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On the topological charges of the affine Toda sohtons 
by 

William Alexander McGhee. 

Abstract 
This thesis investigates the two dimensional, integrable field theories known as the affine 

Toda field theories, which are based on the Kac-Moody algebras with zero central extension. 

In particular, the construction of static solitons in these theories and their topological 

charges are considered. 

Following a general overview of the affine Toda theories and the Kac-Moody structure 

which underlies them, the construction of solitons in the â^̂^ theory using Hirota's method, 

originally used by HoUowood, is generalized and extended to the remaining theories. The 

soliton masses are calculated and general expressions presented for the twisted as well as 

the untwisted theories. 

The major results of this work concern the calculation of topological charge, one of the 

infinite number of conserved quantities that each theory possesses. Firstly, the â ^̂  model 

is considered. An expression for the number of charges associated with each soliton, as 

well as a general expression for the charges themselves, is constructed. The previously 

alluded to connection between the charges and the associated fundamental representations 

is proven showing that the charges are, in general, a subset of the weights lying in these 

representations. For the â^̂^ theory, the charges associated with each sohton can be derived 

from just one by making use of the cyclic symmetry of the model's extended Dynkin 

diagram. Further, the action of this symmetry on the set of charges is synonymous with 

the action of a Coxeter element. It is found that the ordering of the Weyl reflections which 

make up this element is important (except when the end-point solitons are considered) 

- the familiar "black-white" ordering doesn't work. The multisolitons of the theory are 

considered and it is shown that when the individual solitons are sufficiently well separated 

their topological charges simply add together. Multi-solitons can be constructed having 

topological charge equal to each of the simple roots, and can therefore be used to construct 



further solitons filling the entire weight lattice. 

Next, the topological charges of the remaining afiine Toda theories are investigated. For the 

infinite series of algebras the number of topological charges and expressions for the charges 

themselves are derived. For the remaining cases, the charges are calculated explicitly. 

This thesis concludes with some comments on more recent work into the theory of quantum 

solitons and considers further lines of enquiry. 
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Chapter 1 

Introduction 



This dissertation is based on the study of a particular class of massive, integrable, two-

dimensional field theories, known as affine Toda field theories. Their study was begun over 

a decade ago [4, 21, 52]. However, after a suggestion by Zamolodchikov that conformal field 

theories may remain integrable and continue to possess an infinite number of conserved 

quantities following certain deformations, it was natural that attention should be turned 

to the integrable conformal Toda models. Subsequently, it was shown [22, 35] that affine 

Toda field theories could be obtained as particular integrability-preserving deformations of 

these Toda field theories. 

Active research into the affine Toda models has provided expressions for the masses of the 

fundamental quantum particles, firstly explicitly [4, 10, 11] and subsequently algebraically 

[25, 26], and their associated three-point couphngs [10, 11, 12, 26]. One of the tools 

used by Zamolodchikov, the S'-matrix bootstrap, was used subsequently together with the 

crossing and unitarity conditions to conjecture exact S'-matrices for ATFT's based on any 

Lie algebra. This extended the previous work [4] on the â '̂ theory. 

The affine Toda Lagrangian density is given by 

>C = k d j ) • {d'<i>) - ̂  E n,(e^-^-^ - 1). (la) 
^ P j=0 

When the coupling constant is imaginary, i t is seen that the potential term has many 

minima as opposed to the real coupling case where the only (real) minimum occurs for 

(f) = 0. It is expected, therefore, that for imaginary coupling the theory possesses solitons. 

In [32] the complex coupling a^"^ theory, a generalization of the sine-Gordon model, was 

considered. The solitons solutions which were found possessed many surprising properties. 

The number of solitons was equal to the rank of the underlying Lie algebra, with the 

soliton mass ratios being the same as the unrenormalized mass ratios of the fundamental 

quantum particles in the real coupling theory. This allowed for an association of each 

soliton with a point on the unextended An Dynkin diagram in a similar manner to that 

done for the quantum particles in [11]. Also, one of the conserved charges of the solitons -

that of topological charge - was found for those solutions associated with the end points of 

the An diagram. Here the charges filled the fundamental representations at those points, 

although for other solitons they seemed only to partially fill the associated fundamental 



representations. Solitons for the simplest of the theories, that of c?̂ ^̂  were obtained 

but the generalization to all other theories was unclear. 

The dissertation is laid out as follows. 

Chapter two : The aim of this chapter is to provide a comprehensive survey of the research 

carried out on the Toda models, as well as their underlying algebraic structures, that will 

be of use in this thesis. Firstly the simple Lie algebras and their generalizations, the 

Kac-Moody algebras are considered. Following a discussion of the conformal Toda model 

and its algebraic solution, the affine Toda model is obtained as a integrability preserving 

perturbation of this model. The second approach is from the conformal affine Toda model 

which has been used to obtain the algebraic solution to the affine Toda model. The masses, 

couplings and S'-matrices of the fundamental particles are looked at, as they are found to 

be closely related to those of the solitons. The work of other authors in constructing the 

affine Toda solitons is considered, in particular the use of the Leznov Saveliev construction 

and Backlund transformations. 

Chapter three : The work of HoUowood is extended to all of the remaining theories and 

explicit formulae for all of the single solitons are presented. The number of solitons is 

again equal to the rank of the algebra. A case-by-case deduction of a formula for the 

soliton masses is given, in agreement with that first proposed in [53], for the untwisted 

theories: 

Also, a formula is given for the masses of the solitons in the twisted theories. This chapter, 

although based on work carried out by the author in collaboration with Niall J. MacKay 

46], gives the expressions for all of the single solitons in all of the theories and so contains 

many results not previously reported in the literature. This chapter also includes a short 

discussion of static multisoliton configurations which, although not appearing in the sine-

Gordon theory, are found to exist in the more general â ^̂  and other affine Toda theories. 

Chapter four : Returning again to the simplest of the affine Toda theories, that of a^ \̂ 

the topological charges of the solitons are investigated. The number of charges of the a*'' 



soliton is found to be 

ha = —77—TT, (Ic) gcd(a, h) 

where h is the Coxeter number. As ha is a divisor of the Coxeter number, i t may be 

thought that the Coxeter element (a product of Weyl reflections in the simple roots) may 

provide the link between the charges. This is found to be the case and so allows all of the 

topological charges for each soliton to be deduced from just one (and so provides a general 

formula for the charges), as well as proving that the topological charges for each soliton 

lie in the same representation. This is found for the a^'^ soliton to be the a*'̂  fundamental 

representation, confirming the original conjecture by HoUowood. 

Chapter five : Here the work carried out on the â '̂ theory, as regards the number of 

charges and their expressions, is extended to the other theories. It is possible to calculate 

the number of topological charges of each single soUton in all the theories by counting 

the number of poles of the solution, in a similar, though rather more complicated, way to 

that of Chapter four. It is found that these numbers do not divide the Coxeter number, 

implying that the charges do not form an orbit under the action of any power of the Coxeter 

element. It seems that the presence of the Coxeter element in the analysis of the â^̂^ theory 

is therefore a peculiarity of that theory. Formal and exphcit expressions are given for each 

sohton's topological charges in the infinite and exceptional algebras, respectively. The 

representations in which the charges lie are discussed - for the exceptional algebras these 

representations can be identified by explicit calculation, however, for the infinite theories 

the expressions for the charges are not sufficiently simple to allow for such a calculation 

to take place. The chapter contains a number of examples illustrating the formulae which 

have been derived. 

Chapter six : In the final chapter, the work of the thesis is critically assessed and further 

unanswered questions are discussed. As well as this, the directions of other authors in the 

quantum theory are looked at. 



Chapter 2 

The Toda models 
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2.1 Introduction 

This chapter will provide an overview of the area in which the present work lies. Before 

considering the three types of Toda model - conformal Toda, affine Toda and conformal 

affine Toda - it is necessary to have a firm grasp of the algebraic structure underlying each 

of them. For only then can it be hoped that a fundamental understanding of the work in 

this thesis, and indeed the parallel work of other authors, be achieved. 

As a result, the next section of this chapter will look at the the simple Lie algebras which 

underlie the conformal Toda model, before moving onto their generalizations, the Kac-

Moody algebras, which underpin both the affine and conformal affine models (the algebraic 

distinction being that the first corresponds to zero central extension of the algebra whilst 

the latter corresponds to non-zero central extension). The second half of this chapter 

will consider the Toda models themselves and, as well as discussing the work now well 

established in the literature such as quantum masses and couplings, consider the soliton 

constructions of other authors. 

2.2 Lie algebras 

In this section the simple Lie algebras, studied and classified towards the end of the last 

century by E. Cartan and W. Killing, will be considered. Much of the material and 

concepts will be of use throughout this dissertation, as well as being of particular use in 

the generalization from Lie to Kac-Moody algebras. For further details see [36, 7]. 

Definition: A Lie algebra is a vector space upon which is defined a bilinear operation 

called the bracket, 

; , ]:g0g^g. 

The bracket is endowed with the following properties: 

[X,Y] = -[Y,X] 

[[X,Y],Z] + [[¥, ZIX] + [[Z,X],Y] = 0, y X X Z ^ g , 
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the latter property is called the Jacobi identity. Choosing a basis {To} (a = 1 , . . . ,n) , then 

[Ta-iTf,] = CabcTc 

where the Cabc are the structure constants of the algebra satisfying 

Cabc = Cbac and CtcaCdeb + CbdaCecb + CbeaCcdb = 0. 

A representation of the Lie algebra g acting on a vector space Vk of dimension k is & hnear 

map d : g Mk (all k x k matrices) preserving the bracket i.e. 

d{[X,Y\) = [d{X),d{Y)] yX,Yeg. 

One particular representation of g which is useful in deriving many of the algebra's prop­

erties is that of the adjoint representation, defined by 

{adX)Y = [X, Y . 

An explicit matrix form for ad can be found and is given in terms of the basis elements by 

[adT°')tm = Calm ~ this is of use when the Cartan Killing form is defined on the algebra. 

A representation is called reducible if the vector space V upon which i t acts has an invariant 

subspace W EV {W ^ {0} , V) i.e d{g)W C W. If there is no such subspace then d is said 

to be irreducible. 

The Killing form: It is possible to define an associative inner product on gf, known as the 

(Cartan) Killing form 

K{X,Y) = Tr{adXadY). 

From the previous matrix formulation of the adjoint action, a symmetric matrix is obtained 

Kab = K{TaTb) = Tr{adTaadTb) = CadeCbed-

K is associative in the sense that 

K{X,[Y,Z]) = K{[X,YIZ). 

If detK 7̂  0 then the metric is called nondegenerate. Further, if in some basis Kab = —^ab 

then g is said to be of compact type and the structure constants are totally antisymmetric. 
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A Lie algebra of compact type can be shown to have, up to conjugation by its associated 
Lie group, a unique Cartan subalgebra (maximal abelian subalgebra) whose dimension is 
called the rank of g. The algebra g can be decomposed into simple Lie algebras of compact 
type 

g being called semisimple if p > 1. If the only ideals of g are {0} and g itself, then the 

algebra is called simple. 

I t was the simple Lie algebras which attracted the attention of Cartan, who showed that 

they fell into four infinite classes and five exceptional cases denoted by A„, B„, C„, Z)„ 

and 6*2, F4, EQ, EJ and î s respectively. 

When flr is a simple Lie algebra, a basis is obtained by starting with the Cartan subalgebra 

{H'] (2 = l , . . . , r ) where 

H\W\ = {i (2.2a) 

and extending to the whole of g by finding elements E" such that 

H%E''] = a'E". (2.2b) 

The real non-zero r-dimensional vector a is called a root, and E" is called the step op­

erator corresponding to ex. Indeed, for each root a the corresponding root space is one-

dimensional, and ka is not a root for any k unless A; = ± 1 , the root —a corresponding to 

the step operator E'" = E"'^. The set of roots is denoted by $. 

The commutator of two step operators is root dependent, and is given by 

[E",E^] = e{aJ)E''+'^ if a + ^ is a root, 

= ^ iia = -P, (2.2c) 

= 0 otherwise. 

The above basis, with the commutators (2.2a), (2.2b), and (2.2c), is a modified version of 

the Cartan-Weyl basis. 

To each root a it is possible to associate a su{2) algebra defined by the generators E", 

E''^, and 2a • Hja^ which are isomorphic, in the usual notation, to /+ , /_ and 2/3 which 
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satisfy 

[/+,/_] =2 / 3 , [ / 3 , / ± ] = ± / ± , 

with the hermicity conditions / | = /_ and = /s. From the well known representation 

theory of su{2), the eigenvalues of 2a • iZ/cf^ are integral in any unitary representation. 

The adjoint representation of g is one such representation where 2a- H/a^ has eigenvalues 

2a • /9/a^ (/3 G $) and zero r times. Therefore 

^ € Z , Va , / 5G$ . 

Also in the adjoint representation, the step operators E^'^'^" (m GZ) must form a su{2) mul-

tiplet and so there must be a member of the multiplet with opposite 2a • i//a^-eigenvalue, 

i.e. 
2 a - ^ 2 a . ^ 

— + 2m = — 

for some (3 + ma a root. Then 

aa being a linear operator which corresponds to reflection in the plane perpendicular to 

the root a. Thus CTQ, (a G #) permutes the set of roots and also generates a finite group 

W{g)., known as the Weyl group of g. 

In general, the set of roots is Hnearly dependent and so does not form a basis for the root 

space. The basis elements commonly chosen are a i , a 2 , . . . , ar such that for any root a , 
r 

a = ^ rnai 
i=i 

where each GZ, and either > 0 Vz, in which case the root is called positive, or n, < 0 

in which case the root is called negative. Under the action of members of the Weyl 

group, all other such simple root bases are obtained. The Weyl group W{g) can be shown 

to be generated by aa,, where a, is a simple root. 

There are two equivalent ways of representing the simple root systems - either by the 

algebra's Cartan matrix, or by its Dynkin diagram. 

The Cartan matrix of g is the r x r array with entries 

_ 2a, • g, 
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which from the above discussion, are all integers. The diagonal entries of C are equal 
to 2 whilst the ofi^-diagonal entries are zero or negative. From C, the simple roots can 
be reconstructed (up to scalar multiplication or orthogonal transformation of the Cartan 
subalgebra) and hence all the roots and structure constants, and finally g itself. 

Further, the information in C can be expressed in the form of a Dynkin diagram which 

has points representing the simple roots, joined by CijCji lines with an arrow pointing 

to the shorter of any two adjacent points. If g is simple, there can be at most only two 

root lengths. If all the roots are of the same length, the algebra is called simply-laced. 

The ability to obtain C from its Dynkin diagram means that the latter is also sufficient to 

describe the algebra. The Dynkin diagrams of the simple Lie algebras are given in Table 

B l of Appendix B. 

Given a finite dimensional representation of g, a basis {|/i>} can be chosen so that each 

is diagonal: 

W\fi>= (i'\ii> . 

The r-dimensional vector /t = (^^, . . . , is called a weight vector, and again by su{2) 

representation theory 2a • H/a^ is integral when acting on |/<>, Va G and so 

2a • 
a2 G Z. 

Indeed, all such ^ satisfying the above equation constitute the weight lattice Aiy(fl'), which 

contains the root lattice Knig). A basis of the weight lattice is given by those \j satisfying 

2a, • Aj 

with any weight A G l^w{g) of the form 

r 
A = ^ n i A i (ni G Z). 

If ni > 0 Vz, A is called a dominant weight. For each finite dimensional representation of 

g, there exists a highest weight state |/Xo>, satisfying 

^° ' |^o>= 0, a > 0. 
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The term 'highest' originates in the ability to express /io — where is any other weight 

of the representation, as a sum of positive roots. The weights of the adjoint representation 

are in fact the roots $, with highest root denoted by tp. 

Returning to the modified Cartan-Weyl basis constructed previously, it is advantageous 

for algebraic purposes to replace this by the Chevalley basis with generators 

Then, concentrating on the simple roots which will be of use in the subsequent discussions, 

denote 

Cfv, = Ci, e—a- = and /la, — hi. 

The commutation relations are therefore 

hi, hj] = 0, [hi, Cj] = CjiCj, [hi, f j ] = - C j i f j , [e,-, / , ] = Sijhj, 

where, in the last equation, the fact that for simple roots (Xi — aj cannot be a root is used. 

As any root a can be written in the form 
r 

for all pj integers, the height of the root is defined as 

hta = ^ rij. 

Further, defining the operator by 

1 / 2a. H\ 
^ - 2 I ^ a^ r 

^ \+ve roots " / 

it is found that grades g, in the sense that 

T ^ E ^ ] = (hta)E". (2.2d) 

I t is possible to re-express (2.2d) in terms of a multiplicative action through the use of 

S — exp (^^^'^^) (where h, known as the Coxeter number, is the height of the highest root 

V^). Then 

SE^S-' = exp (^adr^) E" = exp ( ^ ( h t « ) ) E" = iJ^^'^E'^, 
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with LJ being the h^^ root of unity. As a result the algebra g exhibits a Zi^ grading: 

with subscripts denoting the height of the root associated with each operator. In particular 

g^ is the Cartan subalgebra, and g^ = {Eat , Ea^,E-^}. 

2.3 The afRnization of the simple Lie algebras. 

In this subsection the untwisted affine algebras (obtained via the affinization of the simple 

Lie algebras) are considered. The untwisted affine algebras are associated to the generalized 

Cartan matrices, or the extended Cartan matrices, of the simple finite dimensional Lie 

algebras discussed in the previous section. Effectively they are formed from the algebra's 

usual Cartan matrix by adding a row and column, or equivalently by adding a point to the 

algebra's Dynkin diagram. 

These algebras will now be constructed as central extensions of the loop algebras, in a 

similar manner to that of [38 . 

Denote by £=(D[A,A~^] the algebra of Laurent polynomials in A. Upon £ is defined the 

bilinear (D-valued function cp given by 

dP 

<p{P,Q) = Res—Q, yP,QeC, 

which satisfies the following two properties 

^{P,Q) + fiQ,P) = 0, 

^{PQ,R) + ipiQR,P) + ^{RP,Q) = 0, ( P , g , i ? G £ ) . 

The loop algebra C{g) = C®(^g is an infinite dimensional complex Lie algebra with bracket 

[P ® 9i.Q ® 92] = PQ ®[gi.92\ iP,Qe£; 91,92 eg). 

A bilinear £-form is defined on C{g) through the extension of the form defined on g: 

{P®9i\Q®92) = PQigM-



2.3. The affinization of the simple Lie algebras. 13 

Also a derivation D defined on C can be extended to a derivation on C by 

D{P 0 gi) ^ D{P) ® g^. 

Defining a '(D-valued 2-cocycle' on jC{g), ^ by 

'da 
7P{a,b) = Res ^ b ={gi,g2)^{P,Q) where a = P ® g^, b ̂  Q ® g2 e C{g), 

i.e. a bilinear (C-valued function satisfying 

^(a,6) = -0(6 , a), 

•tp{[a, b],c) + ip{[b, c], a) -I- ^([c, a], b) = 0, 

then C{g) is defined as the one-dimensional central extension of C{g) associated to 0. That 

is, jC{g) = C{g) ® (Dir with bracket 

a + fiK, b + T]K] = [a, b] + ^(a, 6)/^' (a, b G C{g), //,??€€). 

Finally, the affine algebra g is obtained by adding to jC{g) the derivation d = Xd/dX which 

when acting on K gives zero and which commuted with A" (g) gi {gi € g) gives 

d, A" ® ^ i ] = mA™ (g) 

thereby providing the so-called homogeneous grading. The afhne algebra g is therefore 

given by 

g = C{g) ®(^d = C{g) 0 m ® (^d. 

Its bracket is defined by 

;(A™ ®gi)® fij< ® md, (A" O ̂ 2) ® /̂ 2/'̂  ® /?2C?] 

= (A™+" (g) [6fi,52] + 77inA" ® 5f2 - 772mA" 0 firi) © m5„,_„(5fi|̂ 2)-/"'!^-

The Cartan subalgebra of g is (r -f- 2)-dimensional (where r is the rank of g), and given by 

h = h®(SK® <Sd. 

To this algebra it is once again possible to form a Chevalley basis by defining 

h, = A° ® H"", e, = A° ® E"' , fi = A° (g) E-"" {i ^ 0), 
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/jo = A° ® ^ f - ^ + / f , eo = A^®£- '^ , /o = A_i 0 E'^ 

where the elements of g are the Chevalley generators discussed at the end of the last section. 

As a result the Chevalley generators of g satisfy the following commutation relations: 

hi,hj = 0, hi,ej — KjiCj, hi,fj = K j i f j , ^i^fj — ^jihj. 

These, together with the Serre relations 

{ade,y-^'^'e,=0, {adf^Y'^^'f, = 0, {i ^ j), 

characterize the algebra. The matrix K is the extended Cartan matrix defined analogously 

to C but with zeroth row and column corresponding to the extended root ao = —0, where 

ip is the highest root of g. The extended Dynkin diagrams arising from these Cartan 

matrices are given in table B2. Those corresponding to the twisted algebras, in table B3, 

wil l be discussed later in the context of folding. 

There exists a grading structure on the basis when expressed in terms of Chevalley gener­

ators. The element d' is defined to have the property that 

h,] = 0, [d', ei] = Ci, [d', fi] = -/,•. 

It is related to dhy d' = hd+ Xo®T^. Together with the hi, d' spans the Cartan subalgebra. 

Defining the integers to be the lowest for which 

KjiTUi = 0 and ^ niKij = 0, 
i i 

then the m '̂s and n '̂s are related via 

The Coxeter and dual Coxeter numbers are defined as / i = Yl,i'^i h = I2t"^t> respec­

tively. It is also straightforward to show that the quantity x = 2k/tp'^ is central, in that it 

commutes with the rest of the algebra. 

In a similar manner to the simple Lie algebras, the affine Kac-Moody algebras have highest 

weight representations, provided the central extension is non-zero. As befox'e, the repre­

sentations are formed from a highest weight state |A > , acted on by an arbitrary number 
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of negative step operators. The highest weight state is characterized by the action of hi, 
i.e. 

h,\A >= A{h,)\A > = ^ ^ | A > . 
a,-

In a similar manner to that corresponding the the simple Lie algebras, su{2) representation 

theory can be used to show that the above eigenvalue is a non-negative integer. As a result, 

the eigenvalue of the quantity x = 2k/ij)'^ acting on the highest weight state |A > , 

A{2klilj^) = Y,mik{hi) = X 
i 

is also an integer. It is called the integer level. The weight lattice Aw is the set of points 

such that 2A • ai/af is an integer. It is generated by the fundamental weights A j which 

satisfy 
2Aj • a, 
- I T ^ 

The root space can be viewed as that of the corresponding simple Lie algebras, but with 

two extra dimensions dual to k and d. The simple roots are given by 

a, = (a„0,0) (^7^0), and ao = ( -0 ,O , l ) . 

