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Abstract 

In this thesis, we consider the problem of parameter optimisation in adaptive 

digital filtering. Adaptive digital filtering can be accomplished using both 

Finite Impulse Response (FIR) filters and Infinite Impulse Response Filters 

(IIR) filters. Adaptive FIR filtering algorithms are well established. However, 

the potential computational advantages of I IR filters has led to an increase in 

research on adaptive I IR filtering algorithms. These algorithms are studied 

in detail in this thesis and the limitations of current adaptive I IR filtering 

algorithms are identified. New approaches to adaptive IIR filtering using in

telligent learning algorithms are proposed. These include Stochastic Learning 

Automata, Evolutionary Algorithms and Annealing Algorithms. Each of these 

techniques are used for the filtering problem and simulation results are pre

sented showing the performance of the algorithms for adaptive I IR filtering. 

The relative merits and demerits of the different schemes are discussed. Two 

practical applications of adaptive I IR filtering are simulated and results of us

ing the new adaptive strategies are presented. Other than the new approaches 

used, two new hybrid schemes are proposed based on concepts from genetic 

algorithms and annealing. I t is shown with the help of simulation studies, that 

these hybrid schemes provide a superior performance to the exclusive use of 

any one scheme. 
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Chapter 1 

In t ro duct ion 

1.1 W h y Adaptive Fi l ter ing ? 

rJ1 he term filtering a signal refers to processing the signal in such a manner, so as to 

extract relevant information from i t . This could relate to enhancing certain desired 

components or on the other hand the removal of interfering noisy components. The 

earliest filters were usually of the analogue type. However the advent of digital elec

tronics and the subsequent rapid developments in integrated circuit technology meant 

that digital filters were a cheaper and more reliable alternative to the conventional 

analogue niters. There are a number of advantages of digital filters over the analogue 

filters, these include easy modification of signal processing functions by means of soft

ware, higher order of precision and operational characteristics which remain stable 

over a wide range of conditions. 

A digital filter operates with discrete samples of the input signal and is composed 

of adders, multipliers all implemented in digital logic. This results in a much better 

control over the accuracy of the operation than is possible in an analogue filter. In an 

analogue filter, tolerances in the components make it extremely difficult for a system 

designer to control the precision of the filter. 

There are however many digital signal processing applications where the charac

teristics of a digital filter cannot be specified a priori. In such applications, the digital 

filter characteristics must be adaptable, so that the filter can adjust to different envi

ronments. This is achieved by using adjustable coefficients for the digital filter. Such 
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1.1 W h y Adapt ive F i l t e r ing ? 

a filter is referred to as an adaptive filter. Conventional digital filtering operates in 

an open-loop fashion; the filter characteristics are fixed and there is no feedback from 

the output. Adaptive filters on the other hand function in a closed-loop fashion - the 

digital filter characteristics are modified by means of a feedback mechanism which 

monitors the output of the filter. The feedback mechanism uses an adaptive algo

rithm to modify the filter coefficients. The adaptive algorithm usually uses the input 

signal, the output signal and a reference signal to generate an error signal which is 

used in the feedback mechanism. This is illustrated in Figure [1.1] which shows both 

conventional and adaptive filter configuration. 

Adaptive digital filtering can be achieved using either Finite Impulse Response 

(FIR) or Infinite Impulse Response (IIR) filters. In FIR filters, the output of the filter 

is a linear function of the delayed and current values of the input signal. These filters 

are well-behaved and are generally free of stability problems since as they possess only 

adjustable zeroes. However, to achieve a given degree of modeling accuracy, a high 

order FIR filter is required. This increases the computational load as the number of 

multiplications and additions are increased. The output of an I IR filter on the other 

hand is generated using a linear function of the delayed and current values of the 

input signal as well as delayed values of the output signal. Using an IIR filter results 

in a better model using a lesser number of coefficients than a FIR filter providing a 

similar performance. This is however countered by the fact that I IR filters possess 

adjustable poles as well as zeroes and thus are prone to stability problems caused by 

the migration of the poles during the adaptive process. More details of these issues 

are presented in Chapter 2. 

The applications of adaptive filtering are many - the following table shows some 

important application areas: 

2 



1.1 W h y A d a p t i v e F i l t e r i n g ? 

F u n c t i o n A p p l i c a t i o n s 

Equalisation Telecommunications 

Noise Cancelling Medical Electronics, 

Ai rc ra f t cockpit communications 

M u l t i p a t h Compensation Microwave Radio, 

T V ghost suppression 

Stabilization Space Applications 

Modeling Industrial control applications 

Of the many configurations i n which an adaptive digi tal f i l ter may be used, two 

important configurations are the direct system modeling and the inverse system mod

eling configurations. They have been used in this thesis to simulate different appli

cations using adaptive filters. I n the direct system modeling configuration (Figure 

[1.2]), the adaptive f i l ter produces an output signal t / ( n ) , which is an estimate of a 

desired response y(n). I n other words, the adaptive f i l ter models the characteristics 

of the unknown fi l ter . This configuration is used in applications such as adaptive 

noise cancellation. Inverse system modeling configuration, (Figure [1.2]), consists of 

the adaptive filter generating an output signal which is an estimate of the input sig

nal x(n). I n such a configuration, the input signal is distorted by a process which 

is modeled by the unknown filter. The adaptive filter models the inverse of the un

known filter thereby restoring the degraded signal. This configuration has found use 

i n applications such as adaptive equalisation. More details of both configurations are 

given in Chapter 2. 

Thus the main motivation in studying adaptive digital filtering is that i n real 

world applications, the characteristics of a system being modeled may be unknown 

and t ime varying. Using an adaptive filter makes i t possible to model a large variety 

of systems under different operating conditions. 

3 



1.2 O u t l i n e o f Thes is 

1.2 Outline of Thesis 

The next chapter (Chapter 2) provides an in-depth review of adaptive digital f i l ter ing 

and especially concentrates on adaptive I I R f i l ter ing algorithms. Brief details of the 

different alternative realizations used in the simulation experiments are presented. 

The manner i n which the stabili ty issue of high order I I R filters was handled using 

these alternative realizations are discussed. Two applications of adaptive I I R fi l ter ing 

- adaptive noise cancellation and adaptive equalisation, are explained. These have 

been used as testbeds in the research to demonstrate the efficacy of the proposed new 

approaches to adaptive f i l ter ing which have been examined in this thesis. 

Chapter 3 and 4 explain the theory and applications of using Stochastic Learn

ing Automata algorithms (SLA) for adaptive I I R f i l ter ing. The basic theory and the 

learning algorithms are covered in Chapter 3. Both the P-Model and S-Model schemes 

are examined in detail. A new normalisation scheme for the S-Model algorithms is 

proposed and f r o m the simulation results is shown to perform better than the stan

dard S-Model normalisation schemes. A brief mention is made of the automata games 

approach and a scheme of hierarchical automata. The original reason for using the 

automata approach for the problem of adaptive f i l ter ing was that the technique had 

shown capability of global optimisation when searching a noisy, stochastic mul t imodal 

surface. The results of using the automata algorithms are presented in Chapter 4. The 

simulation configuration is explained as well as the manner i n which an automaton is 

used to optimise the parameters for the adaptive filtering problem. The advantages 

and shortcomings of each learning scheme is detailed. A n explanation is given why 

the S-Model learning algorithms performed poorly as compared to P-Model schemes. 

The chapter concludes w i t h a discussion on the v iabi l i ty of Stochastic Learning A u 

tomata as a tool for adaptive digital filtering. Although the SLA algorithms provide 

a powerful set of results, their u t i l i t y for adaptive filtering is l imi ted , mainly due to 

the fact that the iterations required for convergence when adapting a high order filter 

is very large and impractical . 

Thus a new approach, especially one in which dimensionality was not a hindering 

factor, was examined. This new scheme can be broadly classified as evolutionary op-

4 



1.2 O u t l i n e o f Thes is 

t imisat ion, though three specific paradigms of evolutionary optimisation were exam

ined. Chapter 5 presents a detailed overview of the technique of simulated evolution 

used as an optimisation tool . The different paradigms covered include genetic algo

r i thms, evolutionary strategies and evolutionary programming. The basic algorithms 

are explained along w i t h improved schemes which result i n a better performance. 

Chapter 6 presents the use and results of the evolutionary optimisation schemes for 

adaptive I I R f i l ter ing, concentrating on the use of genetic algorithms. Two practi

cal applications of adaptive I I R f i l ter ing - adaptive noise cancellation and adaptive 

equalisation, are simulated w i t h the evolutionary strategy being used as the adaptive 

algorithm. 

Some l imitat ions of the evolutionary schemes were observed during the simulation 

studies. One of these, was the fact that there was no established stopping criterion 

which could be used to terminate fur ther iterations. This led to an attempt, where 

the behaviour of evolutionary schemes was modified by incorporating concepts f r o m 

other established optimisations algorithms. Specifically the optimisation strategy of 

simulated annealing was used. 

Chapter 7 presents the theory and results obtained in using the simulated an

nealing approach for adaptive I I R f i l ter ing. Both the classical annealing approach 

and the more recent fast annealing approach are applied to the adaptive I I R fi l ter ing 

problem. Results obtained using the annealing approaches show that although the 

method was able to locate the exact global op t imum, the t ime samples required for 

convergence was very large, thus reducing the practical use of the scheme. Two new 

schemes are proposed which combine concepts of genetic algorithms and simulated 

annealing. The motivation behind these schemes was to use the convergence speed of 

the evolutionary schemes and a stopping criterion derived f r o m the annealing algo

r i t h m . Thus, these schemes present a stopping criterion for genetic algorithms which 

otherwise were stopped by unsatisfactory heuristic methods. 

Chapter 8 presents the overall conclusions for the research. The main results of 

al l the different approaches used for the f i l ter ing problems are compared. Finally a 

discussion is provided of promising areas for fu ture research. 

5 
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Chapter 2 

Adaptive Digi ta l F i l ter ie 

2.1 Introduct ion 
rJ 1 his chapter gives a broad overview of adaptive digi ta l f i l ter ing concentrating more 

on adaptive I I R f i l ter ing. The interest and research in adaptive f i l ter ing can be gauged 

f r o m the large number of books [TJL87, SD88, HM84, WS85, CG85, Ale86] which 

have been published on the subject. The basic direct f o r m configuration is discussed 

along w i t h the alternative realizations. Different error formulations used for adaptive 

I I R filtering and the l imitat ions of the existing adaptive algorithms are detailed and 

discussed. 

Digi ta l filters have found extensive applications i n many diverse areas of engi

neering such as communications, control, signal processing etc. [WS85, PM88]. The 

attractive feature of digi tal filters is their availability as dedicated signal processing 

hardware in the f o r m of integrated circuits. A digi tal filter operates w i t h discrete 

samples of the signal and is mainly composed of adders, multipliers and delays all 

implemented in digi tal logic. The main advantages of using digital filters are thermal 

stability, precision and adaptability. 

The fundamental equation describing the input-output relationship of a general 

digi tal filter is given by 

M N 

i=0 j = l 
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2.1 

where 

I n t r o d u c t i o n 

y(n) = Output sample at instant n 

x(n) = Input sample at instant n 

x(n-i) = Input sample delayed by i t ime samples 

y(n- j ) = Output sample delayed by j t ime samples 

a,j = Feedback filter coefficients 

bi = Feedforward filter coefficients 

The equivalent block diagram is shown in Figure (2.1). 

A n equivalent fo rm of Equation [2.1] is given below: 

y(n) = B(n)x(n) + A(n)y(n) (2.2) 

w here 

B{n) = X! k ' 2 " ' 
•=o 
N 

A ( n ) = J2a>z~: 

where 

z 1 = Uni t delay operator 

i.e. x(n) z~l — x{n — 1) 

As shown in Equation [2.1], the output y(n) can be regarded as an autoregressive 

moving average ( A R M A ) process driven by the input x(n). The coefficients aj, bi 

determine the characteristics of the filter. 

Digi ta l filters can be classified into two main groups: 

9 Fini te Impulse Response (FIR) Filters 

e Inf ini te Impulse Response ( I I R ) Filters 



2.1 I n t r o d u c t i o n 

The equation describing an I I R filter is given by Equation [2.1], while the block 
diagram is as shown in Figure (2.1). The inf ini te nature of the impulse response of an 
I I R filter is because of the dependence of the output y(n) on previous output samples 
as shown in Equation [2.1]. As a result of this recursion, the stability of the filter is 
guaranteed only under certain conditions and forms an important issue in the analysis 
and design of adaptive I I R algorithms. 

The output of an F I R filter is dependent only on the past and current input 

samples and is given by 
M 

y ( n ) = 5̂  b>
 x

 x ( n - 0 ; (2.3) 

1=0 

This f o r m can be obtained f r o m Equation [2.1] by equating coefficients Oj ' s to zero. 

Similarly the block diagram of a F I R filter can be obtained f r o m Figure [2.1] by 

making the feedback coefficients aj 's equal to zero. 

The main advantage of an I I R filter over a F I R fi l ter is that, as an I I R filter re

quires considerably fewer coefficients to model a system than an equivalent F I R fi l ter , 

there is a significant saving in the computational overheads. For the same number 

of coefficients, an I I R filter can provide better performance. A desired frequency 

response can be better approximated by a filter possessing both poles and zeroes 

( I I R filter) than a filter having only zeroes ( F I R filter). This is another significant 

advantage in using I I R filters i n place of F I R filters. 

A n important feature of digi tal filters which has been mentioned before is that of 

adaptability. This property is significant when the operating environment of the filter 

is changing and the filter has to modify its behaviour i n order to track the change. 

The filter which is used in such a situation is called an adaptive digi tal filter. I n such 

a filter composed of either an I I R filter or a F I R filter, the coefficients a,- and are 

variable and can be altered un t i l the output satisfies a specified criteria. A block 

diagram of an adaptive digital f i l ter is shown in Figure [2.2] [Shy89a]. I t consists of 

the following : 

o A F I R or I I R filter w i t h adjustable coefficients 0 ( n ) . 

o A n adaptive algorithm to adjust the coefficients so that the output y(n) ap-

10 



2.1 I n t r o d u c t i o n 

proximates a desired response d(n). 

Thus the adaptive filtering problem can be succinctly expressed as: Given x(n) and 

d(n), the coefficients of the adaptive filter have to be chosen such that a performance 

measure based on the estimation error is minimised. The estimation error e(n) (Figure 

[2.2]) is defined as 

e(n) = d(n) - y(n) (2.4) 

A commonly used configuration in adaptive control is the system identification 

configuration in which an adaptive system is used to model an unknown system. 

This configuration is also frequently used in adaptive signal processing. Thus, the 

adaptive digi tal filtering problem using the system identification configuration (Fig

ure [2.3]) is as follows: The input signal is applied both to the unknown system and 

the adaptive system. The unknown system output forms the desired response for the 

adaptive system, which uses the estimation error as defined in Equation [2.4] above 

to update its coefficients. I n most applications there is the presence of additive mea

surement noise which is shown in (Figure [2.3]) by v(n). I n the system identification 

configuration, the desired response d(n), is generated by the same input x(n) which 

drives the adaptive system. Thus, some characteristics of the signal d(n) may be 

known i f the properties of the dr iving signal x(n) is known. The desired response 

need not always be generated in this manner and depends upon the application in 

which the adaptive system is used. Thus the adaptive filtering problem can be cast 

as an optimisation problem, where a suitable funct ion of e(n) is to be minimised. 

A commonly used criterion in adaptive filtering is to minimise the M e a n Square 

O u t p u t E r r o r $ which is defined as 

= E[e 2 (n) ] (2.5) 

where 

E = Statistical Expectation Operator. 

Recursive algorithms using this criteria are referred to as S tochas t i c G r a d i e n t 

algorithms [Shy89a]. Another criteria which has been used frequently minimizes the 
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sum of the squares of the estimation error e(n), i.e. 

(2.6) 

These algorithms are referred to as the Recu r s ive Leas t Squares algorithms. Adap

tive algorithms effectively search a performance surface defined by the criterion used. 

The op t imum set of coefficients are then the coefficients corresponding to the global 

m i n i m u m on the performance surface. 

I n adaptive F I R f i l ter ing using the system identification configuration (Figure [2.3]), 

the adaptive f i l ter is of the F I R type. The estimation error e(n), which is the difference 

between the desired response and the output of the adaptive f i l ter is used in the 

criterion to update the f i l ter coefficients. The criterion usually used for adaptation is 

the minimizat ion of the M e a n Square E s t i m a t i o n E r r o r which is defined as 

where 6,'s are the set of coefficients of the adaptive F I R f i l ter . I t has been proved 

that the funct ion $ is a quadratic unimodal function of the adaptive f i l ter coefficients 

[WS85]. Thus there exists an unique set of coefficients of the adaptive f i l ter at which 

the error reaches the m i n i m u m value which is the global m i n i m u m . This facilitates 

the use of powerful gradient algorithms which can converge to the op t imum set of 

coefficients rapidly. I n particular a commonly used stochastic gradient algorithm is 

the Leas t M e a n Square ( L M S ) algorithm first proposed in [WH60]. Complete 

details of the L M S algori thm are given in [WS85]. 

Currently F I R filters are more practical to use and are widely used in adaptive 

f i l ter ing. The main reason for this is that since F I R filters contain only adjustable 

zeroes, i t is free f r o m the stabil i ty problems associated w i t h filters having both poles 

and zeroes ( I I R Filters). However, interest i n using I I R filters as the adaptive fi l ter 

has been increasing, prompted mainly by the reduced computational demands when 

2,2 Adaptive F I R Filterin. 

*(&,•) = E[e2(n)} (2.7) 
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using an I I R fi l ter . 

2o3 Adaptive I I R Fi l ter ing 

2.3.1 Int roduct ion 

The non-recursive nature of the F I R fi l ter results i n a heavy computational load when 

using adaptive F I R filters. Modeling a system w i t h an I I R fi l ter can be achieved to 

a higher degree of precision using a much lower order f i l ter than an equivalent F I R 

fi l ter . For example, a f i f t h order I I R f i l ter requiring nine multiplications and eight 

additions matches an unknown system as well as a 64th order F I R fi l ter requiring 64 

multiplications and 63 additions. This has led to exploring the possibility of using 

I I R filters as the adaptive element and as a consequence research into adaptive I I R 

f i l ter ing algorithms has been quite intensive in the past decade. Though the algo

r i thms relating to adaptive I I R f i l ter ing are not as thoroughly analysed and developed 

as adaptive F I R f i l ter ing algorithms, they nevertheless f o r m a substantial set of re

sults. Work in adaptive I I R filtering algorithms have been carried out by various 

researchers [SEA76, Whi75, Fei76, PAS80a, Joh79, TLJ78, LTJ80]. The main work 

which has been carried out i n adaptive I I R filtering has concentrated on the issues 

of global opt imali ty, stability and the rate of convergence of the adaptive algorithms. 

New algorithms have been devised which solve some of the problems stated above but 

are usually constrained by a set of conditions. Two important review papers which 

present the current results in adaptive I I R filtering are [Joh84, Shy89a]. Using an I I R 

filter as the adaptive element in an adaptive scheme has the following implications 

[CG85]: 

o Feedback in the filter structure itself allows a low order filter to have a long 

duration impulse response. 

o The I I R filter structure is not stable for all choices of coefficients, thus stability 

forms an important aspect in the analysis. 

13 
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o Use of gradient algorithms result i n increased computational complexity than 

is the the case w i t h F I R filters. 

o Presence of the poles in the fi l ter structure complicates the convergence analysis. 

The adaptive I I R f i l ter ing problem has been approached in two ways, the difference 

being the manner i n which the estimation error (Equation [2.4]) has been formulated. 

This is explained in the next section. 

2.3.2 Different Formulations of Est imation Error 

E q u a t i o n E r r o r F o r m u l a t i o n 

The equation error approach has been used in adaptive control where i t is referred to 

as the series-parallel model. The E q u a t i o n E r r o r approach was proposed in [Men73] 

and has been used for adaptive f i l ter ing [Goo83]. I n this formulat ion, the feedback 

coefficients of the I I R fi l ter are updated in an all-zero, non-recursive fo rm which are 

then copied to a second f i l ter which is implemented in an all-pole fo rm as shown in 

Figure (2.4) [Shy89a]. Essentially this formulat ion is of the adaptive F I R fi l ter type 

where the F I R fi l ter has two inputs. This can be seen in Figure (2.5) which shows 

the setup when the equation error formulat ion is used in the system identification 

configuration [LTJ80]. W i t h reference to Figure (2.4), the defining equation for the 

equation error approach is given by 

M N 

ye(n) = ^2 k x x ( n - i ) + Y l a j X ^ n ~ ' ( 2 , S ) 
t=0 j = l 

From Equation [2.8], i t can be seen that the output y e ( n ) is obtained f r o m delayed 

samples of the input x(n) and the desired response d(n) and not f r o m the past output 

samples ye(n). Thus the output ye(n) is a linear funct ion of the coefficients (a j ,6 , ) . 

Hence gradient calculations are simplified when using gradient-based algorithms. The 

equation error is given by 

e e (n) = d(n) - y e ( n ) (2.9) 
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as is shown in Figure (2.4). Expanding the above equation and using Equation [2.2], 

the equation error can be wr i t ten as 

Thus as e e (n) is generated using the difference between two expressions/equations, 

i t is referred to as the equation-error formulat ion. Since the equation error e e (n) is a 

linear funct ion of the f i l ter coefficients, the M e a n Square O u t p u t E r r o r (Equation 

[2.5]) is a quadratic funct ion of the f i l ter coefficients w i t h a single global min imum. 

Thus the performance of the equation error adaptive I I R f i l ter is similar to the adap

tive F I R f i l ter especially w i t h respect to the convergence and stabili ty of the coefficient 

updates. However the l imi ta t ion of the equation error approach is that i n the pres

ence of measurement noise which is invariably present (Figure [2.3]), the algorithm 

converges to a solution that is biased away f r o m the true values. I n a system iden

t i f icat ion context, this corresponds to incorrect estimates of coefficients 9 such that 

E[9(n)] = 9V + bias in the l i m i t n —> oo where 9 is the coefficient vector and 9* is 

the opt imal set of coefficients of the adaptive f i l ter ing problem. I t has been shown 

that this bias is eliminated i f the measurement noise is zero. A numerical example 

regarding the effect of noise on the bias is given in [ShyS9a]. 

O u t p u t E r r o r F o r m u l a t i o n 

This error formulat ion has also been used extensively in adaptive control and is re

ferred to as the parallel model. The O u t p u t E r r o r formulat ion is as shown in Figure 

[2.6] and is characterized by the recursive equation 

ee(n) = d(n) - ye(n) 

= d(n) — [(A(n)d(n) + B(n)x(n)](see footnote 1 ) 

= [d(n)(l - A(n)] - [B{n)x(n)] (2.10) 

N M 

Vo{n) = k x x(n - i ) + V a dj x y0(n - j ) . (2.11) 

1 Using the expression of ye(n) from Fig . 2.4 
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The current output y0(n) depends on the past output samples adding complexity to 

the adaptive algorithms. As shown in Figure [2.6], the output error is given by 

e D(n) is a nonlinear funct ion of the f i l ter coefficients. Thus the M e a n Square O u t 

p u t E r r o r need not be a quadratic funct ion of the f i l ter coefficients and can have 

mul t ip le optima. This results i n suboptimal performance when using gradient tech

niques as the algorithm could converge to a local op t imum depending on the in i t ia l 

values of the coefficients. A specific numerical example is detailed in [JL77]. 

2.3.3 Adaptive Algori thms 

This section presents a brief overview of adaptive I I R algorithms. The adaptive al

gorithms relating to adaptive I I R filtering are more involved and less complete than 

F I R filter adaptive algorithms. The two formulations of the estimation error explained 

above lead to adaptive algorithms w i t h different characteristics. The equation error 

approach has been accepted widely as an alternative to the computationally inten

sive output error formulat ion but lead to biased estimates of the coefficient vector. 

However there exists an argument which suggests that the output error formulat ion is 

the correct approach as the adaptive filter is only operating on x(n) to generate y(n) 

which is the estimate of the desired response d(n) . On the other hand, the equation 

error approach uses the past values of the desired response d(n) as well as x(n) to 

estimate the current value of d(n). The output error formulat ion has been adopted 

in all the simulation results presented. 

A simplified fo rm of an adaptive algori thm for I I R filters is as follows 

e0(n) = d(n) - y0(n) (2.12) 

6(n + 1) = 0(n) - ^ ( n ) [ V , J ( 0 ( n ) ) ] (2.13) 

where 

A*(n) = 

V , J ( 0 ( n ) ) = 

The parameter of the algori thm 

Gradient of the error funct ion 
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The two popular classes of adaptive algorithms for I I R f i l ter ing are the Least Squares 

approach and Gradient Search algorithms. Least Square techniques use the input 

data samples recursively to minimize a least squares criterion. Detailed analysis of 

the least squares method is given in [Hay86]. Gradient based algorithms require the 

gradient at a point on the error surface to be measured, the next point searched being 

in the direction of the negative of the gradient. Two such algorithms are the Recursive 

Prediction Error (RPE) and the Recursive Least Mean Square (RLMS) algorithms 

[LS83, Shy89a]. These algorithms use an instantaneous values of the estimation er

ror leading to noisy estimates of the gradient but result i n asymptotically unbiased 

coefficients values. Another algorithm for adapting I I R filters is the Pseudolinear 

regression (PLR) algorithm which is a simpler version of the RPE algori thm derived 

by using an approximate expression for the gradient [Shy89a]. Development of fast 

algorithms for the gradient techniques have reduced much of the computational load. 

The main problem w i t h gradient techniques is suboptimal performance when deal

ing w i t h mul t imodal error surfaces. The in i t i a l interest i n adaptive I I R algorithms 

was sparked off by Feintuch in 1976 who suggested a simple algori thm for adapting 

I I R filter coefficients [Fei76]. This was a direct application of the F I R fi l ter LMS 

algori thm on an I I R filter structure. However this algorithm was shown to converge 

to false min ima by Johnson and Larimore [JL77] who also showed the Mean Square 

Output Error (MSOE) performance surface could be mul t imodal i f the adaptive filter 

was of insufficient order w i t h respect to the unknown system. This was later con

firmed by Parikh and Ahmed [PA78] who showed the inabi l i ty of the recursive LMS 

to ident i fy a reduced order example proposed by them. Further work on adaptive 

I I R filters was carried out by Stearns [Ste81], who stated a unimodali ty conjecture 

for the system identification conditions. Soderstrom and Stoica [SS82] subsequently 

added to the set of conditions put forward by Stearns for an unimodal error surface. 

These conditions are as follows: 

e The adaptive filter is of sufficient order to able to model the unknown system. 

® The input signal is white. 
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o The order of the adaptive f i l ter numerator exceeds that of the unknown system 

denominator. 

The last condition was put forward by Soderstrom and Stoica. Fan and Jenkins [FJ86] 

proposed a new adaptive algorithm which has the characteristics of both the output 

error and equation error formulat ion. They used the system identification config

uration and classified the error surfaces for such a configuration w i t h a stationary 

stochastic setting into four cases depending on the order of the adaptive f i l ter and 

the nature of the input excitation. These four case are: 

o Class ( I ) : Sufficient Order Modeling - Whi t e Noise Input 

o Class ( I I ) : Sufficient Order Modeling - Coloured Noise Input 

o Class ( I I I ) : Reduced Order Modeling - Whi te Noise Input 

o Class ( I V ) : Reduced Order Modeling - Coloured Noise Input 

I t can be seen that both complexity and practical reality increase as we move down 

the above list. More recently extensive work has been done by Fan and Nayeri [FN89], 

wherein they proved Steam's conjecture for first and second order filters even without 

Soderstrom and Stoica's additional constraint. They also showed that the MSOE 

error surface could be mul t imodal even when the adaptive f i l ter was of sufficient 

order (Class ( I ) ) or when the order is over estimated. 

A different approach in designing adaptive I I R algorithms was based on the con

cept of Hyperstability and was detailed in [Joh79]. The resulting algori thm was re

ferred to as the Hyperstable Adaptive Recursive Fil ter ( H A R F ) algori thm. Hypersta

b i l i t y was a concept which was associated w i t h the analysis of closed loop nonlinear 

t ime varying control systems [Pop73]. The algorithm had provable convergence prop

erties but was computationally intensive especially for real t ime applications. This 

led to a simplified version of the algorithm referred to as the Simple Hyperstable 

Adaptive Recursive Fil ter (SHARF) algori thm [LTJ80]. The SHARF algorithm had 

convergence properties similar to H A R F algori thm but under weaker conditions. A 

fur ther constraint of this approach was that i t relied on a Strictly Positive Real (SPR) 
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condition for global convergence. This condition effectively reduced the operating re

gion of the adaptive fi l ter by restricting the pole positions. 

Random Search algorithms were another technique used to search performance 

surfaces. They made use of a random process to generate new points and made 

no assumptions about the nature of the error surfaces. This approach was used for 

F I R f i l ter ing [WM76] , where the proposed linear random search (LRS) algorithm was 

compared to LMS. A whole chapter dedicated to different adaptive algorithms is given 

in [WS85]. 

A l l the adaptive algorithms detailed in this section use the direct f o r m structure. 

A drawback wi th the direct f o r m realization is the sensitivity of the structure to the 

quantization of the coefficients which would result i n any implementation. Another 

shortcoming w i t h the direct f o r m approach is that the stabil i ty check involves ad

dit ional computational overheads. As a result, alternative realizations which have 

been derived f r o m the direct form configuration have been used extensively in all the 

simulation experiments conducted in this thesis and are detailed in the next section. 

2A A l t e rna t ive Realizations 

The direct f o r m realization of an I I R f i l ter is as given by Equation [2.1] and is repeated 

here for ease of reference. 

M N 

y ( n ) = b*
 x

 x ( n ~
 + X!aj x y(n ~ 

<=o i = i 

Another possible way of characterizing the above class of systems is to use the transfer 

funct ion approach. The transfer funct ion for the above equation is given by 

H(z) = J (2-14) 
1 - L j = i a i z 3 

which is a ratio of two polynomials. From the above equation, the poles and zeroes 

of the system funct ion H(z) can be obtained. The bu i l t - in feedback structure of the 
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I I R filter leads to problems of stability. This is especially true i n the case of adaptive 

filters as during the adaptation one or more poles could move outside the unit circle 

in the z-plane resulting in an unstable filter. Thus adaptive algorithms need some 

f o r m of stabili ty check which may prove to be computationally expensive i f i t involves 

factorizing the denominator at each iteration. Another l imi ta t ion of the direct fo rm 

structures is the large sensitivities caused by the poles inadvertently slowing down 

the convergence rate. A way to resolve this problem is to decompose the direct 

fo rm structure into alternative realizations like the parallel or cascaded forms which 

have lower coefficient sensitivities and arithmetic quantization effects. The parallel 

or cascaded realizations are composed of smaller order filters arranged in parallel or 

series which as a whole realize the transfer funct ion given by Equation [2.14]. These 

realizations also allow easier implementation of the stabil i ty check. 

A different alternative realization which does not directly follow f r o m the direct 

f o r m structure as given i n Equation (2.1) is the lattice configuration. The advantage 

w i t h the lattice configuration is that there exists a unique set of lattice coefficients 

for each direct fo rm I I R filter. The stabili ty check is also incorporated very easily in 

the adaptive lattice algorithms. 

2.4.1 Parallel Form 

A parallel fo rm realization of an Pth order I I R filter can be obtained by performing 

a part ial fract ion expansion of H(z) as given in Equation [2.14]. This results in 

P/2 

Hp(z) = j2Hi(z) (2.15) 
t=i 

where 

= ito + ^ + fr,*-2

 ( 2 1 6 ) 

, w 1 + am-1 + ai2z-2 v ; 

The parallel fo rm is usually composed of second order filters having the transfer 

funct ion as given in Equation [2.16]. The use of second order sub-systems prevents 

the use of complex ari thmetic as would be the case i f first order filters were used. The 

stabil i ty check is incorporated by ensuring that the denominator coefficients of the 
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second order sub-system lie inside the stability triangle [Shy89a]. This realization is 

shown in Figure (2.7) when used in an adaptive f i l ter ing setup. 

