
Durham E-Theses

Software maintenance by program transformation in a

wide spectrum language

Bull, Tim

How to cite:

Bull, Tim (1994) Software maintenance by program transformation in a wide spectrum language,
Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/5494/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5494/
 http://etheses.dur.ac.uk/5494/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

T h e copyright of this thesis rests with the author.

No quotation from it should be pubhshed without

his prior written consent and information derived

from it should be acknowledged.

SOFTWARE MAINTENANCE
B Y PROGRAM

TRANSFORMATION
IN A W I D E S P E C T R U M

L A N G U A G E

Ph.D. Thesis

University of Durham

(School of Engineering and Computer Science)

Tim Bull

1994

2 7 JUN 1994

Abstract

This thesis addresses the software maintenance problem of extracting high-level

designs from code. The investigated solution is to use a mathematically-based

formal program transformation system. The resulting tool, the Maintainer's As

sistant, is based on Ward's [177] WSL (wide spectrum language) and method of

proving program equivalence.

The problems addressed include: how to reverse engineer from code alone (the

only reliable source of information about a program [158]), how to express pro

gram transformations within the system, what kinds of transformations should

be incorporated, how to make the tool simple to use, how to perform abstraction

and how to create a tool suitable for use with large programs.

Using the Maintainer's Assistant, the program code is automatically translated

into W S L and the transformations, although tested for valid applicability by the

system, are interactively applied by the user. Notable features include a mathem

atical simplifier, a large flexible transformation catalogue and, significantly, the

use of an extension of W S L , A ^ t . a W S L , for representing the transformations.

METAWSL expands WSL by incorporating a variety of extensions, including: pro

gram editing statements, pattern matching and template filUng functions, sym

bolic mathematics and logic functions, statements for moving within the program's

syntax tree and statements for repeating an operation at each node of the tree.

Using METAWSL, 80% of the 601 transformations can be expressed in less than

20 program statements.

The Maintainer's Assistant has been used on a wide variety of examples of up

to several thousand lines, including commercial software written in IBM 370 as

sembler. It has been possible to transform initially unstructured programs into a

hierarchy of procedures, facilitating subsequent design recovery.

These results show that program transformation is a viable method of renovating

old (370 assembler) code in a cost eifective way, and that METAWSL provides an

effective basis for clearly and concisely expressing the required transformations.

11

Acknowledgements

I wish to thank Prof. Keith Bennett for his invaluable advice and encouragement

as my supervisor.

I also wish to thank the other members of the ReForm project — Brendan Hodg

son, Nigel Scriven, Hongji Yang and Martin Ward — for their contributions.

This work was funded by IBM Hursley, the Department of Trade and Industry,

and the Science and Engineering Research Council. This work was carried out in

conjunction with Durham Software Engineering Ltd. (formally Centre for Software

Maintenance Ltd.).

This Ph.D. thesis has been produced using I^TgX.

I l l

"The true lover of knowledge naturally strives for truth, and is not

content with common opinion, but soars with undimmed and unwear

ied passion t i l l he grasps the essential nature of things." — Plato, The

RepubHc, 490A

Contents

1 Software Engineering 1

1.1 Introduction 1

1.2 Differences from Traditional Engineering 2

1.3 Tools and Techniques 3

1.4 The Software Life Cycle 7

1.5 Legacy Code 11

1.6 Summary 13

1.7 The Contributions of this Thesis 15

2 A Survey of Solutions to the Correctness and Mcdntenance Prob
lems 16

2.1 Introduction 16

2.2 Solutions to the Correctness Problem 16

2.3 Solutions to the Maintenance Problem 26

2.4 Can One Solution Solve Both Problems? 32

2.5 Summary and Conclusions 34

2.6 Topics Addressed in this Thesis 34

IV

Contents v

3 Program Transformation Systems 36

3.1 Introduction 36

3.2 Important Definitions 37

3.3 Purposes of Transformation Systems 39

3.4 Transformation Catalogues 40

3.5 Methods of Expressing Transformations 41

3.6 Automation Level 42

3.7 Language to Transform 43

3.8 Formality 44

3.9 Summary 53

3.10 In what ways have existing transformation systems been successful? 55

3.11 In what ways have existing transformation systems failed? 56

3.12 Why are transformation systems not more widely used? 57

3.13 What can be learned from existing transformation systems? . . . 59

3.14 Conclusions 59

4 The Area of Research 61

4.1 Introduction 61

4.2 A More Detailed Look at Ward's Work 62

4.3 The Advantages of A Practical System Based on Ward's Approach 76

4.4 A Method for Reverse Engineering using Transformation 77

4.5 An Outline of the Programme of Work and Problem Definition . . 88

4.6 Criteria for Success 91

4.7 Summary and Conclusions 93

Contents vi

5 Fundamental Design Decisions 94

5.1 Introduction 94

5.2 The ReForm Project 94

5.3 Storing WSL Programs 98

5.4 Interaction 100

5.5 Selecting the Point of Application of Transformations 100

5.6 Selecting Several Items 102

5.7 Selecting Transformations 102

5.8 Testing Transformation AppHcability 103

5.9 Coding the Transformations 104

5.10 Transformations which Require User Input 107

5.11 Storing the Transformations 108

5.12 Constructing the Transformations Catalogue 110

5.13 Further Facilities for a Usable Transformation System I l l

5.14 Other Components of a Working System 112

5.15 Summary and Conclusions 115

6 Afe r^WSL 117

6.1 Introduction 117

6.2 How Could A^r .4WSL be Formahsed? 117

6.3 A^r^lWSL as Transformation Knowledge 118

6.4 Criteria for Selecting MEJAW^L Constructs 119

6.5 A Survey of A^fT^WSL Constructs 120

6.6 Summary and Conclusions 132

Contents vn

7 The Transformations in the Maintainer's Assistant 133

7.1 Introduction 133

7.2 An Overview of the Transformation Catalogue 134

7.3 Elementary Transformations 135

7.4 Compound Transformations 145

7.5 Generic Transformations 152

7.6 High-Level Transformations 156

7.7 Analysis 161

7.8 Conclusion 164

8 Implementation of the Mciintainer's Assistant 166

8.1 Introduction 166

8.2 Approach to Building the Tool 166

8.3 The System Architecture 169

8.4 Contributions 178

8.5 Summary and Conclusions 187

9 Results 189

9.1 Introduction 189

9.2 Applying the Tool to Real Programs 190

9.3 Applying the Tool to Larger Programs 190

9.4 Case Study 197

9.5 I B M Hursley's Evaluation of the Maintainer's Assistant 199

9.6 An Assessment of Success 202

9.7 Conclusions 212

Contents viii

10 Conclusions 214

10.1 Introduction 214

10.2 Summary of the Thesis 214

10.3 Criteria for Success Revisited 220

10.4 The Final Analysis 226

10.5 Future Directions 226

A A Survey of Transformation Systems 229

A . l The SETL Project 230

A.2 RAPTS 231

A.3 The TAMPR System 233

A.4 The Restructurizer 235

A.5 Burstall and Darlington's Work 237

A.6 The ZAP System 239

A.7 The SAFE and T I Projects 240

A.8 GLITTER 243

A.9 The PSI and CHI Systems 244

A.IO The CIP Project 246

A. 11 DEDALUS 249

A. 12 Hildum and Cohen's Work 250

A.13 Kozaczynski's Work 252

A. 14 Ward's Work 254

A. 15 Other Work on Program Transformations 257

B A Syntax Table for W S L and XfZ4WSL 258

List of Figures ix

C MSTAV^SIJ in Detail 264

C.l Introduction 264

C.2 Predefined Variables 264

C.3 Statements for Movement in the Program Tree 265

C.4 Functions for Testing for VaHd Movements 268

C.5 Statements and Variables Relating to Spans 269

C.6 Editing Statements 270

C.7 Statements for Repeating an Operation at Different Nodes 271

C.8 Other Afer^WSL Statements 274

C.9 Pattern Matching and Template FilHng 277

C.IO Functions for Association Tables 278

C . l l Functions for Examining the Program being Transformed 279

C.12 Functions Relating to Variable Usage 282

C.13 Functions for Testing Types and Syntax 283

C.14 Functions Relating to Loops 285

C.15 Functions for Testing Action Systems 287

C.l6 Functions for SymboHc Mathematics and Logic 288

C.l7 Other Sundry A^£X4WSL Functions 290

C.18 Calling other Transformations 293

D The Transformation for Collapsing an Action System 295

E References 299

List of Figures

3.1 The Denotational Semantics of a Simple Language 52

3.2 A Summary of Transformation Systems 54

4.1 The Weakest Preconditions of WSL's Kernel Language 72

5.1 The Structure of the Maintainer's Assistant 96

5.2 Tree Form of a WSL Assign Statement 99

5.3 Part of the Transformation Catalogue Structure 109

6.1 Positions in a WSL Program Tree 121

6.2 The Pattern Matching Symbols 127

6.3 The Template Filling Symbols 128

7.1 The Number of Statements 162

7.2 The Number of Pattern Matches 162

7.3 The Number of Template Fills 163

7.4 The Number of Variable Queries 163

7.5 The Number of Loop or Action Queries 164

7.6 The Spread of MerAWSL Constructs 165

8.1 Top Down Development 167

List of Figures xi

8.2 Bottom Up Development 167

8.3 Middle Out Development 168

8.4 The Architecture of the Maintainer's Assistant 169

8.5 Basic Tree Examination Functions 171

8.6 Basic Tree Building Functions 172

8.7 Basic Database and Comment Functions 172

8.8 The Implementation of Unbounded Loops 174

8.9 Type Pairs 179

8.10 Queries and Identification Numbers 179

8.11 Comments 180

8.12 An Example WSL Program Node 181

8.13 Some Simplifications of Additions 184

8.14 A Program as Passed to the Interface — Version 1 186

8.15 A Program as Passed to the Interface — Version 2 186

8.16 A Program as Passed to the Interface — Version 3 187

9.1 The Effect of Transformation on Program Metrics 203

9.2 The Change in Size with Transformation 204

9.3 The General Change with Transformation 205

9.4 The Maintainer's Assistant's Interface 207

9.5 The Speed of the System 208

9.6 The Number of Errors 209

9.7 The Number of Transformations against Time 210

Chapter 1

Software Engineering

1.1 Introduction

Since the invention of the computer, hardware performance per unit cost has

increased by as much as 25% per year [142] while the cost of software has fallen

by only 7-9% per year [142]. The result is that software has become by far the most

expensive part of installing any computer system. In addition, software complexity

has led to severe underestimates of the resources required to complete any given

programming project. An early example of such a disaster was OS/360 [64];

although it did eventually work. This failure came to light in October 1968 at the

NATO-sponsored conference on the newly coined term Software Engineering

in Garmisch-Partenkirchen and caused the existence of a Software Crisis to be

first admitted. The symptoms of this crisis, from which most of the software

development industry has yet to escape, are that too much software is late, over

budget and does not perform as expected. It became clear that a new approach

was required to solve these problems; this approach is software engineering.

There have been numerous definitions of software engineering, for example:

Software engineering is the science and art of specifying, designing,

Chapter 1: Software Engineering

implementing and evolving — with economy, timeliness and elegance

— programs, documentation and operating procedures whereby com

puters can be made useful to man [130].

This is a good definition in that it stresses the art (i.e. creativity) required in

software engineering, all stages of the software life cycle (which will be defined

later), the economics of the software engineering process and the fact that software

engineering involves the production of more than just program code.

As with traditional engineering, software engineering involves the use of a rigorous

method for software production.

A method is a set of procedures (guidehnes) for selecting and sequen

cing the use of tools and techniques [34].

This chapter will examine the tools and techniques used in software engineering,

and a typical method of sequencing them — the software life cycle. First, how

ever, it is worth emphasising the differences between traditional engineering and

software engineering.

1.2 Differences from Traditional Engineering

According to McDermid [130], there are five areas in which software engineering

is inherently more difficult than traditional engineering:

Complexity — Software is complex in that it needs to interface to complex

mechanical, social or organisational systems. Also, software is complex

"as a material" since (unlike other engineering artifacts) it has no regu

lar structure^. Finally, software systems are too large to be understood by

a single individual.

^Dijkstra [66] claims that programs are the most complex artifacts conceived and illustrates
this complexity by contrasting programs with Euclidean geometry — both of which he considers
to be branches of mathematics [65].

Chapter 1: Software Engineering

Difficulty of establishing requirements — Users do not know what they

want and they over (or under) estimate the ability of the computer. Many

of their activities are "second nature" and specifications are difficult to eli

cit. In addition, there is no method of determining when a specification is

"complete". Also requirements are never stable.

Changeability or malleability of software — It is easy to write and change

a small program, but much harder for a large system due to the interaction

between diff^erent parts of the system.

Invisibility — While all other engineering disciplines produce physical artifacts

which can be seen and examined, software is much more nebulous. The

original design decisions are not manifest in the programs themselves and

although there are many points of view from which to look at software (scope

of variables, control flow, module hierarchy etc.) all of them are limited.

Development of a theory of the problem domain — In most engineering

disciplines, the development of a new system involves the application of

existing theories (for example in bridge building). However, with software,

every time a system (for air traffic control or payroll or whatever) is de

veloped, a new theory needs to be developed. These theories may even

change with time as the engineered systems or social structures, to which

the software relates, change too.

1.3 Tools and Techniques

Blank and Krijger [36] list 24 different technical methods and techniques for use

in software engineering. These fall roughly into four categories: structured pro

gramming techniques, methods for clear program and data structure presenta

tion, computer aided software engineering, and methods for deriving pro

grams from their specifications.

Chapter 1: Software Engineering

1.3.1 Structured Programming

The aim of structured programming is to produce programs which have more

structure.^ Such programs are easier to understand, maintain and modify since,

for any given statement in the program, it is clear which branches must have been

taken, and which procedures called, in order to reach this point; i.e. their dynamic

behaviour is clear from their static structure.

Software structure is defined to be the arrangement of, and inter

relation between, the components that make up the software system.

Although there is no general agreement about what is "good" structure (such as

programming without using Goto statements), there are a number of attributes

which are thought to be important [28]:

• The software is partitioned into components (modules) with identifiable and

simple boundaries;

• There should be a high dependence within the components (modules) of the

system; and

• The relationships between the components (modules) form a hierarchy.

Structured programming has had a very beneficial effect on the quality of software

systems. Numerous case studies have documented impressive gains in productiv

ity, reliability and maintainability of these new systems [197 .

1.3.2 Modular Programming

A more rigorous version of structured programming is modular programming

which divides a program into (small) chunks known as modules. A module allows

^In fact all programs necessarily have structure to them, otherwise they would not execute;
so here, software structure has a more specialised meaning.

Chapter 1: Software Engineering

the programmer to control the visibility of a component within a program [63 .

There are many ways of making these divisions, some considerably better than

others. Good modular programming has been characterised by Bergland [32] as

a decomposition such that each module:

• Implements a single independent function;

• Performs a single logical task;

• Has a single entry and exit point;

• Is separately testable; and

• Is entirely constructed of modules.

1.3.3 Object Oriented Systems

A further enhancement to the idea of modular programming is object oriented

programming.^ An object oriented system is one which is composed of inde

pendent objects each of which provides a behaviour. This behaviour is a set of

operations that the object may be requested to perform; for example, to return

or modify, some internal value that it holds.

A good object oriented system is one that contains objects with the following

properties [10]:

Encapsulation — An object's state is only accessible using its nominated oper

ations;

Dynamic lifetimes — Objects can be created as the system executes;

Identity — Each object has a name, which can be used to refer to it; and

•^The term "object oriented" has also been used to cover design methods, user interfaces,
databases as so on.

Chapter 1: Software Engineering

Substitution — Objects that provide compatible operations can be used inter

changeably.

Objects which differ only in name and state are said to be instances of a class.

When a class is defined, it may (in some systems) be provided with the beha

viour of one or more other classes. This is termed inheritance. If used badly,

inheritance can lead to programs that are poorly structured.

1.3.4 Presentation Techniques

Software engineering, as well as producing methods for constructing "better" pro

grams, has also spawned methods of representing the structure of these programs

diagrammatically. This significantly improves the user's understanding of how

the software works, especially when several methods are used together. These

presentation methods include flowcharts, HIPO (Hierarchy plus Input, Process,

Output) charts and data structure charts, for example, Warnier-Orr diagrams

186] and Jackson diagrams [101]. Other presentation methods which have been

used are decision tables and very-high-level pseudocode.

1.3.5 Computer Aided Software Engineering

Computer Aided Software Engineering or C A S E is the automa

tion of existing software engineering methods and practices with the

goal of improving the quality of the product and the efficiency of the

software developers [171].

C A S E tools, in the boardest sense, encompass any facility utilising

the computer to assist in the production of software [102 .

CASE tools can be subdivided into those that are directed primarily at the front-

end activities of design and analysis, and those that are focused on the back-

end implementation functions of code generation, testing and maintenance [102].

Chapter 1: Software Engineering

Those that generate code have improved programmers' productivity, by enabling

them to work at a "higher level" (i.e. closer to the level of the application rather

than the computer). The ultimate goal of CASE technology is to separate the

application program's design from the program's implementation as code [76 .

Major issues facing CASE are (a) the integration of the many tools that are

required in order to cover the spectrum of software activities from specification,

through development, to maintenance; and (b) cost of discarding existing software

in order to move to a CASE tool environment.

1.3.6 Deriving Programs from Specifications

Another way of producing "better" programs is to start with the specification of

the program and at each stage to develop incrementally by stepwise refinement.

In other words, the program is first coded at a very high level, and each high-level

construct is represented in turn by its components, with more detail and at a

lower level, until the program is expressed in terms of the target language. This

method was proposed by Wirth [191].

Although stepwise refinement appears good in principle, it is very rarely used in

practice since designers actually work, not only from from the top down, but also

from the bottom up and from the middle out (see Section 8.2). The problem is that

any expression of the high-level design as low-level code may not be practicably

implementable on the target machine. Thus, to at least some degree, the designer

needs, at an early stage, an idea of the final implementation.

1.4 The Software Life Cycle

A key part of software engineering has been the decomposition of the software

process into a number of stages. Such a decomposition has been named a life

cycle, and a number of different life cycle models have been suggested [131] [38].

Chapter 1: Software Engineering 8

Such models generally divide the project into small steps based on the ways in
which they are planned and performed as follows:

Requirements Analysis and Definition — Analysis is performed, through

observation of existing systems, discussion with potential users and so on,

to discover the purpose of the software and to set the overall goals.

Functional Specification — A program specification is produced.

A program specification is a statement of the precise functions

which are to be carried out by a computer program, including

descriptions of the input to be processed by the program, the

processing needed and the output from the program [150 .

A good functional specification fulfills the needs of the original requirements

definition and leads naturally on to a design for the system in such a way

that it rules out any implementation that is unacceptable and such that

it is general enough to ensure that few, if any, acceptable programs are

precluded.

Non-Functional Specification — Constraints on efficiency, performance, com

patibility and reliability are added to the definition of requirements.

System and Software Design — The various tasks needed to be performed

in order to fulf i l l that aim are recognised and specified so as to define the

architecture of the system.

Implementation — Actual program code is written.

Testing — The program is tested to ensure that it meets its specification.

Release — The software is released for use. As maintenance is performed and

the changes are tested, the new software will be "re-released", possibly using

configuration management [4].

Operation and Maintenance — The software is used and maintained.

The areas of testing and maintenance are of particular interest in this thesis and

so will be addressed in more detail.

Chapter 1: Software Engineering

1.4.1 Testing

The process of checking that a system is correct is described by the collective term

validation and verification [100].

Validation is the process of ensuring that the developing system

matches the user requirements [100].

Verification is the process of checking that the output of a phase of

the software life cycle matches the input to that phase [100 .

These are paraphrased by Boehm [37]. Validation: "Are we building the right

product?"; Verification: "Are we building the product right?"

Program testing can take several forms (which will be discussed in Chapter 2), but

the most common involves exercising the program using data similar to the actual

data that the program is designed to execute, observing the program outputs and

inferring the existence of program errors or inadequacies from anomahes in that

output [169]. The lowest-level program components are tested first. These are

then assembled and the program is tested as a whole. During this stage, potential

users can identify gaps in the original requirements and the programmers can

identify faults in the program code that could cause failures.

A fault in a system is a feature of the system with the potential for

causing a failure.

A failure of a system is said to occur when the behaviour of the system

first deviates from that required by the specification [165].

In terms of software engineering, a system is correct when it fully reflects the user

requirements detailed in the specification and, optionally, satisfies other measures

such as the quality of the program code. Implementation and testing are linked in

Chapter 1: Software Engineering 10

that testing has to determine the correctness, or otherwise, of the implementation.
Any faults feed back into the implementation stage causing changes to be made.

Correctness cannot be verified by testing [32] since a successful test can really

only be considered to be one which establishes the presence of one or more errors

in the software being tested [141]. Whereas in traditional engineering it is usually

sufficient to test to within a certain margin of safety, software should ideally be

100% correct. This is termed the correctness problem [40].

A more stringent version of program correctness is program reliabihty [2] [165]

169] in which not only must the program meet its specification, but it must also

take meaningful action in unexpected situations. Program reliabiUty is a very

important issue, not least in safety-critical systems and in areas where computers

are put "in control" of large amounts of money. In all practical cases it is virtually

impossible to guarantee 100% program correctness, let alone 100% reliability, since

there may be faults that testing has failed to reveal.

1.4.2 Operation and IVlaintenance

Software maintenance is the modification of a software product

after delivery, to correct faults, to improve performance or other at

tributes, or to adapt the product to a changed environment [1 .

Software maintenance can be divided into four areas: corrective, adaptive,

perfective and preventive maintenance [29 .

Corrective maintenance is concerned with the location and removal of faults

in the program. These are errors in what the program actually does according to

the current specification; it is not concerned with erroneous output caused due to

a change in the specification.

Adaptive maintenance involves the updating of the program due to a change in

the environment in which it has to run. This may be a minor change which does

not involve much change in the structure of the program, for example a change

Chapter 1: Software Engineering 11

in printed output from EngHsh to American spelling, or may be a major change,
such as rewriting the program to run in a distributed fashion on a network.

Perfective maintenance is maintenance resulting from a change in a program's

specification. This might be as simple as a change in the format in which a report

is required, or as complex as the addition of a different kind of account to a

financial banking program. Perfective maintenance takes up as much as half of a

maintenance programmer's time [29 .

Finally, preventive maintenance is the modification to software undertaken to

improve some attribute of that software, such as its "quality" or "maintainabihty"

without altering its functional specification.

1.5 Legacy Code

Maintenance is a fundamental part of the life cycle of any software and can account

for 60-80% [120] of the total software costs. Hence most software is old "legacy"

code which has been heavily maintained. Such software usually represents a large

financial investment and so cannot just simply be discarded and rewritten due to

the arrival of new technology or a change in the specification.

Lehman and Belady [119] characterised the specific problems of maintaining old

code in their five laws of software maintenance.

Continuing Change — A program that is used in a real-world environment

must change or become less and less useful in that environment.

Increasing Complexity — As an evolving program changes, its structure be

comes progressively more complex unless active efforts are made to avoid

this phenomenon.

Program Evolution — Program evolution is a self-regulatory process and meas

urements of systems attributes (such as size, time between releases and

number of errors) reveals statistically determinable trends and invariances.

Chapter 1: Software Engineering 12

Conservation of Organisational Stability — Over the lifetime of a program,
the rate of development of that program is approximately constant and
independent of the resources devoted to system development.

Conservation of Familiarity — Over the lifetime of a system, the incremental

system changes in each release is approximately constant.

The first two laws are technical hypotheses which have been found to be empir

ically true for all software, whereas the other three are non-technical and depend

on the organisations developing and using the software.

The first law says that as soon as a program has been written it is out of date.

The reasons for this are several. Users perceive new features which should be

added to the software; new features are added to the hardware which can be

used to enhance the software; faults are found in the software and these need

to be corrected; the software needs to be moved to another operating system or

machine; or the software needs to be made more efficient. The second the law of

software evolution says that as changes (excluding preventive maintenance) are

made, the structure of the program becomes more complex due to the fact that

programmers are unable or even unwilhng to use software engineering techniques.

However, the problems go beyond this.

First, maintenance is often performed rapidly in an ad hoc fashion for several

reasons, not least of which is because there is often little time to produce a carefully

designed modification. With continued change, programs tend to become less

structured. This is manifest by out of date documentation [158], code which does

not conform to standards, increased time for programmers to understand code,

increased ripple effect of changes and so on. These characteristics can, and usually

do, imply higher software maintenance costs [7 .

Systems undergoing maintenance often become progressively more difficult to

change [118]. This is due to the fact that as maintenance is performed it be

comes increasingly difficult to understand the program's function, and it may not

even have been possible in the first place since programming involves informal,

undocumented decisions which are not available to the maintenance programmer

Chapter 1: Software Engineering 13

16]. Hence, it is often the case that the software cannot be changed without in
troducing unforeseen side eifects, due to interdependencies between variables and
procedures which the maintainer did not detect.

In addition to the technical problems there is often also a management problem.

Most programmers consider work spent on maintenance to be an inferior activity

to development (a view which is often reinforced by the working conditions and

salary scales) since it distracts them from the more "exciting" work of software

development. This creates low morale. As a result, when it becomes necessary to

perform maintenance, rather than employing a systematic maintenance strategy,

corrections tend to be rushed, not thought through, undocumented and poorly

integrated with the existing code. It is not uncommon for such maintenance itself

to introduce further errors and inefficiencies.

From these problems it can be seen that software maintenance would benefit

greatly from a rigorous^ engineering approach but, unlike development, few widely

established methods yet exist.

1.6 Summary

Early ad hoc methods of producing software were unsuccessful in coping with the

trends of increasing size and complexity so software engineering was suggested as

a solution. Zelkowitz [198] gives the goals of software engineering as to:

1. Use techniques that manage software complexity;

2. Increase system reliability and correctness; and

3. Develop techniques to predict software costs more accurately.

^There are cases in which a rigorous approach is not used but which nevertheless have well
controlled maintenance through informal methods such as design reviews and testing. The Space
Shuttle software is such an example [108].

Chapter 1: Software Engineering 14

Software engineering has made a reasonable attempt at meeting all of these goals
and has certainly improved the situation that preceded i t . However, looking more
closely, there is still some way to go before software engineering can truly be
ranked alongside other engineering disciplines. The third of these goals is outside
the scope of this thesis. Taking the other two in reverse order:

Although (as shall be seen later) there are theoretical solutions to the problems

of reliability and correctness, they are not cost-effective enough, due to the extra

work that they impose on the software engineer, to be widely accepted.

Software complexity has been partially dealt with through the use of improved

programming methods such as modular programming. However, these methods

do not readily apply to legacy code which was originally developed, or has been

changed, in an ad hoc fashion and, thus, are not usually of benefit to maintenance.

In particular, once a program undergoes maintenance it will become ever more

complex.

Thus, the situation remains that while software engineering has been successful

up to a point, several major failings still remain. Two of these will be considered

further: the correctness problem and the maintenance problem.

The Correctness Problem is the problem of producing software that

performs according to some predefined specification.

The Maintenance Problem is the problem of performing software

maintenance rigorously and in such a way that software quaHty does

not deteriorate as a result of this process.

These can be summarised as (a) how should software be developed so as to ensure

that it has a given reliability, and (b) how should the software be subsequently

maintained so as to preserve this reliabihty.

Chapter 1: Software Engineering 15

1.7 The Contributions of this Thesis

This thesis will approach the maintenance problem by adopting a correctness-

preserving reverse engineering approach. Inspiration for this will be taken from

a proposed solution to the correctness problem: formally-proved program trans

formations. It will make a four important contributions to the area of maintaining

legacy systems:

1. The system will be shown to work. Unlike existing transformation systems,

the system described here will be demonstrated to work at reasonable speed

on medium-to-large sized programs taken from an industrial environment.

2. The system, will have an innovative architecture. It will be based on

a middle-out design with certain distinct sub-systems such as a pattern

matcher and a system for performing symbolic mathematical and logical

evaluation and simplification.

3. Efficient representations will be adopted for programs and for transforma

tions.

4. A language, MSTAWSL, will be used to express program transformations.

This language will embody knowledge about writing transformations; it will

be transferable to other implementations; it will allow transformations to

be expressed clearly and concisely; and it will enable arbitrarily complex

algorithms to be incorporated, facilitating sophisticated automation.

Chapter 2

A Survey of Solutions to the

Correctness and Maintenance

Problems

2.1 Introduction

The previous chapter introduced software engineering and considered its successes

and failures. While its successes have been considerable, there have also been two

important drawbacks relating to correctness (an attribute of the software product)

and maintenance (an attribute of the software process). This chapter examines

the ways in which the two problems have been addressed, and then proposes a

single method by which both problems will be tackled.

2.2 Solutions to the Correctness Problem

Verification can be approached in any of three ways [33]:

16

Chapter 2: Solutions to Correctness and Maintenance 17

• Look and see;

• Test exhaustively; and

• Express the program formally and apply a proof.

Corresponding to each of these three approaches, a number of different solutions

have been proposed and, within each approach, a number of tools have been

developed to aid the software engineer. The approaches will be dealt with in

turn; each will be judged according to its ease of appHcation, its rigour and its

effectiveness.

2.2.1 Look and See

Program Inspections

The most simplistic solution to the correctness problem is the "look and see"

method which relies on the fact that any faults in the software will be easy to

identify, if not by the original programmer, then by disinterested programmers

with suitable experience. When confronted with a coding error, the original pro

grammer would be less likely to consider it as such than would a disinterested

party since, if he-̂ had made a logical mistake once, there is no reason to suppose

that he would not be likely to make it again. Also, professional pride would bias

him against finding faults that would seem to devalue his work.

In a formal inspection, as originally described by Fagan [69], a small group of

people would examine the code in a number of different stages looking for likely

errors. The team would be chaired by a moderator whose job it would be to

motivate the other team members; the other team members being the program's

author, a tester (who would consider the code from a testing point of view) and

a reader whose job it would be to present the code to the team.

^For stylistic reasons, pronouns are given in the male gender. It is not the author's intention
to exclude the possibility of their referring to a female person.

Chapter 2: Solutions to Correctness and Mciintenance 18

The stages in program inspection would be:

Planning — which involves arranging the inspection and organising the team;

Overview — in which a general description of the program to be considered is

presented;

Individual preparation — in which each team member considers the program

and its specification;

Program inspection — in which errors are identified, but not corrected;

Rework — in which the program is modified by its author in the light of the

inspection; and

Re-inspection — in which the process is repeated.

Program inspections are cheap, straightforward and, although managerial and

technical skills are advantageous, do not require any special techniques to be

learned by the programmer or the specifier. Inspections may be able efficiently

to identify potential faults in the software but by no means guarantee to find

them all. Thus, while they are useful and have proved efficacious in practice when

properly applied [160] [111], they do not guarantee the correctness of the software.

Static Program Analysers

Another, similar but more limited, "look and see" method uses the computer

itself to perform the inspection. This is known as static analysis and tools which

perform this task are known as static analysers.

Static program analysers are tools which examine the source code

of a program and identify possible faults and anomalies.

Static analysers can check for potential errors, which are purely syntactic, such as

uninitialised variables, but are unable to detect semantic errors, i.e. errors where

Chapter 2: Solutions to Correctness and Maintenance 19

the program is written "correctly", but is performing the wrong function. The
list below illustrates potential problems that can be identified.

• Undeclared variables;

• Variables used before initialisation;

• Parameter type or number mismatches;

• Unreachable code;

• Non-terminating loops;

• Uncalled functions or procedures;

• Unused function results; and

• Incorrect array references.

Static program analysers are very cheap and quick to use, as they are automatic,

and can be used by the programmer without requiring outside assistance. How

ever, while they help to ehminate frequently occurring sources of faulty behaviour,

they are not generally able to identify all faults in the code (let alone design, ar

chitecture and so on) and hence do not solve the correctness problem.

2.2.2 Test Exhaustively

The exhaustive testing of software has been an area of considerable research,

reflecting the fact that it has grown from an after-programming evaluation process

to a concept that is an integral part of each phase of the system development life

cycle [156]. Consequently, this has led to the production of a number of different

methods and tools.

There are two main types of testing: black box testing in which the internal

structure and behaviour of the system being tested is not considered, and white-

box testing in which it is. Black-box testing is typified by acceptance testing to

Chapter 2: Solutions to Correctness and Mciintenance 20

ensure that software meets its specification or user requirements, while white-box
testing is typified by unit testing in which it is necessary to examine the structure
of the code unit (module, procedure etc.) in order to ensure that the tests exercise
as many of its statements and paths as possible.

Two of the more important testing tools are the test case generator, which gener

ates typical data on which the program would be run, and the symbolic evaluator

which takes (part of) a program and executes it using symbolic, as opposed to

numeric, data.

Despite the eifort that has been put into testing, the fact remains that, unless

every path through the program can be tested with every combination of inputs,

testing cannot demonstrate that a program is correct. For small programs, or for

programs with a very simple structure, it may be possible to test all the paths

through the program but, as the size of the program increases, so the number

of paths through it increases. This increase may be linear, but it could also be

exponential, making exhaustive testing infeasible. (In general it can be difficult

to determine whether testing is cost-effective. Perry [156] gives thirty metrics to

measure the effectiveness of testing.)

Despite these apparent problems, testing has proved to be a powerful and use

ful technique. Shooman [164] gives some statistics as to the success of testing;

in particular: test hours versus the number of new instructions, discovery and

correction times, and the difficulty of correction and detection against time. A

notable result was that 80% of errors were identified after one execution of the

software, while the average number of executions to find each error was 1.35.

Different kinds of testing (module test, integration test, code reading and design

reviews) are each suited to the identification of different kinds of error (logic,

documentation, timing, specification etc.). Thus, although no single test technique

is uniformly good over the spectrum of error types [164] there does appear to be a

test method suitable for finding each kind of error. However, testing alone cannot

solve the correctness problem, i.e. prove that a program is correct, in any but the

simplest examples.

Chapter 2: Solutions to Correctness and Mcdntenance 21

2.2.3 Formal Solutions

The success of engineering in general can, to a large extent, be attributed to the

discovery and deployment of the theories that lie behind the work of the engineer.

Currently not much of this theory is in place for software engineering, and that

theory which is in place is rarely understood or used. However one of the most

promising solutions to the correctness problem does use an underlying theory. In

this method, the specification and program are expressed mathematically and a

proof that they are equivalent is found. The methods of software development

which are based on the underlying mathematical theories of programming are

known as formal methods. Before looking at the advantages and disadvantages

of formal methods, it is necessary to give some definitions.

Formal methods of program construction are methods which are

carried out in a language whose vocabulary, synteix and semantics are

formally defined.

A formal software specification is a specification expressed in a

language whose vocabulary, syntax and semantics are formally defined

169].

The vocabulary of a (specification) language is the the collection of

"meaningful" symbols that it possesses.

The syntax of a (specification) language is a definition of the way in

which the symbols are allowed to be combined.

The semantics of a (specification) language is a definition of the

"meaning" attributed to given symbols and combinations of those sym

bols.

Program specifications can have various degrees of formality. At the informal

end of the spectrum, the specifications can be expressed in some convenient com-

Chapter 2: Solutions to Correctness and Maintenance 22

bination of English, diagrams^ and mathematical notation. In contrast, formal
specifications are written in a language with explicitly defined syntax and se
mantics [121]. Thus, formal methods which start with a "formal specification"
are able to produce a program which can be mathematically shown to meet that
specification^ by a series of steps akin to a proof. The need for a formal semantic
definition of the specification language and the ability mathematically to manip
ulate this language mean that it must be based on mathematics and not "natural
language".

Mathematical formulation allows the specifier to remain much further from the

computer than would otherwise be the case and, in this context, any programming

language is already too near [91]. In addition, the proper use of mathematical ab

stractions in the development process helps to create software systems with a

coherent and suitable structure. Also a rigorous"* development method where cor

rectness of developments steps can be justified in a mathematical sense, strongly

diminishes the risk of introducing errors and inconveniencies to the system during

development [68]. Further advantages of using formal specifications are given by

Sommerville [169] as follows:

• The development of a formal specification provides insights into, and an

understanding of, the software requirements and software design;

• Given a formal system specification and a complete formal programming

language, it may be possible to prove that a program conforms to its spe

cification;

• Formal specifications may be automatically processed, for example by the

computer; and

• Formal software specifications are mathematical entities and may be studied

and analysed using mathematical methods.

^Diagrams may be either formal or informal. The formal use of diagrams was mentioned in
Section 1.3.4.

^By definition, it is not possible to prove formally that a program meets an informal
specification.

* A rigorous method is one in which reasoned justification is provided for the approach adop
ted, and decisions taken, at each stage.

Chapter 2: Solutions to Correctness and Maintenance 23

The process of producing a proof that a program meets its specification can be as
hard (or harder) than producing the program in the first place; thus mathemat
ically demonstrating a program's correctness can be accomphshed in one or more
ways [179], such as:

1. Write the program and then attempt formally to verify its correctness

against the specification;

2. Develop the program and its correctness proof concurrently;

3. Starting with the program, successively transform it into an executable pro

gram by means of a series of transformations which have already been proven

to preserve the correctness of any given program.

Thus, formal specifications and associated formal methods can potentially be

of great benefit in determining program correctness since a mathematical Unk

can (usually) be established between the specification and the program. There

are nevertheless some disadvantages to formal methods, or at least to certain

of these methods, the most notable being the time and effort required in the

construction of the proofs, and the need to understand these proofs once they

have been constructed. Dijkstra [64] argues that formal proofs are shorter and

easier to understand than informal ones, but goes on to say: " I have seen a

number of proofs that have been produced by (semi) mechanised systems, and,

indeed, these proofs were appalling!" Thus, while formal methods could solve the

correctness problem, they do require a great deal of extra work by the software

developers.

2.2.4 Automatic Program Verification

A method is needed of using formal methods which avoids the problem of pro

ducing proofs. Griffiths sums this up as follows [91]: "A specification should be

largely mathematical and less computer oriented. From such a specification, we

should, however, be capable of producing a program acceptable to some compiler."

Chapter 2: Solutions to Correctness and Maintenance 24

As a result a number of automatic and semi-automatic tools have been produced
to attempt to solve this problem.

It is not generally possible (because of the halting problem) for a machine to

prove program correctness, and it is often easier to prove a weaker version of

correctness; that is, partial correctness, in which the program is known to meet

its specifications provided it terminates.

Partial program correctness proof methods show that a program

meets its specifications, as given by entry and exit assertions, provided

that it terminates [109 .

Here an assertion is a true predicate about the program's state space

(i.e. the values contained in the variables) at some stage before, during

or after execution.

Partial program correctness proofs are composed of various steps: summarising

the semantic content of a program in a mathematical representation, generating

formulas (or assertions) called "verification conditions", and devising inductive

statements which allow one to conclude the program's correctness by proving

that the verification conditions are theorems in some appropriate mathematical

logic [109 .

There are a number of different invariant conditions on code (for example "data

type invariants") which can be used to prove correctness by means of mathematical

induction. Loop invariants are important since, using some formal methods, they

are required in order to prove that a loop conforms to some specification.

A loop invariant is a logical formula which is true before and after

the execution of each iteration of a loop.

While loop invariants are important, they are hard both to identify and to prove.

Methods of generating loop invariants in programs with many nested loops and

Chapter 2: Solutions to Correctness and Maintenance 25

procedure calls, or complex data types are still very primitive. In fact, the problem
of finding the inductive assertion for any given program is theoretically unsolvable
172], although it may be possible in specific simple examples. This has not

prevented work on semi-automatic derivation of loop invariants, or at least on
systems which suggest loop invariants. One such system is ADI. ADI [172] will
find as many loop invariants as it can, and it is hoped that the conjunction of
these invariants will be strong enough to be an inductive assertion.

Another way of aiding in the development of correctness proofs is the use of

theorem provers such as the B-Tool [11]. Theorem provers mechanise, or help

to mechanise, the production of a formal proof. These have proved difficult to

implement for the general case, so proof checkers have been more commonly

used. The simplest form of proof checker takes, as its input, a series of inferences

in some logical theory, such as first-order predicate calculus, along with the rule of

inference to be used (for example, modus ponens). Using these, it would determine

whether the logical formula obtained does indeed result from the designated rule

of inference [31].

One of the best known proof systems is the Boyer-Moore theorem prover [39 .

This tools is primarily an induction machine which mechanises proofs in a logical

theory developed by Boyer and Moore. In doing this it uses various ad hoc proof

strategies and expression simplifiers. Although the tool can operate without any

user intervention, it can be given lemmas (as subgoals) by the user to aid it in

its proof. The system is fairly powerful, but does require a large number of user-

supplied lemmas before it can prove anything requiring more complex objects

(for example, real numbers, logical formulae etc.) than those provided. Thus, its

usefulness lies more in proof checking than theorem proving. For proving the cor

rectness of programs, it would be necessary to give a system such as Boyer-Moore's

so large a number of guiding lemmas that there would only provide a marginal

advantage over doing the proof manually. There is also the problem of verifying

the correctness of the theorem prover itself. Nevertheless the Boyer-Moore the

orem prover has been used in the proof of correctness for the implementation of

some small examples [161] [187 .

Chapter 2: Solutions to Correctness and Maintenance 26

Thus automatic program verification can usually only be an effective means of
proving the correctness of simple programs. As Gries says [90]: "One cannot ex
pect to produce a whole program and then prove it correct. Instead, at each stage
of development, the programmer must know that what he has done is correct."
This does not mean that computer-aided formal methods should be discarded
completely, since there is a third path to constructing programs formally, that of
successively transforming a specification into an executable program. The merits
of this strategy will be considered later.

2.3 Solutions to the Maintenance Problem

The various solutions to the maintenance problem which have been proposed can

be broken down into two categories: those that address the management issues

and those that address the technical issues. The former are of less interest to this

thesis and will only be considered briefly.

2.3.1 IVEanagement Solutions

In financial terms, software maintenance is seen as a continuing consumer of re

source with a nebulous and unquantified benefit to the organisation [158]. Thus,

there needs to be more organised management support of software maintenance,

and this can come about through:

1. Senior management becoming aware of the importance of information tech

nology to the organisation; and

2. Senior management viewing software as a corporate asset which can provide

a competitive edge [158 .

Thus, in order for the situation to change, management must become dissatisfied

with the status quo, and therefore able to make a visible and personal commitment

Chapter 2: Solutions to Correctness and Maintenance 27

to any proposed solutions. Such solutions could, broadly speaking, take one of
two forms: resources and quality.

Resources

The key resource in software production and maintenance is people, so a pos

sibly effective way of improving software maintenance could be to have a separate

group of programmers employed just to maintain old code.̂ However, because

of the unglamourous nature of the work, it is usually the new recruits who are

assigned this work. These inexperienced programmers, while they may be able

to understand the logical design of the system, are usually unable to understand

the conceptual model of the software since they lack experience of both software

engineering techniques and domain knowledge of what the program is supposed

to do. Thus, they rarely know how to find and fix faults, or make modifications.

Increasing manpower and funding for software maintenance might provide a short-

term solution but, for a long-term solution, it would be necessary to adopt an

approach which would improve the overall quality of the process.

Quality

Improving the quality of both the software product and the software process

follows the trend of increasing concern for quality issues in industry as a whole.

Better software quality management techniques include [58]:

• Standard techniques for decomposing software into functional entities;

• Strict software documentation standards;

• Design walk-throughs at each level of software decomposition;

^Alternative methods of strategically employing manpower, such as having the same team
perform both the development and the maintenance, have also been suggested [166]. This
approach mirrors other engineering disciplines in which it would be very unusual to separate
the tasks of development and maintenance.

Chapter 2: Solutions to Correctness and Maintenance 28

Use of structured code; and

• Definition of all major software interfaces and data structures before detail

design begins.

In addition, metrics could be employed (to measure not only attributes of the

product but also attributes of the process) and better tools could be used (for

example, integrating an editor, compiler and debugger into a single tool).

2.3.2 Technical Solutions

It is convenient to divide the technical solutions to the software maintenance

problem into two: tools and methods.^ The tools are designed to help the software

maintainer understand the program and to test its modification to ensure that no

errors have been introduced. As such, many of the tools are the same as, or

similar to, those used in software testing. A selection of the tools which have been

produced in order to aid the maintenance programmer is Usted by MiUer^ [135 .

These include the formatter, static analyser, structurer, documenter, interactive

debugger, test data generator and comparator.

Software maintenance methods consist of re-engineering and reverse engineering.

Software Re-Engineering and Reverse Engineering

Re-Engineering is the examination and alteration of a subject sys

tem to reconstitute it in a new form and the subsequent implementa

tion of the new form [30 .

Reverse Engineering is the process of analysing a subject system

to identify the system's components and their inter-relationships, and

^Tools are used most effectively to support methods.
^Some of these tools (such as the formatter and test data generator) are already in use,

whereas others (such as the structurer) are not yet mature enough to be used generally.

Chapter 2: Solutions to Correctness and Maintenance 29

to create representations of the system in another form or at higher
levels of abstraction [55 .

Software Restructuring is the modification of software to make the

software (1) easier to understand and to change or (2) less susceptible

to errors when later changes are made [7].

Software re-engineering and reverse engineering usually involve taking existing

program code and restructuring it (for example, splitting it into modules and pro

cedures). Restructuring measures are not equivalent to reverse engineering and

reverse engineering does not necessarily imply restructuring. Programs can be re

structured, and even modularised, without reverting back to the logical design

level. Conversely, programs can be transformed into a higher semantic level

without being restructured [167]; however, as will be seen in Chapters 4 and 9,

abstraction to a higher semantic level is simpler if the software is first restructured.

Bennett [30] lists 26 purposes for reverse engineering code. The most important

ones are as follows:

• To simplify complex software, or software which has become complex due

to maintenance activities;

• To improve the quality of software which contains errors, by identifying and

then removing those errors;

• To remove any side effects from an implementation (i.e. unplanned state

changes);

• To improve the coding quality and understandability, for example to re

duce the number of control transfers, remove dead code, adopt data naming

standards, improve control structure, and adopt standards of layout and

commenting;

• To undertake a major design repair activity, because the original design

(and, therefore, implementation) of the software may be erroneous;

Chapter 2: Solutions to Correctness and Maintenance 30

• To allow major changes to be implemented (the structure, documentation
and quality of the software may be so poor that it is infeasible to implement
a major change without reverse engineering the software to a higher level of
abstraction first);

• To help establish and support a reuse policy (for code, designs, specifications,

processes etc.);

• To enable better software maintenance management techniques (in terms of

planning, monitoring and control) to be introduced. This will provide better

visibility of the software maintenance to be achieved and, therefore, better

control;

• To bring the existing software into a more modern software engineering

development environment consistent with other practices within the organ

isation. This should provide a higher quality of software, with lower costs

for subsequent software maintenance;

• To rediscover and record the design of the system;

• To rediscover and record the requirement specification of the system; and

• To recover and record high-level information about the system including:

the system structure, functionality, dynamic behaviour, rationale and con

struction.

These purposes can be broken down into three categories: fixing the program,

changing the program and understanding the program. This last category, which

includes recapturing information about the software, allows it to be worked on

using modern software engineering techniques, thus putting i t back "under con

trol". This is important, as it means that rather than requiring ad hoc methods

for performing maintenance, methods such as "structured retrofit" can be used.

Miller and Lyons define structured retrofit as the application of

today's structured program techniques to yesterday's systems in order

to meet tomorrow's demands [134] [124 .

Chapter 2: Solutions to Correctness and Maintenance 31

Both re-engineering and reverse engineering are activities which can be supported
by the computer.

In the process of reverse engineering, there are many different sources of inform

ation about the program undergoing maintenance. This information comes in

the form of the documentation and manuals, comments in the code, the original

specification (if there ever was one!), and the code itself. If the program has un

dergone many changes or is very old, then the documentation, whatever its form,

is unlikely to provide an accurate description of the program's function. Likewise,

if a specification of the program is available and up to date, then understanding

the program is made considerably easier by first understanding the specification.

This is because of the complementary nature of the specification, which expresses

the purpose of the software without the impediment of the implementation de

tails. However, very often, the specification may not have been updated as the

program was changed and it is, therefore, as unreliable a source of information as

the informal documentation.

This leaves the source code as being the only reliable source of information, and

it is necessarily reliable since it is the program code which the system is running.

Thus, any reverse engineering tool which is to produce an accurate description of

a program should work primarily on source code.

There has been much of work on re-engineering and reverse engineering, and

there is good reason for this. Both offer to bring old software up to date —

re-engineering by directly reimplementing the existing program, and reverse en

gineering by first producing a high-level specification or description of the code.

However, a problem still exists; that of ensuring that the new program (in the

case of re-engineering) or the high-level description or specification (in the case of

reverse engineering) is an accurate description of the software system in question.

Essentially, this is the correctness problem in reverse. Thus, it would seem real

istic to ask whether solving the correctness problem could provide a solution to

the maintenance problem via reverse engineering.* This is the topic of the next

^It could also, potentially, offer a solution by means of re-engineering. However, if, as would be
necessary, there is a way of formally finking a program with its specification, then re-engineering
can be accomplished by means of a combination of formal reverse engineering and of formal re-

Chapter 2: Solutions to Correctness and Maintenance 32

section.

2.4 Can One Solution Solve Both Problems?

Due to the necessarily mathematical nature of software, it would seem reason

able to suppose that formal methods could be applied to reverse engineering by

proving that a given specification describes an existing program, or by deriving a

specification^ from an existing program. This is indeed the case, provided that a

general method exists for determining this correspondence, and this in turn is the

correctness problem. Hence, a solution to the correctness problem, when placed

in a suitable reverse engineering environment, would also provide benefits in solv

ing the technical side of the maintenance problem. That just leaves the problem

of finding simple means of providing a formal link between a specification and a

program.

2.4.1 Program Transformations

The third path to the formal construction of programs is that of transformation.

This method starts with the program specification, and successively transforms

it into an executable program by means of a series of transformations which have

already been proven to preserve the correctness of any given program. The precise

meaning of the terms "program transformation", "transformation system" and so

on will be given in the next chapter. For now, it is enough to comment that a

program transformation is a change made to the text of a program in such a way

that the program's semantics remains unchanged.

implementation.
^All programs, even those that have been heavily modified, necessarily have a specification in

that each statement can be specified separately, so that the specification of the whole program
would be a combination of these. However, the question of whether such a program has a concise
and useful specification is an open question.

^°In some approaches, the semantics may be refined in order to reduce non-determinism or
increase program definedness.

Chapter 2: Solutions to Correctness and Maintenance 33

Of the three different methods of formally showing that executable programs meet
their abstract specifications, this seems to be the most promising for two reasons.

First, it seems to be the only one which is capable of scaling up to large programs;

this is because a single proof of a large program would be almost impossible to

understand, let alone develop [179], while transformations will be seen to apply

to programs of any size.

Second, it can be shown that program transformations have inverse operations.

That is, if a program has been transformed, then there will be a transformation

which has the opposite effect and takes it back to the original version. This phe

nomenon can be used in program maintenance, by performing transformations

that are the "inverse" of those used in development, to derive specifications from

existing programs. (As yet, it is only a hypothesis that it is easier to modify

and evolve a transformational development than it is to do so for a conventional

method with a corresponding proof, but it seems a reasonable claim since, in most

cases, the development will proceed along similar lines with the same transform

ations being applied.)

