
Durham E-Theses

Spelling correction in the NLP system 'LOLITA:

dictionary organisation and search algorithms

Parker, Brett Stephen

How to cite:

Parker, Brett Stephen (1994) Spelling correction in the NLP system 'LOLITA: dictionary organisation

and search algorithms, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/5528/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5528/
 http://etheses.dur.ac.uk/5528/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

University of Durham

Spelling Correction in the
NLP System 'LOLITA':
Dictionary Organisation
and Search Algorithms

Brett Stephen Parker

Laboratory for Natural Language Engineering,

Department of Computer Science,

University of Durham, U.K.

Submitted for the degree of Master of Science. September 1994

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

2 JUN 1995

Abstrac t

This thesis describes the design and implementation of a spelling correction

system and associated dictionaries, for the Natural Language Processing System

' L O L I T A ' . The dictionary storage is based upon a trie (M-ary tree) data-structure.

The design of the dictionary is described, and the wa}' in which the data-structure

is implemented is also discussed. The spelling correction system makes use of the

trie structure in order to l im i t repetition and "garden path ' searching. The spelling

correction algorithms used are a variation on the 'reverse minimum edit-distance'

technique. These algorithms have been modified in order to place more emphasis

on generation in order of likelihood. The system wi l l correct up to two simple errors

{i.e. insertion, omission, substitution or transposition of characters) per word. The

individual algorithms are presented in turn and their combination into a unified

strategy to correct misspellings is demonstrated. The system was implemented in

the programming language Haskell; a pure functional, class-based language, wi th

non-strict semantics and polymorphic type-checking. The use of several features

of this language, in particular lazy evaluation, and their corresponding advantages

over more traditional languages are described. The dictionaries and spelling cor­

recting facilities are in use in the L O L I T A system. Issues pertaining to 'real word'

error correction, arising f rom the system's use in an NLP context, axe also dis­

cussed.

Acknowledgements

First ly I would like to thank m}' supervisor, Roberto, for his help throughout the

year, and for getting me here in the first place. Also the other members of staff in

the L N L E ; Rick, Russell. Deborah and Chris, for all of their help and assistance.

I would like to thank everyone in the ' A I lab' (Dave, Jon. Sengan. Simon, Stephen

and Yang) for their help in proof reading and bringing me up to speed with L O L I T A

and Haskell, as well as the rest of the group (Agnieszka, Kevin. Mark, Miguel and

the two Pauls).

Karen Kukich at Bellcore and Roger M i t t o n at Birkbeck College for their advice

and help in locating some diff icult to find information.

Special thanks to Gillian for her many paper-hunting visits to the J R U L M and for

her continuous support. Finally, I would like to thank my family for all of their

encouragement, without which none of this would have been possible.

Please note:

Miranda is a trademark of Research Software L t d .

Sun SPARCstation 4 is a trademark of Sun Microsystems.

Microsoft, Word and Windows are trademarks of Microsoft Corp.

© 1 9 9 4 - T h e copyright of this thesis rests with the author. No quota­

tion from it should be published without his prior written consent and

information derived from it should be acknowledged.

Contents

1 Introduct ion 6

1.1 Problem Outline 6

1.2 Spelling Errors 7

1.2.1 Convention Errors 8

1.2.2 Slips 8

1.3 Dictionaries 9

1.4 Summary 10

2 Context of this work 11

2.1 The L O L I T A NLP System 11

2.1.1 Applications of L O L I T A 13

2.2 Functional Progrfiraming 15

2.2.1 Features of Functional Languages 17

2.2.2 Haskell 19

2.3 Natural Language Engineering 20

2.4 Summai-y 21

3 R e l a t e d W o r k 23

3.1 Detection of Errors 24

3.1.1 iV-grams 24

3.1.2 Dictionary lookup 25

CONTENTS __2

3.2 Correction of Errors 25

3.2.1 Correction of Errors in Isolated Words 26

3.2.2 Correction of Errors Using Context 31

3.3 Dictionary organisation 33

3.3.1 Hash Tables 33

3.3.2 Binary Trees 34

3.3.3 Tries 35

3.3.4 Dictionary size 38

3.3.5 Dictionary partit ioning 38

3.4 Summary 39

4 T h e L O L I T A Dic t ionary 41

4.1 Selecting a data-structure 41

4.2 Design 45

4.2.1 Tries and subtries 45

4.2.2 Nodes 47

4.2.3 Dictionary partit ioning 48

4.3 Implementa.tion and Integration 49

4.3.1 Implementation 49

4.3.2 Integration wi th L O L I T A 55

4.4 Profihng the dictionary 66

4.5 Testing 57

4.D bummary 58

5 T h e Spel l ing Correc t ion Sys tem 59

5.1 The choice of algorithms 59

5.2 The four errors 62

C O N T E N T S 3

5.2.1 Insertion Errors 62

5.2.2 Omission Errors 62

5.2.3 Substitution Errors 63

5.2.4 Transposition 66

5.3 The overall algorithm 66

5.4 The Penalty System 68

5.5 Implementation 69

5.5.1 Insertion Correction 70

5.5.2 Omission Correction 72

5.5.3 Transposition Correction 73

5.5.4 Substitution Correction 74

5.5.5 Overall Algori thm 75

5.6 Integration wi th L O L I T A 76

5.7 Testing 78

5.8 Summary 80

6 Conclusions 82

Bibl iography 84

A p p e n d i x A 89

List of Figures

1.1 Peterson's example of error transformations 8

1.2 The standard Q W E R T Y keyboard 9

2.1 Structure of the L O L I T A system 12

2.2 A portion of the semantic network 12

2.3 Example of the contents scanning task 14

2.4 A n example output f rom the Chinese Tutor 15

3.1 A lattice i n C L A R E 32

3.2 A balanced binary tree wi th seven entries 34

3.3 Finding bird in a trie 35

3.4 A section of M u t h and Tharp's trie 37

3.5 Peterson's dictionary parti t ioning scheme 39

4.1 Node format 48

4.2 A portion of the dictionaxy showing how the subtries are utilised. . 51

4.3 A simplified semantic net fragment showing language controls for
the word / 53

4.4 Results of getin operation profiling 57

5.1 Touch typists key control 64

5.2 Search for insertion errors f rom string 'dolg' 70

5.3 Search for group one omission errors from string 'dd ' 72

LIST OF FIGURES 5

5.4 Search for transposition errors f rom string 'bule' 73

5.5 Search for band one substitution errors f rom string 'vr j^ ' 74

5.6 A list of corrections for the word 'fish' 75

5.7 Cumulative percentages for list position 80

Chapter 1

Introduction

In this thesis a method of dict ionarj ' storage and access w i l l be introduced, and its

use in solving the problem of correcting spelling mistakes in text described. This

chapter introduces the problem of spelling correction and examines, briefly, some

of the issues involved in dictionary organisation.

1.1 Problem Outline

Humans are able to deal wi th incorrect spellings when reading text. I t is perfectly

possible for a person to read a passage of text containing spelling errors, never

realising that as they do so they are continuall3' making mental corrections. I t

is this abili ty to correct 'on the fly' that a machine must try to mimic if i t is to

perform at a level approaching human capabilities at text processing. I t wil l be

shown, throughout the course of this work, that the spelling correction problem is

not as simple as human behaviour would suggest. Indeed Chapanis [CHA 54] states

that "random muti lat ion by deleting letters can not exceed 25% before humans fail

to restore text" (as cited by [HAR 72]). Central to the development of a spelling

correction system is the dictionary of which i t makes use. The dictionary wil l be

used to check the validity of words in the input stream and to test any words

C h a p t e r 1: Introduct ion

hypothesised by the spelling correction system. Clearly, the performance of the

spelling corrector is closely allied to that of the dictionary, so that any assistance

which one can give the other wi l l enhance the overall execution speed.

1.2 Spelling Errors

Before a method for correcting errors can be developed i t is first necessary to

examine the source of the errors as they are observed to occur. Damerau, in his

seminal 1964 paper [D A M 64], put forward a classification of errors which has

become the de-facto standard for describing simple errors. He claimed that 80% of

errors could be classed into the following four groups:

1. Insertion - A n extra character is inserted into the string, e.g. the word 'spell'

becomes 'speell' wi th the insertion of an extra 'e'.

2. Omission - A character has been missed out of the word, e.g. the word 'spell'

becomes 'spel' wi th the omission of an ' 1 ' .

3. Transposition - Two adjacent characters have been swapped, e.g. the word

'spell' becomes 'sepll' w i th the transposition of the second and third charac­

ters.

4. Substitution ~ A character has been replaced with another, e.g. the word

'spell' becomes 'srell' i f a.n ' r ' is substituted for the 'p ' .

Peterson [PET 80] gives a diagrammatic representation of the way in which a

word can be transformed by these errors, which is reproduced in Figure 1.1.

C h a p t e r 1: Introduct ion 8

ORD

Omission
I

OR

Substitution
I

ORB
O R E
O L D
ODD

Transposition

ROD

Insertion
I

CORD
FORD
LORD
WORD

Figure 1.1: Peterson's example of error transformations.

I t has been shown how a word could be corrupted by each of these errors, but

why are the errors made in the first place? Analysis of the problem wil l be divided

into two parts; convention errors and slips.

1.2.1 Convention Errors

A 'convention error' wi l l be defined as one in which the writer does not know the

spelling of a word. There is not, in English, a direct mapping between phonemes

(sounds) and letters, the former outnumbering the latter almost two to one. There

is, therefore, a major diff iculty i f attempting to spell by ear as can be seen in

the following example [CRY 87]: sheep has only one possible pronunciation, "Sip'

whereas the phoneme 'Sip' has three possible spellings, sheep, sheap and shepe.

The types of errors which arise as a result of phonetic confusion are examined

further in Section 5.2.3.

1.2.2 Slips

'Slips' [HOT 80] are defined as errors in which the writer does know the correct

spelling of a word, but fails to type correctly.

I t is assumed, in this work, that the primary method of data entry, the man-

C h a p t e r 1: Introduct ion

machine interface, is a standard Q W E R T Y keyboard, as shown in Figure 1.2.

Q ̂ w E R T Y U I O P
A s D F G H J K L
Z X C V B N M

Figure 1.2: The standard Q W E R T Y keyboard

The method of entry has an important impact on the types of errors which

are found. A high number of substitution errors would be expected on a piece of

text which has been scanned using an Optical Character Recognition system, for

instance. Whilst the implementation of the system which has been developed is

influenced by this factor, i t wi l l be shown later that the adaptation of a different

input method would require a relatively t r iv ia l adjustment to the penalty weight­

ing associated wi th the various error forms. There exists a direct correspondence

between Damerau's classifications and the mechanics of keyboard entry,

1. Insertion - Two keys are struck simultaneously when intending to hit one.

2. Omission - A key is not clepiessed firmly enough.

3. Transposition - Keys are hit in the wrong order.

4. Substitution - The wrong key is struck.

These observations suggest spelling error patterns which wi l l be exploited by

the algorithms for spelling correction presented later. Section 5.2 provides a more

detailed analysis of typing errors.

1.3 Dictionaries

The issue of dictionary organisation is of fundamental importance in the design of

a spelling correction system. The dictionary can vary in complexity from being

C h a p t e r 1: Introduct ion 10

si mply a word-list, to some of the more advanced schemes described in Section 3.3.

Briefly, the main considerations during the design of dictionaries are: what

information is to be kept; how this information is to be accessed; and at what costs.

The type of dictionary which is used in everyday life, a paper book, is actually quite

a complex structure to emulate. Access is quasi-direct, i t contains tens, or often

hundreds, of thousands of words, and each word entry contains details on meaning,

pronunciation and usage. The dictionary used in a spelling correction system for

a simple word-processor would not need any information except whether a word

exists or not, a speech synthesiser may require only the pronunciation, whereas a

natural language processor wi l l need the meaning.

The way in which a dictionary is organised w i l l be influenced, also, by the

demands placed upon it by the rest of the system. A trade-off may be made between

speed of access and the space in memory which the dictionary uses, for example.

A system which operates in a batch environment wi l l have different demands to a

system which works interactively, in which a pseudo-real time performance wi l l be

required. Clearly, the development of a dictionary system first needs a thorough

analysis of the requirements, both current and forecasted, in order to avoid the

system becoming obsolete because i t cannot cope wi th its environment. The issues

affecting the design of a dictionary are discussed in more depth in Chapter 4.

1.4 Summary

In this chapter the ideas upon which the work presented in this thesis builds have

been introduced. The problem to be addressed by this work was identified, namely

how to produce a spelhng correction system and associated dictionary storage. The

two main aspects of the work, spelling error correction and dictionary organisation,

were discussed in outline. The spelling corrector and dictionary will both be looked

at in greater detail in the following chapters.

Chapter 2

Context of this work

The work presented has been influenced by the environment in which i t has been de­

veloped. The Natural Language Processing system L O L I T A , for which the spelling

correction system has been developed, is described in order to show the practical

applications of the work. The use of Functional Programming, in the implemen­

tation of the solution, has enabled the use of several important features not found

in most programming languages. Finally the methodology of Natural Language

Engineering, which has been used throughout the development of LOLIT.A, is pre­

sented.

2.1 The L O L I T A N L P System

The L O L I T A (Large-scale Object-based Linguistic Interactor Translator and Anal­

yser) system [GAR 92] is a state of the art natural language processing system,

able to grammatically parse, semantically and pragmatically analyse, reason about

(see [L O N 94]) and answer queries on normal complex texts, such as articles f rom

the financial pages of quality newspapers. Begun in 1986, the system is being de­

veloped by the Laboratory for Natural Language Engineering at the University of

Durham, currently involving a team of approximately twenty developers. In June

C h a p t e r 2: Context of this work 12

1993 the L O L I T A system was demonstrated to the Royal Society in London.

The overall structure of the L O L I T A system can be seen in Figure 2.1.

Morpbo log ical
^ Analysis

Misspelt and
unknown word

recovery

f ^
Structure
Analysis

Feature
Analysts

N O R M A U S E R

I N F E R E N C E

I N T E R A C T I O N
S E M A N T I C [J

N E T W O R K

S E M A N T I C
A N A L Y S I S

D I A L O G U E
A N A L Y S I S

1 -

C O N T E N T S
S C A N N E R

P R A G M A T I C
A N A L Y S I S

G E N E R A T I O N

Figure 2.1: Structure of the L O L I T A system.

The core of the system is a general framework which is used to map from text

to meaning and meaning to text. The main data structure used to represent this

meaning is a semantic network [SUA 88]. This structure holds world information

and data, as well as some linguistic information.

(EVENT)

instance spccialisalion

TAXI

Lime synonym ^insiance /subject action \ m o d e

CAB TAXI BURN F I E R C E PAST

Kjy W W V_7 ^
Figure 2.2: A portion of the semantic network

Figure 2.2 shows a simplified portion of the semantic network representing the

event 'the taxi burned fiercely'. The transformation f rom text to meaning is carried

C h a p t e r 2: Context of this work 13

out by the parser, the normaliser, the semantic analyser and the pragmatic anal­
yser. Each language understood by L O L I T A (currently English, wi th some Italian
and Chinese) rec[uires the construction of a syntactic parser [ELL 93] to map from
text to semantic net. The English parser, for example, contains over 1,500 gram­
matical rules. Af te r syntactic parsing, the parse tree is normalised—certain parse
trees which are equivalent are mapped to a unique normal form. The semantic
analyser then transforms the parse tree provided by the normaliser into a fragment
of semantic net, and matches the nodes i t creates wi th those which currently exist.
The pragmatic analyser then ensures that the meaning produced by the semantics
is consistent w i t h L O L I T A ' s knowledge of the real world.

2.1.1 Applications of L O L I T A

The core L O L I T A system has been adapted for use in many different apphcations.

These include contents scanning and Chinese tutoring described below, as well as

dialogue analysis [.JON 93] and generation [SMI 94], query application and machine

translation.

Contents scanning

Contents scarming involves a passage of text being examined and information con­

tained in the text being used to fill in an outline template. Contents scanning

[GAR 93] is one of the standard tests of the abilities of a natural language process­

ing system. The most widely known and acknowledged of such tests is that of the

Message Understanding Conference (M U C) , run by DARPA in the United States^

D A R 91]. A n example of contents scanning, as performed by L O L I T A , is given in

Figure 2.3.

' L O L I T A has been entered into the MUC-VI competition.

C h a p t e r 2: Context of this work 14

A car bomb exploded outside the Cabinet Office in Whitehall last night, 100
yards f r o m 10 Downing Street. Nobody was injured in the explosion which hap­
pened just after 9 am on the corner of Downing Street and Whitehall . Police
evacuated the area. First reports suggested that the bomb went off in a black taxi
after the driver had been forced to drive to Whitehall . The taxi was later reported
to be burning fiercely.

(T H E D A I L Y T E L E G R A P H 31/10/92)

Template: I n c i d e n t
I n c i d e n t : A bomb ex p l o s i o n .
Where : On the corner of Downing S t r e e t and W h i t e h a l l .

Outside Cabinet O f f i c e and outside 10 Downing S t r e e t .
I n a b l a c k t a x i .

When : 9pm.
Past.
N i g h t .
When a f o r c e f u l person f o r c e d a d r i v e r t o d r i v e a
blac k t a x i t o W h i t e h a l l .

Responsible:
Target: Cabinet O f f i c e .
Dajnage : Human: Nobody .

Thing: A bla c k t a x i .
Source: t e l e g r a p h
Source.date: 31 October 1992
C e r t a i n t y : Facts.
Relevant I n f o r m a t i o n

P o l i c e evacuated 10 Downing S t r e e t .

Figure 2.3: Example of the contents scanning task.

