
Durham E-Theses

Music analysis and the computer: developing a

computer operating system to analyse music, using

Johann Sebastian Bach's well tempered clavier book

51 to test the methodology

Broadbent, Clive Graham

How to cite:

Broadbent, Clive Graham (1994) Music analysis and the computer: developing a computer operating

system to analyse music, using Johann Sebastian Bach's well tempered clavier book 51 to test the

methodology, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/5535/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5535/
 http://etheses.dur.ac.uk/5535/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Music Alllaiysus atrild Une Compu~ell': ID)evel\opirug at

©ompUJ~er operatill1lg system to analyse musi~~ using

JOJharun Sebastian Bach's "Well Tempered Clavier"

Bo©~ ~~ ~<al ~~es~ Une meith©d<al~©gy.

Clive Graham Broadbent

"Most computerised and computer-aided musicological projects are

written to achieve specific goals. Once achieved or not achieved as the case

may be, the projects and their tools are frequently discarded because their

dependency upon specific computer hardware and software prevents them

from being utilised by other researchers for other projects. What is needed is a

system that, using small tools to accomplish small tasks, can be expanded and

customized to suit specific needs.

This thesis proposes the creation of a music-analysis computer

operating system that contains simple commands to perform simple

musicological tasks such as the removal of repeated notes from a score or the

audible rendition of a melodic line. The tools can be bolted together to form

larger tools that perform larger tasks. New tools can be created and added to

the operating system with relative ease, and these in turn can be bolted onto

old tools.

The thesis suggests a basic set of tools derived from old and new

analytical methods, proposes a standard for their implementation based on the

UNIX computer operating system, and discusses the benefits of using the

system and its tools in an analysis of the twenty-four fugues of Johann

Sebastian Bach from the "Well Tempered Clavier", Book II."

I confirm that no part of the material offered has previously been submitted by

me for a degree in this or in any other University.

Signed

Date "'"" .. ·············· ····················

~\/h.ssi~ Analysis BJnd ~he Cl(Jmputell': !Deve!opirag ~

computer operating system to analyse music, using

Johann Sebastian Bach's "Well Tempered Clavier"

IB~o~ ~~ ~o ~est Uoe mettood(»~flj)gy.

Clive Graham Broadbent

Master of Music

University of Durham

Department of Music

1994

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

= 8 JAN 1996

~llil~li'OdllUI«::~DO>Ilil •••••.••..•.•••.•.•••••••.•••••••.••.•.•.•••••.•.••••••••••.••••••..••.••••••••• II

ll"he Ba~~~Qii'Ol!.!lllildl .••.•••••.•••••••••••.•••...•..•••••••.••.•••.••••••.•••••.••••••••••••• !

Aliila~yitn©a~~ ~e~h©dl~ .. ~II

ll"he IEilil©odlillilg langlUiage~ ... 72

lrlhe Analysis Envoro1!11men'i: •••••••.•••••.•••••.••.••••.•.••••.••••.•••.•••••..••••• 87

Testirng ilhe Tools oi Ute Ana~ysis IErrvironment 1150

Collilclusoon •...•.•....•..•.•••.•••••.•.••••....•..••••..•..••••••......••••.••.•••••.......• 1189

Appe1111dix A (Arnalysis IEili!Vili'OU'llment Tools) 11911

Appendix IB (Analysis 111) •••••••..••••.••.•••••••••••••••.•.••...•...•.••••.•••••• 224

Appendix C (Shellscript Programming)•... 244

Bibliography ..••..••••.•••.•••.•••.•.•..•........•••••.•.•••.•.•.•••..•...•.••..••••••••.•• 2711

ii

Only those who have had the singular pleasure of caring for young

children are aware of the innocent and yet unanswerable questions which pour

out from their narve mouths. The 'why' questions which sound so short and

simple, and seem to beg for equally short and simple answers, appear only

stoppable with book-length explanations. So often a vicious 'question-answer'

circle evolves when frustrated parents attempt to ward off these 'simple'

questions with their equally 'simple' 'because' answers.

The purpose of this research is to procure a novel approach to

computer-aided music analysis, to provide a useable mechanised-system

which will help answer the many questions arising from the perusal of music

scores or the hearing of musical performances. The new approach will not,

however, attempt to provide the 'correct' answer for a specific question, but will

aim instead to help a user extract information from a music score which might

be of relevance during the formulation of his or her own answer. It is hoped that

an analytical method, system, or environment can be created which offers the

versatility of intuitive manual analyses and yet has a set of underlying

mathematical rules or techniques which enable it to be created for use with a

computer. A manual analysis which might normally take days or even months

could be reduced to a matter of hours or even minutes, and perhaps provide

new answers to old and familiar questions.

Mark Ellis, when questioning the use of statistical methods of analysis in

music, " ... hoped that the increased use of [statistical] methods [would] enable
1

great progress to be made in the study of the mind of a composer". Likewise, it

1
Ellis, M. R., "Are Traditional Statistical Methods Valid for Musical Analysis?",
Proceedings of the Second International Symposium on Computers and Musicology,
Orsay, 1981 (Paris, CNRS, 1983), p. 194

1

is hoped that use of, and expansion of the Analysis Environment proposed in

this thesis will also help unravel some of the mysteries behind the subjective

views of success and failure in composition.

Music is complicated. Designing a computer system to answer all

questions would undoubtedly take forever and be so complicated that the

programming would probably never be completed. "There is a danger,

however, that the system may become the end in itself, taking so long to design

and build that it is obsolete before it produces significant results".2 To

circumvent these problems, the proposed Analysis Environment contains a

number of ready-made computer tools to perform specific analytical tasks with

musical compositions, such as removal of repeated notes, determination of key,

or identification of similarity.

Some of the tools appear to perform simple tasks, tasks which are not

complicated manual operations, but tasks which become prone to error and

tedium when applied to lengthy music data. Such tools are primarily designed

to reduce the likelihood of errors, and enable the analyst to devote his or her

time to the other perhaps more interesting aspects of the music data. These

simple tools can be adjusted either to perform their role using an unusual

methodology or to yield their output in an unusual format, providing new angles

on the human process.

Modelled on the UNIX computer operating system, the

Analysis Environment allows complete expansion whereby a new tool can be

created with the minimum of fuss, to perform a specific task, and added to the

environment. The new tool can be joined to other tools and exploited to procure

results to more complicated problems. A bountiful supply of tools, created by

2 Erickson, R., "Music Analysis and the Computer", Journal of Musjc Theory, Yale School
of Music, Vol. 12, No. 2, 1968, p. 260

2

researchers to answer their own particular problems, might even provide the

foundation for a group or society that interchanges the very latest tools, rather

like UNIX, where programmers submitted their favourite tools to the University

of California, Berkeley, and the most useful were included in the next release of

the UNIX operating system.

"One cardinal principle guides our evaluation of the data provided for us

by the computer: never to be deluded into believing that the computer was in

any way capable of analyzing a piece of music".3 At no stage will the computer

actually analyse the music from within the proposed environment. The tools of

the environment will merely extract, transform or translate the information in an

encoded version of a music score to provide the researcher with a different

form of the information to which he or she can apply his or her own analysis.

Such a system can be regarded as computer-aided analysis as opposed to

computerised analysis. A 'black-box' system where users are unaware of what

is going on inside and only ever see the final results of their mystical'push

button' analyses will drive away the sceptical. A system that uses small,

uncomplicated tools to perform small uncomplicated tasks, however, will be

attractive to the researcher and encourage him or her to bolt them together in a

"Meccano"-like fashion to achieve a desired result. Like "Meccano", the builders

or analysts are not restricted to the instruction manual and its limited set of

models or analytical methodologies. Experimentation is encouraged.

Assembling arbitrary flanges and plates to see what might result is analogous

to attaching tools to see what comes out.

3 Bernstein, L. F. and Olive, J. P., "Computers and the 16th-Century Chanson: A Pilot
Project at the University of Chicago", Computers and the Humanities, 3 (1968-1969), p.
160

3

Such a system, together with the necessary human intervention and

cooperation, will produce rather more meaningful and worthwhile results than

those manifested by 'something' else.

UNIX is the operating system many believe will take over the world.

Initially, UNIX and its source code was distributed at a nominal cost to

universities, encouraging its customisation and the development of many new

tools. Perhaps similar publicity and distribution of the proposed

Analysis Environment will achieve the same amount of interest and growth?

UNIX's simplicity of expansion is one of its strongest features-any researcher

able to program a computer in a high level language such as Pascal4 or c5

can add new tools to the operating system, and, like UNIX, the researcher will

encounter few difficulties when creating new tools and adding them to the

proposed Analysis Environment.

A computer operating system is a collection of programs which control

the overall operation of a computer. The proposed Analysis Environment,

therefore, since it is designed to harness the power of a computer for the sole

task of analysing music, might also be regarded as an operating system.

Operating systems generally allow a user to carry out a variety of tasks using a

small number of commands. With an operating system geared towards music

analysis, musicologists have a 'nut-cracker' which can be harnessed in a

variety of ways to crack a variety of 'nuts'. So often, musicologists find a 'nut'·to

crack, and then build the 'nut-cracker'. Most musicologists, firmly grounded in

the academics of music and most likely only ever having acquired their

4

5

Pascal, named after Blaise Pascal (1623-1662), is an easy to learn programming
language which supports the concept of structured programming, and follows a precise
form.

C is a general-purpose programming language which can be programmed at a high
level (using english-like commands) or a low-level (allowing direct access to the
computer's memory and data).

4

computer programming skills through self-tuition, are almost always reluctant to

share their work with others in the fear that their programming might not be 'up

to scratch'. A situation has now arisen where many analytical programs exist,

but they are, since their creation was for large specific tasks, of limited used,

difficult to obtain and probably incompatible with different forms of data. An

operating system or environment would allow the interchange of tools,

techniques, data and ideas and provide a 'nut-cracker' rather than a 'cracked

nut'.

Tracing a path through the development of computer-aided musicology

reveals many interesting and varied experiments. Many of these experiments,

projects and methods have been worthwhile. Some, sadly, have been

disappointing, even to the point of failure. The majority, successful or

unsuccessful however, cannot be used again due to their dependency upon

either specific computer hardware, software or even music encoding language.

Despite this, perhaps some of the techniques can be incorporated into the

proposed Analysis Environment? One goal of this research is to ascertain what

can and cannot undergo straightforward conversion and be utilised as a tool in

the Analysis Environment, eventually evolving into a standard computer-aided

analysis environment.

The Analysis Environment, however, is not solely the domain of tools

which adhere to previously conceived techniques. One of the major banes in

computerising music analytical methodologies has been that of quantifying

similarity. How can one instruct a computer to ascertain the similarity between

two melodies? The formulae for a tool which determines similarity was derived

from acoustic theory, and the development of this and other specific analytical

tools are covered in depth within this thesis.

Dictionaries define analysis as the resolution of an object into simpler

elements, with the intention of finding and showing the object's structure. The

5

elements of musical structure are well understood by musicologists, and

analysis for the trained musicologist is not simply the resolution of a score into

elements, but the examination of element fusion-the successful way in which

elements are combined to make 'appealing' music. Effective fusion creates an

energy which lasts forever, and ineffective fusion yields nothing. The less

expert musicians and academics might be aware of the smallest musicals

elements-atoms, but not the mid-level elements made up of atoms. For them,

the first stage in an analytical process which will educate them is to determine

the low-level elements and then the mid-level elements. The tools of the

Analysis Environment make the process of 'resolving' a music score into low

and mid-level elements more straightforward for the inexperienced musician.

For seasoned musicologists, successful re-synthesis of music from low and

mid-level elements will not only prove that their anatomisation of elements was

realistic, but also that their analytical methodology was effective. One might

argue that more information can been gained from the re-synthesis process

than from the de-synthesis process. The Analysis Environment, however,

contains simple tools to operate either way. The intention of all such

procedures is to learn more about the structure of a composition. The

Analysis Environment, therefore, must surely be a step nearer towards useful

distributable computer-aided music analysis.

6

Akin to those apparently unanswerable 'Why is grass green?' questions,

innocently spewed out by na'ive and inquisitive children seeking to understand

the world, Pinkerton, in his 1956 article entitled "Information Theory and

Melody",6 set the following poser: "What is it about simple melodies that makes

them so widely appealing?".? Such an interesting topic provokes further

investigation. What is a simple melody? Is simplicity the major appealing

factor? Where is the cut-off point between appeal and boredom when

simplifying a melody? The original question itself, however, is no more

extraordinary than those of other musicologists who crave for the same insight

into the secret of melody. Pinkerton, however, employed mathematics in his

quest for the answer. Integrating mathematics and music, although unusual,

was nothing new, since Joseph Schillinge,.S had also tried to determine what

" ... makes eyes light up and sets feet tapping ... ".9 Here, however, Pinkerton

was attempting to recreate, with the aid of his 'banal tune-maker', human

thought processes.

Running parallel with the increased use of mathematics in musicology,

was the rapid development of computer hardware and programming

techniques. Dr. Martin Klein, in a 1956 address 10, stated that "The computing

6

7

Pinkerton, R. C., "Information Theory and Melody", Scientific American, 194 (Feb.,
1956) pp. 77-86

Pinkerton, R. C., op. cit., p. 77

8 Schillinger, J., The Mathematical Basis of the Arts, Reprint ed. (New York and London:

9

10

Johnson Reprint, 1966). Schillinger used statistical data to measure consistency of
style in the works of major classical composers, ie two pieces by the same composer
might be consistent in style if the number of key changes is the same, etc. From his
analyses, he produced a set of compositional rules.

Pinkerton, R. C., loc. cit.

Klein, M. L., "Uncommon Uses for Common Digital Computers", Instruments and
Automation, 30 (1957) pp. 251-253

7

machine designer has one objective-to construct a digital computer which

occupies no space, uses no power, and performs a thousand or so distinct

operations on a memory that holds an infinite number of words" ,11 and thus,

with musicological problems becoming more and more complex, it is not

surprising that eventually the two seemingly diverse fields of computers and

music began to merge.

Since a musical score contains informative elements (such as pitch and

time) which can be accurately measured, Hiller stated that music, in the form of

a score, was "accessible to rational and ultimately mathematical analysis". 12

Computers, although gradually becoming everyday objects, were still viewed

very much as 'magic boxes' which, to the 'man-in-the-street', were capable of

anything which one could imagine. As always, when faced with a 'magic box'

that will solve anything, one is inclined to ask it to perform the most incredible

task which one can devise, as opposed to a straightforward menial operation.

Many musicologists are only too willing to devise new analytical theories

and methodologies. Sadly, such theories are normally only ever tested via

laborious and painstaking manual analyses which are frequently prone to

error-errors arising from miscounting of notes, misreading of scores or simply

lapses in concentration.

It was several years after the publication of Hiller and Isaacson's "first

book presenting the application of scientific method to composition" 13 before

musicologists, such as W. S. Collins, began to realise the full potential of using

computers for analytical aid.

11

12

13

Klein, M. L., op. cit., p. 253

Hiller, L.A. Jr., "Computer Music", Scientific American, 201 (Dec., 1959) p. 110

Hiller, L.A. Jr. and Isaacson, L. M., Experimental Music: Composition with an
Electronic Computer, McGraw-Hill Book Co., New York, 1959, (flysheet)

8

The apparently misspelt word 'program' was still fighting for its rightful

place within the English dictionary. Artistic acceptance was the only

encouragement computer programmers needed to tackle the problems of

music theory. "Experimental Music" received numerous reviews, and not simply

because Hiller was 'plugging' it wherever and whenever he could. The

academics were curious. Even The Baldwin Piano Company managed a small

report. Not all reviews, however, were patronising and favourable. P. A. Evans,

in reference to the "!Iliac Suite", stated, "Any teacher would recognize it as the

work of a determined but singularly unmusical pupil".14

Other professed achievements were well in hand. WalterS. Collins,

believing himself to be one of only a handful of musicologists to sense the

potential for computer aid in musicology, realised that searching for self

quotation within the works of Thomas Weelkes (c. 1575-1623) could be

adapted for computer. Weelkes would frequently borrow musical material from

one composition to use in another. However, considering himself to be

incapable of writing computer programs, Collins declared that programming

"would probably be outside the competence of the average musicologist"15

and had to draft in extra help to create an 'analysis' program which detected

identical repetition of six-note segments within, and between different

compositions.

Collins' interest was in Weelkes' church music, and the seemingly

mammoth task of squeezing his entire corpus of church music into a computer

was made more manageable via a selective process. Only the bass lines of

thirty-four canticles were eventually input to the computer-based on a

14 Evans, P. A., "Reviews of Books: Experimental Music", Music and Letters, 42 (1961), p.
370

15 Collins, W. S., "A New Tool for Musicology", Music and Letters, XLVI (1965), pp. 122-5

9

knowledge of Weelkes' style, discovery of bass-line repetition would most likely

reveal repetition in the higher parts as well.

When translating the canticle bass lines into an alphabetic code which

could be stored with relative ease within computer memory, key signatures,

separate accidentals, and rhythm were ignored. Notes of the scale were

encoded using letters of the alphabet and, during processing, these notes

were converted into ascending or descending intervals-allowing detection of

repetition in different keys or modes. Collins' program discovered quotations

which hitherto had not been recognised, and confirmed that a computer could

indeed be of value in musicological research. With the prevalence of scientific

ignorance in an artistic world, Collins went so far as to quote a one-hundred

and-thirty segment-per-second rate achieved by an IBM 1620 computer

perhaps as bait for the sceptical. Musicologists were certainly becoming aware

of the advantages of computer aid. Clerical tasks such as compilation of

indices, bibliographies, counting second-inversion chords and so on, which

"result in immense lists of statistics which prove little but the persistence of the

author",16 were no longer a chore; and more complex tasks such as solving

puzzle canons, completion of works surviving incomplete, and identification of

anonymous works appeared within reach. Collins suspected that nearly all

facets of a composer's style could be "translated into a computer programme"

and thus studied using similar methods to that of his self-quotation analysis

program.

For almost a decade, music research had accounted for only a small

percentage of general computer use. Like the gradual discovery of new limbs

and a knowledge of how to use them, computer ignorance and innocence

slowly disappeared, and the crawling toddlers of computers and music research

16 Collins, W. S., op. cit., p. 122

10

began to walk. Many large and ambitious projects emerged. All the masses of

Josquin Desprez were being methodically typed into computer with a view to

future stylistic interrogation, and Milton Babbitt was so confident in the

forthcoming success of the "Josquin Project" that he declared, "questions of

intervallic succession and simultaneity, correlations between text and music,

decisions as to matters of 'ficta', etc should be forthcoming very soon".17

Michael Kassler started transferring Heinrich Schenker's analytical

theory onto computer-but it still required testing; and other scholars produced

specialist lists of hexachords and complete lists of all-interval sets. Despite the

benefits to be gained from sharing acquired knowledge, the secretive and

guarded approach to research by many scholars led to a duplication of

research in numerous areas; and, independent lists of all-interval sets were

generated by Stefan Bauer-Mengelberg, Melvin Ferentz, Hubert Howe, and

Eric Regener to name but a few. This lack of knowledge-sharing was marginally

offset by the publication of a handful of short papers and articles endeavouring

to give an overview of computer usage in humanistic research.

Since mathematical analytical theories adapt more readily to computer

than those theories which are essentially intuitive, a large proportion of

computer-aided music research investigated the properties and relationships of

pitch-class sets. Attempting to "make the best possible sense out of a

composition ... ", 18 Hubert S. Howe spent time experimenting with sets

containing less than twelve pitch-classes. Unlike the texts written by the

uncommunicative researchers, the article written by Howe 19 gave both an

17

18

19

Babbitt, M., "The Use of Computers in Musicological Research", Perspectives of New
.M.u..s.i.Q, 3 (1965). p. 74

Howe, H. S., "Some Combinational Properties of Pitch Structures", Perspectives of
New Music, 4 (1965), p. 59

Howe, H. S., op. cit., pp. 45-61

11

historical background and a general survey of contemporary exploration.

Howe's generosity in distributing information extended to include a FORTRAN

program in the appendix (for calculating pitch structures of size ten to eleven),

ahd an offer to provide useful software for any interested parties. Even with the

realisation that any analytical intentions have to be stated precisely and clearly

for an accurate computer implementation, computer limitations often lead to an

adaptation of one's original analytical theory, and produce the egg and chicken

syndrome-which came first, the theory or the computer?

Collins' theory came first. His success was largely due to the total

conception of an analytical method before the discovery of a computer's

capabilities. If his na'ivety had been lost through an early meeting with

computers, computing power (or lack of) would have greatly influenced the

development of any analytical theory. Unlike Collins' fresh approach, John

Selleck and Roger Bakeman experimented with computers first, and then

searched for a task in which to employ the computer. Selleck and Bakeman

used data-processing techniques to free themselves from arduous tasks.

Unlike the carefree teenager who gaily tosses a coin into an arcade machine

before reading any instructions, and then loses both time and money when a

lack of knowledge brings an early end to the game, Selleck and Bakeman

discussed their work and then prepared themselves. An analytical aim was

proposed. Their FORTRAN II programs, although never fully developed and

only designed for simple data (Gregorian Chants), identified identical repetition,

constructed melodies in Mode Four,20 and defined melodic patterns which

occurred in more than one context. Since both the length and repetition of

notes are often dependent upon chant text, their simple coding of the chant

20 Mode Four may be regarded as a scale comprising the 'white notes' of the piano or
organ, ascending from 8 to B. Likewise, Mode Five comprises the 'white notes'
ascending from F to F.

12

ignored rhythm and note repetitions. The actual analysis (entitled 'phrase

identity') in the first of a set of three programs, compared every 'phrase' (a term

never actually defined) with every other phrase to yield identity or non-identity.

The results, assembled and formed into a probability table, provided the basis

for a second program which generated Mode Five (see previous footnote)

phrases-an exercise in already developed techniques. Like so many previous

attempts at phrase-generation based merely upon transition probabilities, only

a handful of their generated phrases resembled those in the analytical sample.

Program three, progressing ever-closer to actual analysis, attempted to

determine which 'melodic cells' (patterns which appear in numerous contexts)

were employed in phrases. Melodic cells were of interest if they appeared only

once and were not subsets of larger melodic cells. Realising, like others, that

computers are only very fast and very accurate, and will not accomplish

anything other that what they are instructed to carry out, Selleck and Bakeman

did not attempt to fill their IBM 709 with all the analytical theories of the decade.

Since their analytical results were not intended to provide 'the answer', a fresh

insight into the material under analysis was gained, and further analytical

procedures were developed upon perusal of their results. Many musicologists,

upon the discovery of a mysterious box which can quickly draw graphs on a

visual display and perform complex mathematical calculations without effort,

imagine that a computer implementation of an analytical theory is there for the

taking by anyone who has the patience to convert such a theory into

mathematical algorithms. However, the 'box' does not respond to the command

'analyse this piece'. What does 'analyse' mean? What does 'piece' mean? Such

general terminology seems indefinable in English, let alone in logical and

mathematical terms. 'Analysis' with computer, if it is to be regarded as more

than identical pattern-matching or statistics-counting, could be redefined as 'a

reworking of material to provide new insight into the material's structure'-which

is what the research of Selleck and Bakeman was gradually moving toward.

13

One of the first conferences, actually tackling the controversial subject of

computers and ml.Jsic, took place on December 4th, 1964. However, it was not

until 1966 that, through a review by Allen Forte,21 the contents of the

conference became known to scientists and musicians alike. Acting for the

defence in the fanciful trial of 'computer murders music', Stefan Bauer

Mengelberg was quick to point out that as well as historical and literary-type

problems, musicologists faced special problems of their own. Barry Brook

supported the concept of computers used for bibliographical research, whilst

George Logemann discussed the problems faced in music-data representation

and related the success of his method for solving puzzle canons. However. it

was Michael Kassler's description of his project-" ... the use of a generative

grammar, in the Chomsky sense; for the explication of Schenker's theory of

music structure"22-which finally tipped the balance and extracted a 'not guilty'

verdict from a more-than-likely 'pro-computer' jury.

Kassler's main interest though, was in the extraction of information from

musical data, and his programming language MIR (Musical Information

Retrieval}, designed as part of a larger project, allowed examination of

particular syntactic attributes within a composition. Kassler claimed that his

system was not only comprehensive, " ... any predicate whose truth-value is

computable from the notes, rests, clefs, and other 'primitive symbols' of musical

notation that in some order constitute one or another particular composition

can be represented as a program in MIR",23 but also a foundation and starting

point for others to create alternative and more advanced systems, "I have

21

22

23

Forte, A., "Conference on the Use of Computers in Humanistic Research: A Review",
Computers and the Humanities, 1 (1966-1967), pp.11 0-112

Forte, A., op. cit., p. 112

Kassler, M., "Toward Music Information Retrieval", Perspectives of New Music. 4
(1966), p. 59

14

spoken of MIR at such comparative length that I might give you a good idea of

what I believe is the most advanced existing system for musical information

retrieval, and that I might provide, therefore, a realistic base to which proposers

of better systems could refer".24 The MIA language was not just another

'proposal' since Tobias Robison, with help from Hubert S. Howe, Jr., and

Kassler, had managed to write a computer program, on an IBM 7094, which

automatically carried out any ordered set of well-formed MIR instructions.

Example programs and explanations even reached journals and papers,

allowing the whole world to share in their innovation. However, there were

limitations with this 'comprehensive' language. Musical compositions (for

processing) had to exist in a 'lynear partition'25 -where every note in a partition

could be performed by an instrument which could play no more than one

note-and thus, polyphonic analysis was out of the question. Each line (or one

punch card) contained a single MIA instruction, and during the execution of a

program, only one note or rest in the musical composition being processed

would be examined at any instant in time. Therefore, simple data extraction

was relatively straightforward, whereas comparison of different musical

sections within a composition was no more, if not less effective than a manual

comparison.

Allen Forte, like many others, also believed that a faithfully and

successfully encoded composition could be analysed using a computer

program-"The musical score ... constitutes a complete system of graphic signs

and, properly represented for computer input, may be analysed by a program

as a logical image of the unfolding musical events that make up the

24

25

Kassler, M., ibid.

Kassler was trying to develop his own concepts of "lyne" and "lynear''. If a melodic line
can be played on an instrument which is only capable of producing one pitch at any one
time, the melodic line is deemed to be a "lyne". A "lynear'' partition is made of "Iynes".

15

composition".26 Whilst holding a fellowship in the American Council of Learned

Societies (sponsored by IBM), Forte developed a computer program for the

analytical reading of scores. Although information about a specific composition

may be gained from reading descriptions of a composer's techniques and views

or opinions, or by obtaining descriptions from listeners, the program was

designed instead to extract information (possibly not available from the

aforementioned methods) from the score itself. Since even human analysts

make some of their decisions following rules, perhaps, therefore, it would not

be wrong to convert some of their rules into computer algorithms? Forte's

interest in atonal music led him to transfer set analysis rules and techniques

into algorithms for use in computer analysis. Music data was encoded by hand

using a language designed by Stefan Bauer-Mengelberg27 (although a

simplified form was employed during program development) and analysed by a

SNOBOL program (a programming language which handles free-form strings)

which simply consisted of a number of functions. The encoded data and

program allowed one " ... to refer to any moment in a composition and to relate

any event to any other event with respect to time-continuum".28 Initially the

program scanned instrumental parts to extract 'primary segments' (monody

delimited by rests) and inserted implicit accidentals. 'Secondary segments'

resulted from the interaction in time of the attacks and releases of two primary

segments in different instrumental parts. Pitch classes were then taken from the

primary and secondary segments, and arranged in ascending order with

duplicates removed, to produce 'compositional sets'. Forte's analysis program

26

27

28

Forte, A., "A Program for the Analytic Reading of Scores", Journal of Music Theory,
Vol. 10, No. 2 (1966}, p. 332

DARMS, "Digital-Alternate Representation of Musical Scores". A full description of
DARMS may be found in Raymond F. Erickson, "DARMS, A Reference Manual" (New
York: Queens College, CUNY, 1976}

Forte, A., op. cit., p. 341

16

was purported to determine the class to which each set belonged, list and count

all occurrences, calculate set-complexes, and retrieve historical and informal

comments, to name but a few of the many functions. Even with so much to

offer, and the 'advertising' via Forte's article in the Journalof Music Theory,

there was still, in Forte's eyes, much work to be completed.

Nineteen months after the 'Conference on the use of Computers in

Humanistic Research', the first working seminar on the application of computer

technology to musical problems took place at the Harpur College, in The State

University of New York at Binghamton. The twelve-day seminar provided

tuition, via lectures and copious reading of manuals, in score encoding (using

DARMS), computer programming with languages such as SNOBOL and

FORTRAN, and some practical experience in writing and executing a program

(even to the extent of lessons in punching cards). The seminar intended to

spread practical knowledge of a limited field, and had long-term goals, with

perhaps dreams of students producing computer systems to cut time

consuming routine labour or eliminate duplication of effort through

bibliographical control.

Like a 'gin and tonic', where two entities exist successfully in isolation yet

appear so compatible that when merged one wonders how the two were ever

kept apart, the phrase 'Musicology and Computers' was no longer turning

heads and furrowing brows. By 1966, a session devoted to 'Musicology and the

Computer' had crept into the American Musicological Society Annual Meeting.

The 1966 session contained three papers, each describing projects in their

early stages of research. Two of the three researchers, Professor Harry Lincoln

and Professor Lawrence Bernstein, chose to examine vast quantities of

material with a view to creating large-scale concepts, adaptable methods, and

some general results. Professor Roland Jackson, on the other hand, restricted

himself to only a small amount of data, allowing more time to consider minute

17

details. Lincoln's paper, "The Frottole Repertory: A Pilot Study in Information

Retrieval", concerned itself mainly with the problems of concordance hunting. A

simple program written in any string manipulation language (eg SNOBOL)

would compute numerous 'list' and 'compare' operations to locate music-data,

and provide accurate and rapid printout results via recently developed Xerox

semi-micro cards which had relevant data recorded onto them.

Jackson, however, was rather more ambitious, and his paper "Harmonic

Analysis with Computers as Applied to Contemporary Music" discussed his

intentions, following the reduction of each vertical interval in a piece to an

integer, to compute a vast variety of problems relating to contemporary works,

including: frequency distribution of chords in their inversions, breakdown of the

number of pitch classes sounding, a dictionary of chords used, analysis of free

standing tones and the voice in which they occur, comparison of dissonance,

and analysis of recurrent chord patterns and recurrent individual chords of

varying types. Needless to say, with all these many tasks, Jackson's research

had reached no general conclusions at the time of the 1966 meeting.

"Problems of Stylistic Analysis of the 16th-Century Chanson" revealed

Bernstein's attempts at computerised style analysis. The stylistic criteria most

frequently employed in analysis of 16th-century chansons, such as texture,

melody, rhythm and so forth, were to be determined automatically via a system

of encoding and a series of analytical programs grouped under the title

'Chicago Linear Music Language' (CLML). Marian Cobin's review of the

meeting summarised the prime goals of computer-aided research: " ... the ability

to look at a work of art in its entirety and in all its myriad detail, to correlate data

with mechanical aid, and then armed with the greater battery of information,

computer-stored and computer-correlated, to evaluate the work-first on its

own merits, then within the composer's oeuvre, within the period and genre of

18

the work, and finally within its place in cultural history".29 Bernstein's paper

reminded the audience about these important goals.

Success at creating a computer program, to aid transcription of mid

thirteenth-century polyphonic notation, aroused Maurita and Ronald Brender's

interest in other areas of computer-assisted musicology, and the Brenders

steered their future research toward analysis. Another computer program

performed analysis on five motets with Portare tenors from the "Bamberg

Codex". The first stage of the analysis recognised and recorded occurrences of

part or voice crossings to determine to what extent the motetus, tenor, and

triplum could be associated with a fixed position in the chord structure. The

second stage recorded and tabulated all melodic intervals found in each part to

produce an 'average rate of movement'. This rate of movement, together with

other results showed that descending lines tended to change or move faster

over larger intervals than ascending lines. Since computer programs were used

to help test the validity of notions not previously checked carefully and provide

new insights into the music, the Brenders felt that their use of computers for

analysis was justified.

In order to keep the Humanities knowledgeable about the world of

computers, Thomas E. Binkley was kind enough to include a short definition of

computer terms in his article entitled "Electronic Processing of Musical

Materials".30 His explanation of terms and some computer concepts

progressed gradually towards the practice of storing music data in computer

words or addresses and the ability to compare such words to assess a degree

29

30

Cobin,. M. W., "Musicology and the Computer in New Orleans", Computers and the
Humanities, 1 (1966-1967), p. 133

Binkley, T. E., "Electronic Processing of Musical Materials", Elektronische
Qatenyerarbeitung in Per Musjkwjssenschaft, Harald Heckmann, ed., Regensburg:
Gustav Bosse Verlag, (1967), pp. 1-20

19

of identity where "The musical relationship, or degree of sameness is a

reflection of the musical relationship"_31

Binkley's article contained a method for comparison of incipits, and even

considered the comparison of entire pieces to be possible-so long as they did

not contain polyphony. Binkley's method is straightforward. A unique address or

word of computer memory is set aside for each pitch available, whilst the bit

pattern stored in an address represents the occurrence of that pitch throughout

the incipit. Each bit in an address signifies a sixteenth-note duration (or perhaps

any value a programmer wishes). Thus, if the memory address set aside for

middle C contains the bit pattern "1111 00001111 0000", a middle C occurs on

the first and third crotchet beats of the incipit.

The comparison of incipits is simply a matter of comparing bit patterns.

Each incipit comprises a series of bits-a bit can be set to one or zero. When

comparing two incipits, the series of bits for the first incipit is placed above the

series of bits for the second incipit. Each of the first incipit's bits is compared in

turn with the equivalent bit in the second incipit's bit series. If the current bit of

both the first and second incipits is set to one, a positive counter is incremented

by one. If the current bit of both the first and second incipits is different, a

negative counter is incremented by one. The degree of sameness is calculated

using a simple formula where minimum sameness equals zero, and maximum

sameness equals one. For Binkley, a degree of sameness of 25/40 was high

enough to warrant interest in both of the compared pieces.

Although similarity testing was now being used for incipits in thematic

catalogues, no one had entertained the notion of using it for full-blown analysis.

Determining the chant source, for example, of a given melody is usually a

31 Binkley, T. E., ibid.

20

laborious task, often involving a manual search, page by page. As Binkley said,

"How much longer are we going to continue in serene folly, pretending that

busy work is scholarly work?".32 Murray Gould proposed that a set of music

data (the contents of the "Liber Usualis") could be encoded using a recently

developed encoding language (ALMA-Alphanumeric Language for Music

Analysis) and stored on magnetic tape or disk. The search for a melody would

then be reduced to a matter of minutes, no matter what key or mode the

melody was in. Busyness might then perhaps become scholarlyness. Gould,

like Binkley, raised the concept of algebraizing similarity by suggesting that a

criterion of similarity could be specified in the computer program designed to

execute the searching, and thus a search would also produce close variants of

a melody.

"Fear of mechanism is one of the humanist's soundest instincts it

tends to close the minds of some humanistic scholars to potentialities of

modern technology that can tree them of deadingly repetitive bibliographical

tasks, provide new means of communicating their ideas, increase accuracy in

dealing with source material, and even stimulate new directions of thought".33

Jan LaRue and Marian Cobin were fully aware of the advantages that

computer-aided musicology could bring.

As in most historical periods, nothing could stop the destined interaction

between music, science and mathematics. Even seemingly safe creative

pursuits, such as composition, could not manage to escape from the attraction

of automation or machine-aid. Sound generation, by computer, allowed one to

experiment with auditory perception, music grammars, and the development of

32

33

Binkley, T. E., op. cit., p. 9

LaRue, J. and Cobin, M. W., "The Ruge-Seignelay Catalogue: An Exercise in
Automated Entries", Electronjsche Datenyerarbejtung in Per Musikwjssenschaft, Harald
Heckmann, ed., Regensburg: Gustav Bosse Verlag, (1967), p. 41

21

original compositions. Computers had, by now. muscled themselves into such

musicological areas as information retrieval, style analysis, the study of musical

systems, and the development of music representations.

In the field of analysis, Arthur Mendel, Lewis Lockwood, Jan LaRue, and

Harry Lincoln were interested in pattern recognition with a view to algebraizing

characteristics of style for a particular corpus of music. Their corpora (the vocal

works of J. S. Bach, the masses of Josquin, Haydn's symphonies, and the

Frottola repertory respectively) were studied using 'overlay' procedures, where

variant texts were compared for relevant similarities and differences-a

technique not that far removed from linguistics.

Project suggestions and proposals soon began to emerge faster than the

musicians could adopt and learn the relevant computing skills. Scholars took to

suggesting that others should learn computer-aided research techniques, and

that young students might benefit from a formal education in the area.

As well as 'overlay' expertise, the accruing and counting of statistical

data was a favourite analytical technique employed by many musicologists.

George W. Logemann, a computer scientist, studied specific problems via

statistical analysis with the long-term goal of providing computational

techniques which might be useful for the musicologist. In Logemann's eyes, it

was interesting to count occurrences of certain features or combinations of

features in compositions. Some combinations or features are possibly regarded

as more important than others, leading to an analysis of the counts. As an

exercise in statistical techniques, Logemann utilised the computer to find the

entry point for the second voice in Bach's enigma canons from the "Musical

Offering"-described in the conference reviewed by Allen Forte.34 The theory

34 Forte, A., "Conference on the Use of Computers in Humanistic Reseach: A Review",
Computers and the Humanities, 1 (1966-1967), pp. 110-112

22

was simple. Direct the computer to try all possible entry points and select those

which lead to the best sound. However, the notion of 'sounding best' had to be

expressed in computer terms. Normally, to answer complex questions requires

complex processing, and the mechanisation of an intuitive process conjures up

images of life-long calculations and over-sized machines. Logemann's

computer program was surprisingly simple. The program obtained the

distribution of intervals, and computed the total number of consonant,

dissonant, and perfect intervals between the beat notes of the first and second

voices (the test voice)-perfect intervals measured the 'openness' of the sound

of the counterpoint. The difference between the number of consonant and

dissonant intervals provided a quantity entitled 'harmonicity'. Something which

sounds best (ie the 'correct' entry point for the second voice) should have

maximum 'harmonicity'. To reduce the number of intervals possible, those

intervals greater than an octave were decreased in size by an octave. Naturally,

to obtain a more accurate 'harmonicity' value, different octaves should really

have been taken into account. Thus, thirds and sixths were regarded as

consonant; seconds, sevenths and tritones were regarded as dissonant;

fourths, fifths and unisons as perfect intervals; and, harmonicity was calculated

from consonance less dissonance. As might be expected, maximum

consonance and minimum dissonance occurred for the same entry points for

which harmonicity was maximised. An added advantage, and a notable one,

was that the program and algorithms for solving Canon II (the test case) were

equally effective in the solving of Canons I, Ill, IV and VI.

Logemann's research was very much geared toward providing tools for

the musicologist and analyst. Described by Logemann as "the ultimate desire of

musicologists",35 and perhaps the ultimate task and challenge for Logemann,

35 Logemann, G. W., "The Canons in the Musical Offering of J. S. Bach: An Example of
Computational Musicology", Elektronjsche Patenyerarbietung in Per

23

was the creation of "a complete library of all musical works and a programming

system that will answer all possible questions".

As a natural consequence of working as curator of the New York Bartok

Archives, Benjamin Suchoff undertook research into the feasibility of applying,

via computer, Bartok's analytical methods to all the folk music Bartok had

collected. The main task in hand was that of determining variant folk tunes or

incipits. Determination of a variant may be likened to the determination of

another incipit with high harmonicity or high similarity. Bartok defined the

variants, to be determined, as melodies in which the pitch contour of various

principal tones was entirely or partly similar.

A study which involves the examination of variant relationships calls for

comparative analysis of thousands of folk melodies. Economy of means

suggested the use of a computer. Suchoff opted to use DARMS for encoding

the incipits, maintaining that "Ideally, one should transmute every music symbol

into its equivalent graphic, then construct specifically delimited programs to

process data in accordance with the special problem at hand" .36 lncipits arose

from Bartok's own method of obtaining a skeleton form (ie stripped of

ornamental tones) of melody sections which had different content structures.

The width of a punched card determined the maximum length of an incipit, with

longer incipits succumbing to truncation to fit the card.

Melodic, rhythmic, and melorhythmic variants (matching interval

sequences and rhythm patterns) were deemed appropriate for treatment, and a

36

Musikwjssenschaft, Harald Heckmann, ed., Regensburg: Gustav Bosse Verlag, (1967).
p. 79

Suchoff, B., "Computerized Folk Song Research and the Problem of Variants",
Computers and the Humanities, 2 (1967-1968), pp. 155-158

24

FORTRAN program was used to process the incipits. Lincoln's approach

entailed reading in each encoded incipit (a string of characters) and converting

it into signed digits expressing the relationship of the intervallic succession.

Converted strings were then stored in two disk files according to the polarity of

the first digit (positive or negative). Sorting of each file so that positive preceded

negative and less preceded greater occurred before final output of the files,

with matching strings displayed in a single-space format, and the others in a

double-space format (to emphasise identical incipits).

This method worked for melody but not for rhythm. Like most

musicologists eager to use the computer, the more straightforward problems

had been tackled first. However, an experimental program entitled "Bartok

ARchives Z-symbol Rhythm EXtraction" (BARZREX), to convert rhythmic

incipits into a lexically ordered sequence, was under way; and, melorhythmic

variant determination (where strings of identical interval sequences were to be

compared for rhythmic similarity) was on the drawing board.

Lincoln regarded the classification of melodies by interval sequence as a

method superior to others. Intervals remain constant even when a melody is

transposed, and thus provide an accurate picture of a melody's melodic

contour. His system ignored repeated notes, but was still a major advance on

the standard methods of alphabetising melodies-simply listing the letter

names of notes. Lincoln, perhaps realising that more time spent in the initial

stages of encoding melodic data would later permit a greater variety of

operations, dropped any idea of an extended interval-encoding method in

favour of DARMS for his research into the Frottola repertory. DARMS, intended

to be used for encoding by non-musical clerical personnel, proved to be both

economical and ingenious in the analysis and indexing of music.

