2 2 f s g4 &kt b o3 2| &
z T3 2 m w E 2 §& © B 3 m z e m
m Z)] S n 0 8

2 g g a = m g m g 4 2 & Al =
2 I = = P R S 5 [+] m = < =
o e 2 8 ¢ @ T 8 = g Z 2 m =] =
d & & 2 bl m 2 M S m » -
S m < 0 Z = W 5 m
z a | - m ~ = = =
= » < 3 =
: 3 B < £
= - g £ = I
Z Z

-

Z

(SYHMSNY ALMVITNVA HOIH) SLISAL DN VAL PUB ¥ VIHS

E18

189], duLmag] pur S 9y} J0J PARINIED SoN[EA IFCIAY Z] '+ g,

siomsue AlLerjiure) ydy, ote s1amsue Auerjiurey 431y, Junoddoe ojur Suie) onjea o3esay | Ny
SIOMSUE [[e tonfea o8eloAy | v SIoMSUR [[e Junodde opul Juiye) anjea afeday | Ty
AN
TIWITW{W|W]| TN NI|NI|N|JTIN|NIN|N|T|N|N|N|N 9L oney | 1
WIW| W] W]|W]|T|N NIN|N]JTIN|IN|NIN|JT|N|N|NI]|N duumag vrwoje)) aus-uf [
- 189], Joquuiey) pAZuUnssas| -
WIH{ H|W|N|[N|N TIHIW[H|T|T|IN|W|W|T|N|N|N 159, A1eld Suuog-Jjog | -
HIHI/H]JH|N]|N|N WINWN]|T|IH}T| T IWN|[W{WN|T|N|T|T -
Hiy | |T]T)1 W|I|T|IN|JW|IN|T|N|T{WN[N|N|NIN 1S9, [MOB§ | §
WIH H{H{H|H|IN WIN|IN|IN[IN|TIWN|N|WN|[N|N|N|N S
WIH H|{H|H|H|NW WIN|INIW|N|]T I W|N|[W[N[N|NIJN $159], utpeoAeld | S
NIWIN|N|[N|RKNjN TIN|IN|T|{N|T|N|N|H|H|N|N]|N 1S9, Jesyg mis-uj | §
T TIWI W] T|N{|N N]JT|IN|TINIJN|JN|N|TIW|N|]T|T 1S9, 1BayS dfoyaloy | -
T{H]T|T|N|]N]|N N|T|IN|JT|IN|IN|N|N|T|{W|N|1T]"1 159, QUCA duLoq-)1as | o
WIHIW|IN|N|TI|N NIN|N|N|IN|N|N|N|H|{N|NJ]TI|N d
WIH W|IN|{N|T|N NIN|IN|[N|N|I|N|N|{N|H|N|N]|T|N ISOL duUBA |
@ a 2 o Z 2 g s 2 E 8 2] o]
258 F 8§ BB m m g ; 3 2§ f m : c g |
o B 2 = g & $ 3 : m 3 2} m 5
g 2 8: P8 8283 2 58 3 32 d1¢ 5|z
: ; s ¢ £ g 3 ¢ A :
a £ 3 < m = m @ 3 = I3 £
! = m —_ Fel [kK o m =] =1
. g = 3 € & 2 § 2 = 2 g Z S8
& K a8 = < 3 8 m s m S 7
= g g : oz < ol
£ 3 - 3 B
z z
wl
z

(SAOVYIAY) SISAL ONI VAL pus Y VAHS

E19

$159], AMSUS(] NIIS-u] AU} JOJ POULEIQO SIIMSUR A1) [[E JO uonewums ¢ s IqeL

NI N1 s 1N
WH WH 19 | Wi | AdY
S IR IR O A O I O A O SR B B EEE BEE IR IR EERT BT B BT I I z for-
.- N U R T R I R N I R R I O I e I R 191 deny iy reqponN | - | -
2 Bl IR IEEE I I e-fe-je-fe-fe-fe-je- |- e e WIL | - |s-
1- Ve e fe-fe-|z- e R e R A R B B R UOISSTWISUBL] WM JEIHION | - ¢ | 1 ¢
ref-t -t -0 -l fen e-le-|e-Je-Jev|eo|ev |-t je-Je-|e-]¢e-]¢- o
- frefee)oe e R R R e e R R A R R B R R 1S3 JONEISYORY JEION | - ¢ | ¢ ¢
tzy-c |-t frefer |z N N N I I B TR A O I I SETN S TR NS O t |sn
RN R ERE R BN 0 el I BN EEE BXE RN A 5 BN XN XN BT BT 1S9, uooffeq 124qmy | ;- | - ¢
tefrefe-le-fevi--fzu 1SN IR TN I IR SRR TN R U0 TN N R T IS AR IR ARTRN IR T |9-
z- tlerfze|e-fec]z- N R XN EEE BN RN EXA IEE IR IR B R 1591, W[y INEM | ¢ - | v
z-p-tfe-je-fe-)-1)-- LCHE B0 SRR B TERN B SRR I I N R S T NIRRT B I NS TN A
U VO U I (O M I SN IR I P (R I (P P PR IO IR IO I o owm unwdom |- -,
se st |e-lvrlsi|ze |- e-le-Je-Je-fe-Je-Je-|--|e-Je-]e-1e-)|en - s
v-dzefler)uo---Je-|1- R R R R e B R T E Y e B B ISOLIMNN) U0 1 77 | ¢ ¢
SR B0 EERT B EECHN B O IR T IR I (RN N R S S I S O SN B SN I SCRN NCICUN B S R TN G S IR SRR I O 1 |o1-
S IET TN IO I R N I N BN I R Ay RO IO RO e A 189, dooog | - | -
20 IR O IR B IR O S O N t-le-|e-e-|e-fe-je-f--e-le-]e-le-)e- - s
tefiv|is|usfeelza] -- i B R R B B R D B R BN BN B 1531 JoputjA) 3uunog A8 Y | ;4 | -5
ze |-t - --fre|-1)st e-le-Je-|e-Je-fe-fe-f--]e-fe-fe-|e-)¢e- -]s-
1- v|tv|ee|-2c|ee]-- 2 BN e B BN RN EEN R 5 RN EEN EEN Rl R 159, JaputjA) Suumod [fews | ;o | ¢
2 o @ o = o =
CEETT R jiiEiiii il I
o m 3 £ M e = w B 2 m o] c
. L g c i F:iiEg:s : |2
: : 105 M
% 13 m m P w M = m M o m m m w
;| AU I : : ;
& % 7 = - m E m 5 m W m_
= m ~ & 5 w &

£ 3 2 3 3 =
5 % -]
z) g g = e
z Z

F

z

(SYIMSNV TIV) SLSAL ALISNAA NLIS-NI

E20

S1S9L, ANSUa(MIS-U] 3 10§ PIULEIQO SIdMSUR AIeriure) ySny, a1 Jo uonewrwng ¢ g J1qeL