The instantaneous output error is the given by 

P/2 

e(n) = d ( n ) - j > ( « ) (2.17) 
«=i 

Detailed analysis of the parallel fo rm adaptive I I R f i l ter is given in [NJ89, Shy89b]. 

I n [Shy89b] a frequency domain implementation of the parallel fo rm I I R fi l ter is pre

sented based on the discrete Fourier transform. The discussion includes a study of 

the MSOE surface and the convergence properties. I n [NJ89], the different MSOE 

surfaces for alternative realizations like the parallel and cascade forms are examined 

and analysed. The main conclusions drawn f r o m the analysis is that whenever a 

direct f o r m I I R fi l ter w i t h a unimodal MSOE surface is transformed into an alter

native realization using either a parallel or cascaded f o r m , the MSE surface of the 

new structure may have additional stationary points which are either new equivalent 

min ima or saddle points which are unstable solutions i n the parameter space. 

2.4.2 Cascade Form 

The cascade f o r m of Equation [2.14] is given by 

P/2 

Hc(z) = i[Hi(z) (2.18) 

where H{(z) is as given in Equation [2.16]. The analysis of the cascade f o r m is similar 

to that of the parallel f o r m and is given in [NJ89]. The computation of the gradient 

in the cascade f o r m is more involved as the output of each section depends on the 

output of the previous sections. I t has been shown that the cascade f o r m has slower 

convergence rate than other realizations. A detailed analysis of the adaptive recursive 

f i l ter ing using the cascade f o r m is presented in [TCC87]. 
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2.4.3 Lattice Form 

The lattice f o r m has been used in adaptive signal processing for linear prediction and 

noise cancellation [Gri78, MV78] . Adaptive I I R f i l ter ing using the lattice fo rm has 

been discussed in [Hor76, PAS80b]. A through exposition of the basic lattice structure 

is given in [CG85].The main advantages of using the lattice structure are stability 

check by inspection, cascading of identical sections and good numerical round-off 

characteristics. The lattice f o r m of a digi tal f i l ter is entirely different f r o m the forms 

which have been listed before. Each stage of a lattice structure is characterized by 

having a pair of input and output terminals. The lattice structure equivalent to a 

direct f o r m fi l ter given by Equation [2.14], is shown in Figure [2.8]. The algori thm to 

convert f r o m a direct fo rm fi l ter to a lattice fo rm is given in Appendix A . 

A n advantage over the parallel and cascaded fo rm is the MSOE surface for the 

lattice configuration used in the adaptive f i l ter ing, does not possess any saddle points. 

Convergence properties of an adaptive lattice f i l ter are similar to that obtained for a 

direct f o r m fi l ter [Shy87]. Some recent results regarding stable and efficient adaptive 

lattice algorithms are presented in [Reg92]. 

2c5 Appl ica t ions of Adap t ive I I R F i l t e r i n g 

To give a complete picture, the new approaches to adaptive I I R f i l ter ing have been 

tested in two important applications, both which use an adaptive I I R f i l ter . These are 

adaptive noise cancelling and adaptive equalization. Adaptive noise cancelling as the 

t e rm indicates, is used to remove the distortion f r o m a signal which has been corrupted 

by extraneous noise sources and restore the signal to its original state. Previous work 

in these areas has been done w i t h success using F I R filters, however the need for 

real t ime processing requires the use of I I R filters. Addi t ive noise canceling has been 

used in a variety of engineering areas such as biomedical measurements and antenna 

beam-forming. 

In modern telecommunications, the transmission of data over large distances 

is of v i ta l importance. This is usually achieved using transmission lines or radio 

waves. Currently, digital transmission is becoming more prevalent, w i t h the analogue 
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voice/data source being digitised at the source and then transmitted as a sequence of 

bits. A t the receiver, these bits are then converted back to the analogue information. 

The main problem wi th this mode of transmission, is that during the transmission, 

the signals get corrupted and transformed. Corruption may occur due to addition 

of background thermal noise or impulse noise. Transformation usually occurs as a 

result of the f ini te bandwidth of the transmission channel and could be frequency 

translation or t ime dispersion. I n a modem transmitter, a number of bits are en

coded into symbols and transmitted. Due to the finite bandwidth of the transmission 

channels, the effect of each symbol extends beyond the t ime interval used to represent 

that symbol. The distortion caused by the resulting overlap is termed as intersymbol 

interference (ISI) . Equalization is a broad term for techniques which overcomes this 

problem by compensating for them at the receiver end. 

2.5.1 Adaptive Noise Cancelling 

The simulation configuration to demonstrate the adaptive noise cancelling is taken 

f r o m the paper by Larimore et. a. [LTJ80]. The setup is shown in Figure [2.9]. I t is 

desired to estimate the signal s(n) which has been corrupted because of the additive 

uncorrelated noise process vl(n). Thus the pr imary signal source denoted by z(n) is 

given by 

z{n) = s{n) + vl(n) (2.19) 

To compensate for the noise vl(n), usually a sensor is used which measures only the 

noise process as is shown at the top of Figure[2.9]. Thus a reference measurement, 

v2(n) is available, which is correlated to original noise process vl(n). By means 

of proper f i l ter ing, the configuration in Figure [2.9] should be able to reduce the 

interference caused by the noise process and provide a good estimate of the signal 

s(n). As is shown in Figure [2.9], the system identification configuration has been 

employed. This setup could be rearranged as an output error identifier as has been 

shown in [LTJ80]. Then, minimising the mean square output error, leads to the 

cancellation of the correlated signals which are present i n y(n) and z(n). Since, i t 

is the noise component of two signals y(n) and z(n) which are correlated, i t gets 
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cancelled, resulting in output error approaching the undistorted signal s(n). This 

fact is of paramount importance, because i f the original signal s(n) is i n some manner 

correlated to the noise process v(n), then the output error identifier would lead to the 

cancellation of the desired signal itself. 

2.5.2 Adaptive Equalization 

I n modern digital communication, data is t ransmitted using analogue channels. As a 

result of the f ini te bandwidth of the channel, the t ransmit ted signals are invariably 

distorted. Once such f o r m of distortion is intersymbol interference caused as a result 

of t ime dispersion or mul t ipa th effects. To overcome the effects of this distortion, the 

received signals are passed thorough an equalizer which compensate for the distortion 

and recovers the original symbols which were transmitted. One widely used fo rm for 

the equalizer has been the linear transversal equalizer which is in effect an F I R fil ter. 

I t has been shown however that this k ind of structure is not suitable for non-minimum 

phase channel compensation. 

The system shown in Figure [2.10] is used for the experimental configuration. The 

input signal x(n) is modeled using an independent binary random sequence, the bits 

being represented by + 1 and - 1 . The effect of the channel are modeled using a F I R 

filter w i t h real coefficients. The output of this filter is given by 

y(n) = a0x(n) + a\x{n — 1) + • • • + aMx{n — M) 
M 

= J2atx(n-l) (2.20) 

where ( d o , . . . , a ^ ) are the coefficients of the F I R filter which models the transmission 

channel characteristics. The additive noise v(n) is of uni ty power and zero mean. Thus 

the signal which is presented to the equalizer is the noise corrupted signal y. The 

funct ion of the equalizer is to use the values of y(n),..., y(n — K) to produce the best 

estimate of of x(n), where K is the order of the equalizer. I n most cases, because 

of the non-minimum phase characteristics of equalizer only a delayed estimate of the 

original sequence rc(n)is obtained. More details of the implementation are given in 
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Chapter 6, where the evolutionary algorithm is used for adaptive equalization. 

2 06 Discussion 

This chapter presented an overview of adaptive digital f i l ter ing and in particular 

adaptive I I R f i l ter ing. Adaptive F I R f i l ter ing is a mature field w i t h well analysed 

algorithms w i t h respect to rate of convergence and opt imali ty . However the area of 

adaptive I I R f i l ter ing is s t i l l evolving. The main l imitat ions of the current adaptive 

I I R algorithms are either the computational complexity or the failure of the algorithm 

when dealing w i t h mul t imodal error surfaces. A problem which arises when modeling 

high-order I I R filters is one of stability. Ensuring stabil i ty of the I I R filter kernel for 

all choices of filter coefficients is computationally expensive. Other adaptive tech

niques like random search algorithms have been used to solve this problem but have 

not given encouraging results. I n the next chapter we present a different approach 

which is based on Stochastic Learning Automata. Stochastic Learning Automata 

are techniques which make use of probabilistic transitions and have been shown by 

simulations to exhibit global optimali ty. 
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Chapter 3 

Stochastic Learning Automata 

3.1 I n t r o d u c t i o n 

rjp he process by which biological organisms learn has been a fascinating area of 

research for well over a century. The focus of research has been mainly two pronged 

- to understand the principles involved during the learning process of biological sys

tems and to develop methodologies whereby these principles could be incorporated 

into machines. Learning can be regarded as a change brought about in a system 

performance as a result of past experience [NT89]. A n important characteristic of a 

learning system is its abi l i ty to improve its performance w i t h t ime. I n a str ict ly math

ematical context, the goal of a learning system can be said to be the optimization of 

a functional which may not be known completely. Thus an approach to this problem 

is to reduce the objective of the learning system to an optimizat ion problem defined 

on a set of parameters and use established techniques to arrive at the opt imal set of 

parameters. This chapter is concerned w i t h the learning methods based on Stochastic 

Learning Automata. 

The concept of Stochastic Automata was first introduced by the pioneering work 

of Tsetl in in the early 1960s in the Soviet Union who was interested in the modeling 

of the behaviour of biological systems [Tse62]. Subsequent research has considered 

the use of the learning paradigms in engineering systems. This has led to extensive 

work using automata as models of learning w i t h applications in telephone routeing, 

pattern recognition, object part i t ioning and adaptive control [NT74, Lak81, NT89, 
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OM88, SN69, FM66]. A Learning Automata could be regarded as an abstract object 
having a finite number of actions. I t operates by selecting an action f r o m a finite set 
of actions which is then evaluated by a random environment. The response f rom the 
environment is used by the automaton to select the next action. By this process, the 
automaton learns asymptotically to select the opt imal action. The manner in which 
the automaton uses the response f r o m the environment to select its next action is 
determined by the specific learning algorithm used. The next section gives details of 
the components of a Stochastic Learning Automata. 

3o2 Stochastic Learning A u t o m a t a 

A Stochastic Learning Automaton (SLA) comprises of two main building blocks: 

o A Stochastic Automaton w i t h a finite number of actions and a Random envi

ronment w i t h which the automaton interacts. 

o The Learning Algori thms by which the automata learns the opt imal action. 

3.2.1 Stochastic Automata 

A n Automaton can be regarded as a finite state machine. Mathematically i t can 

described by a quintiple 

SA = { a , / 3 , F , G , 0 } (3.1) 

where 

a = { cti, a 2 , . . . , ar } = Set of Actions of the Automaton ; 

/3 = { fli, /32,..., /3r } = Set of Inputs to the Automaton ; 

F = <j> x /? — • <f> = Function which maps current state 

and input into next state ; 

G = <f> —* a = Output funct ion mapping the current state 

into the next output ; 

4>(n) = { <j>i, fa, • • •, 4>k } = Set of Internal states of the Automaton 

at t ime n ; 
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The set a forms the output set of the automaton, the automaton selecting one of the 

r actions at each iteration. The input set (3 defines the input to the automaton and 

is explained in the next section. The mappings F and G transform the current state 

and input to the next output (action) chosen by the automaton. When the mappings 

F and G are deterministic, the automaton is referred to as Deterministic Automaton. 

I n such a case, given the in i t i a l state and input , the next state and output are uniquely 

specified. When the mappings F and G are stochastic, the automaton is referred to 

as a Stochastic Automaton. In this case only probabilities associated w i t h the next 

states and outputs are specified. Stochastic Automata can be fur ther classified into 

Fixed Structure and Variable Structure automata. In a fixed structure stochastic 

automaton, the probabilities associated w i t h the different actions are f ixed, while 

in a variable structure stochastic automaton (VSSA) the probabilities are updated 

at each iteration n. The internal state of the automaton (p is represented by the 

action probabilities of the actions of the automaton. For mathematical simplicity 

i t is assumed that each internal state corresponds to an unique action. Thus the 

internal state of the automaton <p is replaced by the action probabili ty vector p 

which is defined as 

p(n) = {pi{n),p2(n),.. .,pr(n)} (3.2) 

where 

Pi(n) = Prob[a(n) = £*,] (3.3) 

and 
r 

Vpi (n) = l ;Vn . (3.4) 
i=l 

Defining the simplex 

s={p\Pi>o,T/ 
i p 

1=1 

(3.5) 
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we have p ( n ) € S ; Vn. In i t i a l ly all the action probabilities are set equal to one 

another, i.e. 

P i = 1/r (3.6) 

where r is the number of actions of the automaton. 

3.2.2 The Environment 

The random environment can be mathematically described by a tr iple 

£ = { a , / 3 , c } (3.7) 

where 

at = { ai, a 2 , . . . , ar } = Set of inputs ; 

(3 — { / 3 2 , . . . , f3T } = Set of outputs ; 

c = { ci, c-i,..., cr } = Set of penalty probabilities ; 

The input of the environment is one of the r actions selected by the automaton. 

The output(response) of the environment to each action i is given by /?,-. When 

is a binary response, the environment is said to be the P - M o d e l type. I n such an 

environment, /?,(n) = 1 is taken as a failure while /3,(n) = 0 is taken as a success. This 

notation is purely due to convention. I n the Q - M o d e l environment, /?,(n) can take a 

f ini te number of values between [0,1], while in the S - M o d e l /?,(n) is a random variable 

between [0,1], i.e. /?»(n) 6 [0,1]. The set c of penalty probabilities characterize the 

environment and is defined as 

Ci = Prob[ fi(n) = 1 | a (n ) = a,-]; t = { 1 , 2 , . . . , r } (3.8) 

i.e. the probabili ty that the action at- would result i n an unfavourable response f r o m 

the environment. The values of are unknown and i t is assumed that { c,- } has 

a unique min imum. The environment could also alternatively be characterized by 

a set of reward probabilities which would represent the probabil i ty that a particular 
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action elicits a favourable response f r o m the environment. When dealing w i t h station

ary environments, the penalty probabilities are constant, while i n a non-stationary 

environment the penalty probabilities vary w i t h t ime. 

The connection of the Stochastic Automata and the Environment i n a feedback 

arrangement as shown in Figure (3.1), together w i t h the Learning Algorithms, fo rm 

the Stochastic Learning Automata. Thus a Stochastic Learning Automata can be 

formal ly described by a quintiple 

SLA = { a , / 3 , p , T , c } (3.9) 

where 

a = {ai, 0 J 2 , . . . , a r } = Set of outputs of Automaton / 

Set of inputs to the Environment. 

(3 = { f i i , fa,..., (3T } = Set of inputs to the Automaton / 

Set of outputs of the Environment. 

p = {pi 5P2? • • • >Pr } = The probabil i ty vector. 

T = p ( n + 1) = T[ct(n),(3(n),p(n) ] = The learning algorithm. 

c = { c i , C 2 , . . . , c r } = Set of penalty probabilities 

defining the Environment. 

As stated before, for mathematical ease, every internal state of the automaton cor

responds w i t h an unique action (output) of the automaton. Thus the funct ion G 

(Equation [3.1]) reduces to an identi ty mapping. The funct ion F (Equation [3.1]) of 

the stochastic automaton is replaced by the learning algori thm T , which determines 

the next action of the automaton. The learning algorithms are of v i t a l significance to 

the operation of the SLA and are examined in detail i n a subsequent section (section 

[3.3]). 
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3.2.3 Norms of Behaviour 

To quantify the performance of the SLA, certain measures have been defined which 

determines the effectiveness of the automaton and enables the comparison of different 

learning schemes [NT89]. A pure-chance Automaton is denned as one in which every 

action is equally likely to be picked. Thus an automaton which is said to learn must 

perform better then the pure-chance automaton. 

As stated before, the random stationary environment is represented wi th penalty 

probabilities { c i , C 2 , . . . , c r } , where c, is the penalty probabil i ty corresponding to ac

t ion a,-. A quantity M(n) is defined as the average penalty received by the automaton 

for a given action probabili ty vector and is given by 

M ( n ) = E[(3(n) | p(n)} 
T 

= J > p , ( n ) (3.10) 
»=i 

For a pure-chance automaton, the average penalty M(n) is a constant M0 and is 

given by 
I r 

M 0 = - ] T c, (3.11) 
r t = i 

For an automaton to perform better, its average penalty must be less than M0 at 

least asymptotically. Since M(n) is a random variable, the expected value of M(n), 

i.e. E [ M " ( n ) ] , is compared w i t h M0. Thus we have the following definitions: 

e D e f i n i t i o n A : A learning automata is said to be expedient i f 

L U £ [ M ( n ) ] < M 0 (3.12) 

© D e f i n i t i o n B : A learning automata is said to be optimal i f 

LU^ElMin)] = c, (3.13) 

where c\ = m m , { c , } . Whi le opt imal i ty is a desirable feature i n a stationary en-
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vironment, in a practical situation a sub-optimal performance may be required 1 

Thus we have 

o D e f i n i t i o n C: A learning automata is said to be t- optimal i f 

Lt^EiMin)] <ci + e (3.14) 

is realized for any arbitrary e > 0. 

© D e f i n i t i o n D : A learning automata is said to be absolutely expedient [LT73] i f 

E[M{n + i ) | p(n)} < M{n) (3.15) 

Vn , Vpi(n) G (0,1) and for all possible sets { c , } ( i = 1 ,2 , . . . , r). 

Expediency merely demonstrates that the SLA performs better than a pure chance 

automata and thus a more desirable behaviour would be optimality. Opt imal i ty 

ensures that the opt imal action is chosen by the automaton asymptotically and is 

desirable i n a stationary environment. Bu t i n a practical situation, the environment 

is usually non-stationary and an e—optimal behavior is preferred as previously. 

The type and performance of a SLA is characterized by the learning algorithm 

used. The next section reviews the various learning schemes which have been studied 

in the literature. 

3.3 Learning Algorithms 

3.3.1 Standard Learning Algorithms 

As shown in Equation [3.9], the learning algorithm T can be represented by 

p ( n + l ) = T f o ( n ) , a ( n ) , / 3 ( n ) ] (3.16) 

' In a practical situation the environment is usually non-stationary and therefore the optimal 
action may change with time. A sub-optimal learning algorithm may be more suitable since the 
algorithm does not get locked into any particular state. 
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I f operator T is linear, the reinforcement (learning) algori thm is said to be linear, 

otherwise i t is referred to as a non-linear scheme. The fundamental idea behind all 

learning algorithms are as follows: I f the SLA selects action a,- at i teration n and 

obtains a favourable response f r o m the environment, the action probabil i ty p,(n) is 

increased while the action probabilities of the other actions are decreased. For an 

unfavourable response, pi(n) is decreased, while the other action probabilities are 

increased. Thus we have 

o Favourab le Response 

Pj(n + 1) = P j ( n ) - fj\pj(n)} ; V j ; j ^ i 
T 

Pi(n + 1) = Pi(n) + ^2fj\pj{n)] (3.17) 

o U n f a v o u r a b l e Response 

Pj{n + l ) = pj(n) +gj\pj(n)] ; V j ; j ^ i 

Pi(n + 1) = Pi(n)-^gj\pj(n)] (3.18) 

The functions f j and gj are referred to as the reward and penalty functions respec

tively and are assumed to be non-negative functions. The above equations preserve 

the validity of Equation [3.4]. Linear learning algorithms have been studied exten

sively as they are mathematically more tractable. For a linear reinforcement algorithm 

w i t h mul t iple actions, the functions f j and gj are given by [NT89] 

fj\Pi(n)} = a P j ( n ) ! 0 < a < 1 ; (3.19) 

9j\Pj(n)} = - t - r - bpj(n) ; 0 < b < 1 ; (3.20) 
r — 1 

where 
r = Number of actions of the automaton 

a = Reward Parameter 

b = Penalty Parameter 

39 



L e a r n i n g A l g o r i t h m s 

Learning algorithms w i t h different characteristics are obtained based on the relative 

values of the learning parameters a and b . Thus we have 

o LRP Scheme: When a and b are equal to each other, we obtain the L i n e a r 

R e w a r d P e n a l t y (LRP) Scheme. 

° Lfcp Scheme: When b is an order of magnitude less than a, the resulting learn

ing scheme is called the L i n e a r R e w a r d eps i lon P e n a l t y (LRCP) Scheme. 

o LRI Scheme: When the penalty parameter b is equal to zero, the scheme is 

referred to as the L i n e a r R e w a r d I n a c t i o n (LRI) Scheme. 

Using the Equations [3.19] and [3.20] for the functions f j and gj, the general f o r m of a 

learning algori thm is as follows: I f at i teration n action a, is chosen, then at iteration 

(n + 1) we have 

o Favourab le Response f r o m E n v i r o n m e n t 

p,-(n + l ) = Pi(n) + a[l - Pi(n)] ; (3.21) 

P j ( n + l ) = ( l - a ) P j ( n ) ; V j ; j ? i (3.22) 

o U n f a v o u r a b l e Response f r o m t h e E n v i r o n m e n t 

p , (n + l ) = ( l - b ) P i ( n ) ; (3.23) 

P i (n + 1) = - l ~ + ( l - b ) P j ( n ) ; V j ; j ^ i (3.24) r — 1 

The above equations give the general rule for the updating of the action probabilities. 

I f i n the above equations (a = 6) the LRP scheme is obtained, while (b = 0) results 

in the LRI scheme. The LRP scheme leads to expedient behaviour of the automaton, 

while both LRI and LRCP schemes result in e-optimal behaviour. Non-linear updat

ing schemes have been pursued by researchers [VN70, LT72b, LT73], but gave no 

appreciable improvement over the linear updating schemes. 
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A crucial factor which l imi ts applications involving SLA is their slow rate of con

vergence. This factor becomes more pronounced when the number of actions increase 

and the SLA has to update more action probabilities at each iteration. The next 

few sections present some new approaches which have been devised w i t h the aim of 

improving the rate of convergence of the basic learning algori thm detailed above. 

3.3.2 Discretised Learning Algori thms 

Discretised Learning Algori thms are based on discretising the action probabilities 

and was first proposed in [T079] . Such automata are discretised versions of their 

continuous counterparts. Discretisation involves restricting the values of the action 

probabilities to discrete values in the interval [0,1]. The discretisation is termed linear 

i f the allowable values in [0,1] are equally spaced, otherwise i t is called non-linear. The 

idea behind discretising the action probabilities is to allow the action probabilities to 

approach the l imi t ing value of uni ty directly, rather than approach i t asymptotically 

as is the case w i t h the continuous algorithms. Thus the speed of convergence of the 

learning algori thm should increase significantly. 

Another advantage of using discretisation is the minimizat ion on the requirements 

on the system random number generator where the algori thm is applied. This fact is 

important as any implementations of SLA make use of random number generators. 

As a result of the f in i te precision of a computer system, only a f in i te number of values 

i n the interval [0,1] can be obtained. Thus the precision of the continuous algorithm 

is l imi ted by the random number generator of the system on which the algorithm 

is implemented. Theoretical results involving discretised automata were proved in 

[OH84, OC88]. For a two action automaton w i t h actions ax and a 2 , the probability 

update equations are as follows: Suppose action ax was chosen at i teration n. Then 

© Favourab le Response 

Pi (n + 1) M i n { p i ( n ) + A , 1 - A } 

p 2 ( n + 1) M a x { p 2 ( n ) - A , A } (3.25) 
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o U n f a v o u r a b l e Response 

Pi(n + 1) M a x { p i ( n ) - A , A } 

Pa(n + 1) M'm{p2(n) + A , 1 — A } (3.26) 

The parameter A is referred to as the step-size and is given by 

(3.27) 

where r is the number of actions of the automata and N is the resolution parameter 

which forms the learning parameter of the discretised algori thm. The resolution 

parameter N determines the speed and accuracy of convergence of the algorithm. The 

Max and Min functions ensure the probabilities satisfy 0 < Pi{n) < 1 and also ensures 

the automaton does not have any absorbing states by preventing any of the action 

probabilities converging to '0' or ' 1 ' . Theoretical results regarding the convergence 

of the discretised algorithm are available only for the 2-action case, though i t is 

conjectured that the results also hold for the mult i -act ion case [OC88]. 

3.3.3 Estimator Algori thms 

I n the standard learning algorithms, the environment characterised by the penalty 

probabil i ty vector was assumed to be unknown. A n improvement i n the basic learning 

scheme could be to determine the characteristics of the environment as the learning 

proceeds. Estimator algorithms work precisely on this principle and maintain an 

estimate of the penalty probabilities as the learning proceeds. This added information 

is used when updating the action probabilities. The first instance of using the idea 

of estimating the penalty probabilities of the environment using Bayesian techniques 

was proposed in [LT72a]. Bu t the main thrust of the approach has been carried out 

by Thathatchar and Sastry in [TS85, TS86]. 

Nonestimator algorithms update the action probabil i ty vector solely based on the 

response f r o m the environment. Thus i f an action results i n a favourable response 

f r o m the environment, the probabili ty of choosing that action is increased. Estimator 
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algorithms on the other hand maintain a running estimate of the probabil i ty of reward 

(penalty) for each action. When an action obtains a favourable response f rom the 

environment, the estimator algorithm updates the estimate of reward for that action. 

Then, the change in the action probabili ty for that action is based on both the 

feedback f r o m the environment and the running estimates of the reward probabilities. 

Thus in a estimator algorithm i t is possible for the probabil i ty of an action to be 

decreased even when i t has obtained a favourable response f r o m the environment. 

I n nonestimator algorithms, the action probabil i ty vector p is defined as the in

ternal state of the automaton (Equation [3.2]). Estimator algorithms on the other 

hand also use the estimates of reward for each action, and thus the internal state of 

the automaton is generalized to Q(n) where 

Q ( n ) = { p ( n ) , d ( u ) } (3.28) 

where 

d(n) = [(?i(n), d2(n),..., dr(n)] (3.29) 

and di is the estimate of reward for the i t h action. The SLA is now represented as 

SLA = { a , / 3 , p , d , T , c } (3.30) 

where the different components are as stated in Equation [3.9]. 

The estimate d,- for each action is given by 

where 

M , ( n ) = Number of times action i has been rewarded. 

Zi(n) = Number of times action i has been chosen. 

Using the above equations the updating rules for the estimator algorithms are as 
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follows: Suppose at i teration n action i was chosen. Then 

and 

Pi(n + 1) = w(n) + A2J / (4 (n) -<*i (n) ] 

Sij{n)pj(n) + Sji(n)-!—.-(1 - Pj(n)) 
r — 1 

Pj(n + 1) = pj(n) - \ [ f ( d i ( n ) ~ dj(n)) 

Sii(n)Pi(n) + S ; , ( n ) ^ l ( l - Pj(n)) 
r — 1 

; V j ; j ^ i (3.32) 

M , ( n + 1) 

Mj(n + 1) 

Zi(n + 1) 

Zj(n + 1) 

di(n + 1) 

Mi(n) + Pi(n) 

Mj(n) 

Zi(n) + 1 

M,{n + 1) 
1 < / < r (3.33) 

where 

Sij(n) = 1 , i f c?,(n) > d j ( n ) 

= 0, i f di(n) < dj(n) (3.34) 

0 < A < 1 is the learning parameter and / is a monotonic increasing funct ion. 

I n the estimator algorithm, the change in probabil i ty of an action i depends on the 

sign of [di(n) — dj(n)]. Thus i f action i is selected, then the updating for action j ( j ^ i) 

is as follows: I f [di(n) > dj(n)], then an amount proportional to Pj(n) is subtracted 

f r o m p j ( n ) ; i f (a,-(n) < dj(n)], then an amount proportional to (pi(n)/(r—1))(1— Pj(n)) 

is added to pj. This asymmetry ensures that the action probabil i ty vector remains in 

the simplex S (Equation [3.5]). 

The existing learning algorithms for learning automata can be broadly classified 

into two groups: Ergodic and Absolutely expedient. Ergodic learning algorithms result 

i n the opt imal action probabili ty vector converging in dis tr ibut ion independent of the 
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in i t i a l action probabil i ty distr ibution. I n non-stationary environments, i f the optimal 

action changes w i t h t ime, an ergodic SLA can track the change. Absolutely expedient 

learning schemes on the other hand possess absorbing barriers. I f an automaton enters 

an absorbing barrier then i t is locked into that state for all t ime. Thus convergence 

to one of these absorbing states can be proved. Since al l extremities of the simplex S 

(Equation [3.5]) are absorbing states, there exist a f in i te probabil i ty of convergence to 

the wrong action and thus the algori thm is e-optimal. Estimator algorithms however 

use the enhanced definition of the state (Equation [3.28]) and use this extra informa

t ion in the updating algorithms. This ensures w i t h a large probabil i ty that the unit 

vector corresponding to the opt imal action forms the only absorbing barrier. Thus 

convergence to the opt imal action i n probabili ty is established [TS85]. 

P u r s u i t A l g o r i t h m s 

Pursuit algorithms are a subset of the estimator algorithms and were first proposed 

by Thathatchar and Sastry in [TS86]. They have been used in learning of Boolean 

functions [MT89]. Pursuit Algori thms retain all the characteristics of estimator al

gorithms but yield much simpler expressions for updating the action probabilities. 

They are characterized by the fact the action probabili ty vector pursues the opt imal 

action. Thus whenever the automaton is rewarded by the environment, the action 

which has at that instant, the largest estimate of reward, has its action probability 

increased. The update equations for the pursuit algori thm are as follows: Suppose 

action i was chosen at i teration n. Then 

® Favourab le Response 

p ( n + 1) = (1 - A)p(n) + Ae, •m (3.35) 

e U n f a v o u r a b l e Response 

p ( n - f l ) = p ( n ) (3.36) 
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and 

M,-(n + l ) = M , ( n ) + ft(n) 

Z,-(n + l ) = Z,-(n) + l 

M,-(n + l ) = M , ( n ) ; V j ^ » 

Z ; ( n + 1) = Z,-(n) ; V j ^ i 

where 

A = The learning parameter ; 0 < A < 1 

m = Index of the maximal component of d(n) 

em = Un i t r-vector w i t h ' 1 ' in its mth coordinate 

Mi(n) = Number of times action i has been rewarded 

Zi(n) = Number of times action i has been selected 

di(n) = Estimate of the reward probabil i ty of action i 

(3.38) 

Essentially the algorithm operates by , mul t ip ly ing all the action probabili ty by the 

factor (1 — A) in case of a favourable response. Then the probabil i ty of the action 

that has the largest estimate of reward (J,) is increased by A. This ensures that the 

probabil i ty measure of Equation [3.4] is satisfied. Whi le the LRJ algorithm moves 

the action probabil i ty vector i n the direction of the most recently rewarded action, 

the pursuit algorithm moves the action probabili ty vector i n the direction of the 

action possessing the largest estimate of reward. Theoretical results regarding the 

convergence of the algorithm are presented in [TS86], where i t is shown that the 

pursuit algori thm is e-optimal. 
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D i s c r e t i s e d P u r s u i t A l g o r i t h m s 

Discretised pursuit algorithms (DPA) are constructed similarly to their continuous 

counterparts except that the action probabili ty changes i n discrete steps [OL90]. As 

in the case of the discretised LJU, the action probabilities are decreased by subtracting 

f r o m i t the value of A which is the smallest step size. The parameter for the algorithm 

is referred to as the resolution parameter k. Thus the update equations for the DPA 

areas follows: Suppose action m has the largest estimate of reward at i teration n 

o Favourab le Response 

p-(n + 1) = Max{pj(n) - A , 0 } ; j ^ m 

p m ( n + l ) = l - £ P i ( n + l ) ; (3.39) 

® U n f a v o u r a b l e Response 

P j ( n + l ) = P j ( n ) ; V j (3.40) 

The updating of the estimate vector d ( n ) is done i n the same manner as in the 

continuous case i.e. Equation [3.37]. The parameter A is given by A = l / ( r i V ) 

where r is the number of actions and TV is the resolution parameter. As a result of 

the discretisation, the action probabilities need to be stored only as integer values 

ki, f r o m which the action probabilities at any instant can be calculated as fc,A. The 

c-optimality of the scheme has been proven in [OL90]. 