The pilot study dealt specifically with sixteenth-century Italian vocal

music (frottola)-a homogenous body of music which spans twenty-five years

25

(1505-1530) and contains about one thousand pieces, producing four

thousand incipits. For the purpose of creating a computerised thematic

catalogue, the incipit was fixed at seven interval changes, ignoring repeated

notes. A retrieval program (written in assembly language and later to be

converted to a more portable PU1) would match an interval-sequence with its

DARMS record and print it out in a more meaningful format. With an automated

printing system promised for DAAMS, printed musical output (in standard

musical notation) was more than feasible.

Although the use of 'overlay' procedures was a technique not that far

removed from linguistics, no major attempts had been made to apply other

more important linguistic techniques to music. Terry Winograd, a graduate

student in mathematics at the Massachusetts Institute of Technology, believed

that such an undertaking was a profitable one, and discussed the possible use

of linguistics for computer analysis of tonal harmony in his article "Linguistics

and the Computer Analysis of Tonal Harmony".37 Winograd was interested in

expressing the specific structural and syntactic rules governing tonal harmony,

in the form of a generative grammar. (In linguistics, a generative grammar is a

set of rules whereby permissible sentences may be generated from elements of

a language).

Applied to music, a grammar for harmonic structure may be broken

down into five hierarchical-type elements. The first, composition, is a simple

concatenation of tonalities, whilst tonality (the second element) contains the

characteristic features of tonal harmony. The third and fourth elements refer to

chords, with 'chord group' formed from local methods and 'chord' containing

features such as root, type, inversion and linear function. Winograd

37 Winograd, T., "Linguistics and the Computer Analysis of Tonal Harmony", Journal of
Musjc Theory, Vol. 12, No. 1 (1968), pp. 2-49

26

represented the last element ('note') numerically, considering traditional names

merely as realisations. Even with the aforementioned five elements, tonal

harmony is an extremely ambiguous language and provides many problems

when converting its rules into a generative grammar. For example, an identical

chord may appear at different places in a composition and have a totally

different function in each place.

Using the grammar elements, Winograd created a program to give, for

each chord of a composition " ... its function within the tonality of which it is a

constituent, its inversion, and the tonality hierarchy in which it operates".38 The

program accepted as its input a list of chords, each of which was a list of notes

(where a note was designated by a note class and an octave). Written in

compiled LISP39 , the program took about thirty seconds to process a Bach

Chorale of about thirty-five chords. Schubert dances were also used as input,

but the Bach was preferred since it offers a continuous sequence of harmonies

and yet has a complex harmonic structure.

Simply offering analysis of harmony, and not all aspects of a

composition's structure was the only drawback of the program. Winograd,

however, claimed that the program (since it could decide whether a chord

functioned structurally or linearly} gave sophisticated readings which were,

more often than not identical to those of a human analyst. The distinction

between structural and linear, however, is not always clear. In the tonal

progression 1-IV-V-1, IV could be regarded as linear or structural, and cannot be

confirmed in either role if the composition is only analysed harmonically. The

38

39

Winograd, T., op. cit., p. 33

LISP (LISt Processing) is a high-level (ie uses English-like commands) computer
programming language used primarily for list processing, symbol manipulation and
recursive operations. A LISP program has the ability to modify itself as it is executing.

27

experiment demonstrated that it was possible to write a successful grammar for

at least one aspect of tonal music.

Although, by the end of the 1960s, many musicological areas had

harnessed computer power, the extensive field of music analysis still remained

largely unexplored. Musicology was one of the last humanistic disciplines to

become aware, and make use of twentieth-century technology. Only a handful

of analytical programs were generally available, and no comprehensive

theoretical system for computer-aided analysis existed. Any rapid evolution of

analytical systems was often thwarted by the prospect of necessary tedious

and time-consuming preparation, checking and correction of data. Most serious

undertakings involve years of research, and the majority of researchers (when

in the possesion of new technology) are always eager to progress as quickly as

possible when competing for worthwhile results.

One of the more ambitious computer-aided analysis projects was that

discussed by Eric Regener in "A Multiple-Pass Transcription and a System for

Music Analysis by Computer".40 The System for Analysis of Music (SAM)

consisted of three main components. The first, a multiple-pass transcription

code (LMT-Linear Music Transcription), could read through a score several

times, collecting durations, pitches, text, literal information, and then alternate

and variant readings-a different type of attribute on each pass through the

score. The second, a two-stage assembler program written in FAP (an

assembly language for the IBM 7090), comprised an input routine, abbreviation

decoder, symbol recogniser and syntax checking routines in the primary stage;

and, a table creator (to produce a table which held pitch-codes and durations

etc, indexed by temporal position within the composition) formed the secondary

40 Regener, E., "A Multiple-Pass Transcription and a System for Music Analysis by
Computer", Elektronjsche Dateoyerarbeitung in Per Musjkwisseoschaft, Harald
Heckmann, eel., Regensburg: Gustav Bosse Verlag, (1967), pp. 89-102

28

stage. The final component, a retrieval routine, allowed access to any desired

information by specifying up to four arguments (attack time, part number, voice

number, and type of information desired). However, as the system was written

in an assembly language unique to IBM machines, its transfer onto other

computers to allow its use by other musicologists was not entirely feasible.

Bernstein's Sixteenth-Century Chanson research began as a pilot study

into automated bibliography before it developed into the major project in stylistic

analysis described by Marian Cobin.41 Initially Bernstein, together with Joseph

P. Olive, attempted to iron out the failings in the current manual methods of

thematic cataloguing-failings such as the inability to discriminate accurately

between two pieces which are essentially the same but begin with different

material, and two pieces which are essentially different but begin with the same

material.

Although their analysis programs enabled them to derive eleven types of

stylistic data about a given composition selected from an initial repertory of

three hundred pieces (which proved to be inadequate for testing their thematic

cataloguing). they ultimately planned to encode the entire repertory of

sixteenth-century chansons and extend their analysis programs to include even

more parameters of style.

The eleven types of stylistic data fell into three categories. The first,

'Routine Analysis', involved the determination of the roots of all triads,

measurement of the rate of harmonic rhythm, and determination of the range of

vocal parts. 'Statistical Analysis' for each phrase included calculating the

amount of relatively strong or weak root movement, the degree to which

inversions were used, the ratio of complete to incomplete chords, and the

41 Cobin, M. W., "Musicology and the Computer in New Orleans", Computers and the
Humanities, 1 (1966-1967), pp. 131-133

29

frequency of recurrent harmonic adjacencies. The final category, a numerical

representation of properties which defied verbal representation (entitled

'Analytical Observation') dealt with textual complexity and the interaction of

several style parameters such as the number of voices, the amount of co

ordinated rhythm activity between voices, the number of separate rhythmic

impacts across polyphony, and finally the durations of the notes themselves.

The computer determined a numerical equivalent for each component of textual

complexity. The numerical equivalents were then weighted according to their

significance so as to produce an index of textual complexity for a given period

of time.

Akin to Regener's system, all programs were written in FAP, and

although fast (achieving an execution time of ten chansons every forty-eight

seconds), the system was not portable. Their encoding language (CLML)

however, made a bid for portability with its resemblance to DARMS, enabling

entire chansons to be encoded part by part, leaving it to the computer to align

separate voices.

Bernstein and Olive, unlike the majority of computer-innocent

musicologists, at no time believed that the computer was in any way capable of

analysing a piece of music. The fresh information made available by the

computer was used purely as a means of substantiating insights already gained

from human perusal of the scores. However, they did admit that since

compilation of their statistical data would normally have taken a considerable

length of time, it was not considered feasible without some form of mechanical

aid.

Bernstein and Olive realised that the computer was net the answer to

every problem. A computer can only resolve problems that are put to it in a

precise and systematic form. However, if a problem is studied carefully and

understood, then it may be expressed precisely and systematically by a

30

mathematical formula or language, and thus reproduced on an electronic

computer. Early mechanical methods of composing music such as a toothbrush

dipped in ink and sprayed across manuscript (where ink dots represent notes)

and cards drawn from a pack to designate positions for barlines, pauses and

rests, all failed because music is not simply a random selection of sounds but is

instead, subject to its own unique laws and rules of construction. Musicologists

were striving to understand music, express it via rules, mathematical formulae,

and languages, with a view to either reproducing the music itself, or emulating

the compositional process. Often the rules or formulae used for computerised

composition were highly dubious and quite incomprehensible: "Briefly, the

chord evaluation process is based on the computation of the ratio of the sum of

the squares to the square of the sums of all the intervals in any given chord". 42

Whilst the majority of computer-analytical studies dealt with music as

notated, an important yet uninvestigated area was music as performed. Sadly,

even with the creation of new areas for research, the contemporary attitude

towards the use of computers was either unqualified acceptance or complete

rejection. As far as some scholars were concerned, computers only had a

future in incipit catalogues and concordances.

Arthur Mendel and Lewis Lockwood's interest in the possibilities of

computer-assisted style analysis of Josquin Desprez's works led them to create

an entire system based on Kassler's ideas and methods. Once a system has

been designed and 'built', a music scholar does not have to concern himself

with the internal workings of the computer-merely sit back and use the

system. The 'black box' approach was adopted by Mendel and Lockwood, who

42 Hiller, L., "Some Compositional Techniques Involving the Use of Computers", Music by
Computers, ed. H. von Foerster and James W. Beauchamp, New York: John Wiley and
Sons, 1969

31

intended their system to be both usable and approachable by musicology

students with no knowledge of computer programming.

Even with major upsets (the project's use of MIR for extracting

information came to an abrupt halt when the university disposed of its IBM 7094

computer-all programs had to be completely redesigned for the new IBM 360

computer), the minor results achieved were claimed to be "of a nature that has

not been achieved in any other use of the computer for style analysis in

music". 43

Although some scholars regard the character string as the most flexible

and efficient format for representing musical scores, the proof-reading of strings

involves so many factors that errors frequently creep in unnoticed, and the

'Josquin Project' was no exception to such encoding errors. Incorrectly encoded

data produces deceptive and misleading results, and error-checking of data

may be regarded as more crucial than the writing of analytical programs. Test

programs for the Josquin data, however, managed to reveal a considerable

amount of misprints, but results were nevertheless initially confined to the

"Missa L'homme arms super voce musicales" since no one was confident that

the rest of the data was error-free.

Some collating of statistics did eventually emerge. An early project

obtained a list of locations and counts of all accidentals occurring in Book I and

II of the Smijers edition-differentiating between those suggested by the editor

and those reproduced from the original sources. Lockwood compiled lists of

linear tritones and harmonic intervals involving accidentals, whilst Mendel noted

the use of mensural signatures.

43 Mendel, A., "Some Preliminary Attempts at Computer-Assisted Style Analysis in
Music", Computers and the Humanities, 4 (1969-70), p. 41

32

Since Lockwood and Mendel's analysis was essentially statistics

collecting they were in danger of being flooded with a mound of data and no

real idea of what it could be used for. Some results did confirm their suspicions

relating to a suspect section ("Et in Spiritum") which contained a much 'lower

than-normal' proportion of incomplete triads. Of course, if the 'Et in Spiritum'

section in other Josquin masses also contained a low proportion of incomplete

triads, the claim that the suspect section was not by Josquin would lose its

force. Thus, the only types of 'problems' tackled involved the counting and

locating of specific features of the music.

Ever since the very early experiments in computer-aided musicology,

music research had always been restricted by the hardware (machines) and

software (computer programs) available-computers were built for science and

not for the humanities. Converting mechanical methods of music composition

into algorithms for the early computer often resulted in computer systems which

were slower than the manual equivalent of quill on paper. Such disappointing

results were no incentive for the conversion of those who believed that the

compositional process could not be formalised-how can a mechanically

produced piece have the same creative power and depth of that nurtured and

moulded by a human?

Time and time again, musicologists concluded that computers were only

useful for statistical investigation and analysis of music theory (where analysis

really meant collation of yet more statistics). Certainly, by the end of the

seventies and the 'third generation' of computers (making advantage of

integrated-circuit technology) computer-aided analysis results represented

limited analytical procedures on limited data. Perhaps the many available

theories of musical structure were so powerful and beyond explanatory scope

that any form of computational formulation was inconceivable. Methods of

computerised style analysis concentrated on comparatively superficial aspects

33

of music. So long as no claim was made to reveal'the composing process'

such a form of style analysis was acceptable. Obviously, since style must be

reflected within the musical score, it is not unreasonable to assume that some

method of computerised style identification is possible at a shallow level.

Musicologists were gradually making an effort to find out more about the

mysteries of computers and modern-day technology. Although no

straightforward text was available to introduce computing to the humanities'

scholar, many researchers were pushing forward the idea of a 'music scientist';

"Most scholars who discover or can foresee a need for computer assistance in

their work would do well, it seems to me, to learn as much as they can about

the computer and, especially, about computing languages."
44

Despite many doubts and fears, however, results from computer-aided

musicology steadily appeared. Nancy Rubinstein succeeded in translating rules

for 'franconian' rhythm (set out in 'Ars Cantus Mensurabilis' c.1260) into

flowcharts and then FORTRAN.
45

James L. Curry identified the more common

melodic contours used in a dissonant context within the Kyrie movements from

five masses by Johannes Ockeghem,
46

whilst John Rothgeb's SNOBOL

programs applied eighteenth-century rules to the harmonisation of unfigured

basses-(as might be expected, the rules by themselves proved to be
47

inadequate for the formulation of a general theory.)

44
Kostka, S.M., "Recent Developments in Computer-Assisted Musical Scholarship",
Computers and the Humantlies, 6 (1971-1972), p. 15

45
Rubinstein, N., A FORTRAN Computer Program for Transcribing Franconjan Rhythm,
Ph.D. diss., Washington University, 1969

46

47

Curry, J. L., A Computer-Aided Analytical Study of Kyries in Selected Masses by
Johannes Ockeghem, Ph.D. diss., University of Iowa, 1969

Rothgeb, J., Harmonizing the Unfigured Bass: A Computational Study, Ph.D. diss.,
Yale University, 1969

34

Naturally, results obtained from the many and varied projects ranged

from failure, through inexplicable, to success. Don Cantor's and W. B. Barker's

efforts to encode the two-dimensional aspect of music using a one-dimensional

sequence of alphanumeric characters was, like the Josquin project, hampered

by persistent errors (even though some scholars believed that music lent itself

well to alphanumeric notation). They did, however, procure several computer

programs which accepted and played back common musical notation,

permitting audio-proof-checking of their data. Music could be input via a

cathode-ray tube and stylus by manipulating music symbols on the screen.

Although computer power per square inch was on the increase, the price

of current technology was still not low enough to attract the casual user

"Today it is possible for a person to buy an entire computer, complete with all

kinds of fancy peripherals, for even less than most people spend for a new

car."48

As a demonstration of how computers could be harnessed for music

analysis, lan Bent and John Morehen addressed themselves to the question,

"How could we write an analysis of the form of a piece of music using the

computer?"49 By way of an introduction to computers and analysis, Bent and

More hen described three of their computer programs. The first program used a

'parsing' approach devised by Allen Forte, where a string of musical code is

repeatedly rewritten in a simpler form until there remains no repetition of

musical material, whereupon the composition can be expressed symbolically in

terms of letters, ie AB for binary form and ABA for ternary.

48

49

Howe, H. S. Jr., Perspectives of New Music, Princeton University Press, Vol. 16, Fall
Winter 1977, p. 71

Bent, I. and Morehen, J., Proceedings of the Royal Musical Association, 104 (1977-
1978), p. 32

35

The second program tackled the hitherto ignored subject of textual

underlay. Since the carefully documented rules for text placement in sixteenth

century polyphony were concerned with the rhythmic characteristics of

individual voice parts, and most computer input codes encoded a voice at a

time, the rules lent themselves easily to translation into a simple numeric

coding system. Within the coding system utilised, a five digit code could

represent a note's pitch, duration, position within ligature, and whether or not

the note carried a syllable. The underlay program aimed to detect passages of

polyphony which contravened the strict rules of sixteenth-century textual

underlay. A third program, also concerned with textual underlay, searched a

composition for a specified combination of rhythm and syllable placement.

In addition to the three programs, another suite of programs which Bent

and Morehen described, set out to allocate syllables to textless music. The

programs, so the authors claimed, could provide a "definitive, or nearly

definitive answer'' and were a step toward showing that the computer could be

of considerable assistance in a hitherto uncharted area of research.

Some of the Bent and Morehen programs used rules to allocate syllables

to textless music. The use of rules to recreate or create music was nothing

new, since both Maurita and Ronald Brender were interested in describing

traditional music using rules (a formal grammar), and Terry Winograd was

intrigued by the possibility of a generative grammar for tonal harmony. This

sixties' research was nothing to the scope of that of Mario Baroni and Carlo

Jacoboni. 50

Baroni and Jacoboni set themselves the task of generating a grammar

which described the Bach Chorales. The grammar itself was to be used to

50 Baroni, M. and Jacoboni, C., Proposal for a Grammar of Melody: The Bach Chorales,
(Montreal, 1978)

36

generate 'correct' musical phrases by computer. Unlike a certain DEC 11/70

that was fed all the most-used words in every Western movie in a bid to

persuade the computer to write a Western story, Baroni and Jacoboni claimed

that the analysis of their material was not statistical. Gilbert Bohunslav's DEC

11/70 produced a Wild West yarn which made no sense at all, whereas

Baroni's and Jacoboni's analysis of a 'cropped' set of phrases (60 versions of

36 phrase pairs) resulted in a set of rules which produced 'correct' Bach-like

phrases. The rules of the grammar, and a carefully selected set of generated

melodies made publication. Although Baroni and Jacoboni claimed that

statistical analysis was of no benefit to those who try to discover something

about the grammatical structure of the musical language, statistics formed the

basis for the rhythms used during the 'casual' generation of the phrases.

Many scholars still had doubts regarding use of statistics for analysis.

Mark Ellis, however, hoped that an increased use of statistics would aid

progress in the study of a composer's mind. Ellis attempted to move away from

the current 'structural' and 'style from statistics' methods of analysis and, noting

that fugue subjects in J. S. Bach's "Well-Tempered Clavier" book one had more

repeated notes than those in book two, attempted a computerised quantative

study of the fugues. The computer was adopted to increase efficiency-ie

reduce time and human error. Ellis side-stepped the 'are statistics a waste of

time?' question by suggesting that if results were of interest to an analyst, the

analysis could be considered valid. 'Facts' have to be related back to the score

before they can become informative and thus useful.

Leo J. Plenkers used a statistical method to research into a possible

correspondence between two different thirteenth-century repertories. Linguistic

pattern-matching software, created by the Computer Department of the Faculty

of Letters of the University of Amsterdam, was adopted for the project. The

software, effectively an early 'query system', allowed interactive searching and

37

the use of a 'don't care' mechanism with the search criteria-ie look forB flat,

A, C, 'something'. The analysis, therefore, was a manual analysis, and the

computer was merely an aid to provide the statistics for analysis.

" ... have you ever heard the saying: 'He uses statistics like a drunken

man uses lamp-posts-for support rather than illumination."·51 John Morehen

outlined a selection of statistical tests to which he believed Renaissance

polyphony was particularly well suited. 52 Such tests involved an examination of

the difference between bass parts of four-part and five-part pieces,

determination of chronology, and determination as to whether an instrumental

piece might have originated as a vocal piece. The results, never entirely

conclusive, were still helpful enough to encourage him to pursue statistical

analysis further. The statistics, however, were used to confirm previously

conceived questions and notions, rather than to provide fresh insight and

illumination. Is not the aim of analysis to illuminate?

John Morehen's results were encouraging, but not all computerised

analyses were successful. "It seems that my dream of a facile computer

assisted analysis of the structure of the three similarity relations is turning into a

disaster."53 Running John Rahn's similarity function (ATMEMB) on a VAX

11/780 required almost one hundred hours of solid computer time. Dealing with

pitch-class sets, the ATMEMB function was intended to return values between

zero (minimum similarity) and one (maximum similarity).

51

52

53

Computing, 10 November 1988, Backbytes, p. 128

Morehen, J., "Statistics in the Analysis of Musical Style", Proceedings of the Second
Symposium on Computers and Musicology, Orsay, 1981, (Paris, CNRS, 1983), pp.
169-183

Rahn, J., "Toward a Theory for Chord Progressions", Proceedings of the Second
Symposium on Computers and Musicology, Orsay, 1981, (Paris, CNRS, 1983), p. 83

38

Although the computer was not always successful at analysis, it never

failed to impress as a time saver. Computer aid was justifiable when used for

confirmation of a theory, as opposed to 'push-button' 'black box' analysis. The

majority of analysis was in fact a reworking of material, providing new insight

and stimulating new directions of thought. All this, with technology built for

science and not humanity. Music was, not surprisingly, one of the last

disciplines to make use of such technology.

The goal for many was a complete library of musical works stored on

computer and a programming system which could answer all possible

questions-ie discover what makes music catchy and appealing. The main

techniques used by music scholars involved statistical interrogation and feature

counting, probability, use of grammars for computerised composition as an

analysis check, set theory, information retrieval, and style analysis; but, no

matter how outwardly artistic, all these techniques relied upon some form of

mathematical analysis. All techniques were based, effectively, upon the

detection of repetition and similarity-although many scholars had no

confidence in the computer's ability to detect similarity.

The early Eighties saw an increase in the availability of both general

purpose software a:1d 'accessible' hardware. The 'personal' computer enabled

many to carry out their own research at home and on an individual basis. Prior

to that, lack of suitable software tools was a major obstacle to fruitful research.

Each researcher had to start from scratch, inventing computational methods

before any analysis could take place.

Although musicologists recognise that computers can be beneficial,

many lack the technical knowledge required to harness the computer's power.

Some are unaware of the time and effort necessary to achieve their objectives.

General-purpose application software helps, but blinkers the computer into

answering questions which are often tangential to the musicologist's original

39

queries. A special musician's toolkit, a software package offering many tools to

perform small tasks-tools that can be bolted together to perform larger

tasks-will offer the musicologists versatile software that will remove the

blinkers and allow even the less technical to achieve results.

40

Analytical Methods

The "Concise Oxford Dictionary" defines the verb 'analyse' as "examine

minutely the constitution of". "Roget's Thesaurus" lists three words analogous

to the verb 'analyse'. The first two, 'class' and 'inquire', are the terms most often

associated with analysis. When a market researcher stops a passer-by in the

street and asks a series of product-related questions, the researcher is merely

inquiring and searching for information with a view to classifying the passer-by

among his or her already-acquired statistics, ready for yet more analysis. The

third term listed in the Thesaurus comes closer to the true definition of

analysis-'to decompose', to separate into its simpler elements or constituents.

In the "New Grove", lao Bent applies the "Concise Oxford Dictionary" definition

of analysis to music, and defines musical analysis as "the resolution of a

musical structure into relatively simpler constituent elements, and the

investigation of the functions of those elements within the structure". 54 He later

writes that "Analysis is the means of answering directly the question 'How does

it work?"'. 55 Analysis, therefore, is any close study of the score (or sound

produced by performance of the score) which helps the researcher to

understand what makes the composition 'successful', ie 'work', and extends the

answer to Pinkerton's question, "What is it about simple melodies that makes

them so widely appealing?". 56

There are many documented techniques for finding out how

compositions 'work'. These 'analytical methods' are quite varied and diverse in

nature, but all help a researcher in his understanding of a composition's

54

55

56

Bent, 1., "Analysis", New Grove Dictionary of Music and Musicians, ed. Stanley Sadie
(1980)

Bent, I., ibid.

Pinkerton, R. C., "Information Theory and Melody", Scientific American, 194 (Feb.,
1956) pp. 77-86

41

structure. Most of these methods are manual (ie performed by hand) and

require a thorough knowledge of the analytical technique. An expert in one

particular method is not necessarily an expert in any other method. If these

methods are implemented on a computer system, a researcher will not require

an in-depth knowledge of the analytical method to achieve results.

'Fast analyses', analogous to 'fast food', will hit the market place.

Phrases such as "quick Schenker'' or "double Reti and a dash of Ruwet" could

become as common as "double cheesburger and large fries". The 'burger bar'

staff procure results by assembling a few ingredients. The computer analyst

extracts information by assembling a few tools. Musicians, academics, and

interested parties, with only a limited knowledge of the required methodologies,

can generate analyses for their own perusal. Scholars should not, however,

dispense with learning new analytical methodologies. The better the

understanding a scholar has of a particular technique, the greater the benefit

the scholar will receive from examining any joint venture analyses-ie those

produced by computer and human.

One cannot assume a cumulative benefit from applying different

analytical methodologies to a composition. Whipped cream is not normally

associated with hamburgers, but the customer always has the option. The

benefit of an Analysis Environment which contains many tools to emulate either

complete analytical methodologies or parts of methodologies-tools which can

be combined in many ways-is one of experimentation. With a large collection

of tools, an analyst will be tempted to explore the possibilities of combining the

more obscure and interesting of them. It might be fascinating to see what

further analysis can be applied to the results of a previous analysis.

It is not too much to expect a musicologist to learn another analytical

technique. A musicologist, however, might simply wish to see what sort of

results a particular technique will produce, before committing himself to learning

42

the new method. One might argue that the musicologist can examine manual

results of the analytical technique, but the computer can be used to apply the

technique immediately to compositions of interest where manual results are not

readily available.

Results from a Schenkerian analysis, even if produced by a computer,

will still require a basic knowledge of the Schenkerian technique to interpret the

results. To carry out an analysis by hand requires an in depth knowledge of the

methodology. Tedious and repetitive operations must to be performed by hand,

and are prone to error. Why not give these tasks to the computer? Why not

share the analysis with the computer? The musicologist and the computer

should be a team. A simple awareness of the method will allow a musicologist

to interpret the results without having to undertake the whole analysis.

A single tool does not have to perform a whole analysis. There may be

tools however, which when combined, execute a complete analysis. Using

current computer technology, it is easy to make a quick change to a computer

program before trying it out again. Although it is not deemed good practice in

the computer programming world, the Analysis Environment is trying to

encourage experimentation. Bolt a series of tools together to see what

information is produced. The information is interesting. Make a few changes to

the usage of the tools, add an extra tool here, take out a tool there, and try it

again. The fresh information is often even more interesting. Even if the

information is unhelpful, it takes only a moment to rethink the construction

strategy and try an alternative method-to experiment.

Researchers will not be limited to one particular method. If all methods

are available on computer, the researcher can select from a variety of methods,

and is able to combine results to provide a more thorough analysis. At present,

it is difficult to combine the results of one method with that of another. If all

methods are available on a computer system, a procedure can be fashioned for

43

'bolting' the methods and results together. Before such a computer system can

be outlined, the available analytical methods must be evaluated, and the more

suitable set aside for computer-implementation.

"You get an idea; at some point another idea kicks in; you make a

connection or a series of them between ideas; a few characters (little more than

shadows at first) suggest themselves; a possible ending occurs to the writer's

mind ... "57

Man has inspiration, an idea. From that and other ideas, he creates a

complete work of art via an elaborate and highly complex process which no-one

totally comprehends. The work of art might well be based upon a single idea

perhaps a subconscious idea. The subconscious idea rests at the back of the

mind in a solitary form. However, the moment it becomes outwardly apparent, it

changes and alters itself, and is no longer the sole idea, but a host of

transformations and variations. The transformations and variations find a

suitable medium, and they merge into a final form-the work of art. Such an

opinion of composition is not reserved solely for the author of this thesis.

Zaripov stated that "Music occurs in the consciousness of the composer 'in a

burst of inspiration', subconsciously, intuitively ... ".58

Rudolph Reti regarded music as a linear process which passed from a

'beginning' to an 'end', rather like a chain. The chain, containing links which

overlap and occur side by side, evolves from a motif inside the composer's

mind which he allows to grow through constant transformation. If left

untouched, a single inceptive subconscious idea continues to bud, and

produces multiple transformations of itself, concatenating into a never-ending

57

58

King, S., The Stand, Hodder and Stoughton Ltd., 1990, p. 10

Zaripov, R., "Cybernetics and Music", Perspectives of New Musjc, 7 (1969), p. 117

44

chain. It is only through the will of a composer that this reaction is cut short and

aborted. Composers often talk of the difficulties involved in 'finishing' a piece.

Although a fade-out executes a specific gestural intention, it is not unknown for

tape compositions to resort to a fade-out as an ending in a bid to combat either

incessant inspiration or perhaps simply the lack of a studio technique. "Even

Mozart apparently found it easier to begin a movement than to end it: think of

all the works left incomplete".59 Ideas grow. How can the swelling beast be

terminated? Premature and prolonged endings are a common cause of

compositions which 'sound wrong'. Endings, nailed onto pieces out of sheer

terror of uncontrollable unceasing thoughts and images, always leave the

listener in the cold. Thus the composition of an ending is probably more

demanding than any other section of a piece.

Schoenberg believed that the very first notes written by a composer

should be taken seriously by the theorists, whilst Heinrich Schenker's influence

made many theorists take little interest in the last notes of a composition. 60

Esther Cavett-Dunsby likened a piece, and its ending, to that of a detective

story or a 'Whodunnit?'.61 The real enjoyment of a story is its end. Who

committed the crime? How incomplete a story would be without its end. The

ending of a composition can be likened to the last chapter of a book. The length

of the final chapter is dependent upon the length of the book. Lengthy books

require lengthy final chapters. Shorter, less-complex books require little in the

way of a conclusion and usually warrant a shorter final chapter. Large and

complex compositions are very rarely brought to an end in one bar. The

59

60

61

Cavett-Dunsby, E., "Mozart's Codas", Music Analysis, 7:1, 1988, p. 47

"With the arrival of the 1 (last note of the Ursatz-see page 48] the work is at an end.
Whatever follows this can only be a reinforcement of the close-a coda-no matter
what its extent or purpose may be". Schenker, H., Free Composition, trans. and ed.
Ernst Oster (New York: Longman}, 1979, p. 129

Cavett-Dunsby, E., "Mozart's Codas", Music Analysis, 7:1, 1988

45

"Haffner" symphony (K385) of Mozart, for example, reiterates the last chord

eleven times before the double bar is reached as if to say "Yes, this is the end.

This is the end. This is definitely the end". Even so, a listener unfamiliar with a

composition does not know whether its ending has started or is only part of the

way through. A 'new' listener can only say "that was the ending" during the

moment of silence between fall of baton and auditorium applause. The

applause itself is usually led by those who know the work. "Has it finished?" is a

question frequently asked at musical premieres where the composer and

performers are initially the only ones familiar with the composition. Every note

of a composition is, therefore, one number of a vast combination which will

unlock the door of understanding. If a composer spends precious time and

thought in the placing of every little ink dot onto manuscript, all of a composition

is important, and as such, an analysis in pursuit of more understanding and

insight into a piece, might be more successful if it examines all notes.

All too often one cannot appreciate the creative skill and technique

behind a work of art. One longs to know how such a large and complex work

can possibly evolve from apparently nothing. A search for the creative

processes which went into its construction, and quantification of those

processes in such a way that other budding musicians might benefit, will

procure some initial ideas or 'building blocks' from which the entire art form has

evolved. Schoenberg stated that "A composer does not, of course, add bit by

bit, as a child does in building with wooden blocks. He conceives an entire

composition as a spontaneous vision". 62 The dramatists would have us believe

that many prodigious composers conceived their compositions as 'spontaneous

visions'. Unless a composer has reached the stage whereby he can imagine, in

a moment, the complete and final version of his musical work, and then retain it

62 Schoenberg, A., Fundamentals of Musical Composition, ed. Gerald Strang, Leonard
Stein, London: Faber, 1970, p. 1

46

in its entirety in memory until such a time whereby he can write it down,

composition is as the term suggests, a building up from small pieces, stage by

stage. Those with the gift of spontaneous vision warrant the title prophet or

seer, not composer. Yet, there are many stories of composers completing

major musical works on the eve of their performance. Such feats as this can

only be possible if the total structure and layout of the work is held in memory.

Conceiving an entire piece as a 'spontaneous vision' sounds very

impressive, but it contradicts the fact that music unfolds over time. The vision is

more likely to comprise an initial harmonic or melodic idea, a starting point, an

end point, and a climax. What happens between start, climax and end is most

likely to evolve within the composer's mind over a period of time. Writers, for

example, very rarely conceive entire novels in an instance. They have an idea,

perhaps a storyline and the bones of structure. The meat develops over time.

Numerous novelists, for example, begin writing with no clear idea of where their

story is going, or how it is to end. The story develops into a trilogy or series.

Stephen King began writing a series called "The Dark Tower" in 1970. The first

volume, "The Gunslinger", in a series of unknown length was published in 1982

and King wrote, "At the speed which the work entire has progressed so far, I

would have to live approximately 300 years to complete the tale of the Dark

Tower."63 King conceived the tale in 1970, but his vision was not one that

embodied the whole tale. In the first volume he found himself writing about

characters and events for which he had no explanations. "But what of the

gunslinger's murky past? God, I know so little. The revolution that topples the

gunslinger's 'world of light'? I don't know. Roland's final confrontation with

Marten, who seduces his mother and kills his father? Don't know. The death of

Roland's compatriots, Cuthbert and Jamie, or his adventures during the years

63 King, S., The Park Tower. Volume 1: The Gunslinger, Sphere Books Ltd, 1989, p243

47

between his coming of age and his first appearance to us in the desert? I don't

know that either. And there's the girl, Susan. Who is she? Don't know."64 To

date, the tale is still incomplete, and volume three has just been published in an

estimated series of seven. At the end of the third volume King writes, "The

course of the next volume is still murky."65

Prodigies aside, composition has to be learnt using building blocks in the

manner of a child learning co-ordination and structure with its building blocks.

As such, for the majority of composers who never reach the rank of 'seer',

musical compositions have to be built up using standard building blocks.

Schoenberg realised that students of composition would not initially be able to

envisage the 'spontaneous vision' and attempted to teach the "Fundamentals of

Composition" via examples of musical building blocks and how, through the

ages, composers have linked together and varied such blocks to create large

scale compositions. In music analysis, similar building blocks can be linked

together to create large-scale analyses.

Schenker regarded all tonal compositions as a 'projection' in time of the

tonic triad. The tonic triad is projected by its transformation into an 'Ursatz' and

the 'prolongation' of the Ursatz. The Ursatz itself, comprises a melodic linear

descent to the root of the triad with a bass progression from tonic to dominant

and back to the tonic. Prolongation involves ornamentation by auxiliary,

passing, and scalic notes etc of the Ursatz. Even Schoenberg suggested that

all tonal compositions resembled a tonic-dominant-tonic cadential

progression-" In a general way every piece of music resembles a cadence, of

which each phrase will be a more or less elaborate part. In simple cases a

mere interchange of 1-V-1, if not contradicted by controversial harmonies, can

64

65

King, S., ibid., p248-249

King, S., The Park Tower. Volume 3: The Waste Lands, Sphere Books Ltd, 1992, p512

48

express a tonality". 66 To suggest that all composers of tonal works have the

tonic triad at the forefront of their mind before and during composition is a

rather strong generalisation. Certainly, employing Schenkerian analytical

techniques, it is possible to progress backwards from a finished work to achieve

the goal of a Schenker 'Ursatz'. Students, when battling with the concepts of

Schenkerian analysis, frequently refer to the technique as that of reducing a

masterpiece to "Three Blind Mice". The 'Ursatz', in effect a harmonised

descending scale to the tonic, usually from the third (hence "Three Blind Mice"),

together with various variations is shown to be the basic structure behind the

creation of many tonal works. However, interesting though this theory may at

first appear, in reality it implies that all tonal compositions are not only based

upon the same fundamental structure, but employ similar compositional

techniques, ie elaboration and variation. Schenker was not wrong to declare

that all compositions may have an underlying structure or idea. The idea is

more likely to be an idea which remains unique to each composition, and not

one which is common to all. A 'variable' Ursatz is a more viable concept-an

Ursatz which obeys certain structural rules, but looks different for each

composition. An automated tool for locating such Ursatz-variations would help

to ascertain if Schenker's theories extend beyond the realms of tonality. After

all, the songs of Franz Schubert are outwardly tonal, but many of them cadence

in a different key from that which they start in. No standard Schenker '1-V-1'

Ursatz could form the backbone of these pieces. Experiments carried out by

Nicholas Cook67 suggest that listeners only have a direct perception of tonal

closure-a movement or work beginning and ending in the same key-when

the time scale involved is in the order of a minute or less.

66

67

Schoenberg, A., op. cit., p. 17

Cook, N., "Music Theory and 'Good Comparison': A Viennese Perspective", Journal of
Music Theory, 33.1, 1989

49

Standard underlying 'Ursatz-type' progressions should not be ignored,

however, since the searching process itself will procure further information on

structure, and aid serious study of the composition. Certainly, a mechanised

utility which could suggest the possible location of a standard Ursatz within and

underneath a composition will save time and energy, and allow the scholar to

concentrate on other areas of interest. The very attempt to discover how an art

form is created from specific melodic and harmonic ideas will give a 'fresh'

insight into many of those masterful creative processes which for so long

appear to have remained a mystery. The aim of analysis is after all, the answer

to questions and not the art of creating analytical methodologies-" ... you only

have to look through today's specialist analytical journals to realise what a high

premium is generally put on the formulation of increasingly precise and

sophisticated analytical methods more or less as an aim in itself". 68

Music scores for works such as the "Sonatas and Interludes for

Prepared Piano"69 by John Cage, employ standard Western musical notation.

However, any melodic analysis via the score, of such a composition, will yield

false and misleading information. What the classically-trained musician sees

and imagines in the score will bear little melodic resemblance to what he or she

hears when the piece is performed on the 'prepared' piano. The "Sonatas and

Interludes" are playable, and at times melodic pieces when rendered on a

standard unaltered piano. The sounds which emerge from such a performance,

however, bear little resemblance to the composer's intentions. Cage imagined

something rather more rhythmical and percussive. Any true performance of

these pieces requires the piano to be 'prepared' with various objects and

substances such as screws, bolts, nuts, rubber and plastic inserted between

68

69

Cook, N., A Guide to Musjcal Analysis, 1987, J. M. Dent and Sons ltd., p. 3

Cage, J., Sonatas and Interludes for Prepared Piano, 1948

50

the strings at carefully measured distances along the strings. An analysis of the

score will yield structural information, but cannot begin to convey the actual

sound. The score has become a stepping stone from imagination to reality.

Cage delighted himself in writing compositions which were designed to confuse

and unsteady the listener. The "Sonatas and Interludes" have this air of

'trickery' where sounds heard during performance are not backed up by the

written score. The only feature which remains consistent between sound and

score is rhythm. If one ignores the pitches, reads the score as though entirely

written on a monotone, and uses a phonetic-type sound for each note, the

character and mood of the piece is brought across better than through a

rendition of the score on a normal unaltered piano. The "Sonatas and

Interludes" of Cage were written primarily for their rhythmical qualities (an

attribute not overly obvious from a simple glance at the score) and Cage,

intending to evoke the same sounds as the Gamelan, turned the composition of

"Sonatas and Interludes" into an exercise in rhythm.

Sadly though, there are far fewer methods of rhythm analysis, than there

are of melody analysis. Many musicologists argue that melody is 'more obvious'

than rhythm, and the majority of musicologists, when analysing compositions,

opt for melody analysis rather than rhythm analysis. Further suggested

methodologies for rhythm analysis would be welcome, and to be able to select

from a variety of mechanised tools to aid in such analyses would be even more

welcome. A single methodology or a single tool is not enough to tackle every

type of composition type, but a plurality of methodologies in itself does not

provide answers to questions. A language dictionary which contains the

meaning of only one word offers little help when translating a passage of text. A

dictionary containing sixty-thousand words is much more useful but cannot be

used to provide a meaningful translation without a basic knowledge of the

language and its grammar. Likewise, a selection of methodologies enables an

analyst to select the method best suited to the task in hand, but the method

51

itself does not provide answers, only a means of helping the scholar formulate

his or her own answers.

An analysis, to be truly effective, should have its results portrayed in the

same medium as that of the work under analysis. Thus, an analysis of a score

should yield a score. Many methods of music analysis do indeed produce

scores, with the reductive method of Schenker being perhaps the most obvious,

creating not a true music score, but a graph or over-view of the whole work

instead. However, Schenker's graph concept is not entirely successful because

it employs rhythmic symbols to indicate levels of significance within the graph,

and as such, is only readable by those with a true knowledge of the Schenker

symbols. Music analysis and actual analyses should be accessible by anyone

interested and not simply those who have been grounded in the academics of

music, or indeed those who have been grounded in Schenkerian techniques.

If the only way to enjoy a story was to read a book (which requires a

knowledge of the alphabet, grammar etc) and not to listen to a recording or

watch a film, some people would remain unaware of stories and the benefits

and morals that they can portray. The old adage that a contingent of monkeys

typing for an infinite period will eventually produce the complete works of

Shakespeare can be applied to music analysis. If we can undertake an analysis

with little or no experience, many results will be trivial, but some might be

enlightening and beneficial. A fresh approach, an approach untainted by years

of academic study could produce new information, or show current information

in a new light. Music analysis should be accessible by all.

Keller said that "Music about music is immeasurably more objective than

words about music, because music is absolutely concrete". Keller's method of

presenting a music analysis involved composing a score, using the same

instrumentation of the original scrutinised score, which contained passages of

the original score interspersed with aural demonstrations of the links between

52

them. This meant that anyone could sit back and simply listen to an analysis

without requiring an academic background in music. However, his musical

analyses were actually based upon the written score, and since they were not

in fact music (sound) about music (sound), but were music about scores, he

was not quite practising what he preached.

Keller's scores portray his analyses of music scores. Anyone with the

ability to read a music score can read Keller's scores and probably understand

his analyses. When the scores are performed, however, they become subject

to further analysis by the performers, the 'score about score' becomes 'sound

about score', and the final analyses are those of the performers and not Keller.

If one can read and comprehend words, an analysis written in words,

about words, will also be readable and most likely comprehensible. If one can

read a score, an analysis depicted as a score is again readable. Likewise, an

analysis portrayed in sound is accessible to all who can hear.

In listening live, however, one cannot dip randomly in an out of sequence

as in reading. With a book or score, one can turn back to a passage to read it

again and make comparison, which makes the score or text a more suitable

medium for showing the results of analysis.

