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Abstract 

This thesis addresses the software maintenance problem of extracting high-level 

designs from code. The investigated solution is to use a mathematically-based 

formal program transformation system. The resulting tool, the Maintainer's As­

sistant, is based on Ward's [177] WSL (wide spectrum language) and method of 

proving program equivalence. 

The problems addressed include: how to reverse engineer from code alone (the 

only reliable source of information about a program [158]), how to express pro­

gram transformations within the system, what kinds of transformations should 

be incorporated, how to make the tool simple to use, how to perform abstraction 

and how to create a tool suitable for use with large programs. 

Using the Maintainer's Assistant, the program code is automatically translated 

into W S L and the transformations, although tested for valid applicability by the 

system, are interactively applied by the user. Notable features include a mathem­

atical simplifier, a large flexible transformation catalogue and, significantly, the 

use of an extension of W S L , A ^ t . a W S L , for representing the transformations. 

METAWSL expands WSL by incorporating a variety of extensions, including: pro­

gram editing statements, pattern matching and template filUng functions, sym­

bolic mathematics and logic functions, statements for moving within the program's 

syntax tree and statements for repeating an operation at each node of the tree. 

Using METAWSL, 80% of the 601 transformations can be expressed in less than 

20 program statements. 

The Maintainer's Assistant has been used on a wide variety of examples of up 

to several thousand lines, including commercial software written in IBM 370 as­

sembler. It has been possible to transform initially unstructured programs into a 

hierarchy of procedures, facilitating subsequent design recovery. 

These results show that program transformation is a viable method of renovating 

old (370 assembler) code in a cost eifective way, and that METAWSL provides an 

effective basis for clearly and concisely expressing the required transformations. 
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I l l 

"The true lover of knowledge naturally strives for truth, and is not 

content with common opinion, but soars with undimmed and unwear­

ied passion t i l l he grasps the essential nature of things." — Plato, The 

RepubHc, 490A 
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Chapter 1 

Software Engineering 

1.1 Introduction 

Since the invention of the computer, hardware performance per unit cost has 

increased by as much as 25% per year [142] while the cost of software has fallen 

by only 7-9% per year [142]. The result is that software has become by far the most 

expensive part of installing any computer system. In addition, software complexity 

has led to severe underestimates of the resources required to complete any given 

programming project. An early example of such a disaster was OS/360 [64]; 

although it did eventually work. This failure came to light in October 1968 at the 

NATO-sponsored conference on the newly coined term Software Engineering 

in Garmisch-Partenkirchen and caused the existence of a Software Crisis to be 

first admitted. The symptoms of this crisis, from which most of the software 

development industry has yet to escape, are that too much software is late, over 

budget and does not perform as expected. It became clear that a new approach 

was required to solve these problems; this approach is software engineering. 

There have been numerous definitions of software engineering, for example: 

Software engineering is the science and art of specifying, designing, 
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implementing and evolving — with economy, timeliness and elegance 

— programs, documentation and operating procedures whereby com­

puters can be made useful to man [130]. 

This is a good definition in that it stresses the art (i.e. creativity) required in 

software engineering, all stages of the software life cycle (which will be defined 

later), the economics of the software engineering process and the fact that software 

engineering involves the production of more than just program code. 

As with traditional engineering, software engineering involves the use of a rigorous 

method for software production. 

A method is a set of procedures (guidehnes) for selecting and sequen­

cing the use of tools and techniques [34]. 

This chapter will examine the tools and techniques used in software engineering, 

and a typical method of sequencing them — the software life cycle. First, how­

ever, it is worth emphasising the differences between traditional engineering and 

software engineering. 

1.2 Differences from Traditional Engineering 

According to McDermid [130], there are five areas in which software engineering 

is inherently more difficult than traditional engineering: 

Complexity — Software is complex in that it needs to interface to complex 

mechanical, social or organisational systems. Also, software is complex 

"as a material" since (unlike other engineering artifacts) it has no regu­

lar structure^. Finally, software systems are too large to be understood by 

a single individual. 

^Dijkstra [66] claims that programs are the most complex artifacts conceived and illustrates 
this complexity by contrasting programs with Euclidean geometry — both of which he considers 
to be branches of mathematics [65]. 
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Difficulty of establishing requirements — Users do not know what they 

want and they over (or under) estimate the ability of the computer. Many 

of their activities are "second nature" and specifications are difficult to eli­

cit. In addition, there is no method of determining when a specification is 

"complete". Also requirements are never stable. 

Changeability or malleability of software — It is easy to write and change 

a small program, but much harder for a large system due to the interaction 

between diff^erent parts of the system. 

Invisibility — While all other engineering disciplines produce physical artifacts 

which can be seen and examined, software is much more nebulous. The 

original design decisions are not manifest in the programs themselves and 

although there are many points of view from which to look at software (scope 

of variables, control flow, module hierarchy etc.) all of them are limited. 

Development of a theory of the problem domain — In most engineering 

disciplines, the development of a new system involves the application of 

existing theories (for example in bridge building). However, with software, 

every time a system (for air traffic control or payroll or whatever) is de­

veloped, a new theory needs to be developed. These theories may even 

change with time as the engineered systems or social structures, to which 

the software relates, change too. 

1.3 Tools and Techniques 

Blank and Krijger [36] list 24 different technical methods and techniques for use 

in software engineering. These fall roughly into four categories: structured pro­

gramming techniques, methods for clear program and data structure presenta­

tion, computer aided software engineering, and methods for deriving pro­

grams from their specifications. 
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1.3.1 Structured Programming 

The aim of structured programming is to produce programs which have more 

structure.^ Such programs are easier to understand, maintain and modify since, 

for any given statement in the program, it is clear which branches must have been 

taken, and which procedures called, in order to reach this point; i.e. their dynamic 

behaviour is clear from their static structure. 

Software structure is defined to be the arrangement of, and inter­

relation between, the components that make up the software system. 

Although there is no general agreement about what is "good" structure (such as 

programming without using Goto statements), there are a number of attributes 

which are thought to be important [28]: 

• The software is partitioned into components (modules) with identifiable and 

simple boundaries; 

• There should be a high dependence within the components (modules) of the 

system; and 

• The relationships between the components (modules) form a hierarchy. 

Structured programming has had a very beneficial effect on the quality of software 

systems. Numerous case studies have documented impressive gains in productiv­

ity, reliability and maintainability of these new systems [197 . 

1.3.2 Modular Programming 

A more rigorous version of structured programming is modular programming 

which divides a program into (small) chunks known as modules. A module allows 

^In fact all programs necessarily have structure to them, otherwise they would not execute; 
so here, software structure has a more specialised meaning. 
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the programmer to control the visibility of a component within a program [63 . 

There are many ways of making these divisions, some considerably better than 

others. Good modular programming has been characterised by Bergland [32] as 

a decomposition such that each module: 

• Implements a single independent function; 

• Performs a single logical task; 

• Has a single entry and exit point; 

• Is separately testable; and 

• Is entirely constructed of modules. 

1.3.3 Object Oriented Systems 

A further enhancement to the idea of modular programming is object oriented 

programming.^ An object oriented system is one which is composed of inde­

pendent objects each of which provides a behaviour. This behaviour is a set of 

operations that the object may be requested to perform; for example, to return 

or modify, some internal value that it holds. 

A good object oriented system is one that contains objects with the following 

properties [10]: 

Encapsulation — An object's state is only accessible using its nominated oper­

ations; 

Dynamic lifetimes — Objects can be created as the system executes; 

Identity — Each object has a name, which can be used to refer to it; and 

•^The term "object oriented" has also been used to cover design methods, user interfaces, 
databases as so on. 
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Substitution — Objects that provide compatible operations can be used inter­

changeably. 

Objects which differ only in name and state are said to be instances of a class. 

When a class is defined, it may (in some systems) be provided with the beha­

viour of one or more other classes. This is termed inheritance. If used badly, 

inheritance can lead to programs that are poorly structured. 

1.3.4 Presentation Techniques 

Software engineering, as well as producing methods for constructing "better" pro­

grams, has also spawned methods of representing the structure of these programs 

diagrammatically. This significantly improves the user's understanding of how 

the software works, especially when several methods are used together. These 

presentation methods include flowcharts, HIPO (Hierarchy plus Input, Process, 

Output) charts and data structure charts, for example, Warnier-Orr diagrams 

186] and Jackson diagrams [101]. Other presentation methods which have been 

used are decision tables and very-high-level pseudocode. 

1.3.5 Computer Aided Software Engineering 

Computer Aided Software Engineering or C A S E is the automa­

tion of existing software engineering methods and practices with the 

goal of improving the quality of the product and the efficiency of the 

software developers [171]. 

C A S E tools, in the boardest sense, encompass any facility utilising 

the computer to assist in the production of software [102 . 

CASE tools can be subdivided into those that are directed primarily at the front-

end activities of design and analysis, and those that are focused on the back-

end implementation functions of code generation, testing and maintenance [102]. 
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Those that generate code have improved programmers' productivity, by enabling 

them to work at a "higher level" (i.e. closer to the level of the application rather 

than the computer). The ultimate goal of CASE technology is to separate the 

application program's design from the program's implementation as code [76 . 

Major issues facing CASE are (a) the integration of the many tools that are 

required in order to cover the spectrum of software activities from specification, 

through development, to maintenance; and (b) cost of discarding existing software 

in order to move to a CASE tool environment. 

1.3.6 Deriving Programs from Specifications 

Another way of producing "better" programs is to start with the specification of 

the program and at each stage to develop incrementally by stepwise refinement. 

In other words, the program is first coded at a very high level, and each high-level 

construct is represented in turn by its components, with more detail and at a 

lower level, until the program is expressed in terms of the target language. This 

method was proposed by Wirth [191]. 

Although stepwise refinement appears good in principle, it is very rarely used in 

practice since designers actually work, not only from from the top down, but also 

from the bottom up and from the middle out (see Section 8.2). The problem is that 

any expression of the high-level design as low-level code may not be practicably 

implementable on the target machine. Thus, to at least some degree, the designer 

needs, at an early stage, an idea of the final implementation. 

1.4 The Software Life Cycle 

A key part of software engineering has been the decomposition of the software 

process into a number of stages. Such a decomposition has been named a life 

cycle, and a number of different life cycle models have been suggested [131] [38]. 



Chapter 1: Software Engineering 8 

Such models generally divide the project into small steps based on the ways in 
which they are planned and performed as follows: 

Requirements Analysis and Definition — Analysis is performed, through 

observation of existing systems, discussion with potential users and so on, 

to discover the purpose of the software and to set the overall goals. 

Functional Specification — A program specification is produced. 

A program specification is a statement of the precise functions 

which are to be carried out by a computer program, including 

descriptions of the input to be processed by the program, the 

processing needed and the output from the program [150 . 

A good functional specification fulfills the needs of the original requirements 

definition and leads naturally on to a design for the system in such a way 

that it rules out any implementation that is unacceptable and such that 

it is general enough to ensure that few, if any, acceptable programs are 

precluded. 

Non-Functional Specification — Constraints on efficiency, performance, com­

patibility and reliability are added to the definition of requirements. 

System and Software Design — The various tasks needed to be performed 

in order to fulf i l l that aim are recognised and specified so as to define the 

architecture of the system. 

Implementation — Actual program code is written. 

Testing — The program is tested to ensure that it meets its specification. 

Release — The software is released for use. As maintenance is performed and 

the changes are tested, the new software will be "re-released", possibly using 

configuration management [4]. 

Operation and Maintenance — The software is used and maintained. 

The areas of testing and maintenance are of particular interest in this thesis and 

so will be addressed in more detail. 
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1.4.1 Testing 

The process of checking that a system is correct is described by the collective term 

validation and verification [100]. 

Validation is the process of ensuring that the developing system 

matches the user requirements [100]. 

Verification is the process of checking that the output of a phase of 

the software life cycle matches the input to that phase [100 . 

These are paraphrased by Boehm [37]. Validation: "Are we building the right 

product?"; Verification: "Are we building the product right?" 

Program testing can take several forms (which will be discussed in Chapter 2), but 

the most common involves exercising the program using data similar to the actual 

data that the program is designed to execute, observing the program outputs and 

inferring the existence of program errors or inadequacies from anomahes in that 

output [169]. The lowest-level program components are tested first. These are 

then assembled and the program is tested as a whole. During this stage, potential 

users can identify gaps in the original requirements and the programmers can 

identify faults in the program code that could cause failures. 

A fault in a system is a feature of the system with the potential for 

causing a failure. 

A failure of a system is said to occur when the behaviour of the system 

first deviates from that required by the specification [165]. 

In terms of software engineering, a system is correct when it fully reflects the user 

requirements detailed in the specification and, optionally, satisfies other measures 

such as the quality of the program code. Implementation and testing are linked in 
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that testing has to determine the correctness, or otherwise, of the implementation. 
Any faults feed back into the implementation stage causing changes to be made. 

Correctness cannot be verified by testing [32] since a successful test can really 

only be considered to be one which establishes the presence of one or more errors 

in the software being tested [141]. Whereas in traditional engineering it is usually 

sufficient to test to within a certain margin of safety, software should ideally be 

100% correct. This is termed the correctness problem [40]. 

A more stringent version of program correctness is program reliabihty [2] [165] 

169] in which not only must the program meet its specification, but it must also 

take meaningful action in unexpected situations. Program reliabiUty is a very 

important issue, not least in safety-critical systems and in areas where computers 

are put "in control" of large amounts of money. In all practical cases it is virtually 

impossible to guarantee 100% program correctness, let alone 100% reliability, since 

there may be faults that testing has failed to reveal. 

1.4.2 Operation and IVlaintenance 

Software maintenance is the modification of a software product 

after delivery, to correct faults, to improve performance or other at­

tributes, or to adapt the product to a changed environment [1 . 

Software maintenance can be divided into four areas: corrective, adaptive, 

perfective and preventive maintenance [29 . 

Corrective maintenance is concerned with the location and removal of faults 

in the program. These are errors in what the program actually does according to 

the current specification; it is not concerned with erroneous output caused due to 

a change in the specification. 

Adaptive maintenance involves the updating of the program due to a change in 

the environment in which it has to run. This may be a minor change which does 

not involve much change in the structure of the program, for example a change 
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in printed output from EngHsh to American spelling, or may be a major change, 
such as rewriting the program to run in a distributed fashion on a network. 

Perfective maintenance is maintenance resulting from a change in a program's 

specification. This might be as simple as a change in the format in which a report 

is required, or as complex as the addition of a different kind of account to a 

financial banking program. Perfective maintenance takes up as much as half of a 

maintenance programmer's time [29 . 

Finally, preventive maintenance is the modification to software undertaken to 

improve some attribute of that software, such as its "quality" or "maintainabihty" 

without altering its functional specification. 

1.5 Legacy Code 

Maintenance is a fundamental part of the life cycle of any software and can account 

for 60-80% [120] of the total software costs. Hence most software is old "legacy" 

code which has been heavily maintained. Such software usually represents a large 

financial investment and so cannot just simply be discarded and rewritten due to 

the arrival of new technology or a change in the specification. 

Lehman and Belady [119] characterised the specific problems of maintaining old 

code in their five laws of software maintenance. 

Continuing Change — A program that is used in a real-world environment 

must change or become less and less useful in that environment. 

Increasing Complexity — As an evolving program changes, its structure be­

comes progressively more complex unless active efforts are made to avoid 

this phenomenon. 

Program Evolution — Program evolution is a self-regulatory process and meas­

urements of systems attributes (such as size, time between releases and 

number of errors) reveals statistically determinable trends and invariances. 
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Conservation of Organisational Stability — Over the lifetime of a program, 
the rate of development of that program is approximately constant and 
independent of the resources devoted to system development. 

Conservation of Familiarity — Over the lifetime of a system, the incremental 

system changes in each release is approximately constant. 

The first two laws are technical hypotheses which have been found to be empir­

ically true for all software, whereas the other three are non-technical and depend 

on the organisations developing and using the software. 

The first law says that as soon as a program has been written it is out of date. 

The reasons for this are several. Users perceive new features which should be 

added to the software; new features are added to the hardware which can be 

used to enhance the software; faults are found in the software and these need 

to be corrected; the software needs to be moved to another operating system or 

machine; or the software needs to be made more efficient. The second the law of 

software evolution says that as changes (excluding preventive maintenance) are 

made, the structure of the program becomes more complex due to the fact that 

programmers are unable or even unwilhng to use software engineering techniques. 

However, the problems go beyond this. 

First, maintenance is often performed rapidly in an ad hoc fashion for several 

reasons, not least of which is because there is often little time to produce a carefully 

designed modification. With continued change, programs tend to become less 

structured. This is manifest by out of date documentation [158], code which does 

not conform to standards, increased time for programmers to understand code, 

increased ripple effect of changes and so on. These characteristics can, and usually 

do, imply higher software maintenance costs [7 . 

Systems undergoing maintenance often become progressively more difficult to 

change [118]. This is due to the fact that as maintenance is performed it be­

comes increasingly difficult to understand the program's function, and it may not 

even have been possible in the first place since programming involves informal, 

undocumented decisions which are not available to the maintenance programmer 
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16]. Hence, it is often the case that the software cannot be changed without in­
troducing unforeseen side eifects, due to interdependencies between variables and 
procedures which the maintainer did not detect. 

In addition to the technical problems there is often also a management problem. 

Most programmers consider work spent on maintenance to be an inferior activity 

to development (a view which is often reinforced by the working conditions and 

salary scales) since it distracts them from the more "exciting" work of software 

development. This creates low morale. As a result, when it becomes necessary to 

perform maintenance, rather than employing a systematic maintenance strategy, 

corrections tend to be rushed, not thought through, undocumented and poorly 

integrated with the existing code. It is not uncommon for such maintenance itself 

to introduce further errors and inefficiencies. 

From these problems it can be seen that software maintenance would benefit 

greatly from a rigorous^ engineering approach but, unlike development, few widely 

established methods yet exist. 

1.6 Summary 

Early ad hoc methods of producing software were unsuccessful in coping with the 

trends of increasing size and complexity so software engineering was suggested as 

a solution. Zelkowitz [198] gives the goals of software engineering as to: 

1. Use techniques that manage software complexity; 

2. Increase system reliability and correctness; and 

3. Develop techniques to predict software costs more accurately. 

^There are cases in which a rigorous approach is not used but which nevertheless have well 
controlled maintenance through informal methods such as design reviews and testing. The Space 
Shuttle software is such an example [108]. 
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Software engineering has made a reasonable attempt at meeting all of these goals 
and has certainly improved the situation that preceded i t . However, looking more 
closely, there is still some way to go before software engineering can truly be 
ranked alongside other engineering disciplines. The third of these goals is outside 
the scope of this thesis. Taking the other two in reverse order: 

Although (as shall be seen later) there are theoretical solutions to the problems 

of reliability and correctness, they are not cost-effective enough, due to the extra 

work that they impose on the software engineer, to be widely accepted. 

Software complexity has been partially dealt with through the use of improved 

programming methods such as modular programming. However, these methods 

do not readily apply to legacy code which was originally developed, or has been 

changed, in an ad hoc fashion and, thus, are not usually of benefit to maintenance. 

In particular, once a program undergoes maintenance it will become ever more 

complex. 

Thus, the situation remains that while software engineering has been successful 

up to a point, several major failings still remain. Two of these will be considered 

further: the correctness problem and the maintenance problem. 

The Correctness Problem is the problem of producing software that 

performs according to some predefined specification. 

The Maintenance Problem is the problem of performing software 

maintenance rigorously and in such a way that software quaHty does 

not deteriorate as a result of this process. 

These can be summarised as (a) how should software be developed so as to ensure 

that it has a given reliability, and (b) how should the software be subsequently 

maintained so as to preserve this reliabihty. 
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1.7 The Contributions of this Thesis 

This thesis will approach the maintenance problem by adopting a correctness-

preserving reverse engineering approach. Inspiration for this will be taken from 

a proposed solution to the correctness problem: formally-proved program trans­

formations. It will make a four important contributions to the area of maintaining 

legacy systems: 

1. The system will be shown to work. Unlike existing transformation systems, 

the system described here will be demonstrated to work at reasonable speed 

on medium-to-large sized programs taken from an industrial environment. 

2. The system, will have an innovative architecture. It will be based on 

a middle-out design with certain distinct sub-systems such as a pattern 

matcher and a system for performing symbolic mathematical and logical 

evaluation and simplification. 

3. Efficient representations will be adopted for programs and for transforma­

tions. 

4. A language, MSTAWSL, will be used to express program transformations. 

This language will embody knowledge about writing transformations; it will 

be transferable to other implementations; it will allow transformations to 

be expressed clearly and concisely; and it will enable arbitrarily complex 

algorithms to be incorporated, facilitating sophisticated automation. 



Chapter 2 

A Survey of Solutions to the 

Correctness and Maintenance 

Problems 

2.1 Introduction 

The previous chapter introduced software engineering and considered its successes 

and failures. While its successes have been considerable, there have also been two 

important drawbacks relating to correctness (an attribute of the software product) 

and maintenance (an attribute of the software process). This chapter examines 

the ways in which the two problems have been addressed, and then proposes a 

single method by which both problems will be tackled. 

2.2 Solutions to the Correctness Problem 

Verification can be approached in any of three ways [33]: 

16 
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• Look and see; 

• Test exhaustively; and 

• Express the program formally and apply a proof. 

Corresponding to each of these three approaches, a number of different solutions 

have been proposed and, within each approach, a number of tools have been 

developed to aid the software engineer. The approaches will be dealt with in 

turn; each will be judged according to its ease of appHcation, its rigour and its 

effectiveness. 

2.2.1 Look and See 

Program Inspections 

The most simplistic solution to the correctness problem is the "look and see" 

method which relies on the fact that any faults in the software will be easy to 

identify, if not by the original programmer, then by disinterested programmers 

with suitable experience. When confronted with a coding error, the original pro­

grammer would be less likely to consider it as such than would a disinterested 

party since, if he-̂  had made a logical mistake once, there is no reason to suppose 

that he would not be likely to make it again. Also, professional pride would bias 

him against finding faults that would seem to devalue his work. 

In a formal inspection, as originally described by Fagan [69], a small group of 

people would examine the code in a number of different stages looking for likely 

errors. The team would be chaired by a moderator whose job it would be to 

motivate the other team members; the other team members being the program's 

author, a tester (who would consider the code from a testing point of view) and 

a reader whose job it would be to present the code to the team. 

^For stylistic reasons, pronouns are given in the male gender. It is not the author's intention 
to exclude the possibility of their referring to a female person. 
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The stages in program inspection would be: 

Planning — which involves arranging the inspection and organising the team; 

Overview — in which a general description of the program to be considered is 

presented; 

Individual preparation — in which each team member considers the program 

and its specification; 

Program inspection — in which errors are identified, but not corrected; 

Rework — in which the program is modified by its author in the light of the 

inspection; and 

Re-inspection — in which the process is repeated. 

Program inspections are cheap, straightforward and, although managerial and 

technical skills are advantageous, do not require any special techniques to be 

learned by the programmer or the specifier. Inspections may be able efficiently 

to identify potential faults in the software but by no means guarantee to find 

them all. Thus, while they are useful and have proved efficacious in practice when 

properly applied [160] [111], they do not guarantee the correctness of the software. 

Static Program Analysers 

Another, similar but more limited, "look and see" method uses the computer 

itself to perform the inspection. This is known as static analysis and tools which 

perform this task are known as static analysers. 

Static program analysers are tools which examine the source code 

of a program and identify possible faults and anomalies. 

Static analysers can check for potential errors, which are purely syntactic, such as 

uninitialised variables, but are unable to detect semantic errors, i.e. errors where 
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the program is written "correctly", but is performing the wrong function. The 
list below illustrates potential problems that can be identified. 

• Undeclared variables; 

• Variables used before initialisation; 

• Parameter type or number mismatches; 

• Unreachable code; 

• Non-terminating loops; 

• Uncalled functions or procedures; 

• Unused function results; and 

• Incorrect array references. 

Static program analysers are very cheap and quick to use, as they are automatic, 

and can be used by the programmer without requiring outside assistance. How­

ever, while they help to ehminate frequently occurring sources of faulty behaviour, 

they are not generally able to identify all faults in the code (let alone design, ar­

chitecture and so on) and hence do not solve the correctness problem. 

2.2.2 Test Exhaustively 

The exhaustive testing of software has been an area of considerable research, 

reflecting the fact that it has grown from an after-programming evaluation process 

to a concept that is an integral part of each phase of the system development life 

cycle [156]. Consequently, this has led to the production of a number of different 

methods and tools. 

There are two main types of testing: black box testing in which the internal 

structure and behaviour of the system being tested is not considered, and white-

box testing in which it is. Black-box testing is typified by acceptance testing to 
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ensure that software meets its specification or user requirements, while white-box 
testing is typified by unit testing in which it is necessary to examine the structure 
of the code unit (module, procedure etc.) in order to ensure that the tests exercise 
as many of its statements and paths as possible. 

Two of the more important testing tools are the test case generator, which gener­

ates typical data on which the program would be run, and the symbolic evaluator 

which takes (part of) a program and executes it using symbolic, as opposed to 

numeric, data. 

Despite the eifort that has been put into testing, the fact remains that, unless 

every path through the program can be tested with every combination of inputs, 

testing cannot demonstrate that a program is correct. For small programs, or for 

programs with a very simple structure, it may be possible to test all the paths 

through the program but, as the size of the program increases, so the number 

of paths through it increases. This increase may be linear, but it could also be 

exponential, making exhaustive testing infeasible. (In general it can be difficult 

to determine whether testing is cost-effective. Perry [156] gives thirty metrics to 

measure the effectiveness of testing.) 

Despite these apparent problems, testing has proved to be a powerful and use­

ful technique. Shooman [164] gives some statistics as to the success of testing; 

in particular: test hours versus the number of new instructions, discovery and 

correction times, and the difficulty of correction and detection against time. A 

notable result was that 80% of errors were identified after one execution of the 

software, while the average number of executions to find each error was 1.35. 

Different kinds of testing (module test, integration test, code reading and design 

reviews) are each suited to the identification of different kinds of error (logic, 

documentation, timing, specification etc.). Thus, although no single test technique 

is uniformly good over the spectrum of error types [164] there does appear to be a 

test method suitable for finding each kind of error. However, testing alone cannot 

solve the correctness problem, i.e. prove that a program is correct, in any but the 

simplest examples. 
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2.2.3 Formal Solutions 

The success of engineering in general can, to a large extent, be attributed to the 

discovery and deployment of the theories that lie behind the work of the engineer. 

Currently not much of this theory is in place for software engineering, and that 

theory which is in place is rarely understood or used. However one of the most 

promising solutions to the correctness problem does use an underlying theory. In 

this method, the specification and program are expressed mathematically and a 

proof that they are equivalent is found. The methods of software development 

which are based on the underlying mathematical theories of programming are 

known as formal methods. Before looking at the advantages and disadvantages 

of formal methods, it is necessary to give some definitions. 

Formal methods of program construction are methods which are 

carried out in a language whose vocabulary, synteix and semantics are 

formally defined. 

A formal software specification is a specification expressed in a 

language whose vocabulary, syntax and semantics are formally defined 

169]. 

The vocabulary of a (specification) language is the the collection of 

"meaningful" symbols that it possesses. 

The syntax of a (specification) language is a definition of the way in 

which the symbols are allowed to be combined. 

The semantics of a (specification) language is a definition of the 

"meaning" attributed to given symbols and combinations of those sym­

bols. 

Program specifications can have various degrees of formality. At the informal 

end of the spectrum, the specifications can be expressed in some convenient com-
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bination of English, diagrams^ and mathematical notation. In contrast, formal 
specifications are written in a language with explicitly defined syntax and se­
mantics [121]. Thus, formal methods which start with a "formal specification" 
are able to produce a program which can be mathematically shown to meet that 
specification^ by a series of steps akin to a proof. The need for a formal semantic 
definition of the specification language and the ability mathematically to manip­
ulate this language mean that it must be based on mathematics and not "natural 
language". 

Mathematical formulation allows the specifier to remain much further from the 

computer than would otherwise be the case and, in this context, any programming 

language is already too near [91]. In addition, the proper use of mathematical ab­

stractions in the development process helps to create software systems with a 

coherent and suitable structure. Also a rigorous"* development method where cor­

rectness of developments steps can be justified in a mathematical sense, strongly 

diminishes the risk of introducing errors and inconveniencies to the system during 

development [68]. Further advantages of using formal specifications are given by 

Sommerville [169] as follows: 

• The development of a formal specification provides insights into, and an 

understanding of, the software requirements and software design; 

• Given a formal system specification and a complete formal programming 

language, it may be possible to prove that a program conforms to its spe­

cification; 

• Formal specifications may be automatically processed, for example by the 

computer; and 

• Formal software specifications are mathematical entities and may be studied 

and analysed using mathematical methods. 

^Diagrams may be either formal or informal. The formal use of diagrams was mentioned in 
Section 1.3.4. 

^By definition, it is not possible to prove formally that a program meets an informal 
specification. 

* A rigorous method is one in which reasoned justification is provided for the approach adop­
ted, and decisions taken, at each stage. 
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The process of producing a proof that a program meets its specification can be as 
hard (or harder) than producing the program in the first place; thus mathemat­
ically demonstrating a program's correctness can be accomphshed in one or more 
ways [179], such as: 

1. Write the program and then attempt formally to verify its correctness 

against the specification; 

2. Develop the program and its correctness proof concurrently; 

3. Starting with the program, successively transform it into an executable pro­

gram by means of a series of transformations which have already been proven 

to preserve the correctness of any given program. 

Thus, formal specifications and associated formal methods can potentially be 

of great benefit in determining program correctness since a mathematical Unk 

can (usually) be established between the specification and the program. There 

are nevertheless some disadvantages to formal methods, or at least to certain 

of these methods, the most notable being the time and effort required in the 

construction of the proofs, and the need to understand these proofs once they 

have been constructed. Dijkstra [64] argues that formal proofs are shorter and 

easier to understand than informal ones, but goes on to say: " I have seen a 

number of proofs that have been produced by (semi) mechanised systems, and, 

indeed, these proofs were appalling!" Thus, while formal methods could solve the 

correctness problem, they do require a great deal of extra work by the software 

developers. 

2.2.4 Automatic Program Verification 

A method is needed of using formal methods which avoids the problem of pro­

ducing proofs. Griffiths sums this up as follows [91]: "A specification should be 

largely mathematical and less computer oriented. From such a specification, we 

should, however, be capable of producing a program acceptable to some compiler." 
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As a result a number of automatic and semi-automatic tools have been produced 
to attempt to solve this problem. 

It is not generally possible (because of the halting problem) for a machine to 

prove program correctness, and it is often easier to prove a weaker version of 

correctness; that is, partial correctness, in which the program is known to meet 

its specifications provided it terminates. 

Partial program correctness proof methods show that a program 

meets its specifications, as given by entry and exit assertions, provided 

that it terminates [109 . 

Here an assertion is a true predicate about the program's state space 

(i.e. the values contained in the variables) at some stage before, during 

or after execution. 

Partial program correctness proofs are composed of various steps: summarising 

the semantic content of a program in a mathematical representation, generating 

formulas (or assertions) called "verification conditions", and devising inductive 

statements which allow one to conclude the program's correctness by proving 

that the verification conditions are theorems in some appropriate mathematical 

logic [109 . 

There are a number of different invariant conditions on code (for example "data 

type invariants") which can be used to prove correctness by means of mathematical 

induction. Loop invariants are important since, using some formal methods, they 

are required in order to prove that a loop conforms to some specification. 

A loop invariant is a logical formula which is true before and after 

the execution of each iteration of a loop. 

While loop invariants are important, they are hard both to identify and to prove. 

Methods of generating loop invariants in programs with many nested loops and 
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procedure calls, or complex data types are still very primitive. In fact, the problem 
of finding the inductive assertion for any given program is theoretically unsolvable 
172], although it may be possible in specific simple examples. This has not 

prevented work on semi-automatic derivation of loop invariants, or at least on 
systems which suggest loop invariants. One such system is ADI. ADI [172] will 
find as many loop invariants as it can, and it is hoped that the conjunction of 
these invariants will be strong enough to be an inductive assertion. 

Another way of aiding in the development of correctness proofs is the use of 

theorem provers such as the B-Tool [11]. Theorem provers mechanise, or help 

to mechanise, the production of a formal proof. These have proved difficult to 

implement for the general case, so proof checkers have been more commonly 

used. The simplest form of proof checker takes, as its input, a series of inferences 

in some logical theory, such as first-order predicate calculus, along with the rule of 

inference to be used (for example, modus ponens). Using these, it would determine 

whether the logical formula obtained does indeed result from the designated rule 

of inference [31]. 

One of the best known proof systems is the Boyer-Moore theorem prover [39 . 

This tools is primarily an induction machine which mechanises proofs in a logical 

theory developed by Boyer and Moore. In doing this it uses various ad hoc proof 

strategies and expression simplifiers. Although the tool can operate without any 

user intervention, it can be given lemmas (as subgoals) by the user to aid it in 

its proof. The system is fairly powerful, but does require a large number of user-

supplied lemmas before it can prove anything requiring more complex objects 

(for example, real numbers, logical formulae etc.) than those provided. Thus, its 

usefulness lies more in proof checking than theorem proving. For proving the cor­

rectness of programs, it would be necessary to give a system such as Boyer-Moore's 

so large a number of guiding lemmas that there would only provide a marginal 

advantage over doing the proof manually. There is also the problem of verifying 

the correctness of the theorem prover itself. Nevertheless the Boyer-Moore the­

orem prover has been used in the proof of correctness for the implementation of 

some small examples [161] [187 . 
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Thus automatic program verification can usually only be an effective means of 
proving the correctness of simple programs. As Gries says [90]: "One cannot ex­
pect to produce a whole program and then prove it correct. Instead, at each stage 
of development, the programmer must know that what he has done is correct." 
This does not mean that computer-aided formal methods should be discarded 
completely, since there is a third path to constructing programs formally, that of 
successively transforming a specification into an executable program. The merits 
of this strategy will be considered later. 

2.3 Solutions to the Maintenance Problem 

The various solutions to the maintenance problem which have been proposed can 

be broken down into two categories: those that address the management issues 

and those that address the technical issues. The former are of less interest to this 

thesis and will only be considered briefly. 

2.3.1 IVEanagement Solutions 

In financial terms, software maintenance is seen as a continuing consumer of re­

source with a nebulous and unquantified benefit to the organisation [158]. Thus, 

there needs to be more organised management support of software maintenance, 

and this can come about through: 

1. Senior management becoming aware of the importance of information tech­

nology to the organisation; and 

2. Senior management viewing software as a corporate asset which can provide 

a competitive edge [158 . 

Thus, in order for the situation to change, management must become dissatisfied 

with the status quo, and therefore able to make a visible and personal commitment 
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to any proposed solutions. Such solutions could, broadly speaking, take one of 
two forms: resources and quality. 

Resources 

The key resource in software production and maintenance is people, so a pos­

sibly effective way of improving software maintenance could be to have a separate 

group of programmers employed just to maintain old code.̂  However, because 

of the unglamourous nature of the work, it is usually the new recruits who are 

assigned this work. These inexperienced programmers, while they may be able 

to understand the logical design of the system, are usually unable to understand 

the conceptual model of the software since they lack experience of both software 

engineering techniques and domain knowledge of what the program is supposed 

to do. Thus, they rarely know how to find and fix faults, or make modifications. 

Increasing manpower and funding for software maintenance might provide a short-

term solution but, for a long-term solution, it would be necessary to adopt an 

approach which would improve the overall quality of the process. 

Quality 

Improving the quality of both the software product and the software process 

follows the trend of increasing concern for quality issues in industry as a whole. 

Better software quality management techniques include [58]: 

• Standard techniques for decomposing software into functional entities; 

• Strict software documentation standards; 

• Design walk-throughs at each level of software decomposition; 

^Alternative methods of strategically employing manpower, such as having the same team 
perform both the development and the maintenance, have also been suggested [166]. This 
approach mirrors other engineering disciplines in which it would be very unusual to separate 
the tasks of development and maintenance. 
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Use of structured code; and 

• Definition of all major software interfaces and data structures before detail 

design begins. 

In addition, metrics could be employed (to measure not only attributes of the 

product but also attributes of the process) and better tools could be used (for 

example, integrating an editor, compiler and debugger into a single tool). 

2.3.2 Technical Solutions 

It is convenient to divide the technical solutions to the software maintenance 

problem into two: tools and methods.^ The tools are designed to help the software 

maintainer understand the program and to test its modification to ensure that no 

errors have been introduced. As such, many of the tools are the same as, or 

similar to, those used in software testing. A selection of the tools which have been 

produced in order to aid the maintenance programmer is Usted by MiUer^ [135 . 

These include the formatter, static analyser, structurer, documenter, interactive 

debugger, test data generator and comparator. 

Software maintenance methods consist of re-engineering and reverse engineering. 

Software Re-Engineering and Reverse Engineering 

Re-Engineering is the examination and alteration of a subject sys­

tem to reconstitute it in a new form and the subsequent implementa­

tion of the new form [30 . 

Reverse Engineering is the process of analysing a subject system 

to identify the system's components and their inter-relationships, and 

^Tools are used most effectively to support methods. 
^Some of these tools (such as the formatter and test data generator) are already in use, 

whereas others (such as the structurer) are not yet mature enough to be used generally. 
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to create representations of the system in another form or at higher 
levels of abstraction [55 . 

Software Restructuring is the modification of software to make the 

software (1) easier to understand and to change or (2) less susceptible 

to errors when later changes are made [7]. 

Software re-engineering and reverse engineering usually involve taking existing 

program code and restructuring it (for example, splitting it into modules and pro­

cedures). Restructuring measures are not equivalent to reverse engineering and 

reverse engineering does not necessarily imply restructuring. Programs can be re­

structured, and even modularised, without reverting back to the logical design 

level. Conversely, programs can be transformed into a higher semantic level 

without being restructured [167]; however, as will be seen in Chapters 4 and 9, 

abstraction to a higher semantic level is simpler if the software is first restructured. 

Bennett [30] lists 26 purposes for reverse engineering code. The most important 

ones are as follows: 

• To simplify complex software, or software which has become complex due 

to maintenance activities; 

• To improve the quality of software which contains errors, by identifying and 

then removing those errors; 

• To remove any side effects from an implementation (i.e. unplanned state 

changes); 

• To improve the coding quality and understandability, for example to re­

duce the number of control transfers, remove dead code, adopt data naming 

standards, improve control structure, and adopt standards of layout and 

commenting; 

• To undertake a major design repair activity, because the original design 

(and, therefore, implementation) of the software may be erroneous; 
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• To allow major changes to be implemented (the structure, documentation 
and quality of the software may be so poor that it is infeasible to implement 
a major change without reverse engineering the software to a higher level of 
abstraction first); 

• To help establish and support a reuse policy (for code, designs, specifications, 

processes etc.); 

• To enable better software maintenance management techniques (in terms of 

planning, monitoring and control) to be introduced. This will provide better 

visibility of the software maintenance to be achieved and, therefore, better 

control; 

• To bring the existing software into a more modern software engineering 

development environment consistent with other practices within the organ­

isation. This should provide a higher quality of software, with lower costs 

for subsequent software maintenance; 

• To rediscover and record the design of the system; 

• To rediscover and record the requirement specification of the system; and 

• To recover and record high-level information about the system including: 

the system structure, functionality, dynamic behaviour, rationale and con­

struction. 

These purposes can be broken down into three categories: fixing the program, 

changing the program and understanding the program. This last category, which 

includes recapturing information about the software, allows it to be worked on 

using modern software engineering techniques, thus putting i t back "under con­

trol". This is important, as it means that rather than requiring ad hoc methods 

for performing maintenance, methods such as "structured retrofit" can be used. 

Miller and Lyons define structured retrofit as the application of 

today's structured program techniques to yesterday's systems in order 

to meet tomorrow's demands [134] [124 . 
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Both re-engineering and reverse engineering are activities which can be supported 
by the computer. 

In the process of reverse engineering, there are many different sources of inform­

ation about the program undergoing maintenance. This information comes in 

the form of the documentation and manuals, comments in the code, the original 

specification (if there ever was one!), and the code itself. If the program has un­

dergone many changes or is very old, then the documentation, whatever its form, 

is unlikely to provide an accurate description of the program's function. Likewise, 

if a specification of the program is available and up to date, then understanding 

the program is made considerably easier by first understanding the specification. 

This is because of the complementary nature of the specification, which expresses 

the purpose of the software without the impediment of the implementation de­

tails. However, very often, the specification may not have been updated as the 

program was changed and it is, therefore, as unreliable a source of information as 

the informal documentation. 

This leaves the source code as being the only reliable source of information, and 

it is necessarily reliable since it is the program code which the system is running. 

Thus, any reverse engineering tool which is to produce an accurate description of 

a program should work primarily on source code. 

There has been much of work on re-engineering and reverse engineering, and 

there is good reason for this. Both offer to bring old software up to date — 

re-engineering by directly reimplementing the existing program, and reverse en­

gineering by first producing a high-level specification or description of the code. 

However, a problem still exists; that of ensuring that the new program (in the 

case of re-engineering) or the high-level description or specification (in the case of 

reverse engineering) is an accurate description of the software system in question. 

Essentially, this is the correctness problem in reverse. Thus, it would seem real­

istic to ask whether solving the correctness problem could provide a solution to 

the maintenance problem via reverse engineering.* This is the topic of the next 

^It could also, potentially, offer a solution by means of re-engineering. However, if, as would be 
necessary, there is a way of formally finking a program with its specification, then re-engineering 
can be accomplished by means of a combination of formal reverse engineering and of formal re-
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section. 

2.4 Can One Solution Solve Both Problems? 

Due to the necessarily mathematical nature of software, it would seem reason­

able to suppose that formal methods could be applied to reverse engineering by 

proving that a given specification describes an existing program, or by deriving a 

specification^ from an existing program. This is indeed the case, provided that a 

general method exists for determining this correspondence, and this in turn is the 

correctness problem. Hence, a solution to the correctness problem, when placed 

in a suitable reverse engineering environment, would also provide benefits in solv­

ing the technical side of the maintenance problem. That just leaves the problem 

of finding simple means of providing a formal link between a specification and a 

program. 

2.4.1 Program Transformations 

The third path to the formal construction of programs is that of transformation. 

This method starts with the program specification, and successively transforms 

it into an executable program by means of a series of transformations which have 

already been proven to preserve the correctness of any given program. The precise 

meaning of the terms "program transformation", "transformation system" and so 

on will be given in the next chapter. For now, it is enough to comment that a 

program transformation is a change made to the text of a program in such a way 

that the program's semantics remains unchanged. 

implementation. 
^All programs, even those that have been heavily modified, necessarily have a specification in 

that each statement can be specified separately, so that the specification of the whole program 
would be a combination of these. However, the question of whether such a program has a concise 
and useful specification is an open question. 

^°In some approaches, the semantics may be refined in order to reduce non-determinism or 
increase program definedness. 
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Of the three different methods of formally showing that executable programs meet 
their abstract specifications, this seems to be the most promising for two reasons. 

First, it seems to be the only one which is capable of scaling up to large programs; 

this is because a single proof of a large program would be almost impossible to 

understand, let alone develop [179], while transformations will be seen to apply 

to programs of any size. 

Second, it can be shown that program transformations have inverse operations. 

That is, if a program has been transformed, then there will be a transformation 

which has the opposite effect and takes it back to the original version. This phe­

nomenon can be used in program maintenance, by performing transformations 

that are the "inverse" of those used in development, to derive specifications from 

existing programs. (As yet, it is only a hypothesis that it is easier to modify 

and evolve a transformational development than it is to do so for a conventional 

method with a corresponding proof, but it seems a reasonable claim since, in most 

cases, the development will proceed along similar lines with the same transform­

ations being applied.) 

The transformational approach to programming has some roots in the sixties, 

when it was shown [115] [116] that certain well-known programming constructs 

(such as conditions and loops) of ALGOL-like languages were nothing but nota-

tional variants on the Lambda-Calculus developed by Alonzo Church [57] in the 

1930s. It was also found that certain complex linear recursion schemes could 

be transformed into simpler recursion schemes such as tail-recursion or iterative 

schemes. This led to the discovery of increasingly many transformations. 

Burstall [48] stated that motivation for the transformational approach to program 

development is "that programs are comphcated, hard to understand and prone to 

errors because we want them to be efficient... So the idea is to start with a program 

which does the right job but entirely sacrifices efficiency in favour of simpHcity 

and modularity. We then transform it by correctness-preserving transformations 

until a tolerably efficient, though less perspicuous, program is obtained." The 

aim, then, is to extend the scope of transformation systems in two ways: (a) so 

that it is only necessary to produce a specification since that can be transformed 



Chapter 2: Solutions to Correctness and Maintenance 34 

into an efficient program, and (b) so that it is possible to transform an existing 
program into a specification. 

2.5 Summary and Conclusions 

The problem of ensuring program correctness can be approached from several 

directions, most notably through program inspections and other "look and see" 

methods, testing and formal methods. This last is the only method that can 

guarantee the correctness of a program, but the overhead caused by the need to 

construct proofs is considerable. Automatic proof generation would alleviate this 

difficulty, but is currently impractical. However transformational development 

would provide a formal development method without the need to construct proofs. 

Software maintenance needs to be addressed as a management issue in order 

to impose quality onto the process by means of using more rigorous approaches. 

Such approaches mean the use of improved tools, improved methods and probably 

both. An effective tool would be one that permitted the use of formal reverse 

engineering, since designs could then be recovered more easily. A tool based on 

program transformations would offer the required functionality. 

In conclusion, an effective transformation-based tool would provide a method of 

achieving enhanced quality in software development, but more importantly, in the 

often-overlooked phase of software maintenance. 

2.6 Topics Addressed in this Thesis 

The next chapter introduces transformation systems and surveys existing sys­

tems, considering their benefits and shortfalls. It then addresses the question: "If 

transformation systems are so good, why are they not used more widely?". 

Chapter 4 describes Ward's work which forms the background to the transforma-
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tion system described in this thesis and the ReForm project of which it is a major 
part. The specific problems to be addressed are also defined in this chapter, 
together with the criteria for success against which they will be judged. 

Chapters 5-8 present the transformation system that has been created, concen­

trating on the new language MSTAWSL in which the transformations are written. 

This language is assessed to determine its suitability for representing various kinds 

of transformation, concentrating on the transformations needed to perform reverse 

engineering. 

Finally, the results that have been obtained with the resulting transformation 

system are examined in order to identify its strengths and weaknesses as a tool 

which purports to aid the maintenance programmer. 



Chapter 3 

Program Transformation 

Systems 

3.1 Introduction 

This chapter introduces transformation systems, giving some important definitions 

and explaining how these systems can be categorised. Existing transformation 

systems are analysed in terms of their benefits and shortfalls. The question why, 

if transformation systems have so many alleged advantages, they are not used more 

widely, is addressed by identifying specific problem areas. Finally, a summary is 

presented of what can be learned from these systems and an explanation is given 

of how these features could be incorporated into a new transformation system. 