In the L O L I T A contents scanner, the input text is parsed and semantically

analysed in order to build a representation in the semantic network. A domain

dependent module then searches the network for information relevant to each of

the slots. This information, in the form of semantic network nodes, is then passed

to the realiser which produces the output.

Chinese tutoring

L O L I T A has been used as the core engine for a system to aid the teaching of Chinese

to English-speaking students [W A N 92]. One of the main problems encountered

C h a p t e r 2: Context of this work 15

in the learning of foreign languages is the influence of the mother tongue, known
as negative transfer [SEL 69]. This is the use of native language rules or patterns
which lead to an error or inappropriate use in the target language.

7b
We have breakfast at eight.
Please enter answer and hit return: JJ^fi] Ifg ^ f S A A.
I'm sorry to say that you haven't translated the sentence correctly.
There may be more than one way of translating the sentence:
mi A A Bg.f ts. A m m ^.^^
The problem with your translataon is that you hwe translated the
sentence according to the English word order. Please compare your
translation with the standard one(s) in order to find out the dif­
ferences between the structures and try again!
They (male) have lunch at one.
Please enter answer and hit return: I
nX^X (ASCII input)

Figure 2.4: A n example output f rom the Chinese Tutor

The Chinese tutor makes use of the technique of a mixed grammar. When the

parse of a Chinese sentence fails, a partial English grammar rule is invoked for the

next part of the sentence. A backtracking algorithm, is used in order to cope with

incorrect parsing.

The mixed grammar of Chinese and English has been modelled in a way which

allows the parser to locate complicated transfer errors not onh' by examining the

error itself, but also by checking its links wi th other constructs in the sentence.

Moreover, the grammatical rules i n the mixed grammar of Chinese and English

can be used to pinpoint arbitrary transfer errors made by students, without prede­

termining where the errors might occur. The student can then be informed of any

errors, and the system can recommend remedial work.

2.2 Functional Programming

The L O L I T A system is wri t ten in the functional language Haskell [HUD 92]. Func­

tional languages are a subset of the declarative group of programming languages.

C h a p t e r 2: Context of this work 16

These differ f rom the procedural languages like C, Pascal or assembler, in many
regards. In a procedural language the code takes the form of a list of instructions
to be executed sequentially, variables are allocated storage in memory, which can
be wri t ten to and then read later by a different part of the code. The Declarative
approach attempts to allow the programmer to concentrate on problem solving
and not have to worry about issues such as memory allocation and sequencing.
The reader is directed to [SEB 93] for a more detailed description of program­
ming paradigms. There are three types of declarative languages available to the
programmer;

• Specification - for example Z and V D M . These are languages used not to

program, but to specify in a precise, and mathematical, manner the behaviour

of a system. For instance in Z [POT 91] the specification for a function square

is:

square : Z —> N

V X : Z • square : x = x * x

This states that the function takes as its argument an integer and returns a

non-negative number. Furthermore, i t also states that squares returns x * x

(i.e. x^) for all x that are members of the set of integers. The important thing

to note is that this specification does not say how square is to be calculated,

but merely what the behaviour of square is, given a valid input.

• Logical - for example Prolog [CLO 84]. A logical language is one in which

relations between objects can be defined in terms of axioms, and a query

applied to these axioms. For example, given the set of statements:

goes_to (b o f f i n e s s , l a b s) .

o wns(boffiness, computer).

s t u d i e s (H , computing) :- owns(H, computer), goes_to(H, l a b s) .

l i k e s (X , Y) :- s t u d i e s (Y , computing).

C h a p t e r 2: Context of this work 17

and the query:

?- l i k e s (b o f f i n , b o f f i n e s s) .

Prolog wi l l respond wi th the answer 'yes.'

• Functional - for example ?Iaskell, Miranda, M L and LISP. The family of

functional languages can be categorised by the features identified in Section

2.2.1.

2.2.1 Features of Functional Languages

L a z y evaluation

Not all Functional Languages are lazy (for example M L) , however i t is an important

feature of the language used in development of L O L I T A . La^y evaluation is a

method whereby the program wil l only carry out as much processing as is necessary

in order to complete a task. For example,

A function to see if i t was nice weather may have the form:

I F (d r y AMD warm AND not-cloudy AND not-windy) THEN good-weather

ELSE bad-weather

I f the weather was not dry then the lazy system would, in effect, say "we

don't need to check the remaining premises as the conditional statement can not

possibly be true now, therefore i t must be bad-weather". The eager system, on the

other hand, would continue to check the other conditions before reaching the same

conclusion.

Another result of laziness is that i t allows the programmer to generate long,

and possibly infini te lists. The only elements which wi l l actually be paid for, in

terms of computations, are elements which are used. For ex^miple a function to

generate the first five prime numbers:

C h a p t e r 2: Context of this work 18

f i v e P r i m e s = take 5 primes
primes = f i l t e r prime [l . .]

Where prime is a function which produces the value True if the number is a

prime and False i f i t is not.

The function primes takes the infinite list [1..] which is shorthand for the list

of integers [1 , 2, 3, 4, 5, 6, .. oo], filters this fist to leave only prime numbers

and returns a list [1 , 2, 3, 5, 7, 11, .. oo]. The function fivePrimes takes the

first five elements of this fist, i.e. i t returns the list [1 , 2, 3, 5, 7]. Clearly if

the function primes was not lazy, i t would have to generate the entire list [1 . .

which is impossible. One application of this which wil l be described later is that

of generating a list of possible corrections for a word. I t is not necessary to worry

about how many of these corrections we can afford to produce, as only the elements

of the list which we need are actually produced.

P u r i t y

A language is said to be pure i f i t does not allow its functions to exert side-effects.

A side-effect is caused when the value which a function returns depends not only on

the parameters passed to i t , but also on the state of some other external variables.

A pure language forbids the use of global variables and insists that all variables

which are used by the function are passed explicitly. The advantage of purity is

that the function application becomes deterministic, i.e.. given the set of input

parameters, the output wi l l always be the same. This makes integration of new

functions, and the upgrading of existing functions, much more straightforward as

their effect is l imited to the parameters which they are passed, and therefore can

not update data being used by other parts of the system.

C h a p t e r 2: Context of this work 19

A b s t r a c t T y p e s

The use of abstract data types (ADTs) is by no means unique to functional lan­

guages. A n A D T is a data type whose representation is hidden f rom the rest of

the system; the A D T provides a set of functions which can be used to manipulate

the data type. For example the programmer may wish to make available the data

type Stack. The A D T may specify the following functions which are permitted on

Stacks:

• push - adds an element to the stack.

• pop - removes an element f rom the stack.

• isEmpty - tests to see i f the stack is empty.

• emptyStack - creates an empty stack.

This list of function definitions is known as the ADT's inter-face. The program­

mer is then able to manipulate stacks without being aware of how the stack is

implemented. More importantly, should the way in which stacks are represented

internally be changed the interface can remain the same and the other developers

wi l l not need to alter a single line of their code. In a large system i t is highly

desirable to use ADTs wherever possible in order to hide complexity and to ease

program development.

2.2.2 Haskell

The language in which the L O L I T A system is wri t ten, Hciskell, is a pure, functional

programming language wi th non-strict (lazy) semantics a.nd a polymorphic type-

checking system. I t was developed following a conference in 1987, as the definitive

Language of its type. Haskell incorporates all of the features described in Section

2.2.1; the impact of these features [MOR 94] wi l l be described in more depth during

the discussion of the implementation in later chapters. L O L I T A was originally

C h a p t e r 2: Context of this work 20

wri t ten in the similar language Miranda [HOL 91], but was converted to Haskell in
1993 as this was seen to offer a number of advantages, not least a compiler instead
of an interpreter.

2.3 Natural Language Engineering

The L O L I T A system has been developed according to the principles of Natural

Language Engineering (NLE) , rather than ones f rom the traditional field of Com­

putational Linguistics. N L E attempts to utilise soimd engineering principles in the

environment of Natural Language Processing research. This pragmatic approach

to development means that we do not need to wait for a complete linguistic theory

to be developed before we can build a large, realistic and useful NLP system such

as L O L I T A . Instead we make use of what tools are available to us at present, be

they long-standing, well-worked and general theories f rom computational linguis­

tics and logic, or more localised theories (which despite being unable to cover global

possibilities are sufficient to handle what is required), knowledge based approaches,

individual heuristics and adaptive or evolutionary techniques.

Since N L E shares a number of factors with more traditional engineering dis­

ciplines, these factors have strong influences in the way in which the system is

developed:

• Scale — The system must be large enough to cope with the demands placed

upon i t , for example the dictionary must contain a large enough vocabulary.

• Integration — The system components should be writ ten in such a way that

they are easy to combine wi th the system as a whole. Furthermore, parts of

the system should not make unreasonable assimaptions about other parts of

the system.

• Feasibi l i ty — The system should not make unrealistic demands of the hard­

ware pla t form on which i t is executed. The L O L I T A system currently requires

C h a p t e r 2: Context of this work 21

the use of a Sun SPARCstation 4 wi th 64Mb of primary memory.

• Mainta inabi l i ty — The system needs to able to be maintainable, in order

to ensure its usefulness in the long term. Issues pertaining to maintenance in

L O L I T A are discussed in [HAZ 93 .

• F lex ib i l i ty — The system should be flexible enough to allow its application

to other related domains, as need arises. The way in which the L O L I T A

system can be adapted, through the use of domain specific modules added to

the core system, was demonstrated in Section 2.1.1.

• Usabi l i ty — The ul t imate aim of the development of any system, is to provide

a workable solution to a perceived problem. Such a solution must be user

friendly in order to be of practical use to an end-user.

• Robustness — The problem of robustness is a key factor which any real-

world N L E system must overcome. For example, the system needs to be able

to deal w i th il l-formed input without coming to a complete halt.

2.4 Summary

In this chapter the three major factors influencing the design and development of

the dictionary and associated spelling correction system have been introduced.

The L 0 L I T . 4 system was presented in order to put the work into a wider per­

spective. The application of contents scanning was shown, as this is the domain in

which the spelling correction system w i l l be particularly useful. Chinese tutoring

was also shown to give an insight into the wide range of applications to which

L O L I T A may be put. Throughout the development of a system it is important

to remember what use i t wi l l be put to, in particular the concept of a semantic

network wi l l be referred to throughout the rest of this work.

Functional programming was described, and a number of features of the lan­

guage Haskell were introduced. Later chapters wi l l show how these features have

C h a p t e r 2: Context of this work 22

been utilised in order to provide maximum functionality at a minimum cost in both
developer and processor t ime.

Finally in this chapter, the methodology of Natural Language Engineering was

introduced. This approach to systems development has influenced the work pre­

sented in this thesis by providing a framework of principles to follow.

Chapter 3

Related Work

In this chapter work in the related fields of spelling correction and dictionary access

are summarised. The different methods which have been applied to each of the

problems are compared.

The problem of spelling correction ([POL 82]) can be separated into two quite

different sub-problems. The first task is to detect that a string does not form a

valid word, and the second to suggest which word was originally intended.

A great deal of this work has been carried out in the area of text recognition,

which reqtures a high degree of accuracy in error recovery due to the high rate of

residual errors [H A N 76]. An optical character recognition (OCR) system [HAR 72]

w i l l scan a piece of text, printed or hand wri t ten, and produce an electronic version

of the original. There are two ways in which errors arise in this system, firstly

there may be errors in the original text, or secondly errors may be made in reading

the text. These reading errors are generally caused by confusion between one

character and another, resulting in character substitution. The other area in which

these techniques are utilised is text processing, for example in word-processing or

database interaction, where the errors are of a much more random nature. The

errors may be due to a lack of knowledge of the correct speUing (convention errors),

or due to carelessness or inattention of the author (slips) [HOT 80 .

C h a p t e r 3: Re la t ed W o r k 24

3.1 Detection of Errors

I n all spelling correction systems the first task is to find the errors in the text.

There are two methods commonly adopted to detect errors, using n-grams or alter­

natively using dictionary lookup. Errors, in this case, are strings which exist in the

document being processed which are not valid words. A problem arises wi th words

which are in the dictionary, but not valid at that point in the text. An example

would be the wrong use of the words 'there' and 'their ' , the sentence " I used to

live their" contains a spelling mistake but does not contain an illegal string.

3.1.1 A^-grams

The use of n-grams is most common in OCR. A n n-gram is a sequence of n letters

which occur in a word. For example, the word 'spell' contains the bigrams sp, pe,

el and i i , and the trigrams spe, pel and ell. Each string in the input stream is

checked to see that i t only contains legal n-grams. This utilises the redundancy

in English of large groups of n-grams. The bigram jz, for instance, does not occur

in an}' English word, therefore any string containing this bigram must itself be

illegal. Leon Harmon [HAR 72] claimed a 42% bigram redundancy, which lead to

a 70% chance of a random substitution producing at least one new illegal bigram.

I n a standard application a 26x26 element array would be set up. Boolean values

would be stored in each element, corresponding to the legality of the bigram used

to access i t . I f the word contains a bigram which returns 'false' then this word is

flagged as misspelt.

The advantage of this system is that i t is light on resources, a 676 element

binary array is obviously more cornpa.ct to store, and faster to access than a 20,000

word dictionary. The main disadvantage of this approach is that a word such as

bal which is not in the English language, but contains no illegal bigrarns, wi l l be

allowed.

C h a p t e r 3: Re la t ed W o r k 25

3.1.2 Dictionary lookup

Dictionary lookup is the more advanced of the two error detection techniques. In

principle i t would appear a simple task: a string is looked up in the dictionary, if

i t is there fine, i f i t is not then flag the word string as misspelt. However the prob­

lems arise when one starts to consider the practicality of looking in the dictionary.

Clearly i f a dictionary contains tens, perhaps hundreds, of thousands of words the

problems of dictionary organisation and access strategies begin to look non-trivial.

The issues and solutions to dictionary organisation wi l l be discussed in more detail

later in this chapter.

3.2 Correction of Errors

Once an error has been discovered the next step is to t ry to find a plausible al­

ternative string. I t is to be hoped that this string wi l l be what the user originally

intended the input to be. There are two types of correction algorithms, those which

operate on an isolated word, wi th no thought to its context, and those which use

contextual information. For example, the former may correct ' I ate my un' to T ate

my run ' , whereas the latter maj ' more sensibly suggest T ate my bun"'. The use of

context here to resolve a choice between possible replacement words is an obvious

advantage, but at a cost in terms of complexity. Kukich [K U K 92a] states that

work needs to be done to detect 'real word' errors, which she sees as accounting

for 40% of al l errors. In her experiments she found that the best correction system

achieved a 75-85% success rate, and that since only 60% of errors would be identi­

fied as such, a spelling correction system would only be able to correct 45-51% of

errors.

C h a p t e r 3: Re la ted W o r k 26

3.2.1 Correction of Errors in Isolated Words

The correction of errors in isolated words requires the system to give the user a

list of possible corrections, based upon the similarity between the ini t ial string and

new candidate. A number of technic[ues exist to generate this list of possibilities.

A n experimental comparison of some of these methods was done by Kai'en Kukich

K U K 92a] in the domain of the telecommunications network for the deaf.

E d i t Dis tance Approach

Damerau [D A M 64] puts forward a system for searching through a dictionary look­

ing for a word which differs by less than a set amount f rom the input string. For

example the system may look for a word wi th in one error of the tai-get. The string

'wold ' is one error (a substitution in the th i rd letter) away f rom 'word'. This type

of system makes use of the statistics, which Damerau himself gives, that 80% of

errors are wi th in one error of the intended word. I f Damerau's figures are correct,

therefore, a system based on this approach would be expected to have a correction

rate of 80%. The method which Damerau uses involves finding a string which is

misspelt and then testing every word in turn to see if i t is within one edit of the

target string. A list would be produced which contained all of the words within one

error. A n improvement to the algorithm is provided i f the dictionary is partitioned

according to word length. Each of the simple errors can alter the length of the

string by no more than one character. I t is sufficient, i f looking for single error

corrections, only to search the dictionaries containing words within one character

of the length of the in i t ia l string.

The technique was designed at a t ime when serial access to dictionaries was

inevitable. A serial search of the dictionary would be seen to be very inefficient now

that direct access storage media are the norm: the number of comparisons which

need to be made for each word is equal to the number of entries in a dictionary.

A n example of the use of such a method is systems programs [MOR 70], in

C h a p t e r 3: Re la ted W o r k 27

which misspelt keywords in a programming language were corrected. This system,
which is described in more detail in Section 3.2.2, has the property of having
a small lexicon to match against. In this domain the number of words which
have to be looked at is so small that more complex algorithms, in particular the
'reverse min imum edit distance' technique described below, would have to test more
hypotheses than there are words in the dictionary.

An alternative to the method described above, which also is based on edit

distance, is the so called 'reverse min imum edit distance' technique. This involves

generating all of the possible strings w'ithin a certain edit distance and testing each

of these for dictionary membership unt i l a match is found. This technique was

used by Durham et al. [DLTR 83] for spelling correction in a human interface, and

i n the SPELL program on the DEC-10 computer. Peterson [PET 80] describes the

DEC-10 SPELL program, an outline of which is given below.

For each token not i n d i c t i o n a r y do
Begin

Generate l i s t of a l l s t r i n g s w i t h i n one error of target
Test s t r i n g s f o r d i c t i o n a r y membership
Present user with word(s) to chooss correction from

End

The main problem wi th this approach is that a large number of potential solu­

tions are generated and tested. The word 'xx\dophone' would produce a very large

number of hypothesised spellings which begin 'xx ' . These words, would all require

checking against the dictionary when clearly, to a human, they can't possibly be

correct since no word can start 'xx ' .

JV-gram Approach

As was seen earlier in this chapter an n-gram is a sequence of n letters which

occur in a word. These n-grams can be exploited in spelling correction as well as

detection. Each word is seen as a list of n-grams which are the features of a word.