Music about music, words about words, and scores about scores will

work, but an analysis intermingling them all allows a greater variety of people to

benefit. Those who are unable to read music can read the textual notes or even

listen to analytical extracts.

Semiology, the 'science of signs', when applied to music proceeds in two

stages. Firstly, the musical structure is broken down into distinct units. This

segmentation process produces the musical equivalent of 'signs'. Secondly, the

usage of the units in relation to each other is examined. Most forms of semiotic

analysis retain standard music notation, and rearrange the original score, bar

53

by bar, section by section, into columns of matching or similar paradigms.

Semiology breaks a music structure down into small units which become

nonsensical if broken down further-a unit of three pitches which recurs within

the composition is likely to be more significant than a unit containing a single

pitch which recurs within the composition. However small or large the unit, it

must be salient or motivic to have semiotic significance. The relationships

between the units are examined and set down using standard music notation.

The units as entities in their own right are not significant, but considered within

the network of relationships which constitute the musical structure, they

become significant. A scholar examining a semiotic analysis can immediately

see the relationships between musical ideas and where certain ideas originated

within the score.

In an effort to create the sounds which can only be heard inside the mind

of a composer, many contemporary works break away from the confines of

standard music notation. Sounds heard whilst at a tender age, now stored

within our subconscious, creep into the very notes we inscribe. "he [the

composer] is not always aware ... of how the melody was born and took shape

in his consciousness".7° Maxwell Davies, although referring to the actual score

as much as the aural content, wrote with reference to his "Symphony", "When I

started the present work, in 1973, I had no idea that it would grow into a

symphony". 71 Do composers themselves know what they really want? Do they

know what they wish to achieve? They, and their minds are corrupted by the

sounds which surround them. Over the centuries, composers have been

accused of plagiarism. They write what they perhaps imagine to be original

music, only to discover at a later date that their supposed 'new' melodies have

70

71

Zaripov, A., ibid.

Maxwell Davies, P., "Maxwell Davies: Symphony", (notes on the back of a record
sleeve), DECCA 1979, HEAD 21

54

been inspired, albeit subconsciously, by the works of someone else, and yet,

the melodies are probably not the rightful property of that composer either. No

doubt, the melodies were ingrained into their minds when they heard them

some years prior to their regurgitation.

Analysing actual sound, even with the technology of today, is by no

means a simple task. Computers can be set up to store, in real time, sound

data of live and recorded performances. Nicholas Cook, for example,

developed a computer program for the analysis of piano performance. 72 Tile

input for the analysis is an ordinary audio recording of the music, whereas the

output from the analysis is a listing of the times and intensities of attacks in the

performance. Since the output from the analysis is a list of figures, the output

may be subject to further data processing by the computer. The input to the

computer is in effect an interpretation or analysis of the score by the pianist,

and makes the performance itself available for objective analysis. The data

accumulated within the computer during a recording is not normally of any

immediate use to a musician. The data is usually a large series of complex

numbers, sometimes represented by a graph, and needs further processing to

provide an analysis of style and structure. Converting seemingly endless lists of

digits and aesthetically pleasing graphs into a medium which displays the

structure and style of the composition in a clear and legible way is more often

than not impractical.

The 'medium about medium' theory suggests that the analysis of sound

should yield sound, and certainly, being able to sit down and listen to an

analysis is a most attractive proposition. In the same way that background

music can be appreciated without the need for intense concentration, a

72 Cook, N., "Structure and Performance in Bach's C Major Prelude (WTC 1): An Empirical
Study", Cambridge University Music Analysis Conference 1986

55

'background analysis' might also inform the listener, again, without the need for

intense concentration. After all, music is an experience over time, and a sound

analysis producing sound would reflect this. There are, however, a multitude of

recorded performances available for analysis. All performances are different,

and a performance is an expansion upon the score, in effect an analysis in its

own right, and perhaps the last step of composer-intended elaboration. Many

composers imagine the sound and not the score. If one was to compose using

a reverse Schenker technique (which is hardly standard composing practice) an

Ursatz would become sound via a series of elaborations which progressed

through background, middleground and foreground levels, and finally through

the score and then the performance. To analyse sound, really to analyse an

analysis, would only explain the analysis and not the musical score or indeed

the music itself.

When learning a composition, ready for performance, a musician must

interpret and analyse the score. Some scores are very detailed, but the majority

are vague and ambiguous when stating how certain phrases should be played

and what significance they have within the composition as a whole. Music

notation is an incomplete indication of performance. The musician must make

his or her own judgements and analyse the score. All performances are

different, but the score remains the same. The analysis of a score (a fixed and

constant medium encompassing the thoughts of a composer) is the best

approach available. The score is a stepping stone from imagination to reality.

Interpretation of this stepping stone is the art of the classical musician.

In fact, if all performances are different, one might argue that a single

performance should be heard once only, and allowed to be absorbed into the

mind. Mistakes (all parts of a performance) gradually disappear, and the whole

merges into an overall atmosphere which is often the only real representation

of the original thoughts of a composer. In a musical performance the audience

56

lapses into a state of semi-consciousness. The notes disappear into the overall

sound, shape and form. A 'wrong' note or an action which does not fit the form,

draws their attention and upon waking from their stupor, the 'wrongs' are

actually the things they remember.

Scores can be analysed in rigorous and abstract terms. Scores contain

pitches and time-points, but listeners hear tunes and harmonies and not the

notes as distinct separate entities. "Music need not be performed any more

than books need to be read aloud, for its logic is perfectly represented on the

printed page; and the performer, for all his intolerable arrogance, is totally

unnecessary except as his interpretations make the music understandable to

an audience unfortunate enough not to be able to read."73 This implies the

death of music recordings. Every performance is different, however, and it is

the arbitrary elements in the sounds we hear which make music so wonderfully

attractive. To hear repeated recordings of one performance, infuses our minds

with an interpretation or analysis which is not rightfully ours. Examining the

score, rather like reading a book, forces a reader to imagine his or her own

story or performance. Watching the film of a book often destroys the magical

images conjured up during its reading and frequently forces the film director's

own interpretation and analysis upon the viewer. Likewise, listening to the

performance of a score often destroys the magical images conjured up by its

reading and forces the conductor's interpretation or analysis upon the listener.

In the same way that performances of a composition are quite different,

analyses of a composition are also quite different. There is no 'correct'

performance. There is also no 'correct' analysis, and each analysis emphasises

different points and conveys different information to the reader. A computer

73 Newlin, D., Schoenberg Remembered: Piarjes and Recollections (1938-76) (New York:
Pendragon Press, 1980}, p.164

57

then, to be of ultimate use to the musician, should not impose a definitive set of

results. The computer should work hand in hand with the musician to arrive at a

set of results via a regular and consistent input from the musician. That way,

the individuality of manual analyses will still come across in those produced

with computer aid.

Analysis, of any kind, involves repetitive and laborious procedures such

as deletion of repeated phrases or sections, matching of similar patterns,

reduction of elaborate material, possible shifting and repositioning of particular

phrases, and identification of potential transformation and variation between

phrases. These are all types of procedure which, at first glance, appear readily

adaptable for computer. If the act of analysis is made easier, more scholars

who would previously have stayed clear of the many seemingly complex

methodologies will be tempted to 'test the water' and try out the easier

alternatives. With a plethora of easy-to-use automated tools available, it

becomes difficult to resist the urge of experimentation-if only to see what it

can achieve. The results produced will generate further interest and

experimentation.

No manual analysis methodology can possibly ascertain the significance

of every note within a composition during the lifetime of the analyst. Such a task

is not of finite complexity. A computer-aided analysis, however, will ensure a

more complete and thorough examination of all notes. If one does desire to

create a new analytical method, the analytical method must have been carefully

defined and tested manually beforehand in order to achieve a smooth and pain

free transition from theory to computer implementation. Constructing a model

from plans which are not logical will procure a model which fails to work. If the

manual methodology does not perform correctly, a computer-aided version will

not perform correctly either. Computers may be fast, but they are not

magicians. If a manual methodology has not be tested, computer limitations will

58

twist and warp the initial analysis objectives and methodology during their

implementation.

Computers, 'number crunchers', may only seem good for analysing

music in a logical and mathematical manner. Some theorists argue that music

is mathematical, and even the general public have a tendency to link the two

subjects together. If music is not mathematical, and is deemed to be purely

intuitive, mathematical and logical computers will require skilful programming if

they are ever to reproduce the intuition of a human. H. F. Cohen stated that "In

his [Kepler's] view, God, in creating the Universe, was guided by certain

mathematical regularities. Hence for man, the greatest insight into nature that

can possibly be gained is the discovery of these same regularities as they are

expressed in the world". Many compositions are indeed composed in a

mathematical way, using certain scales, sets of notes, or a serialistic twelve

pitch mechanism for selecting and combining notes. Computer-aided analysis

of pieces composed via these mathematical methods are often more successful

than similar analyses of pieces composed via more intuitive methods, but in the

case of computer-aided analysis it is usually the analytical method itself which

comes under criticism. Any method of analysis designed specifically for a

computer, creates the added danger of 'cold' and often machine-like results,

which do not reflect the constructive art behind the composition. "Set Theory",

originally developed by Allen Forte for computer analysis of works composed

by way of a serial technique, functions admirably. Serialism, a technique which

ensures that melodies contain a single occurrence of every semitone of the

chromatic scale, has to be mathematical in its approach. An analysis, however,

which yields a result such as: "Every note occurring in the piece is contained

within the set '1 0-5'", (where the set '1 0-5' contains ten semitones of the

chromatic scale, and does not account for different octaves) raises both

questions and eyebrows, and can be likened to describing a book as employing

a set called 'alpha' where the set 'alpha' contains every letter of the alphabet.

59

Statistical analysis, described by many as 'feature counting' since it

involves recording the number of occurrences of a specific feature, is also a

methodical and mathematical form of 'analysis' which adapts effortlessly to

computer. Computers are excellent at counting quickly, and thus, after a score

has been converted into a form readable by computer (ie employing an

alphanumeric encoding language to represent pitches and durations as letters

and numbers-of which a multitude exist) it is possible to produce any statistics

required. "How often does an F sharp occur in the piece?", "What is the range

of the tenor part?", "How frequently does the composer employ a diminished

second?", are all questions easily answered through the writing of small

computer programs or algorithms. From statistical analysis, all one can retrieve

is information such as : "Piece A is longer than piece B", "Piece A employs

more semiquavers than piece B", "Piece B contains three E double-flats", and

the usefulness of such results is questionable taken out of context and used as

an entity in its own right.

For a computerised analysis to be successful, the analytical method

should not be one designed specifically for a computer, but must instead be an

adaptation of some already-working manual-methods. The analytical methods

must be tried and tested before the computer implementation begins. Thus, if it

were possible, an error-free computer implementation of the Schenker method

(a method tried, tested and documented) would be far more useful than any

purely mathematical method simply dreamt up for the computer.

Many pitfalls must be overcome when endeavouring to implement

analytical methods on computer. The first, and perhaps the most daunting, is

the transfer of a score into a medium which can be stored within a computer.

This entails converting all the wonders of the full-score into a code which

consists of simply alphanumeric characters. In a way, even the conversion of a

score into representative letters and numbers involves some analytical

60

reductive processes. What should be included and what should be omitted?

Many coding systems do exist, and most, in an attempt to avoid the 'analysis

during-encoding' trap74 , like the notorious DARMS-"Digitai-Aiternate

Representation of Musical Scores"75 try desperately to encapsulate every

symbol which might appear in a score. Consequently, the amount of stored

data becomes vast, and highly complicated. Coding systems can be simplified,

but in such a situation, supposed non-essential markings in the score (slurs and

phrases for example) have to be left out. Thus, the simpler and easier a coding

system is to use, the less useful the encoded data becomes. Encoding

language design should take into account ease of use and comprehensibility,

offering a fine balance between the two.

A normal score itself, is a poor representation of the sounds which a

composer imagines, and therefore, an encoded version of the same score

becomes an even worse representation. As a result, since a computer analysis

of encoded data produces encoded data, any output from the analysis, to be of

any use, has to be converted back into, or related to normal music notation.

There can be no doubt that essential information is lost at both ends of the

score-to-code and code-to-score processes.

There is still a great deal of research to be undertaken in the quest for

the ultimate encoding language--'standards' groups still meet in an effort to

74

75

Encoding every symbol and mark on a score would take up a great deal of time, effort
and computer storage. In an effort to reduce any or all of these factors, analysts
preparing scores for computer-aided analysis become selective in the items they
encode. This very selection process involves an analytical procedure to determine what
should and should not be left out. What one scholar dismisses as immaterial might be
regarded as significant to another. This subjective process is known as the 'analysis
during-encoding' trap.

See chapter three, starting on page 72, for a description of the DARMS encoding
language.

61

standardise on the many languages and systems available76, and, until a

complete system emerges, a truly complete analysis will not be possible. The

thoroughness of a computer-aided score analysis can only be guaranteed if the

encoded data totally reflects the score. However, it is not unknown for

researchers to spend so long creating a method of converting a music score

into letters and numbers, that no time has been left for the actual analysis. For

the purposes of this research, two encoding languages have been used: a

canonical version of DARMS, and a language designed by Walter Hewlett.77

From the computer implementation of analytical method emerges the

dream of a 'push-button analysis'. The dream stars a music scholar pushing a

key on a computer keyboard to produce complete analyses utilising the

techniques outlined by Schenker, Reti, Ruwet, and any other musicologist he

cares to select. There is, however, no set answer to be obtained from a

particular analytical technique, and even the apparently specific rules of

Schenkerian analysis provide controversial results, with, for example, frequent

arguments as to whether or not the "Ursatz" behind a work is an "eight-one" or

a "five-one", ie descends from the tonic to the tonic, or from the dominant to the

tonic. Analysis though, rather than providing 'the' answer (or even 'an' answer)

should only attempt to give fresh insight into a composition-to generate new

ideas or even extract an "I never knew that" response from a user. Any new

knowledge about the structure, meaning, or purpose of a composition (no

matter how small), should be a major goal of all analyses.

76

77

Musical Interchange Processing Standards (MIPS), for example, is a subcommittee of
the American National Standards Institute (official name ANSI X3V1.8M) and is
dedicated to developing an encoding language which can express scores written in
standard music notation.

See chapter three, starting on page 72, for a description of the Hewlett encoding
language.

62

Music scholars can roughly be divided into two categories: those familiar

with analysis methodologies, and those unfamiliar with analysis methodologies.

For those who are familiar, a 'push-button' system is a hindrance, not an asset.

Such scholars do not wish to be restricted by someone else's computer

programs. Their manual skills, acquired over the years, can be adapted to suit

any situation. Pushing a single button will only invoke the computer's sole

means of applying the analysis methodology. For those unfamiliar with all the

intricacies of a particular methodology, however, a 'push-button' analysis is a

boon. Despite being unfamiliar with a specific methodology, they can press a

single button to obtain results from any selected methodology. At the very least,

the results acquired will generate further interest in either the methodology itself

or the actual score. In order to achieve the perfect 'push-button analysis', one

which omits nothing, a computer should scan and examine every note

contained within a composition. Every note has a relationship with the inceptive

ideas of the composer. Despite this, the majority of analytical methods deal

only with monophonic data on the grounds that a complete monophonic line

throughout a composition conveys a composer's style-" ... the essence of

polyphonic style must be embodied in the manner in which a composer

constructs an individual line Consequently, the style of a composer must be

enshrined on the printed page in a single monophonic line, although that line

would need to be of sizeable duration (eg a complete Mass movement or motet

section) for meaningful deductions to be valid"78. Monophonic analysis leads to

melodic analysis because a monophonic line usually contains melody. Even

transferring melodic analysis onto computer has its problems, since the

computer needs to know just what a melody is. Defining melody. however, is

not easy, and certainly to convert any human definition into a computer

78 Morehen, J., "Statistics in the Analysis of Musical Style", Proceedings of the Second
International Symposium on Computers and Musicology, Orsay, 1981, (Paris, CANS,
1983), p171

63

algorithm is a tremendously complex task. The four definitions offered in the

"Oxford Concise Dictionary" ("Sweet music; musical arrangement of words;

arrangement of single notes in musically expressive succession; and the

principal part in harmonized music") offer little help in the quantification of the

word "melody", and, without quantification, one can only suggest that a

computer has to analyse every possible melodic route through a composition to

be certain of missing nothing. More often than not, the highest sequence of

pitches in a composition constitutes the melody, but as this is not always true, it

cannot be used as the basis for finding melodies. Many composers hide

contrapuntal melodies within the underlying harmony of a composition, making

it wise to examine every possible melodic path through a composition in order

to guarantee the 'capture' of the melodies. Composers frequently let melodies

weave a path through underlying harmony-melodies which would normally be

missed if one was to regard only the highest notes of the composition as

melody. Melody could be regarded as the 'focal line'. A set of preference rules

could be used to decide what the focal line is. For example, by default the top

line could be regarded as melody. If more frantic movement occurred in

another line, that line becomes the melody. If another line is louder, that line

becomes the melody, and so on.

If the composition, following successful encoding, is held in a two

dimensional array or grid, with sounding notes placed in the grid corresponding

to where they are situated in the score, it is a relatively simple task to write an

algorithm facilitating the calculation by computer of every route through the

grid, and thus every possible melodic line of the composition. Simple maybe,

but without an algorithm to remove superfluous melodies, the computer

produces a seemingly mammoth amount of permutations and output. For a

hypothetical composition of ten chords in length, with each chord containing

three notes, the number of possible forward melodic routes is fifty-nine

thousand and forty-nine-a veritable wad of paper to sift through.

64

With the length of the average composition greater than ten chords, one

might think that thorough searching of the grid is a fruitless task, and indeed,

until computer technology for the individual advances in terms of searching and

pattern-matching algorithms, processor speed, memory and disk capacity, it

also appears to be an impossible one. Currently, the majority of computer

analyses deal only with single-line encoded melodies. Likewise, although the

research outlined in this thesis concentrates primarily on melodic analysis, it

also describes some tools for basic harmonic and rhythmic analysis. Since

there is little limitation in the expansion capabilities of the proposed

Analysis Environment, the addition of other tools for contrapuntal and more

advanced harmonic analysis is quite viable.

In general, most analyses concentrate on pitch, since pitch, although not

always the case, is often regarded as being of more importance than rhythm. In

piano performance, for example, subtle changes in rhythm will frequently go

unnoticed (and are often taken for granted-labelled as 'rubato' or 'performer's

licence'), whereas changes in pitch are rather more obvious and are usually

branded as 'wrong notes'. "When music is played, the durations of notes are

slightly altered, notes emphasised and envelopes constantly changed in order

to increase the emotional effect. It has traditionally been the job of the music's

interpreters-musicians and conductors-to add this emotional human touch to

the mainly mathematical directions of a score"79 . On the other hand, the

opening bars of Beethoven's fifth symphony would lose all significance and

meaning if the first three notes were given different durations.

If an analysis provides new information, it has achieved its goal. The

encoding language is of little importance in a computer-assisted analysis when

all that is required is some form of result. Admittedly, if everyone utilised the

79 "Putting Passion into Micro Music", The Australian, 9 September 1986

65

same mechanism for converting scores into letters and numbers, scholars

could exchange encoded data with each other. However, at the end of the day,

obtaining a 'result' is more important than the means whereby the result is

obtained. Likewise, the analytical method used is largely irrelevant if the

method enlightens the scholar. The environment outlined and proposed in this

thesis refrains from imposing a specific technique upon the user, and instead

provides many ways of combining different analytical methodologies, offering

many routes for expansion.

Music composition can be assimilated to Meccano. An examination of

the basic 'Music-Meccano' set reveals the nuts and bolts of composition

pitches and durations-and, without these, it becomes difficult for a music

structure to exist. Creating a composition without pitches and durations is

difficult, but not impossible. In fact a handful of composers spend most of their

time attempting to create music structures without the aid of standard nuts and

bolts such as pitches and durations. Further inside the set lie the standard

hinge, bracket, and coupling pieces, analogous to the set patterns of scales

and arpeggios. Harmony, regarded by many as the meat and foundation of

composition, has its equivalent in the strength-giving girders and plates of

standard Meccano. Shape-defining parts, such as funnels, wheels, and hooks,

may be likened to melody. Musical compositions, therefore, may be fashioned

through assemblage of Music-Meccano parts. Even standard parts though, can

be assembled in an unorthodox fashion to create an abstract form, revealing a

structure which does not merit the title of model or composition.

The last item within the Meccano set, and possibly of more importance

than any other, is the instruction manual. Certainly, without the manual,

beginners would find it difficult to build anything of significance. Surprisingly,

nowhere within the glossy leaves of such a manual are there explicit details of

how to build a specific model. Instead, alongside a picture of the completed

66

model-containing most of the information necessary for building-are

enlarged and cut-away illustrations of the more difficult to see, and comprehend

sections. From these illustrated sections it is possible to realise the underlying

structure of the model, and progress backwards to discover not only which

parts are employed, but also how they are employed. Thus, through a reductive

and cut-away process, the Meccano manual succeeds in revealing both utilised

constituent parts, and methods for transferring such parts into finished models.

It follows that a Music-Meccano manual, rather than contain pictures of

mechanical objects, should contain pictures of musical objects, ie scores. A

Meccano manual might contain models such as a Lorry-mounted Crane, Steam

Press, or Swing Bridge; A Music-Meccano manual, however, might contain

scores of a Tenor Song, Piano Sonata, or Clarinet Solo, together with cut-away

and reduced score-illustrations showing the techniques used to build the scores

from the Music-Meccano parts.

The research outlined in this thesis attempts to create a Music-Meccano

'set', containing girders, plates and the nuts and bolts to connect them together.

The Music-Meccano set (referred to as the Analysis Environment) will allow

analytical methodologies to be constructed by bolting specific tools80 together

using a technique called 'piping·.81 Rather like real Meccano, which has sets

ranging in size from a 'pocket set' to the grandest of grand 'set ten' (housed in a

wooden chest of drawers and costing more than the average adult can afford,

let alone a child), the size of the Analysis Environment is dependent upon the

80

81

A tool may be defined as a computer program designed to do a specific task. The
output of the tool may be altered through the use of options. A tool is very efficient
because it is designed to do only one task.

Piping is a mechanism used to connect two tools together by using the output of one
tool as the input to another tool.

67

number of tools within the environment. To use MSDOS82 terminology, all the

tools are 'external' to the environment-ie they are individual programs which

reside on the hard disk of the computer rather than in the memory of the

computer. The proposed Analysis_.Environment can be likened to a 'set one'

Meccano set where a limited number of parts (tools) allow many different

models to be made. Major models cannot be made without a larger number of

parts and, likewise, the Analysis Environmeni will need to be expanded-a not

altogether difficult task-via the addition of new and extra tools in order for it to

allow the building of larger analytical methods from within it.

"There are a large number of analytical methods, and at first sight they

seem very different; but most of them, in fact, ask the same sort of questions.

They ask whether it is possible to chop up a piece of music into a series of

more-or-less independent sections. They ask how components of the music

relate to each other, and which relationships are more important than others.

More specifically, they ask how far these components derive their effect from

the context they are in".83 All analysis theories, no matter how seemingly

diverse and apparently incomprehensible, generate new ideas and show a

composition in a different light. All of them, therefore, are worthwhile and should

be readily available as usable tools in a computerised environment. However,

the tools incorporated into the 'set one' Analysis Environment have had to be

limited in order to provide a finite length to the research period. Goals of the

research have expanded on numerous occasions, always when the previous

collection of goals were nearing completion. With even a modest amount of

tools, there is always the danger of imagining that the Analysis Environment will

be able to answer every question. In 1987, a circular from "Art-Science

82

83

Microsoft Disk Operating System-MSDOS is a series of commands which enable a
user to manipulate data on an IBM or compatible personal computer.

Cook, N., A Guide to Musical Analysis, 1987, J. M. Dent and Sons Ltd., p. 2

68

Workstations of New England" announced the completion of the Music

Scholar's Workstation (MSW) - "a most comprehensive and flexible music and

sound research tool";" ... Providing unparallelled power, speed and user

interfaces within a software/hardware system which has virtually unlimited

flexibility, the Music Scholar's Workstation embodies the finest enabling

technology for exploring the relationship between theoretical constructs and

psychological reality". Art-Science Workstations fell into the trap, and the

circular was marketing 'licence' as opposed to fact. Those with a true

knowledge of the facts, described it as " ... slicing, dicing, midi, ai, kitchen sink

etc".84 No product can provide 'the' answer for everyone. One scholar's goals

when analysing music will be entirely different from another scholar's goals.

"The decision as to which music properties are 'interesting' and worthy of

observation is a subjective one. This can, and should, change depending on

the goals, experience, and means of the investigator".85 A scholar can,

however, insert his or her own tool into the Analysis Environment in order to

extract an answer for the particular problem at hand. Provided that the tool has

been added using the standards set out in chapter four of this thesis, any future

users of the Analysis Environment will be able to utilise the new tool.

The primary task, before experimentation with the Analysis Environment,

is to determine what tools should be present in 'set one'. Reti regarded music

as a chain. A basic tool to locate and suggest the constituent parts of a chain

should be in 'set one'. Likewise, the endings of musical pieces, since they are

often the most difficult and lengthy phase of composition, are very important.

Examining the ending of a composition in particular might provide important

84

85

Hawley, M., "Arts and Sciences Workstations of New England", Music-Research
~. Vol. 2, Issue 7

Brolsma, B., "Music Analysis Presentation Formats", Music-Research Digest, 1987,
Vol. 2, Issue 6

69

information. An 'ending' tool should also be included in 'set one' (the

Analysis Environment).

Schoenberg simplified the compositional process by dividing

compositions up into building blocks. Tools to help locate the building blocks

and discover how they are put together should also be present. Locating the

Ursatz behind a composition-'the' building block-could be a primary task of

another tool in the environment. Locating the Ursatz of a composition is often

enlightening. The Ursatz, however, should not be regarded as specific locations

of I and V chords (which is a widespread but not very useful literal interpretation

of Schenker graphs), but as the longest prolongation of 1-V-1, ie three time

spans. The Analysis Environment should contain a mixture of tools for applying

reductive processes to music. Altering the method in which the tools are bolted

together will change the degree of 'reductiveness'. The tools may be used to

search for an Ursatz, but they may equally be utilised for some other purpose.

Although Schenker's Ursatz concept is restricted to tonal composition, an

adaptation of the tool for locating a standard Ursatz could be used for locating a

'user-defined' 'Ursatz'.

The tools suggested so far are all score-based. Whilst tools for actual

analysis of sound are outside the scope of this research they could be included

subsequently in 'set two'. However, the inclusion of a tool for 'performing'

results from score-based analyses will allow scholars to 'listen' to their

analyses-akin to Keller's ideology. Rhythm, like sound, is not given the

attention it deserves from the analysts. In any well developed analysis system,

tools for rhythm analysis must be included or easily added. Several rhythm

analysis tools, some of which use a pattern-matching technique, have been

incorporated into the Analysis Environment.

Semiotic or 'layout' analytical tools, which provide a more visual form of

analysis, have been incorporated. A tool for printing melodies, extracted from

70

the score during the execution of an analytical tool, is also in the set. The

printing tool does not provide output of a publishable standard, but its output is

quite readable and uses music-like notation.

Forte's comprehensive 'Set Theory' (a ready-made mathematical

method for analysing atonal music) warrants a tool in the Analysis Environment.

However, since Forte spent a great deal of time writing computer programs to

utilise his methodologies, there seems little point in reinventing the wheel.

Similarly, statistical analysis converts to computer algorithms with relative ease.

However, many computer-aided research projects fall into the statistics trap

where all computer programs are merely 'feature counters'. Only one tool,

therefore, will be purely statistics based.

Each tool will be created to periorm a specific task. Options may be

specified when using the tool, and these options will only change the style of

output from the tool. Since a tool will only be designed to periorm a single task,

it will perform it efficiently. More complicated tasks can be accomplished by

bolting a series of tools together.

The thirty-two tools comprising the 'set one' Analysis Environment can

be combined in almost four-hundred different ways, providing many methods of

extracting information from the written score.

71

lhe Encoding languages

"Only someone who has prepared programs and data for computer

processing can fully realise how misleading in its suggestion of ease is the

phrase ' ... and then he fed it to the computer'."86 In the 1987 "Directory of

Computer Assisted Research in Musicology"87 a special section on music

encoding languages cited seventeen examples of encoding methods in use at

the time. What this dearth of languages shows is that despite the great number

of 'standards' committees meeting to decide what should and should not be

used for scholarly research, most scholars are inclined to create their own

encoding language to suit their current needs rather than learn and use an

already established system. "A lot of wasted effort and, perhaps, heated

controversy could be avoided by seeking agreement among researchers in

music on a standard computer representation for music that will serve all of

their ·various needs."88

Some encoding languages treat only one attribute, whereas others cater

for scores of any level of complexity. The DARMS89 encoding language was

conceived for use with a photon printer (an early typesetting device) and as

such had a symbol or set of symbols to encode absolutely everything in a

musical score-from text to slurs. "The most advanced output method of all, the

Photon printer for which DARMS was developed, is today seldom mentioned in

86

87

88

89

Lincoln, H., The Computer and Music. Cornell University Press, Ithaca and London,
1970, preface page xi

Directory of Computer Assisted Research in Musicology, 1987, Centre for Computer
Assisted Research in Humanities, Menlo Park, California

Slawson, W., "A Book Review: Computer Applications in Music", Journal of Music
~.Vol. 12. No.1, 1968, p. 108

Erickson, B. F., "OARMS, A Reference Manual", (New York: Queens College, CUNY,
1976)

72

a musical context, and it has evidently passed quietly away."90 The photon

printer never emerged, but the encoding language is still in use today. Music

scholars saw that DARMS could be put to uses other than music printing. It

offers a method for encoding anything musical a scholar so desires. It does,

however, become more and more complex to use when the amount of

information to be encoded increases. The unabridged or "canonical" version of

the language is vast (the documentation was available a few years ago, to

those with the relevant underground contacts, in a huge A4 binder) and

consequently there are many possible condensations of the language. Most

scholars, who recognise the importance of standards for music data exchange,

resort to DARMS and use a subset to encode only the items of interest to them.

Much of the data encoded in early projects was tailored to answering specific

questions. There were many subsets of DARMS in use. Since scholars only

coded the items of interest to them, there became a need for a 'canonizer' that

would expand these subsets into a complete and full DARMS representation of

the score.

When time is limited, adopting an already standard encoding language

allows research to begin almost immediately. A friend and scholar began work

on the analysis of an Elgar symphony. Time was limited, but he decided that to

create an encoding language was the first step necessary to fruitful research.

Several months later, and at the end of the total period allotted for all the

research, the design of the encoding language was almost complete. The

actual analysis never took place. The infamous Josquin project used teams of

people to encode Josquin's Masses. The project, however, never really got off

the ground and the data-never proved to be totally error-free-remains as a

memorial to yet another ambitious project which never was. " ... the tape

90 Kostka, S., "Recent Developments in Computer-Assisted Musical Scholarship",
Computers and the Humanities, 6 (1971-72), p. 17

73

containing the Masses is I hope somewhere in a locked cage in the basement

of Firestone Library at Princeton, or, somewhere in the Woolworth Center (the

music building) at Princeton."91 Such is the desire for ready-coded data, many

scholars still have a hankering for the non-standard base of data locked away

in the vaults of Princeton. There is a vast quantity of encoded musical data

available, but because of the lack of a single widely adopted encoding method,

the quantity of consistent data available for serious research is scarce.

Theoretically, to be sure that all information possible can be gleaned

from an encoded version of a score, every item on the score must have a

coded equivalent and actually be encoded into the data. Too much information

is always better than too little information in the first instance. It is easier to

create a short tool to extract the relevant data required for the current research.

To this end, the darmstrip tool (described in chapter four and outlined in

appendix A) does just that-it extracts only the data required, for the

Analysis Environment, from canonical DARMS data files. Obtaining data files

containing canonical DARMS is a problem though. When one is coding a score

for oneself, the only way to save time-although false economy-is to skip on

the items selected for coding from the full score. Canonical DARMS data files

are few and far between. Those who produce them are perhaps either doing so

for the sheer love of collecting encoded data, or because they have been

tasked to do so by some higher authority. Music archives do exist, although the

majority of items stored within their vaults are printed music scores and not the

required tapes or disks containing data files of encoded scores. The Oxford

Text Archive92 has now diversified and is accepting encoded versions of

musical works. No attempt has been made to standardise on the method used

91

92

Earp, L., "Princeton Josquin Data", Music-Research Digest, 1987, Vol. 2, Issue 2

Oxford Text Archive, 13 Banbury Road, Oxford OX2 6NN, England

74

to encode the scores, but at least a ready base of musical data is beginning to

evolve.

It is self-evident that before encoding of a score begins, archives should

be checked to see if such data already exist in an encoded form. By the late

1960s, central banks of data were beginning to emerge. Most of the data stored

in these new and accessible data banks, however, was restricted to incipit or

index data. "A start in the direction of a central bank has been made in

Binghamton, where the author's indices of the frottole, parts of the Italian

madrigal repertory, and the complete works of Palestrina have been joined with

other researchers in sixteenth-century music."93 Despite the amount of data

filtering into the Binghamton data bank, most of it was not full scores, ie all

information on the score.

While over in England for a round-table discussion on computers and

music, Walter Hewlett presented the Oxford Text Archive with the complete

Preludes and Fugues of J. S. Bach in encoded form. Since Bach's original

manuscripts had very little in the way of dynamics and other markings,

Hewlett's encoding of the preludes and fugues (containing essentially just pitch

and rhythm) can be described as comprehensive. His data, in fact, formed the

basis for the analysis and test of the Analysis Environment, outlined in chapter

five. The encoding method used for the Hewlett data, however, is neither

DARMS, nor well known.

If data do not exist for the score under analysis, an attempt should be

made to encode the score using a standard and established method. Some

designers of encoding languages claimed that after half an hour of practice, the

symbols and characters of the encoding language could be typed faster than

93 Lincoln, H., "The Thematic Index: A Computer Application to Musicology", Computers
and the Humanities, 2 (1967-68), p.220

75

writing the music out by hand-"The point is made that after half an hour's

practice, the researcher has learned the code so well that its symbols can be

typed faster than writing out the neumes by hand"94. Certainly, DARMS was

designed to be used initially by non-musicians to speed the input of data, and

as such, can be a very fast and efficient encoding method to use. Despite its

distance from musical notation, many musicologists soon became fluent in

DARMS in the same way that language students become fluent in French or

perhaps German. A good encoding language has to strike a balance between

readability and ease of use.

Alphanumerics (letters and numbers) are as similar to music as chalk is

to cheese. Even so, most musicologists saw that the 'text string' (a sequence of

letters and numbers) was the best way to represent music inside a computer.

"Music lends itself extremely well to being handled as a string the string can

represent as much or as little of the music as one wants ... "95 Some encoding

methods involved only numbers which made computer-processing more

straightforward, but encoding and data checking much harder.

Hundreds of encoding methods exist. Each new computer-aided music

analysis project seems to generate a new encoding language, and the bulk of

them escape documentation. The majority of methods reflect the requirements

of their creators and are used to represent the information required for specific

research projects. Some describe musical contour, but ignore rhythm. Others

symbolise pitch, but ignore octave position. DARMS, however, has the ability to

describe everything. " ... the great encoding scheme controversy evidently has

94

95

Bowles, E., "Musicology and Computers", Computers and the Humanities, 4 (1969-70)
pp. 207-219

Bent, I. and Morehen, J., Proceedings of the Royal Musical Association, 104 (1977-
1978), p. 32

76

subsided into a rather placid acceptance of DARMS.''96 Interestingly enough,

the Hewlett encoding method was not one of the seventeen listed in the

"Directory of Computer Assisted Research". A questionnaire sent out by the

Directory had ninety-nine responses describing projects involving the encoding

of musical information. Only twenty-nine of the projects used well established

encoding methods such as DARMS. Those familiar with the problems of music

encoding are not convinced that a standard for music encoding is a viable goal.

The path toward this goal is worthwhile, if only for the accessible data and

information it wili provide.

Since DARMS is destined by many to be the encoding language of the

future, selection of data encoded using the Hewlett method might seem unwise.

The Hewlett data, however, exists. It may be encoded using an unusual

method, but it does exist. If the Analysis Environment tools operate on DARMS

data, the Hewlett data can be converted (via the htod tool described in chapter

four) to DARMS notation.97 Using a ready-encoded set of data enables the

analysis and testing to take place almost immediately, rather than waiting for

the encoding to end, the error-checking to finish, and the debugging to cease.

The data used for testing purposes is largely irrelevant since it is the concept of

joining small tools (which perform small tasks) together, and using them to help

answer complex analytical questions, that is of greater importance and requires

testing. The Hewlett data also saves time and effort in other areas. The

question "What is a part?" has already been answered because the Hewlett

data is encoded in parts. The subjective decision has already been made as to

what is and what is not a self-contained part. The fugues themselves are

relatively straightforward to sub-divide into individual melodic lines or parts.

96 Kostka, S., op. cit., p. 20

97 The essential elements of both the DARMS and Hewlett encoding methods are
described later in this chapter.

77

Other musical works, and in fact the end of some of the fugues, are rather more

problematical when it comes to distinguishing parts. "Polyphonic music is

represented in tracks [parts]. Each track is supposed to represent a single

voice. For vocal and most instrumental parts, the representation process is

straight-forward. But for some instrumental music, especially certain lute and

keyboard pieces, the decomposition of the musical fabric into separate tracks is

often arbitrary and problematic. Where extra notes occur simultaneously, we

have tried to avoid adding extra tracks by allowing a single track to split into

chords. All notes of the same chord must be of the same length, otherwise they

will be put onto separate tracks. Arpeggios and other free-style figuration

present especially difficult problems for this kind of representation."98

The Hewlett data is encoded one part at a time. Each part is delimited by

the words 'BEGIN' and 'END', and all the parts of a single fugue constitute a

single data file (diagram A).

Oiagram A.

original
Hewlett
data-file

EGIN

ncod ing of part I

l.o
· EGIN

ncoding of part 2

NO
EGIN

ncoding of part n

NO

98 An extract from the leaflet which came with the Hewlett data.

78

The parts must be separated into individual data files for use in the

Analysis Environment. A four-part fugue, for example, will have four associated

data files within the Analysis Environment (diagram B).

Uingrnm 8.

_ _L__

U
riginal

Ht>wlett
ala-rile

EGIN

ncoding of part 1

ND

EGIN

r

['"'"' og of '""

'ND
EGIN

ncoding of part 11

;END _____ _

art 1

[new data-~
\ file I)

art 2

[
new data-']

file 2
' .

EGIN

artn

ND

new data-l
filen

', __ ~>'

Notes are placed on separate lines which aids readability and takes up

nominally more space than squeezing as much information as possible onto a

single line. Bars are preceded by the word 'measure' and the number of the bar

(diagram C). teasure 1

ote
vte

rote
wte
wte

Diagram C. rote
ote

role
easure 2

wle
wte
wte
rote
wte
wte
wte
rote
easure 3

wte
wte
wte
rote

·tc.

79

The notes themselves consist of a pitch code, a sharp or flat sign, an

octave position indicator and a duration code (tied notes are encoded as a

single pitch with a single duration) (diagram D).

Diagram 0.
notes

,~---·

\--...

\ '-.
\

' \

[] l~J
D [J
D [J

~~ ~ []
pit:h ··>de \

sharp/flat

\

\
, du ation

octave position

The longest duration, from which all others can be generated as integral

multiples, is given the value one. All other durations are specified relative to this

basic duration unit. For example, a composition comprising semiquavers,

crotchets and minims would have a semiquaver coded as one, a crotchet

coded as four, and a minim coded as eight. The rhythm unit used as a basis for

coding is not necessarily the shortest duration in the composition. For example,

a crotchet may be the smallest actual duration in a composition, but the

presence of dotted crotchets would make a quaver a more sensible base unit

that the crotchet because the quaver is a common denominator between the

crotchet and the dotted crotchet.
measure 12 measure 13

Diagram E. reasure 12

~~ ~
12
12 1
2 1
easure 13
12 3

I

/
~r~· I •. - r ((f D v-· r·

2 3
2 3
est 3

/.. .// //./'/ I I I /
B2 , .· ..- / . / /i I

1
/ rest

A2 / . I I E2

Gll2 / / I B2
Ft2 E2 Ft2

80

Diagram E is an extract from the fourth fugue of Bach's book two ("Well

Tempered Clavier") showing the lowest of three parts. The data represents the

notes in bars twelve and thirteen. The pitch C4 always represents middle C. It

should be noted, however, that a new octave starts on C and not A as one

might expect. This means that the A above middle C is coded as A4 and not as

A5. Thus 82 and A2 represent the pitches Band A on the penultimate line and

last space of the bass clef respectively. The smallest duration in the fourth

fugue is a semiquaver (represented as the value one) and thus the durations

three and six represent a dotted-quaver and a dotted-crotchet respectively. The

rest in bar thirteen is therefore a dotted-quaver rest. Notice that although the

key signature of the fugue is four sharps, F and G sharp have still been

encoded onto individual notes of bars twelve and thirteen.

Tied notes are usually represented as single notes. However, if the tie is

across a bar, the duration code is suffixed with a minus sign as in the following

example (diagram F):

Diagram F.

~
~2 1

2 3-
easure 12
2 3

A seven-line header section appears before the first bar of each part.

The header contains such information as BWV number, part number, total

number of parts in composition, total number of bars, key signature, time

signature and clef.

81

lliauram (;,

header

~E:ciii
8 7 3 2

ischoff
1883/1884

3 3
71 4 12 4
12 16 1 0 2
easure 1

1

musical data

1

1

1
1

1

2.

3.

).

873 2 rJ p ! I
llWV number movement number of sec- section numb<•r

number lions (blank if (blank if only "ne)
nnly nne}

Bischoff
J'l83/1884

4- --- -~ - ------~~ -~~ _---::=--~~-
Information nn S<'Urce

h J
l
i

t<'t;d number "f parts part number

71 4

number of key signature
bars (-7 =seven nats,

7 =s<'Vl'n sharps)

X. l 2 l
t

0
t
'

12 4
t

m:rximum number ma:,imum num-
,,f notes per bar her "f nlltl's per

l'r<>khd

2

!
time signature
12/ Ill

dd mnde movement tvpe
(O=trcble. (O=major. I I =prelude. 1=fuguc)
I =bass) I =mir11>r)

The Hewlett data is converted into DARMS for use within the

Analysis Environment. Since the description of the Analysis Environment tools

(chapter four) and the test analysis itself (chapter five) generate many

examples of output in DARMS notation, the following pages comprise a brief

outline of the essential elements of DARMS. Although DARMS is complex, yet

thorough, it should be noted that only a subset is used for the

Analysis Environment outlined in this thesis.

