
Durham E-Theses

Natural language generation in the LOLITA system

an engineering approach

Smith, Mark H.

How to cite:

Smith, Mark H. (1995) Natural language generation in the LOLITA system an engineering approach,
Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/5457/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5457/
 http://etheses.dur.ac.uk/5457/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

University of Durham

N a t u r a l Language Generat ion in the L O L I T A S y s t e m : A n Eng ineer ing

Approach .

Mark H. Smith

Laboratory for Natural Language Engineering,

Department of Computer Science.

Submitted in partial fu l f i lment of the

requirements for the degree of

Doctor of Philosophy

© 1 9 9 5 , Mark H . Smith

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

m
1 8'lAtf 1996

Abstract

Natural Language Generation (NLG) is the automatic generation of Natural Lan­

guage (NL) by computer in order to meet communicative goals. One aim of N L

processing (NLP) is to allow more natural communication wi th a computer and,

since communication is a two-way process, a N L system should be able to produce

as well as interpret N L text.

This research concerns the design and implementation of a N L G module for

the L O L I T A system. L O L I T A (Large scale, Object-based, Linguistic Interactor,

Translator and Analyser) is a general purpose base NLP system which performs

core NLP tasks and upon which prototype N L applications have been bui l t . As

part of this encompassing project, this research shares some of its properties and

methodological assumptions: the L O L I T A generator has been buil t following Nat­

ural Language Engineering principles, uses LOLITA ' s SemNet representation as

input and is implemented in the functional programming language Haskell.

As in other generation systems the adopted solution utilises a two component

architecture. However, in order to avoid problems which occur at the interface

between traditional planning and realisation modules (known as the generation

gap) the distr ibution of tasks between the planner and plan-realiser is different: the

plan-realiser, i n the absence of detailed planning instructions, must perform some

tasks (such as the selection and ordering of content) which are more tradit ionally

performed by a planner. This work largely concerns the development of the plan-

realiser and its interface wi th the planner. Another aspect of the solution is the

use of Abstract Transformations which act on the SemNet input before realisation

leading to an increased abil i ty for creating paraphrases.

The research has lead to a practical working solution which has greatly increased

the power of the L O L I T A system. The research also investigates how N L G sys­

tems can be evaluated and the advantages and disadvantages of using a functional

language for the generation task.

Acknowledgements

I would like to thank my supervisor Roberto Garigliano for his advice and support

throughout the tour years over which this research has been conducted.

I am also grateful for all past and present members of the Laboratory for Natural

Language Engineering who have helped provide such a pleasant research and social

environment. Thank you to all those people who commented on the various drafts

of this thesis, particularly Derek Long and Maria Fox.

Thanks also to the subscribers to the Leeds United mail ing list who took part

in the evaluation experiment.

Finally I would like to thank Rebecca and my fami ly and apologise for my bad

moods when things were not going as planned!

Declaration

The material contained wi th in this thesis has not previously been submitted for a

degree at the University of Durham or any other university. The research reported

wi th in this thesis has been conducted by the author unless indicated otherwise.

The copyright of this thesis rests wi th the author. No quotation f r o m i t should be

published without his prior wri t ten consent and information derived f r o m i t should

be acknowledged.