This, therefore, enables the definition of objectives and criteria for the success of 

the research described here to be presented. 

36 
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3.2 Important Definitions 

Program transformation is a process which treats a program as an object in it­

self. Transforming a program will preserve some of its properties and alter others. 

While many choices can be made about what properties to preserve and alter, the 

workers in the transformation field have focused on altering the performance char­

acteristics of programs while preserving their semantics [17]. From this perspect­

ive, a program transformation system and a compiler are essentially equivalent; 

both translate a high-level program (specification) to a low-level, semantically-

equivalent implementation [80]. Transformation is more powerful, however, as it 

gives more flexibility, for example in the choice of the implementation of sets as 

lists, arrays, hash tables etc. The transformation system discussed in this thesis 

will be slightly different from conventional transformation systems in that, while 

the characteristic that is preserved is still the program's semantics, the aim is that 

the characteristic that changes is the program's comprehensibiHty, thus facilitating 

reverse engineering. 

There have been numerous different attempts at defining the terms used in trans­

formational programming. Partsch [152] gives some useful definitions: 

A program scheme is a representation of a class of related programs. 

Transformation rules are partial mappings from one program 

scheme to another, such that an element of the domain and its im­

age under mapping constitute a correct transformation. 

Transformational programming is a methodology of program con­

struction by successive applications of transformation rules. Trans­

formational programming is a "constructive approach". This con­

trasts, for example, with pure verification approaches, where the ques­

tion of how to obtain the program to be verified is ignored. 

A transformation system is an implemented system for supporting 

transformational programming. 
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Some alternative definitions for these terms have been given by Bauer [26] as 
follows: 

A transformation is the generation of a new piece of program from 

a given one. 

A transformation is said to be "correct" if the programs are semantic-

ally equivalent. 

A transformation rule is a mapping between sets of programs. In 

general such a mapping is a partial one, as it is only defined for par­

ticular kinds of programs. 

In this thesis the terms "program transformation" or just "transformation" will 

be used in place of the phrase "transformation rule" and will be defined thus: 

A program transformation is a change made to the text of a pro­

gram in such a way that the program's semantics remains unchanged.^ 

There has already been much research into transformational programming and 

this has resulted in a large number of experimental systems — see [152], [73] [192 

for surveys of these systems. 

In general, transformation systems can be classified in a number of ways [152 

151] as follows: 

• By their purpose; 

• By their transformation catalogue type; 

• By their method of expressing transformations; 

^It will be seen later that in extracting a specification, it may be necessary to change a 
program so that its semantics become less defined in a precise sense. 
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• By their level of automation; 

• By the language they transform; and 

• By their level of formality. 

3.3 Purposes of Transformation Systems 

Transformation systems fall roughly into two categories: those that use trans­

formations for some specific, limited, purpose and those that are general-purpose 

program manipulation tools. The former type is typified by the supercompiler. 

Supercompilers are defined as highly automated transformational 

programming systems that can translate high-level, mathematical, 

problem specifications into machine code for a variety of target com­

puters [148 . 

Specific examples of special-purpose transformation systems include SETL (see 

Appendix A . l ) [62], RAPTS (see Appendix A.2) [148], TAMPR (see Appendix 

A.3) [42] and the Restructurizer (see Appendix A.4) [7] [168]. While all these 

systems have proved successful to varying degrees in their own fields, they are 

not suitable, due to their specificity, either to general program development by 

transformation or to software maintenance, in particular to reverse engineering 

by transformation. 

In contrast to limited-domain transformation systems, a number of general-

purpose transformation systems have been devised, and some of these have been 

implemented. Notable general-purpose transformation systems include Burstall 

and DarHngton's Work (see Appendix A.5) [49], T I (see Appendix A.7) [18] and 

GIF (see Appendix A.10) [27]. The aim of these transformation systems is to allow 

the user to construct programs by transformation while the computer performs 

the clerical work of constructing the intermediate program versions. 
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Currently, some of these systems have been used in software maintenance, but 
mostly just to the extent that transformational developments can be replayed 
from slightly different starting conditions to produce alternative program ver­
sions. Systems that have been used in this way include the ZAP system (see 
Appendix A.6) [70] [71] [74] and DEDALUS (see Appendix A . l l ) [127]. Unfor­
tunately, no work has been undertaken on transforming existing code with these 
systems, rendering them of little use in the realm of legacy code. However, two 
pieces of work do seem applicable to reverse engineering: Kozaczynski's program 
transformation system (see Appendix A.13) [113] and Ward's work (see Appendix 
A.14) [177]. There are problems, though. Kozaczynski's system lacks a formal 
basis — a necessary requirement for a system which is to be used on code before 
its purpose is understood — and Ward's work only exists in the form of a number 
of theorems on program equivalence; no transformation system has been built on 
this work. 

3.4 Transformation Catalogues 

Most transformation systems rely on a predefined collection of rules (which may be 

expressed in various ways) describing how the program may be changed. There are 

two (not necessarily opposing) ways of constructing the collections of rules. The 

first method is the catalogue approach. Examples of this manner of working 

include T I (see Appendix A.7) [18] and PSI (see Appendix A.9) [87] [85] [86] [88 . 

A catalogue of transformation rules is a structured collection of trans­

formation rules relevant for a particular aspect of the development 

process [152 . 

In this approach there is a large set of transformations covering all aspects of 

program development. For example, there could be rules containing programming 

knowledge (such as how best to search an ordered tree), there could be rules about 

features of the language (such as how to remove recursion), there could be rules 
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relating to the programming domain (for example, the rules of arithmetic), and 
finally there could be rules about efficiency of implementation and choice of data 
structure. 

This approach, although powerful, has two drawbacks. First, the rules are fixed 

so if the system is used outside its perceived domain it becomes less suitable and, 

second, with such a large catalogue, finding the "best" transformation to apply 

at a particular point is relatively time consuming, especially if the programmer is 

unfamiliar with all the options at his disposal. 

The other method is the generative set approach. Examples of this catalogue 

style include Burstall and Darlington's work (see Appendix A.5) [49] and RAFTS 

(see Appendix A.2) [148]. In this approach there is a small set of powerful, pos­

sibly language-independent, elementary transformations from which others can be 

produced by combination. 

Compared with the catalogue approach, this method is much more flexible since 

transformations appropriate to the situation can be constructed by the program­

mer (who knows they will be "correct", in the sense that they preserve the se­

mantics, since the elementary transformations are correct). This advantage is 

also the approach's drawback since the programmer's effort is shifted on to trying 

to work out what sequence of very minor changes he needs to make in order to 

produce some desired large-scale effect. 

3.5 Methods of Expressing Transformations 

A transformation rule can be described in one of two ways: as an ordered pair 

of program schemes, the "input template" and the "output template" [26], or in 

the form of an algorithm, which takes a given program as input and produces an 

equivalent one as output — provided that the input program is in the domain of 

the rule (compilers behave this way). Of the former type, examples are TAMPR 

(see Appendix A.3) [41] and DEDALUS (see Appendix A.11) [127] [125]. Of the 

latter type, examples are the ZAP system (see Appendix A.6) [70] [71] [74] and 
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Hildum and Cohen's work (see Appendix A.12) [95]. 

Representing transformations in terms of input and output templates enables 

the correctness of the transformations to be checked easily. It also makes their 

purpose clear and reduces the amount of storage that each requires. However, 

it is clear that certain information, such as whether a variable is assigned in a 

particular section of code, cannot be represented in terms of patterns; or at least 

cannot be represented without adding greatly to the patterns' complexity. One 

means of tackling this problem, which has been adopted by CIP (see Appendix 

A. 10) [27], is to represent the transformations as input and output templates plus 

additional "semantic" predicates on the code being transformed. This method 

works well for simple transformations, but for more complex transformations, in 

particular those that require information about a part of the program other than 

the part that the transformation changes such as replacing a variable by its value, 

it becomes rather clumsy [155]. Thus, a system which represents transformations 

as algorithms seems more flexible, even if the expression of each transformation 

might be more difficult to construct, read and verify. 

3.6 Automation Level 

There are also different approaches to applying transformations. 

User responsible systems, such as T I (see Appendix A.7) [18] and CIP (see 

Appendix A.10) [27], make the user responsible for the selection of each and 

every transformation. In order to make these systems viable, it is necessary to 

have sufficiently high-level transformations such as "remove recursion" so that the 

programmer does not get unnecessarily involved with minor details. Hence this 

method is best suited to working with large-catalogue systems. 

Fully automatic systems, such as RAPTS (see Appendix A.2) [148] and 

TAMPR (see Appendix A.3) [42], are similar to very-high-level optimising com­

pilers in that they run unaided. These systems use heuristics, machine evaluation 

of different possibilities, back-tracking and other strategic devices to select trans-
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formations. However, any given system is only really applicable in a small domain. 
Another problem is exemplified by the SETL system (see Appendix A . l ) [163] [61]; 
although it has been used to deal with some complex problems it has required a 
great deal of informal reasoning which would be difficult to treat automatically in 
this, or indeed any, system. 

Semi-automatic systems, such as ZAP (see Appendix A.6) [70] [71] [74] and 

GLITTER (see Appendix A.8) [75], let the user set a medium range goal for the 

computer to perform automatically. A typical goal might be the removal of a loop 

or a change in data structure. These systems have the advantage that the user 

can make intuitive guesses (based on his programming knowledge) as to the best 

way forward, but leave the computer to do the actual mechanical manipulation 

of the program. 

3.7 Language to Transform 

There is also a choice in the language used for the systems. Some systems, such 

as SAFE (see Appendix A.7) [190], work only with specification languages which 

allow formal statements of problems but not their implementation. Others work 

with (sometimes specially designed) programming languages in which solutions 

can be formulated; examples include the Restructurizer (see Appendix A.4) [7 

168] which uses COBOL, and TAMPR (see Appendix A.3) [42] which uses 20 

language levels ranging from pure applicative LISP to FORTRAN. Still others 

systems are used to move between specification and programming languages and 

work in wide spectrum languages in which both specifications and programs may 

be expressed; examples include GIST (see Appendixes A.7 and A.8) [81] [19], CHI 

which uses a language called V (see Appendix A.9) [89] and the GIF project (see 

Appendix A.10) [27] which uses a language called GIP-L. 
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3.8 Formality 

For transformation systems to contain proven transformations it is necessary to 

have a mathematical formulation of the language that is being used. While some 

transformation systems, for example CIP (see Appendix A. 10) [153] [26] and 

Ward's work (see Appendix A.14) [177], do have a formal basis, most do not. 

Only those that have a formal basis are suitable for manipulating legacy code 

since even if the user has no understanding of the code that he is transforming, 

he would still want to be able manipulate it so as to be sure that his changes 

preserve the code's meaning. 

There are several ways to define the semantics of specification and programming 

languages, and hence to prove transformations. See [140] and [144] for surveys of 

the main methods for describing semantics. 

3.8.1 Semantics of Specification Languages 

There are three main approaches to the semantics of specifications: the state-

machine approach, the algebraic approach and the modelling approach. Each of 

them defines results in terms of underlying abstractions, usually associated with 

some known mathematical entity about which it is possible to reason with rigour. 

With the algebraic and state-machine approaches, the underlying abstraction is 

part of the approach; with the abstract model technique, it is chosen by the 

specifier [31]. The three approaches will be illustrated by means of a simple 

"push" operation onto a stack. 

The state-machine^ technique was first developed on an ad hoc basis and was 

subsequently formalised. The underlying abstractions of state machines are in­

tegers and Booleans, but these have been extended to include real numbers and 

character strings. A specification is a set of functions that specify transforma­

tions on inputs, and this set may be viewed either as defining the nature of an 

state is a mapping from a given set of components (i.e. variables) onto values. 
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abstract data type or as describing the behaviour of an abstract machine. A state-
machine specification is given in terms of states and transitions between states. 
Its functions are divided into two classes [31]: 

V-Functions — allow an element of a state to be observed but do not define 

any aspect of transitions. 

O-Functions — define transitions by means of effects. The effect of an 0-

function is to change a state; this is done by denoting a V-function and 

altering the value it will return. 

V-functions and 0-functions correspond to array variables and operations in a 

programming language, respectively, in that V-functions can be treated as map­

ping symbols (i.e. variables) onto values, and 0-functions modify the values to 

which V-functions map. V-functions can, therefore, readily describe any struc­

ture that resembles an array, list, tree, or constructs obtainable by the structuring 

facilities of languages such as PL/1 or COBOL [31]. 

The definition of a stack push would be: 

OFUN push(item) 

EFFECTS 'stack(depth) = item 

'depth = depth + 1 

While the state-machine approach has not been widely described in the literature, 

it is frequently used in practice as a result of its suitability for vahdation of security 

as is described by Berg et all [31]. There are, however, two severe drawbacks with 

this approach. The first is that specifications of non-array-based structures, for 

example algebraic formulae, rapidly become very complex. Also, the specification 

of exception definitions — that is error conditions — is very weak, since there is 

only really scope for a function to return an "exception number". 

SPECIAL [92] is an example of a state-machine specification language. 

Algebraic specifications are based on a concept of defining abstract data types 

which is called algebraic. A data type is characterised by one or more sets of 
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values and the operations that are allowed on the values [79]. As an example, 
while stacks and queues of integers both correspond to sets of integers, they are 
different data types since different operations are allowed on them. The technique 
is called "algebraic" because the values and functions of a specification can be 
viewed as forming an abstract algebra.^ Algebraic specification languages also 
assume built-in functions such as If-Then-Else and boolean operators. Functions, 
which are mathematical functions in that they may not have side effects, are 
defined in algebraic specifications by stating their relation to one another. 

It is not possible to define a stack push in isolation from the other stack operations. 

The definition of a stack would include algebraic equations such as: 

pop (push (stack, item)) = stack 

together with typing information, which in this case would indicate that "pop" is 

function which maps stacks to stacks. 

While they express simple objects well, algebraic specifications share the problem 

of exception definitions. Another problem with algebraic specifications is the 

number of hidden or auxiliary functions (i.e. functions which preserve certain 

internal values between function calls) required to specify even simple objects. 

Algebraic specifications are also difficult to read; Berg et al give an example of 

two specifications, one of a bag and one of a set, which differ only very sHghtly in 

one line (of nineteen) [31] making it difficult to distinguish between them. Finally, 

limiting functions to those which cannot have side effects makes it impossible to 

specify a stack "top" statement which returns the top value of a stack and has 

the side effect of popping a value off the stack. 

CLEAR [50] and OBJ [84] are examples of algebraic specification languages. 

Model-based specifications were developed by Hoare [96] as part of a unified 

technique for the specification and verification of abstract data types. It is also 

known as the predicate transform method. 

^Abstract algebra is concerned with general mathematical structures which have analogues 
of the arithmetical operations; for example, Booleans, groups, matrices and vectors. 
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A model-based specification is a description of a software system presented in 
terms of a particular state space, together with a collection of operations and 
functions which act upon it [136]. Preconditions and postconditions are used to 
indicate under what conditions given functions are valid, and what results they 
give under those conditions. Functions are defined in terms of an underlying 
abstraction (or model) that is defined by the specifier. An abstract model has 
no intrinsic meaning, but rather its meaning depends on the selected underlying 
abstraction, and so for a model-based specification to be useful an appropriate 
underlying abstraction must be chosen. Thus, this abstraction can be anything 
about which it is possible to reason formally but is generally carefully chosen to 
be an appropriate abstraction of some commonly-arising, well-defined computer-
oriented concept (such as sets, sequences, Cartesian products and various forms 
of relation). 

As an example, a bounded integer stack would be defined by using, as the un­

derlying abstraction, a sequence, which in turn would be defined algebraically. 

(Algebraic specifications express the behaviour of simple objects very well.) The 

stack definition would include the following lines: 

FUNCTIONS push(item: integer) 

PRE 0 < length(stack) < (maxJength - 1) 

POST 'stack = append(stack, item) 

Two factors affect the appropriateness of a given abstract model: whether the 

function to be specified can be expressed in the precondition/postcondition 

format, and whether the chosen underlying abstraction permits a "clean" spe­

cification of the desired functions. Assuming that a good underlying abstraction 

is chosen, the only drawback to this approach is that the implementor of the spe­

cification may be swayed in his choice of data representation by the underlying 

abstraction used in the specification. 

Z [170] and V D M [103] [94] are examples of model-based specification languages. 

Berg et al [31] examine these different technique in detail, giving certain basic 

requirements that an adequate specification language should satisfy. Model-based 
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specifications have the fewest disadvantages (provided suitable abstractions are 
chosen) and appear to have the greatest potential for writing clear and concise 
specifications. It should be noted, however, that these different methods have 
been shown to be equivalent. 

3.8.2 Semantics of Programming Languages 

Just as there are a number of ways of specifying the semantics of a specification, 

so there are different ways to specify the semantics of a program; however, not all 

of these are conducive to the production of a useful transformation system. The 

most important methods of expressing the semantics of a programming language 

are operational semantics, axiomatic semantics and denotational semantics. 

The semantics of a programming language can be defined via a hypothetical, or 

abstract, machine* which interprets the programs of that language; such methods 

have been called operational semantics [35]. The semantics of a construct is 

specified by the computation it induces when it is executed on such a machine. 

In particular, it is of interest how the effect of a computation is produced [144]. 

The machine performs a mapping of initial internal states to final states by car­

rying out a sequence of these primitive operations (each producing a new internal 

state). The whole sequence of such states corresponds to the execution of the 

program. It is assumed that the state space and operations defining the primitive 

abstract machine are so simple that their meaning or effect cannot possibly be 

misunderstood. Nevertheless, the operations of the abstract machine must still be 

defined formally, leading to the potential for infinite regress unless the abstract 

machine is defined in some other way. 

Two programs are equivalent according to their operational semantics if they lead 

to the same sequence of operations performed by the primitive abstract machine. 

Thus, the operational approach characterises the actual effect of program exe­

cution by relating it to executions at a separate, more primitive, level. More 

*An abstract machine is defined by a pair consisting of a state and a set of operations for 
effecting state changes. 
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importantly, however, the operational approach defines the semantics of a pro­
gram for each specific computation of that program, rather than for the class of 
all computations that it can perform [31]. Thus, proving that two programs have 
the same operational semantics necessitates considering every possible execution 
of the program. Linked to this is a more fundamental drawback to operational 
semantics when working with program transformations. While it can be eas­
ily seen, for example, that recursive and iterative versions of the same program 
give identical results with identical input, they lead to completely different se­
quences of internal operations. Thus they have different operational semantics 
and a transformation from one to the other would not be semantic-preserving in 
the operational sense. 

The axiomatic method views the definition of programming languages^ from an­

other perspective: a language's semantics as a theory of the programs written in 

that language [140]. It does not try to ascertain what a program means, but only 

what may be proved about i t . This is achieved by associating the semantics of 

programming language constructs (and, hence, programs) with logical assertions 

of two kinds. The first assertion is assumed true prior to execution of a program­

ming language construct. From it , and from the nature of the language construct, 

a second assertion that is true after the execution of the construct is derived. 

The pair of assertions thus characterises legitimate input and output states of the 

construct and, thus, it is possible to define implicitly the semantics of a program­

ming language by a collection of axioms (derived from the assertions) and rules of 

inference (which are usually taken from mathematical logic) [35]. These aocioms 

and rules of inference permit the proof of properties of programs, in particular 

that a given program is correct and that it realises a given input/output relation. 

To do this a notation is introduced as follows: 

{ P } S {Q} 

where P and Q are logical propositions relating to the variables of the program 

and 5" is a statement. This has the meaning: if P is true before execution of 5* and 

^The most notable example of this kind of language definition is Hoare and Wirth's definition 
of PASCAL [99]. 
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S terminates, then Q will be true afterwards. Hence, P is called the precondition 
and Q is called the postcondition. 

To prove the correctness of a program given an initial condition and a final con­

dition, for example, 

{ P } S , ; S2; ...•,S^{Q} 

it is necessary to introduce suitable propositional formulae between all the state­

ments. This is done by finding a condition P„ which, if it is true before the 

execution of Sn, will yield Q. From this it is possible to find P„_i in a similar 

way, and so on, until the program 

{ P } { P i } 5i { P 2 } 5-2 ... {P„} 5„ {Q} 

is obtained. This is known as a proof tableau [14]. Al l that then remains to be 

done is to prove 

{P} {Pi}-

Using this notation, axioms can be introduced by using axiom schemas [35] [133 

and these axioms allow facts about program statements, and indeed whole pro­

grams, to be proved. However, the axiom schemas soon become very complex. 

For example, a section of code with a single label, L, in it preceded by some 

statements, ^ i , followed by some more statements, ^2 and with a jump (Goto) to 

the label would have the axiom 

{Q} Goto L {false} h {P} {Q} , {Q} Goto L {false} h {Q} S2 {R} 
{ P } S,; L; S2 {R} 

Already, the formulae are getting rather complex, and the formula for something 

such as 

If B Then Goto Li Else Goto L2 Fi 

although it could be written and proved, would be too hard to deal with in 

practice. 

Program derivations (and transformations) within the cixiomatic theoretical 
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framework give rise to a very large number of proof obligations, since at each 
transformation stage the correctness of the new implementation must be proved 
against the previous implementation by proving all the required properties [179 . 
Large programs may require over one hundred proofs [179] and in general few, if 
any, of these proofs are likely to be rigorously carried out. So, what this amounts 
to is a formal method of program specification and an informal development 
method. 

Another disadvantage of axiomatic semantics is the fact that while assertions 

about programs can be derived, it is not always clear that these are the most useful 

such assertions. An example of this is the requirement that loop invariants be 

determined in order to prove facts about loops; it is difficult to ascertain whether 

these invariants are the most efficacious. In general, the axiomatic approach can 

be used to reason about certain aspects of programs but not to express their 

meaning. 

Denotational semantics is concerned with the effect of executing a program, 

where the effect is an association between initial and final states [144]. Thus, the 

aim in defining the denotational semantics of a given language is to associate a 

suitable mathematical object (number, set, function etc.) with each construct of 

the language. The semantics of the constructs are defined by so-called semantic 

valuation functions which map the constructs to suitable objects, or denotations, 

that they denote. Although any object can be associated with each programming 

language construct the language, it is most convenient to choose representations 

that use objects of standard mathematical domains since these can be reasoned 

about formally. Careful choice of representation can greatly simplify the specific­

ation of operations [121 . 

The semantics of the statements in a simple language containing assignments, 

Skip statements. If statements and While loops could be denoted by the semantic 

valuation functions shown in Figure 3.1 [144]. Here S^s, A and B are the semantic 

valuation functions of statements, expressions and Booleans, respectively. s[x (-> 

.4 |a]5] is the state s with the value for x replaced by the semantic valuation of a 

with the values of variables in a taken from s. cond is an auxiliary function which 



Chapter 3: Program Transformation Systems 52 

= s[x ^W-S] 

= id 

SdASi; S2j = SdslS2l 0 SdslSll 

Sdsili B Then Else ^2 Fi l = condiBlbj, S,,lS^l S,,lS2j) 

5d,|While 5 Do 5 Od] = FIX F 
where F g = cond(B|6I, g o SdsfSj, id) 

Figure 3.1: The Denotational Semantics of a Simple Language 

has the definition: 

{ gi s a p s = true 

g2 s n p s = false 

Defining the semantics of the While loop is a more major task since the loop could 

execute any number of times. The definition makes use of a fixed point of the 

functional F. 

While the semantic definition in this example if quite straight-forward, increasing 

the complexity of the language causes a corresponding increase in the denotational 

semantics. For example, the introduction of local variables necessitates the use 

of an "environment" in place of a state, and the introduction of Goto statements 

requires the use of "continuations" [144]. In each case, these complications must 

be added to every language construct, making the definition of the simplest as 

complicated as the most complex [177]. 

The denotational approach to semantic definition makes it possible to talk about 

programming language constructs and program equality in the sense that two 

constructs or programs are equal if they both have the same denotation. With 

the notation of Figure 3.1, Si and ^2 are semantically equivalent if and only if 

144]: 

SdslSij = SdAS2} 
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Proving that two programs are equal is equivalent to a mathematical proof that 
two given mathematical objects are the same. For this the ful l battery of proven 
mathematical techniques can be used; however, even then it is possible that the 
equivalence may be "undecidable" in that it cannot be proved to be either true 
or false. 

These three approaches are similar in that they all map a program into a state 

space for that program. With operational semantics that state space is a more 

primitive abstract machine and the mapping is by way of implicit definition. This 

has few advantages and several disadvantages which relate to the fact that the 

semantics really only define a particular execution of the program. 

With axiomatic semantics the state space is the set of formulae of mathematical 

logic and logical deduction is used to show program equivalence. While this 

approach has many advantages for program verification — notably that there is a 

consistent method of constructing proof obligations and then demonstrating their 

correctness — these proof obligations quickly become very complex and unwieldy, 

making the approach less straight-forward in practice. 

With denotational semantics the state space consists of the mathematical ob­

jects associated with the programming language constructs, and the mapping is 

by way of semantic evaluation. This approach has not been widely used for pro­

gram verification, since manipulating general mathematical objects is harder than 

manipulating formulae of logic. However, for defining a language suitable for pro­

gram transformation, the ability to demonstrate program equivalence is the central 

concern, and denotational semantics provides this in a straightforward manner. 

Moreover, the use of denotational semantics would be greatly simphfied if it could 

be defined without recourse to "tricks" such as the use of "continuations". 

3.9 Summary 

The transformation systems considered in this thesis (see Appendix A for specific 

details) are summarised in Table 3.1. 



Chapter 3: Program Transformation Systems 54 

Name of 
System 

Level of 
Applicability 

Catalogue Automatic or 
User-Driven 

Language Formal? 

S E T L Spec. —» Code N/A Automatic Very-High-Level No 

RAPTS Spec. —• Code Small Automatic Specification Yes 

TAMPR Code —• Code Small Automatic LISP FORTRAN 
-|- Intermediates 

Yes 

Restructurizer Code —• Code Small Automatic COBOL 
-I- Intermediate 

No 

ZAP Code —* Code Small Mostly 
Automatic 

LISP Yes 

SAFE Informal Spec. —» 
Formal Spec. 

N/A Automatic Specification No 

T I Spec. —» Code User-
Extensible 

User Driven Wide Spectrum No 

G L I T T E R Spec. —» Code User-
Extensible 

Semi-
Automatic 

Wide Spectrum No 

PSI Dialogue —» Code Large User Driven Standcird 
Languages 

No 

CHI Dialogue —* Code Large User Driven Wide Spectrum No 

CIP Spec. —* Code Large User Driven Wide Spectrum Yes 

DEDALUS Spec. —* Code Large User Driven LISP No 

Hildmn and 
Cohen's Work 

Code —> Code User-
Constructed 

N/A User-
Dependent 

No 

Kozaczynski's 
Work 

Code —* Spec. User-
Constructed 

Automatic COBOL No 

Ward's work Spec. *-> Code Large User Driven Wide Spectrtun Yes 

Figure 3.2: A Summary of Transformation Systems 
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3.10 In what ways have existing transformation 
systems been successful? 

There are several distinct advantages to software development by formal^ trans­

formation [27]: 

• The final program can be relied on to be correct (according to the initial 

specification) by construction (since each stage in the development follows 

from the previous one in a provably correct manner), provided that the 

transformation system being used has a sound theoretical foundation; 

• Transformations can be described by semantic rules and can thus be used 

for a whole class of problems and situations; 

• Due to formality, the whole process of program development can be suppor­

ted by the computer. (A significant part of transformational programming 

involves the use of a large number of small changes to be made to the code. 

Performing such changes by hand would almost invariably introduce clerical 

errors and the situation would be no better than the original ad hoc meth­

ods. However, such clerical work is ideally suited to automation, allowing 

the computer itseH to carry out the monotonous part of the work and the 

programmer to concentrate on the actual design decisions.); and 

• The overall program structure is no longer fixed throughout the develop­

ment, so the approach is quite flexible. 

There are potential advantages, too, in the use of program transformations for 

software maintenance. These are mainly related to the fact that, just as it is 

possible formally to produce a program from a specification, so a specification 

produced by transformation from existing code would provably be correct. How­

ever, in general it remains an open question as to whether an existing program 

^Transformation systems whose transformations are not proven to be semantic preserving 
may, by chance, produce correct programs. Goldberg [80] argues that a transformation need 
not be formally proven since extensive use of that transformation improves the confidence in its 
correctness. This, however, is still no substitute for a proof. 
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which either had no formal specification originally, or which has been heavily 
modified, has a concise specification. The advantages are summarised by Yang 
193] as follows: 

• Increased reliability: errors and inconsistencies are easier to identify at a 

high level of abstraction; 

• Formal links between the specification and the code can be maintained; 

• Maintenance can be carried out at the specification level; 

• Large restructuring changes can be made to the program with confidence 

that the program's functionality is unchanged; 

• Programs can be incrementally improved — instead of being incrementally 

degraded; and 

• Data structures and the implementations of abstract data types can be 

changed easily. 

3.11 In what ways have existing transformation 

systems failed? 

The disadvantages to using transformation systems are as follows: 

• Users of transformation systems need a considerable amount of training 

to become proficient at using the system. A novice might be able imme­

diately to apply transformations to the code, but it would not always be 

clear whether the transformations being applied were improving the code 

(according to some measure such as efficiency or comprehensibility); 

• Although transformations can be used to restructure unstructured code with 

little difficulty, i t is not clear how they could be used to cross levels of 

abstraction in the most "meaningful" way when used for maintenance. For 
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example, an array could have been used to implement any of a variety of 
abstract data types such as sets, trees or tuples; 

• Most transformation systems rely on simpUfication "rules" such as how to 

rearrange a mathematical formula. The implementation of such rules is an 

area which needs addressing in more depth; 

• Few systems have been shown to work with industrial-scale programs; 

• For an effective tool, the correctness of the implementation of the transform­

ations themselves needs to be verified. This is a practical, as opposed to a 

theoretical, Hmitation and in the long term it could even be an advantage 

since the transformations' correctness only needs to be checked once; and 

• From a technical point of view, there is still no satisfactory way of obtaining 

non-local information about a program being transformed — i.e. information 

outside the transformation's pattern — such as the definition of a proced­

ure. This reflects the limitations of a purely pattern-based transformation 

system. 

The research described in this thesis will involve the construction of a transform­

ation system which will act as a framework in which solutions to these problems 

can be investigated. 

3.12 Why are transformation systems not more 

widely used? 

Although program transformations are widely used in limited domains, such as in 

optimising compilers, there has been no wide-spread adoption of transformation 

systems for either software development or maintenance. In addition to the above 

failures, there are also additional factors which have prevented the widespread 

adoption of transformational programming. 
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3.12.1 Applicability 

The first set of factors relate to the applicability of program transformations: 

• Formal specification is not widely used so there is little call for a system 

which can produce code from specifications, or vice versa; 

• Existing systems usually only work on toy problems and have not generally 

been shown to scale up; 

• Existing systems are only of use in a limited domain or with particular 

programming languages which are not used in traditional applications; and 

• Existing systems do not address maintenance. 

3.12.2 Usability 

The second set of factors relate to the usability of program transformation systems: 

• There is usually a need to become familiar with mathematical methods in 

order to use the tools; 

• It is possible that there are no formal proofs of the transformations, so Httle 

confidence may be placed in them; 

• There are few simple user interfaces; and 

• Change is required in the software process and programmer mentality in 

order to make use of the systems. 

These points are summarised by Ould: the challenge for tool developers is to find 

better ways of disguising the formality, so that the user need not have impractical 

amounts of formal methods skills [146 . 
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3.13 What can be learned from existing trans­
formation systems? 

The transformation systems surveyed vary widely in their aims — at one end of 

the spectrum are systems such as SETL and TAMPR which use transformations 

to achieve some other goal, and at the other are systems like CIP whose purpose 

is to allow programs to be developed solely using transformations. In terms of 

success, the systems also vary greatly from DEDALUS which has only been used 

on extremely simple examples through to ZAP, for example, which has been used 

in the development of a small compiler. Nevertheless, all the examples tend to be 

either small and algorithmically based with little emphasis on data complexity, or 

large programs with a simple structure. 

Most existing transformation systems are designed to transform from specific­

ations to programs and do not attempt to address the issues of maintenance. 

Those that do either require that the program being maintained was developed 

with the same system, or else do little more than simple restructuring. Only ZAP, 

DEDALUS, Kozaczynski's work and Ward's work showing any promise here. The 

systems do show that there have been enough small-scale successes to make this 

a path which is worth following further. 

3.14 Conclusions 

From the survey of the existing transformation systems it seems as if the most 

valuable system would be one which works on a wide spectrum language, uses 

formally proven transformations based on denotational semantics, has a large but 

easily accessed catalogue of rules and which provides a high degree of automation, 

but which nevertheless works interactively to allow for intelligent guidance by the 

user. Although CIP comes closest to the above requirements, it is hampered 

by being based on algebraic semantics (which makes i t necessary to construct 

additional mental models in order to understand the abstract types in the pro-
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gram), by having an applicative kernel (which makes it poorly suited to modehng 
real-world programs) and by the problem with non-local information (which ne­
cessitates storing the definitions of procedures at every point in the program). 
Provided that the transformations were expressed in a suitable form. Ward's ap­
proach could overcome all these drawbacks. 

The rest of this thesis will , therefore, focus on the design of a transformation 

system to exploit Ward's work. In order to address the weaknesses of existing 

systems, the new system must: 

• Be easy to use within some clearly defined method; 

• Be able to perform large restructuring changes; 

• Be applicable to all aspects of software maintenance and reverse engineering, 

including the task of crossing levels of abstraction; 

• Be applicable to real programs; 

• Incorporate a sufficiently powerful subsystem for performing mathematical 

manipulations; 

• Be able to obtain non-local information about the program being trans­

formed; and 

• Be correctly implemented. 



Chapter 4 

The Area of Research 

4.1 Introduction 

As was put forward at the end of the previous chapter, Ward's methods of proving 

refinements and transformations of programs [177] is a comprehensive theory. 

However, it also has the potential advantage that it is applicable to all stages of 

the software life cycle including that area in which transformation systems have 

traditionally been weak: maintenance. Thus, a computer-based, semi-automated 

transformation system founded on Ward's theorems would not only be a powerful 

system, but would also be widely apphcable. 

The area of research that will be addressed in this thesis, therefore, is concerned 

with some of the specific problems which relate to the construction of such a trans­

formation system. This system will be applicable primarily to software mainten­

ance, in particular reverse engineering. 

61 
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4.2 A More Detailed Look at Ward's Work 

The Wide Spectrum Language (WSL) which is used in Ward's^ transformation 

system was originally designed to simplify proofs of program equivalence. It is 

based on a core kernel language with denotational semantics and a model-based 

theory of semantic equivalence. Extensions to this language are defined in terms 

of the basic constructs. The kernel is not purely applicative, but includes the 

concept of a state, unlike CIP [27], so that imperative programs can be operated 

on, by means of Back's [12] atomic description construct {xjy • Q) which will 

be explained in the next section. In order for this approach to be appUcable 

to maintenance, WSL must be able to represent existing programs which are 

generally^ written in imperative languages such as COBOL, FORTRAN and C. 

Thus, the use of an imperative, as opposed to a functional, kernel means that 

WSL and its associated transformations are potentially suitable for this purpose. 

In addition, specifications, expressed in terms of first order infinitary^ logic, may 

be included in WSL, making it genuinely "wide spectrum". 

4.2.1 The Kernel Language 

The kernel language has two primitive statements: the atomic specification and 

the guard statement. The atomic specification is based on Back's atomic descrip­

tion [12]; it is written x/y • where Q is a formula of first order infinitary logic 

(with equality) and x and y are sets of variables. Its efi'ect is to add the variables 

in X to the state space, assign new values to them such that Q is satisfied, remove 

the variables in y from the state"* and terminate. For example, the statement 

{x, y)/{) • X -\- y = 10 sets the variables x and y to arbitrary values such that their 

sum is ten. 

^Much of this section is taken from Ward's thesis [177] and [180]. 
^Pure LISP is the major exception, but most LISP programs use impure extensions. 
^Infinitary logic allows formulae which consist of the conjunction or disjunction of (countably) 

infinitely many terms. The reason for using infinitary logic will be explained later. 
^In his new language [13], Back does not include the concept of removing variables from the 

state space. 
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The guard statement is written [P], where P is a formula of first order infinitary 
logic. The statement [P] always terminates and it forces P to be true at this 
point in the program without changing the values of any variables. In effect it 
restricts previous nondeterminism to those cases which leave P true at this point. 
Guard statements provide a useful means for defining extensions to the kernel and 
a useful theoretical tool for reasoning about programs, but they cannot be directly 
implemented^. (More examples of the use of the kernel language are given in the 
section on defining WSL by means of transformational extensions.) 

There are three ways of combining statements in the kernel language: 

1. SequenticJ Composition: ( ^ i ; S2) 

First 5*1 is executed followed by ̂ 2. 

2. Choice: ( ^ i • ^2) 

One of the statements Si or 2̂ is chosen, nondeterministically, for execution. 

3. Recursive Procedure (fiX • S) 

Within the body S, occurrences of the statement variable X represent re­

cursive calls to the procedure. 

Although the kernel language is elegant and tractable, it is too primitive to form a 

^Later work by Ward [180] [182] uses a modified kernel language with four primitive state­
ments. Let P be any formulae and x and y be any non-empty sequences of variables. The four 
primitive statements are: 

1. {P} is an assertion statement which acts as a partial Skip. If the formula P is true, then 
then statement terminates immediately without changing any variables; 

2. [P] is a guard statement, as before; 

3. add(^x) add the variables x to the state space (if they are not already present) and assigns 
arbitrary values to them; 

4. remove{y) removes the variables y from the state space (if they are present). 

There is an elegant duality between the assertion and guard, and between the add and remove 
statements. 

This formulation of the kernel language is equivalent to Ward's original formulation. In 
particular, Back's atomic description is equivalent to the sequence: 

3x • Q; add{x); [Q]; remove{y) 
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useful language for constructing "real" programs and needs to be extended. This 
is achieved by defining new constructs in terms of the existing ones by means of 
definitional transformations. 

4.2.2 Extending W S L by means of Definitional Trans­

formations 

WSL is built up from the kernel in stages, or levels, so as to provide similar con­

structs to conventional languages (i.e. conditions, loops, local variable structures, 

expressions and conditions with side effects, and so on). Each level is defined in 

terms of the previous level. In this way, each new level inherits all the trans­

formations of the previous levels and transformations are proved by appealing 

to the definitional transformation of the construct and carrying out the actual 

manipulations in the previous level of language. 

Before describing the language extensions, it is worth pointing out that all levels 

of WSL can use expressions and logical formulae. These include variable names 

(which are composed of alphanumeric characters together with a few extra symbols 

such as " - " ) , numbers (which are treated in the mathematical sense, i.e. they 

have arbitrary size and precision), strings (which are arbitrarily long sequences of 

ASCII characters), sequences (which may contain elements of any type). Boolean 

constants and the ful l complement of mathematical operations for manipulating 

them. 

The first-level language extension definitions are given in the following sections. 

(The symbol " = D P " is read as "is defined as".) 

Sequential Composition 

The sequencing operator is associative, so the brackets can be removed: 

Si; S2; S3; ...; Sn = D P (• • • ((-S*!; S2); S3); ...; Sn) 
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Assertion 

An assertion statement is a partial Skip statement; i.e. it takes a condition and 

does nothing if the the condition is true, and aborts if it is false. Thus, an Assert 

statement gives information about the context in which it occurs, making it easier 

to transformation that part of the program. An Assert statement is defined as 

follows: 

{B} = .p ()/() • B 

Deterministic Choice 

Guards can be used to turn nondeterministic choice into deterministic choice^: 

If B Then 5i Else 2̂ Fi = D P {{[B]; 5 I ) n ( [ - 5 ] ; ^2)) 

Assignment 

A general assignment can be expressed as follows: 

x:=x'-Q = D P {x'/{) • Q); {x/x' • {x = x')) 

Here a; is a sequence of variables and x' is a sequence of new variables. The formula 

Q expresses the relation between the initial values of x and the final values. For 

example, (n) := (n') • (n' = n -|- 1) increments the value of the variable n and is 

defined as: 

((n ') /()-(n ' = n ' + l ) ) ; ((n)/(n') • (n = n')) 

^In the LISP-like form of WSL, which will be described later in this thesis, deterministic 
choice statements have the type "Cond". 
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Simple Assignment 

If e is a list of expressions, a; is a list of variables and x' a list of new variable, 

then 

X I — 6 ~ D P * ~~ ^ ) 

With this notation, the statement to increment n can be written: n:=n-t-l. 

Nondeterministic Choice 

WSL includes a version of Dijkstra's guarded command [64]: 

If Bx 5 i D 5 2 ^82^... a ^ n ^ 5„ Fi 

= D P 

( ( ( . . . (([5i]; 5 ' i )n([52]; 52)) n . . . ) n ( [5„]; 5„)) n 

( [ - ( 5 i V 52 V . . . V 5 „ ) ] ; Abort)) 

Deterministic Iteration 

A While loop is defined using a new recursive procedure X which does not occur 

free in S: 

While B Do 5i Od =DP ( / i X • (([5]; 5; X ) n \-^B\)) 

Nondeterministic Iteration 

Nondeterministic iteration is similar to nondeterministic choice: 

Do Bx SxOB2 ^82^... Sn Od 

While ( S i V B2 V . . . V 5 „ ) Do 

If Bi S1UB2 -^82^... ^ S'n Fi Od 
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which can be expanded using the rules above. 

Initialised Local Variables 

Initialised local variables are introduced with the WSL Var construct which is 

defined as follows: 
Var I := i : S End 

m ) • = m S; mx) • True) 

Unbounded Loops with Exit Statements 

One of the most powerful programming language statements in WSL is the Exit 

statement, which takes the form Exit(n) where n is an integer (not a variable), and 

which can only occur within loops of the form Do S Od where S is a statement.^ 

These were described in [110]. They are "infinite" or "unbounded" loops which 

can only be terminated by the execution of a statement of the form Exit(n) which 

causes the termination of n enclosing loops. These statements are disallowed from 

terminating blocks and loops other than unbounded loops. 

Previously the only formal treatments of Exit statements have dealt with them 

in the same way as unstructured Goto statements by adding "continuations" to 

the denotational semantics of all the other statements. This adds greatly to 

the complexity of the semantics and also means that all the results of program 

equivalence prior to this modification have to be re-proved with respect to the 

new semantics. The approach taken by Ward [177] is to express every program 

which uses Exit statements in terms of the kernel language. This means that the 

new statements do not change the denotational semantics of the kernel so all the 

transformations developed without reference to Exit statements still apply. The 

interpretation of these statements in terms of the kernel language is as follows: 

'''In the LISP-like form of WSL, which will be described later in this thesis, unbounded loops 
have the type "Loop". 
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An integer variable depth records the current depth of nesting of loops. At the be­
ginning of the program there is the assignment depth :=0. Each statement Exit(k) 
is translated as depth:=depth-k since it changes the depth of the "current exe­
cution" by moving out of k enclosing loops. To prevent any more statements at 
the current depth being executed after an Exit statement has been executed all 
statements are surrounded by "guards" which are If statements which test depth 
and only allow the statement to be executed if depth has the correct value. Each 
unbounded loop Do S Od is translated as: 

depth:=n; While depth=n Do guardn{8) Od 

where n is an integer constant representing the depth of the loop and guardn{8) 

is the statement S with each component statement guarded so that if the depth is 

changed by an Exit statement then no more statements in the loop are executed 

and the loop terminates. Formally, guardn{8) is defined by induction on the 

structure of S. For example: 

guardn{8i; 82) = D P guardn(8i); guard„{82) 

guardn{8i f l 5*2) = D P guardn{8\) • guardn(82) 

guardn{Ex.\t{k)) = D P If depth=n Then depth:=depth-k Fi 

The rest of the definitions are given in [177]. The important property of a guarded 

statement is that it will only be executed if depth has the correct value. Thus 

{depthyi^n}; guardn{8) is equivalent to a Skip statement. 

Action Systems 

An action system is a set of parameterless mutually recursive procedures [9] [8]. A 

program written using labels and jumps translates directly into an action system, 

with the statements following each label forming one action. If the end of the 

body of an action is reached, then control is passed back to the action which 

called it (or to the statement following the action system) rather than "faUing 
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through" to the next label. The exception is a special action referred to as the 
terminating action, Z, which when called results in the termination of the whole 
action system. 

Action systems are defined in a similar manner to unbounded loops with Exit 

statements in that they are expressed using the kernel language. 

An action is regular if every execution of the action leads to an action call, and 

an action system is regular if every action is regular. Any algorithm defined by 

a flowchart or program which contains labels and Gotos but no procedure calls in 

terminal positions, can be expressed as a regular action system. 

Other W S L Constructs 

WSL also has other constructs which are listed in the table in Appendix B. Among 

them are the following: 

• Counted iteration; 

• Procedure calls; 

• Blocks with local procedures; and 

• Expressions and conditions with side effects. 

4.2.3 Proving Transformations 

A program 5 is a piece of formal text, i.e. a sequence of formal symbols. There 

are two ways in which Ward gives meaning to these texts (see for example [177 

and [184]): 

1. Given a structure M for the logical language £ from which the programs 

are constructed, and a final state space (from which a suitable initial space 

can be constructed), the program can be interpreted as a function / (i.e. a 
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state transformation) which maps each initial state s to the set of possible 
final states for s. Thus, a program can be interpreted as a function from 
structures to state transformations; 

2. Given any formula of logic R (which represents a condition on the final 

state), it is possible to construct a formula of first order infinitary^ logic 

WF{S,R). This is known as the weakest precondition of S on R and is the 

weakest condition on the initial state such that the program S is guaranteed 

to terminate in a state satisfying R, provided it started in a state satisfying 

W?{S,R). 

From these two methods of the interpretation of programs, two corresponding 

methods of refinement arise: semantic refinement and proof-theoretic refinement. 

Semantic Refinement 

A state is a collection of variables (the state space) with values assigned to them; 

thus a state is a function which maps from a (finite, non-empty) set V of variables 

to a set V of values. There is a special extra state _L which is used to represent 

non-termination or error conditions. A state transformation / maps each initial 

state s in one state space, to a set of possible final states f(s) which may be a 

different state space.̂  If ± is in f{s) then so is every other state, also /(-L) is the 

set of all states (including ± ) . 

Semantic refinement is defined in terms of these state transformations. A state 

transformation / is a refinement of a state transformation g if they have the same 

initial and final state spaces and f{s) C g(s) for every initial state s. If ± € g{s) 

for some s, then f(s) can be anything at all. Thus, an "undefined" program can 

be refined to do anything at all. If / is a refinement of g {g is refined by / ) then 

®Using infinitary logic permits a simple definition of the weakest precondition of any state­
ment, including an arbitrary loop, for any postcondition. 