82

DARMS was intended to be used by non-musicians and, consequently,

pitches are not encoded using their normal letter names. Pitches are referred to

by their position on the stave. Middle C, for example, is represented by the

number nineteen.

30

33 32
31

29 28--------------------
27 --~-------~--------

25 ~: ----- - --~~
2 3 .. ------------- -
21 22

20
19 18
17 --

The following musical extract would be encoded as shown:

--~-
- - Q II II
::-·= --- i!! •

23 25 26 25 24 22 23

A duration code suffixes the pitch code. Duration codes are represented

by the first letter (capital) of the duration name (American, ie a crotchet is a

quarter note and thus a 0). Dotted durations should be followed by a dot.

Whole note w
I lalf fl(•te H

()u:nter note Q
Eighth note E

Sixteenth note s
Thirty-~econd note T

The following musical extract, therefore, would be encoded as shown:

@gJ [3 j J. } r=
23Q 25E 26E 25Q 24Q. 22E 23H

83

Accidental codes should be placed between the pitch code and the

duration code. The following are the permissible accidental codes:

llat
Jnubl~ llat
sharp 0
Jnuhk sharp ~ D

In DARMS, an asterisk is normally used to represent a natural. Notes

within the data for the Analysis Environment, however, are always assumed to

be natural unless an accidental appears in front of them, so the DARMS

asterisk natural-code is not needed. The following musical extract, therefore,

would be encoded as shown:

' J ~B gJ J ~} j
23Q 25-E 26E 25Q 24Q. 22#E 23H

The above extract would be encoded as '230 25-E 26E 25*0 240. 22#E

23H' in official DARMS.

Placing the '/'character in the data indicates a bar line. Two bar line

symbols'//' represent a double bar and thus the end of the data or a section in

the data. The following musical extract, therefore, would be encoded as shown:

' J I ~f3 &j J. ~
#£' Jd

23Q I 25-E 26E 25Q I 24Q. 22#E I 23H II

The letter R represents a rest and should replace the pitch code of a

normal note. Thus, a crotchet rest would be encoded as RO (rest, quarter

note).

Although this is only a tiny subset of the DARMS encoding language, it is

all that is necessary for the Analysis Environment outlined in this thesis. Since

the Analysis Environment tools are created in a modular fashion, new tools can

84

easily be created to examine other details of the score and thus more complex

DARMS data. The following example shows the same extract of music encoded

in "canonical" DARMS and also in the subset used within the

Analysis Environment.

Canonical

23lG !Kl- lM12:8 (29E JOE 29E) 33Q JlE
(29E 28E 29E) RQ 28E I (JOE 29E JOE)
26Q JOE (JlE JOE 29E)

Subset

29E JOE 29E 33Q JlE 29E 28E 29E RQ
28E I JOE 29E JOE 26Q JOE JlE JOE 29E

&wart v m j v 1 trrr fttr
v

Notice the '23!G' code in the canonical DARMS. This is an indication of

what clef is being used. The staff positions used for encoding pitch are the

same no matter what clef is positioned at the beginning of the staff. The pitch G

on the first line of the bass clef and the pitch Eon the first line of the treble clef

are both represented by the number twenty-one-only the clef specified at the

beginning of the canonical DARMS data can distinguish the two. The DARMS

data produced by the darmstrip and htod tools (described in chapter four) uses

only the treble clef and does not, therefore, require a clef code. The pitch G on

the first line of the bass clef has the DARMS treble clef equivalent of 9, ie six

Ieger lines below the treble clef. Data typed in by hand, for use in the

Analysis Environment, should at present relate everything to the treble clef. The

following musical extract, therefore, would be encoded as shown:

'J= e ~r F F r I F J ° F I F F r · ~t;g
12W 13Q 14Q 15Q lJQ I 14Q 12Q 16W 15H I 15H 14H 13H. 13Q I 12W

85

Tied notes are encoded in DARMS by suffixing the duration code, of the

first of the two tied notes, with the letter J (meaning Join). The following musical

extract, therefore, would be encoded as shown:

~,I E2F
25-E 26EJ I 26E 25E

The previous pages have been an introduction to the Hewlett encoding

language and a subset of the DARMS encoding language, both of which may

be used in the Analysis Environment (to be outlined in detail in the next

chapter). A full explanation of the Hewlett method requires only a handful of

pages since its rules are few and its complexity minimal. DARMS, on the other

hand, is infinitely more elaborate, and although this chapter has formed an

introduction to the DARMS subset, the subset is fully expanded upon in context

in chapter five.

86

li"he Ana~ysis En\/ironmeni

A computer operating-system is a collection of programs which control

the overall operation of a computer system. Operating systems normally

contain commands to control the execution of tasks at specific times, the flow of

data in to and out of the system, and the amount of processing time allotted to

users. An operation can rarely, if ever, be performed on a computer without the

assistance of an operating system.

The UNIX operating system started as an experiment in computer

science. It was developed by experts for their own use and was intended to

allow a small group of users to communicate with each other and to share files

and data. It purported to offer a program or tool to accomplish anything a user

desired. Text processors, electronic mail, spelling checkers, even games were

all available within the standard UNIX package. It was, however, really intended

to be a convenient system for supporting computer-program development. The

first release looked like the result of a research project (which it was) rather

than the result of a development effort and a viable consumer package.

Since the 1970s, more than twenty variants of the original UNIX

operating system have appeared as the concept has gijlined popularity. The

operating system is popular with university and industrial environments. Users

appreciate its expandability, portability, and standard syntax for the majority of

commands. All the commands have evolved over the years to follow a more

consistent command syntax. Each command was designed to undertake only

one task, but achieve it simply, quietly (ie without messages and prompts), and

very efficiently. UNIX is portable and can run on a variety of machines ranging

from the small personal computer to the large mainframe computer. Efforts

have been made to agree on a standard UNIX which will run on any computer.

87

The most significant thing about UNIX though, is that problems can be

solved and applications created by interconnecting a few simple parts. Users

can route the output of one program directly into the input of another, facilitating

the solution of large-scale programming problems by combining available small

programs, rather than developing completely new programs. The

Analysis Environment is designed to make the most use of this UNIX facility.

The MSDOS environment provides a similar facility, but only one user can

access the computer at any one time, and no file and data sharing is possible

without the aid of third-party hardware or software.

One of the most important contributions of the UNIX operating system to

the world of computers, is the concept of the 'pipe'. A pipe is an open file

connecting two processes, where a process is a command (or 'tool') which is

currently running. A user may create a 'pipeline' by connecting several

processes together in a linear fashion, through the use of pipes. The pipeline is

specified by a series of program names, separated by vertical bars. The

program names are the names of tools, and the vertical bars are known as pipe

symbols. The output of the program on the left of a pipe symbol is used as the

input to the program on the right of the pipe symbol. There are no major

restrictions to the length of a pipeline. The concept of a pipeline is fundamental

when creating a sophisticated tool out of simpler tools-a more restricted form

of pipes and pipelines has consequently been implemented in MSDOS.

Determining the number of users currently using a UNIX system can be

accomplished by feeding the output of the system's 'who' command into the

command which determines the number of lines in its input.

The command line:

1$ who I we -1

causes the output of the command 'who', which might appear as:

88

clive
elaine

console
tty01

Oct 12 09:30
Oct 12 09:31

to be used as the input for the 'we' command (the 'word count' command). The

'-1' option indicates that only the number of lines is to be printed. Thus, when

the whole command line is typed in, the number of users is printed. (The dollar,

in the example below, represents the computer's prompt for further input).

I! who 1 we -1

The user can create a file containing the command line, and can name the file

'users'. By typing 'users', the commands inside the 'users' file will be executed,

and the number of users currently using the system, will be displayed.

The tools within the Analysis Environment can be connected together in

a similar fashion, to form a pipeline. They may even be fastened to the

standard tools already contained within the UNIX operating system.

The command line:

Is htod b2f2pl.hew I density -s

causes the output of the toolluod to be used as the input to the density tool. The

htod tool converts the Hewlett-encoded data file 'b2f2p1.hew' into DARMS data,

and might produce the following encoded musical extract:

IR I R 26 25-· 26 27 23 26 25- 24 II

.l%1 It ~- • • .. jj, II • •
R I R 26 25- 26 27 23 26 25- 24 II

The encoded musical extract is used as the input to the density tool. The

density tool, by default, prints out the total number of pitches in the composition,

89

and the '-s' option suppresses the output of the DARMS data at the end of the

pipeline. Thus, the complete command line prints the total number of notes in

the data as follows:

S htod b2f2pl.hew I density -s
Piece density: 8
s

Most UNIX and Analysis Environment commands take their input from an 'input

stream' and write their output to an 'output stream'. Unstructured sequences of

characters used as input or produced as output are referred to as streams,

because they have no structure. A command's input stream is called 'standard

input' and its output stream is called 'standard output'. Usually, the standard

input for a command comes from the terminal's keyboard, and its standard

output goes to the terminal's screen. Both standard input and standard output,

however, can be redirected from and to files. For example,

Is score b2f2pl.dms

sends its output to 'standard output' and so the score produced by the score tool

is displayed on the terminal's screen. The command line:

Is score b2f2pl.dms > b2f2pl.scr

uses the > character (right angled bracket) to redirect the standard output to

the file 'b2f2p1.scr'. The file 'b2f2p1.scr' will be created if it does not exist, or will

be emptied before use if it does exist. When the command finishes, the file

'b2f2p1.scr' will contain the score produced.

The >> operator (double angled bracket) also redirects the standard

output of a command to a file, but appends the output onto the end of the file

instead of overwriting the original contents of the file.

90

The majority of UNIX and Analysis Environment commands adhere to

the following syntax:

Is command options filename

where the options are usually a series of characters preceded by a minus sign.

The options only change the output produced by the command, and do not

normally alter the way in which it works. If a filename is missed off the

command line, the command reads its input not from a file, but from the

keyboard. Using this method, it is possible to try commands on small melodies

typed in by the user, rather than complete scores stored in data files.

During the building of a prototype it is often necessary to simplify the

design wherever possible, to provide a working model on which tests may be

carried out, and results studied. Naturally, increasing the number of

simplifications, will create more failings in the prototype model. Similarly, to

achieve a working Analysis Environment, simplifications are inevitable.

Many arguments have been made for and against the relative

significance of pitch and rhythm in music, and although music compositions

cease to be music compositions if either pitch or rhythm is removed, the former

is initially of more immediate interest. The Analysis Environment, therefore,

concentrates mainly on the analysis of pitch, accounting for any octave.

Another simplification, and thus theoretically a failing, is the disregard of two

dimensional construction-ie the Analysis Environment only contains tools for

the analysis of single-line melodies.

All of the Analysis Environment tools operate on data files which contain

DARMS data. The DARMS data used for the Analysis Environment data files,

however, is a subset of the complete DARMS encoding language, and may

only include pitch, rhythm (which is optional), bar lines and rests. The test data

used for evaluating the Analysis Environment was chosen, not simply because

91

of its historical importance, but because an encoded form already existed in the

Oxford Text Archive. Many scholars have spent an inordinate proportion of their

research time either creating a new music encoding language, or encoding the

music scores prior to analysis, and avoidance of this trap in the current context

was a priority. Unfortunately, the test data (Johann Sebastian Bach's "Well

Tempered Clavier'', Book II) had been encoded using a method devised by

Walter Hewlett, which differs substantially from DARMS. DARMS though,

already established and popular, provides a sensible encoding standard for an

environment which is also intended to become a standard.

The first tool in the Analysis Environment then, is the htod tool, which

converts a Hewlett-encoded data file into a DARMS-encoded data file. By

default, the htod tool does not include rhythm data since most of the

Analysis Environment tools deal specifically with melody. If rhythm is important,

specifying a '-r' option on the command line will include rhythm data during the

conversion process. Key signatures do not appear in the DARMS data which is

produced, and are instead, encoded as accidentals. The transfer of the key

signatures to accidentals simplifies processing of the data. DARMS-encoded

data files for use in the Analysis Environment should contain a single

monophonic line which may or may not include rhythm. Likewise, Hewlett

encoded data files, which are to be converted to DARMS, should only contain a

single monophonic line.

Two options may be utilised with many of the Analysis Environment

tools. Generally, when a tool has finished its task, the resulting melody (if the

92

tool has altered the original in some way99) or the original melody (if it is

unaltered) will be sent to the standard output (ie the screen). Occasionally,

when a user only requires information produced during the use of the tool, and

not the altered or unaltered melody, it is desirable to suppress the output of this

melody. Suppression of the output from a tool can be achieved by specifying

the '-s' option on the command line. For example, the command line:

Is key-s b2f2pl.dms

determines the overall key of the data file 'b2f2p1.dms' and displays the

evaluated key on the screen 1 oo, but does not print out the contents of the data

file since the standard output has been suppressed and cannot therefore be

piped into another tool.

The second, commonly available option, prints out informative messages

during the execution of an Analysis Environment tool. The '-v', or 'verbose

mode' option, is intended to keep the user informed about what is happening.

Used with the htod command, it produces the following output to show its

progress during the data conversion:

99

100

$ htod -rv b2f2pl.hew > b2f2pl.dms
Size of data: 2180
Removing BEGIN and END ...
Removing header ...

Two types of tools exist within the proposed Analysis Environment. The first type of
tool, known in UNIX as a filter, reads in a DARMS-encoded melody. The tool does a
specific job on the melody (such as removing all the repeated notes), and writes out the
modified melody ready for use by another tool if required. The second type of tool reads
and writes the same melody (ie it does not alter the original), and merely provides
information on the melody.

Information generated by a tool (such as the key of the data), as opposed to the original
or altered data itself, is actually sent to the standard error stream instead of the
standard output stream. This means that although the standard output can be
suppressed using the '-s' option to avoid displaying the DARMS data, any information
generated by the tool will still be seen because the standard error stream remains
unsuppressed and will be displayed on the screen.

93

Replacing measures ...
Replacing rests ...
Starting conversion ...
$

To make the Analysis Environment tools more versatile, some of the tools

accept a large number of options. To obtain a list of available options, the '-?'

option may be used with any Analysi~Environment tool. Using the'-?' option

with the htod tool, for example, displays the following:

$ htod -?
Options:
v - verbose mode
r - rhythmic information
$

Invariably, one does not normally wish to examine an entire data file at one go.

Typically, only a part of the file is of interest. As such, the extract tool enables a

user to extract a specified part of a DARMS-encoded data file. Melodies may

be extracted by choosing a starting note or bar and a terminating note or bar.

Omitting the terminating note or bar, extracts a single note or bar. For example,

the command line:

Is extract -b3 b2f2pl.dms

extracts the third bar from the data file 'b2f2p1.dms', and produces:

\25-Q 24-Q 23E 26E 22Q

@+•J J: :@~"'
25-Q 24-Q 23E 26E 22Q

whereas the command line:

Is extract -n5,8 b2f2pl.rlms

94

extracts the fifth, sixth, seventh and eighth notes from the data file

'b2f2p1.dms', and produces:

lz3E 26E 25-S 24S

23E 26E 25-S 24S

Analogous to the solving of an enigma, music analysis appears to rely

heavily upon intuition. An often successful way to solve the majority of

complicated puzzles is to make intuitive leaps during the formulation of a

solution. However, since intuitive leaps are difficult to quantify mathematically,

one might speculate that a computerised version of a specific analytical method

is not possible. Although many attempts have been made to computerise

previously devised analytical methods, methods specifically designed with

computer-aid in mind are better able to capitalise upon the particular

advantages to be gained from using the computer as a tool for analysis.

Computers are good at repetitive tasks, manipulating numbers and performing

calculations. An analytical methodology which has been conceived to involve

numbers, and repetitive tasks involving the numbers, must be easier to

implement on a computer than one which requires intuitive-type comparisons of

musical material. Lengthy searches of similar data-prone to human error from

monotony-can be achieved in a fraction of normal time using a computer, and

an analytical methodology involving such laborious searches will benefit from

the speed of a computer. Computers can 'learn'. Information gleaned from an
101

analysis may be stored in a database and re-used at a later date. The 'old'

information is not lost, and can be referred to during future analyses.

101
A database is a highly organised file of related information. Information in the database
is usually allocated to a specific subject and is accessible from multiple computer
programs.

95

Correlation and sorting of information is also achieved quickly and efficiently on

computer, and many standard algorithms are available.

Since its analytical method is based upon uncomplicated rules and

formulae which can be processed, Allen Forte's "Set Theory"102 may be

regarded as a good example of a successful computer implementation. Forte's

system, however, was originally conceived for analysis of serial composition,

and is regarded by some as unsuitable for tonal music analysis because its

results and conclusions refer to melodies which are mathematical in nature and

often not intuitive or 'inspired'. To use the subjective labels of suitable,

unsuitable, success and failure though, ignores the point behind analysis-ie

that of providing a user with fresh insight into a composition's structure. The

careful nurturing of a new-born analytical environment, akin to Forte's baby

(weaned from raw rules to powerful equations) might offer a route to the

successful use of a computer as an aid to tonal music analysis.

What is analysis? Dictionaries define analysis as the resolution of an

object into simpler elements, with the intention of finding and showing the

object's structure. A tonal composition can indeed be separated into simpler

constituent parts or elements. This 'resolution' process, if carried too far, would

break the composition up into the smallest musical elements available, ie a

collection of pitches belonging to the chromatic scale.

Such an analysis, in its crudest and most basic form, can be regarded as

the disintegration of a composition. However, somewhere during this

disintegrating or 'decomposing' process there must be a point beyond which

the resulting analytical elements are so small as to constitute an unhelpful

rotted-representation, and before which the elements are so large as to be

102 Forte, A., The structure ot Atonal Music, Yale University Press, 1973

96

simply an abridged version of the original composition. This, for want of a better

term, 'breaking-point', is the point in a reductive analysis which will provide the

most useful information regarding a composition's actual structure and an

insight into its method of creation.

One of the main questions to arise from such a suggestion is that of

element size. What is the size of each element at the breaking point? Two

pitches, a chord, a bar, maybe an entire phrase? How far can an element be

decomposed before it loses its identity, before it can no longer belong to the

breaking point? Beethoven's fifth symphony is famous for its 'fate knocking at

the door' two-pitch opening rhythmic element. The Beethoven element does

not, however, rely solely upon pitch, but instead combines both rhythm and

melody to give the element its haunting identity. Remove the pitch, remove the

rhythm or change the size (ie length) of the Beethoven element, and the new

element lies beyond the analytical breaking point-it loses its identity.

Two tools in the Analysis Environment help to reduce (ie decompose) a

composition. The reduction, however, is undertaken in a controlled manner,

and should not take the composition beyond the 'breaking point'. Some

compositions will undoubtedly lose their 'identity' no matter what is taken away,

but this theory will be tested to some extent when the Bach data is analysed

using the tools of the Analysis Environment, in chapter five.

The first tool, rnote, removes repeated notes from a composition. By

default, the rnote tool will scan a data file only once, progressing through by a

pair of consecutive notes at a time, removing a note if the pair of notes are the

same. What this means is that a single pass through the composition is not

guaranteed to remove all the repeated notes, and the '-r' option should be

employed to force the rnote tool to scan, reiteratively, the data file until all

repeated notes have been removed. With a data file, called 'demo.dat',

containing the following DARMS extract,

97

!25 25 I 25 24 25 26 27 I 21 26

~-~ Eo 0 o- --v==o-1 o------cr.

25 25 I 25 24 25 26 27 I 27 26

the ensuing example shows the result of using the mote tool with and without

the '-r' option:

1

$ rnote demo.dat
25 I 25 24 25 26 27 I 26
$

=&fo--8=-o 0

25 / 25 24

$ rnote -r demo.dat
25 / 24 25 26 27 I 26
$

0

25

0 0

26 27

25 I 24 25 26 27 I 26

1=:12
/ 26

The anote tool also uses the Schenker approach and removes auxiliary

notes from a composition. Again, the anote tool will scan a data file once only,

and the '-r' option should be used to guarantee the removal of all auxiliary

notes. Auxiliary notes are selected pictorially rather than harmonically. This

means that if in a set of three notes, the first and last notes are on the same

line, the middle note will be regarded as an auxiliary note if it is in the space

above or below the other two notes irrespective of what accidentals might be in

front of the middle note. The first and last notes, however, must be the same

pitch. With a data file, called 'demo.dat', containing the following DARMS

extract,

!25 1 24 25 26 24 25 24

98

25 I 24 25 26 24 25 24

the ensuing example shows the result of using the anote tool with the '-v'

(verbose) option:

$ anote -v demo.dat
Size of data: 24
Removing ...
25-24-25
24 removed
26-24-25
24-25-24
25 removed
25 I 25 26 24 24
$

~0 0

25 I 25

& tL ______ 1L----

26 24 24

The size of the data displayed in the previous example is the number of

characters (including control characters such as a carriage-return) in the data

file itself. The rest of the output produced by the '-v' option shows each set of

three notes being examined in turn, and indicates when an auxiliary note has

been removed.

The rnote and anote tools may be used together since the removal of

repeated notes might produce new auxiliary notes, and the removal of auxiliary

notes might produce new repeated notes. Both tools may be bolted together in

the standard UNIX fashion:

Is extract -bl,3 b2f2pl.dms 1 anote -r 1 rnote -r

The above command line would produce the following three bars, from the data

tile 'b2t2p1.dms' (which contains the first part from Bach's second fugue of

book two (WTC)), after the extract command,

99

R I R 26 25- 26 27 23 26 25- 24 I 25- 24- 23 26 22 I

fi£ __ ~-"~ -~-- ~~~1~-~~~:=~tt&e--=~~-~g=~-;_-_-~ ~~~t
R I R 26 25- 26 27 23 26 25- 24 I 25- 24- 23 26 22 I

the following output after the anote command,

IR I R 26 26 27 23 26 25- I 25- 24- 23 26 22 I

R I R 26 26 27 23 26 25- I 25- 24- 23 26 22 I

and the following final output after the rnote command:

IR I R 26 27 23 26 25- I 24- 23 26 22 I

-~
--- c=r= - ill!

.. -~-~~ _In! IP
li_

• ---

R I R 26 27 23 26 25- I 24- 23 26 22 I

It shou'ld be noted that only the final output (ie the output at the end of the

pipeline) is sent to the standard output stream (ie the screen)_

Any data, produced from an Analysis Environment command line, will be

in DARMS format. If a scholar is not conversant with DARMS, output in that

format will not be of tremendous use. Fortunately, the Analysis Environment

provides two tools for converting DARMS output into a more 'musical' format.

Although the first tool, score, requires nothing special in the way of output

devices, the second tool, play, will only run on an MSDOS machine 103 (ie IBM

103 MSDOS contains a restricted version of the UNIX pipe facility_ Since the tools of the
analysis environment are all written in the C programming language, they can be
compiled for an MSDOS machine. The Analysis Environment, therefore, will run on an
IBM compatible computer. and moves its application from simply an academic
environment to a personal or home environment. Using the Analysis Environment under

100

Personal Computer compatible) since it requires the standard built-in speaker

to reproduce its audible monophonic-output. The score tool uses the standard

character set to produce a pseudo-music notation. Rhythm is not displayed, but

any scholar with a slight knowledge of music notation should be able to

decipher the output of the score tool. Specifying the '-v' option (normally

'verbose mode') will print bar numbers in the appropriate places.

The play tool (only for use under the Microsoft Disk Operating System

MSDOS) produces an audible rendition of DARMS data fed in on standard

input. This means that any command line which produces DARMS output can

have the play tool bolted onto the end, and the result will be played for the

scholar to hear-rather like the intentions of Keller. An '-r' option allows the play

tool to read and utilise the rhythm data. The overall tempo of the piece is

calculated automatically by searching for the shortest note within the data and

using that as a base duration-similar to preparation for music sight-reading,

which entails finding the 'blackest' (ie densest) part of a score, and calculating

an overall tempo from that. Initially as a 'trivial' option, the '-n' option plays

every note in a stream of DARMS data with a nominal zero seconds duration.

This produces a 'noise', and is probably the audible shape of piece squeezed

into a matter of seconds. It could have a future use in the comparison of entire

melodic lines. If the extract tool is used to extract the first three bars of a data

file, and produce the following DARMS,

MSDOS, however, is restrictive because none of the hundreds of standard UNIX tools
or shellscript programming languages (of which the Bourne shell programming
language will be expanded upon in chapter five, and is outlined in appendix C) are
available. The research outlined in this thesis has taken place in a UNIX environment,
but has also been tested in the more restrictive MSDOS environment. Only one tool,
the play tool, is exclusive to the MSDOS environment.

101

26 25- 26 27 23 26 25- 24 I 25- 24- 23 26 22 I
22 21- 20 23 22 21- 20

s-o--.v~~o--_--&o-b-o--.-~ .. -
--- . ~ - F-------------
------- 0----===-- o--- a±.-::£L.&o-----v---~-1L !f'o--- -a-

26 25- 26 27 23 26 25- 24 I 25- 24- 23 26 22 I 22 21- 2o 2J 22 21- 20

the score tool, when bolted on to the end of the extract tool, will produce the

following output:

$ extract -b1,3 b2f2pl.clms 1 scoH~

+----------+-------+---------+

+----0-----+-------+---------+
10 0 o I 0 I
+-bO----bO-+bO-----+---------+
I Ol bO I I
+-----o----+----0--+----o----+

010 0
+----------+-------+-bO---bO-+

0 0
$

Even when DARMS output is piped into the play tool, the output still comes out

of the other side and is available to go into another tool. This means that sound

output can be produced at different points along the pipeline, (before and after

removing repeated notes for example). The following example plays the

contents of a data file called 'b2f2p1.dms' before and after the mote and anote

tools have been used to remove the repeated and auxiliary notes respectively.

1$ play b2f2pl.drns I rnote -r I anote -r I play

Tools that modify musical data might equally be beneficial to composers or

those simply interested in manipulating sound. Although the majority of tools in

the Analysis Environment perform tasks related to music analysis, three of the

tools transform data, generating new structures and, when piped through the

play tool, new sounds. The first of these 'composing' tools, shuffle, changes the

order of bars within a melody. By default, the shuffle tool puts complete bars of

102

a given melody into an arbitrary order. For example, given the following

melody:

26 25- 26 27 23 26 25- 24 I 25- 24- 23 26 22 I 22 21- 20 23 22
21- 20

0 0 lie -
0

- :_a-~ Oo-- -~

26 25- 26 27 23 26 25- 24 I 25- 24- 23 26 22 I 22 21- 20 23 22 21- 20

the shuffle tool might rearrange the bars to produce the following:

25- 24- 23 26 22 I 22 21- 20 23 22 21- 20 I 26 25- 26 27 23 26
25- 24

'* b.,. Q_ Q &.s Q 0 Q ~ ..
0 b., oi)

I!! .. 0 • b<!l e>
0 0

25- 24- 2J 26 22 I 22 21- 20 2 3 22 21- 20 I 26 25- 26 27 2J 26 25- 24

The '-n' option of the shuffle tool specifies the size of the note unit to be shuffled,

overriding the default size of a bar. For example, specifying '-n3' will shuffle

units of three pitches in length into and arbitrary order. If the above three bars

are subjected to the shufj7e tool with the option '-n4', the following data might be

produced:

25- 24- 23 26 23 26 25- 24 23 22 21- 20 22 22 21- 20 26 25- 26
27

~~"' b. • • ~ e •b •
• • .. • b. • & • • • • •

25- 24- 23 26 23 26 25- 24 23 22 21- 20 22 22 21- 20 26 25- 26 27

The '-c' option, when used with the shuffle tool, ensures that the end of one

shuffled unit moves smoothly onto the beginning of the next shuffled unit. A

smooth move for one unit to another is deemed to a repetition of a pitch or a

progression by up to a major third. Bars that cannot be shuffled smoothly are

103

discarded. Shuffling the same three bars with the options '-c' and '-n2' might

produce the following:

21- 20 21- 20 22 22 23 26 25- 24- 23 22 23 26 25- 24 26 25- 26
27

J2 <;J! ~ .. b @
jii! ~0 !!.! ~0 12 o-

~0 e 0 e ?>

0 e "' E> ...
21- 20 21- 20 22 22 23 26 25- 24- 23 22 23 26 25- 24 26 25- 26 27

The squash tool can be made to augment or diminish the size of intervals in a

given melody. By default, the tool diminishes all intervals by a semitone. Using

the squash tool, with no options, on the following melody:

26 25- 26 27 23 26 25- 24 I 25- 24- 23 26 22 I 22 21- 20 23 22
21- 20

C!> 0 0 b e-------t~ "' be ~

s e b. ..
"' ~-"' ..

25 25- 26 27 2 3 26 25- 24 I 25- 24- 23 26 22 I 22 21- 20 23 22 21- 20

produces:

26 25 26 27- 23 25 25- 25- I 25- 24 24 27- 23 I 23 23- 23- 25-
24 24- 24-

i b. b. b. b. ~ ..
b • b. be b. .. • • • • • • •

26 25 26 27- 2 3 25 25- 25- I 25- 24 24 27- 23 I 23 23- 23- 25- 24 24-

G •

2 4-

Since the interval of unison cannot be reduced, note repetition always remains

as note repetition. The '-a' option, when used with the squash tool, augments

intervals by a semitone instead of diminishing them. The amount of increase (in

semitones) applied to the augmentation or diminution may be specified with the

'-n' option. For example, if the '-a' and '-n2' options are used with the squash tool

on the following data:

104

26 25- 26 27 23 26 25- 24 1 25- 24- 23 26 22 I 22 21- 20 23 22
21- 20

~=-~~ ~ .. ~;;g=~e-& • ~ G>-

"" be e 6>~ ill •
26 25- 26 27 23 26 25- 24 I 25- 24- 2 3 26 22 I 22 21- 20 2) 22 2 1- 20

the following result is produced:

26 24- 26 28 23 27 25- 23 I 25- 23- 21- 25- 20- I 20- 17 16- 20-
17 15 13

---~-.- --:;-<!>-
26 24- 25 28 23 27 25- 23 I 25- 23- 21- 25- 20- I 20- 17 16- 20- 17 15 13

The vary tool also affects intervals. The tool reverses the direction of all

intervals. Ascending intervals are made to descend, and descending intervals

are made to ascend. The '-a' and '-d' options reverse the direction of only

ascending and descending intervals respectively. For example, applying the

vary tool to the following data:

26 25- 26 27 23 26 25- 24 I 25- 24- 23 26 22 I 22 21- 20 23 22
21- 20

~ • b .. • • -~"' I ~- b • " • • • b • • -be • • • •
26 25- 26 27 23 26 25- 24 I 25- 24- 23 26 22 I 22 21- 20 2 3 22 21- 20

produces the following result:

26 27 26 25- 29 26 27 28- I 27 28 29 26 30 I 30 31 32- 29 30 31
32-

~
b. • • _b.._

•
..b..

• E¥. • • • • q. • • •
26 27 26 25- 29 26 27 28- I 27 28 29 26 10 I 10 3 1 32- 29 30 11 32-

105

Music scholars have standard ways of expressing music structure. For

example, binary and ternary form can be expressed symbolically, in terms of

letters, as AB and ABA respectively. Forte devised a parsing technique which

can be used to rewrite music repeatedly in a simpler form until there remains

no repetition of musical material. His technique, which was revised and used at

a later date by I an Bent and John Morehen, forms the basis for the form tool. By

default, the form tool takes account of accidentals and octave position of notes.

This, more often than not, results in a symbolic form of little help since there are

so many different units and often no repetition of any units. Consequently, the

'-a' and '-o' options force the form tool to ignore accidentals, and the octave

position of notes, respectively. This usually decreases the number of symbolic

units produced and increases the amount of repetition of the units. By

themselves, the symbolic units are of limited used, but a '-k' option produces a

key which shows the notes referred to by each symbolic unit. As an example,

the first three bars of the first part from Bach's second fugue in book two (WTC)

may be extracted from the data file 'b2f2p1.dms' and redirected into the file

'testdata', using the following syntax:

~~extract -b1,3 b2f2pl.dms > testdata

The new data file 'testdata' contains the following DARMS:

26 25- 26 27 23 26 25- 24 I 25- 24- 23 26 22 I
22 21- 20 23 22 21- 20 I

..... ~Ft±· b. e • b • • •
26 25- 26 27 23 26 25- 24 I 25- 24- 23 26 22 I 22 21- 20 23 22 21- 20

Using the form tool on the data file 'testdata' with the '-s' option, to suppress the

output of the original DARMS data, produces the following output,

106

1

$ form-s testdata
A B C D E C F G H G
$

which shows that symbolic units '23 26' and '21- 20' are repeated (diagram A).

'
ll ~0 Q 0 Q ~0 ~0 bQ Q j 0

Q

26 25- 26 27 23 26 25- 24 I 25- 24- 23 26 22 I

Oiugram A. ~-~' - -- -- ______ j
c c

22 21- 20 23 22 21- 20 I

~ ~1- 20 ! ---c ________ =r'
0 0

Using the form tool with the '-a' and '-o' options, to ignore accidentals and

octave position respectively, produces the following output,

1$ form ~aos testdata
A B C D D C E F G F
$

which shows that symbolic units '23 26' and '21- 20' are repeated as before, but

also that '25- 24' is repeated as '25- 24-' (diagram B).

Some people might argue that resemblance after removal of accidentals

is no more significant than any other transposition. Removal of accidentals

leaves the 'shape' of the melody and not the exact sound. This enables similar

shaped units such as '25- 24' and '25- 24-' to be identified. Some compositions

contain fragments that are conceived based on shape and structure as much

as sound.

107

J=~o-v==o a:::=jjo 0 0 0

26 25- 26 27 23 26 25- 24 I 25- 24- 23 26 22 I

Diagram 8. i23 26 r?5- 24) ~5- 24-]23 26 1

i J
c c

D D

if~~~ 0 lj.G -- 6?
0

22 21- 20 23 22 21- 20

121- 2Ql ~1- 20
--c~ r
F F

The following example uses the '-k' option to display a key for all the

symbolic units:

$ form -aoks testdata
Final element size: 2
A = 26 25-
B 26 27
c 23 26
D 25- 24
D 25- 24-
c 23 26
E 22 22
F 21- 20
G 23 22
F 21- 20
$

A search for the main building-blocks of a composition, along with the

techniques employed in fastening them together, will give more insight into its

real structure. Analogous to the building of a house, where utilisation of bricks

(as opposed to reliance upon a foundation), defines its structure and

appearance, a search for musical structure requires analysis of the melodic and

contrapuntal lines created from brick-like notes, (avoiding any temptation to

108

examine the foundation-like harmony). Admittedly, a house with poor

foundations might either sink or fall to the ground, but it is the house's initial

outward appearance, similar to the hearing of a composition or perusal of a

score, which arouses one's imagination, creating vivid imagery.

In psychoanalysis, the interaction of conscious and subconscious

elements within the mind are investigated in a bid to bring the latter element

into consciousness. Likewise, in 'musicanalysis' [ID.Q], one deals with

relationships between the 'initial subconscious idea' and the conscious score.

Since the subconscious part of the mind is able to influence all actions, it

follows that the subconscious musical idea, similar to the 'brick'-never actually

thought about, though frequently used-can influence the compositional

process, and must be traceable through fine and methodical study of a work's

score. Therefore, the subconscious idea, or 'brick', together with construction

plans, may help to reveal a composer's compositional technique, and as such,

offer the goal and one of the many different definitions of analysis-the search

for a subconscious idea, behind, and within a composition.

The very essence of the house is a single red brick, repeated. However,

essentially progressing in straight lines, it, and others, work contrapuntally with

higher and lower parts, rarely allowing brick-edges to meet, except at window

and door climaxes. The wall-end cadences, emphasised by cleanly cut half

bricks, act as movements by dividing the house into sections; and, with clever

use of vertical bricks to emphasise such climactic windows, creates a style

unique to the building.

Many of the Analysis Environment tools aid in the search for either an

underlying idea, or usage of specified 'building blocks'. The ursatz tool is

perhaps the most straightforward in its usage. By default, the ursatz tool

109

displays possible locations for 8-1 I 5-1 I 3-1 , standard and prolonged

Ursaetze 104. Since each tool in the Analysis Environment is designed to

undertake one specific task and perform it efficiently, the ursurz tool does not

calculate the key of a DARMS data stream. The key must be specified on the

command line, after the '-k' option. G sharp minor, for example, would be

specified as G#ml and inserted into the command line as shown below:

lursatz -k G#m b2f2pl.dms

If only a specific type of Ursatz is required, the options '-8', '-5' and '-3' will

select only 8-1, 5-1, or 3-1 Ursaetze respectively. Using the '-p' option selects

only prolonged Ursaetze. To select all possible locations for 5-1 and 3-1

prolonged Ursaetzel the '-5', '-3' and '-p' options should be inserted into the

command line as shown below:

1$ ursatz -53p -k G#m b2f2pl.dms

The following example will display all possible locations for a 5-1 Ursatz in

Bach's second fugue of book two, part one 105:

104

105

The standard 3-1 Ursatz comprises a melodic and scalic progression from median!
down to tonic with bass progression from tonic to dominant and back to tonic (ie 3-2-1
over 1-V-1). 8-1 and 5-1 Ursaetze are similar, but as their titles imply, the melodic
progression is from tonic to tonic and dominant to tonic respectively. The bass
progression in both instances remains tonic-dominant-tonic. Prolonged Ursaetze are
standard Ursaetze in which the melodic progression is interrupted. For example, 3-2-1
might be prolonged to 3-2, followed by 3-2-1.

For the purpose of this research, data under analysis was stored in files named using a
fixed convention. Data files containing Hewlett data were given the suffix .hew, whilst
data files containing DARMS data were given the suffix .dms. The initial part of the
filename indicated the book number, fugue number and part number using the format
'bnfnpn', where n was replaced by the actual number of the book, fugue and part. For
example, the first part of Bach's second fugue from book two (WTC), encoded in
DARMS, would be stored in a data file named 'b2f2p1.dms'.

110

$ ursatz -vs5 -k Cm b2f2p1.dms
Key name: Cm, Key number: 8
Verbose mode switched on.
Suppressing output of filtered data.
Searching for 5-1 Ursaetze ...
Size of data: 827
Converting to chromatic
Sequence 3, 1, 11, 10, 8.
Found 5-1 at positions: 4, 12, 14, 15, 20
Found 5-1 at positions: 4, 12, 14, 15, 179 ...

Although the output from the above example has been truncated to save

space, the positions of the first two suggested Ursaetze are shown in diagram

C. Most of the output in the above example is the result of specifying the '-v'

(verbose) option on the command line which produces informative messages

whilst the tool is running.

rnsiti<'ns:

4 12 14

positiOns:

5 4 3 2 4 12 14 15 179 1

111

Superficially the key tool appears to remove any need for the scholar to

determine the key or progressions throughout a piece. It is not, however,

guaranteed to find the correct key since its method is entirely mathematical and

not in the slightest intuitive. Highly chromatic pieces will cause the key tool

some problems because even a short melody will contain a large number of

extra sharps and flats, and determining what is and what is not superfluous to

the current key is difficult to quantify successfully. If no options are specified on

the command line, the key tool prints out a suggested key for a DARMS data

stream. If the key tool cannot calculate a 'definite' key from the sharps and flats

used, it will describe the key as unknown or display a question mark, and the

scholar will have to resort to a manual method. It is important that scholars

realise that the tools of the Analysis Environment do not intend to enforce 'the'

correct answer, but merely suggest 'an' answer or a set (range) of answers.

The '-b' option used with the key tool evaluates a key for each bar in a

composition-useful if the piece is very chromatic. Progressive mode, invoked

with the '-p' option, attempts to show the key progression throughout the piece.

The current key is recalculated after each note. If the key has changed, it is

displayed. Below, is an example progressive output for Bach's second fugue in

book two. The first thirteen bars are extracted and piped through the key tool.

The major problem with the key tool is that it only examines a melody, and not

the underlying harmony. The pitch C, therefore, in the top part of the last bar,

could belong to a number of keys, and so the key tool, because no definite key

can be calculated, describes the key for the last bar as unknown.

$ extract
CF Eb
1 2 3 4
$

-b1,13 b2f2p1.dms 1 key -ps
? Eb Ab Eb ?Fm ?
5 6 7 8 9 10 11 12 13

Diagram D shows how the key progressions, evaluated by the key tool in the

example above, relate to the actual score.

112

Diagram D.

Initial key
determined

by first note -

Cm~~-

____ __)key signature ha~
I c·~'<.led into data -_l ___ _

0 b b 0 0 bb
r Db indicates I
l,_t~ maj.Q.~:_j

~trfM&~~~
b

i 5 nawrall

I indicates I
; 1-h f1~_<1E~-'

b b b b b b 0 Q

I
E natural - I

, key _l!E_~nown J

b b

Db indicates 1
~lino_£J

b Q ~
) A natuN~"~
;ke_i'___unkno\\:'!.1

Despite its inadequacies, the information from the key tool is still useful.

The key tool has no problems with standard scales and unadventurous pieces.

The very complexity of Bach's compositions though, is what causes the

difficulties for the key tool. The standard 'echo' 106 tool of the UNIX environment

is used in the following example to send a DARMS string of data (an ascending

106 The echo tool displays a string of text on standard output (usually the screen). Any
string of text. therefore, can be echoed using the echo tool, and piped through another
tool.