A l l the learning algorithms which have been detailed above assume a P-Model 

environment providing a binary response of success or failure. I n the real world this 

may be a gross simplification and a better scheme would be an environment that 

provides a continuous response to decide the quali ty of the action chosen by the 

automaton. Such an environment is provided by the S-Model and the next section 

presents learning schemes which operate i n such an environment. 
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3.3.4 S-rVlodel Learning Schemes 

S-Model environments provide a response which is a random variable ly ing between 

[0,1]. Thus the output of the environment (input to the automaton) is modified to 

P{n) = { p u p 2 t . . . , 0 r } = 0 i e [ O , l ) ; V i (3.41) 

Since the response f r o m the environment in the case of the S-Model is a random 

variable between [0,1], application of the S-Model to learning system problems require 

the a priori knowledge of the lower and upper bounds of the performance indices in 

order to scale the responses to lie between [0,1]. Expedient performance using the 

S-Model was shown in [LT76]. I n [VN73], the authors derive an opt imal nonlinear 

algori thm for a two action automaton using the S-Model. I n the same paper, a scheme 

based on the e-optimal LRI (P-Model) scheme was proposed for the mult i-action case. 

A n e-optimal scheme for the mult i-action case was also reported in [Mas73]. 

S — LRI Scheme 

I n the P-Model environment, the penalty probabilities defined the environment. For 

each action a,-, the environment responds w i t h a random value [/3i(n) | a,] which also 

forms the input to the automaton. For a P-Model, the response /3,(n) was '1'(penalty) 

w i t h probabil i ty c t and 'O'(reward) w i t h probabili ty (1 — c,). For the S-Model, the 

environment is defined as 

E = { c * , / 3 , s } (3.42) 

where 

s(n) = { s 1 , s 2 , . . . , s r } ; s,-= £ { # ( n ) | a ,} ; V i 

i.e. Si is the mean value of the response /?,- for action a,. s,-'s are referred to as the 

penalty strengths. The updating rule for the S — LRI scheme is as follows: Suppose 

at i teration n, action a,- was chosen and the response f r o m the environment was s, 
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then 

Pi(n + 1) = pi(n) + a(l - s)(l - Pi(n)) ; 

Pj(n + 1) = P i ( n ) - a(l - s)pj(n) ; V j ; j ^ i (3.43) 

where 0 < a < 1 is the learning parameter. The detailed manner i n which learning 

algorithms operate i n a S-Model are presented in Chapter 4. 

S - M o d e l E s t i m a t o r Schemes 

I n the P-Model environment, the binary responses f r o m the environment were used 

to update the estimate of reward probabilities for each action a,- for the estimator 

learning algori thm (Equation [3.33]). For the S-Model case, the response s, itself is 

used as an estimate of response for each action. The updating equations remain the 

same as given before i n Equation [3.32]. 

I n the next section an alternative S-Model learning algori thm is detailed in which 

the relative magnitude between the rewards of actions are used to update the action 

probabilities. 

R e l a t i v e R e w a r d S t r e n g t h L e a r n i n g A l g o r i t h m s 

The relative reward strength algorithms were proposed by Simha and Kurose in 

[SK89]. The automaton in this scheme operate i n a S-Model environment but main

tains and uses the most recently obtained reward for each action un t i l that action is 

selected again. I t is similar to the estimator algorithms which used the estimate of 

the reward probabil i ty in updating the action probabilities. 

I n this scheme the definition of the SLA (Equation [3.9]) is expanded to include a 

most recent reward vector s ( n ) . The notation s,(n) is used to denote the most recent 

response for the action i at i teration n. Thus i f the action chosen at the nth step was 

the i t h action and the response f r o m the environment is denoted by r , Si(n) = r. The 

update algorithms take into account the relative reward of all actions, i.e the entire 

vector s ( n ) . This scheme is similar to the estimator algorithms i n that i t uses the past 

response f r o m the environment to update the probabilities. However the important 
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difference is that the estimator algorithms use the entire past response to fo rm the 

estimate of the reward probability, while the relative reward algorithm uses only the 

most recent reward obtained for an action in the updating algorithm. The update 

equations for the scheme are as follows: Suppose action m has the largest reward, i.e, 

•Sm(ft) > Si(n) ; V i ; i ^ m . Then 

Pi(n + 1) = pi(n) + anApi(n) ; V i (3.44) 

where an is the learning parameter. Thus the update equation is specified by the 

expression for each Ap , (n ) which is given by 

Api(n) = [(si(n) - sm(n))] ; V i ; t G Ai (n ) ;» ^ m 

Apm(n) = - I A * ( n ) I ( 3- 4 5) 

whereas Vz 9 Ai(n), Ap , (n ) = 0. The set A\ is defined as 

Ai(n) = {i | p,(n) -f a n ( s j (n) - sm(n)) > q m i n ) 

and is a fo rm of constraint condition. The quanti ty <jrm t n which is a small positive 

quanti ty and the set A\ is used to ensure that the algori thm retains the abil i ty to 

track a non-stationary environment, i.e., i t does not get locked into a particular state. 

The previous sections detailed learning algorithms which improved the speed of 

convergence of the standard algorithms. However the basic structure of a single 

automaton has l imitations and this is most pronounced when the number of actions 

of the automaton is large. When this happens the t ime taken to converge increases 

drastically and the practical use of the automaton is reduced. The next section 

explains how single automaton can be connected together to f o r m structures which 

perform better than a large state single automaton. 
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3 o 4 Interconnected Automata 

The previous sections detailed the standard learning algorithms used in the updating 

of action probabilities and also presented some new learning schemes which resulted 

in faster rates of convergence. However to overcome the basic limitations of the 

large state single automata, a useful strategy would be to connect single automaton 

into teams of automata to determine whether the collective structure is better at 

solving complex problems. From a control point of view, the practical use of the 

automaton is when a single automaton can be used as a building block to build more 

complex systems. Two such structures will be examined in the subsequent sections: 

Hierarchical systems of automata and Games of automata. 

3.4.1 Hierarchical Learning Automata 

Research in systems of hierarchical learning automata have been explored in [TR81, 

MK84, NT89]. A hierarchical system of learning automata is arranged in a tree 

structure, with a single automaton with r actions at the first level, each action of 

which is connected to a automaton at the second level having r actions and so forth 

depending on the number of levels there are in the hierarchy. The actions correspond 

to the leaf nodes (lowest level nodes of the tree) of the hierarchical structure interact 

with the environment. The response of the environment is then used to update the 

different automaton along the path upward to the root automaton. 

The operation of the hierarchical system is as follows: Initially, the automaton at 

the first level selects one of the r actions. This action then triggers the automaton 

at the second level which selects one of the r actions which is available to i t . This 

process continues until a leaf node is selected which forms the action selected by 

the automaton to interact with the environment. This general structure is shown 

in Figure (3.2). I t is assumed that every automaton in the hierarchy has r actions 

though this not necessarily so. The response from the environment is then used to 

update the actions probabilities of all the automaton which were used to arrive at the 

action selected. Complete details of the updating algorithms are given in [NT89]. 

The advantage of using the hierarchical structure is that the number of proba-
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bility updatings are significantly reduced especially when the number of actions of 

the automaton are large. This can be illustrated as follows: Suppose the number of 

actions of the automaton is N. I f a single automaton is used, the number of prob

ability updatings per iteration would be N. But if the structure used was that of a 

hierarchical automata arranged in form of a binary tree with two actions available 

to each automaton, then, if N = 2k, the number of probability updatings is equal to 

only k. This reduction is significant when the number of actions N is large. 

3.4.2 Automata Gaines 

Game theory has had important ramifications in social and economic problems where 

conflict of interest between the decision makers play an important part in the final 

analysis. A game is said to be played between players when each player chooses an 

action and elicits a response from the environment. The players may or may not have 

complete information regarding the number of other players, the options available to 

them etc. . A player bases the next move depending on the response obtained from 

the environment. 

The concept of automaton games was first suggested by Krylov and Tsetlin in 

[KT63] and subsequent work has been carried out by Chandrashekar and Shen [CS69], 

Viswanathan and Narendra [VN74] and Lakshmivarahan and Narendra [LN81, LN82]. 

In automata games, a number of automata operate in an environment without the 

complete knowledge about the each other. Each automaton may have different num

ber of actions and learning rules. A general mathematical formulation of automata 

games can be given as follows: Let N automaton {A1, A2,... ,AN} take part in 

a game of automata. A typical automaton A3 can be described by the quintiple 

where 

{0^,04,... .} = Set of Actions a 

{ # , # , . . . , # . } = & * of Input 

F j ,GJ 

= { ( f > [ , fy,..., <f>3

r.} = Set of Internal States 

= Updating rule for the automaton (3.46) 
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A play a(n) is defined as a set of strategies which are chosen by the team of automaton 

at iteration n and is given by 

a(n) = {a 1 (n) , c* 2(n),..., aN(n)} (3.47) 

The outcome of the play ct(n) is given by f3(n) which is defined as 

(3{n) = {(3\n),(}\n),...,pN{n)} (3.48) 

The N automata are said to participate in a game if the probability of the outcome 

(3{n) depends on the play a(n). 

Further details of automata games, the learning algorithms and convergence re

sults used are given in [NT89]. The details of a team of co-operative game playing 

automata using the pursuit algorithm in given in [MT89]. The games approach 

presents a method of using the single automaton in complex structures to get en

hanced performance than that would be obtained when using a single automaton. 

3 o 5 Discussion 

In this chapter a general review of Stochastic Learning Automata was presented. 

The basic block structure of a SLA was explained along with the standard learning 

algorithms. Limitations of the standard algorithms were then presented. Improved 

learning algorithms which have been proposed in the literature were detailed sub-

squently, emphasis being given to highlight the differences between the standard and 

improved schemes. Both the P-Model and S-Model learning environments were dis

cussed and compared. Use of the basic structure of a single automaton in more 

complex structures have been indicated. In the next chapter, we present the method 

and results of using the SLA approach in adaptive digital filtering. 
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Chapter 3 Figures 

Set of Inputs 

ENVIRONMENT 

Set of Responses 

State p = [ P j , p 2 » . . , p r ] 

r . 
Set of Actions 

STOCHASTIC A U T O M A T A 
Set of Inputs 

Figure 3.1: Stochastic Learning Automata 
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First Level Automata 

Second Level Automata 

Actions interacting with 
the Environment 

Figure 3.2: Hierarchical Stochastic Learning Automata 
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Chapter 4 

Adaptive Digi ta l F i l t o o 

e r a i msin 

tochastic Learnin Automata 

4.1 Introduct ion 

his chapter presents results obtained using Stochastic Learning Automata as the 

adaptive technique for adaptive filtering. As detailed in Chapter 2, adaptive filter

ing may be classified into adaptive FIR filtering and adaptive IIR filtering. The 

algorithms relating to adaptive FIR filtering are well established and currently are 

extensively used in various applications. On the other hand, adaptive IIR algorithms 

are still an active area of research and are in the process of establishing themselves 

as a viable alternative in certain applications to adaptive FIR algorithms. The main 

problems associated with adaptive I IR filtering algorithms are problems of stabil

ity and existence of error functions which may be multimodal with respect to the 

filter parameters. Although the past couple of decades has seen extensive research 

[Whi75, SEA76, PA78, Joh79, TLJ78, LTJ80, FJ86, FN89], the above problems have 

not yet been completely resolved. One of the new approaches that has been suggested 

for adaptive I IR filtering is that of Stochastic Learning Automata the details of which 

were presented in Chapter 3. 

The initial work of applying the SLA approach to adaptive I IR filtering was car

ried out by Tang and Mars [TP89, TP91]. Extensive simulations were performed 

T 
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using the standard learning algorithms. Hybrid schemes were proposed which com

bined Recursive Least Mean Square gradient techniques with the SLA approach. The 

automaton games approach was also investigated as a possible solution to the prob

lem of dimensionality when adapting high-order I IR filters. In this chapter detailed 

results using the SLA approach to adaptive filtering are presented. In particular the 

improved learning algorithms which were detailed in Chapter 3 have been used for 

the adaptive filtering case and the results obtained are compared with the results 

obtained using the standard learning algorithms. The S-Model environment learning 

algorithms are looked at in detail and the results compared with that obtained using 

the P-Model environment. 

In the next section details of the simulation configuration are given. 

4 c 2 Simulation Configuration 

4.2.1 Int roduct ion 

To use the different learning algorithms which were presented in Chapter 3, the sys

tem identification configuration was employed, where an adaptive filter is used to 

model an unknown system as shown in Figure [4.1]. The output error formulation 

detailed in Chapter three was used to form the estimation error e(n). The equation 

error approach was not used as it resulted in biased estimates of the filter parameters. 

Another reason for using the output error formulation is that it gave good approxi

mation when applied to reduced order models [SS82] which were encountered when 

modeling a system by an insufficient order adaptive filter. 

4.2.2 Using Stochastic Learning Automata 

The main motivation in using the Stochastic Learning Automata as an adaptation 

algorithm for adaptive filtering was to use its capabilities of global optimisation when 

dealing with multimodal error surfaces [SN69]. As was detailed in Chapter 3, the 

error surfaces for adaptive IIR filters could be multimodal. Using Stochastic Learning 

Automata as the adaptation technique, the search for the optimum is carried out in 
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probability space rather than in parameter space as is the case with other adaptation 

algorithms. In the standard gradient methods, the new operating point lies within 

a neighbourhood distance of the previous point. This is not the case for adaptation 

algorithms based on stochastic principles, as the new operating point is determined by 

a probability function and is thus not constrained to be near the previous operating 

point. This gives the algorithm the ability to locate the global optimum. 

In using Stochastic Learning Automata in the adaptive filtering context, the out

put set of actions of the automaton are made to correspond to a set of filter coefficients. 

Each output action of the automaton is thus related to a specific combination of filter 

coefficients. Since the number of actions of the automaton is finite, this would involve 

the discretisation of the parameter space into a number of hyperspaces. Thus the error 

surface is partitioned into a number of hyperspaces, the total number of hyperspaces 

being equal to the total number of actions of the automaton. The dimension of each 

hyperspace would be equal to the number of filter parameters. In this case the task 

of the automaton would be then to asymptotically choose that action corresponding 

to the set of filter coefficients which results in the minimum error. This is clarified 

by presenting an example: Suppose the number of filter parameters were three, i.e. 

[a,b,c] and the number of actions of the automaton were N. Then the actions of the 

automaton can be described as follows: 

Action 1 = [ a i , 6 i , C i ] 

Action 2 = [a 2 ,&2 ,c 2 ] 

Action 3 = [a 3, 6 3,c 3] 

Action N = [a^v, 6jv, cjv] 

Thus choosing action 3 would result in choosing the parameters [a 3, 63, c 3] for the filter 

coefficients. This concept of discretising the parameter space is illustrated in Figure 

[4.2] where the adaptive filter is a second order filter with filter parameters [a, b]. 

A block diagram of an adaptive filter incorporating a Stochastic Learning Au

tomaton in a system identification configuration is shown in Figure [4.1]. As shown 
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in Figure [4.1], the operating environment of the automaton was the environment of 

the adaptive filter. The response from the environment for a particular action was 

the short term average of the instantaneous squared error obtained with the coeffi

cients represented by that action. To obtain the short term average, a rectangular 

window was used the length of which was seen to play a significant role in the rate of 

convergence. The optimum size was obtained after extensive simulations with differ

ent window lengths. Thus the short time average of the instantaneous square error, 

henceforth referred to as the Mean Square Output Error (MSOE), was used by the 

environment to decide whether the action chosen was to be penalized or rewarded. 

This assumed that the environment was of the P -Mode l type. The procedure for 

deciding this was presented in [SN69], where the global minimum of a multimodal, 

stochastic noisy error surface was determined using a learning automaton. For the 

S-Model, the Mean Square Output Error was used directly to decide whether the ac

tion chosen was optimum. Further details and results using the S-Model environment 

are presented in a subsequent section. 

As was detailed in Chapter 2, the three conditions put forward by Stearns [Ste81] 

and Soderstrom and Stoica [SS82] for a unimodal error surface were 

© The adaptive filter is of sufficient order to model the unknown system 

© The input signal is white 

o The order of the adaptive filter numerator exceeds that of the unknown system 

denominator 

Further work has been recently been carried out by Fan and Nayeri [FN89], wherein 

they have proved the first two conditions for first and second order filters without the 

third condition. They have also shown that the error surface could be multimodal 

even in the case of sufficient order modeling or when the order of the adaptive filter is 

overestimated. In practice, sufficient order modeling is quite difficult to achieve as the 

order of the system being modeled is usually not known. Thus in most practical cases, 

the modeling filter may be of an order less than that of the unknown filter resulting in 

a multimodal error surface. Thus the important point regarding adaptive IIR filtering 
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is that the error surface may be multimodal and the adaptation algorithm must be 

able to locate the global optimum. The paper by Fan and Jenkins [FJ86] proposed 

a new algorithm for adaptive I IR filtering and also presented four different cases for 

the system identification configuration (Figure [4.1]) wherein the error surface could 

be multimodal. The four categories based on the order of the adaptive filter and the 

nature of the input excitation are 

o Sufficient Order Modeling - White Noise Input 

o Sufficient Order Modeling - Coloured Noise Input 

o Reduced Order Modeling - White Noise Input 

o Reduced Order Modeling - Coloured Noise Input 

The four cases detailed above form the backbone of the simulation experiments which 

have been carried out using stochastic learning automata as the adaptation technique. 

For each of the above cases a suitable simulation experiment is constructed the details 

of which are presented in the next section. 

4.2.3 Different Categories of Model ing 

I) Sufficient Order Modeling - White Input 

This was first illustrated as a counterexample to Stearns conjectures [Ste81] by Fan 

and Nayeri [FN89], where it was shown that for an adaptive I IR filter of order greater 

than two, the error surface may be multimodal even for sufficient order modeling with 

white noise input. The transfer functions of the unknown system and adaptive filter 

for the example chosen were 

A fundamental problem in adaptive I IR filtering is to maintain stability of the adap

tive filter during adaptation. Thus the partitioning of the parameter space formed by 

1 - 2 .42- 1 + 1.91z-2 - 0.504z-3 

b 
Haiz-1) 

1 + aiz~x + a2z~2 + a3z - 3 (4.1) 
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02) a 3 m a y result in a unstable filter configuration during adaptation. To overcome 

this problem, the denominator of the adaptive filter was factorised into a product of 

a second order and first order filter as given below 

^ ^ = (1 - ( P l + P 2 ) Z - 1 + P l P 2 Z - 2 ) ( l ~ P3*-1) ( 4 " 2 ) 

where pi,p2&nd pz are the poles of the system. By constraining the poles of the filter 

to lie inside the unit circle in the z-plane, the stability of the adaptive filter can be 

assured during adaptation. The global minimum of the configuration is located at 

(6, ai , a2, a 3) = (1.0, -2.4, 1.91, -0.504) for which the corresponding poles are pi = 0.7, 

Pi = 0.8, and p$ = 0.9. The numerator coefficients were set to 1.0 in the simulations. 

I I ) Sufficient Order Modeling - Coloured Input 

The example for this case was first presented in [Sod75] and was also used by Fan 

and Jenkins [FJ86].The transfer functions of the unknown system and modeling filter 

are 

H ( * ^ (1 - 1.42"1 + 0.49z" 2) 

J 5 r - ( z " 1 ) = 7i~T =TT I3T (4-3) 

To colour the input, white noise was filtered through a FIR filter having transfer 

function (1 — 0 .7z _ 1 ) 2 ( l + 0.7.2 - 1) 2. This colouration gave rise to a multimodal error 

surface with the global optimum located at (6, a i ,a 2 ) = (1, -1.4, 0.49). 

I l l ) Reduced Order Modeling - White Input 

The example for this case was first proposed by Larimore and Johnson in [JL77] in 

which a second order system was modeled by a first order filter. The transfer functions 

of the filters involved were 

_ u 0 .05-0.4*- 1 

1314Z-1 + 0.25z-2 
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= ( 4 ' 4 ) 

The insufficient degree of freedom in the adaptive filter resulted in a bimodal error 

surface (Figure 9 in [JL77]). This example has also been extensively used by other 

researchers in testing new adaptive algorithms. The global minimum is located at 

([b,a] = [-0.3, 0.8]) with error value « 0.3. 

Reduced Order Modeling - Coloured Input 

The example for this case is an extension of the example used for the second case 

given above. The relevant transfer functions are 

H(z-i) = 1 

(1 - 0 . 6Z- 1 ) 3 

Haiz'1) = b7 7 (4.5) 

The colouring FIR filter transfer function is changed to (1 — 0.6z"" 2)(l + 0.6z~2) 

resulting in a multimodal error surface as shown in Figure 9 in [FJ86]. 

In the next section the performance of the different learning algorithms for the 

four cases listed above are examined and compared. 

4 o 3 Simulation Results 

4.3.1 Int roduct ion 

As discussed previously, the main motivation in using Stochastic Learning Automata 

for adaptive filtering has been its ability to distinguish the global optimum from local 

optima. Each of the learning algorithms detailed in Chapter 3 had some defining 

parameters. To check the effect of the parameters on the learning process, simulations 

with a range of parameter values were performed. Of the four categories which have 

been detailed, categories three and four deal with situations which are more complex 

and practical. Sufficient order modeling (Category (I) and (II)) is not commonly 

realised in practical situations as it would assume some knowledge of the unknown 
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system. Thus the simulation experiments were carried out using the reduced order 

modeling using both white and coloured input excitation. 

To determine whether a particular action chosen by the automaton was to be 

rewarded or penalized, a short term average of the instantaneous square error (MSOE) 

was used. Thus for example, i f at iteration N, action 4 had been selected by the 

automaton, then the MSOE t\ obtained using the filter coefficients represented by 

action 4 was used. This scheme does not use the fact that action 4 could have also been 

selected a few times before iteration N. An improved scheme would be to average the 

MSOE obtained for a particular action every time the action was chosen. To clarify 

this point consider the case where at iteration N action i was chosen resulting in a 

MSOE of ei(N). Suppose action i had been chosen once before at iteration K, and 

had resulted in a MSOE of e,(J{'). The new scheme would then use the previous value 

of MSOE along with the current value of MSOE and the resulting MSOE is given by 

e m = e,W + e,W 

The main advantage in the new scheme is that the short term average is not restricted 

by the window length but is also determined by the number of times the particular 

action is chosen. This effectively increases the window length by a factor equal to 

the number of times a particular action is selected. The effect of using this scheme 

is shown in Figure [4.3] for two different values of the learning parameter and shows 

a faster rate of convergence. The results in Figure [4.3] with the label NE refers 

to result obtained without using the new error estimation scheme. Thus the results 

pertaining to labels Lri(I) and Lri(I)-NEare obtained using the LRI with and without 

the new error scheme, for the same values of the learning parameter. The variance of 

the MSOE using the new scheme also is seen to be reduced as the effective window 

length is now increased. The example used to illustrate the new error was reduced 

order model of category three. In all the subsequent simulation results, this scheme 

of determining the MSOE has been used. 

In the next section the results obtained operating in the P-Model environment are 

presented. 
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4.3.2 Results using P=Model Learning Algor i thms 

Standard Learning Algorithms 

Al l the results presented in this section use the example given in category (II I ) which 

used a first order I IR filter to model a second order I IR filter. This configuration 

results in a bimodal error surface with a local minimum corresponding to a error 

value of 0.9 and a global minimum corresponding to a error value of 0.3. The two 

parameters a, b were discretised into ten discrete values resulting in the automaton 

having 100 actions. Each action corresponded to a particular set of coefficient values 

for a, b. The results obtained using the standard learning algorithms are shown in 

Figure [4.4]. The learning parameters used for the different schemes are as follows: 

L R P ( I ) = Rew. Par. = 0.1 Pen. Par. = 0.1 

L R P ( I I ) = Rew. Par. = 0.2 Pen. Par. = 0.2 

L R £ P ( I ) = Rew. Par. = 0.01 Pen. Par. = 0.001 

L H J ( I ) = Rew. Par. = 0.01 

L R I ( I I ) = Rew. Par. = 0.005 

These results were originally presented in [TP89] and have been repeated here for 

the sake of completeness. A l l the algorithms were able to locate the global optimum 

point. Of the standard algorithms the LRI gave the fastest rate of convergence i.e 

about 50,000 time samples were required for the algorithm to locate the optimal set 

of coefficients. The LRP algorithms had a slower rate of convergence (60-180,000 time 

samples), the main reason for this being the increased value of the penalty parameter 

which did not allow the algorithm to settle into a particular state rapidly. The value of 

the window length used to obtain the MSOE was 50. The results shown are ensemble 

average of 25 runs of the simulation experiment. I t was noticed that the learning 

parameter played an important role in the rate of convergence and accuracy of the 

algorithm. Large values of the learning parameter resulted in faster convergence but 

at the expense of possible convergence to a non-optimum point while small values of 

the parameter resulted in an increased convergence time. 
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Discretised Learning Algorithms 

The results obtained using the discretised learning algorithms are presented in Figure 

[4.5]. The values of the defining parameter (resolution parameter) used in the algo

rithm are 1000, 5000 and 10,000. I t is can be seen that decreasing the value of the 

resolution parameter (increasing the learning rate) too much results in convergence to 

a non-optimal action (Parameter Value = 1000)), while increasing i t (decreasing the 

learning rate) results in slower convergence (Parameter Value = 10000). The main 

reason for this result is the discretisation of the probability space now results in the 

action probability vector moving towards an absorbing state more rapidly than that 

obtained using the standard learning algorithm. The rate of approaching an absorb

ing state is dependent on the resolution parameter. Too large a value of the learning 

rate results in the algorithm getting locked up in a non-optimal state. Comparing 

Figures [4.4] and [4.5], as expected, the discretised algorithms is seen to result in 

faster convergence as compared to the standard learning algorithms. 

Estimator Algorithms 

Estimator algorithms were devised to increase the rate of convergence of the standard 

learning algorithms and results using this approach are shown in Figure [4.6]. As 

can been seen from Figure [4.6], the estimator algorithm shows faster convergence 

as compared to the standard learning algorithms and are comparable to the results 

obtained using the discretised LRI algorithm. The values of the learning parameter 

used for this simulation are 0.005, 0.01 and 0.05. The algorithm successfully located 

the global minimum as can be seen from the final error value at the end of the 

simulation run. 

Pursuit Algorithms 

Pursuit algorithms as explained in Chapter 3 are a subset of the estimator algorithms 

possessing much less computational complexity. The results of using these for adap

tive filtering are shown in Figure [4.7]. The rate of convergence is comparable to that 

obtained using the estimator algorithms though the computational time required was 
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much less. The learning parameter values for the algorithm were 0.0075, 0.01 and 

0.05. 

Biscretised Pursuit Algorithms 

Discretised pursuit algorithms are the discretised version of the continuous pursuit 

algorithms, the results of which are presented in Figure [4.8]. From the results i t 

can be seen these algorithms give the best performance in the terms of the rate of 

convergence (25,000 time samples) and are able to locate the global minimum. The 

value of the resolution parameter in Figure [4.8] were 1000, 5000 and 10,000 . As 

shown in Figure (4.8) (Parameter Value = 1000)), increasing the learning rate too 

much results in premature convergence and a non-optimal performance. 

Discussion 

The important aspect of all the learning schemes detailed above is that all of them 

were able to locate the global minimum when searching a bimodal error surface. The 

standard learning algorithms took about 180,000 time samples (LRP) to 50,000 time 

samples (LRI) for locating the optimal set of coefficients. Though this is large when 

compared to results obtained using gradient schemes like the (LMS), the ability to 

locate the global optimum validates the utili ty of this approach. The main motivation 

for using the improved learning algorithms was to reduce the number of time samples 

required for convergence. A l l the new schemes were able to locate the global optimum 

using a significantly less number of time samples. The value of the learning parameter 

was found to play a crucial role in determining the accuracy and rate of convergence 

of the respective algorithms. The next section presents the results when the S-Model 

environment is used. 

4.3.3 Results using S-Model Learning Algor i thms 

Introduction 

The S-Model environment is intuitively better suited for modeling the environment in 

which the adaptive filter operates as every action generated a response lying between 
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[0,1] rather than the binary value generated in a P-Model environment. Thus actions 

resulting in a response closer to 1 were the more optimal actions. To normalize 

the response from the environment to lie between [0,1], the maximum and minimum 

values of the responses should be known a priori. In a practical case this is usually is 

not known and so the adaptive process garners this knowledge as the process evolves. 

This is achieved as follows: At any iteration k, the current value of the response is 

chosen as the minimum value if i t is less than the previous minimum value (e m j„ ) , 

and as the maximum value if i t is greater than the previous maximum value (emax). 

If the current response lies between the maximum and minimum values, then both 

the limits are not changed. Thus we have, 

e(k) if e(k) < emin(k) 

emin(k — 1) otherwise 

, e ( k ) i f e ( k ) > < w ( f c ) 
emax{k) = \ _ (4.6) 

£max{k — 1) otherwise 

The normalisation is then achieved by using the equation 

Si(k) = E m a x ^ ~ e ' ( f c ) (4.7) 

( e m a i ( ^ ) emt'n(&)) 

where s,-(fc) is the normalised response from the environment for action i at the kth 

iteration and e(k) is the unnormalised response. The above scheme of normalisation 

was proposed in [VN73]. 

As wil l be shown later on in subsequent sections , this method of normalisation 

did not result in very fast convergence and sometimes the convergence time was 

extremely large resulting in limited practical use. The reason for this is found to be 

the normalisation scheme given by Equation [4.7] and the nature of the error surface 

which is generated by the simulation experiment. The error surface which is bimodal, 

is found to have a large maximum value. The normalisation scheme scaled the error 

values from the environment linearly between 0 and 1. As a result of this linear 

scaling and the large maximum value, points on the error surface which are close to 

the global minimum are assigned responses close to I. This corresponded to a number 
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of actions of the automaton being assigned response values close to 1. As a result, the 

algorithm was unable to locate the global optimum rapidly. To resolve this problem, 

a new normalisation scheme employing a nonlinear scaling function was used. The 

new scheme used the following equation: 

Si = exp(-(e(k) - emin(k))2) (4.8) 

This scheme assigned response values near ' 1 ' only to the actions which resulted in 

a error value very close to the minimum value determined until then thus enabling 

the learning algorithm to distinguish between the actions. In all the subsequent 

algorithms operating in a S-Model environment, both the normalisation procedures 

are used and results compared. 

S-Model Standard Algorithms 

Figures [4.9,4.10] shown the convergence results obtained using the S — LRI Algo

rithms for the adaptive filtering using the old and new normalisation schemes. The 

old normalisation scheme is unable to find the optimum point even after 20,00,000 

time samples which makes the practical use of the algorithm extremely limited. On 

increasing the value of the learning parameter, there is an increase in the speed of 

convergence, but the algorithm is still unable to locate the optimal filter coefficients. 

Figure [4.10] shows the result of using the new normalisation scheme and exhibits 

satisfactory location of the optimal set of filter coefficients as indicated by the error 

level to which the algorithm converges. This again was achieved only after about 

17,00,000 iterations resulting in limited practical use. Increasing the value of the 

learning parameter resulted in faster convergence at the expense of accuracy. Thus 

surprisingly, the S-Model LRI learning algorithm resulted in a poorer performance 

than the P-Model learning schemes. A possible reason for this behaviour is given 

later in this chapter. 
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S-Model Estimator Algorithms 

The results of using the S-Model estimator algorithms are shown in Figures [4.11,4.12]. 

As was the case with the S — LRI learning algorithm, the old normalisation (Equation 

[4.7], Figure [4.11]) was not able to locate the global optimum even after a large 

number of time samples. Using the new normalisation, the algorithm was able to 

locate the global optimum (Figure [4.12]), the time samples required for convergence 

being less than that for the S — LRI algorithms. Too high a value of the learning 

parameter resulted in inaccurate results while too low a value increased the number 

of time samples required for convergence. 