Contents

1 Methodological Introduct ion 1

1.1 Traditional NLP Approaches 1

1.1.1 Cognitive Science 2

1.1.2 Ar t i f i c ia l Intelligence 2

1.1.3 Computational Linguistics 3

1.2 Natural Language Engineering 3

1.2.1 The General Philosophy of N L E 4

1.2.2 Scale 4

1.2.3 Robustness 5

1.2.4 Maintainabil i ty 5

1.2.5 Flexibi l i ty 5

1.2.6 Integration 6

1.2.7 Feasibility 6

1.2.8 Usability 7

1.2.9 The Use of a Full Range of Techniques 7

1.2.10 Cost-Benefit Analysis 8

1.2.11 Motivat ion for Adopting the N L E Approach 9

1.3 Methodological Criteria for Success 10

1.3.1 The A I Goal: Criteria for success 10

1.3.2 The N L E Goals: Criteria for success 11

1.4 Context of this Work: The L O L I T A project 15

1.5 Terminology Issues 17

1.5.1 Meaning 17

C O N T E N T S v

1.5.2 Concepts 17

1.5.3 The Relationship Between Language and Concepts 18

1.5.4 Natural Language Generation 19

1.5.5 General Purpose Base 19

1.5.6 Planning 20

1.5.7 The Plan-realiser 20

1.6 Logical Progression of the Thesis 21

2 T h e P r o b l e m A r e a and Pro jec t A i m s 23

L.i isctbdi'&i i_iaiiguagc \jcutiiitMon *o

2.2 N L G in L O L I T A : Project Aims 25

2.2.1 A i m 1: The A I Goal and N L E Principles 26

2.2.2 A i m 2: Generation of SemNet Node Descriptions 26

2.2.3 A i m 3: Generation for Prototype Applications 27

2.2.4 A i m 4: The Suitabili ty of SemNet 28

2.2.5 A i m 5: Broad Coverage 28

2.2.6 A i m 6: Suitability of Haskell 29

2.2.7 A i m 7: Evaluation 30

3 Re la t ed W o r k 31

3.1 Organisation of This Chapter 31

3.2 General Crit icism of State of the A r t 33

3.3 Input to the Generator 34

3.4 Control 35

3.5 Architecture 37

3.5.1 Separated Systems 38

3.5.2 Integrated Systems 39

3.5.3 Architecture: Notes on Relevance 41

3.6 Realisation 42

3.6.1 Introduction 42

3.6.2 Functional Unification 42

3.6.3 Systemic Grammars 44

file:///jcutiiitMon

C O N T E N T S v i

3.6.4 M U M B L E 47

3.6.5 Augmented Transition Networks 50

3.6.6 The Use of a Formative Lexicon 51

3.6.7 Realisation: Notes on Relevance 52

3.7 Planning 53

3.7.1 Early work 53

3.7.2 The Schema Approach 53

3.7.3 Rhetorical Structure Theory 55

3.7.4 Combination of Planning Resources 60

3.7.5 Planning: Notes on Relevance 62

3.8 The Generation Gap 62

3.8.1 SPOKESMAN 63

3.8.2 The P E N M A N Upper Model 64

3.8.3 I GEN 66

3.8.4 W E I B E R 67

3.8.5 Crossing the 'Generation Gap' wi th FUGs 67

3.8.6 Generation Gap: Notes on Relevance 67

3.9 Lexicalisation 68

3.9.1 The use of Discrimination Networks 68

3.9.2 The use of Taxonomic Knowledge Bases 70

3.9.3 Lexicalisation: Notes on Relevance 71

3.10 Creating Variation 72

3.10.1 Controlling Variation 73

3.11 Other Areas of NLG 74

3.11.1 Revision 74

3.11.2 Connectionism 74

3.12 Generation f rom a Semantic Network or Graph input 76

3.12.1 Generation f rom C D T 76

3.12.2 Generation f rom Conceptual Graphs 83

3.12.3 Generation from SNePS 91

3.12.4 Generation f rom M T M 94

C O N T E N T S v i i

3.12.5 Other Similar Work 101

3.13 Conclusions 108

4 T h e L O L I T A Sys t em 110

4.1 History and Background 110

4.2 Advantages of General Purpose Base Research I l l

4.3 System Overview I l l

4.3.1 Syntactic Analysis 114

4.3.2 Knowledge Representation 116

A 3 3 ^ o m a n f a r t r l Pranrnafir Q n o l u o i c 120

4.3.4 Dialogue 123

4.4 L O L I T A Applications 125

4.4.1 Analysis of Text 125

4.4.2 Query 125

4.4.3 Translation 125

4.4.4 Database Front-end 126

4.4.5 Contents Scanning 126

4.4.6 Chinese Tutoring 128

4.5 The Role of Generation in L O L I T A 128

5 Solution: T h e G e n e r a l Approach and the Plan-rea l i ser 131

5.1 The General Approach 131

5.1.1 The Input 132

5.1.2 The Architecture: Introduction 133

5.1.3 The Architecture: The Role of the Planner 134

5.1.4 The Architecture: The Role of the Plan-realiser 139

5.1.5 The Architecture: The Interface between Planner and Realiserl42

5.2 Solution Detail : The Plan-realiser 144

5.3 Generation of Language-lsomorphic Concepts 144

5.4 Generation of Entities 146

5.4.1 How can an Ent i ty be Adequately Described? 146

5.4.2 Realising Enti ty Concepts that are non L I 148

C O N T E N T S v i i i

5.4.3 Determiners and Quantifiers 149

5.4.4 Describing Entities wi th Relative Clauses 153

5.4.5 Describing Entities wi th 'Special' Relative Clauses 154

5.4.6 Proper Nouns 156

5.5 Generation of Events 157

5.5.1 Generation of Actions 157

5.5.2 Generating Event Roles 159

5.6 Generation of Relative Clause Events 162

5.7 Complex Events 164

5.7.1 Causal Links 164

5.7.2 Events wi th in Events 166

5.7.3 Temporal Links 168

5.8 The Realisation of Commands, Questions and Answers 168

5.8.1 Commands 169

5.8.2 Answers 169

5.8.3 Questions 169

5.9 Punctuation 171

5.10 Generation of Special Portions of Semantic Input 171

5.10.1 Internal Events 171

5.10.2 T ime Representation 172

5.10.3 Positions 173

5.11 Generation of Anaphora and Referring Expressions . . . 173

5.12 Conclusion 176

6 T h e Solution: Abs trac t Transformat ions 177

6.1 Other Work at this Level 178

6.2 Substitution of an Antonym Action 180

6.3 Transformations on Copula Actions 181

6.4 Transformations on Complemented Verb Pairs 181

6.5 Transformations on Multi-subject Events 184

6.6 'Give' Related Transformations 184

CONTENTS i x

6.6.1 Making an Impl ic i t Object Explicit 186

6.7 Other De-lexical Transformations 187

6.7.1 Example of De-lexical Rules for ' to have' 188

6.7.2 Example of De-lexical Rules for ' to make' 190

6.7.3 Cost-Benefit Analysis of the Rule Based Approach for Han­
dling De-Lexical verbs 191

6.8 Generalisation or Specialisation of Concepts 194

6.8.1 Act ion Specialisation 195

6.9 Mul t ip le Transformations 197

6 . 1 0 Conclusion 198

7 Implementat ion 200

7.1 Implementation Overview 201

7.1.1 Some Important Types 201

7.1.2 General Operation 202

7.2 Features of Haskell 204

7.2.1 Referential Transparency 206

7.2.2 Higher-order Functions 206

7.2.3 Currying 207

7.2.4 Abstract Types 208

7.2.5 Lazy Evaluation 209

7.2.6 The Haskell Type System 210

7.2.7 Data Structures and Management 210

7.2.8 Prototyping 210

7.2.9 Suitability for Parallel Execution 211

7.2.10 Disadvantages of Haskell 212

7.3 Other Implementation Details 213

7.4 Conclusions 213

8 Eva luat ion and Resul t s 215

8.1 Evaluation of Natural Language Systems: A survey 216

8.1.1 Competitions 216

C O N T E N T S x

8.1.2 Galliers and Sparck Jones 216

8.1.3 NLG Evaluation 218

8.2 Example Evaluation '• 221

8.2.1 Introduction 221

8.2.2 The Evaluation Remit 222

8.2.3 The Evaluation Design 223

8.2.4 The Evaluation Review 227

8.3 Evaluation of Natural Language Systems: Conclusions 229

8.4 Results Versus Criteria for Success 232

8.4.1 A i m 1 232

8.4.2 A i m 2 239

8.4.3 A i m 3 240

8.4.4 A i m 4 246

8.4.5 A i m 5 249

8.4.6 A i m 6 249

8.4.7 A i m 7 249

9 Conclus ions 251

9.1 Successes of the Project 251

9.1.1 Theoretical Impact 251

9.1.2 Practical Impact 253

9.2 Project Shortcomings and Suggestions for Further Work 254

A E x a m p l e s of Generator output 257

B S u m m a r y of Systems 260

C T h e E v a l u a t i o n Instruct ions 270

D Glossary 277

List of Figures

3.1 Generator organisations 38

3.2 A simple example of unification of two FDs 43

3.3 Input to N I G E L for "John gives a blue book to M A R Y " 45

3.4 Top level systems of the N I G E L grammar 47

3.5 Realisation specification for "53rd Mechanised Division" 49

3.6 A n A T N and associated grammar 50

3.7 The constituency schema 54

3.8 The RST schema 56

3.9 Text Structure for "Karen likes watching movies on Sundays" . . . 65

3.10 Example of annotated linguistic options in I G E N 66

3.11 Hovy's rhetorical goals and values 79

3.12 Example of a formal and informal text produced by P A U L I N E . . . 81

3.13 Example utterance graph input 84

3.14 Example APSG grammar rule 85

3.15 Example utterance graph input 87

3.16 Example lexicon entries 87

3.17 Example SNePS interaction 92

LIST OF FIGURES xii

3.18 SNePS semantic network buil t by the example interaction 93

3.19 Example output f rom Kalos before and after revision 94 .

3.20 M T M SemR for sentence 1 97

3.21 KING's commercial transfer event 103

3.22 Examples of Horacek's terminological transformations 107

3.23 Variations caused by application of differing Z O O M schema 108

4.1 The L O L I T A system 112

4.2 Example of parsing 115

4.3 A n example of parsing the grammatically incorrect sentence 'and I

likes h im own' 116

4.4 Example of an event in the L O L I T A representation 121

4.5 Example of a Chinese parse tree 128

5.1 Example of the 'story' command 140

5.2 Examples of implici t quantification associated w i t h verbs 150

5.3 SemNet representation for 'John's motorbike' ; . . 155

5.4 A n Example of the SemNet representation of positions 174

6.1 Example of antonym substitution abstract transformation 180

6.2 Examples of copula verbs and copula action abstract transforms . . 181

6.3 Examples of complemented action pair transformations 182

6.4 Example of a multi-subject transformation 184

6.5 Examples of 'give' related transformations 185

6.6 Examples of natural and unnatural uses of the de-lexical verb ' to

have' wi th intransitive verbs 189

LIST OF FIGURES x i i i

6.7 Examples of natural and unnatural uses of the de-lexical verb ' to
make' wi th sentential verbs 190

6.8 Example generalisation paraphrases 195

6.9 Examples of verb specialisation by instrument clause 195

6.10 Simplified SemNet portion showing how instrument/action trans­

forms can be made 197

6.11 Example of a mult iple transformation 199

7.1 Simple input event and instruction passed to the plan-realiser . . . 202

7.2 Simplified portion of the N L G Haskell code 205

8.1 Framework for building an evaluation remit and design 219

8.2 Evaluation remit for the L O L I T A N L G evaluation experiment . . . 224

8.3 Example Heap Profile 237

8.4 Example T ime/Memory Profile 237

8.5 Example of a SemNet node w i t h its generated N L description . . . 242

8.6 Example of a SemNet node w i t h its generated N L description . . . 243

8.7 Portion of the SemNet f rom which the utterance in diagram 8.6 was

generated 244

.8.8 Example query session 245

8.9 Example of translation 246

8.10 Example of contents scanner 247

Chapter 1

Methodological Introduction

The subject of this research is natural language generation (N L G) : the automatic

generation of natural language (NL) by computer. Before this problem area is

described, however, i t is necessary to discuss important background methodological

issues.