^If / ( s ) is empty then the state transformation is null on s; the program still terminates even 
though the set of possible final states is empty. Such a program is known as a miracle since 
every final state satisfies any predicate, including false. It is the exact opposite of Abort in that 
it refines everything and is only refined by itself. Thus, null satisfies every specification. 
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this is written: g < f . 

A structure for a logical language C consists of a set of values, plus a mapping 

between constant symbols, functions and relation symbols of C and elements, 

functions and relations on the set of values. A model for a set of sentences (i.e. 

logical formulae with no free variables) is a structure for the language such that 

each of the sentences is interpreted as true. 

If the interpretation of statement 5"! under the structure M is refined by the 

interpretation of statement S2 under the same structure, then this is written as 

Si < M 5*2. If this is true for every model of a countable set A of sentences of C 

then this is denoted by A |= < 5'2. 

Proof-Theoretic Refinement 

Given two statements Si and S2 and a formula R, then it is possible to construct 

two formulae WP(5i,i2) and WP(52,i2). If there exists a proof of the formula 

WF{Si,R) =^ WP(5'2,i2) using the set A of assumptions, then this is written A h 

WP{Si,R) WP{S2,R). For S2 to be a refinement of Si, this result has to hold 

for every formula R. This involves quantification over R (and is thus a statement 

of second order logic), but the quantification over R can be avoided by extending 

the language C by adding a new relation symbol G(w), where to is a list of all 

free variables in and S2, to give a new language C. If it can be proved that 

A h WP{Si,'G{w)) WF{S2,G(w)) then the proof makes no assumptions about 

G{w) and, therefore, remains valid when G(w) is replaced by any other formula. 

This is written: A h S*! < ^2. 

The weakest preconditions of the kernel language is given by the set of formulae 

in Figure 4.1. Note that the weakest precondition of the atomic specification 

statement makes no reference to the removed variables, y, since these can have 

any values whatsoever before they are removed. 
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W P ( x / y Q , i 2 ) = {3x • Q A^x • (Q ^ R)) 

WF{[P],R) = P=> R 

WP((5i; 52), i?) = WP{Si,WF{S2,R)) 

WFiiS,nS2),R) = W'P{Si,R)AWF{S2,R) 

W?{{ixX • S),R) = V n < u , W P ( ( / . X - 5 ) " , i 2 ) 

Figure 4.1: The Weakest Preconditions of WSL's Kernel Language 

Equivalence of Refinement Methods 

A fundamental result proved by Ward [176] [182] is that these two methods of 

defining refinement are equivalents^, i.e. for any statements Si and 52, and any 

countable set A of sentences of £ : 

A\= Si<S2 if and only if A h 5i < 2̂ 

Thus, it is possible to write, without loss of generality, 5i < 2̂ to mean that 5i 

refines 52. 

The proof makes use of two formulations of Dijkstra's weakest precondition [64]: 

the first is a function which maps the semantics of a program and a condition 

on the final state space to a condition on the initial state space. (A condition 

on a state space is simply a set of states: those that satisfy the condition.) The 

second is a function which maps the syntax of a program and a formula of first 

order logic to another formula of first order logic. The two definitions are proved 

to be equivalent [176] [182] given a suitable interpretation of formulae as state 

conditions. 

^°First order infinitary logic is complete, so Ward [182] demonstrates that if there is a refine­
ment then there is also guaranteed to be a proof of the corresponding formula (although the 
proof may be infinitely long). Conversely, by the soundness of first order infinitary logic, if there 
is a proof of the formula then there is guaranteed to be a proof of the refinement. 
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Refinement and Transformation 

If 5i refines S2 and also 5*2 refines Si, then there is a program transformation 

from to S2 and vice versa. This is written: 

Si^S2 

A n Example: Forward Expansion 

The following demonstrates the proof-theoretic technique for deriving a trans­

formation that is often used to replace two copies of a statement by a single copy. 

A h If 5 Then Si Else S2 Fi; S ^ \f B Then ^ i ; S Else ^2; S Fi 

Proof: WP(lf B Then Si Else S2 Fi; S,R) 

^ WP(lf B Then Else 5*2 Fi, WP(5, R)) (Defn of ;) 

^ (B=> W P ( 5 ' i , W P ( S ' , i 2 ) ) ) A ( - 5 ^ WP(5'2,WP(5,i2))) (Defn of If) 

^ ( 5 ^ WP(5 'i; S,R)) A (-15 =^ WP(52; 5", R)) (Defn of ;) 

^ If 5 Then ^ i ; S Else ^2; S f \ (Defn of If) 

4.2.4 Ward's Catalogue of Program Transformations 

The flexibility of having two methods of proving program transformations has 

resulted in there being a great many proven transformations in Ward's thesis 

177]. Thus, only a flavour of them will be given here. The classification of 

transformations given below is the same as Ward's classification [174]. 

Assertions 

Among the simplest transformations are those for introducing, removing and ma­

nipulating assertions. It can be shown [174] that these transformations are all that 
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is required to include all the results of Hoare's axiomatic basis for programming 
96 . 

Simplifications 

There are several important basic transformations that are used extensively both 

in proving more complex transformations and in putting a program into the correct 

form for applying more complex transformations. These include: 

• Reordering conditionals; 

• Removing conditionals which follow an assertion that indicates which branch 

will be taken; 

• Merging and splitting assignments; and 

• Inserting and eliminating assignments after assertions. 

Manipulations 

Unlike the simphfications in the last section, which do not significantly alter the 

structure the program, these manipulations provide the means by which code can 

be restructured. Such transformations include: 

• Removing unused local variables; 

• Expanding and factoring (i.e. moving statements into or out of) conditionals; 

• Unrolling and rolling loops; and 

• Merging loops. 
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Exit Statements 

Ward's theory of Exit statements is very comprehensive and gives rise to a great 

many transformations, including the following: 

• Replacing non-terminating loops by Abort statements; 

• Removing statements which occur after Exit statements; 

• Various kinds of loops unrolling, rolling and inversion; 

• Replacing double by single loops (in the right circumstances); and 

• Removing redundant loops. 

Action Systems 

The transformations on action systems are particularly important since they can 

be used to restructure unstructured code. They include: 

• Replacing an action call by the body of the called action; 

• Removing an action which is never called; 

• Within a regular action system, removing statements which occur after Call 

statements; and 

• Replacing an action body (with recursive calls) by a double loop, or in 

certain circumstances, by a single loop. 

Recursion Removal 

Ward's thesis [177] includes proofs of all the common techniques of hnear recursion 

removal and also several methods of replacing non-Hnear recursion by iteration. 

These give rise to a number of general transformations and a larger number of 

transformations applicable in specific circumstances. 
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4.3 The Advantages of A Practical System 
Based on Ward's Approach 

Ward's approach to program transformation has a number of advantages and 

potential advantages over other transformation systems. Among the former are 

the benefits gained by using Ward's formal theory: 

• The theory is well founded on a sound mathematical basis of set theory and 

first order infinitary logic and and every transformation has been rigorously 

proved in Ward's thesis [177]; 

• The use of infinitary logic eliminates the need to determine loop invariants 

or fixed points of functionals when transforming loops; 

• Since the kernel language is imperative, as opposed to functional, it is suit­

able for working with existing programs, as required by reverse engineering; 

• WSL is defined in terms of definitional transformations of the kernel lan­

guage, so "continuations" do not need to be introduced in order to handle 

control transfers. Similarly, "environments" do not need to be added to 

handle local variables; 

• Specifications can be included within programs and non-determinism allows 

flexibility and generahty at higher levels of abstraction; and 

• There are a large number of theorems which cover all aspects of program­

ming in WSL, including badly written programs with jumps (such as Exit 

statements and action systems) and side effects (but not exceptions, higher-

order functions and concurrency). 

Among the potential advantages of the approach are the following: 

• The large number of theorems in Ward's thesis means that it might be 

possible to construct a transformation system that is applicable to a wide 

variety of programs; 
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• Al l Ward's transformations appear to be automatically checkable, which 
would remove any need for the user to justify, from a mathematical per­
spective, the transformations he applied; 

• It would seem as if the techniques can be used either to increase the efiiciency 

of a program, or its clarity, or both; 

• Since the theorems have been shown to work in difficult examples [176] [175] 

179], a tool based on this approach should also be suitable for transforming 

such programs; and 

• The approach appears to be applicable to maintenance as well as develop­

ment. 

4.4 A Method for Reverse Engineering using 

Transfor mat ion 

In order for any transformation tool to be useful, it must be used within the 

framework of a method. The proposed method for using the tool described in this 

thesis has four stages: 

1. Automatic translation of the source code into WSL; 

2. Automatic removal of idiosyncrasies introduced by translation; 

3. Manual selection, combined with automatic application, of transformations 

to produce a structured form; and 

4. Abstraction to a specification. 

4.4.1 Translation 

Since the tool described in this thesis wiU be designed to transform only WSL, 

there has to be a method of translating other languages into WSL. This can be 
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accomplished using translators based on existing (compiler) technology. These 
would not necessarily have to produce optimal translations since, once the code 
was been translated into WSL, it would then be possible to use the tool to remove 
any anomalies that translation might have introduced and to do some simple 
tidying of the code. 

Details of the approach to translation which is used in practice is given in Chapter 

9. 

4.4.2 Automatic Removal of Idiosyncrasies 

It is anticipated that translation into WSL will introduce additional code caused 

by the fact that WSL has to model a source language which is not, in general, 

equivalent; for example, where assembler uses "branch to register" instructions, 

WSL might use procedures. It is proposed that these idiosyncrasies be removed 

by an automatic transformation process that occurs after translation, as opposed 

to introducing complexity into the translator. 

4.4.3 IManual Transformation 

This thesis is based on the premise that Ward's transformations are sufficient for 

performing code restructuring. Thus, this stage of the method would require the 

user to select which transformations for the system to apply to which sections of 

code, and to repeat this process until the code is in a form that is considered in 

some sense the "best" that can be attained. 

4.4.4 The Reason for Functional Abstraction 

The ultimate objective of the transformation tool is to facilitate the transform­

ation of existing, large-scale source programs to high-level requirement specifica-
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tions. It is envisaged that such specifications will , in general, be represented in 
non-executable form, using a language such as Z [170] or VDM [103]. The major 
attractions of this approach are that the specification will be semantically equi­
valent to the original code or the latter will be a refinement of the specification. 
Thus the user can be confident that the specification can provide a representa­
tion which can be maintained in place of the original source code. Maintaining 
a high-level, more abstract representation has a number of important advantages 
80]: 

• Designs may appear implicitly in the implementation and not be properly 

documented. Hence a modification may inadvertently violate the impHcit 

constraints on the code which are implied by design; 

• The process of implementation is one of information spreading, that is, asser­

tions describing the problem which are simply expressed in the specification 

may be reflected diffusely throughout the implementation; and 

• The implementation is cluttered with information about the efficiency and 

performance of the target architecture. 

In addition, a specification is more compact than the source code, it is expressed 

in a more problem-oriented notation and executable code can potentially be gen­

erated from it automatically or semi-automatically. 

4.4.5 Problems in Functional Abstraction 

In performing source-to-source transformations, the user can apply the transform­

ations in the knowledge that the semantics of the program stays the same (by the 

definition of a program transformation). However, in performing abstraction the 

aim is to remove information from the program in order to make it more ab­

stract. Thus, this cannot be accomplished with transformations per se, since 

these preserve the semantics, but must be done with abstractions. 
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Abstract specifications say what a program does without necessar­
ily saying how it does it [181 . 

Abstraction is a process of generalisation, removing restrictions, ehminating detail 

and removing inessential information (such as algorithmic details) [181]. Thus the 

abstractions cannot be applied without a clear idea of which information contained 

in the program refers simply to the implementation, and not to the the function 

of the program. In the general case-̂ -̂ , this information cannot be determined 

automatically within the system, so user guidance is needed at this stage. As a 

trivial example, the program (X:=2, Y:=3) may be an implementation of any of 

the following specifications: 

• "Assign X the value 2, and Y the value 3"; 

• "Assign X and Y values such that X + F = 5"; or 

• "Assign X and Y values such that X < Y". 

Indeed, this statement is actually an implementation of infinitely many specific­

ations of the form: "Assign X and Y values such that X -\-Y ^ K" where K is 

any constant not equal to 5. 

Abstraction can be performed by applying refinements [138] [137] "in reverse". 

However, in order to perform abstraction, it may be necessary first to perform 

particular restructuring operations on the program. These are detailed in the 

next section. 

4.4.6 Steps in Functional Abstraction 

There are a number of steps that have been identified as being of key importance 

in the process of crossing levels of abstraction in order to acquire a specification. 

^^Some information, such as the usage of local variables, is clearly part of the implementation 
since it is not "visible" outside the program. 
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Procedurisation and Parameterisation 

Two factors that make a program difficult to understand are a lack of localisation 

and a lack of information hiding. 

Localisation is the process of collecting logically related computa­

tional resources into one physical module [159]. 

Information hiding suppresses the implementation of an object or 

operation, thereby focusing attention on its definition and interface 

159]. 

Among the characteristics that make a program difficult to understand are the 

following [56]: 

• No, or very little, use of design abstraction; 

• Local functions and variables may be represented globally, and globally 

defined functions and variables may be used only locally; and 

• A lack of information hiding increases the difficulty of program understand­

ing by expressing irrelevant information. 

While the original program may have been composed of procedures, these may no 

longer reflect the functional division of the code because of substantial changes 

made to it and may, in fact, be little more than historical boundaries. So the 

first step in abstraction is to expand these procedures in line and to create a new 

procedural decomposition. 

In creating the new procedurisation it is desirable to divide the program into 

procedures such that each procedure fulfills Bergland's criteria (see Section 1.3.2) 

32] that the procedures implement a single independent function, perform a single 

logical task and have a single entry and exit point. There is no purely automatic 
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way that the system is able to identify the best procedural decomposition, but the 
system could provide help with this process. 

There should be transformations which replace a section of code by a procedure 

and which will then search for all identical occurrences of the body of that pro­

cedure and replace them by a procedure call. Also, the system should identify 

which variables are used and assigned in any section of code. This information 

can be used to identify potential procedures, since a procedure should have as few 

inputs and outputs as possible. Thus, if a number of variables are only used in a 

particular section of code, they are probably local to some logical (but possibly 

not yet created) procedure. 

Having created a procedure from a section of code, the next stage in the ab­

straction process is to parameterise i t . In the previous stage, the variables of the 

procedure were identified, and it is often valid to assume that any variables which 

are not local to the procedure can be made into parameters. 

The system should be able to provide transformations which assist the user in 

this process. First, there should be transformations which replace a variable in 

a procedure by a parameter and modify the calls to that procedure to incorpor­

ate the extra value that must be passed, and transformations which reverse this 

operation. Second, there should be transformations which search for all other 

occurrences of the body of that procedure and replace them by procedure calls 

and these can be applied again, since a parameterised procedure is more likely to 

match other sections of code. 

As with procedurisation, the system could not select the parameterisation auto­

matically since the heuristics to determine which variables to replace with para­

meters are not completely determined. However, the system could attempt to 

parameterise the procedure in different ways and to choose the parameterisation 

which caused the greatest number of matches with other sections of code. 

Since Ward's thesis includes all the theorems which prove the feasibiUty of these 

operations, then provided the system being built is capable of including any pos­

sible transformation, it is reasonable to conclude that they would be possible in 
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practice. 

Recursion Introduction 

Ward [180] claims that the derivation of algorithms from specifications by formal 

refinement can be broken down into the following stages: 

1. Nonexecutable specification; 

2. Recursively defined specification; 

3. Recursive procedure; and 

4. Iterative algorithm. 

In abstraction, which is the opposite of refinement, it seems reasonable to assume 

that these steps might be taken in reverse. Thus, one of the most important steps 

in many instances of crossing levels of abstraction is the introduction of recursion. 

This can be done using the inverse of the transformations for recursion removal, 

including Ward's general recursion removal theorem [180]. 

Having introduced recursion, it might then be possible to identify invariants over 

the body of the procedure, which it would not have been possible to identify in 

the iterative version. 

Using the general recursion removal theorem necessitates the code being rewritten 

as an action system of a particular form (although there is a choice of the precise 

form). This cannot, in general, be undertaken automatically since the user needs 

to identify which variable is being used as the control stack (so that the tests of 

variable can be put into a separate action). It is not possible to identify this vari­

able automatically; however, having put the code into the correct form of action 

system, the system could apply the theorem without further user intervention. 
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Invariants 

As was seen in Chapter 2, invariants form an important part of proving program 

correctness, and in abstraction, they perform a similar role: the identification of 

the function of a section of code (typically a loop). 

The problem of finding the inductive assertion for a given program is theoretically 

unsolvable [172], so it is the responsibility of the user to introduces a true assertion 

before the beginning of the loop, say. The system would then employ its symboUc 

mathematical and logic routines to determine whether or not this assertion is 

invariant over the loop, i.e. that it is true at the beginning of the loop body, at 

the end of the loop body and, therefore, after the end of the loop. (The system 

is not able to calculate or deduce these invariants, although it is able to calculate 

terminating conditions based on the loop condition or exit test.) 

There are two ways in which the user can introduce the initial assertion. The first 

is to use the transformations which add or insert Assert statements after existing 

statements, such as adding the assertion x = y after assigning y to x. The second 

is to enter an assertion and to have the system prove that this is true either by 

determining if it is one of the assertions that could have been introduced by the 

first method, or else by replacing the variables of the assertion by their values and 

simplifying the resulting expression to true. Some assertions, such as x < (x -f 1), 

trivially make loop invariants, so the user must choose the condition carefully. 

Specification Statements 

A key part of crossing levels of abstraction is the introduction of specification 

statements which indicate what the program does, without saying how it does i t . 

Thus WSL includes a specification statement which indicates which variables are 

changed and the result of changing those variables (as a condition relating the old 

and new values), without saying anything about how the values of the variables 

might be determined. The statement is of the form Assign X Such That C where 

X is a set of variables and C is a condition. 
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Any references in the condition to variables which are being changed refer to 
the new values of the variables, unless there is a specific indicator otherwise (as 
shown in the next example). The specification statement can be mixed freely 
with other statements because of the wide spectrum nature of WSL. Many of the 
simpler statements may be interchanged directly with these specification state­
ments — operations which are actually transformations. For example, the parallel 
assignment statement (X:=2, Y:=(X+1)) could be replaced by the specification 
statement Assign (X Y) Such That (X=2) A ( Y = O l d ( X ) + l ) . These specification 
statements can be combined in various ways, often by introducing an existential 
quantifier (as in the example in Chapter 9). 

By introducing and combining specification statements in this way, it is possible 

to build up a specification of a simple section of code, which is actually equivalent 

in function to that code. For more complex program constructs (notably loops), 

additional techniques are required. 

Specifications from Assertions 

The first step of abstracting a loop to a specification would be to add assertions 

which are loop invariants. The second step would replace the loop and its associ­

ated assertions by a specification statement. In this stage abstraction is necessary 

since the change made to the program may change (by weakening) its semantics. 

The process could be as follows: 

For any section of code which finishes with an assertion, if the variables assigned to 

in the section of code are a subset of the variables referred to in the assertion, then 

the code can be removed and a specification statement added whose condition is 

the condition of the assertion and whose list of assigned variables contains precisely 

those variables which are assigned to in the code. 

When performing this kind of change to the program, since the result is not 

necessary equivalent to the starting code, the system would prompt the user for 

some textual justification for this abstraction. This information could be stored 

as part of the history of the transformation process and in this way a trail of 
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all the abstractions that have been used would be kept and could be audited for 
"correctness". 

Condition Weakening 

Another method of abstracting a program would be to replace the condition of 

a specification statement by a weaker condition. For example, the specification 

statement Assign (X Y) Such That (X=2) A (Y=7) can be weakened to the the 

specification Assign (X Y) Such That (X+Y)=9. 

As with replacing some code and an assertion by a specification statement, this 

change does not precisely preserve the semantics of the program so the system 

would again prompt the user for some textual justification for this abstraction. 

The reason for performing such an abstraction would be if the program were a 

specific implementation of some general specification, and the general form was 

the one required. 

Data Abstraction 

The data types that are used within a program are concrete representations of 

some abstract data type [97]. Every value of the abstract type must be represent-

able by one or more^^ values in the concrete type. Thus, the abstract and concrete 

data types are related by means of a refine function and a retrieve function [188]. 

Data abstraction involves recovering the abstract data representation from the 

concrete data representation. This can be done by means of introducing ghost 

variables [137] [178] in such a way that each operation on the concrete data 

is paralleled by an operation on the ghost variables. The system would then 

find (or more realistically the user would provide) a function that maps from the 

concrete data into the ghost variables, and assertions would be added to the code 

^^There may be more than one. For example, if an abstract set is represented by a concrete 
list, then there are many orderings of elements of the list for each set. 
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to indicate this invariant hnk specified by this function. The result of this would 
be that the concrete variables could be removed and the ghost variables would 
take their place as an abstraction. 

The work in this area is still in its early stages, but this method seems promising. 

Another approach currently being considered by Yang [194] is to represent directly 

the data definitions of the source language using additional WSL constructs. From 

these the aim is to construct Entity-Relationship-Attribute (ERA) diagrams. A 

similar method was adopted by Sneed and Jandrasics [167]. 

4.4.7 Summary of the Method 

The method for using the tool would involve translating the source code into 

WSL and applying Ward's transformations to it until it is in the desired form. 

Functional abstraction could then be carried out using (not necessarily all) the 

following stages: 

• Procedurisation and parameterisation; 

• Recursion introduction; 

• Invariant introduction; 

• Introduction of simple specification statements; 

• Creation of specifications from assertions; 

• Condition weakening; and 

• Data abstraction. 

Only the last three actually involve removing information from the program (i.e. 

abstraction); the others may introduce information from the appHcation domain 

in the form of, say, procedure names. 
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For the the system to provide the ability to perform functional abstraction a 
few extensions would be required. Most of these would fall into the category 
of adding new "transformations" (which are actually not transformations in the 
strict sense); however, certain extensions to the symbolic mathematics functions 
would also be required. 

Data abstraction has yet to be addressed in detail. 

4.5 An Outline of the Programme of Work and 

Problem Definition 

At this point the problem that this thesis is tackling will be summarised by out­

lining the programme of work. The work for this thesis can be divided into eight 

sections which, although they can be regarded as distinct, will necessarily overlap 

in certain areas. 

4.5.1 Review the field 

The first part of the work — that of reviewing software engineering in general, and 

transformation systems in particular — has already been covered. It looked at 

the problem of producing correct programs from specifications, at the problem of 

deriving correct specifications from existing code, and at possible solutions to these 

problems. Transformation systems offer several important potential advantages 

over other informal and formal methods. The success of existing transformation 

systems was assessed. This led to the conclusion that while none of those in 

existence is suitable for both development and maintenance, a system based on 

Ward's approach might provide the required functionality. 
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4.5.2 Examine the Shortcomings 

The transformation system that forms the subject of this thesis is used as a vehicle 

for investigating how to overcome the shortcomings of existing transformation 

systems — applicability and usability — that have been identified in the review. 

The system should be applicable to real programs and not just toy examples, 

it should work on a wide range of programming languages using WSL as an 

internal representation of the code) and it should be of use in cases in which 

formal specification has not been used. Also, the system should be usable by 

means of a simple user interface and a method that does not require the user to 

become famihar with mathematical methods. Finally, it should be possible to 

incorporate the use of the system into existing software processes. 

These questions can best be answered by actually building a transformation sys­

tem. To do this, a number of design decisions must be made. 

4.5.3 Develop the Basis for Building a Transformation 

System 

The next part of the research will look at the design issues, foremost among which 

are the following: 

• How should programs undergoing transformations be represented? 

• How should the transformations, and their point of application, be selected? 

• How should the applicability of the transformations be tested? 

• How should the transformations be represented? 

• How should the transformations be stored in the system? 

• How can transformations be combined so as to provide transformations 

which have greater effect? 
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• What other facilities should be included in a usable transformation system? 

Design solutions are presented, and a prototype system and transformation cata­

logue are built, in order to put these ideas into practice. 

4.5.4 Develop A ^ r ^ W S L 

Transformations will be represented in the system by means of a specially designed 

language — METAWSL. A description of this language will form the core of 

the thesis. It must be a language within which transformations can clearly and 

concisely be expressed. In particular, it must be assessed in the light of the criteria 

for success given below. 

4.5.5 Code Ward's Transformations 

In order for MSTAWSL to be an effective language for expressing program trans­

formations it must certainly be capable of expressing Ward's transformations. 

Thus, this stage of the work will involve coding Ward's transformations using 

MSTAWSL. Not only will this help to assess the capabilities of MirAWSL, but it 

will also provide a useful working system. 

4.5.6 Create Additional Transformations 

Since many of Ward's transformations are elementary in their nature — mak­

ing only small changes to programs — it will probably be necessary to combine 

these in various different ways; for example, to create transformation strategies. 

Such transformations will combine the effects of several smaller transformations, 

choosing the correct ones as appropriate, in order to perform some large-scale 

change. MSTAWSVS suitability in this area will be assessed by writing some 

transformations of this kind. 
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4.5.7 Create some Transformations For Abstraction And 
Design Recovery 

In order to perform effective reverse engineering by means of program transform­

ation, it will be necessary to have some transformations for functional abstraction 

and design recovery. In order to assess A^T^WSL's strengths and weaknesses in 

this area, a number of such transformations will be created. This area will also 

consider how further transformations for functional abstraction could be written. 

4.5.8 Assessment of Success with Real Programs 

The final stage of this work will involve using the resulting system on some real 

code in order to assess its usefulness. Since this work is partially funded by IBM 

Hursley, the project has access to a quantity of commercial IBM 370 Assembler 

code, which will be used as a testbed for the system. 

4.6 Criteria for Success 

The success of the work will be judged according to how the following questions, 

which have been divided into three groups, are answered. 

4.6.1 Preliminary Questions — Maintenance by Trans­

formation 

• Is software maintenance made simpler by using transformation-based reverse 

engineering? 

• Is WSL a good language for this purpose; i.e. can existing programs be 

expressed in WSL and is there a suitable range of WSL transformations? 



Chapter 4: The Area of Research 92 

• Crossing levels of abstraction, for reverse engineering, involves removing de­
tails of the program's implementation while retaining details of its function. 
How can one do this in a transformation-based system? 

4.6.2 Central Questions — The Assessment of A ^ X 4 W S L 

• What constructs should METAWSL include so as to be fiexible enough to ex­

press program transformations without becoming overburdened with little-

used constructs? i.e. what constructs should A^X4WSL include so as to be 

simple yet complete? 

• Can A^^T^WSL clearly and concisely represent Ward's transformations? 

• What other transformations are required? 

• Can A^T^WSL be used to express clearly and concisely these transforma­

tions? 

4.6.3 Questions on the Effectiveness of the Tool 

• Does the approach result in a usable tool? In particular, what training is 

required? 

• Is the implementation of the transformation catalogue efficient, reliable, 

correct and complete? 

• Does the method scale up to larger programs? 

• How well does the system work on real programs in an industrial environ­

ment? 

• What weaknesses does the system have? 

• How does the use of the tool fit into the software process? 

• In what ways does this system add to the study of transformation systems 

in general? 
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• Can the system be used to maintain itself? 

4.7 Summary and Conclusions 

This chapter has laid the foundations for the rest of this thesis. It has introduced 

WSL, showing how it is defined in terms of a kernel language. It has outlined 

the proof principles used by Ward to prove his transformations, and has given 

examples of the transformations that have been proved. Finally, it has explained 

the advantages of a transformation system based on these principles and has 

described the nature of the rest of this work, giving criteria for its success. The 

rest of the thesis will answer the questions raised in this chapter and give details of 

both vVkr^WSL and the underlying structures needed in creating a transformation 

system with the desired attributes. 



Chapter 5 

Fundamental Design Decisions 

5.1 Introduction 

This chapter first describes the overall tool of which the transformation system 

described in this thesis is a part. The chapter then discusses the underlying struc­

tures and foundations on which the transformation system is based. These cover 

design decisions such as how WSL programs should be represented, how the point 

of application of the transformations and the transformations to apply should 

be selected, how the applicabihty of transformations should be tested, and how 

transformations should be represented and stored. Finally, certain components 

which form the core of the transformation system, notably the pattern matcher, 

the database and query functions and the symbolic mathematics functions, will 

also be described. 

5.2 The ReForm Project 

This work in constructing a transformation system forms part of a larger project — 

the ReForm project [78] — sponsored by IBM Hursley and the DTI, and carried 

94 
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out by the University of Durham, Durham Software Engineering Ltd (formerly 
Centre for Software Maintenance Ltd) and IBM Hursley. The other members of 
the project team are Keith Bennett, Martin Ward, Hongji Yang, Nigel Scriven 
and Brendan Hodgson. 

The aim of the ReForm project is to create a code analysis tool — the Main-

tainer's Assistant [53] [185] [46] [193] [47] — aimed at helping the maintenance 

programmer to understand and modify a given program. Program transformation 

techniques are employed by the Maintainer's Assistant both to derive a specific­

ation from a section of code, and to transform a section of code into a logically 

equivalent form. The aim is to provide a tool with features such that: 

• It acts, initially, on existing program code as a tool to aid comprehension 

(possibly by producing specifications); 

• Only the program code is required; 

• The system can work with any language by first translating — with a stand­

alone translator — into WSL; 

• Changes are made to the WSL by means of transformation; 

• Transformations are represented in an extension of WSL — M-ETAWSIJ] 

• The system incorporates a large, flexible catalogue of transformations; 

• The applicability of each transformation is tested before it can be applied; 

• A history/future structure is built-in to provide back-tracking and forward-

tracking allowing the programmer to change his mind; 

• The system is interactive and incorporates an X-Windows front end and 

pretty-printer called the Browser [193]; 

• The system includes a database structure to store information about the 

program being transformed, such as the variables assigned to within a given 

piece of code [193]; 
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Figure 5.1: The Structure of the Maintainer's Assistant 

• The system includes a simplifier for mathematical and logical expressions; 

and 

• The system includes a facihty to calculate metrics for the code being trans­

formed. 

While the core of the tool is the program transformation system, there are other 

parts to the tool. A l l these are shown in Figure 5.1 and will be described briefly 

in the following sections. (The work described in Sections 5.2.1 to 5.2.4 has been 

carried out by other members of the research group.) 
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5.2.1 Translating Other Languages to W S L 

Part of the ReForm project has involved taking IBM 370 assembler and using the 

system on i t . To do this it has been necessary first to translate the assembler into 

WSL, as described in Section 4.4.1. 

5.2.2 Metrics and Supporting Tools 

A number of tools have been incorporated into the system, in addition to the 

transformation system. Among these is the ability to obtain metrics relating to 

the code being manipulated. 

During software development, software metrics are often used for assessing, meas­

uring and predicting attributes of the code. Among the many software metrics 

available, complexity measures are the most well-accepted method of determining 

the intrinsic quality of software. It has been recognised [132] that like software 

development, software maintenance also benefits from measurement, even though 

the best metrics are the subject of debate. Thus, a generic system has been built 

that enables a variety of measures to be made. The objectives of using metrics in 

ReForm are to help the user to select transformations (to help develop heuristics), 

to measure the progress made in optimising the program code and to measure the 

resulting quality of the program being transformed. 

Other tools which are in a less well-developed stage include a program sheer, a 

static analyser and a call-graph generator. 

5.2.3 The User Interface 

The Maintainer's Assistant is an interactive tool and as such requires an intuitive 

and fast user interface to allow the user to try out, quickly and simply, different 

options (such as different procedural decompositions) when working on a program. 

A suitable interface has been constructed using the Motif toolkit in a Unix and 
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X-Windows environment. 

The interface allows the user to select a piece of code by pointing to it with 

the mouse and clicking a mouse button. Transformations can be selected from 

pull-down menus. Before a transformation appears on a menu, however, the 

transformation system needs to checks it applicability conditions so that the user 

may not attempt to perform an invalid transformation. 

In addition, the interface includes facilities for editing the program (to correct 

faults), calculating metrics and saving and loading versions of the program to and 

from file. 

5.2.4 Translating from W S L to Other Languages 

Just as there is a translator for producing WSL from assembler, so it would be 

possible to create a translator which would take WSL as its input and produce 

equivalent code in some other language. Such a translator remains to be built. One 

method of simplifying the translation would be to have a set of transformations 

for producing WSL that is similar to the target language; for example, WSL which 

does not use recursive procedures. 

5.2.5 Transformation Engine 

The transformation engine which forms the core part of the Maintainer's Assistant 

is the subject of this thesis. 

5.3 Storing W S L Programs 

In many transformation systems, particularly the earliest ones, the program un­

dergoing transformation is stored as a simple text file and the program trans-
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former is essentially a text editor that performs a series of commands (in this 

case specified by the program transformation) and produces an altered version of 

the original text (a sequence of code). Hildum's transformation system is a more 

recent example of such a system [95]. However, this is neither the simplest nor 

the most convenient way to store and transform the code. 

Although Hildum's specification language was designed to work on code which is 

essentially linear, he points out [95] that the transformation of tree structures is 

an area of work which deserves further attention. In the Maintainer's Assistant, 

internally WSL is represented as a syntax tree and is expressed, in a LISP style, 

as a series of nested fists, as is described in Chapter 8. However, to the user 

WSL is presented by the interface in a much easier-to-read Algol-style text form. 

As an example the parallel assignment, which in text form would be written as 

(X ;=A+B- fC , Y:=0), would be represented by the tree shown in Figure 5.2 which 

in turn would be expressed in LISP form as: 

(Assign (X ( + A B C)) (Y 0)). 

Assign 

Assignment 

A B C 

Assignment 

Y 0 

Figure 5.2: Tree Form of a WSL Assign Statement 

The exact details of the tree form of WSL are given in Chapter 8. 
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5.4 Interaction 

It is recognised that the acquisition of a specification at a high level of abstraction 

cannot be an automatic task; this problem is undecidable since a program satisfies 

infinitely many specifications. Thus, the Maintainer's Assistant must necessarily 

require human interaction. In fact, this is one of the system's advantages since it 

allows human expertise of both software engineering and maintenance, and also of 

the application domain, to influence the direction of the transformation process. 

However, being computer-based enables the utihsation of the computer's abihty 

to reduce errors, which might be otherwise introduced by clerical work. 

The interactive nature of the system also means that the user is able, through 

performing the transformations, to gain an understanding of the program on which 

he is working. The system is unable to understand the program and, even if it 

were, this is not particularly desirable since the user would still not have an 

improved understanding of i t . 

5.5 Selecting the Point of Application of Trans­

formations 

In an interactive system, it is necessary to indicate explicitly which part of the 

program should be transformed. For example, with the code 

(Assign (X ( + A B)) (Y 0)) 

it would be possible to apply the transformation "swap the order of the two com­

ponents of an item" in two different places: first to the addition, since numeric 

addition is commutative, and second to the Assign statement, since the two as­

signments (X:=A-|-B and Y:=0) are performed in parallel. Using the tree method 

of representing the program the user can indicate the point of appHcation of a 

transformation by selecting a branch or leaf in the tree. The selection can be 

made in several different ways, two of which will be incorporated into the system. 
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5.5.1 Selecting Program Positions Directly 

W i t h the first method of selection, the program would be presented to the user 

( in a pretty-printed format) on a graphics screen. The user would point to the 

required program i tem wi th the mouse and press a the mouse button. The system 

would then select the smallest syntactic object (tree branch or leaf) that contained 

the location of the mouse cHck. For example, i f the user cHcked on the symbol 

for assignment ( := ) , then the whole assignment (a branch) would be selected, 

while i f he clicked on a variable name, then just that variable (a leaf) would 

be selected. The graphics interface would convert the position clicked on to a 

suitable representation of the position in the tree and issues a command to the 

transformation engine to make that position the selected one. 

5.5.2 Selecting Program Positions Relatively 

W i t h the second method, the user would be furnished wi th a series of commands 

for moving wi th in the program tree. These would include L E F T and RiGHT for 

selecting branches (or leaves) on either side of the current branch or leaf ( i f they 

exist); a DOWN command for selecting the first branch (or leaf) of the current 

i tem; and an U P command for selecting the object of which the current i tem is 

a component. Other commands could be added for moving to the first or last 

i t em in the current component, or to the nth i tem, but these are not strictly 

necessary.-^ However, i n the interests of simphcity, a number of these commands 

would be incorporated into the system. 

Although this method of identifying program items is more cumbersome f rom the 

user's point of view, i t is the method used within the representation of program 

transformations. 

^In fact, the command to move L E F T is not strictly necessary, either, as it can be effected by 
performing U P , followed by a DoWN to select the first component. This would then be followed 
by a suitable number of R I G H T moves to select the item which was actually required. 
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5.6 Selecting Several Items 

Some transformations allow an operation to be performed on a sequence of pro­

gram items, rather than on just a single i tem. For example, a transformation to 

make a procedure out of a single statement may not be particularly useful. How­

ever, a transformation to make a procedure out of several consecutive statements 

would be much more useful. A sequence of items is referred to as a span. 

As w i t h the selection of positions in the program, spans could be selected in one 

of two different ways. First, the user could use the mouse to point at the opposite 

end of the span of items f r o m the selected i tem, and click on another of the mouse 

buttons. Second, a series of commands could be provided for increasing, decreasing 

and setting the number of items in the span directly. Both of these methods are 

included in the system. The first is quick and simple for the user, while the second 

is more efficient, but cumbersome, and is used wi th in the transformations. 

5.7 Selecting Transformations 

Once the point of application of a transformation has been selected, i t is necessary 

to select the transformation that is actually required, as in most cases more than 

one w i l l be applicable. The simplest methods of doing this are to allow the user to 

type in the name of the desired transformation or else to select i t f rom a menu of 

all the transformations in the system. (Hi ldum and Cohen suggest this approach 

95].) These methods both have drawbacks, however. In the first case, the user 

would need to do a lot of unnecessary typing (wi th all the problems of inaccur­

ately typing names), and in the second case, since the number of transformations 

in the system would probably be very large (several hundred), identifying the 

transformation which is actually required would be a problem. 

I n this project, the second method has been selected, but has been modified in 

four ways in order to make i t more usable: 
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• There are several menus^ which contain transformations that have similar 
effects; for example, those which jo in two program items, those which move 
a program i tem and those which delete redundant items; 

• Only applicable transformations appear in the menus; 

• The transformations which finally do appear in a menu are sorted alphabet­

ically; and 

• The user can obtain a description of each transformation which appears in 

a transformation menu so that, i f an unfamiUar transformation appears, he 

can identify what i t does. 

The adoption of the approach whereby only valid transformations are included in 

the menus, necessitates that each transformation be in two parts. The first part 

tests its applicability and the second effects the changes to the program. 

5.8 Testing Transformation Applicability 

By its nature, a transformation system is one in which the user can make signific­

ant changes to the program on which he is working, and he therefore needs to have 

confidence that the result is always semantically equivalent to the program wi th 

which he started. For this to be the case, i t is advisable to have a transformation 

system which checks the applicability (or validity) of the transformations before 

applying them. I f the system is to do this checking, then each transformation 

needs to coded along w i t h its "applicability condition". 

A transformation's applicability condition is the test which determ­

ines whether that particular transformation can be legitimately ap­

plied (i.e. applied without changing the program's semantics) at the 

currently selected point i n the program. 

^Themenu classes are "Move", "Join", "Use/Apply", "Reorder", "Rewrite", "Insert", "Sim­
plify/Delete", "Multiple" and "Complex". 
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I n the simplest cases, this would be a simple pattern that the particular part of 
the program has to match wi th , but in more complex transformations, i t might 
include tests on variable usage, the number of possible exits that a loop has, 
and so on. Many transformation systems, for example CIP [153] [155] [26] [27], 
use this method, and encode the tests as a pattern (which contains the former, 
syntactic information) and as a formula of logic (which contains the latter, so 
called "semantic", information). 

There is a drawback to this simplistic approach; i t is not uncommon for the 

information required by the tests to lie outside the syntactic scope of that section 

being changed. The transformations for expanding a procedure or function call, 

or for replacing a variable by its value are cases where this is so. This suggests 

that a method of selecting ("moving" to) other parts of the program is required. 

Hence, i t seems reasonable to code the transformations' applicabihty conditions 

in a language designed for that very purpose, i.e. one which includes not only 

facilities for pattern matching and so on but also "movement" commands. This 

is the method that has been chosen. 

I t is necessary to store the applicability conditions separately f rom the information 

on how to perform the transformation since the tests for each transformation need 

to be performed without actually modifying the program and are carried out 

much more frequently. ( In many instances, testing a transformation is a much 

quicker operation than performing the transformation. Thus coding the two parts 

separately also increases the system's efficiency.) 

5.9 Coding the Transformations 

A t the simplest level, a transformation can be expressed as two patterns: the first 

a series of elements to be found and some actions to be performed while finding 

these elements; and second, a new ordering of the elements that describes the 

result of applying the transformation [95]. Thus, the most obvious way to store 

transformations is simply as pairs of patterns, but this excludes the possibility of 
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recording more "algorithmic" transformations. 

As Hi ldum pointed out [95], the transformations may require actions to be per­

formed on the elements that are found by the in i t ia l pattern match, and, in fact, 

these actions can become complex as w i l l be seen in Chapter 7. Examples are a 

transformation to replace a variable wi th its value, or a transformation to reduce a 

piece of code w i t h labels and jumps to one wi th nested loops and If statements. I f 

these are to be accomplished efficiently, sophisticated algorithms need to be buil t 

into the transformations. Also, the former requires the transformation to examine 

sections of code outside the syntactic scope of the section being changed and to 

perform analysis of this information. Hence, i t would seem reasonable to code 

the transformations in a language (to express the algorithms) which includes not 

only facilities for pattern matching but also "movement" commands. Thus, the 

language for wr i t ing transformations is very similar to the language for wri t ing 

applicabihty tests. In fact, in this project the same language is used. 

Rather than write a completely new language for this purpose, WSL has been 

extended so as to be suitable for this purpose. This language is called A ^ r ^ l W S L , 

reflecting the fact that i t is both an extension of WSL, and designed to manipulate 

WSL. This contrasts w i t h the CIP project which uses several languages [25] for 

formulat ing program schemes, transformation algorithms and apphcabiUty tests. 

I n theory i t is not necessary to make any extensions to WSL at all in order to create 

a means of wr i t ing program transformations. I f i t is assumed that the program 

being transformed is represented (as a tree) i n some global variable, then all that 

a transformation need do is modify the contents of this variable. Since WSL is 

a completely general language i t would be possible to write a pattern matcher, 

for example, using WSL and incorporate i t into each transformation. However, 

that would be a very inefficient way to write transformations since each one would 

duplicate a great deal of code. 

There are several advantages of using M£TAWSL: 

• MSTAWSL embodies knowledge about program transformations (see Section 

6.3); 
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• Duplication of code by different transformations is avoided; 

• No new language needs to be learned in order to write transformations; 

• There is a compiler for executable WSL and thus the transformations' code 

can be compiled for efficiency; 

• The system incorporates a pretty-printer which can be used to display the 

transformations' code (although this must be extended to deal wi th the 

statements specific to A ^ T ^ W S L ) ; and 

• Transformations can be applied to themselves, allowing the system to be 

used in the maintenance of itself. 

A^£X4WSL incorporates a number of statements and functions over and above 

those provided by WSL. These fa l l into eight categories: 

P r o g r a m E d i t i n g Statements — The most obvious and most important op­

eration on programs by transformations is to edit them. Thus, there need 

to be some program editing statements. 

P a t t e r n Match ing and Template Fi l l ing — A key part of transformations 

involves replacing one pattern wi th another. Thus, A^T.4WSL includes a 

funct ion which matches a section of program against a given pattern and 

returns the result in a table. There is also a function which takes a pattern 

and a table and replaces the tokens in the pattern wi th values f rom the 

table. 

Movement Statements — I n order to perform a transformation, a user first 

selects the section of code on which the transformation is to be performed. 

Having done this, however, i t may be necessary for the transformation tem­

porarily to select another section of the program. Thus, jVkT.AWSL includes 

statements for moving to different parts of the program tree. 

Movement Appl icabi l i ty Test ing Functions — Since a specific movement 

w i th in a tree is not always possible — for example, i t is not possible to 

move down f r o m a leaf node — there are functions which test the appHcab-

i l i t y of a particular direction of movement wi th in a program tree. 
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Globa l Context Variables — Transformations often need to have access to 
information such as the type of the current i tem. This is obtained f rom a 
number of global variables. 

Q u e r y Funct ions — Most transformations require additional knowledge about 

the program and this cannot easily be obtained f rom the syntactic process of 

pattern matching. Such knowledge (which is often called "semantic know­

ledge" [113]) includes information about variable usage, whether an action 

system is "regular" and so on. This is obtained by way of query functions. 

Symbol ic Mathemat ic s and Logic Functions — I t is often necessary for a 

transformation to simplify a mathematical or logical expression, or to 

demonstrate that one condition imphes another. In order to do this, 

METAWSL includes some symbolic mathematics and logic functions. 

Repet i t ion Statements — I t is often necessary wi th in a transformation to test 

a condition or perform some operation at every node wi th in the subtree wi th 

represents the selected program item. The repetition statements allow this 

to be achieved easily. 

This last phrase — "allow this to be achieved easily" — is worth emphasising. A l l 

the statements and functions above are designed to make transformations easy to 

wri te and to read. A l l of them could be implemented using WSL to manipulate 

the variable which holds the program tree. 

The extensions included in MSTAWSL are outHned in Chapter 6 and given in 

detail i n Appendix C. 

5.10 Transformations which Require User In­

put 

Some of the transformations in the system require the user to input information. 

This information could be the name of a new procedure, or a sequence of state-
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ments that are to be inserted after an Exit statement. This information is not 
required by the applicability tests and should not be requested by them, other­
wise the user would be required to provide a great deal of unnecessary information 
just to bui ld the contents of the transformation menus. Thus the input is only 
requested once a transformation has been selected f rom a menu. 

Af te r a transformation has been selected, the system is able to determine what 

k ind of input is required and, before performing that transformation, the interface 

presents the user w i t h a dialog box requesting that information. The user enters 

the information, and the system stores i t in a global variable, %Data%, before ex­

ecuting the A ^ r ^ W S L code which performs the transformation. This METAWSL 

code is able to refer to the variable %Data% in order to make use of the user's 

input . 

5.11 Storing the Transformations 

Since the whole of Ward's thesis is to be implemented, there w i l l be a large number 

of transformations i n the system and i t is necessary to use an efficient way to store 

and access them. This is accomplished by using another tree structure. 