The transformational approach to programming has some roots in the sixties,

when it was shown [115] [116] that certain well-known programming constructs

(such as conditions and loops) of ALGOL-like languages were nothing but nota-

tional variants on the Lambda-Calculus developed by Alonzo Church [57] in the

1930s. It was also found that certain complex linear recursion schemes could

be transformed into simpler recursion schemes such as tail-recursion or iterative

schemes. This led to the discovery of increasingly many transformations.

Burstall [48] stated that motivation for the transformational approach to program

development is "that programs are comphcated, hard to understand and prone to

errors because we want them to be efficient... So the idea is to start with a program

which does the right job but entirely sacrifices efficiency in favour of simpHcity

and modularity. We then transform it by correctness-preserving transformations

until a tolerably efficient, though less perspicuous, program is obtained." The

aim, then, is to extend the scope of transformation systems in two ways: (a) so

that it is only necessary to produce a specification since that can be transformed

Chapter 2: Solutions to Correctness and Maintenance 34

into an efficient program, and (b) so that it is possible to transform an existing
program into a specification.

2.5 Summary and Conclusions

The problem of ensuring program correctness can be approached from several

directions, most notably through program inspections and other "look and see"

methods, testing and formal methods. This last is the only method that can

guarantee the correctness of a program, but the overhead caused by the need to

construct proofs is considerable. Automatic proof generation would alleviate this

difficulty, but is currently impractical. However transformational development

would provide a formal development method without the need to construct proofs.

Software maintenance needs to be addressed as a management issue in order

to impose quality onto the process by means of using more rigorous approaches.

Such approaches mean the use of improved tools, improved methods and probably

both. An effective tool would be one that permitted the use of formal reverse

engineering, since designs could then be recovered more easily. A tool based on

program transformations would offer the required functionality.

In conclusion, an effective transformation-based tool would provide a method of

achieving enhanced quality in software development, but more importantly, in the

often-overlooked phase of software maintenance.

2.6 Topics Addressed in this Thesis

The next chapter introduces transformation systems and surveys existing sys

tems, considering their benefits and shortfalls. It then addresses the question: "If

transformation systems are so good, why are they not used more widely?".

Chapter 4 describes Ward's work which forms the background to the transforma-

Chapter 2: Solutions to Correctness and Maintenance 35

tion system described in this thesis and the ReForm project of which it is a major
part. The specific problems to be addressed are also defined in this chapter,
together with the criteria for success against which they will be judged.

Chapters 5-8 present the transformation system that has been created, concen

trating on the new language MSTAWSL in which the transformations are written.

This language is assessed to determine its suitability for representing various kinds

of transformation, concentrating on the transformations needed to perform reverse

engineering.

Finally, the results that have been obtained with the resulting transformation

system are examined in order to identify its strengths and weaknesses as a tool

which purports to aid the maintenance programmer.

Chapter 3

Program Transformation

Systems

3.1 Introduction

This chapter introduces transformation systems, giving some important definitions

and explaining how these systems can be categorised. Existing transformation

systems are analysed in terms of their benefits and shortfalls. The question why,

if transformation systems have so many alleged advantages, they are not used more

widely, is addressed by identifying specific problem areas. Finally, a summary is

presented of what can be learned from these systems and an explanation is given

of how these features could be incorporated into a new transformation system.

This, therefore, enables the definition of objectives and criteria for the success of

the research described here to be presented.

36

Chapter 3: Program Transformation Systems 37

3.2 Important Definitions

Program transformation is a process which treats a program as an object in it

self. Transforming a program will preserve some of its properties and alter others.

While many choices can be made about what properties to preserve and alter, the

workers in the transformation field have focused on altering the performance char

acteristics of programs while preserving their semantics [17]. From this perspect

ive, a program transformation system and a compiler are essentially equivalent;

both translate a high-level program (specification) to a low-level, semantically-

equivalent implementation [80]. Transformation is more powerful, however, as it

gives more flexibility, for example in the choice of the implementation of sets as

lists, arrays, hash tables etc. The transformation system discussed in this thesis

will be slightly different from conventional transformation systems in that, while

the characteristic that is preserved is still the program's semantics, the aim is that

the characteristic that changes is the program's comprehensibiHty, thus facilitating

reverse engineering.

There have been numerous different attempts at defining the terms used in trans

formational programming. Partsch [152] gives some useful definitions:

A program scheme is a representation of a class of related programs.

Transformation rules are partial mappings from one program

scheme to another, such that an element of the domain and its im

age under mapping constitute a correct transformation.

Transformational programming is a methodology of program con

struction by successive applications of transformation rules. Trans

formational programming is a "constructive approach". This con

trasts, for example, with pure verification approaches, where the ques

tion of how to obtain the program to be verified is ignored.

A transformation system is an implemented system for supporting

transformational programming.

Chapter 3: Program Transformation Systems 38

Some alternative definitions for these terms have been given by Bauer [26] as
follows:

A transformation is the generation of a new piece of program from

a given one.

A transformation is said to be "correct" if the programs are semantic-

ally equivalent.

A transformation rule is a mapping between sets of programs. In

general such a mapping is a partial one, as it is only defined for par

ticular kinds of programs.

In this thesis the terms "program transformation" or just "transformation" will

be used in place of the phrase "transformation rule" and will be defined thus:

A program transformation is a change made to the text of a pro

gram in such a way that the program's semantics remains unchanged.^

There has already been much research into transformational programming and

this has resulted in a large number of experimental systems — see [152], [73] [192

for surveys of these systems.

In general, transformation systems can be classified in a number of ways [152

151] as follows:

• By their purpose;

• By their transformation catalogue type;

• By their method of expressing transformations;

^It will be seen later that in extracting a specification, it may be necessary to change a
program so that its semantics become less defined in a precise sense.

Chapter 3: Program Transformation Systems 39

• By their level of automation;

• By the language they transform; and

• By their level of formality.

3.3 Purposes of Transformation Systems

Transformation systems fall roughly into two categories: those that use trans

formations for some specific, limited, purpose and those that are general-purpose

program manipulation tools. The former type is typified by the supercompiler.

Supercompilers are defined as highly automated transformational

programming systems that can translate high-level, mathematical,

problem specifications into machine code for a variety of target com

puters [148 .

Specific examples of special-purpose transformation systems include SETL (see

Appendix A . l) [62], RAPTS (see Appendix A.2) [148], TAMPR (see Appendix

A.3) [42] and the Restructurizer (see Appendix A.4) [7] [168]. While all these

systems have proved successful to varying degrees in their own fields, they are

not suitable, due to their specificity, either to general program development by

transformation or to software maintenance, in particular to reverse engineering

by transformation.

In contrast to limited-domain transformation systems, a number of general-

purpose transformation systems have been devised, and some of these have been

implemented. Notable general-purpose transformation systems include Burstall

and DarHngton's Work (see Appendix A.5) [49], T I (see Appendix A.7) [18] and

GIF (see Appendix A.10) [27]. The aim of these transformation systems is to allow

the user to construct programs by transformation while the computer performs

the clerical work of constructing the intermediate program versions.

Chapter 3: Program Transformation Systems 40

Currently, some of these systems have been used in software maintenance, but
mostly just to the extent that transformational developments can be replayed
from slightly different starting conditions to produce alternative program ver
sions. Systems that have been used in this way include the ZAP system (see
Appendix A.6) [70] [71] [74] and DEDALUS (see Appendix A . l l) [127]. Unfor
tunately, no work has been undertaken on transforming existing code with these
systems, rendering them of little use in the realm of legacy code. However, two
pieces of work do seem applicable to reverse engineering: Kozaczynski's program
transformation system (see Appendix A.13) [113] and Ward's work (see Appendix
A.14) [177]. There are problems, though. Kozaczynski's system lacks a formal
basis — a necessary requirement for a system which is to be used on code before
its purpose is understood — and Ward's work only exists in the form of a number
of theorems on program equivalence; no transformation system has been built on
this work.

3.4 Transformation Catalogues

Most transformation systems rely on a predefined collection of rules (which may be

expressed in various ways) describing how the program may be changed. There are

two (not necessarily opposing) ways of constructing the collections of rules. The

first method is the catalogue approach. Examples of this manner of working

include T I (see Appendix A.7) [18] and PSI (see Appendix A.9) [87] [85] [86] [88 .

A catalogue of transformation rules is a structured collection of trans

formation rules relevant for a particular aspect of the development

process [152 .

In this approach there is a large set of transformations covering all aspects of

program development. For example, there could be rules containing programming

knowledge (such as how best to search an ordered tree), there could be rules about

features of the language (such as how to remove recursion), there could be rules

Chapter 3: Program Transformation Systems 41

relating to the programming domain (for example, the rules of arithmetic), and
finally there could be rules about efficiency of implementation and choice of data
structure.

This approach, although powerful, has two drawbacks. First, the rules are fixed

so if the system is used outside its perceived domain it becomes less suitable and,

second, with such a large catalogue, finding the "best" transformation to apply

at a particular point is relatively time consuming, especially if the programmer is

unfamiliar with all the options at his disposal.

The other method is the generative set approach. Examples of this catalogue

style include Burstall and Darlington's work (see Appendix A.5) [49] and RAFTS

(see Appendix A.2) [148]. In this approach there is a small set of powerful, pos

sibly language-independent, elementary transformations from which others can be

produced by combination.

Compared with the catalogue approach, this method is much more flexible since

transformations appropriate to the situation can be constructed by the program

mer (who knows they will be "correct", in the sense that they preserve the se

mantics, since the elementary transformations are correct). This advantage is

also the approach's drawback since the programmer's effort is shifted on to trying

to work out what sequence of very minor changes he needs to make in order to

produce some desired large-scale effect.

3.5 Methods of Expressing Transformations

A transformation rule can be described in one of two ways: as an ordered pair

of program schemes, the "input template" and the "output template" [26], or in

the form of an algorithm, which takes a given program as input and produces an

equivalent one as output — provided that the input program is in the domain of

the rule (compilers behave this way). Of the former type, examples are TAMPR

(see Appendix A.3) [41] and DEDALUS (see Appendix A.11) [127] [125]. Of the

latter type, examples are the ZAP system (see Appendix A.6) [70] [71] [74] and

Chapter 3: Program Transformation Systems 42

Hildum and Cohen's work (see Appendix A.12) [95].

Representing transformations in terms of input and output templates enables

the correctness of the transformations to be checked easily. It also makes their

purpose clear and reduces the amount of storage that each requires. However,

it is clear that certain information, such as whether a variable is assigned in a

particular section of code, cannot be represented in terms of patterns; or at least

cannot be represented without adding greatly to the patterns' complexity. One

means of tackling this problem, which has been adopted by CIP (see Appendix

A. 10) [27], is to represent the transformations as input and output templates plus

additional "semantic" predicates on the code being transformed. This method

works well for simple transformations, but for more complex transformations, in

particular those that require information about a part of the program other than

the part that the transformation changes such as replacing a variable by its value,

it becomes rather clumsy [155]. Thus, a system which represents transformations

as algorithms seems more flexible, even if the expression of each transformation

might be more difficult to construct, read and verify.

3.6 Automation Level

There are also different approaches to applying transformations.

User responsible systems, such as T I (see Appendix A.7) [18] and CIP (see

Appendix A.10) [27], make the user responsible for the selection of each and

every transformation. In order to make these systems viable, it is necessary to

have sufficiently high-level transformations such as "remove recursion" so that the

programmer does not get unnecessarily involved with minor details. Hence this

method is best suited to working with large-catalogue systems.

Fully automatic systems, such as RAPTS (see Appendix A.2) [148] and

TAMPR (see Appendix A.3) [42], are similar to very-high-level optimising com

pilers in that they run unaided. These systems use heuristics, machine evaluation

of different possibilities, back-tracking and other strategic devices to select trans-

Chapter 3: Program Transformation Systems 43

formations. However, any given system is only really applicable in a small domain.
Another problem is exemplified by the SETL system (see Appendix A . l) [163] [61];
although it has been used to deal with some complex problems it has required a
great deal of informal reasoning which would be difficult to treat automatically in
this, or indeed any, system.

Semi-automatic systems, such as ZAP (see Appendix A.6) [70] [71] [74] and

GLITTER (see Appendix A.8) [75], let the user set a medium range goal for the

computer to perform automatically. A typical goal might be the removal of a loop

or a change in data structure. These systems have the advantage that the user

can make intuitive guesses (based on his programming knowledge) as to the best

way forward, but leave the computer to do the actual mechanical manipulation

of the program.

3.7 Language to Transform

There is also a choice in the language used for the systems. Some systems, such

as SAFE (see Appendix A.7) [190], work only with specification languages which

allow formal statements of problems but not their implementation. Others work

with (sometimes specially designed) programming languages in which solutions

can be formulated; examples include the Restructurizer (see Appendix A.4) [7

168] which uses COBOL, and TAMPR (see Appendix A.3) [42] which uses 20

language levels ranging from pure applicative LISP to FORTRAN. Still others

systems are used to move between specification and programming languages and

work in wide spectrum languages in which both specifications and programs may

be expressed; examples include GIST (see Appendixes A.7 and A.8) [81] [19], CHI

which uses a language called V (see Appendix A.9) [89] and the GIF project (see

Appendix A.10) [27] which uses a language called GIP-L.

Chapter 3: Program Transformation Systems 44

3.8 Formality

For transformation systems to contain proven transformations it is necessary to

have a mathematical formulation of the language that is being used. While some

transformation systems, for example CIP (see Appendix A. 10) [153] [26] and

Ward's work (see Appendix A.14) [177], do have a formal basis, most do not.

Only those that have a formal basis are suitable for manipulating legacy code

since even if the user has no understanding of the code that he is transforming,

he would still want to be able manipulate it so as to be sure that his changes

preserve the code's meaning.

There are several ways to define the semantics of specification and programming

languages, and hence to prove transformations. See [140] and [144] for surveys of

the main methods for describing semantics.

3.8.1 Semantics of Specification Languages

There are three main approaches to the semantics of specifications: the state-

machine approach, the algebraic approach and the modelling approach. Each of

them defines results in terms of underlying abstractions, usually associated with

some known mathematical entity about which it is possible to reason with rigour.

With the algebraic and state-machine approaches, the underlying abstraction is

part of the approach; with the abstract model technique, it is chosen by the

specifier [31]. The three approaches will be illustrated by means of a simple

"push" operation onto a stack.

The state-machine^ technique was first developed on an ad hoc basis and was

subsequently formalised. The underlying abstractions of state machines are in

tegers and Booleans, but these have been extended to include real numbers and

character strings. A specification is a set of functions that specify transforma

tions on inputs, and this set may be viewed either as defining the nature of an

state is a mapping from a given set of components (i.e. variables) onto values.

Chapter 3: Program Transformation Systems 45

abstract data type or as describing the behaviour of an abstract machine. A state-
machine specification is given in terms of states and transitions between states.
Its functions are divided into two classes [31]:

V-Functions — allow an element of a state to be observed but do not define

any aspect of transitions.

O-Functions — define transitions by means of effects. The effect of an 0-

function is to change a state; this is done by denoting a V-function and

altering the value it will return.

V-functions and 0-functions correspond to array variables and operations in a

programming language, respectively, in that V-functions can be treated as map

ping symbols (i.e. variables) onto values, and 0-functions modify the values to

which V-functions map. V-functions can, therefore, readily describe any struc

ture that resembles an array, list, tree, or constructs obtainable by the structuring

facilities of languages such as PL/1 or COBOL [31].

The definition of a stack push would be:

OFUN push(item)

EFFECTS 'stack(depth) = item

'depth = depth + 1

While the state-machine approach has not been widely described in the literature,

it is frequently used in practice as a result of its suitability for vahdation of security

as is described by Berg et all [31]. There are, however, two severe drawbacks with

this approach. The first is that specifications of non-array-based structures, for

example algebraic formulae, rapidly become very complex. Also, the specification

of exception definitions — that is error conditions — is very weak, since there is

only really scope for a function to return an "exception number".

SPECIAL [92] is an example of a state-machine specification language.

Algebraic specifications are based on a concept of defining abstract data types

which is called algebraic. A data type is characterised by one or more sets of

Chapter 3: Program Transformation Systems 46

values and the operations that are allowed on the values [79]. As an example,
while stacks and queues of integers both correspond to sets of integers, they are
different data types since different operations are allowed on them. The technique
is called "algebraic" because the values and functions of a specification can be
viewed as forming an abstract algebra.^ Algebraic specification languages also
assume built-in functions such as If-Then-Else and boolean operators. Functions,
which are mathematical functions in that they may not have side effects, are
defined in algebraic specifications by stating their relation to one another.

It is not possible to define a stack push in isolation from the other stack operations.

The definition of a stack would include algebraic equations such as:

pop (push (stack, item)) = stack

together with typing information, which in this case would indicate that "pop" is

function which maps stacks to stacks.

While they express simple objects well, algebraic specifications share the problem

of exception definitions. Another problem with algebraic specifications is the

number of hidden or auxiliary functions (i.e. functions which preserve certain

internal values between function calls) required to specify even simple objects.

Algebraic specifications are also difficult to read; Berg et al give an example of

two specifications, one of a bag and one of a set, which differ only very sHghtly in

one line (of nineteen) [31] making it difficult to distinguish between them. Finally,

limiting functions to those which cannot have side effects makes it impossible to

specify a stack "top" statement which returns the top value of a stack and has

the side effect of popping a value off the stack.

CLEAR [50] and OBJ [84] are examples of algebraic specification languages.

Model-based specifications were developed by Hoare [96] as part of a unified

technique for the specification and verification of abstract data types. It is also

known as the predicate transform method.

^Abstract algebra is concerned with general mathematical structures which have analogues
of the arithmetical operations; for example, Booleans, groups, matrices and vectors.

Chapter 3: Program Transformation Systems 47

A model-based specification is a description of a software system presented in
terms of a particular state space, together with a collection of operations and
functions which act upon it [136]. Preconditions and postconditions are used to
indicate under what conditions given functions are valid, and what results they
give under those conditions. Functions are defined in terms of an underlying
abstraction (or model) that is defined by the specifier. An abstract model has
no intrinsic meaning, but rather its meaning depends on the selected underlying
abstraction, and so for a model-based specification to be useful an appropriate
underlying abstraction must be chosen. Thus, this abstraction can be anything
about which it is possible to reason formally but is generally carefully chosen to
be an appropriate abstraction of some commonly-arising, well-defined computer-
oriented concept (such as sets, sequences, Cartesian products and various forms
of relation).

As an example, a bounded integer stack would be defined by using, as the un

derlying abstraction, a sequence, which in turn would be defined algebraically.

(Algebraic specifications express the behaviour of simple objects very well.) The

stack definition would include the following lines:

FUNCTIONS push(item: integer)

PRE 0 < length(stack) < (maxJength - 1)

POST 'stack = append(stack, item)

Two factors affect the appropriateness of a given abstract model: whether the

function to be specified can be expressed in the precondition/postcondition

format, and whether the chosen underlying abstraction permits a "clean" spe

cification of the desired functions. Assuming that a good underlying abstraction

is chosen, the only drawback to this approach is that the implementor of the spe

cification may be swayed in his choice of data representation by the underlying

abstraction used in the specification.

Z [170] and V D M [103] [94] are examples of model-based specification languages.

Berg et al [31] examine these different technique in detail, giving certain basic

requirements that an adequate specification language should satisfy. Model-based

Chapter 3: Program Transformation Systems 48

specifications have the fewest disadvantages (provided suitable abstractions are
chosen) and appear to have the greatest potential for writing clear and concise
specifications. It should be noted, however, that these different methods have
been shown to be equivalent.

3.8.2 Semantics of Programming Languages

Just as there are a number of ways of specifying the semantics of a specification,

so there are different ways to specify the semantics of a program; however, not all

of these are conducive to the production of a useful transformation system. The

most important methods of expressing the semantics of a programming language

are operational semantics, axiomatic semantics and denotational semantics.

The semantics of a programming language can be defined via a hypothetical, or

abstract, machine* which interprets the programs of that language; such methods

have been called operational semantics [35]. The semantics of a construct is

specified by the computation it induces when it is executed on such a machine.

In particular, it is of interest how the effect of a computation is produced [144].

The machine performs a mapping of initial internal states to final states by car

rying out a sequence of these primitive operations (each producing a new internal

state). The whole sequence of such states corresponds to the execution of the

program. It is assumed that the state space and operations defining the primitive

abstract machine are so simple that their meaning or effect cannot possibly be

misunderstood. Nevertheless, the operations of the abstract machine must still be

defined formally, leading to the potential for infinite regress unless the abstract

machine is defined in some other way.

Two programs are equivalent according to their operational semantics if they lead

to the same sequence of operations performed by the primitive abstract machine.

Thus, the operational approach characterises the actual effect of program exe

cution by relating it to executions at a separate, more primitive, level. More

*An abstract machine is defined by a pair consisting of a state and a set of operations for
effecting state changes.

Chapter 3: Program Transformation Systems 49

importantly, however, the operational approach defines the semantics of a pro
gram for each specific computation of that program, rather than for the class of
all computations that it can perform [31]. Thus, proving that two programs have
the same operational semantics necessitates considering every possible execution
of the program. Linked to this is a more fundamental drawback to operational
semantics when working with program transformations. While it can be eas
ily seen, for example, that recursive and iterative versions of the same program
give identical results with identical input, they lead to completely different se
quences of internal operations. Thus they have different operational semantics
and a transformation from one to the other would not be semantic-preserving in
the operational sense.

The axiomatic method views the definition of programming languages^ from an

other perspective: a language's semantics as a theory of the programs written in

that language [140]. It does not try to ascertain what a program means, but only

what may be proved about i t . This is achieved by associating the semantics of

programming language constructs (and, hence, programs) with logical assertions

of two kinds. The first assertion is assumed true prior to execution of a program

ming language construct. From it , and from the nature of the language construct,

a second assertion that is true after the execution of the construct is derived.

The pair of assertions thus characterises legitimate input and output states of the

construct and, thus, it is possible to define implicitly the semantics of a program

ming language by a collection of axioms (derived from the assertions) and rules of

inference (which are usually taken from mathematical logic) [35]. These aocioms

and rules of inference permit the proof of properties of programs, in particular

that a given program is correct and that it realises a given input/output relation.

To do this a notation is introduced as follows:

{ P } S {Q}

where P and Q are logical propositions relating to the variables of the program

and 5" is a statement. This has the meaning: if P is true before execution of 5* and

^The most notable example of this kind of language definition is Hoare and Wirth's definition
of PASCAL [99].

Chapter 3: Program Transformation Systems 50

S terminates, then Q will be true afterwards. Hence, P is called the precondition
and Q is called the postcondition.

To prove the correctness of a program given an initial condition and a final con

dition, for example,

{ P } S , ; S2; ...•,S^{Q}

it is necessary to introduce suitable propositional formulae between all the state

ments. This is done by finding a condition P„ which, if it is true before the

execution of Sn, will yield Q. From this it is possible to find P„_i in a similar

way, and so on, until the program

{ P } { P i } 5i { P 2 } 5-2 ... {P„} 5„ {Q}

is obtained. This is known as a proof tableau [14]. Al l that then remains to be

done is to prove

{P} {Pi}-

Using this notation, axioms can be introduced by using axiom schemas [35] [133

and these axioms allow facts about program statements, and indeed whole pro

grams, to be proved. However, the axiom schemas soon become very complex.

For example, a section of code with a single label, L, in it preceded by some

statements, ^ i , followed by some more statements, ^2 and with a jump (Goto) to

the label would have the axiom

{Q} Goto L {false} h {P} {Q} , {Q} Goto L {false} h {Q} S2 {R}
{ P } S,; L; S2 {R}

Already, the formulae are getting rather complex, and the formula for something

such as

If B Then Goto Li Else Goto L2 Fi

although it could be written and proved, would be too hard to deal with in

practice.

Program derivations (and transformations) within the cixiomatic theoretical

Chapter 3: Program Transformation Systems 51

framework give rise to a very large number of proof obligations, since at each
transformation stage the correctness of the new implementation must be proved
against the previous implementation by proving all the required properties [179 .
Large programs may require over one hundred proofs [179] and in general few, if
any, of these proofs are likely to be rigorously carried out. So, what this amounts
to is a formal method of program specification and an informal development
method.

Another disadvantage of axiomatic semantics is the fact that while assertions

about programs can be derived, it is not always clear that these are the most useful

such assertions. An example of this is the requirement that loop invariants be

determined in order to prove facts about loops; it is difficult to ascertain whether

these invariants are the most efficacious. In general, the axiomatic approach can

be used to reason about certain aspects of programs but not to express their

meaning.

Denotational semantics is concerned with the effect of executing a program,

where the effect is an association between initial and final states [144]. Thus, the

aim in defining the denotational semantics of a given language is to associate a

suitable mathematical object (number, set, function etc.) with each construct of

the language. The semantics of the constructs are defined by so-called semantic

valuation functions which map the constructs to suitable objects, or denotations,

that they denote. Although any object can be associated with each programming

language construct the language, it is most convenient to choose representations

that use objects of standard mathematical domains since these can be reasoned

about formally. Careful choice of representation can greatly simplify the specific

ation of operations [121 .

The semantics of the statements in a simple language containing assignments,

Skip statements. If statements and While loops could be denoted by the semantic

valuation functions shown in Figure 3.1 [144]. Here S^s, A and B are the semantic

valuation functions of statements, expressions and Booleans, respectively. s[x (->

.4 |a]5] is the state s with the value for x replaced by the semantic valuation of a

with the values of variables in a taken from s. cond is an auxiliary function which

Chapter 3: Program Transformation Systems 52

= s[x ^W-S]

= id

SdASi; S2j = SdslS2l 0 SdslSll

Sdsili B Then Else ^2 Fi l = condiBlbj, S,,lS^l S,,lS2j)

5d,|While 5 Do 5 Od] = FIX F
where F g = cond(B|6I, g o SdsfSj, id)

Figure 3.1: The Denotational Semantics of a Simple Language

has the definition:

{ gi s a p s = true

g2 s n p s = false

Defining the semantics of the While loop is a more major task since the loop could

execute any number of times. The definition makes use of a fixed point of the

functional F.

While the semantic definition in this example if quite straight-forward, increasing

the complexity of the language causes a corresponding increase in the denotational

semantics. For example, the introduction of local variables necessitates the use

of an "environment" in place of a state, and the introduction of Goto statements

requires the use of "continuations" [144]. In each case, these complications must

be added to every language construct, making the definition of the simplest as

complicated as the most complex [177].

The denotational approach to semantic definition makes it possible to talk about

programming language constructs and program equality in the sense that two

constructs or programs are equal if they both have the same denotation. With

the notation of Figure 3.1, Si and ^2 are semantically equivalent if and only if

144]:

SdslSij = SdAS2}

Chapter 3: Program Transformation Systems 53

Proving that two programs are equal is equivalent to a mathematical proof that
two given mathematical objects are the same. For this the ful l battery of proven
mathematical techniques can be used; however, even then it is possible that the
equivalence may be "undecidable" in that it cannot be proved to be either true
or false.

These three approaches are similar in that they all map a program into a state

space for that program. With operational semantics that state space is a more

primitive abstract machine and the mapping is by way of implicit definition. This

has few advantages and several disadvantages which relate to the fact that the

semantics really only define a particular execution of the program.

With axiomatic semantics the state space is the set of formulae of mathematical

logic and logical deduction is used to show program equivalence. While this

approach has many advantages for program verification — notably that there is a

consistent method of constructing proof obligations and then demonstrating their

correctness — these proof obligations quickly become very complex and unwieldy,

making the approach less straight-forward in practice.

With denotational semantics the state space consists of the mathematical ob

jects associated with the programming language constructs, and the mapping is

by way of semantic evaluation. This approach has not been widely used for pro

gram verification, since manipulating general mathematical objects is harder than

manipulating formulae of logic. However, for defining a language suitable for pro

gram transformation, the ability to demonstrate program equivalence is the central

concern, and denotational semantics provides this in a straightforward manner.

Moreover, the use of denotational semantics would be greatly simphfied if it could

be defined without recourse to "tricks" such as the use of "continuations".

3.9 Summary

The transformation systems considered in this thesis (see Appendix A for specific

details) are summarised in Table 3.1.

Chapter 3: Program Transformation Systems 54

Name of
System

Level of
Applicability

Catalogue Automatic or
User-Driven

Language Formal?

S E T L Spec. —» Code N/A Automatic Very-High-Level No

RAPTS Spec. —• Code Small Automatic Specification Yes

TAMPR Code —• Code Small Automatic LISP FORTRAN
-|- Intermediates

Yes

Restructurizer Code —• Code Small Automatic COBOL
-I- Intermediate

No

ZAP Code —* Code Small Mostly
Automatic

LISP Yes

SAFE Informal Spec. —»
Formal Spec.

N/A Automatic Specification No

T I Spec. —» Code User-
Extensible

User Driven Wide Spectrum No

G L I T T E R Spec. —» Code User-
Extensible

Semi-
Automatic

Wide Spectrum No

PSI Dialogue —» Code Large User Driven Standcird
Languages

No

CHI Dialogue —* Code Large User Driven Wide Spectrum No

CIP Spec. —* Code Large User Driven Wide Spectrum Yes

DEDALUS Spec. —* Code Large User Driven LISP No

Hildmn and
Cohen's Work

Code —> Code User-
Constructed

N/A User-
Dependent

No

Kozaczynski's
Work

Code —* Spec. User-
Constructed

Automatic COBOL No

Ward's work Spec. *-> Code Large User Driven Wide Spectrtun Yes

Figure 3.2: A Summary of Transformation Systems

Chapter 3: Program Transformation Systems 55

3.10 In what ways have existing transformation
systems been successful?

There are several distinct advantages to software development by formal^ trans

formation [27]:

• The final program can be relied on to be correct (according to the initial

specification) by construction (since each stage in the development follows

from the previous one in a provably correct manner), provided that the

transformation system being used has a sound theoretical foundation;

• Transformations can be described by semantic rules and can thus be used

for a whole class of problems and situations;

• Due to formality, the whole process of program development can be suppor

ted by the computer. (A significant part of transformational programming

involves the use of a large number of small changes to be made to the code.

Performing such changes by hand would almost invariably introduce clerical

errors and the situation would be no better than the original ad hoc meth

ods. However, such clerical work is ideally suited to automation, allowing

the computer itseH to carry out the monotonous part of the work and the

programmer to concentrate on the actual design decisions.); and

• The overall program structure is no longer fixed throughout the develop

ment, so the approach is quite flexible.

There are potential advantages, too, in the use of program transformations for

software maintenance. These are mainly related to the fact that, just as it is

possible formally to produce a program from a specification, so a specification

produced by transformation from existing code would provably be correct. How

ever, in general it remains an open question as to whether an existing program

^Transformation systems whose transformations are not proven to be semantic preserving
may, by chance, produce correct programs. Goldberg [80] argues that a transformation need
not be formally proven since extensive use of that transformation improves the confidence in its
correctness. This, however, is still no substitute for a proof.

Chapter 3: Program Transformation Systems 56

which either had no formal specification originally, or which has been heavily
modified, has a concise specification. The advantages are summarised by Yang
193] as follows:

• Increased reliability: errors and inconsistencies are easier to identify at a

high level of abstraction;

• Formal links between the specification and the code can be maintained;

• Maintenance can be carried out at the specification level;

• Large restructuring changes can be made to the program with confidence

that the program's functionality is unchanged;

• Programs can be incrementally improved — instead of being incrementally

degraded; and

• Data structures and the implementations of abstract data types can be

changed easily.

3.11 In what ways have existing transformation

systems failed?

The disadvantages to using transformation systems are as follows:

• Users of transformation systems need a considerable amount of training

to become proficient at using the system. A novice might be able imme

diately to apply transformations to the code, but it would not always be

clear whether the transformations being applied were improving the code

(according to some measure such as efficiency or comprehensibility);

• Although transformations can be used to restructure unstructured code with

little difficulty, i t is not clear how they could be used to cross levels of

abstraction in the most "meaningful" way when used for maintenance. For

Chapter 3: Program Transformation Systems 57

example, an array could have been used to implement any of a variety of
abstract data types such as sets, trees or tuples;

• Most transformation systems rely on simpUfication "rules" such as how to

rearrange a mathematical formula. The implementation of such rules is an

area which needs addressing in more depth;

• Few systems have been shown to work with industrial-scale programs;

• For an effective tool, the correctness of the implementation of the transform

ations themselves needs to be verified. This is a practical, as opposed to a

theoretical, Hmitation and in the long term it could even be an advantage

since the transformations' correctness only needs to be checked once; and

• From a technical point of view, there is still no satisfactory way of obtaining

non-local information about a program being transformed — i.e. information

outside the transformation's pattern — such as the definition of a proced

ure. This reflects the limitations of a purely pattern-based transformation

system.

The research described in this thesis will involve the construction of a transform

ation system which will act as a framework in which solutions to these problems

can be investigated.

3.12 Why are transformation systems not more

widely used?

Although program transformations are widely used in limited domains, such as in

optimising compilers, there has been no wide-spread adoption of transformation

systems for either software development or maintenance. In addition to the above

failures, there are also additional factors which have prevented the widespread

adoption of transformational programming.

Chapter 3: Program Transformation Systems 58

3.12.1 Applicability

The first set of factors relate to the applicability of program transformations:

• Formal specification is not widely used so there is little call for a system

which can produce code from specifications, or vice versa;

• Existing systems usually only work on toy problems and have not generally

been shown to scale up;

• Existing systems are only of use in a limited domain or with particular

programming languages which are not used in traditional applications; and

• Existing systems do not address maintenance.

3.12.2 Usability

The second set of factors relate to the usability of program transformation systems:

• There is usually a need to become familiar with mathematical methods in

order to use the tools;

• It is possible that there are no formal proofs of the transformations, so Httle

confidence may be placed in them;

• There are few simple user interfaces; and

• Change is required in the software process and programmer mentality in

order to make use of the systems.

These points are summarised by Ould: the challenge for tool developers is to find

better ways of disguising the formality, so that the user need not have impractical

amounts of formal methods skills [146 .

Chapter 3: Program Transformation Systems 59

3.13 What can be learned from existing trans
formation systems?

The transformation systems surveyed vary widely in their aims — at one end of

the spectrum are systems such as SETL and TAMPR which use transformations

to achieve some other goal, and at the other are systems like CIP whose purpose

is to allow programs to be developed solely using transformations. In terms of

success, the systems also vary greatly from DEDALUS which has only been used

on extremely simple examples through to ZAP, for example, which has been used

in the development of a small compiler. Nevertheless, all the examples tend to be

either small and algorithmically based with little emphasis on data complexity, or

large programs with a simple structure.

Most existing transformation systems are designed to transform from specific

ations to programs and do not attempt to address the issues of maintenance.

Those that do either require that the program being maintained was developed

with the same system, or else do little more than simple restructuring. Only ZAP,

DEDALUS, Kozaczynski's work and Ward's work showing any promise here. The

systems do show that there have been enough small-scale successes to make this

a path which is worth following further.

3.14 Conclusions

From the survey of the existing transformation systems it seems as if the most

valuable system would be one which works on a wide spectrum language, uses

formally proven transformations based on denotational semantics, has a large but

easily accessed catalogue of rules and which provides a high degree of automation,

but which nevertheless works interactively to allow for intelligent guidance by the

user. Although CIP comes closest to the above requirements, it is hampered

by being based on algebraic semantics (which makes i t necessary to construct

additional mental models in order to understand the abstract types in the pro-

Chapter 3: Program Transformation Systems 60

gram), by having an applicative kernel (which makes it poorly suited to modehng
real-world programs) and by the problem with non-local information (which ne
cessitates storing the definitions of procedures at every point in the program).
Provided that the transformations were expressed in a suitable form. Ward's ap
proach could overcome all these drawbacks.

The rest of this thesis will , therefore, focus on the design of a transformation

system to exploit Ward's work. In order to address the weaknesses of existing

systems, the new system must:

• Be easy to use within some clearly defined method;

• Be able to perform large restructuring changes;

• Be applicable to all aspects of software maintenance and reverse engineering,

including the task of crossing levels of abstraction;

• Be applicable to real programs;

• Incorporate a sufficiently powerful subsystem for performing mathematical

manipulations;

• Be able to obtain non-local information about the program being trans

formed; and

• Be correctly implemented.

Chapter 4

The Area of Research

4.1 Introduction

As was put forward at the end of the previous chapter, Ward's methods of proving

refinements and transformations of programs [177] is a comprehensive theory.

However, it also has the potential advantage that it is applicable to all stages of

the software life cycle including that area in which transformation systems have

traditionally been weak: maintenance. Thus, a computer-based, semi-automated

transformation system founded on Ward's theorems would not only be a powerful

system, but would also be widely apphcable.

The area of research that will be addressed in this thesis, therefore, is concerned

with some of the specific problems which relate to the construction of such a trans

formation system. This system will be applicable primarily to software mainten

ance, in particular reverse engineering.

61

Chapter 4: The Area of Research 62

4.2 A More Detailed Look at Ward's Work

The Wide Spectrum Language (WSL) which is used in Ward's^ transformation

system was originally designed to simplify proofs of program equivalence. It is

based on a core kernel language with denotational semantics and a model-based

theory of semantic equivalence. Extensions to this language are defined in terms

of the basic constructs. The kernel is not purely applicative, but includes the

concept of a state, unlike CIP [27], so that imperative programs can be operated

on, by means of Back's [12] atomic description construct {xjy • Q) which will

be explained in the next section. In order for this approach to be appUcable

to maintenance, WSL must be able to represent existing programs which are

generally^ written in imperative languages such as COBOL, FORTRAN and C.

Thus, the use of an imperative, as opposed to a functional, kernel means that

WSL and its associated transformations are potentially suitable for this purpose.

In addition, specifications, expressed in terms of first order infinitary^ logic, may

be included in WSL, making it genuinely "wide spectrum".

4.2.1 The Kernel Language

The kernel language has two primitive statements: the atomic specification and

the guard statement. The atomic specification is based on Back's atomic descrip

tion [12]; it is written x/y • where Q is a formula of first order infinitary logic

(with equality) and x and y are sets of variables. Its efi'ect is to add the variables

in X to the state space, assign new values to them such that Q is satisfied, remove

the variables in y from the state"* and terminate. For example, the statement

{x, y)/{) • X -\- y = 10 sets the variables x and y to arbitrary values such that their

sum is ten.

^Much of this section is taken from Ward's thesis [177] and [180].
^Pure LISP is the major exception, but most LISP programs use impure extensions.
^Infinitary logic allows formulae which consist of the conjunction or disjunction of (countably)

infinitely many terms. The reason for using infinitary logic will be explained later.
^In his new language [13], Back does not include the concept of removing variables from the

state space.

Chapter 4: The Area of Research 63

The guard statement is written [P], where P is a formula of first order infinitary
logic. The statement [P] always terminates and it forces P to be true at this
point in the program without changing the values of any variables. In effect it
restricts previous nondeterminism to those cases which leave P true at this point.
Guard statements provide a useful means for defining extensions to the kernel and
a useful theoretical tool for reasoning about programs, but they cannot be directly
implemented^. (More examples of the use of the kernel language are given in the
section on defining WSL by means of transformational extensions.)

There are three ways of combining statements in the kernel language:

1. SequenticJ Composition: (^ i ; S2)

First 5*1 is executed followed by ̂ 2.

2. Choice: (^ i • ^2)

One of the statements Si or 2̂ is chosen, nondeterministically, for execution.

3. Recursive Procedure (fiX • S)

Within the body S, occurrences of the statement variable X represent re

cursive calls to the procedure.

Although the kernel language is elegant and tractable, it is too primitive to form a

^Later work by Ward [180] [182] uses a modified kernel language with four primitive state
ments. Let P be any formulae and x and y be any non-empty sequences of variables. The four
primitive statements are:

1. {P} is an assertion statement which acts as a partial Skip. If the formula P is true, then
then statement terminates immediately without changing any variables;

2. [P] is a guard statement, as before;

3. add(^x) add the variables x to the state space (if they are not already present) and assigns
arbitrary values to them;

4. remove{y) removes the variables y from the state space (if they are present).

There is an elegant duality between the assertion and guard, and between the add and remove
statements.

This formulation of the kernel language is equivalent to Ward's original formulation. In
particular, Back's atomic description is equivalent to the sequence:

3x • Q; add{x); [Q]; remove{y)

Chapter 4: The Area of Research 64

useful language for constructing "real" programs and needs to be extended. This
is achieved by defining new constructs in terms of the existing ones by means of
definitional transformations.

4.2.2 Extending W S L by means of Definitional Trans

formations

WSL is built up from the kernel in stages, or levels, so as to provide similar con

structs to conventional languages (i.e. conditions, loops, local variable structures,

expressions and conditions with side effects, and so on). Each level is defined in

terms of the previous level. In this way, each new level inherits all the trans

formations of the previous levels and transformations are proved by appealing

to the definitional transformation of the construct and carrying out the actual

manipulations in the previous level of language.

Before describing the language extensions, it is worth pointing out that all levels

of WSL can use expressions and logical formulae. These include variable names

(which are composed of alphanumeric characters together with a few extra symbols

such as " - ") , numbers (which are treated in the mathematical sense, i.e. they

have arbitrary size and precision), strings (which are arbitrarily long sequences of

ASCII characters), sequences (which may contain elements of any type). Boolean

constants and the ful l complement of mathematical operations for manipulating

them.

The first-level language extension definitions are given in the following sections.

(The symbol " = D P " is read as "is defined as".)

Sequential Composition

The sequencing operator is associative, so the brackets can be removed:

Si; S2; S3; ...; Sn = D P (• • • ((-S*!; S2); S3); ...; Sn)

Chapter 4: The Area of Research 65

Assertion

An assertion statement is a partial Skip statement; i.e. it takes a condition and

does nothing if the the condition is true, and aborts if it is false. Thus, an Assert

statement gives information about the context in which it occurs, making it easier

to transformation that part of the program. An Assert statement is defined as

follows:

{B} = .p ()/() • B

Deterministic Choice

Guards can be used to turn nondeterministic choice into deterministic choice^:

If B Then 5i Else 2̂ Fi = D P {{[B]; 5 I) n ([- 5] ; ^2))

Assignment

A general assignment can be expressed as follows:

x:=x'-Q = D P {x'/{) • Q); {x/x' • {x = x'))

Here a; is a sequence of variables and x' is a sequence of new variables. The formula

Q expresses the relation between the initial values of x and the final values. For

example, (n) := (n') • (n' = n -|- 1) increments the value of the variable n and is

defined as:

((n ') /()-(n ' = n ' + l)) ; ((n)/(n') • (n = n'))

^In the LISP-like form of WSL, which will be described later in this thesis, deterministic
choice statements have the type "Cond".

Chapter 4: The Area of Research 66

Simple Assignment

If e is a list of expressions, a; is a list of variables and x' a list of new variable,

then

X I — 6 ~ D P * ~~ ^)

With this notation, the statement to increment n can be written: n:=n-t-l.

Nondeterministic Choice

WSL includes a version of Dijkstra's guarded command [64]:

If Bx 5 i D 5 2 ^82^... a ^ n ^ 5„ Fi

= D P

(((. . . (([5i]; 5 ' i)n([52]; 52)) n . . .) n ([5„]; 5„)) n

([- (5 i V 52 V . . . V 5 „)] ; Abort))

Deterministic Iteration

A While loop is defined using a new recursive procedure X which does not occur

free in S:

While B Do 5i Od =DP (/ i X • (([5]; 5; X) n \-^B\))

Nondeterministic Iteration

Nondeterministic iteration is similar to nondeterministic choice:

Do Bx SxOB2 ^82^... Sn Od

While (S i V B2 V . . . V 5 „) Do

If Bi S1UB2 -^82^... ^ S'n Fi Od

Chapter 4: The Area of Research 67

which can be expanded using the rules above.

Initialised Local Variables

Initialised local variables are introduced with the WSL Var construct which is

defined as follows:
Var I := i : S End

m) • = m S; mx) • True)

Unbounded Loops with Exit Statements

One of the most powerful programming language statements in WSL is the Exit

statement, which takes the form Exit(n) where n is an integer (not a variable), and

which can only occur within loops of the form Do S Od where S is a statement.^

These were described in [110]. They are "infinite" or "unbounded" loops which

can only be terminated by the execution of a statement of the form Exit(n) which

causes the termination of n enclosing loops. These statements are disallowed from

terminating blocks and loops other than unbounded loops.

Previously the only formal treatments of Exit statements have dealt with them

in the same way as unstructured Goto statements by adding "continuations" to

the denotational semantics of all the other statements. This adds greatly to

the complexity of the semantics and also means that all the results of program

equivalence prior to this modification have to be re-proved with respect to the

new semantics. The approach taken by Ward [177] is to express every program

which uses Exit statements in terms of the kernel language. This means that the

new statements do not change the denotational semantics of the kernel so all the

transformations developed without reference to Exit statements still apply. The

interpretation of these statements in terms of the kernel language is as follows:

'''In the LISP-like form of WSL, which will be described later in this thesis, unbounded loops
have the type "Loop".

Chapter 4: The Area of Research 68

An integer variable depth records the current depth of nesting of loops. At the be
ginning of the program there is the assignment depth :=0. Each statement Exit(k)
is translated as depth:=depth-k since it changes the depth of the "current exe
cution" by moving out of k enclosing loops. To prevent any more statements at
the current depth being executed after an Exit statement has been executed all
statements are surrounded by "guards" which are If statements which test depth
and only allow the statement to be executed if depth has the correct value. Each
unbounded loop Do S Od is translated as:

depth:=n; While depth=n Do guardn{8) Od

where n is an integer constant representing the depth of the loop and guardn{8)

is the statement S with each component statement guarded so that if the depth is

changed by an Exit statement then no more statements in the loop are executed

and the loop terminates. Formally, guardn{8) is defined by induction on the

structure of S. For example:

guardn{8i; 82) = D P guardn(8i); guard„{82)

guardn{8i f l 5*2) = D P guardn{8\) • guardn(82)

guardn{Ex.\t{k)) = D P If depth=n Then depth:=depth-k Fi

The rest of the definitions are given in [177]. The important property of a guarded

statement is that it will only be executed if depth has the correct value. Thus

{depthyi^n}; guardn{8) is equivalent to a Skip statement.

Action Systems

An action system is a set of parameterless mutually recursive procedures [9] [8]. A

program written using labels and jumps translates directly into an action system,

with the statements following each label forming one action. If the end of the

body of an action is reached, then control is passed back to the action which

called it (or to the statement following the action system) rather than "faUing

Chapter 4: The Area of Research 69

through" to the next label. The exception is a special action referred to as the
terminating action, Z, which when called results in the termination of the whole
action system.

Action systems are defined in a similar manner to unbounded loops with Exit

statements in that they are expressed using the kernel language.

An action is regular if every execution of the action leads to an action call, and

an action system is regular if every action is regular. Any algorithm defined by

a flowchart or program which contains labels and Gotos but no procedure calls in

terminal positions, can be expressed as a regular action system.

Other W S L Constructs

WSL also has other constructs which are listed in the table in Appendix B. Among

them are the following:

• Counted iteration;

• Procedure calls;

• Blocks with local procedures; and

• Expressions and conditions with side effects.

4.2.3 Proving Transformations

A program 5 is a piece of formal text, i.e. a sequence of formal symbols. There

are two ways in which Ward gives meaning to these texts (see for example [177

and [184]):

1. Given a structure M for the logical language £ from which the programs

are constructed, and a final state space (from which a suitable initial space

can be constructed), the program can be interpreted as a function / (i.e. a

Chapter 4: The Area of Research 70

state transformation) which maps each initial state s to the set of possible
final states for s. Thus, a program can be interpreted as a function from
structures to state transformations;

2. Given any formula of logic R (which represents a condition on the final

state), it is possible to construct a formula of first order infinitary^ logic

WF{S,R). This is known as the weakest precondition of S on R and is the

weakest condition on the initial state such that the program S is guaranteed

to terminate in a state satisfying R, provided it started in a state satisfying

W?{S,R).

From these two methods of the interpretation of programs, two corresponding

methods of refinement arise: semantic refinement and proof-theoretic refinement.

Semantic Refinement

A state is a collection of variables (the state space) with values assigned to them;

thus a state is a function which maps from a (finite, non-empty) set V of variables

to a set V of values. There is a special extra state _L which is used to represent

non-termination or error conditions. A state transformation / maps each initial

state s in one state space, to a set of possible final states f(s) which may be a

different state space.̂ If ± is in f{s) then so is every other state, also /(-L) is the

set of all states (including ±) .

Semantic refinement is defined in terms of these state transformations. A state

transformation / is a refinement of a state transformation g if they have the same

initial and final state spaces and f{s) C g(s) for every initial state s. If ± € g{s)

for some s, then f(s) can be anything at all. Thus, an "undefined" program can

be refined to do anything at all. If / is a refinement of g {g is refined by /) then

®Using infinitary logic permits a simple definition of the weakest precondition of any state
ment, including an arbitrary loop, for any postcondition.

^If / (s) is empty then the state transformation is null on s; the program still terminates even
though the set of possible final states is empty. Such a program is known as a miracle since
every final state satisfies any predicate, including false. It is the exact opposite of Abort in that
it refines everything and is only refined by itself. Thus, null satisfies every specification.

Chapter 4: The Area of Research 71

this is written: g < f .

A structure for a logical language C consists of a set of values, plus a mapping

between constant symbols, functions and relation symbols of C and elements,

functions and relations on the set of values. A model for a set of sentences (i.e.

logical formulae with no free variables) is a structure for the language such that

each of the sentences is interpreted as true.

If the interpretation of statement 5"! under the structure M is refined by the

interpretation of statement S2 under the same structure, then this is written as

Si < M 5*2. If this is true for every model of a countable set A of sentences of C

then this is denoted by A |= < 5'2.

Proof-Theoretic Refinement

Given two statements Si and S2 and a formula R, then it is possible to construct

two formulae WP(5i,i2) and WP(52,i2). If there exists a proof of the formula

WF{Si,R) =^ WP(5'2,i2) using the set A of assumptions, then this is written A h

WP{Si,R) WP{S2,R). For S2 to be a refinement of Si, this result has to hold

for every formula R. This involves quantification over R (and is thus a statement

of second order logic), but the quantification over R can be avoided by extending

the language C by adding a new relation symbol G(w), where to is a list of all

free variables in and S2, to give a new language C. If it can be proved that

A h WP{Si,'G{w)) WF{S2,G(w)) then the proof makes no assumptions about

G{w) and, therefore, remains valid when G(w) is replaced by any other formula.

This is written: A h S*! < ^2.

The weakest preconditions of the kernel language is given by the set of formulae

in Figure 4.1. Note that the weakest precondition of the atomic specification

statement makes no reference to the removed variables, y, since these can have

any values whatsoever before they are removed.

Chapter 4: The Area of Research 72

W P (x / y Q , i 2) = {3x • Q A^x • (Q ^ R))

WF{[P],R) = P=> R

WP((5i; 52), i?) = WP{Si,WF{S2,R))

WFiiS,nS2),R) = W'P{Si,R)AWF{S2,R)

W?{{ixX • S),R) = V n < u , W P ((/ . X - 5) " , i 2)

Figure 4.1: The Weakest Preconditions of WSL's Kernel Language

Equivalence of Refinement Methods

A fundamental result proved by Ward [176] [182] is that these two methods of

defining refinement are equivalents^, i.e. for any statements Si and 52, and any

countable set A of sentences of £ :

A\= Si<S2 if and only if A h 5i < 2̂

Thus, it is possible to write, without loss of generality, 5i < 2̂ to mean that 5i

refines 52.