C h a p t e r 3: Re la t ed W o r k 28

A matr ix is formed by the features present in a dictionary, and a vector for the
string. Vector distance can be used to find the closest match using, for example,
dot product. This technique is evaluated in [K U K 92a .

Angell et al. [ANG 83] proposed a similarity measure based upon the use of

trigraras. They call this the 'well-known dice coefficient', and i t is calculated in the

following way:

2c / (n -f- n')

Where c is the number of trigrams common to each word and within one position

of each other in their respective words, and n and n' are the number of trigrams

in the two words. Their method involves finding the word in the dictionary which

maximises the value of this equation. The main failing wi th this approach in

general is seen to be the very large cost of a serial search of the dictionary. He

gets around this problem by using an 'inverted file search procedure'. For each

t r igram present in the dictionary a list is buil t of pointers to each word containing

that t r igram. Therefore, only the words which are referenced in the relevant lists

need be considered as potential best-matches. The system can give the desired

correction, unic[uely, 76% of the t ime, rising to over 90% i f other possibilities are

considered.

UUmann [ULL 77] proposes that in order to make spelling error correction

practical i t may be necessary to use special purpose hardware instead of a general

purpose computer. He goes on to describe a method to process n-grams in paral­

lel. Improvements in computer design over the two decades since the paper was

published mean that his arguments relating to execution t ime of spelling correction

programs are not relevant to current hardware platforms.

R u l e - B a s e d Approach

A rule-based approach to spelling correction utilises a set of rules constructed to

mimic the human way of producing the errors in reverse. Yannakoudakis and

C h a p t e r 3: Re la ted W o r k 29

Fawthrop in a pair of papers, [Y A N 83a] and [Y A N 83b] first present a set of rules
for spelling eri'ors, and then derive an algorithm based upon these rules. They
assign scores to each word, based upon its likelihood of having been intended, and
then the word wi th the best score is chosen. They use a method of classifying their
rules according to three categories: sequential, vowel and consonantal.

Simi lar i ty K e y Approach

Similari ty key [POL 84] methods t ry to transform the string into a key such that

similar strings w i l l map to the same key. The Soundex algorithm, described in

H A L 80], reduces strings to a code of one letter and up to three numbers. I t has

been used for identifying names in airline booking systems, and in hospital patient

records. The first character in the code is the first letter of the word. The rest of

the letters in the word are assigned numbers according to the following scheme:

0 - A E I O U H W Y

1 - B F P V

2 - C G J K q S X Z

3 - D T

4 - L

5 - M N

6 - R

Any runs of numbers are replaced by a single digit , and any zeros are removed.

For example name 'Dickson' becomes 'D022205' which becomes 'D25', the same

key as would be generated from the name 'Dixon. ' Hall points out, however, that

the system is not perfect: the names 'Rodgers' and 'Rogers' are assigned different

codes, and there is a problem associated wi th words which sound alike but begin

wi th different characters.

Pollock and Zamora [POL 84] propose the SPElling Error Detection / Correc­

t ion Project (SPEEDGOP) system, which attempts to map similarly spelt words to

C h a p t e r 3: Re la t ed W o r k 30

the same ke)'. SPEEDCOP uses similarity keys to compare strings to valid words
in the lexicon. Two keys are used in the SPEEDCOP system:

1. The skeleton key - the unique consonants are placed in order of occurrence,

followed by the unique vowels in order of occurrence. The idea behind this is

based upon four principles: (i) the first letter typed is hkely to be correct, (ii)

consonants carry more information than vowels, (iii) the original consonant

order is mostly preserved, and (iv) the key is not altered by doubling or

un-doubHng of letters or most transposition.

2. The omission key - the skeleton key was found to be lacking for early omitted

letters in a word. The omission key sorts unique consonants into reverse order

of their statistical probability of omission and then adds the vowels.

The incorrect word is transformed into its key and then all of the words matching

that key in the dictionary are listed. Once the candidate words have been retrieved

they are ranked according to a plausibility rating based on reversing the error to

get to the target and seeing which was the most likely word.

Probabi l i s t ic Approach

Probabilistic methods attempt to make use of statistical information in order to find

the word which has most likely been corrupted into the string under examination.

Probabilistic methods have been used in the OCR environment where confusion

matrices are available for characters. For example it may be that the character '1'

is confused with the character ' i ' 10 % of the time, and the character ' j ' 5 % of the

time. Should the correction algorithm come across an 'V there is a chance it may

be an ' i ' and a lesser chance it should be a ' j ' . The correction is then guided by

these probabilities in building up possible target strings. Kukich [KUK 92a] points

out, however, that these probabihties are not consistent across applications. It is

necessary to train the system, in order to build up a confusion matrix based upon

a particular device reading a particular typeface.

C h a p t e r 3: Re la ted W o r k 31

3.2.2 Correction of Errors Using Context

It is fundarnentallj' important to first define what is meant by context. Context

is taken to be the examination of tlie word in terms of the words which surround

it , at a sentential level or above. This excludes those who consider the context

of characters within words (character level), as described earlier. This use of the

same word to mean vastly differing concepts can lead to confusion.

Context in spelling error correction can help greatly to resolve ambiguity be­

tween hypothesised words, and to find real word errors. Consider the string 'tran',

a spell checker may propose the word 'train' as the most likely candidate. If a hu­

man read the sentence 'you must be sure to eat plenty of tran"', they would suggest

'bran' as the candidate. Clearly the sentence 'you must be sure to eat plenty of

train' is nonsense, we use the context in which the word has been used to choose

from a list of potential words. It is precisely this use of context which would allow

the jump from interactive spell checking, asking the user to resolve ambiguity, to

automated spell checking involving the user only at times of uncertainty. Such

uncertainty may arise in the following sentence, ' I boarded the tran at the station'

(train or tram?).

Morgan [MOR 70] developed a system to correct spelling in computer programs.

As was mentioned previously, he used an edit-distance approach to find alternatives,

however he uses contextual information to assist in this search. A property of

computer languages is that they have a precise syntactic structure. Only a small

set of keywords can be used at a particular point in a program. An example of this

would be in the line of Pascal code,

IF X = 20 THE Y := 10

The rules governing construction of such a statement would cause the syntactic

parse of the statement to fail as it cannot make a valid parse tree from this input.

Morgan's system would take the string 'THE' and compare it to the keywords

which are allowed at this point in the statement 'THEN, AND, OR' a comparison

C h a p t e r 3: Re la ted W o r k 32

will be made between the actual string and the list of valid strings, and the most

similar will be chosen.

The system enjoys the luxury of a very rigid syntactic structure, coupled with

a small vocabulary, quite the opposite of a nattiral language application.

CLARE [CAR 92] is an NLP system being developed at SRI Cambridge. It uses

a lattice-based approach to representation of a sentence. Central to this method

is a lattice of overlapping word hypotheses, in which each path through the lattice

represents a possible sentence construction. This is similar to the well-formed

substring table method of representing multiple possible parses of a sentence.

th „ m „ n _ worked -e- -e- -e- -o

man / men

the/to a / an / in / \ worked

no / on / , / 1 /1

Figure 3.1: A lattice in CLARE.

Figure 3.1 shows the exainple lattice given in [CAR 92]. The input "th m n

worked' is transformed into the lattice containing possible sentences. Syntax and

semantics can then used to filter out impossible rotites through this lattice, and the

remaining paths are represented in quasi-logical form. If more than one possible

sentence results the user may be asked to disambiguate before further processing

takes place.

C h a p t e r 3: Re la ted W o r k 33

3.3 Dictionary organisation

It has been shown previously that the issue of dictionary organisation is of fun­

damental importance in consideration of the spelling correction problem: the ef­

ficiency of look-up will influence the speed of the system and the structure can

influence the implementation of the search strategy.

In the days of magnetic tape this problem was not a factor (or at least one

which it was possible to overcome) as access was always serial so a diclionary

was literally a word-list. Early spelling detection algorithms were developed with

this huge limitation in mind. One strategy to overcome this problem was to sort

the words in the file to be checked into alphabetical order and perform a serial

comparison between the dictionary and the ordered list of strings. The serial

comparison method allowed for dictionary membership to be tested but the speed

overhead made postulating valid alternatives a difficulty. Modern technology has

greatl}' assisted the dictionarx- lookup problem, it is now possible to directlj' access

a backing storage device. Indeed the primary memory in some workstations can

be large enough to hold even a large dictionary, reducing the cost of a dictionary

access. [KNTJ 73] provides a detailed discussion of data-structures.

3.3.1 Hash Tables

Hash tables are the most common form for dictionary storage, a hash value is

calculated by applying a function to the string. For example the hash function

may take the ASCII values of the letters in a word, add a weight to each of them

dependent on their position in the word, and then sum these values. This value

will be used to access the word in the dictionary. This address may contain a

'true' flag to show that a word exists, or the word itself. There will, of course, be

problems in this system if it is possible for two strings to map to the same address.

In the boolean system this may result in an incorrect string chancing upon a valid

hash address and being passed, if the word is stored we have the problem of what

C h a p t e r 3: Re la ted W o r k 34

to do if two words map to the same address. There is a trade-off to be made
between the size of the hash table being large enough to avoid the type of problem
described above, and being small enough that it does not use large amounts of
system resources for storage of unused addresses in a sparsely populated table. It
does have the advantage, however, that the random access nature of accessing the
table eliminates the need for comparisons in other techniques. The pseudo-random
distribution of words mean that closeness of hash value, and therefore positioning
in the table, has often no relevance in terms of word similarity.

3.3.2 Binary Trees

For a small dictionary an ordered binary-tree representation may be an efficient

representation. A binary tree, as shown in Figure 3.2. is the data-structure equiv­

alent of a binary search.

medicine

disk plant

are fish orange zoo

Figure 3.2: A balanced binary tree with seven entries.

The dictionary is organised so that the median word in the dictionary lies at

the root node. A comparison is carried out to see if the value of the string which is

being looked for is greater or less than this word. If the value is less then a branch is

made to the left, if larger to the right, until the values match meaning the word has

been found. If the bottom of the tree is reached, meaning it is no longer possible

to branch, the search is said to have reached a leaf node, meaning that the word is

C h a p t e r 3: Re la t ed W o r k 35

not in the dictionary. The tree only maintains its binary search properties as long

as it is balanced, that is at each node the number of nodes reachable to the left,

and the number to the right are the same, plus or minus one. If a node is added,

or removed, it is necessary to rebalance the tree, to make sure that no branches of

the tree are longer than the others by more than one node.

3.3.3 Tries

A trie [FRE 60] is defined as:

An M-ary tree, whose nodes are M-place vectors with components cor­

responding to digits or characters. Each node on level x represents the

set of all keys that begin with a certain sequence of e characters; the

node specifies an M-way branch, depending on the (e -h l)st character.

^ = word
X = no word

Figure 3.3: Finding bird in a trie.

C h a p t e r 3: Re la ted W o r k 36

Figure 3.3 shows how the words a, bad, bird, biro, bin and bit could be repre­
sented in a trie structure, and the way in which the word bird is accessed.

The word trie is taken from the structures main use, information retrieval

([KUK 92b]). A trie dictionary is, in fact, a large finite state machine through

which there is a path to each word in the dictionary. If the string which is being

looked for in the dictionary does not follow an existing path then that string can

not be a valid word. Furthermore, if a string ends at a position in a path which

is not marked as being a word, that string is rejected also, it being the starting

substring of a valid word, but not a word itself. The main advantage of tries is

seen to be the independence of lookup time for a word from size of dictionary. The

number of nodes which need to be traversed to reach a word is related only to the

length of the word.

This theoretical independence, however, is not fully realised when implemented.

The time taken to classily a string as not a word will increase, because it is more

likely there will be a path down which it can partially fit. In addition, as the

number of branches possible at each node increases so will the time taken to select

the correct one. A number of techniques have been proposed for compacting trie

structures. Comer [COM 81] provides a heuristic for minimising tries in which all

the leaves lie at the same level, clearly not the case in a dictionary system. Ramesh

et. al [RAM 89] and Al-Suwaiyel and Horowitz [ALS 84] both present methods

for the optimisation and compaction of trie structures.

Dunlavy [DUN 81] describes a spelling correction system which called SPROOF.

SPROOF makes use of a trie dictionary and heuristic search, in order to find words

within a set edit distance from the string under examination. Furthermore he

claims, using a mathematical model, that his algorithm exhibits 'good efficiency

even at dictionary sizes of 2̂ *̂ '. Muth and Tharp [MUT 77] have developed a

dictionary sj'stem which implements a trie using pointers. Each record, or node, in

the trie contains the letter which the node represents, pointers to its father node

(one level up), a brother node (same level) and a son node (one level down). To

find a word in the dictionary from the top node, one follows the son node, if the

C h a p t e r 3: Re la t ed W o r k 37

entry in this record is the letter which is next in the word then repeat, else move

on to the brother and try that record.

B Father Brother Son

To BIN, BIRD, etc. To BOW, BONE, ecL

G

B A G

T

B A T

To B A G G A G E , etc. To B A T T L E , ect.

Figure 3.4: A section of Muth and Tharp's trie.

Figure 3.4 shows how a portion of a trie looks under Muth and Tharp's rep­

resentation. In order to find the word 'bat', traverse down the son arc from the

'B ' node, this node represents the string 'ba', as this the starting string which is

being looked for we can traverse the son arc again. At this node the word 'bag' is

represented, this is not the third character being looked for, so the brother node

is traversed. The traversal of the brother node leads to the node which represents

'bat', the word is found.

Downton [DOW 82] made use of a trie to store palantype chords and the English

words which they represent. A palantype is a mechanical shorthand machine.

Downton developed a system to transcribe from the shorthand produced by a

palantype into English for a deaf person to read. The chords, in this system, are

treated as letters would be in a standard implementation, and the English words

stored at the nodes. He notes that this type of storage is "substantially superior"

to other search methods he had investigated.

C h a p t e r 3: Re la t ed W o r k 38

3.3.4 Dictionary size

There is some debate about the optimal size of the dictionary. There is a clear

trade-off between having a lexicon large enough to contain as many vahd words

as possible, to reduce rejection of valid words, and the conciseness of a lexicon to

reduce the risk of errors creeping in as they are passed off as other words. Peterson

[PET 86] argues the case for a small dictionary stating that with a large word

list almost one in six typing errors will be passed off as other words. Damerau

and Mays [DAM 89] claim that in their experimentation the increase in size of a

dictionary from 50 000 to 60 000 words reduced the overall rate of misclassifications

by between 50 and 150 times. This argument, however, is somewhat irrelevant in

terms of LOLITA where the number of words in the dictionary is as large as possible

in order to ensure maximum coverage of the English language.

3.3.5 Dictionary partitioning

As was described earlier, some of the work which is done by spelling correction

systems can be reduced by considering only sections of the dictionary which may

contain the word being looked for. In addition, the partitioning of the dictionary

into smaller sections will reduce the loading time for the dictionary, if it is only

partially used. A discussion of dictionary partitioning is given in Section 4.2.3. The

DEC-10 SPELL algorithm [PET SO] partitions the dictionary into 6,760 sections.

The dictionary is partitioned by the first two letters, and by length. Peterson

himself envisaged a dictionary split into three, as shown in Figure 3.5. He claims

that over half of the words used in English come from a vocabidary of 136 words.

Furthermore, he feels that by building a second dictionary of words used already in

the document being checked, the need to resort to searching the large, and therefore

slower, dictionary will be reduced.

C h a p t e r 3: Re la ted W o r k 39

SIZE

20 000

2000

200

Complete Dictionary
(probably stored on disk)

Document specific words

Common English Words

5%

50%

FREQUENCY OF USE OF TOKENS

Figure 3.5: Peterson's dictionary partitioning scheme.

3.4 Summary

In this chapter a number of methods for detecting and correcting spelling errors

have been introduced. The two approaches to the detection problem were seen

to be the use of n-grams and the use of a dictionary against which to check the

strings. The use of n-gra.ms was seen to be the least expensive in terms of storage

and of computations. However, the accuracy of the /i-gram approach is not as

good as that found when using dictionary access. Spelling correction is usually

done in the in isolation, i.e. no contextual information is used in order to assist the

search, or to disambiguate between alternatives. One major shortfall of systems

which do not use any contextual information is that real word errors are missed

altogether. Again the distinction between ri-gram based approaches and dictionary

based approaches was apparent. Some more novel solutions to the problem were

also discussed, such as the similarity key approach. A number of techniques for

storing dictionaries were also introduced. Clearly, the method of dictionary storage

which will be employed is largely dependent on the way in which it is to be used.

The issue of dictionary storage wa,s also seen to involve a number of choices, quite

C h a p t e r 3: Re la t ed W o r k 40

separate from the data structure itself, namely size and partitioning decisions. The
next chapter describes the development of the dictionary system for use in the
LOLITA NLP system, and Chapter 5 that of the spelling correction system.

Chapter 4

The L O L I T A Dictionary

The LOLITA system uses dictionaries for the three languages to store the root

forms of words and one or more pointers to the node(s) in the semantic net which it

represents. Each word may actually have a number of meanings, the word "point",

for example, has eighteen references to nodes in the semantic net.

In this chapter the development of a new storage structure for LOLITA's dic­

tionaries will be presented. The choice of a data structure is described and the

design and implementation of the dictionary is outlined. The use of profiling tools

is introduced as a method of 'tuning' the data-structure for maximum efficiency.

Finally, the testing carried out on the new dictionary is presented.

4.1 Selecting a data-structure

The choice of data structure used to store the dictionaries in any system is a trade­

off between a number of factors.

• Functionality - The use to which the dictionary is to be put is of fundamental

importance. If the dictionary is to be used, as Damerau envisioned [DAM 64].