The inner product between any two roots is defined as 

(^l ,Ci ,(f i ) • {l32,C2,d2) = A • 2̂ + Cid2 + C2di. 

The fundamental weights are chosen (in the sense that the final component is arbitrary) 

to take the form 

A, = (A„mi072,O) (z ^ 0), Ao = (0,^^72,0). 

2.4 The conformal Toda model 

The (conformal) Toda field theory Lagrangian density corresponding to the simple Lie 

algebra g is given by 
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where r is the rank of the algebra g, $ is an r component real scalar field and the Q;, 'S are 
the simple roots of the algebra. As well as being a conformally invariant theory, the Toda 
model is integrable in that there exists a Lax pair, infinitely many conserved quantities 
and it is exactly soluble. 

The equations of motion corresponding to the above density are 

^'^,+X/3j2(^J^e^^'=0 (2.4a) 
i=i 

where $ i = and C is the 'Cartan' matrix with {i,jY^ component a.-ctj. In the original 

equations considered by Toda [57] the $ j were only time dependent and corresponded to 

the relative displacement of the points of an infinite linear lattice. In that case C was the 

Cartan matrix of SU{r -f- 1) with r going to infinity. 

The simplest case to consider is when r = I, and the Cartan matrix is simply the number 2, 

corresponding to the SU{2) algebra. The theory then corresponds to the Liouville equation 

The Toda model can therefore be looked upon as a generalization of the Liouville equation. 

2.4.1 The solution of the conformal Toda model 

The starting point for the solution of the Toda theories is the work of Leznov and Saveliev 

41] who considered the zero curvature condition for the Toda model, and subsequently 

derived the general solution of this model via path ordered exponentials. The Toda theories 

are two dimensional integrable field theories with zero curvature condition 

[d^ + W^,d, + W,]^Q, (2.4.1a) 

which is equivalent to the field equations. The gauge potentials W^^ are functions of the 

field $. The above condition is in fact a consequence of the linearized equation 

[d, + W,)T = 0, 

for some group element T. T can therefore be written as a path ordered exponential thus: 

T = Pexp L Q 
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the condition (2.4.1a) guaranteeing that the above is independent of the path of integration. 
As a result, equating the expressions for moving along the light cone at constant followed 
by x~ with the expression for moving firstly along x~ then a;+ gives the solution to the 
conformal Toda theory as 

where $o is a free field, \j are the fundamental weights of the simple Lie algebra g with 

associated highest weight states |Aj > , and f/(a;+), V{x~) are chiral group elements satis­

fying 

d+U = 6̂ *0 -̂ ^ f l E''-e-^< A U (2.4.1b) 
V i=i J 

d-V = -Vfi (e-z^^o-'^^^-^.e^^o-'^^") . (2.4.1c) 

2.4.2 From conformal Toda to affine Toda 

As a starting point, consider again the Toda field theory Lagrangian density corresponding 

to a simple Lie algebra g: 

The potential term in the Lagrangian density (2.4.2a) does not have a classical minimum, 

and is zero for ay • $ —> — oo. Also the theory is conformal, a property that has been 

studied by a number of authors [45, 27, 8 . 

It is possible to add a perturbation to the above Lagrangian density, so introducing a finite 

minimum. If the integrability of the theory is to be preserved, then it is necessary to take 

the perturbation of the form: 

where ao is the 'extended root', converting the usual Dynkin diagrams into the affine 

diagrams. For the untwisted theories, ao is simply the negative of the highest root if). The 

potential term now has a minimum at satisfying 

j2a,el'"'-^'°' =-ecc,eP"-^'°\ (2.4.2b) 
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On shifting the field $ by replacing it with $ = -|- $i>, then 

18 

V{<f>) 
x_ 

13' .i=l 
From (2.4.2b), 

where Cij, defined above, is an invertible and symmetric matrix, so that 

^pa,m^-0a,.^^o, ^ _^j2(C-%a, • ao. 

Therefore the potential term can be re-expressed as 

g^«o-0 _ ^ e^'"-'l'Ci,aj • ao 

y i=o 

by making use of ao = — I ^ L i '^i'^i) "o =̂  1 and the definition = eXe^°'°'^^°\ 

The Lagrangian density giving rise to the affine Toda field equations can then be written 

in the form 

^ = kdMdy) - ^ E n . l e ' ' " ^ - ^ - 1). (2.4.2c) 
P j=0 

the final part of the summation being added to ensure that V{(f> = 0) = 0. 

2.5 The conformal affine Toda model 

Historically, the conformal affine Toda model was the last of the three Toda models to be 

constructed [3, 6]. It came about as a generalization of the affine Toda model which, whilst 

retaining integrability, regained conformal invariance via the addition of two new fields. 

In the derivation of the algebraic solution to the affine Toda model [53], and indeed in 

the construction of solitons by Hirota's method along the lines of Aratyn, Constantinidis, 

Ferreira, Gomes and Zimmerman in [15, 1, 2], this model plays a prominent role. As a 

result, i t shall be discussed here for completeness. 



2.5. The conformal affine Toda model 19 

2.5.1 The equations of motion 

The conformal affine Toda equations can be viewed as the analogous equations of motion 

to those of the conformal Toda model, but this time corresponding to the affine algebra g 

as opposed to the simple Lie algebra g. They can be written 

1^ t=0 

where ^ = (j) • H -\- + rjd' lies in the Cartan subalgebra of g, and the a,'s are its simple 

roots. The above equations can be obtained as the vanishing of a zero curvature condition. 

The potentials , also lying in g, are defined as 

where 

r 

E±i = Y^y/^iE'^"-. (2.5.1a) 
The vanishing of the curvature, i.e. 

d+ + W+,d- + W_] = 0, 

gives the equations for the conformal affine Toda model. The above curvature can be 

written as 

-I3d+d-^ - / i ' [ef ^-^^E+i, e-^<^*£;_i] = 0. (2.5.1b) 

Using the expression for the adjoint action of ± $ on E±i, 

[±$,Ei] = |x:v^(^+v^-«.)^"", 
!=0 

then, in terms of the components of $, equation (2.5.1b) reduces to the system: 

i=l 

+ ^e^^e-^^-* = 0, (2.5.1c) 
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d+d-T] = 0, 

where Hi = rniil)'^ I of has been used. If x^ —>• f{x'^) then 

•di^di-\ 
^(.T±) ^ ( / ( x ± ) ) , i{x^) -> i { f { x ^ ) ) , and rj{x^) rj{fix^)) - In dx+ dx' 

showing that the equations are conformally invariant. In particular if 77 = 0, (2.5.1c) 

reduces to the equations under study in this dissertation, those of affine Toda field theory: 

,2 T 
^'•^ + ^ E nja.e'^''^-'^ = 0. (2.5.1d) 

P J=0 

The discussion of an algebraic solution of the conformal affine Toda field equations will be 

returned to later when the work of Olive, Turok and Underwood is reviewed. 

2.5.2 The solution of the (conformal) affine Toda models 

It is possible to apply the methods of Leznov and Saveliev to the conformal affine Toda 

model and obtain the general algebraic solution. Indeed, this has been done and is pre­

sented in [53]. However, due to the similarities between this model and that of the con­

formal Toda model, in respect of the highest weight representations of both g and ^, it is 

possible to deduce the Leznov-Saveliev solutions as [53 

g . - /3A. ($ ) ^ e-/3A.(*o) < A^\U{x+)V{x-)\Ai >, 

where ^ = (f> • HQ -\- -\- r]d', # 0 is a free field and U{x'^), V(x'') are the ^-analogues of 

(2.4.1b) and (2.4.1c), respectively. 

In the last subsection, it was shown that the equations of motion of the conformal affine 

Toda model reduce to those of the affine Toda model if 7; = 0. Putting this condition into 

the above solution [53], 

g - / 3 ( A . . $ K ^ ) ^ ^-p{x,-^o+m < x,\u{x+)v{x-)\x, >, 

for i ^ 0, and dividing by the i = 0 solution 

e-(^^^'l^=<X,\U{x+)V{x-)\\o>, 
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raised to the appropriate power to remove the dependence on ^, the affine Toda solution 
is obtained: 

< A o | f / ( a : + ) y ( x - ) | A o > - ' ^^^'^^^ 

with the U{x'^), V{x~) satisfying d+U = -jlU, d^V = -V9 where 

~^{x+) = fie^^^-"^E,e-f'^i-''° 

with E±i being given by (2.5.1a). I t should be noted that this formula was first obtained 

by Mansfield in the case of the sine-Gordon model [44]. As will be seen in the section 

after next, this solution has been exploited to prove algebraically many of the interesting 

properties possessed by the aflfine Toda solitons. 

2.6 Affine Toda field theory 

2.6.1 IVIasses and couplings in affine Toda theory 

Through a case-by-case study of the affine Toda theories, the masses of the quantum 

fluctuations about the vacuum solution in each of the models were calculated [49, 11]. 

Further, for the untwisted theories, these masses were found to be proportional to the 

entries of the Perron-Frobenius eigenvector of the Cartan matrix of flr - that is, the right 

eigenvector corresponding to the lowest eigenvalue. In the quantum theory a generalization 

of this was found, in that the values of the conserved charges are proportional to the 

components of the remaining eigenvectors. 

The case-by-case analysis proceeds as follows. Expanding the potential term in the La­

grangian density, 

the first term at order vanishes by virtue of QQ = — YJi^i W i ^ t , whereas at order zero 

in /? a (mass)^ matrix is obtained: 

{My''^ m^Y.n,a\a] a , 6 = l , . . . , r . 
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At order /3 the three point couplings appear, and are given by 
r 

C''^'^ = /3m^ J2 n^ata^a^ a, 6, c = 1 , . . . , r. 

For each of the simply-laced algebras the above masses were computed, along with the 

three point couplings in [11]. The following rather remarkable results were found. Firstly, 

the classical masses form an eigenvector of the associated Lie algebra's Cartan matrix 

corresponding to the lowest eigenvalue, A^m = 2 —2 cos | (where h is the Coxeter number). 

By the Perron-Frobenius theorem, all the components of this eigenvector can be taken as 

positive, in keeping with their interpretation as particle masses. As a result the masses can 

be assigned to particular points on the algebra's Dynkin diagram. As will be seen later, 

these mass ratios are identical to those of the single soliton solitons of the simply-laced 

theories allowing also for an identification between each soliton and a point on the Dynkin 

diagram. 

The three point couplings when expressed in a basis of mass eigenstates were found to be 

related to the area of a triangle with sides of length equal to the masses of the respective 

particles. Explicitly, the relationship found was 

where A"̂ *̂  is the area of the aforementioned triangle and f/^j are the 'fusing angles'. These 

results are also analogous to those for the soliton solutions where a double soliton can, at 

a certain rapidity difference of the contributing solitons, reduce to that of a single soliton. 

These rapidity differences are the same as those in the real coupling theory related to the 

above fusing angles [53, 30 . 

In the quantum theory it is found that to first order in ^ the masses of the simply-laced 

particles renormalize in the same way, and so leave the mass ratios unchanged. However 

this seems not to be the case in the non-simply-laced theories. 

There was an attempt to obtain the' above results by purely algebraic methods originally 

by Freeman [25], and later extended by Fring, Liao and Olive [26]. In the work of Freeman 

25], the affine Toda equations (with /? = 1), 
r 

a V + m^^niaie"^-^ = 0, 
i=0 
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are expressed in the more algebraic form 

23 

This expression is valid provided the numbers c,-, and q satisfy c^Ci = n,-. Further, the 

solution (j) = 0 exists only if 

r T 

E CiEa, and E ^i^-a 
i=0 i-O 

commute. This happens provided all of the Ci and Q are non-zero. In the terminology of 

Kostant [23] the element ^ QEQ,, is called regular, and commutes with a number of other 

elements of the algebra to form a second Cartan subalgebra, denoted h'. This alternative 

description of the algebra with associated step operators has been seen to play a major 

role, not only in the calculation of masses and couplings by algebraic means, but also in 

the algebraic construction of the soli ton solutions. 

Considering this Cartan subalgebra further, i f the action oi S = exp(2'!riT'^/h) is applied 

to both J2 c-iEoi and CiE^ai they are found to have eigenvalues cj and cj' '"^, respectively, 

where uj is the root of unity. In fact the basis of h' can be chosen to be the eigenvectors 

of the above action [23] , with eigenvalues ui^' where the ki are the exponents of g (these 

are listed for the simply-laced theories in Table 1 below [60]. The restriction of the action 

of S to h' is found to be a Coxeter transformation. 

Algebra Exponents 

An 1,2,3,. mod ( n 1 ) . 
Dn 1,3,5,..., 2n - 3,2n - 1 mod 2(n - 1). 
EQ 1,4,5,7,8,11 mod 12. 
EJ 1,5,7,9,11,13,17 mod 18. 
F, 1,5,7,11 mod 12. 
G2 1,5 mod 6. 

Table 1: The exponents of the simply-laced theories. 

This reformulation of the algebra is useful as it makes use of the connection between the 

eigenvalues and eigenvectors of the Coxeter transformation and those of the Cartan matrix. 

In particular, if A is an eigenvalue of the Coxeter transformation then 2 — A /̂̂  — X'^l"^ is an 
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eigenvalue of the Cartan matrix. Also, if x is an eigenvector of the Coxeter transformation 
then its components are, up to phases, those of an eigenvector of the Cartan matrix. 

From the equations of motion, the mass-squared matrix is given by the action of 

/ \ ( ' 
^ad J2 Ca£^-a ad ^ CaEa 

where (f> lies in h. It is convenient to choose the basis {(f)'- = Ra'^ ... R^'.^^a'^ [23], where 

R^r is a Weyl reflection in the simple root a^, as opposed to the simple roots themselves. 

For each of the roots </>• the step operators 

form an orbit under the action of 5, with the simple roots a of the form -y''{(j>i) for some 

k and i [23]. Therefore, a basis for h can be chosen as 

h-i 

k=0 

since these are the elements fixed under the action of S. As a result, it can be shown that 

/ \ / \h-i I \ I W - i 

ad ^ c„E_„ ad ^ c„E„ ^ ^7'=(,/,,) = ^^^a ^- ^«^-a 
\aeA / VofGA / k=0 \aeA / \aGA / h=0 

where 
/ \ f \ ' 
a d X : c „ ^ . E'^, ^c^E, Y.Kv 

The Y1\=Q E'^i are therefore a basis of mass eigenstates with (mass)^ given by the above 

eigenvectors. However, as Yl^aEa is an eigenvector of the Coxeter transformation with 

eigenvalue to (and so the lowest eigenvalue of the Cartan matrix), its components are, up 

to phases, those of the Perron-Frobenius vector. 

In the case of the three point coupHngs, it was shown in [25] that for three particles of 

masses mi ,mj , and m^, corresponding to the roots (/)-,(/> ,̂and 4>[, there is a non-zero coupling 

only if 

for some numbers a, b and c. This result was also noted independently by Dorey [20 . 
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The work of Freeman, summarized above, has been extended by Fring, Liao and Olive 
26] who showed that the masses are given by m,- = /3xiaf sm{Tr/h) where x,- is the z"' 

component of the left-eigenvector of the Cartan matrix and the three point coupling is 
given by 

_ Aie{i,j,q) 
~ y/h 

with Aijk being the area of the triangle with sides rrii, mj and rrik. If ip is the highest 

root then {^J2f^)e{i,j,q) = ± 1 , unless A; all correspond to short roots in which case 

KhJil) = i l / v ^ for the algebras Cn and F4, and ± 2 / \ / 3 for the algebra G2. 

2.6.2 5-matrix theory 

Another aspect of the quantum theory of the affine Toda model that has been considered 

in detail is that of the quantum S'-matrix [56, 61]. In fact, S'-matrices has been calculated 

for all of the algebras of afiine Toda field theory [4, 11, 16, 9]. More recently there has been 

an attempt to extend the work of the Zamolodchikovs [61] and construct the S'-matrices 

for quantum solitons. Therefore 5-matrix theory will , for completeness, be briefly reviewed 

here with a review of the soHton S'-matrix left to the conclusion of this thesis. 

The momentum of a particle in two dimensions can be written in terms of the particle's 

rapidity, 6a, as 

Pa — J^alcosh ^a; sinh ̂ a) 

where the velocity is given by v = tanh^a- In an integrable theory such as afflne Toda 

field theory there are an infinite number of locally conserved operators of which a single 

particle state must be a simultaneous eigenvector. If a locally conserved operator Qs is 

acted upon adjointly by the Lorentz transformation L then 

(adL)Q, = sQ,. 

In this case the operator is said to have spin s. For each spin there exists a conservation 

law leading to the following rule [61]: 

• the number of particles of mass is the same in both an in- and out-state, 

• the set of in-going momenta is the same as the out-going momenta. 
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As a result, there is no particle production and the ^-matrix is assumed to be factorizable. 

I t is therefore only necessary to consider two-particle S'-matrices at any one time. The 

factorizability of the ^-matrix leads to a constraint in that the two pictures below have 

identical total ^-matrix. 

ksk2 h k3 k2 k-i 

Figure 1: Factorization of the S'-matrix. 

The above leads to the Yang-Baxter equation 

where the indices denote the particle labels and dab = — 6b- There are further conditions 

that can be placed on the S'-matrix: 

Unitarity 

The probability that a two-particle scattering results in a final state is unity, therefore 

s'Msili-e) = 8181 

Crossing symmetry 

In the scattering process a -\- h ^ c-\- d there can be either s or t channel scattering. For 

the S'-matrix to be symmetrical under s ^, or equivalently 9 <r^ {iw - 9), then 

sM = s:i{zi: - 9) 

where b and d are the anti-particles of b and d, respectively. 
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Returning briefly to the masses and couplings of the fundamental particles, if two particles 

a and b can fuse to a third c then the two particle S'-matrix for a and b will have a pole at 

9li, where is obtained from the equation 

ml = ml + ml + 2mamb cosh 

Similarly b and c can fuse to a, and c and a can fuse to b. This is can be expressed in the 

form of a 'mass triangle' triangle mentioned earlier and visualized as 

Figure 2: The mass triangle. 

where 6 = n — 9 and so 

'ac be 

The final constraint that can be imposed on the S'-matrices comes from the bootstrap 

principle. If two particles a and b scatter purely elastically, and their ^-matrix has a pole 

at ^^(, then the bound state particle c can appear for some time during the scattering 

process. This can be visualized, for the three particle scattering process, as 

d a b 

Figure 3: The bootstrap principle, 

and leads to the following final constraint on the S'-matrix: 

Sd-ciO) = S,a{0-^Ol)Sdl>{9 + ^el). 
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Following the calculation of the S'-matrix for the â^̂^ theory [4], the S'-matrices for the 
remaining untwisted theories were constructed [11]. The extension to the the twisted 
theories is given in [16, 9]. 

2.7 AfRne Toda solitons 

It has long been known that the familiar sine-Gordon equation possesses localized mass 

configurations known as solitons. There are two fundamental solitons, the soliton and 

antisoliton, each distinguished by their topological charge. As the sine-Gordon model is 

the simplest of the a*ĵ ' affine Toda models it is reasonable to speculate that solitons exist 

in these more general theories. 

As such, HoUowood used Hirota's method to investigate the complex coupling a!;^^ theo­

ries [32]. There it was found that there were r=rank g solitons which, although having 

complex energy density, possessed real mass. In fact these mass ratios where the same 

as those obtained for the fundamental Toda particles. This led to an association between 

the solitons and points on the unextended Dynkin diagram A„. Further, the topological 

charges of the solitons associated with the end-points of the diagram were calculated and 

found to be the complete set of weights of the associated fundamental representation. It 

was claimed that for the remaining solitons, the topological charges lay within the corre­

sponding fundamental representations but did not fill them. 

At that point there were two immediate questions. Firstly, could the use of Hirota's 

method be extended to the remaining affine Toda theories, twisted as well as untwisted, 

and secondly is there a general description and explanation of the location of the topological 

charges both within the â '̂ representations and correspondingly for other theories. The 

next chapter, based on [46], addresses the first question with the following two chapters 

considering topological charges for the a^^^ [47] and other theories. 

2.7.1 The algebraic soliton solution 

This section briefly touches upon the work of Kneipp, Olive, Turok and Underwood [53, 



2.1. Affine Toda solitons 29 

54, 39, 58]. They have considered in detail the general algebraic solution to affine Toda 
field theory, (2.5.2a), obtained from the conformal affine Toda model, as discussed in §2.5.2 

Recalling that, 

< Ao|£/(a;+)I/(a;-)|Ao ' 
then if 4>Q are constant and he in '^S.wig") then the Chiral equations for U{x'^) and 

V{x~) can be trivially integrated to give 

where ^(0) is a Kac-Moody group element. The above solution therefore reduces to the 

form 
^-px,, ^ <A.|e-/^^'-"^(0)e-^^-^-^|A.> 

< Ao|e-^^i^+^(0)e-^-^-i^+ [AQ >'"•' 
Making use of the alternative Cartan subalgebra and associated step operators as discussed 

in §2.6.1, the element ^(0) can be parameterized, in the case of N soHtons, by coordinates 

and momenta and expressed in the form 

The Kac-Moody generators F[ai,pi) have the property that 

\EM,F{ai,pi)] = q{[M]) • aip'^F{a„p,). 

Each F{ai, pi) can therefore be viewed as creating a soliton with momentump* \q{\)-a.ip^^ 

at position In The imaginary part of Q is interesting for the purposes of this thesis as 

it determines the soliton's topological charges. 

For the untwisted theories, the soliton energy-momentum was calculated in [53] giving the 

soliton masses as 

This work has been extended in a number of directions. Firstly, in [54] examples of the 

more generalized single solitons of the non simply-laced theories are presented, as well as a 

Vertex Operator construction of the F\z) = .^(7^, z). This has the important consequence 

of providing a classical version of Dorey's fusing rule for the untwisted theories. 

As well as this, the algebraic construction of soHtons has been discussed in the context of 

general integrable systems [55 . 
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2.7.2 The Backlund transformations of the An affine Toda field 
theory. 

In this section the investigation into affine Toda solitons, in particular the reality of their 

energy, by Backlund transformations [43] is reviewed. 

In theories possessing topological solitons it is often found that the classical energy density 

is equal to a topological surface term, provided certain first order differential equations 

are satisfied. These differential equations are called the 'Bogomolny' equations. For the 

sine-Gordon theory, the relevant first order equations, the Backlund transformations, have 

been known since the 1800's. These have been generalized to the case of the An affine 

Toda theories by Fordy and Gibbons [24 . 