Each transformation is designed to work on a particular type of WSL program 

i tem, given by a pair consisting of the item's generic type and its specific type 

(see Appendix B ) . Thus, a transformation which works on an Assign statement 

would correspond to the pair Statement/Assign. Transformations are categorised 

in this way so that when transformations are being tested for applicabiUty, only 

those which operate on the correct type need to be tested. The efficiency of this 

selective transformation testing is enhanced by putt ing the transformation index 

in tree fo rm w i t h the generic type as the top-level of branching and the specific 

type and the second level. Thus, the part of the tree that needs to be inspected 

can be determined quickly. 

Either the specific type or the generic type can be of the type Any. This signifies 

that the transformation works on any i tem of that type. For example, a trans-



C h a p t e r 5: Fundamenta l Design Decisions 109 

Transformations 

Statement Expression Condition 

Assert Cond 

(And-Next-Assertion . . .) 

(Assign-after-Assert . . .) 

(Use-Assertion . . .) 

(Delete-Assertion .. .) 

Figure 5.3: Part of the Transformation Catalogue Structure 

formation that has the type pair Statement/Any would potentially work on any 

statement. Such a transformation might move any statement into a loop, for ex­

ample. I f the generic type i f Any, the specific type must also, necessarily, be Any. 

A transformation that has the type pair Any/Any would work on any program 

i tem. Such a transformation might simphfy all the expressions wi th in the selected 

program i tem, for example. 

Figure 5.3 shows part of the transformation tree. The ellipses indicate that there 

is additional data that is stored w i t h each transformation which is not shown in 

the diagram. 
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5.12 Constructing the Transformations Cata­
logue 

The Maintainer's Assistant incorporates a large number of transformations, and 

therefore appears to use the large catalogue approach to building a program trans­

formation library. However, these are divided into four major groups: elementary, 

compound, generic and high-level transformations. The user can select to work 

w i t h any or all of these groups of transformations. 

5.12.1 Elementary Transformations 

The Maintainer's Assistant includes all the elementary transformations (such as 

inserting assertions) that have been proved by Ward [177]. Selecting to work wi th 

just the group of elementary transformations corresponds to the generative set 

approach to transformation catalogue construction. The maintainer may choose 

to use sequences of these simple transformations to accomplish some more complex 

effect, such as removing a local variable. 

5.12.2 Compound Transformations 

I n using the Maintainer's Assistant, a number of common sequences and com­

binations of transformations have been identified by experience and case studies. 

Rather than expecting the maintainer to remember such sequences, they are built 

i n as transformations that can be selected in the same way as the elementary 

transformations. Although there are a large number of these compound trans­

formations, the efficiency gained by learning to use even a few of them seems to 

outweigh the in i t i a l learning time. 
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5.12.3 Generic Transformations 

A great many of the elementary (and some of the compound) transformations are 

variations on themes. For example, there are separate elementary transformations 

for taking a statement out of a local variable structure and for taking a statement 

out of a loop. In addition to the many distinct transformations, these themes have 

been combined into 22 generic transformations so that the user does not need to 

know which specific transformation has to be selected. 

Al though many operations are covered by one of the generic transformations, 

some operations cannot be incorporated into the generic set since the user has 

to be more explicit i n stating the desired fo rm of the transformed program. For 

example the user has to be able to choose between changing an unbounded loop 

into a For loop or into a While loop. 

5.12.4 High-Level Transformations 

These are the transformations needed to perform the abstractions described in 

Section 4.4.5. 

5.13 Further Facilities for a Usable Transform­

ation System 

There are a number of other facilities which are necessary in order to build a 

usable transformation system. These include the following: 

• The abil i ty to undo changes made to the program so that the programmer 

or maintainer can change his mind and t ry out various possible options. 

There is also a corresponding redo facil i ty so that after undoing a sequence 

of transformations they can be redone without recourse to having actually 
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to perform the transformations again. 

• A n "audit t r a i l " faci l i ty so that as a program is transformed and, i f neces­

sary edited, the selection of program items and the operations performed 

on them, are recorded. This allows the history of the program to be ex­

amined to determine whether, for example, any invaUd editing operations 

have been carried out. I t would also allow, w i th a suitable extension of 

the system, a transformational development to be "replayed" on a modified 

in i t i a l specification, to produce a new version of the program; 

• A n intui t ive and fast user interface to allow the user to t ry out, quickly 

and simply, different options (such as which data structure to use) when 

constructing his program or producing a specification f rom i t ; and 

• The abil i ty to calculate metrics about the program undergoing transforma­

t ion so that the user has some feedback as to the progress being made wi th 

the restructuring and simplification. 

5.14 Other Components of a Working System 

I t was mentioned earlier that AieTAWSL incorporates certain types of extension 

over WSL. I n particular, these include pattern matching and template filhng, 

query and database functions, and symbolic mathematics and logic functions. 

Each of these requires an underlying "engine" to provide these facihties. These 

engines w i l l be described in the next sections of this chapter. 

5.14.1 The Pattern Matcher and Template Filler 

One of the most important components of the program transformer is the pattern 

matcher and template filler. Many transformations can be represented as an 

in i t i a l pattern wr i t ten in terms of Hterals and general tokens, and final pattern, or 

template, using the same tokens but possibly different hterals. The transformer 
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matches the program against the in i t ia l pattern, creating an association table'^ in 
which the tokens correspond to the actual code which occurred in the program. ( I f 
no possible match occurred, then the matcher would return an empty association 
table of tokens.) The pattern matcher is defined recursively and is essentially 
similar to the matcher i n [173] but ensures that when a token occurs several 
times, i t matches the same i tem at each occurrence. 

The template filler takes the values for these tokens f rom the table and puts 

them into the template which represented the transformed version of the pro­

gram. Even in cases which are not as straightforward as a simple match and 

fill, pattern matching and template filhng often fo rm a crucial part of defining 

program transformations. 

The definition and use of patterns and templates w i l l be explained in detail in 

Chapter 6, and the mechanism by which pattern matching and fiUing works wi l l 

be described briefly in Chapter 8. 

5.14.2 Program Query and Database Routines 

I t is necessary, as part of many of the transformations, to be able to calculate 

certain information about the program being transformed: the use of variables, 

whether a program component w i l l always terminate by way of an Exit statement 

and so on. 

For certain queries, the results that are given for any node (program item) are 

dependent solely on the results for that node's subnodes. Thus, i f the information 

for all the subnodes of a node is known, the value for the node itself can easily 

be determined. Thus the information for a node is stored in a database table 

linked to that node and rather than recalculating the information each time it is 

needed, i t can be extracted f rom the database table. Moreover, when the node 

is moved to another location in the program (as the result of a transformation) 

^An association table is a table of pairs in which the first element of each pair is a key and 
the second is some arbitrary data associated with it. 
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the information at that node remains valid (since the subnodes would have moved 
w i t h i t ) and is s t i l l stored. I f , and only if , one of the components of a node is 
changed, does the information ever become unreliable and need to be discarded. 
Thus, when a node changes, all database entries which could depend on i t , i.e. 
those higher in the program tree, must be emptied. 

Database tables take the fo rm of a list of pairs. Each pair holds the name of the 

query and the result, and each list is hnked to a node in the program tree. The 

details and the functions for manipulating the database tables themselves are 

described briefly in Chapter 8. The A ^ T . A W S L query functions for calculating 

the information to put in the database are outlined in Chapter 6 and described 

in detail i n Appendix C. 

5.14.3 Symbolic JVEathematical and Logic Functions 

When modifying WSL programs, i t is often necessary to rewrite algebraic ex­

pressions in simpler forms. This component provides the faciUties to do this. In 

addition i t provides similar functions for logical expressions, and is able to test 

whether one condition logically imphes another, for example that a=b-f 1 imphes 

that a>b — something which is often needed, for example, wi th in the transform­

ations for removing redundant code. 

(The symbolic mathematics and logic routines that have been implemented, while 

incorporating most rewrite rules such AS {a * b) + [a * c) — a * [b + c), as yet only 

provide enough functionali ty to work on fair ly simple examples. For the tool 

to become more widely applicable, these rules must be supplemented wi th , for 

example, the abil i ty to prove relationships inductively. In addition, i t is essential 

that, as w i t h the rest of the system, the correctness of the implementation of this 

component be proved.) 
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5.15 Summary and Conclusions 

This chapter has addressed the questions raised in Section 4.4.3 and has presented 

an overview of the design rationale and decisions that have needed to be made in 

order to construct a practical transformation system f rom the transformations in 

Ward's thesis. To summarise: 

• WSL programs are represented as abstract syntax trees to obviate the need 

to parse them; 

• The system is interactive to allow the user to employ his experience when 

transforming a program; 

• The point at which transformations are to be applied is selected by the 

user by pointing and clicking w i t h a mouse, and by the system by "mov­

ing" through the program (thereby overcoming the problem of obtaining 

information about contexts that was encountered in the CIP project); 

• I t is possible to select and work w i t h several program items in a span; 

• Transformations are selected f r o m a number of menus that contain only 

valid transformations; 

• Transformations have their applicability conditions stored separately f rom 

the code which performs the changes to the program, so that the applicab­

i l i t y can be tested without performing the transformation; 

• Bo th the transformation's instructions for editing a program and the ap-

plicabihty condition are coded using A^^r^WSL which is an extension of 

WSL; 

• A tree structure is used to store the transformations since this increases the 

efficiency of searching the transformation catalogue; 

• The transformation catalogue contains a wide variety of transformations 

covering elementary, compound, generic and high-level transformations; 
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• A n important component of the system is the pattern matcher and template 
filler; 

• The system's efficiency is increased by the inclusion of database tables to 

hold the result of semantic queries; and 

• A subsystem for performing mathematical operations and logical tests sym­

bolically is of great importance. 

The implementation based on these design decisions w i l l be described in Chapter 

8. However so that i t is clear what facilities w i l l be required, i t is necessary to 

give a definition of A ^ r ^ W S L and this w i l l fo rm the subject of the next chapter. 



Chapter 6 

A^X4WSL 

6.1 Introduction 

I n Chapter 5 i t was seen that in order to construct transformations in an optimal 

way, i t was necessary to create a programming language — A ^ T ^ W S L — designed 

for this purpose. A^£Z4WSL is described in this chapter. 

6.2 How Could A ^ T ^ W S L be Formalised? 

Whereas WSL is currently a formally defined language, A^^r^WSL has yet to be 

specificed formally. This is an important outstanding area of work. The formal 

description of A^T .4WSL could be produced by defining the new constructs in 

terms of those of WSL by means of definitional transformations. This could 

be achieved by implementing MSJASNSII using WSL and a formally-defined ab­

stract data type for program representations. The data type and the implement­

ation in terms of WSL would essentially he the definitional transformations of 

the METJCNSL constructs. A formal definition of A ^ f X4WSL would allow (a) the 

correctness of transformation implementations to be demonstrated; and (b) trans-

117 
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formations about A ^ T ^ W S L constructs to be proved and implemented, greatly 
extending the degree to which the tool can be used in its own maintenance. 

6.3 MSTAWSL as Transformation Knowledge 

MSTAWSL is a domain-oriented language in that i t has been specifically designed 

for use i n a particular domain: that of program transformations. Objects f rom 

the domain, such as program sections, appear in the language and operations 

on these objects are readily available as language constructs. Even though the 

implementations of these objects and operations could be large and complex, they 

have simple representations in the language and can be combined in such as way 

that complex program transformations can be wri t ten in a few Hues of code. The 

details and special cases are dealt w i t h in the implementation of the constructs. 

The range of objects and constructs, and the details of any special cases forms 

the knowledge that is represented by the language. 

The use of a language for representing domain knowledge should be compared 

w i t h the I K B S (Intelligent Knowledge-Based System) approach of representing 

domain knowledge in the fo rm of a rule-based system. Using a rule-based system 

gives rise to two problems [183]: 

1. The knowledge elicitation problem: transferring knowledge f rom the domain 

expert into a collection of rules suitable for implementing in a rule-based 

system; and 

2. Enabling programmers to extract and make use of the information in the 

knowledge-base. 

Although there are cases, such as medical diagnosis systems, in which the first 

problem is minimised due to the availabihty of the knowledge, i n the case of 

program transformation systems there are few, i f any, experts w i th relevant ex­

perience. The second problem causes specific difficulties in the case of program 

transformations systems since i t is difficult to see how programmers could make 
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use of a rule-based representation of domain knowledge. However, the knowledge 
embodied in a very high-level domain-oriented language such as A^fZAWSL can 
be employed in the development of program transformations. 

6.4 Criteria for Selecting MSTAWSJJ Constructs 

M£TAWSL was developed through a process of rapid prototyping. A core of 

language constructs that were thought would be useful, for example those for pat­

tern matching and template filling, were implemented and then used to construct 

transformations. During the construction of the transformations, i t became clear 

that there were some necessary operations that could not be performed wi th this 

basic set of constructs and some sequences of operations which occurred many 

times. A n example of the former case was moving to a different point in the 

WSL program tree, while an example of the latter was determining the variables 

that occurred in a section of code. This new knowledge was incorporated into 

the language by adding constructs which performed these operations. Likewise, 

constructs that were rarely, or never, used were removed. 

I n addition, the MsrAWSL constructs were designed to f u l f i l l Hoare's four "Basic 

principles of language design" [98]: 

1. Security: Every syntactically incorrect program should be rejected by the 

compiler, interpreter or translator, and executing any syntactically correct 

program should produce a result or an error message expressed in terms of 

the source code; 

2. Brevi ty of object code and compactness of run t ime working data: Despite 

the reductions i n hardware cost, processors are st i l l cheap in comparison wi th 

the amount of main store they can address, and backing store is many orders 

of magnitude slower. Programmers should be able to take advantages of this 

"spare" capacity to increase a program's quality, simplicity, ruggedness and 

reliabili ty; 
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3. Entry and exit code for procedures and functions should be as compact 
and efficient as for t ight ly coded machine code subroutines: More generally, 
there should be no impediments to the use of convenient high-level facilities 
in the language; and 

4. The language should be parsable in a single pass wi th a simple recursive-

descent parser so that the language is easy to read by people and so that i t 

is easier to ensure the correctness of the compiler. 

Criteria 2 and 3 are met by the design of MSTAWSL as can be seen f rom the 

remainder of this chapter. Criteria 1 and 4 are functions of the compiler and can 

be verified f r o m the implementation described in Chapter 8. 

6.5 A Survey of MSTAWSL Constructs 

The approach adopted for producing the transformation system and A ^ T ^ W S L 

was that of rapid prototyping. As a result METAWSL is currently writ ten, and 

defined, in LISP (see Chapter 8). I n order that this chapter not consist of large 

amounts of LISP code, only informal descriptions of the constructs are given here. 

6.5.1 Predefined Variables 

MSTAWSL includes a number of predefined variables which can be referenced 

(but not assigned to) wi th in transformations. To distinguish them, TM^XAWSL 

variables begin and end w i t h "%" symbols. Essential among these variables are 

%Program%, %Posn% and %ltem% since these store the program being trans­

formed and the i tem wi th in the program that is being manipulated at any given 

t ime. 

%Program% holds the whole program that is currently being transformed. 

%ltem% holds the currently selected syntactic program item. %Posn% holds the 
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A Sequence of Statements () 

. . . ( 1 ) . . . ( 2 ) Assign (3) . . . ( 4 ) . . . ( 5 ) 

Assignment ( l 3) Assignment (2 3) 

X (1 1 3) + ( 2 1 3 ) Y (1 2 3) * (2 2 3) 

A (1 2 1 3) B (2 2 1 3) C (1 2 2 3) D (2 2 2 3) 

Figure 6.1: Positions in a WSL Program Tree 

position, relative to the root node, of the currently selected program item. The 

position relates to the program components as follows: 

• The root of the tree (i.e. the whole program) has its position represented by 

the empty list; and 

• The nth sub-component of each node has the position of its parent, but w i th 

an n added (wi th the function cons) onto the beginning. 

Figure 6.1 shows the positions of some of the nodes in the tree for the program 

(. . .(Assign (X ( + A B ) ) (Y (* C D))) . . . ) 

i n which the Assign statement is the th i rd i tem in the program. For example, (1 

2 3) represents the position of the Y . 

The other predefined variables are described in Appendix C.2. 
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6.5.2 Statements for Moving through the Program 

As was seen in Chapter 5, A ^ T ^ W S L needs to include statements for mov­

ing wi th in program trees. These statements are: OUp, ODown, ©Left, @Right, 

OTo.Last, ODown.Last, OTo, OGoto, OFollow and ©Return. ( A ^ r ^ l W S L state­

ments begin and w i t h "0" symbols to distinguish them.) The specific details of 

each statement are described in Appendix C.3, however, two important charac­

teristics of these statements are worth noting here. 

First , these statements, being used internally by transformations, do not record 

their action in the audit t ra i l of operations performed on the program. This is 

because the application of a transformation is itself stored, and i f the actions that 

that transformation performed were also stored individually, then the actions of 

a transformation would effectively be recorded twice. Second, these statements 

provide no error checking whatsoever. Thus, i f the current i tem is a leaf node 

and the ©Down statement is executed, then an error occurs. The reasons for the 

lack of error checking are twofold: 

• The A ^ T . A W S L movement statements can be executed much more effi­

ciently, which is useful in transformations in which these statements may 

be executed many thousands of times; and 

• The transformations can be wri t ten i n such a way that no movement to 

non-existent nodes w i l l ever occur — in fact there are MSTAWSL conditions 

which can be used to prevent illegal movement f rom happening. 

6.5.3 Functions for Testing whether Movement is Pos­

sible 

As mentioned earlier, the MSTAWSL movement statements do not do any error 

checking since this is left up to the individual transformations. Thus, i t is ne­

cessary to incorporate into MSTAWSL a set of functions to check the validity of 

movement wi th in the program tree. These return true i f and only i f i t is possible 
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to move in the indicated direction: [-Up?_], [_Down?_], [_Left?_] and [_Right?_]. 
(A^^r^WSL functions begin and w i t h "[_" and end wi th " . ] " to distinguish them.) 
These functions would most likely be used in a jMfT^WSL program fragment such 
as: 

(Cond (([-Up?-]) (@Up))). 

The specific details of each of these functions are described in Appendix C.4. 

6.5.4 Statements for Working with Spans 

AisTAWSL provides statements for selecting several items in a sequence. These 

statements neither provide any error checking whatsoever, nor do they record their 

action in the audit t ra i l of operations performed on the program. The reasons are 

the same as for the MSTAWSL movement statements. 

Spans make use of two global variables: %Span% and %ltems%. The variable 

%Span% holds a number one less than the number of items in the current span. 

( I f no sequence has been selected, then this variable has the value zero.) The 

variable %ltems% is a Hst^ which contains all the items that make up the span. 

These variables can be accessed by a MSTAWSL program wi th in a transformation 

and thus provide information about the size and content of spans. 

The statements for working on spans are: @lnc-Span, ODec-Span, @Set_Span and 

QAILSpan. They are described in more detail in Appendix C.5. 

^Although %ltems% contains WSL items, it is not generally a syntactically correct WSL 
program item. For example, %ltems% may contain a list of expressions, but it is not of itself an 
object of type Expression, or any other standard object type. 
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6.5.5 Statements for Editing the Program 

The system would not be able to transform a program at all unless there were 

some META^SL statements to modify the program. As wi th the statements 

presented above, the editing statements that MCTASMSL includes do not do f u l l 

error checking (such as checking that the resulting program is syntacticly valid), 

nor do they update the audit t ra i l of operations performed on the program. 

Since these statements can change the program tree in any way, they are capable 

of being used to produce incorrect transformations (i.e. code which changes a 

program so as not to preserve its semantics). Thus i t is dependent on the person 

who implements the transformations to check that they are used appropriately.^ 

The statements @Del, ©DeLBack and ©DeLRest delete items f rom the program in 

various ways. Items that have been deleted can be re-inserted elsewhere using the 

statements ©UnDeLBefore and OUnDeLAfter. Any other program items can be 

inserted using the statements @lns_Before and @lns_After, and the the statement 

@Change_To changes the currently selected program item. These are described in 

more detail in Appendix C .6. 

As was said i n Section 6.4, the only constructs that exist in A ^ r ^ W S L are those 

that have been found to be useful. A good example is the ODeLRest statement 

which deletes all the items in the current branch after (but not including) the 

i tem at the current position. Thus, i t can be used to delete all the unreachable 

statements after an Exit statement. The corresponding statement, which would 

delete all the items in the current branch before (but not including) the i tem 

at the current position, is not included as part of A ^ r ^ W S L since there are no 

transformations which permit the deletion of all the statements before the current 

statement. 

•̂ Once a formal definition of A^er^lWSLis produced, the implementation of the transforma­
tions could potentially be verified formally. 
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6.5.6 Statements for Repeating an Operation at Differ­
ent Nodes 

Many of the transformations involve manipulating or examining all the nodes 

wi th in a subtree for which a particular condition is true. For example, i f there is 

a transformation which moves a statement f rom outside the end of a Loop into 

the Loop, then i t is necessary to be able to identify all the relevant Exit state­

ments wi th in the Loop so that the statement being moved can be inserted in 

front of all of them. This is a general process, and although i t could be coded 

explici t ly on each occasion by a series of movements and tests, there is are gen­

eral A^fZ^WSL statements for performing such tasks. These are the statements 

@When, @When-Terminal and OWhen-TerminaLO. 

The OWhen statement performs the specified actions at each i tem, wi th in a pro­

gram i tem, which meets any of a set of given criteria. The criteria could include 

a test for a "terminal" statement [177], possibly wi th a particular terminal value. 

However, since these tests necessitate walking down the tree, which the OWhen 

statement does anyway, their functionali ty can be combined to create the more 

efficient OWhen-Terminal and @When-TerminaLO statements. 

W i t h each of these statements, i t is possible to prevent the searching of a subtree 

by using the @No-Deeper statement and to leave prematurely a @When statement 

and return to the starting i tem using the @Exit-When statement. The @No-Deeper 

statement might be used when a OWhen statement were searching for a particular 

variable. I f i t were possible to determine ( f rom the database or by using the 

functions which return information about variable usage) that the variable did 

not occur in a particular branch, then the system could avoid searching inside 

i t by executing a @No-Deeper statement. The 0Exit-When statement might be 

used when a @When statement were being used to determine whether a particular 

condition was true at any point inside a program i tem. I f the condition was 

fu l f i l l ed the transformation would set a flag to indicate the fact and then execute 

an @Exit-When. 

A l l these statements are described in more detail, w i th examples, in Appendix 
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C.7. 

6.5.7 Other A^r^iWSL Statements 

A transformation's applicability test sets a flag to be true or false in order to indic­

ate whether the current program has passed the test. Two METAWSL statements 

are used to set this flag to be true or false, and these are OPass and OFail. 

Some transformations w i l l only be found to fa i l once they have started to make 

changes. I t may also be that a transformation attempts to make some changes, 

finds that they do not work and goes on to t ry some others. In both these cases i t 

is necessary to revert to an earlier version of the program. Therefore MSTAWSL 

statements to control this are required. These are: @Wrong, @Mark, ©Reposition, 

OUndo and @Drop. 

A l l these statements are described in more detail, wi th examples, in Appendix 

C.8. 

6.5.8 Pattern Matching and Template Filling 

A transformation can be wri t ten using a "pattern match" function that compares 

an in i t i a l program w i t h a pattern, and a "template fill" that replaces the ini t ia l 

program w i t h a final program according to a second pattern. 

Defining "Match" Pat terns 

Patterns used for matching are defined using normal WSL constructs, together 

w i t h a set of special symbols, some of which include tokens. These special symbols 

are wildcards that can occur in place of any normal WSL i tem, and which match 

any i t em (or possibly a sequence of items) that occurs at that position. Thus, the 

form of a WSL i tem can be represented without necessarily specifying its content. 
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The complete set of match pattern symbols is shown in Figure 6.2. 

( - > ? ' 
( - > * ' 

( - > ? * ' 
( - < ? ' 
( - < * ' 

(^*^ 
( ^ ? * ~ 
Token 
Token 
Token 
Token 
Token 

( ~ 0 R ~ Patterns 

Match one program item. 
Match a sequence (possibly empty). 
Match a non-empty sequence. 
Replace Token by the matched program item. 
Replace Token by the matched possibly-empty sequence. 
Replace Token by the matched non-empty sequence. 
Check that the thing matches the value of Token. 
Check that the list matches the value of Token. 
Tests for one of several possible patterns. 

Figure 6.2: The Pattern Matching Symbols 

The final pattern is a compound pattern. I t takes as its arguments a list of possible 

patterns, and returns the association table wi th the token values f rom the first 

successful match, i f there is one. 

For example, w i t h the pattern 

(Cond ( ( - ? - ) ( ~ > * ~ 5)) 
((Else) ( ~ < * ~ S))) 

and the WSL code 

(Cond ( (= A B) (Assign (X 0)) (Skip)) 
((Else) (Assign (X 0)) (Skip))) 

the matcher would return an association table wi th S given the value of a list 

containing two statements (Assign (X 0)) and (Skip). 

Def ining " F i l l " Pat terns 

Like patterns used for matching, patterns used for filling are defined using normal 

WSL constructs, together w i t h a set of special symbols. Again, these symbols 

may occur in place of any normal WSL i tem. They extract the entry indicated 
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by the token f r o m an association table and put i t into the pattern in the place of 
the symbol. The complete set of fill pattern symbols is shown in Figure 6.3. 

( ~ < ? ~ Token) Replace b y the single i tem. Token. 
( r s ^ < * ~ Token) Replace b y the sequence of items. Token. 

( ~ < S E ~ Token) Replace b y the simplified fo rm of the expression Token. 
( ~ < S C ~ Token) Replace b y the simplified fo rm of the condition Token. 

Figure 6.3: The Template Fil l ing Symbols 

For example, w i t h the pattern 

(Assign (X ( ~ < S E ~ ( - ( ~ < ? ~ E) (+ A B))))) 

and the association table containing E wi th the value (-f A B), the template filler 

would return the WSL code 

(Assign (X 0)) 

since i t would have simphfied the expression ( - ( 4 - A B ) ( + A B ) ) t o give 0. 

The A ^ T ^ W S L functions which enable pattern matching to be incorporated into 

transformations are [_Check?_] and [_Match_]. [_Check?_] tests a section of W S L 

against a pattern and just returns true or false, and [_Match_] returns, in the fo rm 

of an association table, the values of any tokens in the pattern that have matched. 

The A ^ ^ r ^ W S L functions for template filling are [_FilLln_] and [_Fill_Args_j. A l l 

these functions are described in more detail in Appendix C .9. 

6.5.9 Functions for Association Tables 

The pattern matching functions return association tables as their results, and the 

template fiUing functions require association tables to provide the values of the 

tokens being replaced. Provided i t were never necessary to do intermediate work 
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on these tables between performing a match and a fill, then no other operations on 
the tables would be necessary. However i t is often the case that transformations 
need to be able to access particular values in the table, or to be able to add items 
to, or change items in , the tables. The functions to do this are [-Put-], [-Get-] and 
[-VaL] and are described in Appendix C.IO. 

6.5.10 Functions for Examining the Program undergoing 

Transformed 

W i t h i n program transformations, i t is necessary for the transformation to determ­

ine attributes of the code being transformed. This can often be achieved by means 

of a pattern match, but sometimes the information required cannot be obtained, 

or more usually, cannot be obtained efficiently, this way. Thus, the following func­

tions are provided to make the transformations simpler: [-With-Else?_], [-Size-], 

[-Comps-j, [-Contents-j, [-AILContentS-], [.Statements-], [-Calls-j, [-Total-Size.] and 

[-Body-]. They are described in more detail in Appendix C . l l . 

6.5.11 Functions Relating to Variable Usage 

The transformations often require information about the use of variables. In 

particular, transformations need to know, for any section of code, all the vari­

ables that are referred to, those that are used (or accessed) and those that 

are assigned to. The functions to do this are described in detail i n Appendix 

C .12, and are: [.Variables.], [.Used.], [JVssigned.], [.Used.Only.], [.Assd.Only.] and 

[.Assd.To.Self_]. 

6.5.12 Functions for Testing Types and Syntax 

A t certain points when performing transformations (or when testing their applic­

abi l i ty) i t is necessary to check the type or syntax of particular items. These 
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occasions occur when the action of a transformation is only valid for a particular 
type of i t em (or set of types) or when the user has supplied some information 
as input and the transformation needs to check the validity of its syntax. The 
functions to perform these operations are the following: [_Number?_], [.Variable?.], 
[.Syntax?.], [.S.Type?.], [.G.Type?.], [.P.Type?.] and = = . These functions are de­
scribed in detail i n Appendix C.13. 

6.5.13 Functions Relating to Loops 

There are functions which return the information about Loops which trans­

formations often need to have available. This information cannot be obtained 

(simply) by any other means. These functions are the following: [.Primitive?.], 

[.Depth.], [.Terminal-Value.], [.Terminal?.], [.Reducible?.], [.Proper?.], [.Improper?, 

and [.Dummy?.]. They are defined in Ward's thesis [177] and are also described 

in detail in Appendix C.14. 

6.5.14 Functions for Testing Action Systems 

Just as there are MSTAWSL functions for determining information about 

Loops, so there are also functions for returning information about action sys­

tems. These functions are the following: [.Regular?.], [.Regular.System?_] and 

[.Calls.Terminal?.]. They are defined in Ward's thesis [177] and are also described 

in detail in Appendix C.15. 

6.5.15 Functions for Symbolic Mathematics and Logic 

While symbolic simplification functions can be buil t into the templates used for 

filling, i t is often necessary to be able to perform exphcit symbolic manipulations 

such as forming the conjunction of two conditions. The following functions allow 

certain symbolic manipulations to be performed in A ^ r ^ W S L : [.And.], [-Or_], 
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[-Not-], [-->T?-], [-->F?-], [-Simplify-], [-Simplex?-] and [-Isolate-]. These functions 
are described in more detail in Appendix C.16. 

6.5.16 Other Sundry A^Z4WSL Functions 

I n addition to the A^^r^WSL functions already described, there are some which 

do not fit into any particular category. These are [.Replace.] and [.RpicJ\ll.], 

which perform search-and-replace operations on the given data, [JVrguments.] and 

[ .Occ], which return information about each occurrence of named constructs, 

[-DifF-] which calculates the differences between two program sections using a 

unification algorithm, and [-Increment.] and [.Decrement.], which increment or 

decrement a sequence of statements according to Ward's definition [177] [174 . 

These functions are described in more detail in Appendix C.17. 

6.5.17 Calling other Transformations 

Transformations can be bui l t up f r o m the METAWSL statements and functions 

described above, together w i t h ordinary WSL constructs. However, i t is often 

the case that more powerful transformations can be constructed by combining 

existing transformations — provided that the transformations are legitimately 

applied. I n fact, some more complex transformations can really only practicably 

be constructed by this method. 

The METAWSL [.Trans?.] funct ion returns true i f and only i f the named trans­

formation is applicable at the current point i n the program and the MSTAWSL 

OTrans statement performs a named transformation without testing the trans­

formation's applicability. These statements can be combined to ensure that only 

applicable transformations are performed. More details and an example are given 

in Appendix C.18. 
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6.6 Summary and Conclusions 

This chapter has introduced the statements and functions of MCTAWSL. I t is 

proposed that A ^ T ^ W S L meets the criteria of success given in Chapter 4 in that i t 

is both simple and complete.^ The next chapter considers whether this is the case. 

I n particular, i t looks at whether A^T^ lWSL is simple, in that transformations can 

be expressed in such a way that their funct ion is not obscured by implementation 

details, and complete, in that all the transformations that could potentially be 

included in the system can be expressed using MSTAWSL. This assessment wi l l 

be performed by representing transformations using A4£TAWSL. 

^MCTAWSL is not a minimal extension of WSL; for example there is a OChange.To state­
ment which could have been omited since it can be replaced by a combination of ©Delete with 
@lns.After or OIns.Before. 



Chapter 7 

The Transformations in the 

Maintainer's Assistant 

7.1 Introduction 

The previous chapter introduced MSTAWSL and gave some simple examples of 

how the different statements and functions could be used. This chapter explains 

how a catalogue of transformations can be buil t up using METAWSL. The cata­

logue w i l l be seen to be a complete implementation of Ward's transformations^, 

and also usable in the sense that are transformations which combine Ward's trans­

formations i n efficacious ways, reducing the need for the user of the system to learn 

long sequences of elementary transformations. The construction of such a cata­

logue provides insight into the questions of whether, and how clearly and concisely, 

METAWSL can represent program transformations. 

Details w i l l be given in this chapter of the types of transformations that are 

incorporated into the Maintainer's Assistant together w i th examples. There are 

^ Every theorem of mathematics gives rise to a transformation or refinement (replacing one 
assertion by another), so completeness is unattainable. In practical terms, there are only a 
small number of transformations which had to be proved from first principles [177]; all others 
are combinations of these or applications of the induction rules for iteration and recursion. 

133 
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eight examples, i l lustrating different aspects of transformation construction, as 
follows: 

Assert_After_Whi le uses a single pattern match; 

Spl i t_Cond uses several pattern matches to distinguish between cases; 

Remove_Unused_Local_Var uses query operations; 

Remove_Dummy_Loop tries a sequence of operations and undoes the changes 

i f they prove not to be beneficial; 

F u l l y - F a c t or_C end is bui l t f r o m calls to simpler transformations; 

Reduce_Exits_ in_Loop uses the basic transformation facilities, but incorpor­

ates a complex algorithm to select the best course of action; 

T a k e _ O u t - > > shows the simplicity of constructing generic transformations; and 

Insert J n v a r i a n t shows how the symbolic maths system is used in a high-level 

transformation. 

7.2 An Overview of the Transformation Cata­

logue 

The transformation catalogue of the Maintainer's Assistant currently contains 601 

transformations. This collection has come about through an evolutionary process. 

A min imal catalogue — in the sense that all other transformations could be pro­

duced as sequences of these — containing only Ward's elementary transformations 

(i.e. those proved in his thesis [177]) were implemented first. This, however, has 

been extended to include compound, generic and high-level transformations, all 

of which w i l l be explained below. 

Each new transformation was added either as the result of observing a common 

combination of simpler transformations — an example being the transformation 
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to replace an action system by a series of nested conditions and loops — or as 
a generalisation of a number of other transformations — an example being the 
general "Merge ->>" which merges an i tem into the following item. 

7.3 Elementary Transformations 

The most fundamental transformations in the Maintainer's Assistant are those 

that have been proved by Ward in his thesis [177]. These provide a core set of 

about 200 transformations f rom which others can be constructed. 

7.3.1 Method 

These transformations are, on the whole, very simple and this simplicity is not 

obscured by representing them in AdSTAWSL. The transformations can be wri t ­

ten using pattern matching, combined wi th some tests of variable usage, logical 

simplification and use of the QWhen statement. 

7.3.2 Examples 

For each of the transformations in this chapter, the following information wi l l be 

given: 

• A "header" consisting of: 

1. The name of the transformation; 

2. The generic type (such as Statement) on which the transformation 

works; 

3. The specific type (such as Assign) on which the transformation works; 

and 
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• The A ^ Z 4 W S L code for the transformation's apphcabihty test; and 

• The A4£TAWSL code for performing the transformation. 

Adding an Assert Statement 

The following transformation creates an extra Assert statement after the end of 

a While loop. The statement asserts that the condition of the loop is false. For 

example, after the statement 

(While (> a 1) (...)) 

the assertion 

(Assert ( < = a 1)) 

can be added. This transformation makes use of simple pattern matching, and 

symbolic simplification when performing the [_Fill_ln_]. The header information 

for this transformation is as follows: 

Name Assert _After_While 

Generic Type Statement 

Specific Type While 

The applicability test would just be as follows: 

((OPass)) 

since the transformation is valid for any While statement at any position in the 

program. The code for performing the transformation would be as follows: 

((@lns_After ([_FillJn_] Statement 
(Assert ( ~ < S c ~ (Not ( ~ < ? ~ B)))) 
([_Match_] Statement 

(While ( ~ > ? ~ B) (~*~) ) 
Empty))) 
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(@Right)). 

The th i rd argument of the [_FilLln_] statement should be an association table, and 

this is indeed the case since the function [_Match_] returns such a table. The final 

0 Right statement ensures that the newly inserted Assert statement is the currently 

selected program i tem after the transformation has been performed. 

Splitt ing a Cond Statement 

The next transformation splits a Cond statement whose condition is the conjunc­

t ion (i.e. And) or disjunction (i.e. Or) of two conditions, into a combination of 

Cond statements. For example, the statement 

(Cond ((Or (= A 1) (= B 1)) (Assign (Q 1))) 
((Else) (Assign (Q 2)))) 

can be rewrit ten (provided that neither condition has any side effects) as 

(Cond ( (= A 1) (Assign (Q 1))) 
((Else) (Cond ( (= B 1) (Assign Q 1)) 

((Else) (Assign Q 2))))) . 

The transformation is wr i t ten using pattern matching and template filHng, and 

makes use of conditional patterns i n order to check for the cases both of an And 

and of an Or. The header information for this transformation is as follows: 

Name Split_Cond 

Generic Type Statement 

Specific Type Cond 

The applicability test would be as follows: 

((Cond (([Xheck?_] Statement 
(Cond ( ( ( ~ 0 R ~ And Or) ( ~ ? ~ ) ( ~ ? ~ ) ) 

( - * - ) ) 
((Else) 
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{-*-)))) 

(Comment "Now test for a general expression or condition.") 

(ODown) 
(ODown) 
(Cond ((And (= ([-Occ_] Gen_Expr %ltem%) 0) 

(= ([-Occ_] Gen.Cond %ltem%) 0)) 
(QPass)) 

((Else) 
(OFail)))) 

((Else) 
(QFail)))) 

and the A ^ X 4 W S L code for performing the transformation would be as follows: 

((Var ((Table ([_Match_] Statement 
(Cond ((And ( ~ > ? ~ B l ) ( ~ > ? ~ B2)) 

( - > * - SI) ) 
((Else) 

( ~ > * ~ S2))) 
Empty))) 

(Cond ((Non.Empty? Table) 

(Comment "This is the case for an 'And' condition.") 

(@Change_To ([.FillJn_] 
Statement 
(Cond ( ( ~ < ? ~ B l ) (Cond ( ( ~ < ? ~ B2) ( ~ < * ~ SI)) 

((Else) ( ~ < * ~ S2)))) 
((Else) ( ~ < * ~ S2))) 

Table))) 

((Else) 

(Comment "This is the case for an 'Or' condition.") 

(Assign (Table ([_Match_] Statement 
(Cond ((Or ( ~ > ? ~ B l ) ( ~ > ? ~ B2)) 

( - > * - SI ) ) 
((Else) 

( - > * - S2))) 
Empty))) 

(@Change_To ([_FillJn_] 
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Statement 
(Cond ( ( - < ? - B l ) ( ~ < * ~ SI) ) 

((Else) (Cond ( ( - < ? - B2) ( ~ < * ~ Si) ) 
((Else) ( ~ < * ~ S2))))) 

Table)))))) 

The transformation has two cases corresponding to the two clauses of the Cond 

statement. These deal w i t h the cases of the condition being formed wi th an And 

and an Or, respectively, and are distinguished by means of pattern matching. I f a 

pattern match fails, then the association table in which the results are stored w i l l 

be empty, and the predicate funct ion Non.Empty? can be used to test this. 

The second call to the function [_Match_] w i l l always return a non-empty associ­

ation table, since the applicability test ensures that one of the patterns in the two 

calls to [-Match.] matches the current program item. 

R e m o v i n g a L o c a l Variable 

The following transformation removes a local variable structure when there is a 

single local variable which is never referenced (except possibly i n assignments to 

i tself) w i th in the body of the local variable structure.^ For example, the trans­

formation would change the code 

(Var ((X 2)) 
(While (< Y 10) 

(Assign (X (* X 4))) 
(Assign (Y (+ Y 1))))) 

into 

(While (< Y 10) 
(Assign (Y (+ Y 1)))) 

^To enhance the clarity of how MSTAWSL is used, this transformation is a simpHfication of 
one that is actually implemented in the Maintainer's Assistant. 
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since the local variable X is only ever used in assigning to itself, and does not 
affect the value of Y . 

The header information for this transformation is as follows: 

Name Remove_Unused_Local_Var 

Generic Type Statement 

Specific Type Var 

The transformation's applicability test is wri t ten using some of the functions for 

examining the program being transformed and also the database query functions 

which test variable usage. The applicabihty test would be as follows: 

((@Down) 
(Cond ((> ([-Size_] %ltem%) 1) 

(QFail)) 
((Else) 

(Var ((V (Hd ([.Assigned,] %ltem%)))) 
(@Up) 
(Cond ((Member? V (Set.DifF ([_Used_] ([-Body.] %ltem%)) 

([J\ssd_To_Self.] ([-Body.] %ltem%)))) 
(@Fail)) 

((Else) 
(@Pass))))))). 

The test works by moving down into the Var thereby selecting the list of ini t ia l 

assignments to the local variables. I t then tests whether there is more than one 

in i t ia l assignment, i n which case the transformation is not valid. Otherwise, the 

transformation stores the name of the local variable in the variable V. (Since the 

funct ion [.Assigned.] returns a list, i t is necessary to take the head of the Hst.) 

Next, the whole Var is selected again, and there is a test to determine whether 

the variable named in V is ever used other than in assignments to itself. I f i t is, 

then the transformation is not valid, otherwise i t is valid. 

The A ^ Z 4 W S L code for performing the transformation would be as follows: 

((ODown) 
(Var ((V ([J\ssigned.] %ltem%))) 
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(While ([-Right?_]) 
(@Right) 
(OWhen 0 ((And ([_Type?_] Assignment) 

( = = ([J\ssigned_] %ltem%) V)) 
(Cond ((= %Length% 1) (OUp))) 
(@Del)))) 

(OUp) 
(@lns_After ([_FillJ\rgs_] Statements 

S)) 
([_Match_] Statement 

(Var ( ~ ? ~ ) ( ~ > * ~ S)) 
Empty))) 

(@Del))). 

The transformation works by moving down into the Var and storing the name 

of the local variable in V. Next the transformation moves through every other 

top-level component of the Var statement (using a While loop) and for each such 

component i t considers all the assignments inside them which assign to the local 

variable named in V. These are the assignments which need to be removed. I f they 

are the only assignment in an Assign statement, then i t is necessary to move up so 

that i t is the Assign statement, and not the assignment, that is deleted. Finally 

the transformation selects the whole Var once more and does a pattern match 

and template fill i n order to complete the change to the program. The statement 

@lns_After is used w i t h the function [_FillJ\rgs_] since a list of statements is inserted 

in place of a since statement (which is then deleted). 

This pattern matching and template filling could also have been achieved using 

the statement 

(@lns_After (Args ([-Body_] %ltem%))) 

— a fo rm which is used in the next example. 
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R e m o v i n g a D u m m y Loop 

The final example transformation in this section removes a dummy Loop, replacing 

i t w i t h the sequence of statements that that loop contained. For example, the Loop 

(Loop (Assign (X (+ X 1))) 
(Cond ( (= X 10) (Assign (Y 0)) (Exit 1) (Assign (Q 0))) 

((Else) (Assign (Y 3)) (Exit 1)))) 

can be replaced by the statements 

(Assign (X (+ X 1))) 
(Cond ( (= X 10) (Assign (Y 0)) 

((Else) (Assign (Y 3)))) . 

The transformation uses the MCTAWSL functions which manipulate loops wi th 

Exit statements. The header information for this transformation is as follows: 

Name Remove.D ummy_Lo op 

Generic Type Statement 

Specific Type Loop 

The transformation's applicability test is as follows: 

((Cond (([.Dummy?.] %ltem%) 
(@Pass)) 

((Else) 
(OMark) 

(OWhen 0 ((And ([.G.Type?.] Statement) 
([.Right?.]) 
([.Improper?.] %ltem%)) 

(@Del.Rest))) 

(Cond (([.Dummy?.] %ltem%) 
(OPass)) 

((Else) 
(QFail))) 
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(OUndo)))). 

The applicability test first tests whether the loop is a dummy loop. I f i t is, then the 

transformation is valid. I f i t is not, then the applicability test records the current 

version of the program and modifies i t (where possible) to remove all statements 

which occur after improper statements (since these w i l l never be executed). This 

may make the loop into a dummy loop and, i f i t does, then the transformation is 

valid otherwise i t is not valid. I n both these last cases, the changes are undone to 

leave the program as before. 

The MSTAWSL code for performing the transformation would be as follows: 

((©When 0 ((And ([_G_Type?_] Statement) 
([-Right?-]) 
([.Improper?.] %ltem%)) 

(©Del.Rest))) 

(@Change.To ([.Decrement.] %ltem% 1)) 

(Cond (([.Trans?.] Delete.All^kips) 
(©Trans Delete.Ali.Skips))) 

(OIns.Before (Args ([.Body.] %ltem%))) 
(@Del)). 

The transformation first removes any statements which occur after improper state­

ments. Next i t decrements the loop by one, which may leave spurious Skip state­

ments (since Exit 1 statements reduce to Skip statements) so these must be re­

moved by calling the appropriate transformation. Finally, the statements of the 

loop are inserted after the loop and the loop is deleted, leaving only the decre­

mented loop body. 
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7.3.3 Summary 

The examples i n this section demonstrate that is i t possible to express Ward's 

transformations using MSTAWSL. I t can also be seen that wi th regard to applic­

abil i ty conditions there are four cases: 

1. Transformations that are always valid and thus have t r iv ia l apphcabihty 

conditions; for example "Assert .After.While"; 

2. Transformations that involve a single pattern match which directly reflects 

the fo rm of the code on which they work; for example "Spht.Cond"; 

3. Transformations that make use of calls to the database query functions; and 

4. Transformations that combine one of the previous cases wi th a temporary 

change to the program. 

I t can be seen f r o m the examples given, that all these cases make for clear and 

concise code. 

There are three different varieties of code for performing the transformations: 

1. Transformations that consist of a pattern, a template and the A^£T.AWSL 

constructs for doing the matching and filling; for example "Assert-After-

.Whi le" . 

2. Transformations that are similar, but sHghtly larger and more complex since 

they are an implic i t combinations of other transformations; for example 

"Split .Cond". 

3. Transformations which use calls to the database query functions, or the 

©When statement, thus obviating the need to include explicit tree walking 

algorithms. 

From the examples given, and f r o m the tables at the end of this chapter, i t can be 

seen that MSTAWSL provides a good means by which elementary transformations 
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can be expressed. Doing so enables the complete set of Ward's transformations 
to be implemented wi th in the Maintainer's Assistant. 

7.4 Compound Transformations 

The compound transformations i n the Maintainer's Assistant perform common se­

quences and combinations of transformations but can be selected in the same way 

as the elementary transformations. There are about 400 of these transformations. 

7.4.1 JVLethod 

Coding these transformations uses techniques that are very similar to the tech­

niques used in coding the elementary transformations. However, the additional 

features of WSL are used in order to guide the selection of patterns and templates, 

the selection of program items on which to work and so on. A simple choice of 

this type was used in the example above which removed dummy loops. I f the 

in i t i a l test failed, then the transformation attempted to put the code into a form 

so that the test might then work. 