113

scale of C harmonic minor) through the key tool, and as one would expect, the

evaluated key is shown to be C minor:

$ echo "19 20 21- 22 23 24- 25 26" I key -s
Key of piece: C minor
$

The cursatz tool will search a DARMS data stream for a specified sequence of

pitches. Like the ursatz tool, the cursatz tool will locate a sequence of pitches

wherever it occurs within the DARMS stream. For example, the pitch sequence

"CD E" would be found in the data stream "Q G D D G .E. even though there

are pitches in between the original C, D and E. By default, however, the pitches

found in the DARMS data stream must be in the same octave position as the

pitches in the original sequence. Specifying the '-o' option will ignore the octave

position of the original pitch sequence, but will increase the number of located

pitch sequences dramatically. The initial fugue subject from Bach's second

fugue in book two, may be encoded as the following DARMS string:

126 25- 26 27 23 26 25- 24 25-

Using the above DARMS string as the 'customised Ursatz', the following output

will be produced using the cursatz tool:

$ cursatz -u "26 25- 2 6 27 23 2 6 25- 24 25-" b2f2p1.dms
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 24
1 2 3 4 5 6 7 8 39
1 2 3 4 5 6 7 8 44
1 2 3 4 5 6 7 8 59 ...

The lines of numbers produced are possible locations for the 'customised

Ursatz', and are shown in relation to the score in diagram E. Each number in a

sequence is a suggested position within the score for the associated note of the

'customised Ursatz'. For example, in the output shown above, the 'customised

Ursatz' has been located in the first nine notes of the data, and also in the first

114

eight notes with the twenty-fourth note forming the last note of the 'customised

Ursatz'.

Dia~rarn E.

=~~=-~~IJlffl;fiTJ¥1=~~
1 2 J 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

r r r

=HJ-J!QOq~ I
1 2 J 4 5 6 7 8 9 24

121<1')6789

Two more tools can be used as an aid in dividing a composition up into

building blocks. The first, semio, divides a DARMS-encoded data file into

melodies of a specified size. In an effort to account for all building blocks and

omit nothing which might be of importance, the melodies extracted from the

data overlap. The semio tool displays the entire data file, fifteen notes at a time,

together with the starting position of each melody and the positions of its other

occurrences listed underneath each note of the data file. This enables a melody

and its repetitions to be identified quickly and easily, and also highlights

melodies which might be more important than others. Extracted melodies

default to a length of one note, but this length may be increased using the '-n'

option. The following example output identifies the usage of three-note

melodies in Bach's second fugue of book two.

115

$ semio -sn3 b2f2pl.ds

8---6---8---10--3---8---6---5---6--
~1 ~2 ~3 ~4 ~5 ~6 ~7 ~s ~g

1 2 3 4 5 6 7 8 9
23 24 142 184 22 91 92 33
58 166 77 44

183 185 195.

The above output is only a small part of the total output produced by the semio

tool. In fact, it shows the results for the first nine notes of the DARMS-encoded

data file. The first line of the output is the data itself, but in a chromatic notation

that does not account for octaves. Zero represents the note E, whilst eleven

represents the note D sharp. Below that line, for ease of reference, are the

numbers (ie the positions) of the notes themselves within the DARMS-encoded

data file. Finally, underneath the second horizontal line, are the starting

positions of three-note melodies identical to the melody starting above each list.

For example, the first column contains the starting positions of the melody

'8 6 8' (C, B flat, C) which are 1, 23 and 58 (ie the first, twenty-third and fifty

eighth note positions), whilst the second column contains the starting positions

of the melody '6 8 1 0'. Diagram F shows the output, from the above example, in

relation to the score.

Din!-(r:un F'.

116

The mot~ftool produces a similar form of output, but only searches for a

melody specified by the user, and not for all melodies of a specific length. The

matiftoollists the entire DARMS-encoded data file, fifteen notes at a time,

together with the user-specified melody. The user-specified melody appears

under the DARMS-encoded data, showing how it relates to the data. By default,

the motif tool uses the exact melody specified by the user, but the '-n' option

may be employed, allowing the expansion of the melody up to a specified

number of notes. This means that a user-specified melody of 'C, Bb, C', and a

'-n' limit of four, would match 'Q, D, fib.. C.' and 'Q, fi.Q, Bb, .Q' for example, as

well as the obvious 'C, Bb, C'. The following example output from the motiftool

shows how the first two notes of the opening fugue subject from Bach's second

fugue of book two can be located elsewhere in an expanded form.

$motif -n5 -m "26 25-" b2f2pl.drns
26 25- 26 27 23 26 25- 24 25- 24-

1. 26 .. 25-
2. 26 25-
3. 26 .. 25-
4. 26 25-

The first line, displayed in the above example, shows the data file itself.

Occurrences of the motif, expressed on the command line after the '-m' option,

are shown below the contents of the data file, and numbered at the left-hand

side. The output from the above example is shown in relation to the score in

diagram G.

Diagram G.

I
3. ==&=

I
c ~

4. ; ~

117

Having decided that analysis is a search for building blocks, upon which

all might be based, the final result of an analysis could be a readable map

showing routes from the building blocks, via piece segments, to a final score

in essence a stemmatic chart. This stemmatic chart, with the building blocks (in

future to be labelled the 'base melody', although the blocks might well not

constitute a melody) at the top and score at the bottom, will account for, and

display all notes within the composition.

Analytical methods involve the application of reductive processes on the

score. Reductive processes involve a high degree of melodic, harmonic,

rhythmic, and pitch comparison. Since there theoretically can only be one base

melody, and perhaps one set of true routes from base to score, to achieve such

a unique map requires standardisation of the analytical reductive technique.

Comparison, and identification of what is, and what is not similar-a wholly

intuitive task-is the major reason for large discrepancies between results of

like analyses. Standardisation of similarity, creating a representation of this

form of intuition which can be processed, should narrow down the variation in

results of previous and new analyses, although at the end of the day, the

scholar will be left to draw his or her own conclusions from the results.

A computer attempting to imitate human-conceived analytical method is

destined for failure, since such analytical method relies heavily upon intuition

and this has yet to be modelled in computational terms. A single analytical

decision might require several hundred computer operations to model it, and as

such, creates an ineffable difficulty when endeavouring to formulate analytical

methods such as Schenker, Semiotic, and Thematic-methods which rely upon

such intuitive approaches as selection of an Ursatz, reduction, and identification

of transformation or similarity. In the Analysis Environment, the tools are not

computerised versions of specific analytical methods, but merely parts of the

118

analytical methods-the quantifiable parts-which may be bolted together in a

variety of ways.

A human-analytical process is composed of numerous intuitive steps,

and transferring that process to a computer will not only necessitate definitions

of all such steps, but will require a computer with phenomenal memory to

accommodate so vast a number of representative operations, and tremendous

processing power to execute a vast number of operations in a short space of

time. Sadly, unlike a single computer program running on various machines,

the outcome from an intuitive step is entirely dependent upon the human user,

and thus, different humans possessing diverse intuitive powers conjure up

unique analyses of the same work. Since the tools can be bolted together in a

variety of ways, the output from an analysis will be entirely dependent upon the

user. There will, however, be a certain consistency in the results imposed by

the limitations of the tools. By definition, if an analysis is undertaken in the

'pursuit of a work's possible structure', the analysis must arguably produce only

one solution because the analyst is searching for a single structure. A 'solution',

however, could be represented in a number of different ways and in turn have

different interpretations.

Reliance upon, or application of intuition will not provide a unique result.

To avoid a multitude of controversial results, intuition needs to be either

ignored, or evaded by algorithmic simulation. Statistical analysis, since its

feature-counting requires no intuitive processes, may be readily and

successfully implemented on computer. The intuition, however, is left to the

system user, who must fabricate his own relationships and links from the

results. This disregard for intuition produces a purely mechanistic analytical

system, which simply provides numerical lists and has no ability to imply

relationships within data. Thus, for a 'successful' yet 'black box' analysis,

intuition should be imitated in some way.

119

Two tools in the Analysis Environment are designed specifically for

counting features. The default output from the tools is a series of lists and

numbers. No conclusions are drawn, no intuition is involved. The computer

locates and counts methodically, but does not attempt to imply anything from

the resulting data. The freq tool, without any options specified on the command

line, counts the frequency of each accidental used, the total number of bars,

the total number of notes, the frequency of each pitch used (accounting and not

accounting for octave position), the frequency of each duration used, the

frequency of each two-note and three-note phrase. Specifying options on the

command line produces output only for those items implied by the options. For

example, the following command line,

I$ extract -nl, 1.0 b2f2pl.dms I freq -aps

extracts the first ten notes from the data file 'b2f2p1.dms', pipes the result

through the freq tool, and then counts the frequency of each pitch used (the '-p'

option) and each accidental used (the '-a' option), producing the following

output:

$ Pitch usage:
Ab 1
A 1
Bb 3
c 3
D 1
G 1
Accidental usage:
Ab 1
Bb 3

The ten notes extracted by the extract tool are shown below:

120

It should be noted, however, that the Hewlett encoding method does not

employ a special code for key signatures and extra codes for notes employing

accidentals which contravene the key signature. Instead, all sharps and flats

are coded into the score itself, irrespective of whether or not they are part of the

key signature or just genuine accidentals. The '-a' option of the freq tool,

therefore, actually counts the frequency of each 'black' note and not the

frequency of 'true' accidentals.

Standard DARMS uses a special code for the key signature. whilst the

DARMS subset used within the Analysis Environment does not. Avoiding the

key signature, and hard-coding the sharps and flats into the score does not

contravene the DARMS standard, but does restrict the use of

Analysis Environment tools on standard DARMS. To circumvent this problem,

the darmstrip tool strips standard DARMS-encoded data files of all information

currently not used by the Analysis Environment tools. Employing the darmstrip

tool does not 'damage' a data file since its output is sent to the 'standard output'

(ie the screen) and must therefore be redirected into another file in order to

save the output. Output can be redirected using the following format:

J $ darmstrip original.dms > b2f2pl.dms

The above example strips out all unnecessary data from the file called

'original.dms' and sends the output generated to a new file called 'b2f2p1.dms',

creating the new file if it does not exist, overwriting it if it does exist-it does not

physically change the contents of 'original.dms'. By default, when the darmstrip

tool is converting standard DARMS to the subset used in the

Analysis Environment, it hard-codes the key signature into the data itself

(analogous to the Hewlett data), and removes the key signature from the

beginning of the data. Accidentals (which are theoretically any sharp, flat or

natural signs on the musical stave) in the data files containing the subset

DARMS might not necessarily be 'true' accidentals if they belong to the key

121

signature. If there is a possibility that these accidentals would never have

appeared on the musical stave prior to their hard-coding into the data, they

cannot be classified as 'true' accidentals. To circumvent this problem, the key

signature will not be hard-coded, during the conversion from standards DARMS

to subset DARMS, if the darmsrrip tool is used with the '-k' option. Data which

has been converted using this option will a give true count of accidentals when

piped through the freq tool. Other tools, however, might procure unexpected

results (ie the play tool renders a somewhat 'modal' version of melodies with a

high number of sharps or flats in the key signature).

The endan tool also counts features, but is designed specifically for

examination of the end of a composition. The endan tool produces a list of

statistics based on the last five bars of a composition. The tool counts the notes

employed in each of the last five bars, all of the notes employed throughout the

last five bars, the repeated notes employed in each of the last five bars and all

of the repeated notes employed throughout the last five bars. As well as these

features, the '-d' and '-m' options may be used to display the distance between

the highest and the lowest notes in the last five bars, and display a small graph

showing the melodic movement during the last five bars respectively. The

graph produced for melodic movement uses the standard characters'/' and '\'

to represent a large intervallic rise and fall, whereas the'.' symbol represents

scalic or chromatic rise and fall. Specifying options on the command line

produces output only for those items implied by the options. For example, the

command line:

1$ endan -nms b2f2pl.dms

displays the total number of notes employed in each bar (the '-n' option) and

outputs a graph of melodic movement (the '-m' option), producing the following

example:

122

Notes per bar
9/10/5/5/1//
Movement:

0 .\/ •••• \ •• \/ ••••••• \/ •••••• \. 0 0

If the analysis of an ending is of major importance to the scholar, the

extract tool may be used in conjunction with any other tool to provide further

information on a composition's ending. For example, the extract andfreq tools

can be combined to provide even more statistics on the last five bars of a

composition using the following format,

$ freq -bs b2f2p1.dms
28
$extract -b24,28 b2f2p1.dms I freq -a

which counts the occurrences of each 'black' note in the last five bars (bars

twenty-four to twenty-eight) of the DARMS-encoded data file 'b2f2p1.dms'. Not

knowing the total number of bars in a composition is not a problem, since the

freq tool can be employed to extract such information. The above example

shows the use of thefreq tool for such a purpose, and displays twenty-eight as

the total number of bars in the data file 'b2f2p1.dms'.

Obviously, thefreq and endan tools do not attempt to imitate or emulate

human intuition. The computer imitation of intuition however, with a machine

engaging in human-like thought processes, immediately implies artificial

intelligence (AI). together with the application of programming languages such

as LISP and PROLOG, which enable a computer to adopt a 'learning' process

whereby if what it [the computer] produces is deemed to be a 'mistake', it will

avoid producing it or making it again. However, most AI or expert systems,

geared to obtaining information through learning, reasoning, justification, and

123

decision making, are either too simplistic for true representation, or still in a

development stage. Creating a standard non self-modifying algorithm for the

most frequent use of intuition, an algorithm which may be programmed via any

high-level computer language, will not completely solve this intuition problem,

but it will be a step towards avoiding large discrepancies in results of intuitive

based analyses.

In music analysis, intuition is most frequently exploited when attempting

to conclude that two melodies are similar. In fact, the majority of analytical

methods rely upon the recognition ability of a user to discover melodic

repetition, transformation and variation. The development of a processable

representation of this form of intuition-identification and gradation of

similarity-will help procure new, efficient, effective and consistent forms of

tonal, and even atonal analysis.

The Analysis Environment. therefore, requires a tool which can extract or

locate melodies in a score which are 'similar' to a specified melody. The tool

must also be able to calculate the degree of similarity between any two

melodies. A tool of this kind requires a formula, which accounts for the shape of

melodies as well as the sound of melodies in its quantification of similarity. The

following pages describe the simfind tool, the formula used for gradation of

similarity, and the method used to arrive at such a formula.

Starting simply with raw rules and later weaning them into a powerful

equation, a simple formula can be built up to help calculate similarity between

two series of pitches.

Initially, accounting for only the semitone distance between two

compared notes, their similarity may be calculated via the following formula:

124

1. Assuming that the two notes are less than an octave apart,

a. when the distance between the two notes increases, the similarity

decreases.

Thus, where sy represents similarity, and sd represents semitone

distance,

.~y ex I I sd

b. When the distance between the two notes is zero, the similarity is

at its maximum, ie one. Thus,

sv=---
. (1 + sd)

c. However, since the semitone distance will only play a small part in

the final calculation of sy, the temporary similarity-rating achieved

using sd must be decreased, and as the semitone distance may

only be an integer between zero and eleven inclusive,

(
1 +sd) .\)' = 1/ 12

2. For comparison of two melodies, each containing an equal number of

notes, the semitone distance similarity-rating may be calculated using:

;y = (11(I+ ;~(a))) x (11(I +~~(IJ))) x (11(I+~~(%))), ..

and so on, where sd(a.), sd(~) and sd(X), etc, equal the semitone

distance between the first, second, and third notes of the compared

melodies, respectively.

125

3. For any octave, the frequency difference between two pitches increases

by a factor of two when the two pitches are moved up an octave,

indicating that pitch is exponential. A relationship such as this must be

reflected in a similarity-rating calculated using only semitone distance.

Thus, taking 'middle C' as a starting pitch, the C two octaves above must

have a sy value of half that of the C merely one octave above.

Consequently,

where oc equals the octave difference between two compared notes.

For example, when comparing two notes a major third apart, situated

within the same octave, sd equals four, and oc equals zero; and, when

comparing two notes situated two octaves and a major second apart, sd

equals two, and oc equals two etc

Although a frequency difference of x Hz between two pitches will increase to x

multiplied by '2Y' Hz when the same two pitches are raised by y octaves, it is

not necessary to take this exponential curve into consideration when comparing

pitches both above and below an original pitch. As exponentially-hearing

humans, we can only comprehend a constant semitonal scale. Thus, regarding

purely the semitone distance, both a B below and a C sharp above, have the

same sy value when compared with middle C, even though B to C (in Hz) is less

than C to C sharp (in Hz). Semitone distance sd is always a positive integer. For

example, a minor third either above or below the original pitch has a sd value of

three.

Quantification of similarity, however, is dependent upon more than

semitone distance. Although a crude, and as yet ineffective formula for

126

similarity arises from this semitone difference, the degree of dissonance, for

such an interval plays a more important role when defining the similarity

between two notes. " ... nearly all musical intervals are 'dissonances' ... when

passing through this continuum of dissonance, we hit from time to time upon a

combination of musical sounds which ... strikes us as sweet, restful, and pure;

these intervals are the so-called 'consonances' ... consonances have become

the next-to-universal building-blocks of music". 107 In reality, any pitch sounded,

other than the original pitch, may be classed as a dissonant pitch.

Consequently, following in the footsteps of Helmholtz. it is possible to construct

a table depicting dissonant-based similarity between compared notes.

Buck, employing partials comparison when calculating the dissonance of

intervals states that "The unison and octave are free from dissonance because

the harmonic chords are the same ... The interval which comes next in terms of

smoothness is the fifth, though in this there are obviously several dissonant

partials present". 108 Enumerating common partials, generated through the

simultaneous sounding of two pitches, allows the simple gradation of all

intervals in terms of their dissonance (tables A and B).

T bl A a e c f f d ompanson o un amenta an d r . I 1rst seven partla s
Interval Abbreviation Common number of partials

{maximum)
Unison/Octave 1 or 8 8
Minor 2nd 2- 0
Major 2nd 2 1
Minor 3rd 3- 3
Major 3rd 3 4
Perfect 4th 4 3
Diminished 5th 5- 2
Perfect 5th 5 4
Minor 6th 6- 1
Major 6th 6 3
Minor 7th 7- 4
Major 7th 7 0

107 Cohen, H. F., Quantifying Music. Reidel, 1984

108 Buck, P., Acoustics for Musicians, 0. U. P., 1928

127

T bl B a e 0 d f. . I r er o mterva s - 'part1a -compare d' d' 1ssonance

I Least dissonant 1 8
5, 3 7-
6, 3-
4, 5-
2, 6-

I Most dissonant 2-.7

In full agreement with Helmholtz and others, comparison of partials reveals that

the minor second and major seventh "are the harshest dissonances in our

scale". 109 Sadly, since an increase or decrease in compared partials produces

marked variation in the calculated order of dissonance, results for other

intervals are not as conclusive.

Through simple fractional mathematics and musical inversion, however,

Helmholtz arranged the consonant intervals into an order of 'harmoniousness'

(table C), describing the minor sixth-with its frequency ratio of 5:8 containing a

number greater than five-as the most imperfect of the consonant intervals.

Table C

1. Octave
2. Fifth
3. Fourth, major 3rd, major 6th
4. Minor 3rd
5. Minor 6th

Jeans, like Helmholtz, maintaining that "the smaller the number the

better the consonance", 11 0 graded intervals according to the size of whole

numbers used to represent frequency ratios. The Jeans method provides a

more reliable table than one generated through partials comparison (table D),

and as such, forms a basis for incorporating intervallic relationship in the

calculation of sy. Two sets of intervals-the minor seventh and minor second,

together with the major third and major sixth-occur at the same points on the

109 Helmholtz, Sensations ofT one, Long mans, 1877

110 Jeans, Sir James, Science and Music, Cambridge University Press, 1937

128

consonance/dissonance scale of tabl.e D; and therefore, since no two intervals

can have the same consonance/dissonance value, the table needs further

expansion.

TableD

I Consonant
Unison 1
Octave 2
Perfect fifth 3
Perfect fourth 4
Major third, major sixth 5,5
Minor third 6
Minor sixth 8
Major second 9
Major seventh 15
Minor second, minor seventh 16,16
Diminished fifth 27

I Dissonant

In an essay entitled "The Rationalization of a harmonically Irrational Set

of Pitches", 111 Clarence Barlow described his previously created formula for

calculating the 'indigestibility' of numbers. More importantly though, through

elaboration upon the 'indigestibility' formula he produced a fresh algorithm for

finding the harmonicity (in effect, the degree of dissonance) between two

pitches within an octave.

Although Barlow's formula deems a major second to be more

harmonious than both a major third and a major sixth-providing doubt as to its

validity-it satisfactorily confirms that when the second (previously ignored)

number of the frequency ratio is taken into account, the major sixth appears as

a more harmonious or less dissonant interval than the major third; and likewise,

the minor seventh appears less dissonant than the minor second.

111 Barlow, C., "Two Essays on Theory", Computer Music Journal. Vol. 11, Number 1,
Spring 1987

129

Although the dissonant-graded table is now complete, its foundations

fractions of the pure Pythagorean style-are not those of the everyday

tempered scale; and thus, to progress any further, a dissonant-base formula

must account for the human-induced dissonance of sharpening and flattening

intervals. Table E lists all intervals in their order of dissonance, along with the

associated variation in frequency between real and tempered ratios.

Table E
a: b: c: d: e: f:
1 1 1/1 1.000000000 1 . 000000000 0.000000000
2 8 2/1 2.000000000 2.000000000 0.000000000
3 5 3/2 1 .500000000 1 .498307077 0.001692923
4 4 4/3 1 .333333333 1 .334839854 0.001506521
5 6 5/3 1.666666667 1.681792830 0.015126163
6 3 5/4 1.250000000 1.259921050 0.009921050
7 3- 6/5 1 .200000000 1.189207115 0.010792885
8 6- 8/5 1.600000000 1.587401052 0.012598948
9 2 9/8 1 .125000000 1 .122462048 0.002537952
10 7 15/8 1.875000000 1.887748625 0.012748625
11 7- 16/9 1 . 777777778 1.781797436 0.004019658
12 2- 16/15 1 .066666667 1.059463094 0.007203573
13 5- 27/20 1 .350000000 1.414213562 0.064213562

K ey
a Order
b lnteNal name
c Pure ratio (fraction)
d Pure ratio (decimal)
e Tempered ratio (decimal)
f Variation (tempered dissonance)

A formula, therefore, for calculating dissonant-based similarity, to be

used in conjunction with the formula for semitone-distance similarity, may now

be written as such:

130

where p is the position of an interval within the order of dissonance (ie a perfect

fifth (5) has a p value of three), and vis the variation between real and

tempered frequencies (ie a perfect fifth has a v value of 0.001692923). a and

~ , are variables to be defined by the user of the formula. ~ varies the

importance of v within the dissonant-based formula, and a. varies the

importance of the dissonant-based formula itself when used in conjunction with

the semitone-distance formula. Thus, the entire formula for similarity is:

0 < a <= 1 and 0 <= p <= 100

Having established that the Analysis Environment is concerned only with single

line melodies, and that any arbitrary inputted 'tune' must therefore be

monophonic, locating similarities within the data file becomes marginally

simpler. Faced with a melodic idea, most of the present analytical systems are

quite capable of employing parsing techniques to locate instances where

identical melodies occur within the score. A handful of systems even allow 'wild

card' search-methods where pattern-matching succeeds even if a specified

number of pitches differ between inputted and located melodies-in the

Analysis Environment, the all (a- eleven) tool also has this facility. The simfind

tool uses the above similarity formula, however, and not only has the capability

of finding identical occurrences of an input-melody, but also occurrences of

'similar' melodies together with a quantification of their similarity. The all tool is

actually a command interpreter (ie it scans and executes a list of commands). A

computer program (really a list of 'Analysis 11' commands) can be executed

using the all tool. The following command line:

Is all -f analysis.prg b2f2pl.dms

131

executes the 'Analysis 11' commands held in the program file 'analysis.prg'.

The commands are applied to the DARMS-encoded data file 'b2f2p1.dms'. The

'Analysis 11' language enables music patterns and pattern variants to be

located in a DARMS-encoded data file. A full list of commands and syntax for

the language can be found in appendix B.

The simfind tool will compare all possible melodies, starting on any pitch

within a monophonic composition, with a melody input by the user. Since this

puts no undue weighting on any single pitch, a piece of ten pitches in length

scanned with a two-pitch input melody will produce nine matched-melodies

together with their associated similarity values. Nine two-pitch melodies create

a melody of eighteen pitches in length. The eighteen-pitch melody is much

longer than the original ten-pitch melody, which indicates that some of the two

pitch melodies selected by the simfind tool are more important than others, and

warrants a technique for determining which are the more important matched

melodies.

With a DARMS-encoded monophonic composition held in memory, the

simfind tool, having compared an inputted melody of length x with all X- length

melodies in the composition-starting at the first pitch of the composition, and

progressing one pitch at a time until it reaches the end-produces a list of like

melodies found within the composition, together with their similarity values-ie

how similar they are to the inputted melody (represented with values from 0-

not similar at all, to 1 - identical).

Assuming that during the composition of a ten-pitch melody, the

composer does not conceive the overlapping of sub-melodies within the main

melody, then the monophonic composition may consist of five two-pitch

melodies, two five-pitch melodies, three two-pitch melodies and a four-pitch

melody, or any combination of melodies totalling ten pitches in length.

Therefore, for a ten-pitch monophonic composition, dealing with a list of nine

132

two-pitch matched-melodies (a total of eighteen pitches) is pointless, and a

method has been adopted to distinguish important melodies from insignificant

ones.

The eventual course of action was to select five melodies with the

highest similarity (when compared with the inputted melody). This did not,

however, account for the overlapping of matched-melodies, and overlapping

melodies needed to be avoided. If the first five two-pitch melodies boast the five

greatest similarities (diagram H), this creates overlaps on four of the six pitches

covered, ignoring the last four pitches of the composition.

Diagram H.

input mdodv

1. Only 5 2-pitch melodies allowed.

2. If 1st 5 2-pitch melodies taken. the m·erlap
ping ignores the last 4 notes.

The simfind tool circumvents this, and similar problems by calculating

which combination of two-pitch melodies would provide the highest total

similarity, excluding any overlapping matched-melodies. At times, this method

still leaves pitches unaccounted for, perhaps indicating that the input-melody is

not a significant enough constituent element of the composition to account for

all pitches.

This technique does of course create one large problem-computation

time. To find the best combination of matched-melodies necessitates the

examination of every feasible melodic combination. This search was carried out

using a binary counting technique (diagram 1), ensuring that every matched

melody was accounted for.

133

Dingnun I.

()\'erlap'!
Nt)

:--~,.

Ye~

No
;'\J,,

Y...-s
Yes
No
:\n
~0

Y...-s
Yes
Yes
Yc'S

inpur nwl•>dy

0. 9 0. 6 0. 9 0. 6 0. 9 0. 3 0. 1 0. 4 0. 2 similarity\'alue

l 1 1 1 1 j 1 1 1 Total
1 ----~--------~- ~---------· 0. 9

0 1 ------ ---------- --~-. 0.6

1 1 --~----------· -
0 0 -- -- ~--- - • 0. 9
1 0 1 - . ----- --- - ~------. 1. 8
0 1 1

1
0 0 0

0 0
0 0

0
0 0

0

0

1 - ---~----0.6

-- -~-- -------------· 1. 5
... -- ----- • 1. 2

--~-------------...:..------· -

etc.

The 'on's and 'off's of each successive binary number were used as a

pattern for selecting melodies from the list produced. Patterns which included

overlapping melodies were ignored. Thus, the pattern with the highest similarity

(ie the similarities of all the melodies, added together) became the suggested

set of best matches accounting for as much as the complete composition as

possible.

Unfortunately, with such a method, computation time is doubled for each

successive pitch a composition contains. For example, assuming that the

computation time for a one-pitch composition is only 1/1 OOOth second, then for

a two-pitch composition it becomes 2/1 OOOths second, and for a three-pitch

composition, 4/1 OOOths second, and so on. Thus, for a forty-pitch monophonic

composition, the computation time will be approximately seventeen years-not

entirely practical for a small computer-workstation.

Since halving the computation time only permits analysis of one more

pitch, even parallel-processing is not a valid alternative when considering a

134

faster machine. Therefore, for the system to be of any practical use, an

alternative technique has been developed to allow fast analysis of a large

number of pitches.

The new search method reduces the formidable seventeen years to a

much more respectable three minutes. The method simply involves selection of

the found melodies possessing the highest similarity values, but always

avoiding overlaps (diagram J).

Diagram J,

Input melody R

0. 9 0. 6 0. 9 0. 6 0. 9 0. 3 0. 1 0. 4 0. 2 similarity value

patterns with highest similarity (avoiding over! a ps) T olal sirn ilarity

Q----c=J-- - {=::]----- • CJ---• 3 · 1 • -hest matches

o---c:=J------- o~ 2 • 2

r- J _ L - CJ----· o-------- 3 • 1 ·-

=:J---- -_=_. CJ- - . 1 J- - . 2 • 2

,--] --c=J:~~ -~~~- -. [:=J ----. J • 1 •

r=J--~==:J---~ ~-~_t __ j- - 'L .. J--· 2 • 5

D---{=:J------f- ~- ~ D---] . 1 -

[__=]-----C]--{ __ 1-" = L]---+ 3. 1 •

0---~ }---r--~L-~---={ ___ 1 J.o

r:~---C1--- L __ _s- _ • o::.--~· 3.1.

!__ __ ~ - 2-pitch pattern selected

The 'eggs' in diagram J show two-pitch patterns which have been

purposely discarded in the overall similarity computation. The first line

calculates the highest similarity with no overlaps, the second line calculates the

highest similarity with no overlaps and disregards the first two-pitch pattern, and

the third line also calculates maximum similarity without overlaps but disregards

the second possible two-pitch pattern, and so on.

135

Once achieved, a melody is deleted from the list and the selection

process is repeated, each time reinstating a melody and deleting another, until

all melodies have, at one time, been absent from the list. This way, all feasible

patterns are accounted for, and the best pattern-producing the highest total

similarity-is easily obtainable.

The simfind tool uses the following command-line syntax:

!s simfind -b ~ -a a -m "melody" file-name
--------------------------~

where a is a value greater than zero and less than or equal to one, and ~ is

a value greater than zero and less than or equal to one hundred. The value of

a is inserted directly into the similarity formula and increases or decreases the

importance of dissonance when determining similarity-the higher the value,

the greater the importance. The value of ~ is also inserted directly into the

similarity formula and increases or decreases the importance of tempered and

real frequency difference, when determining similarity-the higher the value,

the greater the importance. Setting a or~ to zero on the command line will

employ a basic similarity formula which does not use their values. By default,

the output of the simfind tool is a list of every possible melody (the same length

as the "melody" specified on the command line) together with a numerical value

indicating each melody's similarity to the "melody" specified on the command

line-one is maximum similarity, zero is minimum (although theoretically, a

melody cannot have zero similarity with another melody). Melodies are listed in

order of similarity, with the most similar at the top of the list, and the least

similar at the bottom of the list. Specifying the '-c' option with the simfind

command will list the melodies in chronological order as opposed to similarity

order. Every possible melody is printed out. This means that if the "melody"

specified after the '-m' parameter is five notes long, melodies consisting of

notes one to five, two to six, three to seven, four to eight and so on, will be

displayed together with their similarity values. This results in a tremendous

136

amount of superfluous data, since outputted melodies will overlap. The '-f'

option uses the 'best fit' approach to select the set of melodies which provides

the highest total similarity and accounts for the most of the DARMS-encoded

data file without any of the melodies overlapping. The '-c' and '-f' options can be

used together to produce a chronological list of the 'best fit' melodies. The

following example shows typical output from the simfind tool:

