
Durham E-Theses

Learning algorithms for adaptive digital �ltering

Nambiar, Raghu

How to cite:

Nambiar, Raghu (1993) Learning algorithms for adaptive digital �ltering, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5544/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5544/
 http://etheses.dur.ac.uk/5544/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

Learning Algori thms for Adaptive

Digi ta l Filtering:

Raghu Nambiar

School of Engineering and Computer Science

University of Durham

A thesis submitted in partial fulfilment of the require

ments of the Council of the University of Durham for

the Degree of Doctor of Philosophy (Ph .D .) .

January 1993

. 1 2 HAY 1993

Abstract

In this thesis, we consider the problem of parameter optimisation in adaptive

digital filtering. Adaptive digital filtering can be accomplished using both

Finite Impulse Response (FIR) filters and Infinite Impulse Response Filters

(IIR) filters. Adaptive FIR filtering algorithms are well established. However,

the potential computational advantages of I IR filters has led to an increase in

research on adaptive I IR filtering algorithms. These algorithms are studied

in detail in this thesis and the limitations of current adaptive I IR filtering

algorithms are identified. New approaches to adaptive IIR filtering using in

telligent learning algorithms are proposed. These include Stochastic Learning

Automata, Evolutionary Algorithms and Annealing Algorithms. Each of these

techniques are used for the filtering problem and simulation results are pre

sented showing the performance of the algorithms for adaptive I IR filtering.

The relative merits and demerits of the different schemes are discussed. Two

practical applications of adaptive I IR filtering are simulated and results of us

ing the new adaptive strategies are presented. Other than the new approaches

used, two new hybrid schemes are proposed based on concepts from genetic

algorithms and annealing. I t is shown with the help of simulation studies, that

these hybrid schemes provide a superior performance to the exclusive use of

any one scheme.

i i

TO My VA1ZEMTS

To whom much more is owed

than can be mentioned here.

i i i

Acknowledgments

I t would be presumptuous to think that a thesis is the sole effort of a single individual.

This is my sincere effort to thank all those who have, either directly or indirectly,

helped during my stay at Durham and in my study.

o To my parents and sister for all the love and support.

o To my supervisor Prof. Mars - his wit and good cheer always made things more

tractable, and for his infinite patience especially during the last stages.

o To Dr. Tang - for his thought provoking questions during the initial phase.

o To the British Council - for all the support especially financial, and in particular

to Angie Stephenson - my program adviser at the British Council - she was a

true friend.

o To Prof. Sengupta - all this would have not materialised if it had not been for

his help.

o To Ritu, Bipul, Amit , Manju, Bipul, Rashmi, Rajeev, Nithya and John - for

providing a touch of home in the cold climes of Britain.

o To Shyam Sunder - for being such an accommodating host during my visits to

the United States.

e To John, Alan and David in the lab - for all the good times.

o To numerous friends at the halls of residence - none is mentioned by name lest

I offend those who I have forgotten by oversight.

o To Sylvia - for all the help during the three years.

Q To Jamie, Gemma, Neil and Trisha - for well, they wanted to be in the

acknowledgments !!.

iv

Declaration

I hereby declare that this thesis is a record of work undertaken by myself, that it has

not been the subject of any previous application for a degree, and that all sources of

information have been duly acknowledged.

(c) Copyright 1993, Raghu Nambiar

The copyright of this thesis rests with the author. No quotation from it should be

published without his written consent, and information derived from it should be

acknowledged.

Contents

1 In t roduc t ion 1

1.1 Why Adaptive Filtering ? 1

1.2 Outline of Thesis 4

2 Adapt ive D i g i t a l F i l t e r ing 8

2.1 Introduction 8

2.2 Adaptive FIR Filtering 12

2.3 Adaptive I IR Filtering 13

2.3.1 Introduction 13

2.3.2 Different Formulations of Estimation Error 14

2.3.3 Adaptive Algorithms 16

2.4 Alternative Realizations 19

2.4.1 Parallel Form 20

2.4.2 Cascade Form 21

2.4.3 Lattice Form 22

2.5 Applications of Adaptive IIR Filtering 22

2.5.1 Adaptive Noise Cancelling 23

2.5.2 Adaptive Equalization 24

2.6 Discussion 25

3 Stochastic Learning A u t o m a t a 32

3.1 Introduction 32

3.2 Stochastic Learning Automata 33

3.2.1 Stochastic Automata 33

vi

3.2.2 The Environment . . . 35

3.2.3 Norms of Behaviour 37

3.3 Learning Algorithms 38

3.3.1 Standard Learning Algorithms 38

3.3.2 Discretised Learning Algorithms 41

3.3.3 Estimator Algorithms 42

3.3.4 S-Model Learning Schemes 48

3.4 Interconnected Automata 51

3.4.1 Hierarchical Learning Automata 51

3.4.2 Automata Games 52

3.5 Discussion 53

4 Adapt ive D i g i t a l F i l t e r ing using Stochastic Learning A u t o m a t a 56

4.1 Introduction 56

4.2 Simulation Configuration 57

4.2.1 Introduction 57

4.2.2 Using Stochastic Learning Automata 57

4.2.3 Different Categories of Modeling 60

4.3 Simulation Results 62

4.3.1 Introduction 62

4.3.2 Results using P-Model Learning Algorithms 64

4.3.3 Results using S-Model Learning Algorithms 66

4.3.4 Other Categories 70

4.3.5 Automata Games and Hierarchical Schemes 71

4.4 Conclusions 72

5 Genetic and Evolu t ionary Opt imisa t ion 90

5.1 Introduction 90

5.2 Genetic Algorithms 94

5.2.1 Introduction 94

5.2.2 Standard Genetic Operations 97

5.2.3 Improved Genetic Operations 100

vii

5.2.4 Adaptive Extensions of Genetic Algorithms 103

5.3 Evolutionary Strategies 104

5.3.1 Introduction 104

5.3.2 Standard Evolutionary Strategies 105

5.3.3 Improved Evolutionary Strategies 109

5.4 Evolutionary Programming I l l

5.4.1 Introduction I l l

5.4.2 Salient Features 112

5.4.3 Adaptive Extensions to Evolutionary Programming 113

5.5 Discussion 114

6 Adapt ive D i g i t a l F i l t e r ing using Genetic and Evolu t ionary O p t i m i

sation 116

6.1 Introduction 116

6.2 Simulation Configuration 117

6.2.1 Genetic Algorithms 117

6.2.2 Evolutionary Strategies and Programming 120

6.3 Simulation Results 121

6.3.1 Genetic Algorithms 121

6.3.2 Evolutionary Strategies 130

6.3.3 Evolutionary Programming 132

6.3.4 Applications using the Adaptive I IR Filter 134

6.4 Conclusions 137

7 Simulated and Genetic Anneal ing 171

7.1 Introduction 171

7.2 Simulated Annealing 173

7.3 Fast Simulated Annealing 176

7.4 Very Fast Simulated Reannealing 177

7.5 Genetic Annealing 178

7.5.1 Introduction 178

7.5.2 Hybrid Scheme - I 179

viii

7.5.3 Hybrid Scheme - I I 181

7.6 Simulation Configuration and Results 182

7.7 Conclusions 184

8 Conclusions and Further W o r k 199

8.1 Conclusions 199

8.2 Further Work 201

8.2.1 Use of Genetic Algorithms in Non-stationary Environments . . 201

8.2.2 Parallel Implementation 202

8.2.3 Genetic Algorithms and Neural Networks 203

8.2.4 Theoretical Analysis using Natural Genetics 203

8.2.5 Hybrid Schemes 204

Append ix A 205

Append ix B 207

Bib l iography 210

Publicat ions 222

ix

List of Figuires

1.1 Conventional and Adaptive Filtering Configurations 6

1.2 Direct and Inverse System Modeling Configurations 7

2.1 Digital Filter 26

2.2 Adaptive Digital Filter 26

2.3 System Identification Configuration 27

2.4 Equation Error Formulation 27

2.5 Equation Error Identifier 28

2.6 Output Error Formulation 28

2.7 Parallel Form Realization 29

2.8 Lattice Form Realization 29

2.9 Adaptive Noise Canceling Configuration 30

2.10 Adaptive Equalization Configuration 31

3.1 Stochastic Learning Automata 54

3.2 Hierarchical Stochastic Learning Automata 55

4.1 System Identification Configuration incorporating Stochastic Learning

Automata 74

4.2 Discretisation of the Parameter Space 74

4.3 The New Scheme of Error Estimation 75

4.4 Performance of Standard Learning Algorithms 76

4.5 Performance of Discretised Learning Algorithms 77

4.6 Performance of Estimator Learning Algorithms 78

4.7 ° Performance of Pursuit Algorithms 79

x

4.8 Performance of Discretised Pursuit Algorithms 80

4.9 Performance of S-LRI Learning Algorithms (Old Normalisation) . . . 81

4.10 Performance of S-LRI Learning Algorithms (New Normalisation) . . 82

4.11 Performance of Estimator Learning Algorithms (S-Model) (Old Nor

malisation) 83

4.12 Performance of Estimator Learning Algorithms (S-Model) (New Nor

malisation) 84

4.13 Performance of Relative Reward Learning Algorithms (S-Model) (Old

Normalisation) 85

4.14 Performance of Relative Reward Learning Algorithms (S-Model) (Old

Normalisation) 86

4.15 Performance of Relative Reward Learning Algorithms (S-Model) (New

Normalisation) 87

4.16 Performance of Relative Reward Learning Algorithms (S-Model) (New

Normalisation) 88

4.17 Performance of P-Model Learning Algorithms (Category (IV) Model) 89

6.1 Comparison between Genetic and Random Search Algorithms 138

6.2 Comparison between Genetic and Random Search Algorithms 139

6.3 Comparison between Genetic and Stochastic Learning Automata Al

gorithms 140

6.4 Different Order Filters 141

6.5 Effect of Mutation 142

6.6 Effect of Crossover 143

6.7 Effect of Population Size 144

6.8 Effect of Coding Schemes 145

6.9 Effect of the Number of Bits 146

6.10 Effect of New Crossover Schemes (pm = 0.075) 147

6.11 Effect of New Crossover Schemes (p m = 0.025) 148

6.12 Effect of Improved Selection Operations 149

6.13 Effect of the Ranking Selection Scheme 150

xi

6.14 Effect of the Ranking Elitist Selection Scheme 151

6.15 Effect of Measurement Noise 152

6.16 Results using Self Adaptive Genetic Algorithm 153

6.17 Effect of Standard Deviation in ESs 154

6.18 Effect of the Number of Parents/Offspring 155

6.19 Effect of Parents in Evolutionary Programming 156

6.20 Effect of the Number of Competitions in EP 157

6.21 Effect of the Number of Competitions in EP 158

6.22 Adaptive Noise Canceling - Sum of Sinusoids 159

6.23 Adaptive Noise Canceling - Square Wave 160

6.24 Adaptive Noise Canceling - PRBS Input 161

6.25 Adaptive Noise Canceling - PRBS Input 162

6.26 Evolution of the Adaptive Noise Canceling 163

6.27 Evolution of the Adaptive Noise Canceling 164

6.28 Evolution of the Adaptive Noise Canceling 165

6.29 Evolution of the Adaptive Noise Canceling 166

6.30 Results from the Adaptive Equalisation Experiment 167

6.31 Results from the Adaptive Equalisation Experiment 168

6.32 Results from the Adaptive Equalisation Experiment 169

6.33 Results from the Adaptive Equalisation Experiment 170

7.1 Results using Classical Simulated Annealing 186

7.2 Results using Fast Simulated Annealing 187

7.3 Comparative Results using Classical and Fast Simulated Annealing

(Decay Parameter = 0.9) 188

7.4 Results using Hybrid Scheme - I (Decay Parameter = 100) 189

7.5 Results using Hybrid Scheme - I (Decay Parameter = 100) 190

7.6 Results using Hybrid Scheme - I (Decay Parameter = 50) 191

7.7 Results using Hybrid Scheme - I (Decay Parameter = 50) 192

7.8 Results using Hybrid Scheme - I (Decay Parameter = 15) 193

7.9 Results using Hybrid Scheme - I (Decay Parameter = 15) 194

xii

7.10 Results using Hybrid Scheme - I I (pm = 0.075, Decay = 0.9) 195

7.11 Results using Hybrid Scheme - I I (pm = 0.075, Decay = 0.7) 196

7.12 Results using Hybrid Scheme - I I (pm = 0.025, Decay = 0.9) 197

7.13 Results using Hybrid Scheme - I I (pm = 0.025, Decay = 0.7) 198

xiii

List of Abbreviat ion

A R M A Auto Regressive Moving Average

D P A Discretised Pursuit Algorithm

EP Evolutionary Programming

ESs Evolutionary Strategies

F I R Finite Impulse Response

FSA Fast Simulated Annealing

GAs Genetic Algorithms

H A R F Hyperstable Adaptive Recursive Filter

I I R Infinite Impulse Response

L M S Least Mean Square

LRS Linear Random Search

m G As Messy Genetic Algorithms

M S E Mean Square Error

M S O E Mean Square Output Error

P L R PseudoLinear Regression

R L M S Recursive Least Mean Square

RLS Recursive Least Square

R P E Recursive Prediction Error

SA Stochastic Automaton

S H A R F Simple Hyperstable Adaptive Recursive Filter

SLA Stochastic Learning Automata

SPR Strictly Positive Real

V F S R Very Fast Simulated Reannealing

VSSA Variable Structure Stochastic Automaton

xiv

Chapter 1

In t ro duct ion

1.1 W h y Adaptive Fi l ter ing ?

rJ1 he term filtering a signal refers to processing the signal in such a manner, so as to

extract relevant information from i t . This could relate to enhancing certain desired

components or on the other hand the removal of interfering noisy components. The

earliest filters were usually of the analogue type. However the advent of digital elec

tronics and the subsequent rapid developments in integrated circuit technology meant

that digital filters were a cheaper and more reliable alternative to the conventional

analogue niters. There are a number of advantages of digital filters over the analogue

filters, these include easy modification of signal processing functions by means of soft

ware, higher order of precision and operational characteristics which remain stable

over a wide range of conditions.

A digital filter operates with discrete samples of the input signal and is composed

of adders, multipliers all implemented in digital logic. This results in a much better

control over the accuracy of the operation than is possible in an analogue filter. In an

analogue filter, tolerances in the components make it extremely difficult for a system

designer to control the precision of the filter.

There are however many digital signal processing applications where the charac

teristics of a digital filter cannot be specified a priori. In such applications, the digital

filter characteristics must be adaptable, so that the filter can adjust to different envi

ronments. This is achieved by using adjustable coefficients for the digital filter. Such

1

1.1 W h y Adapt ive F i l t e r ing ?

a filter is referred to as an adaptive filter. Conventional digital filtering operates in

an open-loop fashion; the filter characteristics are fixed and there is no feedback from

the output. Adaptive filters on the other hand function in a closed-loop fashion - the

digital filter characteristics are modified by means of a feedback mechanism which

monitors the output of the filter. The feedback mechanism uses an adaptive algo

rithm to modify the filter coefficients. The adaptive algorithm usually uses the input

signal, the output signal and a reference signal to generate an error signal which is

used in the feedback mechanism. This is illustrated in Figure [1.1] which shows both

conventional and adaptive filter configuration.

Adaptive digital filtering can be achieved using either Finite Impulse Response

(FIR) or Infinite Impulse Response (IIR) filters. In FIR filters, the output of the filter

is a linear function of the delayed and current values of the input signal. These filters

are well-behaved and are generally free of stability problems since as they possess only

adjustable zeroes. However, to achieve a given degree of modeling accuracy, a high

order FIR filter is required. This increases the computational load as the number of

multiplications and additions are increased. The output of an I IR filter on the other

hand is generated using a linear function of the delayed and current values of the

input signal as well as delayed values of the output signal. Using an IIR filter results

in a better model using a lesser number of coefficients than a FIR filter providing a

similar performance. This is however countered by the fact that I IR filters possess

adjustable poles as well as zeroes and thus are prone to stability problems caused by

the migration of the poles during the adaptive process. More details of these issues

are presented in Chapter 2.

The applications of adaptive filtering are many - the following table shows some

important application areas:

2

1.1 W h y A d a p t i v e F i l t e r i n g ?

F u n c t i o n A p p l i c a t i o n s

Equalisation Telecommunications

Noise Cancelling Medical Electronics,

Ai rc ra f t cockpit communications

M u l t i p a t h Compensation Microwave Radio,

T V ghost suppression

Stabilization Space Applications

Modeling Industrial control applications

Of the many configurations i n which an adaptive digi tal f i l ter may be used, two

important configurations are the direct system modeling and the inverse system mod

eling configurations. They have been used in this thesis to simulate different appli

cations using adaptive filters. I n the direct system modeling configuration (Figure

[1.2]), the adaptive f i l ter produces an output signal t / (n) , which is an estimate of a

desired response y(n). I n other words, the adaptive f i l ter models the characteristics

of the unknown fi l ter . This configuration is used in applications such as adaptive

noise cancellation. Inverse system modeling configuration, (Figure [1.2]), consists of

the adaptive filter generating an output signal which is an estimate of the input sig

nal x(n). I n such a configuration, the input signal is distorted by a process which

is modeled by the unknown filter. The adaptive filter models the inverse of the un

known filter thereby restoring the degraded signal. This configuration has found use

i n applications such as adaptive equalisation. More details of both configurations are

given in Chapter 2.

Thus the main motivation in studying adaptive digital filtering is that i n real

world applications, the characteristics of a system being modeled may be unknown

and t ime varying. Using an adaptive filter makes i t possible to model a large variety

of systems under different operating conditions.

3

1.2 O u t l i n e o f Thes is

1.2 Outline of Thesis

The next chapter (Chapter 2) provides an in-depth review of adaptive digital f i l ter ing

and especially concentrates on adaptive I I R f i l ter ing algorithms. Brief details of the

different alternative realizations used in the simulation experiments are presented.

The manner i n which the stabili ty issue of high order I I R filters was handled using

these alternative realizations are discussed. Two applications of adaptive I I R fi l ter ing

- adaptive noise cancellation and adaptive equalisation, are explained. These have

been used as testbeds in the research to demonstrate the efficacy of the proposed new

approaches to adaptive f i l ter ing which have been examined in this thesis.

Chapter 3 and 4 explain the theory and applications of using Stochastic Learn

ing Automata algorithms (SLA) for adaptive I I R f i l ter ing. The basic theory and the

learning algorithms are covered in Chapter 3. Both the P-Model and S-Model schemes

are examined in detail. A new normalisation scheme for the S-Model algorithms is

proposed and f r o m the simulation results is shown to perform better than the stan

dard S-Model normalisation schemes. A brief mention is made of the automata games

approach and a scheme of hierarchical automata. The original reason for using the

automata approach for the problem of adaptive f i l ter ing was that the technique had

shown capability of global optimisation when searching a noisy, stochastic mul t imodal

surface. The results of using the automata algorithms are presented in Chapter 4. The

simulation configuration is explained as well as the manner i n which an automaton is

used to optimise the parameters for the adaptive filtering problem. The advantages

and shortcomings of each learning scheme is detailed. A n explanation is given why

the S-Model learning algorithms performed poorly as compared to P-Model schemes.

The chapter concludes w i t h a discussion on the v iabi l i ty of Stochastic Learning A u

tomata as a tool for adaptive digital filtering. Although the SLA algorithms provide

a powerful set of results, their u t i l i t y for adaptive filtering is l imi ted , mainly due to

the fact that the iterations required for convergence when adapting a high order filter

is very large and impractical .

Thus a new approach, especially one in which dimensionality was not a hindering

factor, was examined. This new scheme can be broadly classified as evolutionary op-

4

1.2 O u t l i n e o f Thes is

t imisat ion, though three specific paradigms of evolutionary optimisation were exam

ined. Chapter 5 presents a detailed overview of the technique of simulated evolution

used as an optimisation tool . The different paradigms covered include genetic algo

r i thms, evolutionary strategies and evolutionary programming. The basic algorithms

are explained along w i t h improved schemes which result i n a better performance.

Chapter 6 presents the use and results of the evolutionary optimisation schemes for

adaptive I I R f i l ter ing, concentrating on the use of genetic algorithms. Two practi

cal applications of adaptive I I R f i l ter ing - adaptive noise cancellation and adaptive

equalisation, are simulated w i t h the evolutionary strategy being used as the adaptive

algorithm.

Some l imitat ions of the evolutionary schemes were observed during the simulation

studies. One of these, was the fact that there was no established stopping criterion

which could be used to terminate fur ther iterations. This led to an attempt, where

the behaviour of evolutionary schemes was modified by incorporating concepts f r o m

other established optimisations algorithms. Specifically the optimisation strategy of

simulated annealing was used.

Chapter 7 presents the theory and results obtained in using the simulated an

nealing approach for adaptive I I R f i l ter ing. Both the classical annealing approach

and the more recent fast annealing approach are applied to the adaptive I I R fi l ter ing

problem. Results obtained using the annealing approaches show that although the

method was able to locate the exact global op t imum, the t ime samples required for

convergence was very large, thus reducing the practical use of the scheme. Two new

schemes are proposed which combine concepts of genetic algorithms and simulated

annealing. The motivation behind these schemes was to use the convergence speed of

the evolutionary schemes and a stopping criterion derived f r o m the annealing algo

r i t h m . Thus, these schemes present a stopping criterion for genetic algorithms which

otherwise were stopped by unsatisfactory heuristic methods.

Chapter 8 presents the overall conclusions for the research. The main results of

al l the different approaches used for the f i l ter ing problems are compared. Finally a

discussion is provided of promising areas for fu ture research.

5

C h a p t e r 1 F igures

Input Signal Output S
Digital Filter Digital Filter

c

Conventional Digital Filtering

z
Input Signal Adaptive

Digital Filter
Output Signal Adaptive

Digital Filter 1

7
Adaptive Algorithm

-& ;
Reference Signal

Adaptive Digital Filtering

Figure 1.1: Conventional and Adaptive Fi l ter ing Configurations

6

C h a p t e r 1 F igures

y(n)
Unknown Filter

Input Signal

s(n)

Adaptive Filter

A

y(n)

Direct System Modeling

Input Signal

s(n)

Unknown Filter
y(n)

A

y(n)
Adaptive Filter

Inverse System Modeling

Figure 1.2: Direct and Inverse System Modeling Configurations

7

Chapter 2

Adaptive Digi ta l F i l ter ie

2.1 Introduct ion
rJ 1 his chapter gives a broad overview of adaptive digi ta l f i l ter ing concentrating more

on adaptive I I R f i l ter ing. The interest and research in adaptive f i l ter ing can be gauged

f r o m the large number of books [TJL87, SD88, HM84, WS85, CG85, Ale86] which

have been published on the subject. The basic direct f o r m configuration is discussed

along w i t h the alternative realizations. Different error formulations used for adaptive

I I R filtering and the l imitat ions of the existing adaptive algorithms are detailed and

discussed.

Digi ta l filters have found extensive applications i n many diverse areas of engi

neering such as communications, control, signal processing etc. [WS85, PM88]. The

attractive feature of digi tal filters is their availability as dedicated signal processing

hardware in the f o r m of integrated circuits. A digi tal filter operates w i t h discrete

samples of the signal and is mainly composed of adders, multipliers and delays all

implemented in digi tal logic. The main advantages of using digital filters are thermal

stability, precision and adaptability.

The fundamental equation describing the input-output relationship of a general

digi tal filter is given by

M N

i=0 j = l

8

2.1

where

I n t r o d u c t i o n

y(n) = Output sample at instant n

x(n) = Input sample at instant n

x(n-i) = Input sample delayed by i t ime samples

y(n- j) = Output sample delayed by j t ime samples

a,j = Feedback filter coefficients

bi = Feedforward filter coefficients

The equivalent block diagram is shown in Figure (2.1).

A n equivalent fo rm of Equation [2.1] is given below:

y(n) = B(n)x(n) + A(n)y(n) (2.2)

w here

B{n) = X! k ' 2 " '
•=o
N

A (n) = J2a>z~:

where

z 1 = Uni t delay operator

i.e. x(n) z~l — x{n — 1)

As shown in Equation [2.1], the output y(n) can be regarded as an autoregressive

moving average (A R M A) process driven by the input x(n). The coefficients aj, bi

determine the characteristics of the filter.

Digi ta l filters can be classified into two main groups:

9 Fini te Impulse Response (FIR) Filters

e Inf ini te Impulse Response (I I R) Filters

2.1 I n t r o d u c t i o n

The equation describing an I I R filter is given by Equation [2.1], while the block
diagram is as shown in Figure (2.1). The inf ini te nature of the impulse response of an
I I R filter is because of the dependence of the output y(n) on previous output samples
as shown in Equation [2.1]. As a result of this recursion, the stability of the filter is
guaranteed only under certain conditions and forms an important issue in the analysis
and design of adaptive I I R algorithms.

The output of an F I R filter is dependent only on the past and current input

samples and is given by
M

y (n) = 5̂ b>
 x

 x (n - 0 ; (2.3)

1=0

This f o r m can be obtained f r o m Equation [2.1] by equating coefficients Oj ' s to zero.

Similarly the block diagram of a F I R filter can be obtained f r o m Figure [2.1] by

making the feedback coefficients aj 's equal to zero.

The main advantage of an I I R filter over a F I R fi l ter is that, as an I I R filter re

quires considerably fewer coefficients to model a system than an equivalent F I R fi l ter ,

there is a significant saving in the computational overheads. For the same number

of coefficients, an I I R filter can provide better performance. A desired frequency

response can be better approximated by a filter possessing both poles and zeroes

(I I R filter) than a filter having only zeroes (F I R filter). This is another significant

advantage in using I I R filters i n place of F I R filters.

A n important feature of digi tal filters which has been mentioned before is that of

adaptability. This property is significant when the operating environment of the filter

is changing and the filter has to modify its behaviour i n order to track the change.

The filter which is used in such a situation is called an adaptive digi tal filter. I n such

a filter composed of either an I I R filter or a F I R filter, the coefficients a,- and are

variable and can be altered un t i l the output satisfies a specified criteria. A block

diagram of an adaptive digital f i l ter is shown in Figure [2.2] [Shy89a]. I t consists of

the following :

o A F I R or I I R filter w i t h adjustable coefficients 0 (n) .

o A n adaptive algorithm to adjust the coefficients so that the output y(n) ap-

10

2.1 I n t r o d u c t i o n

proximates a desired response d(n).

Thus the adaptive filtering problem can be succinctly expressed as: Given x(n) and

d(n), the coefficients of the adaptive filter have to be chosen such that a performance

measure based on the estimation error is minimised. The estimation error e(n) (Figure

[2.2]) is defined as

e(n) = d(n) - y(n) (2.4)

A commonly used configuration in adaptive control is the system identification

configuration in which an adaptive system is used to model an unknown system.

This configuration is also frequently used in adaptive signal processing. Thus, the

adaptive digi tal filtering problem using the system identification configuration (Fig

ure [2.3]) is as follows: The input signal is applied both to the unknown system and

the adaptive system. The unknown system output forms the desired response for the

adaptive system, which uses the estimation error as defined in Equation [2.4] above

to update its coefficients. I n most applications there is the presence of additive mea

surement noise which is shown in (Figure [2.3]) by v(n). I n the system identification

configuration, the desired response d(n), is generated by the same input x(n) which

drives the adaptive system. Thus, some characteristics of the signal d(n) may be

known i f the properties of the dr iving signal x(n) is known. The desired response

need not always be generated in this manner and depends upon the application in

which the adaptive system is used. Thus the adaptive filtering problem can be cast

as an optimisation problem, where a suitable funct ion of e(n) is to be minimised.

A commonly used criterion in adaptive filtering is to minimise the M e a n Square

O u t p u t E r r o r $ which is defined as

= E[e 2 (n)] (2.5)

where

E = Statistical Expectation Operator.

Recursive algorithms using this criteria are referred to as S tochas t i c G r a d i e n t

algorithms [Shy89a]. Another criteria which has been used frequently minimizes the

11

2.2 A d a p t i v e F I R F i l t e r i n g

sum of the squares of the estimation error e(n), i.e.

(2.6)

These algorithms are referred to as the Recu r s ive Leas t Squares algorithms. Adap

tive algorithms effectively search a performance surface defined by the criterion used.

The op t imum set of coefficients are then the coefficients corresponding to the global

m i n i m u m on the performance surface.

I n adaptive F I R f i l ter ing using the system identification configuration (Figure [2.3]),

the adaptive f i l ter is of the F I R type. The estimation error e(n), which is the difference

between the desired response and the output of the adaptive f i l ter is used in the

criterion to update the f i l ter coefficients. The criterion usually used for adaptation is

the minimizat ion of the M e a n Square E s t i m a t i o n E r r o r which is defined as

where 6,'s are the set of coefficients of the adaptive F I R f i l ter . I t has been proved

that the funct ion $ is a quadratic unimodal function of the adaptive f i l ter coefficients

[WS85]. Thus there exists an unique set of coefficients of the adaptive f i l ter at which

the error reaches the m i n i m u m value which is the global m i n i m u m . This facilitates

the use of powerful gradient algorithms which can converge to the op t imum set of

coefficients rapidly. I n particular a commonly used stochastic gradient algorithm is

the Leas t M e a n Square (L M S) algorithm first proposed in [WH60]. Complete

details of the L M S algori thm are given in [WS85].

Currently F I R filters are more practical to use and are widely used in adaptive

f i l ter ing. The main reason for this is that since F I R filters contain only adjustable

zeroes, i t is free f r o m the stabil i ty problems associated w i t h filters having both poles

and zeroes (I I R Filters). However, interest i n using I I R filters as the adaptive fi l ter

has been increasing, prompted mainly by the reduced computational demands when

2,2 Adaptive F I R Filterin.

*(&,•) = E[e2(n)} (2.7)

12

2.3 A d a p t i v e I I R F i l t e r i n g

using an I I R fi l ter .

2o3 Adaptive I I R Fi l ter ing

2.3.1 Int roduct ion

The non-recursive nature of the F I R fi l ter results i n a heavy computational load when

using adaptive F I R filters. Modeling a system w i t h an I I R fi l ter can be achieved to

a higher degree of precision using a much lower order f i l ter than an equivalent F I R

fi l ter . For example, a f i f t h order I I R f i l ter requiring nine multiplications and eight

additions matches an unknown system as well as a 64th order F I R fi l ter requiring 64

multiplications and 63 additions. This has led to exploring the possibility of using

I I R filters as the adaptive element and as a consequence research into adaptive I I R

f i l ter ing algorithms has been quite intensive in the past decade. Though the algo

r i thms relating to adaptive I I R f i l ter ing are not as thoroughly analysed and developed

as adaptive F I R f i l ter ing algorithms, they nevertheless f o r m a substantial set of re

sults. Work in adaptive I I R filtering algorithms have been carried out by various

researchers [SEA76, Whi75, Fei76, PAS80a, Joh79, TLJ78, LTJ80]. The main work

which has been carried out i n adaptive I I R filtering has concentrated on the issues

of global opt imali ty, stability and the rate of convergence of the adaptive algorithms.

New algorithms have been devised which solve some of the problems stated above but

are usually constrained by a set of conditions. Two important review papers which

present the current results in adaptive I I R filtering are [Joh84, Shy89a]. Using an I I R

filter as the adaptive element in an adaptive scheme has the following implications

[CG85]:

o Feedback in the filter structure itself allows a low order filter to have a long

duration impulse response.

o The I I R filter structure is not stable for all choices of coefficients, thus stability

forms an important aspect in the analysis.

13

2.3 A d a p t i v e I I R F i l t e r i n g

o Use of gradient algorithms result i n increased computational complexity than

is the the case w i t h F I R filters.

o Presence of the poles in the fi l ter structure complicates the convergence analysis.

The adaptive I I R f i l ter ing problem has been approached in two ways, the difference

being the manner i n which the estimation error (Equation [2.4]) has been formulated.

This is explained in the next section.

2.3.2 Different Formulations of Est imation Error

E q u a t i o n E r r o r F o r m u l a t i o n

The equation error approach has been used in adaptive control where i t is referred to

as the series-parallel model. The E q u a t i o n E r r o r approach was proposed in [Men73]

and has been used for adaptive f i l ter ing [Goo83]. I n this formulat ion, the feedback

coefficients of the I I R fi l ter are updated in an all-zero, non-recursive fo rm which are

then copied to a second f i l ter which is implemented in an all-pole fo rm as shown in

Figure (2.4) [Shy89a]. Essentially this formulat ion is of the adaptive F I R fi l ter type

where the F I R fi l ter has two inputs. This can be seen in Figure (2.5) which shows

the setup when the equation error formulat ion is used in the system identification

configuration [LTJ80]. W i t h reference to Figure (2.4), the defining equation for the

equation error approach is given by

M N

ye(n) = ^2 k x x (n - i) + Y l a j X ^ n ~ ' (2 , S)
t=0 j = l

From Equation [2.8], i t can be seen that the output y e (n) is obtained f r o m delayed

samples of the input x(n) and the desired response d(n) and not f r o m the past output

samples ye(n). Thus the output ye(n) is a linear funct ion of the coefficients (a j ,6 ,) .

Hence gradient calculations are simplified when using gradient-based algorithms. The

equation error is given by

e e (n) = d(n) - y e (n) (2.9)

14

2.3 A d a p t i v e I I R F i l t e r i n g

as is shown in Figure (2.4). Expanding the above equation and using Equation [2.2],

the equation error can be wr i t ten as

Thus as e e (n) is generated using the difference between two expressions/equations,

i t is referred to as the equation-error formulat ion. Since the equation error e e (n) is a

linear funct ion of the f i l ter coefficients, the M e a n Square O u t p u t E r r o r (Equation

[2.5]) is a quadratic funct ion of the f i l ter coefficients w i t h a single global min imum.

Thus the performance of the equation error adaptive I I R f i l ter is similar to the adap

tive F I R f i l ter especially w i t h respect to the convergence and stabili ty of the coefficient

updates. However the l imi ta t ion of the equation error approach is that i n the pres

ence of measurement noise which is invariably present (Figure [2.3]), the algorithm

converges to a solution that is biased away f r o m the true values. I n a system iden

t i f icat ion context, this corresponds to incorrect estimates of coefficients 9 such that

E[9(n)] = 9V + bias in the l i m i t n —> oo where 9 is the coefficient vector and 9* is

the opt imal set of coefficients of the adaptive f i l ter ing problem. I t has been shown

that this bias is eliminated i f the measurement noise is zero. A numerical example

regarding the effect of noise on the bias is given in [ShyS9a].

O u t p u t E r r o r F o r m u l a t i o n

This error formulat ion has also been used extensively in adaptive control and is re

ferred to as the parallel model. The O u t p u t E r r o r formulat ion is as shown in Figure

[2.6] and is characterized by the recursive equation

ee(n) = d(n) - ye(n)

= d(n) — [(A(n)d(n) + B(n)x(n)](see footnote 1)

= [d(n)(l - A(n)] - [B{n)x(n)] (2.10)

N M

Vo{n) = k x x(n - i) + V a dj x y0(n - j) . (2.11)

1 Using the expression of ye(n) from Fig . 2.4

15

2.3 A d a p t i v e I I R F i l t e r i n g

The current output y0(n) depends on the past output samples adding complexity to

the adaptive algorithms. As shown in Figure [2.6], the output error is given by

e D(n) is a nonlinear funct ion of the f i l ter coefficients. Thus the M e a n Square O u t

p u t E r r o r need not be a quadratic funct ion of the f i l ter coefficients and can have

mul t ip le optima. This results i n suboptimal performance when using gradient tech

niques as the algorithm could converge to a local op t imum depending on the in i t ia l

values of the coefficients. A specific numerical example is detailed in [JL77].

2.3.3 Adaptive Algori thms

This section presents a brief overview of adaptive I I R algorithms. The adaptive al

gorithms relating to adaptive I I R filtering are more involved and less complete than

F I R filter adaptive algorithms. The two formulations of the estimation error explained

above lead to adaptive algorithms w i t h different characteristics. The equation error

approach has been accepted widely as an alternative to the computationally inten

sive output error formulat ion but lead to biased estimates of the coefficient vector.

However there exists an argument which suggests that the output error formulat ion is

the correct approach as the adaptive filter is only operating on x(n) to generate y(n)

which is the estimate of the desired response d(n) . On the other hand, the equation

error approach uses the past values of the desired response d(n) as well as x(n) to

estimate the current value of d(n). The output error formulat ion has been adopted

in all the simulation results presented.

A simplified fo rm of an adaptive algori thm for I I R filters is as follows

e0(n) = d(n) - y0(n) (2.12)

6(n + 1) = 0(n) - ^ (n) [V , J (0 (n))] (2.13)

where

A*(n) =

V , J (0 (n)) =

The parameter of the algori thm

Gradient of the error funct ion

16

2.3 A d a p t i v e I I R F i l t e r i n g

The two popular classes of adaptive algorithms for I I R f i l ter ing are the Least Squares

approach and Gradient Search algorithms. Least Square techniques use the input

data samples recursively to minimize a least squares criterion. Detailed analysis of

the least squares method is given in [Hay86]. Gradient based algorithms require the

gradient at a point on the error surface to be measured, the next point searched being

in the direction of the negative of the gradient. Two such algorithms are the Recursive

Prediction Error (RPE) and the Recursive Least Mean Square (RLMS) algorithms

[LS83, Shy89a]. These algorithms use an instantaneous values of the estimation er

ror leading to noisy estimates of the gradient but result i n asymptotically unbiased

coefficients values. Another algorithm for adapting I I R filters is the Pseudolinear

regression (PLR) algorithm which is a simpler version of the RPE algori thm derived

by using an approximate expression for the gradient [Shy89a]. Development of fast

algorithms for the gradient techniques have reduced much of the computational load.

The main problem w i t h gradient techniques is suboptimal performance when deal

ing w i t h mul t imodal error surfaces. The in i t i a l interest i n adaptive I I R algorithms

was sparked off by Feintuch in 1976 who suggested a simple algori thm for adapting

I I R filter coefficients [Fei76]. This was a direct application of the F I R fi l ter LMS

algori thm on an I I R filter structure. However this algorithm was shown to converge

to false min ima by Johnson and Larimore [JL77] who also showed the Mean Square

Output Error (MSOE) performance surface could be mul t imodal i f the adaptive filter

was of insufficient order w i t h respect to the unknown system. This was later con

firmed by Parikh and Ahmed [PA78] who showed the inabi l i ty of the recursive LMS

to ident i fy a reduced order example proposed by them. Further work on adaptive

I I R filters was carried out by Stearns [Ste81], who stated a unimodali ty conjecture

for the system identification conditions. Soderstrom and Stoica [SS82] subsequently

added to the set of conditions put forward by Stearns for an unimodal error surface.

These conditions are as follows:

e The adaptive filter is of sufficient order to able to model the unknown system.

® The input signal is white.

17

2.3 A d a p t i v e I I R F i l t e r i n g

o The order of the adaptive f i l ter numerator exceeds that of the unknown system

denominator.