METAWSL has been designed to incorporate the features that are needed to con­

struct compound transformations wi th the minimum of effort. The most import­

ant of these features are as follows: 

• The heuristics that are used to guide the choice of action in compound trans­

formations are usually based on the program size, number of Call statements 

in a section of code, the use of variables and so on. A l l this information is 

provided through METAWSL^S functions for examining the program being 

transformed and also the database query functions; 

• Use of the @Mark, ©Undo, ©Reposition and ©Drop statements allow the 

compound transformations to perform back-tracking should a particular se­

quence of operations not "improve" the program; 
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• The @When, QWhen.Terminal and QWhen.Terminal.O statements allow the 
compound transformations to work on relevant items wi th in the program 
(i.e. those that meet particular criteria) and not on others; and 

• The abil i ty to call other transformations f rom A^X4WSL, allows complex 

transformations to be buil t up by combining simpler ones. This improves 

the maintainabili ty and readability of the code. 

7.4.2 Examples 

Ful ly Factoris ing a Cond Statement 

The first example transformation in this section takes as many statements as 

possible out of the beginning and end of a Cond statement. For example, i t would 

replace 

(Cond ( (= A B) (Assign (X 1)) (Assign (Y 2)) (Exit 1)) 
( (= C D) (Assign (X 1)) (Assign (Y 7)) (Exit 1)) 
((Else) (Assign (X 1)) (Exit 1))) 

by 

(Assign (X 1)) 
(Cond ( (= A B) (Assign (Y 2))) 

( (= C D) (Assign (Y 7)))) 
(Exit 1). 

The way that the transformation is wri t ten reflects the transformation's function. 

I n the code for performing the transformation there is an additional test to de­

termine whether the transformation "Remove.Empty.Cases" in vaHd. This deals 

w i t h the case in which any of the Cond statement's guards contain no statements, 

or only a Skip statement, and can be removed. 

The header information for this transformation is as follows: 
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Name Fully.Factor.Cond 

Generic Type Statement 

Specific Type Cond 

The applicability condition is as follows: 

((Cond ((Or ([.Trans?.] Backward.Factor.Cond) 
([.Tra ns?.] Forward.Factor.Cond)) 

(©Pass)) 
((Else) 

(©Fail)))). 

The code for performing the transformation as follows: 

((While ([.Trans?.] Backward.Factor.Cond) 
(©Trans Backward.Factor.Cond) 
(Cond (([.Trans?.] Remove.Empty.Cases) 

(©Trans Remove.Empty.Cases)))) 
(While ([.Trans?.] Forward.Factor.Cond) 

(©Trans Forward.Factor.Cond) 
(Cond (([.Trans?.] Remove.Empty.Cases) 

(©Trans Remove.Empty.Cases))))). 

R e m o v i n g Exit Statements from a Loop 

The following example is a transformation which, when apphed to a Loop state­

ment, reduces the number of Exit statements wi th in that loop i f this is possible. 

The header information for this transformation is as follows: 

Name Reduce.Exits.In.Loop 

Generic Type Statement 

Specific Type Loop 

The applicability condition is as follows: 

((Var ((Num 0)) 
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(QWhen 0 ((Not (Member? (!L Exit) ([.Statements.] %ltem%))) 
(ONo.Deeper)) 

(([.S.Type?.] Exit) 
(Assign (Num (+ Hum 1))) 
(Cond ((> Num 1) (@Exit.When))))) 

(Cond ((> Num 1) (OPass)) 
((Else) (QFail))))) 

The test is quite straightforward in that i t counts the number of Exit statements 

in the selected program item, ignoring branches that contain no such statements 

and ceasing to search when more than one has been found. 

The code for performing the transformation is as follows: 

((Var ((Num 0) (Temp 0)) 

(Comment "Count the number of 'Exit' statements.") 

(OWhen 0 ((Not (Member? (IL Exit) ([.Statements.] %ltem%))) 
(@No.Deeper)) 

(([.S.Type?.] Exit) 
(Assign (Num (+ Num 1))))) 

(Comment "Move statements that follow 'Var' statements inside the 
'Var' statements.") 

(OWhen 1 ((Not (Any.Member? (IL (Var Exit)) 
([.Statements.] %ltem%))) 

(@No_Deeper)) 
((And ([-S-Type?.] Var) ([.Right?.])) 

(While ([.Trans?.] Forward J\bsorb.Var) 
(@Trans Forward J\bsorb-Var)))) 

(Comment "Search for 'Cond' statements that include 'Exit' statements 
and simplify them by merging common guards.") 

(OWhen 0 ((Not (Any.Member? (!L (Cond Exit)) ([.Statements.] %ltem%))) 
(QNo.Deeper)) 

(([.S-Type?.] Cond) 
(QMark) 
(OTrans Super.Expand J\nd.Factor) 
(While (Not ([.S.Type?.] Loop)) (@Up)) 
(Assign (Temp 0)) 
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(Comment "Count the new number of 'Exit' statements.") 

(@When 0 ((Not (Member? (!L Exit) ([.Statements.] %ltem%))) 
(@No_Deeper)) 

(([^_Type?.] Exit) 
(Assign (Temp (+ Temp 1))))) 

(Comment "If there are no fewer 'Exit' statements then revert 
to the previous version of the program, otherwise 
continue with this version.") 

(Cond ( (>= Temp Num) 
(@Undo)) 

((Else) 
(^Reposition) 
(@Drop) 
(@Exit_When))))) 

(Comment "Now move as many statements as possible from each 'Cond'.") 

(@When 1 ((Not (Member? (!L Cond) ([.Statements,] %ltem%))) 
(@No_Deeper)) 

(([_Trans?_] Fully_Factor_Cond) 
(QTrans Fully_Factor_Cond))) 

(Comment "Now move as many statements as possible from each 'Var'.") 

(@When 1 ((Not (Member? (!L Var) ([.Statements.] %ltem%))) 
(ONo.Deeper)) 

(([_Trans?_] Fully_Factor_Var) 
(@Trans Fully_Factor_Var))))) 

The transformation in i t ia l ly counts the number of Exit statements and stores the 

result i n the variable Num. 

Next the transformation searches for all Var statements, wi th in the selected state­

ment, which include Exit statements and absorbs as much as possible into them; 

i.e. the transformation moves statements that follow a Var inside the Var so that 

tests are moved "closer" ( in the sense that they are on the same level in the 

program tree) to assignments. 
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Next the transformation makes a copy of the current version of the program 
since the next stage may increase the number of Exit statements and not decrease 
i t . The transformation now performs the transformation "Super_Expand_And-
_Factor" at each Cond statement wi th in the loop. The transformation "SuperJEx-
pand_A.nd_Factor" copies all statements before and after a Cond statement into the 
body of the Cond statement (where possible), attempts to merge as many guards 
and statements as possible, and finally takes as many statements as possible out 
of the beginning and end of the Cond. This often has the effect of reducing the 
number of Exit (and other) statements, but i f i t does not, then i t is necessary to 
revert the an earher version of the program. 

Finally, the transformation attempts to simplify the result by taking as many 

statements as possible out of the beginning and end of all Cond and Var statements. 

R e s t r u c t u r i n g an Act ion Sys tem 

By looking at examples of real programs, a number of common scenarios have 

been identified in which more complex transformation strategies can beneficially 

be employed. Since transformations are wri t ten as programs in ^A£TAWSL, i t is 

possible to incorporate arbitrari ly complex heuristics into transformations. One 

such transformation is "Collapse_Action_System" which replaces any regular ac­

t ion system (see Section 4.2.2) by a series of nested loops and conditions. 

While existing code restructurers that can do this kind of restructuring, none of 

them is able to do i t i n the general case without either copying code or introducing 

flag variables, thus complicating the data flow for the sake of simpler control 

flow. The "Collapse_Action_System" transformation of the Maintainer's Assistant 

employs an algorithm by which the labels and jumps (i.e. the actions and Call 

statements) can be removed wi th no (or negligible) copying of code and without 

having to resort to the introduction of new variables. 

The transformation for doing this is too large to give as an example in this chapter, 

but is given in Appendix D. 
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7.4.3 Summary 

Compound transformations provide the user of the Maintainer's Assistant wi th 

some powerful tools for restructuring software. 

Whi le the tables at the end of this chapter give a summary of the clarity and con­

ciseness of the transformations, i t is helpful to consider actual cases. In assessing 

whether ^A£TAWSL provides a good basis for wr i t ing compound transformations 

i t is necessary to consider two different types of transformation as typified by 

the examples above. The first type, exemplified by "Fully_Factor_Cond", does no 

processing except by way of calls to other transformations. As a result, this type 

of transformation is both concise and clear. 

The other type of transformation, for example "Reduce_Exits_In_Loop", uses an 

(often complex) algorithm to determine the changes that must be made to the 

program. This complexity means that the corresponding coding of the transform­

ation may also be complex, and M.ETAWSL must be assessed on whether its use 

causes any undue obscurity to be introduced. As can be seen f rom the example, 

the only changes to the program that the transformation makes are made by calls 

to simpler transformations. The algorithm in question arises f rom determining 

which transformations to use on which parts of the program. This determination 

of which transformation to apply is undertaken in one of several ways: 

1. Using a pattern match; 

2. Using the database query functions; 

3. Moving up, right, or left through the program unt i l a statement of the correct 

type is reached — this is done using A ^ r ^ W S L of the form 

(While (Not ([_S_Type?.] Loop)) (@Up)) 

for example; 

4. Moving down through the program to each place where a certain condition 

holds — this is easily wri t ten using the MCTAWSL @When statement; or 
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5. Counting the number of occurrences of a particular fo rm wi th in a section of 
code — in simple cases this can be done using the [_Occ_] function and in 
all other cases the @When statement provides this facihty. 

A l l these methods can be wri t ten as A f e r ^ W S L code which clearly expresses 

the purpose of the code. I n addition the code is fa i r ly concise, especially where 

is removes the need to include explicit tree walking algorithms. (The use of the 

OWhen construct could be made more concise by removing the tests which prevent 

i t walking down unprofitable subtrees. However, removing these tests would also 

result i n a marked reduction in efficiency.) 

Overall, j V k r ^ W S L provides a good method of expressing compound transform­

ations, which are an important part of the Maintainer's Assistant. 

7.5 Generic Transformations 

The generic transformations, by selecting f rom a number of more specific trans­

formations, enable a user to accomplish much of his work using only a small 

number of transformations. The complete fist of generic transformations is as 

follows: 

Delete Delete the redundant program item. 

Simplify Simplify the program i tem or the sequence of program 

items. 

- > > Swap the program i tem wi th the one following i t ; i.e. 

move the current i tem to the right. 

< < - Swap the program i tem wi th the one preceding i t ; i.e. 

move the current i tem to the left. 
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M e r g e - > > 

A b s o r b - > > 

Merge the program i tem into the one following i t , 

making several copies of the merged program item i f 

necessary. 

Absorb into the selected program item the one that 

follows i t , making several copies of the following pro­

gram i tem if necessary. 

< < - M e r g e 

< < - A b s o r b 

M u l t i _ M o v e - > > 

< < - M u l t i _ M o v e 

Merge the program i tem into the one preceding i t , 

making several copies of the merged program item if 

necessary. 

Absorb into the selected program item the one that 

precedes i t , making several copies of the preceding 

program i tem i f necessary. 

Move the program i tem as far as possible to the right. 

Move the program i tem as far as possible to the left. 

M u l t i _ A b s o r b - > > 

<<-Mul t i _Abso rb 

Absorb into the selected program i tem as many pro­

gram items that follow i t as possible. 

Absorb into the selected program i tem as many pro­

gram items that precede i t as possible. 

Separate->> 

<<-Separate 

Take the currently selected i tem out of its enclosing 

structure towards the right. 

Take the currently selected i tem out of its enclosing 

structure towards the left . 

T a k e _ O u t - » 

« - T a k e _ O u t 

« - T a k e _ O u t - » 

Separate a component of the selected program item 

towards the right. 

Separate a component of the selected program item 

towards the left . 

Separate as many components as possible f rom the 

program i tem, by taking them out in both directions. 
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A p p l y - > > 

< < - U s e 

Use the current program i tem to simpHfy some pro­

gram i tem that follows i t . 

SimpHfy the current program item by using the one 

that precedes i t . 

Insert^Assert Insert an Assert statement inside the current item. 

Add_Assert A d d an Assert statement after the current item. 

Add_And_Insert_Assert Add an Assert statement after, and insert an Assert 

statement inside, the current i tem. 

7.5.1 ]V[ethod 

Generic transformations can be wri t ten very simply using the OTrans statement 

and [_Trans?_] funct ion which are provided by MSTAWSL. The example below 

illustrates this. 

7.5.2 An Example 

This transformation takes a sub-component out of the selected i tem, towards the 

right. For example, i t would transform 

(Cond ( (= A B) (Assign (X 0))) 
((Else) (ProcCall P () ()) (Assign (X 0)))) 

into 

(Cond ( (= A B) (Skip)) 
((Else) (ProcXall P () ()))) 

(Assign (X 0)) 

by extracting the Assign statement. 

The header information for this transformation is as follows: 
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Name T a k e _ O u t - » 

Generic Type Any 

Specific Type Any 

The A^T .4WSL code for the applicability test would be as follows: 

((Cond ((Or ([_Trans?_ Forward_Factor_Cond) 
([_Trans?_] Forward_Factor_D_lf) 
([_Trans?_] Forwa rd _Fa ctor_W h i le) 
([_Trans?_] Take_Outside_Loop) 
([_Trans?_] Forward_Factor_Loop_l) 
([_Trans?_] Forward_Factor_Loop_2) 
([_Trans?_] Forwa rd _Fa ctor_For) 
([_Trans?_] Forward_Factor_Actions) 
([_Trans?_] Forward_Factor_Where) 
([_Trans?_] Forwa rd _Fa ctor_Va r) 
(And ([_S_Type?_] Cond) 

([.Trans?.] Take.Call.Out.Of.Cond))) 
(©Pass)) 

((Else) 
(@Fail)))) 

In the last condition of the Cond statement, there is a test for the selected 

statement to be a Cond. This is because there is also a transformation called 

"Take.Call .Out.Of-Cond" that which works on a Call statement and which has 

a slightly different effect, and thus should not be included as a possibility in this 

transformation. 

The MsrAWSL code for performing the transformation would be as follows: 

((Cond (([.Trans?.] Forward.Factor.Cond) 
(OTrans Forwa rd.Factor.Cond)) 

(([.Trans?.] Forward.Factor.D.lf) 
(OTrans Forward.Factor.D.lf)) 

(([.Trans?.] Forward.Factor.While) 
(@Trans Forward.Factor.While)) 

(([.Trans?.] Take.Outside.Loop) 
(@Trans Take.Outside.Loop)) 

(([.Tra n s? .] Forwa rd _Fa ctor.Loop.1) 
(©Trans Forward.Factor.Loop.!)) 

(([.Trans?.] Forward.Factor.Loop.2) 
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(@Trans Forward_Factor_Loop_2)) 
(([_Trans?_] Forward_Factor_For) 

(@Trans Forward_Factor_For)) 
(([_Trans?_] Forward_Factor_Actions) 

(@Trans Forward_Factor_Actions)) 
(([_Trans?_] Forward_Factor_Where) 

(OTrans Forward_Factor_Where)) 
(([_Tra ns?_] Forward_Factor_Proc) 

(OTrans Forward_Factor_Proc)) 
(([_Trans?_] Forward_Factor_Var) 

(OTrans Forward_Factor_Var)) 
((And ([_S-Type?.] Cond) 

([_Trans?_] Take.CalLOut_Of_Cond)) 
(@Trans Take_CalLOut_Of_Cond)))) 

7.5.3 Summary 

Generic transformations can be expressed in ^A£TAWSL as lists of transformation 

applicability testing functions and statements for performing the corresponding 

transformations. Thus, provided i t is known which transformations need to be 

included in the generic transformations, they are very easy to construct using 

7.6 High-Level Transformations 

As was seen in Section 4.4.5, for the Maintainer's Assistant to be suitable for all 

forms of reverse engineering, its transformation catalogue needs to incorporate 

"transformations" for crossing levels of abstraction. In fact not all of these are 

transformations i n the true sense of the word since they are not i n general revers­

ible; they are i n effect "reverse refinements". The steps that are required in order 

to "transform" code to a more abstract specification were given in Section 4.4.5. 

To summarise, they are: 

• Procedurisation and parameterisation; 
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• Recursion introduction; 

• Determination of invariants; 

• Introduction of specification statements; 

• Introduction of specifications f r o m assertions; and 

• Data abstraction. 

7.6.1 IMethod 

Each of these types of transformation would be coded using the same techniques 

as for earlier transformations. 

7.6.2 An Example 

Due to the similari ty in method to examples earher in this chapter, just one 

example is given. 

Demonstrat ing an Invariant 

This transformation makes appropriate copies of an assertion, which is true before 

a While loop, which remains true after each iteration, and is therefore also true 

outside the end of the loop. (The While loop and the Assert statement are put 

inside a Cond statement, to take into account the case in which the loop is not 

executed.) For example, 

(Assert (> X 10)) 
(While ( < > A B) 

(Assign (X (+ X 1)))) 

can have assertions and a Cond statement inserted so as to rewrite is as 
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(Assert (> X 10)) 
(Cond ( (<> A B) 

(While ( < > A B) 
(Assert (> X 10)) 

(Assign (X { + X 1))) 
(Assert (> X 10))) 

(Assert (> X 10)))) 

The header information for this transformation is as follows: 

Name Insert J n variant 

Generic Type Statement 

Specific Type While 

The transformation's apphcability condition is as follows: 

((Cond ((Not ([-Left?.])) 
(OFail)) 

((Else) 
(OLeft) 
(Var ((Table ([.Match.] Statement 

(Assert ( ~ > ? ~ B)) 
Empty))) 

(Cond ((Empty? Table) 
(OFail)) 

((Else) 
(©Right) 
(OMark) 
(ODown) 
(@lnsJ\fter ([.Fill.ln.] Statement 

(Assert ( ~ < ? ~ B)) 
Table)) 

(©Right) 
(©Trans DuplicateJ\ssertion) 
(Loop (Cond (([.Trans?.] MoveJ\ssertion_Forward) 

(©Trans MoveJ\ssertion.Forward)) 
((Else) 

(Exit 1)))) 
(©Up) 
(©Trans Simplify.AII.Expressions) 
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(Cond (([_Trans?_] AddJnvariantJ\fter) 
(@Pass)) 

((Else) 
(OFail))) 

(QUndo))))))) 

The applicability condition does some ini t ia l testing to ensure that there is a state­

ment before the While loop and that i t is an Assert statement. Having done that, 

the test marks the current version of the program, since the test changes i t , and 

adds two copies of the assertion inside the body of the loop. The second of these 

i t moves through the loop using the transformation "Move_Assertion_Forward". 

This transformation swaps an assertion wi th the statement following i t , changing 

the assertion as necessary. For example i t would replace the statements: 

(Assert ( < = X 1)) 
(Assign (X (+ X 1))) 

by 

(Assign (X (+ X 1))) 
(Assert ( < = X 2)). 

Having moved the assertion as far through the loop as possible (which may be to 

the end) the transformation "Move_Assertion_Forward" is no longer valid so the 

remainder of the transformation test is executed. The applicability condition w i l l 

have succeeded i f , and only i f , the transformation "Add_Invariant_After" is then 

valid. This transformation adds an Assert statement after a While loop, provided 

that the assertion is true at the beginning and end of the loop body as explicitly 

indicated by assertions in the While loop. The transformation also puts both the 

While and the Assert inside a Cond statement, to take into account the case in 

which the loop is not executed. For example, the statement: 

(While (< A B) 
(Assert (< X 10)) 

(Assert (= X 4))) 
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can be replaced by the statement: 

(Cond ((< A B) 
(While (< A B) 

(Assert (< X 10)) 

(Assert (= X 4))) 
(Assert (< X 10)))) 

Finally, the test undoes all the changes to the program using an ©Undo statement. 

The code for performing the transformation works on the same lines, except that 

i t does not revert to the original version of the program at the end. Also, i t 

needs to do less checking, since this can be deduced f rom the validity of the 

transformation's applicabihty test. The A ^ Z ^ W S L code is as follows: 

((©Left) 
(Var ((Table ([.Match.] Statement 

(Assert ( ~ > ? ~ B)) 
Empty))) 

(©Right) 
(©Down) 
(@lnsJ\fter ([.Fill.ln.] Statement 

(Assert ( ~ < ? ~ B)) 
Table)) 

(©Right) 
(©Trans DuplicateJ\ssertion) 
(Loop (Cond (([.Trans?.] MoveJ\ssertion.Forward) 

(©Trans MoveJ\ssertion.Forward)) 
((Else) 

(Exit 1)))) 
(©Up) 
(©Trans Simplify.AILExpressions) 
(©Trans AddJnvariantJ\fter))) 

7.6.3 Summary 

The purpose of high-level transformations is to enable a user to extract a specific­

ation f r o m a program by means of abstraction. During this process i t is necessary 



C h a p t e r 7: T h e Transformations in the Maintainer's Assistant 161 

to add information about the appHcation domain and also to remove information 
which relates to the implementation alone. Although this work is at an early stage, 
i t would appear f r o m this example that A^£:r^WSL provides all the facihties that 
would be required — although not all the actual transformations have been imple­
mented — since the construction of the ^A£TAWSL code for these transformations 
is very similar to that for compound transformations. 

One enhancement to the system that would certainly be needed is an extension 

to the routines for performing symbolic mathematics, so that they are capable of 

inductively proving more complex invariants. A n example of this would be proving 

the invariance of an assertion over a loop which contains a recursive call to the 

procedure containing the loop. To prove this invariance i t would be necessary to 

assume that the assertion was preserved over the call and use this knowledge to 

complete the proof, inductively. 

7.7 Analysis 

A catalogue of 601 transformations has been implemented using MSTAWSL. From 

the implementation, the following tables have been produced. 

7.7.1 Number of Statements 

The table in Figure 7.1 gives the number of transformation applicability tests 

(given in the "test" column) and the number of transformation "perform" routines 

that are represented using the indicated number of (Meta-)statements. 

I t can be seen that over half the transformations can be expressed in fewer than 

ten statements. This suggests that the transformations can be expressed concisely 

using A4£rAWSL. 
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Number of 
Statements 

Number of Transformations Number of 
Statements Test Perform 

1 66 24 
2-5 185 201 

6-10 136 118 
11-20 120 126 
21-30 53 51 
>30 41 81 

Figure 7.1: The Number of Statements 

7.7.2 Number of MSTAWSL Operations 

The tables i n Figures 7.2 and 7.3 give the number of transformation applicabil­

i ty tests and the number of transformation "perform" routines whose AisTAWSL 

representations use the indicated number of pattern matching or template fiUing 

functions. (Applicabi l i ty tests which perform template fill operations must neces­

sarily undo the fill, using OUndo.) 

Number of 
Pattern Matches 

Number of Transformations Number of 
Pattern Matches Test Perform 

0 387 314 
1 129 120 
2 47 67 
3 12 43 
4 14 13 
5 4 10 

>5 8 34 

Figure 7.2: The Number of Pattern Matches 

The tables i n Figures 7.4 and 7.5 give the number of transformation appHcabihty 

tests and the number of transformation "perform" routines whose A^T .4WSL 

representations use the indicated number database queries, first using functions 

concerned w i t h variable usage and then using functions concerned wi th Loops and 
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Number of 
Template Fills 

Number of Transformations Number of 
Template Fills Test Perform 

0 531 259 
1 40 134 
2 18 81 
3 4 31 
4 3 38 
5 3 13 

>5 2 45 

Figure 7.3: The Number of Template FiHs 

action systems. 

Number of 
Variable Queries 

Number of Transformations Number of 
Variable Queries Test Perform 

0 483 407 
1 38 97 
2 25 33 
3 17 20 
4 10 9 
5 9 14 

>5 19 21 

Figure 7.4: The Number of Variable Queries 

I t can be seen that few transformations require more than two or three pattern 

matches, template fills or query operations in their representations. This, again, 

suggests that transformations can be expressed concisely using METAWSL. 

7.7.3 Spread of Usage of MSTAWSL Constructs 

The table in Figure 7.6 gives the number of transformation appHcabihty tests and 

the number of transformation "perform" routines which use particular combina-
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Number of Loop 
or Act ion Queries 

Number of Transformations Number of Loop 
or Act ion Queries Test Perform 

0 521 419 
1 50 104 
2 21 35 
3 6 17 
4 2 6 
5 1 11 

>5 0 9 

Figure 7.5: The Number of Loop or Action Queries 

tions of A ^ T ^ l W S L constructs: 

• Pattern matching and template fiUing operations; 

• Database query operations; 

• Type testing operations; and 

• Operations for calling other transformations. 

A " • " indicates that the A ^ r ^ W S L code uses the construct. 

I t has been observed that transformations are generally easier to understand i f 

they do not m ix different styles of METASN^IJ construct. From the table i t can be 

seen, for example, that over 90% of transformations do not mix pattern matching 

and data base operations. This provides further evidence that transformations 

can be expressed clearly using A^fT^tWSL. 

7.8 Conclusion 

During the implementation of the catalogue of 601 transformations, no transform­

ations have been found that cannot be expressed using jMfXAWSL. Indeed, all but 
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Type of 
Operation 

Number of 
Transformations 

Pattern Query Type Test Trans. Test Perform 

• • • • 14 29 
• • • • 33 15 

• • • • 3 6 

• • • • 11 28 

• • • • 10 9 

• • • • 10 6 

• • • • 38 48 
• • • • 9 31 

• • • • 25 4 

• • • • 5 4 

• • • • 64 41 

• • • • 96 124 

• • • • 13 0 

• • • • 88 6 

• • • • 68 135 

• • • • 114 115 

Figure 7.6: The Spread of A^fr^tWSL Constructs 

those transformations which incorporate complex algoithms, have been represen­

ted in both a clear and concise manner. This is because A^£r>tWSL provides 

not only the program editing statements and program analysis functions that are 

needed to construct simple transformations, but it also incorporates additional 

control statements and all the structures of W S L (which enable sophisticated 

control of the transformation process). These features, together with the mathem­

atics and logic routines, mean that elementary, compound, generic and high-level 

transformations can be written without any difficulty. 

The next chapter will outhne the methods by which many of the important com­

ponents of the system are implemented. 



Chapter 8 

Implementation of the 

Maintainer's Assistant 

8.1 Introduction 

This chapter considers some of the implementation issues involved with the con­

struction of the Maintainer's Assistant. It addresses the method of constructing 

the tool, the system architecture and the work's contributions in terms of data 

structures and algorithms. 

8.2 Approach to Building the Tool 

The traditional "structured" methods of building a software system are the "top 

down" approach and the "bottom up" approach. The top down method starts 

with a high-level description of the system to be developed which is then refined 

into a structure expressed in terms of "big" operations. These operations are then 

re-expressed in terms of operations with simpler functionality, and the process is 

repeated until an implementation is obtained. Although this approach has been 

166 
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Top Level Structure 

Second Level Structure 

More Detailed Level 

Machine Level 

Figure 8.1: Top Down Development 

used successfully, there are a number of problems [183]; in particular a problem 

which arises when building a prototype, such as the Maintainer's Assistant, is 

that there is only a vague top-level description. In addition, choosing the wrong 

structures in the early stages can have serious repercussions which will only be 

uncovered much later in the development. 

Top Level Structure 

High Level Utilities 

A bottom up development starts 

by implementing the lowest-level, 

most general "utility" functions. 

From these, higher-level functions, 

routines and abstract data types 

are constructed. The process 

is repeated, creating increasingly 

domain-specific routines, until the 

top-level structure of the program 

can be implemented. The advant­

ages of this approach include the 

ability to perform unit testing and 

the possibiHty that routines may be 

reusable. Among the problems [183] is the difficulty, especially in the middle 

stages of development, of determining what to build next in order to make pro­

gress. The high-level routines may do "too much" or "not enough", and they 

Low Level Utilities 

Machine Level 

Figure 8.2: Bottom Up Development 
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may not be required at all. Again, these problems are exacerbated when the 
application domain is new, as in the case of the Maintainer's Assistant. 

Top Level Structure 

System Development 

Domain-Oriented Language 

Language Implementation 

Machine Level 

Figure 8.3: Middle Out Development 

An alternative method of building 

a software system was adopted in 

the construction of the Maintainer's 

Assistant: "middle out" develop­

ment [183], in which the middle 

layer forms the starting point. This 

middle layer takes the form of an 

abstract machine, specially designed 

to facilitate the implementation of 

the kind of software required. In the 

case of the Maintainer's Assistant, 

this middle layer takes the form of 

In general, using a high-level language rather than writing everything in assembler 

has a number of advantages: the program requires an order of magnitude fewer 

lines, it is easier to understand and it is easier to change. Using a very-high-level, 

domain-oriented language such as A^fr^WSL has given similar improvements over 

traditional languages. Moreover, the implementation of MsrASN^L and the imple­

mentation of transformations using METASN^IL can be carried out independently. 

During development, the Maintainer's Assistant was continuously tested on many 

small, example programs to determine whether the ideas that it embodied were 

practical and efficient. These examples were constructed (a) so as to incorporate 

artificially as much complexity in a small program as was possible, and (b) so 

that all the different W S L program constructs and transformations in the system 

were tested.'^ This resulted in information which was fed back into the design of 

A^fT^WSL and thence into the design of the entire system — a process that was 

simplified by using a middle-out design. 

^As these examples were created, and the transformations needed to be applied to them 
determined, this information was put into an executable file so as to provide a regression test 
for the system. 
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Program Transformer 
and 

Program Transformation Catalogue 

A4£TA\NSL — Domain-Oriented Language 

WSL 

Interpreter 

Pattern 

Matcher 

Query 
and 

Database 

Symbolic 
Maths 

and Logic 

WSL Tree Processor 

Program 

Editor 

Common LISP — Machine Level 

Figure 8.4: The Architecture of the Maintainer's Assistant 

8.3 The System Architecture 

The architecture of the Maintainer's Assistant, which is shown in Figure 8.4, 

reflects a middle out design and construction which starts with the definition 

of MSTAWSL. Working upwards, this is used to build the transformations, and 

working downwards A ^ r ^ W S L is composed of a number of simpler components. 

These are the W S L interpreter (since MSTAWSL incorporates the whole of W S L ) , 

the pattern matcher and template filler, the query and database functions, and 

the symbolic mathematics and logic routines. 

These components were also constructed in a middle out manner by starting with 

a middle layer which consisted of some elementary W S L tree-processing functions 

(since W S L programs are represented as trees). These functions proved reusable 
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in the construction of a syntax-directed program editor.'^ 

At the lowest level of the system, the tree processing functions were implemented 

in Common LISP. Although any language could have been used as at the lowest 

level, L I S P has four important advantages which make it eminently suitable for 

constructing this kind of system: 

1. L I S P is a good language for manipulating tree structures. Programs written 

in W S L and transformed by the system are much easier to work with if they 

are represented as a syntax tree. 

2. L I S P works using implicit pointers to allow different data structures to share 

the same memory, provided that they have common data. This is important 

when it is necessary to update one data structure and have the corresponding 

ones updated in the same way since it allows the programmer to make the 

change only once. 

3. L I S P allows data structures to store executable code. Since the transform­

ations consist of executable code (written in METAWSL) and are stored in 

a data structure, this facility is essential. 

4. L I S P is portable across diff"erent platforms. 

LISP'S chief disadvantage is its inefficiency; much time is spent garbage collecting. 

The following sections will consider specific details of the implementation, looking 

in turn at each component. 

8.3.1 The W S L Tree Processor 

This component implements an abstract data type for W S L program trees (the 

exact form of which is given in Section 8.4.1). So as to hide the implementation 

^It may sometimes be necessary to edit the program which is undergoing transformation in 
order to correct faults or to change the program's functionality. 
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Function Parameters Description 

Tables Item Returns the database tables of the item. 
Comments Item Returns the comments information of the 

item. 
Types Item Returns the types information of the item. 
Leaf-Item? Item Tests whether the item is a leaf node. 
BranchJtem? Item Tests whether the item is a branch node. 
Size Item Returns the size (number of components) of 

the item. 
Comps Item Returns the components of the item. 
Gen_Type Item Returns the generic type of the item. 
Specific_Type Item Returns the specific type of the item. 
Leaf JIame Item Returns the name (or value) of the leaf item. 
Max_Size Type Returns the maximum number of components 

allowed in an item of the given type. 
Min_Size Type Returns the minimum number of components 

allowed in an item of the given type. 
TypeJI Type, N Returns the type of the nth component of an 

item of the given type. 
GetJI Item, N Returns the nth component of the item. 
Eq_Items Item_l, Item_2 Tests the two items for equality, ignoring 

tables and comments. 

Figure 8.5: Basic Tree Examination Functions 

of the abstract data type for W S L program trees, a number of operations are 

provided to access and update these trees. Thus, if the manner in which the 

extra information — types, database and comments information — is stored at 

each node is changed, then only the basic tree manipulation functions need to be 

updated. The functions for examining and comparing trees are given in Figure 

8.5, the functions for building and altering trees are given in Figure 8.6 and the 

functions for working with tables and comments information are given in Figure 

8.7. 
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Function Parameters Description 

LISP->Int Item, Type Converts the item of the given type from LISP-
like form to internal form. 

Int->LISP Item Converts the item from internal form to LISP-
like form. 

ChangeJI Item, N, New_Elt Changes the nth component of the item to the 
given new element. 

DeleteJI Item, N Deletes the nth component of the item. 
Insert _N Item, N, New_Elt Inserts before the nth component of the item, 

the given new element. 
SpliceJF Item, N, New_Elts Inserts before the nth component of the item, 

the given list of new elements. 

Figure 8.6: Basic Tree Building Functions 

Function Parameters Description 

Set.Table! Item, Table Resets the database table of the item to the 
given value. 

Add_To_Table! Item, Key, Data Stores a table entry, indexed by the key, for 
the item. 

Get_From_Table Item, Key Returns the value, indexed by the key, in the 
table of a item. 

Set-Comment! Item, Comments Resets the comments information of the item 
to the given value. 

Edit_Comment! Item, Key, Data Stores a comment, indexed by the key, for the 
item. 

Get_Comment Item, Key Returns the comment, indexed by the key, of 
a item. 

Figure 8.7: Basic Database and Comment Functions 
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Higher Tree Manipulat ion Functions 

The basic tree manipulation functions all take as an argument an item which 

represents a W S L program tree. From these functions, higher-level routines are 

constructed to operate on the specific program trees which represent the current 

program and currently selected item, and which are held in the global variables 

"/.Program'/, and %?osn°/,. These higher-level routines are, in fact, MSTAWSL state­

ments and functions in that they examine and edit the program being transformed. 

However, to facilitate their implementation and to improve the efficiency and ef­

fectiveness of the tool, a few intermediate functions have been constructed; these 

relate to movement within the program tree (see Section 8.4.2) and to the syntax 

checking of W S L programs. 

8.3.2 The W S L Interpreter 

Since MSTAWSL incorporates the whole of W S L , it is necessary to include a 

method of executing W S L programs. Rather than building a translator to produce 

from W S L code in an existing language, or a W S L compiler, a W S L interpreter 

was used. Although less efficient in terms of program execution times, this has the 

advantage of being simple to implement and change; an important consideration 

when building a prototype. 

The interpreter consists of a number of LISP functions and macros, each of which 

defines a W S L construct. An example — the definitions which implement un­

bounded Loops with Exit statements — is shown in Figure 8.8. 

8.3.3 The Pattern Matcher and Template Filler 

This section describes the mechanisms for pattern matching and template filhng. 

A pattern, for either matching or for using as a template, could contain tokens for 

components that have been matched or which need to be filled. These components 
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(Defmacro Loop (&Rest Body) 
'(Let (('/.Exit'/. 

(Catch 'Exit (Tagbody '/.Here'/ .OBody (Go '/Here'/.))))) 
(Or (= 1 '/.Exit'/.) 

(Exit ( 1 - '/.Exit'/.))))) 

(Defun Exit (N) 
(Throw 'Exit N)) 

Figure 8.8: The Implementation of Unbounded Loops 

are stored in an association table, with one entry for each token. The entries 

consist of pairs, each pair containing the name of a token and the value with 

which it corresponds. An association table can be held as a single object in a 

W S L variable. There are two main advantages of storing the results of matches 

in this way: 

• The result of a pattern match can be worked on as a single object, for 

example when it is passed to a template filhng routine; 

• Different matches can stores their results independently, even though they 

may have tokens with the same name. 

Convert ing Pat terns to Tree F o r m 

In A ^ Z A W S L programs, the W S L code and the patterns are expressed as execut­

able L I S P - f o r m . However, there are a number of advantages of performing the 

pattern matching and template filling on the internal tree form. 

Foremost among these is that the database tables and comments that are attached 

to the program components being matched are stored in the association tables 

along with the actual W S L . ^ This means that when a template fiU is performed, 

the database tables and comments form part of the new piece of W S L . In the case 

Ŝee Section 8.4.1 for details of the internal form of WSL program trees. 
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of tables this is a benefit since the information does not need to be recalculated for 
this newly filled in code. It is also a benefit from the point of view of comments, 
since the user does want them to disappear as soon as he starts moving code 
around by transformation. 

As a result of performing pattern matching using the tree form, the patterns need 

also to be converted into tree form, complete with their own tables and so on. 

This need not be done every time the pattern is used, however. Instead it is done 

when the transformation is loaded in the system. 

8.3.4 The Query and Database Functions 

The functions which access and update the database tables that are stored in 

W S L program trees form part of the W S L tree processor. The functions provided 

by this component are those that determine the information to be stored in the 

tables and are, in fact, functions provided as part of A ^ Z 4 W S L . They cover four 

particular areas: 

1. Functions for examining the program undergoing transformed: [_State-
m e n t s j , [_Calls_] and [_Total_Size_] (see Appendix C . l l ) ; 

2. Functions relating to variable usage: are: [_Variables_], [_Used_], 

[-Assigned-], [_Used_Only_], [_Assd_Only_] and [_Assd_To_Self_] (see 

Appendix C.12). 

3. Functions relating to Loops: [_Depth_], [_Terminal_ValueJ, [.Term­

i n a l ? - ] , [-Reducible?-] , [-Proper?-], [-Improper?-] and [-Dummy?-] 

(see Appendix C.14); and 

4. Functions for testing action systems: [-Regular?-], [-Regular-System?-] 

and [ -Cal l s -Terminal?- ] (see Appendix C.15). 

Each function is implemented by recursively walking down the tree to determine 

the result for each node. If at any stage the result is already stored in a table. 
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then the rest of that subtree need not be walked through. As the intermediate 
results for each node are calculated, they are stored in the corresponding database 
tables for later use. Currently, the system stores this information at every node, 
but for leaf nodes or small subtrees, it might be more efficient just to recalculate 
the results. The tradeoffs between storage and calculation could be determined 
empirically and a later system might only store database tables at, say, statement 
nodes. 

8.3.5 The Symbolic Mathematics and Logic Routines 

The primary mathematical routines are [_Simplify_], [_Isolate_], [_->T?_] 

and [_->F?_]. Foremost among these is C_Simplify_] which takes an expres­

sion or condition as returns an equivalent expression or condition that has been 

simplified as much as possible. 

As part of the transformation process one may wish to rewrite the statements 

(Cond ( ( = X 0) (Abort))) (Assign (X ( + X 1))) 

as 

(Assign (X { + X 1))) (Cond ( ( = (- X 1) 0) (Abort))). 

To do this, it is necessary to be able to rewrite an expression of the form (Expres-

sionl = Expression2) so that a particular variable appears on its own on one side 

of the = sign. The function [ _ I s o l a t e _ ] accomplishes this. For example, with 

the left expression as Y , the right expression as ( + X 1), then isolating X would 

return ( - Y 1). 

Two functions are needed for testing logical imphcation. Both of these take as 

their arguments two conditional expressions, an assertion and a test. The func­

tions [_->T?_] is used to determine whether the assertion imphes the logical truth 

of the test, and it returns true or false accordingly. For example, ( = a 0) logically 

implies that ( < a 5) is true, whereas ( < > a 0) does not logically imply that (<> 
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a 1) is true. The function [ - ->F?-] is used to determine whether the assertion 
implies the logical falsehood of the test, and it returns true or false accordingly. 
For example, ( > a 1) logically imphes that ( < a 0) is false, whereas ( < > a 0) does 
not logically imply that ( < > a 1) is false. 

8.3.6 A^T.4WSL 

AffT^lWSL contains the union of the functions provide by the W S L interpreter, 

the pattern matcher and template filler, the query and database functions, and 

the symbolic mathematics and logic routines. There are, in addition, some ex­

tra routines which provide the "glue" to hold everything together. These im­

plement W S L statements such as @When which provide additional programming 

structures; @Pass and @Fail which provide control of the transformation process; 

-Replace-] and [-DifFJ which provide extra functions on W S L program trees; and 

QTrans and [-Trans?-] which permit the combining of transformations. 

All these routines are implemented in the same way as the W S L interpreter using 

L I S P macro and function definitions, but they also make use of the lower-level 

functions so as not to need to refer explicitly to the implementation of the abstract 

data type for W S L program trees. 

8.3.7 The Program Transformer 

The program transformation catalogue consists of pieces of A ^ T ^ W S L code stored 

in appropriate data structures, as was described in Chapter 5. The program 

transformer provides functions which extract the transformations from these data 

structures and execute the relevant pieces of code. The execution is performed by 

means of the L I S P "eval" function; ^AE^^SN^'L code maps into LISP code since 

the definitions of W S L and McrjCN^h are in terms of L I S P functions and macros. 
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8.3.8 The Program Editor 

The program editor uses combinations of the functions provided by the W S L tree 

processor in order to construct functions for editing W S L program trees. Unlike 

the corresponding A ^ T ^ W S L statements, these functions do provide error check­

ing so as to prevent the user from constructing syntactically invalid programs. 

8.4 Contributions 

This section looks at five areas in which this work has contributed to the study of 

transformation systems by it use of new-developed data structures or algorithms. 

8.4.1 The Representation of W S L Program Trees 

Transforming, editing or changing a program in any way involves manipulating the 

variable in which the program is stored, while moving through a program involves 

changing the variable which records the current position. These are the variables 

'/.Program'/, and '/.Posn'/., respectively and their use is described in Appendix C.2. 

In addition, the currently selected item and other information relating to it is often 

required. Although this could be calculated from knowledge about the program 

and the current position, it is stored in a number of variables (see Appendix C.2) 

to save having to calculate it "on the fly" each time it is needed. 

The Maintainer's Assistant represents both the W S L programs that are being 

transformed, and the selected item, as syntax trees. An example of a portion of 

the tree for a parallel Assign statement was given in Figure 5.2. There are, how­

ever, two forms of these trees. The first, the "internal" form, stores at each node 

additional information, such as its database table, which is used when transform­

ing the program. The second, the "LISP-like" form, omits the extra information 

so that programs in this form can be executed via a number of macro and func­

tion definitions. All the programs being transformed are stored using an abstract 
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data type which implements the first form. The information held at each node is 

grouped into various categories as follows. 

T y p e s 

(Assign Statement) 
(Assignment Assignment) 
(Number Expression 0) 

In order for the system to function, it is 

necessary to record the specific syntactic 

type of each node, such as Assign or As­

signment, at the node. The generic type 

of the node is also stored for efficiency. 

For an Assign node, this would be State­

ment, whereas for an Assignment node, it 

would also be Assignment. For leaf nodes 

this information may be supplemented by a value. Examples are shown in Figure 

8.9. 

Figure 8.9: Type Pairs 

Database Informat ion 

Working with database information re­

quires that each node hold an arbitrary 

number of data pairs, each pair consist­

ing of a query and its result. These pairs 

are held in a list with an identifier ("- -") 

as its head to indicate that it is a data­

base. 

IdJJumber 
(Queryl Resultl) 
(Query2 Result2) 

(query„ Result„) ) 

The database update functions modify 

the program structures destructively Fig^^^ 8.10: Queries and Id Numbers 

without creating new copies of the struc­

tures. Thus the "history" and "future" versions of the program are updated with 

the same information since, where the node is shared between them, the database 

results are still vaHd, and so it is unnecessary to recalculate them. Also if the 

same node occurs several times in the current program version — through the 
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use of transformations which have copied it — then the result will also be valid 
at those nodes too. This saves time-consuming recalculation of the results. 

I t e m Identif ication N u m b e r 

In order to enhance communication with the user interface — in particular to 

prevent the same piece of code from being passed to the interface several times — 

each node is given an identification number. This is initially zero, but once the 

node has been passed to the interface, it is set to a unique, non-zero value. The 

identification number gets changed in a similar way to the database tables when 

an item's sub-components are changed. Thus the two pieces of information share 

the same data structure. The representation is of the form shown in Figure 8.10. 

C o m m e n t s 

A helpful feature of the system is the abil­

ity to link a comment to each node. Thus 

if the node moved to a different place 

in the program (due to it being trans­

formed) the comment would move with 

it. 

( II 

(Categoryi "Texti") 

(Categorya "Texta") 

(Category„ "Text„") ) 

Figure 8.11: Comments 
A representation that allows for differ­

ent categories of comment is more flex­

ible and is the one that was adopted. It 

is implemented in a similar way to the database structure, but stored separately 

and with a different identifier ("I 1"), as shown in Figure 8.11. 

This extra information is stored at each node in the order: database tables, com­

ments, types, and is followed by all the components of the node. Thus a node 

might be of the form shown in Figure 8.12 where the dots indicate that there is a 

sequence of components, each of the type Assignment. 
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( (__ 0 (Variables X Y A B)) 
( I I (Label "An Example")) 
(Assign Statement) 

) 

Figure 8.12: An Example WSL Program Node 

8.4.2 Movement within the Program Tree 

Each component in the program tree has a position relative to the root of the tree 

which is represented as a list of positive integers as described in Chapter 6. 

When moving through the program tree, not only is it necessary to update this 

position — stored in the variable '/oPosn'/. — it is also necessary to update the 

other predefined global variables (see Appendix C.2). In order to do this efficiently 

another global variable, '/.P-Data'/, is used. 

It is always possible to set the values of the global variables described above 

by starting at the root of the tree and walking downwards through it to the 

current position. However, this is time consuming, especially when a great deal of 

movement is to positions adjacent to, within, or containing, the current position. 

Thus, rather than recalculating the values by walking through the whole tree, all 

the values of the variables at each stage in the walk through the tree are recorded 

in y.P-Data'/. and reused. 

y.P-Data'/, is a list items, one for each position in the tree that has been walked 

through, up to and including the actual current position. Each item in '/P-Data/, is 

itself a list consisting of the values of certain variables for that position, including, 

for example, the context variables. 