N1 N1 N N1
WH WH 14 | wa | ABM
.. . ; NS IR I R N I I R R [I U R T R R 1o deny iy mapnyN | -- | -
S 2N SR BE B B AR I t-le-|e-Je-|e-|e-fe-|--]e-|e-]e-|z-{c- WL - | --
el ool e - N I I I R [I I S I I (R UOISSTUISURI] 199N Je3pdnN | . ¢ | - ¢
- t t 150 I O AR O I t-te-fe-je-|e-fe-e-j-v |-l i
N I I RN A I S I [N U O I I [PUNE A R I I 189, Janeosyoeg 1IPnN | - | - ¢
-1 I 1 td-o -t Sl IR “1--1--1--1--1----V--1--1-- I IR
R R I R I N I N O R T I A RO R R I 1591 uoojreg 1aqqny | .. | -
1- O o B B R A B B IR ERRE AR IR IR R B I IR I tf--
.- N . B NS R I R I T RO TN R A U R R 159, Judwaoepday e | - - | -,
t-te-je-fe-je-f-1]-- AR IR SR A R I S N SR N C N0 SE HCICE B SCRN IR SRR I SR N SR I O r]--
- - - - N EEEER Y el B N B B B BT N EEE R 1S9 JoleM UL IySom | - | - ¢
- -] tle-rr]e- UL I T B SR I AE N R SR BN AL AR S BN N R N IR O O o I
c-leefe-|--f--|o-]-- R RN R B T S BT R I P I e 1S9L 1NN 0D | - | - ¢
- S . N I R N B R U e e B O B T R R I 1891, dooog | .. | --
-z [IR Sl s t-pe- |-)e-fe-fe- -] fr-]e-jfe o IR
1 v|i1s sleelee]-- BN e B RN R XN XN B B EnE BN B 1591 JopuljAD) Sunnod 98 | 4 | - 5
z¢ T|-- R RN KA t-te- |- le-je- ez -] o B
v lavtav)] -- 2 R N RN B EEE BT E EEE BN EEE R B 1891, JapuljA)) Suunod Jews |, | - ¢
E g 8 g z 4 g 2 8| & m z
g £ E £ &8 § g g 5 2 8 2 % m R z
] m = » M & & o M m m b g =] [
2 R g8 J 3 G s 02§ 3 m N il ¢
~ w Z
3 _ S 3 2 m z B ¥ g 2 § & 8 m
= z
: Rk P2 B2 Es TR : i3
o g % FER g § 2 = 2 3 z =2
s G 5 2 5 3 2 1 s & g AN
T S Z N z _ g “
o] 3 < 2 = 5 = =z
.M v < g &
T 3 = Z ES
£ a g g = r
z z
r
Z

(STIMSNV ALIVITIAVA HOIH) SLSAL ALISNA MLIS-NI

E21

SIS9], A1ISUC] MIS-U] 2] J0J PANRINO[ED SIN[BA JFBIOAY G'F IIqQE.,

sIamsue Ajureriare] ygig, are

sIdmsue A)Lrel[fure] g3ig, JUn0ooe 0301 SWIye) anjea odelsay | Iy

SIJMSUR [[E ‘oN[eA 93eIoAyY A" slomsue [[e JUnodde OJUT JuTye) anfea adelday | ly
AN
T[T 1T T1][T]1 - -1 -wli-1-1-T-17 19, den ay seapnN [§
TIWJWIW|[W[KW]1 N|N[N|[N|[N|[N[NJAN[N[N|[N[N]N 9L | ¥
TIWIWIWIW[W]1 N|N|JNIN|IN|[NIN|[W[N[N]|N][N]|T UOISSHSUEL |, 15011(] SLINN [Y
TIW[WIW]|WIKW][1 N|N[N[N[N]N[NJN[N|N[N]|N|N A
TIW[WIW[W] T[T N|N|[N[N|[N|[N[NJAW[N|N|N]|N|N 159, Jonedsydeq IeddnN | |
T]T1]TI]T]T]IN[N -l - -t-1-T-1-Imwl-1-T-1T-1w S
TIW{W[W[T[N][N N|[N[N[N|[N[NJNJAN|N[N|N|N]T 189 uoojiey 1qqny S
N{T[N|[N[N]T|®W - -1 -1-T-1T-1T-Tw|-T1T-T-T7T-1T1 S
TIW[T]TI[T1]T1]1 N[N[N|N[N|[N[NJH[N|[N]|N]|N][N 159 wowdoejday Jrem | 1
1
NININ|N|N|T|NW N|N|N|N|N|N|[N|W|N|N|N|N|N 1S9, Ol UL SoM []
WIH]T][N[N]T]N N|IN|N|[N|[N|N[N]JH]IN[N[N|N][N d
WIW! TIN|[N[T[N N|[N|[N|[N|N]N[NJH[N|N|N][N]N 1891 smn) a10) |
TIW W|{W]|T]|T[N N|IN|N|I[NIN[N[N|N|N[N|N|N|[N 1891, doodg | 'S
i
W W H|H|W|NW|N N|N|N|N|N|N|N|H|N|N|N|N|1 159) Joput|A)) Suunod o3re] | Y
T[HIH|H|W[W][N N[N[N[N[N|IN[NJH|[N[N]N][NTT A
TI|WIHIH|T|[W]|N N[N|N|N[N|JN|NJH|N|[N[N[NT1 153, JopulA]) Juumod [rews [¥
2] Q @l [}
2 EEEE g |t TEEEE NEE 1E
: oz ozl3 EE o3 5§ £ F 3 2
g a 8|32 m ¢ s B g 9 B lx
: _m : g g5 382 ¢ 28 5|3
2 F 5 2 2 £ 3 & 5 3 2 2|z
o W m m\ & et > [x “ %] — M
& & & = o = 5 m ®
= g g =~ & m
: Z -~ & 2 e
2 & g = g = =
z 3 2 5 =
- z