The last condition was put forward by Soderstrom and Stoica. Fan and Jenkins [FJ86]

proposed a new adaptive algorithm which has the characteristics of both the output

error and equation error formulat ion. They used the system identification config

uration and classified the error surfaces for such a configuration w i t h a stationary

stochastic setting into four cases depending on the order of the adaptive f i l ter and

the nature of the input excitation. These four case are:

o Class (I) : Sufficient Order Modeling - Whi t e Noise Input

o Class (I I) : Sufficient Order Modeling - Coloured Noise Input

o Class (I I I) : Reduced Order Modeling - Whi te Noise Input

o Class (I V) : Reduced Order Modeling - Coloured Noise Input

I t can be seen that both complexity and practical reality increase as we move down

the above list. More recently extensive work has been done by Fan and Nayeri [FN89],

wherein they proved Steam's conjecture for first and second order filters even without

Soderstrom and Stoica's additional constraint. They also showed that the MSOE

error surface could be mul t imodal even when the adaptive f i l ter was of sufficient

order (Class (I)) or when the order is over estimated.

A different approach in designing adaptive I I R algorithms was based on the con

cept of Hyperstability and was detailed in [Joh79]. The resulting algori thm was re

ferred to as the Hyperstable Adaptive Recursive Fil ter (H A R F) algori thm. Hypersta

b i l i t y was a concept which was associated w i t h the analysis of closed loop nonlinear

t ime varying control systems [Pop73]. The algorithm had provable convergence prop

erties but was computationally intensive especially for real t ime applications. This

led to a simplified version of the algorithm referred to as the Simple Hyperstable

Adaptive Recursive Fil ter (SHARF) algori thm [LTJ80]. The SHARF algorithm had

convergence properties similar to H A R F algori thm but under weaker conditions. A

fur ther constraint of this approach was that i t relied on a Strictly Positive Real (SPR)

18

2.4 A l t e r n a t i v e Rea l i z a t i ons

condition for global convergence. This condition effectively reduced the operating re

gion of the adaptive fi l ter by restricting the pole positions.

Random Search algorithms were another technique used to search performance

surfaces. They made use of a random process to generate new points and made

no assumptions about the nature of the error surfaces. This approach was used for

F I R f i l ter ing [WM76] , where the proposed linear random search (LRS) algorithm was

compared to LMS. A whole chapter dedicated to different adaptive algorithms is given

in [WS85].

A l l the adaptive algorithms detailed in this section use the direct f o r m structure.

A drawback wi th the direct f o r m realization is the sensitivity of the structure to the

quantization of the coefficients which would result i n any implementation. Another

shortcoming w i t h the direct f o r m approach is that the stabil i ty check involves ad

dit ional computational overheads. As a result, alternative realizations which have

been derived f r o m the direct form configuration have been used extensively in all the

simulation experiments conducted in this thesis and are detailed in the next section.

2A A l t e rna t ive Realizations

The direct f o r m realization of an I I R f i l ter is as given by Equation [2.1] and is repeated

here for ease of reference.

M N

y (n) = b*
 x

 x (n ~
 + X!aj x y(n ~

<=o i = i

Another possible way of characterizing the above class of systems is to use the transfer

funct ion approach. The transfer funct ion for the above equation is given by

H(z) = J (2-14)
1 - L j = i a i z 3

which is a ratio of two polynomials. From the above equation, the poles and zeroes

of the system funct ion H(z) can be obtained. The bu i l t - in feedback structure of the

19

2.4 A l t e r n a t i v e Rea l i za t i ons

I I R filter leads to problems of stability. This is especially true i n the case of adaptive

filters as during the adaptation one or more poles could move outside the unit circle

in the z-plane resulting in an unstable filter. Thus adaptive algorithms need some

f o r m of stabili ty check which may prove to be computationally expensive i f i t involves

factorizing the denominator at each iteration. Another l imi ta t ion of the direct fo rm

structures is the large sensitivities caused by the poles inadvertently slowing down

the convergence rate. A way to resolve this problem is to decompose the direct

fo rm structure into alternative realizations like the parallel or cascaded forms which

have lower coefficient sensitivities and arithmetic quantization effects. The parallel

or cascaded realizations are composed of smaller order filters arranged in parallel or

series which as a whole realize the transfer funct ion given by Equation [2.14]. These

realizations also allow easier implementation of the stabil i ty check.

A different alternative realization which does not directly follow f r o m the direct

f o r m structure as given i n Equation (2.1) is the lattice configuration. The advantage

w i t h the lattice configuration is that there exists a unique set of lattice coefficients

for each direct fo rm I I R filter. The stabili ty check is also incorporated very easily in

the adaptive lattice algorithms.

2.4.1 Parallel Form

A parallel fo rm realization of an Pth order I I R filter can be obtained by performing

a part ial fract ion expansion of H(z) as given in Equation [2.14]. This results in

P/2

Hp(z) = j2Hi(z) (2.15)
t=i

where

= ito + ^ + fr,*-2

 (2 1 6)

, w 1 + am-1 + ai2z-2 v ;

The parallel fo rm is usually composed of second order filters having the transfer

funct ion as given in Equation [2.16]. The use of second order sub-systems prevents

the use of complex ari thmetic as would be the case i f first order filters were used. The

stabil i ty check is incorporated by ensuring that the denominator coefficients of the

20

2.4 A l t e r n a t i v e Rea l i z a t i ons

second order sub-system lie inside the stability triangle [Shy89a]. This realization is

shown in Figure (2.7) when used in an adaptive f i l ter ing setup.

The instantaneous output error is the given by

P/2

e(n) = d (n) - j > («) (2.17)
«=i

Detailed analysis of the parallel fo rm adaptive I I R f i l ter is given in [NJ89, Shy89b].

I n [Shy89b] a frequency domain implementation of the parallel fo rm I I R fi l ter is pre

sented based on the discrete Fourier transform. The discussion includes a study of

the MSOE surface and the convergence properties. I n [NJ89], the different MSOE

surfaces for alternative realizations like the parallel and cascade forms are examined

and analysed. The main conclusions drawn f r o m the analysis is that whenever a

direct f o r m I I R fi l ter w i t h a unimodal MSOE surface is transformed into an alter

native realization using either a parallel or cascaded f o r m , the MSE surface of the

new structure may have additional stationary points which are either new equivalent

min ima or saddle points which are unstable solutions i n the parameter space.

2.4.2 Cascade Form

The cascade f o r m of Equation [2.14] is given by

P/2

Hc(z) = i[Hi(z) (2.18)

where H{(z) is as given in Equation [2.16]. The analysis of the cascade f o r m is similar

to that of the parallel f o r m and is given in [NJ89]. The computation of the gradient

in the cascade f o r m is more involved as the output of each section depends on the

output of the previous sections. I t has been shown that the cascade f o r m has slower

convergence rate than other realizations. A detailed analysis of the adaptive recursive

f i l ter ing using the cascade f o r m is presented in [TCC87].

21

2.5 A p p l i c a t i o n s o f A d a p t i v e I I R F i l t e r i n g

2.4.3 Lattice Form

The lattice f o r m has been used in adaptive signal processing for linear prediction and

noise cancellation [Gri78, MV78] . Adaptive I I R f i l ter ing using the lattice fo rm has

been discussed in [Hor76, PAS80b]. A through exposition of the basic lattice structure

is given in [CG85].The main advantages of using the lattice structure are stability

check by inspection, cascading of identical sections and good numerical round-off

characteristics. The lattice f o r m of a digi tal f i l ter is entirely different f r o m the forms

which have been listed before. Each stage of a lattice structure is characterized by

having a pair of input and output terminals. The lattice structure equivalent to a

direct f o r m fi l ter given by Equation [2.14], is shown in Figure [2.8]. The algori thm to

convert f r o m a direct fo rm fi l ter to a lattice fo rm is given in Appendix A .

A n advantage over the parallel and cascaded fo rm is the MSOE surface for the

lattice configuration used in the adaptive f i l ter ing, does not possess any saddle points.

Convergence properties of an adaptive lattice f i l ter are similar to that obtained for a

direct f o r m fi l ter [Shy87]. Some recent results regarding stable and efficient adaptive

lattice algorithms are presented in [Reg92].

2c5 Appl ica t ions of Adap t ive I I R F i l t e r i n g

To give a complete picture, the new approaches to adaptive I I R f i l ter ing have been

tested in two important applications, both which use an adaptive I I R f i l ter . These are

adaptive noise cancelling and adaptive equalization. Adaptive noise cancelling as the

t e rm indicates, is used to remove the distortion f r o m a signal which has been corrupted

by extraneous noise sources and restore the signal to its original state. Previous work

in these areas has been done w i t h success using F I R filters, however the need for

real t ime processing requires the use of I I R filters. Addi t ive noise canceling has been

used in a variety of engineering areas such as biomedical measurements and antenna

beam-forming.

In modern telecommunications, the transmission of data over large distances

is of v i ta l importance. This is usually achieved using transmission lines or radio

waves. Currently, digital transmission is becoming more prevalent, w i t h the analogue

22

2.5 A p p l i c a t i o n s o f A d a p t i v e I I R F i l t e r i n g

voice/data source being digitised at the source and then transmitted as a sequence of

bits. A t the receiver, these bits are then converted back to the analogue information.

The main problem wi th this mode of transmission, is that during the transmission,

the signals get corrupted and transformed. Corruption may occur due to addition

of background thermal noise or impulse noise. Transformation usually occurs as a

result of the f ini te bandwidth of the transmission channel and could be frequency

translation or t ime dispersion. I n a modem transmitter, a number of bits are en

coded into symbols and transmitted. Due to the finite bandwidth of the transmission

channels, the effect of each symbol extends beyond the t ime interval used to represent

that symbol. The distortion caused by the resulting overlap is termed as intersymbol

interference (ISI) . Equalization is a broad term for techniques which overcomes this

problem by compensating for them at the receiver end.

2.5.1 Adaptive Noise Cancelling

The simulation configuration to demonstrate the adaptive noise cancelling is taken

f r o m the paper by Larimore et. a. [LTJ80]. The setup is shown in Figure [2.9]. I t is

desired to estimate the signal s(n) which has been corrupted because of the additive

uncorrelated noise process vl(n). Thus the pr imary signal source denoted by z(n) is

given by

z{n) = s{n) + vl(n) (2.19)

To compensate for the noise vl(n), usually a sensor is used which measures only the

noise process as is shown at the top of Figure[2.9]. Thus a reference measurement,

v2(n) is available, which is correlated to original noise process vl(n). By means

of proper f i l ter ing, the configuration in Figure [2.9] should be able to reduce the

interference caused by the noise process and provide a good estimate of the signal

s(n). As is shown in Figure [2.9], the system identification configuration has been

employed. This setup could be rearranged as an output error identifier as has been

shown in [LTJ80]. Then, minimising the mean square output error, leads to the

cancellation of the correlated signals which are present i n y(n) and z(n). Since, i t

is the noise component of two signals y(n) and z(n) which are correlated, i t gets

23

2.5 A p p l i c a t i o n s o f A d a p t i v e I I R F i l t e r i n g

cancelled, resulting in output error approaching the undistorted signal s(n). This

fact is of paramount importance, because i f the original signal s(n) is i n some manner

correlated to the noise process v(n), then the output error identifier would lead to the

cancellation of the desired signal itself.

2.5.2 Adaptive Equalization

I n modern digital communication, data is t ransmitted using analogue channels. As a

result of the f ini te bandwidth of the channel, the t ransmit ted signals are invariably

distorted. Once such f o r m of distortion is intersymbol interference caused as a result

of t ime dispersion or mul t ipa th effects. To overcome the effects of this distortion, the

received signals are passed thorough an equalizer which compensate for the distortion

and recovers the original symbols which were transmitted. One widely used fo rm for

the equalizer has been the linear transversal equalizer which is in effect an F I R fil ter.

I t has been shown however that this k ind of structure is not suitable for non-minimum

phase channel compensation.

The system shown in Figure [2.10] is used for the experimental configuration. The

input signal x(n) is modeled using an independent binary random sequence, the bits

being represented by + 1 and - 1 . The effect of the channel are modeled using a F I R

filter w i t h real coefficients. The output of this filter is given by

y(n) = a0x(n) + a\x{n — 1) + • • • + aMx{n — M)
M

= J2atx(n-l) (2.20)

where (d o , . . . , a ^) are the coefficients of the F I R filter which models the transmission

channel characteristics. The additive noise v(n) is of uni ty power and zero mean. Thus

the signal which is presented to the equalizer is the noise corrupted signal y. The

funct ion of the equalizer is to use the values of y(n),..., y(n — K) to produce the best

estimate of of x(n), where K is the order of the equalizer. I n most cases, because

of the non-minimum phase characteristics of equalizer only a delayed estimate of the

original sequence rc(n)is obtained. More details of the implementation are given in

24

Discuss ion 2.6

Chapter 6, where the evolutionary algorithm is used for adaptive equalization.

2 06 Discussion

This chapter presented an overview of adaptive digital f i l ter ing and in particular

adaptive I I R f i l ter ing. Adaptive F I R f i l ter ing is a mature field w i t h well analysed

algorithms w i t h respect to rate of convergence and opt imali ty . However the area of

adaptive I I R f i l ter ing is s t i l l evolving. The main l imitat ions of the current adaptive

I I R algorithms are either the computational complexity or the failure of the algorithm

when dealing w i t h mul t imodal error surfaces. A problem which arises when modeling

high-order I I R filters is one of stability. Ensuring stabil i ty of the I I R filter kernel for

all choices of filter coefficients is computationally expensive. Other adaptive tech

niques like random search algorithms have been used to solve this problem but have

not given encouraging results. I n the next chapter we present a different approach

which is based on Stochastic Learning Automata. Stochastic Learning Automata

are techniques which make use of probabilistic transitions and have been shown by

simulations to exhibit global optimali ty.

25

C h a p t e r 2 F igu re s

Output y(n) Input s(n)

a 1 ° 1 1 >
a 2

< 3 >
a N 1 M 1

Figure 2.1: Digi ta l Fi l ter

Input x(n)
Digital Filter

0(n)

Output y(n)

Estimation Error
e(n)

Adaptive Algorithm

? :

9

Desired Response
d(n)

Figure 2.2: Adaptive Digi ta l Fi l ter

26

C h a p t e r 2 F igures

Unknown System

o
Noise v(n)

d(n)

O
Input x(n)

+ Estimation
Error e(n)

Adaptive System
y(n)

Figure 2.3: System Identification Configuration

Input x(n)

Desired
Response

d(n)

B(n)

A(n)

i t
Y

Equation Error e (n)

1 - A(n)

Copy Weights

y e(")

Output y(n)

Figure 2.4: Equation Error Formulation

27

C h a p t e r 2 F igures

Unknown ARMA Plant

^Input x(n) ^ Equation Error^

e(n)

Equation Error

Identifier

Figure 2.5: Equation Error Identifier

Inpu t x(n) B(n)

1 - A(n)

Output y Q (n)

Output Error eQ(n)

Desired Response d(n)

Figure 2.6: Output Error Formulation

28

C h a p t e r 2 F igures

H (z)
1

Desired Response
yy 00 d(n)

H (z)

Input s(n) Output y(n)

Estimation
Error e(n)

t= H . (z)
P/2

Figure 2.7: Parallel Form Realization

Input x(n)

K

n-l 0 n

< V ' - 0 * © <0 Output y(n)

H3 Unit Delay

Figure 2.8: Lattice Form Realization

29

C h a p t e r 2 F igures

Signal Source

O : ; .

0
Interfering
Noise •'.

Source

Primary Measurement

-o

"O
Secondary
Measurement

Digital Filter
Signal Estimate

>

A) Physical Model

Signal Process s(n) + Primary Signal z(n)
O

G(p)

+
vl(n)

Noise Process v(n)
G(r)

v2(n)
G(r)

Signal Estimate s(n)
>

y(n)

Noise
Canceller

B) Lumped Model

Figure 2.9: Adaptive Noise Canceling Configuration

30

C h a p t e r 2 F igures

Noise v(n)

Input x(n)

FIR Filter

Limited

Figure 2.10: Adaptive Equalization Configuration

31

Chapter 3

Stochastic Learning Automata

3.1 I n t r o d u c t i o n

rjp he process by which biological organisms learn has been a fascinating area of

research for well over a century. The focus of research has been mainly two pronged

- to understand the principles involved during the learning process of biological sys

tems and to develop methodologies whereby these principles could be incorporated

into machines. Learning can be regarded as a change brought about in a system

performance as a result of past experience [NT89]. A n important characteristic of a

learning system is its abi l i ty to improve its performance w i t h t ime. I n a str ict ly math

ematical context, the goal of a learning system can be said to be the optimization of

a functional which may not be known completely. Thus an approach to this problem

is to reduce the objective of the learning system to an optimizat ion problem defined

on a set of parameters and use established techniques to arrive at the opt imal set of

parameters. This chapter is concerned w i t h the learning methods based on Stochastic

Learning Automata.

The concept of Stochastic Automata was first introduced by the pioneering work

of Tsetl in in the early 1960s in the Soviet Union who was interested in the modeling

of the behaviour of biological systems [Tse62]. Subsequent research has considered

the use of the learning paradigms in engineering systems. This has led to extensive

work using automata as models of learning w i t h applications in telephone routeing,

pattern recognition, object part i t ioning and adaptive control [NT74, Lak81, NT89,

32

3.2 S tochas t i c L e a r n i n g A u t o m a t a

OM88, SN69, FM66]. A Learning Automata could be regarded as an abstract object
having a finite number of actions. I t operates by selecting an action f r o m a finite set
of actions which is then evaluated by a random environment. The response f rom the
environment is used by the automaton to select the next action. By this process, the
automaton learns asymptotically to select the opt imal action. The manner in which
the automaton uses the response f r o m the environment to select its next action is
determined by the specific learning algorithm used. The next section gives details of
the components of a Stochastic Learning Automata.

3o2 Stochastic Learning A u t o m a t a

A Stochastic Learning Automaton (SLA) comprises of two main building blocks:

o A Stochastic Automaton w i t h a finite number of actions and a Random envi

ronment w i t h which the automaton interacts.

o The Learning Algori thms by which the automata learns the opt imal action.

3.2.1 Stochastic Automata

A n Automaton can be regarded as a finite state machine. Mathematically i t can

described by a quintiple

SA = { a , / 3 , F , G , 0 } (3.1)

where

a = { cti, a 2 , . . . , ar } = Set of Actions of the Automaton ;

/3 = { fli, /32,..., /3r } = Set of Inputs to the Automaton ;

F = <j> x /? — • <f> = Function which maps current state

and input into next state ;

G = <f> —* a = Output funct ion mapping the current state

into the next output ;

4>(n) = { <j>i, fa, • • •, 4>k } = Set of Internal states of the Automaton

at t ime n ;

33

3.2 Stochas t i c L e a r n i n g A u t o m a t a

The set a forms the output set of the automaton, the automaton selecting one of the

r actions at each iteration. The input set (3 defines the input to the automaton and

is explained in the next section. The mappings F and G transform the current state

and input to the next output (action) chosen by the automaton. When the mappings

F and G are deterministic, the automaton is referred to as Deterministic Automaton.

I n such a case, given the in i t i a l state and input , the next state and output are uniquely

specified. When the mappings F and G are stochastic, the automaton is referred to

as a Stochastic Automaton. In this case only probabilities associated w i t h the next

states and outputs are specified. Stochastic Automata can be fur ther classified into

Fixed Structure and Variable Structure automata. In a fixed structure stochastic

automaton, the probabilities associated w i t h the different actions are f ixed, while

in a variable structure stochastic automaton (VSSA) the probabilities are updated

at each iteration n. The internal state of the automaton (p is represented by the

action probabilities of the actions of the automaton. For mathematical simplicity

i t is assumed that each internal state corresponds to an unique action. Thus the

internal state of the automaton <p is replaced by the action probabili ty vector p

which is defined as

p(n) = {pi{n),p2(n),.. .,pr(n)} (3.2)

where

Pi(n) = Prob[a(n) = £*,] (3.3)

and
r

Vpi (n) = l ;Vn . (3.4)
i=l

Defining the simplex

s={p\Pi>o,T/
i p

1=1

(3.5)

34

3.2 S tochas t i c L e a r n i n g A u t o m a t a

we have p (n) € S ; Vn. In i t i a l ly all the action probabilities are set equal to one

another, i.e.

P i = 1/r (3.6)

where r is the number of actions of the automaton.

3.2.2 The Environment

The random environment can be mathematically described by a tr iple

£ = { a , / 3 , c } (3.7)

where

at = { ai, a 2 , . . . , ar } = Set of inputs ;

(3 — { / 3 2 , . . . , f3T } = Set of outputs ;

c = { ci, c-i,..., cr } = Set of penalty probabilities ;

The input of the environment is one of the r actions selected by the automaton.

The output(response) of the environment to each action i is given by /?,-. When

is a binary response, the environment is said to be the P - M o d e l type. I n such an

environment, /?,(n) = 1 is taken as a failure while /3,(n) = 0 is taken as a success. This

notation is purely due to convention. I n the Q - M o d e l environment, /?,(n) can take a

f ini te number of values between [0,1], while in the S - M o d e l /?,(n) is a random variable

between [0,1], i.e. /?»(n) 6 [0,1]. The set c of penalty probabilities characterize the

environment and is defined as

Ci = Prob[fi(n) = 1 | a (n) = a,-]; t = { 1 , 2 , . . . , r } (3.8)

i.e. the probabili ty that the action at- would result i n an unfavourable response f r o m

the environment. The values of are unknown and i t is assumed that { c,- } has

a unique min imum. The environment could also alternatively be characterized by

a set of reward probabilities which would represent the probabil i ty that a particular

35

3.2 S tochas t i c L e a r n i n g A u t o m a t a

action elicits a favourable response f r o m the environment. When dealing w i t h station

ary environments, the penalty probabilities are constant, while i n a non-stationary

environment the penalty probabilities vary w i t h t ime.

The connection of the Stochastic Automata and the Environment i n a feedback

arrangement as shown in Figure (3.1), together w i t h the Learning Algorithms, fo rm

the Stochastic Learning Automata. Thus a Stochastic Learning Automata can be

formal ly described by a quintiple

SLA = { a , / 3 , p , T , c } (3.9)

where

a = {ai, 0 J 2 , . . . , a r } = Set of outputs of Automaton /

Set of inputs to the Environment.

(3 = { f i i , fa,..., (3T } = Set of inputs to the Automaton /

Set of outputs of the Environment.

p = {pi 5P2? • • • >Pr } = The probabil i ty vector.

T = p (n + 1) = T[ct(n),(3(n),p(n)] = The learning algorithm.

c = { c i , C 2 , . . . , c r } = Set of penalty probabilities

defining the Environment.

As stated before, for mathematical ease, every internal state of the automaton cor

responds w i t h an unique action (output) of the automaton. Thus the funct ion G

(Equation [3.1]) reduces to an identi ty mapping. The funct ion F (Equation [3.1]) of

the stochastic automaton is replaced by the learning algori thm T , which determines

the next action of the automaton. The learning algorithms are of v i t a l significance to

the operation of the SLA and are examined in detail i n a subsequent section (section

[3.3]).

36

3.2 S tochas t i c L e a r n i n g A u t o m a t a

3.2.3 Norms of Behaviour

To quantify the performance of the SLA, certain measures have been defined which

determines the effectiveness of the automaton and enables the comparison of different

learning schemes [NT89]. A pure-chance Automaton is denned as one in which every

action is equally likely to be picked. Thus an automaton which is said to learn must

perform better then the pure-chance automaton.

As stated before, the random stationary environment is represented wi th penalty

probabilities { c i , C 2 , . . . , c r } , where c, is the penalty probabil i ty corresponding to ac

t ion a,-. A quantity M(n) is defined as the average penalty received by the automaton

for a given action probabili ty vector and is given by

M (n) = E[(3(n) | p(n)}
T

= J > p , (n) (3.10)
»=i

For a pure-chance automaton, the average penalty M(n) is a constant M0 and is

given by
I r

M 0 = -] T c, (3.11)
r t = i

For an automaton to perform better, its average penalty must be less than M0 at

least asymptotically. Since M(n) is a random variable, the expected value of M(n),

i.e. E [M " (n)] , is compared w i t h M0. Thus we have the following definitions:

e D e f i n i t i o n A : A learning automata is said to be expedient i f

L U £ [M (n)] < M 0 (3.12)

© D e f i n i t i o n B : A learning automata is said to be optimal i f

LU^ElMin)] = c, (3.13)

where c\ = m m , { c , } . Whi le opt imal i ty is a desirable feature i n a stationary en-

37

3*3 L e a r n i n g A l g o r i t h m s

vironment, in a practical situation a sub-optimal performance may be required 1

Thus we have

o D e f i n i t i o n C: A learning automata is said to be t- optimal i f

Lt^EiMin)] <ci + e (3.14)

is realized for any arbitrary e > 0.

© D e f i n i t i o n D : A learning automata is said to be absolutely expedient [LT73] i f

E[M{n + i) | p(n)} < M{n) (3.15)

Vn , Vpi(n) G (0,1) and for all possible sets { c , } (i = 1 ,2 , . . . , r).

Expediency merely demonstrates that the SLA performs better than a pure chance

automata and thus a more desirable behaviour would be optimality. Opt imal i ty

ensures that the opt imal action is chosen by the automaton asymptotically and is

desirable i n a stationary environment. Bu t i n a practical situation, the environment

is usually non-stationary and an e—optimal behavior is preferred as previously.

The type and performance of a SLA is characterized by the learning algorithm

used. The next section reviews the various learning schemes which have been studied

in the literature.

3.3 Learning Algorithms

3.3.1 Standard Learning Algorithms

As shown in Equation [3.9], the learning algorithm T can be represented by

p (n + l) = T f o (n) , a (n) , / 3 (n)] (3.16)

' In a practical situation the environment is usually non-stationary and therefore the optimal
action may change with time. A sub-optimal learning algorithm may be more suitable since the
algorithm does not get locked into any particular state.

38

L e a r n i n g A l g o r i t h m s

I f operator T is linear, the reinforcement (learning) algori thm is said to be linear,

otherwise i t is referred to as a non-linear scheme. The fundamental idea behind all

learning algorithms are as follows: I f the SLA selects action a,- at i teration n and

obtains a favourable response f r o m the environment, the action probabil i ty p,(n) is

increased while the action probabilities of the other actions are decreased. For an

unfavourable response, pi(n) is decreased, while the other action probabilities are

increased. Thus we have

o Favourab le Response

Pj(n + 1) = P j (n) - fj\pj(n)} ; V j ; j ^ i
T

Pi(n + 1) = Pi(n) + ^2fj\pj{n)] (3.17)

o U n f a v o u r a b l e Response

Pj{n + l) = pj(n) +gj\pj(n)] ; V j ; j ^ i

Pi(n + 1) = Pi(n)-^gj\pj(n)] (3.18)

The functions f j and gj are referred to as the reward and penalty functions respec

tively and are assumed to be non-negative functions. The above equations preserve

the validity of Equation [3.4]. Linear learning algorithms have been studied exten

sively as they are mathematically more tractable. For a linear reinforcement algorithm

w i t h mul t iple actions, the functions f j and gj are given by [NT89]

fj\Pi(n)} = a P j (n) ! 0 < a < 1 ; (3.19)

9j\Pj(n)} = - t - r - bpj(n) ; 0 < b < 1 ; (3.20)
r — 1

where
r = Number of actions of the automaton

a = Reward Parameter

b = Penalty Parameter

39

L e a r n i n g A l g o r i t h m s

Learning algorithms w i t h different characteristics are obtained based on the relative

values of the learning parameters a and b . Thus we have

o LRP Scheme: When a and b are equal to each other, we obtain the L i n e a r

R e w a r d P e n a l t y (LRP) Scheme.

° Lfcp Scheme: When b is an order of magnitude less than a, the resulting learn

ing scheme is called the L i n e a r R e w a r d eps i lon P e n a l t y (LRCP) Scheme.

o LRI Scheme: When the penalty parameter b is equal to zero, the scheme is

referred to as the L i n e a r R e w a r d I n a c t i o n (LRI) Scheme.

Using the Equations [3.19] and [3.20] for the functions f j and gj, the general f o r m of a

learning algori thm is as follows: I f at i teration n action a, is chosen, then at iteration

(n + 1) we have

o Favourab le Response f r o m E n v i r o n m e n t

p,-(n + l) = Pi(n) + a[l - Pi(n)] ; (3.21)

P j (n + l) = (l - a) P j (n) ; V j ; j ? i (3.22)

o U n f a v o u r a b l e Response f r o m t h e E n v i r o n m e n t

p , (n + l) = (l - b) P i (n) ; (3.23)

P i (n + 1) = - l ~ + (l - b) P j (n) ; V j ; j ^ i (3.24) r — 1

The above equations give the general rule for the updating of the action probabilities.

I f i n the above equations (a = 6) the LRP scheme is obtained, while (b = 0) results

in the LRI scheme. The LRP scheme leads to expedient behaviour of the automaton,

while both LRI and LRCP schemes result in e-optimal behaviour. Non-linear updat

ing schemes have been pursued by researchers [VN70, LT72b, LT73], but gave no

appreciable improvement over the linear updating schemes.

40

3*3 L e a r n i n g A l g o r i t h m s

A crucial factor which l imi ts applications involving SLA is their slow rate of con

vergence. This factor becomes more pronounced when the number of actions increase

and the SLA has to update more action probabilities at each iteration. The next

few sections present some new approaches which have been devised w i t h the aim of

improving the rate of convergence of the basic learning algori thm detailed above.

3.3.2 Discretised Learning Algori thms

Discretised Learning Algori thms are based on discretising the action probabilities

and was first proposed in [T079] . Such automata are discretised versions of their

continuous counterparts. Discretisation involves restricting the values of the action

probabilities to discrete values in the interval [0,1]. The discretisation is termed linear

i f the allowable values in [0,1] are equally spaced, otherwise i t is called non-linear. The

idea behind discretising the action probabilities is to allow the action probabilities to

approach the l imi t ing value of uni ty directly, rather than approach i t asymptotically

as is the case w i t h the continuous algorithms. Thus the speed of convergence of the

learning algori thm should increase significantly.

Another advantage of using discretisation is the minimizat ion on the requirements

on the system random number generator where the algori thm is applied. This fact is

important as any implementations of SLA make use of random number generators.

As a result of the f in i te precision of a computer system, only a f in i te number of values

i n the interval [0,1] can be obtained. Thus the precision of the continuous algorithm

is l imi ted by the random number generator of the system on which the algorithm

is implemented. Theoretical results involving discretised automata were proved in

[OH84, OC88]. For a two action automaton w i t h actions ax and a 2 , the probability

update equations are as follows: Suppose action ax was chosen at i teration n. Then

© Favourab le Response

Pi (n + 1) M i n { p i (n) + A , 1 - A }

p 2 (n + 1) M a x { p 2 (n) - A , A } (3.25)

41

3*3 L e a r n i n g A l g o r i t h m s

o U n f a v o u r a b l e Response

Pi(n + 1) M a x { p i (n) - A , A }

Pa(n + 1) M'm{p2(n) + A , 1 — A } (3.26)

The parameter A is referred to as the step-size and is given by

(3.27)

where r is the number of actions of the automata and N is the resolution parameter

which forms the learning parameter of the discretised algori thm. The resolution

parameter N determines the speed and accuracy of convergence of the algorithm. The

Max and Min functions ensure the probabilities satisfy 0 < Pi{n) < 1 and also ensures

the automaton does not have any absorbing states by preventing any of the action

probabilities converging to '0' or ' 1 ' . Theoretical results regarding the convergence

of the discretised algorithm are available only for the 2-action case, though i t is

conjectured that the results also hold for the mult i -act ion case [OC88].

3.3.3 Estimator Algori thms

I n the standard learning algorithms, the environment characterised by the penalty

probabil i ty vector was assumed to be unknown. A n improvement i n the basic learning

scheme could be to determine the characteristics of the environment as the learning

proceeds. Estimator algorithms work precisely on this principle and maintain an

estimate of the penalty probabilities as the learning proceeds. This added information

is used when updating the action probabilities. The first instance of using the idea

of estimating the penalty probabilities of the environment using Bayesian techniques

was proposed in [LT72a]. Bu t the main thrust of the approach has been carried out

by Thathatchar and Sastry in [TS85, TS86].

Nonestimator algorithms update the action probabil i ty vector solely based on the

response f r o m the environment. Thus i f an action results i n a favourable response

f r o m the environment, the probabili ty of choosing that action is increased. Estimator

42

L e a r n i n g A l g o r i t h m s

algorithms on the other hand maintain a running estimate of the probabil i ty of reward

(penalty) for each action. When an action obtains a favourable response f rom the

environment, the estimator algorithm updates the estimate of reward for that action.

Then, the change in the action probabili ty for that action is based on both the

feedback f r o m the environment and the running estimates of the reward probabilities.

Thus in a estimator algorithm i t is possible for the probabil i ty of an action to be

decreased even when i t has obtained a favourable response f r o m the environment.

I n nonestimator algorithms, the action probabil i ty vector p is defined as the in

ternal state of the automaton (Equation [3.2]). Estimator algorithms on the other

hand also use the estimates of reward for each action, and thus the internal state of

the automaton is generalized to Q(n) where

Q (n) = { p (n) , d (u) } (3.28)

where

d(n) = [(?i(n), d2(n),..., dr(n)] (3.29)

and di is the estimate of reward for the i t h action. The SLA is now represented as

SLA = { a , / 3 , p , d , T , c } (3.30)

where the different components are as stated in Equation [3.9].

The estimate d,- for each action is given by

where

M , (n) = Number of times action i has been rewarded.

Zi(n) = Number of times action i has been chosen.

Using the above equations the updating rules for the estimator algorithms are as

43

3*3 L e a r n i n g A l g o r i t h m s

follows: Suppose at i teration n action i was chosen. Then

and

Pi(n + 1) = w(n) + A2J / (4 (n) -<*i (n)]

Sij{n)pj(n) + Sji(n)-!—.-(1 - Pj(n))
r — 1

Pj(n + 1) = pj(n) - \ [f (d i (n) ~ dj(n))

Sii(n)Pi(n) + S ; , (n) ^ l (l - Pj(n))
r — 1

; V j ; j ^ i (3.32)

M , (n + 1)

Mj(n + 1)

Zi(n + 1)

Zj(n + 1)

di(n + 1)

Mi(n) + Pi(n)

Mj(n)

Zi(n) + 1

M,{n + 1)
1 < / < r (3.33)

where

Sij(n) = 1 , i f c?,(n) > d j (n)

= 0, i f di(n) < dj(n) (3.34)

0 < A < 1 is the learning parameter and / is a monotonic increasing funct ion.

I n the estimator algorithm, the change in probabil i ty of an action i depends on the

sign of [di(n) — dj(n)]. Thus i f action i is selected, then the updating for action j (j ^ i)

is as follows: I f [di(n) > dj(n)], then an amount proportional to Pj(n) is subtracted

f r o m p j (n) ; i f (a,-(n) < dj(n)], then an amount proportional to (pi(n)/(r—1))(1— Pj(n))

is added to pj. This asymmetry ensures that the action probabil i ty vector remains in

the simplex S (Equation [3.5]).

The existing learning algorithms for learning automata can be broadly classified

into two groups: Ergodic and Absolutely expedient. Ergodic learning algorithms result

i n the opt imal action probabili ty vector converging in dis tr ibut ion independent of the

44

L e a r n i n g A l g o r i t h m s

in i t i a l action probabil i ty distr ibution. I n non-stationary environments, i f the optimal

action changes w i t h t ime, an ergodic SLA can track the change. Absolutely expedient

learning schemes on the other hand possess absorbing barriers. I f an automaton enters

an absorbing barrier then i t is locked into that state for all t ime. Thus convergence

to one of these absorbing states can be proved. Since al l extremities of the simplex S

(Equation [3.5]) are absorbing states, there exist a f in i te probabil i ty of convergence to

the wrong action and thus the algori thm is e-optimal. Estimator algorithms however

use the enhanced definition of the state (Equation [3.28]) and use this extra informa

t ion in the updating algorithms. This ensures w i t h a large probabil i ty that the unit

vector corresponding to the opt imal action forms the only absorbing barrier. Thus

convergence to the opt imal action i n probabili ty is established [TS85].

P u r s u i t A l g o r i t h m s

Pursuit algorithms are a subset of the estimator algorithms and were first proposed

by Thathatchar and Sastry in [TS86]. They have been used in learning of Boolean

functions [MT89]. Pursuit Algori thms retain all the characteristics of estimator al

gorithms but yield much simpler expressions for updating the action probabilities.

They are characterized by the fact the action probabili ty vector pursues the opt imal

action. Thus whenever the automaton is rewarded by the environment, the action

which has at that instant, the largest estimate of reward, has its action probability

increased. The update equations for the pursuit algori thm are as follows: Suppose

action i was chosen at i teration n. Then

® Favourab le Response

p (n + 1) = (1 - A)p(n) + Ae, •m (3.35)

e U n f a v o u r a b l e Response

p (n - f l) = p (n) (3.36)

45

3.3 L e a r n i n g A l g o r i t h m s

and

M,-(n + l) = M , (n) + ft(n)

Z,-(n + l) = Z,-(n) + l

M,-(n + l) = M , (n) ; V j ^ »

Z ; (n + 1) = Z,-(n) ; V j ^ i

where

A = The learning parameter ; 0 < A < 1

m = Index of the maximal component of d(n)

em = Un i t r-vector w i t h ' 1 ' in its mth coordinate

Mi(n) = Number of times action i has been rewarded

Zi(n) = Number of times action i has been selected

di(n) = Estimate of the reward probabil i ty of action i

(3.38)

Essentially the algorithm operates by , mul t ip ly ing all the action probabili ty by the

factor (1 — A) in case of a favourable response. Then the probabil i ty of the action

that has the largest estimate of reward (J,) is increased by A. This ensures that the

probabil i ty measure of Equation [3.4] is satisfied. Whi le the LRJ algorithm moves

the action probabil i ty vector i n the direction of the most recently rewarded action,

the pursuit algorithm moves the action probabili ty vector i n the direction of the

action possessing the largest estimate of reward. Theoretical results regarding the

convergence of the algorithm are presented in [TS86], where i t is shown that the

pursuit algori thm is e-optimal.

46

L e a r n i n g A l g o r i t h m s

D i s c r e t i s e d P u r s u i t A l g o r i t h m s

Discretised pursuit algorithms (DPA) are constructed similarly to their continuous

counterparts except that the action probabili ty changes i n discrete steps [OL90]. As

in the case of the discretised LJU, the action probabilities are decreased by subtracting

f r o m i t the value of A which is the smallest step size. The parameter for the algorithm

is referred to as the resolution parameter k. Thus the update equations for the DPA

areas follows: Suppose action m has the largest estimate of reward at i teration n

o Favourab le Response

p-(n + 1) = Max{pj(n) - A , 0 } ; j ^ m

p m (n + l) = l - £ P i (n + l) ; (3.39)

® U n f a v o u r a b l e Response

P j (n + l) = P j (n) ; V j (3.40)

The updating of the estimate vector d (n) is done i n the same manner as in the

continuous case i.e. Equation [3.37]. The parameter A is given by A = l / (r i V)

where r is the number of actions and TV is the resolution parameter. As a result of

the discretisation, the action probabilities need to be stored only as integer values

ki, f r o m which the action probabilities at any instant can be calculated as fc,A. The

c-optimality of the scheme has been proven in [OL90].