This chapter wi l l begin by discussing three disciplines that provide researchers

in natural language processing: cognitive science, art if icial intelligence (A I) and

computational linguistics. The methodology adopted in this work w i l l then be

described further by defining principles of Natural Language Engineering (NLE) .

Following this, methodological criteria for success w i l l be provided for aspects of

the A I goal and the N L E principles.

This chapter w i l l also discuss the effects of the parent project and system,

L O L I T A , on the methodology adopted for the design of a N L G module (section

1.4) and clarify some terminological issues (section 1.5). Finally the chapter w i l l

discuss the logical progression of the thesis (section 1.6).

1.1 Traditional N L P Approaches

Natural Language Processing (NLP) lies at the crossroads of many disciplines all

concerned wi th the automated processing of natural language (NL) using computer

C h a p t e r 1: Methodological Introduct ion 2

systems. This section wi l l briefly introduce the three main backgrounds to which

researchers in this field tend to belong.

1.1.1 Cognitive Science

Generally, the aim of a Cognitive Scientist is to model processes in the brain. Specif­

ically, cognitive scientists working in the field of NLP t ry to model the brain's

communication processes. Work in this area is often founded on psychological

and sometimes physiological experiments on how humans process language. These

experiments are typically performed on children or on people w i t h language dis­

abilities. The aim of the cognitive scientist is to produce systems which not only

have the same behaviour as humans, but also model the process which govern this

behaviour. However, research in cognitive science is often restricted to small iso­

lated areas of human behaviour such as, for example, how children learn to spell

a few selected words. Furthermore, this research does not always result in a com­

puter program; rather a computational model that could be implemented. Even i f

these models were implemented, they would only model those restricted areas in

question.

1.1.2 Artificial Intelligence

Researchers wi th a background in art if icial intelligence (A I) typically relax the con­

straints imposed by cognitive scientists: they aim for systems which mimic human

behaviour without concern for whether the processes which lead to this behaviour

are the same as those in the brain. They use whatever means are available to pro­

duce human-like behaviour. Because the aim of A I is to produce useful behaviour

rather than an understanding of the mechanisms involved, the system has to cover

a wider scope than the isolated processes studied by cognitive scientists. A I is the

background approach adopted in the work presented in this thesis.

C h a p t e r 1: Methodological Introduct ion 3

1.1.3 Computational Linguistics

Linguistics, the study of language, is yet another background providing researchers"

in NLP. The advent of computers provided a tool, first for testing, and then for

developing, linguistic theories. The term computational linguistics (CL) was origi­

nally 'concerned w i t h the application of a computational paradigm to the scientific

study of human language' [Ballard and Jones, 1990]. However, CL has more re­

cently expanded to include 'engineering of systems that process or analyse wr i t ten

or spoken language'[Ballard and Jones, 1990]. I t is this latter branch of the disci­

pline for which the t.evrn N T . P is i-post: frequently I I S P H TT> practice therefore, the

term CL is used by a wide variety of researchers: linguists working on the in t r i ­

cacies of language use, cognitive scientists using psycholinguistics, and scientists

f rom an A I background adopting a more practical approach.

1.2 Natural Language Engineering

As mentioned above, this work is concerned wi th NLP f r o m an A I viewpoint but

this particular branch st i l l encompasses a wide spectrum of methods. More specif­

ically this work is concerned wi th Natural Language Engineering (N L E) .

N L E is a recent endeavour which applies the ideas and practices of other engi­

neering disciplines to the field of NLP. The use of the N L E approach is becoming

increasingly popular as indicated by: the commencement of an EEC Language

Engineering ini t iat ive; the publication of the 'Journal of Natural Language Engi­

neering', and the increasing number of conferences devoted to practical applications

of N L Systems (e.g., the recent A N L P conference in Stuttgart and the N L E con­

vention in Paris).

The EEC L R E programme [LRE, 1992] defines Linguistic Engineering thus:-

"Linguistic Engineering (LE) is an engineering endeavour, which is to

combine scientific and technological knowledge in a number of rele­

vant domains (descriptive and computational linguistics, lexicology and

C h a p t e r 1: Methodological Introduct ion 4

terminology, formal languages, computer science, software engineering

techniques, etc.). LE can be seen as a rather pragmatic approach to

computerised language processing, given the current inadequacies of

theoretical Computational Linguistics."

The next sections wi l l detail the important aspects of NLE.

1.2.1 The General Philosophy of N L E

Traditional approaches to NLP, whether originating f r o m a cognitive, linguistic or

A I point of view, have tried to formulate either universal theories that cover all

aspects of language or to develop very restricted but detailed theories that model

small areas. The utilisation or expansion of these ideas to produce realistic systems

which are not highly restricted by their task or domain has proved to be a great

problem.

The belief adopted here is that there is a set of critical engineering criteria which

should be applied to the field of NLP. While the more tradit ional research on core

or specialised theories may be necessary for fu ture improvements, the adoption of

these N L E principles is important so as to utilise existing technology in order to

produce useful systems. As new technology becomes available f r o m more tradit ional

methods, i t can then be incorporated into a N L engineered system. However, the

concentration of all resources on such improvements without consideration of how

they are to be ult imately utilised is unproductive and w i l l not f u l f i l the immediate

demand for robust and versatile working systems.

The following subsections wi l l detail important aspects of NLE.

1.2.2 Scale

The size of N L E systems must be sufficient for realistic large-scale applications.

Properties such as the vocabulary size, grammar coverage, and the number of

C h a p t e r 1: Methodological Introduct ion 5

word senses are critical. There are a number of ways in which to measure these

properties: grammar coverage, for example, could be measured by the number of

rules utilised, its perplexity, or the type of text that i t can manipulate.

1.2.3 Robustness

Robustness in N L E concerns not only the linguistic scope of the system, but also the

acceptability of effects when the input falls outside this scope. To quote [Galliers

and Sparck Jones, 1993], "while i t [robustness] may not be a serious problem for

any individual application, i t has to be faced up to in general"(page 45). A t the

very least a system should not crash when i t receives input which is outside its

scope: i t should be able to carry on and t ry its best to cope wi th the conditions i t

is working under.

Robustness in N L E also encompasses the more general criteria for robustness

imposed by software engineering practices.

1.2.4 Maintainability

Maintainabil i ty is a measure of how useful the system is over a long period of t ime.

As in any large software system, the maintainabili ty of a N L E system is important .

Corrective (e.g., removing bugs), perfective (e.g., adding funct ional i ty) , adaptive

(e.g., changing the environment) and preventative (e.g., preventing fu ture errors)

maintenance w i l l be required 1 .

1.2.5 Flexibility

Flexibi l i ty or portabil i ty is a measure of the abili ty to modify the system for dif­

ferent tasks in different domains. This could be considered as maintenance, but

is separated to emphasise the difference between major adaption accommodating

'See [Lientz and Swanson, 1980] and [Bennett et al., 1990] for a software engineering view of
maintenance.

C h a p t e r 1: Methodological Introduct ion 6

large changes in task functionality (f lexibi l i ty) and more subtle adaption due, for

example, to smaller modifications to the functionali ty (perfective maintenance) or

to changes in the environment (adaptive maintenance).

1.2.6 Integration

There are two related aspects of integration :-

• Firstly, system components should not make unreasonable assumptions about

oilier Coiiipoiieuls. S U C H assumptions are oiten made wiiei'i specific IN L i '

problems are tackled in isolation. Likewise, components should not attempt

to perform tasks which belong in other components. The delimitat ion of the

scope of each component is crucial and should not be made merely on the

basis of what can be accomplished in the current state of the art. In some

cases this delimitation is already well-defined (for example, the tradit ional

separation into realisation and planning in N L G , see chapter 3). However in

other areas, the delimitation may not be so well defined and may even depend

on components which are not yet available. In these cases i t is important

that the technology required to build missing components exists or is at least

achievable w i t h research in the near future .