The proof makes use of two formulations of Dijkstra's weakest precondition [64]:

the first is a function which maps the semantics of a program and a condition

on the final state space to a condition on the initial state space. (A condition

on a state space is simply a set of states: those that satisfy the condition.) The

second is a function which maps the syntax of a program and a formula of first

order logic to another formula of first order logic. The two definitions are proved

to be equivalent [176] [182] given a suitable interpretation of formulae as state

conditions.

^°First order infinitary logic is complete, so Ward [182] demonstrates that if there is a refine
ment then there is also guaranteed to be a proof of the corresponding formula (although the
proof may be infinitely long). Conversely, by the soundness of first order infinitary logic, if there
is a proof of the formula then there is guaranteed to be a proof of the refinement.

Chapter 4: The Area of Research 73

Refinement and Transformation

If 5i refines S2 and also 5*2 refines Si, then there is a program transformation

from to S2 and vice versa. This is written:

Si^S2

A n Example: Forward Expansion

The following demonstrates the proof-theoretic technique for deriving a trans

formation that is often used to replace two copies of a statement by a single copy.

A h If 5 Then Si Else S2 Fi; S ^ \f B Then ^ i ; S Else ^2; S Fi

Proof: WP(lf B Then Si Else S2 Fi; S,R)

^ WP(lf B Then Else 5*2 Fi, WP(5, R)) (Defn of ;)

^ (B=> W P (5 ' i , W P (S ' , i 2))) A (- 5 ^ WP(5'2,WP(5,i2))) (Defn of If)

^ (5 ^ WP(5 'i; S,R)) A (-15 =^ WP(52; 5", R)) (Defn of ;)

^ If 5 Then ^ i ; S Else ^2; S f \ (Defn of If)

4.2.4 Ward's Catalogue of Program Transformations

The flexibility of having two methods of proving program transformations has

resulted in there being a great many proven transformations in Ward's thesis

177]. Thus, only a flavour of them will be given here. The classification of

transformations given below is the same as Ward's classification [174].

Assertions

Among the simplest transformations are those for introducing, removing and ma

nipulating assertions. It can be shown [174] that these transformations are all that

Chapter 4: The Area of Research 74

is required to include all the results of Hoare's axiomatic basis for programming
96 .

Simplifications

There are several important basic transformations that are used extensively both

in proving more complex transformations and in putting a program into the correct

form for applying more complex transformations. These include:

• Reordering conditionals;

• Removing conditionals which follow an assertion that indicates which branch

will be taken;

• Merging and splitting assignments; and

• Inserting and eliminating assignments after assertions.

Manipulations

Unlike the simphfications in the last section, which do not significantly alter the

structure the program, these manipulations provide the means by which code can

be restructured. Such transformations include:

• Removing unused local variables;

• Expanding and factoring (i.e. moving statements into or out of) conditionals;

• Unrolling and rolling loops; and

• Merging loops.

Chapter 4: The Area of Research 75

Exit Statements

Ward's theory of Exit statements is very comprehensive and gives rise to a great

many transformations, including the following:

• Replacing non-terminating loops by Abort statements;

• Removing statements which occur after Exit statements;

• Various kinds of loops unrolling, rolling and inversion;

• Replacing double by single loops (in the right circumstances); and

• Removing redundant loops.

Action Systems

The transformations on action systems are particularly important since they can

be used to restructure unstructured code. They include:

• Replacing an action call by the body of the called action;

• Removing an action which is never called;

• Within a regular action system, removing statements which occur after Call

statements; and

• Replacing an action body (with recursive calls) by a double loop, or in

certain circumstances, by a single loop.

Recursion Removal

Ward's thesis [177] includes proofs of all the common techniques of hnear recursion

removal and also several methods of replacing non-Hnear recursion by iteration.

These give rise to a number of general transformations and a larger number of

transformations applicable in specific circumstances.

Chapter 4: The Area of Research 76

4.3 The Advantages of A Practical System
Based on Ward's Approach

Ward's approach to program transformation has a number of advantages and

potential advantages over other transformation systems. Among the former are

the benefits gained by using Ward's formal theory:

• The theory is well founded on a sound mathematical basis of set theory and

first order infinitary logic and and every transformation has been rigorously

proved in Ward's thesis [177];

• The use of infinitary logic eliminates the need to determine loop invariants

or fixed points of functionals when transforming loops;

• Since the kernel language is imperative, as opposed to functional, it is suit

able for working with existing programs, as required by reverse engineering;

• WSL is defined in terms of definitional transformations of the kernel lan

guage, so "continuations" do not need to be introduced in order to handle

control transfers. Similarly, "environments" do not need to be added to

handle local variables;

• Specifications can be included within programs and non-determinism allows

flexibility and generahty at higher levels of abstraction; and

• There are a large number of theorems which cover all aspects of program

ming in WSL, including badly written programs with jumps (such as Exit

statements and action systems) and side effects (but not exceptions, higher-

order functions and concurrency).

Among the potential advantages of the approach are the following:

• The large number of theorems in Ward's thesis means that it might be

possible to construct a transformation system that is applicable to a wide

variety of programs;

Chapter 4: The Area of Research 77

• Al l Ward's transformations appear to be automatically checkable, which
would remove any need for the user to justify, from a mathematical per
spective, the transformations he applied;

• It would seem as if the techniques can be used either to increase the efiiciency

of a program, or its clarity, or both;

• Since the theorems have been shown to work in difficult examples [176] [175]

179], a tool based on this approach should also be suitable for transforming

such programs; and

• The approach appears to be applicable to maintenance as well as develop

ment.

4.4 A Method for Reverse Engineering using

Transfor mat ion

In order for any transformation tool to be useful, it must be used within the

framework of a method. The proposed method for using the tool described in this

thesis has four stages:

1. Automatic translation of the source code into WSL;

2. Automatic removal of idiosyncrasies introduced by translation;

3. Manual selection, combined with automatic application, of transformations

to produce a structured form; and

4. Abstraction to a specification.

4.4.1 Translation

Since the tool described in this thesis wiU be designed to transform only WSL,

there has to be a method of translating other languages into WSL. This can be

Chapter 4: The Area of Research 78

accomplished using translators based on existing (compiler) technology. These
would not necessarily have to produce optimal translations since, once the code
was been translated into WSL, it would then be possible to use the tool to remove
any anomalies that translation might have introduced and to do some simple
tidying of the code.

Details of the approach to translation which is used in practice is given in Chapter

9.

4.4.2 Automatic Removal of Idiosyncrasies

It is anticipated that translation into WSL will introduce additional code caused

by the fact that WSL has to model a source language which is not, in general,

equivalent; for example, where assembler uses "branch to register" instructions,

WSL might use procedures. It is proposed that these idiosyncrasies be removed

by an automatic transformation process that occurs after translation, as opposed

to introducing complexity into the translator.

4.4.3 IManual Transformation

This thesis is based on the premise that Ward's transformations are sufficient for

performing code restructuring. Thus, this stage of the method would require the

user to select which transformations for the system to apply to which sections of

code, and to repeat this process until the code is in a form that is considered in

some sense the "best" that can be attained.

4.4.4 The Reason for Functional Abstraction

The ultimate objective of the transformation tool is to facilitate the transform

ation of existing, large-scale source programs to high-level requirement specifica-

Chapter 4: The Area of Research 79

tions. It is envisaged that such specifications will , in general, be represented in
non-executable form, using a language such as Z [170] or VDM [103]. The major
attractions of this approach are that the specification will be semantically equi
valent to the original code or the latter will be a refinement of the specification.
Thus the user can be confident that the specification can provide a representa
tion which can be maintained in place of the original source code. Maintaining
a high-level, more abstract representation has a number of important advantages
80]:

• Designs may appear implicitly in the implementation and not be properly

documented. Hence a modification may inadvertently violate the impHcit

constraints on the code which are implied by design;

• The process of implementation is one of information spreading, that is, asser

tions describing the problem which are simply expressed in the specification

may be reflected diffusely throughout the implementation; and

• The implementation is cluttered with information about the efficiency and

performance of the target architecture.

In addition, a specification is more compact than the source code, it is expressed

in a more problem-oriented notation and executable code can potentially be gen

erated from it automatically or semi-automatically.

4.4.5 Problems in Functional Abstraction

In performing source-to-source transformations, the user can apply the transform

ations in the knowledge that the semantics of the program stays the same (by the

definition of a program transformation). However, in performing abstraction the

aim is to remove information from the program in order to make it more ab

stract. Thus, this cannot be accomplished with transformations per se, since

these preserve the semantics, but must be done with abstractions.

Chapter 4: The Area of Research 80

Abstract specifications say what a program does without necessar
ily saying how it does it [181 .

Abstraction is a process of generalisation, removing restrictions, ehminating detail

and removing inessential information (such as algorithmic details) [181]. Thus the

abstractions cannot be applied without a clear idea of which information contained

in the program refers simply to the implementation, and not to the the function

of the program. In the general case-̂ -̂ , this information cannot be determined

automatically within the system, so user guidance is needed at this stage. As a

trivial example, the program (X:=2, Y:=3) may be an implementation of any of

the following specifications:

• "Assign X the value 2, and Y the value 3";

• "Assign X and Y values such that X + F = 5"; or

• "Assign X and Y values such that X < Y".

Indeed, this statement is actually an implementation of infinitely many specific

ations of the form: "Assign X and Y values such that X -\-Y ^ K" where K is

any constant not equal to 5.

Abstraction can be performed by applying refinements [138] [137] "in reverse".

However, in order to perform abstraction, it may be necessary first to perform

particular restructuring operations on the program. These are detailed in the

next section.

4.4.6 Steps in Functional Abstraction

There are a number of steps that have been identified as being of key importance

in the process of crossing levels of abstraction in order to acquire a specification.

^^Some information, such as the usage of local variables, is clearly part of the implementation
since it is not "visible" outside the program.

Chapter 4: The Area of Research 81

Procedurisation and Parameterisation

Two factors that make a program difficult to understand are a lack of localisation

and a lack of information hiding.

Localisation is the process of collecting logically related computa

tional resources into one physical module [159].

Information hiding suppresses the implementation of an object or

operation, thereby focusing attention on its definition and interface

159].

Among the characteristics that make a program difficult to understand are the

following [56]:

• No, or very little, use of design abstraction;

• Local functions and variables may be represented globally, and globally

defined functions and variables may be used only locally; and

• A lack of information hiding increases the difficulty of program understand

ing by expressing irrelevant information.

While the original program may have been composed of procedures, these may no

longer reflect the functional division of the code because of substantial changes

made to it and may, in fact, be little more than historical boundaries. So the

first step in abstraction is to expand these procedures in line and to create a new

procedural decomposition.

In creating the new procedurisation it is desirable to divide the program into

procedures such that each procedure fulfills Bergland's criteria (see Section 1.3.2)

32] that the procedures implement a single independent function, perform a single

logical task and have a single entry and exit point. There is no purely automatic

Chapter 4: The Area of Research 82

way that the system is able to identify the best procedural decomposition, but the
system could provide help with this process.

There should be transformations which replace a section of code by a procedure

and which will then search for all identical occurrences of the body of that pro

cedure and replace them by a procedure call. Also, the system should identify

which variables are used and assigned in any section of code. This information

can be used to identify potential procedures, since a procedure should have as few

inputs and outputs as possible. Thus, if a number of variables are only used in a

particular section of code, they are probably local to some logical (but possibly

not yet created) procedure.

Having created a procedure from a section of code, the next stage in the ab

straction process is to parameterise i t . In the previous stage, the variables of the

procedure were identified, and it is often valid to assume that any variables which

are not local to the procedure can be made into parameters.

The system should be able to provide transformations which assist the user in

this process. First, there should be transformations which replace a variable in

a procedure by a parameter and modify the calls to that procedure to incorpor

ate the extra value that must be passed, and transformations which reverse this

operation. Second, there should be transformations which search for all other

occurrences of the body of that procedure and replace them by procedure calls

and these can be applied again, since a parameterised procedure is more likely to

match other sections of code.

As with procedurisation, the system could not select the parameterisation auto

matically since the heuristics to determine which variables to replace with para

meters are not completely determined. However, the system could attempt to

parameterise the procedure in different ways and to choose the parameterisation

which caused the greatest number of matches with other sections of code.

Since Ward's thesis includes all the theorems which prove the feasibiUty of these

operations, then provided the system being built is capable of including any pos

sible transformation, it is reasonable to conclude that they would be possible in

Chapter 4: The Area of Research 83

practice.

Recursion Introduction

Ward [180] claims that the derivation of algorithms from specifications by formal

refinement can be broken down into the following stages:

1. Nonexecutable specification;

2. Recursively defined specification;

3. Recursive procedure; and

4. Iterative algorithm.

In abstraction, which is the opposite of refinement, it seems reasonable to assume

that these steps might be taken in reverse. Thus, one of the most important steps

in many instances of crossing levels of abstraction is the introduction of recursion.

This can be done using the inverse of the transformations for recursion removal,

including Ward's general recursion removal theorem [180].

Having introduced recursion, it might then be possible to identify invariants over

the body of the procedure, which it would not have been possible to identify in

the iterative version.

Using the general recursion removal theorem necessitates the code being rewritten

as an action system of a particular form (although there is a choice of the precise

form). This cannot, in general, be undertaken automatically since the user needs

to identify which variable is being used as the control stack (so that the tests of

variable can be put into a separate action). It is not possible to identify this vari

able automatically; however, having put the code into the correct form of action

system, the system could apply the theorem without further user intervention.

Chapter 4: The Area of Research 84

Invariants

As was seen in Chapter 2, invariants form an important part of proving program

correctness, and in abstraction, they perform a similar role: the identification of

the function of a section of code (typically a loop).

The problem of finding the inductive assertion for a given program is theoretically

unsolvable [172], so it is the responsibility of the user to introduces a true assertion

before the beginning of the loop, say. The system would then employ its symboUc

mathematical and logic routines to determine whether or not this assertion is

invariant over the loop, i.e. that it is true at the beginning of the loop body, at

the end of the loop body and, therefore, after the end of the loop. (The system

is not able to calculate or deduce these invariants, although it is able to calculate

terminating conditions based on the loop condition or exit test.)

There are two ways in which the user can introduce the initial assertion. The first

is to use the transformations which add or insert Assert statements after existing

statements, such as adding the assertion x = y after assigning y to x. The second

is to enter an assertion and to have the system prove that this is true either by

determining if it is one of the assertions that could have been introduced by the

first method, or else by replacing the variables of the assertion by their values and

simplifying the resulting expression to true. Some assertions, such as x < (x -f 1),

trivially make loop invariants, so the user must choose the condition carefully.

Specification Statements

A key part of crossing levels of abstraction is the introduction of specification

statements which indicate what the program does, without saying how it does i t .

Thus WSL includes a specification statement which indicates which variables are

changed and the result of changing those variables (as a condition relating the old

and new values), without saying anything about how the values of the variables

might be determined. The statement is of the form Assign X Such That C where

X is a set of variables and C is a condition.

Chapter 4: The Area of Research 85

Any references in the condition to variables which are being changed refer to
the new values of the variables, unless there is a specific indicator otherwise (as
shown in the next example). The specification statement can be mixed freely
with other statements because of the wide spectrum nature of WSL. Many of the
simpler statements may be interchanged directly with these specification state
ments — operations which are actually transformations. For example, the parallel
assignment statement (X:=2, Y:=(X+1)) could be replaced by the specification
statement Assign (X Y) Such That (X=2) A (Y = O l d (X) + l) . These specification
statements can be combined in various ways, often by introducing an existential
quantifier (as in the example in Chapter 9).

By introducing and combining specification statements in this way, it is possible

to build up a specification of a simple section of code, which is actually equivalent

in function to that code. For more complex program constructs (notably loops),

additional techniques are required.

Specifications from Assertions

The first step of abstracting a loop to a specification would be to add assertions

which are loop invariants. The second step would replace the loop and its associ

ated assertions by a specification statement. In this stage abstraction is necessary

since the change made to the program may change (by weakening) its semantics.

The process could be as follows:

For any section of code which finishes with an assertion, if the variables assigned to

in the section of code are a subset of the variables referred to in the assertion, then

the code can be removed and a specification statement added whose condition is

the condition of the assertion and whose list of assigned variables contains precisely

those variables which are assigned to in the code.

When performing this kind of change to the program, since the result is not

necessary equivalent to the starting code, the system would prompt the user for

some textual justification for this abstraction. This information could be stored

as part of the history of the transformation process and in this way a trail of

Chapter 4: The Area of Research 86

all the abstractions that have been used would be kept and could be audited for
"correctness".

Condition Weakening

Another method of abstracting a program would be to replace the condition of

a specification statement by a weaker condition. For example, the specification

statement Assign (X Y) Such That (X=2) A (Y=7) can be weakened to the the

specification Assign (X Y) Such That (X+Y)=9.

As with replacing some code and an assertion by a specification statement, this

change does not precisely preserve the semantics of the program so the system

would again prompt the user for some textual justification for this abstraction.

The reason for performing such an abstraction would be if the program were a

specific implementation of some general specification, and the general form was

the one required.

Data Abstraction

The data types that are used within a program are concrete representations of

some abstract data type [97]. Every value of the abstract type must be represent-

able by one or more^^ values in the concrete type. Thus, the abstract and concrete

data types are related by means of a refine function and a retrieve function [188].

Data abstraction involves recovering the abstract data representation from the

concrete data representation. This can be done by means of introducing ghost

variables [137] [178] in such a way that each operation on the concrete data

is paralleled by an operation on the ghost variables. The system would then

find (or more realistically the user would provide) a function that maps from the

concrete data into the ghost variables, and assertions would be added to the code

^^There may be more than one. For example, if an abstract set is represented by a concrete
list, then there are many orderings of elements of the list for each set.

Chapter 4: The Area of Research 87

to indicate this invariant hnk specified by this function. The result of this would
be that the concrete variables could be removed and the ghost variables would
take their place as an abstraction.

The work in this area is still in its early stages, but this method seems promising.

Another approach currently being considered by Yang [194] is to represent directly

the data definitions of the source language using additional WSL constructs. From

these the aim is to construct Entity-Relationship-Attribute (ERA) diagrams. A

similar method was adopted by Sneed and Jandrasics [167].

4.4.7 Summary of the Method

The method for using the tool would involve translating the source code into

WSL and applying Ward's transformations to it until it is in the desired form.

Functional abstraction could then be carried out using (not necessarily all) the

following stages:

• Procedurisation and parameterisation;

• Recursion introduction;

• Invariant introduction;

• Introduction of simple specification statements;

• Creation of specifications from assertions;

• Condition weakening; and

• Data abstraction.

Only the last three actually involve removing information from the program (i.e.

abstraction); the others may introduce information from the appHcation domain

in the form of, say, procedure names.

Chapter 4: The Area of Research 88

For the the system to provide the ability to perform functional abstraction a
few extensions would be required. Most of these would fall into the category
of adding new "transformations" (which are actually not transformations in the
strict sense); however, certain extensions to the symbolic mathematics functions
would also be required.

Data abstraction has yet to be addressed in detail.

4.5 An Outline of the Programme of Work and

Problem Definition

At this point the problem that this thesis is tackling will be summarised by out

lining the programme of work. The work for this thesis can be divided into eight

sections which, although they can be regarded as distinct, will necessarily overlap

in certain areas.

4.5.1 Review the field

The first part of the work — that of reviewing software engineering in general, and

transformation systems in particular — has already been covered. It looked at

the problem of producing correct programs from specifications, at the problem of

deriving correct specifications from existing code, and at possible solutions to these

problems. Transformation systems offer several important potential advantages

over other informal and formal methods. The success of existing transformation

systems was assessed. This led to the conclusion that while none of those in

existence is suitable for both development and maintenance, a system based on

Ward's approach might provide the required functionality.

Chapter 4: The Area of Research 89

4.5.2 Examine the Shortcomings

The transformation system that forms the subject of this thesis is used as a vehicle

for investigating how to overcome the shortcomings of existing transformation

systems — applicability and usability — that have been identified in the review.

The system should be applicable to real programs and not just toy examples,

it should work on a wide range of programming languages using WSL as an

internal representation of the code) and it should be of use in cases in which

formal specification has not been used. Also, the system should be usable by

means of a simple user interface and a method that does not require the user to

become famihar with mathematical methods. Finally, it should be possible to

incorporate the use of the system into existing software processes.

These questions can best be answered by actually building a transformation sys

tem. To do this, a number of design decisions must be made.

4.5.3 Develop the Basis for Building a Transformation

System

The next part of the research will look at the design issues, foremost among which

are the following:

• How should programs undergoing transformations be represented?

• How should the transformations, and their point of application, be selected?

• How should the applicability of the transformations be tested?

• How should the transformations be represented?

• How should the transformations be stored in the system?

• How can transformations be combined so as to provide transformations

which have greater effect?

Chapter 4: The Area of Research 90

• What other facilities should be included in a usable transformation system?

Design solutions are presented, and a prototype system and transformation cata

logue are built, in order to put these ideas into practice.

4.5.4 Develop A ^ r ^ W S L

Transformations will be represented in the system by means of a specially designed

language — METAWSL. A description of this language will form the core of

the thesis. It must be a language within which transformations can clearly and

concisely be expressed. In particular, it must be assessed in the light of the criteria

for success given below.

4.5.5 Code Ward's Transformations

In order for MSTAWSL to be an effective language for expressing program trans

formations it must certainly be capable of expressing Ward's transformations.

Thus, this stage of the work will involve coding Ward's transformations using

MSTAWSL. Not only will this help to assess the capabilities of MirAWSL, but it

will also provide a useful working system.

4.5.6 Create Additional Transformations

Since many of Ward's transformations are elementary in their nature — mak

ing only small changes to programs — it will probably be necessary to combine

these in various different ways; for example, to create transformation strategies.

Such transformations will combine the effects of several smaller transformations,

choosing the correct ones as appropriate, in order to perform some large-scale

change. MSTAWSVS suitability in this area will be assessed by writing some

transformations of this kind.

Chapter 4: The Area of Research 91

4.5.7 Create some Transformations For Abstraction And
Design Recovery

In order to perform effective reverse engineering by means of program transform

ation, it will be necessary to have some transformations for functional abstraction

and design recovery. In order to assess A^T^WSL's strengths and weaknesses in

this area, a number of such transformations will be created. This area will also

consider how further transformations for functional abstraction could be written.

4.5.8 Assessment of Success with Real Programs

The final stage of this work will involve using the resulting system on some real

code in order to assess its usefulness. Since this work is partially funded by IBM

Hursley, the project has access to a quantity of commercial IBM 370 Assembler

code, which will be used as a testbed for the system.

4.6 Criteria for Success

The success of the work will be judged according to how the following questions,

which have been divided into three groups, are answered.

4.6.1 Preliminary Questions — Maintenance by Trans

formation

• Is software maintenance made simpler by using transformation-based reverse

engineering?

• Is WSL a good language for this purpose; i.e. can existing programs be

expressed in WSL and is there a suitable range of WSL transformations?

Chapter 4: The Area of Research 92

• Crossing levels of abstraction, for reverse engineering, involves removing de
tails of the program's implementation while retaining details of its function.
How can one do this in a transformation-based system?

4.6.2 Central Questions — The Assessment of A ^ X 4 W S L

• What constructs should METAWSL include so as to be fiexible enough to ex

press program transformations without becoming overburdened with little-

used constructs? i.e. what constructs should A^X4WSL include so as to be

simple yet complete?

• Can A^^T^WSL clearly and concisely represent Ward's transformations?

• What other transformations are required?

• Can A^T^WSL be used to express clearly and concisely these transforma

tions?

4.6.3 Questions on the Effectiveness of the Tool

• Does the approach result in a usable tool? In particular, what training is

required?

• Is the implementation of the transformation catalogue efficient, reliable,

correct and complete?

• Does the method scale up to larger programs?

• How well does the system work on real programs in an industrial environ

ment?

• What weaknesses does the system have?

• How does the use of the tool fit into the software process?

• In what ways does this system add to the study of transformation systems

in general?

Chapter 4: The Area of Research 93

• Can the system be used to maintain itself?

4.7 Summary and Conclusions

This chapter has laid the foundations for the rest of this thesis. It has introduced

WSL, showing how it is defined in terms of a kernel language. It has outlined

the proof principles used by Ward to prove his transformations, and has given

examples of the transformations that have been proved. Finally, it has explained

the advantages of a transformation system based on these principles and has

described the nature of the rest of this work, giving criteria for its success. The

rest of the thesis will answer the questions raised in this chapter and give details of

both vVkr^WSL and the underlying structures needed in creating a transformation

system with the desired attributes.

Chapter 5

Fundamental Design Decisions

5.1 Introduction

This chapter first describes the overall tool of which the transformation system

described in this thesis is a part. The chapter then discusses the underlying struc

tures and foundations on which the transformation system is based. These cover

design decisions such as how WSL programs should be represented, how the point

of application of the transformations and the transformations to apply should

be selected, how the applicabihty of transformations should be tested, and how

transformations should be represented and stored. Finally, certain components

which form the core of the transformation system, notably the pattern matcher,

the database and query functions and the symbolic mathematics functions, will

also be described.

5.2 The ReForm Project

This work in constructing a transformation system forms part of a larger project —

the ReForm project [78] — sponsored by IBM Hursley and the DTI, and carried

94

Chapter 5: Fundamentcil Design Decisions 95

out by the University of Durham, Durham Software Engineering Ltd (formerly
Centre for Software Maintenance Ltd) and IBM Hursley. The other members of
the project team are Keith Bennett, Martin Ward, Hongji Yang, Nigel Scriven
and Brendan Hodgson.

The aim of the ReForm project is to create a code analysis tool — the Main-

tainer's Assistant [53] [185] [46] [193] [47] — aimed at helping the maintenance

programmer to understand and modify a given program. Program transformation

techniques are employed by the Maintainer's Assistant both to derive a specific

ation from a section of code, and to transform a section of code into a logically

equivalent form. The aim is to provide a tool with features such that:

• It acts, initially, on existing program code as a tool to aid comprehension

(possibly by producing specifications);

• Only the program code is required;

• The system can work with any language by first translating — with a stand

alone translator — into WSL;

• Changes are made to the WSL by means of transformation;

• Transformations are represented in an extension of WSL — M-ETAWSIJ]

• The system incorporates a large, flexible catalogue of transformations;

• The applicability of each transformation is tested before it can be applied;

• A history/future structure is built-in to provide back-tracking and forward-

tracking allowing the programmer to change his mind;

• The system is interactive and incorporates an X-Windows front end and

pretty-printer called the Browser [193];

• The system includes a database structure to store information about the

program being transformed, such as the variables assigned to within a given

piece of code [193];

Chapter 5: Fundamental Design Decisions 96

Input
Language Translator

WSL
Tree Translator

Program Analysis
i 1

Editing Operations

Transformation
Engine

Program Representation Tran sformation Com

User
Interface

Display Output User Input

^Outpu t
Language v_

User

Figure 5.1: The Structure of the Maintainer's Assistant

• The system includes a simplifier for mathematical and logical expressions;

and

• The system includes a facihty to calculate metrics for the code being trans

formed.

While the core of the tool is the program transformation system, there are other

parts to the tool. A l l these are shown in Figure 5.1 and will be described briefly

in the following sections. (The work described in Sections 5.2.1 to 5.2.4 has been

carried out by other members of the research group.)

Chapter 5: Fundamental Design Decisions 97

5.2.1 Translating Other Languages to W S L

Part of the ReForm project has involved taking IBM 370 assembler and using the

system on i t . To do this it has been necessary first to translate the assembler into

WSL, as described in Section 4.4.1.

5.2.2 Metrics and Supporting Tools

A number of tools have been incorporated into the system, in addition to the

transformation system. Among these is the ability to obtain metrics relating to

the code being manipulated.

During software development, software metrics are often used for assessing, meas

uring and predicting attributes of the code. Among the many software metrics

available, complexity measures are the most well-accepted method of determining

the intrinsic quality of software. It has been recognised [132] that like software

development, software maintenance also benefits from measurement, even though

the best metrics are the subject of debate. Thus, a generic system has been built

that enables a variety of measures to be made. The objectives of using metrics in

ReForm are to help the user to select transformations (to help develop heuristics),

to measure the progress made in optimising the program code and to measure the

resulting quality of the program being transformed.

Other tools which are in a less well-developed stage include a program sheer, a

static analyser and a call-graph generator.

5.2.3 The User Interface

The Maintainer's Assistant is an interactive tool and as such requires an intuitive

and fast user interface to allow the user to try out, quickly and simply, different

options (such as different procedural decompositions) when working on a program.

A suitable interface has been constructed using the Motif toolkit in a Unix and

Chapter 5: Fundamental Design Decisions 98

X-Windows environment.

The interface allows the user to select a piece of code by pointing to it with

the mouse and clicking a mouse button. Transformations can be selected from

pull-down menus. Before a transformation appears on a menu, however, the

transformation system needs to checks it applicability conditions so that the user

may not attempt to perform an invalid transformation.

In addition, the interface includes facilities for editing the program (to correct

faults), calculating metrics and saving and loading versions of the program to and

from file.

5.2.4 Translating from W S L to Other Languages

Just as there is a translator for producing WSL from assembler, so it would be

possible to create a translator which would take WSL as its input and produce

equivalent code in some other language. Such a translator remains to be built. One

method of simplifying the translation would be to have a set of transformations

for producing WSL that is similar to the target language; for example, WSL which

does not use recursive procedures.

5.2.5 Transformation Engine

The transformation engine which forms the core part of the Maintainer's Assistant

is the subject of this thesis.

5.3 Storing W S L Programs

In many transformation systems, particularly the earliest ones, the program un

dergoing transformation is stored as a simple text file and the program trans-

Chapter 5: Fundamental Design Decisions 99

former is essentially a text editor that performs a series of commands (in this

case specified by the program transformation) and produces an altered version of

the original text (a sequence of code). Hildum's transformation system is a more

recent example of such a system [95]. However, this is neither the simplest nor

the most convenient way to store and transform the code.

Although Hildum's specification language was designed to work on code which is

essentially linear, he points out [95] that the transformation of tree structures is

an area of work which deserves further attention. In the Maintainer's Assistant,

internally WSL is represented as a syntax tree and is expressed, in a LISP style,

as a series of nested fists, as is described in Chapter 8. However, to the user

WSL is presented by the interface in a much easier-to-read Algol-style text form.

As an example the parallel assignment, which in text form would be written as

(X ;=A+B- fC , Y:=0), would be represented by the tree shown in Figure 5.2 which

in turn would be expressed in LISP form as:

(Assign (X (+ A B C)) (Y 0)).

Assign

Assignment

A B C

Assignment

Y 0

Figure 5.2: Tree Form of a WSL Assign Statement

The exact details of the tree form of WSL are given in Chapter 8.

Chapter 5: Fundamental Design Decisions 100

5.4 Interaction

It is recognised that the acquisition of a specification at a high level of abstraction

cannot be an automatic task; this problem is undecidable since a program satisfies

infinitely many specifications. Thus, the Maintainer's Assistant must necessarily

require human interaction. In fact, this is one of the system's advantages since it

allows human expertise of both software engineering and maintenance, and also of

the application domain, to influence the direction of the transformation process.

However, being computer-based enables the utihsation of the computer's abihty

to reduce errors, which might be otherwise introduced by clerical work.

The interactive nature of the system also means that the user is able, through

performing the transformations, to gain an understanding of the program on which

he is working. The system is unable to understand the program and, even if it

were, this is not particularly desirable since the user would still not have an

improved understanding of i t .

5.5 Selecting the Point of Application of Trans

formations

In an interactive system, it is necessary to indicate explicitly which part of the

program should be transformed. For example, with the code

(Assign (X (+ A B)) (Y 0))

it would be possible to apply the transformation "swap the order of the two com

ponents of an item" in two different places: first to the addition, since numeric

addition is commutative, and second to the Assign statement, since the two as

signments (X:=A-|-B and Y:=0) are performed in parallel. Using the tree method

of representing the program the user can indicate the point of appHcation of a

transformation by selecting a branch or leaf in the tree. The selection can be

made in several different ways, two of which will be incorporated into the system.

C h a p t e r 5: Fundamenta l Design Decisions 101

5.5.1 Selecting Program Positions Directly

W i t h the first method of selection, the program would be presented to the user

(in a pretty-printed format) on a graphics screen. The user would point to the

required program i tem wi th the mouse and press a the mouse button. The system

would then select the smallest syntactic object (tree branch or leaf) that contained

the location of the mouse cHck. For example, i f the user cHcked on the symbol

for assignment (:=) , then the whole assignment (a branch) would be selected,

while i f he clicked on a variable name, then just that variable (a leaf) would

be selected. The graphics interface would convert the position clicked on to a

suitable representation of the position in the tree and issues a command to the

transformation engine to make that position the selected one.

5.5.2 Selecting Program Positions Relatively

W i t h the second method, the user would be furnished wi th a series of commands

for moving wi th in the program tree. These would include L E F T and RiGHT for

selecting branches (or leaves) on either side of the current branch or leaf (i f they

exist); a DOWN command for selecting the first branch (or leaf) of the current

i tem; and an U P command for selecting the object of which the current i tem is

a component. Other commands could be added for moving to the first or last

i t em in the current component, or to the nth i tem, but these are not strictly

necessary.-^ However, i n the interests of simphcity, a number of these commands

would be incorporated into the system.

Although this method of identifying program items is more cumbersome f rom the

user's point of view, i t is the method used within the representation of program

transformations.

^In fact, the command to move L E F T is not strictly necessary, either, as it can be effected by
performing U P , followed by a DoWN to select the first component. This would then be followed
by a suitable number of R I G H T moves to select the item which was actually required.

C h a p t e r 5: FundamenteJ Design Decisions 102

5.6 Selecting Several Items

Some transformations allow an operation to be performed on a sequence of pro

gram items, rather than on just a single i tem. For example, a transformation to

make a procedure out of a single statement may not be particularly useful. How

ever, a transformation to make a procedure out of several consecutive statements

would be much more useful. A sequence of items is referred to as a span.

As w i t h the selection of positions in the program, spans could be selected in one

of two different ways. First, the user could use the mouse to point at the opposite

end of the span of items f r o m the selected i tem, and click on another of the mouse

buttons. Second, a series of commands could be provided for increasing, decreasing

and setting the number of items in the span directly. Both of these methods are

included in the system. The first is quick and simple for the user, while the second

is more efficient, but cumbersome, and is used wi th in the transformations.

5.7 Selecting Transformations

Once the point of application of a transformation has been selected, i t is necessary

to select the transformation that is actually required, as in most cases more than

one w i l l be applicable. The simplest methods of doing this are to allow the user to

type in the name of the desired transformation or else to select i t f rom a menu of

all the transformations in the system. (Hi ldum and Cohen suggest this approach

95].) These methods both have drawbacks, however. In the first case, the user

would need to do a lot of unnecessary typing (wi th all the problems of inaccur

ately typing names), and in the second case, since the number of transformations

in the system would probably be very large (several hundred), identifying the

transformation which is actually required would be a problem.

I n this project, the second method has been selected, but has been modified in

four ways in order to make i t more usable:

C h a p t e r 5: Fundamenta l Design Decisions 103

• There are several menus^ which contain transformations that have similar
effects; for example, those which jo in two program items, those which move
a program i tem and those which delete redundant items;

• Only applicable transformations appear in the menus;

• The transformations which finally do appear in a menu are sorted alphabet

ically; and

• The user can obtain a description of each transformation which appears in

a transformation menu so that, i f an unfamiUar transformation appears, he

can identify what i t does.

The adoption of the approach whereby only valid transformations are included in

the menus, necessitates that each transformation be in two parts. The first part

tests its applicability and the second effects the changes to the program.

5.8 Testing Transformation Applicability

By its nature, a transformation system is one in which the user can make signific

ant changes to the program on which he is working, and he therefore needs to have

confidence that the result is always semantically equivalent to the program wi th

which he started. For this to be the case, i t is advisable to have a transformation

system which checks the applicability (or validity) of the transformations before

applying them. I f the system is to do this checking, then each transformation

needs to coded along w i t h its "applicability condition".

A transformation's applicability condition is the test which determ

ines whether that particular transformation can be legitimately ap

plied (i.e. applied without changing the program's semantics) at the

currently selected point i n the program.

^Themenu classes are "Move", "Join", "Use/Apply", "Reorder", "Rewrite", "Insert", "Sim
plify/Delete", "Multiple" and "Complex".

C h a p t e r 5: Fundamenta l Design Decisions 104

I n the simplest cases, this would be a simple pattern that the particular part of
the program has to match wi th , but in more complex transformations, i t might
include tests on variable usage, the number of possible exits that a loop has,
and so on. Many transformation systems, for example CIP [153] [155] [26] [27],
use this method, and encode the tests as a pattern (which contains the former,
syntactic information) and as a formula of logic (which contains the latter, so
called "semantic", information).

There is a drawback to this simplistic approach; i t is not uncommon for the

information required by the tests to lie outside the syntactic scope of that section

being changed. The transformations for expanding a procedure or function call,

or for replacing a variable by its value are cases where this is so. This suggests

that a method of selecting ("moving" to) other parts of the program is required.

Hence, i t seems reasonable to code the transformations' applicabihty conditions

in a language designed for that very purpose, i.e. one which includes not only

facilities for pattern matching and so on but also "movement" commands. This

is the method that has been chosen.

I t is necessary to store the applicability conditions separately f rom the information

on how to perform the transformation since the tests for each transformation need

to be performed without actually modifying the program and are carried out

much more frequently. (In many instances, testing a transformation is a much

quicker operation than performing the transformation. Thus coding the two parts

separately also increases the system's efficiency.)

5.9 Coding the Transformations

A t the simplest level, a transformation can be expressed as two patterns: the first

a series of elements to be found and some actions to be performed while finding

these elements; and second, a new ordering of the elements that describes the

result of applying the transformation [95]. Thus, the most obvious way to store

transformations is simply as pairs of patterns, but this excludes the possibility of

C h a p t e r 5: Fundamentzd Design Decisions 105

recording more "algorithmic" transformations.

As Hi ldum pointed out [95], the transformations may require actions to be per

formed on the elements that are found by the in i t ia l pattern match, and, in fact,

these actions can become complex as w i l l be seen in Chapter 7. Examples are a

transformation to replace a variable wi th its value, or a transformation to reduce a

piece of code w i t h labels and jumps to one wi th nested loops and If statements. I f

these are to be accomplished efficiently, sophisticated algorithms need to be buil t

into the transformations. Also, the former requires the transformation to examine

sections of code outside the syntactic scope of the section being changed and to

perform analysis of this information. Hence, i t would seem reasonable to code

the transformations in a language (to express the algorithms) which includes not

only facilities for pattern matching but also "movement" commands. Thus, the

language for wr i t ing transformations is very similar to the language for wri t ing

applicabihty tests. In fact, in this project the same language is used.

Rather than write a completely new language for this purpose, WSL has been

extended so as to be suitable for this purpose. This language is called A ^ r ^ l W S L ,

reflecting the fact that i t is both an extension of WSL, and designed to manipulate

WSL. This contrasts w i t h the CIP project which uses several languages [25] for

formulat ing program schemes, transformation algorithms and apphcabiUty tests.

I n theory i t is not necessary to make any extensions to WSL at all in order to create

a means of wr i t ing program transformations. I f i t is assumed that the program

being transformed is represented (as a tree) i n some global variable, then all that

a transformation need do is modify the contents of this variable. Since WSL is

a completely general language i t would be possible to write a pattern matcher,

for example, using WSL and incorporate i t into each transformation. However,

that would be a very inefficient way to write transformations since each one would

duplicate a great deal of code.

There are several advantages of using M£TAWSL:

• MSTAWSL embodies knowledge about program transformations (see Section

6.3);

C h a p t e r 5: Fundamenta l Design Decisions 106

• Duplication of code by different transformations is avoided;

• No new language needs to be learned in order to write transformations;

• There is a compiler for executable WSL and thus the transformations' code

can be compiled for efficiency;

• The system incorporates a pretty-printer which can be used to display the

transformations' code (although this must be extended to deal wi th the

statements specific to A ^ T ^ W S L) ; and

• Transformations can be applied to themselves, allowing the system to be

used in the maintenance of itself.

A^£X4WSL incorporates a number of statements and functions over and above

those provided by WSL. These fa l l into eight categories:

P r o g r a m E d i t i n g Statements — The most obvious and most important op

eration on programs by transformations is to edit them. Thus, there need

to be some program editing statements.

P a t t e r n Match ing and Template Fi l l ing — A key part of transformations

involves replacing one pattern wi th another. Thus, A^T.4WSL includes a

funct ion which matches a section of program against a given pattern and

returns the result in a table. There is also a function which takes a pattern

and a table and replaces the tokens in the pattern wi th values f rom the

table.

Movement Statements — I n order to perform a transformation, a user first

selects the section of code on which the transformation is to be performed.

Having done this, however, i t may be necessary for the transformation tem

porarily to select another section of the program. Thus, jVkT.AWSL includes

statements for moving to different parts of the program tree.

Movement Appl icabi l i ty Test ing Functions — Since a specific movement

w i th in a tree is not always possible — for example, i t is not possible to

move down f r o m a leaf node — there are functions which test the appHcab-

i l i t y of a particular direction of movement wi th in a program tree.

C h a p t e r 5: Fundamenta l Design Decisions 107

Globa l Context Variables — Transformations often need to have access to
information such as the type of the current i tem. This is obtained f rom a
number of global variables.

Q u e r y Funct ions — Most transformations require additional knowledge about

the program and this cannot easily be obtained f rom the syntactic process of

pattern matching. Such knowledge (which is often called "semantic know

ledge" [113]) includes information about variable usage, whether an action

system is "regular" and so on. This is obtained by way of query functions.

Symbol ic Mathemat ic s and Logic Functions — I t is often necessary for a

transformation to simplify a mathematical or logical expression, or to

demonstrate that one condition imphes another. In order to do this,

METAWSL includes some symbolic mathematics and logic functions.

Repet i t ion Statements — I t is often necessary wi th in a transformation to test

a condition or perform some operation at every node wi th in the subtree wi th

represents the selected program item. The repetition statements allow this

to be achieved easily.

This last phrase — "allow this to be achieved easily" — is worth emphasising. A l l

the statements and functions above are designed to make transformations easy to

wri te and to read. A l l of them could be implemented using WSL to manipulate

the variable which holds the program tree.

The extensions included in MSTAWSL are outHned in Chapter 6 and given in

detail i n Appendix C.

5.10 Transformations which Require User In

put

Some of the transformations in the system require the user to input information.

This information could be the name of a new procedure, or a sequence of state-

C h a p t e r 5: Fundamenta l Design Decisions 108

ments that are to be inserted after an Exit statement. This information is not
required by the applicability tests and should not be requested by them, other
wise the user would be required to provide a great deal of unnecessary information
just to bui ld the contents of the transformation menus. Thus the input is only
requested once a transformation has been selected f rom a menu.

Af te r a transformation has been selected, the system is able to determine what

k ind of input is required and, before performing that transformation, the interface

presents the user w i t h a dialog box requesting that information. The user enters

the information, and the system stores i t in a global variable, %Data%, before ex

ecuting the A ^ r ^ W S L code which performs the transformation. This METAWSL

code is able to refer to the variable %Data% in order to make use of the user's

input .

5.11 Storing the Transformations

Since the whole of Ward's thesis is to be implemented, there w i l l be a large number

of transformations i n the system and i t is necessary to use an efficient way to store

and access them. This is accomplished by using another tree structure.

Each transformation is designed to work on a particular type of WSL program

i tem, given by a pair consisting of the item's generic type and its specific type

(see Appendix B) . Thus, a transformation which works on an Assign statement

would correspond to the pair Statement/Assign. Transformations are categorised

in this way so that when transformations are being tested for applicabiUty, only

those which operate on the correct type need to be tested. The efficiency of this

selective transformation testing is enhanced by putt ing the transformation index

in tree fo rm w i t h the generic type as the top-level of branching and the specific

type and the second level. Thus, the part of the tree that needs to be inspected

can be determined quickly.

Either the specific type or the generic type can be of the type Any. This signifies

that the transformation works on any i tem of that type. For example, a trans-

C h a p t e r 5: Fundamenta l Design Decisions 109

Transformations

Statement Expression Condition

Assert Cond

(And-Next-Assertion . . .)

(Assign-after-Assert . . .)

(Use-Assertion . . .)

(Delete-Assertion .. .)

Figure 5.3: Part of the Transformation Catalogue Structure

formation that has the type pair Statement/Any would potentially work on any

statement. Such a transformation might move any statement into a loop, for ex

ample. I f the generic type i f Any, the specific type must also, necessarily, be Any.

A transformation that has the type pair Any/Any would work on any program

i tem. Such a transformation might simphfy all the expressions wi th in the selected

program i tem, for example.

Figure 5.3 shows part of the transformation tree. The ellipses indicate that there

is additional data that is stored w i t h each transformation which is not shown in

the diagram.

C h a p t e r 5: Fundamenta l Design Decisions 110

5.12 Constructing the Transformations Cata
logue

The Maintainer's Assistant incorporates a large number of transformations, and

therefore appears to use the large catalogue approach to building a program trans

formation library. However, these are divided into four major groups: elementary,

compound, generic and high-level transformations. The user can select to work

w i t h any or all of these groups of transformations.

5.12.1 Elementary Transformations

The Maintainer's Assistant includes all the elementary transformations (such as

inserting assertions) that have been proved by Ward [177]. Selecting to work wi th

just the group of elementary transformations corresponds to the generative set

approach to transformation catalogue construction. The maintainer may choose

to use sequences of these simple transformations to accomplish some more complex

effect, such as removing a local variable.

5.12.2 Compound Transformations

I n using the Maintainer's Assistant, a number of common sequences and com

binations of transformations have been identified by experience and case studies.

Rather than expecting the maintainer to remember such sequences, they are built

i n as transformations that can be selected in the same way as the elementary

transformations. Although there are a large number of these compound trans

formations, the efficiency gained by learning to use even a few of them seems to

outweigh the in i t i a l learning time.

C h a p t e r 5: Fundamenta l Design Decisions 111

5.12.3 Generic Transformations

A great many of the elementary (and some of the compound) transformations are

variations on themes. For example, there are separate elementary transformations

for taking a statement out of a local variable structure and for taking a statement

out of a loop. In addition to the many distinct transformations, these themes have

been combined into 22 generic transformations so that the user does not need to

know which specific transformation has to be selected.

Al though many operations are covered by one of the generic transformations,

some operations cannot be incorporated into the generic set since the user has

to be more explicit i n stating the desired fo rm of the transformed program. For

example the user has to be able to choose between changing an unbounded loop

into a For loop or into a While loop.

5.12.4 High-Level Transformations

These are the transformations needed to perform the abstractions described in

Section 4.4.5.

5.13 Further Facilities for a Usable Transform

ation System

There are a number of other facilities which are necessary in order to build a

usable transformation system. These include the following:

• The abil i ty to undo changes made to the program so that the programmer

or maintainer can change his mind and t ry out various possible options.

There is also a corresponding redo facil i ty so that after undoing a sequence

of transformations they can be redone without recourse to having actually

C h a p t e r 5: Fundamenta l Design Decisions 112

to perform the transformations again.

• A n "audit t r a i l " faci l i ty so that as a program is transformed and, i f neces

sary edited, the selection of program items and the operations performed

on them, are recorded. This allows the history of the program to be ex

amined to determine whether, for example, any invaUd editing operations

have been carried out. I t would also allow, w i th a suitable extension of

the system, a transformational development to be "replayed" on a modified

in i t i a l specification, to produce a new version of the program;

• A n intui t ive and fast user interface to allow the user to t ry out, quickly

and simply, different options (such as which data structure to use) when

constructing his program or producing a specification f rom i t ; and

• The abil i ty to calculate metrics about the program undergoing transforma

t ion so that the user has some feedback as to the progress being made wi th

the restructuring and simplification.

5.14 Other Components of a Working System

I t was mentioned earlier that AieTAWSL incorporates certain types of extension

over WSL. I n particular, these include pattern matching and template filhng,

query and database functions, and symbolic mathematics and logic functions.

Each of these requires an underlying "engine" to provide these facihties. These

engines w i l l be described in the next sections of this chapter.

5.14.1 The Pattern Matcher and Template Filler

One of the most important components of the program transformer is the pattern

matcher and template filler. Many transformations can be represented as an

in i t i a l pattern wr i t ten in terms of Hterals and general tokens, and final pattern, or

template, using the same tokens but possibly different hterals. The transformer

C h a p t e r 5: Fundamenta l Design Decisions 113

matches the program against the in i t ia l pattern, creating an association table'^ in
which the tokens correspond to the actual code which occurred in the program. (I f
no possible match occurred, then the matcher would return an empty association
table of tokens.) The pattern matcher is defined recursively and is essentially
similar to the matcher i n [173] but ensures that when a token occurs several
times, i t matches the same i tem at each occurrence.

The template filler takes the values for these tokens f rom the table and puts

them into the template which represented the transformed version of the pro

gram. Even in cases which are not as straightforward as a simple match and

fill, pattern matching and template filhng often fo rm a crucial part of defining

program transformations.

The definition and use of patterns and templates w i l l be explained in detail in

Chapter 6, and the mechanism by which pattern matching and fiUing works wi l l

be described briefly in Chapter 8.

5.14.2 Program Query and Database Routines

I t is necessary, as part of many of the transformations, to be able to calculate

certain information about the program being transformed: the use of variables,

whether a program component w i l l always terminate by way of an Exit statement

and so on.

For certain queries, the results that are given for any node (program item) are

dependent solely on the results for that node's subnodes. Thus, i f the information

for all the subnodes of a node is known, the value for the node itself can easily

be determined. Thus the information for a node is stored in a database table

linked to that node and rather than recalculating the information each time it is

needed, i t can be extracted f rom the database table. Moreover, when the node

is moved to another location in the program (as the result of a transformation)

^An association table is a table of pairs in which the first element of each pair is a key and
the second is some arbitrary data associated with it.

C h a p t e r 5: Fundamenta l Design Decisions 114

the information at that node remains valid (since the subnodes would have moved
w i t h i t) and is s t i l l stored. I f , and only if , one of the components of a node is
changed, does the information ever become unreliable and need to be discarded.
Thus, when a node changes, all database entries which could depend on i t , i.e.
those higher in the program tree, must be emptied.

Database tables take the fo rm of a list of pairs. Each pair holds the name of the

query and the result, and each list is hnked to a node in the program tree. The

details and the functions for manipulating the database tables themselves are

described briefly in Chapter 8. The A ^ T . A W S L query functions for calculating

the information to put in the database are outlined in Chapter 6 and described

in detail i n Appendix C.

5.14.3 Symbolic JVEathematical and Logic Functions

When modifying WSL programs, i t is often necessary to rewrite algebraic ex

pressions in simpler forms. This component provides the faciUties to do this. In

addition i t provides similar functions for logical expressions, and is able to test

whether one condition logically imphes another, for example that a=b-f 1 imphes

that a>b — something which is often needed, for example, wi th in the transform

ations for removing redundant code.

(The symbolic mathematics and logic routines that have been implemented, while

incorporating most rewrite rules such AS {a * b) + [a * c) — a * [b + c), as yet only

provide enough functionali ty to work on fair ly simple examples. For the tool

to become more widely applicable, these rules must be supplemented wi th , for

example, the abil i ty to prove relationships inductively. In addition, i t is essential

that, as w i t h the rest of the system, the correctness of the implementation of this

component be proved.)