Two functions are needed for moving through trees. The first, All_New_Position-

_Data, is used after the program has been changed, or the selection has been moved 

to a completely new point in the program. In this case, it is not possible to make 
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use of values of these global variables higher up in the program tree (which are 
recorded in y,P_Datayo). The second function, Set_Position_Data, is used after 
the current position has been moved to one near to the previous position, for 
example with one of the MSTAWSL statements OUp, ODown, ODown_Last, @Left, 
@Right or @To. 

The second of these functions takes a parameter which indicates the "direction" 

of the movement: 

0 — Movement downwards through the program tree; 

1 — Movement left or right an arbitrary number of positions within the current 

parent component; and 

2 — Movement up one level in the program tree. 

The "movement" argument allows the function to strip ouf* any information from 

the beginning of '/P-Data'/ that cannot be used to regenerate the values of the 

global variables, thus ensuring that the first item of '/.P-Data'/, is the lowest node 

in the tree which is common to both the old program position and the new program 

position. 

Starting with the position relating to the first item of y,P_Data% there is a subsi­

diary function which steps through the tree until the selected position is reached. 

For each step, the values of the global variables that the system needs are recal­

culated and put, together with their position information, as a new element, into 

y.PJ3atay.. 

8.4.3 Global or Local Scope Transformations 

Testing the applicability of transformations can be a time consuming process. 

Thus, if the same transformation needs to be tested for applicabiUty at the same 

^This can be achieved by setting '/,P_Data'/. to be equal to (Nthcdr D i r e c t i o n '/.PJData'/.) 
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point in the program a number of times, this could become very slow. The chosen 
solution to this problem is to store in the database table associated with the item, 
the name of the transformation and the result of its appUcabihty test, then when 
the transformation's applicability is tested on subsequent occasions, provided the 
components within the item have not changed (in which case the database table 
will have been emptied anyway), the result of the test can be obtained simply by 
looking in the database table. 

However, not all transformations rely solely on the form of the current item for 

their applicability test. Many of them also rely on adjacent components, for 

example. Thus the results of transformation applicability tests are only stored in 

a database table if their respective tests relies solely on the current item. In order 

to distinguish between transformation whose appHcabihty can be stored and those 

for which it cannot, there is a flag associated with each transformation. This is 

either "Local" if the result can be stored or "Global" if it cannot. 

8.4.4 The Symbolic Simplifier 

Al l the symbolic mathematics and logic routines use the generic symbolic sim­

plification function, [_Simplify_] which takes an expression or condition and 

simpHfies it as much as possible. If the expression is a number or simple variable 

then no simplification can be performed, so the expression is returned. If the 

expression is a compound expression (for example a "+") the arguments of the 

expression are simplified by recursive calls to [_Simplify_] and are then passed 

to a function for specifically simpHfying additions. (There are other functions for 

simplifying other types of expression and condition.) 

The specific simplification functions look at the form of their arguments for com­

mon patterns that can be simplified. For example, the function for simplifying 

additions would contain the rules listed in Figure 8.13, among others: (Here "X", 

"Y" and "Z" represent any expressions, while "A" and "B" represent numbers. In 

the results column, where expressions such as " (A-fB)" occur — i.e. where both 

arguments are numeric — these are taken to have been evaluated.) 
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First Argument Second Argument Result 

A B (A+B) 
X 0 X 
X X (2*X) 
X - X 0 

(X+A) B (X+(A+B)) 
(X+Y) X ((2*X)+Y) 
( X + Y ) Y ((2*Y)+X) 
(X-A) B (X+(B-A)) 
(A-X) B ( (A+B)-X) 
(X-Y) X ((2*X)-Y) 
(X-Y) Y X 
(X+A) (Y+B) ( (X+Y)+(A+B)) 
( X + Y ) (X+Z) ((2*X)+(Y+Z)) 
(X+Y) (Z+X) ((2*X)+(Y+Z)) 
(X+Y) (Y+Z) ((2*Y)+(X+Z)) 
( X + Y ) (Z+Y) ((2*Y)+(X+Z)) 

Figure 8.13: Some Simplifications of Additions 

8.4.5 Communication with the Interface 

This thesis only describes the LISP "engine" which lies behind the Maintainer's 

Assistant but there is also a user interface which displays the WSL code in a 

suitable pretty-printed form. These two processes need to be able to communicate, 

and this section describes the mechanism by which this is accomplished. 

The interface is the only way that a user is able to communicate with the LISP-

based transformation system. The interface converts the user's actions into LISP 

expressions which are piped, just as if they had been typed, into a child process 

that is running LISP. 

How L I S P Returns Results to the Interface 

The LISP system is not able to display its output directly. Instead it produces 

results of expression evaluation in the conventional way. However, each result 
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is prefixed by one of several key sequences of characters. The interface process 
examines all the output from the LISP process and, on identifying such a sequence 
of characters, uses the next piece of output from the LISP process as input for 
the display routines. These display routines include operations for displaying the 
WSL program and for building menus of transformations. 

The most important form of communication between the LISP system and the 

interface is the passing of WSL programs. The interface does not need to know 

the details of the internal database tables, although it does need the comments 

information in order to display them. Also, each time the interface displays the 

program, most of it will remain unchanged. Thus only those parts of the program 

which have changed are passed to the interface. 

In order to achieve this enhancement in the efficiency of communication, each 

node in the program tree is assigned an identity number. Initially this number 

is zero. The first time a node is passed to the interface this zero is changed to a 

new, unique, number. A l l subnodes are similarly passed in this way. 

However, if a node is reached which has a non-zero identity number, then that 

node must already have been passed to the interface — which would have stored 

it in its own table. Thus, just the number is passed and not the contents and 

sub-components of the node. 

Finally, when a node in the tree is modified, either by transformation or by editing, 

that node has its identity number reset to zero. Not only that, but all the nodes 

above it in the tree will have changed — they have a new sub-component, sub-

sub-component, and so on — so these nodes must also have their identity numbers 

reset to zero. 

In addition to the identity number system, each type is given a number (which can 

be determined from the syntax table in Appendix B) so that this can be passed 

in preference to passing the name of the type. Actual values of leaf items, such 

as numbers, strings and variables, still need to be passed explicitly. 

The overall form of a program when passed to the interface is as a LISP tree in 
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which each node is represented as a fist containing (a) it's unique identification 

number, (b) a list of any attached comments with their types, (c) a number which 

represents the type of the item, and (d) either the node's value or its components. 

For example, if the program 

((Assign (X (+ A B)) (Y 0))) 

(which contains no comment information) had not already been passed to the 

interface, then it should be represented as shown in figure 8.14. The "Ipp. . ." 

( I p p . . . (1 0 17 
(2 0 33 

(3 0 8 (4 0 27 X) 
(5 0 51 (6 0 26 A) 

(7 0 26 B))) 
(8 0 8 (9 0 27 Y) 

(10 0 24 0)) 
) 

)) 

Figure 8.14: A Program as Passed to the Interface — Version 1 

is a key sequence of characters which tells the interface that the following LISP 

output is to be regarded as a program tree. 

If the interface were to request that this information be sent again, then the LISP 

system would only pass the information shown in Figure 8.15. However, if the 

( I p p . . . ( D ) 

Figure 8.15: A Program as Passed to the Interface — Version 2 

zero in the second assignment had been edited, changing it to a one, while all the 

rest of the program had remained the same, then the LISP system would pass in 

information shown in Figure 8.16. 

In this case that items "3" and "9" do not get passed again — only their identity 
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(Ipp.. (11 0 17 
(12 0 33 

(3) 
(13 0 8 (9) 

(14 0 25 D) 
) 

)) 

Figure 8.16: A Program as Passed to the Interface — Version 3 

numbers get passed — but all the other items do get passed with new identity 

numbers, since changing the leaf node has to be reflected at all the higher levels 

in the tree. 

8.5 Summary and Conclusions 

The Maintainer's Assistant consists of a user interface and a transformation en­

gine. The latter, which is the subject of this thesis, incorporates a number of 

advances over the implementation of other transformation systems. 

First, the system was developed in a middle out manner and, as a result, is 

structured as a series of abstract machines with well-defined interfaces. This 

enhanced the development of the tool by rapid prototyping, which in turn meant 

that a variety of data structures and algorithms could be tried so as to find efficient 

ones. The components that make up the system are the low-level WSL tree 

processor, the A^T^lWSL language, the program transformer and the program 

editor. A ^ r ^ W S L is, in turn, composed of the WSL interpreter, the pattern 

matcher and template filler, the query and database functions, and the symbolic 

mathematics and logic routines. Thus, the implementation is modular and has all 

the advantages, including maintainability, which were given in Section 1.3.2. 

Second, the implementation of the Maintainer's Assistant incorporates certain 

data structures and algorithms which have been developed particularly for this 



Chapter 8: Implementation of the Maintainer's Assistant 188 

work. These cover the areas of WSL program representations, efficient movement 
within program trees, the dichotomy of global and local transformations, symbolic 
simpHfication and efficient communication with the interface. 

The whole system is implemented using Common LISP, and usage suggests that 

the implementation is fairly efficient.^ 

^Precise figures are given in Section 9.6.3. 



Chapter 9 

Results 

9.1 Introduction 

The previous chapters of this thesis explained the reasons for creating a trans­

formation system for software maintenance, highlighted some of the important 

design decisions that had to be made and gave details of the implementation of 

the Maintainer's Assistant — the tool which embodies these ideas. This chapter 

presents results from the Maintainer's Assistant appHed to various example pro­

grams ranging from simple examples to large programs taken from the real world. 

In doing this, it considers the more pragmatic questions, which can be summarised 

as: 

• Does this approach result in a usable tool? i.e. how much training is required, 

is the interface easy to understand and does the tool respond promptly to 

user requests? 

• Is the implementation of the transformation catalogue efficient (in that the 

algorithms employed are at worst polynomial in time), reliable (in that errors 

are found increasingly infrequently), correct (in that the implementation of 

the system has been proved) and complete (in that all possible transforma-

189 
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tions could be built from those that have been included)? 

• Does the method scale up to larger programs? i.e. are the transformations 

as applicable to large programs as to small? Does the system remain "fast 

enough" with large programs? Is it possible for a user to view and compre­

hend a large program? 

• What weaknesses does the system have? 

9.2 Applying the Tool to Real Programs 

In addition to the simple test examples, the Maintainer's Assistant has been used 

on a number of small published programs. For example, Ward [177] shows the 

transformation of a WSL program that was transcribed from DataFlex and then 

transformed so as to reveal a potential fault that was not readily apparent in 

the original version. This example has been successfully performed using the 

Maintainer's Assistant. 

9.3 Applying the Tool to Larger Programs 

In order to tackle programs of more than a few hundred lines it is necessary to 

have a strategy, or method, of using the Maintainer's Assistant. Such a strategy, 

which was described in section 4.4, will now be assessed. 

Since the Maintainer's Assistant has been produced as part of the ReForm pro­

ject which has been partially funded by IBM UK Laboratories Limited part of 

the project has involved taking source code written in IBM 370 Assembler and 

using the system on i t . This has provided more than twenty large real-world ex­

amples which have helped to assess the system's power and ease of use. Assembler 

programs wil l , therefore, be used to illustrate the following sections, but the four-

stage process that will be described would apply to programs written originally 

in any language. 
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In addition, I B M Hursley have conducted two case studies on the use of the tool 

to assess its potential in a commercial environment. 

9.3.1 Translation into W S L 

Simple translators have been written for BASIC and and PASCAL. However the 

only complete translator is for 370 Assembler.-^ Translation is largely automatic 

and very simple-minded. Each instruction of assembly language maps into one 

or more statements of WSL. The WSL has to model every functional^ aspect of 

the instruction, such as the setting of flags, even if these extra aspects are not 

needed in a particular situation. In this way, it is possible to check informally the 

correctness of the translation of each instruction. (It is not possible to check the 

translation formally since there is no formal description of IBM 370 Assembler.) 

For example the assembler instructions: 

T M VALUE1,XYZ TEST FOR CHECK 

BO DONEl LEAVE CLEAR 

are translated into the WSL code: 

(Comment " T E S T FOR CHECK") 
(Cond ( (= (And_Bit XYZ (Aref A VALUEl)) 0) 

(Assign (CC 0))) 
( (= (And_Bit XYZ (Aref A VALUEl)) XYZ) 

(Assign (CC 3))) 
((Else) 

(Assign (CC 1)))) 
(Comment "LEAVE CLEAR ") 
(Cond ((And (= CC 0) (= (And.Bit 1 8) 8)) 

(Call DONEl 0)) 
((And (= CC 1) (= (And_Bit 1 4) 4)) 

(Call DONEl 0)) 
((And (= CC 2) (= (And_Bit 1 2) 2)) 

(Call DONEl 0)) 
((And (And (<> CC 0) ( < > CC 1)) (And (<> CC 2) (= (And_Bit 1 1) 1))) 

^This translator has been developed as part of the ReForm project by Scriven. 
•^Timing is not modeled. 
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(Call DONEl 0))) 

Here the condition inside the local variable structure is used set the condition code 

— represented by the variable CC — according to the result of a test. The second 

condition tests the condition code and jumps depending on its value. It is clear 

from this example, that for the translation to preserve all the semantics of the 

assembler program, a great deal of extra WSL code may be required. Methods 

have been developed by Scriven for modeling labels and branches in terms of 

action systems and, in particular, branches to addresses stored in registers which 

represent subroutines. 

There are currently two classes of unsolved problems in the modelling of other 

programming languages in WSL. The first class of problems are those which are 

fundamentally solvable by means of extending WSL's syntax or by mapping the 

source language in more complex fashions, since the WSL kernel language can be 

used to represent the semantics of these language features. This class includes the 

modelling of pointers (as in C) and overlapping data areas (as in COBOL). The 

second class consists of those problems that the WSL kernel is unable to express 

and which would, therefore, require fundamental extensions to the system. These 

problems include self-modifying code, arbitrary indirect branches and parallehsm. 

9.3.2 Automatic Removal of Idiosyncrasies 

Once the program has been translated into WSL, the Maintainer's Assistant can 

be used to simplify it by removing all the extra, unnecessary, code that was intro­

duced through translation. In the case of assembler, this would involve removing 

references to the condition code and replacing the array of registers by individual 

register variables (if possible). 

In order to perform this type of simplification, powerful compound transformations 

have been constructed. Such a transformation^ is "Fix_Assembler" which would. 

^The techniques employed by this transformation are similar to the peephole optimisation 
techniques used by compilers [3]. However, the transformations in the Maintainer's Assistant 
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for example, simplify the WSL code above to: 

(Comment " T E S T FOR CHECK") 
(Comment "LEAVE CLEAR ") 
(Cond ((And (= XYZ (And_Bit XYZ (Aref A VALUEl))) (<> XYZ 0)) 

(Call Donel 0))) 

When "Fix_A.ssembler" is performed on a WSL program"* it reduces its size con­

siderably. (See the figures in Section 9.6.1.) Once the program is in a simpler 

form, the maintainer can then work on i t , simphfying and restructuring it . 

9.3.3 Manual Transformation 

The traditional automatic tools for control flow restructuring do not provide a 

good basis for subsequent abstraction transformations. The shortcoming of such 

tools have been pointed out by Calliss [52]: 

1. They may replace complex control flow with complex data flow, by introdu­

cing flag variables; 

2. They may result in programs that are considerably larger; and 

3. They do not help human understanding of the system. 

The previous, automatic, stage did not attempt to restructure the program, only 

to simplify it within the same structure. For restructuring of a program in the 

Maintainer's Assistant, interaction is used. 

are formally proven, whereas the optimisations used by compilers are usually informal. 
*The program must have been been translated from assembler for "Fix_A.ssembler" to perform 

useful modifications to it. 
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Avoiding the Introduction of Flag Variables 

When restructuring control flow, the system introduces no flag variables unless 

explicitly instructed to do so by the user. Extended use of the Maintainer's 

Assistant shows that for many programs the use of flag variables can be avoided 

by the judicious combination of conditions and loops, and by the creation of 

suitably-parameterised procedures. However, this is not always the case with 

programs which have been translated from assembler and which have multiple 

exit points. When restructuring such programs into a hierarchy of procedures, if 

an exit were to occur within a nested procedure, then a flag would be needed to 

pass this information to the outer procedures. This is the problem of exception 

handling. It is clear from these case studies that the problem lies not with the 

transformation system per se, but with the fact that WSL is not an ideal language 

for representing exception handling; the introduction of exceptions obscures the 

normal control flow of the program. For this drawback to be overcome, WSL 

would need extending with the appropriate constructs. 

Avoiding an Increase in Size 

Most of the transformations apphed with the Maintainer's Assistant reduce the 

size of the program to which they are apphed. There are, however, transformation 

which may increase the size of the program.^ Use of the Maintainer's Assistant 

indicate that very often this is a temporary measure which facihtates some fur­

ther restructuring later. For example, the user must expand all occurrences of a 

procedure, making the program larger, before he is able to construct a new pro­

cedural decomposition, reducing its size again. If at any stage it is not possible 

to reduce the size of the program, the user can undo the transformations which 

caused the increase in size, thereby giving much more control over the final size 

of the program than he would have with a purely automatic system. 

^Sometimes a large program with a simple structure is easier to understand than a small one 
with complex structure. 
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Increasing User Understanding 

A user who is unfamiliar with a program can nevertheless use the Maintainer's 

Assistant to perform transformations on i t . This enables the user to obtain dif­

ferent versions, or views, of the program and in so doing this helps him in his 

understanding of i t . Furthermore, the fact of knowing which transformations are 

applicable and which are not provides the user with information about the code. 

For example, knowing that the transformation to delete a section of code is ap­

plicable indicates that i t is unreachable, whereas knowing that the transformation 

is not applicable indicates that the code is reachable. 

Transformation to Aid Abstraction 

Thus, the program can be transformed to an appropriate starting point for sub­

sequent abstraction transformations. For example, the Maintainer's Assistant 

helps with the identification of suitable code sections to fold into procedures; typ­

ically, a large monolithic unstructured program can readily be transformed into a 

short main block from which calls to a set of sub-procedures are made. No known 

automatic restructurers can achieve this but it is an important intermediate step 

in identifying abstract data types. (There is an example in Section 9.6.1 in which 

an initially unstructured program is transformed into 39 hierarchically organised 

procedures.) 

During the manual restructuring stage a number of "rules of thumb" have been 

identified as being helpful in guiding the transformation process. 

1. General (i.e. side-effecting) expressions and conditions should be replaced 

by sequences of statements followed by the relevant expression or condition. 

2. Action systems, especially those which embody complex control flow, should 

be collapsed, i.e. replaced by a series of nested loops and conditions. 

3. If any conditions can be simplified to True or False, then this should be done. 

4. If any section of code is redundant, then it should be deleted. 
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5. If there are procedures which are only called once, then they should probably 
be expanded and removed. 

6. If there are local variables that can be removed without making the program 

larger, then they should be removed. 

7. If there are two (or more) identical sections of code then they should be 

replaced by a single copy either by restructuring the program so that they 

can be merged or, i f this is not possible or would greatly increase the size of 

the program, by making them into a procedure. 

8. I f there are Loops with multiple exits then the Exit statements should be 

merged where this is possible and does not increase the size of the program. 

As would be expected, there are exceptions to all these rules and other rules 

have also been found to be useful in some cases, for example, replacing Loops by 

While loops. At some future stage, these heuristics could be incorporated into a 

knowledge base which would provide advice on the selection of transformations. 

Thus, interactively applied transformations do avoid the problems described at 

the beginning of Section 9.3.3. 

9.3.4 Abstraction to a Specification 

Producing a specification involves two complementary approaches: information 

removal and information introduction. The information that is removed relates to 

the implementation of the program: variables names, concrete data structures and 

algorithms. The information that is introduced imposes meaning which relates 

to the application domain. For example, a program in which a set of variables 

may always sum to zero may represent the forces on a body in equifibrium or 

that debits and credits cancel one another in an accounting system. Knowledge 

of the domain is required to determine which is the case. Human expertise of 

the application domain and software engineering is required to provide a strategy 

in both these stages to decide what information can be safely discarded and also 
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what new information (which was originally lost in moving f rom a design to an 
implementation) needs to be introduced. 

The methods for abstracting a structured program to a specification have yet 

to be examined in any more detail in this thesis. However, as was described in 

Chapter 4, some important techniques have been identified: 

• Procedurisation and parameterisation; 

• Recursion introduction; 

• Invariant determination; 

• The introduction of specification statements; and 

• The production of specifications f rom assertions. 

These techniques have been used in simple examples; however they have yet to be 

applied to real-world programs. 

9.4 Case Study 

The following program is a short example to demonstrate some of the techniques 

described in Sections 4.4.5. While work on functional abstraction is st i l l at an 

early stage, this example shows that, at least for some programs, i t is possible 

w i th in the Maintainer's Assistant. 

((Var ((N NO)) 
(Assign (K 0)) 
(While (= (Mod N 2) 0) 

(Assign (K (+ K 1))) 
(Assign (N (/ N 2)))))) 

By looking at the loop, the user guesses at a suitable loop invariant and asks 

the system to insert that invariant before the beginning of the loop. The system 
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proves the assertion's validity and inserts i t . (%N represents the set of natural 
numbers.) 

((Var ((N NO)) 
(Assign (K 0)) 
(Assert (And (= NO (* N (** 2 K))) (Member? K %N))) 
(While (= (Mod N 2) 0) 

(Assign (K (+ K 1))) 
(Assign (N (/ N 2)))))) 

The user requests the system to demonstrate that the newly inserted assertion is a 

loop invariant, which i t does in about two seconds. I t then inserts new assertions 

at the beginning and at the end of the body of the loop, and also inserts the 

invariant after the end of the loop but i t also forms the conjunction of i t wi th the 

loop's terminating condition. 

((Var ((N NO)) 
(Assign (K 0)) 
(Assert (And (= NO (* N (** 2 K))) (Member? K %N))) 
(While (Even? N) 

(Assert (And (= NO (* N (** 2 K))) (Member? K %N))) 
(Assign (K (+ 1 K))) 
(Assign (N (/ N 2))) 
(Assert (And (= NO (* N (** 2 K))) (Member? (- K 1) %N)))) 

(Assert (And (Odd? N) 
(= NO (* N (** 2 K))) 
(Member? K %N))))) 

So far no abstraction has been performed. However, at this stage the user selects 

to replace the in i t i a l assignment to K, the loop and the assertion after the loop 

by a specification statement. The system checks that all the variables which are 

assigned in the section of code are also referred to i n the assertion, requests that 

the user enter some text explaining the abstraction, and performs the change to 

the code^. 

((Var ((N NO)) 
(Assn_Spec (K N) 

^The statement Assign X Such That C is written in LISP form as: (Assn_Spec (X) (C)) 
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(And (Odd? N) 
(= NO (* N (** 2 K))) 
(Member? K %N))))) 

Finally, the user replaces the local variable structure which contains the specific­

ation statement by another specification statement. 

((Assn_Spec (K) (Exists (N) (And (Odd? N) 
(= NO (* N (** 2 K))) 
(Member? K %N))))) 

This is the specification of the whole program. I t calculates the number of trailing 

zeros in the binary representation of an integer. 

9.5 I B M Hursley's Evaluation of the Main­

tainer's Assistant 

I B M Hursley's evaluation^ of the tool involved having several people in the or­

ganisation translate real assembler modules into WSL, and then work on them 

w i t h the tool to improve the code and their understanding of i t . In addition, 

demonstrations of the tool were organised so as to provide further feedback. To 

bring some structure to the evaluation, IBM's C U P R I M D (Capability, Usabil­

i ty, Performance, ReHabihty, InstallabiHty, MaintainabiHty and Documentation) 

assessment categories were used. 

9.5.1 Capability 

The system was tried on a number of modules, of a few thousand lines each, which 

have a reputation of being poorly structured and difficult to maintain. After being 

'^This is not necessarily IBM's full position on reverse engineering tools since other approaches 
may be under development within the company. 
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transformed w i t h the tool , these modules were hand-translated back to assembler. 
The resulting code was about 10% shorter and the rate of coding into assembler 
was "much" faster than i t had been previously. However, the resulting assembler, 
while i t passed some of the simpler regression tests, failed the more stringent ones. 
Although not all the reasons for this were established, some of the failures were 
due to errors in the hand-translation process. None were shown to be due to 
problems w i t h the Maintainer's Assistant, although this could not be ruled out. 

From the experience w i t h the system, i t was clear that when used on large tracts 

of "spaghetti code" i t offers "great benefits" in terms of resulting code quality and 

programmer productivity. 

9.5.2 Usability 

The tool was found to be easy to use by maintainers w i th previous knowledge 

of the code being maintained, but without previous knowledge of program trans­

formations. This reflects the inherent interactive nature of the tool. 

9.5.3 Performance 

Running on an RS/6000 (Model 320) under A I X 3.1 the performance was found to 

be "good" for a single user w i t h many actions being "immediate". The response 

t ime was "a l i t t l e longer" for some of the more complex transformations, but 

increased significantly (to more than an hour) when certain complex transforma­

tions were used on programs of a few thousand lines. However, these operations, 

such as "Collapse_Action_System" to remove "spaghetti code", tend only to be 

performed only once on each program. Thus, i f viewed as a batch process, before 

the use of manually selected transformations, the times become more tolerable. 

As more users attempted to use the machine simultaneously, response times also 

dropped. 
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9.5.4 Reliability 

A n early version of the tool was found to contain a number of faults, but the latest 

version was much better and the transformation engine in particular was found 

to be "very stable". 

9.5.5 Installability 

The Maintainer's Assistant was found to be easy to install, requiring no user 

intervention apart f r o m starting the (two hour^) process. 

9.5.6 Maintainability 

I B M performed no maintenance on the tool since this was undertaken by the 

Durham members of the ReForm project. 

9.5.7 Documentation 

The online documentation was thought to be good, and the hard-copy document­

ation was thought to be very good. 

9.5.8 Conclusion 

As a result of their evaluation, I B M concluded that "the concept behind ReForm 

works", i.e. that transformation-based software maintenance "offers the first v i ­

able opportunity to renovate old code in a cost effective way". The Maintainer's 

*This includes the time required for compilation. 
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Assistant was found to be easy to use and for some developers and maintainers 
was "just what they are waiting for" . 

I n particular, the following areas were identified as those for which the Main­

tainer's Assistant offers the greatest potential benefits: 

• Code re-structuring and optimisation; 

• Testing and "debugging"; 

• Code validation; 

• Quali ty assurance; and 

• Software reuse. 

9.6 An Assessment of Success 

The Maintainer's Assistant has been used on a wide selection of programs (from 

a few lines to a few thousand lines, and wi th both simple and complex control 

structures) and by a number of users; not only the author, but other members of 

the ReForm project at the University of Durham and at I B M Hursley. Based on 

these experiences a critical assessment of the work can be obtained. 

9.6.1 Is Maintenance by Transformation Plausible? 

Experience, particularly at I B M , shows that in a typical situation in which a main-

tainer, in i t ia l ly unfamiliar w i t h a particular module, uses the Maintainer's Assist­

ant then significant improvements can usually be made to that module. These 

improvements are i n the areas of program structure — which can be measured by 

the metrics faci l i ty buil t into the system — and comprehensibiHty. Comprehens-

ibi l i ty , being a human factor, can only be measured indirectly; however, response 

f r o m users is favourable. The final transformed (but not abstracted) versions of 
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program have been shown to the maintainers working on the systems transformed, 

and were found to provide a clear overview of the structure and function of the 

software. 

During the stages described, the program being transformed changes in both size 

and complexity. The figures i n Figure 9.1 are typical of how the program charac­

teristics change during these processes. The "McCabe" figure measures McCabes 

cyclometric complexity, the "structural" figure is a measure of the structural com­

plexity devised by Yang [194] and "size" is the number of nodes in the program 

tree. I n this example, which was originally 3,107 lines of assembler (including 

comment lines), the final version of the program consisted of 39 hierarchically 

organised procedures. 

Stage Lines McCabe Structural Size 

Af te r Translation 2,330 1,030 48,175 24,736 
Af te r In i t i a l SimpHfication 1,381 245 17,021 8,404 
Af te r Manual Transformation 1,227 156 11,990 7,120 

Figure 9.1: The Effect of Transformation on Program Metrics 

Figure 9.2 shows how one of the metrics changes as a small, but complex, program 

is transformed. From the figure i t can be seen that generally the size decreases 

as transformations are applied, but that there are occasions when the size needs 

to increase to allow further transformation to take place. In this example, the 

increase in size was due to the insertion of Assert statements. The other size and 

complexity metrics change according to a similar pattern, the general form of 

which is shown in Figure 9.3. The longest program module on which the system 

has currently been used on is over 20,000 fines of WSL. 

A l l the indications are that software maintenance by transformation is a plausible 

approach. 
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Size (Number of Statements) 

Transformations 

Figure 9.2: The Change in Size wi th Transformation 
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Metric 

Transformations 

Figure 9.3: The General Change wi th Transformation 

9.6.2 Is W S L a Good Language for Program Transform­

ations? 

As Ward showed [177] WSL is a language in which many powerful and flexible 

transformations can be proved. This leads to a similarly powerful and flexible 

transformation tool . WSL is also capable of modeling other languages; in par­

ticular i t has been used to model assembler. There is, however, a drawback to 

WSL; i t does not easily allow exception handling to be expressed, leading to the 

unavoidable introduction of flag variables in certain situations. 

Overall, since i t was designed to simplify proofs of program equivalence (for ex­

ample, by using inf ini tary logic), WSL forms a better basis for the construction of 

a program transformation system than existing programming languages. I t also 

has the advantage over other languages designed specifically for program trans­

formation, in that its semantics are based on an imperative kernel language which 

is extended using definitional transformations, and is thus applicable to real world 

programs which are, generally, imperative. 
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9.6.3 Is the Tool Usable? 

To assess the usability of the tool, two areas must be considered: the amount 

of training that is required to use i t , and whether i t responds promptly to user 

requests. 

Tra in ing Issues 

For a user to become proficient, there is a need to fo rm a mental model of a 

program as an object which can be manipulated, and not just as a static object 

to be executed. This process has taken less than two weeks wi th most users, and 

less than a week w i t h some. I t has also been found that most transformations 

(particularly the generic transformations) can be understood in a similar length 

of t ime. However, a few transformations (predominantly those relating to Loops) 

require a deeper knowledge of the underlying mathematical theory, so a longer 

course of formal training would be required in order to use the tool most effectively. 

Interface Issues 

Because of the tool's interactive nature and graphical user interface i t is easy to 

use even by inexperienced programmers. The layout of the interface (shown in 

Figure 9.4) is clear and there have been few requests to change i t . 

Speed Issues 

The table i n Figure 9.5 gives some figures for the speed of the Maintainer's As­

sistant i n performing certain operations. From the table i t is clear that for small 

and medium-sized programs (up to a few thousand lines), response times are ac­

ceptable. However, as program size increases the speed of response drops. This is 

particularly the case w i t h the transformation for collapsing an action system, but 

as was seen in Section 9.5.3, i f viewed as a batch process, the times become more 

tolerable. 
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Fi le Options Edit Metrics Info Help 

Undo] Redo ^Redo Dewo| Start Stop] Replaij 

(Rej'Move'l Join| Lbe/ftffilid'l Reorder| Reurite] Insert| Simplifid/Ilelete Multiple Complex fill 

STATEMENT CftLL <2 1 2 27 1> 

!p printC'Number Of Maps Found = ° var std_out); 
!p print(coun var std_out); 
calla259Q. 

a2590== call z; call a3201. 
a3201== 

if ((d=(sa-l)) and (rp=l)) then SUEggUgjfoaU a4110; caU a3203. 
a3203== 

!p print("C =", (coun+1) var std_out); 
!p print( var std_out); 
for ii;=l to d step 1 do !p print(psi[ii] var std_out); !p print( var std_out) od; 
!p print( var std_out); 
!p print(b var std_out); 
calla3205. 

a3205== 
!p prin6("C=°, (coun+1) var std_out); 
!p pr inbC var std_out); 
for ii;=l to d step 1 do Ip print(psi[ii]varstd_out); !p print( var std_out) od; 
!p print( var std_out); 
!p pr int(b var std_out); 
calla3207. 

a3207== !p prlnt(°" var std_out); call a2999. 
a2999== comment: "Rem Do :"; call a3000. 
a3D00== comment! "Rem If Dr=0 Then 3001; Else 3009";caUa3001. 
a3001== 

!p prmt(" " var std_Dut); !p print(d var std_out); !p print( var std_out); call a3002, 
a3002== 

for ii:=l to d step 1 do !p print(psi[ii] var std_out); !p print( var std_out) od; 
!p pr intC var std_out); 
!p printC" B"varstd_out); 

Figure 9.4: The Maintainer's Assistant's Interface 
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Time Required for Operations 
Size of 

Program Opening a Opening a Reversing a Collapsing 
in "Move" "Rewrite" "Cond" an Action 

Statements Menu Menu Statement System 

25 < 1 sec < 1 sec < 1 sec 4 sees 
189 < 1 sec < 1 sec 2 sees 23 sees 

2,624 3 sees 2 sees 4 sees 35 mins 
11,123 5 sees 4 sees 13 sees 7 hours 

Figure 9.5: The Speed of the System 

Also, since the Maintainer's Assistant is a prototype, designed to test the under­

lying ideas, not all the algorithms adopted are necessarily as efficient as possible.^ 

9.6.4 Efficiency and Reliability 

The Maintainer's Assistant has been developed using the method of rapid proto­

typing rather than by formally specifying the system and then (transformation­

al ly) implementing i t . This is because of its nature as a research prototype — 

i t was not clear at the outset of the project what the specifications for the tool 

would be. However, the tool is buil t as a series of abstract machines each wi th 

clearly defined inputs and outputs. Thus, the tool is well structured and easily 

maintainable. This is reflected in the fact that increasingly few faults have been 

found i n the system so that i t is now a stable and reliable tool. 

The table i n Figure 9.6 shows, for each of the last six months of the tool's devel­

opment, the number of errors found in the system, the number of enhancements 

made to the system and the percentage of changes that each accounted for. From 

this i t can be seen that the number of errors found each month, and the percentage 

of changes caused as a result of errors, decreased. 

^In particular, the tool is wasteful of memory when changing deeply nested program struc­
tures, which causes a larger amount of garbage collection than is necessary. 
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Month 
Errors Enhancements 

Month Number Percentage Number Percentage 

May 46 28% 119 72% 
June 13 29% 32 71% 
July 12 27% 33 73% 
August 12 29% 30 71% 
September 9 22% 31 78% 
October 8 20% 33 80% 

Figure 9.6: The Number of Errors 

Speed is an important consideration for an interactive tool since i t should re­

spond to the user w i t h minimal delay. Running on an I B M RS/6000 wi th 32Mb 

of R A M , most of the transformations take at most two or three seconds to per­

f o r m — figures are given in the table in Figure 9.6. More important is whether 

the algorithms employed are fundamentally efficient. Measurements made on al­

gor i thm for collapsing an action system (the slowest part of the system) show 

that i t is approximately of order n^ "^ where n is a measure of the size of the WSL 

program. I n fact, an inspection of the program revealed no algorithms which were 

exponential w i t h respect to t ime, although there are some which are polynomial; 

mostly of degree two. 

Of prime concern is the time taken to create the transformation menus since, 

generally, many transformation applicability tests must be performed. However, 

by suitably subdividing the transformation catalogue, as described in Chapter 5, 

the valid transformations can be determined, and put into menus, in not more 

than two or three seconds, as is shown in the table in Figure 9.6. 

9.6.5 Correctness and Completeness 

Validation of the Maintainer's Assistant — whether i t is of use — was under­

taken by I B M in their C U P R I M D assessment (see Section 9.5) w i th favourable 

results. Two other important issues are whether the transformations are correctly 
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implemented and whether the transformation catalogue is complete. 

In the ReForm project the transformations have already been proved to be correct 

177], but i t s t i l l remains is to demonstrate the correctness of the implementation; 

something which could be achieved by giving A^T^ tWSL a formal semantics and 

using program transformations. 

The transformation system is complete in the sense that all the fundamental 

transformations proved by Ward have been implemented. However, a more im­

portant gauge is whether the transformations provided in the catalogue constitute 

a "useful" set. Certainly during the early stages of the project many compound 

transformations were added. However, as the project progressed, the rate at which 

transformations were added decreased, as can be seen f rom the table in Figure 

9.7. This would indicate that there is some hmit towards which the system was 

moving. (The actual l im i t could be a funct ion of the examples on which the sys­

tem was used, but no evidence was obtained either for or against this.) Moreover, 

i n the latter stages of the project so few transformations were added that i t would 

seem that this l imi t was (vir tual ly) reached. Barstow [23] obtained similar results 

w i t h the PECOS system. 

Month Number of Transformations Number Added 

A p r i l 512 
May 533 21 
June 560 27 
July 574 14 
August 591 17 
September 600 9 
October 601 1 

Figure 9.7: The Number of Transformations against Time 
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9.6.6 Does the Method Scale up to Larger Programs? 

Li t t l e work has been carried out in this area; however, i t can be seen that the 

problems which would need to be addressed fa l l into three categories: theoretical, 

implementational and comprehension problems. 

From the theoretical point of view, for the method to scale up, the transformations 

must be applicable equally to large programs as to small ones. This is certainly 

so. For example, a conditional statement can be reordered regardless of whether 

its branches each contain ten statements or ten thousand. 

Implementationally, the tool must be efficient, w i t h no inherently complex (for 

example, exponential) algorithms, taking not much longer to operate on large 

programs than on small ones. This seems to be the case w i t h the majori ty of the 

transformations (collapsing an action system being an exception). 

Finally, f r o m a practical perspective, there must be a way for the user to view, and 

thus comprehend, the whole program. This could be done by means of folding or 

slicing the code, hiding the parts that are not relevant. For example, the program 

could be "sliced" on a variable so as only to display the parts of the program 

that affect the value of that variable. Thus, the method does seem to scale up, 

although more work would be needed to confirm this. 

9.6.7 What Weaknesses does the System have? 

The Maintainer's Assistant has four important weaknesses. The first, which has 

already been discussed, is that WSL is not a good language for modehng excep­

tions handling. 

The second weakness is the system's reliance on the symbolic mathematical func­

tions. Since simplifying a mathematical or logical expression, or demonstrating 

that one condition impHes another are commonly performed tasks, i t is essential 

that this is theoretically sound. So far, no work has been done on proving the 



C h a p t e r 9: Resul t s 212 

implementation of this component (although the mathematical knowledge that 
i t embodies has been proved). Not only that, but some transformations rely on 
inductive proofs that certain assertions (of invariants) hold; and this is outside 
the capabilities of the current system. For example, the system would not be able 
to equate the variable X w i t h the length of L in the following program: 

(Assign (X 0) (L ())) 
(While (< Y 10) 

(Assign (X (+ X 1)) 
(Y (Cons E Y)))) 

T h i r d , i t can happen that while there is a sequence of transformations that would 

greatly simphfy the program being worked on, the sequence is not intuitively 

obvious. However, the system is unable to provide any guidance in this area, so 

only an experienced user would be able to make use of this sequence (other than 

by chance). 

Finally, the system needs greatly extending in the area of crossing levels of ab­

straction, in particular i n the areas of: 

• The identification of generic procedures; 

• The determination and removal of information which relates solely to the 

implementation and not to the design; and 

• The introduction of abstract data types, including information hiding and 

inheritance. 

9.7 Conclusions 

The Maintainer's Assistant has been used successfully to transform both small and 

large programs into a highly structured form. This fo rm provides the maintainer 

w i t h valuable information regarding the structure and function of the program. 

I n addition, a number of small programs have been transformed as far as the 
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specification level, but this has yet to be attempted with larger programs. The 
tool is also reliable and efficient. 



Chapter 10 

Conclusions 

10.1 Introduction 

This chapter summarises the thesis, considers the Maintainer's Assistant in use 

and assesses its success at meeting the original goals of the constructing a trans­

formation system based on Ward's transformations, which can be used primarily 

for software maintenance. 

10.2 Summary of the Thesis 

Chapter 1 of this thesis introduced the concept of software engineering as an 

approach to tackling the software crisis. In particular. Chapter 1 demonstrated 

how engineering as applied to software lacked maturity due to two particular 

problems: not having a satisfactory method of constructing correct software (a 

product attribute) and not having a satisfactory method of maintaining existing 

software (a process attribute). 

In Chapter 2 solutions to these problems were examined. Solutions to the first 

214 
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problem were categorised as look and see, test exhaustively and formal methods 

including automatic program verification. Solutions to the maintenance problem 

were split into management solutions and technical solutions. Reverse engineering 

was one promising route which could be more efficacious were it not for its lack 

of formality. Thus the maintenance problem were shown to be united with the 

correctness problem in that a single solution would be to use a method of moving 

between specifications and program in both directions in formally correct — i.e. 

semantic-preserving — ways. 

Transformation systems, which were reviewed in Chapter 3, claim to provide this 

kind of functionality but for a variety of reasons have not done so. Ward's method 

of proving program equivalence, however, seemed to provide a framework for the 

required solution. Ward's Wide Spectrum Language (WSL), which is based on 

transformational extensions to a small, imperative, kernel language with formal 

denotational semantics, and his transformations, which are proved using either 

semantic or proof-theoretic refinement, were considered in more detail in Chapter 

4. Since no tool based on Ward's approach existed, this chapter proposed the 

subject of the thesis: the creation of such a tool — the Maintainer's Assistant. 

This chapter also looked at a possible method for using the tool. 

Chapter 5 addressed the high-level design decisions that have had to be made in 

order to construct the Maintainer's Assistant. These include: how WSL programs 

should be represented, how the transformations to apply should be selected and 

tested for applicability, how transformations should be represented and stored, 

and why and how certain components, such as a mathematical simplifier, should 

be incorporated into the system. The chapter concluded that the transformations 

should be constructed as programs, as opposed to, say, pairs of patterns, (a) so 

that they could easily represent all transformations and (b) so that they could 

include arbitrarily complex algorithms. 

The language selected for expressing transformations was designed as an extension 

of WSL, namely MSTAWSL. The language extensions were given in the Chapter 

6 and include statements for selecting items within WSL program trees and for 

changing program items, and also expressions for examining the WSL programs 
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and for performing symbolic computations. 

A transformation system such as the Maintainer's Assistant needs a catalogue 

of transformations in order to operate. Chapter 7 described the contents of the 

catalogue — elementary, compound, generic and high-level transformations — 

and gave examples of how these might coded using MsrA^SL. From this, it was 

possible to conclude that AdSTAWSL enabled transformations of all types to be 

expressed clearly and concisely. 

The implementation of the Maintainer's Assistant was the topic of Chapter 8 and 

Chapter 9 gave details of the results that have been had with the Maintainer's 

Assistant; notably with IBM 370 assembler code. 

10.2.1 Answering the Engineering Questions 

In setting out the goals of this work, two sets of questions were asked. The first set 

were engineering questions while the second set were more theoretical in nature. 

These questions have been implicitly summarised in this thesis, but are addressed 

more explicitly in the following sections. 

How should programs undergoing transformations be represented? 

WSL programs are represented as abstract syntax trees in which each node (and 

its corresponding subtree) represents a single syntactic object and the branches 

of that node are the components of the object. The advantages of this approach 

are that the transformations work mostly on syntactic objects, and these can 

easily be selected, identified and manipulated as branches or leaves within the 

tree structure, obviating the need for much parsing. 

In addition, the trees are used to store information about the items' types, data­

base query tables (to enhance the efficiency), identity numbers (to aid in commu­

nication with the interface) and attached comments (to provide a documentation 

facility). The implementation of the tree structures is by way of LISP's nested 
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lists. Having created a transformation system based on tree structures, empirical 
observations show that this is an efficient approach. 

How should the transformations, and their point of application, be 

selected? 

Human expertise of both software engineering and the application domain should 

influence the direction of the transformation process. Thus, it is necessary for 

the system to be interactive and to provide some method for selecting which 

transformations should be applied and at which point in the program tree. The 

point of application of transformations can be selected in two ways. 

1. The program is presented on a graphics screen and the user points to an 

item in the program using a mouse and clicks a mouse button. The smallest 

portion of the tree (syntactic object) containing the item at which the user 

pointed would then become the selected item. This method has provided 

the user with a simple and intuitive method of identifying sections of the 

program. 

2. In the second method the system provides a series of commands for relative 

movement within the program tree: L E F T , R I G H T , TJP and DoWN. This 

method, while available to the user of the system, has been harder to use, but 

has proved to be more efficient and forms an essential part of the mechanism 

for performing transformations. 

Having selected the point of application, it is necessary to select the transformation 

that is actually required, as in most cases more than one will be applicable. 

The transformations are divided by function into a number of different menus. 

When the user selects a transformation menu, the system checks which of the 

transformations that could potentially appear in the chosen menu are actually 

applicable, and creates a menu containing only vaHd transformations, Hsted al­

phabetically, from which the user makes his choice. This arrangement reduces the 

need for the user to know the names of all the transformations in the system, and 
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the division of transformations into small groups has decreased the time required 
to construct the menus. A minor drawback is that it is not always clear in which 
menu a particular transformation should appear.-̂  

How should the applicability of the transformations be tested? 

In the simplest cases, the applicability condition of a transformation would consist 

of a pattern that a section of the program has to match against. But in more 

complex transformations, additional tests on the code would be needed. These 

could be put into a logical formula, but this approach lacks the flexibihty to test, 

for example, "distant" sections of code. Thus, the Maintainer's Assistant uses a 

•programming language^ which has been based on WSL, MSTAWSL, for expressing 

applicability tests. 

How should the transformations be represented? 

Simple transformations can be expressed as two patterns, possibly together with 

actions to be performed on the elements as they are matched. However, these 

actions are often extremely complex and some, such as those that need to examine 

sections of code outside the syntactic scope of the section being changed, cannot 

be represented in this way. Thus, as with applicability tests, the MSTASN^L 

programming language is used. 

How should the transformations be stored in the system? 

Transformations are stored in a tree, based on the WSL types to which they 

apply, so as to reduce the number of transformations that need to be tested for 

applicability at any stage. Each entry in the tree holds information about the 

transformation, such as its name, and an index into a number of vectors which 

store additional information. This combination of a tree and vector structures 

^There is an "All" menu which lists all the applicable transformations. 
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enables a specific group of transformations to be accessed efficiently and, once 
found, the information about the specific transformations can also be accessed 
efficiently. 

How can transformations be combined? 

A set of elementary transformations forms a basis for constructing further trans­

formations via combination. This is made possible by use of the METAWSL 

statement OTrans and condition [_Trans?_]. 

Transformation combinations that are not provided must be explicitly performed 

by the user. Experiments have been carried out whereby the user can record such 

a sequence of transformations and replay it later, possibly on another part of the 

program. This has proved useful only in a very few circumstances as it is not 

usual to want to apply exactly the same transformations in two places. A future 

extension of the system would be to provide the user with a macro language so that 

he can build compound transformations himseH using WSL in combination with 

a subset of the features provided by MSTAWSL; for example, @Trans, [_Trans?_] 

and movement statements, but not editing statements (otherwise the user would 

be able to construct potentially invalid transformations). 