Wi th the affine Toda Lagrangian density written in the usual form, but with P —>• i/3, 

it is convenient, for the purposes of this discussion, to write the extended simple roots as 

ai — Ci — ei+i where {e i , 6 2 , . . . , ê , Cr+i = CQ} is a set of orthonormal basis vectors. The 

field (?!>, which lies in the r dimensional subspace spanned by the simple roots, is written as 

(j) — J2i SO that (f)i = Ci- (j) and J2i 't>i = 0- The equations of motion are then expressible 

in the form 

F,(<^) = â <̂ , - ^ (eW.-^^+i) _ e'75(0.-i-*;)) = 0 (2.7.2a). 

The vector fields </> and (f> are defined to be orthogonal to X̂ ,- and to satisfy 

d+{(i>, - = (eW^-*^+^) - e^^(^^-i-^^)) , (2.7.2b) 
a_(<^i - ^ , _ i ) = -^A-^ (e'/3(^.-^.) _ ^ (2.7.2c) 

\/2/3 

where = ( i ± . T ) / \ / 2 are the light-cone variables, and A is known as the parameter of 

the Backlund transformation. Differentiating (2.7.1a) wrt x~ and (2.7.1b) wrt x"*" then 

using both (2.7.1a) and (2.7.1b) to remove the derivatives of the fields in front of the 

exponentials, gives 

F,{<i>) = FM) and F,(^) = F ,_ i (^ ) . 
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These equations are satisfied for all j and so all the functions Fj are equal. Therefore, 

F,i^) = F,i^) = ]-j:F = 0, 

the last equation being true by virtue of the expression for Fi in (2.7.1a). As a result, inte-

grabihty of equations (2.7.1b) and (2.7.1c) imply the equations of motion hold. Therefore 

the above coupled equations map one solution <̂  into another (f). 

The trivial solution 4' = ^ reduces the Backlund transformations to the form 

777 

d+<l>j = ^ A ( e - ' ^ ^ ^ + ' - e-'^^O (2.7.2d) 

d-<j>, = -^A-\e'^'^' - e'"^^-') (2.7.2e) 

Defining Bj = ^ - i g ' ^ ' ^ " the above equations become 

777 

5,^, = - ^ ( 5 - - 5 - ) (2.7.2f) 

d-<i>, = ^ { B , - B , . , ) (2.7.2g) 

In order to find static single solitons it is assumed that dt(j> = 0, so that (5+ -|- 5_)<^ = 0, 

i.e. 
± e,{B-l, - B f ) + j : e,{B, - B,_,) ^ ± a.iBjl, - B^) =: 0. 
j=o i=o j=o 

Since the extended sum of simple roots vanishes -\- Bj = c, V j , where c is some 

constant. Therefore once one Bj is determined, the rest are then known. The recurrence 

relation for the Bj can be used to give c = 2cos{9/2) where 9 = 2'rca/h, a = 1 , . . . , r . The 

resulting Backlund transformations simplify to 

dBj 
= -im{B, - e''''){B, - 6" '^ /^ ) . 

dx 

Upon integrating, and imposing the condition -|- Bj = c, the static soliton solution is 

obtained: 
,g/,e'(^-^)^ge^""^'"^/^-l 

Q being a complex constant, the magnitude of which is the exponential of the centre of mass 

and the phase of which determines the soliton topological charge. Defining a = 2m sin 0/2, 
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^ = In Q - iiT, ^ = ax + ^ and Ua = e'̂  then 

l + U e * ' 

and so the field ^(a) can be written in the form 

in agreement with the expression first obtained by Hollowood [32] and calculated using 

Hirota's method in the next chapter. Having obtained the single static soHton it is possible 

to put this into the Backlund transformation and so obtain the two soliton. By repeating 

this process the general A/'-soliton solution can be built up. However it is possible to use 

properties of the transformation which simplify the calculation. This is explored in further 

detail in [43] and shall not be discussed here. 

I t is also possible at this point to obtain expressions for the soliton masses. The energy 

and momentum densities are given by 

^ n 

" n 

respectively. From the definition of Bj and the Backlund transformations 

d^B, = '-^{B-lB^ - 1) = d^B'l, 

and so defining B = J2j Ej and B — Ylj B~^ then d+B = d-B. The potential term can 

therefore be written, 

and the kinetic term is expressed via the equations 

The energy and momentum densities are therefore 
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The light-cone components of the momentum are therefore 

E + P V2m ~ 

^_ E-P V2m 
P = — ^ = — — ( hm - hm )B. 

From the expression for Bj above, Bj e"""̂ /̂  as a; —> ±oo, and as a result, the mass 

squared of the soliton can be written as 

V P V h J J 

for some integers n±. This is in agreement with the result first obtained by HoUowood in 

32 . 



Chapter 3 

Classical AfRne Toda Solitons 

34 
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3.1 Introduction 

The study of solitons in affine Toda field theory was initiated in the work of Hollowood [32]. 

In that original work, Hirota's method was used to show that the â ^̂  theory possessed n 

static single solitons each of mass 

2mh r-

where 1 < a < n associates each soliton with a spot on the Dynkin diagram, h is the 

Coxeter number, and is the a^^ eigenvalue of the matrix A'̂ C (see later for details). 

The first remarkable property of the solitons is that their mass ratios are equal to those 

of the fundamental particles found in the 'real-coupling' quantum theory. Secondly, the 

topological charges of the single soliton corresponding to a = 1 (or equivalently a = n) 

were calculated and found to fill up the corresponding fundamental representations. For the 

other solitons it appeared that the topological charges, although lying in their associated 

fundamental representations, did not fill them. The study of the topological charges of this 

and the remaining theories will be taken up in Chapters 4 and 5, respectively. 

A variety of methods have been applied by a number of authors to construct affine Toda 

sohtons. The methods of Hollowood have been generalized [46], Hirota's method has been 

applied to the conformal affine Toda model [15, 1, 2] and from it the solitons of the affine 

Toda model deduced, Backlund transformation have been used to generate the An solitons 

43], and finally the methods of Leznov and Saveliev [41] who constructed a general solution 

to the conformal Toda model, have been used to construct a general algebraic solution to 

the affine Toda model [53, 54, 39, 58 . 

I t is the generalization of Hollowood's methods, the majority of which has been published 

in [46], that will be considered here. Further, static soliton configurations will be dis­

cussed. That is, in the sine-Gordon equation the only static soHton (in the sense that time 

dependence can be removed by moving into the rest frame of the soliton) is that of either 

the sohton (which has topological charge -|-1) or the antisoliton (which has topological 

charge —1). In the more general A„ theory, the increased number of different types of 

soliton (each with a number of different topological charges) allows for static multisoliton 

configurations to occur as a specialization of the general multisoliton solution. In these 
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cases, each soliton making up the static solution must be of a different type (otherwise the 
interaction constant between two solitons of the same type vanishes, thereby resulting in 
a single soliton solution of that type). This topic shall be touched upon in its own right as 
well as providing a means of constructing solitons which are preserved under the folding 
process and so exist as solutions of the folded theory. 

3.2 The equations of motion 

With regard to the Lagrangian density of affine Toda field theory (2.4.2c), if the coupling 

constant ^ is replaced by i/?, the potential term becomes 

W ) ~ E n , ( e ' ^ " ^ - ' - l ) . 

In the real coupling case, upon considering real fields, this is zero only for <j) = 0, whereas 

in the complex coupling regime the potential has zeros for (f) € ^ A ^ , ( A ^ being the 

CO-weight lattice). The appearance of many minima of the potential is an indication that 

soliton solutions, interpolating from one minimum at x = - co to another at a; = -foo, may 

exist. The change in the field between x = ±oo is therefore proportional to an element of 

the co-weight lattice. 

Setting the coupling constant /3 to be purely complex, the equations of motion are rewritten 

d'cf>-~i2 rija.e'^"'-'^ = 0. (3.2a) 

The ansatz used in [32] to generate the â ^̂  solitons is found to be problematic when applied 

to the non-simply-laced theories, implying the need to modify i t . The modification required 

appears to be to rescale each of the roots by a numerical constant. The new ansatz for the 

field 4'{x,t) which will be considered is 

1 " 

= - — X ^ r / i a i l n r , (3.2b) 

which, when substituted into (3.2a), gives 

j=0 
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where 

Q, = ( ^ ( f , r , - i f - r jS- - r f ) - m \ ( f [ r , - — - ^ i ) ) 
\k=o 11 

= (A^ - Dl)r, . r, - m \ ( f [ r , " — ^ - ^ , ] ] . 
\ "^^j \k=o JI 

and /Uj is, without loss of generality, completely arbitrary. In the second expression, the 

Hirota derivatives D^^ and Dt, defined by 

have been used as they make the subsequent calculations much easier. A brief review of 

Hirota derivatives and their properties is given in appendix A . l . In general, Qj — ̂ i^j (for 

some constant ^ 2 ) and for the Hirota equations to hold at lowest order in e, it is required 

that pi — p2 = 0. Therefore Q'^ = 0 where 

= i ^ M - Dl)r, . r, - m \ f H ^ - l ) V 
V ^ ^ i \k=o IJ 

(Note that the existence of n -|- 1 r-functions (compared to the n-component field <̂ ') can 

be traced back to the ^ field in the CAT model [15]). The equations of motion can now be 

reduced to the form, 

, , ( A ^ - Dl)r, . r, - 2m% H -r""'""' - 1 = 0- (3.2c) 
Vfc=o / 

In the spirit of Hirota's method for finding sohton solutions [31], it is assumed that 

r, = 1 + 8f\^t + 8f^e'^e' + .... + S^J'^^^^^t^^ 

where $ = a{x — vt) + ^ and 8^^\\ < k < pj),a,v and 1̂  are arbitrary complex constants. 

The constant pj is a positive integer and e a dummy parameter. The method employed is 

to solve (3.2c) at successive orders in e. In general the series terminates leaving a relatively 

simple solution. The smallest value of Pj for which the series terminates gives the single 

solitons, whereas the multisoliton solutions correspond to greater pj. 

At first order in e the equation (3.2c) is expressible in the form 
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so that the vector formed from the |̂̂ ''s i.e. 6^^^ = {SQ'\ 6[^\ (5̂ '̂)"̂ , is an eigenvector of 
the matrix E which has components 

Ei, = %i,a, • a,. (3.2d) 

In the simply-laced theories the corresponding eigenvalues are, up to a factor, the unrenor-

malized masses of the fundamental particles in the real coupling theory. This can be seen 

as follows: define the matrices 

• 7] = diag(7/o,7/i,...,r/r) 

• N ^ diag(no,ni , . . . ,nr) , 

• {C)ij = ai • aj, 0 < i j < r. 

Then rewriting (3.2d) in matrix form 

r]Er]-^ = NC, 

showing the E and NC are similar and so share the same eigenvalues A which satisfy 

(T\l-v^)^m'^X. (3.2e) 

Indeed for the simply-laced theories it has been shown [11] that the squared masses of the 

fundamental Toda particles are eigenvalues of NC so proving the correspondence stated 

above. This result is used later to show that for the simply-laced theories the mass ratios 

are the same as those in the real coupling theory. For the non-simply-laced theories, the 

eigenvalues of NC are up to a constant equal to a subset of eigenvalues of the mass matrix 

of the simply-laced theory from which it is obtained by folding (see later), as in the real 

coupling theory. However, the mass ratios in the untwisted theories are not the same as 

the unrenormalized mass ratios of the real coupling theory. This is due to the solitons of 

these theories in some cases* being multisolitons of the corresponding simply-laced theory. 

This will be discussed at the end of the chapter. 

It is important that the solitons are bounded at a; = ±oo in order that the energy and 

momentum be finite. With this restriction a relationship is found relating pj, 7/j, rij, 

*i.e. when a mass degeneracy occurs between the solitons associated with the points of the Dynkin 
diagram giving rise to the folding. 
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namely 

Further, in order that each r,- in the Hirota equations be raised to a non-negative power, 

and so allowing the perturbative expansion to be performed, the r/j's must be related to 

the simple roots via 
2 

a, • a J 

i.e. HoUowood's ansatz is generalized by expanding (i){x,t) in terms of co-roots as opposed 

to roots. Note that for the simply-laced cases rjj = 1 and the r-function perturbative series 

for the single solitons terminate at pj — Uj. 

Finally, the matrix 7VC has an eigenvalue A = 0, but it is unnecessary to consider the 

corresponding solution as it is always ^ = 0. 

3.3 AfRne Toda solitons for simply-laced algebras 

In this section the single soliton solutions will be explicitly constructed for all of the simply-

laced theories. I t turns out that for each of the theories the number of solitons is equal to 

the rank of the algebra and in a similar manner to [12, 11] each soliton can be associated 

to a spot on the algebra's Dynkin diagram via the eigenvalues of the matrix NC. 

3.3.1 The theory 

The simplest of all the affine Toda theories is that associated to the algebra â ^̂  . The 

soliton solutions to this theory were first discussed in [32]. In the special case of a^i\ 

Qfo = — a i and so (j) = (l>iai, the equations of motion reducing to 

aVi + ^ s i n ( 2 ^ ^ i ) - 0 

i.e. those of the well known sine-Gordon model. These equations have solution 

<f>Ux,t) = 4tan-i(e-(^-'^*)+«) = - T ^ l n ^ — 
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with a^(l — u^) = 4m^. The solution has been expressed in terms of a logarithm, as this 
is the form of the solution which generalizes under the Hirota method. 

Turning now to the â ^̂  theory in general, the equations of motion, with 7/j = 1, take the 

Hirota form 

( A ^ - Z ) > , - r , = 2 m V . - i r , + i - r / ) . 

The matrix NC has non-zero eigenvalues given by 

Aa = 4sin'' a-l,...,n. 
\n + IJ 

For the single solitons pj = 1 giving the solution in terms of r-functions as 

where to is an (n + 1)*'' root of unity. There are n non-trivial solutions [32] (equal to 

the number of fundamental particles) with uja = exp 2'iria/{n-\-l) (1 < a < n). These n 

solutions to a|ĵ ) can be written in the form 

It was shown in [32] that (j)(^a) (1 < « < can be associated with the a*'' fundamental 

representation of aj^'^ , and that different values of Im( give rise to different topological 

charges. The topological charges are found to be weights of the particular representation. 

Therefore, strictly speaking the results presented here correspond to representatives from 

each class of solution, as the value of ( and so the topological charge, is not specified. 

The general A'^-soliton solution can be built up from the single soliton solutions, having 

r-functions given by [32], 

r , ( ^ , i ) = E • • • E e x p ( E A ' p ^ P ^ p + E I^PN^^A^'A (3-3.1a) 
m=0 tiN \p=l l<p<q<N / 

where 
^(p,) ^ (^p - <Tqf - {(^pVp - (rgVqY - 4m^ sin^ f (ap - a,) 

{(Tp + (Tqf - {apVp + agVq)^ - Am? sin^ f (cp + a,) 

is the 'interaction constant'. 

(3.3.1b) 
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In the classical theory of sine-Gordon solitons there are considered to be two static con­
figurations, corresponding to the soliton and its anti-soliton, each distinguished by their 
opposite topological charges. In the context of this discussion this pair will be viewed as the 
sine-Gordon soliton which possesses two topological charges. The distinction is important 
for, as will be seen, the aĵ ^̂  theory can have static multisoliton configurations composed 
of different solitons i.e. with different a, not just different topological charges. Therefore 

( n \ 
, static A;-soliton solutions and 
k j 

static configurations in total. Before considering double solitons solutions composed of 

solitons of different types, consider a 'static' {vi = V2) double soliton composed to two 

type 'a' single solitons. It is necessary to fix Ui = a2, and not ai = —(72 which the 

identification of velocities would allow. The reason for this is that the latter choice of 

CTi = —(72 results in solitons having topological charges corresponding to a type 'a' and 

type 'h-a' being considered. Therefore, considering ai = 02 the interaction parameter is 

zero, leaving the j^^ tan function as 

for some complex constant ^3, i.e. that corresponding to a static single soliton. When 

occurring in a more general multisoliton solution, solitons of identical type and velocity 

similarly collapse to a single soliton. 

As an example, which will be useful later when the c^^^ solitons are discussed, now consider 

the static double soliton which takes the form 

In the solitons' rest frame, from (3.2e), ax\f\2 = o'2\A7, and so 

$2 = y ^ ( $ i - 6 ) + 6- (3-3.1C) 
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When the coefficient of $ i in (3.3.1c) is a positive integer then these solutions arise directly 
from the Hirota method - that is when 

sm —— = k sm —— . 
\ h J \ h J 

These special cases were first considered in [1] where it was found that the above equation 

is satisfied for h = 2p and h = 6p. The resulting 'mass degenerate' solitons were viewed as 

different from those constructed by HoUowood. In fact, as has been seen, they are nothing 

more than the static multisoliton solutions derivable via Hirota's method but nonetheless 

lying within the general iV-soHton solution (3.3.1a). 

li a2 = h — ai, then 

A( - ) = coŝ  f ̂ ) = 1 - ^A., 

and after the shift $ i ^ $ i -|- 6 , 

r,{x,t) = 1 + 2 / i<e^^ + j/2u;i„,e^^ + ym ( l - ^ A , , ) ê '̂ 

where y-i = and ?/2 = ê -̂ Notice that when yi=0 (or j/2 = 0), that is when the first 

(or second) soliton is sent off to infinity, the above solution reduces to a that of a single 

soliton. It is this solution which is important in the study of the ĉ ^̂  theory. 

3.3.2 The theory 

The d^^^ theory, whose Dynkin diagram is shown below, is slightly different to that of the 

general dj^"^ theory in that it has a rather larger degree of symmetry. As a result, its Hirota 

equations are different to those of the general theory and so will be considered first. 

o o 
o 

o o 
cii 0:4 

Figure 4: Affine Dynkin diagram for d'^K 
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In this case, the eigenvalues of the matrix NC are A = 2,2,2 and 6. With rjj = 1 V j , the 
single soliton has pj = rij V j and satisfies 

{D',-Dl){rrr,) = 2m\r2-Tf) ( j / 2), 

{D^ - DI){T2 • r2) = W(ToriT3T4 - T^). 

If A=2, three solutions are obtained [32]: 

To = T3 = 1 e*, r2 = 1 -I- ê *, and T-^ = T4 = 1 - , 

as well as cycles of the indices (1,3,4). If A=6, one solution is obtained: 

To = Ti = T3 = r4 = 1 -|- e*, and T2 = I — 4e* -|- e^^. 

In the more general case of d!^^ the eigenvalues of the matrix A'̂ C are 

\a = 8sin^??a where -da = —, r (1 ^ « < — 2), 
2(n — 1) 

and A„_i = A„ = 2. 

Again, as in all of the simply-laced theories, r]j = 1 V j , so that for the single solitons 

p- = rij, V j . The solutions to the equations of motion in this case are not as straightforward 

as those for the â '̂ theory. However, recursive relations are found relating the ^j^^'s. 

Explicitly, the equations of motion take the form 

{Dl-Dl)T,-n = 2m\T,-Tl), 

{Dl - DI)T2 • T2 = 4m2(roTiT3 - t | ) , 

{Dj - DI)TJ • T, = 4m2(r,_ar,+i - r / ) (3 < j < n - 3), 

{Dl - Dl)Tn-2 • T„_2 =47n^(r„r„_iT„_3 - T^_2), 

{D', - DI)T^., • r„_i = 2m^(T„_2 - r ^ J , 

{D]-Dl)T^-T^ = 2m\T^_2-Tl), 

with solution corresponding to A = 2 being 

# ) = - # ) = l , ^ f ) = 0, = ( - l ) M 2 < j < n - 2 ) , 
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SHI^ = - 4 ' ' = ± 1 (n even), S^^l, = -^^^ = ±z (n odd), 
and for A = Aa {I < a < n — 2), whether n is even or odd, 

= ^ f 2 ! M ^ , i « = l ( 2 < ; < „ - 2 ) . 
COStS'a 

The only multisoliton of interest here, as far as folding to the non-simply-laced theories is 

concerned, is that double soliton formed from the solutions related to the points on the 

forks at the end of the unextended diagram. This will be discussed later when the b^^^ 

theory is considered. 

3.3.3 The ê^̂  theory 

There are three exceptional simply-laced algebras, the first of which is the Cĝ^ theory. Here 

the eigenvalues of the matrix A'̂ C are given by 

Ai = As = 3 - a/3, A2 = 2(3 - Vs), 

A3 = As = 3 + \/3, A4 = 2(3 -F V3). 

As in the other simply-laced cases, r]j = 1 and pj = Uj V j giving the equations of motion 

{D',-Dl)Ta-Ta = 2m'{n-T^), 

{D] - Dl)u • U = 6m2(T2r3r5 - r^), 

where (a,b) = (0,2),(l,3) and (6,5). A summary of the ^-values for the six single sofiton 

solutions is given in Table B3 of Appendix B. The various symmetries of these solutions 

will be discussed later in both the context of folding and of topological charges. 

3.3.4 The e\^^ theory 

In this case and the next, the expressions for the eigenvalues although known, are rather 

complicated. The non-zero eigenvalues of the matrix A'̂ C are given by 

A, = 8V3sin ( - j sm ( - j , A4 = SVSsm [ - ) sm ( - j , Ag = sV^.n [ - ) sm , 
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A2 = 8 s m 2 ( ^ y j , A3 = 8 s m 2 ( ^ - j , A5 = 8 s m 2 ( ^ y j , A7 = 8 s m 2 ( ^ - ^ . 

In general, when solving the equations of motion, the '̂s are found to be polynomials in 

the eigenvalues of quite high degree. However, the 67^' calculation can be simplified by 

using the characteristic polynomial of A'̂ C, which for A = A2, A5, A7, is 

A^ - 12X^ + 36A - 24 = 0, 

and for A = Ai , A4, As, is 

Â  - ISA' + 72A - 72 = 0. 

Therefore, the '̂s can be written as polynomials in A of degree less than or equal to 2. The 

results are given in table B4 of appendix B. 

3.3.5 The ê^̂  theory 

The last of the simply-laced theories is that of Cĝ .̂ The eigenvalues of NC, calculated in 

12] are 

A, =3273 sin ( ^ ) sin ( 0 c o s ' ( ^ ) , 

A T • / TT \ . /7r\ 2 /7r\ 2 / ^ T T X 
A2 —128v3sm — sm — cos — cos — , 

A3 = 8 x / 3 s m ( ^ - j s m ( ^ - j , 

r- / 7 r \ /7r\ 2/27r\ . /7r\ 
A4 = 512v3sm — sm — cos — cos — , 

\30/ V5y V15/ v5y 

A. = 8 ^ / 3 s m ( ^ — j s m ^ - j , 

r- /] 
A6 = 8V3sin -

V 
' l l 7 r \ . / T T 

sm 30 J V5 

A7 = 32V3sm f — ) sin ( -
\30/ V5 

cos' f ^ ] 
307' 

Ag = 8\/3 sin TT \ , fir 
30 J 15 

As in the previous case, the characteristic polynomial of A '̂C can be used to simplify the 

expressions for the (5-values. For A = Ai, A2, A4, A7 it is 

Â  - 30A^ -F 240A' - 720A + 720 = 0, 
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and for A = A 3 , A 5 , Ae, As it is 

Â  - 30A2 -F 300A^ - 1080A -F 720 = 0. 