C h a p t e r 5: Fundamenta l Design Decisions 115

5.15 Summary and Conclusions

This chapter has addressed the questions raised in Section 4.4.3 and has presented

an overview of the design rationale and decisions that have needed to be made in

order to construct a practical transformation system f rom the transformations in

Ward's thesis. To summarise:

• WSL programs are represented as abstract syntax trees to obviate the need

to parse them;

• The system is interactive to allow the user to employ his experience when

transforming a program;

• The point at which transformations are to be applied is selected by the

user by pointing and clicking w i t h a mouse, and by the system by "mov

ing" through the program (thereby overcoming the problem of obtaining

information about contexts that was encountered in the CIP project);

• I t is possible to select and work w i t h several program items in a span;

• Transformations are selected f r o m a number of menus that contain only

valid transformations;

• Transformations have their applicability conditions stored separately f rom

the code which performs the changes to the program, so that the applicab

i l i t y can be tested without performing the transformation;

• Bo th the transformation's instructions for editing a program and the ap-

plicabihty condition are coded using A^^r^WSL which is an extension of

WSL;

• A tree structure is used to store the transformations since this increases the

efficiency of searching the transformation catalogue;

• The transformation catalogue contains a wide variety of transformations

covering elementary, compound, generic and high-level transformations;

C h a p t e r 5: Fundamenta l Design Decisions 116

• A n important component of the system is the pattern matcher and template
filler;

• The system's efficiency is increased by the inclusion of database tables to

hold the result of semantic queries; and

• A subsystem for performing mathematical operations and logical tests sym

bolically is of great importance.

The implementation based on these design decisions w i l l be described in Chapter

8. However so that i t is clear what facilities w i l l be required, i t is necessary to

give a definition of A ^ r ^ W S L and this w i l l fo rm the subject of the next chapter.

Chapter 6

A^X4WSL

6.1 Introduction

I n Chapter 5 i t was seen that in order to construct transformations in an optimal

way, i t was necessary to create a programming language — A ^ T ^ W S L — designed

for this purpose. A^£Z4WSL is described in this chapter.

6.2 How Could A ^ T ^ W S L be Formalised?

Whereas WSL is currently a formally defined language, A^^r^WSL has yet to be

specificed formally. This is an important outstanding area of work. The formal

description of A^T .4WSL could be produced by defining the new constructs in

terms of those of WSL by means of definitional transformations. This could

be achieved by implementing MSJASNSII using WSL and a formally-defined ab

stract data type for program representations. The data type and the implement

ation in terms of WSL would essentially he the definitional transformations of

the METJCNSL constructs. A formal definition of A ^ f X4WSL would allow (a) the

correctness of transformation implementations to be demonstrated; and (b) trans-

117

C h a p t e r 6: A ^ r ^ W S L 118

formations about A ^ T ^ W S L constructs to be proved and implemented, greatly
extending the degree to which the tool can be used in its own maintenance.

6.3 MSTAWSL as Transformation Knowledge

MSTAWSL is a domain-oriented language in that i t has been specifically designed

for use i n a particular domain: that of program transformations. Objects f rom

the domain, such as program sections, appear in the language and operations

on these objects are readily available as language constructs. Even though the

implementations of these objects and operations could be large and complex, they

have simple representations in the language and can be combined in such as way

that complex program transformations can be wri t ten in a few Hues of code. The

details and special cases are dealt w i t h in the implementation of the constructs.

The range of objects and constructs, and the details of any special cases forms

the knowledge that is represented by the language.

The use of a language for representing domain knowledge should be compared

w i t h the I K B S (Intelligent Knowledge-Based System) approach of representing

domain knowledge in the fo rm of a rule-based system. Using a rule-based system

gives rise to two problems [183]:

1. The knowledge elicitation problem: transferring knowledge f rom the domain

expert into a collection of rules suitable for implementing in a rule-based

system; and

2. Enabling programmers to extract and make use of the information in the

knowledge-base.

Although there are cases, such as medical diagnosis systems, in which the first

problem is minimised due to the availabihty of the knowledge, i n the case of

program transformation systems there are few, i f any, experts w i th relevant ex

perience. The second problem causes specific difficulties in the case of program

transformations systems since i t is difficult to see how programmers could make

C h a p t e r 6: A ^ r ^ t W S L 119

use of a rule-based representation of domain knowledge. However, the knowledge
embodied in a very high-level domain-oriented language such as A^fZAWSL can
be employed in the development of program transformations.

6.4 Criteria for Selecting MSTAWSJJ Constructs

M£TAWSL was developed through a process of rapid prototyping. A core of

language constructs that were thought would be useful, for example those for pat

tern matching and template filling, were implemented and then used to construct

transformations. During the construction of the transformations, i t became clear

that there were some necessary operations that could not be performed wi th this

basic set of constructs and some sequences of operations which occurred many

times. A n example of the former case was moving to a different point in the

WSL program tree, while an example of the latter was determining the variables

that occurred in a section of code. This new knowledge was incorporated into

the language by adding constructs which performed these operations. Likewise,

constructs that were rarely, or never, used were removed.

I n addition, the MsrAWSL constructs were designed to f u l f i l l Hoare's four "Basic

principles of language design" [98]:

1. Security: Every syntactically incorrect program should be rejected by the

compiler, interpreter or translator, and executing any syntactically correct

program should produce a result or an error message expressed in terms of

the source code;

2. Brevi ty of object code and compactness of run t ime working data: Despite

the reductions i n hardware cost, processors are st i l l cheap in comparison wi th

the amount of main store they can address, and backing store is many orders

of magnitude slower. Programmers should be able to take advantages of this

"spare" capacity to increase a program's quality, simplicity, ruggedness and

reliabili ty;

C h a p t e r 6: M f r ^ W S L 120

3. Entry and exit code for procedures and functions should be as compact
and efficient as for t ight ly coded machine code subroutines: More generally,
there should be no impediments to the use of convenient high-level facilities
in the language; and

4. The language should be parsable in a single pass wi th a simple recursive-

descent parser so that the language is easy to read by people and so that i t

is easier to ensure the correctness of the compiler.

Criteria 2 and 3 are met by the design of MSTAWSL as can be seen f rom the

remainder of this chapter. Criteria 1 and 4 are functions of the compiler and can

be verified f r o m the implementation described in Chapter 8.

6.5 A Survey of MSTAWSL Constructs

The approach adopted for producing the transformation system and A ^ T ^ W S L

was that of rapid prototyping. As a result METAWSL is currently writ ten, and

defined, in LISP (see Chapter 8). I n order that this chapter not consist of large

amounts of LISP code, only informal descriptions of the constructs are given here.

6.5.1 Predefined Variables

MSTAWSL includes a number of predefined variables which can be referenced

(but not assigned to) wi th in transformations. To distinguish them, TM^XAWSL

variables begin and end w i t h "%" symbols. Essential among these variables are

%Program%, %Posn% and %ltem% since these store the program being trans

formed and the i tem wi th in the program that is being manipulated at any given

t ime.

%Program% holds the whole program that is currently being transformed.

%ltem% holds the currently selected syntactic program item. %Posn% holds the

C h a p t e r 6: A ^ r ^ W S L 121

A Sequence of Statements ()

. . . (1) . . . (2) Assign (3) . . . (4) . . . (5)

Assignment (l 3) Assignment (2 3)

X (1 1 3) + (2 1 3) Y (1 2 3) * (2 2 3)

A (1 2 1 3) B (2 2 1 3) C (1 2 2 3) D (2 2 2 3)

Figure 6.1: Positions in a WSL Program Tree

position, relative to the root node, of the currently selected program item. The

position relates to the program components as follows:

• The root of the tree (i.e. the whole program) has its position represented by

the empty list; and

• The nth sub-component of each node has the position of its parent, but w i th

an n added (wi th the function cons) onto the beginning.

Figure 6.1 shows the positions of some of the nodes in the tree for the program

(. . .(Assign (X (+ A B)) (Y (* C D))) . . .)

i n which the Assign statement is the th i rd i tem in the program. For example, (1

2 3) represents the position of the Y .

The other predefined variables are described in Appendix C.2.

C h a p t e r 6: A ^ r ^ W S L 122

6.5.2 Statements for Moving through the Program

As was seen in Chapter 5, A ^ T ^ W S L needs to include statements for mov

ing wi th in program trees. These statements are: OUp, ODown, ©Left, @Right,

OTo.Last, ODown.Last, OTo, OGoto, OFollow and ©Return. (A ^ r ^ l W S L state

ments begin and w i t h "0" symbols to distinguish them.) The specific details of

each statement are described in Appendix C.3, however, two important charac

teristics of these statements are worth noting here.

First , these statements, being used internally by transformations, do not record

their action in the audit t ra i l of operations performed on the program. This is

because the application of a transformation is itself stored, and i f the actions that

that transformation performed were also stored individually, then the actions of

a transformation would effectively be recorded twice. Second, these statements

provide no error checking whatsoever. Thus, i f the current i tem is a leaf node

and the ©Down statement is executed, then an error occurs. The reasons for the

lack of error checking are twofold:

• The A ^ T . A W S L movement statements can be executed much more effi

ciently, which is useful in transformations in which these statements may

be executed many thousands of times; and

• The transformations can be wri t ten i n such a way that no movement to

non-existent nodes w i l l ever occur — in fact there are MSTAWSL conditions

which can be used to prevent illegal movement f rom happening.

6.5.3 Functions for Testing whether Movement is Pos

sible

As mentioned earlier, the MSTAWSL movement statements do not do any error

checking since this is left up to the individual transformations. Thus, i t is ne

cessary to incorporate into MSTAWSL a set of functions to check the validity of

movement wi th in the program tree. These return true i f and only i f i t is possible

C h a p t e r 6: A ^ r ^ W S L 123

to move in the indicated direction: [-Up?_], [_Down?_], [_Left?_] and [_Right?_].
(A^^r^WSL functions begin and w i t h "[_" and end wi th " .] " to distinguish them.)
These functions would most likely be used in a jMfT^WSL program fragment such
as:

(Cond (([-Up?-]) (@Up))).

The specific details of each of these functions are described in Appendix C.4.

6.5.4 Statements for Working with Spans

AisTAWSL provides statements for selecting several items in a sequence. These

statements neither provide any error checking whatsoever, nor do they record their

action in the audit t ra i l of operations performed on the program. The reasons are

the same as for the MSTAWSL movement statements.

Spans make use of two global variables: %Span% and %ltems%. The variable

%Span% holds a number one less than the number of items in the current span.

(I f no sequence has been selected, then this variable has the value zero.) The

variable %ltems% is a Hst^ which contains all the items that make up the span.

These variables can be accessed by a MSTAWSL program wi th in a transformation

and thus provide information about the size and content of spans.

The statements for working on spans are: @lnc-Span, ODec-Span, @Set_Span and

QAILSpan. They are described in more detail in Appendix C.5.

^Although %ltems% contains WSL items, it is not generally a syntactically correct WSL
program item. For example, %ltems% may contain a list of expressions, but it is not of itself an
object of type Expression, or any other standard object type.

C h a p t e r 6: A ^ r . 4 W S L 124

6.5.5 Statements for Editing the Program

The system would not be able to transform a program at all unless there were

some META^SL statements to modify the program. As wi th the statements

presented above, the editing statements that MCTASMSL includes do not do f u l l

error checking (such as checking that the resulting program is syntacticly valid),

nor do they update the audit t ra i l of operations performed on the program.

Since these statements can change the program tree in any way, they are capable

of being used to produce incorrect transformations (i.e. code which changes a

program so as not to preserve its semantics). Thus i t is dependent on the person

who implements the transformations to check that they are used appropriately.^

The statements @Del, ©DeLBack and ©DeLRest delete items f rom the program in

various ways. Items that have been deleted can be re-inserted elsewhere using the

statements ©UnDeLBefore and OUnDeLAfter. Any other program items can be

inserted using the statements @lns_Before and @lns_After, and the the statement

@Change_To changes the currently selected program item. These are described in

more detail in Appendix C .6.

As was said i n Section 6.4, the only constructs that exist in A ^ r ^ W S L are those

that have been found to be useful. A good example is the ODeLRest statement

which deletes all the items in the current branch after (but not including) the

i tem at the current position. Thus, i t can be used to delete all the unreachable

statements after an Exit statement. The corresponding statement, which would

delete all the items in the current branch before (but not including) the i tem

at the current position, is not included as part of A ^ r ^ W S L since there are no

transformations which permit the deletion of all the statements before the current

statement.

•̂ Once a formal definition of A^er^lWSLis produced, the implementation of the transforma
tions could potentially be verified formally.

C h a p t e r 6: A ^ Z 4 W S L 125

6.5.6 Statements for Repeating an Operation at Differ
ent Nodes

Many of the transformations involve manipulating or examining all the nodes

wi th in a subtree for which a particular condition is true. For example, i f there is

a transformation which moves a statement f rom outside the end of a Loop into

the Loop, then i t is necessary to be able to identify all the relevant Exit state

ments wi th in the Loop so that the statement being moved can be inserted in

front of all of them. This is a general process, and although i t could be coded

explici t ly on each occasion by a series of movements and tests, there is are gen

eral A^fZ^WSL statements for performing such tasks. These are the statements

@When, @When-Terminal and OWhen-TerminaLO.

The OWhen statement performs the specified actions at each i tem, wi th in a pro

gram i tem, which meets any of a set of given criteria. The criteria could include

a test for a "terminal" statement [177], possibly wi th a particular terminal value.

However, since these tests necessitate walking down the tree, which the OWhen

statement does anyway, their functionali ty can be combined to create the more

efficient OWhen-Terminal and @When-TerminaLO statements.

W i t h each of these statements, i t is possible to prevent the searching of a subtree

by using the @No-Deeper statement and to leave prematurely a @When statement

and return to the starting i tem using the @Exit-When statement. The @No-Deeper

statement might be used when a OWhen statement were searching for a particular

variable. I f i t were possible to determine (f rom the database or by using the

functions which return information about variable usage) that the variable did

not occur in a particular branch, then the system could avoid searching inside

i t by executing a @No-Deeper statement. The 0Exit-When statement might be

used when a @When statement were being used to determine whether a particular

condition was true at any point inside a program i tem. I f the condition was

fu l f i l l ed the transformation would set a flag to indicate the fact and then execute

an @Exit-When.

A l l these statements are described in more detail, w i th examples, in Appendix

C h a p t e r 6: >kx4WSL 126

C.7.

6.5.7 Other A^r^iWSL Statements

A transformation's applicability test sets a flag to be true or false in order to indic

ate whether the current program has passed the test. Two METAWSL statements

are used to set this flag to be true or false, and these are OPass and OFail.

Some transformations w i l l only be found to fa i l once they have started to make

changes. I t may also be that a transformation attempts to make some changes,

finds that they do not work and goes on to t ry some others. In both these cases i t

is necessary to revert to an earlier version of the program. Therefore MSTAWSL

statements to control this are required. These are: @Wrong, @Mark, ©Reposition,

OUndo and @Drop.

A l l these statements are described in more detail, wi th examples, in Appendix

C.8.

6.5.8 Pattern Matching and Template Filling

A transformation can be wri t ten using a "pattern match" function that compares

an in i t i a l program w i t h a pattern, and a "template fill" that replaces the ini t ia l

program w i t h a final program according to a second pattern.

Defining "Match" Pat terns

Patterns used for matching are defined using normal WSL constructs, together

w i t h a set of special symbols, some of which include tokens. These special symbols

are wildcards that can occur in place of any normal WSL i tem, and which match

any i t em (or possibly a sequence of items) that occurs at that position. Thus, the

form of a WSL i tem can be represented without necessarily specifying its content.

C h a p t e r 6: A ^ r . 4 W S L 127

The complete set of match pattern symbols is shown in Figure 6.2.

(- > ? '
(- > * '

(- > ? * '
(- < ? '
(- < * '

(^*^
(^ ? * ~
Token
Token
Token
Token
Token

(~ 0 R ~ Patterns

Match one program item.
Match a sequence (possibly empty).
Match a non-empty sequence.
Replace Token by the matched program item.
Replace Token by the matched possibly-empty sequence.
Replace Token by the matched non-empty sequence.
Check that the thing matches the value of Token.
Check that the list matches the value of Token.
Tests for one of several possible patterns.

Figure 6.2: The Pattern Matching Symbols

The final pattern is a compound pattern. I t takes as its arguments a list of possible

patterns, and returns the association table wi th the token values f rom the first

successful match, i f there is one.

For example, w i t h the pattern

(Cond ((- ? -) (~ > * ~ 5))
((Else) (~ < * ~ S)))

and the WSL code

(Cond ((= A B) (Assign (X 0)) (Skip))
((Else) (Assign (X 0)) (Skip)))

the matcher would return an association table wi th S given the value of a list

containing two statements (Assign (X 0)) and (Skip).

Def ining " F i l l " Pat terns

Like patterns used for matching, patterns used for filling are defined using normal

WSL constructs, together w i t h a set of special symbols. Again, these symbols

may occur in place of any normal WSL i tem. They extract the entry indicated

C h a p t e r 6: X f r ^ W S L 128

by the token f r o m an association table and put i t into the pattern in the place of
the symbol. The complete set of fill pattern symbols is shown in Figure 6.3.

(~ < ? ~ Token) Replace b y the single i tem. Token.
(r s ^ < * ~ Token) Replace b y the sequence of items. Token.

(~ < S E ~ Token) Replace b y the simplified fo rm of the expression Token.
(~ < S C ~ Token) Replace b y the simplified fo rm of the condition Token.

Figure 6.3: The Template Fil l ing Symbols

For example, w i t h the pattern

(Assign (X (~ < S E ~ (- (~ < ? ~ E) (+ A B)))))

and the association table containing E wi th the value (-f A B), the template filler

would return the WSL code

(Assign (X 0))

since i t would have simphfied the expression (- (4 - A B) (+ A B)) t o give 0.

The A ^ T ^ W S L functions which enable pattern matching to be incorporated into

transformations are [_Check?_] and [_Match_]. [_Check?_] tests a section of W S L

against a pattern and just returns true or false, and [_Match_] returns, in the fo rm

of an association table, the values of any tokens in the pattern that have matched.

The A ^ ^ r ^ W S L functions for template filling are [_FilLln_] and [_Fill_Args_j. A l l

these functions are described in more detail in Appendix C .9.

6.5.9 Functions for Association Tables

The pattern matching functions return association tables as their results, and the

template fiUing functions require association tables to provide the values of the

tokens being replaced. Provided i t were never necessary to do intermediate work

C h a p t e r 6: A ^ X A W S L 129

on these tables between performing a match and a fill, then no other operations on
the tables would be necessary. However i t is often the case that transformations
need to be able to access particular values in the table, or to be able to add items
to, or change items in , the tables. The functions to do this are [-Put-], [-Get-] and
[-VaL] and are described in Appendix C.IO.

6.5.10 Functions for Examining the Program undergoing

Transformed

W i t h i n program transformations, i t is necessary for the transformation to determ

ine attributes of the code being transformed. This can often be achieved by means

of a pattern match, but sometimes the information required cannot be obtained,

or more usually, cannot be obtained efficiently, this way. Thus, the following func

tions are provided to make the transformations simpler: [-With-Else?_], [-Size-],

[-Comps-j, [-Contents-j, [-AILContentS-], [.Statements-], [-Calls-j, [-Total-Size.] and

[-Body-]. They are described in more detail in Appendix C . l l .

6.5.11 Functions Relating to Variable Usage

The transformations often require information about the use of variables. In

particular, transformations need to know, for any section of code, all the vari

ables that are referred to, those that are used (or accessed) and those that

are assigned to. The functions to do this are described in detail i n Appendix

C .12, and are: [.Variables.], [.Used.], [JVssigned.], [.Used.Only.], [.Assd.Only.] and

[.Assd.To.Self_].

6.5.12 Functions for Testing Types and Syntax

A t certain points when performing transformations (or when testing their applic

abi l i ty) i t is necessary to check the type or syntax of particular items. These

C h a p t e r 6: A ^ r ^ i W S L 130

occasions occur when the action of a transformation is only valid for a particular
type of i t em (or set of types) or when the user has supplied some information
as input and the transformation needs to check the validity of its syntax. The
functions to perform these operations are the following: [_Number?_], [.Variable?.],
[.Syntax?.], [.S.Type?.], [.G.Type?.], [.P.Type?.] and = = . These functions are de
scribed in detail i n Appendix C.13.

6.5.13 Functions Relating to Loops

There are functions which return the information about Loops which trans

formations often need to have available. This information cannot be obtained

(simply) by any other means. These functions are the following: [.Primitive?.],

[.Depth.], [.Terminal-Value.], [.Terminal?.], [.Reducible?.], [.Proper?.], [.Improper?,

and [.Dummy?.]. They are defined in Ward's thesis [177] and are also described

in detail in Appendix C.14.

6.5.14 Functions for Testing Action Systems

Just as there are MSTAWSL functions for determining information about

Loops, so there are also functions for returning information about action sys

tems. These functions are the following: [.Regular?.], [.Regular.System?_] and

[.Calls.Terminal?.]. They are defined in Ward's thesis [177] and are also described

in detail in Appendix C.15.

6.5.15 Functions for Symbolic Mathematics and Logic

While symbolic simplification functions can be buil t into the templates used for

filling, i t is often necessary to be able to perform exphcit symbolic manipulations

such as forming the conjunction of two conditions. The following functions allow

certain symbolic manipulations to be performed in A ^ r ^ W S L : [.And.], [-Or_],

C h a p t e r 6: A ^ r ^ W S L 131

[-Not-], [-->T?-], [-->F?-], [-Simplify-], [-Simplex?-] and [-Isolate-]. These functions
are described in more detail in Appendix C.16.

6.5.16 Other Sundry A^Z4WSL Functions

I n addition to the A^^r^WSL functions already described, there are some which

do not fit into any particular category. These are [.Replace.] and [.RpicJ\ll.],

which perform search-and-replace operations on the given data, [JVrguments.] and

[.Occ], which return information about each occurrence of named constructs,

[-DifF-] which calculates the differences between two program sections using a

unification algorithm, and [-Increment.] and [.Decrement.], which increment or

decrement a sequence of statements according to Ward's definition [177] [174 .

These functions are described in more detail in Appendix C.17.

6.5.17 Calling other Transformations

Transformations can be bui l t up f r o m the METAWSL statements and functions

described above, together w i t h ordinary WSL constructs. However, i t is often

the case that more powerful transformations can be constructed by combining

existing transformations — provided that the transformations are legitimately

applied. I n fact, some more complex transformations can really only practicably

be constructed by this method.

The METAWSL [.Trans?.] funct ion returns true i f and only i f the named trans

formation is applicable at the current point i n the program and the MSTAWSL

OTrans statement performs a named transformation without testing the trans

formation's applicability. These statements can be combined to ensure that only

applicable transformations are performed. More details and an example are given

in Appendix C.18.

C h a p t e r 6: A ^ r ^ W S L 132

6.6 Summary and Conclusions

This chapter has introduced the statements and functions of MCTAWSL. I t is

proposed that A ^ T ^ W S L meets the criteria of success given in Chapter 4 in that i t

is both simple and complete.^ The next chapter considers whether this is the case.

I n particular, i t looks at whether A^T^ lWSL is simple, in that transformations can

be expressed in such a way that their funct ion is not obscured by implementation

details, and complete, in that all the transformations that could potentially be

included in the system can be expressed using MSTAWSL. This assessment wi l l

be performed by representing transformations using A4£TAWSL.

^MCTAWSL is not a minimal extension of WSL; for example there is a OChange.To state
ment which could have been omited since it can be replaced by a combination of ©Delete with
@lns.After or OIns.Before.

Chapter 7

The Transformations in the

Maintainer's Assistant

7.1 Introduction

The previous chapter introduced MSTAWSL and gave some simple examples of

how the different statements and functions could be used. This chapter explains

how a catalogue of transformations can be buil t up using METAWSL. The cata

logue w i l l be seen to be a complete implementation of Ward's transformations^,

and also usable in the sense that are transformations which combine Ward's trans

formations i n efficacious ways, reducing the need for the user of the system to learn

long sequences of elementary transformations. The construction of such a cata

logue provides insight into the questions of whether, and how clearly and concisely,

METAWSL can represent program transformations.

Details w i l l be given in this chapter of the types of transformations that are

incorporated into the Maintainer's Assistant together w i th examples. There are

^ Every theorem of mathematics gives rise to a transformation or refinement (replacing one
assertion by another), so completeness is unattainable. In practical terms, there are only a
small number of transformations which had to be proved from first principles [177]; all others
are combinations of these or applications of the induction rules for iteration and recursion.

133

C h a p t e r 7: T h e Transformations in the Maintciiner's Assistant 134

eight examples, i l lustrating different aspects of transformation construction, as
follows:

Assert_After_Whi le uses a single pattern match;

Spl i t_Cond uses several pattern matches to distinguish between cases;

Remove_Unused_Local_Var uses query operations;

Remove_Dummy_Loop tries a sequence of operations and undoes the changes

i f they prove not to be beneficial;

F u l l y - F a c t or_C end is bui l t f r o m calls to simpler transformations;

Reduce_Exits_ in_Loop uses the basic transformation facilities, but incorpor

ates a complex algorithm to select the best course of action;

T a k e _ O u t - > > shows the simplicity of constructing generic transformations; and

Insert J n v a r i a n t shows how the symbolic maths system is used in a high-level

transformation.

7.2 An Overview of the Transformation Cata

logue

The transformation catalogue of the Maintainer's Assistant currently contains 601

transformations. This collection has come about through an evolutionary process.

A min imal catalogue — in the sense that all other transformations could be pro

duced as sequences of these — containing only Ward's elementary transformations

(i.e. those proved in his thesis [177]) were implemented first. This, however, has

been extended to include compound, generic and high-level transformations, all

of which w i l l be explained below.

Each new transformation was added either as the result of observing a common

combination of simpler transformations — an example being the transformation

C h a p t e r 7: T h e Transformations in the Maintainer's Assistant 135

to replace an action system by a series of nested conditions and loops — or as
a generalisation of a number of other transformations — an example being the
general "Merge ->>" which merges an i tem into the following item.

7.3 Elementary Transformations

The most fundamental transformations in the Maintainer's Assistant are those

that have been proved by Ward in his thesis [177]. These provide a core set of

about 200 transformations f rom which others can be constructed.

7.3.1 Method

These transformations are, on the whole, very simple and this simplicity is not

obscured by representing them in AdSTAWSL. The transformations can be wri t

ten using pattern matching, combined wi th some tests of variable usage, logical

simplification and use of the QWhen statement.

7.3.2 Examples

For each of the transformations in this chapter, the following information wi l l be

given:

• A "header" consisting of:

1. The name of the transformation;

2. The generic type (such as Statement) on which the transformation

works;

3. The specific type (such as Assign) on which the transformation works;

and

C h a p t e r 7: T h e Transformations in the Maintcdner's Assistant 136

• The A ^ Z 4 W S L code for the transformation's apphcabihty test; and

• The A4£TAWSL code for performing the transformation.

Adding an Assert Statement

The following transformation creates an extra Assert statement after the end of

a While loop. The statement asserts that the condition of the loop is false. For

example, after the statement

(While (> a 1) (...))

the assertion

(Assert (< = a 1))

can be added. This transformation makes use of simple pattern matching, and

symbolic simplification when performing the [_Fill_ln_]. The header information

for this transformation is as follows:

Name Assert _After_While

Generic Type Statement

Specific Type While

The applicability test would just be as follows:

((OPass))

since the transformation is valid for any While statement at any position in the

program. The code for performing the transformation would be as follows:

((@lns_After ([_FillJn_] Statement
(Assert (~ < S c ~ (Not (~ < ? ~ B))))
([_Match_] Statement

(While (~ > ? ~ B) (~*~))
Empty)))

C h a p t e r 7: T h e Transformations in the Maintainer's Assistant 137

(@Right)).

The th i rd argument of the [_FilLln_] statement should be an association table, and

this is indeed the case since the function [_Match_] returns such a table. The final

0 Right statement ensures that the newly inserted Assert statement is the currently

selected program i tem after the transformation has been performed.

Splitt ing a Cond Statement

The next transformation splits a Cond statement whose condition is the conjunc

t ion (i.e. And) or disjunction (i.e. Or) of two conditions, into a combination of

Cond statements. For example, the statement

(Cond ((Or (= A 1) (= B 1)) (Assign (Q 1)))
((Else) (Assign (Q 2))))

can be rewrit ten (provided that neither condition has any side effects) as

(Cond ((= A 1) (Assign (Q 1)))
((Else) (Cond ((= B 1) (Assign Q 1))

((Else) (Assign Q 2))))) .

The transformation is wr i t ten using pattern matching and template filHng, and

makes use of conditional patterns i n order to check for the cases both of an And

and of an Or. The header information for this transformation is as follows:

Name Split_Cond

Generic Type Statement

Specific Type Cond

The applicability test would be as follows:

((Cond (([Xheck?_] Statement
(Cond (((~ 0 R ~ And Or) (~ ? ~) (~ ? ~))

(- * -))
((Else)

C h a p t e r 7: T h e Transformations in the Maintainer's Assistant 138

{-*-))))

(Comment "Now test for a general expression or condition.")

(ODown)
(ODown)
(Cond ((And (= ([-Occ_] Gen_Expr %ltem%) 0)

(= ([-Occ_] Gen.Cond %ltem%) 0))
(QPass))

((Else)
(OFail))))

((Else)
(QFail))))

and the A ^ X 4 W S L code for performing the transformation would be as follows:

((Var ((Table ([_Match_] Statement
(Cond ((And (~ > ? ~ B l) (~ > ? ~ B2))

(- > * - SI))
((Else)

(~ > * ~ S2)))
Empty)))

(Cond ((Non.Empty? Table)

(Comment "This is the case for an 'And' condition.")

(@Change_To ([.FillJn_]
Statement
(Cond ((~ < ? ~ B l) (Cond ((~ < ? ~ B2) (~ < * ~ SI))

((Else) (~ < * ~ S2))))
((Else) (~ < * ~ S2)))

Table)))

((Else)

(Comment "This is the case for an 'Or' condition.")

(Assign (Table ([_Match_] Statement
(Cond ((Or (~ > ? ~ B l) (~ > ? ~ B2))

(- > * - SI))
((Else)

(- > * - S2)))
Empty)))

(@Change_To ([_FillJn_]

C h a p t e r 7: T h e Transformations in the Mciintainer's Assistant 139

Statement
(Cond ((- < ? - B l) (~ < * ~ SI))

((Else) (Cond ((- < ? - B2) (~ < * ~ Si))
((Else) (~ < * ~ S2)))))

Table))))))

The transformation has two cases corresponding to the two clauses of the Cond

statement. These deal w i t h the cases of the condition being formed wi th an And

and an Or, respectively, and are distinguished by means of pattern matching. I f a

pattern match fails, then the association table in which the results are stored w i l l

be empty, and the predicate funct ion Non.Empty? can be used to test this.

The second call to the function [_Match_] w i l l always return a non-empty associ

ation table, since the applicability test ensures that one of the patterns in the two

calls to [-Match.] matches the current program item.

R e m o v i n g a L o c a l Variable

The following transformation removes a local variable structure when there is a

single local variable which is never referenced (except possibly i n assignments to

i tself) w i th in the body of the local variable structure.^ For example, the trans

formation would change the code

(Var ((X 2))
(While (< Y 10)

(Assign (X (* X 4)))
(Assign (Y (+ Y 1)))))

into

(While (< Y 10)
(Assign (Y (+ Y 1))))

^To enhance the clarity of how MSTAWSL is used, this transformation is a simpHfication of
one that is actually implemented in the Maintainer's Assistant.

C h a p t e r 7: T h e Transformations in the Mcdntainer's Assistant 140

since the local variable X is only ever used in assigning to itself, and does not
affect the value of Y .

The header information for this transformation is as follows:

Name Remove_Unused_Local_Var

Generic Type Statement

Specific Type Var

The transformation's applicability test is wri t ten using some of the functions for

examining the program being transformed and also the database query functions

which test variable usage. The applicabihty test would be as follows:

((@Down)
(Cond ((> ([-Size_] %ltem%) 1)

(QFail))
((Else)

(Var ((V (Hd ([.Assigned,] %ltem%))))
(@Up)
(Cond ((Member? V (Set.DifF ([_Used_] ([-Body.] %ltem%))

([J\ssd_To_Self.] ([-Body.] %ltem%))))
(@Fail))

((Else)
(@Pass))))))).

The test works by moving down into the Var thereby selecting the list of ini t ia l

assignments to the local variables. I t then tests whether there is more than one

in i t ia l assignment, i n which case the transformation is not valid. Otherwise, the

transformation stores the name of the local variable in the variable V. (Since the

funct ion [.Assigned.] returns a list, i t is necessary to take the head of the Hst.)

Next, the whole Var is selected again, and there is a test to determine whether

the variable named in V is ever used other than in assignments to itself. I f i t is,

then the transformation is not valid, otherwise i t is valid.

The A ^ Z 4 W S L code for performing the transformation would be as follows:

((ODown)
(Var ((V ([J\ssigned.] %ltem%)))

C h a p t e r 7: T h e Transformations in the Maintainer's Assistant 141

(While ([-Right?_])
(@Right)
(OWhen 0 ((And ([_Type?_] Assignment)

(= = ([J\ssigned_] %ltem%) V))
(Cond ((= %Length% 1) (OUp)))
(@Del))))

(OUp)
(@lns_After ([_FillJ\rgs_] Statements

S))
([_Match_] Statement

(Var (~ ? ~) (~ > * ~ S))
Empty)))

(@Del))).

The transformation works by moving down into the Var and storing the name

of the local variable in V. Next the transformation moves through every other

top-level component of the Var statement (using a While loop) and for each such

component i t considers all the assignments inside them which assign to the local

variable named in V. These are the assignments which need to be removed. I f they

are the only assignment in an Assign statement, then i t is necessary to move up so

that i t is the Assign statement, and not the assignment, that is deleted. Finally

the transformation selects the whole Var once more and does a pattern match

and template fill i n order to complete the change to the program. The statement

@lns_After is used w i t h the function [_FillJ\rgs_] since a list of statements is inserted

in place of a since statement (which is then deleted).

This pattern matching and template filling could also have been achieved using

the statement

(@lns_After (Args ([-Body_] %ltem%)))

— a fo rm which is used in the next example.

C h a p t e r 7: T h e Transformations in the Maintainer's Assistant 142

R e m o v i n g a D u m m y Loop

The final example transformation in this section removes a dummy Loop, replacing

i t w i t h the sequence of statements that that loop contained. For example, the Loop

(Loop (Assign (X (+ X 1)))
(Cond ((= X 10) (Assign (Y 0)) (Exit 1) (Assign (Q 0)))

((Else) (Assign (Y 3)) (Exit 1))))

can be replaced by the statements

(Assign (X (+ X 1)))
(Cond ((= X 10) (Assign (Y 0))

((Else) (Assign (Y 3)))) .

The transformation uses the MCTAWSL functions which manipulate loops wi th

Exit statements. The header information for this transformation is as follows:

Name Remove.D ummy_Lo op

Generic Type Statement

Specific Type Loop

The transformation's applicability test is as follows:

((Cond (([.Dummy?.] %ltem%)
(@Pass))

((Else)
(OMark)

(OWhen 0 ((And ([.G.Type?.] Statement)
([.Right?.])
([.Improper?.] %ltem%))

(@Del.Rest)))

(Cond (([.Dummy?.] %ltem%)
(OPass))

((Else)
(QFail)))

C h a p t e r 7: T h e Transformations in the Maintainer's Assistant 143

(OUndo)))).

The applicability test first tests whether the loop is a dummy loop. I f i t is, then the

transformation is valid. I f i t is not, then the applicability test records the current

version of the program and modifies i t (where possible) to remove all statements

which occur after improper statements (since these w i l l never be executed). This

may make the loop into a dummy loop and, i f i t does, then the transformation is

valid otherwise i t is not valid. I n both these last cases, the changes are undone to

leave the program as before.

The MSTAWSL code for performing the transformation would be as follows:

((©When 0 ((And ([_G_Type?_] Statement)
([-Right?-])
([.Improper?.] %ltem%))

(©Del.Rest)))

(@Change.To ([.Decrement.] %ltem% 1))

(Cond (([.Trans?.] Delete.All^kips)
(©Trans Delete.Ali.Skips)))

(OIns.Before (Args ([.Body.] %ltem%)))
(@Del)).

The transformation first removes any statements which occur after improper state

ments. Next i t decrements the loop by one, which may leave spurious Skip state

ments (since Exit 1 statements reduce to Skip statements) so these must be re

moved by calling the appropriate transformation. Finally, the statements of the

loop are inserted after the loop and the loop is deleted, leaving only the decre

mented loop body.

C h a p t e r 7: T h e Transformations in the Maintainer's Assistant 144

7.3.3 Summary

The examples i n this section demonstrate that is i t possible to express Ward's

transformations using MSTAWSL. I t can also be seen that wi th regard to applic

abil i ty conditions there are four cases:

1. Transformations that are always valid and thus have t r iv ia l apphcabihty

conditions; for example "Assert .After.While";

2. Transformations that involve a single pattern match which directly reflects

the fo rm of the code on which they work; for example "Spht.Cond";

3. Transformations that make use of calls to the database query functions; and

4. Transformations that combine one of the previous cases wi th a temporary

change to the program.

I t can be seen f r o m the examples given, that all these cases make for clear and

concise code.

There are three different varieties of code for performing the transformations:

1. Transformations that consist of a pattern, a template and the A^£T.AWSL

constructs for doing the matching and filling; for example "Assert-After-

.Whi le" .

2. Transformations that are similar, but sHghtly larger and more complex since

they are an implic i t combinations of other transformations; for example

"Split .Cond".

3. Transformations which use calls to the database query functions, or the

©When statement, thus obviating the need to include explicit tree walking

algorithms.

From the examples given, and f r o m the tables at the end of this chapter, i t can be

seen that MSTAWSL provides a good means by which elementary transformations

C h a p t e r 7: T h e Transformations in the Maintainer's Assistant 145

can be expressed. Doing so enables the complete set of Ward's transformations
to be implemented wi th in the Maintainer's Assistant.

7.4 Compound Transformations

The compound transformations i n the Maintainer's Assistant perform common se

quences and combinations of transformations but can be selected in the same way

as the elementary transformations. There are about 400 of these transformations.

7.4.1 JVLethod

Coding these transformations uses techniques that are very similar to the tech

niques used in coding the elementary transformations. However, the additional

features of WSL are used in order to guide the selection of patterns and templates,

the selection of program items on which to work and so on. A simple choice of

this type was used in the example above which removed dummy loops. I f the

in i t i a l test failed, then the transformation attempted to put the code into a form

so that the test might then work.

METAWSL has been designed to incorporate the features that are needed to con

struct compound transformations wi th the minimum of effort. The most import

ant of these features are as follows:

• The heuristics that are used to guide the choice of action in compound trans

formations are usually based on the program size, number of Call statements

in a section of code, the use of variables and so on. A l l this information is

provided through METAWSL^S functions for examining the program being

transformed and also the database query functions;

• Use of the @Mark, ©Undo, ©Reposition and ©Drop statements allow the

compound transformations to perform back-tracking should a particular se

quence of operations not "improve" the program;

C h a p t e r 7: T h e Transformations in the Maintainer's Assistant 146

• The @When, QWhen.Terminal and QWhen.Terminal.O statements allow the
compound transformations to work on relevant items wi th in the program
(i.e. those that meet particular criteria) and not on others; and

• The abil i ty to call other transformations f rom A^X4WSL, allows complex

transformations to be buil t up by combining simpler ones. This improves

the maintainabili ty and readability of the code.

7.4.2 Examples

Ful ly Factoris ing a Cond Statement

The first example transformation in this section takes as many statements as

possible out of the beginning and end of a Cond statement. For example, i t would

replace

(Cond ((= A B) (Assign (X 1)) (Assign (Y 2)) (Exit 1))
((= C D) (Assign (X 1)) (Assign (Y 7)) (Exit 1))
((Else) (Assign (X 1)) (Exit 1)))

by

(Assign (X 1))
(Cond ((= A B) (Assign (Y 2)))

((= C D) (Assign (Y 7))))
(Exit 1).

The way that the transformation is wri t ten reflects the transformation's function.

I n the code for performing the transformation there is an additional test to de

termine whether the transformation "Remove.Empty.Cases" in vaHd. This deals

w i t h the case in which any of the Cond statement's guards contain no statements,

or only a Skip statement, and can be removed.

The header information for this transformation is as follows:

C h a p t e r 7: T h e Transformations in the Meiintainer's Assistant 147

Name Fully.Factor.Cond

Generic Type Statement

Specific Type Cond

The applicability condition is as follows:

((Cond ((Or ([.Trans?.] Backward.Factor.Cond)
([.Tra ns?.] Forward.Factor.Cond))

(©Pass))
((Else)

(©Fail)))).

The code for performing the transformation as follows:

((While ([.Trans?.] Backward.Factor.Cond)
(©Trans Backward.Factor.Cond)
(Cond (([.Trans?.] Remove.Empty.Cases)

(©Trans Remove.Empty.Cases))))
(While ([.Trans?.] Forward.Factor.Cond)

(©Trans Forward.Factor.Cond)
(Cond (([.Trans?.] Remove.Empty.Cases)

(©Trans Remove.Empty.Cases))))).

R e m o v i n g Exit Statements from a Loop

The following example is a transformation which, when apphed to a Loop state

ment, reduces the number of Exit statements wi th in that loop i f this is possible.

The header information for this transformation is as follows:

Name Reduce.Exits.In.Loop

Generic Type Statement

Specific Type Loop

The applicability condition is as follows:

((Var ((Num 0))

C h a p t e r 7: T h e Transformations in the Maintainer's Assistant 148

(QWhen 0 ((Not (Member? (!L Exit) ([.Statements.] %ltem%)))
(ONo.Deeper))

(([.S.Type?.] Exit)
(Assign (Num (+ Hum 1)))
(Cond ((> Num 1) (@Exit.When)))))

(Cond ((> Num 1) (OPass))
((Else) (QFail)))))

The test is quite straightforward in that i t counts the number of Exit statements

in the selected program item, ignoring branches that contain no such statements

and ceasing to search when more than one has been found.

The code for performing the transformation is as follows:

((Var ((Num 0) (Temp 0))

(Comment "Count the number of 'Exit' statements.")

(OWhen 0 ((Not (Member? (IL Exit) ([.Statements.] %ltem%)))
(@No.Deeper))

(([.S.Type?.] Exit)
(Assign (Num (+ Num 1)))))

(Comment "Move statements that follow 'Var' statements inside the
'Var' statements.")

(OWhen 1 ((Not (Any.Member? (IL (Var Exit))
([.Statements.] %ltem%)))

(@No_Deeper))
((And ([-S-Type?.] Var) ([.Right?.]))

(While ([.Trans?.] Forward J\bsorb.Var)
(@Trans Forward J\bsorb-Var))))

(Comment "Search for 'Cond' statements that include 'Exit' statements
and simplify them by merging common guards.")

(OWhen 0 ((Not (Any.Member? (!L (Cond Exit)) ([.Statements.] %ltem%)))
(QNo.Deeper))

(([.S-Type?.] Cond)
(QMark)
(OTrans Super.Expand J\nd.Factor)
(While (Not ([.S.Type?.] Loop)) (@Up))
(Assign (Temp 0))

C h a p t e r 7: T h e Transformations in the Maintainer's Assistant 149

(Comment "Count the new number of 'Exit' statements.")

(@When 0 ((Not (Member? (!L Exit) ([.Statements.] %ltem%)))
(@No_Deeper))

(([^_Type?.] Exit)
(Assign (Temp (+ Temp 1)))))

(Comment "If there are no fewer 'Exit' statements then revert
to the previous version of the program, otherwise
continue with this version.")

(Cond ((>= Temp Num)
(@Undo))

((Else)
(^Reposition)
(@Drop)
(@Exit_When)))))

(Comment "Now move as many statements as possible from each 'Cond'.")

(@When 1 ((Not (Member? (!L Cond) ([.Statements,] %ltem%)))
(@No_Deeper))

(([_Trans?_] Fully_Factor_Cond)
(QTrans Fully_Factor_Cond)))

(Comment "Now move as many statements as possible from each 'Var'.")

(@When 1 ((Not (Member? (!L Var) ([.Statements.] %ltem%)))
(ONo.Deeper))

(([_Trans?_] Fully_Factor_Var)
(@Trans Fully_Factor_Var)))))

The transformation in i t ia l ly counts the number of Exit statements and stores the

result i n the variable Num.

Next the transformation searches for all Var statements, wi th in the selected state

ment, which include Exit statements and absorbs as much as possible into them;

i.e. the transformation moves statements that follow a Var inside the Var so that

tests are moved "closer" (in the sense that they are on the same level in the

program tree) to assignments.

C h a p t e r 7: T h e Transformations in the Maintciiner's Assistant 150

Next the transformation makes a copy of the current version of the program
since the next stage may increase the number of Exit statements and not decrease
i t . The transformation now performs the transformation "Super_Expand_And-
_Factor" at each Cond statement wi th in the loop. The transformation "SuperJEx-
pand_A.nd_Factor" copies all statements before and after a Cond statement into the
body of the Cond statement (where possible), attempts to merge as many guards
and statements as possible, and finally takes as many statements as possible out
of the beginning and end of the Cond. This often has the effect of reducing the
number of Exit (and other) statements, but i f i t does not, then i t is necessary to
revert the an earher version of the program.

Finally, the transformation attempts to simplify the result by taking as many

statements as possible out of the beginning and end of all Cond and Var statements.

R e s t r u c t u r i n g an Act ion Sys tem

By looking at examples of real programs, a number of common scenarios have

been identified in which more complex transformation strategies can beneficially

be employed. Since transformations are wri t ten as programs in ^A£TAWSL, i t is

possible to incorporate arbitrari ly complex heuristics into transformations. One

such transformation is "Collapse_Action_System" which replaces any regular ac

t ion system (see Section 4.2.2) by a series of nested loops and conditions.

While existing code restructurers that can do this kind of restructuring, none of

them is able to do i t i n the general case without either copying code or introducing

flag variables, thus complicating the data flow for the sake of simpler control

flow. The "Collapse_Action_System" transformation of the Maintainer's Assistant

employs an algorithm by which the labels and jumps (i.e. the actions and Call

statements) can be removed wi th no (or negligible) copying of code and without

having to resort to the introduction of new variables.

The transformation for doing this is too large to give as an example in this chapter,

but is given in Appendix D.

C h a p t e r 7: T h e Transformations in the Mzdntainer's Assistant 151

7.4.3 Summary

Compound transformations provide the user of the Maintainer's Assistant wi th

some powerful tools for restructuring software.

Whi le the tables at the end of this chapter give a summary of the clarity and con

ciseness of the transformations, i t is helpful to consider actual cases. In assessing

whether ^A£TAWSL provides a good basis for wr i t ing compound transformations

i t is necessary to consider two different types of transformation as typified by

the examples above. The first type, exemplified by "Fully_Factor_Cond", does no

processing except by way of calls to other transformations. As a result, this type

of transformation is both concise and clear.

The other type of transformation, for example "Reduce_Exits_In_Loop", uses an

(often complex) algorithm to determine the changes that must be made to the

program. This complexity means that the corresponding coding of the transform

ation may also be complex, and M.ETAWSL must be assessed on whether its use

causes any undue obscurity to be introduced. As can be seen f rom the example,

the only changes to the program that the transformation makes are made by calls

to simpler transformations. The algorithm in question arises f rom determining

which transformations to use on which parts of the program. This determination

of which transformation to apply is undertaken in one of several ways:

1. Using a pattern match;

2. Using the database query functions;

3. Moving up, right, or left through the program unt i l a statement of the correct

type is reached — this is done using A ^ r ^ W S L of the form

(While (Not ([_S_Type?.] Loop)) (@Up))

for example;

4. Moving down through the program to each place where a certain condition

holds — this is easily wri t ten using the MCTAWSL @When statement; or

C h a p t e r 7: T h e Transformations in the Maintainer's Assistant 152

5. Counting the number of occurrences of a particular fo rm wi th in a section of
code — in simple cases this can be done using the [_Occ_] function and in
all other cases the @When statement provides this facihty.

A l l these methods can be wri t ten as A f e r ^ W S L code which clearly expresses

the purpose of the code. I n addition the code is fa i r ly concise, especially where

is removes the need to include explicit tree walking algorithms. (The use of the

OWhen construct could be made more concise by removing the tests which prevent

i t walking down unprofitable subtrees. However, removing these tests would also

result i n a marked reduction in efficiency.)

Overall, j V k r ^ W S L provides a good method of expressing compound transform

ations, which are an important part of the Maintainer's Assistant.

7.5 Generic Transformations

The generic transformations, by selecting f rom a number of more specific trans

formations, enable a user to accomplish much of his work using only a small

number of transformations. The complete fist of generic transformations is as

follows:

Delete Delete the redundant program item.

Simplify Simplify the program i tem or the sequence of program

items.

- > > Swap the program i tem wi th the one following i t ; i.e.

move the current i tem to the right.

< < - Swap the program i tem wi th the one preceding i t ; i.e.

move the current i tem to the left.

C h a p t e r 7: T h e Transformations in the Maintciiner's Assistant 153

M e r g e - > >

A b s o r b - > >

Merge the program i tem into the one following i t ,

making several copies of the merged program item i f

necessary.

Absorb into the selected program item the one that

follows i t , making several copies of the following pro

gram i tem if necessary.

< < - M e r g e

< < - A b s o r b

M u l t i _ M o v e - > >

< < - M u l t i _ M o v e

Merge the program i tem into the one preceding i t ,

making several copies of the merged program item if

necessary.

Absorb into the selected program item the one that

precedes i t , making several copies of the preceding

program i tem i f necessary.

Move the program i tem as far as possible to the right.

Move the program i tem as far as possible to the left.

M u l t i _ A b s o r b - > >

<<-Mul t i _Abso rb

Absorb into the selected program i tem as many pro

gram items that follow i t as possible.

Absorb into the selected program i tem as many pro

gram items that precede i t as possible.

Separate->>

<<-Separate

Take the currently selected i tem out of its enclosing

structure towards the right.

Take the currently selected i tem out of its enclosing

structure towards the left .

T a k e _ O u t - »

« - T a k e _ O u t

« - T a k e _ O u t - »

Separate a component of the selected program item

towards the right.

Separate a component of the selected program item

towards the left .

Separate as many components as possible f rom the

program i tem, by taking them out in both directions.

C h a p t e r 7: T h e Transformations in the Maintcdner's Assistant 154

A p p l y - > >

< < - U s e

Use the current program i tem to simpHfy some pro

gram i tem that follows i t .

SimpHfy the current program item by using the one

that precedes i t .

Insert^Assert Insert an Assert statement inside the current item.

Add_Assert A d d an Assert statement after the current item.

Add_And_Insert_Assert Add an Assert statement after, and insert an Assert

statement inside, the current i tem.

7.5.1]V[ethod

Generic transformations can be wri t ten very simply using the OTrans statement

and [_Trans?_] funct ion which are provided by MSTAWSL. The example below

illustrates this.

7.5.2 An Example

This transformation takes a sub-component out of the selected i tem, towards the

right. For example, i t would transform

(Cond ((= A B) (Assign (X 0)))
((Else) (ProcCall P () ()) (Assign (X 0))))

into

(Cond ((= A B) (Skip))
((Else) (ProcXall P () ())))

(Assign (X 0))

by extracting the Assign statement.