C h a p t e r 4: T h e L O L I T A Dic t ionary 42

to check against an ordered list of strings for dictionary membership, a serial
word list may be sufficient. If, however, more sophisticated functionality is
needed, for example the spelling correction described in Chapter 5, it will be
necessarj' to adopt a more complex da,ta structure. There is also a need to
specify what the most critical tise of the dictionary' is. It may be possible to
create a structure which takes a long time to load and build but is very fast
to access. The places in which savings are to be made will greatly affect the
choice of structure to be used.

• Development Environment - Central to the design of any system must be the

limitations placed upon the developer by the programming language being

used. A system which is reliant on fast array access would not be suitable

if the language being used did not support arrays. Equally, the concept of

lazy data structures introduced in Section 2.2.1 provides the developer with

a powerful programming tool.

• Space - The discussion of space centres around the two types of storage

available to the modern computer user: disk and primary (RAM) storage.

The environment in which the dictionary is to operate may allow limited use

of primary memory, in which case it will be important to design a structure

which does not necessitate the loading of the entire dictionary from disk,

in order to look up one word. Alternatively the opposite may be true, the

system may be limited in secondary storage, therefore requiring an efficient

method of storing the dictionary on disk.

• Time - The response time of the dictionary is an important factor to be

considered. In a batch environment where response time is not a factor it

may be possible to use a less efficient access technique in order to minimise the

storage requirements as described above. If, alternatively, the dictionary is to

be used to process text in real-time then a fast access capability is essential.

It is necessary to look at the time tal<en for difl^rent operations, for example,

saving, accessing and reading, and strike a bala.nce between them.

C h a p t e r 4: T h e L O L I T A Dic t ionary 43

• Scale - The size of a dictionary will influence the choice of structure greatly.
A solution which works very well for a dictionary containing 1000 words may
be completely unworkable for a ICQ 000 word dictionary. In considering issues
of scale it is important to look not just at the current system, but also at
what future demands may be placed upon the dictionary.

The LOLITA dictionary structure introduced in this chapter has been developed

with these factors in mind. The initial motivation for changing the data-structure

used within LOLITA was the addition of spelling correction facilities as described

in the next chapter. The first attempt at spelling correction involved generating

a list of all words within one error of the initial string, and then testing each for

dictionary membership. This requires 52n + 24 lookups for a string of length n (see

Section 5.1). This would mean that for the average length string in the LOLITA

dictionary, 8 characters, a total of 440 dictionary accesses would have been required.

The dictionary structure being used by LOLITA was not able to carry out that

level of access in an acceptable time. It was felt that, in order to make a spelling

correction system viable, an improvement in dictionary access time was vital.

The first task in attempting to speed up dictionarj' access time was to in­

vestigate whether improvements to the current system could yield the necessary

improvements.

In the past, the LOLITA system has made use of a hash table representation

for efficient word lookup. The table Wcis originally implemented in Miranda as a

doubly linked list. The move from Miranda to Haskell would have enabled the use of

updateable arrays, but the system had not been altered to use these as the change

would have required a substantial rewriting of the system. The LOLITA hash

dictionary was implemented as a collection of hashchunks, which are small sections

of the hash table; LOLITA's hash dictionary consists of 200 of these hashchunks.

A hashchunk, part of which is shown below, is defined as a list of 100 hashlines:

C h a p t e r 4: T h e L O L I T A Dic t ionary 44

[("windmill", [257])]
[]

[("stupid",[258,23136])]

[("attempt",[259,21393]),("prey",[260,22681])]

[]

The hash table entry for each word contains the word itself and integer refer­

ences to the semantic network which represent its meanings. It is possible for two

words to share a hash address, in which case it is necessary to scan the hashline

for the word which we are seeking. Looking up a word involves computing its

hash address, accessing the correct hashchunk (scanning on average 50 hashlines)

and then, finally, a scan and comparison aloirg a hashline. This had proved to be

an acceptable cost when checking the vahdity of a word given to LOLITA. How­

ever, because of increased demands placed upon the dictionary, it was not felt that

the old system would be able to provide the level of functionality which could be

expected from an alternative structure.

Various alternative dictionary structures were examined, in order to assess their

suitabihty for the task. The spelling correction consideration made it desirable to

find a method whereby similar strings were stored in the same part of the structure.

This would save loading a lot of different sections of the dictionary into meinory in

order to look for possible spelling corrections.

• Binary tree - The use of a binary tree to store the dictionary was considered,

and rejected. The size of the binary tree needed to support a dictionary the

size of LOLITA makes it unworkable. The LOLITA dictionary will contain

approximately 45,000 words, in a binary system this would necessitate a

15 level deep tree. The average number of comparisons required to find a

word would be approximately ten, a figure too high for this to be a practical

solution. In addition to the problem of size there are problems of keeping

the tree balanced and the amount of time which would be spent re-balancing

the tree after the addition of, or more problematically the removal of. a word

C h a p t e r 4: T h e L O L I T A Dic t ionary 45

from the dictionarj".

• Trie - It was felt that the advantages provided by the trie structure were

sufficient to warrant the implementation of a new dictionary system based

upon this structure. A trie, as was described in Section 3.3 is an yV/-ary

tree. Access time to the structure is, in theory, constant for words of the

same length, regardless of the size of the dictionary. This was an important

consideration as the data stored in the dictionary is expanding as the system

develops. With work currently in progress which will increase the amount

of words stored in the dictionary, clearly a system was required which could

cope with this change. The second factor in favour of the use of tries is

the advantages their structure confers to spelling correction. The use of the

trie structure for spelling correction will be described, in depth, in the next

chapter. There are also memory advantages with this structure over others

considered. Starting strings shared by more than one word need only be

stored once, e.g. the string 'tele' in television, telephone, telemetry, etc.

4.2 Design

There are two areas of design to be considered: the trie structure itself, and the

nodes which lie at each branching point and at each leaf.

4.2.1 Tries and subtries

The main design decision to be made at this point is how to store the nodes to

which it is possible to branch from a given node. The number of nodes reachable

from a node will vary largely, the top node may contain well over thirty subtries

leading from it ('a' to 'z' plus other assorted characters which which a word may

start), a node near the bottom of the trie possibly one or two, and the leaf (end)

nodes will have, by definition, no accessible nodes below. The choice to be made

Chapter 4: The L O L I T A Dictionary 46

was between using a list or an array. The use of a list offered the advantage of a
saving in memory space, since only subtries which are non-empty need to be kept,
i f a character's subnode does not appear in the list i t is assumed to be an emptj '
trie. The use of a list also offers a reduced setup cost, and, in the implementation
of Haskell used for L O L I T A , faster access than for arrays if the number of elements
in the list is small enough. Arrays offer greater speed of access when the number of
subtries contained becomes large enough. However there are two problems: firstly,
an element must be initialised for every element of the array, regardless of whether
i t is empty or not; and secondly, the array would only hold the characters 'a"' to 'z',
anything outside this range would require the use of an 'exception list ' . The range
'a' to 'z' was chosen as, wi th the exception of a very few words, the characters used
in English fa l l in this range. The use of larger arrays to deal wi th these relatively
rare instances would have resulted in higher access times for all words. Aoe et. al.
note this problem and provide a solution using what they call double-arrays, the
reader is directed to [AOE 92] for further details.

Clearly the list vs. array debate is an importcint one, i t was felt that the use

of arrays was prohibitively expensive when a low number of elements was to be

stored. Similarly, i t was felt that the access time for a list wi th a large number

of elements was too high to be useful. A solution was designed which would take

advantage of the quick access time of arrays when the number of elements in the

list reached a certain threshold. A trie, therefore, can be one of three things:

• Empty Trie - The default value. The presence of an empty trie means that

there are no further words which can be reached by continuing along the

present path.

• List Trie - Once an element is inserted into an empty trie it becomes a list

trie. The list trie takes the form of a list of associations, for example, 'c'

= subnode. The list is made up of associations of this form because i t is

these associations which can be converted directly into an array.

• Array Trie - When an attempt is made to add a node to the list trie which

Chapter 4: The L O L I T A Dictionary 47

would take i t over a certain l imi t (to be introduced later), the node list is
converted into an array. Because of the exception list, the arraj ' trie actually
takes the form of a pair of list and array. The format of the list results in the
conversion being relatively straightforward, and any element which does not
have an entry in the list is given a null node.

4.2.2 Nodes

Once the trie structure had been decided on, the next stage was to decide what the

trie should store. The trie shown in Figure 3.3 is the simplest possible structure,

providing the minimal functionali ty required of a dictionary, a test for membership.

The requirements of the L O L I T A dictionary were slightly more complex. The

dictionary acts, as would a conventional paper dictionary, as more than simply a

list of words. The entry for each word contains one or more references to points in

the semantic net, the equivalent of a paper dictionary containing the meanings of

each word. Each node in the trie, therefore, must contain a list of references into

the semantic net (noderefs) for the word which lies at that point.

I t was also felt that the trie structure could be used to store prefixes and

suffixes, for use during morphological analysis. For example the word 'unloaded'

is made up of the root ' load' in combination wi th the prefix 'un' and the suffix

'ed'. These morphological features may be deeply nested, for example the word

'antidisestablishmentarianism', which has as its root the word 'establish'. For this

reason, every node in the trie also contains a morphological flag to state i f the

path followed to reach this point could be a prefix, suffix, both or neither. The

final element required at each node is a subtrie, possibly empty, which contains the

words which have the characters so far used to reach the node we are at as their

opening substring. Figure 4.1 shows how a node in the dictionary is represented.

Chapter 4: The L O L I T A Dictionary 48

Meanings MorphFlag

Figure 4.1: Node format.

4.2.3 Dictionary partitioning

The lazy properties of functional programming languages allow the dictionary to

be partitioned in order to save t ime loading from disk. There is a trade-off to be

made at this point between spli t t ing the dictionary into tiny fragments so that only

the bare min imum of data is loaded for each access, and having large sections in

order to cut down on disk access overheads. Each t ime a file is accessed on disk

there is the cost of getting the disk spinning, reading the FAT to find the address

on the disk of the file that is being accessed, moving the head to the address and

then the cost of reading the file itself. Clearly, i f 10Kb of data is read from a disk

i t wi l l be considerably faster to rea.d i t in one go tha,n ten disk accesses for 1Kb.

I t was felt that the best way to part i t ion the L O L I T A dictionai-y was by taking

subtries after two arcs have been traversed, i.e. all words with the first two charac­

ters in common are stored in a file together. The split was made at this level as i t

was felt to be the best compromise between number of words per file and number

of files. Spli t t ing the dictionary one level higher, after one character was not an

option because when the spelling corrector attempts substitutions on the first letter

of a word, the whole dictionary would need to be loaded. The partitioning after the

second letter produces 676 files, to part i t ion after 3 letters would produce 17576

files, which was felt to be prohibitively high. There are, of course, words which do

not fit into this parti t ioning scheme. Words of a length less than three, or which

contain characters outside the 'a' to 'z' range, need to be dealt wi th separately.

Chapter 4: The L O L I T A Dictionary 49

4.3 Implementation and Integration

Hazan el et al. [HAZ 93] claim that the use of functional languages in the devel­

opment of L O L I T A eases program comprehension a.nd, more importantly, makes

the integration of new code into the system less troublesome. This has proved to

be the case during the integration of the new dictionary. In particular the coding

of the dictionary as an abstract data type (A D T , see Section 2.2.1) simplified in­

tegration. The specification for the dictionary was provided by the interface of the

module, this states which functions are provided by the dictionary, and the signa­

ture of each. For example, the function addWordMeaning which adds a meaning

(Noderef) to a word:

addWordMeaning :: Word -> Noderef -> WordDict -> WordDict

States that the funct ion addWordMeaning takes as its input parameters values of the

type Word (the word to add a meaning to), Noderef (the meaning) and WordDict

(the dictionary), and returns a WordDict (the updated dictionary). Because the

WordDict is an A D T the functions which use i t have no knowledge of its imple­

mentation, as long as the signatures of the dictionary manipulating functions don't

change, the rest of the system wi l l notice no difference.

4.3.1 Implementation

In order to present the implementation details, each of the functions in the dic­

tionary's interface wi l l be introduced, along wi th descriptions of any important

featui-es in their implementation.

InitWordDict :: [Char] -> WordDict

The function i n i t W o r d D i c t initialises the dictionary for usage. Given the langua.ge

to use (e.g. English, Italian) the function creates the base dictionary ready for use.

Chapter 4: The L O L I T A Dictionary 50

i n i t W o r d D i c t only actually loads the 'oddities' which don't fit into the regular
file structure, the rest of the words are inserted in the form of subtries at the
appropriate nodes. Due to lazy evaluation the subtries are not loaded until they
are needed. This means that although the data structure is initiahsed and ready to
use, the loading costs of each subtrie is deferred. This is where the use of functional
languages has made this approach practicable, the cost of loading and building the
entire dictionary may be unacceptably high using a trie structure in the way which
L O L I T A does. However the use of lazy evaluation means that once the dictionary
has been set up the rest of the system can treat i t as i f i t is all there, Haskell
copes wi th the loading of individual parts when needed. I t is important also to
realise that once a section of the dictionary has been loaded i t is not discarded.
The difference between lazy evaluation, and the idea of partitioning the data into
completely separate 'mini-dictionaries', is that each portion only needs to be loaded
once.

saveWordDict :: WordDict -> [Char] -> [([Char], [Char])

The saving function is an example of the way in which the L O L I T A system is

implemented in order to hide abstractions. The function, given a dictionary and

a language, returns a list of filenames and contents. This allows the handling

of output, a non-trivial task in Haskell, to be passed to a dedicated part of the

program which handles all output f rom the system. When saving the dictionary i t

is important that the system only saves the portions of the dictionary which have

been changed in some way. I n order to facilitate this the actual structure of the

WordDict is a pair containing the trie structure and a list of which parts of the

dictionary have been changed. When the dictionary saving routine is invoked the

only sections of the tr ie which are saved are those whose index appears in this list.

I f this list is empty then there is no need to save anything, as the dictionary in

memory is the same as the one on disk. The dictionary files are named according

to the section of the trie which they represent, for example, all the words beginning

'ha' are stored in the file ' trieha'. The oddities described earher are stored in the

Chapter 4: The L O L I T A Dictionary 51

TRIEDC TRTEDB TRIEDA

Figure 4.2: A portion of the dictionary showing how the subtries are utilised,

file ' t r ieodd' .

The files for each language are stored in different directories in order to keep

them separate. The format of each file was designed in a way to make it readable

by a human so that any problems could be fixed by hand, for example four entries

f rom the file ' t r i ewi ' ,

("se".'N',[3615, 23428])

("sh",'N',[18169, 20694, 26206, 67159])

(" s t f u l " , ' N ' , [1 5 5 4])

("thdraw",'N',[9637, 26207])

The first two letters are omitted since, by definition, all words in the file share the

same opening characters. The second member is the morphological flag - in the

above example none of the entries represent a morphological feature. The final

entry is a list of the Noderef s for that word.

forceLoadWordDict :: WordDict -> Int

The property of laziness is not always desirable, there are times when i t is more

appropriate to load the entire dictionary in one go. In order to do this i t i t is

necessary to specify a function which forces the evaluation of the entire trie (by

Chapter 4: The L O L I T A Dictionary 52

definition i t must also return a value). This is achieved by counting the number of
leaf nodes in the trie. Because every path through the trie must terminate in a leaf
the function must visit every node in the trie, therefore forcing the loading of the
trie. This capability is especially important when response time is of vital concern,
but setting up t ime is not: the system can spend some time loading in all of the
dictionaries and the semantic net so that they are in primary memory when they
need to be accessed. I t is also often useful to force the loading of data-structures
when the efficiency of new modules is being investigated. The deferral of loading
costs may make other parts of the system look slow, when in fact they are spending
their t ime doing work which was initiated by other, earlier, parts of the system.

getDictWord :: WordDict -> Wordref -> Word

This funct ion is used to map f rom the Wordref stored in the semantic net, to

the word itself for output to the user. In the old system a Wordref contained

an address in the hash dictionary at which point the word was stored. Strictly

speaking, this was a violation of the A D T system: the semantic net depended

upon a particular representation being used for the dictionary. There is no way

to access a word in the trie dictionary, except w i t h the word itself, therefore the

abstract type WordDict was changed f rom a pair of integers to a string, the word

itself. This change necessitated the conversion of the semantic net, f rom containing

the old Wordref s, to containing the word itself. This was achieved by allowing both

representations to exist, side by side, and iterating through every node in the net

changing its entry. I t is important to realise that the addition of the words to the

semantic net in no way compromises its language independence.

As shown in Figure 4.3, the different language versions of each word are repre­

sented as a link f rom the English version.