A l l the learning algorithms which have been detailed above assume a P-Model

environment providing a binary response of success or failure. I n the real world this

may be a gross simplification and a better scheme would be an environment that

provides a continuous response to decide the quali ty of the action chosen by the

automaton. Such an environment is provided by the S-Model and the next section

presents learning schemes which operate i n such an environment.

47

3*3 L e a r n i n g A l g o r i t h m s

3.3.4 S-rVlodel Learning Schemes

S-Model environments provide a response which is a random variable ly ing between

[0,1]. Thus the output of the environment (input to the automaton) is modified to

P{n) = { p u p 2 t . . . , 0 r } = 0 i e [O , l) ; V i (3.41)

Since the response f r o m the environment in the case of the S-Model is a random

variable between [0,1], application of the S-Model to learning system problems require

the a priori knowledge of the lower and upper bounds of the performance indices in

order to scale the responses to lie between [0,1]. Expedient performance using the

S-Model was shown in [LT76]. I n [VN73], the authors derive an opt imal nonlinear

algori thm for a two action automaton using the S-Model. I n the same paper, a scheme

based on the e-optimal LRI (P-Model) scheme was proposed for the mult i-action case.

A n e-optimal scheme for the mult i-action case was also reported in [Mas73].

S — LRI Scheme

I n the P-Model environment, the penalty probabilities defined the environment. For

each action a,-, the environment responds w i t h a random value [/3i(n) | a,] which also

forms the input to the automaton. For a P-Model, the response /3,(n) was '1'(penalty)

w i t h probabil i ty c t and 'O'(reward) w i t h probabili ty (1 — c,). For the S-Model, the

environment is defined as

E = { c * , / 3 , s } (3.42)

where

s(n) = { s 1 , s 2 , . . . , s r } ; s,-= £ { # (n) | a ,} ; V i

i.e. Si is the mean value of the response /?,- for action a,. s,-'s are referred to as the

penalty strengths. The updating rule for the S — LRI scheme is as follows: Suppose

at i teration n, action a,- was chosen and the response f r o m the environment was s,

48

3 <n>
a «J> L e a r n i n g A l g o r i t h m s

then

Pi(n + 1) = pi(n) + a(l - s)(l - Pi(n)) ;

Pj(n + 1) = P i (n) - a(l - s)pj(n) ; V j ; j ^ i (3.43)

where 0 < a < 1 is the learning parameter. The detailed manner i n which learning

algorithms operate i n a S-Model are presented in Chapter 4.

S - M o d e l E s t i m a t o r Schemes

I n the P-Model environment, the binary responses f r o m the environment were used

to update the estimate of reward probabilities for each action a,- for the estimator

learning algori thm (Equation [3.33]). For the S-Model case, the response s, itself is

used as an estimate of response for each action. The updating equations remain the

same as given before i n Equation [3.32].

I n the next section an alternative S-Model learning algori thm is detailed in which

the relative magnitude between the rewards of actions are used to update the action

probabilities.

R e l a t i v e R e w a r d S t r e n g t h L e a r n i n g A l g o r i t h m s

The relative reward strength algorithms were proposed by Simha and Kurose in

[SK89]. The automaton in this scheme operate i n a S-Model environment but main

tains and uses the most recently obtained reward for each action un t i l that action is

selected again. I t is similar to the estimator algorithms which used the estimate of

the reward probabil i ty in updating the action probabilities.

I n this scheme the definition of the SLA (Equation [3.9]) is expanded to include a

most recent reward vector s (n) . The notation s,(n) is used to denote the most recent

response for the action i at i teration n. Thus i f the action chosen at the nth step was

the i t h action and the response f r o m the environment is denoted by r , Si(n) = r. The

update algorithms take into account the relative reward of all actions, i.e the entire

vector s (n) . This scheme is similar to the estimator algorithms i n that i t uses the past

response f r o m the environment to update the probabilities. However the important

49

3*3 L e a r n i n g A l g o r i t h m s

difference is that the estimator algorithms use the entire past response to fo rm the

estimate of the reward probability, while the relative reward algorithm uses only the

most recent reward obtained for an action in the updating algorithm. The update

equations for the scheme are as follows: Suppose action m has the largest reward, i.e,

•Sm(ft) > Si(n) ; V i ; i ^ m . Then

Pi(n + 1) = pi(n) + anApi(n) ; V i (3.44)

where an is the learning parameter. Thus the update equation is specified by the

expression for each Ap , (n) which is given by

Api(n) = [(si(n) - sm(n))] ; V i ; t G Ai (n) ;» ^ m

Apm(n) = - I A * (n) I (3- 4 5)

whereas Vz 9 Ai(n), Ap , (n) = 0. The set A\ is defined as

Ai(n) = {i | p,(n) -f a n (s j (n) - sm(n)) > q m i n)

and is a fo rm of constraint condition. The quanti ty <jrm t n which is a small positive

quanti ty and the set A\ is used to ensure that the algori thm retains the abil i ty to

track a non-stationary environment, i.e., i t does not get locked into a particular state.

The previous sections detailed learning algorithms which improved the speed of

convergence of the standard algorithms. However the basic structure of a single

automaton has l imitations and this is most pronounced when the number of actions

of the automaton is large. When this happens the t ime taken to converge increases

drastically and the practical use of the automaton is reduced. The next section

explains how single automaton can be connected together to f o r m structures which

perform better than a large state single automaton.

50

3.4 Interconnected A u t o m a t a

3 o 4 Interconnected Automata

The previous sections detailed the standard learning algorithms used in the updating

of action probabilities and also presented some new learning schemes which resulted

in faster rates of convergence. However to overcome the basic limitations of the

large state single automata, a useful strategy would be to connect single automaton

into teams of automata to determine whether the collective structure is better at

solving complex problems. From a control point of view, the practical use of the

automaton is when a single automaton can be used as a building block to build more

complex systems. Two such structures will be examined in the subsequent sections:

Hierarchical systems of automata and Games of automata.

3.4.1 Hierarchical Learning Automata

Research in systems of hierarchical learning automata have been explored in [TR81,

MK84, NT89]. A hierarchical system of learning automata is arranged in a tree

structure, with a single automaton with r actions at the first level, each action of

which is connected to a automaton at the second level having r actions and so forth

depending on the number of levels there are in the hierarchy. The actions correspond

to the leaf nodes (lowest level nodes of the tree) of the hierarchical structure interact

with the environment. The response of the environment is then used to update the

different automaton along the path upward to the root automaton.

The operation of the hierarchical system is as follows: Initially, the automaton at

the first level selects one of the r actions. This action then triggers the automaton

at the second level which selects one of the r actions which is available to i t . This

process continues until a leaf node is selected which forms the action selected by

the automaton to interact with the environment. This general structure is shown

in Figure (3.2). I t is assumed that every automaton in the hierarchy has r actions

though this not necessarily so. The response from the environment is then used to

update the actions probabilities of all the automaton which were used to arrive at the

action selected. Complete details of the updating algorithms are given in [NT89].

The advantage of using the hierarchical structure is that the number of proba-

51

3.4 Interconnected Au toma ta

bility updatings are significantly reduced especially when the number of actions of

the automaton are large. This can be illustrated as follows: Suppose the number of

actions of the automaton is N. I f a single automaton is used, the number of prob

ability updatings per iteration would be N. But if the structure used was that of a

hierarchical automata arranged in form of a binary tree with two actions available

to each automaton, then, if N = 2k, the number of probability updatings is equal to

only k. This reduction is significant when the number of actions N is large.

3.4.2 Automata Gaines

Game theory has had important ramifications in social and economic problems where

conflict of interest between the decision makers play an important part in the final

analysis. A game is said to be played between players when each player chooses an

action and elicits a response from the environment. The players may or may not have

complete information regarding the number of other players, the options available to

them etc. . A player bases the next move depending on the response obtained from

the environment.

The concept of automaton games was first suggested by Krylov and Tsetlin in

[KT63] and subsequent work has been carried out by Chandrashekar and Shen [CS69],

Viswanathan and Narendra [VN74] and Lakshmivarahan and Narendra [LN81, LN82].

In automata games, a number of automata operate in an environment without the

complete knowledge about the each other. Each automaton may have different num

ber of actions and learning rules. A general mathematical formulation of automata

games can be given as follows: Let N automaton {A1, A2,... ,AN} take part in

a game of automata. A typical automaton A3 can be described by the quintiple

where

{0^,04,... .} = Set of Actions a

{ # , # , . . . , # . } = & * of Input

F j ,GJ

= { (f > [, fy,..., <f>3

r.} = Set of Internal States

= Updating rule for the automaton (3.46)

52

Discussion 3.5

A play a(n) is defined as a set of strategies which are chosen by the team of automaton

at iteration n and is given by

a(n) = {a 1 (n) , c* 2(n),..., aN(n)} (3.47)

The outcome of the play ct(n) is given by f3(n) which is defined as

(3{n) = {(3\n),(}\n),...,pN{n)} (3.48)

The N automata are said to participate in a game if the probability of the outcome

(3{n) depends on the play a(n).

Further details of automata games, the learning algorithms and convergence re

sults used are given in [NT89]. The details of a team of co-operative game playing

automata using the pursuit algorithm in given in [MT89]. The games approach

presents a method of using the single automaton in complex structures to get en

hanced performance than that would be obtained when using a single automaton.

3 o 5 Discussion

In this chapter a general review of Stochastic Learning Automata was presented.

The basic block structure of a SLA was explained along with the standard learning

algorithms. Limitations of the standard algorithms were then presented. Improved

learning algorithms which have been proposed in the literature were detailed sub-

squently, emphasis being given to highlight the differences between the standard and

improved schemes. Both the P-Model and S-Model learning environments were dis

cussed and compared. Use of the basic structure of a single automaton in more

complex structures have been indicated. In the next chapter, we present the method

and results of using the SLA approach in adaptive digital filtering.

53

Chapter 3 Figures

Set of Inputs

ENVIRONMENT

Set of Responses

State p = [P j , p 2 » . . , p r]

r .
Set of Actions

STOCHASTIC A U T O M A T A
Set of Inputs

Figure 3.1: Stochastic Learning Automata

54

Chapter 3 Figures

First Level Automata

Second Level Automata

Actions interacting with
the Environment

Figure 3.2: Hierarchical Stochastic Learning Automata

55

Chapter 4

Adaptive Digi ta l F i l t o o

e r a i msin

tochastic Learnin Automata

4.1 Introduct ion

his chapter presents results obtained using Stochastic Learning Automata as the

adaptive technique for adaptive filtering. As detailed in Chapter 2, adaptive filter

ing may be classified into adaptive FIR filtering and adaptive IIR filtering. The

algorithms relating to adaptive FIR filtering are well established and currently are

extensively used in various applications. On the other hand, adaptive IIR algorithms

are still an active area of research and are in the process of establishing themselves

as a viable alternative in certain applications to adaptive FIR algorithms. The main

problems associated with adaptive I IR filtering algorithms are problems of stabil

ity and existence of error functions which may be multimodal with respect to the

filter parameters. Although the past couple of decades has seen extensive research

[Whi75, SEA76, PA78, Joh79, TLJ78, LTJ80, FJ86, FN89], the above problems have

not yet been completely resolved. One of the new approaches that has been suggested

for adaptive I IR filtering is that of Stochastic Learning Automata the details of which

were presented in Chapter 3.

The initial work of applying the SLA approach to adaptive I IR filtering was car

ried out by Tang and Mars [TP89, TP91]. Extensive simulations were performed

T

56

4.2 Simulat ion Configurat ion

using the standard learning algorithms. Hybrid schemes were proposed which com

bined Recursive Least Mean Square gradient techniques with the SLA approach. The

automaton games approach was also investigated as a possible solution to the prob

lem of dimensionality when adapting high-order I IR filters. In this chapter detailed

results using the SLA approach to adaptive filtering are presented. In particular the

improved learning algorithms which were detailed in Chapter 3 have been used for

the adaptive filtering case and the results obtained are compared with the results

obtained using the standard learning algorithms. The S-Model environment learning

algorithms are looked at in detail and the results compared with that obtained using

the P-Model environment.

In the next section details of the simulation configuration are given.

4 c 2 Simulation Configuration

4.2.1 Int roduct ion

To use the different learning algorithms which were presented in Chapter 3, the sys

tem identification configuration was employed, where an adaptive filter is used to

model an unknown system as shown in Figure [4.1]. The output error formulation

detailed in Chapter three was used to form the estimation error e(n). The equation

error approach was not used as it resulted in biased estimates of the filter parameters.

Another reason for using the output error formulation is that it gave good approxi

mation when applied to reduced order models [SS82] which were encountered when

modeling a system by an insufficient order adaptive filter.

4.2.2 Using Stochastic Learning Automata

The main motivation in using the Stochastic Learning Automata as an adaptation

algorithm for adaptive filtering was to use its capabilities of global optimisation when

dealing with multimodal error surfaces [SN69]. As was detailed in Chapter 3, the

error surfaces for adaptive IIR filters could be multimodal. Using Stochastic Learning

Automata as the adaptation technique, the search for the optimum is carried out in

57

4.2 Simulat ion Configurat ion

probability space rather than in parameter space as is the case with other adaptation

algorithms. In the standard gradient methods, the new operating point lies within

a neighbourhood distance of the previous point. This is not the case for adaptation

algorithms based on stochastic principles, as the new operating point is determined by

a probability function and is thus not constrained to be near the previous operating

point. This gives the algorithm the ability to locate the global optimum.

In using Stochastic Learning Automata in the adaptive filtering context, the out

put set of actions of the automaton are made to correspond to a set of filter coefficients.

Each output action of the automaton is thus related to a specific combination of filter

coefficients. Since the number of actions of the automaton is finite, this would involve

the discretisation of the parameter space into a number of hyperspaces. Thus the error

surface is partitioned into a number of hyperspaces, the total number of hyperspaces

being equal to the total number of actions of the automaton. The dimension of each

hyperspace would be equal to the number of filter parameters. In this case the task

of the automaton would be then to asymptotically choose that action corresponding

to the set of filter coefficients which results in the minimum error. This is clarified

by presenting an example: Suppose the number of filter parameters were three, i.e.

[a,b,c] and the number of actions of the automaton were N. Then the actions of the

automaton can be described as follows:

Action 1 = [a i , 6 i , C i]

Action 2 = [a 2 ,&2 ,c 2]

Action 3 = [a 3, 6 3,c 3]

Action N = [a^v, 6jv, cjv]

Thus choosing action 3 would result in choosing the parameters [a 3, 63, c 3] for the filter

coefficients. This concept of discretising the parameter space is illustrated in Figure

[4.2] where the adaptive filter is a second order filter with filter parameters [a, b].

A block diagram of an adaptive filter incorporating a Stochastic Learning Au

tomaton in a system identification configuration is shown in Figure [4.1]. As shown

58

4.2 Simula t ion Configurat ion

in Figure [4.1], the operating environment of the automaton was the environment of

the adaptive filter. The response from the environment for a particular action was

the short term average of the instantaneous squared error obtained with the coeffi

cients represented by that action. To obtain the short term average, a rectangular

window was used the length of which was seen to play a significant role in the rate of

convergence. The optimum size was obtained after extensive simulations with differ

ent window lengths. Thus the short time average of the instantaneous square error,

henceforth referred to as the Mean Square Output Error (MSOE), was used by the

environment to decide whether the action chosen was to be penalized or rewarded.

This assumed that the environment was of the P -Mode l type. The procedure for

deciding this was presented in [SN69], where the global minimum of a multimodal,

stochastic noisy error surface was determined using a learning automaton. For the

S-Model, the Mean Square Output Error was used directly to decide whether the ac

tion chosen was optimum. Further details and results using the S-Model environment

are presented in a subsequent section.

As was detailed in Chapter 2, the three conditions put forward by Stearns [Ste81]

and Soderstrom and Stoica [SS82] for a unimodal error surface were

© The adaptive filter is of sufficient order to model the unknown system

© The input signal is white

o The order of the adaptive filter numerator exceeds that of the unknown system

denominator

Further work has been recently been carried out by Fan and Nayeri [FN89], wherein

they have proved the first two conditions for first and second order filters without the

third condition. They have also shown that the error surface could be multimodal

even in the case of sufficient order modeling or when the order of the adaptive filter is

overestimated. In practice, sufficient order modeling is quite difficult to achieve as the

order of the system being modeled is usually not known. Thus in most practical cases,

the modeling filter may be of an order less than that of the unknown filter resulting in

a multimodal error surface. Thus the important point regarding adaptive IIR filtering

59

4.2 Simulation Configuration

is that the error surface may be multimodal and the adaptation algorithm must be

able to locate the global optimum. The paper by Fan and Jenkins [FJ86] proposed

a new algorithm for adaptive I IR filtering and also presented four different cases for

the system identification configuration (Figure [4.1]) wherein the error surface could

be multimodal. The four categories based on the order of the adaptive filter and the

nature of the input excitation are

o Sufficient Order Modeling - White Noise Input

o Sufficient Order Modeling - Coloured Noise Input

o Reduced Order Modeling - White Noise Input

o Reduced Order Modeling - Coloured Noise Input

The four cases detailed above form the backbone of the simulation experiments which

have been carried out using stochastic learning automata as the adaptation technique.

For each of the above cases a suitable simulation experiment is constructed the details

of which are presented in the next section.

4.2.3 Different Categories of Model ing

I) Sufficient Order Modeling - White Input

This was first illustrated as a counterexample to Stearns conjectures [Ste81] by Fan

and Nayeri [FN89], where it was shown that for an adaptive I IR filter of order greater

than two, the error surface may be multimodal even for sufficient order modeling with

white noise input. The transfer functions of the unknown system and adaptive filter

for the example chosen were

A fundamental problem in adaptive I IR filtering is to maintain stability of the adap

tive filter during adaptation. Thus the partitioning of the parameter space formed by

1 - 2 .42- 1 + 1.91z-2 - 0.504z-3

b
Haiz-1)

1 + aiz~x + a2z~2 + a3z - 3 (4.1)

60

4.2 Simulation Configuration

02) a 3 m a y result in a unstable filter configuration during adaptation. To overcome

this problem, the denominator of the adaptive filter was factorised into a product of

a second order and first order filter as given below

^ ^ = (1 - (P l + P 2) Z - 1 + P l P 2 Z - 2) (l ~ P3*-1) (4 " 2)

where pi,p2&nd pz are the poles of the system. By constraining the poles of the filter

to lie inside the unit circle in the z-plane, the stability of the adaptive filter can be

assured during adaptation. The global minimum of the configuration is located at

(6, ai , a2, a 3) = (1.0, -2.4, 1.91, -0.504) for which the corresponding poles are pi = 0.7,

Pi = 0.8, and p$ = 0.9. The numerator coefficients were set to 1.0 in the simulations.

I I) Sufficient Order Modeling - Coloured Input

The example for this case was first presented in [Sod75] and was also used by Fan

and Jenkins [FJ86].The transfer functions of the unknown system and modeling filter

are

H (* ^ (1 - 1.42"1 + 0.49z" 2)

J 5 r - (z " 1) = 7i~T =TT I3T (4-3)

To colour the input, white noise was filtered through a FIR filter having transfer

function (1 — 0 .7z _ 1) 2 (l + 0.7.2 - 1) 2. This colouration gave rise to a multimodal error

surface with the global optimum located at (6, a i ,a 2) = (1, -1.4, 0.49).

I l l) Reduced Order Modeling - White Input

The example for this case was first proposed by Larimore and Johnson in [JL77] in

which a second order system was modeled by a first order filter. The transfer functions

of the filters involved were

_ u 0 .05-0.4*- 1

1314Z-1 + 0.25z-2

61

4.3 Simulation Results

= (4 ' 4)

The insufficient degree of freedom in the adaptive filter resulted in a bimodal error

surface (Figure 9 in [JL77]). This example has also been extensively used by other

researchers in testing new adaptive algorithms. The global minimum is located at

([b,a] = [-0.3, 0.8]) with error value « 0.3.

Reduced Order Modeling - Coloured Input

The example for this case is an extension of the example used for the second case

given above. The relevant transfer functions are

H(z-i) = 1

(1 - 0 . 6Z- 1) 3

Haiz'1) = b7 7 (4.5)

The colouring FIR filter transfer function is changed to (1 — 0.6z"" 2)(l + 0.6z~2)

resulting in a multimodal error surface as shown in Figure 9 in [FJ86].

In the next section the performance of the different learning algorithms for the

four cases listed above are examined and compared.

4 o 3 Simulation Results

4.3.1 Int roduct ion

As discussed previously, the main motivation in using Stochastic Learning Automata

for adaptive filtering has been its ability to distinguish the global optimum from local

optima. Each of the learning algorithms detailed in Chapter 3 had some defining

parameters. To check the effect of the parameters on the learning process, simulations

with a range of parameter values were performed. Of the four categories which have

been detailed, categories three and four deal with situations which are more complex

and practical. Sufficient order modeling (Category (I) and (II)) is not commonly

realised in practical situations as it would assume some knowledge of the unknown

62

4.3 Simulation Results

system. Thus the simulation experiments were carried out using the reduced order

modeling using both white and coloured input excitation.

To determine whether a particular action chosen by the automaton was to be

rewarded or penalized, a short term average of the instantaneous square error (MSOE)

was used. Thus for example, i f at iteration N, action 4 had been selected by the

automaton, then the MSOE t\ obtained using the filter coefficients represented by

action 4 was used. This scheme does not use the fact that action 4 could have also been

selected a few times before iteration N. An improved scheme would be to average the

MSOE obtained for a particular action every time the action was chosen. To clarify

this point consider the case where at iteration N action i was chosen resulting in a

MSOE of ei(N). Suppose action i had been chosen once before at iteration K, and

had resulted in a MSOE of e,(J{'). The new scheme would then use the previous value

of MSOE along with the current value of MSOE and the resulting MSOE is given by

e m = e,W + e,W

The main advantage in the new scheme is that the short term average is not restricted

by the window length but is also determined by the number of times the particular

action is chosen. This effectively increases the window length by a factor equal to

the number of times a particular action is selected. The effect of using this scheme

is shown in Figure [4.3] for two different values of the learning parameter and shows

a faster rate of convergence. The results in Figure [4.3] with the label NE refers

to result obtained without using the new error estimation scheme. Thus the results

pertaining to labels Lri(I) and Lri(I)-NEare obtained using the LRI with and without

the new error scheme, for the same values of the learning parameter. The variance of

the MSOE using the new scheme also is seen to be reduced as the effective window

length is now increased. The example used to illustrate the new error was reduced

order model of category three. In all the subsequent simulation results, this scheme

of determining the MSOE has been used.

In the next section the results obtained operating in the P-Model environment are

presented.

63

4.3 Simulation Results

4.3.2 Results using P=Model Learning Algor i thms

Standard Learning Algorithms

Al l the results presented in this section use the example given in category (II I) which

used a first order I IR filter to model a second order I IR filter. This configuration

results in a bimodal error surface with a local minimum corresponding to a error

value of 0.9 and a global minimum corresponding to a error value of 0.3. The two

parameters a, b were discretised into ten discrete values resulting in the automaton

having 100 actions. Each action corresponded to a particular set of coefficient values

for a, b. The results obtained using the standard learning algorithms are shown in

Figure [4.4]. The learning parameters used for the different schemes are as follows:

L R P (I) = Rew. Par. = 0.1 Pen. Par. = 0.1

L R P (I I) = Rew. Par. = 0.2 Pen. Par. = 0.2

L R £ P (I) = Rew. Par. = 0.01 Pen. Par. = 0.001

L H J (I) = Rew. Par. = 0.01

L R I (I I) = Rew. Par. = 0.005

These results were originally presented in [TP89] and have been repeated here for

the sake of completeness. A l l the algorithms were able to locate the global optimum

point. Of the standard algorithms the LRI gave the fastest rate of convergence i.e

about 50,000 time samples were required for the algorithm to locate the optimal set

of coefficients. The LRP algorithms had a slower rate of convergence (60-180,000 time

samples), the main reason for this being the increased value of the penalty parameter

which did not allow the algorithm to settle into a particular state rapidly. The value of

the window length used to obtain the MSOE was 50. The results shown are ensemble

average of 25 runs of the simulation experiment. I t was noticed that the learning

parameter played an important role in the rate of convergence and accuracy of the

algorithm. Large values of the learning parameter resulted in faster convergence but

at the expense of possible convergence to a non-optimum point while small values of

the parameter resulted in an increased convergence time.

64

4 . 3 Simulation Results

Discretised Learning Algorithms

The results obtained using the discretised learning algorithms are presented in Figure

[4.5]. The values of the defining parameter (resolution parameter) used in the algo

rithm are 1000, 5000 and 10,000. I t is can be seen that decreasing the value of the

resolution parameter (increasing the learning rate) too much results in convergence to

a non-optimal action (Parameter Value = 1000)), while increasing i t (decreasing the

learning rate) results in slower convergence (Parameter Value = 10000). The main

reason for this result is the discretisation of the probability space now results in the

action probability vector moving towards an absorbing state more rapidly than that

obtained using the standard learning algorithm. The rate of approaching an absorb

ing state is dependent on the resolution parameter. Too large a value of the learning

rate results in the algorithm getting locked up in a non-optimal state. Comparing

Figures [4.4] and [4.5], as expected, the discretised algorithms is seen to result in

faster convergence as compared to the standard learning algorithms.

Estimator Algorithms

Estimator algorithms were devised to increase the rate of convergence of the standard

learning algorithms and results using this approach are shown in Figure [4.6]. As

can been seen from Figure [4.6], the estimator algorithm shows faster convergence

as compared to the standard learning algorithms and are comparable to the results

obtained using the discretised LRI algorithm. The values of the learning parameter

used for this simulation are 0.005, 0.01 and 0.05. The algorithm successfully located

the global minimum as can be seen from the final error value at the end of the

simulation run.

Pursuit Algorithms

Pursuit algorithms as explained in Chapter 3 are a subset of the estimator algorithms

possessing much less computational complexity. The results of using these for adap

tive filtering are shown in Figure [4.7]. The rate of convergence is comparable to that

obtained using the estimator algorithms though the computational time required was

65

4 . 3 Simulation Results

much less. The learning parameter values for the algorithm were 0.0075, 0.01 and

0.05.

Biscretised Pursuit Algorithms

Discretised pursuit algorithms are the discretised version of the continuous pursuit

algorithms, the results of which are presented in Figure [4.8]. From the results i t

can be seen these algorithms give the best performance in the terms of the rate of

convergence (25,000 time samples) and are able to locate the global minimum. The

value of the resolution parameter in Figure [4.8] were 1000, 5000 and 10,000 . As

shown in Figure (4.8) (Parameter Value = 1000)), increasing the learning rate too

much results in premature convergence and a non-optimal performance.

Discussion

The important aspect of all the learning schemes detailed above is that all of them

were able to locate the global minimum when searching a bimodal error surface. The

standard learning algorithms took about 180,000 time samples (LRP) to 50,000 time

samples (LRI) for locating the optimal set of coefficients. Though this is large when

compared to results obtained using gradient schemes like the (LMS), the ability to

locate the global optimum validates the utili ty of this approach. The main motivation

for using the improved learning algorithms was to reduce the number of time samples

required for convergence. A l l the new schemes were able to locate the global optimum

using a significantly less number of time samples. The value of the learning parameter

was found to play a crucial role in determining the accuracy and rate of convergence

of the respective algorithms. The next section presents the results when the S-Model

environment is used.

4.3.3 Results using S-Model Learning Algor i thms

Introduction

The S-Model environment is intuitively better suited for modeling the environment in

which the adaptive filter operates as every action generated a response lying between

66

4.3 Simulation Results

[0,1] rather than the binary value generated in a P-Model environment. Thus actions

resulting in a response closer to 1 were the more optimal actions. To normalize

the response from the environment to lie between [0,1], the maximum and minimum

values of the responses should be known a priori. In a practical case this is usually is

not known and so the adaptive process garners this knowledge as the process evolves.

This is achieved as follows: At any iteration k, the current value of the response is

chosen as the minimum value if i t is less than the previous minimum value (e m j„) ,

and as the maximum value if i t is greater than the previous maximum value (emax).

If the current response lies between the maximum and minimum values, then both

the limits are not changed. Thus we have,

e(k) if e(k) < emin(k)

emin(k — 1) otherwise

, e (k) i f e (k) > < w (f c)
emax{k) = \ _ (4.6)

£max{k — 1) otherwise

The normalisation is then achieved by using the equation

Si(k) = E m a x ^ ~ e ' (f c) (4.7)

(e m a i (^) emt'n(&))

where s,-(fc) is the normalised response from the environment for action i at the kth

iteration and e(k) is the unnormalised response. The above scheme of normalisation

was proposed in [VN73].

As wil l be shown later on in subsequent sections , this method of normalisation

did not result in very fast convergence and sometimes the convergence time was

extremely large resulting in limited practical use. The reason for this is found to be

the normalisation scheme given by Equation [4.7] and the nature of the error surface

which is generated by the simulation experiment. The error surface which is bimodal,

is found to have a large maximum value. The normalisation scheme scaled the error

values from the environment linearly between 0 and 1. As a result of this linear

scaling and the large maximum value, points on the error surface which are close to

the global minimum are assigned responses close to I. This corresponded to a number

67

4.3 Simulation Results

of actions of the automaton being assigned response values close to 1. As a result, the

algorithm was unable to locate the global optimum rapidly. To resolve this problem,

a new normalisation scheme employing a nonlinear scaling function was used. The

new scheme used the following equation:

Si = exp(-(e(k) - emin(k))2) (4.8)

This scheme assigned response values near ' 1 ' only to the actions which resulted in

a error value very close to the minimum value determined until then thus enabling

the learning algorithm to distinguish between the actions. In all the subsequent

algorithms operating in a S-Model environment, both the normalisation procedures

are used and results compared.

S-Model Standard Algorithms

Figures [4.9,4.10] shown the convergence results obtained using the S — LRI Algo

rithms for the adaptive filtering using the old and new normalisation schemes. The

old normalisation scheme is unable to find the optimum point even after 20,00,000

time samples which makes the practical use of the algorithm extremely limited. On

increasing the value of the learning parameter, there is an increase in the speed of

convergence, but the algorithm is still unable to locate the optimal filter coefficients.

Figure [4.10] shows the result of using the new normalisation scheme and exhibits

satisfactory location of the optimal set of filter coefficients as indicated by the error

level to which the algorithm converges. This again was achieved only after about

17,00,000 iterations resulting in limited practical use. Increasing the value of the

learning parameter resulted in faster convergence at the expense of accuracy. Thus

surprisingly, the S-Model LRI learning algorithm resulted in a poorer performance

than the P-Model learning schemes. A possible reason for this behaviour is given

later in this chapter.

68

4.3 Simulation Results

S-Model Estimator Algorithms

The results of using the S-Model estimator algorithms are shown in Figures [4.11,4.12].

As was the case with the S — LRI learning algorithm, the old normalisation (Equation

[4.7], Figure [4.11]) was not able to locate the global optimum even after a large

number of time samples. Using the new normalisation, the algorithm was able to

locate the global optimum (Figure [4.12]), the time samples required for convergence

being less than that for the S — LRI algorithms. Too high a value of the learning

parameter resulted in inaccurate results while too low a value increased the number

of time samples required for convergence.

Relative Reward Schemes

Figures [4.13,4.14,4.15,4.16] show the results of using the relative reward learning al

gorithms. Figures [4.13,4.15] show the result of using the old and new normalisation

schemes when using small values of the learning parameter. I t can be seen that the

new normalisation performs better resulting in faster convergence. Figures [4.14,4.16]

also present the results in using the old and new normalisation schemes but for larger

values of the learning parameter. In this case i t can be seen that the old normalisa

tion scheme performs better leading to faster convergence. To explain this anomaly,

reference is made to the denning equation of the relative reward scheme (Equation

[3.44]) where Ap,(n) is determined by the difference in value between the responses

of action i and the action which currently resulted in the maximum response. The

new normalisation scheme weights the responses non-linearly and thus the value of

Api(n) mentioned above is large. This in combination with a large value of the learn

ing parameter resulted in impermissible values for the probability of an action, i.e

Pi(n) > 1.0 or Pi(n) < 0.0. In such a case the algorithm does not update the action

probabilities and thus the learning rate of the algorithm drops. Thus for large values

of the learning parameter the old normalisation scheme gives faster and more accurate

convergence.

69

4.3 Simulat ion Results

Discussion

Of the S-Model learning algorithms which were attempted, the relative reward al

gorithm gave the best results (convergence in about 600,000-700,000 time samples).

The other algorithms, though able to locate the global optimum, did so only after a

large number of time samples. Thus the practical use of these algorithms in the adap

tive filtering context are limited. The new normalisation scheme resulted in faster

convergence than the old scheme. One reason why the S-Model schemes performed

poorly when compared to the P-Model schemes is that in the S-Model scheme ev

ery action resulted in a response lying between [0,1] which was used in updating the

probability of that action being chosen in the next iteration. In the P-Model scheme

as the responses were binary, the action probabilities were updated faster. This is

clarified using an example: Suppose action i was the optimal action and both the

S-Model and P-Model schemes gave a response of 1 when action i was selected. If

in the next iteration, action k(non-optimal) was selected, the P-Model scheme would

result in a response 0 while the S-Model scheme would result in a response which is

a finite value less than 1. Thus in the S-Model case, the action probability of action

k would increase by an amount proportional to the response it obtained. This would

result in the probabilities of the other actions being reduced in order to keep the prob

ability vector in the unit simplex. In the P-Model LRI scheme this wil l not happen

as when actions result in a 0 response, no updating is performed. The net result of

this argument is that in a P^Model scheme the learning is faster than that obtained

in a S-Model environment. This also explains the success of the new normalisation

scheme which effectively drives the S-Model environment asymptotically towards a

P-Model environment using Equation [4.8].

4.3.4 Other Categories

The simulations in the last section concentrated on the adaptive filter model given

in Category (I I I) which was involved with reduced order modeling with the input

signal being white. This case was taken to be the most general setting for an adap

tive filtering algorithm as has been explained before. Further simulations were also

70

4.3 Simulation Results

carried out using the model given in Category (IV) which concerned reduced order

modeling with coloured input. The transfer functions for this category were as given

by Equations [4.5] and the resulting error surface was multimodal as shown in Fig

ure 9 in [FJ86]. Figure [4.17] shows the results obtained using the different P-Model

learning algorithms for the model in Category (IV) . The discretised algorithms are

seen to give the fastest rate of convergence with the discretised pursuit algorithm

being slightly faster. A l l the algorithms were able to locate the global optimum. The

S-Model learning algorithms were not tested on this model as they had shown lim

itations when tested on the model given in Category (I I I) . Results using standard

learning algorithms on the models in Category (I) and (II) have been presented in

[TP91] where it was shown all the algorithms were able to locate the global optimum.

The new algorithms were not specifically tested on these models. I t is assumed that

the discretised algorithms would perform better and result in faster convergence as

has been noticed from the results which have been obtained.

4.3.5 Automata Games and Hierarchical Schemes

The primary disadvantage of using the Stochastic Learning Automata approach in

adaptive filtering was the increased computational time when the number of param

eters of the filter was large. This arose because of the discretisation of the parameter

space. For example, if the adaptive filter had three parameters each being discretised

into ten sections, the resulting automaton would, have 1000 actions. Updating the

probabilities of an automaton having a large number actions increases the computa

tional time and thus limits the practical use to which the approach can be put to.

Two different approaches had been proposed to overcome this problem - hierarchi

cal automata and automata games. Simulation results using these approaches are

given in [TP91] where a novel hybrid technique using the standard Recursive Least

Mean Square (RLMS) algorithm and stochastic learning automata was proposed.

The hybrid technique proposed used the RLMS algorithm to update the numerator

coefficients of the adaptive I IR filter, while the SLA approach was used to adapt the

denominator coefficients. This made use of the fact that the error function for an

71

4.4 Conclusions

adaptive recursive filter in a system identification configuration was quadratic with

respect to the numerator coefficients. The ability of the automata approach to deter

mine the global optimum was used to determine the denominator coefficients. Tang

and Mars also used the games approach to adapt the denominator coefficients and

have shown through simulation experiments that this approach was able to locate the

global optimum. However the main drawback with the automata games approach

was that theoretical results regarding global optimality are not available. Thus using

the games approach could result in a non-optimal performance.

Hierarchical systems of stochastic learning automata are another method to obtain

faster convergence with respect to the computational time. Although the number of

iterations are the same as that obtained with a single automaton, the time required

for a single iteration is reduced as the number of probability updatings are reduced in

a hierarchical scheme as was explained in the Chapter 3. Results obtained using the

hierarchical scheme are given in [TP91] and show that the automata games approach

and the hybrid scheme gave faster convergence than the hierarchical scheme.

4o4 Conclusions

This chapter presented the results in using Stochastic Learning Automata as an adap

tation technique for adaptive digital filters. The specific case examined was that of

adaptive I IR filtering. The main motivation for using the SLA approach was its abil

ity to locate the global optimum when searching a multimodal performance function.

This was tested using adaptive IIR filtering as a testbed and the results presented

show that the technique was able to locate the global optimum. Results using the

new and improved learning schemes were also presented and resulted in the reduction

in the number of iterations required for convergence. The S-Model environment was

also examined and a possible reason as to why S-Model learning algorithms did not

perform as well as P-Model algorithms has been explained. A possible use of the SLA

approach is to use the technique as a first level search whereby the section containing

the global optimum is determined by the automaton. Thereafter established gradient

algorithms could be used to reach the precise global optimum.

72

The main drawback with the SLA approach is the increased computational time

required for convergence when the number of actions of the automaton is large. Thus

when adapting high order niters, the SLA approach would result in a slow rate of

convergence as increasing the order of the filter increases the number of parameters

which would lead to a large number of actions for the automaton. This is the classi

cal problem of high dimensionality which inhibit most adaptive schemes. Automata

games have been proposed to overcome this drawback, but lack of strong theoretical

results regarding the global optimality of such an approach renders this idea im

practical. The next chapter presents a technique based on genetic and evolutionary

optimisation. The primary advantage of this approach is the ease with which the

dimensionality issue is handled.