(SHOVIHAY) SLSAL ALISNHA MILIS-NI

[N “1*W *H] NOILVWHOANI TVOINEIALORD

E22

1S9, AN[IQRIUWIS] YY) J0J PIUTEIGO SISIMSUE) [[E JO UOnRUIWING 9] 5 d[qR [,

N1 N1 s | N1
WH WH 1u | we | AN
evze |- --)--]e- |- s-s-fs-|s-|--]rv-]s-fs-|s-|s-|e-|s-|¢er 1 | vz
t-lz-|vefl-9f-sfrefce A R R RS R B RN R R E R e S$IS9 Suidwing |, | ¢ ¢
SRS A B I B t]e-je- z-fle-fe-le-|--le-]e-fe-|e-|e-|1-]e-|e- [KX
A I I IO O T el e e e e e e es -2 | 1soL 1orouresumng Bunog-ges | (- | - -
tvflre]-- tjre]e-(s- 9-fo-Jo-Jo-|--|fs-]o-]o-|o-|o-|ec-|o-]sn - -
t] -e)sejeefee e il N B B EX A RN RN B B B KA B B ISAL PEIIWISUOTY | ¢ | ¢ ¢
ey zv |-} --f1-]v-fvre AN AN AN AN KRS EE N IV VRN VRN IV R T R - e
t- -] sejrefrs e R R R L R R R B R A 10 peofl dupieg | 4, {4
tvdee|--f--l-fe-fen 9-19-fo-to-|-vjvrfo-]o-fo-|o-le-[o-]s1 - e
t-fe-]refesfee e e B B 11 R R B e e R XA R 1531, prol Juisty | ¢ 5 [1
@ w o v o n = o) o} o]
20 B £ 8 & 38 z 3 & 8 § 2 % £ & m >
o 7B = S| g 5 ¢ 5 £ & 3 & 5 E E
\ m o - g 1A = o w M tm z o =
2 2§ s 9 & 3 5 ;0 s s 3 " i 2
= Q m 2 F z
m ! g c B 2 m z B @ a B 5 = <] m
= = Zz E] &] g T g 1% 4]
a 2 a = m = m F4 £
7] - m c o~ o = E m W_ [} m ” m
o 3 % m e » < ¥ 2 ® oz g Z =1 3
A £ 8 = 3 3 2 m 3 B g 7
E S 2 o g : g AR
z & a < g g 3 2| 3
= v < 3 =
- —~ —_
z o & % Zz X
= 1) =~ = T I
z Z
-
X3

(SYHMSNV TTV) SISHL ALITY YA

E23

$1S9 L, AN[1qeaULIdg Y J0] PaumIqo S1amsue Areriure] gy, 9q) Jo uonewums /{9 9[qe,

N1 N7 s NI
Wi Wi 1y | own | AN

el - S IR IR I N I SEEE I SRR U I B T IR S R AU B T T BN OER R |-
AN A AR R AN R i A R e e R R B R s1S3 Suidumng | ;- | - ¢
S R N A e e e - -- - 1oL 1o1ouredunng Suuog-pes | oo | -
trfpre - -tz e-je-fe-de-J--|e-Je-]e-fe-|e-]e-fe-te- - |-
Tl - eeez]zr o AN RN RN EA N R B B B EE B - - - ISOL PESHUEISUO)) | - 4 | - ¢
cefre|--f--|--|z-|zz s-|s-{s-|s-|--|v-|s-fes-|s-1s-|e-|v-{¥n -}
z- -leefis]er e] R R LA R R N R R AN IS PRI Buie | -5 | -
A I I B I -]z vofe- v v)--fe-fo-e-lr-fo-Jz-|ev-]¢cu .-
t-Je-fzefeefzelenfun R R R KX R RN B B R R R B ISAL PRy uisiy | - | -
B0 £ % 82 & Ig 9 2 % 5 3 5§ 8 8 2 &% @ B 8|8 E
5 % 5 &5 % 1 BB P B 5 8 f 3z 2§ 8 E g |8 3|z
' [
: R SERERERRRRR 1k

9 T 2|8 m 4 m “ g & 3 z g

“ 2 o] < @ a (] |

Z =}] z 2 % 8 = m o » Z
5 F 2 a = % % gz & 2 2 £ a3
a g 2 R £ & ¥ ¥ = a % 2 E = | =
8 2 5 08 < 3 32 5 2 g -l g

= 2 O S g > 2
: = P 2 F 2 =
g B 9 B z £
= 2 h = £ I3
e Z
k< =

Iy
Zz

(SYIMSNV ALRNVITIAVA HOIH) SISAL ALITEVANYAL

E24

1S9 L, AMIGRIULIDJ 91 J0J PIIR[NO[ED SIN[EA ITLIAY] F JIqR].

slomsue Anterjiurej y3iy, ole

siomsue Ajirel|rurey 431g, junoooE 0T JUDEl an[eA agedoay | Iy

siomsue [e ‘anfea o3edAy | v SIomsue [[e Junoode OJUl Julye) onjeA afeloay | ly
AT
TITI|WIH|H|W|KN N|ININ|IN|H|I|N|N|N|N[N|JH|N|N 1
TI|TIW]H|H[W]W NININ|INIH|[N|N|[N|N[NJT[N]N S1s9) 3uiduing | 7
TITW[H]|W[N]T|N NIN|NJN|H|N|N|N|[NIN|T[NI|N 1S9, JumauLd] Juuog-Jag | S
TITIWNIW W] T T NIN|JNINJW|ININ|N|N|N|]T|N][N d
TIN|IWNIWI W[T]|1T N|IN|N|N|J|WN|T|N[N|[N|N|T|N|N 1S9 peaf wsuo)) | Y
Tl T|IWIH|H]| T} N|ININ|IN|WIN|N|IN[N|N|N|{N]|N ki
TITIW|IHIN]T]| 1 N|N|IN|IN|IWIN|N|N|NIN|T|NI]N 159, peal] sunjie [A
T|T|H|H|H]|T{1 NININ|IN[WIN|N[N[N|N|[|T|IN]|N |
T{TIWIH|{W]| T} 1 NINININJW|IN|N[N|N|N|[T|N|[N 159, peoH Juisty [I
BN TR 1E
2 oz 2 = f 8 2 8 EEE E o2 2
= m "~ m w = 144) m M
g TR 3 2 c £ § ¢8 § 3 ¢ z =l 3
: | s 22 E 3z £ 5 f 3z : 4
2|3 =5 £ & %5 0z EE : 13
5 4 I = g B 2 8 5 g 7| 3
hid g S o < w g m - ﬂ
= Z SRS z 2 = w | A
£ 3 g - 3 = 3 i
I fo~ p ey .‘
z z

(SIOVIEAY) SISAL ALITIAVANYAD

E25

§189], Swkaaing [eorsydoon) oy I0J paureIqo SIIMSUE A1) [[€ JO uonewuwing 61 g JAqeL