The functions which deal wi th the Wordref type are preserved in order to main­

tain the functionali ty should the representation be changed again in the future. The

function getDictWord simply returns what i t is given, stripped of its constructor,

Chapter 4: The L O L I T A Dictionary 53

FRENCH ITALIAN

OTHER

CONTROLS

Figure 4.3: A simplified semantic net fragment showing language controls for the
word / .

e.g. Wref " f i s h " becomes " f i s h " .

deleteDictWord :: Word -> WordDict -> WordDict

The deletion of a word completely f rom the dictionary is achieved using this func­

t ion. The deletion of a specific meaning of a word requires use of the function

deleteWordMeaning described later. In order to delete a word from the dictio­

nary i t is necessary only to find the word in the dictionary and replace the list of

Noderefs at that point wi th an empty list, and to add the parti t ion to the list of

revised partitions. As the saving function is traversing the trie and building up a

file to save, i t wi l l not save the word as there are no Noderefs. The save method

has, therefore, eliminated the need to backtrack up the trie, removing the path to

that word if no other words exist down that path.

getin :: WordDict -> Word -> [Noderef]

The funct ion g e t i n is the most frequently used function for the dictionary. I t is

the equivalent of looking up a word in a paper dictionary: given a word and a

dictionary, getin returns a list of Noderefs (meanings). The list of Noderefs wi l l

be empty i f the woi-d is not in the dictionary. I t is the execution speed of this

funct ion which is central to the overall gain in performance which the conversion

to the new dictionary wi l l bring to L O L I T A . One of the main reasons for adopting

the trie based approach was that the speed of execution of the g e t i n function

Chapter 4: The L O L I T A Dictionary 54

would not be affected by increasing the size of the dictionary. In particular the
addition of spelling correction facilities places a heavy burden on this function
when used to rule out hypothesised spelling corrections. In the above discussion on
factors influencing dictionary storage, i t was stated that i t is necessary to find the
area of performance which i t is most desirable to optimise. The get i n operation
was seen to be the most critical of the dictionary operations, since the checking of
hypothesised corrections involves looking up each suggestion in the dictionary - the
job served by g e t i n . The procedure followed in optimising the g e t i n function's
performance is described in Section 4.4.

addWordMeaning :: Word -> Noderef -> WordDict -> WordDict

This function is used to add a new word to the dictionary, or to add an extra

meaning to a word which is already in the dictionary. The addition of a word to

the dictionary requires the traversal of the trie to the node which represents the

word, and then the insertion of the given Noderef. I f the word already exists the

new Noderef as appended to the list of Noderef s. I f there does not exist another

word w i t h the same starting string then i t wi l l be necessary to build the path

to the word. Finally the word's index must be added to the list of sections of

the dictionary which have been changed, so that when the dictionary is saved the

changes wi l l be preserved.

deleteWordMeaning :: Word -> Noderef-> WordDict -> WordDict

I t is sometimes necessary to remove from the dictionary not a word itself, but one

or more of the meanings (Noderef s) associated wi th i t . The function has the same

functionali ty as the deleteDictWord function when there is only one meaning for

a word in the dictionary, otherwise i t removes the given Noderef f rom the list of

Noderef s for that word.

Chapter 4: The LOLITA Dictionary 55

getWordref :: WordDict -> Word -> Wordref

This funct ion does the opposite of the function getDictWord described previously.

As wi th the getDictWord this function no longer actually uses the dictionary,

needing only to add the constructor to the word i t is given. For example " f i s h "

becomes Wref " f i s h " .

nullWordRef :: Wordref

This funct ion is simpl}' used as a null Wordref, and wi l l always return the value

Wref "".

addDictWord :: Word -> WordDict -> WordDict

This funct ion has been superseded by the function addWordMeanings and is only

present for backwards compatibility. I t is used to add a word without a meaning,

but since doing this is of no real value its use is discouraged.

4.3.2 Integration with L O L I T A

The integration wi th L O L I T A was relatively straightforward because of the use of

ADTs , as described earlier. The change in the software itself was accomplished

simply by replacing the old dictionary control module wi th the new one. Since the

interface was identical i t was not even necessary to compile the entire system, just

the module itself, and then l inking the modules. The main task to be performed was

to convert the four dictionaries and the semantic net to the new format. This was

achieved by using the old read functions to provide a list of words and meanings,

inserting these into an empty trie, and then using the save function to write the

new dictionaries to disk.

Chapter 4: The LOLITA Dictionary 56

4.4 Profiling the dictionary

Profil ing allows the developer to investigate the efficiency of code through the

gathering of statistics detailing how long the CPU has spent executing the code in

each funct ion. These times can then be used to compare the execution of different

implementations, to see which is most efficient. The use of lazy evaluation can

obscure the execution speeds of sections of the system which spend time performing

work deferred f rom earlier ones. Because the profiler allocates costs associated wi th

the execution of each function, the deferred costs wi l l be allocated to the original

funct ion, not the function which reciuires its evaluation. In addition the profiler can

give very accurate figures relating to the execution t ime of an individual function,

rather than using the U N I X time command which wi l l only give an overall time.

The profiler was used in order to 'tune' the data structure, and so minimise the

execution t ime of the function g e t i n . As has been described earlier, the trie

structure uses a threshold, r , at which the switch f rom using a list representation

to an array representation is made. In order to f ind the value of this threshold,

the function g e t i n was profiled. The function was isolated, so that all costs of

sub-functions of g e t i n would contribute to g e t i n ' s cost. The profiler was then

used to give a value for the CPU time to look up every word in the dictionary 10

times - a total of over 200,000 dict ionarj ' accesses.

The results, as shown in Figure 4.4, show the optimal value of r to be three.

This value may, however, change wi th more efficient implementations of lists (r

rises), or arrays (r falls), in future versions of the Haskell compiler. The shape of

the curve is as would be expected. LIsing aj i array for almost all of the nodes in the

trie introduces a very large cost as there wi l l be a lot of arrays at the bottom of the

trie w i th very few elements. The slower rise in execution speed, as less arrays than

is optimal are used, can be attr ibuted to fact that the inefficiencies of list access

worsen wi th size of list. The use of the profiling tool has been an important part

of development: as can be seen in Figure 4.4, the correct setting of the threshold

value is v i ta l . I f the setting is as l i t t le as two elements either side of the optimal i t

can have disastrous effects on the efficiency of the dictionary.

Chapter 4: The L O L I T A Dictionary 57

getin operation: Profiling Statistics
Eixecution

45.00

41.00

max lisl size
10.00 15.00 20.00

Figure 4.4: Results of getin operation profihng

The profil ing of the L O L I T A dictionaries is used as a case-study in [SAM 94 .

4.5 Testing

The first task in the testing of the dictionary was to run through the demonstra­

t ion of L O L I T A comparing the output of the new version to that of the old. The

demonstration of L O L I T A was used in order to test the performance of the dictio­

nary, because i t contains an example from all aspects of the system. The ini t ial

testing of the dictionary revealed a small error when adding a word whose first two

characters were not already present, but this bug was rectified and the dictionary

has been in use by the twenty L O L I T A developers for over two months wi th no

problems.

The overall performance of the dictionary was tested by iterating the demon­

stration a number of times and comparing the performance of the new dictionary

Chapter 4: The L O L I T A Dictionary 58

wi th that of the old. The new structure was found to have a slightly higher start-up
time, however, the faster execution t ime once the system was initialised meant that
this difference was negated during practical use.

Since the implementation has been completed, the size of the dictionary has

been increased. The increase in dict ionarj ' size has resulted in an inevitable increase

in the bui ld and save times, as each subtrie to be loaded contained more words.

The access t ime to the dictionary, once loaded, has not been greatly affected by

the increase. Unfortunately, due to the f lu id nature of L O L I T A , i t is not possible

to present comparative figures for old/new access times, since the rest of L O L I T A

is continually changing, affecting overall performance.

4.6 Summary

This chapter has described the develoiDment of the trie based dictionary for the

L O L I T A system. Tries were chosen as they offered the most assistance to the

spelling correction system, and because the access t ime would not be affected by

the forthcoming increase in dictionary size. The use of the functional language

Haskell has influenced development in two major ways. Firstly, the use of lazy

evaluation has assisted dictionary part i t ion by allowing the deferral of load costs

unt i l use. Secondly, the use of ADTs , coupled with the concept of purity, has

helped make the introduction of the new system cause minimum disruption to the

rest of the system.

Profi l ing was introduced as a helpful tool to gain an insight into the execution

characteristics of the code, in this case to find the optimal setting for the list/array

changeover threshold. Finally, the dictionary was tested and fomid to produce

favourable results in comparison to the hash dictionary. The real benefit of the new

dictionary wi l l be shown in the next chapter, as the spelling correction algorithms

are presented.

Chapter 5

The Spelling Correction System

In this chapter the spelling correction strategy is presented. Firstly, the rationale

behind choosing this approach over other possible solutions is described. The four

error forms are discussed in greater depth, and then the algorithm is presented.

Finally, implementation and testing of the spelling correction strategy is described.

5.1 The choice of algorithms

Chapter 3 reviewed the related work in the field of spelling correction. The methods

described in Section 3.2 were examined to assess their suitability for the L O L I T A

system, and the following observations made:

• A^-gram Approach - The first choice to make was whether to use an 'At-gram

based system or a dictionary based system. The L O L I T A system needs a

dictionary in order to store the references to nodes in the semantic network, so

the use of a dictionary to detect spelling errors was inevitable; having passed

a word using n-gram methods the word would st i l l have had to be looked up

in the dictionary to find the semantic net reference. The possibility of using

n-grams in order to aid the spelling correction was investigated. Harmon

Chapter 5: The Spelling Correction System 60

H A R 72] claimed a 42% bigrarn redundancy, which lead to a 70% chance
of a random substitution producing at least one new illegal bigram. When
the L O L I T A dictionary was tested, to determine if this figure would apply
to the data set which was being used, a redundancy figure of only 19% was
achieved. This figure makes the use of bigrams unrealistic wi th this data-set.

• Edit Distance Approach - The approach of checking the dictionary in a se­

rial manner and finding the words which have the lowest edit distance was

rejected. The t ime spent looking up every word in the dictionary and hence

computing its distance was considered to be too inefficient. The reverse-

min imum edit distance technique was examined. The system generated all

of the words possible wi th in one error of the input string. In considering

the efficiency of this approach, i t is clear that, in the worst case scenario the

number of lookups required:

(• — ^insertion 4" ^deletion 4" ^substitution 4" ^transposition

= n + 25(n 4- 1) 4- 2bn + n - l

= b2n 4- 24.

This would mean that for the average length string in the L O L I T A dictionary,

8 characters, a total of 440 dictionary accesses would be required. The system

was found to be prohibitively slow when implemented. The general principle

is preserved in the algorithms described in this chapter, however the use of

the trie dictionary structure can be used to considerably reduce the amount

of work required (see Section 5.5).

Rule-Based Approach - The problem wi th the use of a rule-based approach

in the L O L I T A system is that i t is language specific. L O L I T A is designed to

be as flexible as possible. The use of rules specific to one language should be

kept to a minimum. Clearly the parser needs to be language specific, however

Chapter 5: The Spelling Correction System 61

i t is not acceptable that every time a new language is added research must
be undertaken to discover spelling patterns in that language.

• Similarity Key Approach - The use of a system such as Pollock and Zamora's

SPEEDCOP [POL 84] was considered, but rejected on practical grounds.

Such an approach relies on the retrieval of similar words through use of the

keys, then computing the edit distance between these words and the target.

L O L I T A currently makes use of the semantic network data structiue and up

to three dictionaries, depending on how many languages are being used. This

places a strain on resources, both disk and internal R A M . The addition of an

extra dictionary for each language was seen to be an unacceptable overhead.

However, data collected in the SPEEDCOP research was used to help order

the search described in this chapter.

• Probcibilistic Approach - Some aspects of the probabilistic approach have

been incorporated into the spelling correction system developed for L O L I T A .

The probabilistic approach uses the probabilities of certain types of errors oc-

curing in order to t ry to correct them. The system which L O L I T A uses malves

use of the probabilities of the errors in order to give the search an ordering,

so that the list of corrections can be generated in order of likelihood. .As wil l

be seen, these probabilities are based upon a number of factors: freciuencies

of letters, phonetics, keyboai'd layout, etc.

The overall strategy that is used in L O L I T A could be described as being a

reverse min imum edit distance technic[ue, utilising probabilities in order to order

the search, and a trie dictionary to cut the search space by exploiting the structure

and so minimise 'garden path' searching. In a wider sense, the way in which

L O L I T A uses the list of spelling candidcites and their associated penalties (see

Section 5.4) should lead to a context sensitive choice of correction.

The dictionary storage method that has been designed for the L O L I T A system

has been discussed in detail in Chapter 4. The diagrams presented in this chapter,

which pertain to dictionary search strategies, use a sirnphfied version of the trie

Chapter 5: The Spelling Correction System 62

structure to aid comprehension. Each node in the dictionary contains a symbol,
a ' y represents that the string to reach this node is a vahd word (equivalent to
the list of Noderefs at that node containing entries) and a 'x' to represent that
no word is found. I t is assumed that the Ust format is used throughout, i.e. i f a
letter is unreachable, given the preceeding letters, no arc wi l l be shown.

5.2 The four errors

In this section the four basic error types are discussed in greater detail and the

strategy for at tempting to correct each of these errors in isolation is presented. In

Section 5.3 the overall spelling correction algorithm is described.

5.2.1 Insertion Errors

The removal of one character f rom the input string requires n lookups in the dic­

tionary for a string of n characters. This is not a significant amount of dictionary

accesses, when compared to the omission or substitution error forms.

5.2.2 Omission Errors

As part of the SPEEDCOP research, which was summarised earlier in Section 3.2.1,

Pollock and Zamora [POL 84] discovered that consonants were missed f rom words

i n the following frequency order:

R S T N L C H D P G M F B Y W V Z X Q K J

i.e. R was omit ted more often than any other letter, J the least. Using this data

i t is possible to order the search so that the most often omitted letter is inserted

first, the least common last. The vowels wi l l be tried before any consonants are

tried, to deal wi th the phenomena of vowel pairs, in which usually only one vowel

is sounded, (for example the pair ou in double).

Chapter 5: The Spelling Correction System 63

5.2.3 Substitution Errors

Substitution errors involve the replacement of the correct letter wi th another. The

reasons why these mistakes are made in the first place can be used to draw up a

list of letters in order of hkelihood of substitution for any given letter. There are

two main causes of substitution errors, typing errors and phonetic confusion.

Typing Errors

As has been stated earlier, the assumption is being made that the primary input

method is the qwerty keyboard as shown in Figure 1.2. The way in which people

type has a pronounced effect on the pattern of errors which are found to occur in

the input strings. I t is these patterns which are observed to occur which influence

the order in which the spelling corrector wi l l attempt to recreate the intended input

string. Two distinct typing styles are considered to be of interest.

• One handed typists - This is generally seen to be the behaviour of users who

are not experienced typists. They use one hand, or often one hnger, to cover

the entire keyboard.

• Two handed (touch) typists - This is the expert method of typing. Each

finger is assigned a column of keys to cover, as shown in Figure 5.1. The

typist wi l l then, ideally, use only the finger which controls thcit column for

any letter in the column.

The way i n which a typist uses their keyboard is of particular interest when

looking at the problem of substitution errors. The spelling correction algorithm

needs to t ry out other letters in a position currently occupied by a letter. The

ordering of the list of letters to t ry at that position can be improved by using the

information on the likelihood of other keys being hit by mistake.

Chapter 5: The Spelling Correction System 64

S S\® [u]\[i]\[o]\[E
D] \ [F] (G] \ [H] (7] \ [K] \ (T

L - L L-R L-M L-I

V B \ N M

R-I R-R R-M R-L

Figure 5.1: Touch typists key control

Take, for example, the letter d: this key is in the column controlled by the

left-middle finger, so i t would be expected that a larger than average number of

substitutions featuring the letter d would be made when intending one of the other

letters in this column, i.e. e and c. A typist using the one-handed approach would

be expected to have hit a surrounding key by mistake. The keys which feature d

i n their group of neighbouring keys are e, r. / , c, x and s. These keys are thought

to be likely candidates as the intended letter.

Phonetic confusion

The way in which a word is sounded offers a great help to spelling, however i t

can also be deceptive. As was demonstrated in Section 1.2.1 there is not a direct

mapping between phonemes (sounds) and letters, the former outnumbering the

latter 3:1. This a diff icult problem faced by modern attempts at speech recognition

systems. The mappings do provide the designer of spelling correction algorithms

wi th a valuable heiu'istic wi th which to order the search strategy which is invoked.

The phonetics should pick up some sound/letter ambiguity where the typist has

spelt by ear, for instance spelling cake as kake.

In order to classify the likelihood of confusion between letters, due to phonetic

similarity, the letters have been categorised into six groupings, approximately based

on phonetic classes.

Chapter 5: The Spelling Correction System 65

• Plosive - p, b, t , d, k, c, g, q, x, j

• Strong fricative - s, z

• Weak fricative - f, v, h

• Liquid/Gl ide - 1, r, w, y

• Nasal - n, m

• V'owel - a, e, i , o, u

Substitution Candidates

Using the three types of substitution errors defined above i t is possible to assign

three groups of potential substitution letters for each of the 26 letters, for example

wi th the letter, d:

1-finger = [x, s, e, r, f, c

10-finger = [e, c

phonetic = [p, b, t, k, c, g, q, x,

I t is then a simple task to combine these three sets and construct an ordering

wi th which to conduct the search, for example the letter d shown above becomes:

1-finger U 10-finger U phonetic = [c

1-finger U 10-finger = [e

1-finger U phonetic = [x

10-finger U phonetic = [

1-finger = [s, r, f

10-finger = [

phonetic = [t, p, g, b, k, q, j

others = [a, i , o, n, h, 1, u, m, y, w, v, z

Chapter 5: The Spelling Correction System 66

I f there is a group containing more then one letter the list is ordered according
to the letters' relative frequency in Enghsh texts, i.e.,
E T A I O N S R H D L U C M F Y W P G B V K Q J X Z

These lists of letters allow the search to be better ordered by looking for the

most likely substitutions first. Ordering the search in this way allows the use of

the list of spelling corrections in a lazy manner, as wi l l be shown in Section 5.5.

5.2.4 Transposition

The testing for transposition errors is a relatively cheap exercise, involving n — 1

possible strings for an n character string. One heuristic which may be of use is

the relationship between letters and the hand which controls them. As can be seen

in Figure 5.1, half of the keys are controlled by one hand, half by the other, i f

two letters which are together in the string are on opposite halves of the keyboard

then they would be more likely to be transposed than letters f rom the same group.

However given that the cost of examining the n — 1 possible strings is low, in

comparison to the cost of omission and substitution error correction, the use of

heuristics is felt to be unnecessary.