73

Chapter 4 Figures/Results

Input

Noise

UmKnowini

System

Error

Adaptive
Filter

Learning

Automata

Learning

Automata

Figure 4.1: System Identification Configuration incorporating Stochastic Learning
Automata

Parameter b

1 2

k k -

(N-l) a b „.
N N (N+l)

Parameter a

Figure 4.2: Discretisation of the Parameter Space

74

Chapter 4 Figures/Results

Lri l - NE

Lril

Lri II - NE

Lrill

D
1.5

I
a

• «

1

0.5 1

esBmaicmi&SBMSt

0

500 0 100 200 300 400 600 700 800 1000 900

Time Samples (X 250)

Figure 4.3: The New Scheme of Error Estimation

75

Chapter 4 Figures/Results

2.5 - r

Lip(I)

Lrp(n)

1 »i Lrep(I)
i

Lrim

Lrini)

0>

1.5 Ed I

1 93
E

ft
0.5

0 150 300 450 600 750 900

Time Samples (X 250)

Figure 4.4: Performance of Standard Learning Algorithms

76

Chapter 4 Figures/Results

2.5 - r
Resol. Par. = 1000

Resol. Par. = 5000

= = ° = Resol. Par. = 10000

2
'V.

ft
0

4
6

1.5
»5

W2

1

0.5

0

0 50 100 150 200 250 300 350 400

Time Samples (X 250)

Figure 4.5: Performance of Discretised Learning Algorithms

77

Chapter 4 Figures/Results

2.5 - r

' * Rew. Par. = 0.005

" " " " Rew. Par. = 0.01

Rew. Par. = 0.05

M

ii
1

• it

1.5

Ml

4

1

•I

0.5

t 3

0

0 100 200 300 400 500 600 700 800 900 1000

Time Samples (X 250)

Figure 4.6: Performance of Estimator Learning Algorithms

78

Chapter 4 Figures/Results

Rew. Par. = 0.0075

Rew. Par. = 0.01

•Rew. Par. = 0.05

0 50 100 150 200 250 300 350

Time Samples (X 250)

400 450 500

Figure 4.7: Performance of Pursuit Algorithms

79

Chapter 4 Figures/Results

Resol. Par. =1000

Resol. Par. =5000

1.8 Resol. Par. = 10000

1.6

1.4

1.2

© 1 i

\
I CO

I 0.8

s
0.6

0.4

0.2

0

350 50 150 200 250 300 0 100

Time Samples (X 250)

Figure 4.8: Performance of Discretised Pursuit Algorithms

80

Chapter 4 Figures/Results

e
3
cr W3

I 0.8
4)

0.6

0.4 +

0.2

Rew. Par. =0.001

Rew. Par. =0.01

'Rew. Par. =0.05

1 j i f i j i i \ ±

200 400 600 800 1000 1200 1400 1600 1800 2000

Time Samples (X 1000)

Figure 4.9: Performance of S-LRI Learning Algorithms (Old Normalisation)

81

Chapter 4 Figures/Resu

Rew. Par. = 0.001

Rew. Par. = 0.01

= = = = Rew. Par. = 0.05

1

1.5

n

5W

^ ^ ^ ^
0.5 - - A

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time Samples (X1000)

Figure 4.10: Performance of S-LRI Learning Algorithms (New Normalisation)

82

Chapter 4 Figures/Results

Rew. Par.= 0.001

Rew. Par.= 0.01

Rew. Par.= 0.05

i

5 13

4*
t
in

ut.

1

0.5

0

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time Samples (X500)

Figure 4.11: Performance of Estimator Learning Algorithms (S-Model) (Old Normal
isation)

83

Chapter 4 Figures/Results

Rew. Par. = 0.001

Rew. Par. = 0.01

Rew. Par. = 0.05

I ' M
m

1
\

0.5

0

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time Samples (X500)

Figure 4.12: Performance of Estimator Learning Algorithms (S-Model) (New Nor
malisation)

84

Chapter 4 Figures/Results

Rew. Par = 0.00075

Rew. Par. = 0.00001

\A .fen &a

200 400 600 800 1000 1200 1400 1600 1800 2000

Time Samples (X 500)

Figure 4.13: Performance of Relative Reward Learning Algorithms (S-Model) (Old
Normalisation)

85

Chapter 4 Figures/Results

1.8

Rew. Par. = 0.001

Rew. Par. = 0.01
1.6

Rew. Par. = 0.05

1.4

1.2 3

1

©

or 0.8

3

0.6

ft
i

J I

0.4

0.2

0

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time Samples (XS00)

Figure 4.14: Performance of Relative Reward Learning Algorithms (S-Model) (Old
Normalisation)

86

Chapter 4 Figures/Results

1.4

©

t 12
•*-» a
3

o

3

«5

s

0.4

0.2

1.8

1.6 +

0.8 +

0.6 +

ffl

Rew. Par. = 0.00075

Rew. Par. = 0.00001

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time Samples (X 1000)

Figure 4.15: Performance of Relative Reward Learning Algorithms (S-Model) (New
Normalisation)

87

Chapter 4 Figures/Results

1.6 T

Rew. Par. = 0.001

Rew. Par. = 0.01
1.4

1.2

1

Em

© 0.8

as

ft
5 Et

4
is 6fi 0.6 MM

is J M M i l
0.4

0.2 +

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time Samples (X500)

Figure 4.16: Performance of Relative Reward Learning Algorithms (S-Model) (New
Normalisation)

88

Chapter 4 Figures/Results

100 -r

90

Standard LRi

80 Discretised LRi

Estimator Algorithms

Pursuit Algorithms mi 70
Discretised Pursuit Ms I -

9tf1
{<'; w Si;

fs 60 63

i v*1

50

C/2
40 ism

fen 1

» -9
30

\ 20

4
I lad 10

0 50 100 150 200 250 300 350 400 450 500

Time Samples (XS00)

Figure 4.17: Performance of P-Model Learning Algorithms (Category (IV) Model)

89

Chapter

Genetic and Evolutionary

Optimisation

5.1 Introduct ion

he process of evolution over many thousands of years has been a vitally important

feature of the biological organisms which are presently found on earth. It has been

used as a sort of filtering process, whereby organisms which are better adapted to

the ever changing external environment survive, while organisms not so adaptable

perish. This process of selective survival was initially recorded by the works of Charles

Darwin and Alfred Russell, who referred to the process as survival of the fittest. Thus,

the process of evolution could be viewed as a mechanism of optimisation whereby

organisms being optimised are better equipped to survive in a variable environment.

This led to the idea that evolution as seen in nature could be used as an optimisation

tool as an alternative method to the standard optimisation strategies [FOW66, Hol75].

Subsequent research into the use of natural evolution as an optimisation technique

has been intensive and has led to i t being established as an important technique of

optimisation called Simulated Evolution.

Traditional optimisation methods can be broadly classified into three categories

[Gol89]:

o Calculus based schemes

90

5.1

o Enumerative Schemes

Introduction

o Random Search Schemes

Calculus based search schemes are based on using the gradient of the objective function

and are the multidimensional generalization of finding the extrema of a function. As

they use the concept of neighbourhood, their scope is local to the neighbourhood

around the current search point and presences of local optima in the current area

of search would result in the algorithm getting stuck in such an optima. Thus they

are best used in a limited problem domain especially when dealing with real world

problems. Enumerative schemes are very simple to implement as they involve in

looking at every point in the search space to determine which is the best. However,

the scheme results in enormous computational overheads as the size of search space

increases. Random search techniques have been popular, but in the long run perform

no better than enumerative schemes. A different approach to optimisation is to use

randomised techniques which use random choice to guide the search algorithm through

the parameter space. Two of the optimisation techniques which use such randomised

techniques are Simulated Evolution and Simulated Annealing. Details of Simulated

Annealing are presented in a subsequent chapter.

Simulated Evolution simulates a simplified version of the process of natural evo

lution on the computer. I t is an effective numerical optimisation technique which is

based on stochastic principles, thus making i t extremely robust. The applications of

the technique have been varied and include designing and training of neural networks,

automatic control of nonlinear systems and optimal routeing in telecommunications.

Research in simulated evolution has progressed mainly on three fronts:

Genetic Algorithms

» Evolutionary Strategies

® Evolutionary Programming

At the core of all three approaches lies the concept of a population, which has been de

rived from natural evolution. A population consists of a collection of structures which

91

5.1 Introduction

in the case of simulated evolution represents possible solutions to the optimisation
problem. In natural evolution these structures would correspond to the chromosomes
found in all biological organisms and which determine the characteristics of the or
ganism. Each structure is assigned a fitness value which determines the progress of
the structure in subsequent generations, as structures with a large fitness value would
tend to survive over an increased number of generations. These structures then un
dergo genetic operations which modify existing structures and generate new ones.
The operations are of paramount importance to the method as they determine how
new structures are formed from existing ones. This process is repeated to generate
the members of subsequent generations. As the process works on the principle of
survival of the fittest, structures which represent more optimal solutions and possess
large fitness value, survive and propagate through the generations. Although the
fundamental concepts of all three methodologies are derived from natural evolution,
there exist significant differences between them which make each approach have dif
ferent properties. The basic principles of evolutionary optimisation can be stated in
an algorithmic form as follows:

Evolutionary Optimisation

1. Initialise a population of structures.

2. Evaluate each structure and assign them a fitness value.

3. Create new structures by mating existing structures

4. Evaluate new structures and insert them into the existing population to form

the next population.

5. Go to Step 3 if time limit is not exceeded.

As simulated evolution uses terminology that has been derived from natural evo

lution, these are clarified in the table given below:

92

5.1 Introduction

Natu ra l Evolu t ion Simulated Evo lu t ion

Chromosome String

Gene Feature/Character

Allele Feature Value

Locus Position on string

Genotype Coded form of Parameters

Phenotype Actual Parameter Set

Thus if a binary string is used as the chromosomal representation of a solution in a

simulated evolution experiment, each position on the binary string would correspond

to being a locus. A gene would then correspond to a either a single or a group of bit

locations. An allele would be the possible values the gene may have at each locus -

the use of a binary string forces the allele values to be either a zero or an one.

Genetic Algorithms were devised by John Holland at the University of Michigan in

the early seventies and was detailed in his pioneering work Adaptation in Natural and

Artificial Systems^[Hol75]). Subsequently, research in genetic algorithms has experi

enced an exponential growth with applications in telecommunications, aircraft design,

neural network architecture, control of gas pipeline transmission, seismic applications

and jet turbine design. Evolutionary Programming and Evolutionary Strategies are

two paradigms of simulated evolution which are very similar in structure and opera

tion. Evolutionary Programming had its origins in the sixties based on the work of

Fogel [FOW66] which concentrated on using simulated evolution as a tool for evolving

artificial intelligence. Thereafter the scheme has been used in a number of diverse ap

plications including underwater acoustics [Fog91a], robot path planning [MP90] and

system identification [Fog91b]. The introductory work in Evolutionary Strategies was

carried out in Germany at the University of Berlin by Rechenberg [Rec73] and fur

ther developed by Schwefel [Sch75]. Although evolutionary strategies are conceptually

similar to evolutionary programming techniques, there are subtle but important dif

ferences between the schemes. The next sections present the detailed working of all

the three paradigms highlighting both the similarities and differences.

93

5.2 Genetic Algor i thms

5o2 Genetic Algorithms

5.2.1 In t roduct ion

Ever since the evolutionary theory of biological change was accepted, the mechanics of

evolution has attracted research interest. John Holland at the University of Michigan

was interested in using the ideas from natural evolution to devise a technique to solve

difficult optimisation problems. He called this method Genetic Algorithms as the

principle of the method was based on ideas from genetics. Subsequent to Hollands

work [Hol75], research activity in the area of genetic algorithms has been extensive

and the method has found applications in a variety of engineering problems [Gol89,

Dav91].

A genetic algorithm (GA) can be represented by a 8-tuple as follows:

G A = (P ° , A, 1, f , s, c, m , i) (5.1)

where

P ° = (o? , . . . , a5) Initial Population

A € N(Set of Integers) Population Size

1 € N(Set of Integers) Length of each string

f : Fitness/Objective Function

s : Selection Operator

c : Crossover Operator

m : Mutation Operator

i : Inversion Operator

The initial population P is created by randomly generating A binary strings, each

binary string being a coded form of the parameters of the optimisation process. The

multi-parameter case is handled by concatenating the string representations of all the

parameters. This process is elaborated in a subsequent section. The parameter A is

the size of the population and is an important parameter of the genetic algorithm.

94

5.2 Genetic Algor i thms

The length 1 of each binary string determines the precision with which the actual

parameters have been coded.

An important concept which arises as a result of using binary strings is that of

a Schema. A Schema is a similarity template which describes a subset of strings

with similarities at certain strings positions. For example, suppose a binary string

representation is denned using six bits. Then

0 * * 1 * *

1 1 * * 0 *

are two examples of schemata defined on the string. The * refers to a don't-care

condition and can be either a 1 or a 0. Thus schemata are defined to be elements of

{ 0 , 1 , * } ' where / is the length of the binary string. Two important properties of a

schema are its order and defining length. The order of a schema H denoted by 0(H)

is the number of fixed positions (i n a binary coding, the number of l's and 0's). The

defining length denoted by 8(H) is the distance between the first and last specific

string position. For example the schema

* 1 * * * 0 1

has an order of 3 and a defining length of 5 (i.e. 7 - 2) .

Genetic algorithms obtain most of their exploratory power by the sampling and

distribution of schemata during the creation of new generations. I t has been proved

[Hol75, Gol89] that if a genetic algorithm operates with a population size of A, then

the number of schemata processed during a single generation is 0 (A 3) . This effect

is known as Implicit Parallelism. The concept of schemata also strengthens the case

for the binary coding scheme, as it has been shown [Gol89] that maximum number

of schemata is processed when a binary coding is employed.

The fitness function f assigns a real value to each string which determines the

survivablity of a particular string in subsequent generations. A large fitness function

results in a particular string surviving in subsequent generations either as itself or

95

Genetic Algorithms

as offspring which have been created from i t . This concept is made clear when the

genetic operation of selection is explained.

A genetic algorithm operates on a population of string structures each of which

represent a possible solution to the problem under consideration. An important differ

ence between genetic algorithms and the other evolutionary optimisation algorithms is

that genetic algorithms operate on the genotypic representation while the evolutionary

strategies and evolutionary programming methods operate on a phenotypic represen

tation. This distinction means that genetic algorithms operate on a coded form of

the actual parameter space while the other evolutionary schemes operate on the ac

tual parameters themselves. Thus in genetic algorithms, the coding scheme used to

represent the parameters is of significant importance. Though Holland [Hol75] stated

that the binary coding is the optimal coding scheme, subsequent work has shown that

this need not be so [Dav91]. The main argument against using a binary coding is it

unnecessarily constrains the problem.

Using a binary coding would entail each parameter being coded as a J bit string.

The number of bits / dictates the precision of the coding process as a larger number

of bits would represent a parameter more precisely. Depending on the function to

be optimised, a parameter value may be constrained to lie between certain limits.

This constraint satisfaction is elegantly handled in genetic algorithms by using a

linear mapping, which maps each binary coded form of a parameter to a particular

parameter value. This is explained using the following example: Suppose a parameter

is constrained to lie between the limits of Pmin and P m a x , and is coded using a binary

string of / bits. Then the coded form would have 2l discrete values and the linear

mapping would then map the values { 0 , . . . , 2' — 1} of the binary string to real values

lying between P m t n and Pmax- An important feature of evolutionary optimisers is

the natural way the problem of dimensionality is handled [Gol89]. The problem

of dimensionality plagues most current optimisation schemes which break down on

problems of moderate size and complexity. The genetic algorithm deals with the

dimensionality problem as follows: Each parameter of the process is as usual coded

using a binary string. The binary codings of all the parameters are then concatenated

to form a larger string which forms the chromosomal representation to be used in a

96

5.2 Genetic Algor i thms

as offspring which have been created from i t . This concept is made clear when the

genetic operation of selection is explained.

A genetic algorithm operates on a population of string structures each of which

represent a possible solution to the problem under consideration. An important differ

ence between genetic algorithms and the other evolutionary optimisation algorithms is

that genetic algorithms operate on the genotypic representation while the evolutionary

strategies and evolutionary programming methods operate on a phenotypic represen

tation. This distinction means that genetic algorithms operate on a coded form of

the actual parameter space while the other evolutionary schemes operate on the ac

tual parameters themselves. Thus in genetic algorithms, the coding scheme used to

represent the parameters is of significant importance. Though Holland [Hol75] stated

that the binary coding is the optimal coding scheme, subsequent work has shown that

this need not be so [Dav91]. The main argument against using a binary coding is i t

unnecessarily constrains the problem.

Using a binary coding would entail each parameter being coded as a / bit string.

The number of bits I dictates the precision of the coding process as a larger number

of bits would represent a parameter more precisely. Depending on the function to

be optimised, a parameter value may be constrained to lie between certain limits.

This constraint satisfaction is elegantly handled in genetic algorithms by using a

linear mapping, which maps each binary coded form of a parameter to a particular

parameter value. This is explained using the following example: Suppose a parameter

is constrained to lie between the limits of P T O i n and Pmax, and is coded using a binary

string of / bits. Then the coded form would have 2' discrete values and the linear

mapping would then map the values { 0 , . . . , 2' — 1} of the binary string to real values

lying between P m j „ and Pmax- An important feature of evolutionary optimisers is

the natural way the problem of dimensionality is handled [Gol89]. The problem

of dimensionality plagues most current optimisation schemes which break down on

problems of moderate size and complexity. The genetic algorithm deals with the

dimensionality problem as follows: Each parameter of the process is as usual coded

using a binary string. The binary codings of all the parameters are then concatenated

to form a larger string which forms the chromosomnal representation to be used in a

96

5.2 Genetic Algorithms

population. To assign a fitness value to each string in the population, the strings are

decoded to form the actual parameters of the objective function. The function value

then obtained using these parameters in the objective function are used as the fitness

value of that string. In some instances, the raw function value itself is not used as

the fitness measure, instead a modified value of the raw function value is employed.

Thereafter the strings of each population undergo the standard genetic operations

of selection, crossover and mutation to generate the strings of the new population.

These operations are explained in the next section.

5.2.2 Standard Genetic Operations

There have been differences in the literature as to which operations constitute stan

dard genetic operations. The genetic operations presented in this section are as given

by Holland in [Hol75] and Goldberg in [Gol89]. These set of operations have also

been used by DeJong [DeJ75] where i t is referred to as plan R l (reproductive plan

!) •

Selection Operation

The selection operation decides which of the strings in a population are selected for

further genetic operations. Each string i of a population is assigned a fitness value

/ , . The fitness value /,s are used to assign a probability value pi to each string. The

probability value p, assigned to a string is calculated as

P* = ^ T - J (5-2)

Thus, from the above equation it can be seen that strings with a large fitness value

have a large value of probability of selection. Using the probability distribution

defined by Equation [5.2], strings are selected for further genetic operations. This

scheme of selection is referred to by researchers by various names like stochastic

sampling with replacement [Gol89] and proportional selection [Hol75].

97

5.2 Genetic A lgor i thms

Crossover Operat ion

The crossover operation as stated by Holland, gives the genetic algorithm most of

its exploratory power. The parameters denning the crossover operation are the prob

ability of crossover (pc) and the crossover point. The crossover operator works as

follows:

o From a population, two strings are drawn at random.

o If the crossover probability is satisfied, a crossover point is selected at random

so as to lie between the defining length of a string, i.e. x £ {1,... ,1 — 1} ; x =

crossover point.

o The sub-string to the left of the first string and to the right of the second string

are swapped to create a new string. A similar operation is performed with the

two remaining substrings. Thus two new strings are generated from the parent

string.

The operation is illustrated by means of a example given below:

Before Crossover

0 0 1 1 | 0 1 1

1 1 1 0 I 1 1 0

A f t e r Crossover

0 0 1 1 | 1 1 0

1 1 1 0 I 0 1 1

The usual value used for the crossover probability (p c) lies between 0.6 « 0.8. Ac

cording to Holland, the crossover operation is responsible for combining short high

performing schemata which in tandem generate strings with a larger fitness value.

98

5.2 Genetic Algor i thms

However, it is also likely that the offspring generated may be worse than the par

ent strings. The crossover operation as given in [Hol75] used the one-point crossover

operator given above. Current research has shown [Sys89, DS91] that increasing

the number of crossover points leads to better performance of the genetic algorithm.

Simulation studies carried out in this thesis suggest that this indeed is true.

M u t a t i o n Operat ion

In genetic algorithms mutation is usually assigned a secondary role. I t is primarily

used as a background operator to guard against total premature loss of an allele at

a particular locus which effectively results in the search space being reduced. Use of

the crossover operation by itself would not recover this loss. The mutation operator

allows for this by changing the bit value at each locus with a certain probability. Thus

every locus on the binary string has a finite probability of assuming either a value of

'0' or ' 1 ' . The probability of this change is the defining parameter of the operation

and is referred to as the probability of mutation (pm) and is assigned a very small

value (w 0.001). The operation is explained below with an example:

Before M u t a t i o n

0 0 1 1 0 1 1

A f t e r M u t a t i o n

1 0 1 1 0 0 1

The bit values which have been affected by the mutation process are shown in bold.

Holland had envisaged a secondary role for the mutation operator, as too large a value

of the mutation probability would result in breaking up of optimal schemata, thus

reducing the efficiency of the method. But this view has been challenged by subse

quent research and now a greater emphasis is given to the mutation operator. Indeed,

the evolutionary strategies and evolutionary programming approaches to simulated

evolution use mutation as a primary operator.

99

5.2 Genetic Algor i thms

Inversion Operat ion

Holland had also included with the above operators a fourth operator which formed

part of the genetic operations by which a new string could be formed from the parent

strings. This was the inversion operator which operates on a single chromosome. The

inversion operator inverts the order of the bit values between two randomly selected

points on the parent string. Though this operation has been observed in nature, it has

not been used commonly in genetic algorithms as it adds to the computational com

plexity of the process. Some details of the inversion operator is presented in [Gol89].

This operator has not been used in the genetic algorithm simulation experiments

conducted in this thesis.

The genetic operations detailed above form the backbone of a genetic algorithm.

Thus the operation of a genetic algorithm would proceed as follows: The initial

population of A strings are generated randomly and a fitness value assigned to each

string. Using the fitness values, a probability measure is calculated for each string.

Using this probability distribution, two strings are drawn from the population. These

two strings then undergo the crossover operation if the crossover probability (pc)

is satisfied. Thereafter each of the newly generated strings undergo the mutation

operation resulting in two new strings which forms a part of the new population. This

sequence is repeated t i l l there are A strings in the new population. The process is then

repeated to create new generations. In the next section, we present improvements to

the basic techniques discussed above.

5.2.3 Improved Genetic Operations

Some of the problems using the standard genetic operators were slow rate of con

vergence and premature convergence to non-optimal locations even when optimising

simple unimodal surfaces. To overcome these deficiencies, a host of improvements

have been suggested by various researchers. A few of these techniques are reviewed

in the next sections.

100

5.2 Genetic Algor i thms

Al te rna te Coding Schemes

In genetic algorithms, the effect of a single bit mutation at the genotype level was not

easily noticeable at the phenotypic level and depended mainly on the coding scheme

used. Using the binary coding scheme a single mutation caused a change which

depended on the location of the bit. An improved coding scheme which alleviates

this problem is the Gray coding in which adjacent phenotypic values differ by a single

bit (Hamming distance of 1). This scheme yields better performance in parameter

optimisation problems and has been noted by Hollstein [Hol71] and more recently by

Caruana and Schaffer [CS88]. Another coding scheme which has been suggested is to

use the real parameters themselves - i.e. the genetic algorithm in this case operates on

a phenotypic level. This scheme has been used in some of the real world applications

presented in [Dav91].

A l t e rna t ive Selection Schemes

A number of alternative selection schemes have been listed in [Gol89]. These include

© Deterministic Sampling

e Remainder stochastic sampling without replacement

e Remainder stochastic sampling with replacement

e Stochastic sampling without sampling

© Stochastic Tournament

Complete details of the above schemes are given in [Gol89]. I t has been shown by

simulations that the stochastic remainder selection schemes results in a superior per

formance as compared to the other schemes.

A basic technique which has been employed to improve the performance of the

standard genetic algorithms is to scale the objective function. A common problem

experienced using the standard GA is the presence of a superindividual1 in a popu

lation, which results in loss in diversity in subsequent generations as this individual

1A string with a large fitness value compared to the other strings in the population

101

5.2 Genetic A lgor i thms

dominates and multiplies rapidly. This can be avoided by scaling back the objective

function to prevent the population being dominated by a few individual strings. Scal

ing the objective function also helps in stretching the objective function at the final

stages of a run thereby introducing more competition between the member strings.

The different scaling schemes which have been used include linear scaling, sigma trun

cation, and power law scaling ([Gol89, HB92]). Power law scaling involved using a

specified power of the raw fitness value as the scaled fitness and has been used in this

thesis. This scheme was suggested by Gillies [Gil85] and detailed in [Gol89].

Al te rna t ive Crossover Schemes

The main argument favouring the use of the one-point crossover is the initial formal

analysis conducted by Holland who showed that optimal allocation of high perfor

mance schemata was possible, when the disruptive effects of the genetic operations

are minimised. This was one reason why the mutation probability is kept at a low

value. The only other operator which introduced disruption in the allocation of

schemata was the crossover operator. Since the crossover probability is kept at a

large value, the disruptive effects are minimised when the number of crossover points

are kept at a low value. Thus the number of crossover points is usually kept low, i.e. 1

or 2. However recent research [Sys89, DS90, DS91] have shown that a higher number

of crossover points is beneficial to the search process. This led to the formulation of

the n-point crossover operation and the uniform crossover operator.

Uniform crossover involves swapping the alleles of the two parents with probabil

ity 0.5. This involves on a average (L/2) crossover points for a string of length L.

Spears and DeJong [DS91] have shown that a parameterised uniform crossover scheme

gives better results as compared to standard single point crossover, especially when

the population size is small. Parameterised uniform crossover involves making the

probability of swapping a parameter of the operation. Thus parameterised uniform

crossover with a parameter value of 0.5 reduces to the standard uniform crossover op

eration. An immediate advantage of the parameterised uniform crossover operation

is that the only defining parameter of the crossover operation is now the probability

of swapping. I t has been shown in [DS91] that lowering the value of this probability

102

5.2 Genetic Algor i thms

results in the crossover operation having less disruptive effects than is the case with

the 2-point crossover.

The above section detailed some improved schemes over the standard genetic op

erations. Goldberg [Gol89] presents details of more complex operators such as domi

nance, diploidy, intrachromosomnal duplication, deletion, translocation, segregation,

niche exploitation and speciation. Dominance and diploidy play an important role in

the case of non-stationary environments as they present a method of implementing

long term population memory.

5.2.4 Adaptive Extensions of Genetic Algor i thms

One of the interesting areas where current research in GAs is active, is in developing

techniques whereby the parameters of the Genetic Algorithm can themselves learn to

attain the optimal values as is required by the particular optimisation problem. The

important parameters which define a Genetic Algorithm are the population size, the

crossover probability and the mutation probability. This problem was recognised early

on by DeJong [DeJ80] who had suggested that the rate of mutation itself undergo

adaptation in parallel with the exploration of the parameter space. He suggested the

addition of an extra sequence of bits on the chromosome which would code the rate

of mutation. These extra bits would undergo genetic modifications via the selection

and other genetic operators in the same manner as the other bits of the string.

Another approach which was used by Grefenstette [Gre86] involved using a meta-

level Genetic Algorithm which controlled the values of the parameters of a genetic

algorithm which was involved in the main search process. The values for the param

eters of the meta-level genetic algorithm were set to the values obtained by DeJong

in [DeJ75] which was defined as the standard genetic algorithm. The contribution of

this work was to show that while it was possible to obtain optimal parameter values

for a GA, the algorithm showed good performance over a range of parameter values,

thus illustrating the robustness of the scheme.

A new approach to this problem has been a new class of genetic algorithms known

as messy Genetic Algorithms (mGA). These have been proposed by Goldberg and

103

Evolu t ionary Strategies

colleagues in [GDK89, GDK90]. The main differences between mGAs and standard

Genetic Algorithms are as follows:

o mGAs use variable length codes that may be overspecified or underspecified with

respect to the problem being solved.

o mGAs use cut and splice operators instead of the fixed length crossover opera

tions.

o mGAs divide the evolutionary process into two phases: an initial phase which

contain building blocks of all specified lengths, and a juxtaposition phase where

by means of the cut and splice operators, the population is enriched leading to

the globally optimal strings.

o mGAs use competitive templates to accentuate salient building blocks.

Simulation studies have shown that the mGAs always locate the globally optimal

strings. More details of mGAs are given in [GDK89, GDK90].

The next section looks at the paradigm of Evolutionary Strategies and compares

the scheme to Genetic Algorithms.

5<»3 Evolutionary Strategies

5.3.1 In t roduct ion

Evolutionary Strategies (ESs) are another optimisation technique which are based on

principles of natural evolution. The basic concepts of the algorithm are very similar

to that of genetic algorithms [HB92]. The algorithm operates on a population of

string structures, each of which represents a solution to the optimisation problem.

Each string then undergoes genetic modifications which result in a new string which

then form part of a new population. Multi-parameter cases are handled in the same

way as is done in GAs by concatenating the string representations all the parameters

of the optimisation process. As for the genetic algorithms, the guiding principle of

evolutionary strategies is survival of the fittest. Thus strings which represent near

104

5 03 Evolu t ionary Strategies

optimal solutions to the optimisation problem survive for future generations leading

to more optimal solutions.

The initial work in ESs was carried out at the Technical University of Berlin in

the early sixties where i t was for experimental optimisation problems like shape op

timisation of a bent pipe, and optimisation of a PID regulator [Rec73]. Subsequent

work included applications in numerical optimisation and binary parameter optimi

sation. The different ESs which have been developed so far are presented in the next

sections. Extensive work involving ESs have also been carried out at the University

of Dortmund where a through comparison between GAs and ESs has been reported

[HB92].

5.3.2 Standard Evolutionary Strategies

(1 + 1) - E S

The (1+1)-ES was the earliest and simplest of the ESs which were devised. There was

no real concept of a population as the algorithm operated with single parent string

(real-valued vector) which produced an offspring by adding normally distributed ran

dom numbers to the parent vector. The single parent string was composed of the

n parameter values. Associated with each parameter Xi, was the standard deviation

value <r, which decided the size of the neighbourhood of the search process for that

parameter when creating the offspring string. The better of both individuals was then

used as the parent of the subsequent generation. As was mentioned before, an im

portant difference between GAs and ESs is the fact that GAs operate on a genotypic

level (coding of the real parameters), while ESs operate at the phenotypic level using

the parameter values themselves as genetic material. The descendent was created by

a mutation process which is applied to all n components of the parent vector. This

is accomplished by using normally distributed random numbers as follows:

Xi(k + 1) = Xi(k) + N 0 l«,j ; i = 1, • • •, n (5.3)

105

5 «3 Evolu t ionary Strategies

where

Xi(k) The value of the parameter x, at time k

No Gaussian distributed random number with zero mean

and standard deviation <7j.

A selection operator then selects the fitter of the two vectors to become the parent

of the next generation. The standard deviations er,s usually remain constant over the

generations and have the same value for all the parameters in case of multi-parameter

optimisation. However, Rechenberg ([Rec73]) has provided a rule-of-thumb to adapt

the o~{S dynamically. This was termed the 1/5 success rule which stated:

The ratio of successful mutations to all mutations should be 1/5.

It it is greater, then the variance a is increased; if it is less,

decrease the mutation variance.

The derivation of this rule is given in [HB92], I t is to be noted that all the <r,s

are changed at the same time and not individually. Thus the (1+1)-ES had two main

genetic operators - selection and mutation.

As can be seen, the (l-f-l)-ES did not have any real notation of a population as it

operated only on a single string at a time. I t could be looked upon as a probabilistic

gradient search technique using randomised techniques. In some respects i t is like

another popular search technique which is based on analogues from nature - namely

the technique of simulated annealing. But in simulated annealing, the selection of

the next point is done probabilistically, while in the (l - f l) -ES i t is achieved using a

deterministic process.

Thus, to introduce the concept of population, the (fi + 1)-ES was devised by

Rechenberg ([Rec73]), wherein n > 1 parents participated in the formation of a single

offspring. As a result of the fi parents, a recombination operator which imitates sexual

reproduction was introduced. The recombination operator functions by selecting two

strings randomly from the \i parent strings. A l l the fi strings have an equal probability

(/ / + !) - ES

106

5.3 Evolu t ionary Strategies

of selection. Suppose the two parent strings are represented by

Parent A = x\, a x l , x2, crX2, • • •, %n, <*xn

Parent B = y u cryl, y2, ayi, •. . , yn, (Tyn

Then the offspring C resulting from the recombination operation, is composed of

{z1,a2-l,z2,aZ2,...,zn, cr 2 n} where zn and a z n are given by

where X is a uniform random value between 0 and 1. After the recombination op

erator, the offspring undergoes the mutation operation similar to that used in the

(1+1)-ES i.e. Equation [5.3]. The selection operation is then used to remove the

least f i t individual - be i t the offspring or one of the parents, from the (/z + 1) indi

viduals. Although each parameter a;,- had its own standard deviation value axi, these

were fixed at the initialisation of the algorithm. The only change in the standard

deviations values were as result of the recombination operation. Thus there was no

self adaptive strategy in the ft + 1-ESs.

The new variations of the ESs presented in this section were introduced by Schwefel

([Sch81]) for two important reasons: To make use of parallel computers and to provide

a mechanism of self adaptation by adapting strategic parameters like the standard

deviations during the evolution process itself. Schwefel viewed the as as a part of the

genetic material which underwent the genetic operations of selection, recombination

and mutation. Those individuals with better performing strategy parameters were

expected to perform better then the other individuals. Thus the main difference

from the ESs discussed earlier is the use of a larger number of offspring (A > pi) and

a.

iiX < 0.5

if X > 0.5 y n

if X < 0.5 i n
zn

f l > 0.5
(5.4)

{n + A)-ES and (^, A)-ES

107

Evolu t ionary Strategies

the use of adaptive standard deviations for the mutation process. Thus, from the

nomenclature i t can be inferred that in (//, A)-ES, /J, parents genetically combine to

form A children which are again reduced to /t parents for the next generation. In

the (f j , + A) variation of the ES, both the \i parents and A children are used in the

selection process to select the [i parents of the next generation. The (// + A) scheme

can result in sub-optimal performance especially if the environment is noisy and non-

stationary. The reason for this is a string with a large fitness value would tend to

propagate through many generations, as in the (/x + A)-ES even the parent strings are

considered for the selection process. As the (/x, A) — ES is used subsequently in this

thesis for simulations in adaptive filtering, a formal description of the (^, A) — ES is

presented. A A)-ES may be mathematically described by the 8-tuple

(/i,A) - E S = P ° , / x , A , f , s , r , m , Aa (5.5)

where

P ° = Initial Population

\i = Number of Parents

A = Number of Offspring

f = Fitness/Objective function

s = The Selection Operator

r = The Recombination Operator

m = The Mutation operator

ACT = Step-size meta control

The fitness function f, as before, assigns a fitness value to each string in the

population. From the // strings which represent the parent strings, A offspring are

generated by using the recombination and mutation operator. The recombination

operator generates a single string from two parent strings by the process explained

before. Thereafter, the mutation operator operates on the new string to generate

the final form of the offspring. The important difference in this scheme is that the

108

Evolu t ionary Strategies

standard deviations as themselves undergo genetic operations and are not controlled

by a meta-level rule like the 1/5 success rule. Thus, i f x and ax are a parameter and

the associated standard deviation, then the new values of x and ax are given by

ax(k + l) = crx(k)N0iA<r

x{k + l) = x(k) + N 0 i (T x (k + 1) (5.6)

where is a Gaussian process with mean 0 and standard deviation ACT. Thus

mutation works both on the parameter value x and on the standard deviation ax.

The step-size meta control ACT has a constant value assigned to it at the beginning

of the run. After the A offspring strings are generated,the selection operator s selects

the pL strings having the largest fitness values which form the parents for the next

generation.

The main differences between GAs and ESs arise either directly or indirectly from

the representations used by the algorithm. As ESs are working with a phenotypic

level, they uses much more knowledge about the application domain including that

of parameter boundaries. This is not the case with GAs which as a result of the

coded form of the parameters are not aware of the parameter boundaries. Although

the genetic operators are similar in concept in both GAs and ESs, the role they play

are different. In GAs, the primary search operator is the crossover operation and

serves to enlarge the search space. In ESs mutation is the main tool for exploration

while in GAs the mutation operation is only used as a background operator to recover

lost alleles. In the next section, advanced extensions of the ESs detailed above are

presented.

5.3.3 Improved Evolutionary Strategies

Generalised Selection

The ESs detailed above used only a ranking scheme in order to select the parents of

the next generation. Thus the absolute value of the fitness assigned to each string was

not of importance as the fitness value was used only to rank the strings. A different

109

Evolu t ionary Strategies

scheme of selection, which was used for GAs, was proportional selection, where for

each string a probability value calculated from the fitness value assigned to i t . This

probability distribution was then used in the selection process. This scheme has been

used for ESs and details of this scheme and some improved selection schemes for ESs

are presented in [HB92].

Improved Recombinat ion Operators

The recombination operator as detailed in Equation [5.4] was a simple operation which

chose a parameter value from either parents with equal probability. This recombina

tion operator was referred to as the discrete recombination operator. Some modifica

tions to this simple recombination operator were suggested by Schwefel [Sch81] and

are

o Intermediate: In this type of recombination, the average value of the param

eters from the parents was used as the parameter value of the offspring, i.e.

xnew — ~ ; xa, Xf, — r arent strings
Li

© Global and Discrete: In the global discrete recombination scheme, for each

parameter value in a string, one of the two parent strings is chosen anew from

the population. This results in a higher mixing of genetic material than the

simple recombination operator of Equation [5.4].

© Global and Intermediate: This operator is similar to the intermediate recom

bination operator explained above except that i t follows a global scheme, where

for each parameter, one of the two parents is chosen anew from the population

as in the global discrete case.

Using these operators, i t was found that for object variables the discrete recombina

tion operator gave best results, while for strategy parameters the intermediate scheme

performed better [HB92].

110

5.4 Evolu t ionary Programming

Correlated Muta t ions

In ESs the mutation operator is the main search operator, performing a hill-climbing

operation when considered in conjunction with the selection operator. Each param

eter of a string has its dedicated standard deviation, which can be looked upon as

dictating the step-size for the search. However, this scheme establishes the preferred

direction of search only along the axes of the coordinate system. The optimum search

direction is dictated by the gradient of the search surface and need not be aligned

along the coordinate axes. This can be achieved by chance only when suitable mu

tations are correlated. This concept was used by Schwefel [SchSl] who extended the

mutation operator to handle correlated mutations. Complete details of this procedure

are presented in [Sch81, HB92].

From the previous sections it can be seen that both GAs and ESs are very similar

in basic concepts. The main differences arise in the genetic representation used and

in the genetic operators used to generate new populations. In the next section the

simulated evolution paradigm of Evolutionary Programming is explained.

5.4 Evolutionary Programming

5.4.1 Int roduct ion

Evolutionary Programming represents one of the earliest attempts at using concepts

from natural evolution for solving problems of optimisation. The initial work was

done by Fogel et. al. in the late sixties [Fog62, FOW66], where simulated evolution

was used to evolve artificial intelligence. Thereafter the method did not receive ade

quate support and in some instances was even labeled incorrect. Thus the interest in

the approach did not resuscitate t i l l the work of Holland in the early seventies in ge

netic algorithms. Recently there has been renewed interest in the method prompted

by the work of David Fogel [Fog91b] and others. The Evolutionary Optimisation

paradigm is very similar to the Evolutionary Strategies which were at the same time

being investigated in Germany. I t is rather fascinating to note there had been no

copious exchange of information between the two schools in the United States and

111

5.4 Evolu t ionary Programming

Germany, with the result that a lot of effort has been duplicated. Both methods use

a phenotypic representation of the parameters and rely on mutation as the primary

search operator. The next section presents the salient features of the Evolutionary

Programming approach.