The header information for this transformation is as follows:

C h a p t e r 7: T h e Transformations in the Maintainer's Assistant 155

Name T a k e _ O u t - »

Generic Type Any

Specific Type Any

The A^T .4WSL code for the applicability test would be as follows:

((Cond ((Or ([_Trans?_ Forward_Factor_Cond)
([_Trans?_] Forward_Factor_D_lf)
([_Trans?_] Forwa rd _Fa ctor_W h i le)
([_Trans?_] Take_Outside_Loop)
([_Trans?_] Forward_Factor_Loop_l)
([_Trans?_] Forward_Factor_Loop_2)
([_Trans?_] Forwa rd _Fa ctor_For)
([_Trans?_] Forward_Factor_Actions)
([_Trans?_] Forward_Factor_Where)
([_Trans?_] Forwa rd _Fa ctor_Va r)
(And ([_S_Type?_] Cond)

([.Trans?.] Take.Call.Out.Of.Cond)))
(©Pass))

((Else)
(@Fail))))

In the last condition of the Cond statement, there is a test for the selected

statement to be a Cond. This is because there is also a transformation called

"Take.Call .Out.Of-Cond" that which works on a Call statement and which has

a slightly different effect, and thus should not be included as a possibility in this

transformation.

The MsrAWSL code for performing the transformation would be as follows:

((Cond (([.Trans?.] Forward.Factor.Cond)
(OTrans Forwa rd.Factor.Cond))

(([.Trans?.] Forward.Factor.D.lf)
(OTrans Forward.Factor.D.lf))

(([.Trans?.] Forward.Factor.While)
(@Trans Forward.Factor.While))

(([.Trans?.] Take.Outside.Loop)
(@Trans Take.Outside.Loop))

(([.Tra n s? .] Forwa rd _Fa ctor.Loop.1)
(©Trans Forward.Factor.Loop.!))

(([.Trans?.] Forward.Factor.Loop.2)

C h a p t e r 7: T h e Transformations in the Maintcdner's Assistant 156

(@Trans Forward_Factor_Loop_2))
(([_Trans?_] Forward_Factor_For)

(@Trans Forward_Factor_For))
(([_Trans?_] Forward_Factor_Actions)

(@Trans Forward_Factor_Actions))
(([_Trans?_] Forward_Factor_Where)

(OTrans Forward_Factor_Where))
(([_Tra ns?_] Forward_Factor_Proc)

(OTrans Forward_Factor_Proc))
(([_Trans?_] Forward_Factor_Var)

(OTrans Forward_Factor_Var))
((And ([_S-Type?.] Cond)

([_Trans?_] Take.CalLOut_Of_Cond))
(@Trans Take_CalLOut_Of_Cond))))

7.5.3 Summary

Generic transformations can be expressed in ^A£TAWSL as lists of transformation

applicability testing functions and statements for performing the corresponding

transformations. Thus, provided i t is known which transformations need to be

included in the generic transformations, they are very easy to construct using

7.6 High-Level Transformations

As was seen in Section 4.4.5, for the Maintainer's Assistant to be suitable for all

forms of reverse engineering, its transformation catalogue needs to incorporate

"transformations" for crossing levels of abstraction. In fact not all of these are

transformations i n the true sense of the word since they are not i n general revers

ible; they are i n effect "reverse refinements". The steps that are required in order

to "transform" code to a more abstract specification were given in Section 4.4.5.

To summarise, they are:

• Procedurisation and parameterisation;

C h a p t e r 7: T h e Transformations in the Mciintainer's Assistant 157

• Recursion introduction;

• Determination of invariants;

• Introduction of specification statements;

• Introduction of specifications f r o m assertions; and

• Data abstraction.

7.6.1 IMethod

Each of these types of transformation would be coded using the same techniques

as for earlier transformations.

7.6.2 An Example

Due to the similari ty in method to examples earher in this chapter, just one

example is given.

Demonstrat ing an Invariant

This transformation makes appropriate copies of an assertion, which is true before

a While loop, which remains true after each iteration, and is therefore also true

outside the end of the loop. (The While loop and the Assert statement are put

inside a Cond statement, to take into account the case in which the loop is not

executed.) For example,

(Assert (> X 10))
(While (< > A B)

(Assign (X (+ X 1))))

can have assertions and a Cond statement inserted so as to rewrite is as

C h a p t e r 7: T h e Transformations in the Mciintciiner's Assistant 158

(Assert (> X 10))
(Cond ((<> A B)

(While (< > A B)
(Assert (> X 10))

(Assign (X { + X 1)))
(Assert (> X 10)))

(Assert (> X 10))))

The header information for this transformation is as follows:

Name Insert J n variant

Generic Type Statement

Specific Type While

The transformation's apphcability condition is as follows:

((Cond ((Not ([-Left?.]))
(OFail))

((Else)
(OLeft)
(Var ((Table ([.Match.] Statement

(Assert (~ > ? ~ B))
Empty)))

(Cond ((Empty? Table)
(OFail))

((Else)
(©Right)
(OMark)
(ODown)
(@lnsJ\fter ([.Fill.ln.] Statement

(Assert (~ < ? ~ B))
Table))

(©Right)
(©Trans DuplicateJ\ssertion)
(Loop (Cond (([.Trans?.] MoveJ\ssertion_Forward)

(©Trans MoveJ\ssertion.Forward))
((Else)

(Exit 1))))
(©Up)
(©Trans Simplify.AII.Expressions)

C h a p t e r 7: T h e Transformations in the Mcuntainer's Assistant 159

(Cond (([_Trans?_] AddJnvariantJ\fter)
(@Pass))

((Else)
(OFail)))

(QUndo)))))))

The applicability condition does some ini t ia l testing to ensure that there is a state

ment before the While loop and that i t is an Assert statement. Having done that,

the test marks the current version of the program, since the test changes i t , and

adds two copies of the assertion inside the body of the loop. The second of these

i t moves through the loop using the transformation "Move_Assertion_Forward".

This transformation swaps an assertion wi th the statement following i t , changing

the assertion as necessary. For example i t would replace the statements:

(Assert (< = X 1))
(Assign (X (+ X 1)))

by

(Assign (X (+ X 1)))
(Assert (< = X 2)).

Having moved the assertion as far through the loop as possible (which may be to

the end) the transformation "Move_Assertion_Forward" is no longer valid so the

remainder of the transformation test is executed. The applicability condition w i l l

have succeeded i f , and only i f , the transformation "Add_Invariant_After" is then

valid. This transformation adds an Assert statement after a While loop, provided

that the assertion is true at the beginning and end of the loop body as explicitly

indicated by assertions in the While loop. The transformation also puts both the

While and the Assert inside a Cond statement, to take into account the case in

which the loop is not executed. For example, the statement:

(While (< A B)
(Assert (< X 10))

(Assert (= X 4)))

C h a p t e r 7: T h e Transformations in the Mciintainer's Assistant 160

can be replaced by the statement:

(Cond ((< A B)
(While (< A B)

(Assert (< X 10))

(Assert (= X 4)))
(Assert (< X 10))))

Finally, the test undoes all the changes to the program using an ©Undo statement.

The code for performing the transformation works on the same lines, except that

i t does not revert to the original version of the program at the end. Also, i t

needs to do less checking, since this can be deduced f rom the validity of the

transformation's applicabihty test. The A ^ Z ^ W S L code is as follows:

((©Left)
(Var ((Table ([.Match.] Statement

(Assert (~ > ? ~ B))
Empty)))

(©Right)
(©Down)
(@lnsJ\fter ([.Fill.ln.] Statement

(Assert (~ < ? ~ B))
Table))

(©Right)
(©Trans DuplicateJ\ssertion)
(Loop (Cond (([.Trans?.] MoveJ\ssertion.Forward)

(©Trans MoveJ\ssertion.Forward))
((Else)

(Exit 1))))
(©Up)
(©Trans Simplify.AILExpressions)
(©Trans AddJnvariantJ\fter)))

7.6.3 Summary

The purpose of high-level transformations is to enable a user to extract a specific

ation f r o m a program by means of abstraction. During this process i t is necessary

C h a p t e r 7: T h e Transformations in the Maintainer's Assistant 161

to add information about the appHcation domain and also to remove information
which relates to the implementation alone. Although this work is at an early stage,
i t would appear f r o m this example that A^£:r^WSL provides all the facihties that
would be required — although not all the actual transformations have been imple
mented — since the construction of the ^A£TAWSL code for these transformations
is very similar to that for compound transformations.

One enhancement to the system that would certainly be needed is an extension

to the routines for performing symbolic mathematics, so that they are capable of

inductively proving more complex invariants. A n example of this would be proving

the invariance of an assertion over a loop which contains a recursive call to the

procedure containing the loop. To prove this invariance i t would be necessary to

assume that the assertion was preserved over the call and use this knowledge to

complete the proof, inductively.

7.7 Analysis

A catalogue of 601 transformations has been implemented using MSTAWSL. From

the implementation, the following tables have been produced.

7.7.1 Number of Statements

The table in Figure 7.1 gives the number of transformation applicability tests

(given in the "test" column) and the number of transformation "perform" routines

that are represented using the indicated number of (Meta-)statements.

I t can be seen that over half the transformations can be expressed in fewer than

ten statements. This suggests that the transformations can be expressed concisely

using A4£rAWSL.

C h a p t e r 7: T h e Transformations in the Maintainer's Assistant 162

Number of
Statements

Number of Transformations Number of
Statements Test Perform

1 66 24
2-5 185 201

6-10 136 118
11-20 120 126
21-30 53 51
>30 41 81

Figure 7.1: The Number of Statements

7.7.2 Number of MSTAWSL Operations

The tables i n Figures 7.2 and 7.3 give the number of transformation applicabil

i ty tests and the number of transformation "perform" routines whose AisTAWSL

representations use the indicated number of pattern matching or template fiUing

functions. (Applicabi l i ty tests which perform template fill operations must neces

sarily undo the fill, using OUndo.)

Number of
Pattern Matches

Number of Transformations Number of
Pattern Matches Test Perform

0 387 314
1 129 120
2 47 67
3 12 43
4 14 13
5 4 10

>5 8 34

Figure 7.2: The Number of Pattern Matches

The tables i n Figures 7.4 and 7.5 give the number of transformation appHcabihty

tests and the number of transformation "perform" routines whose A^T .4WSL

representations use the indicated number database queries, first using functions

concerned w i t h variable usage and then using functions concerned wi th Loops and

C h a p t e r 7: T h e Transformations in the Maintainer's Assistant 163

Number of
Template Fills

Number of Transformations Number of
Template Fills Test Perform

0 531 259
1 40 134
2 18 81
3 4 31
4 3 38
5 3 13

>5 2 45

Figure 7.3: The Number of Template FiHs

action systems.

Number of
Variable Queries

Number of Transformations Number of
Variable Queries Test Perform

0 483 407
1 38 97
2 25 33
3 17 20
4 10 9
5 9 14

>5 19 21

Figure 7.4: The Number of Variable Queries

I t can be seen that few transformations require more than two or three pattern

matches, template fills or query operations in their representations. This, again,

suggests that transformations can be expressed concisely using METAWSL.

7.7.3 Spread of Usage of MSTAWSL Constructs

The table in Figure 7.6 gives the number of transformation appHcabihty tests and

the number of transformation "perform" routines which use particular combina-

C h a p t e r 7: T h e Transformations in the Maintainer's Assistant 164

Number of Loop
or Act ion Queries

Number of Transformations Number of Loop
or Act ion Queries Test Perform

0 521 419
1 50 104
2 21 35
3 6 17
4 2 6
5 1 11

>5 0 9

Figure 7.5: The Number of Loop or Action Queries

tions of A ^ T ^ l W S L constructs:

• Pattern matching and template fiUing operations;

• Database query operations;

• Type testing operations; and

• Operations for calling other transformations.

A " • " indicates that the A ^ r ^ W S L code uses the construct.

I t has been observed that transformations are generally easier to understand i f

they do not m ix different styles of METASN^IJ construct. From the table i t can be

seen, for example, that over 90% of transformations do not mix pattern matching

and data base operations. This provides further evidence that transformations

can be expressed clearly using A^fT^tWSL.

7.8 Conclusion

During the implementation of the catalogue of 601 transformations, no transform

ations have been found that cannot be expressed using jMfXAWSL. Indeed, all but

C h a p t e r 7: T h e Transformations in the Maintainer's Assistant 165

Type of
Operation

Number of
Transformations

Pattern Query Type Test Trans. Test Perform

• • • • 14 29
• • • • 33 15

• • • • 3 6

• • • • 11 28

• • • • 10 9

• • • • 10 6

• • • • 38 48
• • • • 9 31

• • • • 25 4

• • • • 5 4

• • • • 64 41

• • • • 96 124

• • • • 13 0

• • • • 88 6

• • • • 68 135

• • • • 114 115

Figure 7.6: The Spread of A^fr^tWSL Constructs

those transformations which incorporate complex algoithms, have been represen

ted in both a clear and concise manner. This is because A^£r>tWSL provides

not only the program editing statements and program analysis functions that are

needed to construct simple transformations, but it also incorporates additional

control statements and all the structures of W S L (which enable sophisticated

control of the transformation process). These features, together with the mathem

atics and logic routines, mean that elementary, compound, generic and high-level

transformations can be written without any difficulty.

The next chapter will outhne the methods by which many of the important com

ponents of the system are implemented.

Chapter 8

Implementation of the

Maintainer's Assistant

8.1 Introduction

This chapter considers some of the implementation issues involved with the con

struction of the Maintainer's Assistant. It addresses the method of constructing

the tool, the system architecture and the work's contributions in terms of data

structures and algorithms.

8.2 Approach to Building the Tool

The traditional "structured" methods of building a software system are the "top

down" approach and the "bottom up" approach. The top down method starts

with a high-level description of the system to be developed which is then refined

into a structure expressed in terms of "big" operations. These operations are then

re-expressed in terms of operations with simpler functionality, and the process is

repeated until an implementation is obtained. Although this approach has been

166

C h a p t e r 8: Implementat ion of the Maintainer's Assistant 167

Top Level Structure

Second Level Structure

More Detailed Level

Machine Level

Figure 8.1: Top Down Development

used successfully, there are a number of problems [183]; in particular a problem

which arises when building a prototype, such as the Maintainer's Assistant, is

that there is only a vague top-level description. In addition, choosing the wrong

structures in the early stages can have serious repercussions which will only be

uncovered much later in the development.

Top Level Structure

High Level Utilities

A bottom up development starts

by implementing the lowest-level,

most general "utility" functions.

From these, higher-level functions,

routines and abstract data types

are constructed. The process

is repeated, creating increasingly

domain-specific routines, until the

top-level structure of the program

can be implemented. The advant

ages of this approach include the

ability to perform unit testing and

the possibiHty that routines may be

reusable. Among the problems [183] is the difficulty, especially in the middle

stages of development, of determining what to build next in order to make pro

gress. The high-level routines may do "too much" or "not enough", and they

Low Level Utilities

Machine Level

Figure 8.2: Bottom Up Development

C h a p t e r 8: Implementat ion of the Maintainer's Assistant 168

may not be required at all. Again, these problems are exacerbated when the
application domain is new, as in the case of the Maintainer's Assistant.

Top Level Structure

System Development

Domain-Oriented Language

Language Implementation

Machine Level

Figure 8.3: Middle Out Development

An alternative method of building

a software system was adopted in

the construction of the Maintainer's

Assistant: "middle out" develop

ment [183], in which the middle

layer forms the starting point. This

middle layer takes the form of an

abstract machine, specially designed

to facilitate the implementation of

the kind of software required. In the

case of the Maintainer's Assistant,

this middle layer takes the form of

In general, using a high-level language rather than writing everything in assembler

has a number of advantages: the program requires an order of magnitude fewer

lines, it is easier to understand and it is easier to change. Using a very-high-level,

domain-oriented language such as A^fr^WSL has given similar improvements over

traditional languages. Moreover, the implementation of MsrASN^L and the imple

mentation of transformations using METASN^IL can be carried out independently.

During development, the Maintainer's Assistant was continuously tested on many

small, example programs to determine whether the ideas that it embodied were

practical and efficient. These examples were constructed (a) so as to incorporate

artificially as much complexity in a small program as was possible, and (b) so

that all the different W S L program constructs and transformations in the system

were tested.'^ This resulted in information which was fed back into the design of

A^fT^WSL and thence into the design of the entire system — a process that was

simplified by using a middle-out design.

^As these examples were created, and the transformations needed to be applied to them
determined, this information was put into an executable file so as to provide a regression test
for the system.

C h a p t e r 8: Implementat ion of the Medntainer's Assistant 169

Program Transformer
and

Program Transformation Catalogue

A4£TA\NSL — Domain-Oriented Language

WSL

Interpreter

Pattern

Matcher

Query
and

Database

Symbolic
Maths

and Logic

WSL Tree Processor

Program

Editor

Common LISP — Machine Level

Figure 8.4: The Architecture of the Maintainer's Assistant

8.3 The System Architecture

The architecture of the Maintainer's Assistant, which is shown in Figure 8.4,

reflects a middle out design and construction which starts with the definition

of MSTAWSL. Working upwards, this is used to build the transformations, and

working downwards A ^ r ^ W S L is composed of a number of simpler components.

These are the W S L interpreter (since MSTAWSL incorporates the whole of W S L) ,

the pattern matcher and template filler, the query and database functions, and

the symbolic mathematics and logic routines.

These components were also constructed in a middle out manner by starting with

a middle layer which consisted of some elementary W S L tree-processing functions

(since W S L programs are represented as trees). These functions proved reusable

C h a p t e r 8: Implementat ion of the Mciintainer's Assistant 170

in the construction of a syntax-directed program editor.'^

At the lowest level of the system, the tree processing functions were implemented

in Common LISP. Although any language could have been used as at the lowest

level, L I S P has four important advantages which make it eminently suitable for

constructing this kind of system:

1. L I S P is a good language for manipulating tree structures. Programs written

in W S L and transformed by the system are much easier to work with if they

are represented as a syntax tree.

2. L I S P works using implicit pointers to allow different data structures to share

the same memory, provided that they have common data. This is important

when it is necessary to update one data structure and have the corresponding

ones updated in the same way since it allows the programmer to make the

change only once.

3. L I S P allows data structures to store executable code. Since the transform

ations consist of executable code (written in METAWSL) and are stored in

a data structure, this facility is essential.

4. L I S P is portable across diff"erent platforms.

LISP'S chief disadvantage is its inefficiency; much time is spent garbage collecting.

The following sections will consider specific details of the implementation, looking

in turn at each component.

8.3.1 The W S L Tree Processor

This component implements an abstract data type for W S L program trees (the

exact form of which is given in Section 8.4.1). So as to hide the implementation

^It may sometimes be necessary to edit the program which is undergoing transformation in
order to correct faults or to change the program's functionality.

C h a p t e r 8: Implementat ion of the Maintainer's Assistant 171

Function Parameters Description

Tables Item Returns the database tables of the item.
Comments Item Returns the comments information of the

item.
Types Item Returns the types information of the item.
Leaf-Item? Item Tests whether the item is a leaf node.
BranchJtem? Item Tests whether the item is a branch node.
Size Item Returns the size (number of components) of

the item.
Comps Item Returns the components of the item.
Gen_Type Item Returns the generic type of the item.
Specific_Type Item Returns the specific type of the item.
Leaf JIame Item Returns the name (or value) of the leaf item.
Max_Size Type Returns the maximum number of components

allowed in an item of the given type.
Min_Size Type Returns the minimum number of components

allowed in an item of the given type.
TypeJI Type, N Returns the type of the nth component of an

item of the given type.
GetJI Item, N Returns the nth component of the item.
Eq_Items Item_l, Item_2 Tests the two items for equality, ignoring

tables and comments.

Figure 8.5: Basic Tree Examination Functions

of the abstract data type for W S L program trees, a number of operations are

provided to access and update these trees. Thus, if the manner in which the

extra information — types, database and comments information — is stored at

each node is changed, then only the basic tree manipulation functions need to be

updated. The functions for examining and comparing trees are given in Figure

8.5, the functions for building and altering trees are given in Figure 8.6 and the

functions for working with tables and comments information are given in Figure

8.7.

C h a p t e r 8: Implementat ion of the Maintciiner's Assistant 172

Function Parameters Description

LISP->Int Item, Type Converts the item of the given type from LISP-
like form to internal form.

Int->LISP Item Converts the item from internal form to LISP-
like form.

ChangeJI Item, N, New_Elt Changes the nth component of the item to the
given new element.

DeleteJI Item, N Deletes the nth component of the item.
Insert _N Item, N, New_Elt Inserts before the nth component of the item,

the given new element.
SpliceJF Item, N, New_Elts Inserts before the nth component of the item,

the given list of new elements.

Figure 8.6: Basic Tree Building Functions

Function Parameters Description

Set.Table! Item, Table Resets the database table of the item to the
given value.

Add_To_Table! Item, Key, Data Stores a table entry, indexed by the key, for
the item.

Get_From_Table Item, Key Returns the value, indexed by the key, in the
table of a item.

Set-Comment! Item, Comments Resets the comments information of the item
to the given value.

Edit_Comment! Item, Key, Data Stores a comment, indexed by the key, for the
item.

Get_Comment Item, Key Returns the comment, indexed by the key, of
a item.

Figure 8.7: Basic Database and Comment Functions

C h a p t e r 8: Implementat ion of the Maintainer's Assistant 173

Higher Tree Manipulat ion Functions

The basic tree manipulation functions all take as an argument an item which

represents a W S L program tree. From these functions, higher-level routines are

constructed to operate on the specific program trees which represent the current

program and currently selected item, and which are held in the global variables

"/.Program'/, and %?osn°/,. These higher-level routines are, in fact, MSTAWSL state

ments and functions in that they examine and edit the program being transformed.

However, to facilitate their implementation and to improve the efficiency and ef

fectiveness of the tool, a few intermediate functions have been constructed; these

relate to movement within the program tree (see Section 8.4.2) and to the syntax

checking of W S L programs.

8.3.2 The W S L Interpreter

Since MSTAWSL incorporates the whole of W S L , it is necessary to include a

method of executing W S L programs. Rather than building a translator to produce

from W S L code in an existing language, or a W S L compiler, a W S L interpreter

was used. Although less efficient in terms of program execution times, this has the

advantage of being simple to implement and change; an important consideration

when building a prototype.

The interpreter consists of a number of LISP functions and macros, each of which

defines a W S L construct. An example — the definitions which implement un

bounded Loops with Exit statements — is shown in Figure 8.8.

8.3.3 The Pattern Matcher and Template Filler

This section describes the mechanisms for pattern matching and template filhng.

A pattern, for either matching or for using as a template, could contain tokens for

components that have been matched or which need to be filled. These components

C h a p t e r 8: Implementat ion of the Maintcdner's Assistant 174

(Defmacro Loop (&Rest Body)
'(Let (('/.Exit'/.

(Catch 'Exit (Tagbody '/.Here'/ .OBody (Go '/Here'/.)))))
(Or (= 1 '/.Exit'/.)

(Exit (1 - '/.Exit'/.)))))

(Defun Exit (N)
(Throw 'Exit N))

Figure 8.8: The Implementation of Unbounded Loops

are stored in an association table, with one entry for each token. The entries

consist of pairs, each pair containing the name of a token and the value with

which it corresponds. An association table can be held as a single object in a

W S L variable. There are two main advantages of storing the results of matches

in this way:

• The result of a pattern match can be worked on as a single object, for

example when it is passed to a template filhng routine;

• Different matches can stores their results independently, even though they

may have tokens with the same name.

Convert ing Pat terns to Tree F o r m

In A ^ Z A W S L programs, the W S L code and the patterns are expressed as execut

able L I S P - f o r m . However, there are a number of advantages of performing the

pattern matching and template filling on the internal tree form.

Foremost among these is that the database tables and comments that are attached

to the program components being matched are stored in the association tables

along with the actual W S L . ^ This means that when a template fiU is performed,

the database tables and comments form part of the new piece of W S L . In the case

Ŝee Section 8.4.1 for details of the internal form of WSL program trees.

C h a p t e r 8: Implementat ion of the Maintainer's Assistant 175

of tables this is a benefit since the information does not need to be recalculated for
this newly filled in code. It is also a benefit from the point of view of comments,
since the user does want them to disappear as soon as he starts moving code
around by transformation.

As a result of performing pattern matching using the tree form, the patterns need

also to be converted into tree form, complete with their own tables and so on.

This need not be done every time the pattern is used, however. Instead it is done

when the transformation is loaded in the system.

8.3.4 The Query and Database Functions

The functions which access and update the database tables that are stored in

W S L program trees form part of the W S L tree processor. The functions provided

by this component are those that determine the information to be stored in the

tables and are, in fact, functions provided as part of A ^ Z 4 W S L . They cover four

particular areas:

1. Functions for examining the program undergoing transformed: [_State-
m e n t s j , [_Calls_] and [_Total_Size_] (see Appendix C . l l) ;

2. Functions relating to variable usage: are: [_Variables_], [_Used_],

[-Assigned-], [_Used_Only_], [_Assd_Only_] and [_Assd_To_Self_] (see

Appendix C.12).

3. Functions relating to Loops: [_Depth_], [_Terminal_ValueJ, [.Term

i n a l ? -] , [-Reducible?-] , [-Proper?-], [-Improper?-] and [-Dummy?-]

(see Appendix C.14); and

4. Functions for testing action systems: [-Regular?-], [-Regular-System?-]

and [-Cal l s -Terminal?-] (see Appendix C.15).

Each function is implemented by recursively walking down the tree to determine

the result for each node. If at any stage the result is already stored in a table.

C h a p t e r 8: Implementat ion of the Maintainer's Assistant 176

then the rest of that subtree need not be walked through. As the intermediate
results for each node are calculated, they are stored in the corresponding database
tables for later use. Currently, the system stores this information at every node,
but for leaf nodes or small subtrees, it might be more efficient just to recalculate
the results. The tradeoffs between storage and calculation could be determined
empirically and a later system might only store database tables at, say, statement
nodes.

8.3.5 The Symbolic Mathematics and Logic Routines

The primary mathematical routines are [_Simplify_], [_Isolate_], [_->T?_]

and [_->F?_]. Foremost among these is C_Simplify_] which takes an expres

sion or condition as returns an equivalent expression or condition that has been

simplified as much as possible.

As part of the transformation process one may wish to rewrite the statements

(Cond ((= X 0) (Abort))) (Assign (X (+ X 1)))

as

(Assign (X { + X 1))) (Cond ((= (- X 1) 0) (Abort))).

To do this, it is necessary to be able to rewrite an expression of the form (Expres-

sionl = Expression2) so that a particular variable appears on its own on one side

of the = sign. The function [_ I s o l a t e _] accomplishes this. For example, with

the left expression as Y , the right expression as (+ X 1), then isolating X would

return (- Y 1).

Two functions are needed for testing logical imphcation. Both of these take as

their arguments two conditional expressions, an assertion and a test. The func

tions [_->T?_] is used to determine whether the assertion imphes the logical truth

of the test, and it returns true or false accordingly. For example, (= a 0) logically

implies that (< a 5) is true, whereas (< > a 0) does not logically imply that (<>

C h a p t e r 8: Implementat ion of the Maintainer's Assistant 177

a 1) is true. The function [- ->F?-] is used to determine whether the assertion
implies the logical falsehood of the test, and it returns true or false accordingly.
For example, (> a 1) logically imphes that (< a 0) is false, whereas (< > a 0) does
not logically imply that (< > a 1) is false.

8.3.6 A^T.4WSL

AffT^lWSL contains the union of the functions provide by the W S L interpreter,

the pattern matcher and template filler, the query and database functions, and

the symbolic mathematics and logic routines. There are, in addition, some ex

tra routines which provide the "glue" to hold everything together. These im

plement W S L statements such as @When which provide additional programming

structures; @Pass and @Fail which provide control of the transformation process;

-Replace-] and [-DifFJ which provide extra functions on W S L program trees; and

QTrans and [-Trans?-] which permit the combining of transformations.

All these routines are implemented in the same way as the W S L interpreter using

L I S P macro and function definitions, but they also make use of the lower-level

functions so as not to need to refer explicitly to the implementation of the abstract

data type for W S L program trees.

8.3.7 The Program Transformer

The program transformation catalogue consists of pieces of A ^ T ^ W S L code stored

in appropriate data structures, as was described in Chapter 5. The program

transformer provides functions which extract the transformations from these data

structures and execute the relevant pieces of code. The execution is performed by

means of the L I S P "eval" function; ^AE^^SN^'L code maps into LISP code since

the definitions of W S L and McrjCN^h are in terms of L I S P functions and macros.

C h a p t e r 8: Implementat ion of the Maintciiner's Assistant 178

8.3.8 The Program Editor

The program editor uses combinations of the functions provided by the W S L tree

processor in order to construct functions for editing W S L program trees. Unlike

the corresponding A ^ T ^ W S L statements, these functions do provide error check

ing so as to prevent the user from constructing syntactically invalid programs.

8.4 Contributions

This section looks at five areas in which this work has contributed to the study of

transformation systems by it use of new-developed data structures or algorithms.

8.4.1 The Representation of W S L Program Trees

Transforming, editing or changing a program in any way involves manipulating the

variable in which the program is stored, while moving through a program involves

changing the variable which records the current position. These are the variables

'/.Program'/, and '/.Posn'/., respectively and their use is described in Appendix C.2.

In addition, the currently selected item and other information relating to it is often

required. Although this could be calculated from knowledge about the program

and the current position, it is stored in a number of variables (see Appendix C.2)

to save having to calculate it "on the fly" each time it is needed.

The Maintainer's Assistant represents both the W S L programs that are being

transformed, and the selected item, as syntax trees. An example of a portion of

the tree for a parallel Assign statement was given in Figure 5.2. There are, how

ever, two forms of these trees. The first, the "internal" form, stores at each node

additional information, such as its database table, which is used when transform

ing the program. The second, the "LISP-like" form, omits the extra information

so that programs in this form can be executed via a number of macro and func

tion definitions. All the programs being transformed are stored using an abstract

C h a p t e r 8: Implementat ion of the Maintainer's Assistant 179

data type which implements the first form. The information held at each node is

grouped into various categories as follows.

T y p e s

(Assign Statement)
(Assignment Assignment)
(Number Expression 0)

In order for the system to function, it is

necessary to record the specific syntactic

type of each node, such as Assign or As

signment, at the node. The generic type

of the node is also stored for efficiency.

For an Assign node, this would be State

ment, whereas for an Assignment node, it

would also be Assignment. For leaf nodes

this information may be supplemented by a value. Examples are shown in Figure

8.9.

Figure 8.9: Type Pairs

Database Informat ion

Working with database information re

quires that each node hold an arbitrary

number of data pairs, each pair consist

ing of a query and its result. These pairs

are held in a list with an identifier ("- -")

as its head to indicate that it is a data

base.

IdJJumber
(Queryl Resultl)
(Query2 Result2)

(query„ Result„))

The database update functions modify

the program structures destructively Fig^^^ 8.10: Queries and Id Numbers

without creating new copies of the struc

tures. Thus the "history" and "future" versions of the program are updated with

the same information since, where the node is shared between them, the database

results are still vaHd, and so it is unnecessary to recalculate them. Also if the

same node occurs several times in the current program version — through the

C h a p t e r 8: Implementat ion of the Maintainer's Assistant 180

use of transformations which have copied it — then the result will also be valid
at those nodes too. This saves time-consuming recalculation of the results.

I t e m Identif ication N u m b e r

In order to enhance communication with the user interface — in particular to

prevent the same piece of code from being passed to the interface several times —

each node is given an identification number. This is initially zero, but once the

node has been passed to the interface, it is set to a unique, non-zero value. The

identification number gets changed in a similar way to the database tables when

an item's sub-components are changed. Thus the two pieces of information share

the same data structure. The representation is of the form shown in Figure 8.10.

C o m m e n t s

A helpful feature of the system is the abil

ity to link a comment to each node. Thus

if the node moved to a different place

in the program (due to it being trans

formed) the comment would move with

it.

(II

(Categoryi "Texti")

(Categorya "Texta")

(Category„ "Text„"))

Figure 8.11: Comments
A representation that allows for differ

ent categories of comment is more flex

ible and is the one that was adopted. It

is implemented in a similar way to the database structure, but stored separately

and with a different identifier ("I 1"), as shown in Figure 8.11.

This extra information is stored at each node in the order: database tables, com

ments, types, and is followed by all the components of the node. Thus a node

might be of the form shown in Figure 8.12 where the dots indicate that there is a

sequence of components, each of the type Assignment.

Chapter 8: Implementation of the Maintciiner's Assistant 181

((__ 0 (Variables X Y A B))
(I I (Label "An Example"))
(Assign Statement)

)

Figure 8.12: An Example WSL Program Node

8.4.2 Movement within the Program Tree

Each component in the program tree has a position relative to the root of the tree

which is represented as a list of positive integers as described in Chapter 6.

When moving through the program tree, not only is it necessary to update this

position — stored in the variable '/oPosn'/. — it is also necessary to update the

other predefined global variables (see Appendix C.2). In order to do this efficiently

another global variable, '/.P-Data'/, is used.

It is always possible to set the values of the global variables described above

by starting at the root of the tree and walking downwards through it to the

current position. However, this is time consuming, especially when a great deal of

movement is to positions adjacent to, within, or containing, the current position.

Thus, rather than recalculating the values by walking through the whole tree, all

the values of the variables at each stage in the walk through the tree are recorded

in y.P-Data'/. and reused.

y.P-Data'/, is a list items, one for each position in the tree that has been walked

through, up to and including the actual current position. Each item in '/P-Data/, is

itself a list consisting of the values of certain variables for that position, including,

for example, the context variables.

Two functions are needed for moving through trees. The first, All_New_Position-

_Data, is used after the program has been changed, or the selection has been moved

to a completely new point in the program. In this case, it is not possible to make

Chapter 8: Implementation of the Maintainer's Assistant 182

use of values of these global variables higher up in the program tree (which are
recorded in y,P_Datayo). The second function, Set_Position_Data, is used after
the current position has been moved to one near to the previous position, for
example with one of the MSTAWSL statements OUp, ODown, ODown_Last, @Left,
@Right or @To.

The second of these functions takes a parameter which indicates the "direction"

of the movement:

0 — Movement downwards through the program tree;

1 — Movement left or right an arbitrary number of positions within the current

parent component; and

2 — Movement up one level in the program tree.

The "movement" argument allows the function to strip ouf* any information from

the beginning of '/P-Data'/ that cannot be used to regenerate the values of the

global variables, thus ensuring that the first item of '/.P-Data'/, is the lowest node

in the tree which is common to both the old program position and the new program

position.

Starting with the position relating to the first item of y,P_Data% there is a subsi

diary function which steps through the tree until the selected position is reached.

For each step, the values of the global variables that the system needs are recal

culated and put, together with their position information, as a new element, into

y.PJ3atay..

8.4.3 Global or Local Scope Transformations

Testing the applicability of transformations can be a time consuming process.

Thus, if the same transformation needs to be tested for applicabiUty at the same

^This can be achieved by setting '/,P_Data'/. to be equal to (Nthcdr D i r e c t i o n '/.PJData'/.)

Chapter 8: Implementation of the Maintainer's Assistant 183

point in the program a number of times, this could become very slow. The chosen
solution to this problem is to store in the database table associated with the item,
the name of the transformation and the result of its appUcabihty test, then when
the transformation's applicability is tested on subsequent occasions, provided the
components within the item have not changed (in which case the database table
will have been emptied anyway), the result of the test can be obtained simply by
looking in the database table.

However, not all transformations rely solely on the form of the current item for

their applicability test. Many of them also rely on adjacent components, for

example. Thus the results of transformation applicability tests are only stored in

a database table if their respective tests relies solely on the current item. In order

to distinguish between transformation whose appHcabihty can be stored and those

for which it cannot, there is a flag associated with each transformation. This is

either "Local" if the result can be stored or "Global" if it cannot.

8.4.4 The Symbolic Simplifier

Al l the symbolic mathematics and logic routines use the generic symbolic sim

plification function, [_Simplify_] which takes an expression or condition and

simpHfies it as much as possible. If the expression is a number or simple variable

then no simplification can be performed, so the expression is returned. If the

expression is a compound expression (for example a "+") the arguments of the

expression are simplified by recursive calls to [_Simplify_] and are then passed

to a function for specifically simpHfying additions. (There are other functions for

simplifying other types of expression and condition.)

The specific simplification functions look at the form of their arguments for com

mon patterns that can be simplified. For example, the function for simplifying

additions would contain the rules listed in Figure 8.13, among others: (Here "X",

"Y" and "Z" represent any expressions, while "A" and "B" represent numbers. In

the results column, where expressions such as " (A-fB)" occur — i.e. where both

arguments are numeric — these are taken to have been evaluated.)

Chapter 8: Implementation of the Maintainer's Assistant 184

First Argument Second Argument Result

A B (A+B)
X 0 X
X X (2*X)
X - X 0

(X+A) B (X+(A+B))
(X+Y) X ((2*X)+Y)
(X + Y) Y ((2*Y)+X)
(X-A) B (X+(B-A))
(A-X) B ((A+B)-X)
(X-Y) X ((2*X)-Y)
(X-Y) Y X
(X+A) (Y+B) ((X+Y)+(A+B))
(X + Y) (X+Z) ((2*X)+(Y+Z))
(X+Y) (Z+X) ((2*X)+(Y+Z))
(X+Y) (Y+Z) ((2*Y)+(X+Z))
(X + Y) (Z+Y) ((2*Y)+(X+Z))

Figure 8.13: Some Simplifications of Additions

8.4.5 Communication with the Interface

This thesis only describes the LISP "engine" which lies behind the Maintainer's

Assistant but there is also a user interface which displays the WSL code in a

suitable pretty-printed form. These two processes need to be able to communicate,

and this section describes the mechanism by which this is accomplished.

The interface is the only way that a user is able to communicate with the LISP-

based transformation system. The interface converts the user's actions into LISP

expressions which are piped, just as if they had been typed, into a child process

that is running LISP.

How L I S P Returns Results to the Interface

The LISP system is not able to display its output directly. Instead it produces

results of expression evaluation in the conventional way. However, each result

Chapter 8: Implementation of the Maintainer's Assistant 185

is prefixed by one of several key sequences of characters. The interface process
examines all the output from the LISP process and, on identifying such a sequence
of characters, uses the next piece of output from the LISP process as input for
the display routines. These display routines include operations for displaying the
WSL program and for building menus of transformations.

The most important form of communication between the LISP system and the

interface is the passing of WSL programs. The interface does not need to know

the details of the internal database tables, although it does need the comments

information in order to display them. Also, each time the interface displays the

program, most of it will remain unchanged. Thus only those parts of the program

which have changed are passed to the interface.

In order to achieve this enhancement in the efficiency of communication, each

node in the program tree is assigned an identity number. Initially this number

is zero. The first time a node is passed to the interface this zero is changed to a

new, unique, number. A l l subnodes are similarly passed in this way.

However, if a node is reached which has a non-zero identity number, then that

node must already have been passed to the interface — which would have stored

it in its own table. Thus, just the number is passed and not the contents and

sub-components of the node.

Finally, when a node in the tree is modified, either by transformation or by editing,

that node has its identity number reset to zero. Not only that, but all the nodes

above it in the tree will have changed — they have a new sub-component, sub-

sub-component, and so on — so these nodes must also have their identity numbers

reset to zero.

In addition to the identity number system, each type is given a number (which can

be determined from the syntax table in Appendix B) so that this can be passed

in preference to passing the name of the type. Actual values of leaf items, such

as numbers, strings and variables, still need to be passed explicitly.

The overall form of a program when passed to the interface is as a LISP tree in

Chapter 8: Implementation of the Maintainer's Assistant 186

which each node is represented as a fist containing (a) it's unique identification

number, (b) a list of any attached comments with their types, (c) a number which

represents the type of the item, and (d) either the node's value or its components.

For example, if the program

((Assign (X (+ A B)) (Y 0)))

(which contains no comment information) had not already been passed to the

interface, then it should be represented as shown in figure 8.14. The "Ipp. . ."

(I p p . . . (1 0 17
(2 0 33

(3 0 8 (4 0 27 X)
(5 0 51 (6 0 26 A)

(7 0 26 B)))
(8 0 8 (9 0 27 Y)

(10 0 24 0))
)

))

Figure 8.14: A Program as Passed to the Interface — Version 1

is a key sequence of characters which tells the interface that the following LISP

output is to be regarded as a program tree.

If the interface were to request that this information be sent again, then the LISP

system would only pass the information shown in Figure 8.15. However, if the

(I p p . . . (D)

Figure 8.15: A Program as Passed to the Interface — Version 2

zero in the second assignment had been edited, changing it to a one, while all the

rest of the program had remained the same, then the LISP system would pass in

information shown in Figure 8.16.

In this case that items "3" and "9" do not get passed again — only their identity

Chapter 8: Implementation of the Maintainer's Assistant 187

(Ipp.. (11 0 17
(12 0 33

(3)
(13 0 8 (9)

(14 0 25 D)
)

))

Figure 8.16: A Program as Passed to the Interface — Version 3

numbers get passed — but all the other items do get passed with new identity

numbers, since changing the leaf node has to be reflected at all the higher levels

in the tree.

8.5 Summary and Conclusions

The Maintainer's Assistant consists of a user interface and a transformation en

gine. The latter, which is the subject of this thesis, incorporates a number of

advances over the implementation of other transformation systems.

First, the system was developed in a middle out manner and, as a result, is

structured as a series of abstract machines with well-defined interfaces. This

enhanced the development of the tool by rapid prototyping, which in turn meant

that a variety of data structures and algorithms could be tried so as to find efficient

ones. The components that make up the system are the low-level WSL tree

processor, the A^T^lWSL language, the program transformer and the program

editor. A ^ r ^ W S L is, in turn, composed of the WSL interpreter, the pattern

matcher and template filler, the query and database functions, and the symbolic

mathematics and logic routines. Thus, the implementation is modular and has all

the advantages, including maintainability, which were given in Section 1.3.2.

Second, the implementation of the Maintainer's Assistant incorporates certain

data structures and algorithms which have been developed particularly for this

Chapter 8: Implementation of the Maintainer's Assistant 188

work. These cover the areas of WSL program representations, efficient movement
within program trees, the dichotomy of global and local transformations, symbolic
simpHfication and efficient communication with the interface.

The whole system is implemented using Common LISP, and usage suggests that

the implementation is fairly efficient.^

^Precise figures are given in Section 9.6.3.

Chapter 9

Results

9.1 Introduction

The previous chapters of this thesis explained the reasons for creating a trans

formation system for software maintenance, highlighted some of the important

design decisions that had to be made and gave details of the implementation of

the Maintainer's Assistant — the tool which embodies these ideas. This chapter

presents results from the Maintainer's Assistant appHed to various example pro

grams ranging from simple examples to large programs taken from the real world.

In doing this, it considers the more pragmatic questions, which can be summarised

as:

• Does this approach result in a usable tool? i.e. how much training is required,

is the interface easy to understand and does the tool respond promptly to

user requests?

• Is the implementation of the transformation catalogue efficient (in that the

algorithms employed are at worst polynomial in time), reliable (in that errors

are found increasingly infrequently), correct (in that the implementation of

the system has been proved) and complete (in that all possible transforma-

189

Chapter 9: Results 190

tions could be built from those that have been included)?

• Does the method scale up to larger programs? i.e. are the transformations

as applicable to large programs as to small? Does the system remain "fast

enough" with large programs? Is it possible for a user to view and compre

hend a large program?

• What weaknesses does the system have?

9.2 Applying the Tool to Real Programs

In addition to the simple test examples, the Maintainer's Assistant has been used

on a number of small published programs. For example, Ward [177] shows the

transformation of a WSL program that was transcribed from DataFlex and then

transformed so as to reveal a potential fault that was not readily apparent in

the original version. This example has been successfully performed using the

Maintainer's Assistant.

9.3 Applying the Tool to Larger Programs

In order to tackle programs of more than a few hundred lines it is necessary to

have a strategy, or method, of using the Maintainer's Assistant. Such a strategy,

which was described in section 4.4, will now be assessed.

Since the Maintainer's Assistant has been produced as part of the ReForm pro

ject which has been partially funded by IBM UK Laboratories Limited part of

the project has involved taking source code written in IBM 370 Assembler and

using the system on i t . This has provided more than twenty large real-world ex

amples which have helped to assess the system's power and ease of use. Assembler

programs wil l , therefore, be used to illustrate the following sections, but the four-

stage process that will be described would apply to programs written originally

in any language.

Chapter 9: Results 191

In addition, I B M Hursley have conducted two case studies on the use of the tool

to assess its potential in a commercial environment.

9.3.1 Translation into W S L

Simple translators have been written for BASIC and and PASCAL. However the

only complete translator is for 370 Assembler.-^ Translation is largely automatic

and very simple-minded. Each instruction of assembly language maps into one

or more statements of WSL. The WSL has to model every functional^ aspect of

the instruction, such as the setting of flags, even if these extra aspects are not

needed in a particular situation. In this way, it is possible to check informally the

correctness of the translation of each instruction. (It is not possible to check the

translation formally since there is no formal description of IBM 370 Assembler.)

For example the assembler instructions:

T M VALUE1,XYZ TEST FOR CHECK

BO DONEl LEAVE CLEAR

are translated into the WSL code:

(Comment " T E S T FOR CHECK")
(Cond ((= (And_Bit XYZ (Aref A VALUEl)) 0)

(Assign (CC 0)))
((= (And_Bit XYZ (Aref A VALUEl)) XYZ)

(Assign (CC 3)))
((Else)

(Assign (CC 1))))
(Comment "LEAVE CLEAR ")
(Cond ((And (= CC 0) (= (And.Bit 1 8) 8))

(Call DONEl 0))
((And (= CC 1) (= (And_Bit 1 4) 4))

(Call DONEl 0))
((And (= CC 2) (= (And_Bit 1 2) 2))

(Call DONEl 0))
((And (And (<> CC 0) (< > CC 1)) (And (<> CC 2) (= (And_Bit 1 1) 1)))

^This translator has been developed as part of the ReForm project by Scriven.
•^Timing is not modeled.

Chapter 9: Results 192

(Call DONEl 0)))

Here the condition inside the local variable structure is used set the condition code

— represented by the variable CC — according to the result of a test. The second

condition tests the condition code and jumps depending on its value. It is clear

from this example, that for the translation to preserve all the semantics of the

assembler program, a great deal of extra WSL code may be required. Methods

have been developed by Scriven for modeling labels and branches in terms of

action systems and, in particular, branches to addresses stored in registers which

represent subroutines.

There are currently two classes of unsolved problems in the modelling of other

programming languages in WSL. The first class of problems are those which are

fundamentally solvable by means of extending WSL's syntax or by mapping the

source language in more complex fashions, since the WSL kernel language can be

used to represent the semantics of these language features. This class includes the

modelling of pointers (as in C) and overlapping data areas (as in COBOL). The

second class consists of those problems that the WSL kernel is unable to express

and which would, therefore, require fundamental extensions to the system. These

problems include self-modifying code, arbitrary indirect branches and parallehsm.

9.3.2 Automatic Removal of Idiosyncrasies

Once the program has been translated into WSL, the Maintainer's Assistant can

be used to simplify it by removing all the extra, unnecessary, code that was intro

duced through translation. In the case of assembler, this would involve removing

references to the condition code and replacing the array of registers by individual

register variables (if possible).

In order to perform this type of simplification, powerful compound transformations

have been constructed. Such a transformation^ is "Fix_Assembler" which would.

^The techniques employed by this transformation are similar to the peephole optimisation
techniques used by compilers [3]. However, the transformations in the Maintainer's Assistant

Chapter 9: Results 193

for example, simplify the WSL code above to:

(Comment " T E S T FOR CHECK")
(Comment "LEAVE CLEAR ")
(Cond ((And (= XYZ (And_Bit XYZ (Aref A VALUEl))) (<> XYZ 0))

(Call Donel 0)))

When "Fix_A.ssembler" is performed on a WSL program"* it reduces its size con

siderably. (See the figures in Section 9.6.1.) Once the program is in a simpler

form, the maintainer can then work on i t , simphfying and restructuring it .

9.3.3 Manual Transformation

The traditional automatic tools for control flow restructuring do not provide a

good basis for subsequent abstraction transformations. The shortcoming of such

tools have been pointed out by Calliss [52]:

1. They may replace complex control flow with complex data flow, by introdu

cing flag variables;

2. They may result in programs that are considerably larger; and

3. They do not help human understanding of the system.

The previous, automatic, stage did not attempt to restructure the program, only

to simplify it within the same structure. For restructuring of a program in the

Maintainer's Assistant, interaction is used.

are formally proven, whereas the optimisations used by compilers are usually informal.
*The program must have been been translated from assembler for "Fix_A.ssembler" to perform

useful modifications to it.

Chapter 9: Results 194

Avoiding the Introduction of Flag Variables

When restructuring control flow, the system introduces no flag variables unless

explicitly instructed to do so by the user. Extended use of the Maintainer's

Assistant shows that for many programs the use of flag variables can be avoided

by the judicious combination of conditions and loops, and by the creation of

suitably-parameterised procedures. However, this is not always the case with

programs which have been translated from assembler and which have multiple

exit points. When restructuring such programs into a hierarchy of procedures, if

an exit were to occur within a nested procedure, then a flag would be needed to

pass this information to the outer procedures. This is the problem of exception

handling. It is clear from these case studies that the problem lies not with the

transformation system per se, but with the fact that WSL is not an ideal language

for representing exception handling; the introduction of exceptions obscures the

normal control flow of the program. For this drawback to be overcome, WSL

would need extending with the appropriate constructs.

Avoiding an Increase in Size

Most of the transformations apphed with the Maintainer's Assistant reduce the

size of the program to which they are apphed. There are, however, transformation

which may increase the size of the program.^ Use of the Maintainer's Assistant

indicate that very often this is a temporary measure which facihtates some fur

ther restructuring later. For example, the user must expand all occurrences of a

procedure, making the program larger, before he is able to construct a new pro

cedural decomposition, reducing its size again. If at any stage it is not possible

to reduce the size of the program, the user can undo the transformations which

caused the increase in size, thereby giving much more control over the final size

of the program than he would have with a purely automatic system.

^Sometimes a large program with a simple structure is easier to understand than a small one
with complex structure.

Chapter 9: Results 195

Increasing User Understanding

A user who is unfamiliar with a program can nevertheless use the Maintainer's

Assistant to perform transformations on i t . This enables the user to obtain dif

ferent versions, or views, of the program and in so doing this helps him in his

understanding of i t . Furthermore, the fact of knowing which transformations are

applicable and which are not provides the user with information about the code.

For example, knowing that the transformation to delete a section of code is ap

plicable indicates that i t is unreachable, whereas knowing that the transformation

is not applicable indicates that the code is reachable.

Transformation to Aid Abstraction

Thus, the program can be transformed to an appropriate starting point for sub

sequent abstraction transformations. For example, the Maintainer's Assistant

helps with the identification of suitable code sections to fold into procedures; typ

ically, a large monolithic unstructured program can readily be transformed into a

short main block from which calls to a set of sub-procedures are made. No known

automatic restructurers can achieve this but it is an important intermediate step

in identifying abstract data types. (There is an example in Section 9.6.1 in which

an initially unstructured program is transformed into 39 hierarchically organised

procedures.)