N s |~
WH 13 | wu | AN
e-fe-|e-|e-fe-Je-Je-Jvvfe-|e-]ev]i-]e- 8¢
N IS T R i VO B R RV R R I onudeN | .- | -
e-fe-Je-pe-fe-Je-Jzv|ue-fe-|e-]e-|r-}e- 1 | s8¢
U O I I P I I R P I U Ry 159 omounaeryy | - | ..
e-fe-fe-Je-fe-fev]i-Je-fe-fe-Juvofu-]un - |-
S B B TR BEEEE BT B 40 O BCICE (RSP I N R O A [ISOL ANATSISOY | ¢ | ¢ -
ARSI TN R I U BT B T A T (N O SN N TN B I AR B I 1 |or-
N R I I U I I I AU I I IV R 159 aaep depng | .- | .,
AN EXN EAN S 5 RN N I I I I I I I I 1 [8-
o el R R B B B R e e I A 1S9L, IQOH-UMO(I IWSIAS | 7 - | ¢ ¢
e- ey fe- el]e- et 18-
RN IR U I I R A PO IV IV I DR 159 9JOH-$s01) oSS | - | ¢
- e-le-te-|-vtevfe-fre)l--Je-Jerje-|i-]u [
-t itz e - i B R KA B R B kA e B A R 1S9 LUONIIPIY WSS | 1 ¢ | 1 ¢
-1 - - - - volv-|e-]rafev|e-fJeelo-]erferfer-|o-]re 9-
ctfcet-el-e]l -e i e BAE KA KRN R R N R R N R XA R 159, UORIBHIY MWSIS | 7 ¢ | ¢ ¢
2 2 £ § 3 @ 2 = % 3 3 3 2 § Z 8¢ 3
5 2 5 3 g m m 5 Z § 8 e F z
B § B 3|8 H £ 9 12 F ¢t B 4 gls
B & &
2 2 83 G m 3 £ 5 8 3 2 2 z
7 2 2 1 2 T g 2 g 5|3
@ m = a =2 R 2 E m i 3 m = a8 £
p g % & » T 9 = 9 8 = 213
3 2 M m < > \m) W — -]
o w N = u < @ m z
_ o =] B = m =
= S S z ° v | =
8 3 o m £ > - _
ES o < m =
. 3 o > H £
= ® = € = e
Z
K4 —
-
Z

(SYIMSNY TTV) SLSHL DNIAHANNS TVIISAHIOTD

E26

http://nU.-JfOOE.UOS
http://nU.-JfOOE.UOS
http://nU.-JfOOE.UOS
http://nU.-JfOOE.UOS
http://nU.-JfOOE.UOS
http://nU.-JfOOE.UOS
http://nU.-JfOOE.UOS

$159], Surdoaing feoisAqdosn) oy J0j paureIqo sromsue Aueriure) g3y, oy Jo uonewwng Oz q dlqeL

NTJ N1 s N1
WH WH 1% { Wy | AN
.- . N O I SRS IR I A R I I R U R I I 1S9 onouden | - - | - -
.- : N R R R S I R O R R I IO I U I R 1891, owaunaAeIn | .. | ..
.. : I - -0 -- S I I I O D IR I I N I e e 191, Auamsisay | .. | -
- - - i A R ' t-li- -] t-fv-jr-pe-i-e- - - -
-1 i 1 1S N O e IR B RN R I R R R B B B 1L e ooeung | - | -
-- - - i B B LR IR SR R UL IR B SR R S N N U SR I SR IR SR N R R O IR 1
AN A R A B 3 Bad B B2 el N EEE B B RN BN B X R 1S9L OH-umO J1useg | - - | -,
- - - o B B B I IR N IR T IR IR IR T BRI I IR I I I vl -
- 4 z tf-z -t |-t R R A N R R R R IR I 1S3L I[OH-SSOI) JIUISIAE | .. | . ¢
-1 - . o IR B I LR I S T L O R O SRR A S IREICH R EN IR AE N I R R IR -1 -
- - 1 1 1Ty{-z|-tv4-1 - l--yr--1--1--1t--1--te-1--1--t--{-x1-- 1S9 LUOTIIY ONusSIag | (- | - ¢
-1 - - A B BRI B LR IR SR I SR NS S NRR S BN SN U O R I AL IR B R AR A -] --
A AR R i el I B B BN BN B XS EEE BN R EE B EE 153, UOTIORTJY JNWSIAS | - ¢ | -
] o 2 a Z =]
8 Z 2 &
PeEge g8 17318 i:iigille m
5 Bz z|g s £ 3 3 b B2
bl w w =] G a o] 3
o el s Q " [m g @ m 5 m
7 . g : 3§ £ % ¢z E G s
4
2 P 5 2 2 F 2 E 5 5 3 2 Z
e S z m e & T ¥ = z z & =
" a LI 3 g & 3 8 B 7
— M ~ r
E Z S| g G @
IS = Py
z & g g

[N *1 ‘W ‘'H] NOLLVIWHOINI TVIINHIALOID

(SYHMSNV ALRVITAVA HOIH) SLSAL SNIATANAS TYDISAHIOAD

[N*1 W ‘H] LSAL HIIM ALTEVITINVA | ~

E27

$1$9], Surkaaing peorsAqdoar) o J0J PateNOTEd SON[EA aTeIaAY 7 H QL

somsue Aiuretjiure) 4y, o

slomsue Ajueljiurey ysiy, JUnoooe ojul JUIyw) anjea ogelaay | 1y

sIomsur (¢ tan[ea o8uioay | vy SIaMSUR [[€ JUNODIE OJUT FUIL) onjeA oFerday | Iy
Add
O S Y O O 3 NIN|N|N|NIN|[N]T|[T|N]N[W]I 1891, dnoudepy | 1]
HIH|{H|H|H|H]|H NIN|IN[N|N|IN[N|J|WNIN[N|N|W]|T 1S9, daunaelf) | §
c-|H|H|H | H| - - - - - - - - - - - - - - - -
WIHIH|H | H]|W]|T NIN|{N{NIN|[NIN|JTIN[N|T|W!]1T 1S9 Anansisay |
HIHIH|H|H|HJ|H NIN|N|IH|N|[N|N|NIN|[N|N| T[T -
HIH|{H|H|H|H|H NIN|INIHIN|[N|[N|N|N[N|N|T]1 SIS9L A eS| S
HiH|H|H|H|H]|H NIN|N|[H|I{N|[N[N|N|N|N|N|]T|1 S
WIHIH|{H{H[H|H NININ|W|IN|N|N|T|N|N|N|W]|T 1591, JIOH-uMO(] d1WSIdS | 7]
H|H|H|H H|H]|H NIN|N{H{N[N|IN|N|N[N[N|TI|1 S
WINWNINWN| NI IWNW|H[H N|IN|NJW|N[N[IN|N|N[N[IN|T{1 1S9 L, 9[OH-$SOI)) J1wsiog |
TIWI W N H|H|H N|IN|N]T|TIN|T|W|{N|{NI|N|H|T 1
WIHIH|IH|H|HIH N|ININITWIN|N|T|N|[N|N|N|N]T 1S9, uONdIJaY d1usog | T
TIH|IH|(H | H|H|H N|IN|N]J]T|TIN|[T|]W|N|N|N|H]|T d
WIHIH|IH| H|IH]|H NIN|N|T|ININ[IN|T|N|N|IN|W]|T 1S9, uoNORIIY JIWSG |]
] Q k4 [2] =} ol & o]
S I A1) mmmmmmmmmmmmmm g | £
g Bl ¢ 2 = 2 w 1 m 2R 1k
ol 2B g 2583 83 ¢ =1 5
Z Foo|s s i 2 f 2 B3 £ : A
: |3 :3 €3 28 3 =2
® & < 3 g = X 8 g - B
E g Z 0 2 : g “| 5
: s @2 § ¢ : |z
= z
:
Zz