5.4.2 Salient Features

The salient operations of the Evolutionary Programming paradigm are as follows:

o The initial population is generated randomly as in the case of ESs by selecting

m strings, where each string Si was composed of the k parameters of the opti

misation problem. Each parameter value is selected to be a random value lying

between the limits defined for that parameter.

o Each string st- is assigned a fitness value <f>(si) which may be a complex function

of the true fitness of s,- or the raw fitness value of Si itself.

o Using each s,-, i = 1 , . . . , m, a new string s, + m is generated as follows

Si+m =Si + N 0 ^ (B j) ; (5.7)

where N0i^Si^ represents a Gaussian random variable with mean 0 and variance

<l>(si). This step represents a significant difference from the ESs where the

standard deviations of the mutation process are a part of the genetic material

and undergo genetic modifications during the adaptation, while from the above

equation it can be seen that in the case of EP, the fitness value assigned to a

parent is used as the standard deviation for generating new members. Usually

the raw fitness value is not used for the standard deviation, instead a function

of the raw fitness value is used.

® The new strings are then assigned a fitness value as in step two.

o For each string s,- (i = l , . . . , 2 m) , a rank iwt- is assigned. The rank Wi is

calculated as follows: Each string is made to compete against a fixed number of

strings from the population. If the string has a fitness value less than the string

112

5.4 Evolu t ionary Programming

against which i t is competing, then i t is assigned a value of 1. The rank u;,- of the

string is then the total number of ones it has obtained during the competition

process. Thus strings which are optimal would receive a large value for the

rank. This process is explained below with help of equations:

R

Wi = ID?
1=1

< = 1 if 4 { S i) < <f>{Sr))

= 0, otherwise (5.8)

where r is random integer selected lying between 1 and 2m, and R is the number

of competing strings.

o Using Wis, the strings are ranked in the descending order of the ranks. The first

m strings along with the corresponding fitness (f>(si) are then selected to form

the next generation.

The main differences between the ESs and EP approaches are seen to be in the

manner of the selection and the use of the fitness value as the standard deviation for

mutation for a particular string. A important difference is the lack of any kind of

crossover/recombination operator. Fogel et. al. emphasizes this point [FFA91] by

stating that macromutations like the crossover and inversion operator are not required

for successful adaptation. This is a radical departure from Hollands belief that the

crossover operation was primarily responsible for the exploratory nature of the the

genetic algorithm.

5.4.3 Adaptive Extensions to Evolutionary Programming

As in other simulated evolution techniques, the EP paradigm has a number of learn

ing parameters such as the amount of mutational noise, the severity of the mutation

operator etc.. The optimal values of these parameters are dependent on the particular

optimisation problem, and the values obtained for a particular problem may not be

suitable for another problem. Thus there is a necessity to automate the selection of

values for the learning parameters. This was achieved in ESs and to some extent in

113

5.5 Discussion

GAs, by including the strategic parameters as part of the genetic material which un
derwent genetic modifications. A similar approach is advocated for the case of EP by
Fogel in [FFA91]. This was labeled as the meta-level evolutionary programming and
consisted of attaching a perturbation variable to each parameter of the optimisation
problem. This perturbation variable was then used as the standard deviation to mu
tate the parameter value. The perturbation values of the offspring were themselves
modified by the addition of a Gaussian random variable of mean zero and standard
deviation equal to the perturbation value of the parent. I t can be seen that the meta-
evolutionary EP technique is similar to the (//, A)-ES with respect to the manner in
which the strategic parameters are adapted.

5»5 Discussion

The previous sections discussed in detail the three paradigms of simulated evolution,

namely genetic algorithms, evolutionary strategies and evolutionary programming. It

can be seen that the basic principle of all the three methods is essentially the same

and based on the principle of survival of the fittest. The concept of a population is of

significant importance and forms the main functional unit in all three methodologies.

Interest in research involving evolutionary strategies and evolutionary programming

has only recently increased, though the method was first formulated in the late sixties.

Genetic algorithms, on the other hand, have been an active area of research for couple

of decades, though applications using genetic algorithms in engineering problems has

been recent. Theoretical results regarding genetic algorithms are more mature. The

evolutionary strategy and evolutionary programming methodologies are very similar

to each other. Both rely on the mutation operation as the main search technique. As

these techniques use the real parameter values themselves as the genetic material, the

quality of the solution obtained is also more accurate and precise. A l l three techniques

could be stated to operate using two main principles:

© The concept of a population which comprises of a set of solutions.

114

5.5 Discussion

o A perturbation mechanism which perturbs the current set of solutions to gen
erate new solutions.

The next chapter applies the techniques of evolutionary optimisation to the prob

lem of adaptive I IR filtering. The simulation configuration is described along with

discussion on the results obtained using the different algorithms stated in this chap

ter. It is shown how these techniques are not stymied by the problems of multimodal

error surfaces and dimensionality associated with high order adaptive IIR filtering.

115

Chapter ©

Adaptive Digi ta l Fi l ter ing uasin

Genetic and Evolutionary

Optimisation

6.1 Introduct ion

n this chapter, the methodologies and results obtained using the evolutionary opti

misation schemes for the adaptive I IR filtering case are presented. This represents

a novel approach to adaptive IIR filtering. The effect of varying parameter values

and improved schemes of evolutionary algorithms are also tested using the adaptive

filtering paradigm. As we have seen, the two main problems with current adaptive

I IR filtering algorithms are the inability to locate the global optimum in the presence

of multimodal error surfaces and the problem of dimensionality when adapting high

order niters. From the simulation studies presented in this chapter, it is shown that

the evolutionary optimisation schemes are able to overcome these problems.

The global optimality capability of genetic algorithms for adaptive IIR filtering

were initially demonstrated by Etter in [EHC82]. Analysis regarding the global op

timality of evolutionary strategies and evolutionary programming have been given in

[HB92, Fog91b]. Previous work using genetic algorithms for adaptive filtering has

been in the design of FIR filters [Suc91], where the genetic algorithm was used to

116

6.2 Simulat ion Configurat ion

select from a basic set of filter templates so as to construct a new filter.

(So2 Simulation Configuration

To utilize the evolutionary schemes for adaptive I IR filtering, the system identification

(Figure [2.3]) has been used. The unknown system in the configuration is an nth order

I IR filter whose coefficients are assumed to be unknown. The modeling system is also

an I IR filter but whose coefficients are changed by the adaptive algorithm. Both

reduced order and sufficient order modeling experiments have been carried out. The

adaptive I IR filter is said to have identified the system when the estimation error e(n)

reduces to zero or a minimum value. The input excitation used was white noise with

unity power. The effect of measurement noise was simulated by adding white noise

at varying power levels as indicated in Figure [2.3].

6.2.1 Genetic Algor i thms

The main functional unit in evolutionary optimisation schemes as seen before is a

population of string structures. For the particular case of adaptive filtering, each

string structure represents a combination of the filter coefficients of the adaptive

filter. Depending on the evolutionary scheme being used, the string structure is either

a coded form of the parameters (genotype) or the actual parameter values themselves

(phenotype). The genetic algorithms use a genotypic representation of the actual

parameters. In the simulation experiments conducted in this thesis, a binary coding

has been employed to obtain the genotypic representation for the genetic algorithms.

Other coding schemes have used and the results obtained are presented.

The number of bits used to code a parameter determines the resolution of the

parameter and could result in a situation wherein the error value does not reach

the minimum value of zero as a result of the discretisation. Each coefficient of the

adaptive IIR filter is coded using a binary string of I bits whereby a coefficient can

take 2' distinct values. As the binary string of / bits can take values lying between 0

and (2' — 1), a mapping procedure is used to decode the unsigned integer linearly from

(0,2' — 1) to a specified interval (P T O t n , Pmax)- This interval (Pmin, P m a x) is significant

117

Simula t ion Configurat ion

with respect to the stability of the modeling filter. The precision of the coded form

is thus given by
P — P
1 max 1 mm i \

- = 2 / _ ! (6.1)

To use the evolutionary schemes for multiparameter optimisation, the coded pa

rameter values or the actual parameter values themselves are all concatenated to

form a larger string structure which then forms one member of the population. This

is illustrated below:

Mul t ipa rame te r Coding (10 Parameters)

0 - 1 - 0 - 0|0 - 0 - l - l | |1 — 1 — 1 — 1|0 - 0 - 0 - 0

In the case of multiparameter optimisation, each parameter can be coded using a

different number of bits, however the number of bits used to code a parameter is

usually kept constant for all the parameters. The P m , „ and P m a x values can also

be different for different parameters. Thus each string structure in a population

represents a particular combination of parameters of the adaptive filter.

To assign a fitness value to each string structure, the string is decoded into the

constituent parameters. The error signal obtained using these parameters as coeffi

cients of the adaptive filter is then used as the fitness measure for the string. Instead

of the instantaneous error signal, a value averaged over a rectangular window is used.

As all the signals used in the simulation experiments are stochastic in nature, the use

of a window results in a better estimate of error for a particular set of coefficients.

The length of the window used depends on the impulse response of the filter and plays

an important role in the accuracy and rate of convergence of the algorithm. The raw

error value itself was not used as the fitness measure - instead a modified value of the

raw error was used. This modification was done in two ways:

o Firstly, instead of the raw error value, a scaled value of the error signal was

used. I t has been reported that [Gol89] scaling the raw fitness values improves

the performance of the genetic algorithm. In particular the power law scaling

rule ([Gol89]) was used whereby the scaled error value was some specified power

118

6.2 Simulat ion Configurat ion

of the raw error signal. In the simulation experiments a value of 4 was used

as the power. I t was noticed that larger values of power (i.e. > 4) led to

premature convergence while lower values increased the iterations needed for

convergence.

o The second modification was to use an inverting function in order to convert

the maximisation problem to a minimisation problem. Thus the actual fitness

value /,• which was assigned to a string structure i was given by

f i = i (6-2)

where

e = Mean Square Output Error obtained for the string i

Thus the use of genetic algorithms as the adaptive algorithm was carried out as

follows: At the start of the algorithm, a population of A binary strings were randomly

generated, where A was the population size. The length of each binary string was

equal to the number of bits used to code a coefficient times the number of coefficients

of the filter. Each string in the population was decoded into a set of coefficients of

the filter. Using these coefficients in the adaptive filter, the error signal obtained was

modified as given above and used as the fitness measure for the string. Thereafter

the genetic operations of selection, crossover and mutation were carried out on the

members of the population and the next generation was created. For each generation,

the minimum error and the average error over all the members of the generation was

recorded.

To overcome the problems of instability when adapting a high order I IR filter,

alternative configurations were used. These were the cascade form, the parallel form

and the lattice form. Brief details of these configurations were given in Chapter 2.

For the cascade and parallel form, the subsystem which was used as a basic unit was

119

6.2 Simula t ion Configurat ion

a second order all pole I IR filter having the transfer function

H i Z ' 1) = i = i 2 (6 - 3)
1 — a\z 1 — a2z 2

The main motivation in using these forms was that the stability check could be

incorporated into the adaptive algorithm by restricting the values of the coefficients

to lie within the stability triangle as explained in Chapter 2. The decomposition

could also have been made using first order sub-systems, but this would entail using

complex coefficients for the filter parameters. For simulation experiments using the

lattice configuration, a suitable order lattice form was selected. The coefficients of

the lattice form were coded as binary strings and formed the string structure of a

population. Thereafter the procedure adopted was similar to the one adopted for the

parallel and cascade form. The main advantage using the lattice configuration was

that the stability check was very simply incorporated in the adaptive algorithm by

restricting the coefficients to have a magnitude of less than or equal to 1.

<S.2.2 Evolutionary Strategies and Programming

The simulation configuration for the evolutionary strategies and evolutionary pro

gramming methodologies were very similar to the one adopted for genetic algorithms.

The main difference was that as the evolutionary strategies and evolutionary program

ming used a phenotypic representation, no coding procedure was necessary to convert

the actual parameter values to a genotypic representation. During the mutation pro

cess which was the main mode of search for both the algorithms, the parameter values

were generated so as to always lie inside the stability triangle. For adapting high or

der filters, the alternative realizations used in the case of the genetic algorithms were

used.

120

6.3 Simulat ion Results

6c3 Simulation Results

6.3.1 Genetic Algori thms

In the simulation trials using the genetic algorithm, each coefficient was coded using

a binary string of 14 bits. This resulted in each coefficient being discretised into

16384 discrete values between the limits imposed by the stability criterion. The effect

of varying the number of bits are presented later on. In all the results which are

presented, the minimum error obtained for each generation is shown plotted against

the number of generations. Adaptation was stopped after 200 hundred generations.

A window length of 100 was used to obtain the average instantaneous error. This is

shown in the results on the x-axis as a multiplication factor of 100 indicating the actual

number of time samples of the input signal which were needed for convergence. It

was assumed that all the members of a population were evaluated in parallel, though

the actual simulation experiments proceeded down the set of string structures which

made up a population. A l l the simulation runs show the average results obtained

after twenty simulation runs of the experiment.

For adapting high order I IR filters, alternative realizations such as the parallel,

cascade and lattice forms were used. Of these configurations, the parallel form gave

the best results. The cascade form was tested out in the early simulation experiments

but resulted in a very large time of convergence. This was found to be caused by

the cascade structure itself as the numerical and quantisation error propagated and

multiplied through the structure. The main reason for the success of the parallel form

was the fact that because of the decomposition of the direct form realization into a

parallel form, multiple global minimas were created all of which were equivalent to

each other. This was the result of the different ways the poles could be rearranged in

the second order sub-systems. However, this resulted in the error surface for such a

configuration to have a different characteristics ([NJ89]). I t was shown in [NJ89] that

if a direct form IIR filter was modeled using an alternative realization, the resulting

error surface may have additional optimas, which may be equivalent global minimas

or saddle points which are unstable solutions in parameter space. As the genetic

algorithm is a stochastic technique, there is enough jitter provided in the algorithm

121

6.3 Simulat ion Results

itself, which drives the algorithm away from the regions containing the unstable saddle

locations. However a gradient algorithm could get stuck at such a point without

reaching the global optimum if there is no noise present. From the simulation results

i t can be seen that genetic algorithms were able to locate the global optimum.

To demonstrate the genetic algorithm performs better than a pure random search

algorithm, simulations experiments were carried out in which a population of string

structures were selected randomly at each iteration. There was no genetic operations

performed on the population. The minimum error of the population was recorded

and the results obtained are presented in Figure [6.1] and [6.2] which were obtained

using different order filters. It can be seen that the genetic algorithm learns and

performs better then a pure random search algorithm. Convergence to the optimal

set of coefficients was confirmed by checking the final set of coefficients which the

algorithm determined.

Reduced Order Mode l ing

This simulation experiment was devised to check whether the genetic algorithm ap

proach was able to locate the global optimum when the error surface was multimodal.

The experiment involved identifying a second order I IR filer using a first order model.

This reduced order modeling resulted in a bimodal error surface and was first used in

[LTJ80]. The unknown system was modeled using the second order model given by

I N 0 .01-0 .4Z" 1 . .
' " 1.0 - 1 . 3 1 4 * - + 0 . 2 b - (M)

while the modeling was done by a first order I IR filter with the transfer function

Using the above model, i t has been analytically proved that the two minimas have

error values 0.3 (global minima) and 0.9 (local minima) ([JL77]). The result using

this model and the genetic algorithms as the adaptive strategy is shown in Figure

[6.3], where the genetic algorithm approach is compared to the Stochastic Learning

122

6.3 Simulat ion Results

Automata (SLA) approach. From the error values obtained by the end of the sim

ulation, i t can be seen that the algorithm was able to locate the global minimum.

The same result also shows that in comparison with the automata approach, genetic

algorithms provide a faster rate of convergence. The model used in this experiment

is different from that used by Etter in [EHC82], where a different example was used

to demonstrate the property of global optimisation.

H i g h Order Fi l ters

To check the capability of the genetic algorithm to adapt high order I IR filters, filters

up to the order of ten were modeled in the simulation experiments. The transfer

function of the different order filters are as given:

Four th Order M o d e l

m - i x = 2.0 - 2.8,- 1 + 1.5z21
1 ; 1.0 - 2.8Z-1 + 3.42z-2 - 2.04z-3 + 0.54.*-4

(6.6)

S ix th Order M o d e l

3 .0 -4 .5822z - 1 +2 .956z - 2

TT/ - \ \ _ -0 .58436z- 3 +0.168012z- 4 //» - \
^ Z >~ l - (2 . 2 9 1 1 z - 1 - 1 . 7 2 9 3 1 4 z - 2 - 0 . 3 6 4 7 1 7 z - 3 v 0 - ' - '

+1.281337z~* -0.73702899z- 5 +0.12988048z~ 6)

Tenth Order M o d e l

5 . 0 - 7 . 6 2 4 z - 1 + 8 . 5 7 7 z - 2 - 7 . 7 O 2 9 z - 3 + 8 . 7 9 6 1 z - 4

IT/ - 1 \ _ - 6 . 1 9 3 z - 5 + 5 . 4 8 4 z - 6 - 3 . 8 4 3 1 z - 7 + 2 . 0 1 8 2 z - 8 ,c Q \
U \ Z)— l - (1 . 9 0 6 z - 1 - 1 . 5 2 z - 2 + O . 8 2 7 9 z - 3 - 1 . 9 4 7 8 z - 4 + 2 . 5 4 1 z - 5 - 1 . 5 2 5 5 z - 6 V 0 - 0 ^

+ 0 . 5 2 5 1 1 z - 7 - 0 . 7 9 5 2 8 z - 8 + 0 . 7 7 2 0 2 z - 9 - 0 . 3 1 6 9 2 z - 1 0)

The results for the different order filters are given in Figure [6.4]. Although the

tenth order model is seen to take a larger number of generations to converge, the

algorithm located the optimal set of coefficients for all the different order filters. For

all the different order niters, the initial convergence with reference to the number of

iterations is very rapid. This is a property of genetic algorithms in that they rapidly

find regions of near optimal solutions. The high order filters were modeled using the

parallel form configuration using the appropriate number of second order sub-systems.

Thus the tenth order IIR filter was modeled using a parallel bank of five second order

123

6.3 Simulat ion Results

sub-systems.

Var ia t ion of Parameter Values

The main parameters of a genetic algorithm are the population size, the crossover

probability and the probability of mutation. The effect of these parameters are shown

in Figures [6.5,6.6,6.7].

Figure [6.5] shows results when the mutation probability is varied. As can be

seen, very large and very small values of mutation probability results in non-optimal

performance. Large values of the mutation probability (pm = 0.2) reduces the genetic

algorithm to a random search routine with no learning process and thus the algorithm

is unable to converge to the optimal solution. Wi th very small values of mutation

probability (pm — 0.001), the algorithm does not have sufficient exploratory power

and thus converges prematurely to sub-optimal solutions. Both these effects are

demonstrated in Figure [6.5].

The effect of the crossover probability is shown in Figure [6.6]. The results show

that the crossover probability does not play as important a role as the probability of

mutation. Wi th larger values of crossover probability, the initial rate of convergence

is faster, though the number of iterations need to locate the global set of coefficients

remain unaltered. This result has been documented by different researchers who

have stated that the crossover operation is not necessary for an extensive search

in evolutionary algorithms. This is in contradiction to Hollands original hypothesis

who envisaged the crossover operator as the main operator in genetic algorithms

responsible for the exploratory search, while mutation was used only as a secondary

operator to recover lost alleles.

Results showing the effect of the population size are given in Figure [6.7]. With

small population sizes, the selective pressures on the population members are not

sufficient enough, thus the algorithm is unable to locate the optimal set of coeffi

cients. Wi th an increased population size, the algorithm locates the optimal set of

parameters, though this is achieved at an increased computational time.

124

6.3 Simulat ion Results

Effect of Coding Schemes

Holland has proposed the use of binary coding to obtain the genotypic representation

of the actual parameters. I t had been proved that the number of schemata which are

processed in parallel attains a maximum value when the cardinality of the alphabet

being used for the coding process is minimum [Hol75]. Thus binary coding should

result in the optimum performance. However, this concept has also been questioned

recently by researchers. In particular, Davis in [Dav91] lists a number of practical

applications of genetic algorithms, none of which use the binary coding scheme. The

success of the evolutionary algorithms, the results of which are presented later on,

show that perhaps the use of a genotypic coding itself is redundant. Two other

coding schemes were used and the results are presented in Figure [6.8]. The use

of the gray coding enabled the algorithm to locate the optimal state with greater

accuracy, as adjacent coefficients using a gray coding only differed by a single bit

value. This enabled to algorithm to locate the optimal set of coefficients from near

optimal solutions without a large number of bit changes. The variance of the error is

also seen to have reduced using a gray coding instead of the binary coding. Both these

codings however used the binary alphabet. The other coding employed was real coding

- in actuality no coding was really used, instead the actual parameter values were

themselves used as the genetic material. This is similar to the evolutionary algorithms

except that the mutation operation is handled differently. Using the real coding,

mutation was handled by using a uniform distribution centered around the current

operating point. If the new point was outside the limits used for the stability criterion,

the mutation operation was carried out again. It can been seen from the results in

Figure [6.8] that the gray coding gave a better performance. The main reason for the

poor performance of the real coding was that a uniform distribution was used in the

mutation process to generate new strings. This could result in excessive mutation

noise, resulting in the algorithm not being able to locate the optimal coefficients

rapidly.

125

6.3 Simulat ion Results

Effect of the B i t Length

Figure [6.9] presents the results obtained using different number of bits to code a

parameter value. Though there is no significant increase in the rate of convergence,

using a larger number of bits enabled the algorithm to obtain a more accurate result.

As was stated previously, the use of a coding scheme to obtain the genotypic repre

sentation forces the parameters to take discrete values. The number of bits used for

the coding determines the resolution of the parameters. This can be seen in Figure

[6.9] where using the four bit coding, the algorithm converges to a higher value of

error even when i t has located the optimal set of coefficients.

Di f fe ren t Crossover Schemes

There have been a number of crossover schemes cited in the literature devised to

improve on the original single point crossover scheme used by Holland. Some of

these schemes were used for the adaptive I IR filtering simulation experiments and

the results obtained are presented in Figures [6.10] and [6.11]. The four crossover

schemes which were implemented were One Point Crossover, Two Point Crossover,

Uniform Crossover and Multiple Crossover. The One Point Crossover operation was

the standard single point operation proposed by Holland. In the Two Point operation,

two crossover points were used, while the Multiple Point Crossover operation used

a seperate crossover point for each paramter. Each crossover point was constrained

to lie between the limits defined for that parameter. Thus in the multiple crossover

operation, the number of crossover points was equal to the number of parameters.

The Uniform Crossover operation has been explained in Section [5.2.3].

The two sets results in Figures [6.10] and [6.11] are generated for two differing val

ues of the mutation probability. Figure [6.10] shows the result for a mutation proba

bility of 0.075. In this case the multiple point and single point crossover schemes give

better results, while the uniform crossover schemes results in non-optimal solutions.

The reason for this is the fact when coupled with the relatively large value of mutation,

the uniform crossover scheme results in extensive disruption of the schematas. Thus

the propagation of schemata with above average performance is reduced as they get

126

6.3 Simulat ion Results

broken up. On the other hand when using a lower value of mutation (pm = 0.025),

the uniform crossover scheme results in a reduced value of error as is shown in Figure

[6.11]. However, with a low value of mutation, the algorithm was not able to locate

the optimal set of coefficients. This again gives credence to the theory that muta

tion is a important operation and perhaps should be used as a primary operator in

simulated evolutionary algorithms.

Di f fe ren t Selection Schemes

The proportional selection (stochastic sampling with replacement technique) used for

the genetic algorithm sometimes led to premature convergence. Thus new schemes

of selection which have been mentioned in Chapter 5 were used in the simulation

experiments. The results using these different schemes are presented in Figures [6.12,

6.13, 6.14]. The two selection schemes other than proportional selection which were

used were the ranking scheme and remainder stochastic sampling with replacements.

The remainder stochastic sampling with replacements has been labeled in Figure [6.12]

as the Deterministic Scheme.

In the remainder stochastic sampling with replacement scheme, the probability

of contribution for each string is calculated as in the proportional selection scheme.

Then the expected number of individuals for each string was calculated as the product

of the probability value for that string and the size of the population, rounded off to

the nearest integer. I f the total number of individuals thus created was less then the

population size A, the fractional parts of the expected number values were then used

in a roulette wheel selection procedure to f i l l the remaining slots in the population. In

the ranking scheme, out of a population size of A members, the Mbest were selected to

form the members of the next generation. The value of A was fixed at 50 (population

size), while the value of Mwas varied between 6 and 25 as shown in the results.

The comparative results between the three different selection schemes are pre

sented in Figure [6.12]. Of the three, the remainder selection scheme is seen to give

the better performance. The proportional selection scheme is prone to two sources of

error ([Gol89]) - firstly only an estimate of the schema average is obtained using se

quential finite sampling; secondly the selection scheme itself is a high variance process

127

6.3 Simulat ion Results

with a large degree of scatter. This is to some extent reduced using the remainder

stochastic sampling with replacement.

In the ranking scheme, no importance is given to the actual fitness value - the

fitness value is used just in order to rank the strings. But interesting results are

observed when the number of strings used to generate the next population are varied.

The idea to change the number of parents has been adopted from the evolutionary

strategies and has not been used before in genetic algorithms. The results are shown

in Figures [6.13] and [6.14]. I t can be seen that as the number of strings used to

generate the offspring strings reduce, the performance of the algorithm improves.

Figure [6.14] shows the result obtained using the ranking scheme but with an elitist

strategy. In such a scheme, the best string structure of each generation is always

carried over to be a member of the next generation. Using the elitist scheme along

with the ranking selection procedure, the algorithm is able to locate optimal set of

coefficients with a greater degree of accuracy (Figure [6.14]) as can be determined

from the final error values which are obtained. From these results, it can be gathered

that the proportional selection scheme can result in inaccurate convergence states and

improved selection schemes are necessary to overcome this problem.

Effect of Measurement Noise

The performance of the genetic algorithm with the presence of measurement noise

is presented in Figure [6.15]. The measurement noise was added as shown in Figure

[2.3]. Thus at convergence, the error value should reduce to the added noise level.

From Figure [6.15], i t can be seen that for low values of signal to noise power ratio

(input signal power is unity), the algorithm is able to locate the optimal set of coeffi

cients, though at very low signal to noise power ratio (noise power = 100), the noise

dominates and the algorithm is unable to locate the correct set of coefficients. At

large values of signal to noise power ratio (noise power = 0.01), the noise introduced

by the discretisation of the coefficients prevents the algorithm from reaching the noise

floor, even though it has located the optimal coefficients.

128

6.3 Simulat ion Results

Adap t ive Extensions to Genetic A lgo r i t hms

As was detailed in Chapter 5, the real power of genetic algorithms is obtained when

the optimum values of the strategic parameters are learnt online during the adaptation

process. This would make the genetic optimisation scheme a completely general and

robust scheme, the parameters of which would learn to adapt by themselves depending

on the problem being optimised. Some initial work was carried out using the adaptive

filtering paradigm. The values for mutation and crossover probability were coded

as a binary string of 14 bits and included as part of the genetic material. This

entailed using the additional two sets of 14 bits being attached to the binary coded

forms of the parameters. One set of 14 bits decoded to the mutation probability,

while the other set of 14 bits decoded to the crossover probability. Thus, when

optimising a set- of six parameters, the length of each string in the population was

now 112 bits long. The compound string constructed as given above, underwent

genetic operations in the usual manner. After the parameters had been decoded from

the binary strings, the value of mutation and crossover probability are calculated. As

these values are now different for each string, the following procedure was adopted.

After the selection process, two parent strings were chosen to undergo the genetic

operations of mutation and crossover as in the standard genetic algorithm. The value

of mutation and crossover probability was obtained for each string by decoding the set

of bits which represented these values. Then the average of the two values obtained

for each string was used as the value for both the strings.

The result of using such a scheme are presented in Figure [6.16]. I t can be seen

that the scheme was able to locate the optimum set of coefficients at the same rate

as standard genetic algorithms. It was noticed from the simulation results, that the

mutation rate was driven towards a low value as the algorithm proceeded. This

had the effect of driving all members of a population to converge to a single string

structure. This result also can be observed in Figure [6.16] where the average error

in a generation is seen to reduce and approach the minimum error of the generation.

The advantage of the scheme was that the only parameter to be user controlled in

this scheme was the population size. More research in this area of adaptive genetic

129

6.3 S i m u l a t i o n Resu l t s

algorithms certainly seems to be just if ied.

D i scus s ion

Results obtained using genetic algorithms as the adaptive strategy for adaptive I I R

f i l ter ing has been presented in the above sections. The method was able to overcome

the t w i n problems of mul t imodal error surfaces and dimensionality when adapting

high order I I R filters. Improved schemes which have been tested result i n a better

performance as compared to the standard genetic algori thm. The main observa

t ion f r o m the above simulation results is that the muta t ion operator is of significant

importance and is mainly responsible for the explorative abilities of the algorithm.

Another important observation has been the fact that w i t h a large value of mutation,

the crossover operation has much reduced significance as shown in the results regard

ing the different crossover schemes. In the ranking schemes i t has been shown that i f

the number of parent strings are sufficiently small (ratio between the number of par

ents and offspring is large), the selective pressures are increased leading to improved

results.

6.3.2 Evolutionary Strategies

The evolutionary strategy used a phenotypic representation of the parameters - thus

the actual parameter values themselves were used to create the genetic representation

which formed the members of a population. As stated before, the main search opera

t ion in evolutionary strategies was the mutat ion operation. The mutat ion operation

was performed by adding a Gaussian distributed random variable centered around

the current operating point and w i t h variance determined by the adaptive process

itself. Thus in the (/x, A)-ESs, there were three parameters which were varied. These

were the number of parents [i, the number of offspring A and the in i t ia l variance of

mutat ion process. As a result of incorporating the standard deviations of each pa

rameter into the genetic material, the evolutionary strategy is capable of learning the

opt imal values of the standard deviation online. This is accomplished by adapting

the standard deviation values themselves by use of a Gaussian process as has been

130

6.3 S i m u l a t i o n Resu l t s

explained in Chapter 5. I t is the value of the standard deviation of this Gaussian

process which is varied in the simulation experiments. The crossover operation which

was used for all the simulation experiments was the discrete recombination operation

which has been explained in Chapter 5.

V a r i a t i o n o f t h e S t a n d a r d D e v i a t i o n

The results obtained by varying the standard deviation as explained above, are given

in Figure [6.17]. I t can be seen that w i t h very small values of the standard deviation

(cr = 0.001), the algori thm is unable to locate the opt imal coefficients in a reasonable

number of iterations. However w i t h large values of the standard deviation (a = 0.1),

even though the in i t i a l rate of convergence is rapid, the algorithms gets locked into

an non-optimal state. Thus i t can be inferred that the in i t i a l value of the standard

deviation plays an important role i n the accuracy and the rate of convergence of

the algorithm. For all the simulation experiments using the evolutionary strategies

presented henceforth, a value of 0.01 was used for the standard deviation.

V a r i a t i o n o f t h e \i a n d A

The effect of using different number of parents and children in the (n , A)-ES are

shown in Figure [6.18]. The important result is when the number of parents equal

the number of the parents as shown for the case of (/ i = A = 50). I n this case the

m i n i m u m error i n a generation increases at f irst . The reason for this is the lack of any

selective pressures i n the adaptive process resulting i n the search process degenerating

into a random search algorithm. As the ratio between the number of offspring and

parents increases, the algori thm results i n a better performance. The opt imal value

for this ratio arrived at by Hoffmeister and Back in [HB92] was six. This can be seen

f r o m the results presented in Figure[6.18]. Further simulation experiments conducted

in this thesis using the evolutionary strategy, used six parents which generated for ty

offspring strings.

131

6.3 S i m u l a t i o n Resu l t s

D i scus s ion

As the evolutionary strategies use a phenotypic representation, they are operating

w i t h the real parameter values and thus do not suffer f r o m the discretisation problems

of the genetic algorithms. However for the same reason, the hardware implementation

of evolutionary strategies has to performed in a different manner f r o m that proposed

for genetic algorithms. Use of the binary coding for the genetic algorithms meant

that the method could perhaps be implemented using standard digi tal logic circuits.

This is not possible w i t h the evolutionary strategies, however these methods could

be processed on vector computers as most of the operations are performed in parallel

and using real arithmetic. The value of the standard deviation used in the Gaussian

process responsible for the mutat ion process was found to have significant effect on

the algori thm, w i t h large values making the algori thm behave in random fashion and

too small values resulting in premature convergence. The ratio between the number

of parents and children was also an important criterion for opt imal convergence.

6.3.3 Evolutionary Programming

As seen f r o m the descriptions presented in Chapter 5, both the evolutionary strategy

and evolutionary programming methodologies are very similar. Bo th use a phenotypic

representation and rely on mutat ion as the significant operation responsible for the

search process. However, the role of crossover is largely insignificant and in the case

of evolutionary programming is not employed at a l l . The main differences between

the two schemes are the manner of the selection operation and the way in which

the strategic parameters are varied during the adaptive process. I n the evolutionary

strategies, the varying of strategic parameters is accomplished by using a Gaussian

process which perturbs the current value of the standard deviation of the mutat ion

process. I n evolutionary programming, the error value obtained for each string struc

ture is itself used as the variance for that string structure. This explains one reason

why the crossover/recombination operation has not been used in the evolutionary

programming methodologies.

Two sets of simulation results are presented for the evolutionary programming

132

6.3 S i m u l a t i o n Resu l t s

paradigm - the first results show the effect of varying the number of parents while

the second set of results show the effect of varying the number of strings taking part

i n the competit ion against one another to assign ranks to each string structure.

V a r i a t i o n o f t h e N u m b e r o f Paren ts

The evolutionary paradigm of simulated evolution functions by selecting A parents

which then produce A offspring using the mutat ion process. The selection process

then selects the A best strings f r o m this population of 2A strings to fo rm the next

generation. The effect of varying the value of A is shown in Figure [6.19]. I t can

be seen f r o m the final error values obtained at the end of the simulation run, that

w i t h small population sizes the selective pressures are not strong enough to drive the

algori thm to locate the opt imal set of coefficients.

V a r i a t i o n o f t h e N u m b e r o f C o m p e t i t i o n s

The selection process in the evolutionary programming paradigm assigns a rank to

each of the strings formed as the intermediate population. The ranks are assigned as

follows: Each string in 2A strings of the intermediate population is made to compete

against a certain number of strings of the population. Based on the competition,

the string is assigned a rank. Details of how the strings compete against each other

are given in Chapter 5. I n this simulation experiment, the number of competitions

for a particular string is varied and the results are shown in Figure [6.20] and [6.21].

Though the effect of the changing the number of competitions is negligible, small

values of competit ion result in higher values of error as can be seen in Figure [6.21]

which shows the same result shown in Figure [6.20] but at an higher resolution.

However too large a value for the number of competitions does not result i n a better

performance - on the other hand increases the computational t ime.

D i scuss ion

Evolutionary programming and the evolutionary strategies are very similar w i t h re

spect to the performance of the algorithms for the adaptive filtering problem. The

number of iterations needed to locate the opt imal set of coefficients are also roughly

133

6.3 S i m u l a t i o n Resu l t s

the same. The main differences are in the manner i n which the basic genetic opera

tions are carried out. Intui t ively, the use of the error value obtained for a string as

the variation of the mutat ion process as is the case in the evolutionary programming

paradigm looks promising. When the search process has located the opt imal string,

the error value for that string decreases to a very low value. Thus, use of the error

value as the variance ensures that fur ther disruption of that string does not occur.

On the other hand, the standard deviation is included as part of the genetic material

i n evolutionary strategies. Since each parameter of the adaptive process has its own

standard deviation value, the length of the string structure is now doubled. How

ever, this results in better control of the strategic parameters, as each parameter is

modified based on the standard deviation value assigned to i t . This also allows the

possible inclusion of the crossover operation as part of the algori thm.

6.3.4 Applications using the Adaptive I I R Fi l ter

As was explained in Chapter 2 , two important applications which use adaptive fil ter

ing are adaptive noise canceling and adaptive equalization. These two applications

were simulated on the computer and the evolutionary strategy was used as an adaptive

algori thm. The main reason for using this strategy was the fact that the evolutionary

strategy used real parameters as the genetic material and thus was able to locate the

exact set of opt imal coefficients. The genetic algorithm on the other hand would en

ta i l discretisation of the parameters and the subsequent loss of accuracy. I t is however

envisaged that genetic algorithms and evolutionary programming methods would also

result i n final results similar to that obtained using the evolutionary strategy.

A d a p t i v e No i se C a n c e l l i n g

The simulation configuration for the adaptive noise canceling experiment was as given

in Figure [2.9]. The details of the procedure was explained in Chapter 2. From the

lumped model of the adaptive noise canceling setup shown in Figure [2.9], when the

134

6.3 S i m u l a t i o n Resu l t s

transfer funct ion of the noise canceller is given by

= (6.9)

the model has reached its op t imum value and the signal estimate s(k) would then be

an exact estimate of the original signal s(k). I n the simulation experiment conducted,

the f i l ter transmission path G(p) was modeled using a sixth order I I R f i l ter while

G(r) was equal to uni ty (see Figure [2.9]). The modeling f i l ter , which was the noise

canceler, was modeled using an adaptive I I R f i l ter using a parallel configuration of

second order filters. The noise process was simulated using white noise w i t h unity

power. Three different signals were used to simulate the signal s(k) undergoing the

distortion. These were a sum of sinusoids, a square wave and a pseudo-random binary

sequence (prbs). The result of the noise f i l ter ing experiment using the sum of sinusoids

is given i n Figure [6.22]. As can be seen, the adaptive algorithm was able to remove

the effect of the distortion and restore the noisy signal to its original state. This can

also be observed when using the square wave signal (Figure [6.23]) and the prbs signal

(Figure [6.24, 6.25]). When the signal to noise power is low, the adaptive algorithm is

not able to remove the distortion completely (Figure [6.24), however when the noise

power is reduced, the restoration is more complete (Figure [6.25]).

Figures [6.26 - 6.29] show snapshots of the evolution of the cleaning process taken

at different generations using the sum of sinusoids as the test signal. A t the beginning

the algori thm is s t i l l searching for the opt imal set of coefficients and thus the output

signal is s t i l l noisy. By the t ime 100 generations have evolved, the algorithm has

succeeded in locating the opt imal coefficients w i t h the distortion being greatly reduced

as shown in Figure [6.29].

A d a p t i v e E q u a l i z a t i o n

For the adaptive equalisation simulation, reference is made to Figure [??]. As the

output error configuration was used, a desired response was required to adapt the

equalizer. Usually i n adaptive equalization, the desired response is not available as

the receiver is some distance away f r o m the transmitter. This is overcome using the

135

6.3 S i m u l a t i o n Resu l t s

following method - in i t ia l ly a known sequence of bits are transmitted. Since this

sequence as the desired response d(n). Thereafter a scheme, which was originally

devised by Lucky [Luc66], who proposed the use of the equalizer output itself as the

The channel distortion was modeled using an sixth order F I R f i l ter . The additive

noise is simulated by adding un i form white noise w i t h zero mean and varying power

levels. The equalizer is modeled using an sixth order I I R realized as a parallel bank

of three second order filters. The desired response was obtained in the following

manner - for the first 50 generations of the adaptive process, the actual b i t sequence

represented by x(n) was used to adapt the equalizer. Thereafter the scheme devised

by Lucky and explained before was used. I n other words after 50 generations, the

quantified output of the equalizer y(n) itself was used as the desired response d(n)

(Equation [6.10]).

The results of the equalisation experiment are shown in Figures [6.30 - 6.33].