Relative Reward Schemes 

Figures [4.13,4.14,4.15,4.16] show the results of using the relative reward learning al

gorithms. Figures [4.13,4.15] show the result of using the old and new normalisation 

schemes when using small values of the learning parameter. I t can be seen that the 

new normalisation performs better resulting in faster convergence. Figures [4.14,4.16] 

also present the results in using the old and new normalisation schemes but for larger 

values of the learning parameter. In this case i t can be seen that the old normalisa

tion scheme performs better leading to faster convergence. To explain this anomaly, 

reference is made to the denning equation of the relative reward scheme (Equation 

[3.44]) where Ap,(n) is determined by the difference in value between the responses 

of action i and the action which currently resulted in the maximum response. The 

new normalisation scheme weights the responses non-linearly and thus the value of 

Api(n) mentioned above is large. This in combination with a large value of the learn

ing parameter resulted in impermissible values for the probability of an action, i.e 

Pi(n) > 1.0 or Pi(n) < 0.0. In such a case the algorithm does not update the action 

probabilities and thus the learning rate of the algorithm drops. Thus for large values 

of the learning parameter the old normalisation scheme gives faster and more accurate 

convergence. 
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Discussion 

Of the S-Model learning algorithms which were attempted, the relative reward al

gorithm gave the best results (convergence in about 600,000-700,000 time samples). 

The other algorithms, though able to locate the global optimum, did so only after a 

large number of time samples. Thus the practical use of these algorithms in the adap

tive filtering context are limited. The new normalisation scheme resulted in faster 

convergence than the old scheme. One reason why the S-Model schemes performed 

poorly when compared to the P-Model schemes is that in the S-Model scheme ev

ery action resulted in a response lying between [0,1] which was used in updating the 

probability of that action being chosen in the next iteration. In the P-Model scheme 

as the responses were binary, the action probabilities were updated faster. This is 

clarified using an example: Suppose action i was the optimal action and both the 

S-Model and P-Model schemes gave a response of 1 when action i was selected. If 

in the next iteration, action k(non-optimal) was selected, the P-Model scheme would 

result in a response 0 while the S-Model scheme would result in a response which is 

a finite value less than 1. Thus in the S-Model case, the action probability of action 

k would increase by an amount proportional to the response it obtained. This would 

result in the probabilities of the other actions being reduced in order to keep the prob

ability vector in the unit simplex. In the P-Model LRI scheme this wil l not happen 

as when actions result in a 0 response, no updating is performed. The net result of 

this argument is that in a P^Model scheme the learning is faster than that obtained 

in a S-Model environment. This also explains the success of the new normalisation 

scheme which effectively drives the S-Model environment asymptotically towards a 

P-Model environment using Equation [4.8]. 

4.3.4 Other Categories 

The simulations in the last section concentrated on the adaptive filter model given 

in Category ( I I I ) which was involved with reduced order modeling with the input 

signal being white. This case was taken to be the most general setting for an adap

tive filtering algorithm as has been explained before. Further simulations were also 
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carried out using the model given in Category (IV) which concerned reduced order 

modeling with coloured input. The transfer functions for this category were as given 

by Equations [4.5] and the resulting error surface was multimodal as shown in Fig

ure 9 in [FJ86]. Figure [4.17] shows the results obtained using the different P-Model 

learning algorithms for the model in Category (IV) . The discretised algorithms are 

seen to give the fastest rate of convergence with the discretised pursuit algorithm 

being slightly faster. A l l the algorithms were able to locate the global optimum. The 

S-Model learning algorithms were not tested on this model as they had shown lim

itations when tested on the model given in Category ( I I I ) . Results using standard 

learning algorithms on the models in Category (I) and (II) have been presented in 

[TP91] where it was shown all the algorithms were able to locate the global optimum. 

The new algorithms were not specifically tested on these models. I t is assumed that 

the discretised algorithms would perform better and result in faster convergence as 

has been noticed from the results which have been obtained. 

4.3.5 Automata Games and Hierarchical Schemes 

The primary disadvantage of using the Stochastic Learning Automata approach in 

adaptive filtering was the increased computational time when the number of param

eters of the filter was large. This arose because of the discretisation of the parameter 

space. For example, if the adaptive filter had three parameters each being discretised 

into ten sections, the resulting automaton would, have 1000 actions. Updating the 

probabilities of an automaton having a large number actions increases the computa

tional time and thus limits the practical use to which the approach can be put to. 

Two different approaches had been proposed to overcome this problem - hierarchi

cal automata and automata games. Simulation results using these approaches are 

given in [TP91] where a novel hybrid technique using the standard Recursive Least 

Mean Square (RLMS) algorithm and stochastic learning automata was proposed. 

The hybrid technique proposed used the RLMS algorithm to update the numerator 

coefficients of the adaptive I IR filter, while the SLA approach was used to adapt the 

denominator coefficients. This made use of the fact that the error function for an 
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adaptive recursive filter in a system identification configuration was quadratic with 

respect to the numerator coefficients. The ability of the automata approach to deter

mine the global optimum was used to determine the denominator coefficients. Tang 

and Mars also used the games approach to adapt the denominator coefficients and 

have shown through simulation experiments that this approach was able to locate the 

global optimum. However the main drawback with the automata games approach 

was that theoretical results regarding global optimality are not available. Thus using 

the games approach could result in a non-optimal performance. 

Hierarchical systems of stochastic learning automata are another method to obtain 

faster convergence with respect to the computational time. Although the number of 

iterations are the same as that obtained with a single automaton, the time required 

for a single iteration is reduced as the number of probability updatings are reduced in 

a hierarchical scheme as was explained in the Chapter 3. Results obtained using the 

hierarchical scheme are given in [TP91] and show that the automata games approach 

and the hybrid scheme gave faster convergence than the hierarchical scheme. 

4o4 Conclusions 

This chapter presented the results in using Stochastic Learning Automata as an adap

tation technique for adaptive digital filters. The specific case examined was that of 

adaptive I IR filtering. The main motivation for using the SLA approach was its abil

ity to locate the global optimum when searching a multimodal performance function. 

This was tested using adaptive IIR filtering as a testbed and the results presented 

show that the technique was able to locate the global optimum. Results using the 

new and improved learning schemes were also presented and resulted in the reduction 

in the number of iterations required for convergence. The S-Model environment was 

also examined and a possible reason as to why S-Model learning algorithms did not 

perform as well as P-Model algorithms has been explained. A possible use of the SLA 

approach is to use the technique as a first level search whereby the section containing 

the global optimum is determined by the automaton. Thereafter established gradient 

algorithms could be used to reach the precise global optimum. 
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The main drawback with the SLA approach is the increased computational time 

required for convergence when the number of actions of the automaton is large. Thus 

when adapting high order niters, the SLA approach would result in a slow rate of 

convergence as increasing the order of the filter increases the number of parameters 

which would lead to a large number of actions for the automaton. This is the classi

cal problem of high dimensionality which inhibit most adaptive schemes. Automata 

games have been proposed to overcome this drawback, but lack of strong theoretical 

results regarding the global optimality of such an approach renders this idea im

practical. The next chapter presents a technique based on genetic and evolutionary 

optimisation. The primary advantage of this approach is the ease with which the 

dimensionality issue is handled. 
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Chapter 

Genetic and Evolutionary 

Optimisation 

5.1 Introduct ion 

he process of evolution over many thousands of years has been a vitally important 

feature of the biological organisms which are presently found on earth. It has been 

used as a sort of filtering process, whereby organisms which are better adapted to 

the ever changing external environment survive, while organisms not so adaptable 

perish. This process of selective survival was initially recorded by the works of Charles 

Darwin and Alfred Russell, who referred to the process as survival of the fittest. Thus, 

the process of evolution could be viewed as a mechanism of optimisation whereby 

organisms being optimised are better equipped to survive in a variable environment. 

This led to the idea that evolution as seen in nature could be used as an optimisation 

tool as an alternative method to the standard optimisation strategies [FOW66, Hol75]. 

Subsequent research into the use of natural evolution as an optimisation technique 

has been intensive and has led to i t being established as an important technique of 

optimisation called Simulated Evolution. 

Traditional optimisation methods can be broadly classified into three categories 

[Gol89]: 

o Calculus based schemes 
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o Enumerative Schemes 

Introduction 

o Random Search Schemes 

Calculus based search schemes are based on using the gradient of the objective function 

and are the multidimensional generalization of finding the extrema of a function. As 

they use the concept of neighbourhood, their scope is local to the neighbourhood 

around the current search point and presences of local optima in the current area 

of search would result in the algorithm getting stuck in such an optima. Thus they 

are best used in a limited problem domain especially when dealing with real world 

problems. Enumerative schemes are very simple to implement as they involve in 

looking at every point in the search space to determine which is the best. However, 

the scheme results in enormous computational overheads as the size of search space 

increases. Random search techniques have been popular, but in the long run perform 

no better than enumerative schemes. A different approach to optimisation is to use 

randomised techniques which use random choice to guide the search algorithm through 

the parameter space. Two of the optimisation techniques which use such randomised 

techniques are Simulated Evolution and Simulated Annealing. Details of Simulated 

Annealing are presented in a subsequent chapter. 

Simulated Evolution simulates a simplified version of the process of natural evo

lution on the computer. I t is an effective numerical optimisation technique which is 

based on stochastic principles, thus making i t extremely robust. The applications of 

the technique have been varied and include designing and training of neural networks, 

automatic control of nonlinear systems and optimal routeing in telecommunications. 

Research in simulated evolution has progressed mainly on three fronts: 

# Genetic Algorithms 

» Evolutionary Strategies 

® Evolutionary Programming 

At the core of all three approaches lies the concept of a population, which has been de

rived from natural evolution. A population consists of a collection of structures which 
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in the case of simulated evolution represents possible solutions to the optimisation 
problem. In natural evolution these structures would correspond to the chromosomes 
found in all biological organisms and which determine the characteristics of the or
ganism. Each structure is assigned a fitness value which determines the progress of 
the structure in subsequent generations, as structures with a large fitness value would 
tend to survive over an increased number of generations. These structures then un
dergo genetic operations which modify existing structures and generate new ones. 
The operations are of paramount importance to the method as they determine how 
new structures are formed from existing ones. This process is repeated to generate 
the members of subsequent generations. As the process works on the principle of 
survival of the fittest, structures which represent more optimal solutions and possess 
large fitness value, survive and propagate through the generations. Although the 
fundamental concepts of all three methodologies are derived from natural evolution, 
there exist significant differences between them which make each approach have dif
ferent properties. The basic principles of evolutionary optimisation can be stated in 
an algorithmic form as follows: 

Evolutionary Optimisation 

1. Initialise a population of structures. 

2. Evaluate each structure and assign them a fitness value. 

3. Create new structures by mating existing structures 

4. Evaluate new structures and insert them into the existing population to form 

the next population. 

5. Go to Step 3 if time limit is not exceeded. 

As simulated evolution uses terminology that has been derived from natural evo

lution, these are clarified in the table given below: 
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Natu ra l Evolu t ion Simulated Evo lu t ion 

Chromosome String 

Gene Feature/Character 

Allele Feature Value 

Locus Position on string 

Genotype Coded form of Parameters 

Phenotype Actual Parameter Set 

Thus if a binary string is used as the chromosomal representation of a solution in a 

simulated evolution experiment, each position on the binary string would correspond 

to being a locus. A gene would then correspond to a either a single or a group of bit 

locations. An allele would be the possible values the gene may have at each locus -

the use of a binary string forces the allele values to be either a zero or an one. 

Genetic Algorithms were devised by John Holland at the University of Michigan in 

the early seventies and was detailed in his pioneering work Adaptation in Natural and 

Artificial Systems^[Hol75]). Subsequently, research in genetic algorithms has experi

enced an exponential growth with applications in telecommunications, aircraft design, 

neural network architecture, control of gas pipeline transmission, seismic applications 

and jet turbine design. Evolutionary Programming and Evolutionary Strategies are 

two paradigms of simulated evolution which are very similar in structure and opera

tion. Evolutionary Programming had its origins in the sixties based on the work of 

Fogel [FOW66] which concentrated on using simulated evolution as a tool for evolving 

artificial intelligence. Thereafter the scheme has been used in a number of diverse ap

plications including underwater acoustics [Fog91a], robot path planning [MP90] and 

system identification [Fog91b]. The introductory work in Evolutionary Strategies was 

carried out in Germany at the University of Berlin by Rechenberg [Rec73] and fur

ther developed by Schwefel [Sch75]. Although evolutionary strategies are conceptually 

similar to evolutionary programming techniques, there are subtle but important dif

ferences between the schemes. The next sections present the detailed working of all 

the three paradigms highlighting both the similarities and differences. 
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5o2 Genetic Algorithms 

5.2.1 In t roduct ion 

Ever since the evolutionary theory of biological change was accepted, the mechanics of 

evolution has attracted research interest. John Holland at the University of Michigan 

was interested in using the ideas from natural evolution to devise a technique to solve 

difficult optimisation problems. He called this method Genetic Algorithms as the 

principle of the method was based on ideas from genetics. Subsequent to Hollands 

work [Hol75], research activity in the area of genetic algorithms has been extensive 

and the method has found applications in a variety of engineering problems [Gol89, 

Dav91]. 

A genetic algorithm (GA) can be represented by a 8-tuple as follows: 

G A = ( P ° , A, 1, f , s, c, m , i) (5.1) 

where 

P ° = (o? , . . . , a5 ) Initial Population 

A € N(Set of Integers) Population Size 

1 € N(Set of Integers) Length of each string 

f : Fitness/Objective Function 

s : Selection Operator 

c : Crossover Operator 

m : Mutation Operator 

i : Inversion Operator 

The initial population P is created by randomly generating A binary strings, each 

binary string being a coded form of the parameters of the optimisation process. The 

multi-parameter case is handled by concatenating the string representations of all the 

parameters. This process is elaborated in a subsequent section. The parameter A is 

the size of the population and is an important parameter of the genetic algorithm. 
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The length 1 of each binary string determines the precision with which the actual 

parameters have been coded. 

An important concept which arises as a result of using binary strings is that of 

a Schema. A Schema is a similarity template which describes a subset of strings 

with similarities at certain strings positions. For example, suppose a binary string 

representation is denned using six bits. Then 

0 * * 1 * * 

1 1 * * 0 * 

are two examples of schemata defined on the string. The * refers to a don't-care 

condition and can be either a 1 or a 0. Thus schemata are defined to be elements of 

{ 0 , 1 , * } ' where / is the length of the binary string. Two important properties of a 

schema are its order and defining length. The order of a schema H denoted by 0(H) 

is the number of fixed positions ( i n a binary coding, the number of l's and 0's). The 

defining length denoted by 8(H) is the distance between the first and last specific 

string position. For example the schema 

* 1 * * * 0 1 

has an order of 3 and a defining length of 5 (i.e. 7 - 2 ) . 

Genetic algorithms obtain most of their exploratory power by the sampling and 

distribution of schemata during the creation of new generations. I t has been proved 

[Hol75, Gol89] that if a genetic algorithm operates with a population size of A, then 

the number of schemata processed during a single generation is 0 ( A 3 ) . This effect 

is known as Implicit Parallelism. The concept of schemata also strengthens the case 

for the binary coding scheme, as it has been shown [Gol89] that maximum number 

of schemata is processed when a binary coding is employed. 

The fitness function f assigns a real value to each string which determines the 

survivablity of a particular string in subsequent generations. A large fitness function 

results in a particular string surviving in subsequent generations either as itself or 
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as offspring which have been created from i t . This concept is made clear when the 

genetic operation of selection is explained. 

A genetic algorithm operates on a population of string structures each of which 

represent a possible solution to the problem under consideration. An important differ

ence between genetic algorithms and the other evolutionary optimisation algorithms is 

that genetic algorithms operate on the genotypic representation while the evolutionary 

strategies and evolutionary programming methods operate on a phenotypic represen

tation. This distinction means that genetic algorithms operate on a coded form of 

the actual parameter space while the other evolutionary schemes operate on the ac

tual parameters themselves. Thus in genetic algorithms, the coding scheme used to 

represent the parameters is of significant importance. Though Holland [Hol75] stated 

that the binary coding is the optimal coding scheme, subsequent work has shown that 

this need not be so [Dav91]. The main argument against using a binary coding is it 

unnecessarily constrains the problem. 

Using a binary coding would entail each parameter being coded as a J bit string. 

The number of bits / dictates the precision of the coding process as a larger number 

of bits would represent a parameter more precisely. Depending on the function to 

be optimised, a parameter value may be constrained to lie between certain limits. 

This constraint satisfaction is elegantly handled in genetic algorithms by using a 

linear mapping, which maps each binary coded form of a parameter to a particular 

parameter value. This is explained using the following example: Suppose a parameter 

is constrained to lie between the limits of Pmin and P m a x , and is coded using a binary 

string of / bits. Then the coded form would have 2l discrete values and the linear 

mapping would then map the values { 0 , . . . , 2' — 1} of the binary string to real values 

lying between P m t n and Pmax- An important feature of evolutionary optimisers is 

the natural way the problem of dimensionality is handled [Gol89]. The problem 

of dimensionality plagues most current optimisation schemes which break down on 

problems of moderate size and complexity. The genetic algorithm deals with the 

dimensionality problem as follows: Each parameter of the process is as usual coded 

using a binary string. The binary codings of all the parameters are then concatenated 

to form a larger string which forms the chromosomal representation to be used in a 
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as offspring which have been created from i t . This concept is made clear when the 

genetic operation of selection is explained. 

A genetic algorithm operates on a population of string structures each of which 

represent a possible solution to the problem under consideration. An important differ

ence between genetic algorithms and the other evolutionary optimisation algorithms is 

that genetic algorithms operate on the genotypic representation while the evolutionary 

strategies and evolutionary programming methods operate on a phenotypic represen

tation. This distinction means that genetic algorithms operate on a coded form of 

the actual parameter space while the other evolutionary schemes operate on the ac

tual parameters themselves. Thus in genetic algorithms, the coding scheme used to 

represent the parameters is of significant importance. Though Holland [Hol75] stated 

that the binary coding is the optimal coding scheme, subsequent work has shown that 

this need not be so [Dav91]. The main argument against using a binary coding is i t 

unnecessarily constrains the problem. 

Using a binary coding would entail each parameter being coded as a / bit string. 

The number of bits I dictates the precision of the coding process as a larger number 

of bits would represent a parameter more precisely. Depending on the function to 

be optimised, a parameter value may be constrained to lie between certain limits. 

This constraint satisfaction is elegantly handled in genetic algorithms by using a 

linear mapping, which maps each binary coded form of a parameter to a particular 

parameter value. This is explained using the following example: Suppose a parameter 

is constrained to lie between the limits of P T O i n and Pmax, and is coded using a binary 

string of / bits. Then the coded form would have 2' discrete values and the linear 

mapping would then map the values { 0 , . . . , 2' — 1} of the binary string to real values 

lying between P m j „ and Pmax- An important feature of evolutionary optimisers is 

the natural way the problem of dimensionality is handled [Gol89]. The problem 

of dimensionality plagues most current optimisation schemes which break down on 

problems of moderate size and complexity. The genetic algorithm deals with the 

dimensionality problem as follows: Each parameter of the process is as usual coded 

using a binary string. The binary codings of all the parameters are then concatenated 

to form a larger string which forms the chromosomnal representation to be used in a 
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population. To assign a fitness value to each string in the population, the strings are 

decoded to form the actual parameters of the objective function. The function value 

then obtained using these parameters in the objective function are used as the fitness 

value of that string. In some instances, the raw function value itself is not used as 

the fitness measure, instead a modified value of the raw function value is employed. 

Thereafter the strings of each population undergo the standard genetic operations 

of selection, crossover and mutation to generate the strings of the new population. 

These operations are explained in the next section. 

5.2.2 Standard Genetic Operations 

There have been differences in the literature as to which operations constitute stan

dard genetic operations. The genetic operations presented in this section are as given 

by Holland in [Hol75] and Goldberg in [Gol89]. These set of operations have also 

been used by DeJong [DeJ75] where i t is referred to as plan R l (reproductive plan 

! ) • 

Selection Operation 

The selection operation decides which of the strings in a population are selected for 

further genetic operations. Each string i of a population is assigned a fitness value 

/ , . The fitness value /,s are used to assign a probability value pi to each string. The 

probability value p, assigned to a string is calculated as 

P* = ^ T - J (5-2) 

Thus, from the above equation it can be seen that strings with a large fitness value 

have a large value of probability of selection. Using the probability distribution 

defined by Equation [5.2], strings are selected for further genetic operations. This 

scheme of selection is referred to by researchers by various names like stochastic 

sampling with replacement [Gol89] and proportional selection [Hol75]. 
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Crossover Operat ion 

The crossover operation as stated by Holland, gives the genetic algorithm most of 

its exploratory power. The parameters denning the crossover operation are the prob

ability of crossover (pc) and the crossover point. The crossover operator works as 

follows: 

o From a population, two strings are drawn at random. 

o If the crossover probability is satisfied, a crossover point is selected at random 

so as to lie between the defining length of a string, i.e. x £ {1,... ,1 — 1} ; x = 

crossover point. 

o The sub-string to the left of the first string and to the right of the second string 

are swapped to create a new string. A similar operation is performed with the 

two remaining substrings. Thus two new strings are generated from the parent 

string. 

The operation is illustrated by means of a example given below: 

Before Crossover 

0 0 1 1 | 0 1 1 

1 1 1 0 I 1 1 0 

A f t e r Crossover 

0 0 1 1 | 1 1 0 

1 1 1 0 I 0 1 1 

The usual value used for the crossover probability (p c) lies between 0.6 « 0.8. Ac

cording to Holland, the crossover operation is responsible for combining short high 

performing schemata which in tandem generate strings with a larger fitness value. 
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However, it is also likely that the offspring generated may be worse than the par

ent strings. The crossover operation as given in [Hol75] used the one-point crossover 

operator given above. Current research has shown [Sys89, DS91] that increasing 

the number of crossover points leads to better performance of the genetic algorithm. 

Simulation studies carried out in this thesis suggest that this indeed is true. 

M u t a t i o n Operat ion 

In genetic algorithms mutation is usually assigned a secondary role. I t is primarily 

used as a background operator to guard against total premature loss of an allele at 

a particular locus which effectively results in the search space being reduced. Use of 

the crossover operation by itself would not recover this loss. The mutation operator 

allows for this by changing the bit value at each locus with a certain probability. Thus 

every locus on the binary string has a finite probability of assuming either a value of 

'0' or ' 1 ' . The probability of this change is the defining parameter of the operation 

and is referred to as the probability of mutation (pm) and is assigned a very small 

value ( w 0.001). The operation is explained below with an example: 

Before M u t a t i o n 

0 0 1 1 0 1 1 

A f t e r M u t a t i o n 

1 0 1 1 0 0 1 

The bit values which have been affected by the mutation process are shown in bold. 

Holland had envisaged a secondary role for the mutation operator, as too large a value 

of the mutation probability would result in breaking up of optimal schemata, thus 

reducing the efficiency of the method. But this view has been challenged by subse

quent research and now a greater emphasis is given to the mutation operator. Indeed, 

the evolutionary strategies and evolutionary programming approaches to simulated 

evolution use mutation as a primary operator. 
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Inversion Operat ion 

Holland had also included with the above operators a fourth operator which formed 

part of the genetic operations by which a new string could be formed from the parent 

strings. This was the inversion operator which operates on a single chromosome. The 

inversion operator inverts the order of the bit values between two randomly selected 

points on the parent string. Though this operation has been observed in nature, it has 

not been used commonly in genetic algorithms as it adds to the computational com

plexity of the process. Some details of the inversion operator is presented in [Gol89]. 

This operator has not been used in the genetic algorithm simulation experiments 

conducted in this thesis. 

The genetic operations detailed above form the backbone of a genetic algorithm. 

Thus the operation of a genetic algorithm would proceed as follows: The initial 

population of A strings are generated randomly and a fitness value assigned to each 

string. Using the fitness values, a probability measure is calculated for each string. 

Using this probability distribution, two strings are drawn from the population. These 

two strings then undergo the crossover operation if the crossover probability (pc) 

is satisfied. Thereafter each of the newly generated strings undergo the mutation 

operation resulting in two new strings which forms a part of the new population. This 

sequence is repeated t i l l there are A strings in the new population. The process is then 

repeated to create new generations. In the next section, we present improvements to 

the basic techniques discussed above. 

5.2.3 Improved Genetic Operations 

Some of the problems using the standard genetic operators were slow rate of con

vergence and premature convergence to non-optimal locations even when optimising 

simple unimodal surfaces. To overcome these deficiencies, a host of improvements 

have been suggested by various researchers. A few of these techniques are reviewed 

in the next sections. 
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Al te rna te Coding Schemes 

In genetic algorithms, the effect of a single bit mutation at the genotype level was not 

easily noticeable at the phenotypic level and depended mainly on the coding scheme 

used. Using the binary coding scheme a single mutation caused a change which 

depended on the location of the bit. An improved coding scheme which alleviates 

this problem is the Gray coding in which adjacent phenotypic values differ by a single 

bit (Hamming distance of 1). This scheme yields better performance in parameter 

optimisation problems and has been noted by Hollstein [Hol71] and more recently by 

Caruana and Schaffer [CS88]. Another coding scheme which has been suggested is to 

use the real parameters themselves - i.e. the genetic algorithm in this case operates on 

a phenotypic level. This scheme has been used in some of the real world applications 

presented in [Dav91]. 

A l t e rna t ive Selection Schemes 

A number of alternative selection schemes have been listed in [Gol89]. These include 

© Deterministic Sampling 

e Remainder stochastic sampling without replacement 

e Remainder stochastic sampling with replacement 

e Stochastic sampling without sampling 

© Stochastic Tournament 

Complete details of the above schemes are given in [Gol89]. I t has been shown by 

simulations that the stochastic remainder selection schemes results in a superior per

formance as compared to the other schemes. 

A basic technique which has been employed to improve the performance of the 

standard genetic algorithms is to scale the objective function. A common problem 

experienced using the standard GA is the presence of a superindividual1 in a popu

lation, which results in loss in diversity in subsequent generations as this individual 

1A string with a large fitness value compared to the other strings in the population 
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dominates and multiplies rapidly. This can be avoided by scaling back the objective 

function to prevent the population being dominated by a few individual strings. Scal

ing the objective function also helps in stretching the objective function at the final 

stages of a run thereby introducing more competition between the member strings. 

The different scaling schemes which have been used include linear scaling, sigma trun

cation, and power law scaling ([Gol89, HB92]). Power law scaling involved using a 

specified power of the raw fitness value as the scaled fitness and has been used in this 

thesis. This scheme was suggested by Gillies [Gil85] and detailed in [Gol89]. 

Al te rna t ive Crossover Schemes 

The main argument favouring the use of the one-point crossover is the initial formal 

analysis conducted by Holland who showed that optimal allocation of high perfor

mance schemata was possible, when the disruptive effects of the genetic operations 

are minimised. This was one reason why the mutation probability is kept at a low 

value. The only other operator which introduced disruption in the allocation of 

schemata was the crossover operator. Since the crossover probability is kept at a 

large value, the disruptive effects are minimised when the number of crossover points 

are kept at a low value. Thus the number of crossover points is usually kept low, i.e. 1 

or 2. However recent research [Sys89, DS90, DS91] have shown that a higher number 

of crossover points is beneficial to the search process. This led to the formulation of 

the n-point crossover operation and the uniform crossover operator. 

Uniform crossover involves swapping the alleles of the two parents with probabil

ity 0.5. This involves on a average (L/2) crossover points for a string of length L. 

Spears and DeJong [DS91] have shown that a parameterised uniform crossover scheme 

gives better results as compared to standard single point crossover, especially when 

the population size is small. Parameterised uniform crossover involves making the 

probability of swapping a parameter of the operation. Thus parameterised uniform 

crossover with a parameter value of 0.5 reduces to the standard uniform crossover op

eration. An immediate advantage of the parameterised uniform crossover operation 

is that the only defining parameter of the crossover operation is now the probability 

of swapping. I t has been shown in [DS91] that lowering the value of this probability 
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results in the crossover operation having less disruptive effects than is the case with 

the 2-point crossover. 

The above section detailed some improved schemes over the standard genetic op

erations. Goldberg [Gol89] presents details of more complex operators such as domi

nance, diploidy, intrachromosomnal duplication, deletion, translocation, segregation, 

niche exploitation and speciation. Dominance and diploidy play an important role in 

the case of non-stationary environments as they present a method of implementing 

long term population memory. 

5.2.4 Adaptive Extensions of Genetic Algor i thms 

One of the interesting areas where current research in GAs is active, is in developing 

techniques whereby the parameters of the Genetic Algorithm can themselves learn to 

attain the optimal values as is required by the particular optimisation problem. The 

important parameters which define a Genetic Algorithm are the population size, the 

crossover probability and the mutation probability. This problem was recognised early 

on by DeJong [DeJ80] who had suggested that the rate of mutation itself undergo 

adaptation in parallel with the exploration of the parameter space. He suggested the 

addition of an extra sequence of bits on the chromosome which would code the rate 

of mutation. These extra bits would undergo genetic modifications via the selection 

and other genetic operators in the same manner as the other bits of the string. 

Another approach which was used by Grefenstette [Gre86] involved using a meta-

level Genetic Algorithm which controlled the values of the parameters of a genetic 

algorithm which was involved in the main search process. The values for the param

eters of the meta-level genetic algorithm were set to the values obtained by DeJong 

in [DeJ75] which was defined as the standard genetic algorithm. The contribution of 

this work was to show that while it was possible to obtain optimal parameter values 

for a GA, the algorithm showed good performance over a range of parameter values, 

thus illustrating the robustness of the scheme. 

A new approach to this problem has been a new class of genetic algorithms known 

as messy Genetic Algorithms (mGA). These have been proposed by Goldberg and 
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colleagues in [GDK89, GDK90]. The main differences between mGAs and standard 

Genetic Algorithms are as follows: 

o mGAs use variable length codes that may be overspecified or underspecified with 

respect to the problem being solved. 

o mGAs use cut and splice operators instead of the fixed length crossover opera

tions. 

o mGAs divide the evolutionary process into two phases: an initial phase which 

contain building blocks of all specified lengths, and a juxtaposition phase where 

by means of the cut and splice operators, the population is enriched leading to 

the globally optimal strings. 

o mGAs use competitive templates to accentuate salient building blocks. 

Simulation studies have shown that the mGAs always locate the globally optimal 

strings. More details of mGAs are given in [GDK89, GDK90]. 

The next section looks at the paradigm of Evolutionary Strategies and compares 

the scheme to Genetic Algorithms. 

5<»3 Evolutionary Strategies 

5.3.1 In t roduct ion 

Evolutionary Strategies (ESs) are another optimisation technique which are based on 

principles of natural evolution. The basic concepts of the algorithm are very similar 

to that of genetic algorithms [HB92]. The algorithm operates on a population of 

string structures, each of which represents a solution to the optimisation problem. 

Each string then undergoes genetic modifications which result in a new string which 

then form part of a new population. Multi-parameter cases are handled in the same 

way as is done in GAs by concatenating the string representations all the parameters 

of the optimisation process. As for the genetic algorithms, the guiding principle of 

evolutionary strategies is survival of the fittest. Thus strings which represent near 
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optimal solutions to the optimisation problem survive for future generations leading 

to more optimal solutions. 

The initial work in ESs was carried out at the Technical University of Berlin in 

the early sixties where i t was for experimental optimisation problems like shape op

timisation of a bent pipe, and optimisation of a PID regulator [Rec73]. Subsequent 

work included applications in numerical optimisation and binary parameter optimi

sation. The different ESs which have been developed so far are presented in the next 

sections. Extensive work involving ESs have also been carried out at the University 

of Dortmund where a through comparison between GAs and ESs has been reported 

[HB92]. 