$ simfind -sc -b 0 -a 0 -m "26 25- 26 27" b2f2p1.dms
0) 26 25- 26 27 1.000000
1) 25- 26 27 23 0.397729
2) 26 27 23 26 0.453782
3) 27 23 26 25- 0.514286
4) 23 26 25- 24 0.366076
5) 26 25- 24 25- 0.600000
etc ...

~~~--~r-_CE _Q_J'j .. <!> e-----

26 original melody 25- 26 27 

@ ::{jc-------i> --
26 25- 26 27 1.000000 

·~ 0 --
25- 26 27 23 0. 397729 

• • 

26 27 23 26 0.453782 

• ill ~ 

27 23 26 25- 0.514286 

ll!! &· .. 
23 26 25- 24 0.366076 

----.-----& • • &. 

26 25- 24 25- 0.600000 

Currently there are thirty-two tools in the Analysis Environment. Each tool can 

take a number of options to change the format of its output. Remembering the 

syntax (although almost standard throughout the tools) and the significance of 

137 



each option will become more difficult when new tools are added and the scope 

and flexibility of the Analysis Environment is expanded. Appendix A lists the 

tools currently comprising the Analysis Environment, and uses the UNIX 

standard for documentation by placing each tool on a separate page, together 

with an explanation of its syntax and options. It is not, however, always possible 

to have a manual at one's side whilst using the computer, and consequently a 

help tool has been included within the Analysis Environment. The help tool, used 

by itself, produces a list of all the available tools within the 

Analysis Environment. Specifying the name of a tool on the command line, after 

the help command itself, displays the page from the manual for the specified 

command. The page is displayed on 'standard output' (ie the screen) and may 

therefore, for example, be redirected to the printer. The following example 

shows the output from the help tool when no tool name is specified: 

$ r.elp 
Help is available on the following commands: 
all anote bend cursatz 
density 
fsets 
key 
rhythm 
shuffle 

en dan 
help 
motif 
rnote 
simfind 

ursatz vary 
Usage: help <cowmand> 
$ 

extract 
htod 
play 
semio 
squash 

form 
intfind 
range 
score 
sync 

darmstrip 
freq 
invert 
rcheck 
shape 
transpose 

Three more tools provide the scholar with factual information on DARMS

encoded data files. The range and density tools calculate the distance between 

the highest and lowest notes in a DARMS-encoded data file, and the total 

number of notes in a DARMS-encoded data file respectively. By default, the 

distance returned by the range tool is a 'lines and spaces' distance and does not 

account for sharps or flats. Since the DARMS subset used within the 

138 



Analysis Enyironment112 does not use key signatures, and any accidentals (as 

well as the sharps and flats from the key signature) are hard-coded into the 

data itself, the default distance, calculated via the range tool, is really a 'white 

note' distance because all black notes are ignored. The '-c' option, however, 

calculates the semitone distance instead. The default output from the density 

tool may also be changed using the '-b' option. The '-b' option returns the 

average number of notes per bar-in essence the 'thickness' or density of the 

composition. In the following example, the htod tool is used to convert the 

Hewlett-encoded data file 'b2f2p1.hew' into subset DARMS. The subset 

DARMS is piped through the density tool, which, using the '-f' option, displays 

the average number of notes per bar. The subset DARMS carries on along the 

pipeline and is piped through the range tool. The range tool displays the range of 

the data, using the default 'white note' measurement. The '-s' option, used with 

the range tool. suppresses the output of the subset DARMS at the end of the 

pipeline. 

112 

$ htod b2f2pl.hew I density -b I range -s 
Average bar-density: 7.586207 
Range: 14 lines and spaces 
$ 

~ ... tJ.£tfm_fitd J J J ~ 
~· "1, f g] J J £1 .. II 

• ____________ hi~hcst note 

IPI\'CSt note range = 1-l 

'Pure' DARMS data can be converted into subset DARMS (for use in the Analysis 
Environment) using the 'darmstrip' tool. See page 121 and page 193. 

139 



Set Theory, although it is primarily aimed at helping scholars to 

understand the organisation of pitches in atonal music, might well produce 

interesting information on some tonal music. The tonal fugues of J. S. Bach, for 

example, have been put together using a systematic method, just like many 

atonal compositions, and the scholar might glean fresh information from the 

scores using an atonal analytical methodology. Atonal techniques, however, 

disregard the harmonic implications of tonality's scale and degree. Using rests 

as set delimiters, the fsets tool displays all sets used within a DARMS-encoded 

data file, together with each set's location. The fsets tool produces three tables. 

The first table consists of a chronological list of sets, in 'prime' form, together 

with their 'normal' forms and the bar and note number on which they start. The 

second table is effectively a numerically sorted list of the normal forms of sets 

used. Ordering the sets in this fashion places the similar sets in adjacent 

positions. Again, the starting bar and note number of each set is displayed 

together with the prime form of the set (instead of the normal form), but only for 

those sets which have been used more than once. The third and final table is 

perhaps more interesting though. It consists of a chronological list of the normal 

forms of the sets used. This table, however, shows the relationship between the 

sets used-ie what pitches must be removed or added to evolve one set into 

another. The only options available with the fsets tool are the 'suppress data' 

and 'verbose' options ('-s' and '-v'). The tables output from the fsets tool have 

the format shown on the following page. 

Musical patterns might recur and evolve throughout a composition. The 

more obvious variants maintain the same shape and key, and can be located 

using the Analysis Environment tools described so far. Inverted variants (ie 

patterns which recur backwards or upside down) and modulated variants (ie 

patterns which recur in different keys) are difficult to locate using standard 

pattern-matching techniques. To make detection of such patterns easier, the 

invert and transpose tools allow DARMS data to be changed before analysis. 

140 



l.tbk I 

Primo:: Form 

2 4 6 7 8 9 P. 

1 2 5 6 8 T 

4 6 7 9 

Ltbk2 

~lormal Form 
--------

G 1 ) 5 6 8 T 

0 2 J 5 

0 2 4 5 6 7 9 

\;thk.\ 

tlrnmal Form 

ll 2 5 6 

0 I • 5 5 

0 2 5 ! 
I i I . . • • • 

SCI I 2 4 6 7 8 9 E 

lll•nnal 0 2 4 5 6 7 9 

St'( 2 2 4 6 7 9 E 

"''rntal 0 1 3 5 6 8 T 

St'( J 4 6 7 9 

nPrmal 0 2 3 5 

Nor:mal Form Bar Note 

0 2 4 5 6 7 9 [ 5, 1] 

0 1 ) 5 6 8 T [ 7 I J l 
0 2 1 5 [ 101 2 l 

Bar: Nato: Prime Form 
--· .. 

[ 7 I 

[ 101 

(51 

9 

8 

I 
! 

I 
T 

) l 
2 I 
11 

Bnr 

[ 1 I 
[ 5] 

[ 7 l 

Both the invert and transpose tools do not physically change the contents 

of DARMS-encoded data files. The result from using the invert and transpose 

tools is sent to 'standard output' (ie the screen) and can either be redirected to 

another file or through another Analysis Environment tool. The invert command 

takes a DARMS-encoded data file and inverts the data, turning it either upside 

141 



down or back-to-front. By default, the middle note of the data is used as the 

axis for inversion (ie when turning the melody upside down, all movement is 

relative to the melody's middle note). Retrogradation (ie turning the melody 

back-to-front) is achieved using the '-r' option and does not require an axis for 

inversion. When turning the melody upside down, the note used as the axis for 

inversion can be changed via the '-n' option. Melodies containing an even 

number of notes use the first of the middle two notes as the axis for inversion. 

The following example shows the first ten notes of the data file 'b2f2p1.dms', 

which have been extracted using the extract command, turned upside down via 

the invert tool: 

$extract -nl,lO b2f2pl.dms 
26 25- 26 27 23 26 25- 24 25- 24-
$ 

P,: &e ... .. • &e • 
25- 26 27 2 3 26 25-

• 
24 

$extract -nl,lO b2f2pl.d~s 1 invert 
20 21 20 19 23 20 21 22 21 22# 
$ 

~--.- ----- --· • • .. 
20 21 20 19 2 3 20 21 22 

&t:o ~-
25- 24-

.-P= 
21 22# 

The transpose tool simply transposes OARMS-encoded data either up or 

down a specified number of semitones. The '-u' and '-d' options are used to 

specify the number of semitones to transpose the data up and down 

respectively. The following example shows the same ten notes of the previous 

example, which had been inverted using the invert tool, transposed up one 

semitone: 

142 



$extract -nl,lO b2f2pl.drns 1 invert I transpose -ul 
20* 22 20# 19* 23# 20# 22 22# 22 23 
$ 

_Q_~~ E=~o o ~qo E 
20~ 22 20~ 19U 23U 20U 22 22~ 22 23 

The intfind tool searches DARMS-encoded data files for occurrences of 

a specified interval. Major, minor, augmented and diminished intervals from a 

unison up to a fifteenth can be selected from the command line-a diminished 

seventh, for example, is represented by 7d, whilst a minor 3rd is represented 

by 3m. By default, the intfind tool locates exact matches of the interval. The '-N' 

option can be used to locate the interval with an exact number of notes 

separating the first and last notes of the interval, whereas the '-n' option can be 

used to locate the interval with any number (up to the specified maximum) of 

notes separating the first and last notes of the interval. The following example 

shows some of the output produced when searching for a perfect fourth (option 

'-i4') separated by up to four notes (option '-n4') in the data file 'b2f2p1.dms': 

$ incfind -n4 -i4 b2f2pl.drns 
Perfect fourth: 
Start End Direction 
1 5 \ 
3 5 \ 
4 8 \ 

5 6 I 
11 12 I 
etc ... 

~~ .mfu@?JAWQ JJ 
i i f i j etc 

1 ---~-- 5 

l'erfect k>urths I separated hv up to -l notes) l ll 
3 -5 

r r 
4 -----8 

r r 
5 6 

11 12 
143 



Another 'searching' tool, but one which addresses the problem of rhythm 

analysis as opposed to melodic analysis, is the rhythm tool. The rhythm tool, a 

basic rhythm pattern-matching tool, locates occurrences of a rhythmic pattern 

specified on the command line. The rhythmic pattern must be represented 

using valid DARMS rhythm symbols (eg Q for a quarter note, and E. for a 

dotted eighth note). If no options are selected, the rhythm tool locates identical 

occurrences of the specified rhythmic pattern. The '-d' and '-a' options locate 

diminished and augmented versions of the specified pattern respectively. When 

the lengths of notes in a rhythmic pattern are reduced, the rhythmic pattern is 

said to be diminished, and likewise, rhythmic patterns with increased durations 

are regarded as augmented. The following example locates a 'quaver, 

semiquaver, semiquaver' pattern in the second fugue from Bach's second book 

of preludes and fugues: 

$ rhythm -s -r "E S S" b2 f2pl. dms 
"E S S" Start positions: 
6 
14 
24 
ecc ... 

' 6 14 ?~ 

Two other tools perform rhythm analysis related functions. The sync tool 

calculates a level of syncopation based on the number of notes that sound 

across strong beats. By default, the :Jync tool calculates the percentage of notes 

which sound across the first beat of each bar. The tool examines each first 

beat, observing which first beats have 'struck' notes (ie notes which are played 

on the beat) and which first beats have 'sounding' notes (ie notes which are not 

played on the beat, but their duration carries the sound across the beat). The 

144 



following example calculates a percentage for the first part of the first fugue 

from Bach's second book of preludes and fugues: 

$ sync -s b2f1p1.dms 
struck: 59 
sounding: 15 
syncopation%: 20 
$ 

The higher the percentage, the greater the amount of syncopation. The '-b' 

option can be used to specify which beats should be examined. Using the 

'-b3-4' option, for example, forces the sync tool to examine the third and fourth 

beats of each bar. The '-p' option displays a percentage of syncopation for each 

bar, calculated using data for the previous two bars and the next two bars. This 

means that the percentage calculated at bar ten is based on data in bars eight 

to twelve. The data can be graphed using the '-g' option. For example, the 

following command line draws a graph of progressive syncopation percentages 

for the first part of the first fugue from Bach's second book of preludes and 

fugues: 

$sync -pgs b2flpl.~~s 
sync% 
80% 

XX 

XX XXX 

xxxxxxx 
xxxxx xxxxxxxxx 
xxxxx xxxxxxxxx 

XX XXX 

XX XXX 

XX 

:{XX 

xxxx 
xxxx 

xxxxxx 
XXX XXX 

xxxxxxx 
XXX X XXX 

0% 1 2 3 4 5 
bar 1234567890123456789012345678901234567890123456789012345678 

sync% 
80% X 

X 

xxxx XXX 

xxxx xxxx 
xxxxxx XXX XX 

xxxxxx xxxxxx 
xxxxxxxx xxxxxxx 
xxxxxxxx xxxxxxx 

0% 6 7 8 
bar 9012345678901234567890123 

145 



The horizontal axis depicts time, with a scale comprising bar numbers. The 

vertical axis shows the level of syncopation. The beginning and ending of the 

fugue, therefore, are deemed to contain no syncopation, whereas bars sixty to 

sixty-seven contain a great deal of syncopation. The rcheck tool examines and 

counts repeated pitches and durations. By default, the rcheck tool displays the 

percentage of pitch and duration repetition. The following example calculates 

the percentage and duration repetition for the first part of the first fugue from 

Bach's second book of preludes and fugues: 

$ rcheck -s b2f1p1.dms 
pitches%: 2 
durations%: 42 
$ 

The '-c' and '-C' options can be used to count the repetitions of each type of 

duration and pitch respectively. This information can be graphed using the '-g' 

option for repeated duration activity and the '-G' option for repeated pitch 

activity. Graphing the repeated duration activity of the first twenty bars in the 

first part of the second fugue from Bach's second book of preludes and fugues 

can be achieved with the following command line: 

I$ ext ra.ct -b1, 20 b2 f2pl. dms I rcheck -Gs 

and produces: 

s s 
s s 
s s 

s s s 
s s s 
S S S E 

SE Q S S S Q ESE Q SE Q SE E 
1-2-3-4-5--6-7-8-9-10-11-12-13---14-15--16-17--18-19-20-

The horizontal axis represents time and shows bar numbers. The vertical axis 

shows the level of duration activity using DARMS notation. Bars seven to nine, 

for example, show a high level of semiquaver repetition. 

146 



The movement graph of the endan tool, described earlier, is based upon 

the shape tool. The shape tool, however, displays the overall shape of a 

complete DARMS-encoded data file, and not simply the last five bars. Standard 

characters are used to display rises and falls ('/' and '\') and the '-r' option 

reduces large rises and falls to single rises and falls, displaying a 'ripple' pattern 

('f\JIM'). Rests are left intact and displayed as spaces, separating the ripple 

patterns for each phrase. A high degree of ripples means a high degree of 

small up and down movement. Only a handful of ripples means large rises and 

falls. The '-m' option smooths out the standard graph, turning a large rise with a 

small fall in it into simply a large rise. The following example shows part of the 

default graph and part of the 'ripple' graph for the second fugue of Bach's book 

two: 

$ shape -s b2f2p1.dms 
1 2 3 4 5 

/\1\ 
\1 \/\ 

\/\ 
\ 
\/\ 

\ 
\ 

\ 
etc ... 

$ shape -rs b2f2p1.dms 
1 2 3 4 5 

\!\1\/\1\/\ 

The bend tool locates the beginning and ending of melodic phrases in a 

DARMS-encoded data file. For the purpose of the bend tool, phrases are 

deemed to be rest-delimited melodies. By default, the beginning and ending 

note-number of each melodic phrase is displayed. The '-b' and '-e' options will 

display just the beginning and ending note-numbers respectively. A further 

option, the '-n' option, can be used to display the beginning and ending note

numbers for a specific melodic phrase. The following example uses the '-n' 

147 



option to display the beginning and ending note-numbers for the second 

melodic phrase in the data file 'b2f2p1.dms': 

1$ bend-s -n2 b2f2pl.dms 
46 85 
$ 

note number ~6 

~tart and end of 2nd melodic phrase 

nutt: number 85 

The note-number output, from the bend tool, may be changed to beat

number using the '-m' option. The beat-number is displayed as a multiple of the 

smallest rhythmic unit (ie the longest duration from which all others can be 

generated as integrals) in the data file. The following example uses the '-b', '-m' 

and '-n' options to display the starting beat-number (the 37th demisemiquaver) 

for the first melodic phrase in the data file 'b2f2p1.dms': 

1$ bend -sbm -nl b2f2pl.dms 
37 T 
$ 

>tart of lst melodi.: phrase 

17Jll?DfJ® 
.<"7th r. 

The contents then, of the 'Set One' Analysis Environment have been 

described-a set which comprises tools to search, extract, alter and display 

DARMS-encoded data. The tools of the Analysis Environment either provide 

structural information about the musical data, or transform the musical data in 

some way. A package of tools created by Camilleri et al. also carries out music 

analysis at a deeper level. Such computerised analysis, nevertheless, traps the 

programmers' analytical ideals inside the computer and blinkers the computer's 

results and the user's interpretations. The Camilleri team, however, did 

recognise the potential for combining and comparing results of different 

148 



analyses and methodologies: "we would like to emphasize the featuring points 

of our work ... the usability of a software tool with different analytical strategies 

which allows the user (student, scholar or music theorist) to compare the same 

piece and, if feasible, to integrate them for understanding and describing the 

piece structure." 113 

The proof of the pudding, however, is in the eating, and although the 

tools can be shown to work well in laboratory conditions, the tools, and the way 

in which they can be bolted together and linked to the tools of both the UNIX 

(primarily) and MSDOS environments need to be put to the test. Chapter five, 

therefore, contains an analysis of the fugues (chosen primarily for their 

mathematical nature) of J. S. Bach's "Well Tempered Clavier" (Book II) using 

the Analysis Environment tools under the UNIX operating system. The 

challenge then, for the reader, is to make an objective decision, based on the 

results of said analysis, as to whether the tools and the methodology behind 

them and their ease of integration can benefit the scholar. 

113 Camilleri, L. et al., "A Software Tool for Music Analysis", Interface, Vol16 (1987), p.35 

149 



Testing ths Tools o~ the Analysis !Environment 

The versatility of the Analysis Environment, through its connectivity and 

expandability, is not in doubt; and, the popularity of numerous toolkits currently 

on the market for all manner of hobbyists is proof of this. The 

Analysis Environment, likened to a 'Music-Meccano Set One' in chapter two, 

contains a collection of tools in its box which were placed there using an 

objective approach wherever possible. These individual tools, however, must 

be tested and t11eir usefulness evaluated. The theory behind their integration, 

both with themselves and the tools of the UNIX operating system, must be put 

to the test and studied in practice. As such, the purpose of this chapter is to lay 

down a series of questions relating to a set of music data, 114 and attempt to 

answer such questions using the tools of the Analysis Environment and the 

UNIX environment. 

Analysis of a composition can be approached in two ways. A scholar 

might first define a series of questions. The objective of any analysis then, 

would be to procure answers to the questions. Alternatively, the scholar might 

have no such list of specific questions, and merely expect to further his or her 

knowledge of the composition from close scrutiny and analysis of the score. 

The trial analysis outlined in this chapter adopts both methods. The tools 

of the Analysis Environment are used to dissect or 'decompose' the scores of 

the fugues in an arbitrary fashion, attempting to procure new information 

regarding the structure of the fugues. In addition, several questions have been 

put forward in the hope that the Analysis Environment tools can aid in their 

solution. The intention of this chapter, once again, is to evaluate the efficiency 

of the tools when applied to some questions arising from an initial perusal of the 

114 For the purpose of the analysis described in this chapter, the test data comprises the 
twenty-four fugues of Johann Sebastian Bach's "Well Tempered Clavier" Book II. 

150 



fugues. It is not, however, the intention to reinvent the wheel by producing a 

thorough, complete analysis and thus a textbook on how to compose fugues. 

The questions themselves can be divided into two major sections

analysis of the fugue constituents (for example, the subject), and analysis of the 

overall fugue form (for example, the coda). 

The first objective then, is to tackle questions which relate to the 

constituent parts of the fugue. What rules govern the labelling of a melody as 

'fugue subject'? Once the subject of each fugue has been established, can a 

relationship between their structures, ie shape and movement, be determined? 

How much material of an entire fugue is based upon its subject, and is there a 

relationship between the subject and countersubject? How much of a fugue 

subject is fundamental to its structure, ie what can be removed before passing 

the 'breaking point'? What is the definition of elaboration, and how much can be 

discarded before the overall style of the subject becomes radically altered? This 

series of questions will form the starting point of the trial analysis. Analysis of 

overall fugue form will be tackled at a later juncture within the chapter. 

Two approaches will be adopted when analysing the constituents of the 

fugue. Firstly, a single fugue, number one inC major, will be examined in great 

detail, and the subject will be studied in relationship to the rest of the fugue. 

Secondly, the subject of all the fugues will be studied in a comparative fashion 

to determine at what level there is a consistency of style in their form. 

Since fugues are essentially contrapuntal in nature, any in-depth 

analysis of the first fugue should really compare the individual parts and 

examine the way in which they interrelate. Comparison of one melodic line with 

another is feasible, but taking a vertical slice from the fugue and thus a 

snapshot of activity of all the fugue parts at any given moment in time is not 

possible with the current standards imposed by the Analysis Environment. 

151 



Currently, only single melodic lines can be analysed. Even a single melodic 

line, however, should contain all the elements of style which make the melody 

idiosyncratic of a given composer. " ... the essence of polyphonic style must be 

embodied in the manner in which a composer constructs an individual line .... 

Consequently, the style of a composer must be enshrined on the printed page 

in a single monophonic line, although that line would need to be of sizeable 

duration (eg a complete Mass movement or motet section) for meaningful 

deductions to be valid." 115 Despite the difficulties imposed by the 

Analysis Environment when attempting to undertake polyphonic or contrapuntal 

analysis, it is still possible to extract musical information from all parts at a 

specific point in time, by using the extract tool. The information extracted, 

however, cannot then be analysed using the other tools in the environment 

since it is essentially a vertical (chordal) DARMS structure as opposed to a 

horizontal (melodic) DARMS structure which is the major concept behind the 

Analysis Environment, ie 'piping' melodies through tools. Under such 

circumstances, one would have to resort to manual analysis. 

Initially the data must be collected, ready for fugue-subject analysis. In 

simplistic terms, the fugue subject can be regarded as the initial melody of the 

whole fugue. Thus, the first note of the fugue is the first note of the fugue 

subject, and as one might expect, all of the fugues begin with a single melody

the fugue subject itself. Such an apparently simplistic deduction can be 

confirmed using the bend tool (which displays the beginning and ending 

positions of all melodic phrases). When examining the first fugue, the following 

four commands will display the starting points, within the fugue, of the fugue 

parts: 

115 Morehen, J., "Statistics in the Analysis of Musical Style, Proceedings of the Second 
International Symposium on Computers and Musicology, Orsay, 1981, (Paris, CANS, 
1983}. p. 171 

152 



$ bend -sbm -nl b2flpl.illns 
35 s 
$bend -sbm -nl b2flp2.dms 
3 s 
$bend -sbm -nl b2flp3.dms 
67 s 
$ 

and shows that part two (stored in the data file 'b2f1 p2.dms') begins before all 

the other parts, at the third (3) semiquaver (S) position. Producing similar 

information for all the fugues requires the bend tool to be enclosed in a small 

UNIX shellscript11 6 loop, which will repeat the same commands for each fugue. 

The alternative to a small shellscript loop would be to type in over eighty-one 

individual commands-a task prone to typing errors and which would defeat 

entirely the object of using the computer as an efficient time-saving aid. The 

loop may also form the basis for any comparative testing since it can be tailored 

to apply the same series of commands to all fugues. The convention adopted 

for naming fugue data files allows a shellscript loop to apply commands to all 

fugues data files using the following syntax: 

for datafile i:1 'ls b2f•p*.dms' 
do 

ANALYSIS CON.MANDS 

done 

The UNIX command 'Is' produces a list of data-file names stored on the 

computer. The pattern 'b2f*p*.dms' limits the list produced by the 'Is' command 

to those data-files which are named using the convention outlined earlier in this 

thesis, ie b2- book two, f- fugue,*- any number (UNIX), p- part,*- any 

number (UNIX), .dms- suffix indicating a DARMS-encoded data file. The list 

produced by the 'Is' command, therefore, comprises the names of the data files 

containing all the parts of all the fugues. The shellscript 'for' loop is a text-based 

116 See appendix C for a brief outline of the UNIX shellscript programming language. 

153 



loop and not a numeric-based loop. This means that each of the items in the list 

produced by the 'Is' command is put in turn into the shellscript variable 'datafile' 

and is available within the loop. The commands in between the 'do' and 'done' 

will be applied to the data-file name currently stored in the shellscript variable 

'datafile'. A loop, therefore, to apply the bend tool to all parts of all fugues would 

use the following syntax: 

for datafile in 'ls b2f*p*.dms' 
do 

bend -sbm -nl $datafile 
done 

where the'$' symbol in front of the variable 'datafile' is used to procure the 

contents of the variable, ie the actual name of the DARMS-encoded data file. 

The small shellscript program in its current format, however, simply 

produces a stream of numbers, ie the beginning position of the first melodic 

phrase of each DARMS-encoded data file. Inserting the UNIX 'echo' command 

(which just echoes a string of text onto standard output, ie the screen) into the 

middle of the loop will annotate the output, and the following use of the 'echo' 

command displays the contents of the variable 'datafile' (the actual name of the 

data file), and suppresses the carriage return (achieved by inserting \c into the 

text string) to display the beginning position (of the first melodic phrase) 

immediately after the actual data-file name: 

for datafile in 'ls b2f*p*.dms' 
do 

done 

echo "$datafile \c" 
bend -sbm -nl $datafile 

154 



The small shellscript loop produces the following output: 

b2flp1.dms 35 s 
b2 flp2. drns 3 s 
b2flp3 .dms 67 s 
b2f2p1.dms 37 T 
b2f2p2.dms 5 T 
b2f2p3.dms 101 T 
b2f2p4.dms 585 T 
b2f3pl.dms 21 T 
etc ... 

which requires further 'neatening' to become more readable and 

comprehensible. 

An alternative form of loop, which enables a series of commands to be 

applied to each fugue, could have the following syntax: 

for fuguenumber in 1 2 3 4 5 6 7 8 9 10 
11 12 13 14 15 16 17 18 19 20 21 22 23 24 
do 

Allll.LYSIS COM.MP..NDS 

done 

which puts the numbers 1 to 24 in turn into the variable 'fuguenumber' and 

allows the variable to be used within the 'do' and 'done' section. A 'nested' loop, 

ie another 'for' loop inside the 'do' and 'done' section of the previous loop, 

enables commands within the inner 'do' and 'done' section to be applied to the 

individual parts of each fugue. For example, the following shellscript: 

for fuguenumber in 1 2 3 4 5 6 7 8 9 10 
11 12 13 14 15 16 17 18 19 20 21 22 23 24 
do 

done 

for partnumber in 1 2 3 4 
do 

bend -sbm -n1 "b2f${fuguenumber)p$partnumber" 
done 

also applies the bend tool to each part of every fugue. This shellscript, however, 

because it uses a separate inner loop for each fugue, can be annotated using 

'echo' commands as follows to produce a more readable form of output. 

155 



(Brackets have been used around the variable 'fuguenumber' in the inner loop 

to separate the variable name from the letter 'p' and avoid confusing the UNIX 

shellscript interpreter which might inadvertently look for the contents of the 

variable 'fuguenumberp' as opposed to the variable 'fuguenumber'.) 

for fuguenumber in 1 2 3 4 5 6 7 8 9 10 
11 12 13 14 15 16 17 18 19 20 21 22 23 24 
do 

done 

echo "Fugue number: $fuguenumber" 
echo "Parts begin at ... " 

for partnumber in 1 2 3 4 
do 

bend -sbm -n1 "b2f$[fuguenumber}p$partnumber" 
done 

The above shellscript program, involving a nested loop, produces the following 

output: 

Fugue number: 1 
Parts begin at ... 
35 T 

3 T 

67 T 

Fugue number: 2 
parts begin at ... 
37 T 

5 T 

101 T 

585 T 

Fugue number: 3 
parts begin at ... 
321 T 

5 T 

7 T 

Fugue number: 4 

parts begin at ... 
19 s 
49 s 
1 s 
Fugue number: 5 
parts begin at ... 
67 s 
27 s 
1 s 
etc ... 

156 



The above data was intended to determine which part began each fugue. Such 

statistics, however, provide interesting information by themselves. The above 

output can be arranged into a tabular format (Table A). 

Table A 

1 s 35 3 67 C Major 
2 T 37 5 101 585 C Minor 
3 T 21 5 7 C# Major 
4 s 19 49 1 C# Minor 
5 s 67 27 3 83 0 Major 
6 s 33 1 81 D Minor 
7 s 321 209 97 1 Eb Major 
8 s 131 3 35 99 D# Minor 
9 E 73 49 25 1 E Major 
10 s 3 97 195 E Minor 
1 i T 7 55 157 F Major 
12 s 1 33 89 F Minor 
13 s 1 65 129 F# Major 
14 s 55 7 127 F# Minor 
15 T 3 87 171 G Major 
16 s 101 53 5 149 G Minor 
17 T 69 5 165 229 Ab Major 
18 s 1 49 145 G# Minor 
19 s 67 27 3 A Major 
20 T 169 73 9 A Minor 
21 E 26 2 74 Bb Major 
22 E 49 1 193 121 Bb Minor 
23 s 209 145 65 1 B Major 
24 T 73 1 181 B Minor 

The table lists the part entry-positions for all the fugues, and is divided into 

seven columns. The first and last columns contain the fugues number and 

fugue key, respectively. The second column shows the smallest duration in the 

fugue (DARMS notation) used by the bend tool to calculate the entry position of 

the fugue parts. Columns three to six contain the actual entry positions for each 

part of the fugue (as a multiple of the value in column two). If there are only 

three parts in a fugue, the sixth column is blank. 

157 



Ideally, in a paradigmatic sense, each part will begin after a consistent 

length of time. Fugue nine in E major, for example, is a classic case. The fugue 

contains four parts. The lowest part enters first on beat one, and the rest of the 

parts enter in ascending order, each twenty-four eighth (E) beats after the 

preceding part. 

Fugue IX, E major 

1 1 

r 
In other fugues, such as fugue sixteen in G minor, parts begin after a 

consistent length of time, but in an inconsistent order. The parts of fugue 

sixteen enter in the order of third, second, first and fourth (where the first part is 

the topmost part). The length of time between each part-beginning is forty-eight 

sixteenth (S) beats. 

Fugue XVI, G minor 
1\1 

t) 

.17) lJ"I) ll~ ~ JJJJ] UJJ~ I I ~v I I I y 1111111 

158 



For some four-part fugues, which do not have each part entering after a 

consistent length of time, the length of time between the first and second 

entries is the same as the length of time between the penultimate and last 

entry. 

Fugue VIII, D# minor 

A it 7 rnr1111ICAn1 

!V 

w U' u~ L..lJ '-I w 

The majority of fugue parts, however, enter in an inconsistent order, and 

after an inconsistent time. 

Two fugues stand out in table A. The first, fugue two in C minor, is 

unusual because the last part does not enter until the fugue is halfway through, 

whereas most fugues have all parts under way before the tenth bar. 

Fugue twenty-one in Bb major stands out because its part entry numbers 

are odd, whereas the part entry numbers for other fugues are even. In fugue 

twenty-one there are no subdivisions of the standard duration (quaver) except 

six bars before the end. 

159 



Fugue XXI, Bb major 

"· I 
, JJiJJ 

'~ u..r..o r 111 11 rll rrr lfll [lJ r 

" I 
d11l j~JJ-IIIJ I 

- .. 
Q) 

~1&'-.., "' 

Many might argue that the data in Table A is no more informative than 

the scores of the fugues themselves. Indeed, there is certainly no extra 

information in the table, which is not present in the scores. However, the table 

sets out the known data using another format, and places emphasis on new 

areas. Infrequent rhythmic symbols stand out, and high, low and sequential 

number series draw attention themselves, begging for further questions to be 

asked. 

Officially, then, the fugue subject begins with the first note of the fugue 

itself. As a convenient criterion for computing, the fugue subject can be taken 

as ending when another part enters, although from a musical point of view this 

does not always make sense. For example, in fugue three there are overlaps of 

seven quavers between the first and second entries alone. With this 

information, the bend tool can be used to find out when the second entry of a 

fugue begins and thus when the fugue subject ends. Having established the 

beginning and ending points of the fugue subject, the extract tool may be used 

to extract the fugue subject, whereupon it can be redirected into another data 

file, ready for use at a later date. When examining the first fugue, the following 

shellscript loop establishes the earliest two entry points of the fugue parts: 

160 



for part in 1 2 3 
do 

done 

entrypoint='bend -sbrn -nl b2flp$part' 
entrypoints="$entrypoints\n$entrypoint" 

start=' echo $entrypoints I sort -n I sed -n "lp"' 
end='echo $entrypoints I sort -n I sed -n "2p"' 

for part in 1 2 3 
do 

done 

entrypoint='bend -sbrn -nl b2flp$part' 
if ( "$entrypoint" -eq "$start" ] 
then 

partnarne=$part 
fi 

whilst the following use of the extract tool may be used to put the fugue subject 

into a data file called 'b2f1 s_dms' and adheres to the convention used for the 

data-file names for data files containing fugue subjects: 

extract -t$start,$end $partnarne > b2fls.drns 

In the above shellscript program, the first 'for' loop uses the bend tool to 

calculate the starting point of each part. These starting points are separated by 

newlines and assigned to the variable 'entrypoints'. Outside the loop, the entry 

points (now stored in the variable 'entrypoints') are piped through the UNIX 

'sort' tool to sort them into numerical order. The sorted list is then piped through 

the UNIX 'sed' (stream editor) tool which extracts the first line (the lowest 

number, and thus the earliest entry point and the start of the fugue subject) and 

assigns it to the variable 'start'. The second line of the sorted list (the second 

lowest number, and thus the second entry point and the end of the fugue 

subject) is extracted and assigned to the variable 'end'. The second 'for' loop 

examines each part in turn, in an effort to establish which part had the lowest 

entry point, and thus contains the fugue subject. The name of the part 

containing the fugue subject is assigned to the variable 'partname'. 

161 



A larger shellscript program may be built up to transfer all fugue subjects 

to data files called b2fxs.dms, where x represents the fugue number. 

From the shellscript outlined so far, the fugue subject from the first fugue 

is as follows: 

R 23 22 23 19 I 24 23 I R 22 21 22 23 21 22 I 
20 22 21 22 23 24 22 23 I 21 20 

and the fugue subjects for the other fugues are as follows: 

1. R 23 22 23 19 I 24 23 I R 22 21 22 23 21 22 ! 
20 22 21 22 23 24 22 23 I 21 20 

12. R 23 21- 22 23 19 22 21- 20 I 21-

13. R 12~ 14~ 12~ 16~ 

162 



4. 12# 11~ 12# 13# 12# 13# 9# 10# 11~ 12~ 13# 14 I 15# 14 15# 
13# 16# 15# 

Is. R 20 20 20 16 18 1 18 14 11 16 15# 

6. 20 21 22 23 22 21 22 23 24 25- 24 23 24 27 26# 26 I 
25 25- 24 23 22 21 24 

7. 14- I 18- R 17- I 16 19 18- I 17- 17- 16 17- 19 I 
15 18- 17- I 16 16 15 16 18-

8. R 20# 20# 20# 19## 20# 21# I 21# 20# 23# 22# 21# 24# 23# I 
22# 

19. 14 15# 17 I 16# 15# 

163 



10. R 21 22# I 23 24 23 22# 23 24 25 24 23 24 I 25 23 21 26 I 
26 25 27# 28 24 1 24 23 27~ 28 22~ / 22# 23 24 23 221 21 
201 26 25 24 23 221 I 23 24 25 24 23 22# 21 28 27 261 

$17J31J1IJ)J:IJlj:IJJ JJSJ;wtpJ~1l@Wf1J!WJJ:i€~1 
a 

11. R 22 21 22 I 26 R 24 23 24 I 27 R 26 27 28 I 29 28 27 26 
27 25- I 24 23 22 

12. R 26 I 22 22 22 27- 25- I 21 21 21 22 23 24- / 25- 24-
23 24- 25- 27- 26 25- I 24- 23 22 23 24- 25-

13. R 21# 201 21# I 221 R 191 201 I 21 201 19# 18 171 18 191 / 
20# 211 22# 20# 23~ 18 I 18 171 16# 

14. R 19# 17 15# 20 I 20 19# 18 19# 22# 18 I 18 17 161 17 151 
16# I 15# 161 17 

164 



15. R 27 25 27 30 27 I 25 27 23 27 25 27 I 28 26 24 26 22# 24 
I 27 25 23 25 21 23 I 26 24 22# 24 20 22# I 25 24 23 24 25 
26 I 27 24 25 26# 27 28 I 29# 

16. R 20 R 18- I 21- 19 R 17 I 20 18- R 16 I 19 19 19 19 19 19 
I 19 18- 17 

17. R 28- 26 29 25- 26 27- 28- 20- I 24- 25- 26 27- 28- 26 
27- 25- 26 27- 28- I 26 25-

18. 23# 24# 25 24# 27# 20# I 23# 25 24# 25 24# 23# I 24# 25 
26# 25 28 23# I 24# 26# 25 26# 25 24# 

19. R 17 18 19# 18 17 19# 18 20 19# 21 20 I 20 22# 21 20 21 18 
19# 20 19# 

165 



!20. R 21 19 22 I 16~ R 20 18 21 I 19 17 

21. R 26 25- 24 25- 22 I 20 23 22 21- 22 20 I 18- 21- 21- 20 
20 19 I 19 22 22 21- 21- 20 I 20 21-

ifi) IDlJij JJ J JjljJ JJ JjlpJ ~ J ]1~1 

22. 18- 19 R 20- I 21- 17 18- R 19 I 20- 18- 19 20- 21- 19 
20- 21- 22 20- 21- 22 I 23- 21- 22 R 23- 19 20- 21-

123. 11 13# I 16~ 14 I 12# 17~ I 18 17~ 16# 15~ 14 

24. R 22# I 20 18 17~ I 18 19# 20 21 22# I 23 16 23 I 22# 15# 
22~ I 21 22~ 21 20 19# I 20 22# 21 20 

The fugue subject itself is fundamental to the composition. Using the 

rnote and anote tools, it is possible to remove repeated and auxiliary notes a few 

at a time until the subject loses its 'identity', ie no longer bears any meaningful 

resemblance to the original. One tool in the Analysis Environment is designed 

specifically for quantifying similarity (simfind} and could be useful for monitoring 

166 



the gradual decrease in similarity as repeated and auxiliary notes are removed. 

This in itself would be a worthwhile exercise to establish a value for the 

'breaking point', where similarity values less than the breaking point show 

melodies which bear no resemblance to the original, and similarity values 

greater than the breaking point show melodies which appear similar in some 

form to the original. The disadvantage with the current version of the simfind 

tool is that compared melodies must contain the same number of pitches. 

Tools which can be used to monitor the disintegration of the subject are 

the shape tool (which displays the overall shape of a melody), the score tool 

(which displays a melody in pseudo-music notation) and the play tool (which 

plays a melody using the built-in speaker of a personal computer and is 

currently only available in the more restricted MSDOS environment). Since the 

rhythm of the subject will doubtless be altered radically if notes are removed, it 

is sensible to make only melodic comparisons of the melodies, and the play tool 

should be used without the '-r' option, enabling the play tool to play the melody 

using the same duration for every note. The score and shape tools have no 

facility for displaying durations. 

A small shellscript loop, to display the fugue subject as it is decomposed, 

might have the following syntax: 

original='cat b2fls.dms' 
echo $original 
decomposed='echo $original I rnote -r I anote -r 
echo $decomposed 
while [ "$original" != "$decomposed" 
do 

done 

original=$decomposed 
decomposed='echo $original 1 rnote -r I anote -r 
echo $decomposed 

The program itself displays the subject in its original subset DARMS notation. 

The first line uses the UNIX 'cat' command to send the contents of the fugue

subject data-file to standard output, ie the screen, and assigns the standard 

167 



output to the variable 'original'. At this point, the variable 'original' contains the 

fugue subject from the first fugue, and may now be used at any point within the 

rest of the program. Line number two displays this original fugue subject, whilst 

line three pipes the original fugue subject through the mote and anote tools 

using their recursive ('-r') options (which guarantee the global removal of 

repeated and auxiliary notes). This decomposed version of the fugue subject is 

assigned to the variable 'decomposed' and is displayed on the screen in the 

next line of shellscript. The body of the shellscript program is a 'while' loop. 

Unlike the 'for' loop which progresses through a list of text items, and 

terminates when there are no text items left, the 'while' loop will execute all 

commands within the 'do' and 'done' whilst a certain condition is true. The 

condition itself appears inside square brackets, after the 'while' command itself. 

This particular condition states that all commands inside the 'do' and 'done' 

should be executed whilst the contents of the variable 'original' is not the same 

as the contents of the variable 'decomposed'. In English, this means that the 

body of the loop will be performed until the decomposition process produces a 

melody which is the same as the previous melody, ie no further decomposition 

has taken place. Inside the loop, the decomposed melody becomes the new 

original melody, the original is decomposed a stage further and this freshly 

decomposed melody is printed out. The whole shellscript program, when 

executed, produces a list of DARMS-encoded melodies with the original at the 

top, and the most decomposed at the bottom. 

Any comparison of melodies by the scholar is difficult when faced with an 

unfamiliar notation such as DARMS. The score tool, however, may be bolted 

onto the end of the 'echo' commands to display the melodies not in DARMS, 

but in the pseudo music notation. 

lecho $original 1 score 

168 



Likewise, the shape of the melodies may be displayed by bolting the shape tool 

onto the end of the 'echo' commands, 

!echo $original I shape -s 

and both shape and notation may be displayed by bolting both tools onto the 

'echo' commands. 

!echo $original 1 shape 1 score 

The play tool, however, since it has no equivalent in the UNIX environment, 

must be used from within MSDOS. Unfortunately, although MSDOS has a 

restricted version of the UNIX pipe, filter and redirection facilities, it has no 

equivalent of the powerful UNIX shellscript programming language. All that is 

available is a rather terse batch programming language. Despite this, it is still 

possible to craft a small program which will play the melodies as they are 

decomposed. Such a program could have the following format: 

:loopstart 

play b2fls.clms 
rnote -r b2fls.ili~s I anote -r > tempdata 

play ternpdata 
rnote -r tempdata 1 anote -r > tempdata 
goto loopstart 

Although somewhat more succinct that the previous shellscript program, this 

MSDOS batch program has no method of ending and must be aborted by 

pressing the computer's interrupt key sequence when the decomposition 

process no longer alters the state of the melody. Since there are no variables in 

the MSDOS batch language, the intermediate decomposed melodies have to 

be stored in the data file 'testdata' via redirection, and used later in the 

program. The goto command forces the computer to go back to the line 

labelled 'loopstart'. So that the scholar can monitor the decomposition process 

169 



visually as well as audibly, the '-s' option has been omitted from the play tool, 

which displays the DARMS data on standard output, ie the screen. 

Fugue I, C major (during the decomposition process) 

R 23 22 23 19 I 24 23 I R 22 21 22 23 21 22 I 20 22 21 22 23 24 
22 23 I 21 20 

J0%4 lo ola
0

o0 00 1 00 o0°o 0 1o--u 
-<> 0 

R 23 23 19 I 24 23 I R 22 22 23 21 22 I 20 22 22 23 24 22 23 I 
21 20 

IR 23 19 I 24 23 I R 23 21 22 I 

~ I I J "' a (f) 
0 

~ 

0 
0 

20 22 

.. .. 

0 Q e 

23 24 

0 "' "' 

...,.., 
<...(... 23 I 21 

Q I 
~ 

IR 23 19 I 24 23 I R 21 22 I 20 22 23 24 22 23 I 21 20 

9 e I "' 

20 

The above example shows the subject of the first fugue as it is 

decomposed. The pictorial representation of the decomposition process does 

not, however, convey the same information as the audible representation by 

the play tool. Generally, when the subjects are piped through the play tool 

during decomposition, the melodies sound disjointed and unlike their originals. 

At the end of the decomposition process, however, the melodies are more 

170 



scalic and although somewhat more condensed, have a similar audible style to 

their originals. The view that auxiliary notes and repeated notes are merely 

decoration and not fundamental to a melody's structure would, therefore, seem 

to be valid. 

If there is a breaking point, and a fugue subject can be condensed, the 

condensed version can be used successfully in further analysis, and any 

deductions made on the condensed version apply equally to the original 

version. The subject is the most important element of the fugue. Not only is it 

the first melody of the whole composition, but it has the honour of being 

rendered by each part at least once. Identical repetition of the fugue subject 

within a part can be discovered using the motif or simfind tools. 

When using the simfind tool, the entire fugue part will be searched 

thoroughly and every possible melody of the same length as an inputted 

melody will be compared and a value of similarity will be displayed. Searching 

the second fugue part, from the first fugue, for material based on the fugue 

subject would be achieved using the following shellscript, 

simfind -s -bO -ao -m 
"23 22 23 19 24 23 22 21 22 23 21 22 20 22 21 22 23 24 22 23 21 
20" b2flp2.drns 

if the DARMS notation is known for the fugue subject. Alternatively, the data file 

'b2f1 s.dms' contains the fugue subject, and can be incorporated into the above 

shellscript using the following syntax: 

lsimfind -s -bO -aO -rn "'cat b2fls.drns'" b2flp2.drns 

The output generated is a list of melodies in order of similarity-the most similar 

first, and the least similar last. This list of numbers draws attention to melodies 

of importance, although the restriction to melodies of identical length to the 

171 



fugue subject is somewhat limiting. The rest of the parts may be checked at the 

same time by enclosing the simfind command in another 'for' loop. 

for part in 1 2 3 
do 

echo "Part: $part" 
sirnfind -s -bO -aO "'cat b2fls.drns"" b2f1p$part.drns 

done 

The motif tool enables music material to be searched for a specified melody. 

Although only identical matches are displayed, using the '-n' option will allow 

found melodies to be longer than the original melody. The motif tool can be 