Figures [6.30,6.31] show the final result after the equalizer has been adapted, for

different t ime sequences of the same input signal w i t h no additive noise. The equalizer

is able to reconstruct the original signal w i t h a uni t delay. This delay is because

the F I R fi l ter modeling the transmission channel is of non-minimum phase. Figures

[6.32,6.33] show the result of the same experiment when the F I R fi l ter output is

corrupted using additive noise. The noise signal used for the distortion had a power

of 0.01. The equalizer is able to reconstruct the b i t sequence even w i t h presence of

additive measurement noise.

sequence is available at the receiver end, the equalizer can be adapted using this

desired response after passing i t thorough a l imi ter , is used. Thus the desired d(n)

response, generated by this scheme was given by

+ 1 i f y (n) < 0
d(n)

1 i f y (n) > 0
(6.10)

136

6.4

6o4 Conclusions

Conclus ions

This chapter presented the results obtained using the evolutionary optimisation al

gorithms for the adaptive I I R f i l ter ing problem. A n important aspect of these results

is that they have also provided an example of using the evolutionary optimisation

schemes for a practical problem, rather than optimising art i f icial ly created functions.

The evolutionary optimisation approach was able to tackle the main problem of

mul t imodal performance surfaces, prevalent w i t h adaptive I I R filters, using alterna

tive realizations. Of the alternative realizations used, the parallel f o r m gave the best

results. Al though, the cascade f o r m resulted in covergence to the opt imal coefficients,

the number of t ime samples for convergence was very large. The main reason for this

was the propagation of errors through the cascade structure. The lattice configura

t ion was also used in the early simulation experiments. However, for each direct fo rm

realization, there exists an unique set of lattice coefficients. Thus, to locate these op

t ima l coefficients took a large number of iterations. The success of the parallel fo rm

can be a t t r ibuted mainly to the creation of multiple global optima whenever a direct

f o r m structure is decomposed into a parallel realization. The adaptive algorithm, was

thus able to converge to one of these mult iple global opt ima rapidly.

The study has also revealed the shortcomings of the genetic algorithms and has

also confirmed the recent conjecture by researchers, that the important search oper

ation i n genetic and other evolutionary schemes is the mutat ion operation. Thus two

important concepts in evolutionary optimisation schemes which have been confirmed

by the simulations are presented. The first is that of a parallel set of solutions as

realised by a population, and secondly new solutions are generated f r o m the current

solutions by perturbing the current solutions. This seems to be the core of al l evolu

tionary optimisation schemes. However, a l imi ta t ion of all the evolutionary schemes

is the lack of any stopping criterion whereby further iterations of the algorithm may

be avoided. I t was thought combining concepts f r o m simulated annealing along wi th

evolutionary schemes would result in such a criterion. This idea is f u l l y explored

in the next chapter which presents results obtained using annealing and new hybrid

algorithms.

137

C h a p t e r 6 Resu l t s

Genetic Algorithm 12

Random Search

10

8

5

I

1
5

4>

o

180 200 120 140 160 60 80 100 40 0 20

Time Samples (X100)

Figure 6.1: Comparison between Genetic and Random Search Algorithms

138

C h a p t e r 6 Resu l t s

10 - -

Genetic Algorithm

Random Search

0 20 40 60 80 100 120 140 160 180 200

Time Samples (X 100)

Figure 6.2: Comparison between Genetic and Random Search Algorithms

139

C h a p t e r 6 Resu l t s

Genetic Algorithm

S L A

15
1.8 it

V I

M
=1

1.6
1 1

3

1.4
1

1.2
1
i

1

1 !

n o.8

s
0.6

0.4

0.2

0

250 450 500 50 150 300 350 400 100 200 0

Time Samples (X 100)

Figure 6.3: Comparison between Genetic and Stochastic Learning Automata Algo
r i thms

140

C h a p t e r 6 Resu l t s

30 - r

25 -

' - — 4 t h Order

6th Order

• 10 Order

20

15

S
0)

10

t

0

0 20 40 60 80 100 120 140 160 180 200

Time Samples (X 100)

Figure 6.4: Different Order Filters

141

C h a p t e r 6 Resu l t s

Pm 0.001

Pm 0.075

Pm 0.2

!
i 1

M an 3

i 2 s !

1 I I i tw n 1
UP!

6

a

1
1

0

100 120 140 160 180 200 20 40 60 80 0

Time Samples (X 100)

Figure 6.5: Effect of Muta t ion

142

C h a p t e r 6 Resu l t s

Pc 0.2

1.8 Pc 0.6

Pc 0.9

1.6

i
1.4

1.2 Ed

0.8

s
0.6

&

0.4

0.2

o

20 60 80 100 120 140 160 180 200 0 40

Time Samples (X100)

Figure 6.6: Effect of Crossover

143

C h a p t e r 6 Resu l t s

12

Pop = 10

Pop = 30

Pop = 50
10

8

£3

J!
5

W5

i

Era

i l l liiia lit 1 II h WUlffl Mi 8 f t
H< J y I f M

1

=1 o

160 200 60 80 100 120 140 180 0 20 40

Time Samples (X100)

Figure 6.7: Effect of Population Size

144

C h a p t e r 6 Resu l t s

Binary

Gray

Real

W3

S 3

W \ i !

0 20 40 60 80 100 120 140 160 180 200

Time Samples (X100)

Figure 6.8: Effect of Coding Schemes

145

Chapter 6 Results

4 bits

8 bits 1.8

14 bits

1.6

El

1.4

1.2

s

Q
1

0.8
it I

0.6

filR I
l

i 0.4 U R J I 4« J m s k
•i mi,

si U ftp !

0.2

0

0 20 40 60 80 100 120 140 160 180 200

Time Samples (X100)

Figure 6.9: Effect of the Number of Bits

146

Chapter 6 Results

1

0.9
Single Point

Two Point

0.8 Uniform

Multiple Point

0.7

0.6
i
i

0.5
\

\ a o.4

0.3

V
0.2

0.1

0

50 125 150 175 25 75 100 0

Time Samples (X100)

Figure 6.10: Effect of New Crossover Schemes (pm = 0.075)

147

Chapter 6 Results

Single Point

Two Point 2.5 - k

uniform

Mutiple Point

V
W5

s
1

1

0.5

0

175 125 150 75 50 100 25 0

Time Samples (X 100)

0.025) Figure 6.11: Effect of New Crossover Schemes (p m

148

Chapter 6 Results

Prop. Selection

1.8 Ranking Scheme

Deterministic Scheme

3
1.6

1.4

8
1.2

1

I a 0.8

S

0.6

J
1 1 1

0.4

s Sffl

0.2
a i s -

o

140 160 180 200 100 120 20 80 40 60 0

Time Samples (X 100)

Figure 6.12: Effect of Improved Selection Operations

149

Chapter 6 Results

10 - -

— 25 Parents

15 Parents

•6 Parents

8

41

=

! S
5

s
it; II t 1 § I 3

4 it I
s i i f « & § i

SfflSI g I P

I v-

0

0 20 40 60 80 100 120 140 160 180 200

Time Samples (X 100)

Figure 6.13: Effect of the Ranking Selection Scheme

150

Chapter 6 Results

25 Parents

15 Parents 8
6 Parents

©

ft i Aflft
Si tm SI jr

.4 si fl I > 1 ^ 1 MV " I I k r" V MM Sjisi
1 T S

I i / iHIi.

1

0

80 120 140 160 180 200 20 60 100 40 0

Time Samples (X100)

Figure 6.14: Effect of the Ranking Elitist Selection Scheme

151

Chapter 6 Results

1000 - r

• ~™ Noise Power = 100

Noise Power = 10

1 Noise Power = 0

• Noise Power = 0.1

= ° • " Noise Power = 0.01

10
4>
re

W5

5S

l

0.1

0 20 40 60 80 100 120 140 160 180 200

Time Samples (X 100)

Figure 6.15: Effect of Measurement Noise

152

Chapter 6 Results

50 Minimum Error

Average Error

45

40

35

Em

e 30

25

20 8

15

10

4 V
0

120 160 180 200 20 40 60 80 100 140

Time Samples (X 100)

Figure 6.16: Results using Self Adaptive Genetic Algorithm

153

Chapter 6 Results

14 - r

Sigma = 0.001

Sigma = 0.01

Sigma = 0.05

Sigma = 0.1

' I * i " I k . . ' » » • * . . » *

0 20 40 60 80 100 120 140 160 180 200

Time Samples (X100)

Figure 6.17: Effect of Standard Deviation in ESs

154

Chapter 6 Results

18

16

Parents = 8, Offspring
50

14
Parents = 6, Offspring
40

Parents = 50, Offspring
12 50

5

2 10

\ er 8
OS

\
V

0

0 20 40 60 80 100 120 140 160 180 200

Time Samples (X100)

Figure 6.18: Effect of the Number of Parents/Offspring

155

Chapter 6 Results

16

14

12

10

a
O
K a a*

S 6

4 +

|

il

+

No. of Parents = 10

No. of Parents = 30

' No. of Parents = 50

20 40 60 80 100 120 140

Time Samples (X 100)

160 180 200

Figure 6.19: Effect of Parents in Evolutionary Programming

156

Chapter 6 Results

9 +

~—» Comp. = 5

Comp. = 10

- — • Comp. = 20

8 -H

©

§ 4 1

I

1

o

0 20 40 60 80 100 120 140 160 180 200

Time Samples (X100)

Figure 6.20: Effect of the Number of Competitions in EP

157

Chapter 6 Results

1

Comp. = 5

0.9 Comp. = 10

Comp. = 20

I 0.8

I 0.7

0.6

0.5

W3

i 0.4
4i

0.3

0.2

0.1

0

0 20 40 60 80 100 120 140 160 180 200

Time Samples (X100)

Figure 6.21: Effect of the Number of Competitions in EP

158

Chapter 6 Results

Original Signal

Noisy Signal

' Cleaned Signal

100

Time Samples

Figure 6.22: Adaptive Noise Canceling - Sum of Sinusoids

159

Original Signal

Noisy Signal

' Cleaned Signal

Time Samples

Figure 6.23: Adaptive Noise Canceling - Square Wave

160

Original Signal

Noisy Signal

Cleaned Signal

hi

0 20 0 0

Time Samples

Figure 6.24: Adaptive Noise Canceling - PRBS Input

161

Chapter 6 Results

Original Signal

Noisy Signal

Cleaned Signal

100

Time Samples

Figure 6.25: Adaptive Noise Canceling - PRBS Input

162

Chapter 6 Results

Original Signal 12

Generation 5

8

\

0

£3 80 100 10
9

2

8

-12

Time Samples

Figure 6.26: Evolution of the Adaptive Noise Canceling

163

Chapter 6 Results

' Original Signal

Generation 10

100

-12 - L -

Time Samples

Figure 6.27: Evolution of the Adaptive Noise Canceling

164

Chapter 6 Results

' Original Signal

Generation 50

e
la
m
3
&
3

©

3
W3
e
5

-12 - 1 -

Time Samples

Figure 6.28: Evolution of the Adaptive Noise Canceling

165

Chapter 6 Results

-4 -+-

' Original Signal

Generation 100

100

Time Samples

Figure 6.29: Evolution of the Adaptive Noise Canceling

166

Chapter 6 Results

Original Bit Sequence

' Reconstructed Bit
Sequence

Time Samples

Figure 6.30: Results from the Adaptive Equalisation Experiment

167

Chapter 6

Original Bit Sequence

Reconstructed Bit
Sequence

,—o
i f

J
i 1 i

o
00 198 19 194 190

182 \ J 8 13 1
cw .1 1

s 5 y
f

Time Samples

Figure 6.31: Results from the Adaptive Equalisation Experiment

168

Chapter 6

Results

Original Bit Sequence

Reconstructed Bit
Sequence

ft i
!

Si

I
S

i n \ I t \ V j \ s 8
9
\

I 20 18 U6 U4 12 10 8 14 j
V) -1 \ 3

6
1
5

Time Samples

Experiment Adaptive Equalisation
Results from the Figure 6.32:

169

Chapter 6 Results

Original Bit Sequence

' Reconstructed Bit
Sequence

200

-5

-7 - 1 -

Time Samples

Figure 6.33: Results from the Adaptive Equalisation Experiment

170

Chapter 7

Simuilated aod Genetic Aimeal in

7 c 1 Introduct ion

ombinatorial optimisation problems, especially those which involve a large state

space, are extremely difficult to optimise as the computational time increases ex

ponentially with the number of object variables. These problems can only be solved

approximately in polynomial time. Thus in such situations, approximation algorithms

are used, with which one can arrive at a reasonable approximation to the optimal so

lution in an acceptable amount of computational time. One such approach is to use

an iterative improvement algorithm with a large number of different initial starting

points. Iterative improvement algorithms are also known as neighbourhood search

algorithms and work by generating a new configuration from a current configuration.

The new configuration is selected to be in a neighbourhood around the current con

figuration. If the new configuration is better than the current configuration, then it

replaces the current configuration, else another neighbouring configuration is selected.

The algorithm terminates when a configuration yields no neighbouring configuration

which are better than the current configuration. Convergence to the optimal solution

can then be obtained in a reasonable amount of time with such an approach, when

a large number of initial configurations are used. Simulated annealing is another

such approximation algorithm for combinatorial optimisation and is based on aspects

of both iterative improvement and randomisation techniques [vLA87] enabling the

method to be extremely robust.

C

171

7.1 Introduction

The inspiration for simulated annealing in its original form [KGV83, Cer85], has

been drawn from physics, where an analogy was drawn between slow cooling of a

heated solid and the problem of minimizing the cost function of a combinatorial

optimisation problem. In thermodynamics, annealing refers to the process in which a

solid is heated up to a maximum value whereby the solid changes into the liquid phase

with all the molecules in a state of random motion. The heated solid is then cooled

slowly by reducing the temperature gradually. If the cooling is performed sufficiently

slowly and the maximum temperature was reached during the heating phase, all the

particles would settle into a minimum energy ground state of a corresponding lattice.

At each value of temperature, the solid is allowed to reach thermal equilibrium. As

the temperature approaches the limiting value of zero, the substance will settle into

the minimum energy states corresponding to the low energy crystalline state. If the

process of cooling is too rapid, then the solid may settle into a metastable state

corresponding to an amorphous structure. These principles have been adopted in the

optimisation technique of simulated annealing. The precise details of the approach are

presented in a subsequent section. The method of simulated annealing is also known

by different names such as Monte Carlo annealing, statistical cooling, probabilistic hill

climbing, stochastic relaxation or probabilistic exchange algorithm.

The simulated annealing algorithm has asymptotic properties of convergence and

in most practical applications the convergence time is very large, thus reducing the

practical use of the method. Thus research has looked into ways of speeding up

the basic simulated annealing algorithm. Once such algorithm is the Fast Simulated

Annealing proposed by Szu and Hartley [SR87a, SR87b]. Their approach is to use a

different probability distribution in the generation of new states and they have proved

the increased speedup of the algorithm. More details of this approach are presented

in a subsequent section. Recently, a new algorithm has been proposed which has

convergence properties orders of magnitude greater than the standard simulated an

nealing. This approach known as the Very Fast Simulated Reannealing was proposed

by Ingber and Rosen [Ing89]. This approach again uses of a different generating func

tion as well as a reannealing procedure where the sensitivities of different parameters

are taken into account and a rescaling procedure is employed to allow for this.

172

7.2 Simulated Anneal ing

In this chapter, we propose two new hybrid schemes where concepts of simulated

annealing are used in standard genetic algorithms. These new approaches show very

promising simulation results and have been termed Genetic Annealing. Simulation

results are presented which show the performance of these algorithms for adaptive

filtering. The next section reviews the technique of simulated annealing.

7»2 Simulated Annealieg

As was stated above, the technique of simulated annealing is derived from concepts

in statistical mechanics wherein a crystalline low energy state of a solid is obtained

by initially heating i t to large value to reduce it to a liquid state, and then gradually

cooling the liquid state whereby the substance crystallizes into the required low energy

state. For each temperature value T at thermal equilibrium, the probability that the

substance is in a state with energy E is given by the Boltzmann Distribution.

Pr{E = E} = -^f^ (7-1)

-E

Z(T) is a normalisation factor, ks is Boltzmann constant and the expression ekBT is

known as the Boltzmann factor. As the temperature reduces, the Boltzmann distri

bution chooses only states with low energies and when the temperature approaches

the limiting value of zero, only the minimum energy states have a non-zero probabil

ity of occurrence. To simulate the evolution of the process to thermal equilibrium at

a particular temperature T, Metropolis et al. [Mea53] used a Monte Carlo method

to generate the sequence of states. This was achieved as follows: The current state

of the solid which was characterised by the positions of the the particles of which it

was composed of, was given a small random perturbation to result in a new state. If

the difference in the energies between the current state and the new state, AE, was

negative, then the new state was used as the current state and the process continued.

If AE > 0, then the new state was accepted with a probability which was given by

173

7.2 Simulated Anneal ing

-Ag

e kBT . This acceptance rule is referred to as the Metropolis criterion. After a large

number of perturbations the probability distribution of the states approach that of

the Boltzmann Distribution as given in Equation [7.1]. This algorithm known as the

Metropolis Algorithm has been used extensively in statistical mechanics to estimate

averages and integrals by means of random sampling [Bin78, Has70].

To use this technique in combinatorial optimisation, the different configurations

of the optimisation problem would correspond to the states of the solid while the

objective function and a control parameter would assume the roles of energy and

temperature. Thus the simulated annealing approach is a sequence of Metropolis

algorithms evaluated at decreasing values of the control parameter. The algorithm

starts with a large value of the control parameter. From a given state i, a new state

j is generated using a generation mechanism. This corresponds to the perturbation

step of the Metropolis algorithm. The cost function of both the states are determined

and the difference between the cost functions A C , j calculated. Then if A C t | j < 0, the

new state is accepted with probability 1. If A C j j > 0 the probability of acceptance is

given by e c (Metropolis criterion). This step is the crucial factor in the simulated

annealing approach as i t allows probabilistically to accept solutions that are worse

(higher cost) than the previous solution. Thus there exists a non-zero probability

of jumping out of local optima. This process is continued for a certain number of

steps until an equilibrium has been reached for that value of the control parameter

indicating that the probability of the system being in any particular energy state is

given by the Boltzmann distribution (Equation [7.1]). The control parameter c is then

reduced in steps, with the system allowed to reach an equilibrium state at each value

of the control parameter. The algorithm is terminated when the control parameter

c reaches a predetermined small value. A mathematical model of the algorithm is

presented in Appendix B.

The three important features defining the simulated annealing algorithm are

o A Generation distribution which selects new points from a neighbourhood of

the current point. The usual choice for the generation distribution function is

a Gaussian probability distribution centered around the current point.

174

7.2 Simulated Anneal ing

o An Acceptance mechanism which decides whether to accept or reject a newly

generated point. The Metropolis criterion is usually employed for the this pur

pose.

o A Cooling Schedule which suitably decrements the value of the control param

eter. The cooling schedules have been studied with a lot of interest and many

schemes are currently used [vLA87]. A simple cooling schedule is given by

where a < 1. This cooling has been used widely by researchers with values of

a ranging from 0.5 to 0.99. I t has been proved by Geman and Geman [GG84]

that for the inhomogeneous algorithm (Appendix B), the algorithm is able to

locate the global minimum provided the cooling is done not faster than

where CQ is the starting value of the control parameter.

Thus the simulated annealing algorithm can be concisely stated as follows: Using

the generation distribution (usually a Gaussian), a new point defined around a neigh

bourhood of the current point is generated. The acceptance criterion defined by the

acceptance matrix is then used to decide whether to accept or reject the new point.

Initially, as the control parameter has a large value, all new points including points

with a large cost are likely to be accepted. As the value of the control parameter is

reduced, only points resulting in low costs will be accepted, thus eventually leading

to the global optimum of the cost function. To realise this eventual state, certain

conditions are imposed on the generation and acceptance matrices and on the cooling

schedule. More details of these conditions and mathematical analysis of the algorithm

is given in [vLA87].

Ck+i = a x cjt, k = 1,2,... (7.2)

c(fc + l) = c(0)
log(k)

(7.3)

175

Fast Simulated Anneal ing

7 c 3 Fast Simulated Annealing

The Fast Simulated Annealing algorithm was proposed in 1987 by Szu and Hartley

[SR87a] and has been proved to have a faster rate of convergence. I t was initially pro

posed as a solution to a continuous optimisation problem in which the cost function C

was defined over a n-dimensional continuous space. As was detailed in the Appendix

B and the previous section the generating distribution of the classical simulated an

nealing used a Gaussian probability function. This was in some sense a local search

around the current operating point and was defined by the variance of the Gaussian

distribution used. The Fast Simulated Annealing algorithm uses the same concepts

as that of the classical simulated annealing except i t uses a different distribution for

generating the next state. In particular i t uses a Cauchy Distribution which is defined

by the equation

G^=^wh (7-4)

where c is the control parameter. The advantage of using the Cauchy distribution is

that the Cauchy process is a infinite variance distribution and thus has a fatter tail as

compared to the Gaussian process. This permits occasional long search steps amidst

local sampling thus leading to faster convergence. Similar to the condition proved for

the classical simulated annealing (Equation [7.3]), there exists a rule for the rate of

cooling for the Cauchy annealing which is given by

<k + 1) = ^ (7.5)

I t has been proved that i f the control parameter is reduced no faster than Equation

[7.5] given above, the algorithm is able to locate the global optimum. It can been

seen from Equations [7.3] and [7.5] that the rate of convergence of the Fast simulated

annealing algorithm is faster than that of the classical simulated annealing. The

proofs for the rate of convergence of the method are given in [SR87a, SR87b].

176

7.4 Very Fast Simulated Reannealing

7A Very Fast Simulated Reannealing

The Very Fast Simulated Reannealing algorithm was proposed by Ingber and Rosen in

1989 ([[Ing89]]) as a technique of fitting empirical data to a theoretical cost function

which is defined over a D-dimensional parameter space. This algorithm has been used

in diverse applications such as combat analysis, finance and neuroscience. The main

motivation for the approach has been the knowledge of the fact that both classical

simulated annealing and fast annealing use generating distributions that do not take

into account that different parameters may have different annealing sensitivities.

Very fast simulated reannealing introduced two differences from the standard and

fast annealing approaches. The first was a new generating function which was easy

to generate for D-dimensions as the D-dimensional form was just the products of the

single dimensional form. The D-dimensional generating function was thus given by

G (X) = n 1

A l 2(| X i | +c,) ln(l + 1/c.)
D

= (7 .6)
4=1

I t can been seen from the above equation that the control parameter is not the

same for the different dimensions but has a different value for each dimension. The

cooling schedule for the above function, which has been statistically proved to enable

the algorithm to reach the global optimum, is given by

Ci(Jfe) = cM~Zikl'D)
 (7 .7)

where c,(0) is the starting value for the control parameter for dimension i and Z{ is a

constant for each dimension. The new value of a parameter X{ at iteration (k+1) is

given by

Xi(k + 1) = X i (k) + yi(Bi - Ai) (7 .8)

where ?/,• is generated using Equation [7.6] and Ai, Bi are the limits of the parameter
Xi.

177

7.5 G e n e t i c Annea l ing

The second concept introduced by the method was a way to incorporate the

different sensitivities of parameters into the annealing procedure. It was an attempt to

stretch out the range over which relatively insensitive parameters were being searched,

relative to the ranges of the more sensitive parameters. This was achieved by a

process referred to as reannealing which was essentially a rescaling procedure. Thus

periodically the annealing time k was rescaled for each parameter dimension. The

procedure for doing this is presented in [Ing89]. Although not specifically studied in

this thesis, the Very Fast Simulated Reannealing algorithm is worthy of further study.

7 o 5 Genetic Annealing

7.5.1 I n t r o d u c t i o n

In this section,two new techniques are proposed which combine concepts from simu

lated annealing and genetic algorithms. A way to view this approach is to look at the

basic process which describe these two approaches. The simulated annealing process

uses the Boltzmann distribution while genetic algorithms are based on the Darwinian

principle of survival of the fittest. There have been earlier efforts in developing optimi

sation schemes which are based on concepts derived from both annealing and genetic

algorithms. Boseniuk and Ebeling in [BEA87] have attempted to improve the simu

lated annealing process by incorporating the concepts of competition and selection.

This followed an earlier work by Ebeling and Engel ([EA86]), where a systematic

comparison was drawn between Boltzmann and Darwinian strategies by analysing

the underlying equations which described the two process. The conclusion arrived at

was that both methods show significant differences when the transitional behaviour

was analysed. Thus in [BEA87], Bosenuik and colleagues have used the Darwinian

elements of competition and selection in simulated annealing. The important result

which they arrive at is that using this hybrid scheme, the region of good solutions are

reached with higher probability than that is achieved using only a single scheme of

either annealing or genetic selection. A similar approach was used in [BE91], where

in addition to the hybrid schemes incorporating the two strategies given above, a

178

7.5 G e n e t i c Annea l ing

new hybrid scheme was proposed. This scheme combined concepts from Boltzmann,

Darwinian and Haeckel strategies. The Haeckel strategy ([EAM86]) was based on the

observation from natural evolution where it was noticed that each biological organism

undergoes a life cycle consisting of a period of early growth, a period of learning, a

period of reproduction and finally death. This strategy highlighted the fact that in

the early stages the mutation operator is more active while in the later stages it is

the selective pressures which dominate. Thus a Haeckel strategy is composed of two

stages:

o A period of youth where mutations are frequent and selection seldom.

o A period of maturity where mutations are seldom and selection occurs fre

quently.

The conclusion drawn from this study also indicated that the mixed strategies yielded

a better performance than in comparison with the single strategies by themselves.

In the next sections, two new hybrid schemes are proposed which are based on

concepts from both annealing and genetic algorithms. A motivation for these schemes

has been the observation that although genetic algorithms were able to locate the op

timal solution rapidly, the whole population did not converge to the optimal solution.

These schemes overcome this limitation whereby all the members of the population

converge to the optimal solution. This has been shown using simulation experiments

for the adaptive filtering case.

7.5.2 Hybr id Scheme - I

As was stated in an earlier chapter, the role played by mutation in genetic algorithms

has been largely secondary. This has been challenged by researchers and is also evident

from the simulation results presented in Chapter 6. Too large a value of the mutation

rate, though increasing the exploratory power of the algorithm, renders it similar to a

random search algorithm, where there is no exploitation of the solutions which have

been obtained until then. An approach to overcome this problem would be to use

a large value of mutation at the initiation of the algorithm, but then to gradually

179

7.5 G e n e t i c Annea l ing

reduce the mutation rate as the generations evolve. Thus mutation now plays a role

akin to that played by the control parameter in the simulated annealing algorithm

where a large value of the control parameter enables the algorithm to initially search

a wide area, but with lower values of control parameter to concentrate on the more

promising but smaller regions. As the mutation rate is now varying, the proposed

scheme is similar to the Haeckel optimisation strategy explained before, the main

difference being that the selection process is not changed during the generations and

remains the same (proportional selection).

To reduce the mutation rate during the adaptation process, the mutation rate is

made a function of the generation number. Thus initially the algorithm uses a large

value of mutation which is gradually reduced as the generation number increases.

Two approaches were used to decrease the mutation rate - in the first approach the

mutation rate was a linear function of the generation number while in the second

approach the mutation rate was varied in an exponential manner depending on the

generation number. The first approach resulted in either premature convergence to

a non-optimal solution or resulted in a random search algorithm. The reason for

this was found to be the rate at which the mutation value was reduced. Too fast

a reduction of the mutation value resulted in premature convergence while with too

slow a reduction, the algorithm is not able to exploit near optimal solutions which

may have been discovered. This led to the formulation of the second scheme where the

mutation rate was an exponential function of the generation number. The decrease

in the mutation was performed using the following equations:

pm is the probability of mutation and Gerifjo is the generation number. The equation

has three parameters which are initialised at the start of the algorithm. These are

the starting probability pm(start), Genst and the decay parameter decay. As a result

of the exponential nature of Equation [7.9], the value of the probability of mutation

remains near the starting value of pm(start) until the number of generations reach

Pm =
pm(start) x imp

imp = e

1 + tmp
Genst — GeriNO

(7.9) decay

180

7.5 G e n e t i c Annea l ing

the value Genst. Thereafter the probability of mutation reduces, the rate of decrease

depending on the decay parameter decay. The initial values of these parameters

determine the accuracy and rate of convergence of the algorithm.

7.5.3 H y b r i d Scheme - I I

The second hybrid scheme proposed also combined concepts from simulated annealing

and genetic algorithms. In simulated annealing an important idea was to use a proba

bilistic expression to decide whether to accept or reject a new configuration. This was

achieved by using the Metropolis criterion as given by Equation [B.5]. The second

hybrid scheme proposes the use of this criterion in genetic algorithms. Specifically

this is achieved as follows: After the selection operation, two strings Pi, Pi are drawn

randomly from the population for the genetic operations of crossover and mutation.

After the crossover and mutation operations two new strings Ci, C2 are formed. If

the new strings (Ci, C2) have a larger value of fitness (lower error value) than the

parent stings (P i , P2) then they are retained as the members of the next population.

However if they have a smaller fitness value than the parent strings, then they are

only retained probabilistically using a condition similar to the Metropolis condition.

This is the significant change from the standard genetic algorithm where the new

strings are always used to generate the members of subsequent populations. As the

algorithm uses the Metropolis criterion, an important parameter of the process is the

temperature or control parameter. The reduction in the control parameter is done us

ing the simple cooling schedule as given by Equation [7.2], where a = (0.9 — 0.99) is

the rate of cooling. An important condition of the homogeneous simulated annealing

algorithm (Appendix B) was the that at each value of control parameter, the length

of the resulting Markov chain should be infinite. However in practical applications

this condition is made less stringent by reducing the control parameter value after a

certain number of new points have been accepted using the acceptance criterion. This

scheme is used in the second hybrid scheme. Thus at the start of the algorithm, the

control parameter has a large value and all the offspring strings are retained as par

ents for the new generation. But as the algorithm proceeds, the value of the control

181

7.6 S imulat ion Conf igurat ion and Resul t s

parameter reduces, thus only offspring strings which perform better than the parent

strings are retained. As a result of the selective pressures and the acceptance crite

rion detailed above, members of the populations will converge towards a single string

structure having the optimal value of fitness. Thus the average error in a population

(generation) approaches the minimum error in a population. Thus the second hybrid

scheme has two denning parameters - the starting value of the control parameter and

the rate of decay a.

7 » 6 Simulation Configuration and Results

In order to use the above algorithms for the adaptive I I R filtering paradigm, the sys

tem identification configuration was used wherein the unknown system was a sixth

order I I R filter. The sixth order I I R filter was composed of a parallel bank of three

second order I I R filters. This configuration was used in order to overcome the prob

lems of stability as was detailed in chapter 2. The performance surface of such a

configuration can result in a multimodal surface with local optimas [NJ89]. Thus the

use of gradient algorithms may result in a non-optimal performance.

For both classical and fast annealing, the important equation is the one which de

scribes how the next point is generated from the current point. The defining equation

for this step is given by

Xi(new) = Xi(prev) -f R x s,- ; i = { 1 , . . . , n} (7-10)

n is the number of coefficients of the filter (dimension of the problem), while R is

generated using the generating distribution. For classical annealing, R is generated

using the Gaussian distribution, while for fast annealing R is generated using the

Cauchy distribution. 5, is the step size for the coefficient i. If the newly generated

coefficient Xi(new) is outside the limits set for that coefficient, then Equation [7.10]

is used again until the new coefficient generated satisfies the constraints. These

constraints are usually imposed in order to keep the filter stable as was explained

in chapter 2. Each change in a coefficient value using Equation [7.10] results in a

182

7.6 S imulat ion Conf igurat ion and Resu l t s

new state of the annealing process. This new state is retained using the Metropolis

criterion. The algorithm cycles around the set of coefficients, perturbing each using

Equation [7.10], and retaining the new state using the Metropolis criterion. The

reduction in the control parameter was done using the cooling schedule given in

Equation [7.2]. Both the homogeneous and inhomogeneous forms of the annealing

algorithm was simulated. For the homogeneous case, the control parameter value

was not reduced until a certain number of new states were accepted, while for the

inhomogeneous implementation the control parameter was continuously reduced.

Results of using the classical and fast annealing are shown in Figures [7.1] and

[7.2]. As can be seen, the fast annealing approach results in faster convergence than

the classical annealing algorithm. Though this is an improvement, from the results

obtained for the genetic algorithms, it is clear that the annealing approaches take

a large number of time samples for accurate convergence to the global optimum.

The initial value of the temperature in both the simulations was 1000, the decay

parameter being varied. It can be seen that the decay parameter is responsible for

the rate of convergence of the algorithm. Comparative results between classical and

fast annealing are shown in Figure [7.3]. The value of the decay parameter in this

case was 0.9.

Results of using the new hybrid algorithms (genetic annealing) are shown in Fig

ures [7.4-7.13]. Figures [7.4-7.9] present the result of using the hybrid strategy (I)

for varying values of the decay parameter. For slow value of the decay rate (Figure

[7.4]) (decay parameter = 100), the average error is still high though the minimum

error in the generation has reduced down to the optimal value. The same result is

shown in Figure [7.5] at a higher resolution. Figures [7.6,7.7] show the result at a

decay parameter value of 50. However too rapid a reduction of the mutation rate

(indicating fast cooling) results in the algorithm getting locked in an non-optimal

state as is shown in Figure [7.8, 7.9] (decay parameter value = 15). This fact can be

inferred from error value to which the algorithm has converged.

From these results it can be seen that the average error in a generation now

approaches and equals the minimum error which signifies the fact that all the members

of the population have converged to a single structure. Whether this structure is the

183

7.7 . Conclus ions

global optimum has only been verified using simulation results and theoretical analysis
of the method is not yet available. It can be noticed that the variance of the average
error and minimum error is large. This arises because of the large initial value of
the mutation probability which results in the algorithm exploring over a large area of
search.

The results of using the hybrid scheme (II) are shown in Figures [7.10-7.13]. As

in case of hybrid scheme (I), the average error in a generation approaches that of the

minimum error indicating that all the members of the population has converged to a

single string. The immediate observation from these set of results is that the variance

of both the average error and minimum error is very much reduced as compared

to hybrid scheme (I) . This is because of the relatively small value of the mutation

probability in the second hybrid scheme. Figures [7.10] and [7.11] shows the result of

using a varying values of the decay parameter and a value of 0.075 for the mutation

probability. It can be seen that the decay parameter decides the rate of convergence

of the algorithm. Figures [7.12] and [7.13] show the same result but with a smaller

value of the mutation probability (0.025). It can be seen from the final error values

that too small a value of the probability of mutation results in convergence to non-

optimal state (larger value of error). All the simulations results presented above were

the average values obtained after 20 runs of the algorithm.

7 o 7 Conclusions

This chapter presented the results in using the annealing approach to adaptive I I R

filtering. In particular the classical and fast simulated annealing algorithms were used.

Although the fast annealing approach located the optimum set of coefficients faster

than the standard algorithm, the number of time samples required for convergence

was very large making it an impractical method to use in real world applications.

Using concepts from annealing in genetic algorithms as was the case in the proposed

hybrid schemes, it was possible to determine when to stop the algorithm. Of the two

hybrid schemes proposed, the second hybrid scheme is more promising as the rate

of convergence is comparable to that of the standard genetic algorithm while at the

184

7.7 Conclusions

same time providing a stopping criterion for the algorithm. This was an important
consequence as with the standard genetic algorithms convergence of a population
to the global optimum structure was not observed in the simulation experiments
carried out in Chapter 6. However the theoretical analysis of the new hybrid schemes
is still incomplete and it remains to be proved that the algorithms do converge to
the global optimum. For the adaptive I I R filtering case this has been shown to
be true using simulation experiments. The hybrid schemes provide for a method of
combining the methods of annealing and genetic algorithms. Perhaps more interesting
results will be obtained if the annealing principles used above are used in tandem
with evolutionary strategies and evolutionary programming. This would remove the
problem of discretisation which is present when genetic algorithms are used.

185

C h a p t e r 7 Resu l t s

Decay = 0.7

Decay = 0.8

Decay = 0.9

Decay = 0.95

50 100 150 200

Time Samples (X 3000)

250 300

Figure 7.1: Results using Classical Simulated Annealing

186

C h a p t e r 7 Resu l t s

• i .

Decay = 0.7

Decay = 0.8

Decay = 0.9

Decay = 0.95

•v.

Is,- 1

100 150 200

Time Samples (X 3000)

250 300

Figure 7.2: Results using Fast Simulated Annealing

187

C h a p t e r 7 Resu l t s

35

30 5

25

i 3

8 w su

I s
20

5̂ W3 15

i

I

10 I

\

\
0

Classical Annealing

Fast Annealing

0 50 100 150 200 250 300

Time Samples (X 3000)

Figure 7.3: Comparative Results using Classical and Fast Simulated Annealing (De
cay Parameter =0 .9)

188

C h a p t e r 7 Resu l t s

Minimum Error 120

Average Error

100

80

s

60

eg

01

J
40

20

t 0 1 1

150 350 450 500 50 100 200 250 300 400 0

Time Samples (X 100)

Figure 7.4: Results using Hybrid Scheme - I (Decay Parameter = 100)

189

C h a p t e r 7 Resul t s

20 Minimum Error

Average Error

18

16

14

•

12

V

10

V)

S 8

" • H i

o
0 50 100 150 200 250 300 350 400 450 500

Time Samples (X 100)

Figure 7.5: Results using Hybrid Scheme - I (Decay Parameter = 100)

190

C h a p t e r 7 Resul t s

Minimum Error 80

Average Error

70

60

e 5 0

I 40

s i

S 3 0

20

10

•4 s[J 0

250 300 350 400 450 500 50 150 200 0 100

Time Samples (X100)

Figure 7.6: Results using Hybrid Scheme - I (Decay Parameter = 50)

191

C h a p t e r 7 Resu l t s

Minimum Error 20 1 m Average Error

m 18

I 16

14

l a

e N 12

5

10

§ 8

a

fit r

r

0

0 50 100 150 200 250 300 350 400 450 500

Time Samples (X 100)

Figure 7.7: Results using Hybrid Scheme - I (Decay Parameter = 50)

192

C h a p t e r 7 Resu l t s

80 - -

10 - -

Minimum Error

Average Error

0 50 100

r — i i i i i • i • 1

150 200 250 300 350 400 450 500

Time Samples (X 100)

Figure 7.8: Results using Hybrid Scheme - I (Decay Parameter = 15)

193

Chapter 7 Results

Minimum Error 20

Average Error

18

16

14

•
12

10
03

5 8
41

III

o

0 50 100 150 200 250 300 350 400 450 500

Time Samples (X 100)

Figure 7.9: Results using Hybrid Scheme - I (Decay Parameter = 15)

194

Chapter 7 Results

25 Minimum Error

Average Error

20

15

<3

S io

8
1

I

0

160 180 200 100 120 140 20 40 60 80 0

Time Samples (X 100)

Figure 7.10: Results using Hybrid Scheme - I I (pm = 0.075, Decay = 0.9)

195

Chapter 7 Results

25 Minimum Error

Average Error

20

15

o

W5

§ 10 11

3

1

120 140 160 180 200 20 40 60 80 100

Time Samples (X100)

Figure 7.11: Results using Hybrid Scheme - I I (pm = 0.075, Decay = 0.7)

196

Chapter 7 Results

Minimum Error 18

Average Error

16

14

12

2 10

S- 8
U3

1

i

0

200 140 160 180 120 60 80 100 20 40 0

Time Samples (X100)

Figure 7.12: Results using Hybrid Scheme - I I (pm = 0.025, Decay = 0.9)

197

Chapter 7 Results

Minimum Error 20

Average Error

18

16

14

12

10

ft

B 8

6 -4

t

0

180 160 200 120 140 80 100 40 60 0 20

Time Samples (X 100)

Figure 7.13: Results using Hybrid Scheme - I I (pm = 0.025, Decay = 0.7)

198

Chapter

Coechisioins and Further Work

801 Conclusions
rJ1 he work undertaken in this thesis can be broadly classified into two main cate

gories:

o Study of Adaptive I IR filtering algorithms.

o Application and development of novel optimisation algorithms for use in adap

tive I IR filtering.