• Secondly, components should be designed and bui l t to actively assist other

components. So, for example, the design of the knowledge representation

module should assist other parts of the system (e.g., parser, semantic analysis,

generator etc). Even i f the 'other parts' in question do not exist, components

should be designed so that they w i l l assist fu ture components.

1.2.7 Feasibility

This aspect concerns ensuring that constraints on the running of the system are

acceptable. For example, hardware requirements should not be too great and

execution speed must be adequate. Feasibility incorporates making the system

C h a p t e r 1: Methodological Introduct ion 7

and its components efficient.

Some areas of theoretical computer science and A I make extensive use of com­

plexity analysis as a measure of the feasibility of algorithms. Algor i thm complexity

in N L E is not always paramount, due to the fact that in practice the 'size' of the

data to which the algorithms are applied often has an upper l i m i t . For example,

when considering the processing of a string of words, an algorithm of high com­

plexity (e.g., exponential) may perform better than one of lower complexity (e.g.,

polynomial) when the number of words has an upper l i m i t . A complexity analysis

which examines the worst case scenario may only be relevant for a few cases. I f

an algorithm is designed to process sentences (as is often the case in NLE) both

the algorithm's complexity and size of the data string are important . A sentence

could in theory be of infinite length, but in practice this w i l l never occur. A better

measurement of feasibility would be performance over sentences of average length.

1.2.8 Usability

Systems produced using N L E techniques should support the functions that real

end-users want. These are often different f r o m those that researchers th ink that

end-users want and sometimes even different to what potential end-users say they

want: careful gathering of requirements is necessary and may involve simulations.

Delivered systems should also be user-friendly.

1.2.9 The Use of a Full Range of Techniques

N L engineered systems should use a f u l l range of A I techniques. Where they are

available, i t is advantageous to use long-standing, well-worked and general theories

f rom computational linguistics and logic (for example set-based semantics or m u l t i -

sorted object-orientated logic). However, a key aspect of N L E is that when these

theories are not available alternative methods are employed. These alternatives

range from more localised theories (which despite being unable to cover global

possibilities are sufficient to handle what is required), knowledge based approaches,

C h a p t e r 1: Methodological Introduct ion 8

individual heuristics to adaptive or evolutionary techniques. Incorporating such a

wide range of methods ensures that the development of the system does not stall

due to the diff iculty in following a particular logical or linguistic theory while st i l l

allowing the benefits of such well established theories to be enjoyed.

1.2.10 Cost-Benefit Analysis

Cost-benefit analysis is an important aspect of other engineering based disciplines

and should equally be applied to NLE. I t is often the case that the best theoretical

solution is not be the best practical one. There may, for example, be a trade-otf

between the depth and breadth of a solution to a particular problem. I f a simple

algorithm has only a slightly worse coverage than a very complex one then i t might

be better to use the former. Cost-benefit analysis involves reaching a balance

between two or more aspects of N L E . So, for example, a simple algorithm may

not have the same robustness as a more complicated one but may lead to a more

feasible final system (e.g., one which has a more acceptable execution speed).

The process of cost-benefit analysis has been adopted by other researchers: most

notably [Reiter and Mellish, 1993] t ry to apply such principles to N L G .

There are also meta-level economic issues of using extensive cost-benefit anal­

ysis. Such techniques are often dangerous as:-

• the cost of t ime spent in changing f rom one decision to another may out-weigh

the benefit the change w i l l have.

• the measurement of cost-benefit itself may cost more than the resulting ben­

efit . This often happens in , for example, the commercial world: government

surveys and reports often cost more than the potential savings, and court

cases may cost more than the amount of money ini t ia l ly under question.

C h a p t e r 1: Methodological Introduct ion 9

1.2.11 Motivation for Adopting the N L E Approach

More traditional approaches to NLP have concentrated on formulat ing central

ideas, but the expansion of these ideas to a system wi th the properties listed in

the previous sections has proved a major problem. This is reflected in the small

number of systems which have the properties of a large-scale system compared to

the abundance of smaller systems which carry out specific tasks in l imi ted domains.

Developing a large-scale N L E system has intrinsic research problems of

its own. For example, the methods used by a small-scale system wi th a few

hundred nodes to manipulate a semantic network for inference purposes, may not

be directly transported to a larger system w i t h a hundred thousand nodes. In

the small-scale case an association method may be employed where all the nodes

are searched for a match; in the large-scale case this would clearly be impractical.

Such problems apply to all the N L E attributes and not just to that of scale. For

example, the execution speed (and thus the feasibility) in a restricted system may

be unimportant and only cause problems when the system is expanded. Software

development practices may improve the efficiency of algorithms to some extent, but

this is unlikely to be sufficient i f the complexity of algorithms is high: complexity

would not become important unt i l the scale of the system is made larger, when

no software engineering development could improve the situation significantly (for

issues of complexity in large-scale N L algorithms see [Long and Garigliano, 1994]).

A view often repeated among computational linguistics, that the movement

f rom core ideas to a working NLP system is just a matter of software engineering

development seems, therefore, to be unfounded.

The building and study of the properties of large systems is useful f r o m an

applied point of view, but can also help to investigate the bottleneck which causes

the disparity between the large amount of theoretical work done in the area and

the relatively small number of realistic working systems.

C h a p t e r 1: Methodological Introduct ion 10

1.3 Methodological Criteria for Success

This section w i l l detail the criteria by which the success of the methodological

approach of this project may be judged. As discussed above, this is to approach

the NLP problem wi th the A I goal of mimicking humans, and by following the

N L E principles.

In some areas of science i t is sufficient to define criteria for success at an abstract

level. However, in this field there are additional, problem-dependent, criteria. The

main reason for this is that N L P and N L G are diff icult problems^ and solutions to

all areas of these problems are s t i l l a long way off. In order to provide reasonable

and achievable criteria, a more detailed examination is required of how the problems

are to be viewed. Therefore, this section wi l l concentrate on problem independent

criteria and a later section (chapter 2) w i l l present the problem-dependent criteria

once problem specific details have been provided.

Af te r a solution to the problem has been presented (in chapters 5 and 6) i t w i l l

be evaluated against both the methodological and problem dependent criteria for

success. This evaluation w i l l highlight the successes and failures of the proposed

solution and of the project as a whole.

I t is important to note at this early stage that evaluation is i n itself a large

unsolved problem[Galliers and Sparck Jones, 1993]. While for some areas of NLP

well used evaluation techniques do exist, in others there are none. One of the

specific aims of this work (see section 2.2) is to address the evaluation problem.

1.3.1 The AI Goal: Criteria for success

This section w i l l examine the criteria for the success of the A I approach of m i m ­

icking human behaviour.

W i t h the current state of the art, i t is unlikely that wi th in any branch of A I , a

goal of mimicking all relevant human behaviour w i l l be achievable in the near future.

This is certainly the case in the area of NLP and NLG: i t would be unrealistic to

C h a p t e r 1: Methodological Introduct ion 11

expect a computer to have all the N L capabilities of humans, not least because

humans can be unpredictable and make mistakes.

A more reasonable criterion would be to create system behaviour which reflects

a small subset of that of humans. That is, any behaviour f rom a system should

also be seen in humans, but not necessarily the reverse. However, this goal can

lead to t r iv ia l solutions the worst being a system that does nothing or a system

that is claimed to be modelling a human that is making mistakes.