5.3 The overall algorithm

The algorithms described above are used to produce ordered lists of candidates. I t

is now necessary to combine these algorithms into one overall spelling correction

algorithm. The overall algorithm must maintain the ordering produced by the four

sub-algorithms, by merging their fists in a sensible manner. Given an input string

the algorithms must be applied in order of likelihood, i.e., the most common of the

single errors must be tried first. Pollock and Zamora carried out experiments to

find the older of precedence of the simple error types [POL 83]. Their survey of

50,000 errant words, found the following ordering of errors:

Chapter 5: The Spelling Correction System 67

1. Transposition and Omission

2. Insertion

3. Substitution

The ordering of these errors is not absolute. For example, the most common

insertion error would be expected to occur more often than the least common

omission error. The overall search is designed to preserve the general ordering as

given above, while taking these other factors into consideration. This is achieved

by spli t t ing the two errors which produce the large lists of hypothesised strings into

bands, in order to allow the 'merging' of the search. The omission errors are split

into five groups, the first group containing the five most often omitted letters, and

so on to the final group containing the six least. The substitution errors are spHt

in a similar way, into four groups of six. The overall algorithm takes the following

fo rm:

t e s t f o r T r a n s p o s i t i o n s

t e s t f o r Band One Omissions

t e s t f o r Bcind Two Omissions

t e s t f o r I n s e r t i o n s

t e s t f o r Group One S u b s t i t u t i o n s

t e s t f o r Band Three Omissions

t e s t f o r Group Two S u b s t i t u t i o n s

t e s t f o r Band Four Omissions

t e s t f o r Group Three S u b s t i t u t i o n s

t e s t f o r Band F i v e Omissions

t e s t f o r Group Four S u b s t i t u t i o n s

The spelling correction system needs to deal wi th more than just the simple

error forms. Currently two errors per word are allowed in the system, however

this figure can be easily changed i f required. The strategy used is to apply the

single error algorithm to a string which has already had a single error correction

Chapter 5: The Spelling Correction System 68

applied to i t . This w i l l , inevitably, produce a much larger fist of possible corrections
than would single error correction. The propertj ' of laziness, described in Section
2.2.1, means, however, that these double corrections can be included in our list
of theorised errors, but the work to evaluate them need only be done if they are
required by the parser.

5.4 The Penalty System

L O L I T A utilises a system of penalties which are accumulated by a sentence as i t

is parsed, a sentence which parses perfectly wi l l accumulate no penalties. These

penalty scores can then be used in order to choose between alternate parses of a

sentence. The spelling correction system contributes to this scheme by allocating

each word, which i t returns as a possible correction, a score based on how common

the error which had to be corrected to reach the word is. A word which was

corrected by the transposition algorithm, for example, would be given a small

penalty, a word which required a double error correction would be given a large

penalty. Penalties are given in the following groupings, the actual values of the

penalty are given in parentheses:

• No penalty (0) - The word itself.

• T iny penalty (1) - Transpositions, band one and two omissions.

• Small penalty (2) - Insertions, group one substitutions and band three omis­

sions.

• Medium penalty (5) - Group two substitutions and band four omissions.

• Normal penalty (10) - Group three and four substitutions and band five

omissions.

• Big penalty (15) - Mul t ip le errors.

Chapter 5: The Spelling Correction System 69

These values have been set by hand, however over t ime i t may be necessary to
revise the groupings in order to maximise the effectiveness of the penalty system.
The automatic optimisation of the dialogue section of L O L I T A was achieved using
adaptive algorithms [NET 94], and this approach may well be suitable in this area
of the system also.

5.5 Implementation

The spelling correction system makes use of the trie structure described in Chapter

4. The dictionary itself is coded as an Abstract Data Type (A D T) (see Section

2.2.1) and so i t is necessary that the spelling correction system be implemented in

the same module in order that the internal structure of the trie may be exploited.

This section documents the implementation of the four simple errors' correction

algorithms, and then the overall algorithm. Finally, a discussion of the operation

of the spelling correction system in conjunction wi th the rest of L O L I T A is given.

Chapter 5: The Spelling Correction System 70

5.5.1 Insertion Correction

An example of the search followed by the insertion error correction algorithm is

given in Figure 5.2.

^ = word
X = no word

Figure 5.2: Search for insertion errors f rom string 'dolg'.

The search proceeds down the path which represents the input string. At each

node on this path the search branches down the path which uses the next but one

letter, therefore ignoring the potentially extra character. The search then continues

unt i l either all of the letters are consumed, at which point a check is made to see if

a word has been found, or there is no further path a,vailable. When either a word

is found, or the end of a path is reached, the search returns to the point at which

the branch was made and continues down the next unexplored path.

In the example shown in Figure 5.2, the string 'dolg' is to be corrected. The

search first follows the path for the string 'olg' , when the path ends because there

is no branch for 'g ' following 'o l ' the search returns to the top node and looks down

the path 'olg' f r o m ' d ' , again the search fails, there is no path for 'g ' to follow ' d l ' .

The search does, however, find a word on its next attempt, branching at the node

Chapter 5: The Spelling Correction System 71

which represents words beginning 'do' the search branches down the 'g ' aix, using
the last of its letters. Since the node represents a valid word, 'dog', the word is
added to the list of spelling candidates and the search resumes. The search ends
at the node for 'dol ' , having consumed all letters, but not at a valid word. The
insertion correction is now complete and the search moves on to looking for other
types of errors.

The example shows one way in which the trie structure aids the search. When

the search down the path ' d l ' fails the algorithm only backtracks as far as the

last branch in order to resume searching. This way the number of arcs traversed

between nodes is considerably reduced. Were the candidates generated, and then

tested, ten arcs would have been traversed instead of seven (t h e ' d ' arc three times

and the 'o' arc twice). W i t h larger words the saving is considerable.

Chapter 5: The Spelling Correction System 72

5.5.2 Omission Correction

Omission errors are corrected through the insertion of a series of letters in-between

the characters in the string. The letters to be inserted come f rom the list introduced

in Section 5.2.2. An example of the way in which this algorithm operates on the

trie is shown in Figure 5.3.

= word
X = no word

0 © © ©

0 0 0 © 0 © ® 0 ©

0 0 0 0

©

Figure 5.3: Search for group one omission errors f rom string 'dd'

The figiue shows the way in which the search proceeds through the trie. A t

the top node the search proceeds down the first of the candidate strings paths,

eventually finding the word 'add' which is added the list of hypothesised spelling

corrections. The search then returns to the last node wi th unexplored paths, in this

case the top node, and tries the next unexplored path. After completing the search

for the omission of the first letter of the word, the search progresses attempting to

insert a character after the first letter. In this case the 'a' ('dad'), the ' i ' ('did') and

the 'u ' ('dud') all produce valid words which are appended to the list of candidates.

The search now looks for letters added to the end of the word. As there are no

paths f rom 'dd ' the search wil l end here and pass control back to the overall search

controller.

Chapter 5: The Spelling Correction System 73

5.5.3 Transposition Correction

The correction of transposition errors is computationally the cheapest of all the

algorithms. The search involves following the path for the given string and at each

node trying the next but one letter in the string ahead of the next character as

shown in Figure 5.4.

^ = word
X = no word

Figure 5.4: Search for transposition errors f rom string 'bule'

A four character string, as shown in the diagram, only requires the search to

look down three different paths. In the example shown, the search first looks for the

transposition of the first two characters, resulting in the string 'uble'. this path fails

as there is no subtrie for an T to follow 'ub' . Next the second pair of characters

are swapped, resulting in the word 'blue' which would be added to the list of

corrections. The algorithm then returns to the point at which the last deviation

f rom the string itself was made and resumes the search which a.gain fails, as there

is no words starting 'bue'. The transposition error correction is now complete.

Chapter 5: The Spelling Correction System 74

5.5.4 Substitution Correction

^ = word
X = no word

Figure 5.5: Search for band one substitution errors from string 'vry ' .

As was discussed in Section 5.2.3 the substitution algorithm makes use of an ordered

fist of candidate letters, for each letter found in the string. The algorithm to look

for a substitution error is demonstrated in Figure 5.5. The string 'v ry ' is subjected

to the correction of band one substitution errors. The letter 'v ' has as its band

one substitution fist the letters ' fgbcrh' . These letters are tried in turn in place of

the letter 'v ' . In the first attempt, the letter ' f produces the word ' f r y ' , this word

is added to the list of possible corrections, and the next substitution tried. The

letters 'g ' and 'b ' both fai l to produce a valid word. The word 'cry' is formed and

added to the list, the final two letters fail to get past the one letter stage in their

attempts to bui ld a word. The search then continues, this time accepting the letter

'v ' as the words first character and trying substitutions on the second letter in the

word, ' r ' . The only one of the substitutions for ' r ' that can follow 'v ' as the second

Chapter 5: The Spelling Correction System 75

letter of a word is 'e' but this can not be followed by the letter 'y ' . The final letter

of the word is not considered for substitution as no word could start 'vr ' in order

to get to the point in the trie where such words would be located.

This search tree is a very good example of the vva}' in which the trie structure is

of considerable aid to cutt ing the search space. A standard implementation of the

reverse min imum edit distance correction technique would require the lookup of

eighteen words (allowing only six substitutions per character). Si-X of the lookups

would have been for words which started wi th the impossible (starting) string 'vr ' .

I t is this type of wasted lookup which the trie implementation avoids.

5.5.5 Overall Algorithm

The four algorithms desciibed above are combined into the unified search strategy

described in Section 5.3. The function c o r r e c t i o n s produces a list of pairs of

words and penalties, for example (" f i s h " , sraallpen). I t is important, in order

to save the parser doing the same work more than once, that the words produced

in this list are unique. The problem could arise in the following way: consider

the error string 'spelU', the word would be corrected to the same word, 'spell' by

correcting an insertion error in the 4th, 5th and 6th positions. This problem is

especially important in the correction of a double error, in a real-word. Every

string wi th one correction attempt, which is then passed for its second, can have

the first correction corrected back to produce the original word. This problem is

overcome by filtering the list so that i t only produces one pair containing that word.

The spelling correction wil l produce, in a lazy manner, a list of the form shown in

Figure 5.6.

FISH DISH WISH FIST FAST LIST

No Errors

One Error
Two Errors

Figure 5.6: A Ust of corrections for the word 'fish'.

Chapter 5: The Spelling Correction System 76

The list contains the word itself, i f i t is valid, the single error corrections, and
finally the mult iple error corrections. The word itself is included at the head of the
list as i t is intended that, rather than calling the spelling correction system only if
an error is detected, each word in the sentence being parsed wi l l consist of a list
of possible words. I t is the lazy method of evaluation, described in Section 2.2.1,
which makes this approach practical.

The construction of the list of mult iple errors is done using the function 'rest-

word' . The function is responsible for retrieving the rest of a word once an error

has been corrected. The function restword, however, is designed to find the rest

of the word only i f the specified number of corrections has been performed on the

word, otherwise the rest of the word is passed to the spelling corrector in order to

introduce a further correction.

5.6 Integration with L O L I T A

There are a nimiber of issues to be addressed in the integration of the spelling

correction system wi th L O L I T A . These issues involve both the way in which the

system interacts w i th the rest of L O L I T A as i t currently stands, as well as the vva.y

in which the increased functionality provided by the spelling corrector impacts

upon future developments of certain sections of L O L I T A .

• The parser - Currently the parser used in L O L I T A is not designed to utilise

the penalties generated by the spelling correction system. For this reason the

parser does not treat the stream of spelling correction candidates in a lazy

manner. This means that the parser w i l l attempt to parse sentences contain­

ing each of the spelling candidates in turn , before sorting them into order

based upon the suitability of their parsing costs. This can be demonstrated

using the word ' l iek' . The list of (single) spelling error candidates, in order

of generation, is: like, lie, lick, leek, l ink, lieu. However the sentences which

the parser generates, in order of its preference, are:

Chapter 5: The Spelling Correction System 77

I LICK [M i s s p e l t] ROBERTO

I LINK [M i s s p e l t] ROBERTO

I L I E K [New] ROBERTO

I L I K E [M i s s p e l t] ROBERTO

The new parser, currently under development, is being designed to incorpo­

rate the new functionali ty which the spelling correction system provides, and

therefore wi l l help solve these problems. As a temporary measure to l imi t

the amount of parsing done by the system, the spelling correction system wil l

only generate mult iple error candidates if no single error candidates can be

found.

t Semantic and Pragmatic selection - The semantic and pragmatic analysis

modules of L O L I T A are the next stage at which disambiguation takes place.

Any parse trees of sufficient quality wi l l be ordered by the pragmatics accord­

ing to which makes the most sense in terms of LOLITA's world knowledge.

An ongoing research project is currently investigating the concept of seman­

tic distance. I t is hoped that in future the spelling correction system wil l be

provided wi th a cut down dictionary containing only words which are within

a certain distance of the anticipated meaning of the word at that point in the

sentence.

• Real Word Errors - A major class of errors which are impossible to detect

or correct in isolation are real word errors. The two ways which these errors

occur are the transformation of the intended word into another valid word

(e.g. 'dish' for 'fish') and the use of a word in the wrong context (e.g. ' to ' ,

' too' and ' two ') . Now that each word in a sentence can be thought of as a

list of pos.sible words at that point in the sentence, the parser or semantic

analysis components of L O L I T A are able to try the next word in the list

at the point at which the sentence fails. There is an important issue to be

addressed by the system, however, when dealing wi th errors of this type.

Given the sentence ' I pray to my dog', is the intended sentence ' I pray to my

god' (in which case making the correction at the point of failure is correct)?

Chapter 5: The Spelling Correction System 78

Or is it ' I play to my dog' (in which case the error was actually earlier in the
sentence)? Clearly the use of even wider context is required in this case. For
example, if the preceeding text read ' I like to practice the piano, although not
to an audience' the latter interpretation of the sentence would be prefered.

• Word-breaks - The CLARE system described in Section 3.2.2 used a lattice

data structure for input to deal with word-breaks. The input stream of char­

acters in LOLITA is treated as a list of words, separated by either punctuation

marks or spaces. The algorithms given above could be applied to a lattice-

based system. Adding this functionality would simply be a case of combining

the spelling correction and lattice structure. This was experimented with,

briefly, and found to produce a very large number of possibilities. It was

felt that, due to the current structuring of the LOLITA system, the addition

of a lattice based approach was not worth the additional computations and

recoding it would require. Clearly, inclusion of the word-break problem is

one which merits further research.

Inevitably, the addition of new functionality in one area of the system will

result in a number of additional facilities which can be exploited by the rest of

the system. The features described above, when implemented, will increase the

overall functionality of LOLITA over and above the benefits which were intended

originally, i.e. to provide a fast solution to the spelling correction problem.

5.7 Testing

There are two issues involved in testing the spelling correction system. Firstly

does the code exhibit the functionality which is expected. Secondly, does the

functionality which the system provides meet the requirements of the environment

in which it is to be used. The testing of the code itself was a relatively trivial task,

and involved simply checking that when given a string to correct the list of words

returned contains all of the words which should be present and no more. In order

Chapter 5: The Spelling Correction System 79

1 2 3 4 5+ none
LOLITA 93 2 2 0 2 1

Word 83 7 4 2 1 3
ispell 76 9 4 1 5 5

Table 5.1: position of word in list

to evaluate the performance of the spelling correction system, beyond the "does

the code do what is should?" stage it is first necessary to establish the criteria by

which it will be judged.

The system produces a list of corrections, therefore the main questions to be

considered are:

1. Does the list of corrections produced contain the target word?

2. If so, where in the list does it occur?

In order to test the system a corpus of errors was obtained, which contained

spelling errors printed in "The Times" newspaper. This data-set was seen as ideal

for use in this task as newspaper articles are used by the contents scanning tool.

From this corpus 100 words were selected, according to numbers provided by a

random number generator. Ea.ch of these 100 words was given to the spelling

correction system, and a note was made of at which position within the list the

intended word appeared; a full list of the words, and the corrections produced,

are given in the appendix. Tliis exercise was then repeated using the UNIX ispell

system and the spell-check system used by a popular word-processor, iMicrosoft

Word for Windows. The results are given in Table 5.1.

These results were plotted onto a cumulative frequency graph, so that the num­

ber of words classified by each position can be compared. This graph, as seen in

Figure 5.7, shows that the spelling correction system used by LOLITA compares

favourably with the commercial systems tested as benchmarks. The main differ­

ence is the number of times that LOLITA's system finds the correct word first

time. In a more general situation as long as the word is pi'esented to the user as

Chapter 5: The Spelling Correction System 80

a possibility the ordering is not important. However, the ordering of the seaixh

is more important in the context of LOLITA, as the amount of extra work which

can be saved by getting it right first time is so great. These results show how the

use of the ordering heuristics (see Section 5.2) has enabled the system to achieve

impressive 'first try' statistics.

percenlage

100.00 •
95.00 •

90.00 -
85.00 •

70.00 •
65.00 -

35.00 •
30.00 -

15.00 -

5.00 -
0,00 •

Cumulative Freq.

LOLITA
WOTd"""
ispeil'

0.00 3.00
position

FigLue 5.7: Cumulative percentages for list position

5.8 Summary

In this chapter the spelling correction system has been introduced. The system

makes extensive use of the trie dictionary described in the previous chapter in order

to aid the search for possible corrections. An adaptation of the '"reverse minimum

edit distance' strategy is used to hypothesise corrections, using probabilities to

order the search. For each of the four error types the search is ordered based

on the likelihood of each of the different types of error. The overall search splits

the two largest searches, (Omissions and Substitutions) into sections in order to

Chapter 5: The Spelling Correction System 81

allow the overall search to be interleaved so that the correction list is produced
in order of likelihood. The way in which the trie structure speeds up the search
was shown, and this was the main factor behind the introduction of tries for the
dictionary. The effects of lazy evaluation on the production of the list of spelling
corrections was discussed and seen to be a most desirable feature. The integration
with LOLITA raised a number of issues in relation to the functionality of other
parts of LOLITA which can be addressed by future developments of the system.
Finally, in testing the system a set of criteria were given in order to evaluate the
usefulness of the spelling correction system, and the performance seen to be at a
level which compares favourably with existing commercial systems.