This factorization of the characteristic polynomial was also noted in [12]. As such the 

expressions for the '̂s can be simplified to order of at most three. The results are given in 

Table B5. 

3.4 Folding and the non-simply-laced algebras 

It would be possible to proceed in the same manner as in the previous sections and construct 

the solitons for the non-simply-laced theories. However, all the necessary information has 

essentially been gathered. This follows from the idea that the Dynkin diagrams for the 

non-simply-laced theories may be obtained from those of the simply-laced theories by the 

'folding' procedure of Olive and Turok [52] which exploits the symmetries of the simply-

laced diagram. 

The affine Toda equations have a symmetry if a permutation p of the simple roots, acting 

on the field (j), leaves the equations invariant in the sense that if ̂  is a solution, then so 

too is p(</>). This is guaranteed if the Cartan matrix also possesses this symmetry i.e. 

K,j = Kp(i)p(j), 

which is true if and only if the structure of the Dynkin diagram corresponding to K is 

preserved by the permutation. There are two types of non-simply-laced diagram - those 

that are untwisted and those that are twisted. The untwisted diagrams are obtained 

be exploiting symmetries of both the extended and the unextended diagram whereas the 

twisted diagrams are obtained by exploiting a symmetry of the extended diagram only. The 

relationships between the simply-laced and non-simply-laced diagrams can be summarized 

as follows: 
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Untwisted Twisted 

"n-M ^ 0̂  "2„ —> a2n-l 

" 2 n - l ^ C„ a„^2 ^ "n+1 

4^' - fi'^ 4^' - 4^' 

"2n+2 ^ <̂ 2n 

4^) -> a f ' 

In the following subsections, the simple roots of the non-simply-laced diagrams {a-} will 

be expressed in terms of those of the corresponding simply-laced theory {ai}. So that if 

then a solution of the simply-laced theory is also a solution of the non-simply-laced the­

ory provided the r-functions Tj are identical for all j G Ui, with the r-functions in the 

non-simply-laced theory being T- = Tj. It will be found that the single solitons already 

constructed do not, in general, provide a complete set of solutions for the non-simply-laced 

theories due to them not, in general, possessing the required symmetry from which the 

non-simply-laced diagram is obtained. As will be shown, following the suggestion in [53], 

in these cases it is the static multisoliton configurations of the simply-laced theories which 

are the single solitons of some of the non-simply-laced theories. It is found that the multi­

soliton configurations need to be considered when the solitons associated with the simple 

roots which take part in the folding process are mass degenerate. 

In the following subsections the single solitons of all the non-simply-laced theories will be 

derived. 

3.4.1 Solitons in the untwisted theories. 

The theory. 

Consider first obtaining the ĉ ^̂ ' theory from that of a2n-i- is easily seen that the a^2r!-i 

Dynkin diagram is invariant under the unextended diagram symmetry a,- —> a2n-i, where 

it is understood that the labeling on the simple roots is modulo h. 
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ak-l CXh-2 OLn+l 
o—o— —o. 

o—o— —o 
ai a2 OLn-\ 

p 
OLr,. a. 

Figure 5: The folding of a^2l-\ to ĉ '̂ • 

The simple roots of the cĵ ^̂  theory, {a -} , are therefore given in terms of those of a2n-i by 

tto = tto , a• = ^( t t i -I- ot2n-x) (1 < « < n - 1) , = Q:„, 

and so as discussed above, the solitons of the ĉ '̂ theory are those of the a^2l-\ theory with 

0̂ = '̂ 0 , < = r„, and r j = = r2„_j (1 < J < n - 1). (3.4a) 

The problem that is run into here is that there is only one single soliton of the ajj i^i theory 

with the property = T2„_, - that corresponding to a = n. The other solutions, which 

will now be constructed, are those static double solitons composed of an ( i , 2n — 2)-soliton 

pair, (z = 1 , . . . , n — 1). 

Recall now the static double soliton derived at the end of §3.3.1 which corresponded to 

a2 = h — ui. In this case with ^1 = ^2, 

r,ix,t) = 1 + 2COS ( ^ ) e^^+cos' ( ^ ) ê ^̂  

The solitons with a = ai = 1 , . . . , n — 1 possessing these r-functions are left invariant under 

the symmetry (3.4a) and so constitute the remaining solutions of the ĉ ^̂  theory. Indeed 

the above solution with ai = n and an appropriate shift in ^2 reduces to the a = n single 

soliton. Therefore, the single sofitons of the ĉ '̂ theory are given by 

1 " 2a'-
<̂ (a)(â ,0 = - ^E^^ ln^K^ 'O {a = l,...,n), 

j=o • " j 

where 
/27raA ^ 

T'^{X, t) = l+2cos H- coŝ  
/7ra 2$ 
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The b^^^ theory. 

o 

o 
a i 

O 

;o—o- - o ; 
a2 as On-r O 

an+i 

O 

O 
"2 

-o-
as an-i a„ 

Figure 6: The folding of 4 + i to b^^^ . 

The unextended diagram symmetry under which the 4 + i diagram is left invariant is that 

corresponding to the interchange of the prongs at the fork, as show in Figure 6 above. The 

corresponding relationship between the simple roots of the b^^^^ and 4 + i theories is: 

a- = ai{0<i<n- 1), < = ^ (a„ -1- a„+i), 

and so the solitons of 4 + i which survive the folding procedure to become solitons of the 

Uj^^ theory are those having r„ = r^+i . From the results of §3.3.2 it is found that there 

are n ~ 1 such single solitons which give the r-functions in the 6̂ ^̂  theory corresponding 

to those sohtons with a = l , . . . , n — l a s 

4 = ri = l + e\ < = 1 + 

d . ; = l + ? ^ 2 i M ^ e ' + e - ( ; = l , . . . , n - l ) 
•' COS Va 

an 

where da = a7r/2n. 

In the same manner as in the previous subsection, the remaining soliton of b^^'^ correspond­

ing to the short root is the static double sohton of the 4 + i theory made up of the (n, n-f-1) 

soliton pair. When expressed in terms of the b^^^ theory, the soliton corresponding to the 

short root is characterized by 

r^ = 1 -F 2^^e* -\- e'*, r^ = 1 - 2^^e* + e'^ r^ = 1 + ( - l ) "e* . 

and r ' - l - f 2 ( - l ) ^ ( l + 2(n - j))e* + e'*, (; - 2 , . . . , n - 1) 
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The g^2^ theory. a i 

/ — - a 

50 

o- Oi2 -o- P o—O; 
an 

O" 
Figure 7: The folding of to g^^^ . 

The unextended Dynkin diagram possesses a three fold symmetry corresponding to a 

rotation of the diagram, or in other words, the rotation of the simple roots corresponding 

to the three equal mass solitons. The relationship between the simple roots of the d^^^ and 

^2 theories are as follows: 

a'o = "0 , 0![ = Q;2, and a'2 = - ( a i -\- as-{- 0 4 ) ; 

and so the required solitons of the ^2^' theory are those of 4̂̂ ^ with n = T3 = T4. There is 

only on such single soliton - that corresponding the central spot of the Dynkin diagram. 

The remaining g2^^ soliton is the triple static soliton solution of the d^^^ theory composed 

of the solitons having a = 1, a = 3 and a = 4. The resulting solitons of the ^2^^ theory 

have r-functions given in table B7 of Appendix B. 

The / i '^ theory. 

«6 0 

o—o-
an 

7^ 
ar. a\ 

Figure 8: The folding of ê ^̂  to fi^^ 

The symmetry of the unextended diagram which gives rise to the /4^^ diagram is that 

which interchanges the two long legs of the diagram. The corresponding relationship 
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between the simple roots of the theories is 

a'a = ao, a[ = a2, a'^ = 04 , a'^ = ^(0:3 + 0 5 ) , and a'^ = ^{a-i -\- a^). 

There are two single soliton solutions with T3 = T5 and r i = rg. These are the solitons 

associated with a2 and 0:4. The remaining solitons of the /4^^ theory are the (3,5) and 

(1,6) double sohtons of the eĝ ^ theory. The r-functions are summarized in table B6 of 

Appendix B. 

3.4,2 Solitons in the twisted theories. 

The twisted theories require a slightly more delicate handling than their untwisted counter­

parts - the reason being that the folding procedure resulting in the twisted theories involves 

the extended root ao, which is rescaled. As a result, the eigenvalues of A'̂ C in the twisted 

theories are a rescaled subset of those found in the corresponding simply-laced theory. The 

Hirota equations of the twisted theory are therefore not simply those of the corresponding 

non-simply-laced theory with certain r-functions identified, but rather a slightly modified 

version of them. As will be seen, however, this problem is easily overcome - the result be­

ing that the r-functions of the twisted theories do correspond to r-functions of solitons in 

the corresponding simply-laced theory but with the appropriate rescaled A'̂ C-eigenvalues 

satisfying (3.2e). 

It is important to note that for those theories obtained by folding the CQ^ and 67^^ Dynkin 

diagrams, namely 4'^^ ^^'^ ^^& \ where the soliton r-functions are written in terms of the 

eigenvalues of NC, these solutions survive the folding process and so do not change. As 

a result these formulae have to be re-expressed in terms of the eigenvalues of the twisted 

theory. 

The folding procedure will be illustrated in detail for the a^2l-\ theory. 

The theory. 

Figure 9 below shows the symmetry that is exploited to form the a2n-i Dynkin diagram 

from that of 4 ^ • 
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ao a2n-\ 

o - -O • 
\ 0:3 a2n-2. / \ 

O— —O 0 « 2 „ - 2 K # #— — 

a\ a2n a'l 

Figure 9: The folding of c?2n to a2n-i-

The roots of a2n-i ^'^^ obtainable from those of via 

ôo = 2^"° «2n-i), a'l = -^ax + Q;2„), = a„ 

and 

«^ = + « 2 n - i ) (2 < 2 < n - 1). 

If the Hirota equations of the a2n-i theory are explicitly derived, they are found to be of 

the form: 

{Dl - D\y, . = m^(r^ - r^^), 

{^l - DM • r[ = m\r', - T[% 

(Dl - Dly, • r'2 = 2m\4rir^ -

{Dl - D M ; - T ; = 2m\r;_y^, - r;^) ( j = 3 , . . . , n - 1), 

( ^ ^ - A ^ K - r : = 2 m V ; - i ^ - 0 -

These equations are the Hirota equations of the d2r! theory with —> |m^, and the 

expected r-functions identified i.e. 

To = To = T2n_l, T[ = Ti = T2„, = r„ and T- = Ti = T2n-i {2 < i < u - 1). (3.4.2a) 

As a result, the soliton solutions of the a^2n-i theory are those of the d^^n theory with 

r-functions given by (3.4.2a) and eigenvalue A *̂') satisfying 

^ ^ 2 

As was mentioned in the preamble to this subsection, the eigenvalues of NC in the non-

simply-laced theory are rescaled upon folding to the associated twisted diagram, and with 
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the current root convention of the longest root being of length \/2, it turns out that A^ '̂̂  = 

2X{t^)- Xit^) being an eigenvalue of NC for a ^ l j theory. Therefore, a^{l - v^) = m'A^'^). 

The a2n-i theory has n solutions corresponding to 

A i * " ' ) - 4 s i n ' ( - ^ ) ( l < G < n - l ) a n d Ai*'") = l . 

Exphcitly, the r-functions of the theory, corresponding to the eigenvalues A = 1 and 

A = A *̂"̂ ) (1 < a < n — 1) respectively, are 

r-^l+e", r; = l - e « , rj = 1 + ( - lye '" (; = 2 , . . . , n), 

. i = . ; = H - e » , . j = l + 2 5 2 ! l M ^ e « + e - ( i = 2 , . . . ,n) . 
COSt?a 

where •da = a7r/{2n — 1). 

This procedure generalizes to the other twisted algebras. 

The 4 + 1 theory. 
ao 

o. 

o 
;o—o-
Q!2 a s an 

an+1 

o 

o 
an+2 

an a\ 
-o-
a'o 

-O-
a. 

7 ^ 
n - l a„ 

Figure 10: The folding of 4+2 to 4 + i -

The simplest symmetry of the extended 4 + i diagram is that which flips over the two forks 

and leaves everything else unchanged. The resulting relationship between the simple roots 

of the simply-laced and corresponding twisted diagram is 

= ^ ( « o + a i ) , a'j = otj+i ( i = 1,..., n - 1), a'^ = ^ ( a „ + i + a„+2)-

The solitons of the 4 + i theory are the n solitons of 4+2 with ro = r i and r„+i = r„+2 

corresponding to modified eigenvalues. Exphcitly, A*̂ *"*) = 4sin''!9a (« = l , . . . , n ) where 

= aTr/2{n — 1), with corresponding r-functions given by 

r^ = l + e*, r; = 1 + 2 ^ * ^ ^ e * + e'^ (; = 1 , . . . , n - 1), r;! = 1-H (- l ) ' ' e* . 
•' cos v„ 
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The e^Q^ theory. 

«2 0 

o—o—o—o—o—-o—o 
ao ai aa 0:4 ag 07 

< t t 

as 
o-

/ 
0 a: a[ a'2 a. a'. 

Figure 11: The folding of ê ^̂  to ê ^̂  

The eg '̂ theory is obtained from that of 67^' by making use of the only symmetry which 

the 67̂ ^ theory possesses - that which flips over the two long legs. The simple roots are 

related via 

a'o = a2, a[ = a4, a2 = ^ (as + a s ) , = ^ ( a i -h ag), a'^ = ^(ao -|- 0 7 ) , 

and so the solutions of the eg'̂ ' theory are those of the e^^ theory with ro = r 7 , r i = rg 

and rs = rs. As there are no mass degeneracies, there are four such solitons, as expected. 

They correspond to eigenvalues 

' T T 

(1) 

:sm , -A i - ) = 4 V 3 s i n ( ^ ) s i n ( | ) , A ^ = 4 

A - = 4 V 3 s m ( Z ^ ) s m ( f ) , = 4V3sm ( | ) sm 

and their ^-paramenters are summarized in table B9 of Appendix B. 

The theory. 

aeO 

O 
an 

7 ^ 
a'o 

Figure 12: The folding of ê ^̂  to j(3) 
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The symmetry of the Cĝ ^ theory, not present in its non-affine counterpart, is that which 
rotates the diagram as a whole as shown in figure 12. The roots of df^ can then be written 
as 

ao = 04, a[ = -{a2 - f as -f- ag), and a^ = -(ao + a i -f ag), 

and the solutions of ^4^' are the two solutions of eĝ ^ associated with the second and fourth 

spots of the Dynkin diagram, except now they are associated with the eigenvalues 

A(*«') = ^(3 - ^/3), and A ^ ^ = ^(3 -f Vs). 

The ^-parameters are given in table B8 of Appendix B. 

The a^2n theory. 

- O ^ O « 2 „ + l 
\ 0:3 a2n-i 

« 2 P O— —O 0 « 2 n ^ 0 ^ 0 — —O 

• O O « 2 n + 2 
a\ J 

Figure 13: The folding of 4!x+2 to a^-

Now consider the extended Dynkin diagram <i2n+2 and the symmetry shown in figure 13. 

The relationship between the roots of this theory and that of a2n are: 

«Jx = ^(«o + a i -h Q!2n-n + Q;2n+2), and = ^(a„_j + an+j) (; = 0 , . . . , n - 1). 

The resulting r-functions are 

r, = 1-F 2 • e -\-e ( j = 0 , . . . , n - 1), and r = 1-|-e 
•' cos Va 

where Â *'̂ ^ = sin^ with "da = a'ir/{2n -|- 1) (a = 1 , . . . , n). An alternative way in which 

to arrive at the d^^n theory is by exploiting the residual symmetry of the a^2n+i Dynkin 

diagram, shown in Figure 14 below, by the usual methods. 
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T h e 0^2^ theory. 

do 

Figure 14:' The folding of 4 n 
to a,J_i. 

Oil 

o 

o — o — o 
a.2 
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o 
04 

Figure 15: The folding of c f̂̂  to a^ '̂. 

The f inal theory to consider is that of a^^ obtained f rom the symmetry possessed by only 

4 ' ' i n the series - the symmetry corresponding to a 90° rotation of the ctl^ diagram. 

The resulting twisted theory wi th simple roots 

OLQ = ^(ao + Qfi + 0:3 + 0 4 ) , and a[ = 

has T - funct ions 

To = 1 + e , and T I = 1 — 4e + e 

corresponding to A *̂'̂ ^ = 1. 

3.5 The soliton masses 

In [32] i t was shown that the masses of the a^^^ soHtons are given by 

2mh rr 
(3.5a) 
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Ma being the mass of the soHton corresponding to eigenvalue A ^ , or equivalently, associated 
to the a''' spot on the algebra's Dynkin diagram, and h is the Coxeter number. Since the 
masses of the fundamental Toda particles equal - \ / A , the ratios of the soliton masses are 
equal to the ratios of the fundamental particles. 

By considering the soliton momentum, 

/

oo 
dx(f) • (f)' 

•oo 

where j{v) = (1 — v'^)~2 i t is straightforward to confirm (case-by-case) that (3.5a) holds 

for the solitons of the remaining simply-laced algebras. 

Consider now the solitons belonging to the other non-simply-laced algebras. The twisted 

and untwisted theories are slightly different and as a result need to be handled separately. 

Firstly, the untwisted theories. The single solitons here are in general multisolitons of the 

corresponding simply-laced theory. As seen f rom the previous case-by-case analysis the 

number of contributing solitons making up the multiple configuration is equal to 

The masses of the solitons in the non-simply-laced theories, and as i t turns out for the 

simply-laced solitons as well, are therefore 

= ^ y / K . (3.5b) 

This is the formula first presented in [53] for the soliton masses in the untwisted theories. 

As noted in [53], the division by the square of a root converts the masses f rom right Perron-

Frobenius vector to left Perron-Frobenius vector, so highlighting the 'duali ty ' symmetry of 

affine Toda field theory - that is the left Perron-Frobenius vector of g is the right Perron-

Frobenius vector of which has as roots the co-roots of g. A l l of the simply-laced algebras 

are self-dual, i n the sense that they are left invariant under aj —> 2aj /o ; | . The remaining 

theories are transformed as follows: 6^̂ ' «2n - i ) ^-n^ ^ <^n+i) / i ^ ^ ^ 

I n the twisted theories, both the Coxeter number and the iVC eigenvalues are rescaled by 

the same amount i.e. 

= and A ( * - ) = ^ A ( ^ ' ) . 
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Therefore, the masses of the twisted solitons in terms of their Coxeter number and eigen­
values are given by 

Therefore for the twisted theories the mass ratios are again the same as the unrenormalized 

mass ratios of their fundamental particle counterparts in the corresponding simply-laced 

theory. 



Chapter 4 

The Topological Charges of the â ^̂  
theory. 

59 
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4.1 Introduction. 

Ever since solitons were first discovered by HoUowood in the a|j^' affine Toda field theory, 

there has been great interest in their topological charges. The topological charge is ef­

fectively the change in the soHton field between its spatial l imits , x = ±oo. In [32] the 

topological charges were found to be dependent upon the imaginary part of the parame­

ter and for those solitons corresponding to the end-points of the A„ Dynkin diagram, 

the charges were the weights of the associated fundamental representations. I t was also 

pointed out that for the other solitons the topological charges also seemed to be weights 

of the associated representation but there appeared to be an insufficient number to fill i t . 

As w i l l be shown, the major problems faced wi th the topological charges are the difficulties 

in calculating them, and in understanding what is the relationship between the charges 

i f i t is not that they fill the fundamental representations. As a starting point, the al^^ 

theory deserves much closer attention, i f only to confirm the results hinted at in [32]. The 

a^ '̂ theory is rather different f r o m the other theories in the sense that i t has an immense 

amount of symmetry, and i t is this symmetry that allows many results relating to the a^^ 

topological charges to be deduced. For this reason the a^^^ theory fills the whole of this 

chapter, w i t h an investigation of the extension of its properties to the other theories taken 

up in the next. 

I t is possible to put an upper bound on the number of topological charges associated wi th 

each soliton, which is later shown to be the actual number of charges. For the a*'' soliton 

i t is found to be 

ha 
gcd(a, h) 

where h is the Coxeter number. The origin of this formula lies in the dependence of the 

analytic expression for the sohton on the a*'* power of an h^'^ root of unity. From studying 

the soliton solutions, the relationship between the topological charges is deduced to be the 

map 

T :aj ^ at^j-i)modh {0 < j < h - 1), (4.1a) 

which is also an automorphism of the extended Dynkin diagram, A(a^^^). Therefore, for 

each soliton, once one topological charge is calculated the rest immediately follow by ap-
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phcation of (4.1a). The map r has the same effect as the action of the Coxeter element 
18] w i t h the following ordering: 

The Coxeter element has been shown to play an important role in quantum affine Toda 

field theory, however as far as topological charges are concerned its appearance in the a^^^ 

theory does not generalize to the other theories. A reason for this may be the high degree 

of symmetry which the a*̂ )̂ theory possesses, though a complete algebraic understanding of 

its occurrence is missing. I t is a welcome coincidence in that i t immediately shows that the 

topological charges lie in the same representation, which for the a'^ soliton turns out to be 

the a^^ fundamental representation. The expression for the topological charges themselves 

is also derived, and found to be given by 

(,) ^ a { h - j ) modh 
tl = 1 1^1^ 0^^h-3)modh, h-lgcd{a,k) Oij (4.1 b j 

i= l 1=1 3 = 1 

where A; = 1 , . . . , Aa- This allows calculation of charges to be carried out much more easily 

than through the use of r . 

When there are widely separated solitons i t is intuit ive to expect the total topological 

charge to be the sum of the topological charges of the individual solitons. This statement is 

proved to be true. Using this result, a double soliton composed of solitons whose topological 

charges fill up the first and n-th fundamental representations can be constructed, which has 

charges fiUing up the adjoint representation, and in particular has { i a i , ±a;2> • • •, ± o „ } 

as topological charges. Making use of this double soliton, further combinations of solitons 

can therefore be constructed which fill up the fundamental representations and the entire 

weight lattice itself. 