During the manual restructuring stage a number of "rules of thumb" have been

identified as being helpful in guiding the transformation process.

1. General (i.e. side-effecting) expressions and conditions should be replaced

by sequences of statements followed by the relevant expression or condition.

2. Action systems, especially those which embody complex control flow, should

be collapsed, i.e. replaced by a series of nested loops and conditions.

3. If any conditions can be simplified to True or False, then this should be done.

4. If any section of code is redundant, then it should be deleted.

Chapter 9: Results 196

5. If there are procedures which are only called once, then they should probably
be expanded and removed.

6. If there are local variables that can be removed without making the program

larger, then they should be removed.

7. If there are two (or more) identical sections of code then they should be

replaced by a single copy either by restructuring the program so that they

can be merged or, i f this is not possible or would greatly increase the size of

the program, by making them into a procedure.

8. I f there are Loops with multiple exits then the Exit statements should be

merged where this is possible and does not increase the size of the program.

As would be expected, there are exceptions to all these rules and other rules

have also been found to be useful in some cases, for example, replacing Loops by

While loops. At some future stage, these heuristics could be incorporated into a

knowledge base which would provide advice on the selection of transformations.

Thus, interactively applied transformations do avoid the problems described at

the beginning of Section 9.3.3.

9.3.4 Abstraction to a Specification

Producing a specification involves two complementary approaches: information

removal and information introduction. The information that is removed relates to

the implementation of the program: variables names, concrete data structures and

algorithms. The information that is introduced imposes meaning which relates

to the application domain. For example, a program in which a set of variables

may always sum to zero may represent the forces on a body in equifibrium or

that debits and credits cancel one another in an accounting system. Knowledge

of the domain is required to determine which is the case. Human expertise of

the application domain and software engineering is required to provide a strategy

in both these stages to decide what information can be safely discarded and also

C h a p t e r 9: Resu l t s 197

what new information (which was originally lost in moving f rom a design to an
implementation) needs to be introduced.

The methods for abstracting a structured program to a specification have yet

to be examined in any more detail in this thesis. However, as was described in

Chapter 4, some important techniques have been identified:

• Procedurisation and parameterisation;

• Recursion introduction;

• Invariant determination;

• The introduction of specification statements; and

• The production of specifications f rom assertions.

These techniques have been used in simple examples; however they have yet to be

applied to real-world programs.

9.4 Case Study

The following program is a short example to demonstrate some of the techniques

described in Sections 4.4.5. While work on functional abstraction is st i l l at an

early stage, this example shows that, at least for some programs, i t is possible

w i th in the Maintainer's Assistant.

((Var ((N NO))
(Assign (K 0))
(While (= (Mod N 2) 0)

(Assign (K (+ K 1)))
(Assign (N (/ N 2))))))

By looking at the loop, the user guesses at a suitable loop invariant and asks

the system to insert that invariant before the beginning of the loop. The system

C h a p t e r 9: Resul t s 198

proves the assertion's validity and inserts i t . (%N represents the set of natural
numbers.)

((Var ((N NO))
(Assign (K 0))
(Assert (And (= NO (* N (** 2 K))) (Member? K %N)))
(While (= (Mod N 2) 0)

(Assign (K (+ K 1)))
(Assign (N (/ N 2))))))

The user requests the system to demonstrate that the newly inserted assertion is a

loop invariant, which i t does in about two seconds. I t then inserts new assertions

at the beginning and at the end of the body of the loop, and also inserts the

invariant after the end of the loop but i t also forms the conjunction of i t wi th the

loop's terminating condition.

((Var ((N NO))
(Assign (K 0))
(Assert (And (= NO (* N (** 2 K))) (Member? K %N)))
(While (Even? N)

(Assert (And (= NO (* N (** 2 K))) (Member? K %N)))
(Assign (K (+ 1 K)))
(Assign (N (/ N 2)))
(Assert (And (= NO (* N (** 2 K))) (Member? (- K 1) %N))))

(Assert (And (Odd? N)
(= NO (* N (** 2 K)))
(Member? K %N)))))

So far no abstraction has been performed. However, at this stage the user selects

to replace the in i t i a l assignment to K, the loop and the assertion after the loop

by a specification statement. The system checks that all the variables which are

assigned in the section of code are also referred to i n the assertion, requests that

the user enter some text explaining the abstraction, and performs the change to

the code^.

((Var ((N NO))
(Assn_Spec (K N)

^The statement Assign X Such That C is written in LISP form as: (Assn_Spec (X) (C))

C h a p t e r 9: Resul t s 199

(And (Odd? N)
(= NO (* N (** 2 K)))
(Member? K %N)))))

Finally, the user replaces the local variable structure which contains the specific

ation statement by another specification statement.

((Assn_Spec (K) (Exists (N) (And (Odd? N)
(= NO (* N (** 2 K)))
(Member? K %N)))))

This is the specification of the whole program. I t calculates the number of trailing

zeros in the binary representation of an integer.

9.5 I B M Hursley's Evaluation of the Main

tainer's Assistant

I B M Hursley's evaluation^ of the tool involved having several people in the or

ganisation translate real assembler modules into WSL, and then work on them

w i t h the tool to improve the code and their understanding of i t . In addition,

demonstrations of the tool were organised so as to provide further feedback. To

bring some structure to the evaluation, IBM's C U P R I M D (Capability, Usabil

i ty, Performance, ReHabihty, InstallabiHty, MaintainabiHty and Documentation)

assessment categories were used.

9.5.1 Capability

The system was tried on a number of modules, of a few thousand lines each, which

have a reputation of being poorly structured and difficult to maintain. After being

'^This is not necessarily IBM's full position on reverse engineering tools since other approaches
may be under development within the company.

C h a p t e r 9: Resul t s 200

transformed w i t h the tool , these modules were hand-translated back to assembler.
The resulting code was about 10% shorter and the rate of coding into assembler
was "much" faster than i t had been previously. However, the resulting assembler,
while i t passed some of the simpler regression tests, failed the more stringent ones.
Although not all the reasons for this were established, some of the failures were
due to errors in the hand-translation process. None were shown to be due to
problems w i t h the Maintainer's Assistant, although this could not be ruled out.

From the experience w i t h the system, i t was clear that when used on large tracts

of "spaghetti code" i t offers "great benefits" in terms of resulting code quality and

programmer productivity.

9.5.2 Usability

The tool was found to be easy to use by maintainers w i th previous knowledge

of the code being maintained, but without previous knowledge of program trans

formations. This reflects the inherent interactive nature of the tool.

9.5.3 Performance

Running on an RS/6000 (Model 320) under A I X 3.1 the performance was found to

be "good" for a single user w i t h many actions being "immediate". The response

t ime was "a l i t t l e longer" for some of the more complex transformations, but

increased significantly (to more than an hour) when certain complex transforma

tions were used on programs of a few thousand lines. However, these operations,

such as "Collapse_Action_System" to remove "spaghetti code", tend only to be

performed only once on each program. Thus, i f viewed as a batch process, before

the use of manually selected transformations, the times become more tolerable.

As more users attempted to use the machine simultaneously, response times also

dropped.

C h a p t e r 9: Resul t s 201

9.5.4 Reliability

A n early version of the tool was found to contain a number of faults, but the latest

version was much better and the transformation engine in particular was found

to be "very stable".

9.5.5 Installability

The Maintainer's Assistant was found to be easy to install, requiring no user

intervention apart f r o m starting the (two hour^) process.

9.5.6 Maintainability

I B M performed no maintenance on the tool since this was undertaken by the

Durham members of the ReForm project.

9.5.7 Documentation

The online documentation was thought to be good, and the hard-copy document

ation was thought to be very good.

9.5.8 Conclusion

As a result of their evaluation, I B M concluded that "the concept behind ReForm

works", i.e. that transformation-based software maintenance "offers the first v i

able opportunity to renovate old code in a cost effective way". The Maintainer's

*This includes the time required for compilation.

C h a p t e r 9: Resul t s 202

Assistant was found to be easy to use and for some developers and maintainers
was "just what they are waiting for" .

I n particular, the following areas were identified as those for which the Main

tainer's Assistant offers the greatest potential benefits:

• Code re-structuring and optimisation;

• Testing and "debugging";

• Code validation;

• Quali ty assurance; and

• Software reuse.

9.6 An Assessment of Success

The Maintainer's Assistant has been used on a wide selection of programs (from

a few lines to a few thousand lines, and wi th both simple and complex control

structures) and by a number of users; not only the author, but other members of

the ReForm project at the University of Durham and at I B M Hursley. Based on

these experiences a critical assessment of the work can be obtained.

9.6.1 Is Maintenance by Transformation Plausible?

Experience, particularly at I B M , shows that in a typical situation in which a main-

tainer, in i t ia l ly unfamiliar w i t h a particular module, uses the Maintainer's Assist

ant then significant improvements can usually be made to that module. These

improvements are i n the areas of program structure — which can be measured by

the metrics faci l i ty buil t into the system — and comprehensibiHty. Comprehens-

ibi l i ty , being a human factor, can only be measured indirectly; however, response

f r o m users is favourable. The final transformed (but not abstracted) versions of

C h a p t e r 9: Resu l t s 203

program have been shown to the maintainers working on the systems transformed,

and were found to provide a clear overview of the structure and function of the

software.

During the stages described, the program being transformed changes in both size

and complexity. The figures i n Figure 9.1 are typical of how the program charac

teristics change during these processes. The "McCabe" figure measures McCabes

cyclometric complexity, the "structural" figure is a measure of the structural com

plexity devised by Yang [194] and "size" is the number of nodes in the program

tree. I n this example, which was originally 3,107 lines of assembler (including

comment lines), the final version of the program consisted of 39 hierarchically

organised procedures.

Stage Lines McCabe Structural Size

Af te r Translation 2,330 1,030 48,175 24,736
Af te r In i t i a l SimpHfication 1,381 245 17,021 8,404
Af te r Manual Transformation 1,227 156 11,990 7,120

Figure 9.1: The Effect of Transformation on Program Metrics

Figure 9.2 shows how one of the metrics changes as a small, but complex, program

is transformed. From the figure i t can be seen that generally the size decreases

as transformations are applied, but that there are occasions when the size needs

to increase to allow further transformation to take place. In this example, the

increase in size was due to the insertion of Assert statements. The other size and

complexity metrics change according to a similar pattern, the general form of

which is shown in Figure 9.3. The longest program module on which the system

has currently been used on is over 20,000 fines of WSL.

A l l the indications are that software maintenance by transformation is a plausible

approach.

C h a p t e r 9: Resul t s 204

Size (Number of Statements)

Transformations

Figure 9.2: The Change in Size wi th Transformation

C h a p t e r 9: Resul t s 205

Metric

Transformations

Figure 9.3: The General Change wi th Transformation

9.6.2 Is W S L a Good Language for Program Transform

ations?

As Ward showed [177] WSL is a language in which many powerful and flexible

transformations can be proved. This leads to a similarly powerful and flexible

transformation tool . WSL is also capable of modeling other languages; in par

ticular i t has been used to model assembler. There is, however, a drawback to

WSL; i t does not easily allow exception handling to be expressed, leading to the

unavoidable introduction of flag variables in certain situations.

Overall, since i t was designed to simplify proofs of program equivalence (for ex

ample, by using inf ini tary logic), WSL forms a better basis for the construction of

a program transformation system than existing programming languages. I t also

has the advantage over other languages designed specifically for program trans

formation, in that its semantics are based on an imperative kernel language which

is extended using definitional transformations, and is thus applicable to real world

programs which are, generally, imperative.

C h a p t e r 9: Resul t s 206

9.6.3 Is the Tool Usable?

To assess the usability of the tool, two areas must be considered: the amount

of training that is required to use i t , and whether i t responds promptly to user

requests.

Tra in ing Issues

For a user to become proficient, there is a need to fo rm a mental model of a

program as an object which can be manipulated, and not just as a static object

to be executed. This process has taken less than two weeks wi th most users, and

less than a week w i t h some. I t has also been found that most transformations

(particularly the generic transformations) can be understood in a similar length

of t ime. However, a few transformations (predominantly those relating to Loops)

require a deeper knowledge of the underlying mathematical theory, so a longer

course of formal training would be required in order to use the tool most effectively.

Interface Issues

Because of the tool's interactive nature and graphical user interface i t is easy to

use even by inexperienced programmers. The layout of the interface (shown in

Figure 9.4) is clear and there have been few requests to change i t .

Speed Issues

The table i n Figure 9.5 gives some figures for the speed of the Maintainer's As

sistant i n performing certain operations. From the table i t is clear that for small

and medium-sized programs (up to a few thousand lines), response times are ac

ceptable. However, as program size increases the speed of response drops. This is

particularly the case w i t h the transformation for collapsing an action system, but

as was seen in Section 9.5.3, i f viewed as a batch process, the times become more

tolerable.

C h a p t e r 9: Resul t s 207

Fi le Options Edit Metrics Info Help

Undo] Redo ^Redo Dewo| Start Stop] Replaij

(Rej'Move'l Join| Lbe/ftffilid'l Reorder| Reurite] Insert| Simplifid/Ilelete Multiple Complex fill

STATEMENT CftLL <2 1 2 27 1>

!p printC'Number Of Maps Found = ° var std_out);
!p print(coun var std_out);
calla259Q.

a2590== call z; call a3201.
a3201==

if ((d=(sa-l)) and (rp=l)) then SUEggUgjfoaU a4110; caU a3203.
a3203==

!p print("C =", (coun+1) var std_out);
!p print(var std_out);
for ii;=l to d step 1 do !p print(psi[ii] var std_out); !p print(var std_out) od;
!p print(var std_out);
!p print(b var std_out);
calla3205.

a3205==
!p prin6("C=°, (coun+1) var std_out);
!p pr inbC var std_out);
for ii;=l to d step 1 do Ip print(psi[ii]varstd_out); !p print(var std_out) od;
!p print(var std_out);
!p pr int(b var std_out);
calla3207.

a3207== !p prlnt(°" var std_out); call a2999.
a2999== comment: "Rem Do :"; call a3000.
a3D00== comment! "Rem If Dr=0 Then 3001; Else 3009";caUa3001.
a3001==

!p prmt(" " var std_Dut); !p print(d var std_out); !p print(var std_out); call a3002,
a3002==

for ii:=l to d step 1 do !p print(psi[ii] var std_out); !p print(var std_out) od;
!p pr intC var std_out);
!p printC" B"varstd_out);

Figure 9.4: The Maintainer's Assistant's Interface

C h a p t e r 9: Resu l t s 208

Time Required for Operations
Size of

Program Opening a Opening a Reversing a Collapsing
in "Move" "Rewrite" "Cond" an Action

Statements Menu Menu Statement System

25 < 1 sec < 1 sec < 1 sec 4 sees
189 < 1 sec < 1 sec 2 sees 23 sees

2,624 3 sees 2 sees 4 sees 35 mins
11,123 5 sees 4 sees 13 sees 7 hours

Figure 9.5: The Speed of the System

Also, since the Maintainer's Assistant is a prototype, designed to test the under

lying ideas, not all the algorithms adopted are necessarily as efficient as possible.^

9.6.4 Efficiency and Reliability

The Maintainer's Assistant has been developed using the method of rapid proto

typing rather than by formally specifying the system and then (transformation

al ly) implementing i t . This is because of its nature as a research prototype —

i t was not clear at the outset of the project what the specifications for the tool

would be. However, the tool is buil t as a series of abstract machines each wi th

clearly defined inputs and outputs. Thus, the tool is well structured and easily

maintainable. This is reflected in the fact that increasingly few faults have been

found i n the system so that i t is now a stable and reliable tool.

The table i n Figure 9.6 shows, for each of the last six months of the tool's devel

opment, the number of errors found in the system, the number of enhancements

made to the system and the percentage of changes that each accounted for. From

this i t can be seen that the number of errors found each month, and the percentage

of changes caused as a result of errors, decreased.

^In particular, the tool is wasteful of memory when changing deeply nested program struc
tures, which causes a larger amount of garbage collection than is necessary.

C h a p t e r 9: Resul t s 209

Month
Errors Enhancements

Month Number Percentage Number Percentage

May 46 28% 119 72%
June 13 29% 32 71%
July 12 27% 33 73%
August 12 29% 30 71%
September 9 22% 31 78%
October 8 20% 33 80%

Figure 9.6: The Number of Errors

Speed is an important consideration for an interactive tool since i t should re

spond to the user w i t h minimal delay. Running on an I B M RS/6000 wi th 32Mb

of R A M , most of the transformations take at most two or three seconds to per

f o r m — figures are given in the table in Figure 9.6. More important is whether

the algorithms employed are fundamentally efficient. Measurements made on al

gor i thm for collapsing an action system (the slowest part of the system) show

that i t is approximately of order n^ "^ where n is a measure of the size of the WSL

program. I n fact, an inspection of the program revealed no algorithms which were

exponential w i t h respect to t ime, although there are some which are polynomial;

mostly of degree two.

Of prime concern is the time taken to create the transformation menus since,

generally, many transformation applicability tests must be performed. However,

by suitably subdividing the transformation catalogue, as described in Chapter 5,

the valid transformations can be determined, and put into menus, in not more

than two or three seconds, as is shown in the table in Figure 9.6.

9.6.5 Correctness and Completeness

Validation of the Maintainer's Assistant — whether i t is of use — was under

taken by I B M in their C U P R I M D assessment (see Section 9.5) w i th favourable

results. Two other important issues are whether the transformations are correctly

C h a p t e r 9: Resu l t s 210

implemented and whether the transformation catalogue is complete.

In the ReForm project the transformations have already been proved to be correct

177], but i t s t i l l remains is to demonstrate the correctness of the implementation;

something which could be achieved by giving A^T^ tWSL a formal semantics and

using program transformations.

The transformation system is complete in the sense that all the fundamental

transformations proved by Ward have been implemented. However, a more im

portant gauge is whether the transformations provided in the catalogue constitute

a "useful" set. Certainly during the early stages of the project many compound

transformations were added. However, as the project progressed, the rate at which

transformations were added decreased, as can be seen f rom the table in Figure

9.7. This would indicate that there is some hmit towards which the system was

moving. (The actual l im i t could be a funct ion of the examples on which the sys

tem was used, but no evidence was obtained either for or against this.) Moreover,

i n the latter stages of the project so few transformations were added that i t would

seem that this l imi t was (vir tual ly) reached. Barstow [23] obtained similar results

w i t h the PECOS system.

Month Number of Transformations Number Added

A p r i l 512
May 533 21
June 560 27
July 574 14
August 591 17
September 600 9
October 601 1

Figure 9.7: The Number of Transformations against Time

C h a p t e r 9: Resu l t s 211

9.6.6 Does the Method Scale up to Larger Programs?

Li t t l e work has been carried out in this area; however, i t can be seen that the

problems which would need to be addressed fa l l into three categories: theoretical,

implementational and comprehension problems.

From the theoretical point of view, for the method to scale up, the transformations

must be applicable equally to large programs as to small ones. This is certainly

so. For example, a conditional statement can be reordered regardless of whether

its branches each contain ten statements or ten thousand.

Implementationally, the tool must be efficient, w i t h no inherently complex (for

example, exponential) algorithms, taking not much longer to operate on large

programs than on small ones. This seems to be the case w i t h the majori ty of the

transformations (collapsing an action system being an exception).

Finally, f r o m a practical perspective, there must be a way for the user to view, and

thus comprehend, the whole program. This could be done by means of folding or

slicing the code, hiding the parts that are not relevant. For example, the program

could be "sliced" on a variable so as only to display the parts of the program

that affect the value of that variable. Thus, the method does seem to scale up,

although more work would be needed to confirm this.

9.6.7 What Weaknesses does the System have?

The Maintainer's Assistant has four important weaknesses. The first, which has

already been discussed, is that WSL is not a good language for modehng excep

tions handling.

The second weakness is the system's reliance on the symbolic mathematical func

tions. Since simplifying a mathematical or logical expression, or demonstrating

that one condition impHes another are commonly performed tasks, i t is essential

that this is theoretically sound. So far, no work has been done on proving the

C h a p t e r 9: Resul t s 212

implementation of this component (although the mathematical knowledge that
i t embodies has been proved). Not only that, but some transformations rely on
inductive proofs that certain assertions (of invariants) hold; and this is outside
the capabilities of the current system. For example, the system would not be able
to equate the variable X w i t h the length of L in the following program:

(Assign (X 0) (L ()))
(While (< Y 10)

(Assign (X (+ X 1))
(Y (Cons E Y))))

T h i r d , i t can happen that while there is a sequence of transformations that would

greatly simphfy the program being worked on, the sequence is not intuitively

obvious. However, the system is unable to provide any guidance in this area, so

only an experienced user would be able to make use of this sequence (other than

by chance).

Finally, the system needs greatly extending in the area of crossing levels of ab

straction, in particular i n the areas of:

• The identification of generic procedures;

• The determination and removal of information which relates solely to the

implementation and not to the design; and

• The introduction of abstract data types, including information hiding and

inheritance.

9.7 Conclusions

The Maintainer's Assistant has been used successfully to transform both small and

large programs into a highly structured form. This fo rm provides the maintainer

w i t h valuable information regarding the structure and function of the program.

I n addition, a number of small programs have been transformed as far as the

Chapter 9: Results 213

specification level, but this has yet to be attempted with larger programs. The
tool is also reliable and efficient.

Chapter 10

Conclusions

10.1 Introduction

This chapter summarises the thesis, considers the Maintainer's Assistant in use

and assesses its success at meeting the original goals of the constructing a trans

formation system based on Ward's transformations, which can be used primarily

for software maintenance.

10.2 Summary of the Thesis

Chapter 1 of this thesis introduced the concept of software engineering as an

approach to tackling the software crisis. In particular. Chapter 1 demonstrated

how engineering as applied to software lacked maturity due to two particular

problems: not having a satisfactory method of constructing correct software (a

product attribute) and not having a satisfactory method of maintaining existing

software (a process attribute).

In Chapter 2 solutions to these problems were examined. Solutions to the first

214

Chapter 10: Conclusions 215

problem were categorised as look and see, test exhaustively and formal methods

including automatic program verification. Solutions to the maintenance problem

were split into management solutions and technical solutions. Reverse engineering

was one promising route which could be more efficacious were it not for its lack

of formality. Thus the maintenance problem were shown to be united with the

correctness problem in that a single solution would be to use a method of moving

between specifications and program in both directions in formally correct — i.e.

semantic-preserving — ways.

Transformation systems, which were reviewed in Chapter 3, claim to provide this

kind of functionality but for a variety of reasons have not done so. Ward's method

of proving program equivalence, however, seemed to provide a framework for the

required solution. Ward's Wide Spectrum Language (WSL), which is based on

transformational extensions to a small, imperative, kernel language with formal

denotational semantics, and his transformations, which are proved using either

semantic or proof-theoretic refinement, were considered in more detail in Chapter

4. Since no tool based on Ward's approach existed, this chapter proposed the

subject of the thesis: the creation of such a tool — the Maintainer's Assistant.

This chapter also looked at a possible method for using the tool.

Chapter 5 addressed the high-level design decisions that have had to be made in

order to construct the Maintainer's Assistant. These include: how WSL programs

should be represented, how the transformations to apply should be selected and

tested for applicability, how transformations should be represented and stored,

and why and how certain components, such as a mathematical simplifier, should

be incorporated into the system. The chapter concluded that the transformations

should be constructed as programs, as opposed to, say, pairs of patterns, (a) so

that they could easily represent all transformations and (b) so that they could

include arbitrarily complex algorithms.

The language selected for expressing transformations was designed as an extension

of WSL, namely MSTAWSL. The language extensions were given in the Chapter

6 and include statements for selecting items within WSL program trees and for

changing program items, and also expressions for examining the WSL programs

Chapter 10: Conclusions 216

and for performing symbolic computations.

A transformation system such as the Maintainer's Assistant needs a catalogue

of transformations in order to operate. Chapter 7 described the contents of the

catalogue — elementary, compound, generic and high-level transformations —

and gave examples of how these might coded using MsrA^SL. From this, it was

possible to conclude that AdSTAWSL enabled transformations of all types to be

expressed clearly and concisely.

The implementation of the Maintainer's Assistant was the topic of Chapter 8 and

Chapter 9 gave details of the results that have been had with the Maintainer's

Assistant; notably with IBM 370 assembler code.

10.2.1 Answering the Engineering Questions

In setting out the goals of this work, two sets of questions were asked. The first set

were engineering questions while the second set were more theoretical in nature.

These questions have been implicitly summarised in this thesis, but are addressed

more explicitly in the following sections.

How should programs undergoing transformations be represented?

WSL programs are represented as abstract syntax trees in which each node (and

its corresponding subtree) represents a single syntactic object and the branches

of that node are the components of the object. The advantages of this approach

are that the transformations work mostly on syntactic objects, and these can

easily be selected, identified and manipulated as branches or leaves within the

tree structure, obviating the need for much parsing.

In addition, the trees are used to store information about the items' types, data

base query tables (to enhance the efficiency), identity numbers (to aid in commu

nication with the interface) and attached comments (to provide a documentation

facility). The implementation of the tree structures is by way of LISP's nested

Chapter 10: Conclusions 217

lists. Having created a transformation system based on tree structures, empirical
observations show that this is an efficient approach.

How should the transformations, and their point of application, be

selected?

Human expertise of both software engineering and the application domain should

influence the direction of the transformation process. Thus, it is necessary for

the system to be interactive and to provide some method for selecting which

transformations should be applied and at which point in the program tree. The

point of application of transformations can be selected in two ways.

1. The program is presented on a graphics screen and the user points to an

item in the program using a mouse and clicks a mouse button. The smallest

portion of the tree (syntactic object) containing the item at which the user

pointed would then become the selected item. This method has provided

the user with a simple and intuitive method of identifying sections of the

program.

2. In the second method the system provides a series of commands for relative

movement within the program tree: L E F T , R I G H T , TJP and DoWN. This

method, while available to the user of the system, has been harder to use, but

has proved to be more efficient and forms an essential part of the mechanism

for performing transformations.

Having selected the point of application, it is necessary to select the transformation

that is actually required, as in most cases more than one will be applicable.

The transformations are divided by function into a number of different menus.

When the user selects a transformation menu, the system checks which of the

transformations that could potentially appear in the chosen menu are actually

applicable, and creates a menu containing only vaHd transformations, Hsted al

phabetically, from which the user makes his choice. This arrangement reduces the

need for the user to know the names of all the transformations in the system, and

Chapter 10: Conclusions 218

the division of transformations into small groups has decreased the time required
to construct the menus. A minor drawback is that it is not always clear in which
menu a particular transformation should appear.-̂

How should the applicability of the transformations be tested?

In the simplest cases, the applicability condition of a transformation would consist

of a pattern that a section of the program has to match against. But in more

complex transformations, additional tests on the code would be needed. These

could be put into a logical formula, but this approach lacks the flexibihty to test,

for example, "distant" sections of code. Thus, the Maintainer's Assistant uses a

•programming language^ which has been based on WSL, MSTAWSL, for expressing

applicability tests.

How should the transformations be represented?

Simple transformations can be expressed as two patterns, possibly together with

actions to be performed on the elements as they are matched. However, these

actions are often extremely complex and some, such as those that need to examine

sections of code outside the syntactic scope of the section being changed, cannot

be represented in this way. Thus, as with applicability tests, the MSTASN^L

programming language is used.

How should the transformations be stored in the system?

Transformations are stored in a tree, based on the WSL types to which they

apply, so as to reduce the number of transformations that need to be tested for

applicability at any stage. Each entry in the tree holds information about the

transformation, such as its name, and an index into a number of vectors which

store additional information. This combination of a tree and vector structures

^There is an "All" menu which lists all the applicable transformations.

Chapter 10: Conclusions 219

enables a specific group of transformations to be accessed efficiently and, once
found, the information about the specific transformations can also be accessed
efficiently.

How can transformations be combined?

A set of elementary transformations forms a basis for constructing further trans

formations via combination. This is made possible by use of the METAWSL

statement OTrans and condition [_Trans?_].

Transformation combinations that are not provided must be explicitly performed

by the user. Experiments have been carried out whereby the user can record such

a sequence of transformations and replay it later, possibly on another part of the

program. This has proved useful only in a very few circumstances as it is not

usual to want to apply exactly the same transformations in two places. A future

extension of the system would be to provide the user with a macro language so that

he can build compound transformations himseH using WSL in combination with

a subset of the features provided by MSTAWSL; for example, @Trans, [_Trans?_]

and movement statements, but not editing statements (otherwise the user would

be able to construct potentially invalid transformations).

What other facilities should be included in a usable transformation

system?

In order to make the Maintainer's Assistant into a usable transformation system,

there are a number of other facihties and features that have been incorporated.

First, so that it is simple to operate, the tool works in a fast, efficient and intuitive

windows environment with mouse control, buttons, pull-down menus and so on.

Next, since the user may not always choose the correct sequence of operations

at a first attempt, the system provides the abiHty to undo changes made to the

program. An "audit trail" facility is also included so that as a program is changed,

Chapter 10: Conclusions 220

the operations performed on the program, and the selection of program items, are
recorded and could be "replayed" on a modified initial specification.

Since faults may be found in the program being maintained with the system, the

Maintainer's Assistant incorporates a structural, syntax-based editor.

The system includes the abihty to calculate metrics about the program undergoing

transformation thereby providing and a measure of the benefit produced by the

transformation process.

Finally, both a user guide and online help are provided.

10.3 Criteria for Success Revisited

In Chapter 4, the criteria for the success of this work were presented. This section

will consider whether these criteria have been met.

10.3.1 Preliminary Questions — Maintenance by Trans

formation

• Is software maintenance made simpler by using transformation-based reverse

engineering?

• Is WSL a good language for this purpose; i.e. can existing programs be

expressed in WSL and is there a suitable range of WSL transformations?

• Crossing levels of abstraction involves removing details of the program's

implementation while retaining details of its function. How can one do this

in a transformation-based system?

The first two of these questions were answered in Chapter 9. From the experience

gained using the Maintainer's Assistant, in particular within IBM Hursley, it

Chapter 10: Conclusions 221

would appear that maintenance by transformation offers great benefits in terms
of resulting code quality and programmer productivity.

WSL was designed from the beginning to facilitate program transformation and

as a result is better suited to this purpose than traditional languages. However,

its elegant semantics lead to difficulties when it is required to express certain

inelegant programming concepts, notably exception handling. Overall, it does

form a good basis for transformational maintenance.

The aspect of crossing levels of abstraction was addressed in Section 4.4.5. The

method adopted involves first restructuring the program into a suitable form (for

example, introducing procedures and using recursion in place of iteration). Having

done this, the user then needs to identify suitable abstractions which can be

introduced via assertions (possibly resulting from the identification of invariants).

As yet, not enough work has been carried out to determine how successful this

approach might be but, on very simple examples, it looks promising.

10.3.2 Central Questions — The Assessment of MSTAWSL

• What constructs should A^T.4WSL include so as to be flexible enough to ex

press program transformations without becoming overburdened with little-

used constructs? i.e. What constructs should METAWSL include so as to be

simple yet complete?

• Can AiSTAWSL clearly and concisely represent Ward's transformations?

• What other transformations are required?

• Can A^T.4WSL be used to express clearly and concisely these transforma

tions?

As was seen in Chapter 5, and expanded on in Chapter 6, AdSTAWSL has been

constructed so as to code both the transformations' applicability and the code

for performing the transformations. METAWSL includes (for reasons given in

Chapter 5) the following type of construct over and above those provided by

Chapter 10: Conclusions 222

WSL: program editing statements, pattern matching and template filling func
tions, movement statements, movement applicabiUty testing functions, predefined
global variables, query functions, symbolic mathematics and logic functions, and
repetition statements.

Through the implementation of the transformation's of Ward's thesis [177],

Chapter 7 demonstrated that A4eTAWSL is suitable for coding these transform

ations. Moreover, the representation of these transformations using A^r .4WSL

was seen to be both clear and concise.

There are four types of transformation in the system. First, all Ward's transform

ations [177] are incorporated.

Transformations of the the next type combine these in forms that have been

identified through studies as being useful. These are compound transformations.

Their effects include fully factorising a Cond statement, removing Exit statements

from a loop or restructuring an action system, and they are large in number.

Generic transformations combine into single transformations elementary or com

pound transformations which have a similar function such as merging program

items. Thus, the user does not need the experience to know which specific trans

formation has to be selected.

Finally, high-level transformations enable a user to extract a specification from a

program.

As was seen in Chapter 7, each transformation can be written concisely, without

difficulty and no less clearly than a purely mathematical statement of the trans

formation. This is because of the availability in MSTAWSL of all the structures of

WSL, together with additional control statements and the mathematics and logic

routines.

Chapter 10: Conclusions 223

10.3.3 Questions on the Effectiveness of the Tool

• Does the approach result in a usable tool? In particular, what training is

required?

• Is the implementation of the transformation catalogue efficient, rehable,

correct and complete?

• Does the method scale up to larger programs?

• How well does the system work on real programs in an industrial environ

ment?

• What weaknesses does the system have?

• How does the use of the tool fit into the software process?

• Does this system add to the study of transformation systems in general?

• Can the system be used to maintain itself?

Chapter 9 specifically address the first five of these questions. As was seen, the

approach does result in a usable tool which is efficient and rehable. Correctness

and completeness need to be proved, but the evidence available is favourable.

The evidence also shows that the method would, unless any unforeseen problems

arose, scale up to larger programs. The system has four weaknesses in the areas of:

WSL's representation of certain types of behaviour, the reliance on the symbolic

mathematics system and lack of a method of performing inductive proofs, the

difficulty of finding optimal transformation sequences, and in crossing levels of

abstraction.

The other three questions in this section will be considered at greater length.

How does the Maintainer's Assistant fit into the software process?

The Maintainer's Assistant is a tool that takes a program as its input an trans

formations it to produce another program as its output. As was seen earlier, this

Chapter 10: Conclusions 224

could be extended to take specifications as input and/or produce specifications
as output. Thus, the tool could, potentially, be used at any stage in the software
life cycle at which specifications or programs form both the input and output.
This would exclude the requirements analysis and definition and both specifica
tion stages, but the tool could be used in the production of a design from the
specification and in the production of code from the design. As a side effect of
using the Maintainer's Assistant in these phases of the life cycle, the need for
verification in the testing stage would be reduced. Finally, one of the original
aims was to create a tool to help with maintenance, and it is indeed also of use
in this stage of the life cycle.

At all these stages, it is not necessary to use the Maintainer's Assistant; rather,

it can be seen as a extra weapon in the software engineer's armoury to be used

when deemed suitable. The reason for this is that it can be applied to any code

or specification. Thus, the software engineer may choose to develop (or maintain)

certain parts of his system using traditional methods, and just use the Maintainer's

Assistant on those parts where provable correctness is essential. However, by using

the tool only on parts of the system does reduce the benefits that i t can give.

Does this system add to the study of transformation systems in general?

There are four main ways in which this work has added to the study of trans

formation systems in general. First, it has been designed with maintenance as its

primary field of use. This has resulted in a system which is designed to take as

its input unstructured code and produce a design; the opposite of most systems

which take as their input a design and produce as their output efficient code. As

a result of this approach a number of issues have had to be addressed, notably in

the area of formal restructuring and in the crossing of levels of abstraction.

The second contribution of this work is in the method in which transformation

are expressed. While M£TAWSL was not the first language to be used for writing

program transformations (see HOPE [51] and Hildum and Cohen's work [95]), it

is the first language which contains more than pattern matching, template filling

Chapter 10: Conclusions 225

and simple iteration facilities. In particular, A ^ X 4 W S L includes statements for
movement within program tree. These allow the determination of context inform
ation about a part of the program other than the part that the transformation
changes as would be the case with a transformation which replaces a procedure
call by the body of the corresponding procedure.

Other METASN?)!, constructs reflect the use of Ward's approach to proving pro

gram equivalence. These expressions for testing whether a program item is "ter

minal", "reducible", "proper", "improper", "dummy", "regular" and so on enable

more sophisticated transformations to be included which take into account more

than just the superficial syntax of the program. A f e r . A W S L could be adopted and

reused in future transformation-based work.^

Another way in which this work has added to the study of transformation sys

tems has been in the area of usability. While many other transformation systems

require the user to test the validity of the application of the transformations,

the Maintainer's Assistant does this itself, presenting the user with a menu of

only correct transformations. This is a benefit of coding each transformation as

two pieces of METASN^II, code: the first part which tests its applicabihty and the

second which performs the changes to the text of the program.

Finally, the Maintainer's Assistant has been used with effect in a commercial

organisation (IBM Hursley) and on an actual "live" system. This gives the system

a degree of credibility that other transformation systems lack.

Can the system be used to maintain itself?

Since the transformations in the Maintainer's Assistant are written in an extension

of W S L , the transformations can be applied to themselves. The exception is that

there are as yet no transformations relating explicitly to A ^ r ^ W S L constructs.^

However, once a formal definition has been produced for A ^ Z A W S L , transforma-

^This is borne out by the fact that Xcr^ lWSL has been adopted, albeit with some stylistic
changes, by Durham Software Engineering's Fermat project [182].

^Such a transformation might remove a "OLeft; ©Right" pair.

Chapter 10: Conclusions 226

tions on A ^ r ^ W S L could be produced and the tool would become more usefully
applicable to its own code.

10.4 The Final Analysis

The majority of the software industry, and software maintenance in particular,

still lacks maturity for the reasons described in Chapter 1. However, there are a

few organisations and projects — for example the Space Shuttle software project

— that have managed to achieve a higher level of maturity through a disciplined

use of informal methods. Formal methods, as has been shown in this thesis,

appear to offer more benefits than these informal methods, so the challenge is

to realise these benefits. Transformation systems have the potential to harness

the advantages of formal methods, making valuable tools, but until now have, for

various reasons, failed. The Maintainer's Assistant, being based on a purpose-

designed programming language (WSL), an improved method of proving program

equivalence [177], a more flexible method of expressing program transformations

(using Afer^tWSL), and a simple, interactive interface would, at least on paper,

seem to overcome these problems. So far, experiments on commercial systems

bear this out.

Thus, software maintenance by program transformation in a wide spectrum lan

guage not only seems plausible, but offers important benefits over other ap

proaches.

10.5 Future Directions

The most important extension to this work is the production of a formal definition

of MSTAWSL. This would enable proofs of the correctness for the implementation

of the transformations to be produced. In addition, i t would allow transformations

on MSTAWSL to be constructed, thus enabling the tool to be used more effectively

Chapter 10: Conclusions 227

in its own maintenance.

There is a need to extend this work in the area of crossing levels of abstraction.

In particular simpler methods must be introduced for identifying suitable abstrac

tions. This method must also cover data abstraction which is an area that has

not been considered in this thesis.

Other enhancements revolve around usability issues, for example in helping a user

who is untrained in program transformations to benefit from the system. These

include:

• An interactive assistant to help in the selection of transformation. This

could be implemented by storing with each transformation a list of possible

"next candidate" transformations. An alternative method would be to make

use of the metrics facihty to guide a "hill chmbing" algorithm.

• A "jittering" mechanism similar to that used by the T I (Transformational

Implementation) System [18]. This automatically modifies a program to

match a transformation that previously failed to match because of some

technical detail. Mostow [139] proposes a similar system for automating

transformations in which the user selects the transformation he wants to

apply. The system calculates the changes that need to be made first, and

looks for suitable rules to apply.

• An additional class of transformations which embody knowledge of pro

gramming goals: "divide and conquer", formal differentiation, embedding,

recursion removal, backtracking, function tabulation, function inversion, dy

namic programming (store versus recompute) and so on.

• A facility to allow the user to build up his own catalogue of compound trans

formations consisting of combinations of existing transformations. Thus, he

could customise the system for the particular problems that he has to deal

with. This would follow the trend which is away from huge catalogues,

and toward individual, problem-oriented sub-systems based on small sets of

powerful rules allied with advanced metalanguages [152]. Such an approach

was also proposed by Bauer [24 .

Chapter : Conclusions 228

The ultimate goal of a transformation system is to achieve a symbiosis between
the talents of a skilled human, who is better able to make strategic decisions, and
the mechanical abilities of the system to carry out flawlessly numerous trivial low-
level manipulations [73]. Adding the features described above to the Maintainer's
Assistant would represent considerable progress towards this goal.

Appendix A

A Survey of Transformation

Systems

In the following review, only those systems which use transformations in interest

ing or original ways wil l be considered. Simple optimising compilers and partial

evaluation will not be considered. The systems reviewed will be assessed in terms

of their formality, how much guidance and informal reasoning the user has to

provide, the scope of the examples the systems have been apphed to, and whether

the system is being used other than by its developers. Each transformation system

will be described under five headings:

Background — The first section give the details of where the transformation

system was developed.

Purpose — Since transformation systems have been constructed to achieve many

different goals, the second section gives these goals.

Details — The third section describes how the transformation system works, its

transformation catalogue and any special characteristics the system has.

Results — The results section analyses the results that have been obtained with

the system.

229

Appendix A: A Survey of Transformation Systems 230

Conclusion — The final section assesses whether the transformation system has
been successful, and what, if anything, it adds to the field of knowledge
about such systems.

A . l The S E T L Project

Background

This long-running project at the Courant Institute of New York University [62

has served as the context for a wide variety of transformation research. SETL is

one outcome of this work.

Purpose

SETL is a very high level programming language which has syntax and semantics

based on standard set-theoretic mathematics. It is possible to execute SETL

programs, but naive execution of programs that make liberal use of the high-

level language features may be very inefficient. There is a SETL compiler which

produces efficient interpretable code or machine code. A key part of the compiler

is an optimiser which uses ideas from transformation systems.

Details

SETL uses transformations for code optimisation, for selecting data structures and

for ensuring that data types are efficiently used. Although the work is of relevance

to transformation theory, it is not a general purpose transformation system.

Appendix A: A Survey of Transformation Systems 231

Results

The examples on which SETL has been tried are described by Partsch and

Steinbriigen [152], and include finding the shortest path in a graph, some garbage

collection algorithms and the Cocke-Younger parsing algorithm.

Conclusion

As has been described earlier, there are many benefits to be gained from writing

programs at a high level and performing transformations to produce executable

code. SETL is one system that supports such an approach, but it does not have

the power required to be of general use, since the examples cited above were

only transformed from high-level specification to executable code with a great

deal of informal reasoning. Thus, while SETL has worthwhile objectives, the

transformation system employed is too limited in both its scope and power to be

able to draw many lessons from i t .

A.2 R A P T S

Background

RAPTS (Rutgers Abstract Program Transformation System) was developed by

Paige [148 .

Purpose

It is a supercompiler that takes as its input an abstract program specification and

outputs efficient object code and a description of its performance. It is claimed

that because specifications are more likely to be correct than programs, the output

from this system is more likely to be bug-free than that from an ordinary compiler.

Appendix A: A Survey of Transformation Systems 232

Details

RAPTS is a running transformational programming system that embodies many

of the features of supercompilers. It constructs programs in a sequence of stages,

each of which implements an essential program characteristic. The first stage

introduces computability, while the following stages add strategy, data structures,

optimal control flow and so on. The theory behind RAPTS is that of expressing

specifications in purely set-theoretic terms and then using fixed point theorems^

on these sets as the basis for transformation rules.

RAPTS has a small catalogue of transformations which does not support lower

level code manipulations.

Slight changes in the form of the input specification can result in significant dif

ferences in the performance of the object code. Thus, it seems essential for the

success of transformational systems which use large scale automation that they

both compile the code and provide a performance analysis of this code [148]. This

is possible in RAPTS since the implementation of a program characteristic at

each stage is accompanied by a sufficiently precise increase in efficiency that it is

possible to combine the efficiency information to create a time complexity formula.

In contrast to the SETL optimiser, reported to be 24,000 lines of SETL code,

RAPTS is only a few hundred lines of SETL [148].

Results

No results are available.

^In lattice theory, a fixed point is a point which satisfies the equation x = j (x) for some
monotonic function / . By expressing recursion as a function, / , in this form, where x is the
"solution" of the recursion, it is possible to use the theorems of fixed points to transform the
recursive program.

Appendix A: A Survey of Transformation Systems 233

Conclusion

The major problem is the applicabihty of the approach. In particular fixed point

transformations only apply to specifications written in set-theoretic terms, which

is not always a convenient way of expressing a specification. A second weakness

is the lack of published results.

A.3 The TAMPR System

Background

TAMPR (Transformation-Assisted Multiple Program Realisation) was developed

at the Argonne National Laboratory.

Purpose

I t is not a general transformation system, but is a special purpose system whose

primary goal is to adapt numerical algorithms to work with particular hardware

and software environments. In particular, the TAMPR transformation system

is used to transform declarative specifications written in pure applicative LISP

(which has no side-effects) into efficient executable programs written in FOR

TRAN (which may be either sequential or parallel). The advantage of pure LISP

specifications is that they are based on the mathematics of the lambda calculus

and recursive function theory. Thus, from the point of view of program trans

formation, it is possible to write and prove interesting transformations, and it

also prevents problems from being overspecified.

Appendix A: A Survey of Transformation Systems 234

Details

The TAMPR System uses 20 language levels between pure apphcative LISP

and FORTRAN [42]. These levels include pure applicative LISP, expressed in

extended-FORTRAN syntax and recursive FORTRAN with one function call per

statement.

Transformations in TAMPR are rewrite rules consisting of a pattern and a replace

ment [41]. In addition, transformations can have applicability conditions on the

semantics of the code but, according to Boyle, these are seldom needed. TAMPR

contains 90 major correctness preserving transformation rules divided into 20 in

dependent groups corresponding to the different language levels. Thus, at each

level there is only a small number of transformations available.

Both transformations and the programs on which they work are represented as

tree structures internally in the system [41].

Results

In [42] an example is given in which a program is produced whose resulting code

is 3,150 lines. This takes 15,639 transformations for a sequential version of the

program, and 23,583 for a parallel version. These are too many for the user to

have to apply by hand, so a strategy is used to automate completely the system.

This strategy is described in [42].

TAMPR has been used successfully to convert single-precision to double-precision

arithmetic and to change the dimensions of an array, for example to use a one-

dimensional array in place of a two-dimensional one. TAMPR has also been

used to transform FORTRAN programs to uncover structure inherent in them

and to make other changes to FORTRAN programs [41]. However, the most

significant accomplishment of the system is that TAMPR itself is written in LISP

and has been transformed into FORTRAN. When new functionality was added

to TAMPR, it was easy to retransform it into FORTRAN.

Appendix A: A Survey of Transformation Systems 235

Conclusion

The use of many different language levels is in contrast to systems which use a

wide spectrum language and would appear to be a serious drawback if the system

were to be extended to become general-purpose since different transformations

are needed for each language level (and also for moving between different levels).

Nevertheless, in its restricted domain TAMPR has been used with some success,

producing programs which are much more efficient than the original LISP code.

I t has also been used to perform a limited amount of legacy code restructuring.

A.4 The Restructurizer

Background

A special type of transformation system is the structuring engine, which is a

software tool with two properties [124]:

• It transforms an executable program written in a given language, but of

undetermined structure, into another program written in the same language

with a well-defined structure; and

• The resulting program produces the same transformation on any set of input

data as does the original program.

Such tools which have already been developed include Superstructure, Structuring

Facility and, described here, the Restructurizer developed by Sneed [7] [168 .

Purpose

The Restructurizer takes, as its input, code written in COBOL-74 and produces

restructured code written in COBOL-85. This is used as the third of five stages in

Appendix A: A Survey of Transformation Systems 236

a more general strategy for software recycling (Sneed's own variation on restruc
turing).

Details

The task of the restructurizer is to restructure the flow of control within COBOL

modules by means of the successive application of seven syntactic rules which are

mainly designed to remove Goto statements [168].

A key factor in the recychng process is the presence of an intermediate design

language to which the COBOL-74 is first converted by hand before being regen

erated as COBOL-85 code. This allows all the work to be carried out at the same

"level" with the same set of rules (i.e. transformations). This is the opposite of

the TAMPR system described in Section A.3.

The Restructurizer has no firm theoretical foundation for the transformation rules

that are used in the system. Instead these are "rules of thumb" such as:

Al l forward branching conditional Gotos should be deleted, the If con

dition negated and all the statements up to the label referenced should

be nested by one.

Results

The Restructurizer has been used successfully to restructure various real-world

COBOL programs.

Conclusion

The Restructurizer does all that it sets out to do; that is, it restructures unstruc

tured COBOL programs. However, it is only able to consider the syntactic form

of the code and not its meaning. Thus, unhke a true transformations system, it

Appendix A: A Survey of Transformation Systems 237

is unable to remove redundant tests and so on; this is partly due to its not being
a rigorously-based system.

A.5 Burstall and Darlington's Work

Background

A great deal of the pioneering work in transformation systems was undertaken by

Burstall and Darlington, and their work is continuing. Their ideas have heavily

influenced today's transformation systems.

Purpose

The first version of their work was a schema-driven method for transformation in

which transformations were applied to code which matched certain patterns. The

system transformed from applicative recursive programs to imperative ones, the

goal being improved efficiency. On the whole their system worked automatically

with little user interaction. However, it had a very incomplete (and difficult to

extend) set of transformation rules.

Details

Their second system is, like their first, based on the generative set approach and

used only six rules:

Definition — which introduces a new recursion equation;

Instantiation — which introduces a substitution instance of an existing equation

by replacing a parameter by a value;

Unfolding — in which a (recursive) call to one of the recursion equations is

replaced by the body of that equation;

Appendix A: A Survey of Transformation Systems 238

Folding — in which the body of an equation is replaced by a (recursive) proced
ure call;

Abstraction — which introduces a "Where" clause by deriving a new equation

from a previous equation by replacing specific values by parameters; and

Laws — which are any set of data-structure-specific rules such as associativity,

commutativity etc.

The system works largely automatically on the language NPL [49]. It uses "forced

folding" in which the system suggests a fold which the user accepts or rejects,

asking for another. The system is not fully automatic, and the user must supply

definitions, clever ideas in the form of "eurekas", laws for data structures, explicit

reduction rules, and switches which permit or forbid various searching criteria and

expression generalisations.

Results

The recursive functions which have been transformed by the system are all fairly

simple and mostly mathematical.

Conclusion

This system is in itself very primitive by today's standards; in particular it is lim

ited to transforming from recursion equations (imposing a restriction on the kinds

of program that can be transformed) to improved recursion equations (necessit

ating, in most cases, further processing before the program can be expressed in a

conventional language). Nevertheless, the system was important and influential

in providing the inspiration for later transformation systems.

Appendix A: A Survey of Transformation Systems 239

A.6 The ZAP System

Background

The ZAP system [70] [71] [74] is based on the Burstall and Darlington system.

Purpose

There is special emphasis in the ZAP System on software development by support

ing large-scale program transformations which perform dramatic, global changes

to the program as opposed to small, local changes.

Details

The principle is still that of "fold/unfold" and the language is still NPL. In ZAP,

however, meta-programs can be written using HOPE (a purely appUcative pro

gramming language, developed from NPL) which apply a directed series of trans

formations to NPL programs in a high-level hierarchical fashion. The system is

based on pattern-directed transformations, i.e. transformations in which the user

gives only the approximate form of the expected answer, as a pattern. These

are expanded into a variant on the six basic rules of the previous Burstall and

Darlington system which the system then applies to perform the transformation.

There are other new facilities, too, and these include an extended control lan

guage, defaults (notably default patterns), a bookkeeping facihty to record the

sequence of operations, and a "discovery" capability so that the system can sug

gest alternative transformations.