Another problem is how to test for the successful mimicking of behaviour. One

„ ~ „ O ; U : I : J - , , :„ +u„ — T \ . - : _ _ TT ~ . - - r - - , - - ~ f i - ^ . . . t i . o r : . r . ._ , : T I ; ^ . ?
u JJ i rj i i i " j 1 ^ " i-i.̂ -- 'iVvii i i i iv VVii _L Li. i. i i i £j u ' C o O . i i u i " (V f V / i j Italia iUl OUOCVyOO ClUU^ObU

in this project should not depend on t ry ing to tr ick users into th inking the system

is a human. Furthermore, a Turing test would require a complete system: i t

would be hard to evaluate sub-systems which aim to mimic a subset of human

behaviour using such a test. A N L G system may, for example, fa i l the Turing test

not because the generation module is not up to standard but because the system's

world knowledge is not sufficient.

In summary therefore, the criterion for success w i t h respect to the A I goal is

that a small subset of an 'open' (i.e. no element of trickery) Turing type test

is achievable. The system should be able to produce results that humans find

acceptable.

1.3.2 The N L E Goals: Criteria for success

This section w i l l examine the criteria for success wi th respect to the principles of

N L E defined in section 1.2. I t is important to note that these principles fo rm very

broad criteria and the current state of the art in NLP means that not all of them

can be met for all areas of the NLP problem.

C h a p t e r 1: Methodological Introduct ion 12

Scale:

Ideally NL systems should be able to process real-life, free text of any length. This'

aim, in the current state of art, is s t i l l far f rom being achieved. I t is more reasonable

to impose a l im i t on text length to, at most, a few paragraphs (this is the type

of text adopted by the M U C [DAR, 1993] competitions for example). As well as

defining scale by using a property (e.g., length) of the input text a system can

handle, there are other measures of scale which could be used:-

e The size of the grammar, measured by the. number of rules. However this

measurement can depend on the particular formalism used (for example a

unification formalism, see section 3.6.2, may need less rules than other for­

malisms to achieve comparable coverage) .

e The number of entries in the lexicon.

• The amount and depth of semantic knowledge. I f the entries in the lexicon

are not well related to each other then the 'depth of knowledge' of a system

w i l l be low. Measurable properties could be the number and size of hier­

archies connecting information or the number of ' typical ' events which give

information about particular common actions.

Robustness:

Ideally systems should be robust in any domain. W i t h the current state of the

art however this is not achievable. I f systems are to be portable and used across

domains then a certain amount of system training w i l l be required.

I t is unlikely that total robustness in terms of correct behaviour wi l l be achieved.

A weaker criterion is thus that a system shows graceful degradation and never goes

wrong in a bad way. I t should not crash, thereby destroying other results, nor

ignore the error. Behaviour which explains what has gone wrong is beneficial.

As the system is developed, extensive testing is required in order to check the

acceptance of both existing and new functionality. Robustness in the broader

C h a p t e r 1: Methodological Introduct ion 13

Software Engineering sense (i.e., system crashes, infinite loops etc.) should also be

achieved.

Maintainabi l i ty:

A system which has successfully evolved over a long period of t ime w i t h a high

turnaround of researchers indicates good maintainability. To be successful, i t must

be possible for both the original developer and other programmers to understand

the system so that they can perform maintenance (whether corrective, enhance-

uieiiii, pciiecijiVc c i c , t>ee seciioii x.^.-tj m a reabuiiauic Mine, i o ue ni&iUtcUiiciuxe, a

system which is being developed by many people simultaneously must have strict

revision control and testing mechanisms.

Flexib i l i ty :

The abili ty of a system to be used as a prototype in different domains or for different

tasks shows good flexibil i ty.

Possible measurements are the proportions of t ime and code that are spent on

development in a specific domain or on a specific task, compared to that spent

on general base (see section 1.5.5) development. For a highly flexible system this

proportion of domain and task specific development wi l l be low.

Integration:

Successful integration is indicated by:-

• The re-use of code. Various parts of the system may require similar abstrac­

tions, and should therefore, be able to share or re-use parts of other modules.

There should be no repetition of functionality.

• Prototyping. The abili ty of a system to be used as prototype for many

applications is a good indication that i t is well integrated. One measurement

C h a p t e r 1: Methodological Introduct ion 14

could be the proportion of code dedicated to a specific application compared

to the core code (see flexibility above).

• Analysis of design. Integration can be measured by analysis of the design.

A well integrated system should be easy to map onto a block diagram of the

system's organisation.

Feasibi l i ty :

The acceptability of a system's execution t ime is dependent on the task for which i t

has been designed: execution t ime is much more critical for an on-line system than

for one which is left to do some task overnight. For on-line systems, the ul t imate

a im would be for real-time operation. However, more realistically an execution t ime

in the order of a few minutes would be acceptable (again this is task dependent).

One criterion could be that systems should operate faster than a human doing the

same task.

W i t h respect to hardware requirements, an aim could be to produce systems

which could run on cheap and widely available machines such as, for example, a 486

PC. Again, more realistically wi th respect to this stage of research, a Unix-based

Sparc workstation would be acceptable.

Independently of these envisaged physical environment measurements complex­

i t y analysis on algorithms could be performed. As discussed in section 1.2.7 how­

ever, theoretical complexity is not as important as a more practical evaluation of

algorithms. Other practical techniques such as profil ing could also be employed.

Usabi l i ty :

For a final product, the ult imate criteria for success is that end-users are happy

w i t h the delivered system. However, this is not practical in a research environment

when aspects such as user friendliness are not as important as the core functionality.

However, products should not be developed blindly wi th the assumption that any

end-product wi l l be useful. The use of simulation experiments (such as 'Wizard of

C h a p t e r 1: Methodological Introduct ion 15

Oz' simulations) w i th potential end-users are important to show that the problem

of usability has not been ignored.

Use of techniaues:

I f complete well worked theories for all aspects of the N L system are not available

(which they are not in the current state of art) then the other methods which have

been utilised should be described.

This does not mean that to meet this criterion each subpart of a system must

utilise every possible technique. I f a particular problem can be solved using a single

technique then i t is of course irrational to force the use of others. Bu t i f a general

technique does not lend itself well to a particular subproblem then the success

criterion should be that an alternative technique is employed.

This criterion is related to the use of cost-benefit analysis (see below). I t would

be a big cost, for example, to redesign the whole of a general theory so as to

accommodate one more single case. The cost of adding a simple rule exception

would be far less wi th similar benefits.

Cost -Benef i t :

Formal, extensive cost-benefit analysis is not a required criterion for success. As

discussed in section 1.2.10, the cost of this analysis itself may greatly outweigh the

benefits! Despite this, informal investigations of alternatives to various aspects of

the system during its development is useful and should be undertaken.

1.4 Context of this Work: The L O L I T A project

The work described in this thesis forms part of a larger project. L O L I T A is the

acronym for Large scale, Object-based, Linguistic Interactor, Translator and Anal­

yser, a general purpose base (see section 1.5.5) N L system. A more detailed de-

C h a p t e r 1: Methodological Introduct ion 16

scription of the L O L I T A system wi l l be left un t i l chapter 4, but some its properties

have an important bearing on the methodology adopted for the work described

here:-

• The principles of Natural Language Engineering. The L O L I T A system has

been buil t according to N L E principles. These principles have already been

detailed and their success criteria examined.

e The need for a generation module. When this project was ini t iated, the

L O L I T A system had very l i t t l e N L generation capability. The L O L I T A sys­

tem had existing prototype applications and there were plans to develop new

prototypes: there was, therefore, an urgent need for a module that could

provide improved generation capabilities. The method adopted in this work,

therefore, was to aim for a practical broad coverage generation system which

could meet these demands. This is in contrast to an alternative method where

a specific subproblem in the generation process might have been examined in

much more detail.

• The use of Haskell. The L O L I T A system is wri t ten in the functional program­

ming language Haskell [Hudak et al, 1994]. Although i t would be possible to

build the generation subsystem in an alternative language, interfacing prob­

lems and the desire for system coherence mean that the use of Haskell is a

starting assumption for this work.