4.2 Topological Charge. 

The topological charge of the solitons is defined by 

i = A r dxd,<t>^^{\im - l i m )<^(a;,0, 
27r J-oo 27r x^-oo' 
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which, using the ansatz (3.2b), can be wri t ten in the following form: 

1 
t = : y ^ ( l i m - l i m ) lnT, (x , t ) ' ' ^ a, 

= ( h m - hm l l n — 7 ^ ^ — — a,-

1 

= — - — r y ^ ( H m — Hm ) In f , ( x , ^) a,-

1 
= - — X ] ( J i m - l i m ) ( l n | / , ( a ; , t ) | + zarg/,(a;,^)) a, 

where fj{x.,t) — Tj{x,ty^/To{x.,tY°"'K Therefore as x —)• ± 0 0 , \fj{x,t)\ —> 1, this being a 

property of the solutions constructed in the previous chapter. Therefore the topological 

charge can be wr i t ten in the final fo rm 
1 '' 

4.2.1 The a^^^ theory 

Turning to the specific case of the â ^̂  theory, rjj = Uj = 1, and so f j { x , t ) is simply given 

^ ^ ^ ' ' ' ' ^ " r o ( x , ^ ) " 1-f • 

I n order to calculate the topological charges i t is essential to understand the behavior of the 

complex functions fj{x.,t). A t t = 0 (assuming throughout that a > 0), wi th ,̂  = -(-1(2-, 

i t is convenient to write 

where ?/ —> 0 as a; —»• — 0 0 , y —>• 0 0 as a; —> 0 0 , and ^ 2 is chosen such that — T T < { 2 ^ ^- I t 

is also convenient to write 

^ g»>j ^l^e^g ^ . ^ jnod (27r) e [0,27r). 
h 

The idea behind the calculation of the topological charges is as follows. The function 

1 + ye'' 
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has zeros whenever Hj -|- ^ 2 = TT and y = 1, and is undefined when <̂ 2 = and y = 1. In 
either case, (f>{x,t) is undefined. The range of 1̂  can then be divided into sectors whose 
boundaries are the values of ^ 2 for which f j { x , t) is either zero or undefined. The topological 
charge is obtained by evaluating the change in the argument of f j { x , i ) as x goes f rom — 0 0 
to - foo. Therefore the topological charge can change only when the curve traced out by 
f j { x , t ) i n the complex plane, is either (i) undefined, or (u ) passes through the origin. The 
implicat ion, therefore, is that the topological charge of the sohton is constant on each of the 
sectors in the range of 1̂ 2 mentioned above. Indeed, i t w i l l be shown that the topological 
charge takes on a unique value in each sector. A n expression for topological charge in one 
particular sector, that of the highest charge, is calculated and f rom i t ( in the following 
subsection) an expression for the remaining charges is deduced. 

The number of sectors, denoted ha, which the range of { 2 is divided into is equal to the 

number of different values that e'^^ {0 < j < h - 1) can take, i.e. the smallest value of q 

for which 

—-— = 2-Kik where g, K € K -
h 

Rewrit ing this as 

h 
qa = kha where a = — — — - r and ha = 

gcd{a,h) "^"^ gcd{a,h) 

are coprime, then q = ha and k = d. So an upper bound on the number of topological 

charges of the a^^ soliton is 

ha 
gcd(a, / i ) ' 

The angular wid th of each region is 2TJ:IK and so (-7r,7r) is subdivided by the regions 

given by 

\ ha ha J 

w i t h 0 < p < ha — 1. Consider now the transformation 

. 6 ^ ( 6 + ^ ) mod (27r) e [ - ; r , ^ ) . (4.2.1a) 

I f ^ 2 originally resides in the region IQ then repeated application of (4.2.1a) w i l l send ^2 

to each of the other regions in turn , before returning to IQ on the h^a apphcation. As w i l l 
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now be shown, the above transformation is equivalent to a cycfic permutation of the simple 
roots { t t j } plus the extended root O Q . The a"' soHton solution takes the form 

<?^(a)(.T,i) = - ^ E « , l n ( l + a ; > ' ^ ^ ) 
3=0 

which, under the above transformation, becomes 

'P(a)ix.t) = - ^ L « . l n ( l +c.^+^2/e'^=) = - 4 E « . - i l n ( l +c^^2/e'«^), 
j=0 j=0 

the labeling of the roots being modulo h. Therefore, to calculate the f u l l set of topological 

charges of a single soliton, all that is required is to calculate the topological charge for one 

value of ^ 2 and then cyclically permute the labeling on the ctj {0 < j < h — 1) to generate 

the others. The cyclic permutation of {do, d j } is an automorphism of the extended Dynkin 

diagram A(a^^^) and, as w i l l be shown later in this chapter as well as the next, there is a 

correspondence between this map and the sets of topological charges (see Table 2). 

Consider now the funct ion f j { x , t ) . Sphtting i t up into its real and imaginary parts, 

1 y [ c o s ( ^ - I - ^ 2 ) + cos^2] + y^cos^ . y [ s i n ( / t - f - ^ 2 ) - s in^2] + y ^ s i n ^ 

•^^•^•''•'^~ | l + ye'«H' | l + ?/e'«H' 

The imaginary part is zero for ?/ = 0 (i.e. at a; = — 0 0 ) and at one other point given by 

sm{n + (2) - s i n (^2 ) , -A A ^ n\ 
y = ^ ^—- (provided y > 0), 

sm fj, 
where pL ^ 0, TT . I f ^ 2 = — + e, where e > 0 is an infinitesimal. Then, 

lm{f,{x,t)) = 0 for y = 1 - i i l ^ ^ e + 0(6^) , 
sm fj, 

and Re(/ , ( .7; , i ) ) |H-ye '^^P = - ^ ( 1 - cos fi) + O(e^) . 
sm fj, 

Therefore the complex funct ion f j { x , t ) crosses the real axis positively for 0 < ^ < TT and 

negatively for TT < < 27r. Also, for small positive y, 

Im( / j (a ; , i ) ) | l -|- t/e'^^p = —y sin/i -|- (higher order terms) 

i.e. the funct ion starts off wi th negative imaginary part for 0 < < TT and positive 

imaginary part for TT < < 27r. Finally, if /j, = 0 then f j = 1 and contributes zero to 
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the topological charge, whereas if = T T , the change in the function's argument is -|-7r. 
Therefore the change i n the argument of each f j { x , t ) is simply Hj, and so the topological 
charge in this sector is given by 

t\ ' = — -— ) ; mod ZTTt Of, 
27rz^t^V h J ' 

a(h — j ) mod h 
= L 1 « r 

This topological charge w i l l be called the 'highest charge' since the difference between i t 

and all subsequent topological charges, is proportional to a sum of positive roots. The 

remaining charges are therefore generated under r : —> Q:(j-i)mod/i- The order of r 

acting on the highest charge is the smallest value of q such that 

(^{f^ ~ ( j + ?)) rnod h = a{h — j ) mod / i , 

i.e. the smallest value of q such that aq mod h = 0. This is given hy q = ha, confirming 

that ha is in fact equal to the number of charges for the a*'' soliton. The topological charges 

associated wi th each soliton i n the theories Oj^^ to a^^^ are given, as an example, in Figure 

16 below. 

3 3 4 2 4 

A2 o — O ^3 o — o — o 
Oil a\ a2 as 

5 5 5 5 

A, o — o — o — o 
Oil 012 Oin, a4 

6 3 2 3 6 

As o — o — o — o — o 
ai 02 as 04 as 

7 7 7 7 7 7 

Ae O O O O O O 
a i a2 as a4 ae 

Figure 16: The number of topological charges: theories A2 — AQ 
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4.2.2 An explicit formula for the charges. 

Consider the highest charge, which is wri t ten for convenience in the following form: 

t̂ ^^ = Aotto + A i a i + ••• + A„a„. 

Each Aj is equal to one of 0 , l / h a , 2 / h a , . . • ,(ha - l ) / ^ a - The other ha - 1 charges are 

obtained by cyclically permuting the labeHng of the simple roots so that 

Ao = l / h a , Ao = 2 / h a , X o = ^ ( h a - l ) / h a . 

Consider now, the permutation that results in AQ = k/ha where (1 < ^ < — 1)- This is 

in effect equivalent to adding, modulo h, 

k 
j-{ao + ai + . . . + an) 
ha 

to the highest charge. Therefore, 

f Xj + k/ha, i f + k/ha < 1; 

,A , i f X j + k / h a > l . 

Using (2.4b) to set AQ equal to zero, the overall effect of the permutation is the subtraction 

of 1 f r o m Xj where Xj + k/ha > I. The expression for the topological charges is therefore 

deduced to be 

(,) ^ a { h - j ) m o d h ^ - 1 " 
ta - 7 1 ^ 1 ^ Oa(h-j)modh, / i- /gcd(a,/ i) 0!j 

j=i ;=i i=l 

where k = 1,... ,h. Examples of the use of this formula to calculate the charges in the 03^^ 

and 04^^ theories are given below. 

T h e a j ^ theory. 

a = 1 

4 2 4 
As 0 — -0 0 

a i a2 as 

\0i2 + \0i3 a = 2 : | a i -1- | a 3 a = 3 : 1-3 

\oi2 + J « 3 - | a i - 5 0 3 | « 2 - \oi2, 

- i a i - \oi2 + ^aa \-^-\0i2 -

| a 2 - f a s \a2-
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T h e aj^^ theory. 
5 5 5 5 

A 4 o — o — o — O 
ai a2 as 04 

a = 2 

| "2 + l « 3 + l « 4 a = 4 : l«2 + 1-3 + 
4 ^ 
5-4 

l « 2 + l"3 + l « 4 l«2 + 1-3- 1-4 

| a i - l « 2 + f « 3 + l « 4 1.2- 1-3- 1-4 

l"i - l « 2 - l « 3 + l « 4 | a a - 1-2- 1-3- 1-4 

| a i - l"2 - ! « 3 - t"4 1-2- 1-3- 1-4 

| a i + F«2 + t«3 + l « 4 a = 3 : t-2 + 1-3 + 1-4 

i « 2 - l « 3 + l « 4 1-1- 1-2 + 1-3 + f-4 

l " 2 - l « 3 + !"4 ! « i - 1-2 + 1-3- 1-4 

| « 2 - 1^3- | « 4 - 1 - 1 - 1-2 + 1-3- 1-4 

f a i - t « 2 - l " 3 - | « 4 - | « i - 1-2 - t - 3 - f - 4 

4.2.3 The highest charge and its fundamental representation. 

In this section i t w i l l be shown that the topological charge of the a*'' soliton lies in the 

a*'̂  fundamental representation. This w i l l be used in the next section when the remaining 

solitons w i l l be shown to lie in the same representation as the highest charge and so imply 

that all the topological charges lie in the same fundamental representation. 

I t w i l l be convenient to wri te a = h - b, b = bgcd{b, h), and h = hgcd{b, h). 

Due to the symmetry of the a|j^' theory under a, —> oth-i for 1 < i < n , i t is necessary only 

to consider 
• | ( / i - l ) , i f h i s odd; 

b < J 
i f h is even. 

The highest charge is then given by 

i=i 
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The inner products of t'^^ w i th each of the simple roots w i l l be considered and shown 
to be transformable via Weyl reflections to the highest weight of the a^^ fundamental 
representation. Consider firstly the case when gcd(6, h) — I i.e. b and h are coprime. The 
restriction on the value of b impHes that b/h < 1/2. This rather t r iv ia l statement allows 
the following to be deduced: 

tu bj mod h b 
• a, = + 1 i f + - > 1 

h h 
(T\ bj mod h b ^ 

. ^(1) • a, = - 1 i f < 0, 

ti^^ • ai = 0 otherwise. 

n{k) 

. a, 

Since both the first and second conditions cannot hold at the same time, then defining 

'hk 
b 

where [...] denotes the integer part, the following is obtained: 

C 1 fovj = n{k), where/u = 1 , . . . , 6 — 1, 
— 1 for j -- Q,{k) + 1, where k = 1,... ,b — 1, 

1 for j = h — 1, 
0 otherwise. 

Also, n{k) + 1 < Q.{k + 1) for A; = 1 , . . . , 6 - 2, and n(6 - 1) < - 1. Therefore, in general, 

t^^^ has inner products w i t h the simple roots of the fo rm 

4 ' ' • = ( 0 , 0 , . . . , 0 , 1 , - 1 , 0 , . . . , 0 , 1 , - 1 , 0 , . . . , 0,0,1), (4.2.3a) 

the notation indicating that the j * ^ component of the row vector is given by ' Oj- There 

are two things that can be immediately shown to be true. Notice that i f a weight, w has 

inner products w i t h the simple roots given by 

w-{aj} = ( . . . , 0 , 1 , - 1 , 0 , 0 , . . . ) 

then under a Weyl reflection in the root which has inner product —1 wi th w, w —> to, 

where 

w-{a,} = {...,0,0,1,-1,0,...). 

Apply ing this to the case of t^^\ then a series of Weyl reflections wi l l result in — ^ i ^ ^ 

where 

^ ? ^ - { « . } - ( 0 , . . . , 0 , 1 , - 1 , 1 , - 1 , . . . , 1 , - 1 , 1 ) . 
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I f a weight to has inner product w i th the simple roots now given by 

w{a,} = {...,1,-1,1,...) 

then again performing a Weyl reflection in the simple root which has inner product —1 

w i t h w, w w where 

w-{a,} = (...,0,1,0,...). 

This last procedure combined wi th the previous one, can be apphed to t^a^ to finally give 

t^^' which is expressed via 

^ ' ^ • { - . ) = ( 0 , . . . , 0 , 1 , 0 , . . . , 0 ) 

w i t h the 1 appearing in the J*'' position, d being given by, 

d = n — [b — l] = h — b = a. 

Therefore, bes in the same representation as i'^a \ i.e. the a*'' fundamental representa­

t ion. 

The generalization to the case of gcd(6, /i) 7^ 1 is straightforward. I f i ^ ^ ' is the highest 

charge, i n the theory wi th Coxeter number h, of the d = h — b sohton, then the highest 

charge of the soliton in the theory wi th Coxeter number h is given by 

i(^) = (f(^),o,f(^),o, . . . , t(^)), 

the zeros occurring for j = h,2h,..., (gcd(6, h) — l)h. Then by the results of the above 

discussion, the inner products of t^^'> wi th the simple roots is also of the form (4.2.3a), wi th 

the higiiest charge lying in the fundamental representation where 

d = n — [bgcd[b, h) — l] = h~b = a 

i.e. the highest charge lies in the a^^ fundamental representation. 

4.2.4 The Topological charges, the Coxeter element and the 
fundamental representations. 

In the last two subsections, the topological charges of the a^^ soliton were calculated, wi th 

the highest charge shown to lie in the a*'' fundamental representation. In this subsection 
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i t w i l l be shown that the cyclical permutation of the roots used to connect the topological 
charges is in fact equivalent to the appUcation of the Coxeter element 

where r,- is a Weyl reflection in the i^^ simple root a,-. The subscript "^c" indicates that this 

ordering is special for the case of topological charge, as the ordering of the Weyl reflections 

is not arbi trary - other orderings do not necessarily connect the charges (except in the 

and n*'* fundamental representations where any ordering of the factors composing Coxeter 

element generates all the weights in the Weyl orbit of the highest weight). Indeed for the 

other theories when the number of charges is calculated, they are found not to divide the 

Coxeter number and so the charges cannot be generated via the Coxeter element (recall 

Lj^ = 1). However the establishment of the above result has an important corollary for the 

association of the topological charges to fundamental representations. 

Firstly, consider the effect of Utc on the set of simple roots {aj} and the extended root ao. 

I t can be shown 

ao ao -F a i - f a2 -1- . . . -t- a „ _ i -|- 2 a „ , 

a i -> - a i - a2 - as - . . . - a „ , 

and ai a ,_i for 2 <i <n. 

Therefore an arbitrary linear combination of the simple roots plus the extended root 

u = Ao ao + A i a i -|- A2a2 + . . . -|- A„a„ 

is transformed thus: 

u Aotto - I - (Ao - Ai - I - A2) a i - I - . . . - I - (Ao - Ai -|- A„) a „ _ i -|- (2Ao - Ai) a „ 

= Aiao - I - A2ai -|- A3a2 - f . . . + A„a„_i - f Aoa„ 

by equation (2.4b). Using the notation 

Aoao + A i a i -|- A2a2 - | - . . . -|- A„a„ = (AQ, A I , A 2 , . . . , A„), 

then 

'^tc{Xo, A i , A 2 , . . . A„_i, A„) = (Ai , A2, A 3 , . . . , A„, Ao), 
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i.e. the action of the Coxeter element cychcally permutes the Aj's. This invariance of the set 
of topological charges under the action of the Coxeter element means that the topological 
charges lie in the same representation as the highest charge i.e. the a*'' fundamental 
representation. 

I t is perhaps worth considering for a moment the role of the Coxeter element in this 

discussion. As i t was said above, as far as the representations corresponding to the 

and n^^ representations are concerned, the ordering of the factors comprising Coxeter 

element is irrelevant - there is one orbit containing the complete representation. For the 

other fundamental representations, this is not the case. This can be seen most easily by 

considering an example in the context of topological charges. 

Consider the case of the ag"̂ ' theory under the action of the Coxeter element 

w = r4r2rsr3ri 

on the Weyl orbit of the second fundamental weight A(2) of the a f ^ theory (this ordering 

is the famihar 'black-white' ordering of [18] i.e. the sets of simple roots {Q!i,Q:3,a5} and 

{a2,a4} corresponding to { r i , r 3 , r 5 } and { r 2 , r 4 } are composed of elements which are 

orthogonal to each other). The Weyl orbit is partitioned into three Coxeter orbits, say C+, 

C-, and Co. 

Figure 17 : Part i t ion of Weyl orbit of A(2). 

This is visuahzed in Figure 17 where 

• each spot corresponds to a weight in the Weyl orbit of A(2), 
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• i f two spots are joined by a line, they are Weyl reflections of each other in the simple 
root aj where j is the number on the Hne, 

• spots w i t h the same labehng (either + , —, or 0) lie in the same Coxeter orbit . 

Therefore, whereas t'^^ and t^^^ lie i n the same Coxeter orbit , t^'^^ lies in a different one. 

4.2.5 The other a^^ automorphisms 

In subsection 4.2.1 i t was shown that the set of topological charges corresponding to each 

soliton was invariant under the automorphisms of the extended Dynkin diagram which 

cyclically permute the elements of the extended root system. There are other automor­

phisms of the extended diagram for a!^"^ . In this subsection, the effect of these mappings 

w i l l be considered. I t is found that the symmetries possessed by the unextended diagram 

map the topological charges of one soliton into that of another, whereas for basic sym­

metries of the extended diagram (this wi l l become clear in what follows) the topological 

charges of individual solitons are permuted. The combination of both of these types of 

mapping exhaust all possible automorphisms of the extended diagram. 

The automorphism of the unextended diagram in which 

a. o^h-j { j = l , . . . , n ) 

when applied to a soliton solution, keeping all parameters fixed, results in 

(l^ia) ^ <t>{h-a) (a = l , . . . , n ) . 

Combining this w i t h the map of cyclic permutations of the extended root system, r , i t is 

found that the set of topological charges of each sohton is invariant under 

<Tfc : aj a^k-j)raodh {0 < j,k < h - l ) . 

These mappings are related to the automorphisms of the extended Dynkin diagrams which 

reflect the diagram in a line sphtting i t in two as shown in figure 18, below. 
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o—o—•• 
(3 

•o—o o—o-

o—o— —o—o 
al"^' when n is even. 

-o. 
73 

o-
o—o— —o 

al^) when n is odd. 

Figure 18: Reflection symmetry of the â^̂^ Dynkin diagram. 

The reader may question why a distinction has been made between evidently the same 

automorphism of the extended and unextended. The reason is that this way of looking at 

the automorphisms and associating those relating to the extended diagram to a change in 

^2 generalizes to the remaining simply-laced cases. 

Sending ^2 ^ —^2 i n the sohton solution is equivalent to evaluating the topological charge 

in region / / j^_i_p rather than Ip where 0 < p < ha — I. The form of the a"' soli ton solution 

is 

The last expression can be recast into the form 

The topological charge in region /^_^_i_p is therefore obtained f rom the topological charge 

in region Ip {\ < p < ha — I) via the mapping 

The symmetry { 2 —i 

Automorphism of 
extended diagram 

CTQ : aj —> 

2 is possessed by all of 

Automorphism of 
set of charges 

- a h - j . 

the solitons in all of the t f 

Change in 1̂ 2 

leories. 

Change in (^(a) 

aj ah-j ( i / 0) 

ttj OL(j-l)raodh ( V i ) 

« i ^ ( i / 0) 

aj a(i-i)mod/i (V i ) 

aj -ah-J ( V j ) 

6 ^ ( 6 + ^ ) mod 27r 

6 ^ - 6 

Table 2: Symmetries of the â ^̂  topological charges. 
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From these basic automorphisms the effect of all the others on the sets of topological 
charges can be deduced. 

4.2.6 Multisoliton solutions. 

In this section, a mult isoli ton configuration composed of widely separated sohtons is 

considered. In this large separation approximation the topological charge of the configura­

t ion as a whole is found to be the sum of the topological charges of the individual solitons. 

This w i l l be done via an inductive argument. In [32] the r-functions of the multisolitons 

were found to be 

^1=0 IJ-N \ P = 1 l<p<q<N 

where 
^(p,) _ (^p - (^qY - i<^pVp - (^gVgY - 4m^ sn 

,2 TT 
^(pg) ^ (^p - (^gY - {<^pVp - (^gVgY - 4m^ sin^ ^ { a p - a,) 

{cTp + CTgY - {(jpVp - I - cr,!;,)^ - ^w? sin^ ; ^ ( < ^ P + 

is the ' interaction constant'. Relabeling the solitons, i f necessary, then 

GxVx < a2V2 < . . . < aN-iVN_i < aj^VM- (4.2.6a) 

I t w i l l be convenient to write e'''(^-'''*+^''^) = ?/e-«(*)e'^2'\ where n,{t) = a.v.i - I f 

i = T is fixed for sufficiently large T , then write Hi{T) = fii so that 

/ i l « ;U2 « • • • « fJ'N-l « fJ-N- (4.2.6b) 

I t is worthwhile to find the range of y for which the soliton field (l>{x,t) has its most rapid 

variation (and so where the soliton is located). This is done via the parameter A; » 1, and 

the imposit ion that 

since below the lower l i m i t TJ/TQ ~ 1, and above the upper l im i t TJ/TQ ~ UJI.. The corre­

sponding l imi ts i n the range of y are: 

/ I \^/'^' (0 1 
y ~ [re^'j for |a;̂ ,?/'̂ 'e-'̂ 'e'̂ 2 | ^ 

and y ^ {ke^'Y^"' for luji^'e'^'e'^^'^l ^ k. 
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The point i n t ime considered T, can be chosen large enough so that each of the above 
regions are far apart, that is 

-e"^ I < (ibe^M^/'i « ( -e^' < {ke^'f''' « . . . 
\k J \k J 

k J ^ ' \k ) ^ ' 

The scene is now set for a straightforward calculation of the multisoliton topological charge. 