What other facilities should be included in a usable transformation 

system? 

In order to make the Maintainer's Assistant into a usable transformation system, 

there are a number of other facihties and features that have been incorporated. 

First, so that it is simple to operate, the tool works in a fast, efficient and intuitive 

windows environment with mouse control, buttons, pull-down menus and so on. 

Next, since the user may not always choose the correct sequence of operations 

at a first attempt, the system provides the abiHty to undo changes made to the 

program. An "audit trail" facility is also included so that as a program is changed, 
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the operations performed on the program, and the selection of program items, are 
recorded and could be "replayed" on a modified initial specification. 

Since faults may be found in the program being maintained with the system, the 

Maintainer's Assistant incorporates a structural, syntax-based editor. 

The system includes the abihty to calculate metrics about the program undergoing 

transformation thereby providing and a measure of the benefit produced by the 

transformation process. 

Finally, both a user guide and online help are provided. 

10.3 Criteria for Success Revisited 

In Chapter 4, the criteria for the success of this work were presented. This section 

will consider whether these criteria have been met. 

10.3.1 Preliminary Questions — Maintenance by Trans­

formation 

• Is software maintenance made simpler by using transformation-based reverse 

engineering? 

• Is WSL a good language for this purpose; i.e. can existing programs be 

expressed in WSL and is there a suitable range of WSL transformations? 

• Crossing levels of abstraction involves removing details of the program's 

implementation while retaining details of its function. How can one do this 

in a transformation-based system? 

The first two of these questions were answered in Chapter 9. From the experience 

gained using the Maintainer's Assistant, in particular within IBM Hursley, it 
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would appear that maintenance by transformation offers great benefits in terms 
of resulting code quality and programmer productivity. 

WSL was designed from the beginning to facilitate program transformation and 

as a result is better suited to this purpose than traditional languages. However, 

its elegant semantics lead to difficulties when it is required to express certain 

inelegant programming concepts, notably exception handling. Overall, it does 

form a good basis for transformational maintenance. 

The aspect of crossing levels of abstraction was addressed in Section 4.4.5. The 

method adopted involves first restructuring the program into a suitable form (for 

example, introducing procedures and using recursion in place of iteration). Having 

done this, the user then needs to identify suitable abstractions which can be 

introduced via assertions (possibly resulting from the identification of invariants). 

As yet, not enough work has been carried out to determine how successful this 

approach might be but, on very simple examples, it looks promising. 

10.3.2 Central Questions — The Assessment of MSTAWSL 

• What constructs should A^T.4WSL include so as to be flexible enough to ex­

press program transformations without becoming overburdened with little-

used constructs? i.e. What constructs should METAWSL include so as to be 

simple yet complete? 

• Can AiSTAWSL clearly and concisely represent Ward's transformations? 

• What other transformations are required? 

• Can A^T.4WSL be used to express clearly and concisely these transforma­

tions? 

As was seen in Chapter 5, and expanded on in Chapter 6, AdSTAWSL has been 

constructed so as to code both the transformations' applicability and the code 

for performing the transformations. METAWSL includes (for reasons given in 

Chapter 5) the following type of construct over and above those provided by 
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WSL: program editing statements, pattern matching and template filling func­
tions, movement statements, movement applicabiUty testing functions, predefined 
global variables, query functions, symbolic mathematics and logic functions, and 
repetition statements. 

Through the implementation of the transformation's of Ward's thesis [177], 

Chapter 7 demonstrated that A4eTAWSL is suitable for coding these transform­

ations. Moreover, the representation of these transformations using A^r .4WSL 

was seen to be both clear and concise. 

There are four types of transformation in the system. First, all Ward's transform­

ations [177] are incorporated. 

Transformations of the the next type combine these in forms that have been 

identified through studies as being useful. These are compound transformations. 

Their effects include fully factorising a Cond statement, removing Exit statements 

from a loop or restructuring an action system, and they are large in number. 

Generic transformations combine into single transformations elementary or com­

pound transformations which have a similar function such as merging program 

items. Thus, the user does not need the experience to know which specific trans­

formation has to be selected. 

Finally, high-level transformations enable a user to extract a specification from a 

program. 

As was seen in Chapter 7, each transformation can be written concisely, without 

difficulty and no less clearly than a purely mathematical statement of the trans­

formation. This is because of the availability in MSTAWSL of all the structures of 

WSL, together with additional control statements and the mathematics and logic 

routines. 
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10.3.3 Questions on the Effectiveness of the Tool 

• Does the approach result in a usable tool? In particular, what training is 

required? 

• Is the implementation of the transformation catalogue efficient, rehable, 

correct and complete? 

• Does the method scale up to larger programs? 

• How well does the system work on real programs in an industrial environ­

ment? 

• What weaknesses does the system have? 

• How does the use of the tool fit into the software process? 

• Does this system add to the study of transformation systems in general? 

• Can the system be used to maintain itself? 

Chapter 9 specifically address the first five of these questions. As was seen, the 

approach does result in a usable tool which is efficient and rehable. Correctness 

and completeness need to be proved, but the evidence available is favourable. 

The evidence also shows that the method would, unless any unforeseen problems 

arose, scale up to larger programs. The system has four weaknesses in the areas of: 

WSL's representation of certain types of behaviour, the reliance on the symbolic 

mathematics system and lack of a method of performing inductive proofs, the 

difficulty of finding optimal transformation sequences, and in crossing levels of 

abstraction. 

The other three questions in this section will be considered at greater length. 

How does the Maintainer's Assistant fit into the software process? 

The Maintainer's Assistant is a tool that takes a program as its input an trans­

formations it to produce another program as its output. As was seen earlier, this 
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could be extended to take specifications as input and/or produce specifications 
as output. Thus, the tool could, potentially, be used at any stage in the software 
life cycle at which specifications or programs form both the input and output. 
This would exclude the requirements analysis and definition and both specifica­
tion stages, but the tool could be used in the production of a design from the 
specification and in the production of code from the design. As a side effect of 
using the Maintainer's Assistant in these phases of the life cycle, the need for 
verification in the testing stage would be reduced. Finally, one of the original 
aims was to create a tool to help with maintenance, and it is indeed also of use 
in this stage of the life cycle. 

At all these stages, it is not necessary to use the Maintainer's Assistant; rather, 

it can be seen as a extra weapon in the software engineer's armoury to be used 

when deemed suitable. The reason for this is that it can be applied to any code 

or specification. Thus, the software engineer may choose to develop (or maintain) 

certain parts of his system using traditional methods, and just use the Maintainer's 

Assistant on those parts where provable correctness is essential. However, by using 

the tool only on parts of the system does reduce the benefits that i t can give. 

Does this system add to the study of transformation systems in general? 

There are four main ways in which this work has added to the study of trans­

formation systems in general. First, it has been designed with maintenance as its 

primary field of use. This has resulted in a system which is designed to take as 

its input unstructured code and produce a design; the opposite of most systems 

which take as their input a design and produce as their output efficient code. As 

a result of this approach a number of issues have had to be addressed, notably in 

the area of formal restructuring and in the crossing of levels of abstraction. 

The second contribution of this work is in the method in which transformation 

are expressed. While M£TAWSL was not the first language to be used for writing 

program transformations (see HOPE [51] and Hildum and Cohen's work [95]), it 

is the first language which contains more than pattern matching, template filling 
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and simple iteration facilities. In particular, A ^ X 4 W S L includes statements for 
movement within program tree. These allow the determination of context inform­
ation about a part of the program other than the part that the transformation 
changes as would be the case with a transformation which replaces a procedure 
call by the body of the corresponding procedure. 

Other METASN?)!, constructs reflect the use of Ward's approach to proving pro­

gram equivalence. These expressions for testing whether a program item is "ter­

minal", "reducible", "proper", "improper", "dummy", "regular" and so on enable 

more sophisticated transformations to be included which take into account more 

than just the superficial syntax of the program. A f e r . A W S L could be adopted and 

reused in future transformation-based work.^ 

Another way in which this work has added to the study of transformation sys­

tems has been in the area of usability. While many other transformation systems 

require the user to test the validity of the application of the transformations, 

the Maintainer's Assistant does this itself, presenting the user with a menu of 

only correct transformations. This is a benefit of coding each transformation as 

two pieces of METASN^II, code: the first part which tests its applicabihty and the 

second which performs the changes to the text of the program. 

Finally, the Maintainer's Assistant has been used with effect in a commercial 

organisation ( IBM Hursley) and on an actual "live" system. This gives the system 

a degree of credibility that other transformation systems lack. 

Can the system be used to maintain itself? 

Since the transformations in the Maintainer's Assistant are written in an extension 

of W S L , the transformations can be applied to themselves. The exception is that 

there are as yet no transformations relating explicitly to A ^ r ^ W S L constructs.^ 

However, once a formal definition has been produced for A ^ Z A W S L , transforma-

^This is borne out by the fact that Xcr^ lWSL has been adopted, albeit with some stylistic 
changes, by Durham Software Engineering's Fermat project [182]. 

^Such a transformation might remove a "OLeft; ©Right" pair. 
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tions on A ^ r ^ W S L could be produced and the tool would become more usefully 
applicable to its own code. 

10.4 The Final Analysis 

The majority of the software industry, and software maintenance in particular, 

still lacks maturity for the reasons described in Chapter 1. However, there are a 

few organisations and projects — for example the Space Shuttle software project 

— that have managed to achieve a higher level of maturity through a disciplined 

use of informal methods. Formal methods, as has been shown in this thesis, 

appear to offer more benefits than these informal methods, so the challenge is 

to realise these benefits. Transformation systems have the potential to harness 

the advantages of formal methods, making valuable tools, but until now have, for 

various reasons, failed. The Maintainer's Assistant, being based on a purpose-

designed programming language (WSL), an improved method of proving program 

equivalence [177], a more flexible method of expressing program transformations 

(using Afer^tWSL), and a simple, interactive interface would, at least on paper, 

seem to overcome these problems. So far, experiments on commercial systems 

bear this out. 

Thus, software maintenance by program transformation in a wide spectrum lan­

guage not only seems plausible, but offers important benefits over other ap­

proaches. 

10.5 Future Directions 

The most important extension to this work is the production of a formal definition 

of MSTAWSL. This would enable proofs of the correctness for the implementation 

of the transformations to be produced. In addition, i t would allow transformations 

on MSTAWSL to be constructed, thus enabling the tool to be used more effectively 
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in its own maintenance. 

There is a need to extend this work in the area of crossing levels of abstraction. 

In particular simpler methods must be introduced for identifying suitable abstrac­

tions. This method must also cover data abstraction which is an area that has 

not been considered in this thesis. 

Other enhancements revolve around usability issues, for example in helping a user 

who is untrained in program transformations to benefit from the system. These 

include: 

• An interactive assistant to help in the selection of transformation. This 

could be implemented by storing with each transformation a list of possible 

"next candidate" transformations. An alternative method would be to make 

use of the metrics facihty to guide a "hill chmbing" algorithm. 

• A "jittering" mechanism similar to that used by the T I (Transformational 

Implementation) System [18]. This automatically modifies a program to 

match a transformation that previously failed to match because of some 

technical detail. Mostow [139] proposes a similar system for automating 

transformations in which the user selects the transformation he wants to 

apply. The system calculates the changes that need to be made first, and 

looks for suitable rules to apply. 

• An additional class of transformations which embody knowledge of pro­

gramming goals: "divide and conquer", formal differentiation, embedding, 

recursion removal, backtracking, function tabulation, function inversion, dy­

namic programming (store versus recompute) and so on. 

• A facility to allow the user to build up his own catalogue of compound trans­

formations consisting of combinations of existing transformations. Thus, he 

could customise the system for the particular problems that he has to deal 

with. This would follow the trend which is away from huge catalogues, 

and toward individual, problem-oriented sub-systems based on small sets of 

powerful rules allied with advanced metalanguages [152]. Such an approach 

was also proposed by Bauer [24 . 
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The ultimate goal of a transformation system is to achieve a symbiosis between 
the talents of a skilled human, who is better able to make strategic decisions, and 
the mechanical abilities of the system to carry out flawlessly numerous trivial low-
level manipulations [73]. Adding the features described above to the Maintainer's 
Assistant would represent considerable progress towards this goal. 



Appendix A 

A Survey of Transformation 

Systems 

In the following review, only those systems which use transformations in interest­

ing or original ways wil l be considered. Simple optimising compilers and partial 

evaluation will not be considered. The systems reviewed will be assessed in terms 

of their formality, how much guidance and informal reasoning the user has to 

provide, the scope of the examples the systems have been apphed to, and whether 

the system is being used other than by its developers. Each transformation system 

will be described under five headings: 

Background — The first section give the details of where the transformation 

system was developed. 

Purpose — Since transformation systems have been constructed to achieve many 

different goals, the second section gives these goals. 

Details — The third section describes how the transformation system works, its 

transformation catalogue and any special characteristics the system has. 

Results — The results section analyses the results that have been obtained with 

the system. 

229 
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Conclusion — The final section assesses whether the transformation system has 
been successful, and what, if anything, it adds to the field of knowledge 
about such systems. 

A . l The S E T L Project 

Background 

This long-running project at the Courant Institute of New York University [62 

has served as the context for a wide variety of transformation research. SETL is 

one outcome of this work. 

Purpose 

SETL is a very high level programming language which has syntax and semantics 

based on standard set-theoretic mathematics. It is possible to execute SETL 

programs, but naive execution of programs that make liberal use of the high-

level language features may be very inefficient. There is a SETL compiler which 

produces efficient interpretable code or machine code. A key part of the compiler 

is an optimiser which uses ideas from transformation systems. 

Details 

SETL uses transformations for code optimisation, for selecting data structures and 

for ensuring that data types are efficiently used. Although the work is of relevance 

to transformation theory, it is not a general purpose transformation system. 
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Results 

The examples on which SETL has been tried are described by Partsch and 

Steinbriigen [152], and include finding the shortest path in a graph, some garbage 

collection algorithms and the Cocke-Younger parsing algorithm. 

Conclusion 

As has been described earlier, there are many benefits to be gained from writing 

programs at a high level and performing transformations to produce executable 

code. SETL is one system that supports such an approach, but it does not have 

the power required to be of general use, since the examples cited above were 

only transformed from high-level specification to executable code with a great 

deal of informal reasoning. Thus, while SETL has worthwhile objectives, the 

transformation system employed is too limited in both its scope and power to be 

able to draw many lessons from i t . 

A.2 R A P T S 

Background 

RAPTS (Rutgers Abstract Program Transformation System) was developed by 

Paige [148 . 

Purpose 

It is a supercompiler that takes as its input an abstract program specification and 

outputs efficient object code and a description of its performance. It is claimed 

that because specifications are more likely to be correct than programs, the output 

from this system is more likely to be bug-free than that from an ordinary compiler. 
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Details 

RAPTS is a running transformational programming system that embodies many 

of the features of supercompilers. It constructs programs in a sequence of stages, 

each of which implements an essential program characteristic. The first stage 

introduces computability, while the following stages add strategy, data structures, 

optimal control flow and so on. The theory behind RAPTS is that of expressing 

specifications in purely set-theoretic terms and then using fixed point theorems^ 

on these sets as the basis for transformation rules. 

RAPTS has a small catalogue of transformations which does not support lower 

level code manipulations. 

Slight changes in the form of the input specification can result in significant dif­

ferences in the performance of the object code. Thus, it seems essential for the 

success of transformational systems which use large scale automation that they 

both compile the code and provide a performance analysis of this code [148]. This 

is possible in RAPTS since the implementation of a program characteristic at 

each stage is accompanied by a sufficiently precise increase in efficiency that it is 

possible to combine the efficiency information to create a time complexity formula. 

In contrast to the SETL optimiser, reported to be 24,000 lines of SETL code, 

RAPTS is only a few hundred lines of SETL [148]. 

Results 

No results are available. 

^In lattice theory, a fixed point is a point which satisfies the equation x = j ( x ) for some 
monotonic function / . By expressing recursion as a function, / , in this form, where x is the 
"solution" of the recursion, it is possible to use the theorems of fixed points to transform the 
recursive program. 
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Conclusion 

The major problem is the applicabihty of the approach. In particular fixed point 

transformations only apply to specifications written in set-theoretic terms, which 

is not always a convenient way of expressing a specification. A second weakness 

is the lack of published results. 

A.3 The TAMPR System 

Background 

TAMPR (Transformation-Assisted Multiple Program Realisation) was developed 

at the Argonne National Laboratory. 

Purpose 

I t is not a general transformation system, but is a special purpose system whose 

primary goal is to adapt numerical algorithms to work with particular hardware 

and software environments. In particular, the TAMPR transformation system 

is used to transform declarative specifications written in pure applicative LISP 

(which has no side-effects) into efficient executable programs written in FOR­

TRAN (which may be either sequential or parallel). The advantage of pure LISP 

specifications is that they are based on the mathematics of the lambda calculus 

and recursive function theory. Thus, from the point of view of program trans­

formation, it is possible to write and prove interesting transformations, and it 

also prevents problems from being overspecified. 
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Details 

The TAMPR System uses 20 language levels between pure apphcative LISP 

and FORTRAN [42]. These levels include pure applicative LISP, expressed in 

extended-FORTRAN syntax and recursive FORTRAN with one function call per 

statement. 

Transformations in TAMPR are rewrite rules consisting of a pattern and a replace­

ment [41]. In addition, transformations can have applicability conditions on the 

semantics of the code but, according to Boyle, these are seldom needed. TAMPR 

contains 90 major correctness preserving transformation rules divided into 20 in­

dependent groups corresponding to the different language levels. Thus, at each 

level there is only a small number of transformations available. 

Both transformations and the programs on which they work are represented as 

tree structures internally in the system [41]. 

Results 

In [42] an example is given in which a program is produced whose resulting code 

is 3,150 lines. This takes 15,639 transformations for a sequential version of the 

program, and 23,583 for a parallel version. These are too many for the user to 

have to apply by hand, so a strategy is used to automate completely the system. 

This strategy is described in [42]. 

TAMPR has been used successfully to convert single-precision to double-precision 

arithmetic and to change the dimensions of an array, for example to use a one-

dimensional array in place of a two-dimensional one. TAMPR has also been 

used to transform FORTRAN programs to uncover structure inherent in them 

and to make other changes to FORTRAN programs [41]. However, the most 

significant accomplishment of the system is that TAMPR itself is written in LISP 

and has been transformed into FORTRAN. When new functionality was added 

to TAMPR, it was easy to retransform it into FORTRAN. 
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Conclusion 

The use of many different language levels is in contrast to systems which use a 

wide spectrum language and would appear to be a serious drawback if the system 

were to be extended to become general-purpose since different transformations 

are needed for each language level (and also for moving between different levels). 

Nevertheless, in its restricted domain TAMPR has been used with some success, 

producing programs which are much more efficient than the original LISP code. 

I t has also been used to perform a limited amount of legacy code restructuring. 

A.4 The Restructurizer 

Background 

A special type of transformation system is the structuring engine, which is a 

software tool with two properties [124]: 

• It transforms an executable program written in a given language, but of 

undetermined structure, into another program written in the same language 

with a well-defined structure; and 

• The resulting program produces the same transformation on any set of input 

data as does the original program. 

Such tools which have already been developed include Superstructure, Structuring 

Facility and, described here, the Restructurizer developed by Sneed [7] [168 . 

Purpose 

The Restructurizer takes, as its input, code written in COBOL-74 and produces 

restructured code written in COBOL-85. This is used as the third of five stages in 
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a more general strategy for software recycling (Sneed's own variation on restruc­
turing). 

Details 

The task of the restructurizer is to restructure the flow of control within COBOL 

modules by means of the successive application of seven syntactic rules which are 

mainly designed to remove Goto statements [168]. 

A key factor in the recychng process is the presence of an intermediate design 

language to which the COBOL-74 is first converted by hand before being regen­

erated as COBOL-85 code. This allows all the work to be carried out at the same 

"level" with the same set of rules (i.e. transformations). This is the opposite of 

the TAMPR system described in Section A.3. 

The Restructurizer has no firm theoretical foundation for the transformation rules 

that are used in the system. Instead these are "rules of thumb" such as: 

Al l forward branching conditional Gotos should be deleted, the If con­

dition negated and all the statements up to the label referenced should 

be nested by one. 

Results 

The Restructurizer has been used successfully to restructure various real-world 

COBOL programs. 

Conclusion 

The Restructurizer does all that it sets out to do; that is, it restructures unstruc­

tured COBOL programs. However, it is only able to consider the syntactic form 

of the code and not its meaning. Thus, unhke a true transformations system, it 
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is unable to remove redundant tests and so on; this is partly due to its not being 
a rigorously-based system. 

A.5 Burstall and Darlington's Work 

Background 

A great deal of the pioneering work in transformation systems was undertaken by 

Burstall and Darlington, and their work is continuing. Their ideas have heavily 

influenced today's transformation systems. 

Purpose 

The first version of their work was a schema-driven method for transformation in 

which transformations were applied to code which matched certain patterns. The 

system transformed from applicative recursive programs to imperative ones, the 

goal being improved efficiency. On the whole their system worked automatically 

with little user interaction. However, it had a very incomplete (and difficult to 

extend) set of transformation rules. 

Details 

Their second system is, like their first, based on the generative set approach and 

used only six rules: 

Definition — which introduces a new recursion equation; 

Instantiation — which introduces a substitution instance of an existing equation 

by replacing a parameter by a value; 

Unfolding — in which a (recursive) call to one of the recursion equations is 

replaced by the body of that equation; 
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Folding — in which the body of an equation is replaced by a (recursive) proced­
ure call; 

Abstraction — which introduces a "Where" clause by deriving a new equation 

from a previous equation by replacing specific values by parameters; and 

Laws — which are any set of data-structure-specific rules such as associativity, 

commutativity etc. 

The system works largely automatically on the language NPL [49]. It uses "forced 

folding" in which the system suggests a fold which the user accepts or rejects, 

asking for another. The system is not fully automatic, and the user must supply 

definitions, clever ideas in the form of "eurekas", laws for data structures, explicit 

reduction rules, and switches which permit or forbid various searching criteria and 

expression generalisations. 

Results 

The recursive functions which have been transformed by the system are all fairly 

simple and mostly mathematical. 

Conclusion 

This system is in itself very primitive by today's standards; in particular it is lim­

ited to transforming from recursion equations (imposing a restriction on the kinds 

of program that can be transformed) to improved recursion equations (necessit­

ating, in most cases, further processing before the program can be expressed in a 

conventional language). Nevertheless, the system was important and influential 

in providing the inspiration for later transformation systems. 
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A.6 The ZAP System 

Background 

The ZAP system [70] [71] [74] is based on the Burstall and Darlington system. 

Purpose 

There is special emphasis in the ZAP System on software development by support­

ing large-scale program transformations which perform dramatic, global changes 

to the program as opposed to small, local changes. 

Details 

The principle is still that of "fold/unfold" and the language is still NPL. In ZAP, 

however, meta-programs can be written using HOPE (a purely appUcative pro­

gramming language, developed from NPL) which apply a directed series of trans­

formations to NPL programs in a high-level hierarchical fashion. The system is 

based on pattern-directed transformations, i.e. transformations in which the user 

gives only the approximate form of the expected answer, as a pattern. These 

are expanded into a variant on the six basic rules of the previous Burstall and 

Darlington system which the system then applies to perform the transformation. 

There are other new facilities, too, and these include an extended control lan­

guage, defaults (notably default patterns), a bookkeeping facihty to record the 

sequence of operations, and a "discovery" capability so that the system can sug­

gest alternative transformations. 

Results 

The examples on which ZAP has been tried are more ambitious than the examples 

tackled with most other transformation systems: the "telegram problem" (which 
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involves decoding an incoming stream of characters) [70], a very small compiler 
and a text formatter [71]. However, these examples leave the resulting program 
as a series of recursion equations which must be further modified to produce 
programs in conventional programming languages. 

Experiments with transformations appHed to maintenance have also been per­

formed with ZAP. However, these have been limited to performing new trans­

formational developments from slightly different starting conditions. No attempt 

has been made to use the system to perform reverse engineering. 

Research is also being conducted into "paradigm algorithms", such as the general 

divide and conquer paradigm and other general strategies. 

Conclusion 

Perhaps the most important feature is the use of a meta-language for expressing 

transformation tactics since it gives the system a great deal of flexibihty. However, 

the user needs to write scripts in the meta-language for each transformational de­

velopment, making the system cumbersome to use, especially as large and complex 

patterns needs to be created in non-trivial cases. 

The use of ZAP for maintenance is another important idea but, as with meta­

language scripts, the theory is better than the practice, since no work has been 

done on transforming existing code and the system is, therefore, of little use in 

the real world. 

A.7 The S A F E and TI Projects 

Background 

SAFE (Specification Acquisition From Experts) is Balzer's project from the In­

formation Science Institute (ISI) in Los Angeles and deals with the synthesis of 
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formal specifications from informal ones [190]. Although not a transformation 
system itself, it forms part of a larger system with T I (Transformational Imple­
mentation) in which transformations play an important part. 

Purpose 

T I works on the derivation of efficient programs from formal specifications by 

means of transformations [18]. Thus, the SAFE/TI combination allows for in­

formal specifications to be transformed through to executable programs. 

Details 

T I does not produce programs directly, but instead produces output in a subset of 

the specification language GIST, which is translatable into an existing program­

ming language. Abandoning automatic compilation allows more freedom in the 

language in which programs are presented to the computer. GIST is the result of 

adopting this approach [81] [19], and is a wide spectrum language. It has been 

developed to provide the flexibility and ease of expression necessary for describing 

the fu l l range of acceptable system behaviour. 

When using the T I system, it is the programmer's task is to select transformations 

from a pre-existing catalogue [18]. If a required transformation does not exist, the 

programmer may extend the catalogue or edit the program manually. In both 

cases it is up to him to ensure the resulting program's correctness. 

Among the features of the T I system are: 

• An interactive transformation engine; 

• An automatic documentation facihty that allows one to replay a develop­

ment using a modified specification; 

• A catalogue of transformations which reflect how to implement certain spe­

cification constructs and optimisation techniques; and 
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• A mechanism for translating a fully developed program into some target 
language. 

T I includes one other important feature: "jittering". Jittering is the process by 

which the system automatically modifies a program to match a transformation 

that previously failed to match because of some technical detail. This uses stand­

ard artificial intelhgence back-tracking techniques. 

Results 

Some examples which have been tackled with the T I system include a text editor 

18], some special versions of a line justifier [190], the "eight queens" problem [15] 

and a package router [122]. 

Conclusion 

TI's key strengths are the GIST wide spectrum language and the "jittering" tech­

nique. GIST, being formal and wide spectrum, provides an enormous degree of 

expressiveness and power (even if it lacks clarity and structure and is thus hard 

to understand, as one of its developers admits [72]). 

However, although working with GIST is clear in principle and has been demon­

strated with a number of substantial case studies, there are still several non-trivial 

technical omissions; i.e. (a) a sound theoretical foundation for the notion of a valid 

transformation (the user may add unproven transformations to the catalogue and 

to make unchecked edits to the code), (b) suitable collections of rules, (c) appro­

priate strategies for the development of an implementation [151 . 



Appendix A: A Survey of Transformation Systems 243 

A.8 G L I T T E R 

Background 

GLITTER, Hke the SAFE and T I systems, originated in the Transformation Based 

Maintenance project at Information Science Institute (ISI). 

Purpose 

This project addresses the problem of understanding, reusing and maintaining 

previous specifications and optimisations. Paddle is the language used to record 

the formal development of GIST specifications. These developments can then be 

reused. The major weakness of this system is not in the Paddle itself but in the 

interpretation mechanism for Paddle [189]. Hence Fickas created an automated 

development system that selects and applies transformations to achieve developer-

stated goals. The language for stating these goals is GLITTER (GoaL-directed 

jITTERer). 

Detciils 

GLITTER [75] was designed within the T I environment. The user begins by 

stating (in GIST) some design goal. This is then processed by four subsystems. 

• The problem solver either asks the user for more details or checks the method 

catalogue; 

• The method catalogue contains methods for achieving goals and contains 

transformations and planning knowledge; 

• The rule selection catalogue chooses between rules from the method cata­

logue; and 

• The applier applies the chosen method. 
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GLITTER is an interactive, rather than fully automatic system. For example, 
it may be necessary in the process of using it for the user to add to one of the 
catalogues. 

Results 

GLITTER has been tried on a large number of toy examples and a few larger 

ones. The latter included a controller for a mechanical postal package router in 

which the system was able to generate automatically a significant number of steps 

[75]. 

Conclusion 

GLITTER extends the capabilities of T I , but is stiU let down by a lack of formality 

epitomised by the fact that users can add unproven transformations and methods 

to the catalogues. 

A.9 The PSI and CHI Systems 

Background 

The PSI system [87], [85], [86] [88] and CHI [89] system have been produced 

mainly at Stanford. 

Purpose 

The purpose of both systems is to synthesise efficient programs, by taking as input 

a specification obtained from a dialogue with the user. This may include natural 

language or partial traces of computations (given by sample input-output pairs). 
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Detai ls 

I n PSI, the dialogue w i t h the user is processed by various "experts" which are 

software modules which together fo rm a large LISP system. Each expert performs 

a particular funct ion such as parsing the input or applying domain knowledge. 

The result is a number of program fragments which act as input for the Program 

Model Builder ( P M B ) [129]. The result of this is a complete program model which 

is coded by a coding expert and an efficiency expert. P M B builds a complete 

and consistent program model which is an abstract, implementation-independent, 

annotated program in a high-level language. The program, thus, corresponds to 

the desires of the user. PMB's expertise is coded as a set of about 200 procedural 

rules which are scheduled by a rule interpreter. 

The coding expert (PECOS) [20] [21] takes an abstract program description pro­

duced by P M B and successively refines i t using transformation rules which reflect 

coding knowledge. This has two parts: 

• A catalogue of about 400 transformations relating to symbolic programming 

21] together w i t h an extensible knowledge base [20]; and 

• A task-oriented control structure based on program development by success­

ive refinements. 

The efficiency expert ( L I B R A ) [104] [105] gives advice to the coding expert, thus 

helping i t to make decisions. Its expertise is coded as an extensible knowledge 

base of about 100 rules. New rules can be derived semi-automatically f rom new 

transformations or can be gained by asking the user appropriate questions. 

The synthesis phase of PSI (PSI /SYN) transforms specifications given in PMB's 

formal high-level language [106]. This reverses the roles of PECOS and L I B R A , 

so that PECOS advises L I B R A . 
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Resu l t s 

Partsch and Steinbrugen [152] give a list of examples on which the PSI system has 

been tr ied, all of which are only moderately sized and very heavily biased towards 

number-theoretic algorithms. These include a prime number generator, some set 

manipulation algorithms, a simple retrieval program, an algorithm to determine 

the reachability of nodes in a graph and a variety of sorting algorithms. 

Conclus ion 

PSI was a useful testbed for program transformations, but was superseded by the 

C H I system. This differs f r o m PSI i n that i t uses a wide spectrum language called 

" V " , which is easier to read. Also, instead of using autonomous experts, C H I uses 

a homogeneous collection of tools sharing a common database. Although C H I 

has had very l imi ted success in use (having only been applied to number-theoretic 

examples), i t makes two important contributions to transformation theory: rules 

can be applied by analogy (by indicating a related rule having a similar effect) 

and i t is a self-describing system, i n that i t can be modified using its own rules. 

A.IO The C I P Project 

Background 

The work has been carried out since 1975 in Munich by Bauer [27] and others. 

Purpose 

The CIP acronym (Computer-aided, Intuition-guided Programming) indicates the 

project's primary aim; to produce a system which allows the user to construct pro­

grams by transformation, obviating the need for much clerical work ("computer-
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aided"), while using his own experience ("intuition-guided") to direct the process. 
Secondary aims, which have been accompanied by thorough investigations of the 
theoretical issues, are: 

• To use a sound method (based on a formal calculus) for guiding the process 

of formal reasoning in program development; 

• To design and define formally a wide spectrum language, CIP-L, in order 

to provide a uniform framework for the formulation and transformation of 

both specifications and programs; 

• To develop an interactive system for supporting the process by performing 

the transformations mechanically, doing administration, and producing the 

documentation. 

Detai ls . 

CIP-L, has different programming "styles". I t has a core imperative language, 

based on the algebraic semantics [154], which is extended wi th applicative con­

structs by definitional transformations; each language construct is defined in terms 

of how i t can be transformed into a combination of lower-level constructs [153]. 

Other transformations include [26] fundamental transformations on the kernel 

language, and derived transformations which are sequences of fundamental or 

definitional transformations. 

Transformations are represented as input and output templates together wi th 

additional "semantic" predicates on the code being transformed. Transformations 

can be applied to program schemes, thus producing a new transformation rule 

consisting of the original program scheme as the input template and the generated 

program scheme as the output template. The applicability conditions for the new 

rule are induced by those of the applied rule [26 . 

Internally, program schemes are stored as abstract terms which are tree-like struc­

tures. 
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Resu l t s 

Pepper [155] gives three examples of the use of CIP. These are the elimination 

of quantifiers, recursion removal using data types, and a data flow program. But 

perhaps the most significant is that i t has been used to prove parts of its own 

development. 

Conclus ion 

The CIP project has made substantial contributions to the field of program trans­

formation systems such as the symbiosis of the human and computer contributions 

and the use of a wide spectrum language. Nevertheless there are certain areas of 

weakness of the system. 

First, i n performing transformations i t may be necessary to obtain information 

about a part of the program other than the part that the transformation changes. 

This would be the case w i t h a transformation which replaces a procedure call 

by the body of the corresponding procedure. In the CIP project, this non-local 

information is obtained by way of "contexts" and "theory propagation" [155 . 

However, these have been added later and are rather clumsy, since, for example, 

the definition of a procedure must be stored at every point in the program. 

Second, i n order to understand abstract types i t is helpful to fo rm a conceptual 

model [45], but CIP's semantics are not model-based, and thus require an extra 

level of description. 

Th i rd , the method can only deal w i th the equivalence of f u l l programs and not 

arbitrary program parts [153 . 

Finally, i n order to deal w i t h imperative programs (such as are used in vir tually 

all real-world situations) the applicative kernel needs to be extended wi th many 

"impHcit axioms" such as: ( ^ i ; S2)] S3 = Si; {S2; S3) [177]. Extra axioms 

necessitate extra conditions on the apphcability of the transformations reducing 

the scope and usefulness of the approach. 
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A . l l D E D A L U S 

Background 

Various experimental transformation systems have been developed by Dershowitz 

and Manna [60] the most important of which is DEDALUS (DEDuctive A L -

gor i thm Ur-Synthesizer). 

Purpose 

The goal of DEDALUS [127] is to derive LISP programs automatically and de­

ductively f r o m high-level input-output specifications in a LISP-like representation 

of mathematical-logical notation. Manna [125] claims that the methods employed 

by DEDALUS can also be used for program transformation, data abstraction, 

program modification and structured programming. However, the system was not 

intended to be used other than as a testbed for these ideas. 

Detai ls 

The task is represented as a goal which can be modified by using transformations. 

This produces sub-goals which are handled in the same way, introducing recursion 

where necessary. A program, correctness proof and proof of termination (using 

well-founded sets) are all produced simultaneously for non-mutually-recursive pro­

grams. 

Of the transformations, of which there are more than 100, some represent know­

ledge about the program's subject domain (for example, numbers, lists or sets); 

others represent the meaning of the constructs of the specification language and 

the target programming language; and some represent basic programming know­

ledge [125]. Transformations are represented as simple input and output tem­

plates, or patterns. The system has been implemented in QLISP [60 . 
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Resu l t s 

D E D A L U S has only been tried on toy examples like the greatest-common-divisor 

and the intersection of two lists [126]. 

Conclus ion 

Since D E D A L U S has only been tr ied on small examples, i t is difficult to know 

whether i t would work on large programs. Another drawback is the degree to 

which the user is expected to check the application of transformations and to 

hand-modify code, making any formali ty dependent on the user's abihty. The 

main advantage, however, is that the system is applicable to some areas of software 

maintenance, since f r o m a modified (maintained) specification, a new program can 

be relatively easily derived using this system. This advantage, however, has to 

be seen in the context of the t r iv ia l examples wi th which that DEDALUS has 

actually be used. Also, the system is not suitable for reverse engineering existing 

code. 

A new deduction-oriented system w i l l regard program-synthesis as a theorem-

proving task that uses unification, mathematical induction and transformation 

rules. 

A. 12 Hildum and Cohen's Work 

Background 

This is work that was carried out by Hi ldum and Cohen [95]. 
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Purpose 

Although not a transformation system as such, Hi ldum and Cohen propose a 

language for wr i t ing transformations so that the transformations are applicable 

to a variety of programming languages. 

Detai ls 

I n this system, i t is the user's responsibihty to ensure that the transformation 

rules defined preserve correctness. However, Hi ldum and Cohen have proposed 

that the system could be extended so that i t could present the user wi th a menu 

of appropriate transformations. 

Like most other systems, transformations are expressed using two patterns [95]: 

• A series of elements to be found and actions to be performed while finding 

these elements; and 

• A new ordering of the elements that describes the result of applying the 

transformation. 

In this system, a program to apply transformations is seen essentially as a text 

editor that executes a series of commands ( in this case specified by the program 

transformation) and produces an altered version of the original text which repres­

ents the new code sequence. 

The language for wr i t ing transformations [95] includes a number of important 

features: 

• A pattern matcher for matching Hterals, single variable items and sequences 

of variable items; 

• A "repeat" construct for performing a replacement several times. I t provides 

a feature for specifying the minimum number of times that a repeated pat­

tern must be found. (Nested repeats have not yet proved necessary.) 
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• A feature to prescribe "actions" to be performed on items matched by pat­
terns (such as adding two constants) before doing the replacement; 

• Multiple-pass transformations for moving a piece of code f rom one point to 

another, for example. (The first pass would find the code and the second 

would perform the replacement.) 

• Transformations to be repeated up to a maximum number of times, for 

example, for unrolling the body of a loop. 

Resul t s 

Since no transformation system has been wri t ten using this language, no results 

are available. 

Conclus ion 

A language for wr i t ing transformations oflFers more flexibility over a catalogue 

of in i t i a l and final patterns and, thus, this work looks promising. However, since 

programs are stored as text sequences, rather than in a more structured fo rm such 

as a tree, a system based on this approach would be inefficient due to the parsing 

overhead required. This work would be more credible i f there were a working 

transformation system based on i t . 

A. 13 Kozaczynski's Work 

B a c k g r o u n d 

Kozaczynski et aVs program transformation system [113] forms part of the soft­

ware re-engineering program at Anderson Consulting's Center for Strategic Tech­

nology and Research (CSTaR). 
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Purpose 

The purpose is to provide a general transformation system that can be used in 

software maintenance; i n particular at higher, conceptual levels. The core of the 

work is based on concept recognition using an "ISA" hierarchy [173 . 

Detai ls 

The system is constructed w i t h four levels — the text level, the syntactic level, the 

semantic level and the concept level — each of which has corresponding program 

transformations. 

Text-level transformations work on the source text directly and can be performed 

by means of string matching (for example, using string replace in the EMACS 

editor). For example, the user may wish to replace all occurrences of the number 

100 by 200. This can cause problems, however. First, these transformations 

may replace components that should have remained the same; for example, in 

the case of a string which also forms part of an identifier name. Second, these 

transformations rarely preserve the program's semantics. 

Syntactic-level transformations overcome many of these problems by putt ing the 

program into the fo rm of an abstract syntax tree and using pattern variables are 

used to ident i fy matched components. 

Semantic-level transformations require that semantic properties of the program be 

considered. For example, a loop may be executed only once, but to determine this, 

the semantic properties of the loop need to be analysed. Correctness-preserving 

transformations, such as code optimisation and restructuring, are supported at 

the semantic level. 

Concept-level transformations are needed for software maintenance activities such 

as fault correction, functional enhancements and pla t form migration. These trans­

formations require knowledge about abstract concepts concerning programming, 

problem solving and application domains. For example, the user may only wish to 
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perform a certain transformation to sections of the program related to a particular 
concept or funct ion. 

Transformations are expressed as a left-side pattern, a right-side pattern and 

possibly some transformation conditions. They may also include calls to functions 

"Delete", "Replace", "Insert-Before", "Insert-After" and "Insert-Into". 

Resul t s 

The system has been used in the porting of an 8,000 module COBOL system; 

predominantly to make changes to the interfaces. The amount of transformed 

code was 7-50 lines per 1,000 lines [67 . 

Conclus ion 

From the example given of the use of this tool, i t is clear that i t really performs 

very l i t t l e transformation of the code — at most 5% is changed. Also, formal 

features such as correctness and completeness have been omitted. Thus, while i t 

has worthwhile goals, notably i n the area of concept recognition, i t is not a viable 

general purpose transformation system. 

A.14 Ward's Work 

Background 

This work was conducted by Ward in his D.Phil , thesis [177 . 
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Purpose 

Ward, in his thesis, develops a theory of program refinement and equivalence, 

based on a wide spectrum language, which can be used as develop practical tools 

for program development and modification. This can be achieved by implementing 

the refinements and equivalences as transformations wi th in some suitable system. 

However, this has not yet been done. 

Detai ls 

The theory is based on the use of a wide spectrum language which is defined in 

terms of an imperative kernel language of atomic specification statements. This 

is extended using definitional transformations to define new concepts in terms of 

those already present. The resulting language, known as "WSL", covers the whole 

range of operations f r o m general specifications to assignments, jumps and labels, 

and expressions w i t h side effects. 

Program equivalence is proved in one of two different ways: either by using the 

denotational semantics of WSL directly, or by using the method of weakest pre­

conditions, expressed as formulae wi th in a framework of first order infinitary logic 

177]. The means by which this is accompHshed is explained in more detail in 

Chapter 4. 

The theorems which Ward has proved in his thesis [177], and which form a found­

ation for building a transformation system, cover a wide range of areas. These 

include the following: 

• Theorems on proving the termination of recursive and iterative programs; 

• The recursive implementation of specifications, enabling the transformation 

of general specifications into programs; 

• A rigorous framework for reasoning about programs wi th nested loops, ter­

minated by Exit statements; 
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• Selective and entire unrolling of loops; 

• Selective folding and unfolding of procedures, which form the basis for a 

rigorous treatment of "action systems" [9] [8] — parameterless, recursive 

procedures which can be used, among other things, as the equivalent of 

Goto statements; 

• A wide range of theorems and techniques for recursion removal; and 

• Techniques which use the theorems above for deriving algorithms f rom spe­

cifications, and for obtaining specifications f rom existing programs. 

More details are given in Chapter 4. 

Resul t s 

These theorems and techniques have successfully been applied by hand to a num­

ber of examples of varying complexity [176] [175] [179] [196]. These have included 

the "greatest true square" problem, topological sorting and some real-world pro­

grams translated into WSL f rom assembler. 

Conclus ion 

Ward's work provides a rigorous and formal basis on which a transformation 

system could be based. Although Ward did not develop such a system, this is by 

no means an indication of the impracticality of such a system. 

One of the motivating aims of Ward's work [177] was to develop a theory which can 

be applied to any program wri t ten using any methods. This is so that the theory 

can be applied to the development of practical systems for software maintenance 

as well as for the development of programs f rom specifications. Thus, i f a system 

could be constructed based on these transformations, i t would have both the 

formal foundations and the scope of application of the kind of system that has 

been identified as being useful. 
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A.15 Other Work on Program Transformations 

The above survey of transformation systems is certainly not exhaustive. Other 

systems include A L I C E [59] which aimed to develop a complete programming en­

vironment, using HOPE [51], for a highly parallel graph reduction machine; $ N I X 

22] which is an automatic programming system for wri t ing programs which inter­

act w i t h external devices through temporally-ordered streams of values; REFINE 

112] which uses transformations for program analysis and testing; KIDS [6] which 

uses transformations to express machine-independent optimisations in a compiler 

for a purely functional parallel language; and Fradet and Le Metayer's [77] work 

which uses transformations in the compilation of functional languages. Both Lu 

123], and Yang and Choo [195] use transformation methods in the compilation 

of parallel languages. Work which is of more relevance to software maintenance 

includes that carried out by Arango et al [5], Keller [107] and Overstreet et al 

147 . 



Appendix B 

A Syntax Table for WSL and 

A4STAWSL 

The following table summarises the syntax of the LISP form of M.STAWSL. In the 

table are the following entries: 

N u m b e r — This is the type number that is passed to the pretty-printer as a 

more efficient alternative to passing the actual type of the object. (Its use 

is described in Chapter 8.) 

N a m e — This is the name of the i tem. 

Ge n e r i c T y p e — This is the class of program i tem to which the named item 

belongs. For example. Skip is a type of Statement and a Number is a type of 

Expression. 

Lead ing Token — This is i f and only i f the type of the i tem is the first part of 

the printed fo rm, otherwise i t is "No". For example, as @When statement 

begins w i t h the word "@When", but an assignment does not begin wi th the 

word Assignment (or any other word). 

M i n i m u m Size — This is the smallest number of components that the type can 

have. Examples are an assignment which must have at least two (in fact only 
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two) components and a For loop which must have at least five components, 

whereas a list of variables can contain any number of variables. 

Component T y p e s — This gives the types of components of the given type (if 

there are any). For example, the components of an assignment are a variable 

and and expression. I f there is an unlimited number of components for a 

given i tem, indicated by this entry finishing w i t h "...", then any additional 

components have the same type as the last component. For example, a 

While statement must have a condition as its first argument followed by any 

number of statements. 

The table also includes information about the generic types Statement, Expression 

and so on, as well as the most generic type, Thing. These are not part of W S L 

itself but are present i n the table in order to simplify the system's implementation. 

Num Name Generic Leading Min Component 
Type Token Size Types 

1 Thing No 0 
2 A J j i s t Thing No 0 Thing ... 
3 Symbol Thing No 0 — 
4 Name Thing No 0 — 
5 Statement Thing Yes 0 — 
6 Expression Thing Yes 0 Expression ... 
7 Condition Thing Yes 0 Condition ... 
8 Assignment Thing No 2 Assd-Var Expression 
9 Guarded Thing No 2 Condition Statement ... 