• The input to the generator. As w i l l be described in chapter 3 the chosen input

to a generation system is one of the most important factors constraining the

generator's design. The L O L I T A system uses a novel form of semantic net­

work representation (SemNet, see chapter 4) and i t is this representation that

the generator has to take as input. Two particularly important issues related

to the SemNet input are those of 'meaning' and the relationship between

concepts and language. These issues are discussed in section 1.5 below.

• Specification requirements. Because the system developed in this work is

part of the encompassing L O L I T A system, its requirements for hardware and

C h a p t e r 1: Methodological Introduct ion 17

execution time must be similar (or less) than those for the L O L I T A system.

l . u Terminology Issues

This section wi l l discuss terminological issues on which there is no precise agreement

in the research community or which might cause misunderstanding. A glossary is

also provided to explain non-controversial terms which are used throughout this

thesis.

The terminological definitions presented here are often derived f r o m a deep

philosophical background. However, these philosophical arguments are beyond the

scope of this work 2 .

1.5.1 Meaning

In L O L I T A ' s SemNet representation, the meaning of a node (whether i t be an

enti ty or an event) is represented by that node together w i th the whole of the

semantic network. The distribution of knowledge in SemNet means that nodes

which are close to a specific node w i l l contribute more to its meaning than those

further away. However, i t is impossible to define the meaning of a node by choosing

an arbitrary distance and 'cut t ing out ' a particular SemNet portion.

1.5.2 Concepts

A concept in the L O L I T A system is any node in the SemNet representation. Its

meaning is given by that particular node together wi th the whole of the semantic

network (see above). A concept could therefore be a simple enti ty (for example

the node representing 'cheese') or a very complex event (for example the assassi­

nation of Kennedy). Under this definition there is potentially an inf ini te number

2 A book is planned to explain the philosophical assumptions on which the L O L I T A system is
based.

C h a p t e r 1: Methodological Introduct ion 18

of concepts: some wi l l be 'static' and correspond to LOLITA ' s background world

knowledge, others wi l l be 'dynamic' and be buil t as the L O L I T A system runs (i.e

as i t analyses text and builds concepts to represent the text's meaning). Other

researchers use the word 'concept' to mean something different: some use the term

to describe a set of pr imi t ive concepts f rom which meanings can be bui l t , others

simply use i t to mean entries in a knowledge base.

1.5.3 The Relationship Between Language and Concepts

A background assumption to LOLITA's SemNet representation is that language

is concept driven: language has evolved so that words are available for concepts

that need to be talked about. Whether a concept is 'needed' depends on the

environment and culture. In different cultures and environments different concepts

are required so a word for a particular concept may be present i n one language but

not in another.

The practical effect of this assumption is that L O L I T A ' s SemNet representation

comprises concepts (i.e nodes) which have a smaller 'grain size' than words: for

every word there is a different concept (except for exact synonyms 3) but there are

many concepts that do not correspond to a particular word. Because some words

have different senses, one particular surface level word may be related to more than

one concept (for example the word 's t r ip ' is related to many enti ty concepts as well

as event concepts). Concepts which can be expressed w i t h a word (or lexical entry)

in a particular language are termed language isomorphic (LI) concepts.

Having said this, i t is often useful to use language to identify useful concepts

because language has evolved so that useful concepts can be talked about. The

L O L I T A system has used WordNet to help build its concepts (see section 4.3.2).

Other systems assume that concepts have a 'larger grain size' than words: they

utilise 'pr imit ive concepts' that can be expressed by a variety of words (the most

3 I t could be argued that even synonymous words correspond to different concepts because, for
example, they convey different stylistic effect.

C h a p t e r 1: M e t h o d o l o g i c a l I n t r o d u c t i o n 19

extreme example being C D T [Schank and Abelson, 1977] where, for example, the

concept I N G E S T could be expressed by the words 'dr ink ' , 'eat' or 'breathe', see

section 3.12.1). Other systems assume a one-to-one correspondence between con­

cepts and the words that can be used to express them (systems based on M T M ,

see section 3.12.4, for example, comprise nodes which are lexical surface strings).

1.5.4 Natural Language Generation

The term natural language generation (NLG) is used to mean different things. A l l

researchers agree that the output of a N L G module should be an utterance in a

surface language, but they define the N L G task differently w i t h respect to the

input i t receives and the processes i t has to carry out (for example, some consider

generation to include the triggering of the urge to speak and the delimitat ion of

content, whereas others consider generation to be the simple realisation of some

detailed specification of what has to be said).

In this thesis N L G is defined as the process of producing English utterances

given the whole of LOLITA' s SemNet representation as input .

1.5.5 General Purpose Base

A system has been defined [Galliers and Sparck Jones, 1993] as the entire auto­

matic software and hardware entity. An NLP system carries out a task and any

system which is used to perform a task in a specific domain is an application. A

generic system is designed to perform a certain task, or more broadly a task type,

in different domains: i t can be tailored (by adding domain specific resources) to

different applications. General purpose systems are intended to be directly usable

without further tailoring for more than one application. Galliers and Sparck Jones

state that 11 general purpose systems do not exist even for any one NLP task, let

alone a range of tasks". They also note that 11 within certain limits, or on certain

assumptions about the scope of language processing, generic NLP systems are es­

sentially general purpose, i.e they will serve language-processing needs within any

C h a p t e r 1: Methodological Introduct ion 20

task system". I t is at the intersection between a general purpose and a generic sys­

tem that L O L I T A belongs. I t is more than a generic system as i t is not restricted

to a single task type, but i t is not, as i t stands, a general purpose system which

can be used for any task in any domain. The terminology is extended by defining

L O L I T A as a general purpose base.

1.5.6 Planning

Many researchers include a planning module or process in their generation systems,

but, again, the term is used for differing things.. Some researchers, for example,

include content delimitat ion in their definition of planning, others use planning to

refer to the process of organising clause sized predicates (see chapter 3).

In the work presented in this thesis, the definition of the planning process is dif­

ferent f r o m those adopted elsewhere. To avoid the 'generation gap' (see section 3.8)

some responsibility may be moved f r o m the planner module to the plan-realiser.

The planning module wi l l pass suggestions of how an utterance should be produced

to the plan-realiser. A more precise definition of planning in this work, together

w i t h a description of how i t interfaces w i t h the plan-realiser, is left un t i l chapter 5.

1.5.7 The Plan-realiser

The traditional approach to generation includes a realiser as well as a planning

process (see chapter 3). Again workers apply this term in different ways. To

emphasise the difference between the approach taken in this work and the more

tradit ional methods, the term plan-realiser w i l l be used instead of realiser. In this

approach the plan-realiser, in the absence of detailed instructions f r o m the planner,

w i l l be autonomous and perform some tasks that are more tradit ionally assigned

to planners. This distinction w i l l be detailed in chapter 5.

C h a p t e r 1: Methodological Introduct ion 21

1.6 Logical Progression of the Thesis

The thesis is organised according to the following plan :-

C h a p t e r 1: Methodological Introduct ion (this chapter), provides impor­

tant methodological information about the work presented in the thesis. The chap­

ter provides a detailed explanation of the natural language engineering (NLE) meth­

ods adopted and provides background criteria for success for these methods as well

as to those of the artificial intelligence (A I) approach. The chapter also describes

how the parent project, the L O L I T A system, influences the methods adopted and

provides a discussion of controversial terminology.

C h a p t e r 2: T h e P r o b l e m A r e a and P r o j e c t A i m s , provides an overview

of the problem of natural language generation and lists the seven different aims of

the project together w i th criteria for their success (which are a refinement of the

general criteria discussed in chapter 1).

C h a p t e r 3: T h e State of the A r t , w i l l discuss the state of the art in the

area of N L G by examining the different problems and approaches to their solution.