used to search the fugue parts for melodies which might have 'evolved' from 

the fugue subject. 

The subject of the first fugue is twenty-two notes long. If the monftool is 

used in the following fashion, 

motif -sn27 -rn "23 22 23 19 24 23 22 21 22 23 21 22 20 22 21 22 
23 24 22 23 21 20" 

the figure '27' after the '-n' option allows the located melodic material (which 

would otherwise be an identical match of the fugue subject) to be an expansion 

of the fugue subject by up to five notes. This expansion allows for the addition 

of extra repeated or scalic passing notes within repetition of the subject 

material. 

The semio tool, used with '-n22' will look for identical occurrences of 

twenty-two note melodies. The semio tool, however, examines the DARMS

encoded data file in minute detail, picking up each twenty-two note melody in 

turn and displaying the positions of its other occurrences within the score. The 

first twenty-two note melody used for its search is the fugue subject itself, and 

its locations, displayed using the simjind tool, are confirmed by the semio tool. 

The rest of the output from the semio tool, however, shows the frequency of use 

172 



of other twenty-two note melodies, and this will draw attention to melodies of 

importance and interest. Frequently used melodies must be of some structural 

significance. Twenty-two notes is actually a lot of melody, and more overall 

structural information might be gleaned if the melodic units being examined 

were of a smaller size. If the semio tool is again enclosed in a small shellscript 

loop, melodic units of sizes from the smallest (a single note) to the largest (a 

melody the length of the entire fugue) could be examined and structural 

material which is repeated (no matter what the size) would be highlighted and 

be available for further close scrutiny. Such a shellscript program, which uses 

the density tool to calculate the total number of notes in the first part of the fugue 

and thus determine the length of the largest melodic unit, might have the 

following format: 

maximum='density -s b2flp2.dms 1 awk '(print $NF) ,
counter=! 
while [ "$counter" -le "$maximum" ] 
do 

dcme 

echo "Melodic units of length $counter" 
semio -sn$counter b2flp2.dms 
counter='expr $counter+ 1' 

The first line of the above shellscript program uses the default output of the 

density tool to assign the total number of notes in the data file 'b2f1 p2.dms' (ie 

the second part of the first fugue) to the variable 'maximum'. The output from 

the density tool consists of the words 'Piece density:' followed by the density 

itself. Piping the output from the density tool through the UNIX 'awk' tool (which 

is yet another programming language in its own right) extracts the last field of 

the output, ie the actual density value and not the text. The density, or total 

number of notes, is then available via the variable 'maximum' to the rest of the 

program. The variable 'counter' contains the current size of the melodic unit to 

be used with the setnio tool, and is assigned the smallest size of one, on the 

second line of the shellscript program. The 'guts' of the program (a 'while' loop) 

terminates when the contents of the variable 'counter' is no longer less than or 

173 



equal to the contents of the variable 'maximum', ie the melodic-unit size is 

greater than the fugue-part length. Inside the loop, an 'echo' command displays 

the current size of the melodic unit, and the semiu tool uses the current size of 

the melodic unit on the data file 'b2f1 p2.dms'. 

Since the same data-file name occurs in two separate instances within 

the program, it too could be assigned to a variable and the variable used 

instead of the actual data-file name. This would make the program more 

flexible, and, used in conjunction with the UNIX 'read' command could be made 

to prompt the user for the name of a DARMS-encoded data file. Such an 

amended program might appear as follows: 

echo "Enter name of DARMS file: \c" 
read datafile 
maximum='density -s $datafile 1 awk '[print $NF}'' 
counter=l 
while [ "$counter" -le "$maximum" ] 
do 

done 

echo "t·lelodic units of length $counter" 
semio -sn$counter $datafile 
counter=·expr $counter + l' 

The initial 'echo' command provides a prompt for the user, whilst the 'read' 

command simply assigns what the user types on the keyboard into the variable 

'datafile'. UNIX shellscript is a text-based language, and as such, offers no 

facility for mathematics or calculations of any form. Fortunately, there are 

several tools available under UNIX for performing mathematical calculations. 

The 'expr' tool is perhaps the most simple, and can be used to perform integer 

mathematics involving addition, subtraction, multiplication and division. The last 

line in the loop, therefore, uses the 'expr' tool to increase the melodic-unit size 

by one and assign it to the variable 'counter'. As one might imagine, output 

produced by the semio tool for melodic units of size one to three hundred and 

sixty-seven (which is the total number of notes in the second part of the first 

fugue) takes up more than one or two sheets of paper. Rather than reproduce 

174 



all of the output in this chapter, a summary of the important information is 

shown below: 

Fugue I, C major (part two, twenty-two note melodies) 

3 1 3 8 5 3 1 0 1 3 0 1 10 1 0 
ft1 ft2 ~3 ft4 ft5 ft6 ft7 ft8 ft9 ft1o ft11 ft12 ft13 ft14 ft15 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 

1 3 5 1 3 0 10 0 1 0 1 10 0 8 7 
ft16 ft17 ft18 ft19 ft20 ft21 ft22 ft23 ft24 ft25 ft26 ft27 ft28 ft29 ft30 

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 
258 259 260 261 262 263 264 

Using the semio tool on melodies of twenty-two notes (in the second part) 

immediately shows that there is repetition of the fugue subject at note number 

243, ie bars forty-seven to fifty-one. Such information is only obtainable from 

the score by close and careful examination. 

175 



Fugue I, C major (part two, four note melodies) 

------------------------------------------------------------
3 1 3 8 5 3 1 0 1 3 0 1 10 1 0 
"1 "2 "3 "4 "5 "6 "7 "8 "9 "10 "11 "12 "13 "14 "15 

------------------------------------------------------------
1 2 3 4 5 6 7 8 9 10 11 12 13 7 15 
243 244 245 246 247 248 14 192 112 49 253 254 255 14 257 
290 2 91 292 293 336 337 108 250 171 113 108 
332 333 334 335 167 193 172 167 

191 251 194 191 
249 252 249 
256 256 

Using the semio tool with four-note melodies produces the above information, 

showing that the opening fugue subject is also repeated (in a shorter form) at 

notes 290 and 332, ie bars fifty-six and seventy-two. 

Fugue subject material might well appear in a transposed or even 

inverted format. The previous shellscript programs may be adapted to search 

for fugue material which appears in a transposed or inverted form by using the 

invert and transpose tools on the fugue subject before any searching takes 

place. The following short shellscript program raises the fugue subject by a 

semitone at a time (up to a maximum of thirteen semitones), effectively 

176 



transposing it into every key, and uses each transposed version with the simfind 

tool, within the 'while' loop: 

distance=O 
while ( "$distance" -le 13 ] 
do 

done 

melody='transpose -u$distance b2f1s.dms' 
echo "Distance transposed: $distance" 
simfind -s -bO -ao "$melody" b2f1p2.dms 
distance='expr $distance+ 1' 

Searching for inverted fugue subjects can be achieved using a similar method, 

except that the DARMS-encoded data file 'b2f1 s.dms' should be inverted before 

being assigned into the 'melody' variable as opposed to being transposed: 

lmelody='invert b2f1s.dms' 

By default, melodies are inverted vertically (ie turned upside down) and the axis 

used for inversion is the middle note. If one wishes to carry out a 

comprehensive search for possible use of fugue material, the direction of 

inversion should be changed, and the axis for inversion should be tried as each 

note of the melody. Not only this, but the various inverted melodies should be 

transposed into each key before searching as well. To accomplish this, the axis 

for inversion can be moved along the fugue subject using the following 

shellscript program: 

length='density -s b2f1s.dms' 
counter=1 
while ( "$counter" -le "$length" 
do 

done 

melodyl='invert -n$counter b2f1s.dms' 
melody2='invert -rn$counter b2f1s.dms' 

echo "Vertical inversion at note $counter" 
simfind -s -bO -aO "$melodyl b2flp2.dms 

echo "Horizontal inversion at note $counter" 
simfind -s -bO -aO "$melody2" b2flp2 .dms 

counter='expr $counter+ 1' 

177 



The variables 'melody1' and 'melody2' contain the fugue subject after vertical 

and horizontal inversion, respectively. The length of the fugue subject, 

calculated using the density tool, is assigned to the variable 'length', and the 

'while' loop runs the simfind tool on the fugue subjects which have been inverted 

horizontally and vertically using each note in turn as the axis for inversion. The 

inverted fugue subjects have only been used in their original key. In order to 

use them in every key as well, a nested loop must be inserted into the above 

program to transpose them up a distance of one to thirteen semitones. Such an 

amended shellscript program could be as follows: 

length='density -s b2fls.dms' 

counter=! 
while [ "$counter" -le "$length" ] 
do 
distance=! 
while [ "$distance" -le 13 l 
do 

melody!=' inv·ert -n$counter b2 fls. dms 1 transpose -u$distance' 
melody2='invert -rn$counter b2fls.dms I transpose -u$distance' 

echo "Vertical inversion:$counter; transposition:$distance" 
simfind -s -bO -ao "$melodyl" b2flp2.dms 

echo "Horizontal inversion:Scounter; transposition:$distance" 
simfind -s -bO -aO "$melody2" b2flp2.dms 

distance=·expr $distance+ 1' 

done 
done 

The inner loop uses the simfind tool on each transposed version of the inverted 

fugue subject before the outer loop generates a new inversion using a different 

axis note. To achieve the transposition of an inverted fugue subject, the data 

file 'b2f1 s.dms' is first inverted using the invert tool, piped through the transpose 

tool, and then assigned to a variable. This program, even though it generates a 

great deal of output, only searches the second part of the first fugue for subject 

material. If all parts are to be searched, either the data-file names need to be 

changed and the program re-executed for each part, or the whole shellscript 

178 



program needs to be enclosed in yet another loop which will try each fugue part 

in turn. 

The motif tool may be used in a similar fashion with transposed and 

inverted fugue subjects. The motiftool, however, is designed to locate 

elaborated (ie expanded) versions of a given melody, and the standard motif 

command may be enclosed in a set of nested shellscript loops similar to that of 

the previous example shellscript program. 

The fsers tool, since its sets are deemed to be rest delimited, would seem 

to be of little use when attempting to search a fugue for fugue subject material. 

Most of the fugue subjects are continuous melodies with no rests, either in the 

middle or at the end of the subject. Although no tools in the 

Analysis Environment are available for finding rests in a string of DARMS data, 

the UNIX 'grep' tool may be used to display which fugue subjects contain rests 

by using the following command line: 

lgrep "R" b2f*s.d.ms 

The DARMS symbol for a rest is the letter 'R', and the grep command will 

display the names of data files which contain the letter 'R' (ie rests). The pattern 

'b2f*s.dms' enables the 'grep' command to examine the data files 'b2f1 s.dms', 

'b2f2s.dms', 'b2f3s.dms' and so on. One way of 'fooling' the fsets tool is to edit 

the DARMS-encoded data file containing the fugue of interest and carry out two 

tasks. Firstly, remove all the rests from the fugue subject itself, and secondly, 

insert a rest at the end of the fugue subject. This procedure will turn the fugue 

subject into a set in its own right, and the fsers tool will pick up this set; and, the 

locations of other similar sets will be shown in relation to this set. Such a use of 

the fsets tool is likely to produce informative results only when a fugue subject is 

limited in the number of pitches it uses. A highly chromatic fugue subject will 

have so many pitches and produce such a large set that the majority of other 

179 



sets will almost certainly have some relationship with the fugue-subject set. To 

'weed' out the fugue subjects containing too many different pitches, the freq tool 

can be used to count the total number of different pitches used. If the '-P' option 

is used, the freq tool will ignore the octave position of pitches in a similar 

fashion to that used by the fsets tool. When using the freq tool to count pitches, 

each pitch name is displayed on a separate line, together with the total number 

of occurrences of the pitch. If a particular pitch is not used, the line displaying 

its total number of occurrences is not displayed. Thus if an extract of DARMS

encoded data uses ten different pitches, when the freq tool is used with the '-P' 

option the total number of lines displayed will be ten. For example, the following 

command line displays the total occurrences of each pitch in the fugue subject 

of the first fugue, 

$ freq -Ps b2fls.dms 
Pitch usage: 
A 2 
c 1 

D 2 
E 4 
E' 7 

G 5 
$ 

and lines are only printed out for pitches which are used. Thus, using the UNIX 

'we' tool (which counts characters, words and lines) with the '-1' option to count 

lines, it is possible to display the number of lines produced by the above use of 

the freq tool and thus the number of different pitches employed in the fugue 

subject. The command line would have to be amended to: 

~~echo "'freq -Ps b2fls.dms 1 we -1· -1" 1 be 

The actual number of lines produced by thefreq tool is greater than the number 

of pitches used because the first line contains a textual description of the 

180 



output. The total has been decremented by one, by piping the output through 

the UNIX 'be' tool. 

A shellscript program to apply the same freq and 'we' tools on all fugue 

subjects would take the following format: 

for subjectfile in · ls b2f*s.dms' 
do 

done 

total='freq -Ps Ssubjectfile 1 we -1· 
echo "$subjectfile: $total" 

As before, the UNIX 'Is' command produces a list of data-file names which are 

then used in the 'for' loop. The freq and 'we' tools are bolted together to produce 

the total number of different pitches, and this is assigned to the variable 'total'. 

Both the total and the data-file name are then printed out. The program prints 

out the total number of pitches in each data file (ie fugue subject) whether the 

fugue subject contains all twelve different pitches (which is too chromatic for 

use with the fsets tool) or just one pitch. Since seven pitches constitute the 

major or minor scale, this can be regarded as a suitable cutting off point, and 

the above shellscript loop may be adapted (by the insertion of an 'if' command) 

to display the data-file names and totals of fugue subjects with less than eight 

different pitches. Such an amended program would have the following syntax: 

for subjectfile in 'ls b2f*s.dms' 
do 

total='freq -Ps $subjectfile 1 we -1· 

if [ "$total" -lt 8 l 
then 

echo "$subjectfile: $total" 
fi 

done 

The fugues of the fugue subjects selected could then be subjected to the fsets 

tool (providing that the editing of the data files, previously described, has taken 

place). 

181 



Further analysis of the fugue subject may be undertaken in a 

comparative fashion. Information extracted from the fugue subject of the first 

fugue can be compared with similar information extracted from the other fugue 

subjects in an effort to discover a common stylistic structure. The freq tool, used 

earlier to determine the number of different pitches used, may also be used to 

procure a whole list of different statistical data such as the total number of bars 

and the total number of notes. Such information is likely to differ greatly from 

fugue subject to fugue subject because some subjects are lively and have 

many notes per bar and others are more lethargic and have fewer notes per 

bar. The length of a fugue subject might not be significant as an entity in its own 

right, but taken as a percentage of the fugue part might prove to be interesting. 

Such a feat can be achieved using the UNIX 'be' tool which is a very 

sophisticated calculator. Sophistication often elbows out simplicity, and the 'be' 

tool is no exception to this rule. It does, however, serve its purpose, and the 

following shellscript program, for example, will calculate the length of the first

fugue subject as a percentage of the second part: 

subjectle~gth='freq -ns b2fls.dms' 
partlength='freq -ns b2flp2.dms' 
echo "scale=2; $subjectlength I $partlength * 100" I be 

The variables 'subjectlength' and 'partlength' are assigned the number of notes 

in the fugue subject and second part (achieved via the freq tool and the '-n' 

option) respectively. The echo command is used to pipe a scale (setting an 

accuracy of two decimal places for the calculation of the percentage) and the 

percentage calculation through the 'be' tool, which sends the result to standard 

output, ie the screen. The same calculation may be performed, again using 

shellscript loops, on each fugue and fugue subject, but should really (for 

consistency) be performed on the part from which the fugue is extracted. 

Achieving the same calculations using the number of bars as opposed to the 

182 



number of notes is not a problem because the number of bars is consistent 

between parts whereas the number of notes is not. 

Calculating the length of the fugue subject as a percentage of the whole 

fugue shows that generally, the subject is between four and six percent the size 

of the entire fugue. 

This in turn brings us to the distribution of notes to parts. The total 

number of notes per part, and the total number of parts per fugue (which might 

prove to be an interesting method of comparison) may be achieved using the 

following shellscript program: 

for fuguenumber in 1 2 3 4 5 6 7 8 9 10 
11 12 13 14 15 16 17 18 19 20 21 22 23 24 
do 

echo "Fugue: $fuguenumber" 

tota1parts='1s b2f$(fuguenurr~er}p*.dms I we -1' 

part=1 
while ( "$part:" -le "$totalparts" J 
do 

echo "?art $part: \c" 
freq -ns b2f$(fuguenumber}p$part.dms 

part='expr $part + 1' 

done 
dor:e 

The freq tool may also be used to calculate the most frequent two and three

note phrases by using the '-2' and '-3' options respectively. This will provide , 

interesting information if it is applied to the fugues as a complete corpus. To 

achieve this, all the fugues have to be transposed into the same key, 

concatenated together and then stored in the same data file. This is a 

straightforward task because the key of a fugue correlates with the fugue 

number. For instance, fugues one to six are in the keys C major, C minor, C# 

major, C# minor, 0 major and 0 minor respectively, and as such, a loop can be 

written which will progress through all the fugues, transposing them down by 

183 



the required amount into the key of C major. Such a loop would have the 

following format: 

> fugues 
distance=O 
while [ "$distance" -le 11 ) 
do 

fuguemaj="expr $distance * 2 + 1" 
fuguemin="expr $distance * 2 + 2· 

for part in 1 2 3 4 
do 
tL-anspose -d$distance b2f$ { fuguemaj }p$part >>fugues 2>/dev/nul1 
done 

for part in 1 2 3 4 
do 
transpose -d$distance b2f${fuguemin}p$part >>fugues 2>/dev/null 
done 

distance=·expr $distance + 1' 
done 

The fugue inC# major (fugue three) has to be transposed down a semitone to 

put it into the key of C major, whereas the fugue in 0 major (fugue five) has to 

be transposed down two semitones. Thus, the number of semitones of 

movement correlates exactly with the fugue number, ie fugue 1 -down zero 

semitones, fugue 3- down 1 semitone, fugue 5- down 2 semitones, and fugue 

7 - down 3 semitones etc. So the distance of transposition of a major fugue is 

(fugue number- 1) I 2. Although a minor fugue should not be transposed into a 

major key, it should (for this particular test) be transposed down by the requisite 

number of semitones to make its tonic the pitch 'C'. The distance of 

transposition of a minor fugue is (fugue number- 2) I 2, ie fugue six (in D 

minor) should be moved down (6-2)/2 semitones, which is two semitones. The 

first line of the program uses the redirection facility of UNIX to create an empty 

data file called 'fugues' by redirecting nothing into it. This will create the file if it 

does not exist, or overwrite its contents if it does exist. The new data-file 

'fugues' will contain DARMS data for all the parts of all the fugues, transposed 

down so that the tonic of each is the same. At some point, it will prove to be 

184 



worthwhile if the major fugues are put into a separate data file from the minor 

fugues. This will offer a base of data which may be used to compare the style 

and structure of major fugues with minor fugues, The variable 'distance', used 

throughout the program, contains the number of semitones which the fugues 

are to be transposed down. The variable 'distance' is used in a 'while' loop 

which increments the variable from a starting distance of zero semitones (for 

the fugues in C major and C minor) to the final distance of eleven semitones 

(for the fugues in 8 major and 8 minor). The logic of the loop is based upon 

semitone distance, so the two variables 'fuguemaj' and 'fuguemin' are used to 

hold the current number of major and minor fugue respectively-calculated 

from the distance of transposition. Two 'for' loops are used within the 'while' 

loop to transpose the parts of the current major and minor fugue. The actual 

cranspose command, 

!transpose -d$distance b2f${fuguemajlp$part >>fugues 2>/dev/null 

operates on parts one through to four (held in the variable 'part') and outputs 

into the data-file 'fugues' using the>> UNIX redirect facility. Not all fugues have 

four parts however, and an attempt to invoke the transpose tool on the data file 

'b2f1 p4' will produce an error message since the first fugue has only three 

parts. This is not a problem because the error message can be removed by 

again using the UNIX redirection facility. The syntax, 

12>/dev/null 

redirects the standard error stream (ie the error messages) into the file 

'/dev/null'. Everything, whether it is a printer, a disk drive, DARMS data, or a 

document, is deemed to be a file under UNIX. The file '/dev/null' is actually 'a 

hole in the back of the computer', and any output redirected to it 'simply 

disappears'. 

185 



Once the data file 'fugues' has been created, the freq tool may be 

applied to it in the following fashion, 

lfreq -s23 fugues 

to calculate the frequency of each two-note and three-note phrase used, in 

effect the most popular idiom. 

With a simple amendment, the previous shellscript program may be 

used to put all the major fugues into one data file, and all the minor fugues into 

another data file ready for comparative analysis. The amendments involve the 

redirection of output from the cranspose tool. In the first inner 'for' loop the output 

should be redirected using the following syntax: 

transpose -d$distance b2f$(fuguemaj}p$part >>majfugues 2>/dev/null 

whilst in the second inner 'for' loop the output should be redirected using the 

following syntax: 

transpose -d$discance b2f$(fuguemaj}p$part >>minfugues 2>/dev/null 

The freq tool can now be applied to both new data files and the statistics 

produced will be available for comparison. Without options, the freq tool will 

provide information on the frequency of accidentals, pitches, durations, and two 

and three-note phrases, and also determine the total number of notes and bars. 

If the number of notes and bars is divided by twelve, the average number of 

notes and bars for major and minor fugues will be obtained. The command 

lines for extracting statistics on major and minor fugues, via the freq tool, would 

be as follows: 

l
freq -s majfugues 

_freq -s minfugues 

186 



where the '-s' option is used to suppress the output of the data from the 

DARMS-encoded data file. The average number of notes may be calculated 

using the following shellscript program: 

for type in majfugues minfugues 
do 

done 

totalnotes='freq -sn $type' 
totalbars=' freq -sb $type' 

echo "average $type notes=\c" 
echo "scale=2; $totalnotes I 12" 1 be 

echo "average $type bars=\c" 
echo "scale=2; $totalbars I 12" 1 be 

Keys of fugues may be confirmed using the key tool. The key tool, however, has 

difficulty with highly chromatic melodies when determining what is and is not an 

essential accidental to the current key. In such an instance, the key tool 

describes the key as 'unknown'. This can, though, be used advantageously 

because the greater the number of 'unknowns' returned by the key tool, the 

more chromatic the melody is. In effect the 'unknown' quantity is a measure of 

the 'chromatic level' of the piece. The 'unknown' points in a fugue part may be 

calculated using the following shellscript: 

key -ps b2flp2.dms 1 awk ' 
BEGIN (count=O; RS=" ") 
/unknown/ (count++) 
END (print "chromatic level:", count) 

The '-p' option invokes the progressive mode of the key tool where a new key is 

evaluated and displayed each time an accidental is used. The UNIX 'awk' tool 

(a pattern-matching language) assigns zero to a 'count' variable at the 

beginning of processing, increments the variable by one whenever the word 

'unknown' is encountered, and prints out the total at the end of processing. To 

be of more value, the above routine should be tried for each part of a fugue, 

and an average calculated. This is necessary because those fugues with a 

187 



greater number of parts are likely to have a higher 'chromatic level' than those 

with fewer parts. 

This chapter has not really produced real and visible results, merely 

ways of obtaining results. It was never the intention to provide a mound of 

statistics and graphs within the chapter. The main purpose of the chapter was 

to evaluate the usability of the Analysis Environment tools. Given a specific 

question, was it possible to integrate the tools with each other and the UNIX 

environment (using the shellscript programming language) and produce 

methods for solving the question? What this chapter has proved is that it is 

indeed possible to toss out an arbitrary question, pick up a handful of tools and 

bundle them together in a way which will procure new information from the 

score, and help the user to answer the question. The tools themselves do not 

provide the answer, they simply display information (ie the score) in a different 

format (eg statistic tables or shape graphs) and the user is required to make his 

or her own intuitive analytical steps in order to procure his or her answer. The 

intuitive steps might well involve connecting together other 

Analysis Environment and UNIX tools. 

188 



Conclusion 

Like a box of Lego or a set of Meccano, there are thousands of ways in 

which to connect the Analysis Environment and UNIX tools together. Even 

when the relevant tools have been selected for a particular task, the very 

process of using the tools provokes an "I wonder what happens if I do this?" 

and a "which tools can I use to achieve it?" attitude, and the scholar thinks up 

new ideas and realises new goals as he or she progresses. 

The more tools the better. Some particular types of analyses are difficult 

with the current set of Analysis Environment tools. The tools have to be 

combined in complicated ways in order to extract certain types of information. If 

there is a wide variety of tools, scholars are more likely to find a tool which is 

relevant to the current task. 

There is no reason why new tools have to be geared toward analysis. 

Tools could be created for composition, such as the shuffle and squash tools. All 

that is required, is that the tools accepts DARMS data on the standard input, 

and send any altered DARMS data (if required) onto standard output. Any 

informative messages should be sent to the standard error stream. Using this 

method, the DARMS data can be piped into another tool, yet at the same time, 

informative messages can appear on the screen. Since DARMS data goes in to 

and out of the tools, there is no reason why (given that there is appropriate 

hardware available) a tool should not be able to take the DARMS as input and 

manipulate it in a compositional manner, eg play each pitch with a specific 

sound wave, or provide a bass line. Already, there are tools to invert and 

transpose melodies. Under MSDOS, there is even a tool to play melodies, 

albeit in a rather basic fashion. 

If such an environment is to take off though, those writing and submitting 

tools for inclusion in the environment (a vetting procedure will weed out those 

189 



tools which are not unique or are non-standard) will have to program their tools 

to adhere to the standards. The environment needs to be shared. The 

environment should be freely available, with regular updates and new releases. 

The more people who use it, the more it will improve, grow and spread. 

190 



C10mmand IDes~ripti~R'il 

a11 'Analysis 11' command interpreter 

a note auxiliary-note remover 

bend melodic-phrase locator 

cursatz customised-ursatz finder 

darmstrip standard-DARMS stripper 

density melody-density calculator 

endan ending analyser 

extract DARMS music-code extractor 

form melody-form evaluator 

freq feature counter 

fsets Forte-set finder 

help manual printer 

htod Hewlett to DARMS converter 

intfind interval finder 

invert melody inverter 

key melody-key evaluator 

motif Reti-motif finder 

play DARMS music-code player 

range melody-range calculator 

rcheck repeated-note checker 

rhythm rhythm pattern-matcher 

rnote repeated-note remover 

score DARMS music-code notator 

semio paradigm finder and layout producer 

shape melody-shape printer 

shuffle melody shuffler 

simfind similarity pattern-matcher 

squash melody squasher 

sync syncopation measurer 

transpose melody transposer 

ursatz Schenker-Ursatz finder 

vary interval direction changer 

191 



A11 A11 

NAME 

a11 -'Analysis 11' command interpreter 

SYNOPSIS 

a11 -f program_name file_name 

DESCRIPTION 

The ai 1 command reads and executes 'Analysis 11' commands, 
applying them to a specified DARMS-encoded data file. 

The a11 command accepts the following options: 

-f program_name Reads commands from the file specified. 

-s Suppresses output of filtered data. 

-v Verbose mode. Prints commands during execution. 

192 



ANOTE ANOTE 

NAME 

anote - auxiliary-note remover 

SYNOPSIS 

anote options file_name 

DESCRIPTION 

The anote command removes auxiliary notes from a DARMS-encoded 
data file. With no options specified, anote scans the data file once only, 
removing auxiliary notes. 

An auxiliary note may be regarded as the middle note in a three-note 
melody where the first and last notes are the same pitch and the middle 
note is either a pitch a second higher or lower. 

Auxiliary notes are selected pictorially, ie if the first and last notes of a 
three-note melody are on a line of the musical stave, a pitch higher is 
deemed to be anything in the space above, irrespective of accidental. 

The anote command accepts the following options: 

-r 

-v 

SEE ALSO 

rnote 

NOTES 

Reiteratively scans the DARMS-encoded data file, 
removing .all auxiliary notes. 

Verbose mode. Prints messages during execution. 

If the anote command is used on DARMS-encoded data files that 
include rhythmic data, all rhythmic data will be removed before the anote 
tool performs auxiliary note removal. 

193 



BENlD BEND 

NAME 

bend - melodic-phrase locator 

SYNOPSIS 

bend options file_name 

DESCRIPTION 

The bend command displays the beginning and ending positions of 
melodic phrases within a DARMS-encoded data file. Melodic phrases 
are deemed to be rest-delimited melodies. 

With no options specified, bend displays the beginning and ending note
number for each melodic phrase. 

The bend command accepts the following options: 

-b 

-e 

-m 

-nnumber 

-s 

-v 

Displays the beginning positions only. 

Displays the ending positions only. 

Displays the beginning and ending positions as a 
multiple of the smallest rhythmic unit in the DARMS
encoded data file. 

Displays the beginning and ending positions for 
melodic-phrase number 'number'. 

Suppresses output of filtered data. 

Verbose mode. Prints messages during execution. 

194 



CURSATZ CURSATZ 

NAME 

cursatz - customised-Ursatz finder 

SYNOPSIS 

cursatz -vs -u "DARMS ursat:i' file_name 

DESCRIPTION 

The cursatz command displays possible locations of user-created 
'Ursaetze' within a DARMS-encoded data file. With no options specified, 
cursatz locates pitch sequences in the same octave position as the pitch 
sequence specified on the command line. 

The customised 'ursatz' may comprise any set of pitches. 

The cursatz command accepts the following options: 

-o Ignores octave position of pitches. 

-s Suppresses output of filtered data. 

-v Verbose mode. Prints messages during execution. 

SEE ALSO 

ursatz 

195 



DARMSTRIP DARMSTRIP 

NAME 

darmstrip- standard-DARMS stripper 

SYNOPSIS 

darmstrip options file-name 

DESCRIPTION 

The darmstrip command strips a DARMS-encoded data file of all 
unnecessary information-ie data not required by the analysis 
environment tools. Data remaining after use of the darmstrip command 
includes pitch, rhythm, rest and barline data. 

With no options specified, darmstrip hard-codes the sharps and flats in 
the key signature into the resultant data. 

The darmstrip command accepts the following options: 

-k 

-v 

SEE ALSO 

htod 

Ignores key signature. Does not hard-code key 
signature into resultant data. 

Verbose mode. Prints messages during execution. 

196 



DENS~TV DENSnfV 

NAME 

density- melody-density calculator 

SYNOPSIS 

density options file_name 

DESCRIPTION 

The density command counts the total number of notes in a OARMS
encoded data file. 

The density command accepts the following options: 

-b Calculates the average number of notes per bar. 

-s Suppresses output of filtered data. 

-v Verbose mode. Prints messages during execution. 

197 



END AN EN DAN 

NAME 

endan- ending analyser 

SYNOPSIS 

endan options file_name 

DESCRIPTION 

The endan command counts features and displays statistical data on the 
last five bars of a DARMS-encoded data file. With no options specified, 
endan displays all information possible on the ending of the DARMS
encoded data file. 

The endan command accepts the following options: 

-d 

-m 

-N 

-n 

-R 

-r 

-s 

-v 

SEE ALSO 

freq, extract 

Displays the distance between the highest and 
lowest notes. 

Displays the melodic movement throughout the last 
five bars. 

Displays the total number of notes employed during 
the last five bars. 

Displays the total number of notes for each bar. 

Displays the total number of repeated notes 
employed during the last five bars. 

Displays the total number of repeated notes for each 
bar. 

Suppresses output of filtered data. 

Verbose mode. Prints messages during execution. 

198 



!EXTRACT EXTRACT 

NAME 

extract - DARMS music-code extractor 

SYNOPSIS 

extract options tile_name 

DESCRIPTION 

The extract command extracts sequences of bars or sequences of 
notes from a DARMS-encoded data file. With no options specified, 
extract extracts the compiete data file. 

The extract command accepts the following options: 

-bnumb,numb2 

-nnumb,numb2 

-tnumb,numb2 

-v 

SEE ALSO 

htod 

NOTES 

Extracts bar number numb, or bars numbered from 
numb to numb2. 

Extracts note number numb, or notes numbered 
from numb to numb2. 

Extracts beat number numb, or beats numbered 
from numb to numb2. Beat numbers must be a 
multiple of the smallest rhythmic unit in the DARMS
encoded data file. 

Verbose mode. Prints messages during execution. 

The b, n and t options cannot be used together. 

The variables 'numb' and 'numb2' have an upper limit of 32767. 

199 



FORM FORM 

NAME 

form- melody-form evaluator 

SYNOPSIS 

form options file_name 

DESCRIPTION 

The form command evaluates a formal structure for a DARMS-encoded 
data file, employing standard ABA notation. With no options specified, 
form takes accidental and octave data into account. 

The form command accepts the following options: 

-a 

-k 

-0 

-s 

-v 

Ignores accidentals. 

Produces a key to aid identification of suggested 
patterns. 

Ignores octave position of notes. 

Suppresses output of filtered data. 

Verbose mode. Prints messages during execution. 

200 



FREQ fREQ 

NAME 

freq - feature counter 

SYNOPSIS 

freq options file_name 

DESCRIPTION 

The freq command counts the occurrences of specified items in a 
DARMS-encoded data file. With no options specified, frn.Q counts the 
occurrences of all items. 

The freq command accepts the following options: 

-2 

-3 

-a 

-b 

-n 

-P 

-p 

-r 

-s 

-v 

SEE ALSO 

en dan 

Calculates the frequency of each two-note phrase 
used. 

Calculates the frequency of each three-note phrase 
used. 

Calculates the frequency of each 'black note' used. 

Calculates the total number of bars. 

Calculates the total number of notes. 

Calculates the frequency of each pitch used, 
disregarding octave position. 

Calculates the frequency of each pitch used. 

Calculates the frequency of each duration used. 

Suppresses output of filtered data. 

Verbose mode. Prints messages during execution. 

201 



IF SETS fSIETS 

NAME 

fsets- Forte-set finder 

SYNOPSIS 

1sets -vs file name 

DESCRIPTION 

The 1sets command displays information on the serial sets used within a 
DARMS-encoded data file. Rests are used as set delimiters. 

The fsets command accepts the following options: 

-s Suppresses output of filtered data. 

-v Verbose mode. Print messages during execution. 

202 



HElP HE liP 

NAME 

help- manual printer 

SYNOPSIS 

help command_name 

DESCRIPTION 

The help command displays a page from the manual on a selected 
command. With no options specified, help displays a list of all 
commands available. 

NOTES 

Specifying .a -? option with any command will display a list of valid 
options. 

203 



HTOD HlOD 

NAME 

htod - Hewlett to DARMS converter 

SYNOPSIS 

htod options file_name 

DESCRIPTION 

The htod command converts a Hewlett-encoded data file into DARMS 
format. With no options specified, htod ignores rhythmic data. 

The htod command accepts the following options: 

-r Includes rhythmic data during conversion process. 

-v Verbose mode. Prints messages during execution. 

NOTES 

Hewlett-encoded data files should only contain one musical part. 

204 



NAME 

intiind - interval finder 

SYNOPSIS 

intfind options -i interval file_name 

DESCRIPTION 

The inUind command locates the occurrences of a user-selected 
interval within a DARMS input file. With no options specified, ontfind 
displays all identical occurrences of the user-selected interval. 

The intfind command accepts the following options: 

-f 

-Nnumber 

-nnumber 

-s 

-v 

NOTES 

-iinterval 

Displays only the first occurrence of the selected 
interval. 

Displays all occurrences of the user-selected 
interval where exactly number notes separate the 
first and last notes of the interval. 

Displays all occurrences of the user-selected 
interval where up to number notes separate the first 
and last notes of the interval. 

Suppresses output of filtered data. 

Verbose mode. Prints messages during execution. 

The above method should be used when selecting the interval to be 
located, where interval may comprise the following: 

1-15 

a 

d 

m 

interval size 

augmented 

diminished 

minor 

Thus, -i7d selects a diminished seventh for the search. 

205 



iNVERT INVERT 

NAME 

invert - melody inverter 

SYNOPSIS 

invert options file_name 

DESCRIPTION 

The invert command inverts a DARMS-encoded melody. With no 
options specified, invert uses the middle note of the melody as the axis 
for inversion, and turns the melody upside down. If a melody comprises 
an even number of notes, the melody is inverted using the first of the 
middle two notes as the axis for inversion. 

The invert command accepts the following options: 

-nnumber 

-r 

-v 

SEE ALSO 

transpose 

Changes the number of the note used as the axis for 
inversion. 

Inverts the melody horizontally, ie turns it back-to
front. 

Verbose mode. Prints messages during execution. 

206 



IKEV KIEV 

NAME 

key - melody-key evaluator 

SYNOPSIS 

key options file_name 

DESCRIPTION 

The key command will determine the overall key of a DARMS data file. 

The key command accepts the following options: 

-b 

-p 

-s 

-v 

NOTES 

Evaluates and prints the key for each bar. 

Progressive mode. Evaluates and prints the new key 
every time an accidental is used or cancelled. 

Suppresses output of filtered data. 

Verbose mode. Prints messages during execution. 

The p and b options cannot be used together. 

207 



MOT~ IF MOT! IF 

NAME 

motif- Reti-motif finder 

SYNOPSIS 

moW options -m "DARMS motif' file_name 

DESCRIPTION 

The motif command displays a DARMS-encoded data file in terms of 
the "DARMS motif" entered on the command line. With no options 
specified, the motii command displays the entire DARMS-encoded data 
file and shows, on a line below the original melody, how the melody 
might have evolved from the "DARMS motif". 

The motif command accepts the following options: 

-nnumber 

-s 

-v 

Limits the amount of notes used in evolved material 
to number. eg -n 1 0 states that the motif must not be 
shown to evolve to more than 1 0 notes. 

Suppresses output of filtered data. 

Verbose mode. Prints messages during execution. 

208 



PlAV IPLAV 

NAME 

play - DARMS music-code player 

SYNOPSIS 

play options file_name 

DESCRIPTION 

The play command produces an audible rendition of a DARMS-encoded 
data file. 

The play command accepts the following options: 

-n 

-r 

-s 

-v 

SEE ALSO 

Creates a noise by playing each note of the OARMS 
data file with a duration of zero seconds. 

Uses rhythmic data. 

Suppresses output of filtered data. 

Verbose mode. Prints messages during execution. 

score, shuffle, squash, vary 

NOTES 

The play command is only available within the MSDOS environment. 

209 



!RANGE 

NAME 

range- melody-range calculator 

SYNOPSIS 

range options file_name 

DESCRIPTION 

The range command calculates the distance between the highest and 
lowest notes of a DARMS-encoded data file. With no options specified, 
range returns a 'lines and spaces' distance. 

The range command accepts the following options: 

-c 

-s 

-v 

Calculates semitone distance between highest and 
lowest notes. 

Suppresses output of filtered data. 

Verbose mode. Prints messages during execution. 

210 



IRCHECK ACHECIK 

NAME 

rcheck - repeated-note checker 

SYNOPSIS 

~check options file_name 

DESCRIPTION 

The rcheck command examines the repeated notes of a DARMS
encoded data file. With no options specified, rcheck calculates the 
percentage of repeated pitches and durations within a DARMS-encoded 
data file. 

The rcheck command accepts the following options: 

-c 

-C 

-g 

-G 

-s 

Counts the repetitions of each duration used. 

Counts the repetitions of each pitch used. 

Displays a graph of repeated duration activity. 

Displays a graph of repeated pitch activity 

Suppresses output of filtered data. 

-v Verbose mode. Prints messages during execution. 

SEE ALSO 

rnote 

NOTES 

The DARMS input file must contain rhythm data. 

211 



IRIHIVTIHIM 

NAME 

i"~yt~m - rhythm pattern-matcher 

SYNOPSIS 

i"~ytlhm options -r "rhythm pattern" file_name 

DESCRIPTION 

The ll'lhythm command searches a DARMS-encoded data file for the 
occurrences of a selected rhythm pattern. With no options specified, 
rlhyUam displays identical matches. 

The rtoytlhm command accepts the following options: 

-c 

-s 

-t 

-v 

Locates compressed version of the rhythm pattern. 

Suppresses output of filtered data. 

Locates stretched versions of the rhythm pattern. 

Verbose mode. Prints messages during execution. 

212 



A NOTE A NOTE 

NAME 

mote - repeated-note remover 

SYNOPSIS 

mote options file_name 

DESCRIPTION 

The mote command removes repeated notes from a DARMS-encoded 
data file. With no options specified, mote scans the data file once only, 
removing repeated notes. New repeated notes might be created using 
rnote without options. 

The rnote command accepts the following options: 

-r 

-v 

SEE ALSO 

anote, rcheck 

NOTES 

Reiteratively scans the DARMS data file, removing 
.all repeated notes. 

Verbose mode. Prints messages during execution. 

If the rnote command is used on DARMS-encoded data files that include 
rhythmic data, all rhythmic data will be removed before the rnote tool 
performs repeated note removal. 

213 



SCORE SCORE 

NAME 

score - DARMS music-code notator 

SYNOPSIS 

score -v file_name 

DESCRIPTION 

Using the standard ASCII character set, the score command displays a 
DARMS-encoded data file in a pseudo-musical notation. 

The score command accepts the following option: 

-r 

-v 

SEE ALSO 

play, shape 

NOTES 

Uses DARMS rhythm letters for note-heads. 

Verbose mode. Prints bar numbers. 

The score command does not print rhythmical data. 

214 



SIEMIO SEM~O 

NAME 

semio- paradigm tinder and layout producer 

SYNOPSIS 

semio options file_name 

DESCRIPTION 

The semio command displays a DARMS-encoded data file in a 
chronological set of columns, each containing a list of similar melodies. 
With no options specified, semio accounts for the entire DARMS
encoded data file when creating its columns, and searches for melodies 
one note in length. 

The semio command accepts the following options: 

-nnumber 

-s 

-v 

Limits the size of melodies to number notes in each 
column. 

Suppresses output of filtered data. 

Verbose mode. Prints messages during execution. 

215 



SHAPE SHAPE 

NAME 

shape- melody-shape printer 

SYNOPSIS 

shape options file_name 

DESCRIPTION 

The shape command displays the overall shape of a OARMS-encoded 
melody using standard ASCII characters. 

The shape command accepts the following options: 

-m 

-r 

-s 

-v 

SEE ALSO 

score 

Smooths the overall shape. eg a slight fall in an 
overall rising melody would smoothed out to 
produce just a rising melody. 

Reduces the overall shape to 'up's and 'down's. eg 
five rising intervals would be reduced to a single 
rising interval. 

Suppresses output of filtered data. 

Verbose mode. Prints messages during execution. 

216 



SHUFFLE SHUFFlE 

NAME 

shuffle - melody shuffler 

SYNOPSIS 

shuffle options file_name 

DESCRIPTION 

The shuffle command changes the order of bars or note-units within a 
DARMS-encoded melody. With no options specified, shuffle puts the 
bars of a DARMS-encoded data file into an arbitrary order. 

The shuffle command accepts the following options: 

-n number 

-c 

-v 

SEE ALSO 

play, squash, vary 

Shuffles the order of number-note groups. For 
example, -n3 will shuffle the order of 3-note groups. 

Ensures that the end of a shuffled note group 
connects with adjacent note-groups, ie the last pitch 
of a note group will be identical to, or move by up to 
a major third to the first pitch of the next note group. 

Verbose mode. Prints messages during execution. 

217 



SIMFIND SIMFINID 

NAME 

simfind -similarity pattern-matcher 

SYNOPSIS 

simfind options -b beta -a alpha -m "melody' file_name 

DESCRIPTION 