10 Action Thing No 2 Name Statement ... 
11 Definition Thing Yes 0 Name Variables Variables Statement ... 
12 $Statement$ Statement Yes 0 — 
13 $Expn$ Expression Yes 0 — 
14 $Var$ Expression Yes 0 — 
15 $Condition$ Condition Yes 0 — 
16 $Name$ Name No 0 — 
17 Statements A-List No 1 Statement ... 
18 Expressions A-List No 0 Expression ... 
19 Variables A-List No 0 Variable ... 
20 Assd_Vars A-List No 0 Assd-Var ... 
21 Assignments A-List No 1 Assignment ... 
22 Guardeds A-List No 1 Guarded ... 
23 Names A-List No 1 Name ... 
24 ! L Expression Yes 1 A-List 
25 Nmnber Expression No 0 — 
26 String Expression No 0 — 
27 Variable Expression No 0 — 
28 Assd-Var Variable No 0 — 
29 Aref Variable Yes 2 Variable Expression 
30 Abort Statement Yes 0 — 
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Nvaa Name Generic Leading Min Component 
Type Token Size Types 

31 Actions Statement Yes 2 Names Action ... 
32 Array Statement Yes 2 Assd_Var Expression 
33 Assert Statement Yes 1 Condition 
34 Assign Statement Yes 1 Assignment ... 
35 CaU Statement Yes Name Nimiber 
36 Comment Statement Yes 1 String 
37 Cond Statement Yes 1 Guarded ... 
38 D J f Statement Yes 1 Guarded ... 
39 DJDo Statement Yes 1 Guarded ... 
40 Exi t Statement Yes 1 Niunber 
41 Loop Statement Yes 1 Statement ... 
42 For Statement Yes 5 Assd-Var Expression Expression Expres­

sion Statement ... 
43 !Xp Statement Yes 2 Name Expressions 
44 !P Statement Yes 3 Name Expressions Assd_Vars 
45 Proc .CaU Statement Yes 3 Name Expressions Variables 
46 Skip Statement Yes 0 — 
47 Var Statement Yes 2 Assignments Statement ... 
48 Where Statement Yes 2 Statements Definition ... 
49 While Statement Yes 2 Condition Statement ... 
50 Proc Definition Yes 4 Name Variables Variables Statement ... 
51 Punct Definition Yes 3 Name Variables Expression 
52 B_F\mct Definition Yes 3 Name Variables Condition 
53 + Expression Yes 2 Expression ... 
54 - Expression Yes 2 Expression 
55 * Expression Yes 2 Expression ... 
56 / Expression Yes 2 Expression 
57 ** Expression Yes 2 Expression 
58 Min Expression Yes 2 Expression ... 
59 Max Expression Yes 2 Expression ... 
60 Div Expression Yes 2 Expression 
61 Mod Expression Yes 2 Expression 
62 H Expression Yes 3 Condition Expression 
63 Pimct.Call Expression Yes 2 Name Expressions 
64 ! F Expression Yes 2 Name Expressions 
65 Gen-Expr Expression Yes 3 Assignments Statements Expression 
66 Int Expression Yes 1 Expression 
67 Prac Expression Yes 1 Expression 
68 Abs Expression Yes 1 Expression 
69 Sgn Expression Yes 1 Expression 
70 True Condition No 0 — 
71 Palse Condition No 0 — 
72 Else Condition Yes 0 — 
73 = Condition Yes 2 Expression 
74 <> Condition Yes 2 Expression 
75 < Condition Yes 2 Expression 
76 > Condition Yes 2 Expression 
77 <= Condition Yes 2 Expression 
78 >= Condition Yes 2 Expression 
79 == Condition Yes 2 Expression 
80 Even? Condition Yes 1 Expression 
81 Odd? Condition Yes 1 Expression 
82 True? Condition Yes 1 Expression 
83 Palse? Condition Yes 1 Expression 
84 And Condition Yes 1 Condition ... 
85 Or Condition Yes 1 Condition ... 
86 Not Condition Yes 1 Condition 
87 B_Punct.Call Condition Yes 2 Name Expressions 
88 !C Condition Yes 2 Name Expressions 
89 Gen_Cond Condition Yes 3 Assignments Statements Condition 
90 Empty Expression Yes 0 — 
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Num Name Generic Leading Min Component 
Type Token Size Types 

91 Cons Expression Yes 2 Expression 
92 Append Expression Yes 2 Expression 
93 Intersection Expression Yes 2 Expression ... 
94 Union Expression Yes 2 Expression ... 
95 SetJJiff Expression Yes 2 Expression 
96 List Expression Yes 1 Expression ... 
97 Hd Expression Yes 1 Expression 
98 T l Expression Yes 1 Expression 
99 Length Expression Yes 1 Expression 

100 Reverse Expression Yes 1 Expression 
101 Empty? Condition Yes 1 Expression 
102 NonJEmpty? Condition Yes 1 Expression 
103 Member? Condition Yes 2 Expression 
104 Some_Member? Condition Yes 2 Expression 
105 Any_Member? Condition Yes 2 Expression 
106 Subset? Condition Yes 2 Expression 
107 Same? Condition Yes 2 Expression 
108 Push Statement Yes 2 Expression Assd.Var 
109 Pop Expression Yes 1 Assd-Var 
110 [-S+-] Expression Yes 2 Expression ... 
111 Assn_Spec Statement Yes 2 Assd-Vars Condition 
112 Old Variable Yes 1 Variable 
113 %N Expression Yes 0 — 
114 %Z Expression Yes 0 — 
115 %Q Expression Yes 0 
116 %R Expression Yes 0 — 
117 Map Expression Yes 4 Name Name Variable Expression 
118 Reduce Expression Yes 4 Name Name Variable Expression 
119 Set Expression Yes 2 Expression Condition 
120 ForJ^U Condition Yes 2 Variable Condition 
121 Exists Condition Yes 2 Variables Condition 
122 @Up Statement Yes 0 — 
123 © D o w n Statement Yes 0 — 
124 @Left Statement Yes 0 — 
125 ©Right Statement Yes 0 — 
126 @ToJjast Statement Yes 0 — 
127 @Down_Last Statement Yes 0 — 
128 @To Statement Yes 1 Expression 
129 © G o t o Statement Yes 1 Expression 
130 ©FoUow Statement Yes 0 — 
131 ©Return Statement Yes 0 — 
132 @++Span Statement Yes 0 — 
133 © - S p a n Statement Yes 0 — 
134 © S e t . S p a n Statement Yes 1 Expression 
135 @AU.Span Statement Yes 0 — 
136 ©Span-Flagged Statement Yes 0 — 
137 ©Del Statement Yes 0 — 
138 ©Del_Back Statement Yes 0 — 
139 ©Del_Rest Statement Yes 0 — 
140 ©UndelJVfter Statement Yes 0 — 
141 @Undel.Before Statement Yes 0 — 
142 ©Ins-After Statement Yes 1 Expression 
143 ©Ins-Before Statement Yes 1 Expression 
144 ©Change-To Statement Yes 1 Expression 
145 © W h e n Statement Yes 2 Number Guarded ... 
146 ©When-Terminal Statement Yes 0 Statement ... 
147 ©When-TerminaLO Statement Yes 0 Statement ... 
148 © E x i t - W h e n Statement Yes 0 — 
149 ©No-Deeper Statement Yes 0 — 
150 ©Trans Statement Yes 1 Name Expression ... 
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Num Name Generic Leading Min Component 
Type Token Size Types 

151 @Pass Statement Yes 0 — 
152 ©Fail Statement Yes 0 — 
153 ©Mark Statement Yes 0 — 
154 ©Undo Statement Yes 0 — 
155 ©Repos i t ion Statement Yes 0 — 
156 ©Drop Statement Yes 0 — 
157 ©Wrong Statement Yes 0 String ... 
158 ;.up?.] Condition Yes 0 — 
159 JDown?.] Condition Yes 0 — 
160 J^eft?.] Condition Yes 0 — 
161 JUght? . ] Condition Yes 0 — 
162 .With .Else? . ] Condition Yes 0 — 
163 .Size.] Expression Yes 1 Expression 
164 JBody.] Expression Yes 1 Expression 
165 .Comps.] Expression Yes 1 Expression 
166 .Contents.] Expression Yes 1 Expression 
167 _A.U.Contents.] Expression Yes 1 Expression 
168 .Variables.] Expression Yes 1 Expression 
169 .Used.] Expression Yes 1 Expression 
170 -Assigned.] Expression Yes 1 Expression 
171 .Used.Only.] Expression Yes 1 Expression 
172 _A.ssd.Only.] Expression Yes 1 Expression 
173 _Assd.ToJSeH.] Expression Yes 1 Expression 
174 .Statements.] Expression Yes 1 Expression 
175 .CaUs.] Expression Yes 1 Expression 
176 .Total.Size.] Expression Yes 1 Expression 
177 JDepth.] Expression Yes 2 Expression 
178 -TerminaL Value.] Expression Yes 2 Expression 
179 -Arguments.] Expression Yes 2 Expression ... 
180 . O c c ] Expression Yes 2 Expression ... 
181 JDiff.] Expression Yes 2 Expression ... 
182 Jleplace.] Expression Yes 3 Expression 
183 J l p l c A l L ] Expression Yes 2 Expression 
184 Jsolate.] Expression Yes 3 Expression 
185 J^umber?.] Condition Yes 1 Expression 
186 .Variable?.] Condition Yes 1 Expression 
187 .Syntax?.] Condition Yes Name Expression 
188 .S .Type? . ] Condition Yes 1 Symbol ... 
189 . G . T y p e ? . ] Condition Yes 1 Symbol. . . 
190 -P-Type?. ] Condition Yes 1 Symbol. . . 
191 J'rimitive?.] Condition Yes 1 Expression 
192 Jleducible?.] Condition Yes 1 Expression 
193 J»roper?.] Condition Yes 1 Expression 
194 Jmproper?.] Condition Yes 1 Expression 
195 Jlegular?.] Condition Yes 1 Expression 
196 Jlegular.System?.] Condition Yes 1 Expression 
197 JDiramiy?.] Condition Yes 1 Expression 
198 .Calls .Terminal?.] Condition Yes 1 Expression 
199 .Terminal?.] Condition Yes 2 Expression 
200 [.Trans?.] Condition Yes 1 Name 
201 Pattern Expression Yes 0 Expression ... 
202 Pattern Yes 0 — 
203 Pattern Yes 0 — 
204 ~?*~ Pattern Yes 0 — 
205 ~>?~ Pattern Yes 1 Symbol 
206 ~>*~ Pattern Yes 1 Symbol 
207 ~>?*~ Pattern Yes 1 Symbol 
208 ~<?~ Pattern Yes 1 Symbol 
209 ^ < * ~ Pattern Yes 1 Symbol 
210 Pattern Yes 1 Pattern 
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Num Name Generic Leading Min Component 
Type Token Size Types 

211 ~ < S c ~ Pattern Yes 1 Pattern 
212 ~ 0 r ~ Pattern Yes 2 Pattern ... 
213 -Put.] Expression Yes 3 Symbol Expression Expression 
214 -Get-] Expression Yes 2 Symbol Expression 
215 -Val-] Expression Yes 2 Symbol Expression 
216 -Check?-] Condition Yes 2 Symbol Pattern 
217 -Match-] Expression Yes 3 Symbol Pattern Expression 
218 -Fill-En-] Expression Yes 3 Symbol Pattern Expression 
219 -FiUJb-gs-] Expression Yes 3 Symbol Pattern Expression 
220 -And-] Expression Yes 2 Expression ... 
221 [-Or-] Expression Yes 2 Expression ... 
222 -Not-] Expression Yes 1 Expression 
223 - ->T?- ] Condition Yes 2 Expression 
224 - - > F ? . ] Condition Yes 2 Expression 
225 -Simphfy-] Expression Yes 1 Expression 
226 -Simplex?-] Condition Yes 1 Expression 
227 -Increment-] Expression Yes 2 Expression 
228 -Decrement.] Expression Yes 1 Expression 



Appendix C 

A4STAWSL in Detail 

C . l Introduct ion 

This appendix gives the specific details of A^r^lWSL. 

C . 2 Predefined Variables 

C.2 .1 %Program% 

This variable holds the whole program that is currently being transformed. The 

program is stored in a particular, efficient, way (which is described in Chapter 

8). The variable should, therefore, not be used except as a parameter to any of 

the statements and functions in this chapter that require a piece of WSL as an 

argument. For example, one could write ([_TotaLSize_] %Program%) to determine 

the number of nodes in the program tree, but not (Hd %Program%) to obtain the 

first node. 

264 
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C.2.2 %l tem% 

This variable holds the currently selected syntactic program item. Like the vari­

able %Program% it is should only be used as a parameter to any of the A^£:r.4WSL 

statements and functions that require a piece of WSL as an argument. 

C.2.3 %Posn% 

This variable holds the position, relative to the root node, of the currently selected 

program item as described in Chapter 6. 

C.2.4 %Length% 

This variable holds the number of components of the current item's parent node. 

C.2.5 %Data% 

This variable holds any input to the transformation that was provided by the user. 

C . 3 Statements for Movement in the Program 

Tree 

C.3 .1 OUp 

This A ^ T ^ W S L statement moves up through the program structure. 
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C.3.2 ODown 

This METAWSL statement moves down through the program structure to the first 

component of the current item. 

C.3.3 @Down_Last 

This A^^T^WSL statement moves down through the program structure to the last 

component of the current item. 

C.3.4 ©Left 

This A ^ T ^ W S L statement moves left through the program structure. 

C.3.5 ©Right 

This A ^ T ^ W S L statement moves right through the program structure. 

C.3.6 @To_Last 

This METAWSL statement moves to the last item at the current level in the 

program structure. 

C.3.7 @To 

This MSTAWSL statement moves to the nth component at the current level in 

the program, where n is the statement's argument, i.e. the nth component of the 

parent node of the current item. 
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C.3.8 ©Goto 

This METAWSL statement moves to an arbitrary position in the program tree. 

This function is rarely be used in coding transformations, its main use being when 

the transformation has moved to some distant point in the tree and needs to return 

to the original position quickly. In the example below, the original position could 

be stored in a variable and jumped to with OGoto. 

(Var ((P %Posn%)) 

(Loop 
(Cond (([_Left?_]) (OLeft)) 

(([-OUp.]) (@Up)) 
((Else) (Exit 1))) 

' ) 
(QGoto P)). 

C.3.9 ©Follow a n d ©Return 

It is frequently necessary, when a procedure call or function call is the currently 

selected item, to move to the corresponding definition. The 0Follow A^r^tWSL 

statement moves to the definition of the currently selected Proc_Call, FunctXall 

or B_Funct_Call. For example, with the program 

((Where (.. .(ProcXall P () ()) . . . ) 
( P r o c P Q ( ) • • • ) ) ) 

and the ProcXall selected, executing the statement ©Follow would move to move 

to the definition of P. 

When a call is followed, the global variable % Followed % is updated. This variable 

holds a list of the names of the definitions that are currently being followed with 

0Follow statements. Since METAWSL programs can access the value of this vari­

able, it allows transformations to check whether a call has already been followed. 

Thus transformations can be written which prevent the system getting trapped 
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in an infinite loop while checking recursive calls. 

I t is possible to return to the place from which the 0Follow was executed by means 

of the @Return statement. When a ©Return is executed, the name which had been 

added to the variable %Followed% is removed. 

C . 4 Functions for Testing for Val id Movements 

c .4 .1 [_up?_; 

This A ^ Z 4 W S L returns true if and only if it is valid to move up through the 

program structure. 

C.4.2 [_Down?_] 

This A ^ T ^ W S L returns true if and only if it is valid to move down through the 

program structure to the first component of the current item. 

C.4.3 [_Left?_ 

This A ^ r ^ W S L returns true if and only if it is valid to move left through the 

program structure. 

C.4.4 [_Right?_] 

This A ^ r ^ W S L returns true if and only if it is valid to move right through the 

program structure. 
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C . 5 Statements and Variables Relat ing to 
Spans 

C.5 .1 (9lnc_5pan 

This MSTAWSL statement increases the number of items in the current span by 

one. 

C.5.2 (9Dec_Span 

This MSTAWSL statement decreases the number of items in the current span by 

one. 

C.5.3 @Set_Span 

This MSTAWSL statement sets the span of items in the current sequence to include 

the number of items given by the statement's argument. 

C.5.4 ©AILSpan 

This A ^ r ^ W S L statement increases the span of items in the current sequence so 

as to extend as far to the right as possible. Thus i t will i t include all the rest of 

the items in current structure and at the current level. 

C.5.5 %Span% 

When a sequence of items has been selected as a span, this variable holds the 

number of items in that span. 
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C.5.6 %ltems% 

When a sequence of items has been selected as a span, this variable holds a list 

of those items in the span. 

C . 6 E d i t i n g Statements 

C.6 .1 ODel 

This MSTAWSL statement deletes the item at the current position. The last 

deleted object of is stored so that it can be undeleted later at a different point in 

the program using one of the undelete MSTAWSL statements. 

C.6.2 ©DeLBack 

This MSTAWSL statement deletes the item at the current position and moves 

back to the previous item if there was one. Thus the current position always 

moves to the left (unless that is not possible, in which case it either stays at the 

same point or moves up) unlike the case with the ©Delete statement for which the 

current position always stays the same (unless that is not possible in which case 

it moves either to the left or up). 

The last deleted object is stored so that it can be undeleted later at a different 

point in the program with one of the undelete MSTAWSL statements. 

C.6.3 ©DeLRest 

This A ^ r ^ W S L statement deletes all the items in the current branch after (but 

not including) the item at the current position. 
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C.6.4 ©UnDeLBefore a n d OUnDeLAfter 

These A^T>tWSL statements insert into the program tree a copy of the last thing 

which was deleted with a A ^ X A W S L deletion statement. 

C.6.5 @lns_Before a n d @lns_After 

These A^fr^lWSL statements insert some code into the program tree. The argu­

ment can either be a single item or a Hst of several items. 

C.6.6 @Change_To 

This MCTJCNSL statement changes the current item in the program by replacing 

it with a new item. The argument to this statement must be a single program 

item, which would probably be created using the [_FilLln_] function. 

C . 7 Statements for Repeat ing an Operation at 

Different Nodes 

C.7 .1 OWhen 

This METASNSL statement performs some actions at each item, within a program 

item, which meets any of a set of given criteria. 

The statement takes a numeric argument, followed by a number of guarded clauses. 

The current item is searched to find each place at which a test at the start of one 

of the guards is true, and the corresponding set of statements is executed at that 

point. If the numeric argument is non-zero then, after the statements have been 

executed, the new current item is in turn searched for more places where one of 
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the conditions is true. If the numeric argument is zero, then the other items on 
the same level (and their components) are considered, but not items inside the 
item which has just been acted upon. 

The following example changes all the Comment statements within a particular 

section of code into Skip statements. It is assumed that the variable S holds a 

WSL Skip statement. Note also that the [_S_Type?_] function (which is described 

later) tests the type of the selected item. Finally, Comment statements do not 

include other Comment statements, so a numeric option of zero is used. 

(QWhen 0 (([_S_Type?_] Comment) (@Change_To S))). 

The second example reverses the order of the first two components of all additions 

within the current item. It uses the @Del statement to delete the first component 

of the + , and this leaves the second component selected so that the @UnDel_After 

statement reinserts this expression. A numeric argument of one is used since an 

addition may contain other additions as components. 

(@When 1 ((And ([_S_Type?_] +) (>= ([_Size.] %ltem%) 2)) 
(ODown) 
(ODel) 
(@UnDelJ\fter) 

(QUp))) 

Within a @When statement it is possible to access two extra variables. These 

variables are: %Top% which hold the item from which execution of the ©When 

statement started; and %OfFset% which holds the offset of the current item relative 

to the position of the item from which execution of the @When statement started. 

It is also desirable to be able to leave prematurely a @When statement or to 

abandon looking inside a particular node. These are done by the statements 

@Exit_When and @No_Deeper which are described in more detail later. 
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C.7.2 (9When_Terminal 

This METAWSL statement performs a set of actions on each terminal statement^ 

of the current item within that item. 

Since calculating whether an item is terminal within some containing item involves 

walking down through the program tree, for OWhen queries which have this as 

their only test, writing an explicit @When using the context variables %Top% 

and %OfFset% would be very inefficient. Thus, there is a separate statement, 

@When_Terminal, specially designed for situations in which the only test is for 

terminal statements. 

Rather than taking guards as its arguments, the statement takes a sequence of 

statements to perform when a terminal statement is found. Also a terminal state­

ment will not include another terminal statement so this is effectively a @When 

with a numeric option of zero. 

C.7.3 @When_TerminaLO 

This METAWSL statement performs a set of actions on each terminal statement of 

the current item whose terminal value is zero within that item. It is very similar 

to the METAWSL statement above. 

C.7.4 (9Exit_When 

This METAWSL statement causes the immediate termination of a OWhen, QWhen-

-Terminal or (9When_TerminaL0 statement and a return to the position in the 

program from which the repetition statement began. An example of the use of 

this statement is given in the next section. 

statement is a terminal statement of some structure if it could be the last statement to 
be executed as part of that structure. 



Appendix C : METAWSL in Detail 274 

C.7.5 @No_Deeper 

This A4£TAWSL statement prevents a @When, @When_Terminal or @When_Term-

inaLO construct from looking any further down the current branch of the program 

tree. 

The following example fragment of MSTAWSL code sets the variable OK to 1 if 

there are more than two Call statements in the current program item, and to 0 

otherwise. It uses @No_Deeper to avoid searching in branches which do not contain 

Call statements and @Exit_When to quit when more than two Call statements have 

been found. 

(Assign (OK 0)) 
(Var ((Counter 0)) 

(OWhen 0 ((Not (Member (IL Call) ([.Statements.] %ltem%))) 
(@No.Deeper)) 

(([.S.Type?.] Call) 
(Assign (Counter {+ Counter 1))) 
(Cond ((> Counter 2) 

(Assign (OK 1)) 
(OExit.When)))))). 

C . 8 Other AASTAWSL Statements 

C.8 .1 ©Pass a n d @Fail 

These A ^ r ^ W S L statements set the applicabihty condition to true of false, re­

spectively. The following example is a simple applicability condition which illus­

trates the use of these statements. 

(Cond ((And ([^.Type?.] +) (>= ([^ize.] %ltem%) 2)) 
(@Pass)) 

((Else) 
(@Fail))) 
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C.8.2 ©Wrong 

This METAWSL statement displays an error message caused because a trans­

formation has aborted during the program modification stage (without changing 

anything if it has been implemented correctly). The error could have been due, for 

example, to incorrect data that has been provided by the user and which could 

not, therefore, have been tested earlier. For example, a transformation might 

include the following statement: 

(Cond (([-Syntax?-] %Data% Statement) 

Perform the transformation 

' ) 
((Else) 

(OWrong "The input did not have the syntax of a statement."))). 

C.8.3 ©Mark 

A .transformation may attempt to make some changes, only to find that they do 

not work, or are not suitable, and goes back to an earlier version of the program 

so as to try another course of action. The @Mark statement records the version 

of the program to which the transformation may have to revert with one of the 

following statements. An example of the use of this statement is given later. 

C.8.4 ©Reposition 

This METAWSL statement moves back to the position in the program, but not 

the version of the program, that was current when the last OMark was executed. 

There is no checking that a @Mark has actually been executed — this is left to 

the implementor of the transformations. 
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C.8.5 OUndo 

This is the MSTAWSL statement to undo any edits that have been made to a 

program since the last OMark was executed. There is no checking that a OMark has 

actually been executed — this is left to the implementor of the transformations. 

An example of the use of this statement is given in the next section. 

C.8.6 ODrop 

This MSTAWSL statement removes a previous version of a program from the Ust of 

versions created with ©Mark. Thus, if two OMark statements have been executed 

and the transformation needs to revert to the state of the program at the first 

one, then before it executes an @Undo it must execute a ODrop. As before, there 

is no error checking that a @Mark has actually been executed — this is left to the 

implementor of the transformations. 

In the following example, the transformation makes some changes to a program 

repeatedly, until the changes no longer cause the program to reduce in size. At 

that point, the program reverts to the last version after which it had reduced in 

size. The ©Drop statement ensures that unneeded program versions are discarded. 

(Loop (Var ((S ([.Total^ize.] %Program%))) 
(QMark) 

Perform some changes to the program 

(Cond ((< ([.Total.Size.] %Program%) S) 
(@Drop)) 

((Else) 
(OUndo) 
(Exit 1))))) 
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C.9 Pattern Matching and Template Filling 

C.9.1 [_Check?_] 

This A ^ T ^ W S L condition takes two arguments, a generic type (such as Statement) 

and a pattern, and returns true if and only if the current item is of the correct 

type and also matches the given pattern. If any tokens are used, then their values 

cannot be determined later since this is a Boolean function and does not return 

an association table. 

For example, in METAWSL a transformation might be written as: 

(Cond (([_Check?_] Statement (Assign ( ( ~ ? ~ ) ( ~ ? - ) ) ) ) 
"Do some action") 

((Else) 
"Do some other action")). 

C.9.2 [_Match_ 

This MSTAWSL function takes three arguments, a type (such as Statement) a 

pattern and an association table (to which to add the result of the match), and 

returns the result of pattern matching the current item with the given pattern. 

If the current item is of the incorrect type, then an empty table is returned. The 

matches are added to the association table which is given as the function's third 

argument. An example is given in Section C.9.3. 

C.9.3 [_FilLln_ 

This MSTAWSL function takes three arguments, a type (such as Statement) a 

template and an association table (from which to get the values of any tokens), 

and returns the result of filling a template by replacing tokens with values taken 

from the association table. For example, a transformation for exchanging the 
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arms of a Cond statement could be written in AdSTAWSL as: 

(Assign (Table ([_Match_] Statement 
(Cond ( ( ~ > ? ~ B) ( ~ > * ~ SI ) ) 

((Else) ( ~ > * ~ S2))) 
Empty))) 

(@Change_To ([_FillJn_] Statement 
(Cond ((Not ( ~ < ? - B)) ( ~ < * ~ S2)) 

((Else) ( ~ < * ~ SI))) 
Table)). 

C.9.4 [_FillJ\rgs_ 

This A ^ T ^ W S L function is similar to the previous one, except that it returns just 

the arguments of the template in which tokens have been replaced by values taken 

from another table. This function could, for example, produce a list of statements 

from an item of type Statements. 

C.IO Functions for Association Tables 

C.10.1 [_Put_ 

This A ^ T ^ W S L function takes as its arguments a token name, a value and an 

association table, and returns the table with the extra value added under the given 

token name. For example, a transformation might include the following code: 

(Assign ( T l ([-Put_] S %ltem% Empty))) 

which would put the current item into an empty table under the token label S. 

The resulting table would be stored in a variable called T l . 
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C.10.2 [_Get_] 

This MSTAWSL function takes as its arguments a token name and an association 

table, and returns the value of the given token, as found in the table. 

C.10.3 [_VaL] 

This MSTAWSL function takes as its arguments a token name and an association 

table, and returns the "contents" (i.e. the name) of the item stored under the 

given token, as found in the table. 

C . l l Functions for Examining the Program be­

ing Transformed 

C.11.1 [_With_Else?_] 

This MSTAWSL function returns true if and only if the given item is a Cond 

statement with an Else clause. Although this information could be determined by 

a pattern match, it is information that is often required and this function provides 

it more efficiently. 

C . l l . 2 [_Size_ 

This MSTAWSL function returns the size, i.e. the number of components, of the 

given item. 
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C.11.3 [_Comps_] 

This A^£r^WSL function returns a list of the components of the given item. For 

example, given the statement 

(Assign (X (+ A B)) (Y 0)) 

the function would return the list of two assignments: 

((X (+ A B)) (Y 0)). 

C.11.4 [.Contents.] 

This METAWSL function returns the name of a leaf item in a program, for ex­

ample, the name of a variable. 

C.11.5 [_AILContents_ 

This is the MSTAWSL function which takes as its argument a W S L item that 

represents a list of leaf items and returns a list of atoms representing the names 

of the "leaf items". For example, given the first component of an action system, 

the list of possible starting actions, it would return a list of atoms corresponding 

to the names of the possible starting actions. 

C.11.6 [.Statements.] 

This MSTAWSL function returns a Hst of all the types of statement which are 

used within the given piece of code. For example, given the item: 
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(Cond ( (= A B) (Assign (X 1))) 
((Else) (Assign (Y 2)) (Skip))) 

the function would return the list (Cond Assign Skip). The order of the fist is 

unspecified. 

C.11.7 [_Calls_] 

This METAWSL function returns a list of all the actions which are called from 

within a given piece of code, together with the number of times each action is 

called. For example, given the item: 

(Cond ( (= A B) (Call P 0)) 
( (= C D) (Call Q 0)) 
((Else) (Call P 0))) 

the function would return the list ((P 2) (Q 1)). The order of the list is unspecified. 

C . l l . 8 [_TotaLSize_ 

This METAWSL function returns the total number of nodes and keywords within 

a given piece of code. 

C . l l . 9 [_Body_] 

This MSTAWSL function returns the statements which form part of the given 

item. The result is a W S L item of type Statements. If the item contains no item 

of type of type Statement then the function returns the empty fist. The function 

does not look inside components to find statements, so the [_Body_] of a Cond 

statement would be the empty fist. 
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For example, given the statement. 

(For J 0 10 2 (Assign (X (+ X J))) (Skip) (Assign (Y (* Y X)))) 

the function would return the W S L Statements item, 

((Assign (X (+ X J))) (Skip) (Assign (Y (* Y X)))). 

C.12 Functions Relating to Variable Usage 

C.12.1 [.Variables.] 

This MSTAWSL function returns a list of all the variables in the current item. 

C.12.2 [.Used.] 

This A ^ T ^ W S L function returns a list of all the variables "used" (i.e. referred to, 

but not necessarily assigned to) in the current item. 

C.12.3 [.Assigned. 

This A^r^tWSL function returns a Hst of all the variables assigned to in the 

current item. 

C.12.4 [.Used.Only.] 

This AiSTAWSL function returns a list of all the variables "used", but definitely 

not assigned to, in the current item. 
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C.12.5 [_Assd_Only_] 

This MSTAWSL function returns a list of all the variables assigned to, but not 

used otherwise, in the current item. 

C.12.6 [_Assd_To_Self_ 

This METAWSL function returns a list of all the variables in the current item that 

are only "used" in assignments to themselves. 

Given the follow W S L statement, 

(Cond ((= A B) (Assign (X 1) (A 1))) 
((Else) (Assign (Y (+ Y 1))))) 

the functions above would return the following results: 

[-Variables.] would return (A B X Y ) , 

[_Used_] would return (A B Y ) , 

[.Assigned-] would return (A X Y ) , 

[_Used_Only_] would return (B) , 

[_Assd_Only_] would return (X) , 

[_Assd_To_Self_] would return (X Y ) . 

C.13 Functions for Testing Types and Syntax 

C.13.1 [_Number?_ 

This M£TAWSL function returns true if and only if the given W S L item represents 

a number. 
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C.13.2 [.Variable?. 

This MSTAWSL function returns true if and only if the given W S L item represents 

a variable. 

C.13.3 [.Syntax?.] 

This MSTAWSL function takes two arguments and returns true if and only if its 

first argument has the syntax indicated by its second argument. The primary use 

of this function would be to test the syntax of input provide by the user (and held 

in the variable %Data%). The MSTAWSL code: 

([.Syntax?.] %Data% Statement) 

would return true if and only if the user had supplied a syntactically correct 

statement. 

C.13.4 [.S.Type?: 

This A ^ Z 4 W S L function takes a list of types and returns true if and only if the 

specific type of the current item matches any of the indicated types. 

C.13.5 [.G.Type?. 

This MSTAWSL function takes a list of types and returns true if and returns true 

if and only if the generic type of the current item matches any of the indicated 

types. 
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C.13.6 [_P_Type?_ 

This A^f r.4WSL function takes a list of types and returns true if and returns true 

if and only if the specific type of the parent of the current item matches any of 

the indicated types. 

C.13.7 = 

This M{£TASNSL function returns true if and only if its two arguments are identical 

or represent the same piece of W S L code. 

C.14 Functions Relating to Loops 

C.14.1 [.Primitive?.] 

This MSTASNSL function returns true if and only if the given item is a "primitive" 

statement. 

Here a primitive statement is defined to be one which cannot be terminated from 

within by an Exit statement. Thus a primitive statement is any statement except 

one of the following: Cond, DJf or Loop. 

C.14.2 [_Depth_] 

This A ^ T ^ W S L function returns the "depth" of an item within a structure. It 

takes as its arguments the top-level item and the relative position of the lower 

item. The relative position is of the same form as the variable %Posn% (see 

Chapter 6), but differs in that here the empty hst represents the given item (not 

the whole program) and positions are calculated relative to that. 
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The function returns the number of Loops within the given item, that enclose the 
item at the given relative position is inside. (If the item is itself inside a number 
of Loops then these are not counted.) 

C.14.3 [.Terminal.Value.] 

This MSTAWSL function returns the "terminal value" of a statement within a 

structure. It takes as its arguments the top-level item and the relative position of 

the lower item. 

The terminal value is defined as the number of Loops, outside the enclosing item, 

that the statement at the relative position would leave. In other words, it is the 

"exit value" of an Exit or Call statement (or zero for other statements) less the 

depth of the item. 

C.14.4 [.Terminal?. 

This MSTAWSL function returns the true if and only if the indicated statement 

is a terminal statement within a structure. It takes as its arguments the top-level 

item and the relative position of the lower item. 

A statement is terminal if it is in a terminal position or causes the termination of 

an Loop which is in a terminal position. 

C.14.5 [.Reducible?.] 

This A ^ r ^ W S L function returns true if and only if the given item is a "reducible". 

Here a statement S is defined to reducible if replacing any terminal statement of 

the form (Exit K) or (Call N K) , which has terminal value one, by (Exit K-1) or 

(Call N K-1), respectively, gives a terminal statement of S. 
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C.14.6 [_Proper?_] 

This MSTAWSL function returns true if and only if the given item is a "proper". 

Here a statement S is defined to be proper if every terminal statement of S has 

terminal value zero. In other words, control flow will never leave the statement 

by means of an exit out of an Loop. 

C.14.7 [_lmproper?_ 

This MSTAWSL function returns true if and only if the given item is a "improper". 

Here a statement S is defined to be improper if every terminal statement of S has 

terminal value greater than zero. In other words, control flow will always leave 

the statement by means of an exit out of an Loop. (A piece of code which is not 

"proper" is not necessarily "improper".) 

C.14.8 [_Dummy?_] 

This MSTAWSL function returns true if and only if the given item is a dummy 

loop. 

Here a statement S is defined to be a dummy loop if every terminal statement of 

S has terminal value greater than zero, and S is also reducible. 

C.15 Functions for Testing Action Systems 

C.15.1 [_Regular?_] 

This MSTAWSL function returns true if and only if the given item is a "regular". 
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Here a program item is defined as regular if every execution of that item leads to 
an action Call. The item need not be a statement, it could be a guard or an action, 
for example. A regular action system is not regular in this sense since its execution 
finishes normally; on termination of the action system, the next statement to be 
executed is the one which follows it. 

C.15.2 [.Regular_System?. 

This MSTAWSL function returns true if and only if the given item is a "regular" 

action system, i.e. one in which every action is regular. 

C.15.3 [.Calls.Terminal?.] 

This MSTASNSL function returns true if and only if all the Call statements in the 

the given item are in terminal positions. 

C.16 Functions for Symbolic Mathematics and 

Logic 

C.16.1 [.And.] 

This is the MSTASNSL function for symbolic logical conjunction. It takes as its 

arguments two or more pieces of W S L code which represent conditions, and returns 

a new piece of W S L which represents their conjunction, but in so doing it makes 

any simplifications as necessary. 
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C.16.2 [_0r_] 

This is the A ^ T . A W S L function for symbolic logical disjunction. It works in a 

similar way to the function [_And_], taking two or more W S L conditions and 

returning a new condition. 

C.16.3 [_Not_ 

This is the MSTASNSL function for symbolic logical negation. It takes a single 

argument which is a piece of W S L code which represents a condition, and returns 

a new piece of W S L which represents its negation, but in so doing it makes any 

simplifications as necessary. 

C.16.4 [-->T?_ 

This MSTASNSL function takes as its arguments two pieces of W S L code which 

represent conditions. It then determines whether its first argument (an assertion) 

implies the logical truth of its second (a test), and it returns true of false. For 

example, ( = a 0) logically implies that ( < a 5) is true, whereas ( < > a 0) does not 

logically imply that ( < > a 1) is true. 

C.16.5 [-->F?_] 

This MSTJCNSL function takes as its arguments two pieces of W S L code which 

represent conditions. It then determines whether its first argument (an assertion) 

implies the logical falsehood of its second (a test), and it returns true of false. For 

example, (> a 1) logically impHes that (< a 0) is false, whereas (<> a 0) does not 

logically imply that ( < > a 1) is false. 
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C.16,6 [.Simplify.] 

This A^T>tWSL function returns a simplified version of the given expression or 

condition (and flags the expression or condition internally as having been simpli­

fied). 

C.16.7 [.Simplex?. 

This MSTAWSL function returns true if and only if the expression has been sim­

plified (as determined by the internal flag). 

C.16.8 [.Isolate. 

This function takes three arguments, which represent a variable, the left-hand-side 

of an expression and the right-hand-side of as expression. The function returns 

an expression which represents the result of isolating the given variable from the 

expression (Left = Right). For example, with the left expression as Y , the right 

expression as (+ X 1), then isolating X would return (- Y 1). 

C.17 Other Sundry MSTAWS'L Functions 

In addition to the MSTA^SL functions already described, there are some which 

do not fit into any particular category. These are described below. 

C.17.1 [.Replace. 

This is the MSTASNSL function which replaces all the occurrences of its first 

argument which appear in its second argument with its third argument. For 
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example, if the variables P, Q and R held the the W S L expressions X, (* X (+ A 
B)) and Y respectively, then 

([_Replace_] P Q R) 

would return the W S L expression (* Y (+ A Y) ) . 

C.17.2 [_Rplc_AIL 

This A ^ T ^ A W S L function takes two arguments: a piece of W S L code and some 

replacements in the form of a Hst of pairs each consisting of an old value and a 

new value. It returns a piece of W S L in which the indicated replacements have 

been made. For example, if the variable P held the W S L expression (* X (+ A 

X)) and the variable R held the list of pairs ((X Y) (A B)), then the function 

([-Replace.] P R) 

would return the W S L expression (* Y (+ B Y)) . 

C.17.3 [_Arguments_] 

This is the MSTAWSL function which takes as its arguments the name of an 

operation and a W S L program item. It returns a list containing one element for 

each occurrence of the operation within the item. Each element in the list is a 

list of the arguments of that occurrence of the operation. For example, with the 

operation + and the program item 

(Assign (X (+ A B)) (Y (* C (+ D E)))) 

the function would return the list ((A B) (D E)). 
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C.17.4 [.Occ. 

This A ^ Z 4 W S L function returns the number of occurrences of its first argument 

within its second. For example, given the two arguments: A and the program 

item 

(Assign (X (+ A B)) (Y (* A (+ C D)))) 

the function would return 2. 

C.17.5 [.Diff.] 

This MSTAWSL function uses a unification algorithm to return a list of the differ­

ences between its two arguments, provided that the differences are just atomic, i.e. 

it returns the list of replacements that would need to be made (using the function 

[_RplcJ\IL]) in the first argument to give its second argument. These replacements 

would have to be consistent, and if there is no suitable replacement, the function 

returns the string "Fail". For example, if the variables E l and E2 held the W S L 

expressions (* (-|- A B) (- A B)) and (* (-f X Y ) (- X Y)) respectively, then the 

function 

([_DifF_] E l E2) 

would return the list ((A X) (B Y)) meaning that in the second argument A has 

been replaced by X, and B has been replaced by Y . However, 

([-DifF_] •{* (+ A B) (- A B)) •(* (+ X Y ) (- Y X))) 

would return the string "Fail" since there is no possible replacement that can be 

made. 
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C.17.6 [Jncrement_l 

This is the AiSTAWSL function which when given an item of the type Statements 

and a number, returns the sequence of statements incremented the given number 

of times. The definition of incrementing a sequence of statements is given in the 

papers by Ward [177] [174 . 

C.17.7 [_Decrement_ 

This is the METAWSL function which when given an item of the type Statements 

and a number, returns the sequence of statements decremented the given number 

of times. The definition of decrementing a sequence of statements is given in the 

papers by Ward [177] [174 . 

C.18 Calling other Transformations 

C.18.1 [_Trans?_ 

This A^^r^WSL function returns true if and only if the named transformation is 

applicable at the current point in the program. 

C.18.2 ©Trans 

This A^r^WSL statement performs a named transformation without testing the 

transformation's applicability. However, this statement can be combined with the 

previous function to ensure that only appHcable transformations are performed. 

For example, a transformation might include the following: 
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(Cond (([_Trans?_] DeleteJtem) (QTrans Delete.ltem))). 



Appendix D 

The Transformation for 

Collapsing an Action System 

The following METAWSL is the code for performing a "Collapse_Action_System" 

transformation. 

((Comment "Most of this transformation assumes that the action system in 
question is regular, so if it is not, regularise i t . " ) 

(Cond ((Not ([_Regular_System?_] %ltem%)) 
(©Trans Simplify_Non_RegularJ\ctionSystem))) 

(Cond 
(([_Trans?_] Remove_Action_System) 

(Comment " I f we can remove the action system by virtue of it only having 
one action, then we do that.") 

(QTrans Remove_Action_System)) 

((Else) 
(ODown) 
(Var 

((Start.Call %Comp. l%) 
(Name Empty) 
(Names Empty) 
(Temp_Num 0) 
(Best_Name Empty) 
(Best.Num 0) 

295 
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(Best.Posn 0) 
(Fill Empty) 
(Fixed.Fill Empty) 
(Value 0) 
(TXal ls Empty) 
(Calls Empty)) 

(@Up) 
(Loop (Comment " I f we have only one action then we can stop...") 

(Cond ( ( = ([_Size_] %ltem%) 2) (Exit 1))) 
(Comment "otherwise we try to do some simplification.") 
(OTrans Merge_Action.Calls) 
(Comment " I f we have only one action then we can stop...") 
(Cond ( ( = ([^ize_] %ltem%) 2) (Exit 1))) 
(Comment "otherwise we try to do some simplification.") 
(OTrans Simpiify_Action_System) 
(Comment " I f we have only one action then we can stop...") 
(Cond ( ( = ([_Size_] %ltem%) 2) (Exit 1))) 
(Comment "otherwise we do some simplification and then 

remove an action which will minimise the increase 
in program size.") 

(@Down) 
(Comment "First we build a list of the names of all the 

actions which it may be possible to remove - e.g. 
those which are not part of the list of possible 

entry actions.") 

(While ([-Right?_]) 
(©Right) 
(Assign (Names (Cons %Comp_l% Names)))) 

(Assign (T_Calis ([_Calls_] %ltem%))) 
(While (Non_Empty? TXal ls) 

(Cond ((Not ( = = (Hd (Hd T.Calls)) (IL Z))) 
(Assign (Calls (Cons (Hd (Hd T.Calls)) 

Calls))))) 
(Assign (TXal ls (Tl TXal ls ) ) ) ) 

(Cond ((Not (Subset? Calls Names)) 
(OUp) 
(Exit 1))) 

(Assign (Names (Set.DifF Names (List Start.Call)))) 
(Cond ((Empty? Names) 

(OUp) 
( E x i t l ) ) ) 

(Assign (Best_Name Empty) 
(Best_Num %Big_Num%)) 

(OTo 1) 
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(Comment "For each action we either remove it, because it is 
small and its body can be made into a procedure, or 
we determine whether it is the smallest action that 
we have so far come across.") 

(While ([-Right?_]) 
(©Right) 
(Cond ((And ( < ([_Total^ize_] %ltem%) 40) 

( = (Length ([_Calls_] %ltem%)) 1) 
([Xheck?.] Action (( * ) (Call ( ? ) ( ? )))) 
([_Trans?_] Substitute_And_Delete)) 

(Var ((P (- %C_Posn% 1))) 
(Cond (([_Trans?_] Automatically_Procedurise) 

(!XP Show ("p")) 
(@Trans Automatically_Procedurise))) 

(OTrans Substitute_And_Delete) 
(IXP Show ( " * " ) ) 
(ODown) 
(@To P)))) 

(Assign (Temp_Num (* ([_TotaLSize_] %ltem%) 
(Length ([_Calls_] %ltem%))))) 

(Cond ((And ( < Temp_Num Best_Num) 
(Member? %Comp_l% Names)) 

(Assign (Best_Name %Comp_l%) 
(Best_Posn %C_Posn%) 
(Best_Num Temp_Num))))) 

(Comment " I f we have only one action then we can stop...") 
(Cond ( ( = %Length% 2) (@Up) (Exit 1))) 

(Comment "We now move to the smallest action that we found 
and did not remove. Make its body into one or more 
procedures (where applicable) and then remove the 
action. This will reduce the number of actions in 
the program, but minimise the increase in size of 
the program.") 

(@To Best_Posn) 
(Cond ((Some.Member? Best.Name ([_Calls.] %ltem%)) 

(OTrans Recursion->Loop))) 
(While ([_Trans?_] Automatically.Procedurise) 

(IXP Show ("p")) 
(@Trans Automatically.Procedurise)) 

(Assign (Name %Comp_l%) 
(Fill (Body %ltem%))) 

(ODel) 
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(IXP Fresh-Line ()) 
(IXP Show ((- %Length% 1))) 
(OUp) 

(Comment "Next we do some general simplification of the action.") 
(©When 0 ((Not (Some.Member? Name ([_Calls_] %ltem%))) 

(@No_Deeper)) 
((And ([^_Type?.] Call) 

( = = %Comp_l% Name) 
([_Trans?_] Take_CalLOut_Of_Cond)) 

(QTrans Take.CalLOut.OfXond))) 
(OWhen 0 ((Not (Some_Member? Name ([_Calls_] %ltem%))) 

(ONo.Deeper)) 
((And ([_S_Type?_] Call) ( = = %Comp_l% Name)) 

(Assign (Value %Comp^%) 
(Fixed_Fill Fill)) 

(Assign (Fixed_Fill ([Jncrement_] Fixed_Fill Value))) 
(OIns.Before (Args Fixed_Fill)) 
(QDeLBack))) 

(Comment "Finally, we go back to try to remove another of 
the remaining actions.")) 

(Comment "Having removed all the actions that we possibly can, we 
should have only one (possibly recursive) action left, 
which we can deal with in the usual way - i.e. by removing 
the recursion and then removing the (now unnecessary) 
action system. Finally, we simplify any loops that we 
may have introduced") 

(@Down_Last) 
(Cond (([_Trans?_] Recursion->Loop) 

(OTrans Recursion->Loop))) 
(@Up) 
(Cond (([_Trans?_] Remove_Action_System) 

(OTrans Remove_Action_System) 
(QWhen 1 ((Not (Any_Member? (IL (Cond Skip)) 

([.Statements.] %ltem%))) 
(@No_Deeper)) 

((And ([.S_Type?_] Cond) 
([.Trans?_] Fully_Factor_Cond)) 

(@Trans Fully_Factor_Cond)) 
((And ([-S_Type?_] Skip) 

([_Trans?_] Delete_Skip_Simple_Version)) 
(@Trans Delete_Skip-Simple.Version))))))))) 
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