5.3.2 Standard Evolutionary Strategies 

( 1 + 1 ) - E S 

The (1+1)-ES was the earliest and simplest of the ESs which were devised. There was 

no real concept of a population as the algorithm operated with single parent string 

(real-valued vector) which produced an offspring by adding normally distributed ran

dom numbers to the parent vector. The single parent string was composed of the 

n parameter values. Associated with each parameter Xi, was the standard deviation 

value <r, which decided the size of the neighbourhood of the search process for that 

parameter when creating the offspring string. The better of both individuals was then 

used as the parent of the subsequent generation. As was mentioned before, an im

portant difference between GAs and ESs is the fact that GAs operate on a genotypic 

level (coding of the real parameters), while ESs operate at the phenotypic level using 

the parameter values themselves as genetic material. The descendent was created by 

a mutation process which is applied to all n components of the parent vector. This 

is accomplished by using normally distributed random numbers as follows: 

Xi(k + 1) = Xi(k) + N 0 l«,j ; i = 1, • • •, n (5.3) 
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where 

Xi(k) The value of the parameter x, at time k 

No Gaussian distributed random number with zero mean 

and standard deviation <7j. 

A selection operator then selects the fitter of the two vectors to become the parent 

of the next generation. The standard deviations er,s usually remain constant over the 

generations and have the same value for all the parameters in case of multi-parameter 

optimisation. However, Rechenberg ([Rec73]) has provided a rule-of-thumb to adapt 

the o~{S dynamically. This was termed the 1/5 success rule which stated: 

The ratio of successful mutations to all mutations should be 1/5. 

It it is greater, then the variance a is increased; if it is less, 

decrease the mutation variance. 

The derivation of this rule is given in [HB92], I t is to be noted that all the <r,s 

are changed at the same time and not individually. Thus the (1+1)-ES had two main 

genetic operators - selection and mutation. 

As can be seen, the (l-f-l)-ES did not have any real notation of a population as it 

operated only on a single string at a time. I t could be looked upon as a probabilistic 

gradient search technique using randomised techniques. In some respects i t is like 

another popular search technique which is based on analogues from nature - namely 

the technique of simulated annealing. But in simulated annealing, the selection of 

the next point is done probabilistically, while in the ( l - f l ) -ES i t is achieved using a 

deterministic process. 

Thus, to introduce the concept of population, the (fi + 1)-ES was devised by 

Rechenberg ([Rec73]), wherein n > 1 parents participated in the formation of a single 

offspring. As a result of the fi parents, a recombination operator which imitates sexual 

reproduction was introduced. The recombination operator functions by selecting two 

strings randomly from the \i parent strings. A l l the fi strings have an equal probability 

( / / + ! ) - ES 
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of selection. Suppose the two parent strings are represented by 

Parent A = x\, a x l , x2, crX2, • • •, %n, <*xn 

Parent B = y u cryl, y2, ayi, •. . , yn, (Tyn 

Then the offspring C resulting from the recombination operation, is composed of 

{z1,a2-l,z2,aZ2,...,zn, cr 2 n} where zn and a z n are given by 

where X is a uniform random value between 0 and 1. After the recombination op

erator, the offspring undergoes the mutation operation similar to that used in the 

(1+1)-ES i.e. Equation [5.3]. The selection operation is then used to remove the 

least f i t individual - be i t the offspring or one of the parents, from the (/z + 1) indi

viduals. Although each parameter a;,- had its own standard deviation value axi, these 

were fixed at the initialisation of the algorithm. The only change in the standard 

deviations values were as result of the recombination operation. Thus there was no 

self adaptive strategy in the ft + 1-ESs. 

The new variations of the ESs presented in this section were introduced by Schwefel 

([Sch81]) for two important reasons: To make use of parallel computers and to provide 

a mechanism of self adaptation by adapting strategic parameters like the standard 

deviations during the evolution process itself. Schwefel viewed the as as a part of the 

genetic material which underwent the genetic operations of selection, recombination 

and mutation. Those individuals with better performing strategy parameters were 

expected to perform better then the other individuals. Thus the main difference 

from the ESs discussed earlier is the use of a larger number of offspring (A > pi) and 

a. 

iiX < 0.5 

if X > 0.5 y n 

if X < 0.5 i n 
zn 

f l > 0.5 
(5.4) 

{n + A)-ES and (^, A)-ES 
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the use of adaptive standard deviations for the mutation process. Thus, from the 

nomenclature i t can be inferred that in (//, A)-ES, /J, parents genetically combine to 

form A children which are again reduced to /t parents for the next generation. In 

the ( f j , + A) variation of the ES, both the \i parents and A children are used in the 

selection process to select the [i parents of the next generation. The (// + A) scheme 

can result in sub-optimal performance especially if the environment is noisy and non-

stationary. The reason for this is a string with a large fitness value would tend to 

propagate through many generations, as in the (/x + A)-ES even the parent strings are 

considered for the selection process. As the (/x, A) — ES is used subsequently in this 

thesis for simulations in adaptive filtering, a formal description of the (^, A) — ES is 

presented. A A)-ES may be mathematically described by the 8-tuple 

(/i,A) - E S = P ° , / x , A , f , s , r , m , Aa (5.5) 

where 

P ° = Initial Population 

\i = Number of Parents 

A = Number of Offspring 

f = Fitness/Objective function 

s = The Selection Operator 

r = The Recombination Operator 

m = The Mutation operator 

ACT = Step-size meta control 

The fitness function f, as before, assigns a fitness value to each string in the 

population. From the // strings which represent the parent strings, A offspring are 

generated by using the recombination and mutation operator. The recombination 

operator generates a single string from two parent strings by the process explained 

before. Thereafter, the mutation operator operates on the new string to generate 

the final form of the offspring. The important difference in this scheme is that the 
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standard deviations as themselves undergo genetic operations and are not controlled 

by a meta-level rule like the 1/5 success rule. Thus, i f x and ax are a parameter and 

the associated standard deviation, then the new values of x and ax are given by 

ax(k + l) = crx(k)N0iA<r 

x{k + l) = x(k) + N 0 i ( T x ( k + 1 ) (5.6) 

where is a Gaussian process with mean 0 and standard deviation ACT. Thus 

mutation works both on the parameter value x and on the standard deviation ax. 

The step-size meta control ACT has a constant value assigned to it at the beginning 

of the run. After the A offspring strings are generated,the selection operator s selects 

the pL strings having the largest fitness values which form the parents for the next 

generation. 

The main differences between GAs and ESs arise either directly or indirectly from 

the representations used by the algorithm. As ESs are working with a phenotypic 

level, they uses much more knowledge about the application domain including that 

of parameter boundaries. This is not the case with GAs which as a result of the 

coded form of the parameters are not aware of the parameter boundaries. Although 

the genetic operators are similar in concept in both GAs and ESs, the role they play 

are different. In GAs, the primary search operator is the crossover operation and 

serves to enlarge the search space. In ESs mutation is the main tool for exploration 

while in GAs the mutation operation is only used as a background operator to recover 

lost alleles. In the next section, advanced extensions of the ESs detailed above are 

presented. 

5.3.3 Improved Evolutionary Strategies 

Generalised Selection 

The ESs detailed above used only a ranking scheme in order to select the parents of 

the next generation. Thus the absolute value of the fitness assigned to each string was 

not of importance as the fitness value was used only to rank the strings. A different 
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scheme of selection, which was used for GAs, was proportional selection, where for 

each string a probability value calculated from the fitness value assigned to i t . This 

probability distribution was then used in the selection process. This scheme has been 

used for ESs and details of this scheme and some improved selection schemes for ESs 

are presented in [HB92]. 

Improved Recombinat ion Operators 

The recombination operator as detailed in Equation [5.4] was a simple operation which 

chose a parameter value from either parents with equal probability. This recombina

tion operator was referred to as the discrete recombination operator. Some modifica

tions to this simple recombination operator were suggested by Schwefel [Sch81] and 

are 

o Intermediate: In this type of recombination, the average value of the param

eters from the parents was used as the parameter value of the offspring, i.e. 

xnew — ~ ; xa, Xf, — r arent strings 
Li 

© Global and Discrete: In the global discrete recombination scheme, for each 

parameter value in a string, one of the two parent strings is chosen anew from 

the population. This results in a higher mixing of genetic material than the 

simple recombination operator of Equation [5.4]. 

© Global and Intermediate: This operator is similar to the intermediate recom

bination operator explained above except that i t follows a global scheme, where 

for each parameter, one of the two parents is chosen anew from the population 

as in the global discrete case. 

Using these operators, i t was found that for object variables the discrete recombina

tion operator gave best results, while for strategy parameters the intermediate scheme 

performed better [HB92]. 
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Correlated Muta t ions 

In ESs the mutation operator is the main search operator, performing a hill-climbing 

operation when considered in conjunction with the selection operator. Each param

eter of a string has its dedicated standard deviation, which can be looked upon as 

dictating the step-size for the search. However, this scheme establishes the preferred 

direction of search only along the axes of the coordinate system. The optimum search 

direction is dictated by the gradient of the search surface and need not be aligned 

along the coordinate axes. This can be achieved by chance only when suitable mu

tations are correlated. This concept was used by Schwefel [SchSl] who extended the 

mutation operator to handle correlated mutations. Complete details of this procedure 

are presented in [Sch81, HB92]. 

From the previous sections it can be seen that both GAs and ESs are very similar 

in basic concepts. The main differences arise in the genetic representation used and 

in the genetic operators used to generate new populations. In the next section the 

simulated evolution paradigm of Evolutionary Programming is explained. 

5.4 Evolutionary Programming 

5.4.1 Int roduct ion 

Evolutionary Programming represents one of the earliest attempts at using concepts 

from natural evolution for solving problems of optimisation. The initial work was 

done by Fogel et. al. in the late sixties [Fog62, FOW66], where simulated evolution 

was used to evolve artificial intelligence. Thereafter the method did not receive ade

quate support and in some instances was even labeled incorrect. Thus the interest in 

the approach did not resuscitate t i l l the work of Holland in the early seventies in ge

netic algorithms. Recently there has been renewed interest in the method prompted 

by the work of David Fogel [Fog91b] and others. The Evolutionary Optimisation 

paradigm is very similar to the Evolutionary Strategies which were at the same time 

being investigated in Germany. I t is rather fascinating to note there had been no 

copious exchange of information between the two schools in the United States and 
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Germany, with the result that a lot of effort has been duplicated. Both methods use 

a phenotypic representation of the parameters and rely on mutation as the primary 

search operator. The next section presents the salient features of the Evolutionary 

Programming approach. 

5.4.2 Salient Features 

The salient operations of the Evolutionary Programming paradigm are as follows: 

o The initial population is generated randomly as in the case of ESs by selecting 

m strings, where each string Si was composed of the k parameters of the opti

misation problem. Each parameter value is selected to be a random value lying 

between the limits defined for that parameter. 

o Each string st- is assigned a fitness value <f>(si) which may be a complex function 

of the true fitness of s,- or the raw fitness value of Si itself. 

o Using each s,-, i = 1 , . . . , m, a new string s, + m is generated as follows 

Si+m =Si + N 0 ^ ( B j ) ; (5.7) 

where N0i^Si^ represents a Gaussian random variable with mean 0 and variance 

<l>(si). This step represents a significant difference from the ESs where the 

standard deviations of the mutation process are a part of the genetic material 

and undergo genetic modifications during the adaptation, while from the above 

equation it can be seen that in the case of EP, the fitness value assigned to a 

parent is used as the standard deviation for generating new members. Usually 

the raw fitness value is not used for the standard deviation, instead a function 

of the raw fitness value is used. 

® The new strings are then assigned a fitness value as in step two. 

o For each string s,- (i = l , . . . , 2 m ) , a rank iwt- is assigned. The rank Wi is 

calculated as follows: Each string is made to compete against a fixed number of 

strings from the population. If the string has a fitness value less than the string 
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against which i t is competing, then i t is assigned a value of 1. The rank u;,- of the 

string is then the total number of ones it has obtained during the competition 

process. Thus strings which are optimal would receive a large value for the 

rank. This process is explained below with help of equations: 

R 

Wi = ID? 
1=1 

< = 1 if 4 { S i ) < <f>{Sr)) 

= 0, otherwise (5.8) 

where r is random integer selected lying between 1 and 2m, and R is the number 

of competing strings. 

o Using Wis, the strings are ranked in the descending order of the ranks. The first 

m strings along with the corresponding fitness (f>(si) are then selected to form 

the next generation. 

The main differences between the ESs and EP approaches are seen to be in the 

manner of the selection and the use of the fitness value as the standard deviation for 

mutation for a particular string. A important difference is the lack of any kind of 

crossover/recombination operator. Fogel et. al. emphasizes this point [FFA91] by 

stating that macromutations like the crossover and inversion operator are not required 

for successful adaptation. This is a radical departure from Hollands belief that the 

crossover operation was primarily responsible for the exploratory nature of the the 

genetic algorithm. 

5.4.3 Adaptive Extensions to Evolutionary Programming 

As in other simulated evolution techniques, the EP paradigm has a number of learn

ing parameters such as the amount of mutational noise, the severity of the mutation 

operator etc.. The optimal values of these parameters are dependent on the particular 

optimisation problem, and the values obtained for a particular problem may not be 

suitable for another problem. Thus there is a necessity to automate the selection of 

values for the learning parameters. This was achieved in ESs and to some extent in 
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GAs, by including the strategic parameters as part of the genetic material which un
derwent genetic modifications. A similar approach is advocated for the case of EP by 
Fogel in [FFA91]. This was labeled as the meta-level evolutionary programming and 
consisted of attaching a perturbation variable to each parameter of the optimisation 
problem. This perturbation variable was then used as the standard deviation to mu
tate the parameter value. The perturbation values of the offspring were themselves 
modified by the addition of a Gaussian random variable of mean zero and standard 
deviation equal to the perturbation value of the parent. I t can be seen that the meta-
evolutionary EP technique is similar to the (//, A)-ES with respect to the manner in 
which the strategic parameters are adapted. 

5»5 Discussion 

The previous sections discussed in detail the three paradigms of simulated evolution, 

namely genetic algorithms, evolutionary strategies and evolutionary programming. It 

can be seen that the basic principle of all the three methods is essentially the same 

and based on the principle of survival of the fittest. The concept of a population is of 

significant importance and forms the main functional unit in all three methodologies. 

Interest in research involving evolutionary strategies and evolutionary programming 

has only recently increased, though the method was first formulated in the late sixties. 

Genetic algorithms, on the other hand, have been an active area of research for couple 

of decades, though applications using genetic algorithms in engineering problems has 

been recent. Theoretical results regarding genetic algorithms are more mature. The 

evolutionary strategy and evolutionary programming methodologies are very similar 

to each other. Both rely on the mutation operation as the main search technique. As 

these techniques use the real parameter values themselves as the genetic material, the 

quality of the solution obtained is also more accurate and precise. A l l three techniques 

could be stated to operate using two main principles: 

© The concept of a population which comprises of a set of solutions. 
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o A perturbation mechanism which perturbs the current set of solutions to gen
erate new solutions. 

The next chapter applies the techniques of evolutionary optimisation to the prob

lem of adaptive I IR filtering. The simulation configuration is described along with 

discussion on the results obtained using the different algorithms stated in this chap

ter. It is shown how these techniques are not stymied by the problems of multimodal 

error surfaces and dimensionality associated with high order adaptive IIR filtering. 
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Chapter © 

Adaptive Digi ta l Fi l ter ing uasin 

Genetic and Evolutionary 

Optimisation 

6.1 Introduct ion 

n this chapter, the methodologies and results obtained using the evolutionary opti

misation schemes for the adaptive I IR filtering case are presented. This represents 

a novel approach to adaptive IIR filtering. The effect of varying parameter values 

and improved schemes of evolutionary algorithms are also tested using the adaptive 

filtering paradigm. As we have seen, the two main problems with current adaptive 

I IR filtering algorithms are the inability to locate the global optimum in the presence 

of multimodal error surfaces and the problem of dimensionality when adapting high 

order niters. From the simulation studies presented in this chapter, it is shown that 

the evolutionary optimisation schemes are able to overcome these problems. 

The global optimality capability of genetic algorithms for adaptive IIR filtering 

were initially demonstrated by Etter in [EHC82]. Analysis regarding the global op

timality of evolutionary strategies and evolutionary programming have been given in 

[HB92, Fog91b]. Previous work using genetic algorithms for adaptive filtering has 

been in the design of FIR filters [Suc91], where the genetic algorithm was used to 
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select from a basic set of filter templates so as to construct a new filter. 

(So2 Simulation Configuration 

To utilize the evolutionary schemes for adaptive I IR filtering, the system identification 

(Figure [2.3]) has been used. The unknown system in the configuration is an nth order 

I IR filter whose coefficients are assumed to be unknown. The modeling system is also 

an I IR filter but whose coefficients are changed by the adaptive algorithm. Both 

reduced order and sufficient order modeling experiments have been carried out. The 

adaptive I IR filter is said to have identified the system when the estimation error e(n) 

reduces to zero or a minimum value. The input excitation used was white noise with 

unity power. The effect of measurement noise was simulated by adding white noise 

at varying power levels as indicated in Figure [2.3]. 

6.2.1 Genetic Algor i thms 

The main functional unit in evolutionary optimisation schemes as seen before is a 

population of string structures. For the particular case of adaptive filtering, each 

string structure represents a combination of the filter coefficients of the adaptive 

filter. Depending on the evolutionary scheme being used, the string structure is either 

a coded form of the parameters (genotype) or the actual parameter values themselves 

(phenotype). The genetic algorithms use a genotypic representation of the actual 

parameters. In the simulation experiments conducted in this thesis, a binary coding 

has been employed to obtain the genotypic representation for the genetic algorithms. 

Other coding schemes have used and the results obtained are presented. 

The number of bits used to code a parameter determines the resolution of the 

parameter and could result in a situation wherein the error value does not reach 

the minimum value of zero as a result of the discretisation. Each coefficient of the 

adaptive IIR filter is coded using a binary string of I bits whereby a coefficient can 

take 2' distinct values. As the binary string of / bits can take values lying between 0 

and (2' — 1), a mapping procedure is used to decode the unsigned integer linearly from 

(0,2' — 1) to a specified interval (P T O t n , Pmax)- This interval (Pmin, P m a x ) is significant 
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with respect to the stability of the modeling filter. The precision of the coded form 

is thus given by 
P — P 
1 max 1 mm i \ 

- = 2 / _ ! (6.1) 

To use the evolutionary schemes for multiparameter optimisation, the coded pa

rameter values or the actual parameter values themselves are all concatenated to 

form a larger string structure which then forms one member of the population. This 

is illustrated below: 

Mul t ipa rame te r Coding (10 Parameters) 

0 - 1 - 0 - 0|0 - 0 - l - l | |1 — 1 — 1 — 1|0 - 0 - 0 - 0 

In the case of multiparameter optimisation, each parameter can be coded using a 

different number of bits, however the number of bits used to code a parameter is 

usually kept constant for all the parameters. The P m , „ and P m a x values can also 

be different for different parameters. Thus each string structure in a population 

represents a particular combination of parameters of the adaptive filter. 

To assign a fitness value to each string structure, the string is decoded into the 

constituent parameters. The error signal obtained using these parameters as coeffi

cients of the adaptive filter is then used as the fitness measure for the string. Instead 

of the instantaneous error signal, a value averaged over a rectangular window is used. 

As all the signals used in the simulation experiments are stochastic in nature, the use 

of a window results in a better estimate of error for a particular set of coefficients. 

The length of the window used depends on the impulse response of the filter and plays 

an important role in the accuracy and rate of convergence of the algorithm. The raw 

error value itself was not used as the fitness measure - instead a modified value of the 

raw error was used. This modification was done in two ways: 

o Firstly, instead of the raw error value, a scaled value of the error signal was 

used. I t has been reported that [Gol89] scaling the raw fitness values improves 

the performance of the genetic algorithm. In particular the power law scaling 

rule ([Gol89]) was used whereby the scaled error value was some specified power 
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of the raw error signal. In the simulation experiments a value of 4 was used 

as the power. I t was noticed that larger values of power ( i.e. > 4 ) led to 

premature convergence while lower values increased the iterations needed for 

convergence. 

o The second modification was to use an inverting function in order to convert 

the maximisation problem to a minimisation problem. Thus the actual fitness 

value /,• which was assigned to a string structure i was given by 

f i = i (6-2) 

where 

e = Mean Square Output Error obtained for the string i 

Thus the use of genetic algorithms as the adaptive algorithm was carried out as 

follows: At the start of the algorithm, a population of A binary strings were randomly 

generated, where A was the population size. The length of each binary string was 

equal to the number of bits used to code a coefficient times the number of coefficients 

of the filter. Each string in the population was decoded into a set of coefficients of 

the filter. Using these coefficients in the adaptive filter, the error signal obtained was 

modified as given above and used as the fitness measure for the string. Thereafter 

the genetic operations of selection, crossover and mutation were carried out on the 

members of the population and the next generation was created. For each generation, 

the minimum error and the average error over all the members of the generation was 

recorded. 

To overcome the problems of instability when adapting a high order I IR filter, 

alternative configurations were used. These were the cascade form, the parallel form 

and the lattice form. Brief details of these configurations were given in Chapter 2. 

For the cascade and parallel form, the subsystem which was used as a basic unit was 
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a second order all pole I IR filter having the transfer function 

H i Z ' 1 ) = i = i 2 ( 6 - 3 ) 
1 — a\z 1 — a2z 2 

The main motivation in using these forms was that the stability check could be 

incorporated into the adaptive algorithm by restricting the values of the coefficients 

to lie within the stability triangle as explained in Chapter 2. The decomposition 

could also have been made using first order sub-systems, but this would entail using 

complex coefficients for the filter parameters. For simulation experiments using the 

lattice configuration, a suitable order lattice form was selected. The coefficients of 

the lattice form were coded as binary strings and formed the string structure of a 

population. Thereafter the procedure adopted was similar to the one adopted for the 

parallel and cascade form. The main advantage using the lattice configuration was 

that the stability check was very simply incorporated in the adaptive algorithm by 

restricting the coefficients to have a magnitude of less than or equal to 1. 

<S.2.2 Evolutionary Strategies and Programming 

The simulation configuration for the evolutionary strategies and evolutionary pro

gramming methodologies were very similar to the one adopted for genetic algorithms. 

The main difference was that as the evolutionary strategies and evolutionary program

ming used a phenotypic representation, no coding procedure was necessary to convert 

the actual parameter values to a genotypic representation. During the mutation pro

cess which was the main mode of search for both the algorithms, the parameter values 

were generated so as to always lie inside the stability triangle. For adapting high or

der filters, the alternative realizations used in the case of the genetic algorithms were 

used. 
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6c3 Simulation Results 

6.3.1 Genetic Algori thms 

In the simulation trials using the genetic algorithm, each coefficient was coded using 

a binary string of 14 bits. This resulted in each coefficient being discretised into 

16384 discrete values between the limits imposed by the stability criterion. The effect 

of varying the number of bits are presented later on. In all the results which are 

presented, the minimum error obtained for each generation is shown plotted against 

the number of generations. Adaptation was stopped after 200 hundred generations. 

A window length of 100 was used to obtain the average instantaneous error. This is 

shown in the results on the x-axis as a multiplication factor of 100 indicating the actual 

number of time samples of the input signal which were needed for convergence. It 

was assumed that all the members of a population were evaluated in parallel, though 

the actual simulation experiments proceeded down the set of string structures which 

made up a population. A l l the simulation runs show the average results obtained 

after twenty simulation runs of the experiment. 

For adapting high order I IR filters, alternative realizations such as the parallel, 

cascade and lattice forms were used. Of these configurations, the parallel form gave 

the best results. The cascade form was tested out in the early simulation experiments 

but resulted in a very large time of convergence. This was found to be caused by 

the cascade structure itself as the numerical and quantisation error propagated and 

multiplied through the structure. The main reason for the success of the parallel form 

was the fact that because of the decomposition of the direct form realization into a 

parallel form, multiple global minimas were created all of which were equivalent to 

each other. This was the result of the different ways the poles could be rearranged in 

the second order sub-systems. However, this resulted in the error surface for such a 

configuration to have a different characteristics ([NJ89]). I t was shown in [NJ89] that 

if a direct form IIR filter was modeled using an alternative realization, the resulting 

error surface may have additional optimas, which may be equivalent global minimas 

or saddle points which are unstable solutions in parameter space. As the genetic 

algorithm is a stochastic technique, there is enough jitter provided in the algorithm 
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itself, which drives the algorithm away from the regions containing the unstable saddle 

locations. However a gradient algorithm could get stuck at such a point without 

reaching the global optimum if there is no noise present. From the simulation results 

i t can be seen that genetic algorithms were able to locate the global optimum. 

To demonstrate the genetic algorithm performs better than a pure random search 

algorithm, simulations experiments were carried out in which a population of string 

structures were selected randomly at each iteration. There was no genetic operations 

performed on the population. The minimum error of the population was recorded 

and the results obtained are presented in Figure [6.1] and [6.2] which were obtained 

using different order filters. It can be seen that the genetic algorithm learns and 

performs better then a pure random search algorithm. Convergence to the optimal 

set of coefficients was confirmed by checking the final set of coefficients which the 

algorithm determined. 

Reduced Order Mode l ing 

This simulation experiment was devised to check whether the genetic algorithm ap

proach was able to locate the global optimum when the error surface was multimodal. 

The experiment involved identifying a second order I IR filer using a first order model. 

This reduced order modeling resulted in a bimodal error surface and was first used in 

[LTJ80]. The unknown system was modeled using the second order model given by 

I N 0 .01-0 .4Z" 1 . . 
' " 1.0 - 1 . 3 1 4 * - + 0 . 2 b - ( M ) 

while the modeling was done by a first order I IR filter with the transfer function 

Using the above model, i t has been analytically proved that the two minimas have 

error values 0.3 (global minima) and 0.9 (local minima) ([JL77]). The result using 

this model and the genetic algorithms as the adaptive strategy is shown in Figure 

[6.3], where the genetic algorithm approach is compared to the Stochastic Learning 
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Automata (SLA) approach. From the error values obtained by the end of the sim

ulation, i t can be seen that the algorithm was able to locate the global minimum. 

The same result also shows that in comparison with the automata approach, genetic 

algorithms provide a faster rate of convergence. The model used in this experiment 

is different from that used by Etter in [EHC82], where a different example was used 

to demonstrate the property of global optimisation. 

H i g h Order Fi l ters 

To check the capability of the genetic algorithm to adapt high order I IR filters, filters 

up to the order of ten were modeled in the simulation experiments. The transfer 

function of the different order filters are as given: 

Four th Order M o d e l 

m - i x = 2.0 - 2.8,- 1 + 1.5z21 
1 ; 1.0 - 2.8Z-1 + 3.42z-2 - 2.04z-3 + 0.54.*-4 

(6.6) 

S ix th Order M o d e l 

3 .0 -4 .5822z - 1 +2 .956z - 2 

TT/ - \ \ _ -0 .58436z- 3 +0.168012z- 4 //» - \ 
^ Z >~ l - ( 2 . 2 9 1 1 z - 1 - 1 . 7 2 9 3 1 4 z - 2 - 0 . 3 6 4 7 1 7 z - 3 v 0 - ' - ' 

+1.281337z~* -0.73702899z- 5 +0.12988048z~ 6 ) 

Tenth Order M o d e l 

5 . 0 - 7 . 6 2 4 z - 1 + 8 . 5 7 7 z - 2 - 7 . 7 O 2 9 z - 3 + 8 . 7 9 6 1 z - 4 

IT/ - 1 \ _ - 6 . 1 9 3 z - 5 + 5 . 4 8 4 z - 6 - 3 . 8 4 3 1 z - 7 + 2 . 0 1 8 2 z - 8 ,c Q \ 
U \ Z )— l - ( 1 . 9 0 6 z - 1 - 1 . 5 2 z - 2 + O . 8 2 7 9 z - 3 - 1 . 9 4 7 8 z - 4 + 2 . 5 4 1 z - 5 - 1 . 5 2 5 5 z - 6 V 0 - 0 ^ 

+ 0 . 5 2 5 1 1 z - 7 - 0 . 7 9 5 2 8 z - 8 + 0 . 7 7 2 0 2 z - 9 - 0 . 3 1 6 9 2 z - 1 0 ) 

The results for the different order filters are given in Figure [6.4]. Although the 

tenth order model is seen to take a larger number of generations to converge, the 

algorithm located the optimal set of coefficients for all the different order filters. For 

all the different order niters, the initial convergence with reference to the number of 

iterations is very rapid. This is a property of genetic algorithms in that they rapidly 

find regions of near optimal solutions. The high order filters were modeled using the 

parallel form configuration using the appropriate number of second order sub-systems. 

Thus the tenth order IIR filter was modeled using a parallel bank of five second order 
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sub-systems. 

Var ia t ion of Parameter Values 

The main parameters of a genetic algorithm are the population size, the crossover 

probability and the probability of mutation. The effect of these parameters are shown 

in Figures [6.5,6.6,6.7]. 

Figure [6.5] shows results when the mutation probability is varied. As can be 

seen, very large and very small values of mutation probability results in non-optimal 

performance. Large values of the mutation probability (pm = 0.2) reduces the genetic 

algorithm to a random search routine with no learning process and thus the algorithm 

is unable to converge to the optimal solution. Wi th very small values of mutation 

probability (pm — 0.001), the algorithm does not have sufficient exploratory power 

and thus converges prematurely to sub-optimal solutions. Both these effects are 

demonstrated in Figure [6.5]. 

The effect of the crossover probability is shown in Figure [6.6]. The results show 

that the crossover probability does not play as important a role as the probability of 

mutation. Wi th larger values of crossover probability, the initial rate of convergence 

is faster, though the number of iterations need to locate the global set of coefficients 

remain unaltered. This result has been documented by different researchers who 

have stated that the crossover operation is not necessary for an extensive search 

in evolutionary algorithms. This is in contradiction to Hollands original hypothesis 

who envisaged the crossover operator as the main operator in genetic algorithms 

responsible for the exploratory search, while mutation was used only as a secondary 

operator to recover lost alleles. 

Results showing the effect of the population size are given in Figure [6.7]. With 

small population sizes, the selective pressures on the population members are not 

sufficient enough, thus the algorithm is unable to locate the optimal set of coeffi

cients. Wi th an increased population size, the algorithm locates the optimal set of 

parameters, though this is achieved at an increased computational time. 
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Effect of Coding Schemes 

Holland has proposed the use of binary coding to obtain the genotypic representation 

of the actual parameters. I t had been proved that the number of schemata which are 

processed in parallel attains a maximum value when the cardinality of the alphabet 

being used for the coding process is minimum [Hol75]. Thus binary coding should 

result in the optimum performance. However, this concept has also been questioned 

recently by researchers. In particular, Davis in [Dav91] lists a number of practical 

applications of genetic algorithms, none of which use the binary coding scheme. The 

success of the evolutionary algorithms, the results of which are presented later on, 

show that perhaps the use of a genotypic coding itself is redundant. Two other 

coding schemes were used and the results are presented in Figure [6.8]. The use 

of the gray coding enabled the algorithm to locate the optimal state with greater 

accuracy, as adjacent coefficients using a gray coding only differed by a single bit 

value. This enabled to algorithm to locate the optimal set of coefficients from near 

optimal solutions without a large number of bit changes. The variance of the error is 

also seen to have reduced using a gray coding instead of the binary coding. Both these 

codings however used the binary alphabet. The other coding employed was real coding 

- in actuality no coding was really used, instead the actual parameter values were 

themselves used as the genetic material. This is similar to the evolutionary algorithms 

except that the mutation operation is handled differently. Using the real coding, 

mutation was handled by using a uniform distribution centered around the current 

operating point. If the new point was outside the limits used for the stability criterion, 

the mutation operation was carried out again. It can been seen from the results in 

Figure [6.8] that the gray coding gave a better performance. The main reason for the 

poor performance of the real coding was that a uniform distribution was used in the 

mutation process to generate new strings. This could result in excessive mutation 

noise, resulting in the algorithm not being able to locate the optimal coefficients 

rapidly. 
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Effect of the B i t Length 

Figure [6.9] presents the results obtained using different number of bits to code a 

parameter value. Though there is no significant increase in the rate of convergence, 

using a larger number of bits enabled the algorithm to obtain a more accurate result. 

As was stated previously, the use of a coding scheme to obtain the genotypic repre

sentation forces the parameters to take discrete values. The number of bits used for 

the coding determines the resolution of the parameters. This can be seen in Figure 

[6.9] where using the four bit coding, the algorithm converges to a higher value of 

error even when i t has located the optimal set of coefficients. 