Chapter 6

Conclusions

Chapter 1 introduced the problem addressed by this work and provided an overview

of the issues involved in spelling correction and dictionary organisation. The

L0LIT.4 Natural Language Processing system can be used to read articles, tran­

scribed from newspapers and anal3'se the content of the article, filling a template

with the relevant details. In order to make the system more robust the facility to

correct any misspellings in the text, without resorting to human intervention, was

required.

Chapter 2 described the context within which the system was to be developed

and used, and this was shown to be vei y influential upon the design of the system.

The programming features which are provided by the functional programming lan­

guage Haskell were of particular importance. The use of lazy evaluation, in which

an expression is only evaluated if its result is actually recjuired, was shown to be an

extremely useful feature when seamless dictionary partitioning and hypothesised

correction generation were considered. The use of Abstract Data Types (ADTs),

coupled with the property of purity possessed by Haskell, made the integration of

the new data-structures and algorithms into the existing system a relatively easy

task.

Various diflerent strategies for both spelling correction and dictionary organi-

Chapter 6: Conclusions 83

sation were compared and contrasted in Chapter 3.

The development of a dictionary structure based upon the use of an M-ary tree

(trie) system was presented in Chapter 4. The use of tries was seen to be influenced

by two main factors, the independence of dictionary access time from dictionary

size, and the help which the structure would offer to the spelling correction system.

The implementation in Haskell of the dictionary was seen to make use of either

arrays of lists at each node, depending upon the number of nodes, in order to

minimise the access time for a word. A number of implementation features were

described, in particular the way in which lazy evaluation assisted in the partitioning

and loading of the dictionary. The technique of profiling was introduced as a way

of 'tuning' the data-structure for optima] performance. The dictionary has proved

to be flexible enough to cope with the new data set, now used by LOLITA. which

contains almost twice as many words as the data-set in use during development.

Finally, Chapter 5 introduced the spelling correction algorithms which make

use of the dictionary described above. The four simple error fornas (insertion,

omission, transposition and substitution) were examined in turn and strategies

developed to generate corrections for each. These strategies use various heuristics

in an attempt to generate the fist of corrections in order of likelihood. Furthermore,

the two most expensive searches, those for omissions and substitutions, were split

into smaller sub-searches, so that the overall algorithm can generate them in order

too. The dictionary design was seen to greatly assist the search by limiting the

amount of work which needed repeating, and by preventing 'garden path' searching.

A number of issues were raised in the discussion of integration with LOLITA,

primarily focusing on the issue of using syntactic or semantic information in order

to disambiguate alternative hypotheses. Criteria by which the performance of

the spelling correction system may be judged were given, and the system seen to

compare favourably with other systems widely available.

Bibliography

ALS 84] Al-Suwaiyel M. and E. Horowitz, "Algorithms for Trie Compaction,"

ACM Trans, on Database Systems, Vol. 9., No. 2., pp 243-263, 1984.

ANG 83] Angell R. C , G. E. Freund and P. Willett, "Automatic spelling correc­

tion using a trigram similarity measure," Inf. Process. Manage., Vol. 19, No.

4, pp 255-261, 1983.

[AOE 92] Aeo, J.-I., K. Morirnoto and T. Sato, "An Efficient Implementation of

Trie Structures," Software-Practice and Experience, Vol. 22, No. 9, pp 695-

721, 1992.

CAR 92] Carter D. M. , "Lattice-based word identification in CLARE," In Pro­

ceedings of the 30th Annual Meeting of the Association for Computational

Linguistics, Delaware USA, pp 159-165, June 1992.

CHA 54] Chapanis A., "The reconstruction of abbreviated printed messages," J.

Exp. Psychol, Vol 48. pp. 496-510, 1954.

CLO 84] Clocksin W. F. and C. S. Melish, "Programming in Prolog, 2nd ed.,"

Springer-Verlag, New York. 1984.

COM 81] Comer D., "Analysis of a Heuristic for Full Trie Minimization," ACM

Trans, on Database Systems, Vol 6., No. 3, pp 513-537, 1981.

[CRY 87] Crystal D., "The Cambridge Encyclopedia of Language," Cambridge

University Press, 1987.

Bibliography 85

[DAM 64] Damerau F. J., "A Technique for Computer Detection and Correction
of SpeUing Errors," Commun. ACM, Vol. 7, No. 3, pp 171-176, 1964.

DAM 89] Damerau F. J. and E. Mays, "An examination of undetected spelling

errors," InL Process. Manage. Vol. 25, No. 6, pp 659-644, 1989.

[DOW 82] Downton A. C , "Simultaneous Transcription of Machine Shorthand for

the Deaf," University of Southampton 1982.

DUN 81] Dunlavey M. R., "On SpeUing Correction and Beyond," Commun. ACM,

Vol. 24, No. 9, 1981.

DUR 83] Durham I . , D. A. Lamb and J. B. Saxe, "Spelling correction in user

interfaces," Commun. ACM, Vol. 26, No. 10, pp 764-773, 1983.

ELL 93] Ellis N. R., R. Garigliano and R. G. Morgan, "A New Transformation into

Deterministically Parsable Form for Natural Language Grammars," In Pro­

ceedings of the 3rd International Workshop on Parsing Technologies, Tilburg,

Netherlands, 1993.

FRE 60] E. Fredkin, "Trie Memory," Commun. ACM, Vol. 3, No. 9, pp 490-500,

1960.

GAR 92] Garigliano R., R. G. Morgan and M. H. Smith, "LOLITA: Progress

Report 1," Technical Report, Durham University, 1992.

GAR 93] Garigliano R., R. G. Morgan and M. H. Smith, "The LOLITA System

As A Contents Scanning Tool," In Proceedings of Avingnon '93, 1993.

[DAR 91] Defense Advanced Research Projects Agency, "Proceedings of the Third

Messa.ge Understanding Conference." DARPA, 1991.

H A L 80] Hall P. A. V. and G. R. DowHng, "Approximate string matching," ACM

Computing Surveys, Vol. 12, No. 4, pp 381-402, 1980.

HAN 76] Hanson A. R., E. M. Risernan and E. Fisher, "Context in Word Recog­

nition," Patt. Recog., Vol. 8, pp 35-45, 1976.

Bibliography 86

[HAR 72] Harmon L. D., "Automatic Recognition of Print and Script," Proc.
IEEE, Vol 60, No. 10, pp 1165-1176, 1972.

HAZ 93] Hazan J. E., S. A. Jarvis, R. G. Morgan and R. Garigliano, "Understand­

ing LOLITA: Program Comprehension in Functional Languages," Workshop

on Program Comprehension, IEEE Computer Society Press, Capri, Italy,

1993.

HOT 80] Hotopf N. , "Shps of the pen," in "Cognitive Processes in SpeUing," Uta

Frith, Ed., Academic Press, London, pp 287-307, 1980.

[HOL 91] Holyer I . J., "Functional Programming with Miranda," Pitman Publish­

ing, London,1991.

[HUD 92] Hudak P. ei. al, "Report on the Functional Programming Language

Haskell," Version 1.2. 1992.

JON 93] Jones C. a,nd R. Garigliano, "Dialogue Analysis and Generation: A

theory for modelling natural English dialogue," in Proceedings of EU-

ROSPEECH '93, Vol. 2. p 951., Berhn, German}-, 1993.

KNU 73] Knuth D. E., "The art of programming vol. 3.: searching and sorting,"

Addison-Wesley, Reading, Mass, 1973.

KUK 92a] Kukich K., "Spelling Correction for the Telecommunications Network

for the Deaf," Commun. ACM, Vol. 35, No. 5, pp 80-90, 1992.

KUK 92b] Kukich K., "Techniques for Automatically Correcting Words in Text,"

ACM Computing Surveys, Vol. 24, No. 4, pp 377-439, 1992.

LON 94] Long D. and R. Garigliano, "Reasoning by Analogy and Causality," Ellis

Horwood, 1994.

MOR 70] Morgan H. L., "Spelling Correction in Systems Programs," Comrnun.

ACM, Vol. 13, No. 2, pp 90-94, 1970.

MOR 94] Morgan R. G., R. Garighano, S. A. Jarvis and B. S. Parker, "The

LOLITA System as an Example of Large Scale Functional Programming,"

Bibliography 87

Dagstuhl Workshop on Funct. Prog, in the Real World (invited paper),
Dagstuhl, Germany, May 16-20, 1994.

MUT 77] Muth F. E. Jr. and A. L. Tharp, "Correcting human error in alphanu­

meric terminal input," Inf. Process. Manage., Vol. 13, pp 329-337, 1977.

NET 94] Nettleton D. J. and R. Garigliano, "Evolutionary Algorithms for Dia­

logue Optimisation in the LOLITA Natural Language Processor," Seminar

on Adaptive Computing and Information Processing, Jan '94, 1994.

[PET 80] Peterson J. L., "Computer Programs for Detecting and Correcting

Spelling Errors," Commun. ACM, Vol. 23, No. 12, pp 676-687, 1980.

PET 86] Peterson J. L., "A note on undetected spelling errors," Commun. ACM,

Vol. 29, No. 7, pp 633-637, 1986.

POL 82] Pollock J. J., "Spelling Error detection and correction by computer -

some notes and a bibliography," J. Doc, Vol. 38, No. 4, pp 282-291, 1982.

POL 83] Pollock J. J. and A. Zamora, "Collection and characterization of spelling

errors in scientific and scholarly Text," J. Am. Soc. InL Sci. Vol. 34, No. 1,

pp 51-58, 1983.

POL 84] Pollock J. J. and A. Zamora, "Automatic Spelling Correction in Scientific

and Scholarly Text," Commun. ACM, Vol. 27, No. 4, pp 358-368, 1984.

[POT 91] Potter B., J. Sinclair and D. Ti l l , "An introduction to Formal Specifica­

tion and Z," Prentice-Hall International, 1991.

RAM 89] Ramesh R., A. J. G. Babu and J. P. Kincaid, "Variable-Depth Trie

Index Optimization: Theory and Experimental Results," ACM Trans, on

Database Systems, Vol. 14., No. 1., 1989.

SAM 94] Sansom P. M. , "Execution Profiling for Non-strict Functional Lan­

guages," Ph.D. Thesis, University of Glasgow, 1994.

[SEB 93] Sebesta R. W., "Concepts of Programming Languages, 2nd Ed.," Ben-

jamin/Cummings Publishing Co. 1993.

Bibliography 88

SEL 69] Selinker L., "Langua,ge Transfer," General Linguistics 9, pp69-92, 1969.

SHA 88] Shastri L., "Semantic Networks: An evidential Formalization and its

Connectionist Realisation," Morgan Kaufmann, 1988.

SMI 94] Smith M. H., R. Garighano and R. G. Morgan, "Generation in the

LOLITA system: An engineering approach," Seventh International Work­

shop on Natural Langua.ge Generation, Maine, USA, 1994.

[ULL 77] LUlmann, J. R., "A binary n-gram technique for automatic correction of

substitution, deletion, insertion and reversal errors in words," Comput. J.,

Vol. 20, No. 2, pp 141-147, 1977.

[WAN 92] Wang Y. and R. Garigliano, "An Intelligent Tutoring System for Han­

dling Errors Caused by Transfer," in Lecture Notes in Computer Science

608: Proceedings of Second International Conference on Intelligent Tutoring

Systems, pp. 395-404, Springer-Verlag, Montreal, Canada, 1992.

YAN 83a] Yannakaoudakis E. J. and D. Fawthrop, "The Rules of Spelling Errors,"

Inf. Process. Manage., Vol. 19, No. 2, pp 87-99, 1983.

YAN 83b] Yannakoudakis E. J. and D. Fawthrop, "An Intelligent Spelling Error

Corrector," M . Process. Manage., Vol. 19, No. 2, pp 101-108, 1983.

Appendix A

This appendix gives the full results of the testing on the LOLITA spelling correction

system. Firstly the misspelt word is given, followed by the list of corrections given

by LOLITA, in the order in which they are generated.

"accesory" ["accessory", " a c c e s s a r y " , "ancestry"]
"accomodate" ["accommodate"!
" a c t u a l l l y " [" a c t u a l l y " , " a c t u a l i t y "]
"adminstrator" [" a d m i n i s t r a t o r "]
"advanatgeous" ["advantageous"]
" a l c h o l " ["alcohol", " a r c h i l " , "anchor"]
"almos" ["alms", "salmon", "almost", "almond", "amok", " a l s o " , " a l o e s " .

"aloe", "alma", "arms", "armor", " a l i a s " , "aloof", "adios".
" a l l i s " , "allow", " a l l o t " , " a l l o y "]

"analagous" ["analogous"]
" a n i v e r s a r y " ["einniversary". "adversary"]
" a p p l i c t i o n " [" a p p l i c a t i o n " , " a f f l i c t i o n "]
" a r c h i b i s h o p " ["archbishop"]
" a s s o c a t i o n " [" a s s o c i a t i o n " , "avocation", " a l l o c a t i o n "]
" a t t a c t " [" a t t r a c t " , " a t t a c k " , " a t t a c h " , " t a c t " , " t r a c t " , " a t t a r " ,

" i n t a c t " , " a t t e s t " , " a t t a i n " , "attache"]
"bacause" ["because", "cause", "accuse"]
" b a l a c e " ["balance", "palace", " b u l l a c e " , " b a l l a d e " , " l a c e " , "place",

"brace", "blade", " b l a r e " , "blame", "blaze", "black", "bale",
"valance", " b e l a t e " , " a b l a t e " , " p a l a t e " , " s o l a c e " , "malice",
"ablaze"]

"becasue" ["because", "became"]
" b e l e i v e " ["believe", "beehive", " b e l i e " , "belove", "bereave", "deceive",

" r e l i e v e " , " r e c e i v e "]
"betweeen" ["between"]
"b r o a c a s t e r " ["broadcaster"]
" c h i l d e n " [" c h i l d r e n " , "holden". "hidden", "chicken"]
" c o a l i t i o n l " [" c o a l i t i o n "]
"coramision" ["commission", " c o n c i s i o n " , "commotion", "communion",

" c o l l i s i o n "]
"committment" ["commitment"]
"comprehesive" ["comprehensive", "compressive"]
"compresssion" ["compression"]

Appendix A 90

" c o n c e s s s i o n " ["concession", "concussion", "confession"]
" c r i c i t i s e " []
"d i c a t e " [" d i c t a t e " , " d i l a t e " , "abdicate", "educate", "dedicate",

"medicate", " i n d i c a t e " , " d e l i c a t e " , " i r a t e " , "date",
" d i c e " , " d i c t a " , " f i x a t e " , "donate", "debate", "decade",
"derate", " i d e a t e " , " p i r a t e " , " d i l u t e " , " l o c a t e " , "vocate",
"vacate", " d i c k i e "]

" d i f f i i c u l t " [" d i f f i c u l t "]
" d i m i s s a l " [" d i s m i s s a l "]

', " d i s r u p t i o n " , " d e s e r t i o n "]
lary", "easy",
, "seamy",

"bleary".
eaky". "entry", "earth", "earthy" "ray", " a i r y " , " a r t y " , "wry",

•, "arm", " t r y " , "are", "awry", "army", "dry", "cry", " f r y " ,
', " a r c " , "pry", "amy", "arb", "ark", "erg", "em", " e r r " ,
', " e r a " , " e a t " , "ear", "dray", " d i a r y " , " d a i r y " , "day".

Kii l " , ^ ^ T - , 7 l " "r)r , i - i>" " ^ 1 = . T - t i r " "Ha- i -V" " e a i i - r i r " " H a v " 'dart

"cay", " c a r t " , "cavy", "care", "cara' , "carp", "emery", " e v e r y ,
" e a t s " , "hearty", "heady", "heart", "henry", "heavy", "heard",
"decry", " p e a r l y " , "peavy", " p e a r l " , "peaky", "gears", "eagre",
" t r a y " , " t a r r y " , " t a r t " , "tardy", "tory", " t a r e " , " t a r a " , " t aro",
" t a r e " , "nav". "navv". "nard", "narc". " h a i r y " , "harry", "hay". 'harry", "hay",

'hazy", "harp",
f a e r y " .