(SEOVIIAY) SLSAL DNIAHANNAS TYIISAHIOTD

E28

APPENDIX F

PROKAPPA PROGRAM

/***************************

* File REPRESENT.APP *

***************************/

#PrkDefn ProKappa : $Revision: 3.132 $

#

Definition for: Represent

#
Application: Represent
CFiles =
ProTalkFiles =
ProTalkCompileFlags =
LoadFlags =
ObjectBase = :Represent.cb
UserModules = RepresentUI
RequiredModules = DialogBoxApp
AboutAppFile =
AfterLoadInitFnName =
RunFnName =

#

#

#

Module: RepresentUI

CFiles =

ProTalkFiles = :GRinit.ptk,:GRfuncl.ptk,:GRfunc2 ptk,
:GRfunc3.ptk,:GRfunc4.ptk,:GRmisc.ptk

ProTalkCompileFlags =

LoadFlags =

ObjectBase = :RepresentUlLob

UserModules =

RequiredModules = DialogBoxApp

Fl1

washs Yddy MOUd 2y ut uonendde punosry ayy Sunuasaidoy,

o) 10§ padojaaap a5€q 1331q0 Y Ul PApNIOUL AYIIRIDNY PUNOID) L [AINSL]

=R
,0 opeW uew
SISBMA

lead’,
pueg ouebi0 = esiB0H 2juebiQ Y
Jgnuely 2juebiQ ~
WS owebip - Buld Jejnuesn ojuebio \ ouebsp

-~
L
o~

;. QU ouelIp T 2AISIYoH dIuRBip /
>m_olo_:m90\ \ os

sispinog *.

4 8SIBOY AIBA
$8|GqoYy°

|BARIE) *
.} esimoy
pueg’

Jejnueie) puneixy

oWwebin " uo
NS™ sud Je|nuely uebiQ uon

~ = — U_MI - .
\J U4 BDRSBYOD >+ ooy
Aejn yos-

/***********************

* File GRINIT.PTK *

***********************/

1* This file contains the functions required for the construction of the dialog boxes and their controls,
and for the activation of the interface. */

#include <prk/lib.pth>

function MakelnterfaceElements()

{

bound inputs;

MakeDialogBox{RepresentUl, Main_Menu_Box);
MakeDialogBox(RepresentUI, Func_Box);
MakeDialogBox(RepresentUI, Display_Box);
MakeDialogBoxControl(ListBox, RepresentUI, L.M);
MakeDialogBoxControl(ListBox, RepresentUI, L1);
MakeDialogBoxControl(ListBox, RepresentUI, 1.2);
MakeDialogBoxControl(CommandRow, RepresentUI, C1);
MakeDialogBoxControl(CommandRow, RepresentUI, C2);
MakeDialogBoxControl(CommandRow, RepresentUI, C3);
MakeDialogBoxControl(EntryBox, RepresentUI, El);
MakeDialogBoxControl(PushButton, RepresentUl, P1);
MakeDialogBoxControl(PushButton, RepresentUl, P2);
MakeDialogBoxControl(TextDisplay, RepresentUI, OP1);

function MainMenu()

{
bound inputs;
GetSlotList();
FindSlotRangeList();
ListObjMods();
SetDialogBoxControls(Main_Menu_Box, "(LM@, C1@));
SetDialogBoxControlValues(Main_Menu_Box, LM, Selectionltems, *("List Ancestors", "List Slots",
"Find Object Modifiers", "Find Objects and Modifiers", "Exit"));
SetDialogBoxControl Value(Main_Menu_Box, LM, MaxNumOfLines, 5);
SetDialogBoxControl Value(Main_Menu_Box, C1, React!, “7C1.React!);
Main_Menu_Box.Title = "Function Menu";
LM.Title = "Please choose one of the following:";
C:PrkSendMsg(Main_Menu_Box@, "PutOnScreenAndWait!);
}

F3

method C1.React! ()

{

bound inputs;

Imenu_item = GetDialogBoxControl Value(Main_Menu_Box, LM, Values);
select
{
case:’menu_item == "List Ancestors";
{
C:PrkSendMsg(Main_Menu_Box@, “TakeOffScreen!);
MakeAncestors();
}
case:?menu_item == "List Slots";
{
C:PrkSendMsg(Main_Menu_Box@, *TakeOffScreen!);
MakeSlots();
}
case:?menu_item == "Find Object Modifiers";
{
C:PrkSendMsg(Main_Menu_Box@, “TakeOffScreen!);
MakeMods();
}
case:?menu_item == "Find Objects and Modifiers";
{
C:PrkSendMsg(Main_Menu_Box@, *TakeOffScreen!);
MakeObjMods();
}
case:?menu_item == "Exit";
{
C:PrkSendMsg(Main_Menu_Box@, “TakeOffScreen!);
fail;
}
}
}

F4

/***************************

* File GRFUNCLPTK *

***************************/

/* This file contains the functions that are activated on selecting the "List Ancestors” option from the
Function Menu dialog box in order to identify and display the ancestors of an object within the
hierarchy. */

#include <prk/lib.pth>

function MakeAncestors()

{
SetDialogBoxControls(Func_Box, (L1@, P1@,C2@));
Tresult = ListObjs(Ground);
SetDialogBoxControlValues(Func_Box, L1, Selectionltems, ?resutt);
SetDialogBoxControlValue(Func_Box, L1, MaxNumOfLines, 15);
SetDialogBoxControlValue(Func_Box, C2, React!, “7C2Ancestors.React!);
SetDialogBoxControlValue(Func_Box, P1, React!, “7P1Ancestors.React!);
SetDialogBoxControlValue(Func_Box, C2, ButtonLabels, "Cancel”);
P1.ButtonLabel = "Push";
P1.Tide = "Display Ancestors";
L1.Title = "Please choose one of the following:\n\n\n[All objects in model listed]“;
Func_Box.Title = "List Ancestors Function";

C:PrkSendMsg(Func_Box@, "PutOnScreen!);
}

method C2Ancestors.React!()

{
C:PrkSendMsg(Display_Box@, “TakeOffScreen!);
C:PrkSendMsg(Func_Box@, *TakeOffScreen!);
C:PrkSendMsg(Main_Menu_Box@, "PutOnScreen!);