Di f fe ren t Crossover Schemes 

There have been a number of crossover schemes cited in the literature devised to 

improve on the original single point crossover scheme used by Holland. Some of 

these schemes were used for the adaptive I IR filtering simulation experiments and 

the results obtained are presented in Figures [6.10] and [6.11]. The four crossover 

schemes which were implemented were One Point Crossover, Two Point Crossover, 

Uniform Crossover and Multiple Crossover. The One Point Crossover operation was 

the standard single point operation proposed by Holland. In the Two Point operation, 

two crossover points were used, while the Multiple Point Crossover operation used 

a seperate crossover point for each paramter. Each crossover point was constrained 

to lie between the limits defined for that parameter. Thus in the multiple crossover 

operation, the number of crossover points was equal to the number of parameters. 

The Uniform Crossover operation has been explained in Section [5.2.3]. 

The two sets results in Figures [6.10] and [6.11] are generated for two differing val

ues of the mutation probability. Figure [6.10] shows the result for a mutation proba

bility of 0.075. In this case the multiple point and single point crossover schemes give 

better results, while the uniform crossover schemes results in non-optimal solutions. 

The reason for this is the fact when coupled with the relatively large value of mutation, 

the uniform crossover scheme results in extensive disruption of the schematas. Thus 

the propagation of schemata with above average performance is reduced as they get 
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broken up. On the other hand when using a lower value of mutation (pm = 0.025), 

the uniform crossover scheme results in a reduced value of error as is shown in Figure 

[6.11]. However, with a low value of mutation, the algorithm was not able to locate 

the optimal set of coefficients. This again gives credence to the theory that muta

tion is a important operation and perhaps should be used as a primary operator in 

simulated evolutionary algorithms. 

Di f fe ren t Selection Schemes 

The proportional selection (stochastic sampling with replacement technique) used for 

the genetic algorithm sometimes led to premature convergence. Thus new schemes 

of selection which have been mentioned in Chapter 5 were used in the simulation 

experiments. The results using these different schemes are presented in Figures [6.12, 

6.13, 6.14]. The two selection schemes other than proportional selection which were 

used were the ranking scheme and remainder stochastic sampling with replacements. 

The remainder stochastic sampling with replacements has been labeled in Figure [6.12] 

as the Deterministic Scheme. 

In the remainder stochastic sampling with replacement scheme, the probability 

of contribution for each string is calculated as in the proportional selection scheme. 

Then the expected number of individuals for each string was calculated as the product 

of the probability value for that string and the size of the population, rounded off to 

the nearest integer. I f the total number of individuals thus created was less then the 

population size A, the fractional parts of the expected number values were then used 

in a roulette wheel selection procedure to f i l l the remaining slots in the population. In 

the ranking scheme, out of a population size of A members, the Mbest were selected to 

form the members of the next generation. The value of A was fixed at 50 (population 

size), while the value of Mwas varied between 6 and 25 as shown in the results. 

The comparative results between the three different selection schemes are pre

sented in Figure [6.12]. Of the three, the remainder selection scheme is seen to give 

the better performance. The proportional selection scheme is prone to two sources of 

error ([Gol89]) - firstly only an estimate of the schema average is obtained using se

quential finite sampling; secondly the selection scheme itself is a high variance process 
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with a large degree of scatter. This is to some extent reduced using the remainder 

stochastic sampling with replacement. 

In the ranking scheme, no importance is given to the actual fitness value - the 

fitness value is used just in order to rank the strings. But interesting results are 

observed when the number of strings used to generate the next population are varied. 

The idea to change the number of parents has been adopted from the evolutionary 

strategies and has not been used before in genetic algorithms. The results are shown 

in Figures [6.13] and [6.14]. I t can be seen that as the number of strings used to 

generate the offspring strings reduce, the performance of the algorithm improves. 

Figure [6.14] shows the result obtained using the ranking scheme but with an elitist 

strategy. In such a scheme, the best string structure of each generation is always 

carried over to be a member of the next generation. Using the elitist scheme along 

with the ranking selection procedure, the algorithm is able to locate optimal set of 

coefficients with a greater degree of accuracy (Figure [6.14]) as can be determined 

from the final error values which are obtained. From these results, it can be gathered 

that the proportional selection scheme can result in inaccurate convergence states and 

improved selection schemes are necessary to overcome this problem. 

Effect of Measurement Noise 

The performance of the genetic algorithm with the presence of measurement noise 

is presented in Figure [6.15]. The measurement noise was added as shown in Figure 

[2.3]. Thus at convergence, the error value should reduce to the added noise level. 

From Figure [6.15], i t can be seen that for low values of signal to noise power ratio 

(input signal power is unity), the algorithm is able to locate the optimal set of coeffi

cients, though at very low signal to noise power ratio (noise power = 100), the noise 

dominates and the algorithm is unable to locate the correct set of coefficients. At 

large values of signal to noise power ratio (noise power = 0.01), the noise introduced 

by the discretisation of the coefficients prevents the algorithm from reaching the noise 

floor, even though it has located the optimal coefficients. 
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Adap t ive Extensions to Genetic A lgo r i t hms 

As was detailed in Chapter 5, the real power of genetic algorithms is obtained when 

the optimum values of the strategic parameters are learnt online during the adaptation 

process. This would make the genetic optimisation scheme a completely general and 

robust scheme, the parameters of which would learn to adapt by themselves depending 

on the problem being optimised. Some initial work was carried out using the adaptive 

filtering paradigm. The values for mutation and crossover probability were coded 

as a binary string of 14 bits and included as part of the genetic material. This 

entailed using the additional two sets of 14 bits being attached to the binary coded 

forms of the parameters. One set of 14 bits decoded to the mutation probability, 

while the other set of 14 bits decoded to the crossover probability. Thus, when 

optimising a set- of six parameters, the length of each string in the population was 

now 112 bits long. The compound string constructed as given above, underwent 

genetic operations in the usual manner. After the parameters had been decoded from 

the binary strings, the value of mutation and crossover probability are calculated. As 

these values are now different for each string, the following procedure was adopted. 

After the selection process, two parent strings were chosen to undergo the genetic 

operations of mutation and crossover as in the standard genetic algorithm. The value 

of mutation and crossover probability was obtained for each string by decoding the set 

of bits which represented these values. Then the average of the two values obtained 

for each string was used as the value for both the strings. 

The result of using such a scheme are presented in Figure [6.16]. I t can be seen 

that the scheme was able to locate the optimum set of coefficients at the same rate 

as standard genetic algorithms. It was noticed from the simulation results, that the 

mutation rate was driven towards a low value as the algorithm proceeded. This 

had the effect of driving all members of a population to converge to a single string 

structure. This result also can be observed in Figure [6.16] where the average error 

in a generation is seen to reduce and approach the minimum error of the generation. 

The advantage of the scheme was that the only parameter to be user controlled in 

this scheme was the population size. More research in this area of adaptive genetic 

129 



6.3 S i m u l a t i o n Resu l t s 

algorithms certainly seems to be just if ied. 

D i scus s ion 

Results obtained using genetic algorithms as the adaptive strategy for adaptive I I R 

f i l ter ing has been presented in the above sections. The method was able to overcome 

the t w i n problems of mul t imodal error surfaces and dimensionality when adapting 

high order I I R filters. Improved schemes which have been tested result i n a better 

performance as compared to the standard genetic algori thm. The main observa

t ion f r o m the above simulation results is that the muta t ion operator is of significant 

importance and is mainly responsible for the explorative abilities of the algorithm. 

Another important observation has been the fact that w i t h a large value of mutation, 

the crossover operation has much reduced significance as shown in the results regard

ing the different crossover schemes. In the ranking schemes i t has been shown that i f 

the number of parent strings are sufficiently small (ratio between the number of par

ents and offspring is large), the selective pressures are increased leading to improved 

results. 

6.3.2 Evolutionary Strategies 

The evolutionary strategy used a phenotypic representation of the parameters - thus 

the actual parameter values themselves were used to create the genetic representation 

which formed the members of a population. As stated before, the main search opera

t ion in evolutionary strategies was the mutat ion operation. The mutat ion operation 

was performed by adding a Gaussian distributed random variable centered around 

the current operating point and w i t h variance determined by the adaptive process 

itself. Thus in the (/x, A)-ESs, there were three parameters which were varied. These 

were the number of parents [i, the number of offspring A and the in i t ia l variance of 

mutat ion process. As a result of incorporating the standard deviations of each pa

rameter into the genetic material, the evolutionary strategy is capable of learning the 

opt imal values of the standard deviation online. This is accomplished by adapting 

the standard deviation values themselves by use of a Gaussian process as has been 
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explained in Chapter 5. I t is the value of the standard deviation of this Gaussian 

process which is varied in the simulation experiments. The crossover operation which 

was used for all the simulation experiments was the discrete recombination operation 

which has been explained in Chapter 5. 

V a r i a t i o n o f t h e S t a n d a r d D e v i a t i o n 

The results obtained by varying the standard deviation as explained above, are given 

in Figure [6.17]. I t can be seen that w i t h very small values of the standard deviation 

(cr = 0.001), the algori thm is unable to locate the opt imal coefficients in a reasonable 

number of iterations. However w i t h large values of the standard deviation (a = 0.1), 

even though the in i t i a l rate of convergence is rapid, the algorithms gets locked into 

an non-optimal state. Thus i t can be inferred that the in i t i a l value of the standard 

deviation plays an important role i n the accuracy and the rate of convergence of 

the algorithm. For all the simulation experiments using the evolutionary strategies 

presented henceforth, a value of 0.01 was used for the standard deviation. 

V a r i a t i o n o f t h e \i a n d A 

The effect of using different number of parents and children in the ( n , A)-ES are 

shown in Figure [6.18]. The important result is when the number of parents equal 

the number of the parents as shown for the case of (/ i = A = 50). I n this case the 

m i n i m u m error i n a generation increases at f irst . The reason for this is the lack of any 

selective pressures i n the adaptive process resulting i n the search process degenerating 

into a random search algorithm. As the ratio between the number of offspring and 

parents increases, the algori thm results i n a better performance. The opt imal value 

for this ratio arrived at by Hoffmeister and Back in [HB92] was six. This can be seen 

f r o m the results presented in Figure[6.18]. Further simulation experiments conducted 

in this thesis using the evolutionary strategy, used six parents which generated for ty 

offspring strings. 
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D i scus s ion 

As the evolutionary strategies use a phenotypic representation, they are operating 

w i t h the real parameter values and thus do not suffer f r o m the discretisation problems 

of the genetic algorithms. However for the same reason, the hardware implementation 

of evolutionary strategies has to performed in a different manner f r o m that proposed 

for genetic algorithms. Use of the binary coding for the genetic algorithms meant 

that the method could perhaps be implemented using standard digi tal logic circuits. 

This is not possible w i t h the evolutionary strategies, however these methods could 

be processed on vector computers as most of the operations are performed in parallel 

and using real arithmetic. The value of the standard deviation used in the Gaussian 

process responsible for the mutat ion process was found to have significant effect on 

the algori thm, w i t h large values making the algori thm behave in random fashion and 

too small values resulting in premature convergence. The ratio between the number 

of parents and children was also an important criterion for opt imal convergence. 

6.3.3 Evolutionary Programming 

As seen f r o m the descriptions presented in Chapter 5, both the evolutionary strategy 

and evolutionary programming methodologies are very similar. Bo th use a phenotypic 

representation and rely on mutat ion as the significant operation responsible for the 

search process. However, the role of crossover is largely insignificant and in the case 

of evolutionary programming is not employed at a l l . The main differences between 

the two schemes are the manner of the selection operation and the way in which 

the strategic parameters are varied during the adaptive process. I n the evolutionary 

strategies, the varying of strategic parameters is accomplished by using a Gaussian 

process which perturbs the current value of the standard deviation of the mutat ion 

process. I n evolutionary programming, the error value obtained for each string struc

ture is itself used as the variance for that string structure. This explains one reason 

why the crossover/recombination operation has not been used in the evolutionary 

programming methodologies. 

Two sets of simulation results are presented for the evolutionary programming 
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paradigm - the first results show the effect of varying the number of parents while 

the second set of results show the effect of varying the number of strings taking part 

i n the competit ion against one another to assign ranks to each string structure. 

V a r i a t i o n o f t h e N u m b e r o f Paren ts 

The evolutionary paradigm of simulated evolution functions by selecting A parents 

which then produce A offspring using the mutat ion process. The selection process 

then selects the A best strings f r o m this population of 2A strings to fo rm the next 

generation. The effect of varying the value of A is shown in Figure [6.19]. I t can 

be seen f r o m the final error values obtained at the end of the simulation run, that 

w i t h small population sizes the selective pressures are not strong enough to drive the 

algori thm to locate the opt imal set of coefficients. 

V a r i a t i o n o f t h e N u m b e r o f C o m p e t i t i o n s 

The selection process in the evolutionary programming paradigm assigns a rank to 

each of the strings formed as the intermediate population. The ranks are assigned as 

follows: Each string in 2A strings of the intermediate population is made to compete 

against a certain number of strings of the population. Based on the competition, 

the string is assigned a rank. Details of how the strings compete against each other 

are given in Chapter 5. I n this simulation experiment, the number of competitions 

for a particular string is varied and the results are shown in Figure [6.20] and [6.21]. 

Though the effect of the changing the number of competitions is negligible, small 

values of competit ion result in higher values of error as can be seen in Figure [6.21] 

which shows the same result shown in Figure [6.20] but at an higher resolution. 

However too large a value for the number of competitions does not result i n a better 

performance - on the other hand increases the computational t ime. 

D i scuss ion 

Evolutionary programming and the evolutionary strategies are very similar w i t h re

spect to the performance of the algorithms for the adaptive filtering problem. The 

number of iterations needed to locate the opt imal set of coefficients are also roughly 
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the same. The main differences are in the manner i n which the basic genetic opera

tions are carried out. Intui t ively, the use of the error value obtained for a string as 

the variation of the mutat ion process as is the case in the evolutionary programming 

paradigm looks promising. When the search process has located the opt imal string, 

the error value for that string decreases to a very low value. Thus, use of the error 

value as the variance ensures that fur ther disruption of that string does not occur. 

On the other hand, the standard deviation is included as part of the genetic material 

i n evolutionary strategies. Since each parameter of the adaptive process has its own 

standard deviation value, the length of the string structure is now doubled. How

ever, this results in better control of the strategic parameters, as each parameter is 

modified based on the standard deviation value assigned to i t . This also allows the 

possible inclusion of the crossover operation as part of the algori thm. 

6.3.4 Applications using the Adaptive I I R Fi l ter 

As was explained in Chapter 2 , two important applications which use adaptive fil ter

ing are adaptive noise canceling and adaptive equalization. These two applications 

were simulated on the computer and the evolutionary strategy was used as an adaptive 

algori thm. The main reason for using this strategy was the fact that the evolutionary 

strategy used real parameters as the genetic material and thus was able to locate the 

exact set of opt imal coefficients. The genetic algorithm on the other hand would en

ta i l discretisation of the parameters and the subsequent loss of accuracy. I t is however 

envisaged that genetic algorithms and evolutionary programming methods would also 

result i n final results similar to that obtained using the evolutionary strategy. 

A d a p t i v e No i se C a n c e l l i n g 

The simulation configuration for the adaptive noise canceling experiment was as given 

in Figure [2.9]. The details of the procedure was explained in Chapter 2. From the 

lumped model of the adaptive noise canceling setup shown in Figure [2.9], when the 
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transfer funct ion of the noise canceller is given by 

= (6.9) 

the model has reached its op t imum value and the signal estimate s(k) would then be 

an exact estimate of the original signal s(k). I n the simulation experiment conducted, 

the f i l ter transmission path G(p) was modeled using a sixth order I I R f i l ter while 

G(r) was equal to uni ty (see Figure [2.9]). The modeling f i l ter , which was the noise 

canceler, was modeled using an adaptive I I R f i l ter using a parallel configuration of 

second order filters. The noise process was simulated using white noise w i t h unity 

power. Three different signals were used to simulate the signal s(k) undergoing the 

distortion. These were a sum of sinusoids, a square wave and a pseudo-random binary 

sequence (prbs). The result of the noise f i l ter ing experiment using the sum of sinusoids 

is given i n Figure [6.22]. As can be seen, the adaptive algorithm was able to remove 

the effect of the distortion and restore the noisy signal to its original state. This can 

also be observed when using the square wave signal (Figure [6.23]) and the prbs signal 

(Figure [6.24, 6.25]). When the signal to noise power is low, the adaptive algorithm is 

not able to remove the distortion completely (Figure [6.24), however when the noise 

power is reduced, the restoration is more complete (Figure [6.25]). 

Figures [6.26 - 6.29] show snapshots of the evolution of the cleaning process taken 

at different generations using the sum of sinusoids as the test signal. A t the beginning 

the algori thm is s t i l l searching for the opt imal set of coefficients and thus the output 

signal is s t i l l noisy. By the t ime 100 generations have evolved, the algorithm has 

succeeded in locating the opt imal coefficients w i t h the distortion being greatly reduced 

as shown in Figure [6.29]. 

A d a p t i v e E q u a l i z a t i o n 

For the adaptive equalisation simulation, reference is made to Figure [??]. As the 

output error configuration was used, a desired response was required to adapt the 

equalizer. Usually i n adaptive equalization, the desired response is not available as 

the receiver is some distance away f r o m the transmitter. This is overcome using the 
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following method - in i t ia l ly a known sequence of bits are transmitted. Since this 

sequence as the desired response d(n). Thereafter a scheme, which was originally 

devised by Lucky [Luc66], who proposed the use of the equalizer output itself as the 

The channel distortion was modeled using an sixth order F I R f i l ter . The additive 

noise is simulated by adding un i form white noise w i t h zero mean and varying power 

levels. The equalizer is modeled using an sixth order I I R realized as a parallel bank 

of three second order filters. The desired response was obtained in the following 

manner - for the first 50 generations of the adaptive process, the actual b i t sequence 

represented by x(n) was used to adapt the equalizer. Thereafter the scheme devised 

by Lucky and explained before was used. I n other words after 50 generations, the 

quantified output of the equalizer y(n) itself was used as the desired response d(n) 

(Equation [6.10]). 

The results of the equalisation experiment are shown in Figures [6.30 - 6.33]. 

Figures [6.30,6.31] show the final result after the equalizer has been adapted, for 

different t ime sequences of the same input signal w i t h no additive noise. The equalizer 

is able to reconstruct the original signal w i t h a uni t delay. This delay is because 

the F I R fi l ter modeling the transmission channel is of non-minimum phase. Figures 

[6.32,6.33] show the result of the same experiment when the F I R fi l ter output is 

corrupted using additive noise. The noise signal used for the distortion had a power 

of 0.01. The equalizer is able to reconstruct the b i t sequence even w i t h presence of 

additive measurement noise. 

sequence is available at the receiver end, the equalizer can be adapted using this 

desired response after passing i t thorough a l imi ter , is used. Thus the desired d(n) 

response, generated by this scheme was given by 

+ 1 i f y (n) < 0 
d(n) 

1 i f y (n) > 0 
(6.10) 
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6o4 Conclusions 

Conclus ions 

This chapter presented the results obtained using the evolutionary optimisation al

gorithms for the adaptive I I R f i l ter ing problem. A n important aspect of these results 

is that they have also provided an example of using the evolutionary optimisation 

schemes for a practical problem, rather than optimising art i f icial ly created functions. 

The evolutionary optimisation approach was able to tackle the main problem of 

mul t imodal performance surfaces, prevalent w i t h adaptive I I R filters, using alterna

tive realizations. Of the alternative realizations used, the parallel f o r m gave the best 

results. Al though, the cascade f o r m resulted in covergence to the opt imal coefficients, 

the number of t ime samples for convergence was very large. The main reason for this 

was the propagation of errors through the cascade structure. The lattice configura

t ion was also used in the early simulation experiments. However, for each direct fo rm 

realization, there exists an unique set of lattice coefficients. Thus, to locate these op

t ima l coefficients took a large number of iterations. The success of the parallel fo rm 

can be a t t r ibuted mainly to the creation of multiple global optima whenever a direct 

f o r m structure is decomposed into a parallel realization. The adaptive algorithm, was 

thus able to converge to one of these mult iple global opt ima rapidly. 

The study has also revealed the shortcomings of the genetic algorithms and has 

also confirmed the recent conjecture by researchers, that the important search oper

ation i n genetic and other evolutionary schemes is the mutat ion operation. Thus two 

important concepts in evolutionary optimisation schemes which have been confirmed 

by the simulations are presented. The first is that of a parallel set of solutions as 

realised by a population, and secondly new solutions are generated f r o m the current 

solutions by perturbing the current solutions. This seems to be the core of al l evolu

tionary optimisation schemes. However, a l imi ta t ion of all the evolutionary schemes 

is the lack of any stopping criterion whereby further iterations of the algorithm may 

be avoided. I t was thought combining concepts f r o m simulated annealing along wi th 

evolutionary schemes would result in such a criterion. This idea is f u l l y explored 

in the next chapter which presents results obtained using annealing and new hybrid 

algorithms. 
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Figure 6.1: Comparison between Genetic and Random Search Algorithms 
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Chapter 7 

Simuilated aod Genetic Aimeal in 

7 c 1 Introduct ion 

ombinatorial optimisation problems, especially those which involve a large state 

space, are extremely difficult to optimise as the computational time increases ex

ponentially with the number of object variables. These problems can only be solved 

approximately in polynomial time. Thus in such situations, approximation algorithms 

are used, with which one can arrive at a reasonable approximation to the optimal so

lution in an acceptable amount of computational time. One such approach is to use 

an iterative improvement algorithm with a large number of different initial starting 

points. Iterative improvement algorithms are also known as neighbourhood search 

algorithms and work by generating a new configuration from a current configuration. 

The new configuration is selected to be in a neighbourhood around the current con

figuration. If the new configuration is better than the current configuration, then it 

replaces the current configuration, else another neighbouring configuration is selected. 

The algorithm terminates when a configuration yields no neighbouring configuration 

which are better than the current configuration. Convergence to the optimal solution 

can then be obtained in a reasonable amount of time with such an approach, when 

a large number of initial configurations are used. Simulated annealing is another 

such approximation algorithm for combinatorial optimisation and is based on aspects 

of both iterative improvement and randomisation techniques [vLA87] enabling the 

method to be extremely robust. 

C 
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7.1 Introduction 

The inspiration for simulated annealing in its original form [KGV83, Cer85], has 

been drawn from physics, where an analogy was drawn between slow cooling of a 

heated solid and the problem of minimizing the cost function of a combinatorial 

optimisation problem. In thermodynamics, annealing refers to the process in which a 

solid is heated up to a maximum value whereby the solid changes into the liquid phase 

with all the molecules in a state of random motion. The heated solid is then cooled 

slowly by reducing the temperature gradually. If the cooling is performed sufficiently 

slowly and the maximum temperature was reached during the heating phase, all the 

particles would settle into a minimum energy ground state of a corresponding lattice. 

At each value of temperature, the solid is allowed to reach thermal equilibrium. As 

the temperature approaches the limiting value of zero, the substance will settle into 

the minimum energy states corresponding to the low energy crystalline state. If the 

process of cooling is too rapid, then the solid may settle into a metastable state 

corresponding to an amorphous structure. These principles have been adopted in the 

optimisation technique of simulated annealing. The precise details of the approach are 

presented in a subsequent section. The method of simulated annealing is also known 

by different names such as Monte Carlo annealing, statistical cooling, probabilistic hill 

climbing, stochastic relaxation or probabilistic exchange algorithm. 

The simulated annealing algorithm has asymptotic properties of convergence and 

in most practical applications the convergence time is very large, thus reducing the 

practical use of the method. Thus research has looked into ways of speeding up 

the basic simulated annealing algorithm. Once such algorithm is the Fast Simulated 

Annealing proposed by Szu and Hartley [SR87a, SR87b]. Their approach is to use a 

different probability distribution in the generation of new states and they have proved 

the increased speedup of the algorithm. More details of this approach are presented 

in a subsequent section. Recently, a new algorithm has been proposed which has 

convergence properties orders of magnitude greater than the standard simulated an

nealing. This approach known as the Very Fast Simulated Reannealing was proposed 

by Ingber and Rosen [Ing89]. This approach again uses of a different generating func

tion as well as a reannealing procedure where the sensitivities of different parameters 

are taken into account and a rescaling procedure is employed to allow for this. 
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In this chapter, we propose two new hybrid schemes where concepts of simulated 

annealing are used in standard genetic algorithms. These new approaches show very 

promising simulation results and have been termed Genetic Annealing. Simulation 

results are presented which show the performance of these algorithms for adaptive 

filtering. The next section reviews the technique of simulated annealing. 

7»2 Simulated Annealieg 

As was stated above, the technique of simulated annealing is derived from concepts 

in statistical mechanics wherein a crystalline low energy state of a solid is obtained 

by initially heating i t to large value to reduce it to a liquid state, and then gradually 

cooling the liquid state whereby the substance crystallizes into the required low energy 

state. For each temperature value T at thermal equilibrium, the probability that the 

substance is in a state with energy E is given by the Boltzmann Distribution. 

Pr{E = E} = -^f^ (7-1) 

-E 

Z(T) is a normalisation factor, ks is Boltzmann constant and the expression ekBT is 

known as the Boltzmann factor. As the temperature reduces, the Boltzmann distri

bution chooses only states with low energies and when the temperature approaches 

the limiting value of zero, only the minimum energy states have a non-zero probabil

ity of occurrence. To simulate the evolution of the process to thermal equilibrium at 

a particular temperature T, Metropolis et al. [Mea53] used a Monte Carlo method 

to generate the sequence of states. This was achieved as follows: The current state 

of the solid which was characterised by the positions of the the particles of which it 

was composed of, was given a small random perturbation to result in a new state. If 

the difference in the energies between the current state and the new state, AE, was 

negative, then the new state was used as the current state and the process continued. 

If AE > 0, then the new state was accepted with a probability which was given by 
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-Ag 

e kBT . This acceptance rule is referred to as the Metropolis criterion. After a large 

number of perturbations the probability distribution of the states approach that of 

the Boltzmann Distribution as given in Equation [7.1]. This algorithm known as the 

Metropolis Algorithm has been used extensively in statistical mechanics to estimate 

averages and integrals by means of random sampling [Bin78, Has70]. 

To use this technique in combinatorial optimisation, the different configurations 

of the optimisation problem would correspond to the states of the solid while the 

objective function and a control parameter would assume the roles of energy and 

temperature. Thus the simulated annealing approach is a sequence of Metropolis 

algorithms evaluated at decreasing values of the control parameter. The algorithm 

starts with a large value of the control parameter. From a given state i, a new state 

j is generated using a generation mechanism. This corresponds to the perturbation 

step of the Metropolis algorithm. The cost function of both the states are determined 

and the difference between the cost functions A C , j calculated. Then if A C t | j < 0, the 

new state is accepted with probability 1. If A C j j > 0 the probability of acceptance is 

given by e c (Metropolis criterion). This step is the crucial factor in the simulated 

annealing approach as i t allows probabilistically to accept solutions that are worse 

(higher cost) than the previous solution. Thus there exists a non-zero probability 

of jumping out of local optima. This process is continued for a certain number of 

steps until an equilibrium has been reached for that value of the control parameter 

indicating that the probability of the system being in any particular energy state is 

given by the Boltzmann distribution (Equation [7.1]). The control parameter c is then 

reduced in steps, with the system allowed to reach an equilibrium state at each value 

of the control parameter. The algorithm is terminated when the control parameter 

c reaches a predetermined small value. A mathematical model of the algorithm is 

presented in Appendix B. 

The three important features defining the simulated annealing algorithm are 

o A Generation distribution which selects new points from a neighbourhood of 

the current point. The usual choice for the generation distribution function is 

a Gaussian probability distribution centered around the current point. 
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o An Acceptance mechanism which decides whether to accept or reject a newly 

generated point. The Metropolis criterion is usually employed for the this pur

pose. 

o A Cooling Schedule which suitably decrements the value of the control param

eter. The cooling schedules have been studied with a lot of interest and many 

schemes are currently used [vLA87]. A simple cooling schedule is given by 

where a < 1. This cooling has been used widely by researchers with values of 

a ranging from 0.5 to 0.99. I t has been proved by Geman and Geman [GG84] 

that for the inhomogeneous algorithm (Appendix B), the algorithm is able to 

locate the global minimum provided the cooling is done not faster than 

where CQ is the starting value of the control parameter. 

Thus the simulated annealing algorithm can be concisely stated as follows: Using 

the generation distribution (usually a Gaussian), a new point defined around a neigh

bourhood of the current point is generated. The acceptance criterion defined by the 

acceptance matrix is then used to decide whether to accept or reject the new point. 

Initially, as the control parameter has a large value, all new points including points 

with a large cost are likely to be accepted. As the value of the control parameter is 

reduced, only points resulting in low costs will be accepted, thus eventually leading 

to the global optimum of the cost function. To realise this eventual state, certain 

conditions are imposed on the generation and acceptance matrices and on the cooling 

schedule. More details of these conditions and mathematical analysis of the algorithm 

is given in [vLA87]. 

Ck+i = a x cjt, k = 1,2,... (7.2) 

c(fc + l ) = c(0) 
log(k) 

(7.3) 
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7 c 3 Fast Simulated Annealing 

The Fast Simulated Annealing algorithm was proposed in 1987 by Szu and Hartley 

[SR87a] and has been proved to have a faster rate of convergence. I t was initially pro

posed as a solution to a continuous optimisation problem in which the cost function C 

was defined over a n-dimensional continuous space. As was detailed in the Appendix 

B and the previous section the generating distribution of the classical simulated an

nealing used a Gaussian probability function. This was in some sense a local search 

around the current operating point and was defined by the variance of the Gaussian 

distribution used. The Fast Simulated Annealing algorithm uses the same concepts 

as that of the classical simulated annealing except i t uses a different distribution for 

generating the next state. In particular i t uses a Cauchy Distribution which is defined 

by the equation 

G^=^wh (7-4) 

where c is the control parameter. The advantage of using the Cauchy distribution is 

that the Cauchy process is a infinite variance distribution and thus has a fatter tail as 

compared to the Gaussian process. This permits occasional long search steps amidst 

local sampling thus leading to faster convergence. Similar to the condition proved for 

the classical simulated annealing (Equation [7.3]), there exists a rule for the rate of 

cooling for the Cauchy annealing which is given by 

<k + 1) = ^ (7.5) 

I t has been proved that i f the control parameter is reduced no faster than Equation 

[7.5] given above, the algorithm is able to locate the global optimum. It can been 

seen from Equations [7.3] and [7.5] that the rate of convergence of the Fast simulated 

annealing algorithm is faster than that of the classical simulated annealing. The 

proofs for the rate of convergence of the method are given in [SR87a, SR87b]. 
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7A Very Fast Simulated Reannealing 

The Very Fast Simulated Reannealing algorithm was proposed by Ingber and Rosen in 

1989 ([[Ing89]]) as a technique of fitting empirical data to a theoretical cost function 

which is defined over a D-dimensional parameter space. This algorithm has been used 

in diverse applications such as combat analysis, finance and neuroscience. The main 

motivation for the approach has been the knowledge of the fact that both classical 

simulated annealing and fast annealing use generating distributions that do not take 

into account that different parameters may have different annealing sensitivities. 