Consider the two soliton solution 

To 1 + y<Tie-we'4'^ + ?/'^2e-M2e'4^'(l + AiiV^^e'^^e'^^^^) 

Here the first sohton is located in the range ' < y < (fce^i)^/'^% and the second in 

the range (T e">) ' <y < {ke^'Y^^K Outside these regions Tj/ro is effectively constant 

and equal to ( in order of increasing y), 1, a;^pand w^^w^^, respectively. In the range 

( i e - ) ' ^ " < 2 / < ( ^ e - ) ^ / ' ^ S 

Tj 1 +uji y'''e-'''e'^2^ 
r\j __ 

To 1 + g-Ml e'V 

(i.e. i t is effectively the j * ' ' component of the first soliton) which contributes to the topo­

logical charge by h. Finally, for ( fe^^y/^^ < ^ < (^ke''^y/<^\ 

'̂ 0 1 + Ai2y'"'e~>'^e'^^ 

which contributes ^2 to the topological charge. Therefore the topological charge of the 

double soliton is given by 

t = t i + t2. 

Suppose now that the {N — l)-soli ton solution has topological charge given by 

t(N-\) = + ^2 + • • • + t(N-\)-

I f T ] ^ ' is the j^^ T - func t i on of the p-soliton solution, then for 0 < y < {ke^^-^fl'"'-\ 

AN) (N-\) 
^ - ^ ^ — 
(;v) ^ ( i v - i ) ' 

^0 ^0 

contr ibut ing t ( j v - i ) to the topological charge. 
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I n the regions [ k e ^ ' ' - - ' f < y < , and for y > {ke^'^yl'"', the functions 

^ j^V '^ ' o^ ' are effectively constant and equal to f^i^^i^ • • - ^ ^ ^ . i and col^uil^ .. .ui^_^uji^ 

respectively. For [\e^'')^''"' <y < {ke^^Y^"^, 

U UJ . . .OJ 
(N) '̂ ai"^a2 • • -"^ajv-i . , . . „ „ ie(^) 

r6 1 +Aa,a,...Aa^a„_,y''^e-^Ne'^2 

which contributes tj^j to the topological charge. Therefore the topological charge of the 

A'^-soliton solution is 
t = ti + t2 + . . . + i j V - l + tN-

This result s t i l l holds i f the strict inequalities of (4.2.6a) are relaxed to allow for solitons 

to have aiVi equal, provided is large enough so that (4.2.6b) holds. 

4.2.7 Multisolitons and representation theory. 

Having established in the previous subsection that the topological charges of a multisoli­

ton configuration are the sums of the topological charges of its constituent solitons, the 

representations in which these topological charges lie wi l l be discussed. 

Denote the set of topological charges of the A'^-soliton solution, which is composed of the 

{ f l i , 02, • • •, flTv}-solitons, and the a*'' fundamental representation by 

7(ai,...,ajv) and 11a 

respectively. As the topological charges of two widely separated solitons are equal to the 

pairwise sums of the topological charges of the individual solitons, then these charges are 

weights of the tensor product of the corresponding fundamental representations. For the 

special case of a double soliton composed of the single solitons associated to the first and ra­

t h fundamental representations (recall these are filled), the resulting topological charges are 

the weights of the tensor product representation T^i ®7ln. However, this tensor product of 

representations contains the adjoint representation, and so contains { ± Q ; I , ± 0 2 , . . . , ± Q : „ } . 

As a result, fur ther multisoli ton configurations can be constructed that employ these soli­

tons having charges equal to the simple roots, and so fill up all the fundamental represen­

tations as well as the entire weight lattice. 
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5.1 Introduction 

The a^j '̂ theory differs f r o m the other theories in a number of important ways. The critical 

values of ^2 for each soliton are equally spread wi th in the range of zero to 27r, there being one 

cri t ical value for each T - func t ion . Also, the â ^̂ ' theory possesses a great deal of symmetry, 

so allowing for all of the topological charges to be deduced f rom just one. In the theories 

that w i l l now be discussed the critical values of { 2 are not as conveniently spread as in 

the previous case and so make for more difficult calculations. However, the theories do 

have differing degrees of symmetry, and the sets of topological charges associated wi th 

each sohton in these theories do respect them. The degree of symmetry is alas too small 

to allow for a complete description of the charges - currently an outstanding problem. 

Each of the theories, both twisted and untwisted, wi l l be discussed in turn starting wi th 

the d^^' theory. In this and the other-infinite theories i t is possible to evaluate the number 

of topological charges associated wi th each soliton, and indeed deduce a general formula 

for them. There are numerous examples throughout the chapter making use of the final 

results. I t s t i l l remains, however, to fink the charges to their fundamental representations. 

I n the case of the exceptional algebras the lack of a general soliton formula f rom which 

the topological charges can be extracted means that for these algebras i t is necessary to 

calculate the topological charges of each soliton individually. The method of calculation 

(although for clarity the details w i l l be omitted) is to identify the values of ^2 for which the 

T - funct ions are zero at some point in space. This, as in the previous case splits the range 

of ^2 into regions w i t h the topological charge constant on each region. A l l that remains to 

be done is to choose a value of ^2 in each region and evaluate the topological charge there 

- this has been carried out by the author using the mathematical package MatlalF^. 

I n a similar manner to the previous section, much information is deduced for the non-

simply-laced theories f r o m their simply-laced counterparts. In particular, once the topo­

logical charges of the static solitons in the simply-laced theories are calculated, the charges 

of the solitons surviving the folding are immediately given, whereas the remaining solitons 

of the non-simply-laced theory w i l l have their topological charges explicitly constructed. 

As i n the a* '̂ theory, these results have not yet be deduced f rom the more general algebraic 
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methods available, and so provides a set of results which are not yet explainable at the 
fundamental level. 

5.2 The remaining simply-laced theories. 

5.2.1 The theory 

As in Chapter 3, i t is necessary to consider separately the case of the d^^^ theory. The 

topological charges can be calculated explicitly, the most direct method being to ascertain 

the cri t ical values of ^ 2 and calculate the charge for 1̂ 2 away f r o m these points. The number 

of charges associated wi th each soliton is given in the following diagram: 

4 0 « 3 

4 4 2 o—o—o 
cti a2 cti 

Figure 19: Dynkin diagram for D4 

For the soliton corresponding to a = 2, the topological charges are ± 0 : 2 which lie in the 

associated fundamental representation. For a = 1 the charges are 

± " 2 + . ^ ( 0 : 3 + 0 : 4 ) ) , and ±^(Q!3 + Q:4), 

w i t h those corresponding to the remaining solitons b'eing generated by cycles of the indices 

( 1 , 3,4). In each case the charges lie in the relevant fundamental representation. 

There are two basic symmetries possessed by the above diagram. The first is the inter­

change of the simple roots ax and 0 4 which leaves the fields ^(2) and (^(3) unchanged, and 

interchanges ^(x) w i t h (?i>(4). The second symmetry is that which cyclically permutes the 

simple roots ( a i , 0 4 , Ofa) which corresponds to a cychc permutation of ( ^ ( 1 ) , (;^(4), ^(a))- The 

remaining symmetries of the unextended diagram can be constructed f rom these two. The 

effect of the symmetries of the extended diagram (for (^{^x) only) are summarized along wi th 

the above results in Table 3, as different symmetries effect different soHtons. 
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Automorphism of 
extended diagram 

Automorphism of 
set of charges 

Change in 42 Change in (f>(^a) 

Qfi —> Q;4 —> a s ^ ai 

ai a4 

(ao.ai) ^ ( a s , 0 : 4 ) 

a i —> Q;4 —> a s —> ai 

a i a4 

( Q o , a i ) ^ ( 0 : 3 , 0 4 ) 

(l>{i) ^(4) 

a. - a , 

Table 3: Symmetries of the d^^^ topological charges. 

5.2.2 The theory 

The first a im in this section is to calculate the number of topological charges corresponding 

to each of the c?̂ ^̂  solitons. The results obtained along the way wi l l allow for a general 

formula to be derived for these charges. 

Consider firstly those sohtons wi th 1 <a<n-2. From §3.3.2 they have T-functions given 

COSf9„ 

To = Ti = 1 + e*, Tn-l = T„ = 1 -f (-)''e 

For i = 1, T ,= i = 1 + 2e* + e^* = (1 -^ e*)^, and for ; = n - 1 

cos Va 

^ l + 2 ( - ) " e * + e'^ = ( l + ( - ) " e ^ ) 2 

and so all the crit ical values of ^2 for which (f>{x,t) is undefined are obtained by studying 

the zeros of 
^ ^ ^ 2 C o s ( ( 2 ^ 1 > M ^ , ^ ^ , , (1 (5.2.2a) 

cos Va 

As i n the case of the a^^^ theory, i t is convenient to change variables f r o m {x,^2) to {y,^2), 

and to consider 

V cos-da J 1 

ye' 

The funct ion f j is real for e''^^ + y^e'^^ real i.e. sin^2 0, and ?/ = 1, as well as y = 0 and 

cos((2j - l)-da) = cosda (this latter case only occurring for ; = 1). 



5.2. The remaining simply-laced theories. 81 

Again, as in the â ^̂ ) theory, the transformation ^2 —6 leaves the set of topological 
charges invariant - corresponding to —Ofj, V j - and so i t is sufficient to consider 

^2 G (OJTT). There are other symmetries of the sets of topological charges, and these w i l l 

be discussed later. 

When sin ^2 7^ Oj f j is real only for y = 0 and y = 1. When y = 1, 

. ^ c o s ( ( 2 j - l ) t f a ) ^ ^ , 2t^2 t I cos{{2j-l)K) 

1 + 2e'i^ + e2««2 cos ^2 + 1 

Denoting the number of distinct values of cos ^2 lying in (—1,1) such that 

^ cos((2j - 1 ) ^ 0 
cos 42 + a = 0 

COS Va 

by Pa, then provided ^ is undefined for ^2 = 0, the number of critical values of ^2 and so the 

number of topological charges is given by h'^ — 2{pa + 1). The reason for this is that i f ([H^ 

is a cri t ical value for r j ( x , t ) , then f j { x , t ) crosses the real axis positively for ^2 < (Hit and 

negatively for 1̂ 2 > Ciilt- Each Tj(x,t) has only one such critical value and so coupled to 

the fact that for ^2 arbi trari ly close to zero the topological charge is non-zero, the number 

of charges is 2(pa + ! ) • 

Before proceeding, i t is necessary to investigate the above proviso. Suppose ^2 = 0. Then 

rescaling y, 

= 1 - f 2 cos((2; - l)^a)y + cos' ^aV^ {2 < j < n - 2). 

Now Tj — 0 <==^ cos((2j - l)t?) < 0 and cos'((2j - l)i?a) > cos'i^a since y is both real 

and positive. Restrictions are therefore placed on the possible values of j as follows: 

cos((2i - l)t?a) < 0 < ^ {2p+^)Tr + ^a<2ji9a<{2p+^)ir + i9a, 

COs\{2j - l)l?a) > cos' ^ < 2jl3a < pTT + 2^^-

Combining these two equations 

~ ^\2p + 1)<J< ^ ^ ^ ^ ( 2 p + 1) + 1 p G IN (since j > 0). 
a 

Choosing p — 0, 
(n-1) . (n-1) 

0 < ' < j < + 1 < n - 2 
a a 

and so r,- certainly has a zero for some j. 
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The calculation of h'^ w i l l be broken into two parts: 

(i) the evaluation of the number of distinct values of £2!K2izl}j^ 
^ / cos Va 

( i i ) the evaluation of the number of these values either < — 1 or > 1. 

Then Pa = ( the result of ( i) ) — ( the result of ( i i ) ) . 

Part (i): The number of distinct values of cos ( (2 j — I) ' i?a)/ cosi^a is the same as that of 

c o s ( ( 2 j — \)da)- When j = 0 or 1, cos ( (2 j — l)'da) = cos-da- The next smallest value 

of j for which this happens is when sin(ji9a) = 0 i.e. when ja — 2k{n — 1) where a = 

a/ gcd(a, n — 1) and n — 1 = (n — 1) /gcd(a , n — 1). 

I f a is even, then j = n — 1 and is odd; i f a is odd, then j = 2(n — 1) and is even. The 

number of distinct values of cos ( (2 j — l)i9a) when a is even is (n — 1 - f l ) / 2 and when 5 is 

odd, 7̂  — 1 . 

These results can be summarized via the formula 

(n — 1)(1 — -^0,amod2) + 2^0,amod2-

Part (ii): Now consider the number of times cos((2j ' — l) t?a) > cosi9a or cos{{2j — l)i9a) < 

— cosi^a- I t is straightforward to show that 

C O s ( ( 2 i - l)da) > cos da ^ pn < Jt?„ < pTT - f l?^, 

C O s ( ( 2 i - l)^a) > cos ^a ^ {P+ ^)7r < < { p + ^)7r ^a, 

for some p GZ, and so k-K < 2jda < ki^ 2da {k G Z) giving 

( ! ^ ^ < , < ( ! i Z l ) ^ - + l . ( 5 . 2 . 2 b ) 
a a 

When a is even, the different values of cos((2y — l)?9a) occur for j = I , . . . , (n — 1 -(- l ) / 2 . 

When A; = 0 equation ( 5 . 2 . 2 b ) gives 0 < j < 1 and when k = a /2 i t gives (n — l ) / 2 < j < 

(n — 1 -f- 2 ) / 2 . The number of values of j that need to be removed is therefore (a -|- 2 ) / 2 . 

When a is odd, the different values of cos ( (2 j — l)'i?a) now occur for j = 1 , . . . , n — 1. Again, 

when A; = 0 equation ( 5 . 2 . 2 b ) gives 0 < j < 1 and when k = aii gives n — \ < j < n — \-\-\. 

Therefore, the number of values that need to be removed in this case is a -|- 1 . 
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Rewrit ing this into one formula, the total number of values to be removed is 

(a -(- 1)(1 — -^0,omod2) + 2^0,amod2-

Therefore the number of singularities of (l>{x,t) occurring in the region 0 < ^ 2 < TT is 

{n-1 - a - 1)(1 - ^^0,5mod2), 

giving the number of distinct topological charges for the a*'' soliton of the d^^^ theory as 

2 ( n ~ l - a - 1)(1 - ^^o,amod2) + 2. 

I t is shown later that for the remaining solitons lying on the prongs at the fork, then 

number of topological charges in each case is four. This, coupled wi th the above formula 

is used to generate Figure 20 overleaf which gives the number of charges in each of the 

theories D5 to Dg. 

Turning now to an expression for the topological charges themselves, enough information 

has been gathered to deduce the final result via simple calculations. Unlike the a^ '̂ theory 

where the 'highest charge' was calculated (i.e. the topological charge corresponding to 

^ 2 = —TT -|- e) and all others deduced, use of the fact that i f t is a topological charge, then 

so too is —t allows consideration to be restricted only to 0 < 1̂ 2 < TT. I t wi l l be of use to 

consider firstly the topological charge corresponding to 1̂ 2 — The first task is to find 

out the sign of each component of the charges. Recalling f rom the previous discussion that 

for ^ 2 7^ 0 each f j has vanishing imaginary part for only one point other than y = 0, 0 0 , the 

coefficients of the simple roots in the topological charge expressions are either 0, ± 1 , ± 1 / 2 

(the latter being the components of Q ; „ _ I and a „ ) . I t is found that the coefficients are 

negative (or zero) when 0 < { 2 < and positive (or zero) when —TT < (^2 < 0- This is 

then used, when the nonzero components of the charges corresponding to ^2 = ± e are 

determined, to give an expression for the topological charges at these values of ̂ 2 -

The components of the topological charges occurring as coefficients of On-x and are 

straightforward to calculate, and so attention w i l l now be restricted to those j ' s lying in 

the range 0 < j < n —2. I t is found that each f j possesses the symmetry that y l / y 
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Figure 20: The number of topological charges: theories D^-Ds 

results i n I m / j - I m / j . The function f j therefore crosses the real axis at the point w i th 

y = 1. Here the expression for f j reads 

cos6 + 2 2 ^ i ^ ^ ^ 
/ , = — . 5.2.2c 

cos^ + l ^ ' 

For those components contributing to the topological charge, the numerator of (5.2.2c) w i l l 
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be less than or equal to zero. In these cases, for y small, i t is found that 

/ ^ , C O s i { 2 j - l ) d a ) \ . 
I m f j r ^ y - 1 + s m ^ . 

\ cos l^a / 

The bracketed term is strictly less than the numerator of (5.2.2b) and is therefore strictly 

negative. The result is thus deduced: the nonzero coefficients of the topological charge are 

negative for 0 < ^2 < and positive for —TT < ^2 < 0. E y = 1 and ^2 = 0 then 

c o s ( ( 2 j - l ) ^ „ ) ' 

cos -da 
(5.2.2d) 

In order, therefore, to calculate the topological charge at ^2 = e an infinitesimal, the values 

of j for which f j < 0 in (5.2.2c) are important. In fact for y = 1 and (2 = ^ expression 

(5.2.2b) gives 

, _ i + cos 
J j — 

( ( 2 j - l ) ^ a ) 
2! < 0 « / , < 0 for 6 = 0, y = 1. 

2 - i + 0{e^) 

The values of j satisfying this are those for which 

{k' + ^)7r < ji9a < {k' + ^) + ^a, {k' an integer), 

IT — 1 Tl — 1 
i.e. k—— < j < k— 1- 1, {k an odd integer). 

a a 
Their actual values are 

Pk = 

and when a 7̂  a is odd 

n - 1 
+ 1, ^ = l , 3 , . . . , a - l ( ^ o d d ) , (5.2.2e) 

p'f. =z k{n - 1), A; = 1 , . . . ,gcd(a,n - 1) (fc odd). 

The topological charges corresponding to ,^2 = ± e are therefore 

(5.2.2f) 

±to = ± 

a-l scd(a,n-l) 

m «Pfc + H O p ; ^ ^ l , a m o d 2 ( l - ^a ,a) + - ^ l , a m o d 2 ( " n - l + O n ) 
k=l 

k odd k odd 

(5.2.2g) 

The next task is to append to the above expression the information given in parts (z) and 

( M ) of the previous discussion, and so generate the remaining charges. 
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The procedure is straightforward: identify those values of cos((2j — l)'da) for which ^{x,t) 
is undefined, arrange them in order of increasing value, then successively add on to to the 
simple roots corresponding to each value. A l l the topological charges are then generated. 
As ever, the details are slightly different for a even and a odd. In order to ease notation i t 
w i l l be necessary to remove j = 1 f r om the following discussion - this is done without loss 
of generality as j = 1 contributes to both parts ( i ) and (u ) . 

First consider part ( i ) . I t was shown that the values of co?,{{2j — l)'da) are distinct for 

j = 2 , . . . , (n — 1 -t- l ) / 2 , i f a is even, and j = 2 , . . . , n — 1 is a is odd, thereafter being 

repeated for all other j. These collections of values of cos((2; — l)i9a) wi l l be denoted 

( ^ - | - l ) / 2 ^x 

jieven) ^ y {cOs{{2k - \ ) d , ) ] and / { " ' " ^ = IJ {cOs((2^" - 1 ) ^ , ) } . 
k=2 k=2 

Now consider part (ii). I t was shown that the values wi th in the sets /l*^"^") and J^'^^^ not 

contributing to the topological charge were those wi th j satisfying 

7̂  ~- 1 n — 1 
k—z— < i < k—z h i , [k any integer), 

a a 

their being 5/2 and a such values of j for a even and odd, respectively. Defining 

k- + 1, (5.2.2h) 

the relevant collections of values of cos((2j — l)'&a) to be discarded are given by 

4 - - ) = ^\]{co.{{2q',-l)da)] 
k=i 

e^nd 4"''^ = f u { c o s ( ( 2 ? ^ - l ) . ? a ) } ) u { c o s ( ( 2 ( n ~ l - l ) z 9 „ ) } . 
\k=i I 

The objects of interest in calculating the topological charges are ji^'"^'^) = /(^^^") _ j^^euen) 

and 1^°'^^) = j^°'^^'> _ J^°'^'^\ Before giving an expression for the charges i t is necessary to 

enumerate the members of these sets by defining p[^'"^"'^ = min/^^"'^"), p[°^'''^ = mml^°''''^\ 

qt"""^ = m i n (/(^' '^"' - u ' {9/""'}l , and qi°''^ = mm (^''^ - U {^f""'^}' 
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where A; = 2 , . . . , (1 - | ^ o , a m o d 2 ) ( « - 1 - a - 1). Finally, the charges can be expressed by 

the formula 

/ / n - 2 

±ti = ± to-\-J2J2 " i ( ^ 0 , a m o d 2 < 5 ^ „ , ( ( 2 j _ i ) ^ ^ ) , , ( — ) + ^ l , 5 m o d 2 < ^ , „ 3 ( ( 2 j _ i ) t f „ ) , , W < ^ ) ) 
\ k=lj=2 ) 

where / = ! , . . . , ( ! - | ^o , amod2) (?^ - 1 - a - 1), giving the expected total number of charges. 

I t remains to calculate the topological charges corresponding to a = n — 1, n. They have 

T - funct ions given by 

ro = l + e^ T ^ = l - e ^ r, = 1 + ( - ) ^ e 2 ^ (2 < j < n - 2), 

as well as Tn-\ = 1 ± and T „ = 1 =f e'̂  i f n is even. 

or Tn-\ = 1 ± ie* and T „ = 1 =F ie* i f n is odd 

The number of topological charges in each case is four, and are given by 

for n even : ± 

^71-2 
/ ^ Y 1 \ 1 1 1 
- Q i -f- a2j + ^ -j(^23^\ + ' 2^^ ^ ^ 2^^^^^ ^ 2^" 

f o r n o d d : - a i - f ^ -h XI o ^ ^ j + i + T " n - i + 7 « " > 

i n - 2 
1 1 1 , 1 

1 ' ^ ' 1 1 ^ 1 

^ n - 2 
1 2 " " 2-- - Y 1 3 

^ J = l J = l ^ * ^ 

as well as the above w i t h a„_i «„• These expressions w i l l be of use later when the 

non-simply laced theories obtained f rom the d-theories via folding are discussed. 

Finally, the effect of the unextended and extended diagram automorphisms are considered. 