The simfind command locates occurrences of a specified melody within 
a DARMS-encoded data file. With no options specified, simfind displays 
all similar located melodies in order of similarity. 

The simfind command accepts the following options: 

-c 

-f 

-s 

-v 

NOTES 

Displays the located melodies in chronological 
order. 

Displays the set of non-overlapping located 
melodies whose total similarity is greatest. 

Suppresses output of filtered data. 

Verbose mode. Prints messages during execution. 

The beta value is used to specify the importance of the difference 
between real and tempered frequencies. The higher the value, the 
greater the importance. Beta may take any value greater than zero and 
less than or equal to one hundred. 

The alpha value is used to specify the importance of taking dissonance 
into consideration. The higher the value, the greater the importance. 
Alpha may take any value greater than zero and less than or equal to 
one. 

If either alpha or beta are set to zero, their use within the similarity 
formula is ignored. 

218 



SQUASH SQUASH 

NAME 

squash - melody squasher 

SYNOPSIS 

squash options file_name 

DESCRIPTION 

The squash command augments or diminishes the size of intervals 
within a DARMS-encoded data file. With no options specified, squash 
diminishes all intervals by a semitone. 

The squash command accepts the following options: 

-a 

-n number 

-v 

SEE ALSO 

play, shuffle, vary 

Augments the size of intervals. 

Specifies the number of semitones by which the 
intervals should be augmented or diminished. 

Verbose mode. Prints messages during execution. 

219 



SYNC SYNC 

NAME 

sync - syncopation measurer 

SYNOPSIS 

sync options file_name 

DESCRIPTION 

The sync command calculates the percentage of notes which sound 
across strong beats, but are not 'struck' on strong beats. With no options 
specified, sync calculates the percentage of notes which sound across 
the first beat of a bar. 

The sync command accepts the following options: 

-b beats 

-g 

-p 

-s 

-v 

NOTES 

Specifies which beats to check for notes. 

Draws a graph showing the percentage against 
time. 

Calculates a percentage for each bar. 

Suppresses output of filtered data. 

Verbose mode. Prints messages during execution. 

Beats may be specified either as comma separated numbers, eg 1,2,4 
(meaning beats one, two and four), or as hyphen separated numbers, eg 
1-3 (meaning beats one to three), or as a mixture, eg 1-3,5 (meaning 
beats one to three, and five). 

The DARMS input file must contain rhythm data. 

220 



TRANSIPOSIE TRANSPOSE 

NAME 

transpose- melody transposer 

SYNOPSIS 

~ranspose options file_name 

DESCRIPTION 

The transpose command transposes a DARMS-encoded melody up or 
down by a specified number of semitones. With no options specified, 
transpose leaves the melody in its original key. 

The transpose command accepts the following options: 

-dnumber 

-unumber 

-v 

Transposes the melody down by number semitones. 

Transposes the melody up by number semitones. 

Verbose mode. Prints messages during execution. 

221 



URSATZ URSATZ 

NAME 

ursatz - Schenker-Ursatz finder 

SYNOPSIS 

ursatz options -k key_name file_name 

DESCRIPTION 

The ursat:z command displays possible locations of 8-1, 5-1, 3-1 
standard and prolonged Ursaetze within a DARMS-encoded data file. 
With no options specified, ursatz displays all locations of all Ursatz 
types. 

The ursatz command accepts the following options: 

-p 

-s 

Displays standard 3-1 Ursaetze. 

Oi splays standard 5-1 U rsaetze. 

Displays standard 8-1 Ursaetze. 

Displays prolonged Ursaetze. 

Suppresses output of filtered data. 

-v Verbose mode. Prints messages during execution. 

SEE ALSO 

cursatz 

NOTES 

key_name may comprise the following: 

A-G letter-name of key 

flat 

# sharp 

m minor (default is major) 

Thus, -kA-m represents A flat minor. 

222 



VARY VAIRV 

NAME 

vary - interval direction changer 

SYNOPSIS 

vary options file_name 

DESCRIPTION 

The vary command changes the direction of intervals within a DARMS
encoded data file. With no options specified, vary inverts all intervals. 

The vary command accepts the following options: 

-a Only inverts ascending intervals. 

-d Only inverts descending intervals. 

-v Verbose mode. Prints messages during execution. 

SEE ALSO 

play, shuffle, squash 

223 



Appendil! 18 (Analysis 11) 

In much the same way that MUSIC 11 (a sound-synthesis programming 

language) can be manipulated to produce any sound a user imagines, a 

programming language which can be manipulated to produce any 'analysis' a 

user imagines would seem to be a realistic proposition. If inexplicable sounds 

can be apparently replicated using mathematical rules, inexplicable analytical 

questions can be answered using mathematical rules. This appendix outlines 

some basic research into the conception of a self-contained programming 

language for music analysis, the commands of which may be used in the 

Analysis Environment via the all tool. 

Since the inspiration for an analytical programming language arose from 

using MUSIC 11, the analytical programming language described in this 

appendix has been called ANALYSIS 11, and thus the tool in the 

Analysis Environment has been called all. 

The operation of MUSIC 11 requires two files, known as the 'score' and 

the 'orchestra'. In simple terms, the 'score' contains frequencies and durations, 

whilst the 'orchestra' is a program defining exactly how those frequencies and 

durations should be employed. ANALYSIS 11 also requires two files similar to 

MUSIC 11 's 'score' and 'orchestra'. The 'score' for ANALYSIS 11 is, as one 

might well expect, a file containing an alphanumeric encoding of the music 

score to be subjected to analysis. The ANALYSIS 11 'orchestra' is a 

straightforward program, written by the user, employing ANALYSIS 11 

commands to analyse and extract information from the 'score'. 

MUSIC 11 does not operate in 'real time', ie both 'score' and 'orchestra' 

must be processed before any sound can be heard. This processing time may 

take anything between a few seconds and several hours to complete, 

dependent upon the complexity and length of both 'score' and 'orchestra'. 

224 



ANALYSIS 11, however, is an interpreted language where each line of a 

program or 'orchestra' is executed as soon as the computer reads it. Thus, 

even a complex and lengthy program will display results instantly on screen, 

allowing the possible abortion of a program run if the results do not appear as 

intended. A MUSIC 11 run may take several hours, and then produce garbage 

as a result of some simple error within the 'score'. Therefore, interpretation, 

rather than preprocessing or compilation, allows quick, easy trapping and 

correction of errors. 

At first glance, SPITBOL- a programming language used in linguistics 

for its string handling capabilities- seemed an ideal medium in which to write 

the ANALYSIS 11 interpreter. Since basic pattern searching and pattern 

matching commands are already contained within SPITBOL, it was a 

straightforward task to use them as a basis for the interpreter. The ANALYSIS 

11 interpreter has since been rewritten in C, which has increased the speed of 

execution of ANALYSIS 11 programs, and made the interpreter and programs 

compatible with the tools of the Analysis Environment. ANALYSIS 11 

commands have been limited to searching and matching, definition of patterns, 

selection of output, and method of score translation. 

The interpreter reads one line of an ANALYSIS 11 program at a time. If 

the line contains a command, the command is executed. Lines which contain 

comments or remarks are simply ignored. 

Any syntax errors discovered by the interpreter will be displayed on the 

screen, together with a description of the error and its position within the 

program. If the interpreter can carry on, it will attempt to do so, otherwise the 

interpreter will stop and allow the user to edit the spurious line within the 

ANALYSIS 11 program. 

225 



The running of the ANALYSIS 11 interpreter may be aborted at any 

stage by pressing the 'interrupt' key on the terminal's keyboard, and leaves the 

user in the local operating system to allow editing of the ANALYSIS 11 

program. 

Any program line may be given a label, and, as in other programming 

languages, sections of a program can be repeated or skipped by instructing the 

computer to return to, or go to a specific label within the program. 

Before a musical score can be analysed under ANALYSIS 11, it must be 

translated into an alphanumeric code. (At present, ANALYSIS 11 will only 

operate on the subset of the DARMS encoding language outlined in chapter 

three.) The encoded musical score should be stored in the 'score' file of 

ANALYSIS 11, ready for analysis. 

Running ANALYSIS 11 will reveal any errors in the 'score' file and also 

any nonsensical musical information such as bars which contain an incorrect 

number of beats. Although this restriction to 'orthodox' notation limits 

ANALYSIS 11 analysis to compositions of a certain type, it does however mean 

that ANALYSIS 11 can be used as a simple alphanumeric code checker. 

The 'orchestra', or program file of ANALYSIS 11, contains a series of 

instructions to be obeyed by the computer. Each line of a program must follow 

a certain syntax. Any line may be given a label, but the label must start in the 

first column of the line to which it refers. Line labels may be composed of letters 

and numbers in a mixture of upper and lower case. 

The instruction, or command, may occur at any point after the label. If a 

line has no label, however, the command on that line must not begin in column 

one, otherwise it will be regarded as a label. 

226 



Comments may be inserted anywhere in a program, either on a separate 

line, or after a command. Comments may be distinguished from labels and 

commands by preceding the comments with a semicolon. 

The available ANALYSIS 11 commands fall into four categories: flow of 

control, definition, analysis and output. 

227 



Ths END Command 

The END command must be the last line of any program, and informs 

the interpreter when the end of the program has been reached. 

syntax: 

program line 
program 1 ine 
program line 
END 

228 



lhe GOTO Command 

The GOTO command sends the interpreter forwards or backwards to the 

label specified. The GOTO command is conditional, ie it will only operate if the 

last lOCATE command succeeded in finding a pattern. 

syntax: 

label program line 
program line 
program line 
GOTO label 

229 



The START Command 

The START command instructs the interpreter to start operating on the 

data held in the 'score' file at a specified bar, beat and note. The first parameter 

of the Sl ARl command represents the bar number, whilst the second 

represents the crotchet beat number and the note within the beat, ie a decimal 

number where the 'whole' part signifies the beat and the 'decimal' part signifies 

the nth note of that beat. 

syntax: 

START bar number, beat number.note number 

example: 

jSTART 2,3.1 

explanation: 

The above example starts processing the data from the first note of beat 

three, in the second bar. 

230 



The STOP Command 

When the interpreter reaches the position in the 'score' file which was 

specified in the most recent STOP command, it will abort the current lOCATE 

command and proceed to the next program line. 

The SlOIP command uses the same parameters as the START 

command. 

syntax: 

STOP bar number, beat number.note number 

example: 

jsTOP 34,4.2 

explanation: 

The above example informs the lOCATE command to stop processing 

the data at the second note of beat four, in the thirty-fourth bar. 

231 



The DEFINE Command 

A pattern which is to be used frequently throughout a program may be 

given a label using the DEFINE command. Thus, whenever the pattern is 

required, its label may be used instead. For example, if a pattern is given the 

label 'notes', it may appear in a LOCATE command either in its literal form. or 

as "LOCATE notes," etc. Pattern labels may only contain lower case 

alphabetical characters. 

117 

syntax: 

DEFINE pattern label, music pattern 

example: 

DEFINE phrase, 22# 20 25- 24 
LOCATE pr.rase, INTEPVAL 
LOCATE phrase, OCTA'v'"E 

explanation: 

The above example gives the label 'phrase' to the DARMS string 

'22# 20 25- 24' 117. The label, and thus the actual DARMS string, is used 

in the two LOCATE commands (see over for a description of the 

LOCATE command) following the DEFINE command. 

See chapter three, starting on page 72, for a description of the DARMS subset used by 
the tools (including a 11) of the Analysis Environment. 

232 



The LOCATE Command 

The lOCATE command searches the 'score' data in an effort to find a 

specific pattern. 

The LOCATE command consists of two parameters which define the 

pattern to be searched for and the type of search. 

The first parameter, defining the pattern to be searched for, is 

mandatory. This pattern may occur in a literal form, ie individual notes entered 

at the first parameter position; or, it may be replaced by a label (but only if the 

label has previously had a pattern assigned to it with the DEFINE command). 

Parameter two determines t11e search type. The default, IDENTICAL, 

allows the LOCATE command to succeed only if a pattern is found which is 

identical to the pattern being searched for. If an OCTAVE search is used, the 

LOCATE command will allow pattern matching between the search pattern and 

the same pattern appearing in a different octave. INTERVAL allows pattern 

matching between the search pattern and a pattern which uses the same 

intervals between notes, ie A B C# would match with C D E and Eb F G etc. 

Every parameter must be separated by a comma. If a parameter is left 

out, its default value is assumed. However, even if a parameter is left out, its 

associated comma must still be present, ie "LOCATE pattern," is equivalent to 

"LOCATE pattem,IDENTICAL". 

233 



syntax: 

!LOCATE search pattern,search type 

example: 

!LOCATE 25- 24 26 25, INTERVAL 

I I 
(literal/label} (IDENTICAUOCTAVE/INTERVAL) 

explanation: 

The above example searches the 'score' data file for a pattern with the 

same intervals between notes as the DARMS string '25- 24 26 25'. 

234 



The SElECT Command 

The SELECT command allows all key signatures and accidentals to be 

ignored during a program run. SELECT may be used any number of times, and 

at any point within a program. SElECt defaults to one, and may be given one 

of the following values: 

accidentals kev sianature 
1 on on 
2 on off 
3 off off 
4 off on 

syntax: 

!sELECT number 

example 

\SELECT 3 

explanation: 

The above example forces any further pattern-matching commands to 

ignore both accidentals and key signatures within the 'score' data. 

235 



The TRANSFORM Command 

The TRANSFORM command allows variation between the pattern found 

and the pattern being searched for. The pattern found may contain a different 

number of notes, as well as pitch variations, between itself and the pattern 

being searched for. 

TRANSFORM is used to define the variation allowed between both 

pattern found and pattern searched for. This allowable variation must be given 

a lower case label. To employ the allowable variation within a LOCATE 

command, the label should be added to the pattern (or pattern label) contained 

within the LOCATE command. 

syntax: 

TRANSFORM label, variation definicion 
LOCATE pattern+label,options 

A TRANSFORM command must always appear before the LOCATE 

command in which it is to be employed. 

The number of 'real' notes in a TRANSFORM command must equal the 

number of notes in a LOCATE command. 

The remaining part of the TRANSFORM command contains the 

numbered notes of a search pattern together with their allowable variation. For 

example, the first notes of a search pattern may be allowed to vary by up to 

three semitones higher when occurring in a found pattern, in which case it is 

represented as: 

,1>3 

' 1 note number 
> variation operator 
3 variation limit 

236 



The variation operators are as follows: 

+n 

-n 

a note may vary by up to n semitones higher than 

what it should be. 

a note may vary by up to n semitones lower than 

what it should be. 

a note may only vary by n semitones higher. 

a note may only vary by n semitones lower. 

Variation operators may be combined: 

,2+3<10 

The above example indicates that the second note of a found pattern 

may either occur exactly three semitones higher, or up to ten semitones lower 

than the second note of the search pattern. 

If a note number is not contained within a variation definition, the 

definition is assumed to relate to all the notes of the pattern being searched for, 

and thus is not classified as a 'real' note within a variation definition. 

Note-numbered variation definitions must occur in the order in which 

they are numbered. 

1+2-4,3<1,2,4+1 is incorrect 

1+2-4,2,3<1,4+1 is correct 

The insertion of* n indicates that the found pattern may contain up to n 

more notes than the search pattern. For example, searching for a pattern "A B", 

with a TRANSFORM definition of "1,*,2", may find a pattern "A C# B"; likewise, 

"1,*4,2" may find a pattern "A C# Eb D F B" or simply "A C# B". Extra notes in 

237 



the found pattern may occur only at the points marked in the TRANSFORM 

definition with an asterisk. 

example: 

!TRANSFORM label,+2 

+ 2 Any note within a found pattern may occur exactly a 

tone above a note in an equivalent position within 

the search pattern. 

example: 

!TRANSFORM vari, 1<2>4, 2+1, 3, 4, *2, (5) 

,1<2>4 

,2+1 

'3' 4 

' * 2 

1 ( 5) 

The first note of the found pattern may be up to two 

semitones lower or up to semitones higher than the 

first note of the search pattern. 

The second note of the found pattern may only be 

the same or a semitone higher than the second note 

of the search pattern. 

The third and fourth notes of the found pattern must 

be identical in pitch to the third and fourth notes of 

the search pattern. 

Up to two extra notes may occur between the fourth 

and fifth notes of the found pattern, ie the search 

pattern contains only five notes, but the found 

pattern may contain between five and seven notes, 

with the extra notes between note four and note five 

relative to the search pattern. 

The fifth note of the search pattern need not occur in 

the found pattern. 

238 



The MAP Command 

The MAP command may occur at any point within a program. MAP is 

used to switch on graphical output to show the location of successful pattern 

matches. 

MAP must be followed by the word ON or OFF and is initially set to OFF. 

example: 

IMAP ON 

example output: 

I Start 
Occurrences+ 

Finish 
++ + + +++ + 

239 



The PRINT Command 

The PRINT command will output whatever string of characters is held 

within its set of speech marks. Since a set of speech marks defines the string to 

be output, it is not possible to have speech marks as part of the output string. 

String lengths must be short enough to allow both the PRINT command, 

and its associated string, to fit on one line of the screen. 

example: 

!PRINT "Normal pattern match" 

explanation: 

The above example prints the text 'Normal pattern match' onto the 

screen whenever the interpreter reaches the PRINT command. 

240 



lhe liEXT Command! 

The LOCATE, DEFiNE, TRANSFORM and SElECT commands send 

operating messages to the screen whenever they are used. Textual output, 

other than that specified within a IPR~NT command, may be switched on or off 

with the TEXT command. 

TEXT must be followed by the word ON or OFF and is initially set to ON. 

example: 

!TEXT OFF 

241 



Sample Program 

DEFINE pattern, 26 21 20 21 26 21 ; (1} 

TRANSFORM v a r i, 1 1 2 < 2 I 3 > 2, 4 < 2 I 5, 6 ; ( 2) 

SELECT 1 ; ( 3 ) 

MAP ON ; ( 4) 

TEXT ON ; (5) 

START 2 I 1 . 1' 1 ; ( 6) 

STOP 12, 1 . 1, 1 ; ( 7) 

PRINT"Samp1erun ... " ;(8) 

PRINT "Normal:" ; ( 8) 

LOCATE pattern, IDENTICAL ; (9) 

PRINT "VHth variation" ; (8) 

loop LOCATE pattern+vari, INTERVAL 

GOTO loop 

END 

; ( 10) 

; ( 11) 

; (12) 

242 



Program Commentary 

; ( 1) 

; ( 2) 

; ( 3) 

; ( 4) 

; ( 5) 

; ( 6) 

; ( 7) 

; ( 3) 

; ( 9) 

; ( l 0) 

; ( 11) 

; ( 12) 

Stores the pattern "26 21 20 21 26 21" under the 

label "pattern". 

Stores a transform definition under the label "vari", 

which will allow the second, third and fourth notes of 

a found pattern to differ by up to a tone lower, higher 

and lower respectively, from the corresponding 

notes of a search pattern. 

Allows key signatures and accidentals to act on the 

data (default). 

Switches on the occurrence location map. 

Selects textual output (default). 

Starts analysis from the first note of bar two. 

Ends analysis at the first note of bar twelve. 

Prints out a text string. 

Searches for the first melodic repetition of the 

pattern labelled "pattern". 

Searches for all occurrences (in conjunction with the 

following GOTO command) of the pattern labelled 

"pattern" which vary in accordance with the 

transform definition labelled "vari". 

Goes back to the statement labelled "loop". Does 

not go back if the most recent LOCATE command 

has not found a pattern match. 

Mandatory END command. 

243 



Appendix C (Shellscript Programming) 

Shellscript programming 

The shell programming language is interpreted, ie each line in a program 

is analysed by the computer and then executed. Most other programming 

languages like C, Pascal, and FORTRAN are compiled, ie all the lines in a 

program are turned into a machine-executable form before execution. 

Command files 

Shellscript programs may either be typed directly at the computer's 

prompt, or put into a file and executed at a later date. 

Directly: 

we -1 

In a file: 

users 

echo There are ... 
who I we -1 
echo users on the system. 

$ users 
There are ... 
4 
users on the system. 
$ 

Any operating system commands may be put inside a file. 

244 



Comments 

Remarks or comments may be inserted into a program to make it more 

readable and maintainable. 

Any text after the special character#, and up to the end of the line, will 

be treated as a comment and simply ignored. 

users 

# A program to display the number of people 
# on the system 
echo There are ... 
who I we -1 # who piped through we 
echo users on the system. 

245 



Variable§ 

Like the majority of programming languages, values may be stored in 

variables. 

Variable names: 

o Must start with a letter or underscore (_). 

o May consist of letters, numbers, and underscores. 

Values may be assigned to variables using an equals sign. 

1$ user count=l 
~ user_name=Clive 

There should be no spaces round the equals sign. 

Data Types 

The shell has no concept of data types. All values assigned to variables 

are treated as strings of characters. 

!; sum=2+4 

The characters 2, +, and 4, are stored in the variable sum. 

246 



Displaying the Contents oi Variables 

When a variable name is preceded with the special character$, the shell 

substitutes the variable name for its contents. 

$ user count==l 
$ user-name==Clive 
$ echo-$user count 
1 
$ echo $user name 
Clive 
$ 

$ echo my name is $user name 
my name is Clive 
$ 

Unassigned variables 

Variables which have not been assigned a value, contain the null value. 

1: echo $nothing 

To assign a null to a variable, either specify nothing or two speech marks 

on the right-hand side of the equals sign. 

~~ nothing= 

or 

~~ nothing=="" 

247 



Variable Substitution 

When concatenating text to the contents of a variable, curly brackets 

should be used to avoid confusion. 

$ name=Cliv 
$ correct name=$namee 
$ echo $correct name 
$ 

Using curly brackets: 

$ name=Cliv 
$ correct name=${name)e 
$ echo $correct name 
Clive 
$ 

The curly brackets should enclose the entire variable name, but not the 

leading dollar sign. 

248 



lhe quote characters 

The shell recognises four different types of quote characters. 

I Apostrophe. 
" Speech mark. 
\ Backs lash. 

Grave. 

Apostrophe 

Enclosing text inside two apostrophe characters forces the shell to 

ignore all special characters. 

$ name=Clive 
$ echo '$name *' 
$name * 
$ 

Speech mark 

Enclosing text inside two speech marks forces the shell to ignore all 

special characters except dollar signs, graves, and backslashes. 

$ r.ame=Clive 
$ echo "$name *" 
Clive * 
$ 

249 



Backslash 

The backslash character is equivalent to placing apostrophes around a 

single character. 

Grave 

$ name=Clive 
$ echo "\$name *" 
$name * 
$ 

The shell executes text enclosed inside two grave characters, and 

replaces the text and the grave characters with the result. 

$ echo the date is date 
the date is date 
$ 

$ echo che date is 'date' 
the date is Mon Jan 1 17:19:52 EDT 1990 
$ 

250 



Shell arithmetic 

Since the shell has no concept of data types, it has no concept of 

arithmetic. 

$ a=1 
$ b=2 
$ c=$a+$b 
$ echo $c 
1+2 
$ 

The command expr will evaluate an expression given to it on the 

command line. 

Each operator and operand passed to expr must be separated by 

spaces. 

I$ expr 
1+2 
$ 

$ a=1 
$ b=2 

1+2 

$ c='expr $a + $b' 
$ echo $c 
3 
$ 

251 



Doing arithmetic with decimals 

The expr command only evaluates integer expressions. The command 

be must be used to perform floating point calculations. 

$ expr 1.2 "*" 1.4 
expr: non-numeric argument 
$ 

I$ ~cho 
l.b 
$ 

1.2 "*" 1.4 1 be 

To increase the number of decimal places given by be, set the scale 

variable to the required number of decimal places. 

I
~ ~cho "scale=2; 1. 2 * 1. 4" I be 
_. o8 
$ 

$ c=22 
$ c='echo "scale=lO; $c I 7" I be' 
3.1428571428 
$ 

252 



Special variables 

Positional parameters 

Arguments can be passed from the shell command line to a shell 

program. 

Whenever a shell program is executed, the shell automatically stores the 

first argument in the special shell variable 1, the second argument in the 

variable 2, and so on. 

words 

!echo you typed $1 $2 $3 

$ words the rain in Spain 
you typed the rain in 
$ 

The # variable 

The# variable contains the number of arguments typed on the 

command line. 

count 

!echo you typed $# words 

$ count the rain in Spain 
you typed 4 words 
$ 

253 



The ~> variable 

The " variable contains all of the arguments typed on the command line. 

words2 

!echo you typed $* 

$ words2 the rain in Spain 
you typed the rain in Spain 
$ 

The shift command 

The positional parameter variables only refer to nine command line 

arguments. If there is a tenth argument on the command line, the shift 

command must be used to access it. 

The shift command will assign the contents of variable 2 to variable 1, 

variable 3 to variable 2, 4 to 3, and so on. The value of variable 1 will be lost. 

The# variable will automatically be decreased by one. 

shifty 

echo you originally typed $1 $2 $3 
shift 
echo now it is $1 $2 $3 

$ shifty the rain in Spain 
you originally type the rain in 
now it is rain in Spain 
$ 

(The 0 variable contains the command itself.) 

254 



Making decisions 

The ? variable 

The ? variable contains the exit status of the last command executed. If 

the exit status is zero, the last command succeeded. If the exit status is 

nonzero, the command failed. 

$ cd 
$ echo ~? :;>. 

0 
$ cd ;--:x:{ 
xxx: does not exist 
$ echo $? 
1 
$ 

255 



The if command 

Syntax: 

if commandl 
then 

fi 

command2 
command3 

The if command executes command1. If the exit status of command1 is 

zero, the commands between the then and the fi are executed. If the exit status 

of command1 is nonzero, the commands between the then and the fi are 

skipped. 

user 

if who I grep ""$1" 
then 

echo "$1 is logged on" 
fi 

$ HhO 
clive tty8a 
$ user clive 
clive tty8a 
clive is logged on 
$ user elaine 
$ 

Jan 1 07:14 

Jan l 07:15 

(grep ""$1" selects the lines which contain the variable $1 at the 

beginning.) 

256 



The test command 

Syntax: 

ltest expressionl 

The test command evaluates expressiont. If the result is true, test 

returns an exit status of zero. If the result is false, test returns a nonzero exit 

status. 

String testing 

The following operators are available: 

operator true if... 
stringl = string2 string 1 is identical to string2 
stringl != string2 strinq 1 is not identical to string2 
stringl string 1 is not null 
-z stringl string1 is null 

name test 

name=$1 
if test $name = Clive 
then 

echo "You typed my name." 
fi 

$ nametest Elaine 
$ nametest Clive 
You typed my name. 
$ 

257 



Integer ~esting 

The following operators are available: 

operator true if... 
integer1 -eq integer2 integer1 is equal to integer2 
integer1 -ge integer2 integer1 is greater than or equal to 

integer2 
integer1 -gt integer2 integer1 is greater than integer2 
integer1 -le integer2 inteqer1 is less than or e_gual to integer2 
integer1 -It integer2 integer1 is less than integer2 
integer1 -ne integer2 integer1 is not equal to integer2 

258 



File testing 

The following operators are available: 

operator true if. .. 
-d file file is a directory 
-f file file is an ordinary file 
-r file file is readable 
-s file file has something in it 
-w file file is writable 
-x file file executable 

The command ... 

~~ test -d /usr/clive 

returns true if /usr/clive is a directory. 

259 



Operators 

The negation operator 

An explanation mark can be placed in front of a test expression to 

negate the expression. 

The command ... 

~~ test ! -d /usr/clive 

returns true if /usr/clive is not a directory. 

The and operator 

The -a operator can be used to join two expressions together and will 

return true if both the joined expressions are true. 

The command ... 

$ test "$count" -gt 0 -a "$count" -lt 10 
$ 

returns true if the variable count is greater than 0 and less than 10. 

260 



The or operator 

The -o operator may also be used to join two expressions, but will return 

true if either the first expressions is true or the second expression is true. 

The command ... 

$ test "$count" -lt 0 -o "$count" -gt 10 
$ 

returns true if the variable count is either less than 0 or greater than 10. 

261 



An alternative to test 

The test command ... 

I test expression 

may also be expressed as ... 

I [ expression ] 

Spaces must appear after the [ and before the ]. 

The program ... 

if test ! "$name" = "Clive" 
then 

echo you are not Clive 
fi 

may be written as ... 

if [ ! "$name" = "Clive" ] 
then 

echo you are not Clive 
fi 

262 



The if else construct 

Syntax: 

if commandl 
then 

else 

fi 

command2 
command] 

command4 
commandS 

The if command executes command1. If the exit status of command1 is 

zero, the commands between the then and the else are executed. If the exit 

status of command1 is nonzero, the commands between the else and the fi are 

executed. 

user2 

if ''llho 1 grep ""$1" > /dev/null 
then 

echo "$1 is logged on" 
else 

e:cho "$1 is not logged on" 
fi 

$ who 
clive tty8d Jan 1 17:27 
$ user2 clive 
clive is logged on 
$ user2 elaine 
elaine is not logged on 
$ 

263 



The H else if cons~ruct 

Syntax: 

if commandl 
then 

else 

fi 

command2 

if command3 
then 

command4 

fi 

If commands may be nested when more than just a two-way decision is 

required. 

if "$name" = "Colin" 
then 

echo hello Daddy 
else 

if [ "$name" = "June" 
then 

echo hello Mummy 
else 

echo hello 
fi 

-=-~ J..j_ 

264 



The read command 

Syntax: 

I read variables 

The read command reads a line from the standard input and assigns the 

first word to the first variable in variables, the second word read to the second 

variable, and so on. 

If there are more words on the line than variables listed, the excess 

words are assigned to the last variable. 

read in 

!

echo "? \c" 
read a b 
echo a 
echo b 

$ readin 
? the rain in Spain 
the 
rain in Spain 
$ 

readin2 

l
echo "? 
read a 
echo a 

\c" 

$ readin2 
? the rain in Spain 
the rain in Spain 
$ 

265 



The for command 

Syntax: 

for variable in thingl thing2 ... thingn 
do 

done 

com.mandl 
command2 

The commands between 'do' and 'done' form the body of the loop. The 

'for' command is executed; the first thing, thing1, is assigned to variable and 

the body of the loop is executed. Then, the second thing, thing2, is assigned to 

variable and the body of the loop is executed again. This cycle continues until 

there are no more things in the list. 

forloop 

for word in the rain in Spain 
do 

done 

$ forlocp 
the 
rain 
in 
Spain 
$ 

266 



The while and until commands 

while syntax: 

'tlhile cornmandl 
do 

done 

command2 
corr.mandJ 

The commands between the 'do' and the 'done' are executed whilst 

command1 returns an exit status of zero. 

count=1 
Hhile [ "$count" -le 5 ] 
do 

echo $count; count='expr $count+ 1' 
done 

until syntax: 

until commandl 
do 

done 

command2 
command] 

The commands between the 'do' and the 'done' are executed until 

command1 returns an exit status of zero. 

count=1 
until [ "$count" -gt 5 ] 
do 

echo $count; count='expr $count+ 1' 
done 

267 



The case command 

Syntax: 

case variable in 
patternl) commands;; 
pattern2) commands;; 

patternn) commands;; 
esac 

The contents of variable is successively compared with the patterns 

patternt, pattern2, ... , patternn until a match is found. When a match is found, 

the commands after the bracket up to the double semicolon are executed. 

chars 

case "$1" in 
[0-9] J echo digit;; 
[a-z]) echo lowercase letter;; 
[A-Z]) echo uppercase letLer;; 
esac 

$ chars a 
lowercase letter 
$ chars + 
$ 

268 



The default case 

The special character" matches anything, and is usually used at the end 

of a case statement to mark commands which will be executed if none of the 

other patterns are matched. 

chars 

case "$1" in 
[0-9]) echo digit;; 
[a-z]) echo lowercase letter;; 
(A-Z]) echo uppercase letter;; 
[*]) echo something else;; 
esac 

$ chars a 
lowercase letter 
$ chars + 
something else 
$ 

The exit command 

The exit command enables the execution of a shell program to be 

terminated immediately. 

Syntax: 

le:-<it number 

Number is the exit status returned when the program is terminated. 

269 



Special echo characier§ 

The following special characters may be used with the echo command. 

\b backspace 
\c suppresses newline 
\f form-feed 
\n newline 
\r carriage return 
\t tab character 
\\ backslash character 

270 



Alphonce, Bo H. "Computer Applications: Analysis and Modelling." Musjc 

Theory Sgectrum 11/1, pp.49-59, 1989. 

~~=· "Music Analysis by Computer-A Field for Theory Formation." 

Computer Music Journal 4,2, pp.26-35, 1980. 

Babbitt, M. "The Use of Computers in Musicological Research." fM.S,QectjvesoJ 

fiew__Mu_sic 3, p.74, 1965. 

Balaban, Mira. "Toward a Computerized Analytical Research of Tonal Music." 

Ph.D. diss., Rehovat, Israel, Weizmann Institute of Science, 

386pp., 1981. 

___ . "Towards a Computer Research of Tonal Music." Proceedings of the 

RQ.C_b.e_star 1983 International Computer M_jJ_Sk: CJlOiatencst 

camp. Robert W. Gross. San Francisco. Calif.: Computer Music 

Association, pp.138-60, 1984. 

Bales, W., and Groom-Thornton, J. "AMUS: A Score Language for Computer

Assisted Applications in Music." AEDS Proceedings of the 17th 

Annual Convention. PetrojL Michigan. May 14-18. 1979 

Washington, D.C.:AEDS, pp.47-50, 1979. 

Baroni, M. "A Project of a Grammar of Melody", Proceedings of the Second 

International Symposium on Computers and Musicology (Paris, 

CANS, 1983), Orsay, pp.55-69, 1981. 

Baroni, M., and Jacoboni, C. Proposal for a Grammar of Melody: The Bach 

Chorales Montreal, 1978. 

Bauer-Mengelberg, S. "Music: The Photon Printer and DARMS." Computers 

and the Humanities 6, p.11 0, 1971-72. 

Bent, 1., and Morehen, J. "Computers in the Analysis of Music." Proceedings of 

the Royal Musical Association 104, pp.30-46, 1977-78. 

Bernstein, L., and Olive, J. P. "Computers and the 16th-Century Chanson: A 

Pilot Project at the University of Chicago." Computers and the 

Humanities 3, pp.153-160, 1968-69. 

Binkley, T. "Electronic Processing of Musical Materials." Elelstronische 

Patenyerarbejtung in Der Musikwissenschaft Harald 

Heckmann, ed., Regensburg: Gustav Bosse Verlag, pp.1-20, 

1967. 

271 



Bowles, E. "Musicology and Computers." Computersffi)dthe Humanities 4, 

pp.207-219, 1969-70. 

Brender, M. "Computer Transcription and Analysis of Mid-Thirteenth Century 

Musical Notation." JQurnal of Music TheoJY. Yale School of 

Music Publication, 11,2, pp.198-221, 1967. 

Brinkman, A. "A Binomial Representation of Pitch for Computer Processing of 

Musical Data." Music Theory~ 8, pp.44-57, 1986. 

___ ."A Data Structure for Computer Analysis of Musical Scores." 

Proceedings of the International Computer Mus-LConfereoce 

1984 

___ . "A Design for a Single Pass Scanner for the DARMS Music Coding 

Language." Proceedings oUhe Rocbester 1983 International 

Computer Music Conference camp. Robert W. Gross. San 

Francisco, Calif.: Computer Music Association, pp. 7-30, 1984. 

___ . "Toward a Library of Utility Computer Programs for the Music 

Theorist." Rochester, N.Y., Computer printout, Sept. 1975. 

___ .Pascal Programming for Music Research Chicago: The University of 

Chicago Press, 1990. 

___ . "Representing Musical Scores for Computer Analysis." Journal ol 
Music Theory 30,2, 1986. 

Camilleri, L. Carreras, F., Grossi, P. and Nencini, G. "A Software Tool for Music 

Analysis." Interlace 16, pp.23-38, 1987. 

Cantor, D. "A Computer Program that Accepts Common Musical Notation." 

Computers and the Humanities 6, pp.103-109, 1971-72. 

Cobin, M. "Musicology and the Computer in New Orleans." C__omputers and the 

Humanities 1, pp.131-133, 1966-67. 

Collins, W. S. "A New Tool for Musicology." Music and Letters XLVI, pp.122-

125, 1965. 

Cook, N. "Music Theory and 'Good Comparison': A Viennese Perspective." 

Journal of Music Theory 33,1, 1989. 

Crane, F., and Fiehler, J., "Numerical Methods of Comparing Musical Styles." 

The Computer and Music Harry Lincoln, ed., Cornell University 

Press, pp.209-222, 1970. 

272 



Ellis, M. "Are Traditional Statistical Methods Valid for Quantitative Musical 

Analysis?" Proceedings of the Second lnternatjona!Symposjum 

on Computers and MusjcoloQ:i (Paris, CRNS, 1983), Orsay, 

pp.185-195, 1981. 

~--· "Linear Aspects of J. S. Bach's the Well-Tempered Clavier: A . 

Quantative Survey." Diss., University of Nottingham, 1980. 

Erickson, R. "A General-purpose System for Computer Aided Musical Studies." 

Journal of MusLc Theo__Ql13,2, pp.276-294, 1969. 

___ . "DARMS, A Reference Manual." New York: Queens College, CUNY, 

1976. 

___ . "Music Analysis and the Computer." Journal of Musjc Theory 12,2, 

pp.240-263, 1968. 

___ . "Music Analysis and the Computer: A Report on Some Current 

Approaches and the Outlook for the Future." Computers and 

the Humanities 3, pp.87-1 04, 1968-69. 

---· "MUSICOMP 76 and the State of DARMS." College Music 

Symposium 17,1, pp.90-101, 1970. 

Forte, A. "A Program for the Analytic Reading of Scores." Journal of Musjc 

Theory 1 0,2, pp.330-364, 1966. 

___ ."Music and Computing: The Present Situation." Computers and the 

Humanities 2, pp.32-34, 1967-68. 

Fox ley, E. "The Harmonisation of Melodies for the Measurement of Melodic 

Variations." Proceedings of the Second International 

Symposium on Computers and Musicology (Paris, CRNS, 

1983), Orsay, pp.93-114, 1981. 

Gabura, A. "Music Style Analysis by Computer." The Computer and Music 

Harry Lincoln, ed., Cornell University Press, pp.223-276, 1970. 

Gould, M. "A Keypunchable Notation for the Liber Usualis." Elektroojsche 

Datenverarbejtung in Der Musikwjssenschaft Harald 

Heckmann, ed., Regensburg: Gustav Bosse, pp.25-40, 1967. 

___ . "An Introduction to Computing in Music." Computers and the 

Humanjtjes 2, pp.262-263, 1967-68. 

Hewlett, W. and Selfridge-Field, E. "Computing in Musicology, 1966-91." 

Computers and the Humanities 25, pp.381-392, 1991. 

273 



Hiller, L., Jr. "Computer Music." Scientific American 201, pp.109-120, 1959. 

___ . "Electronic and Computer Music." St. Louis PosJ-Dispatcb Music 

Section, May 17, 1959. 

=~~· and Isaacson, L. M. Experimental Music: Comp<LsjtjQn with an 

EJactronic Computer McGraw-Hill Book Co., New York, 1959. 

~-~·"Music composed with computers-a historical survey." I.b..e. 
Computer and Music Harry Lincoln, ed., Ithaca: Cornell 

University Press, pp.42-96, 1970. 

___ ."Some Structural Principles of Computer Music." JournaL of the 

Arnerjcan Musicological Society 9, pp.247-248, 1959. 

___ ,and Baker, R. '"Computer Cantata': A Study in Compositional 

Method." Perspectives of New Music 3, p.62, 1965. 

Holtzmann, S. "A Program for Key Determination." Interface 6, pp.29-56, 1977. 

Howe, H. S., Jr. "Electronic Music and Computers." Persruwtivesof New Music 

16, pp.70-84, 1977. 

___ ."Some Combinational Properties of Pitch Structures." Perspectives 

of New Music 4, pp.45-61, 1965. 

Jackendoff, R. and Lerdahl, F. "Discovery Procedures vs. Rules of Musical 

Grammar in a Generative Music Theory." Perspectives of New 

Music 18, pp.503-51 0, 1979. 

Kasemets, U. "Report from Ann Arbor." Music Quarterly 50, p.518, 1964. 

Kassler, M. "Toward Music Information Retrieval." Perspectives of New Music 

4, pp.59-67, 1966. 

Klein, M. "Uncommon Uses for Common Digital Computers." Instruments and 

Automation 30, pp.251-253, 1957. 

Kostka, S. "Recent Developments in Computer-Assisted Musical Scholarship." 

Computers and the Humanities 6, pp.15-21, 1971-72. 

Kowalski, D. "An Algorithm and a Computer Program for the Construction of 

Self-Deriving Arrays." In Theor:y Only 9,5-6, pp.27-50, 1987. 

Landy, L. "Arabic Taqsim Improvisation: A Methodological Musical Study Using 

Computers." lnformatiQue et musiQue. Second Symposium 

International ed. Helene Charnasse. lvry:ELMERATTO, CNRS, 

pp.21-30, 1983. 

274 



--~· "Computer Musicology and Politics. Why are they never 

associated?" Proceedings of the Second International 

fu'mposium on Computersaocl Musicolog~ (Paris, CANS, 

1983), Orsay, pp.243-253, 1981. 

LaRue, J. and Cobin, M. W. "The Ruge-Seignelay Catalogue: An Exercise in 

Automated Entries." Elektronische Datenverarbeitung in Per 

Musikwissenscb.afi Harald Heckmann, ed., Regensburg: 

Gustav Bosse, pp. 41-56, 1967. 

Lincoln, H. "Preliminary Studies of Melody as Wave Form." .Emceedings of the 

Second International Symposium on Computers and 

Musjcolog~ (Paris, CNRS, 1983), Orsay, pp.43-54, 1981. 

___ . "Some Criteria and Techniques for Developing Computerised 

Thematic Indices." Elektronische Datenverarbeitung in Per 

Musikwissenschaft, Harald Heckmann, ed., Regensburg: 

Gustav Bosse, pp.57-62, 1967. 

___ . "The Current State of Music Research and the Computer." 

Computers and the Humanities 5, pp.29-36, 1970-71. 

___ . "The Thematic Index: A Computer Application to Musicology." 

Computers and the Humanities 2, pp.215-220, 1967-68. 

Logemann, G. "The Canons in the Musical Offering of J. S. Bach: An Example 

of Computational Musicology." Elektronische 

Datenverarbejtung in Per Musikwissenschaft Harald 

Heckmann, ed., Regensberg: Gustav Bosse, pp.63-88, 1967. 

Martin, D. "Current Publications on Acoustics." Journal of the AcousticaiSociety 

of America 32, p.617, 1960. 

Mason, R. Modern Methods of Music Analysis Usjng Computers Peterborough, 

N.H.: School House Press, pp.299, 1985. 

Mathews. M. and Pierce, J. eds. Current Directions in Computer Music 

Research Mass.: MIT Press, 1989. 

McLean, B. "The Design of a Portable Translator for DARMS." Proceedjn~o.f 

the 1980 International Computer Music Conference comp. 

Hubert S. Howe. San Francisco, Calif.: Computer Music 

Association, pp.246-64, 1982. 

275 



___ . "The Representation of Musical Scores as Data for Applications in 

Musical Computing." Doctoral dissertation, State University of 

New York at Binghamton, 1988. 

Mendel, A. "Some Preliminary Attempts at Computer-Assisted Style Analysis in 

Music." Computers and the Humanities 4, pp.41-52, 1969-70. 

Mongeau, M. and Sankoff, D. "Comparison of Musical Sequences." Computers 

andtbe Huma.nltLe..s 24, pp.161-175, 1990. 

Morehen, J. "Statistics in the Analysis of Musical Style." Proceeclings oUhe 
Second International Symposwm on Computersand 

Musjcolo(l\l (Paris, CNRS, 1983), Orsay, pp.169-183, 1981. 

Olson, H. F. and Belar, H. "Aid to Music Composition Employing a Random 

Probability System." Journal of the Acoustical Society of 

America 33,9, pp.1163-1170, 1961. 

O'Maidin, D. "Computer Analysis of Irish and Scottish Jigs." Mu.si.ca!Grammars 

and Computer Analysis Atti Del Convegno, Pubblicati sotto gli 

auspici delle Universita degli studi di Bologna e Modena, 

[Modena, 4-6 Ottobre 1982]. 

Page, S. "Computer Tools for Music Information Retrieval." D. Phil., Oxford 

University, 1988. 

Pearce, A. "Computer Programs for Music Analysts." Ph.D., King's College, 

London 

___ . "Troubadours and Transposition." Proceedings of the__Sek_ond, 

International Symposium on Computers and Musicology (Paris, 

CNRS, 1983}, Orsay, p.167, 1981. 

Pinkerton, R. C. "Information Theory and Melody." Scientific American 194, 

pp.77-86, 1956. 

Plenckers, L. "A Pattern Recognition System in the study of the 'Cantigas de 

Santa Maria'." Musical Grammars andComputer Analysis Atti 

Del Convegno, Pubblicati sotto gli auspici delle Universita degli 

studi di Bologna e Modena, [Modena, 4-6 Ottobre 1982]. 

Pruett, J. "The Harpur College Music-Computer Seminar: A Report." 

Computers and the Humanities 1, pp.34-38, 1966-67. 

Rahn, J. "Toward a Theory for Chord Progression." Proceedings of the Second 

International Symposium on Computers and Musicology (Paris, 

CRNS, 1983}, Orsay, pp.79-92, 1981. 

276 



Richardson, E. "Music and Electronic Computers." NaiY.Le. 184, p.1754, 1959. 

Rothgeb, J. "Musical Research by Computer: Some Current Limitations." 

Computers and the Humanities 5, pp.178-82, 1970-71. 

___ ."Some Early Efforts in Computational Musicology." Computers and 

1b.e Humanities 6, pp.56-58, 1971-72. 

Russell, R. "A Set of Microcomputer Programs to Aid in the Analysis of Atonal 

Music." D.M.A., University of Oregon, 1983. 

Schillinger, J. The Mathematical Basis of The Arts Reprint ed. (New York and 

London: Johnson Reprint, 1966). 

Selleck, J. and Bakeman, R. "Procedures for the Analysis of Form: Two 

Computer Applications." Journal of Music Theory 9,2, pp.281-

293, 1965. 

Shannon, C. E. and Weaver, W. The Mathematical Theory of Communication 

The University of Illinois Press, 1949. 

Smoliar, S. "Lewin's Model of Musical Perception Reflected by Artifical 

Intelligence." Computers in Music Research 2, pp.1-39, 1990. 

___ . "Music Programs: An Approach to Music Theory through 

Computational Linguistics." Journal of Music Theory 20, 

pp.1 05-131' 1976. 

Snell, J. "Computerized Hierarchical Generation of Tonal Compositions." 

Proceedings of the Second International Symposium on 

Computers and Musicology (Paris, CRNS, 1983), Orsay, p.197 

1981. 

Stech, D. "A Computer-Assisted Approach to Micro-Analysis of Melodic Lines." 

Computers and the Humanities 15, pp.211-21, 1981. 

Suchoff, B. "Computerized Folk Song Research and the Problem of Variants." 

Computers and the Humanities 2, pp.155-158, 1967-68. 

Vercoe, B. "Music Computation Conference: A Report and Commentary." 

Perspectives of New Music 13, pp.234-238, 1974. 

Winograd, I. "Linguistics and the Computer Analysis of Tonal Harmony." 

Journal of Music Theory 12,1, pp.2-49, 1968. 

Wittlich, G. "Computer Applications: Pedagogy." Music Theory Spectrum 11,1, 

pp.60-65, 1989. 

277 



~-=··Schaffer, J. and Babb, L. Microcomputers__aod Music Englewood 

Cliffs., N.J.: Prentice-Hall, pp.321, 1986. 

278 