The initial study of adaptive IIR filtering algorithms indicated that the main

problem with current adaptive algorithms for I IR filtering is the inability to deal

with multimodal error surfaces. Algorithms which have been designed to tackle this

problem work under constrained conditions and are computationally very involved.

Thus the potential appeal of using IIR filters to replace FIR filters was lost. This

necessitated a different approach to developing adaptive I IR filtering algorithms.

The Stochastic Learning Automata approach was able to overcome the problems of

global optimality as has been shown from the simulation results in chapter 4. However

this success was achieved only for the case of a second order I IR filter. When adapting

higher order I IR filters, two problems were encountered using the SLA approach -

firstly the rate of convergence of the algorithm dropped drastically as the method did

not scale well with increased number of parameters, and secondly the stability of the

adaptive IIR filter especially for the higher order case became an important feature

199

8.1 Conclusions

of the adaptive algorithm. To overcome the problem of dimensionality, the automata
games approach was attempted. Although this approach tackled the problems of
dimensionality, theoretical results regarding the global optimality of such an approach
are not available. Thus the automata games approach may result in a non-optimal
solution. The second problem of stability of a high order I IR filter was overcome by
using the alternative parallel form realization. Though SLA algorithms are a powerful
set of tools, their use for the specific case of adaptive I IR filtering seems rather limited,
especially for on-line applications. Another drawback with the SLA approach is that
the algorithm forces parameters to take discrete values, combinations of which form
the actions of an automata as has been explained in chapter 4. This results in the
algorithm obtaining only an approximation to the exact global optimum. However,
this fact could be used to construct a hybrid scheme whereby the initial search at
a coarse level is carried out using a SLA. Thereafter the results obtained by the
SLA may be used as the starting values for established techniques such as gradient
descent to locate the exact optimum. Perhaps the more advantageous method would
be to combine individual automata into interconnected structures which may be able
to model complex functions. This approach would lead to the use of the automata
algorithms in neural networks.

The simulated evolutionary approach to optimisation although developed a cou

ple of decades ago, has only recently been used in engineering problems. The main

advantage of the method especially for the adaptive I IR filtering case is the ease with

which the dimensionality problem is handled. The complete theoretical analysis of

the various paradigms of simulated evolution are still forthcoming, though in some

case asymptotic convergence proofs are available. These indicate that with a long

time frame of reference, the algorithm would be able to locate the global optimum.

The use of these algorithms for the adaptive I IR filtering case as shown by the results

in the previous chapters is very promising. In particular, genetic algorithms have the

potential to be implemented in digital logic as the algorithms mainly operate using

binary strings. This would entail real time applications with the genetic algorithms

being micro-coded into silicon. However the use of binary strings would entail the

necessary discretisation of the parameters and the ensuing loss of accuracy. This

200

8.2 Further W o r k

problem can be avoided using the evolutionary strategy (evolutionary programming)

approach since these algorithms use the phenotypic representation and thus do not

use a coded form of the parameters. Though the adaptive I IR filtering problem has

been studied in this thesis, the more general setting for the work would be optimis

ing stochastic,noisy and multimodal performance surfaces. This very general setting

can be used in a variety of engineering applications. The main drawback with the

simulated evolutionary approaches are the dependence of the strategic parameters of

the algorithm on the particular problem being solved. Though researchers have at

tempted to solve this problem by incorporating the parameters themselves as genetic

material, more analysis needs to be done to quantify the results obtained so far. The

computational time of the simulated evolutionary algorithms when simulated on a

sequential machine is large. However, the real power of the method arises in using

parallel techniques as each structure of a population could be evaluated at the same

time instant.

8o2 Further Work

The problem of adaptive I IR filtering which was used in this thesis forms a special

case of the more general problem, namely the optimisation of a noisy, stochastic,

multimodal error surface. The evolutionary schemes have been shown to have signif

icant promise for this problem as shown from the results obtained for the adaptive

I IR filtering problem. In the subsequent sections, we present some future areas for

research, which seem to hold significant promise for the general problem stated above.

8.2.1 Use of Genetic Algorithms in Non-stationary Envi

ronments

Non-stationary environments are of significant practical importance as most real world

problems have performance surfaces which are not constant but may change values

with time. Thus if an unknown system has been identified correctly by a model

ing system, the modeling system must be able to track any changes in the unknown

201

8.2 Further W o r k

system characteristics. These changes can vary from slow long-term changes to con

tinuously changing performance surfaces. One of the approaches to this problem

was to include the parameters of the genetic algorithm as genetic material which

undergoes the process of genetic manipulation. An initial study of this approach

was attempted and the results have been reported in this thesis. Another approach

to non-stationary environments would be to use the concept of diploidy and domi

nance. Diploidy in genetics refers to the use of a pair of chromosomes which contain

information for the same function while haploid organisms are composed of a single

strand of chromosome which contain information about a particular function. Though

diploidy seems to suggest redundancy, i t could perhaps be used an a mechanism to

take into account the non-stationary characteristics of an environment. For the case

of diploid chromosomes, each locus can be occupied by one of the two allele values.

This conflict is resolved by use of the dominance operator which decides which of

the allele value is dominant and which are recessive. The dominant allele value is

expressed in the phenotype. The main theories given for diploidy and dominance

are that diploidy provides a mechanism to remember past history while dominance

protects those previously remembered allele values from a currently unfavourable

phase. Thus diploidy and dominance allow for an alternative solution to be held in

the background. Although preliminary work on this aspect has been accomplished,

more complete analysis and results are still required.

8.2.2 Parallel Implementation

Parallel implementations of evolutionary optimisation schemes have received a great

deal of interest as their operation make them very suitable for such techniques. As the

basic unit of an evolutionary scheme is a population, members of a population can be

evaluated in parallel. This method needs to be explored and analysed in greater detail.

A possible implementation would be to realise the genetic algorithm using dedicated

hardware. This is based on the fact that the main string structures comprising the

members of a population are binary in nature for a genetic algorithm and thus all

the members may be evaluated in parallel. In the case of evolutionary strategies, if

202

8.2 Further W o r k

the recombination parameter is not used, then even the genetic operations may be

be performed in parallel. Preliminary work on this front has been reported [HB92]

where the parallel implementation details of evolutionary algorithms are explained in

detail.

8.2.3 Genetic Algori thms and Neural Networks

The use of genetic algorithms in neural networks would tie together two schemes

which have been inspired by biological systems. The main use of genetic algorithms

would be to train the neural networks - i.e. the genetic algorithm is used as the

learning scheme. This method has obvious advantages since the genetic algorithm as

a stochastic technique does suffer from problems of local minima which established

algorithms like back propagation find difficult to overcome. The neural network ap

proach aims at generating a functional, possibly nonlinear, relationship between an

input and output set of data. Current results in mating these two techniques have

met with modest results and most of the problems which have been solved have been

relatively small. A possible area of application would be to use choose problems where

gradient information is not available and thus the neural net has to be trained using

different approaches. Some encouraging results using this idea has been obtained in

reinforcement learning for neurocontrol - this approach has been termed as genetic

reinforcement learning [WDD91]. There is considerable scope for research in this area

with a lot of challenging control problems which are yet to be fully solved.

8.2.4 Theoretical Analysis using Natural Genetics

Theoretical analysis of evolutionary optimisation schemes are still in their infancy

and more research is required to give the precise nature of the approach, under what

conditions they fail , and the nature of the problems which they are suited to opti

mise. This perhaps could be achieved by using results which have been derived by

researchers who have been working in the area of mathematical genetics. Some of

these results relate to global stability of populations and relations between the various

parameters to achieve this.

203

8.2 Further W o r k

8.2.5 H y b r i d Schemes

I t is the f i rm conclusion of the author that in future the schemes which likely to

provide good results for real world problems are hybrid schemes composed of different

optimisation techniques perhaps operating at different stages. One such approach was

detailed in thesis where the techniques of annealing and genetic algorithms were used

to devise new schemes which had some desirable properties. Use of stochastic learning

automata in hierarchical hybrid schemes appears to have promising prospects as the

automaton can be used to conduct a coarse level search the results of which can then

be used by the algorithms further down the hierarchy to obtain a more accurate and

precise result. Theoretical results for the new hybrid schemes which were proposed

in Chapter 7 are not yet available and more work is required in order to obtain the

global optimality conditions.

204

Appendix A
A L G O R I T H M : Direc t Form Realization to Lat t ice Form

Suppose

22j=o a3Z 3

is the direct form filter. Then the program given below computes the lattice form

coefficients (ki,V{) corresponding to the direct form coefficients (aj,&,).

P rogram Lat t ice-Coeff

Begin

SM = 1

For i = H t o 1

Begin

ki = -a*

Vi = b\

= Si(l - ki)

For j = 1 t o (i - 1)

Begin

a}" 1 = aj- + (* ,<. , •) / (! " *?)

= 6} - (vM-,)

End

&o_1 = &o +

End

v0 = b°0

End

205

Append ix A

The above algorithm calculates the lattice coefficients k{ and u,-, given the coef
ficients of the direct form filter. The coefficients are referred to as the reflection
coefficients. The condition for the stability of a lattice filter is that the magnitude of
all the reflection coefficients must be less than unity, i.e. < 1 ; Vz. This criteria
could be easily incorporated into an adaptive algorithm by restricting the values a
particular coefficients can take.

206

Appendix B

Mathematical Model of Simulated Annealing

The simulated annealing algorithm is a mechanism that continuously attempts to

transform a current point into one of its neighbouring points. The mathematical

model which best describes this process is a Markov chain: a sequence of steps where

the probability of a move is dependent only on the previous state or move. This

is applicable in the case of simulated annealing, as the transitions correspond to a

move and that the outcome of a transition is dependent only on the previous state.

A Markov chain is usually described by a set of conditional probabilities Pij(k, k + 1)

for every pair of outcomes (i , j) . Pij(k,k + 1) describes the probability of reaching

the state j at instant (k+1) from state i at instant k. Suppose X(k+1) denotes the

outcome of the trial at time instant (k+1), then

Pii{k, k + 1) = Pr{X(fc + 1) = j | X(fc) = t} (B. l)

The above Markov chain is said to be homogeneous if the conditional probabilities

Pij do not depend on the iteration k, otherwise i t is called inhomogeneous.

In case of the simulated annealing algorithm, the probabilities P,j are referred to as

the transition probabilities and the matrix composed of these transition probabilities

is called the transition matrix. The transition probabilities define the properties of

the algorithm and is a function of the control parameter c. If the parameter c is kept

constant, then the corresponding Markov chain is homogeneous. This follows from

the above definition of homogeneity, as a constant value of the control parameter

implies that the transition matrix is not dependent on the iteration index k. The

transition probability Pij(c) of the simulated annealing process can then be defined

207

Appendix B

by
Ga(c) x H{j(c) V j / i

PM={ _ , „ , I (B.2) l - E E U C / W x ^ K c) j = i

The two matrices GtJ- and J?,j are very important with regard to the global opti

misation capability and the rate of convergence of the algorithm. The generating

probability matrix G,j is defined by the generating distribution and is used to gen

erate the next point j by perturbing the current point i. A Gaussian distribution is

usually used for this process. Thus if a parameter x of the process has a value x(k)

at iteration k, then at iteration (k+1) its value is determined by

x(k + 1) = x(k) + G(0^(x) (B.3)

where G(0, a) is a Gaussian distribution with mean value 0 and variance a i.e.

G{x) « exp(-x2/tr2) (B.4)

The variance a is function of the control parameter c. The use of the Gaussian distri

bution has not been always followed in the implementations of simulated annealing

where sometimes a uniform distribution has been used [BMU92, Cor87]. The origi

nal formulations of the simulated annealing algorithm [KGV83, Cer85] also had used

uniform distributions to generate the new points of a sequence. The acceptance prob

ability matrix H{j is derived from the Metropolis criterion which has been explained

before and is given by

f 1 if (AEij) < 0

[e x p (^) i / (A E : j) > 0

where AE is difference in energies (cost) between the current state and the new state.

Hij(k) is used to decide whether to accept the new point which has been generated

using Gij(k).

The control parameter plays an important role in rate of convergence and accuracy

of the algorithm and is gradually reduced during the course of the algorithm. This

208

Append ix B

decrement can result in two formulations of the algorithm which are based on the
resulting Markov chain:

o Homogeneous Algorithm: The algorithm is described by a sequence of homoge

neous Markov chains. Each Markov chain is generated at a fixed value of the

control parameter c, which is reduced between subsequent Markov chains.

o Inhomogeneous Algorithm: In this formulation, the algorithm is described by

a single inhomogeneous algorithm where the value of c is continuously reduced

between transitions.

209

ibliography

[Ale86] S.T. Alexander. Adaptive Signal Processing. Springer-Verlag, 1986.

[BE91] T. Boseniuk and W. Ebeling. Boltzmann, Darwin and Haeckel Strategies

in complex optimisation. Lecture Notes in Computer Science, 496:430-444,

1991.

[BEA87] T. Boseniuk, W. Ebeling, and Engel A. Boltzmann and Darwin strategies

in complex optimisation. Physics Letters A, 125:307-310, 1987.

[Bin78] K. Binder. Monte Carlo methods in statistical physics. Springer, New York,

1978.

[BMU92] N . Benvenuto, M Marchesi, and A. Uncini. Applications of simulated an

nealing for the design of special digital filters. IEEE Transactions on Signal

Processing, 40:323-332, 1992.

[Cer85] V. Cerny. Thermodynamical approach to the traveling salesman problem:

An efficient simulation algorithm. Journal of Opt. Theory Appl., 45:41-51,

1985.

[CG85] C. Cowan and P. Grant, editors. Adaptive Filters. Prentice-Hall, Englewood

Cliffs, N.J., 1985.

[Cor 87] A. et al. Cor ana. Minimizing multimodal functions of continuous variables

with the simulated annealing algorithm. ACM Transactions on Mathematical

software, 13:262-280, 1987.

[CS69] B. Chandrashekaran and D.W.C. Shen. Stochastic automata games. IEEE

Transactions on Systems, Science and Cybernetics, 5:145-149, 1969.

210

B I B L I O G R A P H Y

[CS88] R.A. Caruana and J.D. Schaffer. Representation and hidden bias: Gray

vs. binary coding for genetic algorithms. In Proc. of the 5th Int'l Conf.

on Machine learning, Morgan Kaufman Publishing, San Mateo, California,

1988.

[Dav91] L. Davis (Editor). Handbook of Genetic Algorithms. Van Nostrand Reinhold,

New York, 1991.

[DeJ75] K.A. DeJong. An analysis of the behaviour of a class of genetic adaptive

systems. PhD thesis, University of Michigan, 1975.

[DeJ80] K. A. DeJong. Adaptive System Design: A Genetic Approach. IEEE Trans

actions of System, Man and Cybernetics, 10:566-574, September 1980.

[DS90] K.A. DeJong and W.M. Spears. An analysis of multi-point crossover. In

Proc. of the foundations of Genetic algorithms, Indiana, 1990.

[DS91] K.A. DeJong and W . M . Spears. On the virtues of parameterised uniform

crossover. In Proc. of the 4 t / l Int'l Conf. on Genetic algorithms, Morgan

Kaufman Publishing, San Mateo, California, 1991.

[EA86] W. Ebeling and Engel A. Models of evolutionary systems and their applica

tions to optimisation problems. Syst. Anal. Model. Simul., 3:377-385, 1986.

[EAM86] W. Ebeling, Engel A., and V.G. Mazenko. Modeling selection process with

age-dependent birth and death rates. BioSystems, 19, 1986.

[EHC82] D. M. Etter, M.J. Hicks, and K. H. Cho. Recursive adaptive filter design

using an adaptive genetic algorithm. In Proc. of the IEEE Int. Conf. on

ASSP, pages 635-638, 1982.

[Fei76] P. L. Feintuch. An adaptive recursive LMS filter. Proceedings of the IEEE,

pages 1622-1624, November 1976.

[FFA91] D. B. Fogel, L.J. Fogel, and W.J. Atmar. Meta-Evolutionary programming.

In Proc. of the 25th Asilomar Conf. on Signals, Systems and Computers,

Pacific Grove, California, 1991.

211

B I B L I O G R A P H Y

[FJ86] H. Fan and W. K. Jenkins. A new adaptive IIR filter. IEEE Transactions

on Circuits and Systems, 33:939-947, 1986.

[FM66] K.S. Fu and G.J. McMurthy. A study of stochastic automata as a model for

learning and adaptive controllers. IEEE Transactions on Automatic Control,

11:379-387, 1966.

[FN89] H. Fan and M . Nayeri. On error surfaces of sufficient order adaptive IIR fil

ters: proofs and counter examples to a unimodality conjecture. IEEE Trans

actions on Acoustics, Speech and Signal Processing, 37:1436-1442, 1989.

[Fog62] L. J. Fogel. Autonomous automata. Industrial Research, 4:14-19, 1962.

[Fog91a] D. B. Fogel. Evolutionary modeling of underwater acoustics. In Proc. of

OCEANS'91, pages 453-457, 1991.

[Fog91b] D. B. Fogel. System Identification through Simulated Evolution: A Machine

Learning Approach to Modeling. Ginn Press, Needham Heights, MA 02194,

1991.

[FOW66] L.J. Fogel, A. J. Owens, and M . J. Walsh. Artificial Intelligence through

simulated evolution. John Wiley k, Sons, New York, 1966.

[GDK89] D. Goldberg, K. Deb, and B. Korb. Messy genetic algorithms: Motivation,

Analysis and 1 s t Results. Complex Systems, 3:493-530, 1989.

[GDK90] D. Goldberg, K. Debj and B. Korb. Messy genetic algorithms: Studies in

mixed size and scale. Complex Systems, 4:415-444, 1990.

[GG84] S. Geman and D. Geman. Stochastic relaxation, gibbs distribution and the

bayesian restoration of images. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 6:721-741, 1984.

[Gil85] A . M . Gilles. Machine learning procedures for generating image domain fea

tures. Doctoral Dissertation, University of Michigan, 1985.

212

B I B L I O G R A P H Y

[Gol89] D.H. Goldberg. Genetic Algorithms - In Search, Optimization and Machine

Learning. Addison-Wesley Publishing Company, 1989.

[Goo83] R. P. Gooch. Equation-Error Approach to Adaptive IIR Filtering. PhD

thesis, Stanford University, 1983.

[Gre86] John J. Grefenstette. Optimisation of control parameters for genetic algo

rithms. IEEE Transactions of System, Man and Cybernetics, 16:122-128,

January 1986.

[Gri78] L.J. Griffiths. An adaptive lattice structure for noise-canceling applications.

In Proc. IEEE Int. Conf. Acoust.., Sp., and Sig. Processing, pages 87-90,

Apri l 1978.

[Has70] W. Hastings. Monte carlo sampling methods using markov chains and their

application. Biometrika, 57:97-109, 1970.

[Hay86] S. Haykin. Adaptive filter theory. Prentice-Hall Inc., Englewood Cliffs, N.J.,

07632, 1986.

[HB92] F. Hoffmeister and T. Back. Genetic algorithms and evolution strategies:

Similarities and differences. Technical Report, No. SYS-1/92, University of

Dortmund, Germany, 1992.

[HM84] M.L. Honig and D.G. Messerschmitt. Adaptive Filters: Structures, algo

rithms and applications. Kluwer Academic, Hingham, MA, 1984.

[Hol71] R.B. Hollstein. Artificial genetic adaptation in computer control systems.

PhD thesis, University of Michigan, 1971.

[Hol75] John H. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor:

University of Michigan Press, University of Michigan, 1975.

[Hor76] S. Horvath, Jr. Adaptive IIR digital filters for on-line time-domain equal

ization and linear prediction. In IEEE Arden House Workshop on Digital

Signal Processing,, Harriman, N.Y., February 1976.

213

B I B L I O G R A P H Y

[Ing89] L. Ingber. Thermodynamical approach to the traveling salesman problem:
An efficient simulation algorithm. Mathematical Computer modeling, 412:41—
51, 1989.

[JL77] C. R. Johnson, Jr. and M . G. Larimore. Comments on and additions to

'An adaptive recursive LMS filter'. Proceedings of the IEEE, 65:1399-1401,

September 1977.

[Joh79] C. R. Johnson, Jr. A convergence proof for a hyperstable adaptive recursive

filter. IEEE Transactions on Information Theory, 25:745-749, November

1979.

[Joh84] C. R. Johnson, Jr. Adaptive I IR filtering: Current results and open issues.

IEEE Transactions on Information Theory, 30:237-250, March 1984.

[KGV83] S. Kirkpatrick, C D . Gelatt, Jr., and M.P. Vecchi. Optimisation by simu

lated annealing. Science, 220(4598):671-680, 1983.

[KT63] V. Yu Krylov and M.L. Tsetlin. Games between automata. Automat. Tele-

mekh., 24:975-987, July 1963.

[LakSl] S. Lakshmivarahan. Learning Algorithms: Theory and Applications. New

York: Springer-Verlag, 1981.

[LN81] S. Lakshmivarahan and K.S. Narendra. Learning algorithms for two-person

zero-sum stochastic games with incomplete information. Mathematics of

operations research, 6:379-386, 1981.

[LN82] S. Lakshmivarahan and K.S. Narendra. Learning algorithms for two-person

zero-sum stochastic games with incomplete information: a unified approach.

SIAM Journal of control and optimisation, 20:541-552, 1982.

[LS83] L. Ljung and T. Soderstrom. Theory and practise of recursive identification.

M I T Press, Cambridge, M.A., 1983.

214

B I B L I O G R A P H Y

[LT72a] S. Lakshmivarahan and M.A.L. Thathatchar. Bayesian learning and rein

forcement schemes for stochastic automata. In Proc. Int. Conf. on Cyber

netics and Society, Washington D.C., October 1972.

[LT72b] S. Lakshmivarahan and M.A.L. Thathatchar. Optimal non-linear reinforce

ment schemes for stochastic automata. Information Sciences, 4:121-128,

1972.

[LT73] S. Lakshmivarahan and M.A.L. Thathatchar. Absolutely expedient learning

algorithms for stochastic automata. IEEE Transactions on Systems, Man

and Cybernetics, 3:281-286, May 1973.

[LT76] S. Lakshmivarahan and M . A. L. Thathatchar. Absolute expediency of q

and s-model learning algorithms. IEEE Transactions on Systems, Man and

Cybernetics, 6:222-226, 1976.

[LTJ80] M . G. Larimore, J. R. Treichler, and C. R. Johnson, Jr. SHARF:an algorithm

for adapting IIR digital niters. IEEE Transactions on Acoustics, Speech and

Signal Processing, 28:428-440, August 1980.

[Luc66] R. W. Lucky. Techniques for adaptive equalization of digital communication

systems. Bell System Technical Journal, 45:255-286, 1966.

[Mas73] L.G. Mason. An optimal learning algorithm for S-model environments. IEEE

Transactions on Automatic Control, pages 493-496, October 1973.

[Mea53] N . Metropolis and et. al. Equation of state calculations by fast computing

machines. Journal of Chemical Physics, 21:1087-1092, 1953.

[Men73] J M . Mendel. Discrete Techniques of Parameter Estimation: The Equation

Error Formulation. Marcel Dekker, New York, 1973.

[MK84] Brian T. Mitchell and Dionysios I . Kountanis. A reorganisation scheme for a

hierarchical system learning automata. IEEE Transactions on Systems, Man

and Cybernetics, 14(2):328-334, March/April 1984.

215

B I B L I O G R A P H Y

[MP90] J.R. McDonell and W.C. Page. Mobile robot path planning using evolu

tionary programming. In Proc. of the 24"1 Asilomar Conference on Signals,

Systems and Computers, pages 1025-1029, Pacific Grove, CA, 1990.

[MT89] S. Mukhopadhayay and M.A.L. Thathatchar. Associative learning of boolean

functions. IEEE Transactions on Systems, Man and Cybernetics, 19(5): 1008—

1015, September/October 1989.

[MV78] J. Makhoul and R. Viswanathan. Adaptive lattice methods for linear pre

diction. In Proc. IEEE Int. Conf. Acoust.., Sp., and Sig. Processing, pages

83-86, Apri l 1978.

[NJ89] M . Nayeri and W. K. Jenkins. Alternative realizations to adaptive IIR filters

and properties of their performance surfaces. IEEE Transactions on Circuits

and Systems, 36:485-496, April 1989.

[NT74] K. S. Narendra and M.A.L. Thathatchar. Learning automata - a survey.

IEEE Transactions on Systems, Man and Cybernetics, 4(4):323-333, July

1974.

[NT89] K. S. Narendra and M.A.L. Thathatchar. Learning Automata - An Intro

duction. Prentice-Hall International Inc., 1989.

[OC88] B.J. Oommen and J.P.R. Christensen. e-optimal discretised linear reward-

penalty learning automata. IEEE Transactions on Systems, Man and Cy

bernetics, 18(3):451-458, May/June 1988.

[OH84] B.J. Oommen and E.R. Hansen. The asymptotic optimality of discretised

linear reward-inaction learning automata. IEEE Transactions on Systems,

Man and Cybernetics, 14:542-545, May/June 1984.

[OL90] John B. Oommen and Kevin J. Lanctot. Discretised pursuit learning au

tomata. IEEE Transactions on Systems, Man and Cybernetics, 20(4):931-

938, July/August 1990.

216

B I B L I O G R A P H Y

[OM88] B.J. Oommen and D.C.Y. Ma. Deterministic learning automata solutions to

the equi-partitioning problem. IEEE Transactions on Computers, 37:2-14,

January 1988.

[PA78] D. Parikh and N. Ahmed. On an adaptive algorithm for I IR filters. Proceed

ings of the IEEE, 66:585-588, 1978.

[PAS80a] D. Parikh, N. Ahmed, and S. D. Stearns. An adaptive lattice algorithm

for recursive filters. IEEE Transactions on Acoustics, Speech and Signal

Processing, Vol. 28:pp. 110-111, February 1980.

[PAS80b] D. Parikh, N. Ahmed, and S. D. Stearns. An adaptive lattice algorithm

for recursive filters. IEEE Transactions on Acoustics, Speech and Signal

Processing, 28:110-111, February 1980.

[PM88] John G. Proakis and Dimitris G. Manolakis. Digital Signal Processing.

Macmillan Publishing Company, New York, 1988.

[Pop73] V. M . Popov. Hyperstability of Control Systems. Springer-Verlag, Berlin,

1973.

[Rec73] Ingo Rechenberg. Evolutionsstrategie: Optimierung technishcher Systeme

nach Prinzipien der biologischen Evolution. Frommann-Holzboog, Stuttgart,

1973.

[Reg92] Philip A. Regalia. Stable and efficient lattice algorithms for adaptive IIR

filtering. IEEE Transactions on Signal Processing, 40:375-388, 1992.

[Sch75] Hans-Paul Schwefel. Evolutionsstrategie und numerische Optimierung. Dis

sertation, Technische Universitat Berlin, 1975.

[Sch81] Hans-Paul Schwefel. Numerical optimisation of computer models. John Wi

ley, Chichester, 1981.

[SD88] S. D. Stearns and R. David. Signal Processing Algorithms. Prentice-Hall

Inc., Englewood Cliffs, NJ 07632, 1988.

217

B I B L I O G R A P H Y

[SEA76] S. D. Steams, G. R. Elliot, and N. Ahmed. On adaptive recursive filtering.

In Proc. 10*'' Asilomar Conf. on Circuits, Systems and Computers, pages

5-10, Pacific Grove, CA, November 1976.

[Shy87] John J. Shynk. Performance of alternative adaptive IIR filter realizations.

In Proc. 21st Asilomar Conf. on Circuits, Systems and Computers, pages

144-150, Pacific Grove, CA, November 1987.

[Shy89a] John J. Shynk. Adaptive I IR filtering. IEEE ASSP Magazine, pages 4-21,

April 1989.

[Shy89b] John J. Shynk. Adaptive IIR filtering using parallel form realizations. IEEE

Transactions on Acoustics, Speech and Signal Processing, 37:519-533, April

1989.

[SK89] Rahul Simha and James F. Kurose. Relative reward strength algorithms for

learning automata. IEEE Transactions on Systems, Man and Cybernetics,

19(2):388-398, March/April 1989.

[SN69] I.J. Shapiro and K. S. Narendra. Use of stochastic automata for parameter

self-optimization with multimodal performance criteria. IEEE Transactions

on Systems, Man and Cybernetics, 5:352-360, 1969.

[Sod75] T. Soderstrom. On the uniqueness of maximum likelihood identification.

Automatica, 11:193-197, 1975.

[SR87a] H. Szu and Hartley R. Fast simulated annealing. Physics Letters A,

122(3,4):157-162, 1987.

[SR87b] H. Szu and Hartley R. Nonconvex optimisation by fast simulated annealing.

Proc. of the IEEE, 75(11): 1538-1540, 1987.

[SS82] T. Soderstrom and P. Stoica. Some properties of the output error method.

Automatica, 18:93-99, 1982.

[Ste8l] S. D. Stearns. Error surface of recursive adaptive filters. IEEE Transactions

on Acoustics, Speech and Signal Processing, 29:763-766, June 1981.

218

B I B L I O G R A P H Y

[Suc9l] D. Suckley. Genetic algorithms in the design of FIR filters. IEE Proc. - (G),

138:234-238, Apri l 1991.

[Sys89] G. Syswerda. Uniform crossover in genetic algorithms. In Proc. of the 3rd

Int'l Conf. on Genetic algorithms, Morgan Kaufman Publishing, San Mateo,

California, 1989.

[TCC87] Y.H. Tarn, P.C. Ching, and Y.T. Chan. Adaptive recursive filters in cascade

form. IEE Proc.(F), 134:245-252, June 1987.

[TJL87] J. R. Treichler, C.R. Johnson, Jr., and M.G. Larimore. Theory and design

of adaptive filters. John Wiley & Sons, New York, 1987.

[TLJ78] J. R. Treichler, M . G. Larimore, and C. R. Johnson, Jr. Simple adaptive IIR

filtering. In Proc. 1978 Int. Conf. Acoust., Speech, Signal Processing, pages

118-122, Tulsa, OK, April 1978.

[T079] M.A.L. Thathatchar and B.J. Oommen. Discretised reward-inaction learning

automata. Journal of Cybernetics and Information Science, pages 24-29,

Spring 1979.

[TP89] C.K.K. Tang and Mars P. Intelligent learning algorithms for adaptive digital

filters. Electronic Letters, 25:1565-1566, 1989.

[TP91] C.K.K. Tang and Mars P. Stochastic learning automata and adaptive digital

filters. IEE Proc. (F), 138(4):331-340, August 1991.

[TR81] M.A.L. Thathatchar and K.R. Ramakrishnan. A hierarchical system of learn

ing automata. IEEE Transactions on Systems, Man and Cybernetics, 11:236—

242, 1981.

[TS85] M.A.L. Thathatchar and P.S. Sastry. A new approach to the design of rein

forcement schemes for learning automata. IEEE Transactions on Systems,

Man and Cybernetics, 15(1):168-175, January/February 1985.

219

B I B L I O G R A P H Y

[TS86] M.A.L. Thathatchar and P.S. Sastry. Estimator algorithms for learning au

tomata. In Proc. of Platinum Jubilee Conference on Systems and Signal

Processing, Bangalore, India, 1986.

[Tse62] M.L. Tsetlin. On the behaviour of finite automata in random media. Au

tomation and Remote Control, 22:1210-1219, 1962.

[vLA87] P.J.M. van Laarhoven and E.H.L. Aarts. Simulated Annealing: Theory and

Applications. D. Reidel Publishing Company, 1987.

[VN70] R. Viswanathan and K.S. Narendra. Expedient and optimal variable-

structure stochastic automata. Technical Report CT-31, Dunham Lab., Yale

University, New Haven, Conn.,, April 1970.

[VN73] R. Viswanathan and K. S. Narendra. Stochastic automata models with ap

plications to learning systems. IEEE Transactions on Systems, Man and

Cybernetics, pages 107-111, January 1973.

[VN74] R. Viswanathan and K. S. Narendra. Games of stochastic automata. IEEE

Transactions on Systems, Man and Cybernetics, 4:131-135, 1974.

[WDD91] D. Whitley, S. Dominic, and R. Das. Genetic reinforcement learning with

multilayer neural networks. In Proc. of the 4th International Conf. on Genetic

Algorithms, Morgan Kaufman Publishing, San Mateo, California, 1991.

[WH60] B. Widrow and M.E. Hoff, Jr. Adaptive switching circuits. In IRE WESCON

Conv. Rec, pages 96-104, 1960.

[Whi75] S. A. White. An adaptive recursive filter. In Proc. 9th Asilomar Conf. on

Circuits, Systems and Computers, pages 21-25, Pacific Grove, CA, November

1975.

[WM76] B. Widrow and J.M. McCool. A comparison of adaptive algorithms based

on the method of steepest descent and random search. IEEE Transactions

on Antennas and Propagation, 24:615-637, 1976.

220

B I B L I O G R A P H Y

[WS85] B. Widrow and S. D. Stearns. Adaptive Signal Processing. Prentice-Hall Inc.,
Englewood Cliffs, N.J. 07632, 1985.

221

Publications

222

Presented at the 1992 I E E E International Conference on ACOUSTICS, S P E E C H
and SIGNAL PROCESSING, March 1992, San Fransisco, California.

Genetic and Learning Automata Algorithms for
Adaptive Digital Filters

Nambiar R. * Tang C.K.K ° Mars P. t

' School of E n g . and Computer Science ° G E C Marconi Research Centre
University of D u r h a m West Hanning Fie ld R o a d , Grea t Baddock,
D u r h a m D i l l 3 L E , U . K . Chelmsford C M 2 8 H N , U . K .

Abstract
This paper details two different approaches to Adaptive
Digital Filtering based on L e a r n i n g A l g o r i t h m s . The
first approach is based on S t o c h a s t i c L e a r n i n g A u
t o m a t a where the discretised values of a parameter(s)
form the actions of an Learning Automata which then ob
tains the optimal parameter setting using a suitably de
fined error function as the feedback from the environment.
We detail the use of improved learning schemes published
elsewhere and also point out the basic shortcoming of this
approach.

The second approach is based on G e n e t i c A l g o r i t h m s .
GAs have been used here in the context of multiparame
ter optimisation. We present simulation results to show
how this approach is able to tackle the problems of dimen
sionality wtien adapting high-order filters. The effect of
the different parameters of a GA on the learning process
is also demonstrated. Comparative results between a pure
random search algorithm and tlieGA are also presented.

1 In t roduc t ion
T h e basic task of Adaptation in Adapt ive Fi l tering is to
determine the opt imum sett ing of parameters defining the
system so as to minimise a suitably defined error func
tion. T h u s the problem of adaptation can be reduced
to a problem in optimisat ion. Algori thms used for this
purpose mainly fall into two main classes : Gradient Algo
rithms and Least Square Techniques. Gradient Algori thms
have been widely used in adaptive control but fail when
the error function is mul t imodal . T h e i r performance also
deteriorates in the presence of noise and non-stationary
environments. Least Square Techniques have faster con
vergence but are computat ional ly more complex.

T h i s paper gives details of two different approaches to
adaptive filtering based on Learning Algorithms. After
a brief introduction to the problem in section 2, details
of the two approaches are presented in section 3 and 4.
Simulation results and conclusions are given in section 5.

2 Adapt ive Fi l ter ing

Adapt ive Fi l ter ing has been used for various applications
like adaptive equalisation, adaptive noise-cancelling, adap
tive prediction e tc . [l j . T h e system identification configu
ration has been used in this paper to i l lustrate the new
approaches to adaptive filtering.

In adaptive filtering the adaptive filter used can be of
two types : A d a p t i v e F I R F i l t e r or A d a p t i v e I I R F i l
t e r . Algori thms relating to the adaptation of F I R filters
are well established. In part icular gradient algorithms are
very suitable for adaptive F I R filtering as the error sur
face is quadrat ic and unimodal with respect to the filter
coefficients. B u t the potential advantages of using an I I R
filter in place of a F I R filter has encouraged the study
of adaptive I I R filtering, a thorough review of which is
presented in [2]. A n I I R filter gives a better frequency
response and less computat ional cost than an equivalent
F I R filter. B u t the stability of an I I R filter is an important
issue during its adaptation. However the problem which
has the prompted the use of Learning Algorithms in adap
tive I I R filtering is: The error surface in the case of IIR
filtering may not be quadratic and unimodal with respect
to the filter coefficients and may have multiple optimas.
T h i s renders the use of gradient techniques impract ical as
they could get stuck in a local min ima.

When adapting high-order I I R filters, the stability of
the filters generated during the adaptation is of vital im
portance. A method to check the stabil ity is to factorise
the denominator polynomial at each stage of the adap
tation which is computational ly expensive. To overcome
this problem, alternative realisations like the parallel and
cascade forms have been used to model the direct form
fillers as given in [3]. T h e basic sub-system in either the
parallel or the cascade configuration is a 2 n d order filter.
T h i s enables the stability check to be built into the algo
rithm itself by ensuring the coefficients of the 2 n d order
sub-system lie inside the stability triangle [2].

3 Stochastic Learning Automata

3.1 Introduction
Stochastic Learning A u t o m a t a (S L A) may be defined as
an abstract element which interacts with the environment
in such a manner so as to improve a specified perfor
mance measure. I t could be regarded as a finite state
machine having a finite set of outputs 6 = {at, • • • , o r r } .
each of which could be selected with a probability p =
{ p i . ' ' ' i P r } . T h e input set /3 of the automata could be
binary i.e 0,1 [P-model] , be finite [Q-model] or continuous
between 0 and 1 [S-model]. T h e automata operates by
selecting an action, then using the response from the envi
ronment to that action as an input to modify the existing
probability vector p. A t stage n of the learning process
we have

p(n + l) = r[p(n), Q (n), /3(n)]; 1

where T is the action probability updating rule. More
complete details of S L A are given in [4].

T h e use of S L A in adaptive filtering has been reported
in [5]. T h i s follows from an earlier paper where S L A has
been used as a optimisation tool for mult imodal noisy sur
faces [6]. When used to adapt digital filters, the output
set of actions of the automata form a set of filter coeffi
cients, each action being regarded as a specific combina
tion of filter coefficients. T h i s is equivalent to the error
space being partit ioned into a number of hyperspaces, the
number of hyperspaces being equal to the number of a u
tomata output actions. T h e environment is represented
by the operating environment of the adaptive filter and
the mean squared output error is used as a performance
criterion. We add to the results already obtained in [5] by
using new probability updat ing algorithms. These include
the discretised L R I and the pursuit algorithms.