" l a y " , "lady"
'may", "mart"
f r a y " , " f a i r y ^j.^y , , , ^^^^ , , ^ ,

'yarn", "yard", "pray", "parry", "party", "pay",
'para", "park", "gray", "gay", "gory", " g a r i " . "f
•'edgy", "ecru", "eyra". " e a s t " , "ease", "each". ' v B j . y , v
" k e r r y " , " j e r r y " , "bray", "bay", "baby", "ba r t " , "bam", '
"bury", "bare", "bars", "bard", "barb", "bark", "vara", "*
" j a y " , " j u r y "]

'fury", " f a r e " , " f a r o " ,
"part", "pare",

garb", "eddy",
'very", "veery",

'barm",
'kaury",

. . . 'jury
"elswehere" ["elsewhere"]

"emnity" ["enmity", "amenity", "unity " , " e n t i t y " , "empty", " s a n i t y " .
"amity", " v a n i t y " , "equity"]

"encylopaedia" ["encyclopaedia"]
"enginering" ["engineering"]
"enviroraent" ["environment"]
" e q u a l t i y " [" e q u a l i t y " , " q u a l i t y "]
"exept" ["exempt", " e x e r t " , "except", "extent", "sept", "wept", " l e p t " ,

"kept", " e x i t " , "swept", " s l e p t " , " c r e p t " , "adept", " e x a l t " ,
"exact", "expect", "expert", " i n e p t " , " e j e c t " , " e x i s t " , " e x u l t " ,
" e r e c t " , "erupt", " e l e c t " , "event"]

" f a m i l a r " [" f a m i l i a r " , " f a m i l i a l " , "family", " b a s i l a r " , " s i m i l a r "]
" f i m a l " [" f i n a l " , " s i m a l " , "animal", "formal", " f i s c a l " , " f i n i a l " ,

" f i l i a l " , "imam", " f o a l " , " f a i l " , " f i a t " , " f i l l " , " v i a l " ,
" v i t a l " , " t i d a l " , " t i c a l " , " r i a l " , "primal", " r i y a l " , " r i v a l " ,
"gimel", "gimbal", "dismal", " d i a l " , " f o c a l " , " f u g a l " , " f e t a l " ,
" f a t a l " , " s i a l " , "soraal", " s i s a l " , " p i p a l "]

" f i x u r e " [" f i x t u r e " , " f i g u r e " , " f a i l u r e " , " f l e x u r e " , " f i
" f i r e " , " f i b r e " , " f u t u r e " , " f i x a t e " , "mixture"

" f o r e s a k i n g " ["forsaking"]

s s u r e " . " i n u r e " .

Appendix A 91

" g a l a n t " [" g a l l a n t " , " s e a l a n t " , "garland", " s l a n t " , "plant", "grant",
" g l i n t " , " g i a n t " , "gland", "gaunt", "galax", " t a l e n t " ,
" v a l i a n t " , " v a l e n t " , "vacant", "galena", "galoot", "savant",
"galago", "galaxy"]

c i t e " ,
j.iixj.(aua J

" i n j u c t i o n " [" i n j u n c t i o n " , " i n d u c t i o n " , " i n j e c t i o n " , "inunction"
" i n a c t i o n " , " i n t u i t i o n " , " i n d i c t i o n " , " i n f e c t i o n "]

" a s s i s t a i n c e " , " i n s i s t e n c y " . "instance'
'resisu a u i i B J

i c t o r " . " i n c e p t o r "]
1 i n

" v a l i a n t " , " v a l e n t "
"galago". "galaxy"]

" h i s t g o r y " [" h i s t o r y "]
" i n a g u r a l " ["inaugural", " n a t u r a l " , " b i n a u r a l "]
" i n f i n t e " [" i n f i n i t e " , " i n f i n i t y " , " i n f r i n g e " , " i n v i t e " , " i n

" i n f l a t e "]
" i n j u c t i o n " [" i n j u n c t i o n " , " ^ " - ^ " - " - • i ' — • • - ^ - ^ ^

" i n a c t i o n " , " i :
" i n s i s t a n c e " [" i n s i s t e n c e " .

" r e s i s t a n c e "]
" i n s p e t o r " ["inspector", " i :
" i n t r o d u s e c " ["introduce"]
" i r r e p o n s i b l e " [" i r r e s p o n s i b l e "]
" i s s s u e " [" i s s u e " , " t i s s u e "]
" l a a t e r " [" l a t e r " , " l a a g e r " , " l a t t e r " , " e l a t e r " , " s l a t e r " , "water",

" e a t e r " , " a s t e r " , " t a t e r " , " r a t e r " , "hater", "dater", " c a t e r " ,
"mater", " a l t e r " , " a f t e r " , "pater", "bater", " l i t e r " , " l a g e r " ,
" l a y e r " , " l a v e r " , " l a t h e r " , " l a s e r " , " l a t e x " , " p a t t e r " ,
" r a s t e r " , " r a t t e r " , " r a f t e r " , "waster", "waiter", " l e a v e r " ,
" l e a t h e r " , " l e t t e r " , " l e a d e r " , " l i t t e r " , " l i f t e r " , "lawyer",
" p l a s t e r " , " p l a t t e r " , " p l a n t e r " , " e a s t e r " , " t a s t e r " , " t a t t e r " ,
"neater", " s e a t e r " . " s t a t e r " , " s k a t e r " , " l o i t e r " , " l o a f e r " ,
" l o o t e r " , "loader", " l e a n e r " , " l u s t e r " , "lauder", " l a r d e r " ,
" f l o a t e r " , " b l o a t e r " , "heater", " h a t t e r " , " h a l t e r " , " d a r t e r " ,
" c a s t e r " , " c r a t e r " , "master", "matter", " f a l t e r " , "ladder",
" g r a t e r " , " g a r t e r " , "beater", "boater", " b a t t e r " , "banter".
" K a T t - O T - " ! b a r t e r j

" l e a s d e r s h i p " ["leadership", "readership"]
" l i e u t e n t a n t " [" l i e u t e n a n t "]
" l i k l y " [" l i k e l y " , " l i l y " , " l i l t " , " l i k e " , " o i l y " , " r i l l y " , " w i l y " ,

" l o l l y " , "limey", " s i l k y " , " s i l l y " , " l i k e n " , " h i l l y " , "milky",
" f i l l y " , " l i v e l y " , " l i n d y " . " l i s l e " , " b i l l y " , " b i a l y "]

"mangement" ["management"]
" m a n s - i f iTia-rv" r " m i s s i o n a r v " l

r e a d e r s h i p

" l i v e l y " .

othr"
" t o r " , "or", "our", "oar", "ohm", "ether", "a
"over", "tour", "pother", " s t a r " , " s t i r " , "od
"mother", "motor", "bother", " t o r r " , "voter"]

•• r i i J 1 J .. i . T

"over".
"mother" "bother motor".

para r a i l a t a r y

"path", "pane", "pant", "pang", "pale", " p a l l " , "palm", " s a " ,
" a s s " , " s " , " i s " , "ax", "ad", "os". "us", " a t " , " a i " , "an", "ah'
"ms". "am", "pe". "pa", " p i " , "oats", "oat", "oar", "oaf",
"oak", " l a s s " , "law", " l a x " , " l a d " , " l a t " , " l a c " , "lam", " l a y " ,
" l a p " , " l a g " , " l a b " , "taw", "tax", "tad", " t a t " , "tao". "tan",
" t a r " , "tau", "tam", "tap", "tag", "tab", " d a i s " , "dad", "dah",
" d a l " , "dam", "day", "dag", "dab", "caw", "cad", "cos", " c a t " ,
"can", " c a r " , " c c s " . "cam", "cay", "cps", "cap", "cab", "gad"

" t a r " , "tau", ••cam", -xap-, •cag-,
" d a l " , "dam", "day", "dag", "dab",
"can", " c a r " , " c c s " . "cam", "cay",

Appendix A

, "gab", " p s i " ,
, "peg", " p i e " .

"maw", "mad","mrs", "mat", "mao", "man", "mar", "mac", "a
"map", "mag", "fax", "fad", " f a t " , "fan", " f a r " , "fay". "
"yes", "yaw", "yah", "yaws", "yam", "yap", "yak", "waw".
"wad", "wads", "wan", "war", "wah", "ways", "way", "wag",
"vat", "van", "var", " v a l " , "zap", "zag", "ppm"]

Lin" ["penguin"] "pengui

"km", " x i " , "xu", " e t " , "eh", "en", " e l " , "em", "ew",
"pya", "mph", "bpm", "wpm", " a t " , "ad", "ah", " a i " . "a
"am", "ax", " i v " , " i t " , " i d " , " i i " . " i n " , " i s " , " i x " ,
"nu", " s r " , " s a " , "so", " r e " , "hr". "hg", "he", "ha",
" h i " , "hm", "up", "kph", "us", "ux", "rar", "rag", "me",
"ms", "ml", "mu", "ram", "my", "ye", "we", " v i "]

" p h i l i s o p h y " ["philosophy"]
"philosphy" ["philosophy"]
"phoptograph" ["photograph", "ph<
"portay" ["portray", " p o r t a l " , " i

"ew", "eq", , "ex".
a i " , " an", ' 'as".
" i x " . "ne", , "no".
"ha". " h i " , , "ho".

'. "me" , "ma' ', "mi"

y" ["philo

graph"]
r t y " . "pray", "potty", "porgy".
y". "porter", "portage", " p o s t a l " .

ono

" p r a c t i o n e r " [" p r a c t i t i o n e r "]
" p r e c i c t " [" p r e c i n c t " , " p r e d i c t " , " r e l i c t " , "pre

"precept", " p r e c i s e "]
"procdure" ["procedure", "procure", "produce", "'
"profesor" ["professor", " p r o f e s s " , "processor"]

", "brochure
^ . ^ - - - ^ W , J

"procdure" ["procedure", "procure",
"profesor" ["professor", " p r o f e s s " , "processor"]
"protoype" ["prototype", "protype"]
"punishmnet" ["punishment"]
"puppeter" ["puppeteer", "puppetry"]
" r e c u i t " [" r e c r u i t " , "remit", " r e c u r " , " d e c e i t " , "reduct", '

" r e c e i p t " ,
" r e c e n t " , " r e c a n t " , " r e c o i l " , "recuse", " r e s u l t "]

" r e s p o n s i b l i t y " [" r e s p o n s i b i l i t y "]

' r e c u i t
— 4-

" r e c e n t " , " r e c a n t "
" r e s p o n s i b l i t y " [" r e s p o n s i b i l i t y "]
" r e s p o s i b l e " ["responsible"]
"revnue"["revenue", "revue", "revenge",

i n , , i o ^

i b i l i t y "]
' r e sposible" ["re
"revnue"["revenue " r e t i n u e " , "venue", "rente"

Appendix A 93

"avenue", "r e v e r e " , " r e v i s e " , " r e v i l e " , " r e v i v e " , "revoke",
"rescue"]

" s e c e t a r y " [" s e c r e t a r y " , "sedentary", "nectary"]
" s e c r e t e r i a l " [" s e c r e t a r i a l " , " s e c r e t z L r i a t "]
" s e t i n g " ["seating", " s e t t i n g " , " s t i n g " , " s i t i n g " , "seeing", "sewing",

" s a l t i n g " , "sheeting", "seeking", "seeming", " s i t t i n g " ,
" s i f t i n g " , " s o r t i n g " , " s e a l i n g " , " s e i z i n g " , " t e s t i n g " ,
"stewing", " s e r v i n g " , " s e t t l i n g " , "sending", "sensing",
" s e l l i n g " , " e a t i n g " , " s t r i n g " , " s i n g " , "stung", " s t i n t " ,
" s t i n k " , " s l i n g " , "suing", "swing", " s e i n e " , "wetting",
"meeting", " a c t i n g " , " d i e t i n g " , "doting", "saying", "saving",
"satang", " s k a t i n g " , " s e r i n e " , " t e n t i n g " , "teeing", "outing",
" n e t t i n g " , " r e n t i n g " , " r a t i n g " , " r e t i n a " , "heating", " s i d i n g " ,
" s i z i n g " , "sweating", " l e t t i n g " , " l u t i n g " , "ceding", "melting",
"mating", " s p r i n g " , "spying", " p e t t i n g " , "peeing", "beating",
" b e t t i n g " , " b e l t i n g " , "being", "venting", "voting", " s k i i n g "]

"sharholder" ["shareholder"]
"spokemzm" ["spokesman", "spokesmen", "spoken", "spaceman"]
"stong" ["strong", "tong", "song", " s t i n g " , "stony", "stung", "stone",

"sarong", "satang", " s i t i n g " , " s t o r i n g " , "stowing", " s t r i n g " ,
"strung", "tog", "gong", "bong", "tang", "tony", "thong",
"dong", "pong", "tung", "tonk", "tone", "hong", "long",
'"tons", " s i n g " , "sang", "sung", "sone", "stag", "stop",
"stow", "wrong", "atony", "atone", "along", "among", " s t i n t " ,
" s t i n k " , "stand", "stank", "stomp", "stout", "scone", "stunt",
"stunk", " s t o a t " , " s t o i c " , "stood", "stoop", " s t o o l " , " s t o r y " ,
" s t o r k " , " s t o r e " , "storm", " s t o l e " , "stock", "prong", "shone",
" s l o g " , " s l i n g " , " s l a n g " , "slung", "suing", "smog", "swing",
"swung", "stove", "stoke"]

"subcommitee" ["subcommittee"]
" s u r i v a l " [" s u r v i v a l " , " r i v a l " , " u r i a l " , " u r i n a l " , " a r r i v a l " , " s h r i v e l " ,

" s u r g i c a l " , " s e r v a l " , " s e r i a l " , " s u r r e a l " , " b u r i a l "]
"temporaray" ["temporeiry"]
" t e r r i t o r i t y " [" t e r r i t o r y " , " t e r r i t o r i a l "]
" t i n g " [" s t i n g " , " r i n g " , "bing". "tong". "tung". "tang", " t i n t " , " t i n y " ,

"thing", "ding", "ping", "king", " t y i n g " , " t i n e " , " s i n g " , " l i n g " ,
"wing", " z i n g " , " e a t i n g " , " r a t i n g " , "aging", "mating", " s i t i n g " ,
" i c i n g " , "outing", "doting", "voting", "owing", " l u t i n g " ,
"using", " t a i n t " , "taping", "taking", "teeing", " t i l i n g " ,
"timing", "toying", "tuning", "tubing", "tinge", " t i n e a " ,
" s t r i n g " , "stung", " s t i n t " , " s t i n k " , " s l i n g " , "suing", "swing",
" l y i n g " , " t r i g " , " t r i n e " , " t s i n e " , "eng", "ink", "inn", "tug",
"teg", "tag", "tog", " t i t " , " t i d " , " t i c " , " t i p " , " t i e " , " t i n " ,
" t i l " , "going", "gig", "gong", "gang", " r i g " , "rung", "rang",
" r i n d " , " r i n k " , "bring", "wring", " f l i n g " , " f i g " , "fang", " f i n d " ,
" f i n k " , " f i n e " , " f i n s " , "being", "big", "bong", "bung", "bang",
"bind", "bine", "yang", "hying", "dying", "vying", "vine",
"vino", "tony", "thong", "tonk", "tone", "tons", "tune", "tuna",
" t e n t " , "tend", "tanh", "tank", "twang", "time", "doing",
"think", " t h i n e " , "typing", "dig", "dong", "dung", "dang",
" d i n t " , "dine", " c l i n g " , "pig", "pong", "pung", "pang",
" p i n t " , "pink", "pine", "kiang". "kind", "kink", "kine".
" k i n a " , "kino", " j i g " , " j i n x " , " t r a g " , "thug", " t i e r " ,
" t i t i " , "twig", "twine", " o i n t " , "nine", " t i r e " , " t i r o " ,
" t i d y " , " t i d e " , " t i l t " , " t i l e " , " t i l l " , " t i c k " , " t i f t " ,
" t i f f " , " s i g n " , "song", "sung", "sang", " s i n h " , " s i n k " ,
" s i n e " , "hong", "hung", "hang", " h i n t " , "hind", "long".

Appendix A 94

"lung". " l i n t " . " l i n k " . " l i n e " . "mig". "mung", "mint"
"mind". "mink". "mine". "mina". "mini", , "wig". "wang"
"winy". "wind". "wink", "wine". "wino", , " z i g " . " z i n c "

"toraorow" ["tomorrow"]
" t r a n l a t o r " [" t r a n s l a t o r "]
"unjury" [" i n j u r y " , " j u r y " , "usury", "unary", " i n j u r e " , "unruly"]
" v o l u n t a r t y " ["voluntary"]
"whatesoever" ["whatsoever", "wheresoever"]
"whather" ["whether", "whither", "weather", "whatever", "heather",

"hater", "gather", "bather", " h i t h e r " , " f a t h e r " , " h a t t e r " ,
" r a t h e r " , " l a t h e r " , "water", "wether", "wither", "washer",
"whaler", " s h a t t e r " , " l e a t h e r " , " t h i t h e r " , " c h a t t e r " ,
" f e a t h e r " , " b l a t h e r "]

"wherby" ["whereby", "hereby", "derby", "whey", "where", "sherry",
"wheezy", "thereby", "cherry"]

:"woe". "some". "woke". "tome". "wore". "home". "dome". "come".
"wove", "womb", "awoke" , "woman ", "women", "swore", "wrote".
"worse" , "wormy ". "wolve". "me" , "one", "ore". "ode". "owe".
"we", " wee", "wow", "woo", "won ", "wop" , "wok". "same" , "sone".
"soma". "sore". " s o l e " . "acme". "roe". "rime". "roue". " r o t e " .
"rose". "brome" , "rode" , " r o l e " , "romp" , "rope" . "robe ", "rove"
"wine", "wise". "wire". "wide". " w i l e " . "wife". "wimp" , "wipe".
"wive". "were". "wane". "wake", "ware", "wade". "wale" , "wage".
"wave", "wont". "wonk". "worm". "gnome" , "whose ", "whore",
"l o v e " . "yoke". "yore". "toe". "time". "tame". "tone". " t o t e " .
" t o r e " . "tomb". "ooze". "name". "none". "note". "nose" , "node",
"whee". "wood". "wool". "woof". "word". "wort", "worn" , "work".
"hoe". "heme". "hone". "hose", "homo". "hole". "hope", "hove".
"doe", "dime". "dame". "done", "dote". "dose". "dole", "dope",
"dove". "doze". "came". "cone". "coke". "coma", "cote" . "core".
"cyme", "code". " c o l e " . "cope". "cove". "comb". "mime" . "moue".
"mote". "more". "mode". "mole". "mope". "move". "foe". "fame".
"fume". " f o r e " . "wold". "wolf". "poem", "pone", "poke" . "pose".
"pore". "pole". "pomp", "pope". "game", "gone", "gore" , "bone".
"bore". "bode". "bole". "bomb". "vote". "vole". "joke" . "zone"]