Af te r giving a broad overview of these areas the chapter w i l l concentrate on those

systems that take similar input to the L O L I T A generator. Because the chapter is

largely organised by subproblem rather than system, Appendix B provides a system

by system description wi th cross references back to this chapter. The appendix also

contains a table summarising some of the important properties of these systems.

C h a p t e r 4: T h e L O L I T A Sys tem, provides details of the parent project

L O L I T A . The chapter wi l l discuss the advantages of the general purpose base

approach used in L O L I T A together w i l l details of its subcomponents and prototype

applications. Special attention wi l l be paid to those components and applications

that are of relevance to N L G .

C h a p t e r 5: Solution: T h e G e n e r a l Approach and the Plan-rea l i ser ,

discusses the novel framework adopted for generation before detailing one subcom­

ponent of the solution, the plan-realiser. The first part of the chapter discusses

the adopted architecture and how the roles of the components (the planner and

C h a p t e r 1: Methodological Introduct ion 22

plan-realiser) differ f rom other approaches. The later component, the plan-realiser,

is then discussed in more detail and heuristics and examples are provided.

C h a p t e r 6: Solution: Abs trac t Transformat ions , provides details of an­

other aspect of the solution. Abstract transformations are transformations which

act on the SemNet input to the generator, giving rise to paraphrases. The chap­

ter discusses other systems which perform a similar process before giving specific

heuristics and examples.

C h a p t e r 7: T h e Implementat ion , provides some implementation details,

i i i c i j v j L i i n geiieriiuui ib iiiipiciiiciibeu iii tiic iuiicoioiiai piugraunii i i ig language

Haskell. The use and advantages of this language for N L G w i l l be examined wi th

particular focus on how the properties of such a language have an impact on the

solution. This investigation is one of the specific project aims listed in chapter 2.

C h a p t e r 8: Eva luat ion , discusses the state of the art in evaluation of N L

(and more specifically N L G) systems before going on to evaluate this particular

project. The study of evaluation techniques (which is another specific aim of the

project presented in chapter 2) includes details of one particular evaluation frame­

work together w i th suggestions for its extension. A detailed example of how this

framework can be applied is given in the fo rm of an evaluation example. The sec­

ond part of the chapter takes each of the project aims detailed in chapter 2 and

discusses whether or not their criteria for success (also provided in chapter 2) as

well as the general methodological criteria (chapter 1) have been met.

C h a p t e r 9: Conclus ion, the final chapter, summarises the project's theo­

retical and practical successes. I t also describes some of the shortcomings of the

project and suggests possibilities for further work.

Chapter 2

The Problem Area and Project

Aims

2.1 Natural Language Generation

Natural Language Generation (hereafter NLG) is the automatic generation of Nat­

ural Language by computer in order to meet communicative goals. One aim of

N L P is to allow more natural communication w i t h a computer and, since commu­

nication is a two-way process, a NL system should be able to produce as well as

interpret N L text. A computer system which responded w i t h internal jargon would

be unsatisfactory. N L G is not just the process of using N L output: programs have

been pr int ing out messages in English since the advent of computers. However

such 'canned' text (e.g., P R I N T "please type your name") or text that can

be parameterised w i t h variables (e.g., P R I N T "there is an error in module"

+ M O D $) do not represent anything to the program and any connection between

the string of words and the state of the program are restricted to the mind of the

person who preprogrammed the responses [McDonald, 1990]. Nowadays however,

programs need to communicate a much wider range of information to their users

and a simple canned or template approach is often insufficient.

N L G is recognised to be a challenging area of NLP: Gabriel, for example, goes

C h a p t e r 2: T h e P r o b l e m A r e a and P r o j e c t A i m s 24

as far as saying that "wri t ing is the ul t imate problem for art if icial intelligence

research" [Gabriel, 1988]. This claim can just i f iably be opposed by researchers in

other A I areas but N L G is often an important way in which the manifestation of

results f r o m other modules can be presented.

Un t i l recently, i t was common for work in the area to start w i th the statement

that N L G was a young field which previously had not been required due to the

lack of sophistication of underlying programs. I t was claimed that any generation

that was needed was simple and could be done wi th , for example, simple canned

text. However, this is no longer true, sophisticated N L systems have emerged and

impressive N L G modules have been bui l t for them. Over the last 15 years, N L G

has become one of the fastest growing areas of N L research.

N L G , like NLP in general, has been approached f rom different viewpoints (see

section 1.1) and people have concentrated on different aspects and adopted a wide

range of in i t ia l assumptions.

One interpretation of the division of the problem [Mykowiecka, 1991a] is:-

1. Choosing the contents:

• Choosing the facts which are adequate in a particular context,

• Different treatment of new information and the facts which are already
known to the reader/hearer.

2. Constructing the plan :

• Ordering the facts to be presented,

• Deciding on the subjects of sentences,

• Choosing the contents of each sentence,

e Choosing the form of sentence structure.

3. Final realisation:

• Ordering the sentence parts,

• Choosing the proper words,

e Choosing the proper morphological forms.

4. Reviewing.

C h a p t e r 2: T h e P r o b l e m A r e a and P r o j e c t A i m s 25

Many systems group the tasks required for generation into two components, a

planner and a realiser. This traditional architecture, however, often causes prob­

lems at the interface between the two modules: a phenomenon! termed the gen­

eration gap (see chapter 3). In order to avoid this problem, the solution to N L G

presented in this thesis adopts a novel architecture in which the distr ibution of tasks

between the two modules is different. This solution wi l l be detailed in chapter 5.

Although a lot of work has been undertaken in the field, human N L G is far

more sophisticated than the current state of the art in automated N L G . A detailed

examination of the history and state of the art in NLG is presented in chapter 3.

2.2 N L G in L O L I T A : Project Aims

The underlying aim for this project was to build a natural language generation

module for L O L I T A in order to increase its generation capabilities (see section 1.4).

The prototype applications that already existed, were being designed, or were to

be designed in future , needed such capabilities. NLG was also required to aid in

development: the SemNet representation on which L O L I T A is based can be very

diff icul t to understand quickly and a N L utterance to describe each node in the

SemNet would be beneficial. This underlying aim is very abstract and could lead

to anything f rom a t r iv ia l to a very complex generation solution. Therefore there

is a need to refine this underlying aim into more concrete aims to which can be

assigned criteria for success.

For success in this project, i t wi l l not be sufficient to tick off the aims casually

and say that they have been fulf i l led. Instead, detailed success criteria for each

aim have to be established a priori. When the solution has been presented these

criteria, for success w i l l be re-examined in the evaluation chapter (chapter 8).

C h a p t e r 2: T h e P r o b l e m A r e a and P r o j e c t A i m s 26

2.2.1 Aim 1: The AI Goal and N L E Principles

The project should follow the background methodological criteria for success wi th

respect to the A I goal and the principles of N L E discussed in chapter 1. The

N L E principles introduced in chapter 1 can be applied to the problem of N L G .

Adherence to some of the principles is already implic i t in other aims (e.g., aim 4

is related to scale, aim 3 is related to integration). However, this aim makes them

all explicit.

A i m 1: C r i t e r i a tor success

The methodological criteria for success for the A I goal have already been discussed

in section 1.3.1.

The N L E principles discussed in chapter 1 can be directly applied to the sub-

problem of N L G . The design, development, implementation and evaluation of the

generation system must follow these principles. However the background method­

ological criteria discussed in chapter 1 are issues which apply to N L E in general:

i t is not always necessary for a solution to each individual subproblem to meet all

of the possible criteria discussed. If , for example, evidence for the feasibility of a

system is provided by practical results, theoretical complexity analysis need not be

undertaken.

2.2.2 Aim 2: Generation of SemNet Node Descriptions

To build a generator which can produce English descriptions of nodes in the se­

mantic network. The 'general purpose base' operation of the L O L I T A system is

to analyse text and produce a semantic representation of its meaning (SemNet).