Very fast simulated reannealing introduced two differences from the standard and 

fast annealing approaches. The first was a new generating function which was easy 

to generate for D-dimensions as the D-dimensional form was just the products of the 

single dimensional form. The D-dimensional generating function was thus given by 

G ( X ) = n 1 

A l 2(| X i | +c,) ln(l + 1/c.) 
D 

= (7 .6 ) 
4=1 

I t can been seen from the above equation that the control parameter is not the 

same for the different dimensions but has a different value for each dimension. The 

cooling schedule for the above function, which has been statistically proved to enable 

the algorithm to reach the global optimum, is given by 

Ci(Jfe) = cM~Zikl'D)
 ( 7 .7 ) 

where c,(0) is the starting value for the control parameter for dimension i and Z{ is a 

constant for each dimension. The new value of a parameter X{ at iteration (k+1) is 

given by 

Xi(k + 1) = X i ( k ) + yi(Bi - Ai) (7 .8 ) 

where ?/,• is generated using Equation [7.6] and Ai, Bi are the limits of the parameter 
Xi. 
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The second concept introduced by the method was a way to incorporate the 

different sensitivities of parameters into the annealing procedure. It was an attempt to 

stretch out the range over which relatively insensitive parameters were being searched, 

relative to the ranges of the more sensitive parameters. This was achieved by a 

process referred to as reannealing which was essentially a rescaling procedure. Thus 

periodically the annealing time k was rescaled for each parameter dimension. The 

procedure for doing this is presented in [Ing89]. Although not specifically studied in 

this thesis, the Very Fast Simulated Reannealing algorithm is worthy of further study. 

7 o 5 Genetic Annealing 

7.5.1 I n t r o d u c t i o n 

In this section,two new techniques are proposed which combine concepts from simu

lated annealing and genetic algorithms. A way to view this approach is to look at the 

basic process which describe these two approaches. The simulated annealing process 

uses the Boltzmann distribution while genetic algorithms are based on the Darwinian 

principle of survival of the fittest. There have been earlier efforts in developing optimi

sation schemes which are based on concepts derived from both annealing and genetic 

algorithms. Boseniuk and Ebeling in [BEA87] have attempted to improve the simu

lated annealing process by incorporating the concepts of competition and selection. 

This followed an earlier work by Ebeling and Engel ([EA86]), where a systematic 

comparison was drawn between Boltzmann and Darwinian strategies by analysing 

the underlying equations which described the two process. The conclusion arrived at 

was that both methods show significant differences when the transitional behaviour 

was analysed. Thus in [BEA87], Bosenuik and colleagues have used the Darwinian 

elements of competition and selection in simulated annealing. The important result 

which they arrive at is that using this hybrid scheme, the region of good solutions are 

reached with higher probability than that is achieved using only a single scheme of 

either annealing or genetic selection. A similar approach was used in [BE91], where 

in addition to the hybrid schemes incorporating the two strategies given above, a 
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new hybrid scheme was proposed. This scheme combined concepts from Boltzmann, 

Darwinian and Haeckel strategies. The Haeckel strategy ([EAM86]) was based on the 

observation from natural evolution where it was noticed that each biological organism 

undergoes a life cycle consisting of a period of early growth, a period of learning, a 

period of reproduction and finally death. This strategy highlighted the fact that in 

the early stages the mutation operator is more active while in the later stages it is 

the selective pressures which dominate. Thus a Haeckel strategy is composed of two 

stages: 

o A period of youth where mutations are frequent and selection seldom. 

o A period of maturity where mutations are seldom and selection occurs fre

quently. 

The conclusion drawn from this study also indicated that the mixed strategies yielded 

a better performance than in comparison with the single strategies by themselves. 

In the next sections, two new hybrid schemes are proposed which are based on 

concepts from both annealing and genetic algorithms. A motivation for these schemes 

has been the observation that although genetic algorithms were able to locate the op

timal solution rapidly, the whole population did not converge to the optimal solution. 

These schemes overcome this limitation whereby all the members of the population 

converge to the optimal solution. This has been shown using simulation experiments 

for the adaptive filtering case. 

7.5.2 Hybr id Scheme - I 

As was stated in an earlier chapter, the role played by mutation in genetic algorithms 

has been largely secondary. This has been challenged by researchers and is also evident 

from the simulation results presented in Chapter 6. Too large a value of the mutation 

rate, though increasing the exploratory power of the algorithm, renders it similar to a 

random search algorithm, where there is no exploitation of the solutions which have 

been obtained until then. An approach to overcome this problem would be to use 

a large value of mutation at the initiation of the algorithm, but then to gradually 
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reduce the mutation rate as the generations evolve. Thus mutation now plays a role 

akin to that played by the control parameter in the simulated annealing algorithm 

where a large value of the control parameter enables the algorithm to initially search 

a wide area, but with lower values of control parameter to concentrate on the more 

promising but smaller regions. As the mutation rate is now varying, the proposed 

scheme is similar to the Haeckel optimisation strategy explained before, the main 

difference being that the selection process is not changed during the generations and 

remains the same (proportional selection). 

To reduce the mutation rate during the adaptation process, the mutation rate is 

made a function of the generation number. Thus initially the algorithm uses a large 

value of mutation which is gradually reduced as the generation number increases. 

Two approaches were used to decrease the mutation rate - in the first approach the 

mutation rate was a linear function of the generation number while in the second 

approach the mutation rate was varied in an exponential manner depending on the 

generation number. The first approach resulted in either premature convergence to 

a non-optimal solution or resulted in a random search algorithm. The reason for 

this was found to be the rate at which the mutation value was reduced. Too fast 

a reduction of the mutation value resulted in premature convergence while with too 

slow a reduction, the algorithm is not able to exploit near optimal solutions which 

may have been discovered. This led to the formulation of the second scheme where the 

mutation rate was an exponential function of the generation number. The decrease 

in the mutation was performed using the following equations: 

pm is the probability of mutation and Gerifjo is the generation number. The equation 

has three parameters which are initialised at the start of the algorithm. These are 

the starting probability pm(start), Genst and the decay parameter decay. As a result 

of the exponential nature of Equation [7.9], the value of the probability of mutation 

remains near the starting value of pm(start) until the number of generations reach 

Pm = 
pm(start) x imp 

imp = e 

1 + tmp 
Genst — GeriNO 

(7.9) decay 
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the value Genst. Thereafter the probability of mutation reduces, the rate of decrease 

depending on the decay parameter decay. The initial values of these parameters 

determine the accuracy and rate of convergence of the algorithm. 

7.5.3 H y b r i d Scheme - I I 

The second hybrid scheme proposed also combined concepts from simulated annealing 

and genetic algorithms. In simulated annealing an important idea was to use a proba

bilistic expression to decide whether to accept or reject a new configuration. This was 

achieved by using the Metropolis criterion as given by Equation [B.5]. The second 

hybrid scheme proposes the use of this criterion in genetic algorithms. Specifically 

this is achieved as follows: After the selection operation, two strings Pi, Pi are drawn 

randomly from the population for the genetic operations of crossover and mutation. 

After the crossover and mutation operations two new strings Ci, C2 are formed. If 

the new strings (Ci, C2) have a larger value of fitness (lower error value) than the 

parent stings (P i , P2) then they are retained as the members of the next population. 

However if they have a smaller fitness value than the parent strings, then they are 

only retained probabilistically using a condition similar to the Metropolis condition. 

This is the significant change from the standard genetic algorithm where the new 

strings are always used to generate the members of subsequent populations. As the 

algorithm uses the Metropolis criterion, an important parameter of the process is the 

temperature or control parameter. The reduction in the control parameter is done us

ing the simple cooling schedule as given by Equation [7.2], where a = (0.9 — 0.99) is 

the rate of cooling. An important condition of the homogeneous simulated annealing 

algorithm (Appendix B) was the that at each value of control parameter, the length 

of the resulting Markov chain should be infinite. However in practical applications 

this condition is made less stringent by reducing the control parameter value after a 

certain number of new points have been accepted using the acceptance criterion. This 

scheme is used in the second hybrid scheme. Thus at the start of the algorithm, the 

control parameter has a large value and all the offspring strings are retained as par

ents for the new generation. But as the algorithm proceeds, the value of the control 
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parameter reduces, thus only offspring strings which perform better than the parent 

strings are retained. As a result of the selective pressures and the acceptance crite

rion detailed above, members of the populations will converge towards a single string 

structure having the optimal value of fitness. Thus the average error in a population 

(generation) approaches the minimum error in a population. Thus the second hybrid 

scheme has two denning parameters - the starting value of the control parameter and 

the rate of decay a. 

7 » 6 Simulation Configuration and Results 

In order to use the above algorithms for the adaptive I I R filtering paradigm, the sys

tem identification configuration was used wherein the unknown system was a sixth 

order I I R filter. The sixth order I I R filter was composed of a parallel bank of three 

second order I I R filters. This configuration was used in order to overcome the prob

lems of stability as was detailed in chapter 2. The performance surface of such a 

configuration can result in a multimodal surface with local optimas [NJ89]. Thus the 

use of gradient algorithms may result in a non-optimal performance. 

For both classical and fast annealing, the important equation is the one which de

scribes how the next point is generated from the current point. The defining equation 

for this step is given by 

Xi(new) = Xi(prev) -f R x s,- ; i = { 1 , . . . , n} (7-10) 

n is the number of coefficients of the filter (dimension of the problem), while R is 

generated using the generating distribution. For classical annealing, R is generated 

using the Gaussian distribution, while for fast annealing R is generated using the 

Cauchy distribution. 5, is the step size for the coefficient i. If the newly generated 

coefficient Xi(new) is outside the limits set for that coefficient, then Equation [7.10] 

is used again until the new coefficient generated satisfies the constraints. These 

constraints are usually imposed in order to keep the filter stable as was explained 

in chapter 2. Each change in a coefficient value using Equation [7.10] results in a 
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new state of the annealing process. This new state is retained using the Metropolis 

criterion. The algorithm cycles around the set of coefficients, perturbing each using 

Equation [7.10], and retaining the new state using the Metropolis criterion. The 

reduction in the control parameter was done using the cooling schedule given in 

Equation [7.2]. Both the homogeneous and inhomogeneous forms of the annealing 

algorithm was simulated. For the homogeneous case, the control parameter value 

was not reduced until a certain number of new states were accepted, while for the 

inhomogeneous implementation the control parameter was continuously reduced. 

Results of using the classical and fast annealing are shown in Figures [7.1] and 

[7.2]. As can be seen, the fast annealing approach results in faster convergence than 

the classical annealing algorithm. Though this is an improvement, from the results 

obtained for the genetic algorithms, it is clear that the annealing approaches take 

a large number of time samples for accurate convergence to the global optimum. 

The initial value of the temperature in both the simulations was 1000, the decay 

parameter being varied. It can be seen that the decay parameter is responsible for 

the rate of convergence of the algorithm. Comparative results between classical and 

fast annealing are shown in Figure [7.3]. The value of the decay parameter in this 

case was 0.9. 

Results of using the new hybrid algorithms (genetic annealing) are shown in Fig

ures [7.4-7.13]. Figures [7.4-7.9] present the result of using the hybrid strategy (I) 

for varying values of the decay parameter. For slow value of the decay rate (Figure 

[7.4]) (decay parameter = 100), the average error is still high though the minimum 

error in the generation has reduced down to the optimal value. The same result is 

shown in Figure [7.5] at a higher resolution. Figures [7.6,7.7] show the result at a 

decay parameter value of 50. However too rapid a reduction of the mutation rate 

(indicating fast cooling) results in the algorithm getting locked in an non-optimal 

state as is shown in Figure [7.8, 7.9] (decay parameter value = 15). This fact can be 

inferred from error value to which the algorithm has converged. 

From these results it can be seen that the average error in a generation now 

approaches and equals the minimum error which signifies the fact that all the members 

of the population have converged to a single structure. Whether this structure is the 

183 



7.7 . Conclus ions 

global optimum has only been verified using simulation results and theoretical analysis 
of the method is not yet available. It can be noticed that the variance of the average 
error and minimum error is large. This arises because of the large initial value of 
the mutation probability which results in the algorithm exploring over a large area of 
search. 

The results of using the hybrid scheme (II) are shown in Figures [7.10-7.13]. As 

in case of hybrid scheme (I), the average error in a generation approaches that of the 

minimum error indicating that all the members of the population has converged to a 

single string. The immediate observation from these set of results is that the variance 

of both the average error and minimum error is very much reduced as compared 

to hybrid scheme (I) . This is because of the relatively small value of the mutation 

probability in the second hybrid scheme. Figures [7.10] and [7.11] shows the result of 

using a varying values of the decay parameter and a value of 0.075 for the mutation 

probability. It can be seen that the decay parameter decides the rate of convergence 

of the algorithm. Figures [7.12] and [7.13] show the same result but with a smaller 

value of the mutation probability (0.025). It can be seen from the final error values 

that too small a value of the probability of mutation results in convergence to non-

optimal state (larger value of error). All the simulations results presented above were 

the average values obtained after 20 runs of the algorithm. 

7 o 7 Conclusions 

This chapter presented the results in using the annealing approach to adaptive I I R 

filtering. In particular the classical and fast simulated annealing algorithms were used. 

Although the fast annealing approach located the optimum set of coefficients faster 

than the standard algorithm, the number of time samples required for convergence 

was very large making it an impractical method to use in real world applications. 

Using concepts from annealing in genetic algorithms as was the case in the proposed 

hybrid schemes, it was possible to determine when to stop the algorithm. Of the two 

hybrid schemes proposed, the second hybrid scheme is more promising as the rate 

of convergence is comparable to that of the standard genetic algorithm while at the 
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same time providing a stopping criterion for the algorithm. This was an important 
consequence as with the standard genetic algorithms convergence of a population 
to the global optimum structure was not observed in the simulation experiments 
carried out in Chapter 6. However the theoretical analysis of the new hybrid schemes 
is still incomplete and it remains to be proved that the algorithms do converge to 
the global optimum. For the adaptive I I R filtering case this has been shown to 
be true using simulation experiments. The hybrid schemes provide for a method of 
combining the methods of annealing and genetic algorithms. Perhaps more interesting 
results will be obtained if the annealing principles used above are used in tandem 
with evolutionary strategies and evolutionary programming. This would remove the 
problem of discretisation which is present when genetic algorithms are used. 
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Figure 7.1: Results using Classical Simulated Annealing 
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Figure 7.2: Results using Fast Simulated Annealing 
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Figure 7.3: Comparative Results using Classical and Fast Simulated Annealing (De
cay Parameter =0 .9) 
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Figure 7.4: Results using Hybrid Scheme - I (Decay Parameter = 100) 
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Figure 7.5: Results using Hybrid Scheme - I (Decay Parameter = 100) 
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Figure 7.6: Results using Hybrid Scheme - I (Decay Parameter = 50) 
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Figure 7.7: Results using Hybrid Scheme - I (Decay Parameter = 50) 
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Figure 7.8: Results using Hybrid Scheme - I (Decay Parameter = 15) 
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Figure 7.9: Results using Hybrid Scheme - I (Decay Parameter = 15) 
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Figure 7.10: Results using Hybrid Scheme - I I (pm = 0.075, Decay = 0.9) 
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Chapter 

Coechisioins and Further Work 

801 Conclusions 
rJ1 he work undertaken in this thesis can be broadly classified into two main cate

gories: 

o Study of Adaptive I IR filtering algorithms. 

o Application and development of novel optimisation algorithms for use in adap

tive I IR filtering. 

The initial study of adaptive IIR filtering algorithms indicated that the main 

problem with current adaptive algorithms for I IR filtering is the inability to deal 

with multimodal error surfaces. Algorithms which have been designed to tackle this 

problem work under constrained conditions and are computationally very involved. 

Thus the potential appeal of using IIR filters to replace FIR filters was lost. This 

necessitated a different approach to developing adaptive I IR filtering algorithms. 

The Stochastic Learning Automata approach was able to overcome the problems of 

global optimality as has been shown from the simulation results in chapter 4. However 

this success was achieved only for the case of a second order I IR filter. When adapting 

higher order I IR filters, two problems were encountered using the SLA approach -

firstly the rate of convergence of the algorithm dropped drastically as the method did 

not scale well with increased number of parameters, and secondly the stability of the 

adaptive IIR filter especially for the higher order case became an important feature 
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8.1 Conclusions 

of the adaptive algorithm. To overcome the problem of dimensionality, the automata 
games approach was attempted. Although this approach tackled the problems of 
dimensionality, theoretical results regarding the global optimality of such an approach 
are not available. Thus the automata games approach may result in a non-optimal 
solution. The second problem of stability of a high order I IR filter was overcome by 
using the alternative parallel form realization. Though SLA algorithms are a powerful 
set of tools, their use for the specific case of adaptive I IR filtering seems rather limited, 
especially for on-line applications. Another drawback with the SLA approach is that 
the algorithm forces parameters to take discrete values, combinations of which form 
the actions of an automata as has been explained in chapter 4. This results in the 
algorithm obtaining only an approximation to the exact global optimum. However, 
this fact could be used to construct a hybrid scheme whereby the initial search at 
a coarse level is carried out using a SLA. Thereafter the results obtained by the 
SLA may be used as the starting values for established techniques such as gradient 
descent to locate the exact optimum. Perhaps the more advantageous method would 
be to combine individual automata into interconnected structures which may be able 
to model complex functions. This approach would lead to the use of the automata 
algorithms in neural networks. 

The simulated evolutionary approach to optimisation although developed a cou

ple of decades ago, has only recently been used in engineering problems. The main 

advantage of the method especially for the adaptive I IR filtering case is the ease with 

which the dimensionality problem is handled. The complete theoretical analysis of 

the various paradigms of simulated evolution are still forthcoming, though in some 

case asymptotic convergence proofs are available. These indicate that with a long 

time frame of reference, the algorithm would be able to locate the global optimum. 

The use of these algorithms for the adaptive I IR filtering case as shown by the results 

in the previous chapters is very promising. In particular, genetic algorithms have the 

potential to be implemented in digital logic as the algorithms mainly operate using 

binary strings. This would entail real time applications with the genetic algorithms 

being micro-coded into silicon. However the use of binary strings would entail the 

necessary discretisation of the parameters and the ensuing loss of accuracy. This 
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problem can be avoided using the evolutionary strategy (evolutionary programming) 

approach since these algorithms use the phenotypic representation and thus do not 

use a coded form of the parameters. Though the adaptive I IR filtering problem has 

been studied in this thesis, the more general setting for the work would be optimis

ing stochastic,noisy and multimodal performance surfaces. This very general setting 

can be used in a variety of engineering applications. The main drawback with the 

simulated evolutionary approaches are the dependence of the strategic parameters of 

the algorithm on the particular problem being solved. Though researchers have at

tempted to solve this problem by incorporating the parameters themselves as genetic 

material, more analysis needs to be done to quantify the results obtained so far. The 

computational time of the simulated evolutionary algorithms when simulated on a 

sequential machine is large. However, the real power of the method arises in using 

parallel techniques as each structure of a population could be evaluated at the same 

time instant. 

8o2 Further Work 

The problem of adaptive I IR filtering which was used in this thesis forms a special 

case of the more general problem, namely the optimisation of a noisy, stochastic, 

multimodal error surface. The evolutionary schemes have been shown to have signif

icant promise for this problem as shown from the results obtained for the adaptive 

I IR filtering problem. In the subsequent sections, we present some future areas for 

research, which seem to hold significant promise for the general problem stated above. 

8.2.1 Use of Genetic Algorithms in Non-stationary Envi

ronments 

Non-stationary environments are of significant practical importance as most real world 

problems have performance surfaces which are not constant but may change values 

with time. Thus if an unknown system has been identified correctly by a model

ing system, the modeling system must be able to track any changes in the unknown 
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system characteristics. These changes can vary from slow long-term changes to con

tinuously changing performance surfaces. One of the approaches to this problem 

was to include the parameters of the genetic algorithm as genetic material which 

undergoes the process of genetic manipulation. An initial study of this approach 

was attempted and the results have been reported in this thesis. Another approach 

to non-stationary environments would be to use the concept of diploidy and domi

nance. Diploidy in genetics refers to the use of a pair of chromosomes which contain 

information for the same function while haploid organisms are composed of a single 

strand of chromosome which contain information about a particular function. Though 

diploidy seems to suggest redundancy, i t could perhaps be used an a mechanism to 

take into account the non-stationary characteristics of an environment. For the case 

of diploid chromosomes, each locus can be occupied by one of the two allele values. 

This conflict is resolved by use of the dominance operator which decides which of 

the allele value is dominant and which are recessive. The dominant allele value is 

expressed in the phenotype. The main theories given for diploidy and dominance 

are that diploidy provides a mechanism to remember past history while dominance 

protects those previously remembered allele values from a currently unfavourable 

phase. Thus diploidy and dominance allow for an alternative solution to be held in 

the background. Although preliminary work on this aspect has been accomplished, 

more complete analysis and results are still required. 

8.2.2 Parallel Implementation 

Parallel implementations of evolutionary optimisation schemes have received a great 

deal of interest as their operation make them very suitable for such techniques. As the 

basic unit of an evolutionary scheme is a population, members of a population can be 

evaluated in parallel. This method needs to be explored and analysed in greater detail. 

A possible implementation would be to realise the genetic algorithm using dedicated 

hardware. This is based on the fact that the main string structures comprising the 

members of a population are binary in nature for a genetic algorithm and thus all 

the members may be evaluated in parallel. In the case of evolutionary strategies, if 
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the recombination parameter is not used, then even the genetic operations may be 

be performed in parallel. Preliminary work on this front has been reported [HB92] 

where the parallel implementation details of evolutionary algorithms are explained in 

detail. 

8.2.3 Genetic Algori thms and Neural Networks 

The use of genetic algorithms in neural networks would tie together two schemes 

which have been inspired by biological systems. The main use of genetic algorithms 

would be to train the neural networks - i.e. the genetic algorithm is used as the 

learning scheme. This method has obvious advantages since the genetic algorithm as 

a stochastic technique does suffer from problems of local minima which established 

algorithms like back propagation find difficult to overcome. The neural network ap

proach aims at generating a functional, possibly nonlinear, relationship between an 

input and output set of data. Current results in mating these two techniques have 

met with modest results and most of the problems which have been solved have been 

relatively small. A possible area of application would be to use choose problems where 

gradient information is not available and thus the neural net has to be trained using 

different approaches. Some encouraging results using this idea has been obtained in 

reinforcement learning for neurocontrol - this approach has been termed as genetic 

reinforcement learning [WDD91]. There is considerable scope for research in this area 

with a lot of challenging control problems which are yet to be fully solved. 

8.2.4 Theoretical Analysis using Natural Genetics 

Theoretical analysis of evolutionary optimisation schemes are still in their infancy 

and more research is required to give the precise nature of the approach, under what 

conditions they fail , and the nature of the problems which they are suited to opti

mise. This perhaps could be achieved by using results which have been derived by 

researchers who have been working in the area of mathematical genetics. Some of 

these results relate to global stability of populations and relations between the various 

parameters to achieve this. 
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8.2.5 H y b r i d Schemes 

I t is the f i rm conclusion of the author that in future the schemes which likely to 

provide good results for real world problems are hybrid schemes composed of different 

optimisation techniques perhaps operating at different stages. One such approach was 

detailed in thesis where the techniques of annealing and genetic algorithms were used 

to devise new schemes which had some desirable properties. Use of stochastic learning 

automata in hierarchical hybrid schemes appears to have promising prospects as the 

automaton can be used to conduct a coarse level search the results of which can then 

be used by the algorithms further down the hierarchy to obtain a more accurate and 

precise result. Theoretical results for the new hybrid schemes which were proposed 

in Chapter 7 are not yet available and more work is required in order to obtain the 

global optimality conditions. 
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Appendix A 
A L G O R I T H M : Direc t Form Realization to Lat t ice Form 

Suppose 

22j=o a3Z 3 

is the direct form filter. Then the program given below computes the lattice form 

coefficients (ki,V{) corresponding to the direct form coefficients (aj,&,). 

P rogram Lat t ice-Coeff 

Begin 

SM = 1 

For i = H t o 1 

Begin 

ki = -a* 

Vi = b\ 

= Si(l - ki) 

For j = 1 t o ( i - 1 ) 

Begin 

a}" 1 = aj- + (* ,<. , • ) / ( ! " *?) 

= 6} - (vM-,) 

End 

&o_1 = &o + 

End 

v0 = b°0 

End 
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The above algorithm calculates the lattice coefficients k{ and u,-, given the coef
ficients of the direct form filter. The coefficients are referred to as the reflection 
coefficients. The condition for the stability of a lattice filter is that the magnitude of 
all the reflection coefficients must be less than unity, i.e. < 1 ; Vz. This criteria 
could be easily incorporated into an adaptive algorithm by restricting the values a 
particular coefficients can take. 
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Mathematical Model of Simulated Annealing 

The simulated annealing algorithm is a mechanism that continuously attempts to 

transform a current point into one of its neighbouring points. The mathematical 

model which best describes this process is a Markov chain: a sequence of steps where 

the probability of a move is dependent only on the previous state or move. This 

is applicable in the case of simulated annealing, as the transitions correspond to a 

move and that the outcome of a transition is dependent only on the previous state. 

A Markov chain is usually described by a set of conditional probabilities Pij(k, k + 1) 

for every pair of outcomes ( i , j ) . Pij(k,k + 1) describes the probability of reaching 

the state j at instant (k+1) from state i at instant k. Suppose X(k+1) denotes the 

outcome of the trial at time instant (k+1), then 

Pii{k, k + 1) = Pr{X(fc + 1) = j | X(fc) = t} (B. l ) 

The above Markov chain is said to be homogeneous if the conditional probabilities 

Pij do not depend on the iteration k, otherwise i t is called inhomogeneous. 

In case of the simulated annealing algorithm, the probabilities P,j are referred to as 

the transition probabilities and the matrix composed of these transition probabilities 

is called the transition matrix. The transition probabilities define the properties of 

the algorithm and is a function of the control parameter c. If the parameter c is kept 

constant, then the corresponding Markov chain is homogeneous. This follows from 

the above definition of homogeneity, as a constant value of the control parameter 

implies that the transition matrix is not dependent on the iteration index k. The 

transition probability Pij(c) of the simulated annealing process can then be defined 

207 



Appendix B 

by 
Ga(c) x H{j(c) V j / i 

PM={ _ , „ , I . . . . . . . . (B.2) l - E E U C / W x ^ K c ) j = i 

The two matrices GtJ- and J?,j are very important with regard to the global opti

misation capability and the rate of convergence of the algorithm. The generating 

probability matrix G,j is defined by the generating distribution and is used to gen

erate the next point j by perturbing the current point i. A Gaussian distribution is 

usually used for this process. Thus if a parameter x of the process has a value x(k) 

at iteration k, then at iteration (k+1) its value is determined by 

x(k + 1) = x(k) + G(0^(x) (B.3) 

where G(0, a) is a Gaussian distribution with mean value 0 and variance a i.e. 

G{x) « exp(-x2/tr2) (B.4) 

The variance a is function of the control parameter c. The use of the Gaussian distri

bution has not been always followed in the implementations of simulated annealing 

where sometimes a uniform distribution has been used [BMU92, Cor87]. The origi

nal formulations of the simulated annealing algorithm [KGV83, Cer85] also had used 

uniform distributions to generate the new points of a sequence. The acceptance prob

ability matrix H{j is derived from the Metropolis criterion which has been explained 

before and is given by 

f 1 if (AEij) < 0 

[ e x p ( ^ ) i / ( A E : j ) > 0 

where AE is difference in energies (cost) between the current state and the new state. 

Hij(k) is used to decide whether to accept the new point which has been generated 

using Gij(k). 

The control parameter plays an important role in rate of convergence and accuracy 

of the algorithm and is gradually reduced during the course of the algorithm. This 
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decrement can result in two formulations of the algorithm which are based on the 
resulting Markov chain: 

o Homogeneous Algorithm: The algorithm is described by a sequence of homoge

neous Markov chains. Each Markov chain is generated at a fixed value of the 

control parameter c, which is reduced between subsequent Markov chains. 

o Inhomogeneous Algorithm: In this formulation, the algorithm is described by 

a single inhomogeneous algorithm where the value of c is continuously reduced 

between transitions. 
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Abstract 
This paper details two different approaches to Adaptive 
Digital Filtering based on L e a r n i n g A l g o r i t h m s . The 
first approach is based on S t o c h a s t i c L e a r n i n g A u 
t o m a t a where the discretised values of a parameter(s) 
form the actions of an Learning Automata which then ob
tains the optimal parameter setting using a suitably de
fined error function as the feedback from the environment. 
We detail the use of improved learning schemes published 
elsewhere and also point out the basic shortcoming of this 
approach. 

The second approach is based on G e n e t i c A l g o r i t h m s . 
GAs have been used here in the context of multiparame
ter optimisation. We present simulation results to show 
how this approach is able to tackle the problems of dimen
sionality wtien adapting high-order filters. The effect of 
the different parameters of a GA on the learning process 
is also demonstrated. Comparative results between a pure 
random search algorithm and tlieGA are also presented. 

1 In t roduc t ion 
T h e basic task of Adaptation in Adapt ive Fi l tering is to 
determine the opt imum sett ing of parameters defining the 
system so as to minimise a suitably defined error func
tion. T h u s the problem of adaptation can be reduced 
to a problem in optimisat ion. Algori thms used for this 
purpose mainly fall into two main classes : Gradient Algo
rithms and Least Square Techniques. Gradient Algori thms 
have been widely used in adaptive control but fail when 
the error function is mul t imodal . T h e i r performance also 
deteriorates in the presence of noise and non-stationary 
environments. Least Square Techniques have faster con
vergence but are computat ional ly more complex. 

T h i s paper gives details of two different approaches to 
adaptive filtering based on Learning Algorithms. After 
a brief introduction to the problem in section 2, details 
of the two approaches are presented in section 3 and 4. 
Simulation results and conclusions are given in section 5. 

2 Adapt ive Fi l ter ing 

Adapt ive Fi l ter ing has been used for various applications 
like adaptive equalisation, adaptive noise-cancelling, adap
tive prediction e tc . [ l j . T h e system identification configu
ration has been used in this paper to i l lustrate the new 
approaches to adaptive filtering. 

In adaptive filtering the adaptive filter used can be of 
two types : A d a p t i v e F I R F i l t e r or A d a p t i v e I I R F i l 
t e r . Algori thms relating to the adaptation of F I R filters 
are well established. In part icular gradient algorithms are 
very suitable for adaptive F I R filtering as the error sur
face is quadrat ic and unimodal with respect to the filter 
coefficients. B u t the potential advantages of using an I I R 
filter in place of a F I R filter has encouraged the study 
of adaptive I I R filtering, a thorough review of which is 
presented in [2]. A n I I R filter gives a better frequency 
response and less computat ional cost than an equivalent 
F I R filter. B u t the stability of an I I R filter is an important 
issue during its adaptation. However the problem which 
has the prompted the use of Learning Algorithms in adap
tive I I R filtering is: The error surface in the case of IIR 
filtering may not be quadratic and unimodal with respect 
to the filter coefficients and may have multiple optimas. 
T h i s renders the use of gradient techniques impract ical as 
they could get stuck in a local min ima. 

When adapting high-order I I R filters, the stability of 
the filters generated during the adaptation is of vital im
portance. A method to check the stabil ity is to factorise 
the denominator polynomial at each stage of the adap
tation which is computational ly expensive. To overcome 
this problem, alternative realisations like the parallel and 
cascade forms have been used to model the direct form 
fillers as given in [3]. T h e basic sub-system in either the 
parallel or the cascade configuration is a 2 n d order filter. 
T h i s enables the stability check to be built into the algo
rithm itself by ensuring the coefficients of the 2 n d order 
sub-system lie inside the stability triangle [2]. 



3 Stochastic Learning Automata 

3.1 Introduction 
Stochastic Learning A u t o m a t a ( S L A ) may be defined as 
an abstract element which interacts with the environment 
in such a manner so as to improve a specified perfor
mance measure. I t could be regarded as a finite state 
machine having a finite set of outputs 6 = {at, • • • , o r r } . 
each of which could be selected with a probability p = 
{ p i . ' ' ' i P r } . T h e input set /3 of the automata could be 
binary i.e 0,1 [P-model] , be finite [Q-model] or continuous 
between 0 and 1 [S-model]. T h e automata operates by 
selecting an action, then using the response from the envi
ronment to that action as an input to modify the existing 
probability vector p. A t stage n of the learning process 
we have 

p(n + l ) = r[p(n), Q ( n ), /3(n)]; 1 

where T is the action probability updating rule. More 
complete details of S L A are given in [4]. 