}
method P1Ancestors.React!()
{

MakeAncestorsDisplay();
C:PrkSendMsg(Display_Box@, "PutOnScreen!);

}

F5

function MakeAncestorsDisplay()

{ .
SetDialogBoxControls(Display_Box, *(OP1@, C3@));

?selection = ConvertToS ymbol(GetDialogBoxControl Value(Func _Box, L1, Values));
Tancestors = FindAncestors(?selection);

Display_Box.Title = "Display Ancestors";

SetDialogBoxControlValue(Display_Box, Display_Box, PositionX, 715);
SetDialogBoxControlValue(Display_Box, Display_Box, PositionY, 634);
SetDialogBoxControlValues(Display_Box, OP1, Values, ?ancestors);
SetDialogBoxControl Value(Display_Box, C3, React!, “7C3.React!);
SetDialogBoxControl Value(Display_Box, C3, ButtonLabels, "OK");

function FindAncestors(?obj)

(
bound inputs;
if IsInstance(?0bj);
then ?ancestors = all classof ?obj;
else ?ancestors = all superclassof ?0bj;
return 7ancestors;

method C3.React!()
{

C:PrkSendMsg(Display_Box@, “TakeOffScreen!);
)

F6

/***************************

* File GRFUNC2.PTK *

***************************/

/* This file contains the functions that are activated on selecting the "List Slots" option from the
Function Menu dialog box in order to find the astributes of an object within the hierarchy and the
values that these attributes have. */

#include <prk/lib.pth>

function MakeSlots()

{
SetDialogBoxControls(Func_Box, *(L1@, P1@, L2@, P2@, C2@)),
result = calc.ObjSlots;
SetDialogBoxControl Values(Func_Box, L1, Selectionltems, ?result);
SetDialogBoxControl Value(Func_Box, L1, MaxNumOfLines, 15);
SetDialogBoxControl Values(Func_Box, L2, SelectionItems, *());
SetDialogBoxControlValue(Func_Box, C2, React!, “7C2Slots.React!);
SetDialogBoxControl Value(Func_Box, C2, ButtonLabels, "Cancel");
Func_Box.Title = "List Slots Function”;
P1.ButtonLabel = "Push”;
P2.ButtonLabe!l = "Push";
P1.Title = "List Attributes";
P2.Title = "Display Values";
L1.Title = "Please choose one of the following:\n\n\n{ Only those objects having slots listed]";
L2.Title = "Attribute Table";
SetDialogBoxControlValue(Func_Box, P1, React!, *?P1Slots.React!);
SetDialogBoxControl Value(Func_Box, P2, React!, *?P2Slots.React!);

C:PrkSendMsg(Func_Box@, "PutOnScreenAndWait!);
}

method C2Slots.React!()

{
C:PrkSendMsg(Display_Box@, *TakeOffScreen!);
C:PrkSendMsg(Func_Box@, “TakeOffScreen!);
C:PrkSendMsg(Main_Menu_Box@, "PutOnScreen!);

}

method P1Slots.React!()

{
Iselection = ConvertToSymbol(GetDialogBoxControl Value(Func_Box, L1, Values));
?slot_list = ObjectSlots(?selection);
SetDialogBoxControlValues(Func_Box, L2, Selectionltems, ?slot_list);

}

method P2Slots.React!()

{
70bj = ConvertToSymbol(GetDialogBoxControlValue(Func_Box, L1, Values));
?slot = ConvertToSymbol(GetDialogBoxControl Value(Func_Box, L2, Values));
?val = GetValues(?obj, ?slot);
?min = ListFirst(?val);
?max = ListNth(?val, 1);
Display_Box.Title = "Display Slot Values";
7ans = AppendStrings(ConvertToString(?slot), " \"\nMin Value = ",ConvertToString(?min),"\nMax
Value = ",ConvertToString(?max));
SetDialogBoxControlValue(Display _Box, OP1, Values, ?ans);
SetDialogBoxControlValue(Display_Box, Display_Box, PositionX, 731);
SetDialogBoxControlValue(Display_Box, Display_Box, PositionY, 697);
SetDialogBoxControlValue(Display_Box, C3,ButtonLabels, "OK");
C:PrkSendMsg(Display_Box@, "PutOnScreen!);
}

F8

/***************************

* File GRFUNC3.PTK *

***************************/

1* This file contains the functions that are activated on selecting the "Find Object Modifiers” option
from the Function Menu dialog box in order to find the modifiers that correspond to a value in a slot in
an object within the hierarchy. ¥/

#include <prk/lib.pth>

function MakeMods()

{
SetDialogBoxControls(Func_Box, "(L1@, P1@, L2@, E1@, P2@, C2@));
result = calc.ObjMods;
SetDialogBoxControlValues(Func_Box, L1, Sclectionltems, ?result);
SetDialogBoxControlValue(Func_Box, L1, MaxNumOfLines, 7);
SetDialogBoxControl Value(Func_Box, C2, React!, *?C2Maods.React!);
SetDialogBoxControl Values(Func_Box, L2, Selectionltems, ~());
SetDialogBoxControl Value(Func_Box, C2, ButtonLabels, "Cancel");
Func_Box.Title = "Find Object Modifiers Function";
P1.ButtonLabel = "Push”;
P2.ButtonLabel = "Push";
P1.Title = "List Attributes";
P2.Title = "Display Results";
L1.Title = "Please choose one of the following\n\n[Only objects having attributes\n with defined
modifiers listed]";
L2.Title = "Attribute Table\i\n{Only those attributes with\ndefined modifiers listed]";
E1.Title = "Enter value for chosen attribute\n";
SetDialogBoxControl Value(Func_Box, P1, React!, “?P1Mods.React!);
SetDialogBoxControl Value(Func_Box, P2, React!, “7P2Mods.React!);
C:PrkSendMsg(Func_Box@, “PulOnScreenAndWait!);
}

method C2Mods.React!()

{
C:PrkSendMsg(Display_Box@, “TakeOffScreen!);
C:PrkSendMsg(Func_Box@, *TakeOffScreen!);
C:PrkSendMsg(Main_Menu_Box@, "PutOnScreen!);
}

F9

method P1Mods.React!()

{
range_list = "();
2selection = ConvertToSymbol(GetDialogBoxControl Value(Func_Box, L1, Values));
?slot_list = CheckSlots(?selection);
for ?list_mem inlist ?slot_list;
do {
7slot_values = GetValues(?selection, ?list_mem);
MNist_first = ConvertToString(ListFirst(?slot_values));
Nist_last = ConvertToString(ListNth(?slot_values, 1));
Nist_mem = AppendStrings(ConvertToString(?list_mem), " [",Mist_first, ",",2ist_last, "1");
MNist_mem = “(?list_mem);
append ?list_mem into range_list;
}