Results

The examples on which ZAP has been tried are more ambitious than the examples

tackled with most other transformation systems: the "telegram problem" (which

Appendix A: A Survey of Transformation Systems 240

involves decoding an incoming stream of characters) [70], a very small compiler
and a text formatter [71]. However, these examples leave the resulting program
as a series of recursion equations which must be further modified to produce
programs in conventional programming languages.

Experiments with transformations appHed to maintenance have also been per

formed with ZAP. However, these have been limited to performing new trans

formational developments from slightly different starting conditions. No attempt

has been made to use the system to perform reverse engineering.

Research is also being conducted into "paradigm algorithms", such as the general

divide and conquer paradigm and other general strategies.

Conclusion

Perhaps the most important feature is the use of a meta-language for expressing

transformation tactics since it gives the system a great deal of flexibihty. However,

the user needs to write scripts in the meta-language for each transformational de

velopment, making the system cumbersome to use, especially as large and complex

patterns needs to be created in non-trivial cases.

The use of ZAP for maintenance is another important idea but, as with meta

language scripts, the theory is better than the practice, since no work has been

done on transforming existing code and the system is, therefore, of little use in

the real world.

A.7 The S A F E and TI Projects

Background

SAFE (Specification Acquisition From Experts) is Balzer's project from the In

formation Science Institute (ISI) in Los Angeles and deals with the synthesis of

Appendix A: A Survey of Transformation Systems 241

formal specifications from informal ones [190]. Although not a transformation
system itself, it forms part of a larger system with T I (Transformational Imple
mentation) in which transformations play an important part.

Purpose

T I works on the derivation of efficient programs from formal specifications by

means of transformations [18]. Thus, the SAFE/TI combination allows for in

formal specifications to be transformed through to executable programs.

Details

T I does not produce programs directly, but instead produces output in a subset of

the specification language GIST, which is translatable into an existing program

ming language. Abandoning automatic compilation allows more freedom in the

language in which programs are presented to the computer. GIST is the result of

adopting this approach [81] [19], and is a wide spectrum language. It has been

developed to provide the flexibility and ease of expression necessary for describing

the fu l l range of acceptable system behaviour.

When using the T I system, it is the programmer's task is to select transformations

from a pre-existing catalogue [18]. If a required transformation does not exist, the

programmer may extend the catalogue or edit the program manually. In both

cases it is up to him to ensure the resulting program's correctness.

Among the features of the T I system are:

• An interactive transformation engine;

• An automatic documentation facihty that allows one to replay a develop

ment using a modified specification;

• A catalogue of transformations which reflect how to implement certain spe

cification constructs and optimisation techniques; and

Appendix A: A Survey of Transformation Systems 242

• A mechanism for translating a fully developed program into some target
language.

T I includes one other important feature: "jittering". Jittering is the process by

which the system automatically modifies a program to match a transformation

that previously failed to match because of some technical detail. This uses stand

ard artificial intelhgence back-tracking techniques.

Results

Some examples which have been tackled with the T I system include a text editor

18], some special versions of a line justifier [190], the "eight queens" problem [15]

and a package router [122].

Conclusion

TI's key strengths are the GIST wide spectrum language and the "jittering" tech

nique. GIST, being formal and wide spectrum, provides an enormous degree of

expressiveness and power (even if it lacks clarity and structure and is thus hard

to understand, as one of its developers admits [72]).

However, although working with GIST is clear in principle and has been demon

strated with a number of substantial case studies, there are still several non-trivial

technical omissions; i.e. (a) a sound theoretical foundation for the notion of a valid

transformation (the user may add unproven transformations to the catalogue and

to make unchecked edits to the code), (b) suitable collections of rules, (c) appro

priate strategies for the development of an implementation [151 .

Appendix A: A Survey of Transformation Systems 243

A.8 G L I T T E R

Background

GLITTER, Hke the SAFE and T I systems, originated in the Transformation Based

Maintenance project at Information Science Institute (ISI).

Purpose

This project addresses the problem of understanding, reusing and maintaining

previous specifications and optimisations. Paddle is the language used to record

the formal development of GIST specifications. These developments can then be

reused. The major weakness of this system is not in the Paddle itself but in the

interpretation mechanism for Paddle [189]. Hence Fickas created an automated

development system that selects and applies transformations to achieve developer-

stated goals. The language for stating these goals is GLITTER (GoaL-directed

jITTERer).

Detciils

GLITTER [75] was designed within the T I environment. The user begins by

stating (in GIST) some design goal. This is then processed by four subsystems.

• The problem solver either asks the user for more details or checks the method

catalogue;

• The method catalogue contains methods for achieving goals and contains

transformations and planning knowledge;

• The rule selection catalogue chooses between rules from the method cata

logue; and

• The applier applies the chosen method.

Appendix A: A Survey of Transformation Systems 244

GLITTER is an interactive, rather than fully automatic system. For example,
it may be necessary in the process of using it for the user to add to one of the
catalogues.

Results

GLITTER has been tried on a large number of toy examples and a few larger

ones. The latter included a controller for a mechanical postal package router in

which the system was able to generate automatically a significant number of steps

[75].

Conclusion

GLITTER extends the capabilities of T I , but is stiU let down by a lack of formality

epitomised by the fact that users can add unproven transformations and methods

to the catalogues.

A.9 The PSI and CHI Systems

Background

The PSI system [87], [85], [86] [88] and CHI [89] system have been produced

mainly at Stanford.

Purpose

The purpose of both systems is to synthesise efficient programs, by taking as input

a specification obtained from a dialogue with the user. This may include natural

language or partial traces of computations (given by sample input-output pairs).

A p p e n d i x A : A Survey of Transformation Systems 245

Detai ls

I n PSI, the dialogue w i t h the user is processed by various "experts" which are

software modules which together fo rm a large LISP system. Each expert performs

a particular funct ion such as parsing the input or applying domain knowledge.

The result is a number of program fragments which act as input for the Program

Model Builder (P M B) [129]. The result of this is a complete program model which

is coded by a coding expert and an efficiency expert. P M B builds a complete

and consistent program model which is an abstract, implementation-independent,

annotated program in a high-level language. The program, thus, corresponds to

the desires of the user. PMB's expertise is coded as a set of about 200 procedural

rules which are scheduled by a rule interpreter.

The coding expert (PECOS) [20] [21] takes an abstract program description pro

duced by P M B and successively refines i t using transformation rules which reflect

coding knowledge. This has two parts:

• A catalogue of about 400 transformations relating to symbolic programming

21] together w i t h an extensible knowledge base [20]; and

• A task-oriented control structure based on program development by success

ive refinements.

The efficiency expert (L I B R A) [104] [105] gives advice to the coding expert, thus

helping i t to make decisions. Its expertise is coded as an extensible knowledge

base of about 100 rules. New rules can be derived semi-automatically f rom new

transformations or can be gained by asking the user appropriate questions.

The synthesis phase of PSI (PSI /SYN) transforms specifications given in PMB's

formal high-level language [106]. This reverses the roles of PECOS and L I B R A ,

so that PECOS advises L I B R A .

A p p e n d i x A : A Survey of Transformation Systems 246

Resu l t s

Partsch and Steinbrugen [152] give a list of examples on which the PSI system has

been tr ied, all of which are only moderately sized and very heavily biased towards

number-theoretic algorithms. These include a prime number generator, some set

manipulation algorithms, a simple retrieval program, an algorithm to determine

the reachability of nodes in a graph and a variety of sorting algorithms.

Conclus ion

PSI was a useful testbed for program transformations, but was superseded by the

C H I system. This differs f r o m PSI i n that i t uses a wide spectrum language called

" V " , which is easier to read. Also, instead of using autonomous experts, C H I uses

a homogeneous collection of tools sharing a common database. Although C H I

has had very l imi ted success in use (having only been applied to number-theoretic

examples), i t makes two important contributions to transformation theory: rules

can be applied by analogy (by indicating a related rule having a similar effect)

and i t is a self-describing system, i n that i t can be modified using its own rules.

A.IO The C I P Project

Background

The work has been carried out since 1975 in Munich by Bauer [27] and others.

Purpose

The CIP acronym (Computer-aided, Intuition-guided Programming) indicates the

project's primary aim; to produce a system which allows the user to construct pro

grams by transformation, obviating the need for much clerical work ("computer-

A p p e n d i x A : A Survey of Transformation Systems 247

aided"), while using his own experience ("intuition-guided") to direct the process.
Secondary aims, which have been accompanied by thorough investigations of the
theoretical issues, are:

• To use a sound method (based on a formal calculus) for guiding the process

of formal reasoning in program development;

• To design and define formally a wide spectrum language, CIP-L, in order

to provide a uniform framework for the formulation and transformation of

both specifications and programs;

• To develop an interactive system for supporting the process by performing

the transformations mechanically, doing administration, and producing the

documentation.

Detai ls .

CIP-L, has different programming "styles". I t has a core imperative language,

based on the algebraic semantics [154], which is extended wi th applicative con

structs by definitional transformations; each language construct is defined in terms

of how i t can be transformed into a combination of lower-level constructs [153].

Other transformations include [26] fundamental transformations on the kernel

language, and derived transformations which are sequences of fundamental or

definitional transformations.

Transformations are represented as input and output templates together wi th

additional "semantic" predicates on the code being transformed. Transformations

can be applied to program schemes, thus producing a new transformation rule

consisting of the original program scheme as the input template and the generated

program scheme as the output template. The applicability conditions for the new

rule are induced by those of the applied rule [26 .

Internally, program schemes are stored as abstract terms which are tree-like struc

tures.

A p p e n d i x A : A Survey of Transformation Systems 248

Resu l t s

Pepper [155] gives three examples of the use of CIP. These are the elimination

of quantifiers, recursion removal using data types, and a data flow program. But

perhaps the most significant is that i t has been used to prove parts of its own

development.

Conclus ion

The CIP project has made substantial contributions to the field of program trans

formation systems such as the symbiosis of the human and computer contributions

and the use of a wide spectrum language. Nevertheless there are certain areas of

weakness of the system.

First, i n performing transformations i t may be necessary to obtain information

about a part of the program other than the part that the transformation changes.

This would be the case w i t h a transformation which replaces a procedure call

by the body of the corresponding procedure. In the CIP project, this non-local

information is obtained by way of "contexts" and "theory propagation" [155 .

However, these have been added later and are rather clumsy, since, for example,

the definition of a procedure must be stored at every point in the program.

Second, i n order to understand abstract types i t is helpful to fo rm a conceptual

model [45], but CIP's semantics are not model-based, and thus require an extra

level of description.

Th i rd , the method can only deal w i th the equivalence of f u l l programs and not

arbitrary program parts [153 .

Finally, i n order to deal w i t h imperative programs (such as are used in vir tually

all real-world situations) the applicative kernel needs to be extended wi th many

"impHcit axioms" such as: (^ i ; S2)] S3 = Si; {S2; S3) [177]. Extra axioms

necessitate extra conditions on the apphcability of the transformations reducing

the scope and usefulness of the approach.

A p p e n d i x A : A Survey of Transformation Systems 249

A . l l D E D A L U S

Background

Various experimental transformation systems have been developed by Dershowitz

and Manna [60] the most important of which is DEDALUS (DEDuctive A L -

gor i thm Ur-Synthesizer).

Purpose

The goal of DEDALUS [127] is to derive LISP programs automatically and de

ductively f r o m high-level input-output specifications in a LISP-like representation

of mathematical-logical notation. Manna [125] claims that the methods employed

by DEDALUS can also be used for program transformation, data abstraction,

program modification and structured programming. However, the system was not

intended to be used other than as a testbed for these ideas.

Detai ls

The task is represented as a goal which can be modified by using transformations.

This produces sub-goals which are handled in the same way, introducing recursion

where necessary. A program, correctness proof and proof of termination (using

well-founded sets) are all produced simultaneously for non-mutually-recursive pro

grams.

Of the transformations, of which there are more than 100, some represent know

ledge about the program's subject domain (for example, numbers, lists or sets);

others represent the meaning of the constructs of the specification language and

the target programming language; and some represent basic programming know

ledge [125]. Transformations are represented as simple input and output tem

plates, or patterns. The system has been implemented in QLISP [60 .

A p p e n d i x A : A Survey of Transformation Systems 250

Resu l t s

D E D A L U S has only been tried on toy examples like the greatest-common-divisor

and the intersection of two lists [126].

Conclus ion

Since D E D A L U S has only been tr ied on small examples, i t is difficult to know

whether i t would work on large programs. Another drawback is the degree to

which the user is expected to check the application of transformations and to

hand-modify code, making any formali ty dependent on the user's abihty. The

main advantage, however, is that the system is applicable to some areas of software

maintenance, since f r o m a modified (maintained) specification, a new program can

be relatively easily derived using this system. This advantage, however, has to

be seen in the context of the t r iv ia l examples wi th which that DEDALUS has

actually be used. Also, the system is not suitable for reverse engineering existing

code.

A new deduction-oriented system w i l l regard program-synthesis as a theorem-

proving task that uses unification, mathematical induction and transformation

rules.

A. 12 Hildum and Cohen's Work

Background

This is work that was carried out by Hi ldum and Cohen [95].

A p p e n d i x A : A Survey of Transformation Systems 251

Purpose

Although not a transformation system as such, Hi ldum and Cohen propose a

language for wr i t ing transformations so that the transformations are applicable

to a variety of programming languages.

Detai ls

I n this system, i t is the user's responsibihty to ensure that the transformation

rules defined preserve correctness. However, Hi ldum and Cohen have proposed

that the system could be extended so that i t could present the user wi th a menu

of appropriate transformations.

Like most other systems, transformations are expressed using two patterns [95]:

• A series of elements to be found and actions to be performed while finding

these elements; and

• A new ordering of the elements that describes the result of applying the

transformation.

In this system, a program to apply transformations is seen essentially as a text

editor that executes a series of commands (in this case specified by the program

transformation) and produces an altered version of the original text which repres

ents the new code sequence.

The language for wr i t ing transformations [95] includes a number of important

features:

• A pattern matcher for matching Hterals, single variable items and sequences

of variable items;

• A "repeat" construct for performing a replacement several times. I t provides

a feature for specifying the minimum number of times that a repeated pat

tern must be found. (Nested repeats have not yet proved necessary.)

A p p e n d i x A : A Survey of Transformation Systems 252

• A feature to prescribe "actions" to be performed on items matched by pat
terns (such as adding two constants) before doing the replacement;

• Multiple-pass transformations for moving a piece of code f rom one point to

another, for example. (The first pass would find the code and the second

would perform the replacement.)

• Transformations to be repeated up to a maximum number of times, for

example, for unrolling the body of a loop.

Resul t s

Since no transformation system has been wri t ten using this language, no results

are available.

Conclus ion

A language for wr i t ing transformations oflFers more flexibility over a catalogue

of in i t i a l and final patterns and, thus, this work looks promising. However, since

programs are stored as text sequences, rather than in a more structured fo rm such

as a tree, a system based on this approach would be inefficient due to the parsing

overhead required. This work would be more credible i f there were a working

transformation system based on i t .

A. 13 Kozaczynski's Work

B a c k g r o u n d

Kozaczynski et aVs program transformation system [113] forms part of the soft

ware re-engineering program at Anderson Consulting's Center for Strategic Tech

nology and Research (CSTaR).

A p p e n d i x A : A Survey of Transformation Systems 253

Purpose

The purpose is to provide a general transformation system that can be used in

software maintenance; i n particular at higher, conceptual levels. The core of the

work is based on concept recognition using an "ISA" hierarchy [173 .

Detai ls

The system is constructed w i t h four levels — the text level, the syntactic level, the

semantic level and the concept level — each of which has corresponding program

transformations.

Text-level transformations work on the source text directly and can be performed

by means of string matching (for example, using string replace in the EMACS

editor). For example, the user may wish to replace all occurrences of the number

100 by 200. This can cause problems, however. First, these transformations

may replace components that should have remained the same; for example, in

the case of a string which also forms part of an identifier name. Second, these

transformations rarely preserve the program's semantics.

Syntactic-level transformations overcome many of these problems by putt ing the

program into the fo rm of an abstract syntax tree and using pattern variables are

used to ident i fy matched components.

Semantic-level transformations require that semantic properties of the program be

considered. For example, a loop may be executed only once, but to determine this,

the semantic properties of the loop need to be analysed. Correctness-preserving

transformations, such as code optimisation and restructuring, are supported at

the semantic level.

Concept-level transformations are needed for software maintenance activities such

as fault correction, functional enhancements and pla t form migration. These trans

formations require knowledge about abstract concepts concerning programming,

problem solving and application domains. For example, the user may only wish to

A p p e n d i x A : A Survey of Transformation Systems 254

perform a certain transformation to sections of the program related to a particular
concept or funct ion.

Transformations are expressed as a left-side pattern, a right-side pattern and

possibly some transformation conditions. They may also include calls to functions

"Delete", "Replace", "Insert-Before", "Insert-After" and "Insert-Into".

Resul t s

The system has been used in the porting of an 8,000 module COBOL system;

predominantly to make changes to the interfaces. The amount of transformed

code was 7-50 lines per 1,000 lines [67 .

Conclus ion

From the example given of the use of this tool, i t is clear that i t really performs

very l i t t l e transformation of the code — at most 5% is changed. Also, formal

features such as correctness and completeness have been omitted. Thus, while i t

has worthwhile goals, notably i n the area of concept recognition, i t is not a viable

general purpose transformation system.

A.14 Ward's Work

Background

This work was conducted by Ward in his D.Phil , thesis [177 .

A p p e n d i x A : A Survey of Transformation Systems 255

Purpose

Ward, in his thesis, develops a theory of program refinement and equivalence,

based on a wide spectrum language, which can be used as develop practical tools

for program development and modification. This can be achieved by implementing

the refinements and equivalences as transformations wi th in some suitable system.

However, this has not yet been done.

Detai ls

The theory is based on the use of a wide spectrum language which is defined in

terms of an imperative kernel language of atomic specification statements. This

is extended using definitional transformations to define new concepts in terms of

those already present. The resulting language, known as "WSL", covers the whole

range of operations f r o m general specifications to assignments, jumps and labels,

and expressions w i t h side effects.

Program equivalence is proved in one of two different ways: either by using the

denotational semantics of WSL directly, or by using the method of weakest pre

conditions, expressed as formulae wi th in a framework of first order infinitary logic

177]. The means by which this is accompHshed is explained in more detail in

Chapter 4.

The theorems which Ward has proved in his thesis [177], and which form a found

ation for building a transformation system, cover a wide range of areas. These

include the following:

• Theorems on proving the termination of recursive and iterative programs;

• The recursive implementation of specifications, enabling the transformation

of general specifications into programs;

• A rigorous framework for reasoning about programs wi th nested loops, ter

minated by Exit statements;

A p p e n d i x A : A Survey of Transformation Systems 256

• Selective and entire unrolling of loops;

• Selective folding and unfolding of procedures, which form the basis for a

rigorous treatment of "action systems" [9] [8] — parameterless, recursive

procedures which can be used, among other things, as the equivalent of

Goto statements;

• A wide range of theorems and techniques for recursion removal; and

• Techniques which use the theorems above for deriving algorithms f rom spe

cifications, and for obtaining specifications f rom existing programs.

More details are given in Chapter 4.

Resul t s

These theorems and techniques have successfully been applied by hand to a num

ber of examples of varying complexity [176] [175] [179] [196]. These have included

the "greatest true square" problem, topological sorting and some real-world pro

grams translated into WSL f rom assembler.

Conclus ion

Ward's work provides a rigorous and formal basis on which a transformation

system could be based. Although Ward did not develop such a system, this is by

no means an indication of the impracticality of such a system.

One of the motivating aims of Ward's work [177] was to develop a theory which can

be applied to any program wri t ten using any methods. This is so that the theory

can be applied to the development of practical systems for software maintenance

as well as for the development of programs f rom specifications. Thus, i f a system

could be constructed based on these transformations, i t would have both the

formal foundations and the scope of application of the kind of system that has

been identified as being useful.

A p p e n d i x A : A Survey of Transformation Systems 257

A.15 Other Work on Program Transformations

The above survey of transformation systems is certainly not exhaustive. Other

systems include A L I C E [59] which aimed to develop a complete programming en

vironment, using HOPE [51], for a highly parallel graph reduction machine; $ N I X

22] which is an automatic programming system for wri t ing programs which inter

act w i t h external devices through temporally-ordered streams of values; REFINE

112] which uses transformations for program analysis and testing; KIDS [6] which

uses transformations to express machine-independent optimisations in a compiler

for a purely functional parallel language; and Fradet and Le Metayer's [77] work

which uses transformations in the compilation of functional languages. Both Lu

123], and Yang and Choo [195] use transformation methods in the compilation

of parallel languages. Work which is of more relevance to software maintenance

includes that carried out by Arango et al [5], Keller [107] and Overstreet et al

147 .

Appendix B

A Syntax Table for WSL and

A4STAWSL

The following table summarises the syntax of the LISP form of M.STAWSL. In the

table are the following entries:

N u m b e r — This is the type number that is passed to the pretty-printer as a

more efficient alternative to passing the actual type of the object. (Its use

is described in Chapter 8.)

N a m e — This is the name of the i tem.

Ge n e r i c T y p e — This is the class of program i tem to which the named item

belongs. For example. Skip is a type of Statement and a Number is a type of

Expression.

Lead ing Token — This is i f and only i f the type of the i tem is the first part of

the printed fo rm, otherwise i t is "No". For example, as @When statement

begins w i t h the word "@When", but an assignment does not begin wi th the

word Assignment (or any other word).

M i n i m u m Size — This is the smallest number of components that the type can

have. Examples are an assignment which must have at least two (in fact only

258

A p p e n d i x B : A Syntax Table for W S L and METAWSL 259

two) components and a For loop which must have at least five components,

whereas a list of variables can contain any number of variables.

Component T y p e s — This gives the types of components of the given type (if

there are any). For example, the components of an assignment are a variable

and and expression. I f there is an unlimited number of components for a

given i tem, indicated by this entry finishing w i t h "...", then any additional

components have the same type as the last component. For example, a

While statement must have a condition as its first argument followed by any

number of statements.

The table also includes information about the generic types Statement, Expression

and so on, as well as the most generic type, Thing. These are not part of W S L

itself but are present i n the table in order to simplify the system's implementation.

Num Name Generic Leading Min Component
Type Token Size Types

1 Thing No 0
2 A J j i s t Thing No 0 Thing ...
3 Symbol Thing No 0 —
4 Name Thing No 0 —
5 Statement Thing Yes 0 —
6 Expression Thing Yes 0 Expression ...
7 Condition Thing Yes 0 Condition ...
8 Assignment Thing No 2 Assd-Var Expression
9 Guarded Thing No 2 Condition Statement ...

10 Action Thing No 2 Name Statement ...
11 Definition Thing Yes 0 Name Variables Variables Statement ...
12 $Statement$ Statement Yes 0 —
13 $Expn$ Expression Yes 0 —
14 Var Expression Yes 0 —
15 $Condition$ Condition Yes 0 —
16 $Name$ Name No 0 —
17 Statements A-List No 1 Statement ...
18 Expressions A-List No 0 Expression ...
19 Variables A-List No 0 Variable ...
20 Assd_Vars A-List No 0 Assd-Var ...
21 Assignments A-List No 1 Assignment ...
22 Guardeds A-List No 1 Guarded ...
23 Names A-List No 1 Name ...
24 ! L Expression Yes 1 A-List
25 Nmnber Expression No 0 —
26 String Expression No 0 —
27 Variable Expression No 0 —
28 Assd-Var Variable No 0 —
29 Aref Variable Yes 2 Variable Expression
30 Abort Statement Yes 0 —

A p p e n d i x B : A Syntax Table for W S L and A ^ ^ r ^ W S L 260

Nvaa Name Generic Leading Min Component
Type Token Size Types

31 Actions Statement Yes 2 Names Action ...
32 Array Statement Yes 2 Assd_Var Expression
33 Assert Statement Yes 1 Condition
34 Assign Statement Yes 1 Assignment ...
35 CaU Statement Yes Name Nimiber
36 Comment Statement Yes 1 String
37 Cond Statement Yes 1 Guarded ...
38 D J f Statement Yes 1 Guarded ...
39 DJDo Statement Yes 1 Guarded ...
40 Exi t Statement Yes 1 Niunber
41 Loop Statement Yes 1 Statement ...
42 For Statement Yes 5 Assd-Var Expression Expression Expres

sion Statement ...
43 !Xp Statement Yes 2 Name Expressions
44 !P Statement Yes 3 Name Expressions Assd_Vars
45 Proc .CaU Statement Yes 3 Name Expressions Variables
46 Skip Statement Yes 0 —
47 Var Statement Yes 2 Assignments Statement ...
48 Where Statement Yes 2 Statements Definition ...
49 While Statement Yes 2 Condition Statement ...
50 Proc Definition Yes 4 Name Variables Variables Statement ...
51 Punct Definition Yes 3 Name Variables Expression
52 B_F\mct Definition Yes 3 Name Variables Condition
53 + Expression Yes 2 Expression ...
54 - Expression Yes 2 Expression
55 * Expression Yes 2 Expression ...
56 / Expression Yes 2 Expression
57 ** Expression Yes 2 Expression
58 Min Expression Yes 2 Expression ...
59 Max Expression Yes 2 Expression ...
60 Div Expression Yes 2 Expression
61 Mod Expression Yes 2 Expression
62 H Expression Yes 3 Condition Expression
63 Pimct.Call Expression Yes 2 Name Expressions
64 ! F Expression Yes 2 Name Expressions
65 Gen-Expr Expression Yes 3 Assignments Statements Expression
66 Int Expression Yes 1 Expression
67 Prac Expression Yes 1 Expression
68 Abs Expression Yes 1 Expression
69 Sgn Expression Yes 1 Expression
70 True Condition No 0 —
71 Palse Condition No 0 —
72 Else Condition Yes 0 —
73 = Condition Yes 2 Expression
74 <> Condition Yes 2 Expression
75 < Condition Yes 2 Expression
76 > Condition Yes 2 Expression
77 <= Condition Yes 2 Expression
78 >= Condition Yes 2 Expression
79 == Condition Yes 2 Expression
80 Even? Condition Yes 1 Expression
81 Odd? Condition Yes 1 Expression
82 True? Condition Yes 1 Expression
83 Palse? Condition Yes 1 Expression
84 And Condition Yes 1 Condition ...
85 Or Condition Yes 1 Condition ...
86 Not Condition Yes 1 Condition
87 B_Punct.Call Condition Yes 2 Name Expressions
88 !C Condition Yes 2 Name Expressions
89 Gen_Cond Condition Yes 3 Assignments Statements Condition
90 Empty Expression Yes 0 —

Appendix B: A Syntax Table for W S L and METAWSL 261

Num Name Generic Leading Min Component
Type Token Size Types

91 Cons Expression Yes 2 Expression
92 Append Expression Yes 2 Expression
93 Intersection Expression Yes 2 Expression ...
94 Union Expression Yes 2 Expression ...
95 SetJJiff Expression Yes 2 Expression
96 List Expression Yes 1 Expression ...
97 Hd Expression Yes 1 Expression
98 T l Expression Yes 1 Expression
99 Length Expression Yes 1 Expression

100 Reverse Expression Yes 1 Expression
101 Empty? Condition Yes 1 Expression
102 NonJEmpty? Condition Yes 1 Expression
103 Member? Condition Yes 2 Expression
104 Some_Member? Condition Yes 2 Expression
105 Any_Member? Condition Yes 2 Expression
106 Subset? Condition Yes 2 Expression
107 Same? Condition Yes 2 Expression
108 Push Statement Yes 2 Expression Assd.Var
109 Pop Expression Yes 1 Assd-Var
110 [-S+-] Expression Yes 2 Expression ...
111 Assn_Spec Statement Yes 2 Assd-Vars Condition
112 Old Variable Yes 1 Variable
113 %N Expression Yes 0 —
114 %Z Expression Yes 0 —
115 %Q Expression Yes 0
116 %R Expression Yes 0 —
117 Map Expression Yes 4 Name Name Variable Expression
118 Reduce Expression Yes 4 Name Name Variable Expression
119 Set Expression Yes 2 Expression Condition
120 ForJ^U Condition Yes 2 Variable Condition
121 Exists Condition Yes 2 Variables Condition
122 @Up Statement Yes 0 —
123 © D o w n Statement Yes 0 —
124 @Left Statement Yes 0 —
125 ©Right Statement Yes 0 —
126 @ToJjast Statement Yes 0 —
127 @Down_Last Statement Yes 0 —
128 @To Statement Yes 1 Expression
129 © G o t o Statement Yes 1 Expression
130 ©FoUow Statement Yes 0 —
131 ©Return Statement Yes 0 —
132 @++Span Statement Yes 0 —
133 © - S p a n Statement Yes 0 —
134 © S e t . S p a n Statement Yes 1 Expression
135 @AU.Span Statement Yes 0 —
136 ©Span-Flagged Statement Yes 0 —
137 ©Del Statement Yes 0 —
138 ©Del_Back Statement Yes 0 —
139 ©Del_Rest Statement Yes 0 —
140 ©UndelJVfter Statement Yes 0 —
141 @Undel.Before Statement Yes 0 —
142 ©Ins-After Statement Yes 1 Expression
143 ©Ins-Before Statement Yes 1 Expression
144 ©Change-To Statement Yes 1 Expression
145 © W h e n Statement Yes 2 Number Guarded ...
146 ©When-Terminal Statement Yes 0 Statement ...
147 ©When-TerminaLO Statement Yes 0 Statement ...
148 © E x i t - W h e n Statement Yes 0 —
149 ©No-Deeper Statement Yes 0 —
150 ©Trans Statement Yes 1 Name Expression ...

Appendix B: A Syntax Table for W S L and MSTAWSL 262

Num Name Generic Leading Min Component
Type Token Size Types

151 @Pass Statement Yes 0 —
152 ©Fail Statement Yes 0 —
153 ©Mark Statement Yes 0 —
154 ©Undo Statement Yes 0 —
155 ©Repos i t ion Statement Yes 0 —
156 ©Drop Statement Yes 0 —
157 ©Wrong Statement Yes 0 String ...
158 ;.up?.] Condition Yes 0 —
159 JDown?.] Condition Yes 0 —
160 J^eft?.] Condition Yes 0 —
161 JUght? .] Condition Yes 0 —
162 .With .Else? .] Condition Yes 0 —
163 .Size.] Expression Yes 1 Expression
164 JBody.] Expression Yes 1 Expression
165 .Comps.] Expression Yes 1 Expression
166 .Contents.] Expression Yes 1 Expression
167 _A.U.Contents.] Expression Yes 1 Expression
168 .Variables.] Expression Yes 1 Expression
169 .Used.] Expression Yes 1 Expression
170 -Assigned.] Expression Yes 1 Expression
171 .Used.Only.] Expression Yes 1 Expression
172 _A.ssd.Only.] Expression Yes 1 Expression
173 _Assd.ToJSeH.] Expression Yes 1 Expression
174 .Statements.] Expression Yes 1 Expression
175 .CaUs.] Expression Yes 1 Expression
176 .Total.Size.] Expression Yes 1 Expression
177 JDepth.] Expression Yes 2 Expression
178 -TerminaL Value.] Expression Yes 2 Expression
179 -Arguments.] Expression Yes 2 Expression ...
180 . O c c] Expression Yes 2 Expression ...
181 JDiff.] Expression Yes 2 Expression ...
182 Jleplace.] Expression Yes 3 Expression
183 J l p l c A l L] Expression Yes 2 Expression
184 Jsolate.] Expression Yes 3 Expression
185 J^umber?.] Condition Yes 1 Expression
186 .Variable?.] Condition Yes 1 Expression
187 .Syntax?.] Condition Yes Name Expression
188 .S .Type? .] Condition Yes 1 Symbol ...
189 . G . T y p e ? .] Condition Yes 1 Symbol. . .
190 -P-Type?.] Condition Yes 1 Symbol. . .
191 J'rimitive?.] Condition Yes 1 Expression
192 Jleducible?.] Condition Yes 1 Expression
193 J»roper?.] Condition Yes 1 Expression
194 Jmproper?.] Condition Yes 1 Expression
195 Jlegular?.] Condition Yes 1 Expression
196 Jlegular.System?.] Condition Yes 1 Expression
197 JDiramiy?.] Condition Yes 1 Expression
198 .Calls .Terminal?.] Condition Yes 1 Expression
199 .Terminal?.] Condition Yes 2 Expression
200 [.Trans?.] Condition Yes 1 Name
201 Pattern Expression Yes 0 Expression ...
202 Pattern Yes 0 —
203 Pattern Yes 0 —
204 ~?*~ Pattern Yes 0 —
205 ~>?~ Pattern Yes 1 Symbol
206 ~>*~ Pattern Yes 1 Symbol
207 ~>?*~ Pattern Yes 1 Symbol
208 ~<?~ Pattern Yes 1 Symbol
209 ^ < * ~ Pattern Yes 1 Symbol
210 Pattern Yes 1 Pattern

Appendix B: A Syntax Table for W S L and A^^r^tWSL 263

Num Name Generic Leading Min Component
Type Token Size Types

211 ~ < S c ~ Pattern Yes 1 Pattern
212 ~ 0 r ~ Pattern Yes 2 Pattern ...
213 -Put.] Expression Yes 3 Symbol Expression Expression
214 -Get-] Expression Yes 2 Symbol Expression
215 -Val-] Expression Yes 2 Symbol Expression
216 -Check?-] Condition Yes 2 Symbol Pattern
217 -Match-] Expression Yes 3 Symbol Pattern Expression
218 -Fill-En-] Expression Yes 3 Symbol Pattern Expression
219 -FiUJb-gs-] Expression Yes 3 Symbol Pattern Expression
220 -And-] Expression Yes 2 Expression ...
221 [-Or-] Expression Yes 2 Expression ...
222 -Not-] Expression Yes 1 Expression
223 - ->T?-] Condition Yes 2 Expression
224 - - > F ? .] Condition Yes 2 Expression
225 -Simphfy-] Expression Yes 1 Expression
226 -Simplex?-] Condition Yes 1 Expression
227 -Increment-] Expression Yes 2 Expression
228 -Decrement.] Expression Yes 1 Expression

Appendix C

A4STAWSL in Detail

C . l Introduct ion

This appendix gives the specific details of A^r^lWSL.

C . 2 Predefined Variables

C.2 .1 %Program%

This variable holds the whole program that is currently being transformed. The

program is stored in a particular, efficient, way (which is described in Chapter

8). The variable should, therefore, not be used except as a parameter to any of

the statements and functions in this chapter that require a piece of WSL as an

argument. For example, one could write ([_TotaLSize_] %Program%) to determine

the number of nodes in the program tree, but not (Hd %Program%) to obtain the

first node.

264

Appendix C : MSTAWSL in Detail 265

C.2.2 %l tem%

This variable holds the currently selected syntactic program item. Like the vari

able %Program% it is should only be used as a parameter to any of the A^£:r.4WSL

statements and functions that require a piece of WSL as an argument.

C.2.3 %Posn%

This variable holds the position, relative to the root node, of the currently selected

program item as described in Chapter 6.

C.2.4 %Length%

This variable holds the number of components of the current item's parent node.

C.2.5 %Data%

This variable holds any input to the transformation that was provided by the user.

C . 3 Statements for Movement in the Program

Tree

C.3 .1 OUp

This A ^ T ^ W S L statement moves up through the program structure.

Appendix C: A^^r^WSL in Detail 266

C.3.2 ODown

This METAWSL statement moves down through the program structure to the first

component of the current item.

C.3.3 @Down_Last

This A^^T^WSL statement moves down through the program structure to the last

component of the current item.

C.3.4 ©Left

This A ^ T ^ W S L statement moves left through the program structure.

C.3.5 ©Right

This A ^ T ^ W S L statement moves right through the program structure.

C.3.6 @To_Last

This METAWSL statement moves to the last item at the current level in the

program structure.

C.3.7 @To

This MSTAWSL statement moves to the nth component at the current level in

the program, where n is the statement's argument, i.e. the nth component of the

parent node of the current item.

Appendix C: A4£TAWSL in Detail 267

C.3.8 ©Goto

This METAWSL statement moves to an arbitrary position in the program tree.

This function is rarely be used in coding transformations, its main use being when

the transformation has moved to some distant point in the tree and needs to return

to the original position quickly. In the example below, the original position could

be stored in a variable and jumped to with OGoto.

(Var ((P %Posn%))

(Loop
(Cond (([_Left?_]) (OLeft))

(([-OUp.]) (@Up))
((Else) (Exit 1)))

')
(QGoto P)).

C.3.9 ©Follow a n d ©Return

It is frequently necessary, when a procedure call or function call is the currently

selected item, to move to the corresponding definition. The 0Follow A^r^tWSL

statement moves to the definition of the currently selected Proc_Call, FunctXall

or B_Funct_Call. For example, with the program

((Where (.. .(ProcXall P () ()) . . .)
(P r o c P Q () • • •)))

and the ProcXall selected, executing the statement ©Follow would move to move

to the definition of P.

When a call is followed, the global variable % Followed % is updated. This variable

holds a list of the names of the definitions that are currently being followed with

0Follow statements. Since METAWSL programs can access the value of this vari

able, it allows transformations to check whether a call has already been followed.

Thus transformations can be written which prevent the system getting trapped

Appendix C: MSTAWSL in Detail 268

in an infinite loop while checking recursive calls.

I t is possible to return to the place from which the 0Follow was executed by means

of the @Return statement. When a ©Return is executed, the name which had been

added to the variable %Followed% is removed.

C . 4 Functions for Testing for Val id Movements

c .4 .1 [_up?_;

This A ^ Z 4 W S L returns true if and only if it is valid to move up through the

program structure.

C.4.2 [_Down?_]

This A ^ T ^ W S L returns true if and only if it is valid to move down through the

program structure to the first component of the current item.

C.4.3 [_Left?_

This A ^ r ^ W S L returns true if and only if it is valid to move left through the

program structure.

C.4.4 [_Right?_]

This A ^ r ^ W S L returns true if and only if it is valid to move right through the

program structure.

Appendix C: MSTAWSL in Detail 269

C . 5 Statements and Variables Relat ing to
Spans

C.5 .1 (9lnc_5pan

This MSTAWSL statement increases the number of items in the current span by

one.

C.5.2 (9Dec_Span

This MSTAWSL statement decreases the number of items in the current span by

one.

C.5.3 @Set_Span

This MSTAWSL statement sets the span of items in the current sequence to include

the number of items given by the statement's argument.

C.5.4 ©AILSpan

This A ^ r ^ W S L statement increases the span of items in the current sequence so

as to extend as far to the right as possible. Thus i t will i t include all the rest of

the items in current structure and at the current level.

C.5.5 %Span%

When a sequence of items has been selected as a span, this variable holds the

number of items in that span.

Appendix C : METAWSL in Detail 270

C.5.6 %ltems%

When a sequence of items has been selected as a span, this variable holds a list

of those items in the span.

C . 6 E d i t i n g Statements

C.6 .1 ODel

This MSTAWSL statement deletes the item at the current position. The last

deleted object of is stored so that it can be undeleted later at a different point in

the program using one of the undelete MSTAWSL statements.

C.6.2 ©DeLBack

This MSTAWSL statement deletes the item at the current position and moves

back to the previous item if there was one. Thus the current position always

moves to the left (unless that is not possible, in which case it either stays at the

same point or moves up) unlike the case with the ©Delete statement for which the

current position always stays the same (unless that is not possible in which case

it moves either to the left or up).

The last deleted object is stored so that it can be undeleted later at a different

point in the program with one of the undelete MSTAWSL statements.

C.6.3 ©DeLRest

This A ^ r ^ W S L statement deletes all the items in the current branch after (but

not including) the item at the current position.

Appendix C : METAWSL in Detail 271

C.6.4 ©UnDeLBefore a n d OUnDeLAfter

These A^T>tWSL statements insert into the program tree a copy of the last thing

which was deleted with a A ^ X A W S L deletion statement.

C.6.5 @lns_Before a n d @lns_After

These A^fr^lWSL statements insert some code into the program tree. The argu

ment can either be a single item or a Hst of several items.

C.6.6 @Change_To

This MCTJCNSL statement changes the current item in the program by replacing

it with a new item. The argument to this statement must be a single program

item, which would probably be created using the [_FilLln_] function.

C . 7 Statements for Repeat ing an Operation at

Different Nodes

C.7 .1 OWhen

This METASNSL statement performs some actions at each item, within a program

item, which meets any of a set of given criteria.

The statement takes a numeric argument, followed by a number of guarded clauses.

The current item is searched to find each place at which a test at the start of one

of the guards is true, and the corresponding set of statements is executed at that

point. If the numeric argument is non-zero then, after the statements have been

executed, the new current item is in turn searched for more places where one of

Appendix C : AdsrAWSL in Detail 272

the conditions is true. If the numeric argument is zero, then the other items on
the same level (and their components) are considered, but not items inside the
item which has just been acted upon.

The following example changes all the Comment statements within a particular

section of code into Skip statements. It is assumed that the variable S holds a

WSL Skip statement. Note also that the [_S_Type?_] function (which is described

later) tests the type of the selected item. Finally, Comment statements do not

include other Comment statements, so a numeric option of zero is used.

(QWhen 0 (([_S_Type?_] Comment) (@Change_To S))).

The second example reverses the order of the first two components of all additions

within the current item. It uses the @Del statement to delete the first component

of the + , and this leaves the second component selected so that the @UnDel_After

statement reinserts this expression. A numeric argument of one is used since an

addition may contain other additions as components.

(@When 1 ((And ([_S_Type?_] +) (>= ([_Size.] %ltem%) 2))
(ODown)
(ODel)
(@UnDelJ\fter)

(QUp)))

Within a @When statement it is possible to access two extra variables. These

variables are: %Top% which hold the item from which execution of the ©When

statement started; and %OfFset% which holds the offset of the current item relative

to the position of the item from which execution of the @When statement started.

It is also desirable to be able to leave prematurely a @When statement or to

abandon looking inside a particular node. These are done by the statements

@Exit_When and @No_Deeper which are described in more detail later.

Appendix C : METAWSL in Detail 273

C.7.2 (9When_Terminal

This METAWSL statement performs a set of actions on each terminal statement^

of the current item within that item.

Since calculating whether an item is terminal within some containing item involves

walking down through the program tree, for OWhen queries which have this as

their only test, writing an explicit @When using the context variables %Top%

and %OfFset% would be very inefficient. Thus, there is a separate statement,

@When_Terminal, specially designed for situations in which the only test is for

terminal statements.

Rather than taking guards as its arguments, the statement takes a sequence of

statements to perform when a terminal statement is found. Also a terminal state

ment will not include another terminal statement so this is effectively a @When

with a numeric option of zero.

C.7.3 @When_TerminaLO

This METAWSL statement performs a set of actions on each terminal statement of

the current item whose terminal value is zero within that item. It is very similar

to the METAWSL statement above.

C.7.4 (9Exit_When

This METAWSL statement causes the immediate termination of a OWhen, QWhen-

-Terminal or (9When_TerminaL0 statement and a return to the position in the

program from which the repetition statement began. An example of the use of

this statement is given in the next section.

statement is a terminal statement of some structure if it could be the last statement to
be executed as part of that structure.

Appendix C : METAWSL in Detail 274

C.7.5 @No_Deeper

This A4£TAWSL statement prevents a @When, @When_Terminal or @When_Term-

inaLO construct from looking any further down the current branch of the program

tree.

The following example fragment of MSTAWSL code sets the variable OK to 1 if

there are more than two Call statements in the current program item, and to 0

otherwise. It uses @No_Deeper to avoid searching in branches which do not contain

Call statements and @Exit_When to quit when more than two Call statements have

been found.

(Assign (OK 0))
(Var ((Counter 0))

(OWhen 0 ((Not (Member (IL Call) ([.Statements.] %ltem%)))
(@No.Deeper))

(([.S.Type?.] Call)
(Assign (Counter {+ Counter 1)))
(Cond ((> Counter 2)

(Assign (OK 1))
(OExit.When)))))).

C . 8 Other AASTAWSL Statements

C.8 .1 ©Pass a n d @Fail

These A ^ r ^ W S L statements set the applicabihty condition to true of false, re

spectively. The following example is a simple applicability condition which illus

trates the use of these statements.

(Cond ((And ([^.Type?.] +) (>= ([^ize.] %ltem%) 2))
(@Pass))

((Else)
(@Fail)))

Appendix C: METAWSL in Detail 275

C.8.2 ©Wrong

This METAWSL statement displays an error message caused because a trans

formation has aborted during the program modification stage (without changing

anything if it has been implemented correctly). The error could have been due, for

example, to incorrect data that has been provided by the user and which could

not, therefore, have been tested earlier. For example, a transformation might

include the following statement:

(Cond (([-Syntax?-] %Data% Statement)

Perform the transformation

')
((Else)

(OWrong "The input did not have the syntax of a statement."))).

C.8.3 ©Mark

A .transformation may attempt to make some changes, only to find that they do

not work, or are not suitable, and goes back to an earlier version of the program

so as to try another course of action. The @Mark statement records the version

of the program to which the transformation may have to revert with one of the

following statements. An example of the use of this statement is given later.

C.8.4 ©Reposition

This METAWSL statement moves back to the position in the program, but not

the version of the program, that was current when the last OMark was executed.

There is no checking that a @Mark has actually been executed — this is left to

the implementor of the transformations.

Appendix C : MSTAWSL in Detail 276

C.8.5 OUndo

This is the MSTAWSL statement to undo any edits that have been made to a

program since the last OMark was executed. There is no checking that a OMark has

actually been executed — this is left to the implementor of the transformations.

An example of the use of this statement is given in the next section.

C.8.6 ODrop

This MSTAWSL statement removes a previous version of a program from the Ust of

versions created with ©Mark. Thus, if two OMark statements have been executed

and the transformation needs to revert to the state of the program at the first

one, then before it executes an @Undo it must execute a ODrop. As before, there

is no error checking that a @Mark has actually been executed — this is left to the

implementor of the transformations.

In the following example, the transformation makes some changes to a program

repeatedly, until the changes no longer cause the program to reduce in size. At

that point, the program reverts to the last version after which it had reduced in

size. The ©Drop statement ensures that unneeded program versions are discarded.

(Loop (Var ((S ([.Total^ize.] %Program%)))
(QMark)

Perform some changes to the program

(Cond ((< ([.Total.Size.] %Program%) S)
(@Drop))

((Else)
(OUndo)
(Exit 1)))))

A p p e n d i x C : A ^ ^ r ^ W S L in Deta i l 277

C.9 Pattern Matching and Template Filling

C.9.1 [_Check?_]

This A ^ T ^ W S L condition takes two arguments, a generic type (such as Statement)

and a pattern, and returns true if and only if the current item is of the correct

type and also matches the given pattern. If any tokens are used, then their values

cannot be determined later since this is a Boolean function and does not return

an association table.

For example, in METAWSL a transformation might be written as:

(Cond (([_Check?_] Statement (Assign ((~ ? ~) (~ ? -))))
"Do some action")

((Else)
"Do some other action")).

C.9.2 [_Match_

This MSTAWSL function takes three arguments, a type (such as Statement) a

pattern and an association table (to which to add the result of the match), and

returns the result of pattern matching the current item with the given pattern.

If the current item is of the incorrect type, then an empty table is returned. The

matches are added to the association table which is given as the function's third

argument. An example is given in Section C.9.3.

C.9.3 [_FilLln_

This MSTAWSL function takes three arguments, a type (such as Statement) a

template and an association table (from which to get the values of any tokens),

and returns the result of filling a template by replacing tokens with values taken

from the association table. For example, a transformation for exchanging the

A p p e n d i x C : MSTAWSL in Deta i l 278

arms of a Cond statement could be written in AdSTAWSL as:

(Assign (Table ([_Match_] Statement
(Cond ((~ > ? ~ B) (~ > * ~ SI))

((Else) (~ > * ~ S2)))
Empty)))

(@Change_To ([_FillJn_] Statement
(Cond ((Not (~ < ? - B)) (~ < * ~ S2))

((Else) (~ < * ~ SI)))
Table)).

C.9.4 [_FillJ\rgs_

This A ^ T ^ W S L function is similar to the previous one, except that it returns just

the arguments of the template in which tokens have been replaced by values taken

from another table. This function could, for example, produce a list of statements

from an item of type Statements.

C.IO Functions for Association Tables

C.10.1 [_Put_

This A ^ T ^ W S L function takes as its arguments a token name, a value and an

association table, and returns the table with the extra value added under the given

token name. For example, a transformation might include the following code:

(Assign (T l ([-Put_] S %ltem% Empty)))

which would put the current item into an empty table under the token label S.

The resulting table would be stored in a variable called T l .

A p p e n d i x C : TUgr^WSL in Deta i l 279

C.10.2 [_Get_]

This MSTAWSL function takes as its arguments a token name and an association

table, and returns the value of the given token, as found in the table.

C.10.3 [_VaL]

This MSTAWSL function takes as its arguments a token name and an association

table, and returns the "contents" (i.e. the name) of the item stored under the

given token, as found in the table.

C . l l Functions for Examining the Program be

ing Transformed

C.11.1 [_With_Else?_]

This MSTAWSL function returns true if and only if the given item is a Cond

statement with an Else clause. Although this information could be determined by

a pattern match, it is information that is often required and this function provides

it more efficiently.

C . l l . 2 [_Size_

This MSTAWSL function returns the size, i.e. the number of components, of the

given item.

A p p e n d i x C : MSTAWSL in Deta i l 280

C.11.3 [_Comps_]

This A^£r^WSL function returns a list of the components of the given item. For

example, given the statement

(Assign (X (+ A B)) (Y 0))

the function would return the list of two assignments:

((X (+ A B)) (Y 0)).

C.11.4 [.Contents.]

This METAWSL function returns the name of a leaf item in a program, for ex

ample, the name of a variable.

C.11.5 [_AILContents_

This is the MSTAWSL function which takes as its argument a W S L item that

represents a list of leaf items and returns a list of atoms representing the names

of the "leaf items". For example, given the first component of an action system,

the list of possible starting actions, it would return a list of atoms corresponding

to the names of the possible starting actions.

C.11.6 [.Statements.]

This MSTAWSL function returns a Hst of all the types of statement which are

used within the given piece of code. For example, given the item:

A p p e n d i x C : A ^ f r ^ W S L in Deta i l 281

(Cond ((= A B) (Assign (X 1)))
((Else) (Assign (Y 2)) (Skip)))

the function would return the list (Cond Assign Skip). The order of the fist is

unspecified.

C.11.7 [_Calls_]

This METAWSL function returns a list of all the actions which are called from

within a given piece of code, together with the number of times each action is

called. For example, given the item:

(Cond ((= A B) (Call P 0))
((= C D) (Call Q 0))
((Else) (Call P 0)))

the function would return the list ((P 2) (Q 1)). The order of the list is unspecified.

C . l l . 8 [_TotaLSize_

This METAWSL function returns the total number of nodes and keywords within

a given piece of code.

C . l l . 9 [_Body_]

This MSTAWSL function returns the statements which form part of the given

item. The result is a W S L item of type Statements. If the item contains no item

of type of type Statement then the function returns the empty fist. The function

does not look inside components to find statements, so the [_Body_] of a Cond

statement would be the empty fist.

A p p e n d i x C : METAWSL in Deta i l 282

For example, given the statement.