T h e use of S L A in adaptive filtering has been reported 
in [5]. T h i s follows from an earlier paper where S L A has 
been used as a optimisation tool for mult imodal noisy sur
faces [6]. When used to adapt digital filters, the output 
set of actions of the automata form a set of filter coeffi
cients, each action being regarded as a specific combina
tion of filter coefficients. T h i s is equivalent to the error 
space being partit ioned into a number of hyperspaces, the 
number of hyperspaces being equal to the number of a u 
tomata output actions. T h e environment is represented 
by the operating environment of the adaptive filter and 
the mean squared output error is used as a performance 
criterion. We add to the results already obtained in [5] by 
using new probability updat ing algorithms. These include 
the discretised L R I and the pursuit algorithms. 

3.2 New Reinforcement Algorithms 

3 . 2 . 1 D i s c r e t i s e d L I U 

A general approach for improving the convergence of S L A 
is by discretising the action probabilities. Theoret ica l re
sults for the discretised L R I algorithm for a 2-action au
tomata are given in [7]. For the multi-action discrete case 
simulation results when used in adaptive filtering are pre
sented. T h e concept of discretisation is achieved by re
stricting the action probabilities representing the internal 
state of the automata to a finite set of discrete values in 
the interval [0,1], More details of the approach is given in 

3 . 2 . 2 P u r s u i t A l g o r i t h m s 

Pursui t algorithms are a simpler subset of a new class 
of algorithms referred to as estimator algorithms intro
duced by T l i a t h a c h a r and Sastry [8]. As opposed to non-
estimator algorithms, Estimator algorithms use a running 
estimate of the probability of reward for each action. T h u s 

the state vector of the S L A is now increased to include an
other parameter d. 

Pursui t algorithms are characterised by the fact that 
the action probability vector pursues the optimal action. 
T h e steps of the algorithm are the same as the standard 
P-model L R I reinforcement but for two changes. First ly , if 
an action is rewarded, then the action probability of that 
action is not necessarily increased, rather the automata 
increases the probabil i ty of the action having the largest 
estimate of reward. Secondly the algorithm updates the 
estimate vector d at each iteration, where d, is calculated 
as the ratio of the number of times an action t is rewarded 
to the number of times it is selected. More details of the 
scheme are presented in [8]. Discretised Pursui t Algo
ri thms are the discretised counterparts of the Continuous 
Pursui t algorithms and were introduced in [9]. T h e al
gorithm functions s imilar to the continuous counterpart 
except that the action probabilities are discretised. 

3.3 Simulation Experiments 
In using S L A for adaptive I I R filtering the reduced order 
model given in [10], was used. A s a result of the reduced 
order modeling the error surface is bimodal . T h e results 
in F i g . 1 show that the S L A is able to identify the global 
min imum. 

W h e n high-order filters are adapted using the S L A ap
proach, the number of actions of the automata being used 
as an adaptive controller becomes large decreasing the 
speed of convergence. Al though the automata games ap
proach has been attempted [5], the construction of the 
game matr ix for the high-order filter has proven to be 
the stumbling block. A new approach based on Genetic 
Algorithms is proposed which overcomes this l imitation. 

4 Genetic Algor i thms 

4.1 Introduction 
Genet ic Algor i thms ( G A s ) [11,12] are search techniques 
which are based on the mechanics of natural selection 
and genetics involving a s tructured yet randomised in
formation exchange resulting in the survival of the fittest 
amongst a population of str ing structures. G A have been 
developed by John Holland and his colleagues at the Uni 
versity of Hol land. 

T h e basic s tructure and operation of a G A is as follows: 
Genetic Algori thms operate on a population of structures 
which are fixed length strings representing all possible so
lutions of a problem domain. Using such a representa
tion, an initial population is randomly generated. For 
each structure ( trial solution) in the population, a fit
ness value is assigned. E a c h s tructure is then assigned a 
probability measure based on the fitness value which de
cides the contribution a parent solution makes to the new 
generation. T h i s phase is referred to as the Reproduction 
Phase. E a c h of the offspring generated by the reproduc
tion phase is then modified using Genetic Operators. T h e 



two operators used here are" the Crossover operator and 
the Mutation operator. In the crossover operation, two in
dividual strings are selected randomly for the population. 
A crossover point is randomly selected to lie between the 
defining length of the string. T h e resulting substrings of 
the two parent strings are swapped resulting in two new 
strings. T h e mutation operator generates a new string by 
independently modifying the values at each loci of an ex
isting string with a probabil ity pm. T h e parameter pm is 
referred to as the probabil ity of mutation. More details of 
the basic algorithm is given in [12]. 

4.2 Application of G A s in Adaptive F i l 
tering 

G A s have been used here for adapting I I R filtering par
ticularly to overcome the problem of dimensionality when 
adapting high-order filters. A n earlier application of G A 
in adaptive filtering has been reported in [13], and illus
trated the viabil ity of the approach. In using G A for adap
tive filtering, the system identification configuration has 
been chosen where the unknown system is an fixed I I R 
filter while the adaptive system is an adaptive I I R filter 
whose coefficients are changed by the genetic algorithm. 

T h e genetic algorithm operates with a population of 
string structures, each string structure in this case being 
the set of coefficients of the adaptive I I R filter. E a c h co
efficient is coded as a binary string of 4 bits. T h u s there 
are 16(2*) discrete values a coefficient can take. A map
ping procedure is employed which maps the decoded un
signed integer l inearly from [ 0 , 2 4 — 1] to a specified interval 
[Pmin, Pmax]- For the mult i -parameter case, the binary 
coded forms of all the coefficients are concatenated. T h i s 
forms the string structure for the individuals of a popu
lation. T o assign a fitness value to each string structure, 
the mean-squared-output-error e, averaged over a suit
able window length obtained for that string structure is 
used. T h e method of power law scaling [12] has been used 
wherein the scaled error value is taken as some specified 
power of the raw error signal. A value of 4 was chosen for 
the power after extensive s imulation experiments. Larger 
values of the power led to pre-mature convergence while 
lower values increased the convergence time. In order to 
convert the maximisat ion problem to a minisation prob
lem, an inverting function was used. T h e actual fitness 
value / , assigned to a string i was 

/ . = 1/e? 2 

where e, was as defined above. 

4.3 Simulation Experiments 
T h e three defining parameters of the G A had tlie following 
values : u (pop. size) = 50 ; p c (prob. of crossover) = 
0.8 ; p m ( p r o b . of mutat ion) = 0.075. In the simulation 
experiments, the adaptive filter has been in the form of 
a parallel bank of 2 n d order filters. T h u s a lo" 1 order 
filler was modeled by a parallel bank of 5 second order 

filters. Due to constraints on space, the transfer functions 
of these filters are not presented. A l l the results show 
the min imum error obtained after n generations versus 
the number of generations. In the simulation experiments 
performed to check the effect of the various parameters, a 
6 , h order I I R filter was used as a model. 

5 Results and Conclusions 
F i g . 1 shows the result using the new reinforcement algo
ri thms for S L A . T h e discretised versions of the algorithms 
are seen to perform better than the continuous counter
parts with respect to the convergence time. F ig . 2 shows 
the result when G A s are used to adapt different order fil
ters. It can be seen that G A have a fast init ial learning 
rate. Fig .s 3, 4, and 5 show the effect of the different 
parameters of the G A on the learning rate. T h e effect 
of the mutation probability ( F i g . 4) is seen to play a 
crucial role as too low or too high a value increases the 
convergence time. T h o u g h increasing the population size 
( F i g . 3) decreases the convergence time in terms of the 
number of generations needed, the actual time of com
putation increases as more time is spent on evaluating a 
single generation. F i g . 6 shows the comparison between 
a pure random search algorithm and the G A . 

T h e above results show that G A s are a viable and prac
tical approach in adaptive I I R filtering especially for adapt
ing high-order fillers. I t is to be noted though that G A 
cannot locate the exact global opt ima on account of the 
discretisation of the parameter space and thus can be used 
as a first level of search to locate a point close to the global 
optimum. T h e opt imal setting of the G A parameters is 
rather heuristic at present and depends heavily on the 
application on hand. 
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Genetic Algor i thms for Adaptive Dig i ta l F i l t e r ing ' 

Nambiar I t . & M a r s P. f 

Abstract 
This paper details a different approach to Adaptive Digital Filtering based on Genetic Algorithms. Algorithms 
used in Adaptive Digital Filtering have traditionally been based on the Gradient of the error surface or on Least 
Square principles. These methods have been found to have inadequacies when adapting IIR filters. The process 
of adaptation to determine the optimum coefficients can be cast as an optimisation problem wherein a search 
space is defined and the optimum parameter setting corresponds to the minimum/maximum on the search space. 
Thus, Genetic Algorithms (GAs), which are search techniques based on randomised techniques, have been used 
here in the context of multiparameter optimisation. Simulation results are presented to show how this approach 
is able to tackle the problems of dimensionality when adapting high-order IIR fillers. The effect of the different 
parameters of a GA on the learning process is demonstrated. Comparative results between a pure random search 
algorithm and the GA are also presented. 

1 In t roduc t ion 
The basic task of Adaptation in Adaptive Digital Filtering is to determine the optimum setting of parameters 
defining the system so as to minimise a suitably defined error function. Thus the problem of adaptation 
can be reduced to a problem in optimisation. Algorithms used for this purpose mainly fall into two main 
classes : Gradient Algorithms and Least Square Techniques. Gradient Algorithms have been widely used in 
adaptive control but fail when the error function is multimodal. Their performance also deteriorates in the 
presence of noise and non-stationary environments. Least Square Techniques have faster convergence but are 
computationally more complex. Thus new approaches based on Learning Algorithms were attempted. The use 
of Stochastic Learning Automata (SLA) in adaptive digital filtering has been reported in [1]. But the SLA 
approach did not give satisfactory results when adapting high-order filters, as the convergence times were very 
large. 

This paper gives details of a different approach to adaptive filtering based on Genetic Algorithms. Genetic 
Algorithms are powerful search techniques which have been developed from principles of natural genetics. After a 
brief introduction to the problem in section 2, details of the new approach are presented in section 3. Simulation 
results and conclusions are given in section 4. 

2 Adapt ive F i l t e r ing 
Adaptive Filtering has been used for various applications such as adaptive equalisation, adaptive noise-cancelling, 
adaptive prediction etc. [2]. The system identification configuration (Fig. 1) has been used in this paper to 
illustrate the new approach to adaptive filtering. 

In adaptive filtering the adaptive filter used can be of two types : Adaptive F I R Fi l ter or Adaptive 
I I R Fi l ter . Algorithms relating to the adaptation of F I R filters are well established. In particular gradient 
algorithms are very suitable for adaptive F I R filtering as the error surface is quadratic and unimodal with 
respect to the filter coefficients. But the potential advantages of using an I I R filter in place of a F I R filter has 
encouraged the study of adaptive I IR filtering, a thorough review of which is presented in [3]. An IIR filter 
gives a better frequency response and less computational cost than an equivalent F I R filter. The problem which 
has the prompted the use of Learning Algorithms in adaptive IIR filtering is: The error surface in the case of 
IIR filtering may not be quadratic and unimodal with respect to the filter coefficients and may have multiple 
optimas. This renders the use of gradient techniques impractical as they could get stuck in a local minima. The 
prescence of multiple optimas and the conditions when they occur have been investigated in [4]. 

Another important issue in adaptive filtering is the stability of the filters generated during the adaptation. A 
method to check the stability is to factorise the denominator polynomial at each stage of the adaptation which 
is computationally expensive. To overcome this problem, alternative realisations like the parallel and cascade 
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forms have been used to model the direct form filters as given in [5]. The basic sub-system in either the parallel 
-or the cascade configuration is a 2nd order filter. This enables the stability check to be built into the algorithm 
itself by ensuring the coefficients of the 2 n d order sub-system lie inside the stability triangle [2]. 

3 Genetic Algor i thms 

3.1 Introduction 
Genetic Algorithms (GAs) [6,7] are search techniques which are based on the mechanics of natural selection 
and genetics involving a structured yet randomised information exchange resulting in the survival of the fittest 
amongst a population of string structures. GAs have been developed by John Holland and his colleagues at the 
University of Holland. 

The basic structure and operation of a GA is as follows: Genetic Algorithms operate on a population of 
structures which are fixed length strings representing all possible solutions of a problem domain. Though 
Holland [6] has shown that the binary representation is the best method to form the string structures, there 
has been increasing evidence that real-valued strings also provide as good a representation. In this paper, the 
binary representation has been used wherein a parameter is coded as a bit string. Using such a representation, 
an initial population is randomly generated. For each structure (trial solution) in the population, a fitness value 
is assigned. Each structure is then assigned a probability measure based on the fitness value which decides the 
contribution that structure would make to the next generation. This phase is referred to as the Reproduction 
Phase. Each of the offspring generated by the reproduction phase is then modified using Genetic Operators. 
The two operators used here are the Crossover operator and the Mutation operator. In the Crossover operation, 
two individual strings are selected randomly from the population. A crossover point is randomly selected to 
lie between the defining length of the string. The resulting substrings of the two parent strings are swapped 
resulting in two new strings. The parameter governing the crossover operation is the crossover probability p c. 
The Mutation Operator generates a new string by independently modifying the values at each location of an 
existing string with a probability p m . The parameter p m is referred to as the probability of mutation. Complete 
details of the algorithm are given in [7]. 
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3.2 Application of G A s in Adaptive Filtering 
GAs have been used here for adapting I I R filtering par
ticularly to overcome the problem of dimensionality when 
adapting high-order filters. An earlier application of GAs 
in adaptive filtering has been reported in [8], and illus
trated the viability of the approach. In using GAs for 
adaptive filtering, the system identification configuration 
shown alongside in Fig. 1 has been chosen where the un
known system is a fixed I I R filter while the adaptive system 
is an adaptive I I R filter whose coefficients are changed by 
the genetic algorithm. 

The genetic algorithm operates with a population of string structures, each string structure in this case being 
the set of coefficients of the adaptive I I R filter. Each coefficient is coded as a binary string of 4 bits. Thus there 
are 16(2'1) discrete values a coefficient can take. A mapping procedure is employed which maps the decoded 
unsigned integer linearly from [0,24— 1] to a specified interval [Pmin, Pmax]- F" o r t » e multi-parameter case, the 
binary coded forms of all the coefficients are concatenated. This forms the string structure for the individuals of 
a population. To assign a fitness value to each string structure, the mean-squared-output-error e,- averaged over a 
suitable window length obtained for that string structure is used. The length of the window played an important 
role in the convergence, as too small a window length resulted in convergence to incorrect parameter values. 
The method of power law scaling [7] has been used wherein the scaled error value is taken as some specified 
power of the raw error signal. A value of 4 was chosen for the power after extensive simulation experiments. 
Larger values of the power led to premature convergence while lower values increased the convergence time. In 
order to convert the maximisation problem to a minimisation problem, an inverting function was used. Thus, 
the actual fitness value / , assigned to a string i was 

/, = 1A? 1 
where e,- was as defined above. 



3.3 Simulation Experiments 

The three defining parameters of the GA had the following values : n (pop. size) = 50 ; pc (prob. of crossover) 
= 0.6 ; pm(pxob. of mutation) = 0.075. These values were obtained after extensive simulation experiments with 
varying values of the parameters. We also present results showing the effect of different parameter values on 
the convergence of the algorithm. The first simulation experiment was performed to check whether the GA was 
capable of locating the global minimum in the prescence of local optima. The example used has been reported 
in [9] and consists of a 2nd order I I R filter being identified by 1'' order I I R filter having a single pole. The 
transfer function of the 2na order filter is: 

= 0.05 - 0.4;"1 

v~ ' 1 .0 -1 .1314s - 1 + 0.25r~a 

while the 1" order filter had the transfer function 

1 -

The resulting error surface has been shown to be bimodal. The GA approach was successfully able to identify 
the global optima. 

In subsequent simulation experiments to adapt higher order filters, the adaptive filter was in the form of 
a bank of 2nd order filters. Thus a 10th order filter was modeled by a bank of five 2nd order filters. Due to 
constraints on space, only the transfer function of the 6th order filter is given below. All the results show the 
minimum error obtained after n generations versus the number of generations. In the simulation experiments 
performed to check the effect of the various parameters, a 6"1 order I IR filter was used as a model, the transfer 
function of which is given below: 

3.0 - 7.5S22Z-1 + 7.9202647;-3 - 3.9101332-~3 + 0.7625S8.-~4 

H{- !) - ] _ 3 . y o n + 6.39596-17;--- 6.022307S;" 3+ 3.3151666J- 4 - 0.99703S99r-5-!-0.124804S-6 

This filter was adapted by means of a bank of three 2nd order filters the transfer functions of which had the 
form 

* t - - - l ) = l - B | , - i - a , r - ' 

The stability of the filters during adaptation was achieved by constraining the filter coefficients ai.a? to lie 
within the stability triangle. Both the parallel and the cascade structures were used. 

4 Results and Conclusions 
Of the different alternative configurations which were used, the parallel form gave the best results. The cascaded 
form did not converge even after a large number of generations. The reason for this was found to be the 
propagation of quantisation error through the filter banks, resulting in an erroneous estimate of error for 
that particular filter. The main reason for using the lattice forms was that the stability check was easily 
incorporated in the algorithm by constraining the filter parameters to have unity magnitude. However the 
lattice configurations did not converge even after a large number of generations. As seen from the results, the 
parallel form gave the best results. The main reason for this was the existence of multiple global minima all 
of which were equivalent to one another. More details of this result and the results using other alternative 
configurations are given in [10]. 

Fig. 2 shows the result when GAs are used to adapt different order filters. It can be seen that GA have a 
fast initial learning rate. Figs. 3, and 4 show the efTect of the different parameters of the GA on the learning 
rate. The effect of the mutation probability (Fig. 3) is seen to play a crucial role as too low or too high a value 
increases the convergence time. Though increasing the population size (Fig. 4) decreases the convergence time 
in terms of the number of generations needed, the actual time of computation increases as more time is spent 
on evaluating a single generation. Fig. 5 shows the comparison between a pure random search algorithm and 
the GA. 

The above results show that GAs are a viable and practical approach in adaptive IIR filtering especially for 
adapting high-order filters. It is to be noted though that GA cannot locate the exact global optima on account 
of the discretisation of the parameter space. However they can be used as a first level of search to locate a 
point close to the global optimum. The optimal setting of the GA parameters is rather heuristic at present and 
depends heavily on the application on hand. Current work is incorporating concepts from Simulated Annealing 
into Genetic Algorithms with the aim of obtaining improved convergence. 
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Abstract 

Novel approaches to Adaptive Digital Filtering based on 
G e n e t i c A lgor i thms and S imula ted Anneal ing are 
proposed in this paper. Algorithms used in Adaptive Digi
tal Filtering are usually based on using the Gradient of the 
Mean Square Error or on Least Square principles. These 
methods have been found to have inadequacies when adapt
ing IIR filters. The process of adaptation to determine 
the optimum coefficients can be cast as an optimisation 
problem. Genetic Algorithms (GAs) and Simulated An
nealing (SA), which are search techniques based on ran
domised techniques, have been used here in the context of 
multiparameter optimisation. Simulation results are pre
sented which show how these approaches are able to tackle 
the problems of global optimality and dimensionality when 
adapting high-order IIR filters. New hybrid schemes where 
concepts of SA are incorporated into GAs are proposed. 

1 Introduction 

The core problem in Adaptive Digital Filtering is 
to determine the optimum setting of parameters of 
the adaptive filter so as to minimise a suitably de
fined error function. Thus the problem of adaptation" 
can be reduced to a problem in optimisation^ Algo
rithms used for this purpose mainly fall into two main 
classes : Gradient Algorithms and Least Square Tech
niques. Gradient Algorithms have been widely used in 
adaptive control and filtering but fail when the error 
function is multimodal? Their performance also de
teriorates in the presence of noise and non-stationary 
environments. Least Square Techniques have faster 
convergence but are computationally more complex 
[!]• 

This paper details different approaches to adaptive 
filtering based on Genet ic Algorithms and Simu
lated Annealing. Novel hybrid schemes incorporat
ing concepts from both these methods are proposed in 
this paper. After a brief introduction to the problem 

in section 2, details of these approaches are presented 
in section 3,4 and 5. Simulation results and conclu
sions are given in section 6 and 7. 

2 Adaptive Filtering 

In adaptive filtering the adaptive filter used can be 
of two types : Adapt ive F I R Fi l ter or Adaptive 
I I R Fi l ter . Adaptive F I R filter algorithms have been 
well analysed and established. In particular gradient 
algorithms are very suitable for adaptive F I R filtering 
as the error surface is quadratic and unimodal with 
respect to the filter coefficients. But the potential ad
vantages of using an I I R filter in place of a F I R filter 
has encouraged the study of adaptive I I R filtering, a 
comprehensive review of which is presented in [2]. The 
problem which has the prompted the use of new tech
niques in adaptive I I R filtering is: The error surface 
in the case of IIR filtering may not be quadratic with 
respect to the filter coefficients and thus may be mul
timodal. This renders the use of gradient techniques 
impractical as they could get stuck in a local min
ima. The prescence of local optimas and the condi
tions when they occur have been investigated in [3, 4]. 
In using these new approaches for adaptive filtering, 
the system identification configuration has been cho
sen where the unknown system is a fixed I I R filter 
while the adaptive system is an adaptive I I R filter 
whose coefficients are modified by the algorithm being 
used. 

An important issue in adaptive I I R filtering is the 
stability of the filters generated during the adaptation. 
A method to check the stability is to factorise the de
nominator polynomial at each stage of the adaptation 
which is computationally expensive. To overcome this 
problem, alternative realisations like the parallel and 
cascade forms have been used to model the direct form 
filters as given in [5]. The basic sub-system in either 
the parallel or the cascade configuration is a 2nd order 



filter. This enables the stability check to be built into 
the algorithm itself by ensuring the coefficients of the 
2 n d order sub-system lie inside the siabiliiy triangle 
[2]. Use of the parallel or cascade form may result in 
a error surface that has multiple global optimas [5]. 

3 Genetic Algorithms 

Genetic Algorithms (GAs) [6, 7] are search tech
niques which are based on the mechanics of natural 
selection and genetics, involving a structured yet ran
domised information exchange resulting in the survival 
of the fittest amongst a population of string struc
tures. GAs have been developed by John Holland and 
his colleagues at the University of Michigan. 

The basic structure and operation of a G A is as fol
lows: Genetic Algorithms operate on a population of 
structures which are fixed length strings representing 
all possible solutions of a problem domain. In this pa
per, the binary representation has been used wherein a 
parameter is coded as a bit string. Using such a repre
sentation, an initial population is randomly generated. 
For each structure (trial solution) in the population, 
a fitness value is assigned. Each structure is then as
signed a probability measure based on the fitness value 
which decides the contribution that structure would 
make to the next generation. This phase is referred 
to as the Reproduction Phase. Each of the offspring 
generated by the reproduction phase is then modified 
using genetic operators of Crossover and Mutation. 
In the Crossover operation, sub-strings of two individ
ual strings selected randomly from the population are 
swapped resulting in two new strings. The parame
ter governing the crossover operation is the crossover 
probability pe. The Mutation Operator generates a 
new string by independently modifying the values at 
each location of an existing string with a probability 
p m which is referred to as the probability of mutation. 
Further details of the algorithm are given in [7]. 

GAs have been used here for adapting I I R filter
ing particularly to overcome the problem of dimen
sionality when adapting high-order filters. An earlier 
application of GAs in adaptive filtering has been re
ported in [8, 9], and illustrated the viability of the 
approach. The string structure in this application is 
the set of coefficients of the adaptive I I R filter coded 
as a binary string of N bits. Thus there are ( 2 N ) 
discrete values a coefficient can take. A mapping pro
cedure is employed which maps the decoded unsigned 
integer linearly from [0, 2 A ' - 1] to a specified interval 
[Pmin,Pmax]- For the multi-parameter case (Higher 

order I I R filter), the binary coded forms of allthe coef
ficients are concatenated. This forms the string struc
ture for the individuals of a population. To assign a fit
ness value to each string structure i, the Mean Squared 
Output Error (MSOE) e„- averaged over a suitable win
dow length obtained for that string structure is used. 
The method of power law scaling [7] has been used 
wherein the scaled error value is taken as some speci
fied power of the raw error signal. The maximisation 
problem was converted to a minimisation problem by 
using an inverting function. Thus, the actual fitness 
value / , assigned to a string i was 

= 1/e? (1) 

where e: was as defined above. 

4 Simulated Annealing 

One of the newer techniques for optimisation espe
cially for multimodal functions is that of Simulated 
Annealing which was proposed in [10]. The method 
determines the optimal point of a cost function by 
simulating the annealing process of a metal, allowing 
probabilistic uphill moves thereby locating the global 
optimum. The cost function in the annealing process 
is usually the free energy of the system and the prob
abilistic uphill moves are determined by the tempera
ture of the system. The process starts with high val
ues of the temperature which allow more uphill moves 
thereby ensuring an efficient search of the search space. 
As the temperature is gradually reduced, the pro
cess probabilistically converges to the global optimum. 
Complete details of the method are given in [11]. 

The main drawback of the SA is that convergence 
to the global optimum is assured only asymptotically 
leading to very long convergence time, thus making it 
impractical to use in real world problems. To speed up 
the convergence to the algorithm, Szu and Hartley [12] 
proposed the following modification: The standard SA 
algorithm makes -use of a Gaussian distribution as a 
generating function to search the neighbourhood of 
the current point. Szu and Hartley proposed the use 
of the infinite variance Cauchy distribution which has 
a wider tail than the Gaussian distribution thus per
mitting occasional long steps while searching the local 
neighbourhood. This method has theoretically been 
proved to have faster convergence [12] [proportional 
to l/(<)] as opposed to the standard SA [proportional 
to l/(logt)], where t is the time parameter. 

To use the above techniques for adaptive IIR filter
ing, the parallel form realization has been used in this 



paper, where the adaptive filter is made up of parallel 
sections of second order I I R filters. Thus the stabil
ity of the filter structure can be ensured by restricting 
the parameters of the second order filter to lie within 
the stability triangle [2]. A typical second section is 
adapted in the following manner: Suppose the two pa
rameters of the section are a,b and the current values 
are a c u r , b c u r . The new values of the parameters are 
then generated as follows: 

Onew = aeur + r •> step 

bnew = fccur + r * step (2) 

where r depends on the distribution being used and 
step determines the step-size of the search. If the new 
values of a,b lie outside the stability triangle, then the 
values are discarded and Equ. [2] is used again. 

5 Hybrid Techniques 

In this section, two novel hybrid schemes are pro
posed which use concepts of SA in GAs. A drawback 
of the GAs is that there is no definite way to detect 
when the algorithm has located the global optimum. 
Though the members of the population should all con
verge to a good solution, this is not always the case 
in practice. The proposed schemes are designed to 
overcoming this problem. 

5.1 H y b r i d T e c h n i q u e - I 

In this proposed modification to the standard GA, 
the mutation operator is now used as a primary op
erator. More specifically, the mutation operator now 
plays the role which the temperature plays in SA. We 
propose to use a high value of mutation at the start of 
the algorithm and as the generations evolve, to gradu-' 
ally reduce the value of the mutation. Thus the gener
ation number is used to exponentially reduce the value 
of the mutation as the algorithm proceeds. The advan
tage of this scheme is that as the value of the mutation 
is gradually reduced, the average minimum error of 
the whole generation approaches the value of the min
imum error in a generation. This could be used as a 
criterion to stop the algorithm. The decrease in value 
of mutation is performed by using a non-linear func
tion (exponential) of the generation number as given 
below 

0.2 * imp 
1 + imp 

imp = e O ° 0 - G e n . No.)/<i«ay ^ 

5.2 H y b r i d - T e c h n i q u e - I I 

The SA uses the Metropolis criterion to probabilis
tically decide whether to retain or reject a new point. 
We propose the use of this criteria in GAs. Specifi
cally, after the selection operation, the crossover and 
mutation operators generate two new members of a 
population. These two new members are then retained 
if they have a lesser value of error than the parent 
members from which they were generated. If they 
have a larger value, then they are retained depending 
on a probabilistic function which is a function of a 
temperature parameter and the difference in error be
tween the parent and new strings. The temperature 
parameter is dependent on the generation number and 
is exponentially decreased as the algorithm proceeds 
using a cooling schedule similar to the schedule used 
in the standard Simulated Annealing. At the start of 
the algorithm, all the new members generated are re
tained as the temperature parameter has a large initial 
value, but as the algorithm proceeds only new mem
bers having an error value less than the parent mem
bers are retained. Thus, as the number of generations 
increase, the average minimum error of the whole gen
eration approaches the value of the minimum error in 
a generation as was the case in the Hybrid Scheme 
(I), and thus could be used as a criteria to stop the 
algorithm. 

6 Simulation Experiments and Results 

In the simulation experiments to adapt higher order 
filters, the adaptive filter was in the form of a bank of 
2 n d order filters. Thus a 10"" order filter was modeled 
by a bank of five 2nd order filters. All the results show 
the minimum error obtained after n generations versus 
the number of generations. In all the simulation ex
periments performed hence, a 6th order I I R filter was 
used as a model. This filter was adapted by means of 
a bank of three 2nd order filters, the transfer functions 
of which had the form 

^ ~ 1 ) = 1 a . . \ a , . 2 (4) 

The stability of the niters during adaptation was 
achieved by constraining the filter coefficients a i , ai 
to lie within the stability triangle. 

The three defining parameters of the GA had the 
following values : n (pop. size) = 40 ; pe (prob. of 
crossover) = 0.8 ; pm(prob. of mutation) = 0.075. 
These values were obtained after extensive simulation 
experiments with varying values of the parameters. 



Figure [1] shows the result of using the standard 
G A for the above simulation experiment, with vary
ing number of bits used to code a parameter. The 
algorithm was able to locate the global minimum and 
shows rapid initial convergence. 

Figure [2] shows the result of using Simulated An
nealing as a adaptation technique to the simulation 
setup detailed above. As can been seen, the Cauchy 
distribution results in faster convergence. But com
pared to the standard G A , the SA algorithm takes a 
much larger number of time samples for convergence. 

Figure [3,4] shows the result obtained using the hy
brid scheme (I). The minimum error in this case is 
the minimum error obtained for that particular gener
ation, while the average error is the value of the error 
averaged over all the members of the population of 
a generation. Depending on the value of the decay 
parameter which decides how fast the temperature re
duces, the average error is seen to approach the mini
mum error. The initial value of the mutation operator 
was 0.2 which was then reduced using a exponential 
function depending on the generation number (Equ. 
[3]). The other values of the parameters defining the 
GA were as given before. The convergence time is seen 
to be larger than that obtained using the standard GA 
which results because of the large initial value of the 
mutation parameter. 

Figure [5] shows the result of using the hybrid 
scheme (II) for different values of the probability of 
mutation. Results obtained show that the scheme has 
faster convergence than the hybrid scheme (I) and also 
that the variance of the error values are reduced. The 
reason why this happens in the hybrid scheme (I) is 
because of the large initial value of the mutation pa
rameter. 

7 Conclusions 

Of the alternative configurations which were used, 
the parallel form gave the best results. The main rea
son for this was the existence of multiple global min
ima all of which were equivalent to one another [5]. 
The cascaded form did hot converge even after a large 
number of generations. The reason for this was found 
to be the propagation of quantisation error through 
the filter banks, resulting in an erroneous estimate of 
error for that particular filter. The main reason for us
ing the lattice forms was that the stability check was 
easily incorporated in the algorithm by constraining 
the filter parameters to have unity magnitude. How
ever the lattice configurations did not converge even 
after a large number of generations. 

The above results show that GAs are a viable and 
practical approach in adaptive I I R filtering especially 
for adapting high-order filters. It is to be noted though 
that G A could not locate the exact global optima on 
account of the discretisation of the parameter space. 
However they can be used as a first level of search to 
locate a point close to the global optimum. The op
timal setting of the G A parameters is rather heuristic 
at present and depends heavily on the application on 
hand. The SA approach though leading to the precise 
location of the global optimum took a large number 
of time samples to converge. The hybrid schemes sug
gest a method by which a stopping criteria could be 
incorporated into the basic G A structure. In particu
lar the Hybrid Scheme (II) seems to be very promising 
especially as it has convergence speed similar to that 
obtained with the standard G A . 
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