SetDialogBoxControl Values(Func_Box, L2, Selectionltems, ?range_list);

method P2Mods.React!()

{
?0bj = ConvertToSymbol(GetDialogBoxControlValue(Func_Box, L1, Values));
Islot_str = ConvertToString(GetDialogBoxControlValue(Func_Box, L2, Values));
7_val = ConvertToNumber(GetDialogBoxControlValue(Func_Box, El, Values));
MNoc = FindSubstring(?slot_str, "[");
?slot_name = ConvertToSymbol(Substring(?slot_str, 0, ?loc-1));
ValidFacVal(?0bj, ?slot_name, 7f_val);

function CheckSlots(?sel_obj)

{
bound inputs;
Tret_slot_list = "();
Islot_list = ObjectSlots(?sel_obj);
for ?slot_name inlist ?slot_list;

do {
Macet_list = SlotFacets(?sel_obj, ?slot_name);
if ListLength(?facet_list) > 0;
then {
Islot_name = ~(?slot_name);
append ?slot_name into ?ret_slot_list;
)
}
return 7ret_slot_list;

F10

function ValidFacVal(?0bj, ?slot_name, 7f_val)

{
bound inputs;
Islot_range = GetValues(?0bj, ?slot_name);
?min = ListFirst(?slot_range);
Imax = ListNth(?slot_range, 1);
if
{
IsNumber(?f_val);
" _val<=?max;
2 val>=?min;
}
then MakeModsDisplay(?obj, ?slot_name, ?f_val);
else {
mesg = AppendStrings(ConvertToString(?slot_name), " must be a number between the range
[", ConvertToString(?min), ", ",ConvertToString(?max), "] for ", ConvertToString(?0bj));
SetDialogBoxControlValue(Error_Box, TE, Values, ?mesg);
SetDialogBoxControlValue(Error_Box, CE, ButtonLabels, "OK");
SetDialogBoxControl Value(Error_Box, CE, React!, *7?CEValid React!);
C:PrkSendMsg(Error_Box@, "PutOnScreenAndWait!);
}
}

function MakeModsDisplay(?0bj, ?slot_name, ?f_val)

{
bound inputs;
7ans_list = FindFacets(?obj, ?slot_name, ?f_val);
Display_Box.Title = "Display Object Modifiers";
SetDialogBoxControlValues(Display_Box, OP1, Values, ?ans_list);
SetDialogBoxControlValue(Display_Box, Display_Box, PositionX, 690);
SetDialogBoxControtValue(Display_Box, Display_Box, PositionY, 647);
SetDialogBoxControlValue(Display_Box, C3, ButtonLabels, "OK");

C:PrkSendMsg(Display_Box@, "PutOnScreen!);
}

method CEValid.React!()
{

bound inputs;
Error_Box.TakeOffScreen!();
)

F11

function FindFacets(?obj, ?slt, 7f_val)
{
bound inputs;
Tans_list ="();
Macet_list = SlotFacets(?obj, 7slt);
for ?facet_name inlist ?facet_list;
do
{
2f_vallist = GetFacetValues(?obj, 7slt, 7facet_name);
Imin = ListFirsi(?f_vallist);
max = ListNth(?f_vallist, 1);
if
{
”_val >= Mmin;
7f_val <= Tmax;
}
then

2ans = AppendStrings(ConvertToString(?facet_name),"” ", ConvertToString(?obj));
collect ?ans into 7ans_list;

}
}

return Tans_list;

}

Fi2

/***************************

* File GRFUNC4.PTK *

***************************/

/* This file contains the functions that are activated on selecting the "Find Objects and Modifiers"
option from the Function Menu dialog box in order to find the objects and modifiers (if any) that
correspond to a value in a slot within the hierarchy. */

#include <prk/lib.pth>

function MakeObjMods()

{
SetDialogBoxControls(Func_Box, "(L1@, E1@, P1@, C2@));
SetDialogBoxControl Values(Func_Box, L1, Selectionltems, “calc.Attr_Range);
SetDialogBoxControlValue(Func_Box, L.1, MaxNumOfLines, 3);
SetDialogBoxControlValue(Func_Box, C2, ButtonLabels, "Cancel");
SetDialogBoxCoentrolValue(Func_Box, C2, React!, “7C20bjMods.React!);
Func_Box.Title = "Find Objects and Modifiers Function"”;
L 1.Title = “Please choose one of the following: [All attributes of model listed 1";
P1.ButtonLabe! = "Push";
P1.Title = "Display Results";
E1.Title = "Enter value for chosen attribute\n”;
SetDialogBoxControlValue(Func_Box, P1, React!, “7P10bjMods.React!);

C:PrkSendMsg(Func_Box@, "PutOnScreenAndWait!);

}

method C20bjMods. React!()

{
C:PrkSendMsg(Display_Box@, “TakeOftScreen!);
C:PrkSendMsg(Func_Box@, “TakeOffScreen!);
C:PrkSendMsg(Main_Menu_Box@, “PutOnScreent!);

}

method P10bjMods.React!()

{
Tobj = ConvertToSymbol("Ground");
?slot_string = ConvertToSymbol(GetDialogBoxControlValue(Func_Box, L1, Values));
7slot_val = ConvertToNumber(GetDialogBoxControlValue(Func_Box, E1, Values));
Noc = FindSubstring(?slot_string, "["); '
?slot_name = ConvertToSymbol(Substring(?slot_string, 0, oc-1));
ValidSlotVal(?obj, ?slot_name, ?slot_string, 7slot_val);

FI3

function ValidSlotVal(7obj, ?slot_name, ?slot_string, ?slot_val)

{

bound inputs;

MNocl = FindSubstring(?slot_string, "[");
MNoc2 = FindSubstring(?slot_string, ",");
MNoc3 = FindSubstring(?slot_string, "]");

?min = ConvertToNumber(Substring(?slot_string, 2locl+1, ?loc2));
Mmax = ConvertToNumber(Substring(?slot_string, ?loc2+2, ?loc3));

if
{
IsNumber(?slot_val);
Islot_val<=7max;
?slot_val>=?min;
}
then {

SetDialogBoxControlValue(Display_Box, OP1, Values, "),
FindObjectsAndFacets(?0bj, ?slot_name, ?slot_val);
7ans_list = GetDialogBoxControlValues(Display_Box, OP1, Values);
SetDialogBoxControlValues(Display_Box, OP1, Values, ListRest(?ans_list));
Display_Box.Title = "Display Objects and Modiliers";
SetDialogBoxControlValue(Display_Box, Display_Box, PositionX, 688);
SetDialogBoxControlValue(Display_Box, Display_Box, PositionY, 550);
SetDialogBoxControlValue(Display_Box, C3, ButtonLabels, "OK");
C:PrkSendMsg(Display_Box@, "PutOnScréen!);
}

else {
Tmesg = AppendStrings(ConvertToString(?slot_name), " must be a number between the range