As usual those of the former permute the solitons whilst those of the latter permute the 

charges. The result are summarized in Table 4 below. 
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Automorphism of 

extended diagram 

Automorphism of 

set of charges 
Change in ^2 
1 < a < n - 2 

Change in 4>(^a) 

a = n — 1, n 

O n - l <-> an - - <l>(n-l) (f>{n) 

ao <-> 
ai <-> an 

aj ^ an—j 

ao ^ an-i 
Q l an 

a J an-j 

6 6 (a even) 

6 ^ 6 + (a odd) 
-

ao ^ 
ai ^ an 

aj <->• an-j 

ao ^ an-i 
ai <-> an 

aj •f-̂  an-j 

a J -aj 6 ^ -6 

6 6 {n even) 
or 6 6 + even) 
6 -> 6 ± 7r/2 (n odd) 

Table 4: Symmetries of the (/(ĵ ^ topological charges. 

The expression for the topological charges in this theory is not of a sufficiently simple 

form for results relating to which representation the charges lie in to be generally derived. 

However, using the mathematical package Maple V'^^ the S^"^ theories have been consid­

ered up to and including the n = 50 case. It has been found that as well as lying in the 

representation associated with the soliton number, the charges lie in the Weyl orbit of the 

highest weight, in keeping with the result corresponding to the â ^̂ ) theory. It is reasonable 

to speculate that this result holds true for all n. 

5.2.3 The ê^̂  theory 

As is now familiar, there is a relationship between the symmetries of the Dynkin diagrams 

and the topological charges of the solitons. The topological charges of the eĝ ^ theory are 

listed in table BIO of Appendix B with the number corresponding to each soliton shown 

in the diagram below. 

9 
o-

6 
•o-
" 3 

4 0 " 2 

2 
—o— 

0 4 

6 
-o-

" 5 

9 
•o 

Figure 21: The £ 5 Dynkin diagram. 
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The symmetry of the unextended diagram which interchanges the two long legs i.e. cui •f-̂ ^ ae 

and as <-> as, when imposed on the solitons, results in the interchange of the corresponding 

solitons. As for the extended diagram, its rotational symmetry corresponds to a phase shift 

of the constants ^2 for those solitons of degenerate mass. These results are summarized in 

Table 5 below. 

Automorphism of 

extended diagram 

Automorphism of 

set of charges 

Change in ^2 Change in 4'{a) 

a-i ag a i ae _ 
(t>{\) ^ 

as as as <-> as — 

aQ ai —>• ae ^ ao ao ^ a i ae ^ ao 6 ^ (6 + f ) mod 27r 
a 2 as —> as —> a 2 a 2 —> as —> as ^ « 2 (a=l,2,5,6) -

a4 —> 0 4 a4 —> a4 ^2 unchanged (a=3,4) 

a i ae, as as a i <r^ —ae, as —as 
ao —> ao, a 2 —> 0 2 ao —> —ao, a 2 —> —02 -

0 4 —> a4 a4 —> —a4 

Table 5: Symmetries of the Cĝ^ topological charges. 

5.2.4 The e)^ theory 

Next attention is turned to the eŷ ' theory. The number of topological charges correspond­

ing to each soliton are shown in the table below: 

10 
o-
a i 

2 
•o-
" 3 

8 0 " 2 

a4 

4 
-o-

0 5 

6 
-o-

14 
-o 

" 7 

Figure 22: Dynkin diagram for Ej 

with their actual values given in table B l l of Appendix B. As well as the symmetry corre­

sponding 1̂ 2 —̂  — ^ 2 the 67^' theory has topological charges invariant under the interchange 

of the simple plus extended roots that give rise to the Cĝ^ theory. The unextended diagram, 
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however, has no symmetries and so there is no relationship between the solutions and their 

respective topological charges. The symmetries are summarized as follows: 

Automorphism of 
extended diagram 

Automorphism of 
set of charges 

Change in 1̂ 2 

ao 0 : 7 , CKi <-> ag 
az ^ as 

0:2 —> Q;2, ct4 —> a^ 

ao a7, a\ <-> ag 
as <-> as 

a2 —> a2, a4 —> a4 

^ 2 unchanged (a= 1,3,4,6) 

6 ^ (6 + TT) mod 2ir (a=2,5,7) 

6 ^ -6 

Table 6: Symmetries of the 6 7 ^ ' topological charges. 

5.2.5 The ê^̂  theory 

The lack of a general formula for the Cĝ ' solitons means that' the calculations of the 

topological charges have to be done on a case-by-case basis. The diagram below summarizes 

the number of charges associated with each soliton, shown once again that the number of 

charges does not in general divide the Coxeter number, and so the Coxeter element cannot 

be used to relate them. 

18 
o-
a i 

8 
-o-
" 3 

6 0 « 2 

2 
—o— 

a4 

6 
-o-
as 

10 
•o-
"6 

14 
•o-
ar 

26 
•o 
08 

Figure 23: Affine Dynkin diagram for eg (1) 

The actual values of the topological charges for each soliton are listed in the appendix. It 

is at this point that a curious property of the topological charges of the e^g^ reveals itself. 

In the al^^ , eg \̂ 6 7 ^ ' theories, as well as the first few members of the d!;^^ theory which 

have been checked, the topological charges are found not only to lie in the fundamental 

representation associated with each soliton, but to lie in the Weyl orbit of the highest 

weight of the particular representation. In the case of the Cĝ^ theory, although all of the 

topological charges lie in the appropriate fundamental representation, they do not lie in the 
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Weyl orbit of the representation's highest weight. For example, in the fifth fundamental 
representation, the highest weight is given by 

8ai + 12a2 + 16as + 24a4 -f 20as H- 15a6 + lOay + Sag 

and is of length 20. However, the second topological charge of the fifth soliton, 

a 2 + 2as + a4 4- 2a6 -f cng 

has length 16 and so lies in a different Weyl orbit. This charge does lie in the root string 

of the first charge, 

a 2 -I- 2as -I- 3a3 -f 2a6 + as, 

in the direction a4 and so is still a member of the fundamental representation. Those 

charges lying outside the Weyl orbit of the highest weight are indicated with a in Table 

B12. 

There are no automorphisms of either the extended or unextended diagram, leaving the 

charges invariant only under the essentially trivial transformation 1̂2 —> —6 which results 

in a J —̂  Vj ' . 

5.3 The non-simply-laced untwisted theories 

5.3.1 The theory 

It was shown in the previous chapter that the single solitons of the ĉ ^̂  theory are expressible 

via the r-functions 

T, = l-l-2cos e -|-COS — e . 
\ n J \2nJ 

This expression is very similar to that of the d^^ r-functions given in (5.2.2a), and so the 

calculation of the number of topological charges related to each of the c^^^ single solitons 

proceeds in the same way as that of d^^ . There are however, some subtle differences 

between the two calculations, as will now be explained. 

Firstly, in part (i) of the calculation there are three possibilities for the number of distinct 

values, in this case, of cos ( • ^ ) , namely 
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| ( n + 1) if 5 is even, 
(n -I- 1) i f a 7̂  a is odd, and 

n if a = a is odd. 

These results are summarized as 

(n -I- 1)(1 - - ^ 0 , a m o d 2 ) " <5d,a^l,5mod2• 

In part (i i) , there are again three possibilities for the number of distinct values of cos 

outside the range (—1,1). They are 

| (a + 2) if a is even, 

(a - f 1) i f « 7̂  ct is odd, and 

a if a = a is odd. 

These can be summarized as 

(a + 1)(1 — -^ 0 ,dm od2) + -j^^0,a.mod2 " ^a,a^l ,amod2-

The resulting number of topological charges is therefore 

2(n - a -f 1)(1 - ^^0,amod2)-

The numbers of topological charges for the first few members of the C„ series are given in 

Figure 24, overleaf. 

The calculation of the topological charges is again similar in character to that of the d^^^ 

theory and proceeds as follows. Firstly, the components of the topological charge are 

positive/negative depending on whether — T T < ^2 < 0 or 0 < ^2 < TI". The topological 

charge at ^2 = e is determined by those j satisfying 

7 7 - 1 Th \ • 
—k — -<j<—k + -, {k a.n odd integer). 
a 2 a 2 

The resulting topological charge is easily obtained, and is given by 

± ^ 0 = ± 

a-l 2gcd(a,n ) - l -ĵ  

E ^Pk + -^l,!mod2 E ^P', + 9 « » 
fc=i fc=l ^ 

where 

k odd 

kh 1 
T + 2 

and pJt = ^{kh -f-1). 
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2 2 4 2 2 

a i a 2 a i a 2 as 

8 4 4 2 

C, .o — o — o=^# 
a i a 2 as a4 

10 4 6 2 
C, O O — O O: 

a i a2 as a4 as 

12 6 4 2 4 2 
Ce O O O O 

a i a2 as a4 as 

Figure 24: The number of topological charges: theories C 2 — CQ 

The distinct values of cos give rise, as in the d^^^ theory, to the sets / l ^ " ^ " ' and /|°'' '^' 

as follows: 

A:=0 \ n J 

and /(°'^'^)= U{cos(^)}U(l-<5,,a)<^i,an>od2{l}. 

From these two sets have to be removed those elements corresponding to any j satisfying 

kh 1 ^ . ^ kh 1 . , 
— - x < J < — + 77 («;an mteger), 
a Z a Z 

so leading to the following definitions for J^'"^'^'> and 12°^^^: 

U {cos P ^ }, 

4°''''̂  = U {cos f ̂ ) } U (1 - <5a,a)<5l,amod2{l}, 

where 
kh 1 
a Z 
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The subtraction of the latter sets from the previous ones give /(^^«") and ji"'^'^) which are 

then ordered to give the numbers qk- The resulting general expression for the topological 

charges is 
/ 71-1 

,amod2^^^J Eai\ (even) + Sl,amod2^^^Jnai\ (odd)) 
\ k=l 3-1 \ " J' >= { n )> k ^ 

where / = 1 , . . . , (n - a)( l - |^o ,amod2) - |^o ,amod2, giving the expected total number of 

charges. There is one extended diagram symmetry of the ĉ ^̂  theory corresponding to a 

reflection in the central spot (if n is odd) or mid-way between the two middle spots (if n 

is odd). As ever ^2 ^ ~ ^ 2 is also a symmetry. These results are summarized below. 

Automorphism of 
extended diagram 

aj —> an-j 

Automorphism of 
set of charges 

Change in ^2 

(2 6 (if ̂  is even) 
(2 ^2 + (if « is odd) 

6 -> -6 

Table 7: Symmetries of the ĉ^̂^ topological charges. 

5.3.2 The 6^ theory 

The information already gathered for the d!^^ solitons allows the number topological charges 

for each of the b!^^ solitons to be read off from that of d^^^ by replacing n with n -|- 1. 

Therefore, the a*'' soHton (1 < a < n — 1) has 

2{h-a- 1)(1 - iV5mod2) + 2 

such charges. 

For the solitons that survive the folding from dnl^ to b^;l\ the topological charges are 

immediately given by 
/ / n - l 

±t , = ± + 1̂  XI "j(^1.5mod2<5,„,((2j_a)^^),,(^-en) + 5l,amod2<^^„3((2j_l)^„),,M'')) 

where / = 1 , . . . , (1 - |<5o ,amod2)(« - a - l ) , and 
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a i a 2 a i a 2 as 

6 2 2 2 

a i a 2 as 0 4 

2 

a i a 2 as 014 as 

10 4 2 2 2 2 
^6 • • • • 

a i a 2 as 0:4 as ae 

Figure 25: The number of topological charges: theories B2 — -Se 

±to = ± 
a-l g cd (a ,7 i ) - l 

^ ^'pk^ ^p'^O,amodl(l - ^d,a) + ^ l , a m o d 2 a ^ 
k=l k=l 

Lk odd k odd 

The constants pk, p'j. and q'j. are also modified, being given by (5.2.2d), (5.2.2e) and (5.2.2g), 

respectively, where n is replaced by n + 1. 

Finally, the soliton corresponding to a = n with r-functions given by (3.4.1a) is found to 

have two topological charges which are written 

± ( a j - f ttg -F . . . a^) if n is odd, and 

±(a' i -f- ag -)- . . . a^_i) if n is even. 

As usual the number of charges for each soliton in the first few theories have been con­

structed and are given in Figure 25. 

5.3.3 The g^2^ theory 

In this theory the soliton with A = 2 has six charges, whereas the soliton corresponding to 

A = 6 (the soliton of the c?4 '̂ theory corresponding to the central spot) has two charges. 
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They are listed in table B13 of the Appendix. In this case it is straightforward to calculate 
the representations in which the charges lie. The two charges corresponding to A = 6 
are found in the first fundamental representation (1,0) (and also in the Weyl orbit of the 
highest charge), whereas the six charges corresponding to A = 2 are found to he in the 
representation (0,3) (with four in the Weyl orbit of the highest charge) or when viewed 
from the d^^^ theory, the (1,0,1,1) representation of D4. The last result isn't too surprising 
upon recalling that the A = 2 soliton of ̂ r̂ ^̂  is formed from a triple soliton configuration 
in 4̂ '. 

The only symmetry of the theory is that which interchanges the overall sign of the topo­

logical charges, corresponding to a change of sign of {2-

5.3.4 The fi^^ theory 

The results of the calculation of the topological charges in the / j ^ ^ theory are given in Table 

B14. In a similar manner to the g^^^ theory, those single solitons which survive the folding 

process have topological charges lying in the two fundamental representations (1,0,0,0) 

and (0,1,0,0), and also in the Weyl orbit of the highest charge. For the remaining two 

sohtons, their charges are found in the higher dimensional representations (0,0,2,0) and 

(0,0, 0,2), and in general not inside the Weyl orbit of the highest charge. Again, the origin 

of this lies in the Cg^^ representations in which the charges of the double solitons giving rise 

to the / j ^ ^ single solitons are found. 

This theory only possesses the symmetry of the change in sign of 1̂2 and correspondingly 

the charges themselves. 

5.4 The twisted theories 

As in the discussion of folding from simply-laced theories to the twisted theories in Chapter 

3, the results of this section can be deduced directly from those of the simply-laced theories 

without any unnecessary extra work. The information for the twisted theories is obtained 

by re-expressing all the formula pertaining to the simply-laced theory in terms of the rank 
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and simple roots of the twisted theory. The following results are split into the cases of the 

infinite algebras and the exceptional algebras. 

5.4.1 The infinite classes 

The cases considered in this subsection are those of a^2n-i-> <^i+i and a^^n which are formed 

from the dnl2 and d^2n+2 theories, respectively. 

The a^2n-i theory 

The ct^Li solitons with A = AJ*"'̂  (6 = 1 , . . . , n - 1) are those of d^^J corresponding to 

a = 2b. As a result gcd(a, 2n - 1) = 1 giving a = a and (2n - 1) = 2n - 1. The number 

of topological charges is therefore 2n — a = 2{n — b). 

Defining 

Pk 
2n - 1 

2b 
+ 1, A; = 1 ,2 , . . . , 26 -1 (^odd). 

then the topological charges at ^2 = ±e are simply 

26-1 

k=i 
.k odd 

Pk 

Proceeding as usual, I = h — h where 

I,=.\J{cos{{2k-l)^k)} and h = \J {cos{{2q', - 1)^^)}, 
k=2 k=l 

where -di, = 67r/(2n - 1) and q'^ = [k{2n - l)/2b] - j - 1. The set / is enumerated, giving qk 

(k = 1,... ,n — b — 1) and topological charges 

/ I n-2 \ 

±tl = ± to-\-J2'^ a2^cos{(2i-l)^6),9fc I , 
V fc-li=2 / 

where I = I,... ,n — b — 1. The charges of the remaining soliton, corresponding to 6 = n, 

are: 

n even : 

kn-1 \ 
« ' l + 2 E + E « 2 , + l + < 

u - 1 

«i + E « 2 2i-l-l ' 
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i(„_s) / | ( n - 3 ) 

72 odd : ± a'j + 2 ^ â .̂ + ^ a'2 .̂+i + , ± a'̂  + ^ â  + -a^ . 1 , 

j=i j = i / y j = i 

The symmetries of this theory, corresponding to the interchange of the roots on the prongs, 

and the change in sign of 1̂2 are given below. 

Automorphism of 
extended diagram 

Automorphism of 
set of charges 

Chang e in ^2 

ao cti ao a i 6 ^ 6 (6 = l , . . . , n - l ) 
TT {h = n) 

- 6 - >-6 

Table 8: Symmetries of the aj^Lj topological charges. 

The (/J3i theory 

The n solitons of the d^^l^ theory are those of the (f̂ !̂ 2 theory corresponding to a = 1 , . . . , 72. 

There is no simplification in the expression for the number of topological charges, which is 

2(72Tl - a - 1)(1 - ^<^0,amod2) + 2. 

The topological charges are then those of the o?*̂ !̂ 2 theory re-expressed in terms of the roots 

Wi) i-e-

/ a - l 

±to = ± 
gcd(a,n+l) 

X] <^Pfe-l + Y l « p ^ - l ^ l , a m o d 2 ( l - ^a ,a) + <5l,amod2a^ , 
k=l 

k odd 
k=l 

k odd 

corresponding to ^2 = ±£5 and 

/ n 

±ti = ± to + E E ° ^ J - l ( ^ 0 . « - ° d 2 5 , „ , ( ( 2 , _ i ) ^ „ ) , > - " ) + < ^ l , a m o d 2 ^ , , , ( ( 2 , _ i ) ^ „ ) , > ' ' < ^ ) ) > 

where / = 1 , . . . , (1 - | ^ o , 5 m o d 2 ) ( n T l - a - 1), i?a = a7r / (2(n ^ 1)), and the rest of the 

parameters are those of §5.2.2 with n replaced by 72 - j - 2. The symmetries of this theory are 

given in Table 9, below. 
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Automorphism of 
extended diagram 

Automorphism of 
set of charges 

Change in 1̂2 

a j ^ an—j a j >• an-j 6 6 (« even) 
6-^6 + ''" (« odd) 

- 6 - -6 

Table 9: Symmetries of the dn^i topological charges. 

The a^2n theory 

Finally consider the a^2n theory, viewed as the folding of the a^2n+i theory. The solitons 

of the former theory are those of the latter with TQ = T I . There are n such solutions 

corresponding to a = 1 , . . . ,n . The number of topological charges associated with each 

soliton is 2(n + 1 — 6). The resulting topological charges are, for 6 = 1 , . . . , n. 

26-1 

E 
k=l 

k odd 

corresponding to 1̂2 = ±e and 

; n - 2 

±̂ , = ±|to + E E aj-i8cos({2i-\)-dt), 
k=\ j=2 

Ik 

otherwise, where / = 1 , . . . , n — 6, and the parameters are those of a2n+i-

The only symmetry of this theory is that of ^2 —^2, resulting in aj —> —aj, V j . 

5.4.2 The exceptional twisted cases 

To conclude, the topological charges of the remaining exceptional twisted theories have 

been calculated. It is not clear how to associate these charges with a representation of 

the twisted theory itself, however when viewed from the parent theory used in the folding 

process, the charges are seen to lie in fundamental representations of the parent theory. 
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The e'i^ theory 

As with the all the other exceptional twisted algebras, the topological charges are obtained 

directly from an untwisted theory. In this case the theory is that of 6 7 ^ ^ The charges 

are given in Table B15 of Appendix B. The only symmetry of the theory is that under 

6 - -6-

The theory 

This theory is obtained from folding Cg^^ and so the topological charges are obtained 

directly from that theory. They are given in Table B16 of Appendix B. It possesses the 

usual symmetry under ^2 ^ —^2-

The a^2^ theory 

Finally, consider the theory. Its one soliton has two topological charges given by ±a[ 

which are related by the ^2-symmetry. 
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6.1 Introduction 

This thesis covers only a small part of the research that has been carried out in recent 

years into affine Toda solitons since the analysis by Hollowood of the â '̂ theory. As well 

as consideration being given to the classical theory some authors have looked at what 

happens in the quantum regime. As well as first order mass corrections in the a^^ and 

ĉ )̂ theories being carried out, quantum group methods have been used by Hollowood to 

propose an S'-matrix for the â^̂^ theory. Further, there has been recent developments in 

construction the representations of quantum groups with an aim of explaining the occur­

rence of topological charges. These areas will be reviewed with varying degrees of detail 

in the next section. This thesis concludes with critical discussion of the research material 

presented and addresses outstanding questions. 

6.1.1 Quantum mass corrections 

In the real coupling affine Toda theories it is found that there are n particles with classical 

masses given by 
cl n • ^ m„ = zmsm 

+ 1. 

When the theory is quantized the spectrum is preserved, except for an overall mass renor-

malization independent of the particular particle concerned. From a one-loop Feynmann 

diagram calculation it can be shown that 

ml = l _ ^ c o t ("L^+Oi^') 
4n \nj 

In the simplest of the complex coupling affine Toda theories, that of the sine-Gordon theory, 

the classical mass and its quantum correction give the overall quantum mass as 

This can alternatively be written in the form = W ^ f S ' ' ^ ) where 

= ^' . 
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This expression can be shown via other quantization schemes to be exact. The extension 
of this work to the general â ^̂  theory was presented in the original work on solitons [32], 
and discussed in more detail in a subsequent publication [33]. As well as proving that the 
single solitons are classically stable, the first order mass correction is given by 

M 5 

the first term being the classical mass. It is unclear as to whether the above is exact or 

not. If i t is then the soliton mass ratios survive quantization in this theory. 

The only other theory for which mass corrections have been calculated is that of the non-

simply-laced C2^^ theory [59]. In this model there are two solitons having classical masses 

. 8v^772 - 8772 
Mf = and M f , =-—. 

It is found that the masses, at least to one loop quantum correction, are not rescaled by 

the same amount, but take the from 

8\/2772 3\/2i< , 8?72 3u u • 

Watts has pointed out that this may cause difficulties in the i2-matrix approach to con­

structing soliton ^'-matrices as this method relies on the ratios of the quantum masses to 

be that of the classical theory. It is clear that this example, as well as the other non-

simply-lace theories, requires further understanding. 

6.2 The soliton 5-matrix 

Following the construction of the solitons and their first order quantum mass correc­

tions, HoUowood considered the construction of a soliton-soliton ^-matrix [33]. This is 

done as follows. As the classical solitons can, via their topological charges, be associated 

with a fundamental representation it is expected that, in the quantum theory, the asymp­

totic state representing the soHton carries two quantum numbers - velocity and topological 

charge. As a result, each of these external states can be viewed as a vector in one of the 
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fundamental modules of the theory. If the module associated with the a^'^ fundamental 
representation is denoted K , then the two-body S'-matrix acts as the interwiner 

As the theory is integrable, the general ^-particle ^-matrix is factorizable into lN(N — 1) 

two-body ,S-matrices. Upon imposing the usual constraints of S'-matrix theory - unitarity, 

crossing symmetry, analyticity and the bootstrap equations - the soliton-soliton S'-matrix 

is obtained with the quantum group Ug{An) and Hecke algebras playing an important role. 