(For J 0 10 2 (Assign (X (+ X J))) (Skip) (Assign (Y (* Y X))))

the function would return the W S L Statements item,

((Assign (X (+ X J))) (Skip) (Assign (Y (* Y X)))).

C.12 Functions Relating to Variable Usage

C.12.1 [.Variables.]

This MSTAWSL function returns a list of all the variables in the current item.

C.12.2 [.Used.]

This A ^ T ^ W S L function returns a list of all the variables "used" (i.e. referred to,

but not necessarily assigned to) in the current item.

C.12.3 [.Assigned.

This A^r^tWSL function returns a Hst of all the variables assigned to in the

current item.

C.12.4 [.Used.Only.]

This AiSTAWSL function returns a list of all the variables "used", but definitely

not assigned to, in the current item.

A p p e n d i x C : > 1 £ Z A W S L in Deta i l 283

C.12.5 [_Assd_Only_]

This MSTAWSL function returns a list of all the variables assigned to, but not

used otherwise, in the current item.

C.12.6 [_Assd_To_Self_

This METAWSL function returns a list of all the variables in the current item that

are only "used" in assignments to themselves.

Given the follow W S L statement,

(Cond ((= A B) (Assign (X 1) (A 1)))
((Else) (Assign (Y (+ Y 1)))))

the functions above would return the following results:

[-Variables.] would return (A B X Y) ,

[_Used_] would return (A B Y) ,

[.Assigned-] would return (A X Y) ,

[_Used_Only_] would return (B) ,

[_Assd_Only_] would return (X) ,

[_Assd_To_Self_] would return (X Y) .

C.13 Functions for Testing Types and Syntax

C.13.1 [_Number?_

This M£TAWSL function returns true if and only if the given W S L item represents

a number.

A p p e n d i x C : MSTAWSL in Deta i l 284

C.13.2 [.Variable?.

This MSTAWSL function returns true if and only if the given W S L item represents

a variable.

C.13.3 [.Syntax?.]

This MSTAWSL function takes two arguments and returns true if and only if its

first argument has the syntax indicated by its second argument. The primary use

of this function would be to test the syntax of input provide by the user (and held

in the variable %Data%). The MSTAWSL code:

([.Syntax?.] %Data% Statement)

would return true if and only if the user had supplied a syntactically correct

statement.

C.13.4 [.S.Type?:

This A ^ Z 4 W S L function takes a list of types and returns true if and only if the

specific type of the current item matches any of the indicated types.

C.13.5 [.G.Type?.

This MSTAWSL function takes a list of types and returns true if and returns true

if and only if the generic type of the current item matches any of the indicated

types.

A p p e n d i x C : MsTA^Sh in Deta i l 285

C.13.6 [_P_Type?_

This A^f r.4WSL function takes a list of types and returns true if and returns true

if and only if the specific type of the parent of the current item matches any of

the indicated types.

C.13.7 =

This M{£TASNSL function returns true if and only if its two arguments are identical

or represent the same piece of W S L code.

C.14 Functions Relating to Loops

C.14.1 [.Primitive?.]

This MSTASNSL function returns true if and only if the given item is a "primitive"

statement.

Here a primitive statement is defined to be one which cannot be terminated from

within by an Exit statement. Thus a primitive statement is any statement except

one of the following: Cond, DJf or Loop.

C.14.2 [_Depth_]

This A ^ T ^ W S L function returns the "depth" of an item within a structure. It

takes as its arguments the top-level item and the relative position of the lower

item. The relative position is of the same form as the variable %Posn% (see

Chapter 6), but differs in that here the empty hst represents the given item (not

the whole program) and positions are calculated relative to that.

A p p e n d i x C : MSTAWSL in Deta i l 286

The function returns the number of Loops within the given item, that enclose the
item at the given relative position is inside. (If the item is itself inside a number
of Loops then these are not counted.)

C.14.3 [.Terminal.Value.]

This MSTAWSL function returns the "terminal value" of a statement within a

structure. It takes as its arguments the top-level item and the relative position of

the lower item.

The terminal value is defined as the number of Loops, outside the enclosing item,

that the statement at the relative position would leave. In other words, it is the

"exit value" of an Exit or Call statement (or zero for other statements) less the

depth of the item.

C.14.4 [.Terminal?.

This MSTAWSL function returns the true if and only if the indicated statement

is a terminal statement within a structure. It takes as its arguments the top-level

item and the relative position of the lower item.

A statement is terminal if it is in a terminal position or causes the termination of

an Loop which is in a terminal position.

C.14.5 [.Reducible?.]

This A ^ r ^ W S L function returns true if and only if the given item is a "reducible".

Here a statement S is defined to reducible if replacing any terminal statement of

the form (Exit K) or (Call N K) , which has terminal value one, by (Exit K-1) or

(Call N K-1), respectively, gives a terminal statement of S.

A p p e n d i x C : MSTAWSL in Deta i l 287

C.14.6 [_Proper?_]

This MSTAWSL function returns true if and only if the given item is a "proper".

Here a statement S is defined to be proper if every terminal statement of S has

terminal value zero. In other words, control flow will never leave the statement

by means of an exit out of an Loop.

C.14.7 [_lmproper?_

This MSTAWSL function returns true if and only if the given item is a "improper".

Here a statement S is defined to be improper if every terminal statement of S has

terminal value greater than zero. In other words, control flow will always leave

the statement by means of an exit out of an Loop. (A piece of code which is not

"proper" is not necessarily "improper".)

C.14.8 [_Dummy?_]

This MSTAWSL function returns true if and only if the given item is a dummy

loop.

Here a statement S is defined to be a dummy loop if every terminal statement of

S has terminal value greater than zero, and S is also reducible.

C.15 Functions for Testing Action Systems

C.15.1 [_Regular?_]

This MSTAWSL function returns true if and only if the given item is a "regular".

A p p e n d i x C : MSTAWSL in Deta i l 288

Here a program item is defined as regular if every execution of that item leads to
an action Call. The item need not be a statement, it could be a guard or an action,
for example. A regular action system is not regular in this sense since its execution
finishes normally; on termination of the action system, the next statement to be
executed is the one which follows it.

C.15.2 [.Regular_System?.

This MSTAWSL function returns true if and only if the given item is a "regular"

action system, i.e. one in which every action is regular.

C.15.3 [.Calls.Terminal?.]

This MSTASNSL function returns true if and only if all the Call statements in the

the given item are in terminal positions.

C.16 Functions for Symbolic Mathematics and

Logic

C.16.1 [.And.]

This is the MSTASNSL function for symbolic logical conjunction. It takes as its

arguments two or more pieces of W S L code which represent conditions, and returns

a new piece of W S L which represents their conjunction, but in so doing it makes

any simplifications as necessary.

A p p e n d i x C : MSTAWSL in Deta i l 289

C.16.2 [_0r_]

This is the A ^ T . A W S L function for symbolic logical disjunction. It works in a

similar way to the function [_And_], taking two or more W S L conditions and

returning a new condition.

C.16.3 [_Not_

This is the MSTASNSL function for symbolic logical negation. It takes a single

argument which is a piece of W S L code which represents a condition, and returns

a new piece of W S L which represents its negation, but in so doing it makes any

simplifications as necessary.

C.16.4 [-->T?_

This MSTASNSL function takes as its arguments two pieces of W S L code which

represent conditions. It then determines whether its first argument (an assertion)

implies the logical truth of its second (a test), and it returns true of false. For

example, (= a 0) logically implies that (< a 5) is true, whereas (< > a 0) does not

logically imply that (< > a 1) is true.

C.16.5 [-->F?_]

This MSTJCNSL function takes as its arguments two pieces of W S L code which

represent conditions. It then determines whether its first argument (an assertion)

implies the logical falsehood of its second (a test), and it returns true of false. For

example, (> a 1) logically impHes that (< a 0) is false, whereas (<> a 0) does not

logically imply that (< > a 1) is false.

A p p e n d i x C : MSTAWSL in Deta i l 290

C.16,6 [.Simplify.]

This A^T>tWSL function returns a simplified version of the given expression or

condition (and flags the expression or condition internally as having been simpli

fied).

C.16.7 [.Simplex?.

This MSTAWSL function returns true if and only if the expression has been sim

plified (as determined by the internal flag).

C.16.8 [.Isolate.

This function takes three arguments, which represent a variable, the left-hand-side

of an expression and the right-hand-side of as expression. The function returns

an expression which represents the result of isolating the given variable from the

expression (Left = Right). For example, with the left expression as Y , the right

expression as (+ X 1), then isolating X would return (- Y 1).

C.17 Other Sundry MSTAWS'L Functions

In addition to the MSTA^SL functions already described, there are some which

do not fit into any particular category. These are described below.

C.17.1 [.Replace.

This is the MSTASNSL function which replaces all the occurrences of its first

argument which appear in its second argument with its third argument. For

A p p e n d i x C : MSTAWSL in Deta i l 291

example, if the variables P, Q and R held the the W S L expressions X, (* X (+ A
B)) and Y respectively, then

([_Replace_] P Q R)

would return the W S L expression (* Y (+ A Y)) .

C.17.2 [_Rplc_AIL

This A ^ T ^ A W S L function takes two arguments: a piece of W S L code and some

replacements in the form of a Hst of pairs each consisting of an old value and a

new value. It returns a piece of W S L in which the indicated replacements have

been made. For example, if the variable P held the W S L expression (* X (+ A

X)) and the variable R held the list of pairs ((X Y) (A B)), then the function

([-Replace.] P R)

would return the W S L expression (* Y (+ B Y)) .

C.17.3 [_Arguments_]

This is the MSTAWSL function which takes as its arguments the name of an

operation and a W S L program item. It returns a list containing one element for

each occurrence of the operation within the item. Each element in the list is a

list of the arguments of that occurrence of the operation. For example, with the

operation + and the program item

(Assign (X (+ A B)) (Y (* C (+ D E))))

the function would return the list ((A B) (D E)).

A p p e n d i x C : MSTAWSL in Deta i l 292

C.17.4 [.Occ.

This A ^ Z 4 W S L function returns the number of occurrences of its first argument

within its second. For example, given the two arguments: A and the program

item

(Assign (X (+ A B)) (Y (* A (+ C D))))

the function would return 2.

C.17.5 [.Diff.]

This MSTAWSL function uses a unification algorithm to return a list of the differ

ences between its two arguments, provided that the differences are just atomic, i.e.

it returns the list of replacements that would need to be made (using the function

[_RplcJ\IL]) in the first argument to give its second argument. These replacements

would have to be consistent, and if there is no suitable replacement, the function

returns the string "Fail". For example, if the variables E l and E2 held the W S L

expressions (* (-|- A B) (- A B)) and (* (-f X Y) (- X Y)) respectively, then the

function

([_DifF_] E l E2)

would return the list ((A X) (B Y)) meaning that in the second argument A has

been replaced by X, and B has been replaced by Y . However,

([-DifF_] •{* (+ A B) (- A B)) •(* (+ X Y) (- Y X)))

would return the string "Fail" since there is no possible replacement that can be

made.

Appendix C: MSTAWSL in Detail 293

C.17.6 [Jncrement_l

This is the AiSTAWSL function which when given an item of the type Statements

and a number, returns the sequence of statements incremented the given number

of times. The definition of incrementing a sequence of statements is given in the

papers by Ward [177] [174 .

C.17.7 [_Decrement_

This is the METAWSL function which when given an item of the type Statements

and a number, returns the sequence of statements decremented the given number

of times. The definition of decrementing a sequence of statements is given in the

papers by Ward [177] [174 .

C.18 Calling other Transformations

C.18.1 [_Trans?_

This A^^r^WSL function returns true if and only if the named transformation is

applicable at the current point in the program.

C.18.2 ©Trans

This A^r^WSL statement performs a named transformation without testing the

transformation's applicability. However, this statement can be combined with the

previous function to ensure that only appHcable transformations are performed.

For example, a transformation might include the following:

Appendix C: MSTAWSL in Detail 294

(Cond (([_Trans?_] DeleteJtem) (QTrans Delete.ltem))).

Appendix D

The Transformation for

Collapsing an Action System

The following METAWSL is the code for performing a "Collapse_Action_System"

transformation.

((Comment "Most of this transformation assumes that the action system in
question is regular, so if it is not, regularise i t . ")

(Cond ((Not ([_Regular_System?_] %ltem%))
(©Trans Simplify_Non_RegularJ\ctionSystem)))

(Cond
(([_Trans?_] Remove_Action_System)

(Comment " I f we can remove the action system by virtue of it only having
one action, then we do that.")

(QTrans Remove_Action_System))

((Else)
(ODown)
(Var

((Start.Call %Comp. l%)
(Name Empty)
(Names Empty)
(Temp_Num 0)
(Best_Name Empty)
(Best.Num 0)

295

Appendix D: Transformation for Collapsing an Action System 296

(Best.Posn 0)
(Fill Empty)
(Fixed.Fill Empty)
(Value 0)
(TXal ls Empty)
(Calls Empty))

(@Up)
(Loop (Comment " I f we have only one action then we can stop...")

(Cond ((= ([_Size_] %ltem%) 2) (Exit 1)))
(Comment "otherwise we try to do some simplification.")
(OTrans Merge_Action.Calls)
(Comment " I f we have only one action then we can stop...")
(Cond ((= ([^ize_] %ltem%) 2) (Exit 1)))
(Comment "otherwise we try to do some simplification.")
(OTrans Simpiify_Action_System)
(Comment " I f we have only one action then we can stop...")
(Cond ((= ([_Size_] %ltem%) 2) (Exit 1)))
(Comment "otherwise we do some simplification and then

remove an action which will minimise the increase
in program size.")

(@Down)
(Comment "First we build a list of the names of all the

actions which it may be possible to remove - e.g.
those which are not part of the list of possible

entry actions.")

(While ([-Right?_])
(©Right)
(Assign (Names (Cons %Comp_l% Names))))

(Assign (T_Calis ([_Calls_] %ltem%)))
(While (Non_Empty? TXal ls)

(Cond ((Not (= = (Hd (Hd T.Calls)) (IL Z)))
(Assign (Calls (Cons (Hd (Hd T.Calls))

Calls)))))
(Assign (TXal ls (Tl TXal ls))))

(Cond ((Not (Subset? Calls Names))
(OUp)
(Exit 1)))

(Assign (Names (Set.DifF Names (List Start.Call))))
(Cond ((Empty? Names)

(OUp)
(E x i t l)))

(Assign (Best_Name Empty)
(Best_Num %Big_Num%))

(OTo 1)

Appendix D: Transformation for Collapsing an Action System 297

(Comment "For each action we either remove it, because it is
small and its body can be made into a procedure, or
we determine whether it is the smallest action that
we have so far come across.")

(While ([-Right?_])
(©Right)
(Cond ((And (< ([_Total^ize_] %ltem%) 40)

(= (Length ([_Calls_] %ltem%)) 1)
([Xheck?.] Action ((*) (Call (?) (?))))
([_Trans?_] Substitute_And_Delete))

(Var ((P (- %C_Posn% 1)))
(Cond (([_Trans?_] Automatically_Procedurise)

(!XP Show ("p"))
(@Trans Automatically_Procedurise)))

(OTrans Substitute_And_Delete)
(IXP Show (" * "))
(ODown)
(@To P))))

(Assign (Temp_Num (* ([_TotaLSize_] %ltem%)
(Length ([_Calls_] %ltem%)))))

(Cond ((And (< Temp_Num Best_Num)
(Member? %Comp_l% Names))

(Assign (Best_Name %Comp_l%)
(Best_Posn %C_Posn%)
(Best_Num Temp_Num)))))

(Comment " I f we have only one action then we can stop...")
(Cond ((= %Length% 2) (@Up) (Exit 1)))

(Comment "We now move to the smallest action that we found
and did not remove. Make its body into one or more
procedures (where applicable) and then remove the
action. This will reduce the number of actions in
the program, but minimise the increase in size of
the program.")

(@To Best_Posn)
(Cond ((Some.Member? Best.Name ([_Calls.] %ltem%))

(OTrans Recursion->Loop)))
(While ([_Trans?_] Automatically.Procedurise)

(IXP Show ("p"))
(@Trans Automatically.Procedurise))

(Assign (Name %Comp_l%)
(Fill (Body %ltem%)))

(ODel)

Appendix D: Transformation for Collapsing an Action System 298

(IXP Fresh-Line ())
(IXP Show ((- %Length% 1)))
(OUp)

(Comment "Next we do some general simplification of the action.")
(©When 0 ((Not (Some.Member? Name ([_Calls_] %ltem%)))

(@No_Deeper))
((And ([^_Type?.] Call)

(= = %Comp_l% Name)
([_Trans?_] Take_CalLOut_Of_Cond))

(QTrans Take.CalLOut.OfXond)))
(OWhen 0 ((Not (Some_Member? Name ([_Calls_] %ltem%)))

(ONo.Deeper))
((And ([_S_Type?_] Call) (= = %Comp_l% Name))

(Assign (Value %Comp^%)
(Fixed_Fill Fill))

(Assign (Fixed_Fill ([Jncrement_] Fixed_Fill Value)))
(OIns.Before (Args Fixed_Fill))
(QDeLBack)))

(Comment "Finally, we go back to try to remove another of
the remaining actions."))

(Comment "Having removed all the actions that we possibly can, we
should have only one (possibly recursive) action left,
which we can deal with in the usual way - i.e. by removing
the recursion and then removing the (now unnecessary)
action system. Finally, we simplify any loops that we
may have introduced")

(@Down_Last)
(Cond (([_Trans?_] Recursion->Loop)

(OTrans Recursion->Loop)))
(@Up)
(Cond (([_Trans?_] Remove_Action_System)

(OTrans Remove_Action_System)
(QWhen 1 ((Not (Any_Member? (IL (Cond Skip))

([.Statements.] %ltem%)))
(@No_Deeper))

((And ([.S_Type?_] Cond)
([.Trans?_] Fully_Factor_Cond))

(@Trans Fully_Factor_Cond))
((And ([-S_Type?_] Skip)

([_Trans?_] Delete_Skip_Simple_Version))
(@Trans Delete_Skip-Simple.Version)))))))))

Appendix E

References

1. IEEE Standard Glossary of Software Engineering Terminology. In ANSI/IEEE

Standard 729. 1983.

2. Software Product Evaluation (DP 9126). ISO/IEC JTC1/SC7 Working Docu

ment for DIS, December 1989.

3. A H O , A . V. AND ULLMAN, J. D. Principles of Compiler Design. Addison

Wesley Publishing Company, 1977.

4. ALDERSON, A . Configuration Management. In Software Engineer's Reference

Book, J. McDermid, Ed. Butterworth Heinemann, 1991.

5. ARANGO, G. , BAXTER, I . , FREEMAN, P. AND PIDGEON, C . T M M : Software

Maintenance by Transformation. IEEE Software Vol. 3 No. 3 (1986), 27-39.

6. A R I O L A , Z . M . A Syntactic Approach to Program Transformations. ACM

Sigplan Notices Vol. 26 No. 9 (September 1991).

7. ARNOLD, R . S. An Introduction to Software Restructuring. In Tutorial on

Software Restructuring. IEEE Computer Society, 1986, 1-11.

299

Appendix E : References 300

8. A R S A C , J. Transformations of Recursive Procedures. In Toois and Notations
for Program Construction, D. Neel, Ed. Cambridge University Press, Cam
bridge, 1982, 211-265.

9. A R S A C , J. Syntactic Source to-Source Transformations and Program Manip

ulations. Communications of the ACM Vol. 22 No. 1 (January 1979), 43-54.

10. ATKINS, M . C. AND BROWN, A. W . Principles of Object-Oriented Systems.

In Software Engineer's Reference Book, J. McDermid, Ed. Butterworth Heine

mann, 1991.

11. BP INTERNATIONAL LIMITED. B-Tool Version 1.1. 1991.

12. BACK, R . J. R. Correctness Preserving Program Refinements. Presented at

Mathematical Centre Tracts (1980).

13. BACK, R . J. R. AND WRIGHT, J. VON. Refinement Concepts Formalised

in Higher Order Logic. Formai Aspects of Computing Vol. 2 No. 3 (1990),

247-272.

14. BACKHOUSE, R . C. Program Construction and Verification. Prentice-Hall,

Englewood Cliffs, NJ, 1986.

15. BALZER, R . Transformational Implementation: An Example. IEEE Transac

tions on Software Engineering Vol. 7 No. 1 (January 1981).

16. BALZER, R . A 15 Year Prospective on Automatic Programming. IEEE Trans

actions on Software Engineering Vol. 1 1 No. 1 1 (November 1985), 1257-1267.

17. BALZER, R . AND CHEATHAM, T . E . Editorial: Program Transformations.

IEEE Transactions on Software Engineering Vol. 7 No. 1 (January 1981), 1-2.

Appendix E : References 301

18. BALZER, R . , GOLDMAN, N . M . AND W I L D E , D . S. On the Transformationai
Programming Approach to Programming. In Proceedings of the Second Inter
national Conference on Software Engineering. IEEE Computer Society, New
York, October 1976.

19. BALZER, R . M . Finai Report on GIST. In Information Science Institute. Uni

versity of Southern California, Marina del Rey, 1981.

20. BARSTOW, D . R . A Knowledge-Based System for Automatic Program Con
struction. In Proceedings of the 5th International Conference on Artificial In
telligence. Cambridge, Mass. , 1977, 382-388.

21. BARSTOW, D . R . An Experiment in Knowledge-Based Automatic Program

ming. Artificiai Intelligence Vol. 12 (1979), 73-119.

22. BARSTOW, D . R . Automatic Programming for Streams I I : Transformational

Implementation. Presented at Proceedings of the 10th International Conference

on Software Engineering, Singapore (1988).

23. BARSTOW, D . R . On Convergence Toward a Database of Program Transform

ations. ACM Transactions on Programming Languages and Systems Vol. 7 No.

1 (January 1985).

24. BAUER, F . L . The Munich Project CIP. Lecture Notes in Computer Science

Vol. 183 (1985).

25. BAUER, F . L . The Munich Project CIP. Lecture Notes in Computer Science

Vol. 292 (1987).

26. BAUER, F . L . , BROY, M . , PARTSCH, H . , PEPPER, P. AND WOSSNER, H .

Systematics of Transformation Rules. Lecture Notes in Computer Science Vol.

69 (1979), 273-289.

Appendix E : References 302

27. BAUER, F . L . , MOLLER, B . , PARTSCH, H . AND PEPPER, P. Formal Con
struction by Transformation — Computer Aided Intuition Guided Program
ming. IEEE Transactions on Software Engineering Vol. 15 No. 2 (February
1989).

28. BELADY, L . A . AND LEHMAN, M . M . The Characteristics of Large Systems.

In Research Directions in Software Technology. MIT Press, 1979.

29. BENNETT, K . H . , CORNELIUS, B . J., MUNRO, M . AND ROBSON, D . J .

Software Maintenance. In Software Engineer's Reference Book, J. McDermid,

Ed. Butterworth Heinemann, 1991.

30. BENNETT, K . H . , M A R T I L , R . AND ZUYLEN, H . V. A Model of Software

Reconstruction. Centre of Software Maintenance, Durham, Technical Report,

1990.

31 . BERG, H . K . , BOEBERT, W . E. , FRANTA, W . R . AND MOHER, T .

G . Formal Methods of Program Verification and Specification. Prentice-Hall,

Englewood Cliffs, NJ, 1982.

32. B E R G L A N D , G . D . A Guided Tour of Program Design Methodologies. Com

puter Vol. 14 No. 10 (October 1981).

33. BISHOP, J . Data Abstraction in Programming Languages. Addison Wesley

Publishing Company, Wokingham, England, 1986.

34. BJ0RNER, D. On the Use of Formal Methods in Software Development.

Presented at Proceedings of the 9th International Conference on Software En

gineering, Monterey, California (1987).

35. BJ0RNER, D. AND JONES, C. B. FormaJ Specification and Software Devel

opment. Prentice-Hall, Englewood Cliffs, NJ, 1982.

Appendix E : References 303

36. B L A N K , J. AND K R I J G E R , M . J. Software Engineering: Methods and Tech
niques. Dutch Computer Association with John Wiley and Sons Ltd, 1983.

37. B O E H M , B . W . Software Engineering Economics. Prentice-Hall, Englewood

Cliffs, NJ, 1981.

38. B O E H M , B. W. A Spiral Model of Software Development and Enhancement.

Presented at IEEE Computer {May 1988).

39. BOYER, R . S. AND MOORE, J. S. A Computational Logic. Academic Press,

New York, 1979.

40. BOYER, R . S. AND MOORE, J. S. The Correctness Problem in Computer

Science. Academic Press, 1981.

41. B O Y L E , J. M . Lisp to Fortran — Program Transformation Applied. In

Program Transformation and Programming Environments, P. Pepper, Ed.

Springer-Verlag, Berlin Heidelberg, 1984.

42. B O Y L E , J. M . , DRITZ, K . W . , MURALIDHARAN, M . N . AND TAYLOR, R .

J. Deriving Sequential and Parallel Programs from Pure LISP Specifications

by Program Transformations. In Program Specifications and Transformation,

L. G. L. T. Meertens, Ed. Elsevier Science PubHcations, 1987, 1-19.

43. B R E U E R , P. T . , L A N O , K . AND B O W E N , J. Understanding Programs

through Formal Methods. Oxford University Programming Research Group,

Technical Report, 1991.

44. BROWN, A. J. Specifications and Reverse Engineering. Presented at Journal

of Software Maintenance {1992).

45. BROY, M . Algebraic Methods for Program Construction: The CIP Project.

In Program Transformation and Programming Environments, P. Pepper, Ed.

Springer-Verlag, Berlin Heidelberg, 1984.

Appendix E : References 304

46. B U L L , T . M . An Introduction to the WSL Program Transformer. In Proceed
ings of the IEEE Conference on Software Maintenance. San Diego, California,
November 1990.

47. B U L L , T . M . , BENNETT, K . H . AND YANG, H . A Transformation System

for Maintenance — Turning Theory into Practice. In Proceedings of the IEEE

Conference on Software Maintenance. Orlando, Florida, November 1992.

48. B U R S T A L L , R . M . Program Development by Traiisformations; An Overview.

In Proceedings of the CREST Course on Programming. 1978.

49. B U R S T A L L , R . M . AND DARLINGTON, J. A. A Transformation System for

Developing Recursive Programs. Journal of the ACM Vol. 24 No. 1 (January

1977).

50. BURSTALL, R. M . AND GOUGEN, J. A. The Semantics of CLEAR, A Spe

cification Language. Lecture iVotes in Computer Science Vol. 86 (1980).

51. BURSTALL, R. M . , M C Q U E E N , D . B . AND SANNELLA, D . T . HOPE: An

Experimental Apphcative Language. Department of Computer Science, Univer

sity of Edinburgh, Internal Report, 1980.

52. C A L L I S S , F . W . Problems with Automatic Restructurers. Durham University,

Technical Report, Durham, 1989.

53. CALLISS, F . W . , K H A L I L , M . , MUNRO, M . AND WARD, M . A Knowledge-

Based System for Software Maintenance. In Proceedings of the IEEE Conference

on Software Maintenance. Phoenix, Arizona, October 1988.

54. C H A P I N , N . The Job of Software Maintenance. In Proceedings of the IEEE

Conference on Software Maintenance. 1987, 4-12.

55. C H I K O F S K Y , E . J. AND CROSS, J. H . Reverse Engineering and Design Re

covery: A Taxonomy. IEEE Software Vol. 7 No. 1 (1990), 13-17.

Appendix E : References 305

56. CHU, W . C . AND PATEL, S. Software Restructuring by Enforcing Localisation
and Information Hiding. In Proceedings of the IEEE Conference on Software
Maintenajice. 1992, 165-172.

57. CHURCH, A. The Calculi of Lambda Conversions. AnnaJs of Mathematical

Studies Vol. 6 (1951).

58. DALY, E . B . Organizing for Successful Software Development. Datamation

Vol. 25 (December 1979).

59. DARLINGTON, J . Program Transformation in the ALICE Project. In Program

Transformation and Programming Environments, P. Pepper, Ed. Springer-

Verlag, Berhn Heidelberg, 1983.

60. D E R S H O W I T Z , N . AND MANNA, Z . On Automating Structured Programming.

In Proceedings of the International Symposium on Proving and Improving Pro

grams. France, July 1975.

61. DEWAR, R . B . K . , GRAND, A., L i u , S-C. AND SCHWARTZ, J . T . Program

ming by Refinement as Exemplified by the SETL Representation Sublanguage.

ACJVf Transactions on Programming Languages and Systems Vol. 1 No. 1 (July

1979).

62. DEWAR, R . B . K . , SCHONBERG, E . AND SCHWARTZ, J . T. Higher Level

Programming: Introduction to Use of the Set-Theoretic Programming Language

SETL. Courant Institute of Mathematical Sciences, New York University Tech

nical Report, 1981.

63. DIETRICH, S. W . AND CALLISS, F . W . A Conceptual Design for a Code Ana

lysis Knowledge Base. Journal of Software Maintenance Vol. 4 No. 1 (1992),

19-36.

64. DiJKSTRA, E . W . A Discipline of Programming. Prentice-Hall, 1976.

Appendix E : References 306

65. DiJKSTRA, E . W . On the Interplay between Mathematics and Programming.
Lecture JVotes in Computer Science Vol. 69 (1979), 34-46.

66. DiJKSTRA, E . W . Interplay between Invention and Formal Techniques. Lec

ture iVotes in Computer Science Vol. 69 (1979), 1.

67. ENGBERTS, A . , KOZACZYNSKI, W . AND N I N G , J . Concept Recognition-

Based Program Transformation. In Proceedings of the IEEE Conference on

Software Maintenance. October 15-17, 1991, 73-82.

68. ERIKSEN, K . E . AND PREHN, S. RAISE Overview. Esprit Project Report

Doc. Id. RAISE / DOC / KEE / 5 / V I , November 1989.

69. F A G A N , M . E . Design and Program Inspections to Reduce Errors in Program

Development. IBM Systems Journal Vol. 12 No. 1 (1976).

70. FEATHER, M . S . ZAP Program Transformation System: Primer and Manual.

Department of Artificial Intelhgence, University of Edinburgh, Internal Report,

1978.

71. FEATHER, M . S. A Program Transformation System. University of Edin

burgh, PhD Thesis, 1979.

72. FEATHER, M . S. Specification and Transformation: Automated Implementa

tion. In Program Transformation and Programming Environments, P. Pepper,

Ed. Springer-Verlag, Berhn Heidelberg, 1984.

73. FEATHER, M . S. A Survey and Classification of Some Program Transform

ation Techniques. In Program Specification and Transformation. Amsterdam,

1987, 165-198.

74. FEATHER, M . S. A System for Assisting Program Transformation. ACM

Transactions on Programming Languages and System Vol. 4 No. 1 (January

1982), 1-20.

Appendix E : References 307

75. FiCKAS, S. F. Automating the Transformational Development of Software.
University of California, PhD Dissertation, Irvine, 1982.

76. FISHER, A. S. CASE; Using Software Development Tools. John Wiley and

Sons Ltd, New York, 1988.

77. FRADET, P . AND METAYER, D . L . Compilation of Functional Languages by

Program Transformation. ACM Transactions on Programming Languages and

Systems Vol. 13 No. 1 (January 1991).

78. GADD, R . J. ReForm — From Assembler to Z using Formal Transforma

tions. In Proceedings of the Fourth European Software Maintenance Workshop.

Durham, September 1990.

79. GAUDEL, M - C . Algebraic Specifications. In Software Engineer's Reference

Book, J. McDermid, Ed. Butterworth Heinemann, 1991.

80. GOLDBERG, A. T. Knowledge-Based Programming: A Survey of Program

Design and Construction Techniques. IEEE Transactions on Software Engin

eering Vol. 12 No. 7 (1986), 752-768.

81. GOLDMAN, N . M . AND W I L D E , D . S. A Relational Database Foundation for

Process Specification. In Entity Relationship Approach to System Analysis and

Design, P. P. S. Chen, Ed. Elsevier North-Holland, New York, 1980.

82. GOOD, D . I . , LONDON, R . L . AND BLEDSOE, W . W . An Interactive Pro

gram Verification System. IEEE Transactions on Software Engineering Vol. 1

(March 1975).

83. GORDON, M . J. C. Programming Language Theory and its Implementation.

Prentice-Hall, Englewood Cliffs, 1988.

84. GOUGEN, J. A. Reusing Interconnecting Software Components. IEEE Soft

ware Vol. 3 (February 1986).

Appendix E : References 308

85. GREEN, C. A Summary of the PSI Program Synthesis System. In Proceedings
of the 5th International Joint Conference on AI. Cambridge, MA, 1977, 380-
381.

86. GREEN, C . The PSI Program Synthesis System 1978: An Abstract. In Pro

ceeding's of the 1978 National Computer Conference. Anahaim, CA, 1978, 673-

674.

87. GREEN, C . The Design of the PSI Synthesis System. In Proceedings of the

2nd International Conference on Software Engineering. San Francisco, October

1976, 4-18.

88. GREEN, C , GABRIEL, R . P., K A N T , E. , KEDZIERSKI, B . J., MCCUNE,

B. R., PHILLIPS, J . V., TAPPEL, S. T . AND WESTFOLD, S. J . Results in

Knowledge Based program Synthesis. In Proceedings of the 6th International

Joint Conference on AI. Tokyo, August 1979, 342-344.

89. GREEN, C , PHILLIPS, J . V., WESTFOLD, S. J., PRESSBURGER, T . , KEDZI

ERSKI, B. J., ANGERBRANNDT, S., MONT-REYNAUD, B . AND TAPPEL, S. T .

Research on Knowledge Based Programming and Algorithmic Design. Kestral

Institute, Technical Report U 81. 2, Palo Alto, CA, 1982.

90. CRIES, D . Current Ideas in Programming Methodology. Lecture iVotes in

Computer Science Vol. 69 (1979), 77-93.

91. GRIFFITHS, M . Program Production by Successive Transformation. Lecture

iVotes in Computer Science Vol. 46 (1976), 125-152.

92. HALPERN, J . D., OwRE, S., PROCTOR, N . AND WILSON, W . F . Muse

— A Computer Assisted Verification System. IEEE Transactions of Software

Engineering Vol. 13 No. 2 (February 1987), 151-156.

93. HANNAN, J . Staging Transformations for Abstract Machines. ACM Sigplan

Notices Vol. 26 No. 9 (September 1991).

Appendix E : References 309

94. HAYES, I . VDM and Z: A Comparative Case Study. Formal Aspects of Com
puting Vol. 4 No. 1 (1992), 76-99.

95. HiLDUM, D. AND COHEN, J . A Language for Specifying Program Transform

ations. IEEE Transactions on Software Engineering Vol. 16 No. 6 (June 1990).

96. HOARE, C . A. R. An Axiomatic Basis for Computer Programming. Commu-

m'cations of the ACM Vol. 12 No. 10 (1969), 576-580, 583.

97. HOARE, C . A. R. Proof of Correctness of Data Representations. Actalnform-

atica Vol. 1 No. 4 (1972), 271-281.

98. HOARE, C . A. R. The Emperor's Old Clothes: The 1980 ACM Turing Award

Lecture. Presented at Communications of the ACM(February 1981).

99. HOARE, C. A. R. AND WiRTH, N . An Axiomatic Definition of the Program

ming Language PASCAL. Acta Informatica Vol. 2 (1973), 335-355.

100. INGE, D . C . Software Engineering. Van Nostrand Reinhold Co Ltd, London,

1989.

101. JACKSON, M . A. Principles of Program Design. Academic Press, London,

1975.

102. JOHNSON, J . R. The Software Factory; Second Edition. Butterworth Heine-

mann, Oxford, 1991.

103. JONES, C . B . Systematic Software Development using VDM — Second Edi

tion. Prentice-Hall, 1990.

104. K A N T , E . The Selection of Efficient Implementations for a High-Level Lan

guage. SIGPLAN Notices (ACM) Vol. 12 No. 8 (August 1977), 140-156.

Appendix E : References 310

105. K A N T , E . A Knowledge-Based Approach to Using Efficiency Estimation in
Program Synthesis. In Proceedings of the 6th Joint Conference on Artificial
Intelligence. Tokyo, Japan, August 1979, 457-462.

106. K A N T , E . AND BARSTOW, D . R . The Refinement Paradigm: The Interac

tion of Coding and Efficiency Knowledge in Automatic Programming. IEEE

Transactions on Software Engineering Vol. 7 No. 5 (1981), 458-471.

107. KELLER, S. E . Grammar-Based Program Transformation . In Proceedings

of the IEEE Conference on Software Maintenance. Phoenix, Arizona, October

1988, 110-117.

108. KELLER, T . W . The Importance of Process Improvement in Software Main

tenance. Presented at Conference on Software Maintenance (November 1993).

109. K I N G , J. C. Program Correctness: On Inductive Assertion Techniques. IEEE

Transactions on Software Engineering Vol. 6 No. 5 (September 1980).

110. K N U T H , D . E . Structured Programming with the GOTO Statement. Com

puting Surveys Vol. 6 No. 4 (1974), 261-301.

111. K O S M A N , R. J. Incorporating the Inspection Process into a Software Mainten

ance Organisation. In Proceedings of the IEEE Conference on Software Main

tenance. 1992, 51-56.

112. K O T I K , G. B . A N D M A R K O S I A N , L . Z . Automated Software Anaiysis and

Testing Using a Program Transformation System. In Proceedings of the Third

Symposium on Software Testing, Analysis and Verification. 1989.

113. K O Z A C Z Y N S K I , W . , NiNG, J. A N D E N G B E R T S , A. Program Concept Recog

nition and Transformation. IEEE Transactions of Software Engineering Vol. 18

No. 12 (December 1992), 1065-1075.

Appendix E : References 311

114. K R I E G - B R U C K N E R , B . Language Comparison and Source-To-Source Transla
tion. In Program Transformation and Programming Environments, P. Pepper,
Ed. Springer-Verlag, BerHn Heidelberg, 1984.

115. LANDIN, P. J . The Mechanical Evaluation of Expressions. Computer Journal

Vol. 6 No. 4 (1964), 308-320.

116. L A N D I N , P. J. A Correspondence between ALGOL 60 and Church's Lambda

Notation. Communications of the ACM Vol. 8 No. 2 and 3 (February and

March 1965), 89-101 and 158-165.

117. L A N O , K . AND H A U G H T O N , H . Applying Formal Methods to Maintenance.

Oxford University Programming Research Group, Technical Report, 1990.

118. LEHMAN, M . M . Programs, Life Cycles, and Laws of Software Evolution.

Proceedings of the IEEE Vol. 19 (1980), 1060-1076.

119. LEHMAN, M . M . AND BELADY, L . A. A Model of Large Program Develop

ment. IBM Systems Journal Vol. 15 No. 3 (1976).

120. LEINTZ, B . P. AND SWANSON, E . F . Software Maintenance Management.

Addison-Wesley Publishing Company, 1980.

121. LiSKOV, B. H . AND v., B. An Appraisai of Program Specifications. In Re

search Directions in Software Technology, P. Wegner, Ed. 1979, 276-301.

122. LONDON, P. AND FEATHER, M . Implementing Specification Freedoms. In

formation Science Institute, University of Southern California, Research Report

81-100, Marina del Rey, CA, 1982.

123. L u , L. C. A Unified Framework for Systematic Loop Transformations. ACM

Sigplan Notices Vol. 26 No. 7 (July 1991), 28-38.

124. LYONS, M . J. AFIPS Conference Proceedings, vol. Vol. 50 , National Com

puter Conference, 1981.

Appendix E : References 312

125. M A N N A , Z . AND WALDINGER, R . Synthesis: Dreams =^ Programs. IEEE
Transactions on Software Engineering Vol. 4 No. 4 (1979).

126. M A N N A , Z . AND WALDINGER, R . D E D A L U S — The DEDuctive Algorithm

Ur-synthesizer. Proceedings of the National Computer Conference Vol. 47

AFIPS Press (June 5-8, 1978), 683-690.

127. M A N N A , Z . AND WALDINGER, R . The Synthesis of Structure-Changing Pro

grams. In Proceeding of the 3rd International Conference on Software Engin

eering. Atlanta, GA, May 1978, 175-187.

128. MASON, I . A. AND T A L C O T T , C. L . Program Transformations for Configur

ing Components. ACM Sigplan Notices Vol. 26 No. 9 (September 1991).

129. M c C U N E , B. P. Building Program Models Incrementally from Informal De

scriptions. Department of Computer Science, Stanford University, PhD Disser

tation, Standford, California, 1979.

130. M C D E R M I D , J. Introduction and Overview to Part II. In Software Engineer's

Reference Book, J. McDermid, Ed. Butterworth Heinemann, 1991.

131. MCDERMID, J. AND ROOK, P. Software Deveiopment Process Models. In

Software Engineer's Reference Book, J. McDermid, Ed. Butterworth Heine

mann, 1991.

132. McDONNALL, P. AND BENNETT, K. H. Reverse Engineering IS Library

Module (Forthcoming). CCTA, 1993.

133. M C G E T T R I C K , A . D . The Definition of Programming Languages. Cambridge

University Press, Cambridge, UK, 1980.

134. MILLER, J. C . Software Re-En^ineering; Getting it Done is Twice the Fun. In

Techniques of Program and System Maintenance. QED Information Services,

Inc. , 1979.

Appendix E : References 313

135. MILLER, J. C . AND STRAUSS, B . M . Implications of Automatic Restructur
ing of COBOL. SIGPLAN Notices Vol. 22 No. 6 (June 1987), 76-82.

136. MONAHAN, B. AND SHAW, R . Modei-Based Specifications. In Software En

gineer's Reference Book, J. McDermid, Ed. Butterworth Heinemann, 1991.

137. MORGAN, C . Programming from Specifications. Prentice-Hall, Englewood

Cliffs, NJ, 1990.

138. MORGAN, C , ROBINSON, K . AND GARDINER, P. On the Refinement Cal

culus. Oxford University, Technical Monograph, 1988.

139. MOSTOW, D. J. Mechanical Transformation of Tasks Heuristics into Opera

tional Procedures. Carnegie-Mellon University, Ph. D. dissertation. Rep. CMU-

CS-81-113, Pittsburg, Pa. , 1981.

140. M YER, B . Introduction to the Theory of Programming Languages. Prentice-

Hall, 1990.

141. MYERS, G . J. The Art of Software Testing. John Wiley and Sons Ltd, New

York, 1979.

142. MYERS, W . Software Engineering. In McGraw Hiii Encyclopedia of Science

and Technology. McGraw Hill, 1987.

143. NEIGHBOURS, J. M . The Draco Approach to Constructing Software from Re

usable Components. IEEE Transactions on Software Engineering Vol. 10 No.

5 (1984), 564-574.

144. NiELSON, H. R . AND N I E L S O N , F . Semantics with Applications. John Wiley

and Sons Ltd, 1992.

145. NiELSON, H. R . AND NiELSON, F. Using Transformations in the Implement

ation of Higher-Order Functions. Journal of Functional Programming Vol. 1

No. 4 (October 1991).

Appendix E : References 314

146. O U L D , M . A. Testing — A Challenge to Method and Tool Developers. Soft
ware Engineering Journal Vol. 6 No. 2 (1991), 59-64.

147. OVERSTREET, C M . , CHEN, J . AND BYRUM, F . Program Maintenance by

Safe Transformation . In Proceedings of the IEEE Conference on Software Main

tenance. Phoenix, Arizona, October 1988, 118-123.

148. PAIGE, R . Supercompilers — Extended Abstract. In Program Transforma

tion and Programming Environments, P. Pepper, Ed. Springer-Verlag, BerUn

Heidelberg, 1984.

149. PARIKH, G . What is Software Maintenance?. Presented at ACM SIGSOFT

Software Engineering iVotes (1986).

150. PARKER, S. P. McGraw-iJiii Dictionary of Scientific and Technical Terms (4th

Edition). McGraw-Hill, New York, 1989.

151. PARTSCH, H . Specification and Transformation of Programs. Springer-Verlag,

New York, 1990.

152. P A R T S C H , H . AND S T E I N B R U G E N , R . Program Transformation Systems.

ACM Computing Surveys Vol. 15 No. 3 (September 1983), 199-236.

153. PEPPER, P. A Study on Transformational Semantics. Lecture Notes in Com

puter Science Vol. 69 (1979), 322-405.

154. PEPPER, P. Algebraic Techniques for Program Specification. In Program

Transformation and Programming Environments, P. Pepper, Ed. Springer-

Verlag, Berlin Heidelberg, 1984.

155. PEPPER, P. Inferential Techniques for Program Development. In Program

Transformation and Programming Environments, P. Pepper, Ed. Springer-

Verlag, Berlin Heidelberg, 1984.

Appendix E : References 315

156. PERRY, W . E . A Structured Approach to System Testing: Second Edition.
QED Information Sciences Inc, Wellesley, Massachusetts, 1988.

157. REDDY, U . S. Transformational Derivation of Programs Using the FOCUS

System. Presented at Symposium on Software Development Environments,

ACM (December 1988).

158. RoBSON, D. J., BENNETT, K . H . , CORNELIUS, B . J. AND MUNRO, M .

Approaches to Program Comprehension. Journal of Systems Software Vol. 14

No. 1 (1991).

159. Ross, D. T., GOODENOUGH, J. B. AND IRVINE, C. A. Software Engineer

ing: Process, Principles and Goals. Presented at Computer (May 1975).

160. RUSSELL, G . W . Experience with Inspection in Ultralarge-Scale Develop

ments. IEEE Software Vol. 8 No. 1 (January 1991), 25-31.

161. RUSSINOFF, D. M . A Verification System for Concurrent Programs Based on

Boyer-Moore. Formai Aspects of Computing Vol. 4 No. 6A (1992), 597-611.

162. SCHERLIS, W. L . Supercompilers — Extended Abstract. In Program Trans

formation and Programming Environments, P. Pepper, Ed. Springer-Verlag,

Berlin Heidelberg, 1983.

163. SCHWARTZ, J. T . On Programming: An Interim Report on the SETL Project.

Courant Institute, New York, 1975.

164. S H O O M A N , M . L . Software Engineering. McGraw-Hill, 1983.

165. SHRIVASTAVA, S. K . FauJt-Toierant System Structuring Concepts. In Software

Engineer's Reference Book, J. McDermid, Ed. Butterworth Heinemann, 1991.

166. SNEED, H . M . Economics of Software Re-engineering. Journal of Software

Maintenance Vol. 3 No. 3 (1991), 163-182.

Appendix E : References 316

167. SNEED, H . M . AND JANDRASICS, G . Inverse Transformation of Software
from Code to Specification. In Proceedings of the IEEE Conference on Soft
ware Maintenance. IEEE Computer Society Press, Phoenix, Arizona, October
1988, 102-109.

168. SNEED, H . M . AND J A N D R A S I C S , G . Software Recycling. In Proceedings of

the IEEE Conference on Software Maintenance. Austin, Texas, September 1987,

82-90.

169. SOMMERVILLE, I . Software Engineering — Fourth Edition. Addison Wesley

Publishing Company, 1992.

170. SPIVEY, J. M . The Z Notation: A Reference Manual — Second Edition.

Prentice-Hall, 1992.

171. S T O B A R T , S. C. , THOMPSON, J. B . AND SMITH, P. Use, Problems, Bene

fits and Future Directions of Computer Aided Software Engineering in United

Kingdom. Information and Software Technology Vol. 33 No. 9 (1991), 629-636.

172. TAMIR, M . A D I : Automatic Derivation of Invariants. IEEE Transactions on

Software Engineering Vol. 6 No. 1 (January 1980).

173. TANIMOTO, S. L . Tile Elements of Artificial Intelligence using Common Lisp.

Computer Science Press, New York, 1990.

174. WARD, M . A Catalogue of Program Transformations. Durham University,

Technical Report, Durham, 1988.

175. WARD, M . Transforming a Program into a Specification. Durham University,

Technical Report, Durham, 1988.

176. WARD, M . Constructive Specifications and Program Transformations. Dur

ham University, Technical Report, Durham, 1988.

Appendix E : References 317

177. WARD, M . Proving Program Refinements and Transformations. Oxford Uni
versity, DPhil Thesis, Oxford, 1989.

178. WARD, M . The Largest True Square Problem — An Exercise in the Derivation

of an Algorithm. Durham University, Technical Report, Durham, 1990.

179. WARD, M . Specifications and Programs in the Wide Spectrum Language.

Durham University, Technical Report, Durham, 1991.

180. WARD, M . A Recursion Removai Theorem. In Proceedings of Fifth Refine

ment Workshop. BCS FACS, London, 1992.

181. WARD, M . A Definition of Abstraction. Durham University, Technical Report,

Durham, 1992.

182. WARD, M . Foundations for a Practical Theory of Program Refinement and

Transformation. Durham University, Technical Report, Durham, 1993.

183. W A R D , M . Language Oriented Programming. Durham University, Technical

Report, Durham, 1994.

184. WARD, M . AND BENNETT, K . H . A Practical Program Transformation Sys

tem For Reverse Engineering. Presented at WbrJcing Conference on Reverse

Engineering, May 21-23, 1993, Baltimore MA (May 1993).

185. WARD, M . , CALLISS, F . W . AND MUNRO, M . The Maintainer's Assistant. In

Proceedings of the IEEE Conference on Software Maintenance. Miami, Florida,

October 1989.

186. WARNIER, J . D . Logical Construction of Programs. Van Nostrand Reinhold,

New York, 1977.

187. W E B E R - W U L F F , D. Proof-Movie — A proof with the Boyer-Moore Prover.

Formai Aspects of Computing Vol. 5 No. 2 (1993), 121-151.

Appendix E : References 318

188. W H Y S A L L , P. Refinement. In Software Engineer's Reference Book, J. McDer
mid, Ed. Butterworth Heinemann, 1991.

189. W I L E , D . S. Transformation-Based Software Development. In Program Trans

formation and Programming Environments, P. Pepper, Ed. Springer-Verlag,

Berlin Heidelberg, 1984.

190. W I L E , D . S., BALZER, R . AND GOLDMAN, N . M . Automated Derivation

of Program Control Structures from Natural Language Program Descriptions.

In Proceedings of the 4th ACM Symposium on Artificial Intelligence and Pro

gramming Languages, vol. Vol. 12 , no. No. 8 , SIGPLAN Notices (ACM),

Rochester, New York, August 1977.

191. WiRTH, N . Program Development by Stepwise Refinement. Communications

of tiie ACM Vol. 14 (1971).

192. YANG, H . HOW does the Maintainer's Assistant Start?. Durham University,

Technical Report, Durham, 1989.

193. YANG, H . Tie Supporting Environment for a Reverse Engineering System —

The Maintainer's Assistant. In Proceedings of the IEEE Conference on Software

Maintenance. Sorento, Italy, 1991.

194. YANG, H . PhD. Thesis, Forthcoming.

195. YANG, J. A. AND C H O O , Y . Parallel Program Transformation using a Meta

language. ACM Sigpian JVotices Vol. 26 No. 7 (July 1991), 11-21.

196. YOUNGER, E . J. AND WARD, M . Inverse Engineering a simple Real Time

Program. Durham University, Technical Report, Durham, 1992.

197. YOURDON, E. Structured Walk-Throughs. Yourdon Press, New York, 1977.

198. ZELKOWITZ, M . V . , SHAW, A. C . AND GANNON, J. D. Principles of Soft

ware Engineering and Design. Prentice-Hall, Inc, Englewood Cliffs, NJ, 1979.