{", ConvertToString(?min), ", ",ConvertToString(?max), "]");

}

SetDialogBoxControl Value(Error_Box, TE, Values, 7mesg);
SetDialogBoxControlValue(Error_Box, CE, ButtonLabels, "OK");
SetDialogBoxControl Value(Error_Box, CE, React!, “ ?CEValid.React!);
C:PrkSendMsg(Error_Box@, "PutOnScreenAndWait!);
}

Fi4

function FindObjectsAndFacets(?start, Tattr, 7attr_val)

{
bound inputs;
for find 20bj = direct subclassof ?start;

do
{
Checker(?obj, 2attr, Tattr_val);
?ans = CheckPath(?obj, Zattr, 7attr_val);
Tans == 1;
FindObjectsAndFacets(?obj, attr, 7attr_val);
}
for find 2inst = direct instanceofl 7start;
do
{
7ans = CheckPath(?inst, ?attr, 2attr_val);
Tans == 1;
SearchForModifiers(?inst, attr, 7attr_val);
}
}

function Checker(?obj, attr, Tattr_val)

{

bound inputs;
if not IsSlot(?0bj, ?attr);

then
{
find ?name = direct subclassof ?obj;
FindObjectsAndFacets(?name, ?attr, ?attr_val);
}
else
{
succeed;
}

function CheckPath(?obj, ?attr, ?attr_val)

{

bound inputs;

if IsSlot(?0bj, attr);

then {?values = GetValues(?obj, attr);
min = ListFirst(?values);
Imax = ListNth(?values, 1);
if {?attr_val >= ?min;

Tattr_val <= Tmax;}
then return 1;
else return 0;

}

else return 0;

F15

function SearchForModifiers(?obj, Tattr, 7attr_val)

{
bound inputs;
7facet_list = SlotFacets(?obj, ?attr);
if ListLength(?facet_list) == 0;
then {
70bj = ConvertToString(?0bj);
Zattr = ConvertToString(?attr);
7atir_val = ConvertToString(?attr_val);
new_value = “(AppendStrings(7obj,” [No modifiers defined]"));
SetNewValue(?new_value);
}
else {
for ?facet_name inlist 2facet_list;
do
{
facet_values = GetFacetValues(?obj, 7attr, ?facet_name);
?min = ListFirst(?facet_values);
Mmax = ListNth(?facet_valucs, 1);
if
{
Tattr_val >= min;
2attr_val <= Tmax;
}
then
{
Mew_value =" (AppendStrings(" ", ConvertToString(?facet_name)," "
ConvertTaString(?0bj)," ";
SetNew Value(?new_value);

’

}
}

function SetNewValue(Tnew_value)

{
bound inputs;
%exist_values= GetDialogBoxControlValues(Display_Box, OPI, Values);
append ?exist_values into ?ans_list;
append 7new_value into 7ans_list;
SetDialogBoxControt Values(Display_Box, OP1, Values, ?ans_list);

Fl6

/*************************

* File GRMISC.PTK *

*************************/

/* This file contains miscellaneous functions. */

#include <prk/lib.pth>
#include <prk/math.pth>

function ListObjs(?start)

{
bound inputs;
7cls = all subclassof ?start;
?inst = all instanceof ?start;
append ?cls into ?€ull_list;
append ?inst into ?full_list;
return 2Hull_list;

function IsListMember(?main_list, 7member)

{
bound inputs;
for ?x inlist ?main_list;

do

{
if 7x == Tmember;
then return 0;

}

return 1;

F17

function ListObjMods()

{

Tret_obj_list="();
?0bj_list=ListObjs(Ground);
for Tmem_list inlist 7obj_list;

do
{
Tcur_slot_list=0ObjectSlots(?mem_list);
if 2cur_slot_list 1= "();
then append “(?mem_list) into ?sel_obj_list;
calc.ObjSlots = ?sel_obj_list;
}
for ?sel_obj inlist ?sel_obj_list;
do
{
Nest = CheckFacets(?sel_obj);
if 7test == 1;
then append *(?sel_obj) into ?ret_obj_list;
}

calc.ObjMods = ?ret_obj_list;

function CheckFacets(7obj)

{

bound inputs;
7slot_list = ObjectSlots(?obj);
for ?slot_name inlist ?slot_list;

do

{
Macet_list = SlotFacets(?0bj,?slot_name);
if ListLength(?facet_list) > 0;
then return 1;

}

return 0;

F18

function GetSlotList()

{
20bj_list=ListObjs(Ground);
Imain_slot_list =~ ();
for 7obj inlist obj_list;
do
{
2cur_slot_list=ObjectSlots(?obj);
if 7cur_slot_list !="();
then
{
2accum_list = GetUniqueSlots(?main_slot_list, ?cur_slot_list);
Imain_slot_list = Taccum_list;

)

}

calc.Main_slot_list = ?accum_list;

function GetUniqueSlots(?main_slot_list, ?cur_slot_list)
({
bound inputs;

append ?main_slot_list into ?temp_list;
for ?attr inlist 7cur_slot_list;

do

{
Mtest = IsListMember(?temp_list, 7atir);
if Nest == 1;
then append " (7attr) into ?temp_list;

}

return ?temp_list;

}

function FindSlotRangeList()

{
Hull_range_list = ~();
main_slot_list = calc.Main_slot_list;
for 7slot_name inlist ?main_slot_list;

do
{
?slot_range = FindSlotRange(Represent, RepresentUl, ?slot_name);
append “(?slot_range) into ?slot_range_list;
)
calc.Attr_Range = ?slot_range_list;
}

F19

function FindSlotRange(?app,?mod, ?attr)

{

bound inputs;

val_list ="();

?app_inst_list = Applnstances(?app);
Imod_inst_list=ModuleInstances(?mod);

for
{
Nist_mem inlist 2app_inst_list;
2list_mem inlist ?mod_inst_list;
}

do DeleteListElmt(?list_mem, ?app_inst_list);
for Mist_mem inlist 2app_inst_list;

do
{
if IsSlot(MNist_mem, ?attr);
then
{
?slot_vals = GetValues(?list_mem, ?attr);
append ?slot_vals into ?val_list;
}
}
for ?list_mem inlist ?val_list;
do
{
ConvertToFloat(?list_mem);
append “(?list_mem) into 7num_list;
}

Mum_list = Sort(?num_list, ">");

?min = ConvertToString(ListFirst(7num_list));

?max = ConvertToString(ListFirst(ListLastCons(?num_list)));

attr_range = AppendStrings(ConvertToString(?attr),” [*,?min,", ",7max,"}");
return ?atir_range;