From this proposed S-matrix a number of results are deduced. Most importantly, it is 

stated that at the quantum S'-matrix has simple poles in the physical strip which correspond 

not only zero topological charge periodic 'breathers', which are famihar in the sine-Gordon 

theory, but that 'breathing' solitons exist which although being periodic bound states carry 

a non-zero topological charge. The solutions then have charges filling up the fundamental 

representations. It is important to note that no such explicit solutions have been presented 

to which these claims can be tested. 

This work is supported by the recent paper by Debus and Zhang [17] in which finite dimen­

sional representations of quantum afiine algebras are constructed providing the necessary 

mathematical background for the extension of HoUowood's S-matrix work. 

6 . 2 . 1 C o n c l u s i o n s 

The major results of this work are those concerning the topological charges of the affine 

Toda models. Although significant progress has been made in that they can be calculated 

for any theory using the expressions in this thesis, there still remains many outstanding 

questions. 

If the material appearing in chapter four is considered in isolation, then a number of 

conclusions could be drawn. The topological charges, as well as lying in the fundamental 

representations, lie in the Weyl orbit of the highest weight. They are connected by a 

Coxeter element from which all charges corresponding to each soliton can be deduced from 

just one. As a result the number of topological charges is a divisor of the Coxeter number 

h, its precise expression for the a*'* sohton being h/ gcd(a, h). 
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As consideration is given firstly to the simply-laced theories and then the others, the 
situation becomes decidedly less clear. Consider first the simply-laced theories. The charges 
are found for the exceptional algebras, and up to the d^^^ member of the d!^^ theories, to lie 
in the fundamental representation associated to each soliton. It is reasonable to expect this 
to be true for all the d^^^ theories, though it is not clear how this can be proven from the 
expression for the charges in that theory presented here. The use of a Coxeter element to 
connect the charges immediately breaks down at this point as can be seen in the simplest 
of the theories, 4̂̂ ^ though the high degree of symmetry present in the â ^̂  theory may 
explain the presence of the Coxeter element there. Perhaps the most surprising result is 
that although for all the simply-laced theories considered, it is only in the ê ^̂  theory that 
there exist charges lying outside the Weyl orbit of the highest charge. There seems to be 
no immediate explanation of this phenomenon. 

On moving to the untwisted non-simply-laced theories of ̂ 2̂ ^ and f^^^ it is no longer possible 

to associate, in general, the topological charges with a fundamental representation. It is 

only the topological charges of the solitons surviving the folding procedure which remain 

in the fundamental representations. For the twisted theories, all single solitons are single 

solitons of the parent theory surviving the folding. The representations to which the 

corresponding charges should be associated seems to be the fundamental representations 

of the parent theory in which they trivially lie. 

How then should the topological charges be understood ? The method that has provided 

the most algebraic approach is that of Olive et al. in their series of papers. Recalling the 

form of the solution which they obtain 

< Ao|e-/5^i^+^(0)e-^^-i^+|Ao ' 

it is important to note that calculations lead to an expression for the exponential of (j) and 

so the topological charge, for example, can be calculated modulo 27rAfi//?, where AR is 

the root lattice. There is no such problem in the calculations carried out in the previous 

chapters. 

An ideal may be to combine the known results for the a^^ theory with the results of Olive 

et al. The phase shift in the complex parameter relating one charge to another is known 
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and the effect of such a shift on the elements F\z) (recalling that the Kac-Moody group 
element creating a soliton of species i is exY>QF\z) [54]) could give some insight into an 
algebraic interpretation of the charges. This would also perhaps explain the expression for 
the number of charges associated with any particular soliton. 

Whatever the future developments in the study of affine Toda solitons are, the questions 

relating to the topological charges must be addressed. When progress is made in that 

direction, this thesis will provide the necessary material against which any such results can 

be tested. 
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A . l H i r o t a ' s m e t h o d 

This is a direct means of obtaining soliton solutions. The basis of the method is a change 

of dependent variable which transforms the soliton equation into its Hirota form. 

Definition: Let / and g be sufficiently differentiable functions of x and t. Define the 

operators and Dt by 

These are Hirota derivatives. 

Remark: F(Dx, Dt) may be defined provided F has a Taylor expansion, for example 

F{Dx, Dt) = exp{eD,) = 1 + eD, + -Dl + ... 

Properties: Assume / and g are sufficiently differentiable, then 

(1) D^DU-g = A " ^ • / 

(2) D^D^f-g = D^D^f-ag = aD^D^f-g 

(3) D^D^{h+h)-g = D^D^f,-g = D^D^f2-g 

(4) exp{eD, + 6Dt)f -g = f{x + e,t + 6)g{x-e,t-6) 

(5) ln(cosh(eZ). + • / ) = 2cosh ( e ^ I n / 

(6) ( 2 I n / ) . . = ( Z ) ^ / - / ) / r and(21n/) . , = ( D . A / - / ) / f 

(7) D-D-f-a = a£,l^f 

(8) D^D^e'^'''''+^'^^ • e('='2^+'52t) = (̂ ^̂  _ a2)"'{lSi - I3^)nei{"i+a2)x+{p,+p2)t) 

Properties ( l ) - (3) , (7) and (8) are proved from the definition of Hirota derivative, whereas 

(4) and (5) are proved by Taylor expansions of the respective left hand sides - property 

(6) being obtained at orders and eS of (5) respectively. 
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Br, 

o—o—o— —o—o—o 
Q!l a2 0:3 an-2 (Xn-l OLn 

o—o—o— —o—o=^# 
«! OL2 0:3 a„_2 OLn-\ OLn 

• — • — • — —•—#=4^0 
02 OLZ Oln-2 Q-n 

O 

o—o—o— —o—o 
a i 02 a s «n-3 Q:„_^ 

O 

Ea 

o- •o-
"3 

0 0̂ 2 

-o-
04 

-o-
"5 

-o 
^6 

Table B l : Dynkin diagrams of the simple Lie algebras. 
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E7 

o- -o-
"3 

0 « 2 

•o— 
04 

•o-
a s 

-o- •o 
0:7 

o- -o-
a3 

0 « 2 

-o-
04 

•o-
a s 

-o-
a e 

-o- -o 
a s 

F, o-
a i 

• 0 ^ 
0L2 a s 04 

O i 0:2 

Table B l , continued. 
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a „ - 2 a „ _ i 

4 ' ' = D{Dn 

Table B2: Untwisted affine Dynkin diagrams. 
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D{Ee) 0 « 2 

o- -o-
Q3 

-o—o-
014 as 

•o 

e? = D{Er) 

o- -o- -o-
"3 

0 « 2 

-o-
a4 

•o-
"5 

-o- -o 
07 

D{Es) 

o- -o-
0:3 

0 « 2 

-o-
a4 

-o-
0:5 

•o- -o-
0C7 

•o-
"8 

•o 

o- •o-
0:2 Ct3 a4 

o-
a i 02 

Table B2, continued. 
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,(2) 

Oi2 a s a „ - 2 a „ _ i an 

a i 

••o—o— —o— 
ao a i 02 an-2 a „ _ i an 

a4 a2 as a i ao 

^ D^G2) o 
02 a i Qfo 

i^}^GD{Hn) 0 = ^ 0 O-
ao ai 02 •o— o„_2 o„_i a„ 

a^'' = GD{BD) 
On ~ o'i 

Table B3: Twisted affine Dynkin diagrams. 
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A 3 - ^ / 3 3 - v/3 2(3 -f ya) 2(3 - V3) 3 + /̂3 3-f v'a 
1 1 1 1 1 1 

1 1 u 
- ( A - 2 ) - ( A - 2) - ( A - 2 ) - ( A - 2 ) - ( A - 2) - ( A - 2 ) 

1 1 1 1 1 1 
- t j ( A - 2) -2) - ( A - 2 ) - ( A - 2 ) -u{\ --2) 

i p ) u; 1 1 
0 0 3(A - 3 ) 3(A - 3 ) 0 0 
0 0 3(A - 3) 3(A - 3) 0 0 
1 1 1 1 1 1 

4" ( A - 2) - ( A - 2 ) - ( A - 2 ) -a;2(A -- 2 ) -a;(A - 2) 

i f 1 1 u;2 

4" 1 1 

Table B3: (̂ -values for eĝ ' single solitons. 

A A3 A25A5,A7 Ai,A4,A6 
1 1 1 

s? - 4 - ( A - 2 ) - (A - 2 ) 
1 1 1 

- 4 0 2(A - 2 ) 
1 - 1 1 
3 1(A2 - 6A + 6) | ( A ^ - 6A + 6) 

c(2) 
O3 3 i ( A 2 _ 6 A - f 6) K A ^ - 6A + 6) 
r(3) 
O3 1 1 1 
O4 4 0 - ( A ^ - 6A + 8) 
^(2) 
O4 6 2 ( A - 1 ) 2(2A2 --9A + 9) 
f (3 ) 
O4 4 0 - ( A ^ - 6A + 8) 

1 1 1 
3 _ l ( A 2 _ 6 A + 6) 5(A^- 6A - f6) 
3 |(A2 - 6 A + 6) | ( A ^ - 6A + 6) 
1 - 1 1 

- 4 ( A - 2 ) - ( A - 2 ) 
1 1 1 

4̂^ 1 - 1 1 

Table B4: 5-values for Cŷ^ single solitons. 
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A 

i f 

4" 

4" 
4"" 
4' 
4̂ ' 
4" 
4̂ ' 
4" 

4' 
4' 
4= 

1 
- |(A3-24A2 + 132A-192) 

1 
i(A3 - 18A2 4- 84A 
\ { \ ^ - 18A2 + 84A 

108) 
108) 

|(A3 - 6A2 + 24) 
| ( 5 A 3 - 60A2 -f 225A - 261) 

i(A3 - 6A2 + 24) 
1 

- i ( A - 2 ) ( A 2 - 6 A + 6) 
64A3 - 668A2 ^ 2214A - 2325 

-(303A3 - 3186A2 - f 10614A - 11180) 
64A3 _ egg;y2 ^ 2214A - 2325 

- i ( A - 2 ) ( A 2 - 6 A + 6) 
1 

60) ^(A3 - 12A2 -I- 48A 
f ( l l A 3 - 116A2 +384A -400) 

5 M3 _ 12A2 -f 48A - 60) 
1 

- i ( A 3 - 1 2 A 2 + 3 6 A - 2 4 ) 
| ( 7 A 3 - 78A2-f 288A - 324) 

i ( l l A 3 - 1 1 6 A 2 + 3 8 4 A - 4 0 0 ) 

i2-(A= 

•|(A3-12A2 + 36A 
1 

| ( A 2 - 6 A + 6) 
| ( A 2 - 6 A - h 6 ) 

1 
- ( A - 2 ) 

1 

24) 

As,As,Ae,As 
1 

| ( A 3 - 2 l A 2 + 114A-84) 
1 

|(A3 - 24A2 + 144A - 108) 
i(A3 - 24A2 4- 144A - 108) 

1 
- | (5A3-102A2 + 540A- 384) 

- | ( A 3 - 2 4 A 2 + 135A-99) 
- | (5A3 - 102A2 -f 540A - 384) 

1 
Â  - 9A + 6 

3A3 - 50A2 + 234A - 165 
-2(3A3 - 54A2 + 267A - 190) 

3A3 - 50A2 + 234A - 165 
A2 - 9A -h 6 

1 
^(A3 - 18A2 + 84A - 60) 
|(A - 8)(3A2 - 26A + 20) 
|(A - 8)(3A2 - 26A + 20) 

12 
(A^ - 18A2 + 84A - 60) 

1 
12A2 + 36A - 24) 

|(7A3 - 108A2 + 468A - 324) 
- | ( A 3 - 1 2 A 2 + 36A-24) 

1 
l (A2_6A + 6) 
1(A2_6A-F6) 

1 
- ( A - 2 ) 

1 

Table B5: ^-values for Cĝ ' single solitons 
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A 2(3 + ^3 ) 2(3 - x/3) 3 -^ /3 3^-^/3 

4" 1 1 4 ( 1 - ^ 3 4(1-f -v^ 
- - 1 1 

4" - ( A - 2 ) - ( A - -2) -4 (1 - V^f -4 (1 + x/3)2 

4̂ ' 1 1 2(27 - 14\/3) 2(27 -f 14x/I) 
4" - -4(1 - -4 (1 + ̂ /?>y 
4" - - 1 1 

3 ( A - 3 ) 3 (A--3) 0 0 
4') 3(A - 3) 3(A --3) 1(1-v^r 1(1 + V2>Y 
4" 1 1 16(1 - ^/3)3 16(1 -f x/3)3 
4̂ ' - - 1(1 - ^ ) ' 1(1 + 
c(s) - - 0 0 

4" - - 1 1 

4" - ( A - 2 ) - ( A - -2) 2(1 - 2(1 -h ^/zy 

4̂ ' 1 1 2(3 - 2\/3) 2(3 + 2^3) 

4" - - 2(1 - V3)2 2(1 + x/3)2 

4̂ ' — - 1 1 

4" 1 1 -2 (1 - x/3) -2 (1 + ^/3) 

4̂ ' - - 1 1 

Table B6: ^-values for f^^ single solitons. 

A 6 6 

0̂ 1 9 
^ ( 2 ) — 9 

- 1 
- 4 0 
1 27 
- -16 
— 27 
— 0 
— 1 
1 -3 

r(2) 
O2 - -3 
r(3) 
O2 - 1 

Table B7: 5-values for g2^^ single solitons. 
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A | (3 + x/3) 1(3- x/3) 

9(A - 1) 9 (A- -1) 
% 9(A - 1) 9 (A- -1) 

1 1 

4̂^ - ( 3 A - 2 ) - (3A - 2 ) 
4̂ ) 1 1 

4̂ ' 1 1 

Table B8: ^-values for df^ single solitons. 

A As Ai,A4,A6 
- 4 4(A - 1) 
1 1 

4"' 
4̂ ' 

4 -4(A2 - 3A + 2) 4"' 
4̂ ' 6 2(8A2 - 18A -\- 9) 

4" 4 -4(A2 - 3A + 2) 

4̂ ) 1 1 

4" 3 (2A2 - 6A + 3) 

4̂ ' 3 ( 2 A 2 - 6 A - F 3 ) 

4=' 1 1 

4" - 4 - 2 ( A - 1 ) 
1 1 

"4 1 1 
(2) 

Table B9: ^-values for CQ single solitons 
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A = Ai + (12 + | a 3 + 0:4 + |q!5 + foe) 

+ 0:2-1- § 0 3 - f 0 4 + | 0 5 + lae) 

+ |Qf3 -1- O4 -1- l « 5 + f o e ) 

+ | 0 3 + l « 5 - | 0 6 ) 

— | 0 3 + | 0 5 - lae) 

— | 0 3 | 0 5 - | 0 6 ) 

— |q:3 - 04 - 2 „ 
505 - l o e ) 

- 02 - |q;3 - 0 4 - f a s - l a e ) 

- 02 - | a 3 - a4 - | 0 5 - lae) 

A = A6 + 02 + ^ 0 3 -1- 0 4 - f | 0 5 + lae) 

+ O2 -1- |q;3 -t- 0 4 + i « 5 + lae) 

+ |q:3 -1- a4 + i « 5 + lae) 

( - | a i + | 0 3 + § 0 5 + lae) 

+ l « 3 l « 5 + lae) 

— | 0 3 | 0 5 + lae) 

( - | a i — §0:3 - 04 - | 0 5 - lae) 

( - | a i - O2 - |q:3 - 04 - ios - lae) 

- O2 - | a 3 — Q!4 — | 0 5 - lae) 

A = A2 ± ( 02 + a3 -f 0:4 -|- O5 ) 

± 0:4 

A = A4 ± ( 02 + 03 -1- " 5 ) 

Table BIO: The topological charges of the e^^ single solitons 
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A = As ( | a i + a2 + fas + a4 + lets + loie) 

( | Q ! I + Q.2 - |a3 + Q;4 + i f i s + fas) 

{\ax + a2 - l " 3 + | " 5 - l a s ) 

( | a i - a2 - l « 3 + |Q;5 - l^e) 

( - a2 - |Q:3 — 04 + | « 5 - lae) 

( - | Q ; I — a2 — |Q;3 - 04 - | « 5 - l a s ) 

A = As ( | a i + 02 + \a-i + 0:4 + fas + \OLQ) 

( | Q ! I + 0:2 + |a3 + 04 — | a 5 + ^oe) 

(• - | a i + 02 + | « 5 + l^e) 

(-- | Q ! I — 0:2 + |Q;5 + loe) 

(-- | Q ; I — a2 + |a3 - 04 - | Q ; 5 - fae) 

(• -\ai - a2 - | a3 - Q!4 - - ftte) 

Table BIO, continued. 
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A = Ai ± ( Q ; I + (X2 + as + 20:4 + as + ae ) 
± ( a i + a.2 + "3 + 0:4 + as + ae ) 

±( OL2 + 0:3 + 0:4 + as ) 
± ( 03 + a4 + as ) 

± 04 

A = A2 ± ( a i + |o!2 + 03 + 2a4 + i a s + ae + \OLT) 

± ( Q ! I + \a2 + 0-3 + 20:4 + + 

± ( a i + \a2 + 0:3 + | a s + lay) 

±( \a2 + as + l a s + l ^ r ) 

A = A3 ± ( a i + a2 + ae ) 

A = A4 + 2(14 + ae) 

A = As ± ( a i + \a2 + 2a4 + fas + | « 7 ) 

± ( Q ! I + \0L2 + fas + 

A = As ± ( « i + as + 2a4 + as + ae ) 
± ( a i + as + as + ae ) 

± ( as + as ) 

A = Ar ± ( Q ; I + \a2 + as + 2a4 + fas + ae + | a 7 ) 

± ( a i + \a2 + as + 04 + fas + ae + \CIT) 

+ as + a4 + | « 5 + ae + l a r ) 

± ( |a2 + as + 04 + |a5 + as + \oi-i) 

± ( 1^2 + 04 + | a s + ae + lay) 

± ( | « 2 + a4 + | a s 

± ( + | « 5 

Table B l l : The topological charges of the ê ^̂  single solitons 
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A = Ai ± ( Q ; I + a2 + "3 + 3a4 + 2a5 + 2a6 + ocj + oc^) 
± ( a i + ©2 + + a4 + 2Q;5 + 2a6 + ay + ag) 

±( Oi2 + as + 04 + 2a5 + 2a6 + 07 + as) 
±( Ct2 + "3 + 04 + 2a5 + ae + 07 + as) 
± ( "2 + a3 + ai + 2a5 + ae + aj ) 
± ( 02 + "3 + a4 + Qf6 + ay ) 

± ( as + a4 + ae + aj ) 

± ( a4 + ae + ay ) 

± ( a4 + ay ) 

A = A. ±( a2 + as + 2a4 + 0:5 + ae + ay + as) 
±{ a2 + as + 20:4 + 0:5 + ae + ay ) 
±( a2 + as + 20:4 + as + ae ) 

A = A3 ± ( a i + a2 + 804 + 20:5 + 2a6 + as) 
± ( a i + a2 + 04 + 2Q;5 + 2a6 + as)* 
± ( a i + a2 + 2a5 + 2ae + as) 
± ( a i + a2 + 2as + as) 

A - A4 ± ( a i + 0:4 + 2ae + as) 

A = As ± ( a2 + 2as + 3Q!4 + 2aQ + as) 

± ( a2 + 2Q:S + a4 + 2ae + as)* 

± ( a2 + 2a3 + 2a6 + as) 

A = Ae ± ( 2a3 + 3^4 + 2a5 + 2a6 + as) 
± ( 2a3 + 3a4 + 2a5 + as) 
± ( 2as + 04 + 2a5 + as) 
± ( as + 04 + 20:5 + as)* 
± ( as + a4 + as + a8)* 

Table B12: The topological charges of the ê ^̂  single solitons 
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X = Xj ± ( a i + a2 + 2as + 3a4 + as + 2a6 + a r + ag) 

± ( a i + a2 + 2as + 04 + as + 2a6 + 07 + ag) 
± ( a i + 2as + a4 + as + 2ae + ay + as) 

± ( a i + 2as + otA + as + ay + ag) 

± ( a i + a4 + as + ay + ag) 

± ( a i a4 + as + ay ) 
± ( a i + as + ay ) 

A = As ± ( a i + a2 + 2a3 + 3a4 + 2as + 2a6 + ay + ag) 

± ( a i + a2 + 2a3 + 2a4 + 2as + 2ae + ay + ag) 
± ( a i + a2 + • 2as + 2a4 + 2a5 + ae + ay + ag) 
± ( a i + a2 + 2a3 + 2a4 + 2as + ae + ay ) 

± ( a a + a2 + as + 2a4 + 2as + ae + ay ) 

± ( a i + a2 + as + 2a4 + as + ae + ay ) 

± ( a i + a2 + as + • 2a4 + as + ae ) 

± ( a2 + as + 2a4 + as + ae ) 

± ( a2 + as + a4 + as + ae ) 

± ( a2 + as + a4 + as ) 

± ( as + a4 + as ) 

± ( a4 + as ) 
± a4 

Table B12 , continued. 
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A = 6 ± a i 

A = 2 ± ( 3 a i + 3a2 ) 
±(a i + 3a2 ) 

± 3a2 

Table B13: The topological charges of the 2̂̂ ^ single solitons 

A = 2(3 + \/3) ± ( a i + 2as ) 

A = 2(3 - \ /3) ± ( a i + a2 + 2as ) 
± a2 

A = 3 - \/3 ±(2ai + 2a2 + 4as + 2a4) 
±(2ai + 2a2 + 2as + 2a4) 

± ( 2a2 + 2as + 2a4) 
±( 2as + 2a4) 
± 2a3 

A = 3 + \/3 ±(2ai + 2a2 + 2a3 + 2a4) 
±(2ai + 2a2 + 2a4) 
±(2ai + 2a4) 

Table B14: The topological charges of the /4^^ single solitons 
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A = Ai ±{2ai + 0:2 + 40:3 + 04 ) 
± ( Q : I + 02 + 4as + 04 ) 

± ( a i + tt2 + 2as + 04 ) 

± ( a i - + 2a2 ) 
±ai 

A = As ±{2ai + 3Q;2 + 04 ) 

A = A4 ± ( 2 a i + 2as ) 

A = A6 ± ( 2 a i + 2a2 + 2as ) 
± ( 2a2 + 2as ) 
± 2a2 

Table B15: The topological charges of the Cg^' single solitons 

A = | (3 + N/3) ± 3 Q ; I 

A = i ( 3 - V 3 ) ±{2ai + a2) 
± ( a i - 02 ) 

Table B16: The topological charges of the d^^^ single solitons 
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