3.2 New Reinforcement Algorithms

3 . 2 . 1 D i s c r e t i s e d L I U

A general approach for improving the convergence of S L A
is by discretising the action probabilities. Theoret ica l re
sults for the discretised L R I algorithm for a 2-action au
tomata are given in [7]. For the multi-action discrete case
simulation results when used in adaptive filtering are pre
sented. T h e concept of discretisation is achieved by re
stricting the action probabilities representing the internal
state of the automata to a finite set of discrete values in
the interval [0,1], More details of the approach is given in

3 . 2 . 2 P u r s u i t A l g o r i t h m s

Pursui t algorithms are a simpler subset of a new class
of algorithms referred to as estimator algorithms intro
duced by T l i a t h a c h a r and Sastry [8]. As opposed to non-
estimator algorithms, Estimator algorithms use a running
estimate of the probability of reward for each action. T h u s

the state vector of the S L A is now increased to include an
other parameter d.

Pursui t algorithms are characterised by the fact that
the action probability vector pursues the optimal action.
T h e steps of the algorithm are the same as the standard
P-model L R I reinforcement but for two changes. First ly , if
an action is rewarded, then the action probability of that
action is not necessarily increased, rather the automata
increases the probabil i ty of the action having the largest
estimate of reward. Secondly the algorithm updates the
estimate vector d at each iteration, where d, is calculated
as the ratio of the number of times an action t is rewarded
to the number of times it is selected. More details of the
scheme are presented in [8]. Discretised Pursui t Algo
ri thms are the discretised counterparts of the Continuous
Pursui t algorithms and were introduced in [9]. T h e al
gorithm functions s imilar to the continuous counterpart
except that the action probabilities are discretised.

3.3 Simulation Experiments
In using S L A for adaptive I I R filtering the reduced order
model given in [10], was used. A s a result of the reduced
order modeling the error surface is bimodal . T h e results
in F i g . 1 show that the S L A is able to identify the global
min imum.

W h e n high-order filters are adapted using the S L A ap
proach, the number of actions of the automata being used
as an adaptive controller becomes large decreasing the
speed of convergence. Al though the automata games ap
proach has been attempted [5], the construction of the
game matr ix for the high-order filter has proven to be
the stumbling block. A new approach based on Genetic
Algorithms is proposed which overcomes this l imitation.

4 Genetic Algor i thms

4.1 Introduction
Genet ic Algor i thms (G A s) [11,12] are search techniques
which are based on the mechanics of natural selection
and genetics involving a s tructured yet randomised in
formation exchange resulting in the survival of the fittest
amongst a population of str ing structures. G A have been
developed by John Holland and his colleagues at the Uni
versity of Hol land.

T h e basic s tructure and operation of a G A is as follows:
Genetic Algori thms operate on a population of structures
which are fixed length strings representing all possible so
lutions of a problem domain. Using such a representa
tion, an initial population is randomly generated. For
each structure (trial solution) in the population, a fit
ness value is assigned. E a c h s tructure is then assigned a
probability measure based on the fitness value which de
cides the contribution a parent solution makes to the new
generation. T h i s phase is referred to as the Reproduction
Phase. E a c h of the offspring generated by the reproduc
tion phase is then modified using Genetic Operators. T h e

two operators used here are" the Crossover operator and
the Mutation operator. In the crossover operation, two in
dividual strings are selected randomly for the population.
A crossover point is randomly selected to lie between the
defining length of the string. T h e resulting substrings of
the two parent strings are swapped resulting in two new
strings. T h e mutation operator generates a new string by
independently modifying the values at each loci of an ex
isting string with a probabil ity pm. T h e parameter pm is
referred to as the probabil ity of mutation. More details of
the basic algorithm is given in [12].

4.2 Application of G A s in Adaptive F i l
tering

G A s have been used here for adapting I I R filtering par
ticularly to overcome the problem of dimensionality when
adapting high-order filters. A n earlier application of G A
in adaptive filtering has been reported in [13], and illus
trated the viabil ity of the approach. In using G A for adap
tive filtering, the system identification configuration has
been chosen where the unknown system is an fixed I I R
filter while the adaptive system is an adaptive I I R filter
whose coefficients are changed by the genetic algorithm.

T h e genetic algorithm operates with a population of
string structures, each string structure in this case being
the set of coefficients of the adaptive I I R filter. E a c h co
efficient is coded as a binary string of 4 bits. T h u s there
are 16(2*) discrete values a coefficient can take. A map
ping procedure is employed which maps the decoded un
signed integer l inearly from [0 , 2 4 — 1] to a specified interval
[Pmin, Pmax]- For the mult i -parameter case, the binary
coded forms of all the coefficients are concatenated. T h i s
forms the string structure for the individuals of a popu
lation. T o assign a fitness value to each string structure,
the mean-squared-output-error e, averaged over a suit
able window length obtained for that string structure is
used. T h e method of power law scaling [12] has been used
wherein the scaled error value is taken as some specified
power of the raw error signal. A value of 4 was chosen for
the power after extensive s imulation experiments. Larger
values of the power led to pre-mature convergence while
lower values increased the convergence time. In order to
convert the maximisat ion problem to a minisation prob
lem, an inverting function was used. T h e actual fitness
value / , assigned to a string i was

/ . = 1/e? 2

where e, was as defined above.

4.3 Simulation Experiments
T h e three defining parameters of the G A had tlie following
values : u (pop. size) = 50 ; p c (prob. of crossover) =
0.8 ; p m (p r o b . of mutat ion) = 0.075. In the simulation
experiments, the adaptive filter has been in the form of
a parallel bank of 2 n d order filters. T h u s a lo" 1 order
filler was modeled by a parallel bank of 5 second order

filters. Due to constraints on space, the transfer functions
of these filters are not presented. A l l the results show
the min imum error obtained after n generations versus
the number of generations. In the simulation experiments
performed to check the effect of the various parameters, a
6 , h order I I R filter was used as a model.

5 Results and Conclusions
F i g . 1 shows the result using the new reinforcement algo
ri thms for S L A . T h e discretised versions of the algorithms
are seen to perform better than the continuous counter
parts with respect to the convergence time. F ig . 2 shows
the result when G A s are used to adapt different order fil
ters. It can be seen that G A have a fast init ial learning
rate. Fig .s 3, 4, and 5 show the effect of the different
parameters of the G A on the learning rate. T h e effect
of the mutation probability (F i g . 4) is seen to play a
crucial role as too low or too high a value increases the
convergence time. T h o u g h increasing the population size
(F i g . 3) decreases the convergence time in terms of the
number of generations needed, the actual time of com
putation increases as more time is spent on evaluating a
single generation. F i g . 6 shows the comparison between
a pure random search algorithm and the G A .

T h e above results show that G A s are a viable and prac
tical approach in adaptive I I R filtering especially for adapt
ing high-order fillers. I t is to be noted though that G A
cannot locate the exact global opt ima on account of the
discretisation of the parameter space and thus can be used
as a first level of search to locate a point close to the global
optimum. T h e opt imal setting of the G A parameters is
rather heuristic at present and depends heavily on the
application on hand.

6 References
1. Widrow B . , k Stearns S . D . , Adaptive Signal Process

ing, Prentice Hal l , Englewood Cliffs ,1985,

2. Shynk,J.J. , .4dn/jt iue IIR Filtering, I E E E A S S P Mag.,
Apr . '89, pp. 4-21.

3. Nayeri M . & Jenkins W . K . , Alternative Realizations
to Adaptive IIR Filters and Properties of their Per
formance Surfaces, I E E E T r a n s , on C k t s . and Sys
tems, Vol 3C, No. 4, A p r i l 1989, pp. 485-496,

4. Narendra K . S i : T h a t h a c h a r M . A . L . , Learning Au
tomata - An Introduction, Prent ice-Hal l , Englewood
cliffs, 1989,

5. T a n g C . K . K L. Mars P.,Stochastic Learning Automata
and Adaptive Digital Filters, I E E Proc . F , Vol 138,
Aug. 1991, pp. 331-310,

6. Narendra K . S k. Shapiro, Use of Stochastic Automata
for Parameter Self-Optimisation with Multi-Modal Per
formance Criteria, I E E E T r a n s , on S M C , Oct . 1969,
pp. 352-360,

7. Oomen B. k Hansen, The asymptotic optimality
of discretised LRI Learning Automata, I E E E SMC,
May/June 1984, pp. 542-545,

8. Thathachar M.A.L b Sastry P.S., A Class oj rapidly
converging algorithms for Learning Automata, I E E E
Trans, on SMC, Vol 15, Jan. 1985, pp. 168-175,

9. Oomern B. k. Lanctol, Discretised Pursuit Learning
Algorithms, I E E E Trans, on SMC, July/Aug. 1990,
pp.931-938,

10. Johnson k Larimore M.G, Comments and Additions

Learning Automata Algorithms

P-Modcl

Dis. P-
Model

Dis. Pur

100 150 200

Time Samples (X 100)

Fig. I

Effect of Population Size

300

Pop = 20

Pop = 40

Pop = 60

50 100 150

Time Samples (X 100) (Generations)

Fig. 3

Effect of Crossover

200

Pc = 0.0

Pc= 1.0

E 10

50 100 150

Time Samples (X 100) (Generations)

Flu. 5

200

to " An Adaptive Recursive LMS Filter",Fioc. of
I E E E , Sept. 1977, pp. 1399-1401,

11. Holland J.H, Adaptation in Natural and Artificial
Systems, Ann Arbor, The University of Michigan
Press, 1975,

12. Goldberg D.H., Genetic Algorithms - in Search, Op
timisation and Machine Learning, Addisson-Wesley
Publishing Comp. Inc., 1989,

13. Etter D.M et. zl.,Recursive Adaptive Filter Design
using an Adaptive Genetic Algorithm, Proc. o f l E E E
Conf. on ASSP, 1982, pp.635-638.

Different Order Filters

•r 30
Order

Order

50 100 150

Time Samples (X 100) (Ccncrjllons)
Flfi. 2

Effect of Mutation

Pm = 0.2

50 100 150 200

Time Samples (X 100) (Generations)

Fig. 4

Genetic Algo. Vs. Random Search

" 30
Random
Search

o :o

200

Time Samples (X 100) (CcncraUons)
Fig. 6

Presented at the 1992 I E E Colloquium on Genetic Algor i thms for Cont ro l Systems
Engineering, M a y 1992, Savoy Place, London.

Genetic Algor i thms for Adaptive Dig i ta l F i l t e r ing '

Nambiar I t . & M a r s P. f

Abstract
This paper details a different approach to Adaptive Digital Filtering based on Genetic Algorithms. Algorithms
used in Adaptive Digital Filtering have traditionally been based on the Gradient of the error surface or on Least
Square principles. These methods have been found to have inadequacies when adapting IIR filters. The process
of adaptation to determine the optimum coefficients can be cast as an optimisation problem wherein a search
space is defined and the optimum parameter setting corresponds to the minimum/maximum on the search space.
Thus, Genetic Algorithms (GAs), which are search techniques based on randomised techniques, have been used
here in the context of multiparameter optimisation. Simulation results are presented to show how this approach
is able to tackle the problems of dimensionality when adapting high-order IIR fillers. The effect of the different
parameters of a GA on the learning process is demonstrated. Comparative results between a pure random search
algorithm and the GA are also presented.

1 In t roduc t ion
The basic task of Adaptation in Adaptive Digital Filtering is to determine the optimum setting of parameters
defining the system so as to minimise a suitably defined error function. Thus the problem of adaptation
can be reduced to a problem in optimisation. Algorithms used for this purpose mainly fall into two main
classes : Gradient Algorithms and Least Square Techniques. Gradient Algorithms have been widely used in
adaptive control but fail when the error function is multimodal. Their performance also deteriorates in the
presence of noise and non-stationary environments. Least Square Techniques have faster convergence but are
computationally more complex. Thus new approaches based on Learning Algorithms were attempted. The use
of Stochastic Learning Automata (SLA) in adaptive digital filtering has been reported in [1]. But the SLA
approach did not give satisfactory results when adapting high-order filters, as the convergence times were very
large.

This paper gives details of a different approach to adaptive filtering based on Genetic Algorithms. Genetic
Algorithms are powerful search techniques which have been developed from principles of natural genetics. After a
brief introduction to the problem in section 2, details of the new approach are presented in section 3. Simulation
results and conclusions are given in section 4.

2 Adapt ive F i l t e r ing
Adaptive Filtering has been used for various applications such as adaptive equalisation, adaptive noise-cancelling,
adaptive prediction etc. [2]. The system identification configuration (Fig. 1) has been used in this paper to
illustrate the new approach to adaptive filtering.

In adaptive filtering the adaptive filter used can be of two types : Adaptive F I R Fi l ter or Adaptive
I I R Fi l ter . Algorithms relating to the adaptation of F I R filters are well established. In particular gradient
algorithms are very suitable for adaptive F I R filtering as the error surface is quadratic and unimodal with
respect to the filter coefficients. But the potential advantages of using an I I R filter in place of a F I R filter has
encouraged the study of adaptive I IR filtering, a thorough review of which is presented in [3]. An IIR filter
gives a better frequency response and less computational cost than an equivalent F I R filter. The problem which
has the prompted the use of Learning Algorithms in adaptive IIR filtering is: The error surface in the case of
IIR filtering may not be quadratic and unimodal with respect to the filter coefficients and may have multiple
optimas. This renders the use of gradient techniques impractical as they could get stuck in a local minima. The
prescence of multiple optimas and the conditions when they occur have been investigated in [4].

Another important issue in adaptive filtering is the stability of the filters generated during the adaptation. A
method to check the stability is to factorise the denominator polynomial at each stage of the adaptation which
is computationally expensive. To overcome this problem, alternative realisations like the parallel and cascade

'School of Engineering and Computer Science, University of Durham, Durham D i l l 3 L E , U . K .

forms have been used to model the direct form filters as given in [5]. The basic sub-system in either the parallel
-or the cascade configuration is a 2nd order filter. This enables the stability check to be built into the algorithm
itself by ensuring the coefficients of the 2 n d order sub-system lie inside the stability triangle [2].

3 Genetic Algor i thms

3.1 Introduction
Genetic Algorithms (GAs) [6,7] are search techniques which are based on the mechanics of natural selection
and genetics involving a structured yet randomised information exchange resulting in the survival of the fittest
amongst a population of string structures. GAs have been developed by John Holland and his colleagues at the
University of Holland.

The basic structure and operation of a GA is as follows: Genetic Algorithms operate on a population of
structures which are fixed length strings representing all possible solutions of a problem domain. Though
Holland [6] has shown that the binary representation is the best method to form the string structures, there
has been increasing evidence that real-valued strings also provide as good a representation. In this paper, the
binary representation has been used wherein a parameter is coded as a bit string. Using such a representation,
an initial population is randomly generated. For each structure (trial solution) in the population, a fitness value
is assigned. Each structure is then assigned a probability measure based on the fitness value which decides the
contribution that structure would make to the next generation. This phase is referred to as the Reproduction
Phase. Each of the offspring generated by the reproduction phase is then modified using Genetic Operators.
The two operators used here are the Crossover operator and the Mutation operator. In the Crossover operation,
two individual strings are selected randomly from the population. A crossover point is randomly selected to
lie between the defining length of the string. The resulting substrings of the two parent strings are swapped
resulting in two new strings. The parameter governing the crossover operation is the crossover probability p c.
The Mutation Operator generates a new string by independently modifying the values at each location of an
existing string with a probability p m . The parameter p m is referred to as the probability of mutation. Complete
details of the algorithm are given in [7].

Noise

Input

Unknown
System + E R R O R

Adaptive
Sjfslrm

— T Adaptive
Sjfslrm

i i
Gcnctfc

Algorithm

Fig. (1) System Identification Configuration

3.2 Application of G A s in Adaptive Filtering
GAs have been used here for adapting I I R filtering par
ticularly to overcome the problem of dimensionality when
adapting high-order filters. An earlier application of GAs
in adaptive filtering has been reported in [8], and illus
trated the viability of the approach. In using GAs for
adaptive filtering, the system identification configuration
shown alongside in Fig. 1 has been chosen where the un
known system is a fixed I I R filter while the adaptive system
is an adaptive I I R filter whose coefficients are changed by
the genetic algorithm.

The genetic algorithm operates with a population of string structures, each string structure in this case being
the set of coefficients of the adaptive I I R filter. Each coefficient is coded as a binary string of 4 bits. Thus there
are 16(2'1) discrete values a coefficient can take. A mapping procedure is employed which maps the decoded
unsigned integer linearly from [0,24— 1] to a specified interval [Pmin, Pmax]- F" o r t » e multi-parameter case, the
binary coded forms of all the coefficients are concatenated. This forms the string structure for the individuals of
a population. To assign a fitness value to each string structure, the mean-squared-output-error e,- averaged over a
suitable window length obtained for that string structure is used. The length of the window played an important
role in the convergence, as too small a window length resulted in convergence to incorrect parameter values.
The method of power law scaling [7] has been used wherein the scaled error value is taken as some specified
power of the raw error signal. A value of 4 was chosen for the power after extensive simulation experiments.
Larger values of the power led to premature convergence while lower values increased the convergence time. In
order to convert the maximisation problem to a minimisation problem, an inverting function was used. Thus,
the actual fitness value / , assigned to a string i was

/, = 1A? 1
where e,- was as defined above.

3.3 Simulation Experiments

The three defining parameters of the GA had the following values : n (pop. size) = 50 ; pc (prob. of crossover)
= 0.6 ; pm(pxob. of mutation) = 0.075. These values were obtained after extensive simulation experiments with
varying values of the parameters. We also present results showing the effect of different parameter values on
the convergence of the algorithm. The first simulation experiment was performed to check whether the GA was
capable of locating the global minimum in the prescence of local optima. The example used has been reported
in [9] and consists of a 2nd order I I R filter being identified by 1'' order I I R filter having a single pole. The
transfer function of the 2na order filter is:

= 0.05 - 0.4;"1

v~ ' 1 .0 -1 .1314s - 1 + 0.25r~a

while the 1" order filter had the transfer function

1 -

The resulting error surface has been shown to be bimodal. The GA approach was successfully able to identify
the global optima.

In subsequent simulation experiments to adapt higher order filters, the adaptive filter was in the form of
a bank of 2nd order filters. Thus a 10th order filter was modeled by a bank of five 2nd order filters. Due to
constraints on space, only the transfer function of the 6th order filter is given below. All the results show the
minimum error obtained after n generations versus the number of generations. In the simulation experiments
performed to check the effect of the various parameters, a 6"1 order I IR filter was used as a model, the transfer
function of which is given below:

3.0 - 7.5S22Z-1 + 7.9202647;-3 - 3.9101332-~3 + 0.7625S8.-~4

H{- !) -] _ 3 . y o n + 6.39596-17;--- 6.022307S;" 3+ 3.3151666J- 4 - 0.99703S99r-5-!-0.124804S-6

This filter was adapted by means of a bank of three 2nd order filters the transfer functions of which had the
form

* t - - - l) = l - B | , - i - a , r - '

The stability of the filters during adaptation was achieved by constraining the filter coefficients ai.a? to lie
within the stability triangle. Both the parallel and the cascade structures were used.

4 Results and Conclusions
Of the different alternative configurations which were used, the parallel form gave the best results. The cascaded
form did not converge even after a large number of generations. The reason for this was found to be the
propagation of quantisation error through the filter banks, resulting in an erroneous estimate of error for
that particular filter. The main reason for using the lattice forms was that the stability check was easily
incorporated in the algorithm by constraining the filter parameters to have unity magnitude. However the
lattice configurations did not converge even after a large number of generations. As seen from the results, the
parallel form gave the best results. The main reason for this was the existence of multiple global minima all
of which were equivalent to one another. More details of this result and the results using other alternative
configurations are given in [10].

Fig. 2 shows the result when GAs are used to adapt different order filters. It can be seen that GA have a
fast initial learning rate. Figs. 3, and 4 show the efTect of the different parameters of the GA on the learning
rate. The effect of the mutation probability (Fig. 3) is seen to play a crucial role as too low or too high a value
increases the convergence time. Though increasing the population size (Fig. 4) decreases the convergence time
in terms of the number of generations needed, the actual time of computation increases as more time is spent
on evaluating a single generation. Fig. 5 shows the comparison between a pure random search algorithm and
the GA.

The above results show that GAs are a viable and practical approach in adaptive IIR filtering especially for
adapting high-order filters. It is to be noted though that GA cannot locate the exact global optima on account
of the discretisation of the parameter space. However they can be used as a first level of search to locate a
point close to the global optimum. The optimal setting of the GA parameters is rather heuristic at present and
depends heavily on the application on hand. Current work is incorporating concepts from Simulated Annealing
into Genetic Algorithms with the aim of obtaining improved convergence.

» References
1. Tang C . K . K k Mars P., Stochastic Learning Automata and Adaptive Digital Fillers, I E E Proc. F , Vol

138, Aug. 1991, pp. 331-340,

2. Widrow B. k Stearns S.D., Adaptive Signal Processing, Prentice Hall, Englewood Cliffs, 1985,

3. Shynk J . J . , Adaptive IIR Filtering, I E E E ASSP Mag., April 19S9, pp. 4-21,

4. Fan II . k Jenkins W . K . , A New Adaptive IIR Filter, I E E E Trans., CAS-33, 19S6, pp. 939-917,

5. Nayeri M. k Jenkins W . K . , Alternative Realisations to Adaptive IIR Filters and Properties of their Per
formance Surfaces, I E E E Trans., CAS-36, No. 4, April 1989, pp. 4S5-496,

6. Holland J . I I . , Adaptation in Natural and Artificial Systems, Ann Arbor, The University of Michigan Press,
1975,

7. Goldberg D.H., Genetic Algorithms - in Search, Optimisation and Machine Learning, Addisson-Wesley
Publishing Comp. Inc., 1989,

8. Etter D.M et al., Recursive Adaptive Filter Design using an Adaptive Genetic Algorithm, Proc. of I E E E
Conf. on ASSP, 19S2, pp. 635-638.

9. Johnson C.R. Jr. k Larimore M.G., Comments and Additions to " An Adaptive Recursive IMS Filter",
Proc. of I E E E , Sept. 1977, pp. 1399-1401,

10. Nambiar R., Genetic Algorithms and Adaptive Digital Filtering, Internal Report, Sept. 1991, School of
Eng. k Comp. Science, University of Durham.

Different Order Filters

lOdi (M a

Oft (M a

UMa

0 SO 100 ISO 200

Time Samples (X 1 0 0) (Generations)

Fig. 2

Effect of Mutation

r:

Time Samples (X 100) (Generations)

Klg. 3

Genetic Aluo. Vs. Random Search Effect of Population Size

J!
1 I

2S

} t 20

20 IS

•d 10

I 1UO

SO 100 200 ISO 200 100 ISO

Time Samples (X 100) (Generations) Time Samples (X 100) (Generations)

FlK. 4

PROC. I E E E 26th ASILPMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS

OCTOBER 1QQ2, MONTEREY, CALIFORNIA

Genetic and Annealing Approaches to Adapt ive Dig i t a l Fi l ter ing

R. Nambiar P. Mars

School of Engineering and Computer Science
University of Durham

Durham D H l 3LE, U.K.

Abstract

Novel approaches to Adaptive Digital Filtering based on
G e n e t i c A lgor i thms and S imula ted Anneal ing are
proposed in this paper. Algorithms used in Adaptive Digi
tal Filtering are usually based on using the Gradient of the
Mean Square Error or on Least Square principles. These
methods have been found to have inadequacies when adapt
ing IIR filters. The process of adaptation to determine
the optimum coefficients can be cast as an optimisation
problem. Genetic Algorithms (GAs) and Simulated An
nealing (SA), which are search techniques based on ran
domised techniques, have been used here in the context of
multiparameter optimisation. Simulation results are pre
sented which show how these approaches are able to tackle
the problems of global optimality and dimensionality when
adapting high-order IIR filters. New hybrid schemes where
concepts of SA are incorporated into GAs are proposed.

1 Introduction

The core problem in Adaptive Digital Filtering is
to determine the optimum setting of parameters of
the adaptive filter so as to minimise a suitably de
fined error function. Thus the problem of adaptation"
can be reduced to a problem in optimisation^ Algo
rithms used for this purpose mainly fall into two main
classes : Gradient Algorithms and Least Square Tech
niques. Gradient Algorithms have been widely used in
adaptive control and filtering but fail when the error
function is multimodal? Their performance also de
teriorates in the presence of noise and non-stationary
environments. Least Square Techniques have faster
convergence but are computationally more complex
[!]•

This paper details different approaches to adaptive
filtering based on Genet ic Algorithms and Simu
lated Annealing. Novel hybrid schemes incorporat
ing concepts from both these methods are proposed in
this paper. After a brief introduction to the problem

in section 2, details of these approaches are presented
in section 3,4 and 5. Simulation results and conclu
sions are given in section 6 and 7.

2 Adaptive Filtering

In adaptive filtering the adaptive filter used can be
of two types : Adapt ive F I R Fi l ter or Adaptive
I I R Fi l ter . Adaptive F I R filter algorithms have been
well analysed and established. In particular gradient
algorithms are very suitable for adaptive F I R filtering
as the error surface is quadratic and unimodal with
respect to the filter coefficients. But the potential ad
vantages of using an I I R filter in place of a F I R filter
has encouraged the study of adaptive I I R filtering, a
comprehensive review of which is presented in [2]. The
problem which has the prompted the use of new tech
niques in adaptive I I R filtering is: The error surface
in the case of IIR filtering may not be quadratic with
respect to the filter coefficients and thus may be mul
timodal. This renders the use of gradient techniques
impractical as they could get stuck in a local min
ima. The prescence of local optimas and the condi
tions when they occur have been investigated in [3, 4].
In using these new approaches for adaptive filtering,
the system identification configuration has been cho
sen where the unknown system is a fixed I I R filter
while the adaptive system is an adaptive I I R filter
whose coefficients are modified by the algorithm being
used.

An important issue in adaptive I I R filtering is the
stability of the filters generated during the adaptation.
A method to check the stability is to factorise the de
nominator polynomial at each stage of the adaptation
which is computationally expensive. To overcome this
problem, alternative realisations like the parallel and
cascade forms have been used to model the direct form
filters as given in [5]. The basic sub-system in either
the parallel or the cascade configuration is a 2nd order

filter. This enables the stability check to be built into
the algorithm itself by ensuring the coefficients of the
2 n d order sub-system lie inside the siabiliiy triangle
[2]. Use of the parallel or cascade form may result in
a error surface that has multiple global optimas [5].

3 Genetic Algorithms

Genetic Algorithms (GAs) [6, 7] are search tech
niques which are based on the mechanics of natural
selection and genetics, involving a structured yet ran
domised information exchange resulting in the survival
of the fittest amongst a population of string struc
tures. GAs have been developed by John Holland and
his colleagues at the University of Michigan.

The basic structure and operation of a G A is as fol
lows: Genetic Algorithms operate on a population of
structures which are fixed length strings representing
all possible solutions of a problem domain. In this pa
per, the binary representation has been used wherein a
parameter is coded as a bit string. Using such a repre
sentation, an initial population is randomly generated.
For each structure (trial solution) in the population,
a fitness value is assigned. Each structure is then as
signed a probability measure based on the fitness value
which decides the contribution that structure would
make to the next generation. This phase is referred
to as the Reproduction Phase. Each of the offspring
generated by the reproduction phase is then modified
using genetic operators of Crossover and Mutation.
In the Crossover operation, sub-strings of two individ
ual strings selected randomly from the population are
swapped resulting in two new strings. The parame
ter governing the crossover operation is the crossover
probability pe. The Mutation Operator generates a
new string by independently modifying the values at
each location of an existing string with a probability
p m which is referred to as the probability of mutation.
Further details of the algorithm are given in [7].

GAs have been used here for adapting I I R filter
ing particularly to overcome the problem of dimen
sionality when adapting high-order filters. An earlier
application of GAs in adaptive filtering has been re
ported in [8, 9], and illustrated the viability of the
approach. The string structure in this application is
the set of coefficients of the adaptive I I R filter coded
as a binary string of N bits. Thus there are (2 N)
discrete values a coefficient can take. A mapping pro
cedure is employed which maps the decoded unsigned
integer linearly from [0, 2 A ' - 1] to a specified interval
[Pmin,Pmax]- For the multi-parameter case (Higher

order I I R filter), the binary coded forms of allthe coef
ficients are concatenated. This forms the string struc
ture for the individuals of a population. To assign a fit
ness value to each string structure i, the Mean Squared
Output Error (MSOE) e„- averaged over a suitable win
dow length obtained for that string structure is used.
The method of power law scaling [7] has been used
wherein the scaled error value is taken as some speci
fied power of the raw error signal. The maximisation
problem was converted to a minimisation problem by
using an inverting function. Thus, the actual fitness
value / , assigned to a string i was

= 1/e? (1)

where e: was as defined above.

4 Simulated Annealing

One of the newer techniques for optimisation espe
cially for multimodal functions is that of Simulated
Annealing which was proposed in [10]. The method
determines the optimal point of a cost function by
simulating the annealing process of a metal, allowing
probabilistic uphill moves thereby locating the global
optimum. The cost function in the annealing process
is usually the free energy of the system and the prob
abilistic uphill moves are determined by the tempera
ture of the system. The process starts with high val
ues of the temperature which allow more uphill moves
thereby ensuring an efficient search of the search space.
As the temperature is gradually reduced, the pro
cess probabilistically converges to the global optimum.
Complete details of the method are given in [11].

The main drawback of the SA is that convergence
to the global optimum is assured only asymptotically
leading to very long convergence time, thus making it
impractical to use in real world problems. To speed up
the convergence to the algorithm, Szu and Hartley [12]
proposed the following modification: The standard SA
algorithm makes -use of a Gaussian distribution as a
generating function to search the neighbourhood of
the current point. Szu and Hartley proposed the use
of the infinite variance Cauchy distribution which has
a wider tail than the Gaussian distribution thus per
mitting occasional long steps while searching the local
neighbourhood. This method has theoretically been
proved to have faster convergence [12] [proportional
to l/(<)] as opposed to the standard SA [proportional
to l/(logt)], where t is the time parameter.

To use the above techniques for adaptive IIR filter
ing, the parallel form realization has been used in this

paper, where the adaptive filter is made up of parallel
sections of second order I I R filters. Thus the stabil
ity of the filter structure can be ensured by restricting
the parameters of the second order filter to lie within
the stability triangle [2]. A typical second section is
adapted in the following manner: Suppose the two pa
rameters of the section are a,b and the current values
are a c u r , b c u r . The new values of the parameters are
then generated as follows:

Onew = aeur + r •> step

bnew = fccur + r * step (2)

where r depends on the distribution being used and
step determines the step-size of the search. If the new
values of a,b lie outside the stability triangle, then the
values are discarded and Equ. [2] is used again.

5 Hybrid Techniques

In this section, two novel hybrid schemes are pro
posed which use concepts of SA in GAs. A drawback
of the GAs is that there is no definite way to detect
when the algorithm has located the global optimum.
Though the members of the population should all con
verge to a good solution, this is not always the case
in practice. The proposed schemes are designed to
overcoming this problem.

5.1 H y b r i d T e c h n i q u e - I

In this proposed modification to the standard GA,
the mutation operator is now used as a primary op
erator. More specifically, the mutation operator now
plays the role which the temperature plays in SA. We
propose to use a high value of mutation at the start of
the algorithm and as the generations evolve, to gradu-'
ally reduce the value of the mutation. Thus the gener
ation number is used to exponentially reduce the value
of the mutation as the algorithm proceeds. The advan
tage of this scheme is that as the value of the mutation
is gradually reduced, the average minimum error of
the whole generation approaches the value of the min
imum error in a generation. This could be used as a
criterion to stop the algorithm. The decrease in value
of mutation is performed by using a non-linear func
tion (exponential) of the generation number as given
below

0.2 * imp
1 + imp

imp = e O ° 0 - G e n . No.)/<i«ay ^

5.2 H y b r i d - T e c h n i q u e - I I

The SA uses the Metropolis criterion to probabilis
tically decide whether to retain or reject a new point.
We propose the use of this criteria in GAs. Specifi
cally, after the selection operation, the crossover and
mutation operators generate two new members of a
population. These two new members are then retained
if they have a lesser value of error than the parent
members from which they were generated. If they
have a larger value, then they are retained depending
on a probabilistic function which is a function of a
temperature parameter and the difference in error be
tween the parent and new strings. The temperature
parameter is dependent on the generation number and
is exponentially decreased as the algorithm proceeds
using a cooling schedule similar to the schedule used
in the standard Simulated Annealing. At the start of
the algorithm, all the new members generated are re
tained as the temperature parameter has a large initial
value, but as the algorithm proceeds only new mem
bers having an error value less than the parent mem
bers are retained. Thus, as the number of generations
increase, the average minimum error of the whole gen
eration approaches the value of the minimum error in
a generation as was the case in the Hybrid Scheme
(I), and thus could be used as a criteria to stop the
algorithm.

6 Simulation Experiments and Results

In the simulation experiments to adapt higher order
filters, the adaptive filter was in the form of a bank of
2 n d order filters. Thus a 10"" order filter was modeled
by a bank of five 2nd order filters. All the results show
the minimum error obtained after n generations versus
the number of generations. In all the simulation ex
periments performed hence, a 6th order I I R filter was
used as a model. This filter was adapted by means of
a bank of three 2nd order filters, the transfer functions
of which had the form

^ ~ 1) = 1 a . . \ a , . 2 (4)

The stability of the niters during adaptation was
achieved by constraining the filter coefficients a i , ai
to lie within the stability triangle.

The three defining parameters of the GA had the
following values : n (pop. size) = 40 ; pe (prob. of
crossover) = 0.8 ; pm(prob. of mutation) = 0.075.
These values were obtained after extensive simulation
experiments with varying values of the parameters.

Figure [1] shows the result of using the standard
G A for the above simulation experiment, with vary
ing number of bits used to code a parameter. The
algorithm was able to locate the global minimum and
shows rapid initial convergence.

Figure [2] shows the result of using Simulated An
nealing as a adaptation technique to the simulation
setup detailed above. As can been seen, the Cauchy
distribution results in faster convergence. But com
pared to the standard G A , the SA algorithm takes a
much larger number of time samples for convergence.

Figure [3,4] shows the result obtained using the hy
brid scheme (I). The minimum error in this case is
the minimum error obtained for that particular gener
ation, while the average error is the value of the error
averaged over all the members of the population of
a generation. Depending on the value of the decay
parameter which decides how fast the temperature re
duces, the average error is seen to approach the mini
mum error. The initial value of the mutation operator
was 0.2 which was then reduced using a exponential
function depending on the generation number (Equ.
[3]). The other values of the parameters defining the
GA were as given before. The convergence time is seen
to be larger than that obtained using the standard GA
which results because of the large initial value of the
mutation parameter.

Figure [5] shows the result of using the hybrid
scheme (II) for different values of the probability of
mutation. Results obtained show that the scheme has
faster convergence than the hybrid scheme (I) and also
that the variance of the error values are reduced. The
reason why this happens in the hybrid scheme (I) is
because of the large initial value of the mutation pa
rameter.

7 Conclusions

Of the alternative configurations which were used,
the parallel form gave the best results. The main rea
son for this was the existence of multiple global min
ima all of which were equivalent to one another [5].
The cascaded form did hot converge even after a large
number of generations. The reason for this was found
to be the propagation of quantisation error through
the filter banks, resulting in an erroneous estimate of
error for that particular filter. The main reason for us
ing the lattice forms was that the stability check was
easily incorporated in the algorithm by constraining
the filter parameters to have unity magnitude. How
ever the lattice configurations did not converge even
after a large number of generations.

The above results show that GAs are a viable and
practical approach in adaptive I I R filtering especially
for adapting high-order filters. It is to be noted though
that G A could not locate the exact global optima on
account of the discretisation of the parameter space.
However they can be used as a first level of search to
locate a point close to the global optimum. The op
timal setting of the G A parameters is rather heuristic
at present and depends heavily on the application on
hand. The SA approach though leading to the precise
location of the global optimum took a large number
of time samples to converge. The hybrid schemes sug
gest a method by which a stopping criteria could be
incorporated into the basic G A structure. In particu
lar the Hybrid Scheme (II) seems to be very promising
especially as it has convergence speed similar to that
obtained with the standard G A .

References

[1] B. Widrow and S. D. Stearns. Adaptive Signal
Processing. Prentice-Hall Inc., Englewood Cliffs,
N.J. 07632, 1985.

[2] John J . Shynk. Adaptive I IR filtering. IEEE
ASSP Magazine, pages 4-21, April 1989.

[3] S. D. Stearns. Error surface of recursive adaptive
filters. IEEE Transactions on Accoustics, Speech
and Signal Processing, 29:763-766, June 1981.

[4] H. Fan and M. Nayeri. On error surfaces of
sufficient order adaptive I I R filters: proofs and
counter examples to a unimodality conjecture.
IEEE Transactions on Accousiics, Speech and
Signal Processing, 37:1436-1442, 1989.

[5] M. Nayeri and W. K. Jenkins. Alternative real
izations to adaptive I I R filters and properties of
their performance surfaces. IEEE Transactions
on Circuits and Systems, 36:485^196, April 1989.

[6] John H. Holland. Adaptation in Natural and Arti
ficial Systems. The MIT Press, Cambridge, Mas-
suchusetts, 1992, (First Edition 1975).

[7] D.H. Goldberg. Genetic Algorithms - In Search,
Optimization and Machine Learning. Addison-
Wesley Publishing Company, 1989.

[8] D. M. Etter, M.J. Hicks, and K. H. Cho. Recur
sive adaptive filter design using an adaptive ge
netic algorithm. In Proc. of the IEEE Int. Conf.
on ASSP, pages 635-638, 1982.

[9] R . Nambiar and P. Mars. Genetic algorithms
for adaptive digital filtering. In IEE Colloquium
on Genetic Algorithms for Control systems Engi
neering, Savoy Place, London, May 1992.

[10] S. Kirkpatrick, C . D. Gellat Jr. , and M. P. Vecchi.
Optimisation by simulated annealing. Science,
220(4598):671-680, 1983.

[11] P.J.M. van Laarhoven and E . H . L . Aarts. Sim
ulated Annealing: Theory and Applications. D.
Reidel Publishing Company, 1987.

(12] H. Szu and R. Hartley. Fast simulated annealing.
Physics Letters A, 122(3,4):157-162,1987.

10000

Awara

•pi
Docoy P o t a a o t a r

Time Samples (X 100) (Generations)

Figure 3

Time Samples (X 100) (GeneraUons)

Hinixi

Avoro

Cocoy PoromoleX DS0

200 300 400 100

Time Samples (X 100) (Generations)

Figure 1 Figure 4

u o l n g 100 { it Couoo
i o n ma.I 90

L . 14 D i o t r
i b u t i B.0T9

ire? on 12
70

U D I A Q

60 Couch

D i o t r SO
i b u t i

• .oii 40 a on S
30 v>
20

10

150 200 50 100 so 100 ISO 200 250 300

Time Samples (X 100)(GeneraUons) Tune Samples (X 3000)

Figure 2 Figure 5