The generator should be able to produce expressions f r o m these semantic repre­

sentations. This is a v i ta l requirement which, not least, is essential for future

development and 'debugging' of the rest of the system.

C h a p t e r 2: T h e P r o b l e m A r e a and Pro jec t A i m s 27

A i m 2: C r i t e r i a for success

The possible success criteria for this aim could be very wide ranging. A t the least,

the generator could simply produce a single word utterance to which the concept

node is most closely attached. A t the other end of the scale however, a node could

be represented using much more information. I f for example, a node in the semantic

network represents the assassination of J.F.Kennedy, the possible N L utterances

could range f rom 'assassination' to a very long 'novel-length' utterance (people have

wri t ten many books and even made films to represent such a node). A n acceptable

1 _ _ i_ : i-1 _ r . _ i ; I . „ . J . „ . - , . . „ . . , _

The amount of information represented by a node could affect the length and

complexity of a N L utterance to describe i t . The best way to constrain the amount

of information is to l i m i t the length of the input information f r o m which the concept

information is gleaned. The current state of the art (e.g., M U C [DAR, 1993]

competitions etc, see section 8.1.1) is constrained to input in the order of a few small

paragraphs of input text (for example, newswire bulletins). This is a reasonable

constraint to impose.

A background methodological criterion is that the system output mimics the

behaviour of humans. The success of the system output w i l l therefore depend on

its comparison wi th human produced descriptions of nodes in the SemNet represen­

tation. The methods (and experiments) of testing for this criteria w i l l be discussed

more fu l ly in chapter 8

Because the need for N L descriptions is important for future development, a

final criterion for success wi l l be that utterances produced by the generation system

have indeed been useful for this purpose.

2.2.3 Aim 3: Generation for Prototype Applications

To build a generator wi th sufficient capabilities for the existing L O L I T A prototype

demonstrations. To highlight any inadequacies of these underlying sub-components

which hinder generation.

C h a p t e r 2: T h e P r o b l e m A r e a and Pro jec t A i m s 28

A i m 3: C r i t e r i a for success

Evaluation of generation is diff icult but is made easier when a scope and context

is defined. Generation capabilities wi th in the framework of an application are

simpler to evaluate than in abstract terms. The criteria for the success for this aim

is that the generation capabilities are sufficient for the existing prototypes. This is

different f rom evaluating the applications themselves although interrelated because

the final manifestation of a result is via N L G .

2.2.4 Aim 4: The Suitability of SemNet

To investigate the suitabili ty of LOLITA ' s representation for generation. The use of

LOLITA ' s semantic representation (SemNet, see section 4.3.2) is an in i t ia l assump­

tion for the project but an explicit aim to investigate its suitabili ty is useful. Having

said this, i t is always important to remember that SemNet was not designed specifi­

cally for generation. The representation used in other generation systems may have

been designed specifically for generation and could be unsuitable for other tasks.

This is an aspect of integration, see section 1.2.6.

A i m 4: C r i t e r i a for success

The criteria for success for this aim are not concrete. The project w i l l merely

discuss and draw conclusions as to whether the generator is helped or hindered by

the input representation. As w i l l be discussed in section 3.3 the type of input a

generator takes wi l l have a very important bearing on its solution. I t would be very

diff icul t to build a generator in isolation and use different inputs so as to ascertain

which is most suitable: this wi l l not be a success criteria.

2.2.5 Aim 5: Broad Coverage

To aim for broad coverage on the problem of generation. The project wi l l not

confine itself to one particular subproblem in the generation process. Rather than

C h a p t e r 2: T h e Prob lem A r e a and Pro jec t A i m s 29

picking out a particular generation sub-problem and designing a solution to solve

i t (for example generating referring phrases, lexicalisation, anaphora, specialised

domain or task, see chapter 3), the onus on the project w i l l be to produce a practi­

cal system which covers all the associated subproblems. This aim is driven by the

starting point requirement to build a generator for the L O L I T A system (see sec­

t ion 1.4). This wi l l of course lead to an oversimplification of some of the problems

but the use of cost-benefit analysis wi l l help decide how 'deep' into each of these

subproblems the solution wi l l be required to delve. I t is important to note that in

fu ture the L O L I T A system does not expect to remain at this 'shallow' but 'broad'

situation. As solutions to the individual problems are found (either elsewhere or

by continuation of development) good integration should ensure that they can be

incorporated into the existing L O L I T A generator.

A i m 5: C r i t e r i a for success

The success of the aim to provide broad coverage is highly dependent on the success

criteria of other aims. In order for aims 1 and 2 to be successful, for example, the

solution must cover a broad range of subproblems. I t is, of course, not necessary to

show that these various sub-problems are handled too 'deeply' in order to achieve

this broad coverage.

2.2.6 Aim 6: Suitability of Haskell

To investigate the suitability of the functional programming language Haskell for

N L G . Although for reasons of coherence and interfacing w i t h the parent L O L I T A

system, the use of Haskell is a starting assumption for this work (see section 1.4),

i t is useful to ascertain what effects this assumption has on the implementation of

the solution.

C h a p t e r 2: T h e P r o b l e m A r e a and Projec t A i m s 30

A i m 6: C r i t e r i a for success

To be successful wi th respect to this aim, the unique features of Haskell must

be examined and the impact on the implementation (both negative and positive)

discussed. Features common to other languages (especially imperative languages)

that are not present in Haskell wi l l also be discussed. The investigation should

determine whether other languages w i l l allow things to be done more easily, and

what is specific to Haskell that aids the implementation.

The success criteria is not to prove that Haskell is better or worse than an

alternative language, as this would, of course, be extremely subjective.

2.2.7 Aim 7: Evaluation

Evaluation of NLP and in particular N L G systems is a diff icul t and not well un­

derstood process. I t is therefore an explicit aim of this work to investigate existing

N L G evaluation techniques and perhaps suggest alternatives.

A i m 7: C r i t e r i a for success

The discussion on how to evaluate success criteria for aims 1 to 6 has shown that

methods available for evaluation of N L E systems and in particular N L G are vague.

As well as needing good evaluation techniques to evaluate a N L G system, a N L G

system is needed to evaluate evaluation methods. This work is also an investigation

of evaluation methods. To be successful in this aim, the project should add to

knowledge about how to evaluate NLP and in particular N L G systems.

Chapter 3

Related Work

Natural Language Processing (NLP) and in particular Natural Language Genera­

tion (NLG) are comparatively new endeavours and there has been a great deal of

recent work i n the area. This is highlighted in the ever increasing number of work­

shops, conferences and journal issues dedicated solely to the subject (see, for ex­

ample, [NLG94, 1994], [Cercone and Pattabhiraman, 1992],[Dale et a/., 1992],[Dale

et a/., 1990], [Horacek and Zock, 1993]).

3.1 Organisation of This Chapter

Despite being such a young field, the problem of N L G has been already approached

f rom a wide variety of backgrounds in a wider number of ways and i t would be

impractical and unnecessary to give a detailed overview of all significant work in

the area. This chapter w i l l be split into two parts: the first (sections 3.2 to 3.11)

w i l l present a broad overview of the field, the second wi l l examine in more detail

those systems and techniques which are deemed to be more relevant to the work

presented in the rest of this thesis.

The first part of the chapter w i l l present a brief overview of some of the most

important subproblems and pioneering approaches to their solution. This overview

w i l l include sections on what input generation systems assume (section 3.3), the

C h a p t e r 3: R e l a t e d W o r k 32

control mechanism of generation systems (section 3.4), different architectures they

adopt (section 3.5), approaches to realisation (section 3.6) and planning (sec­

tion 3.7), the problem of the generation gap (section 3.8), lexicalisation (sec­

tion 3.9), how generation systems produce variation (section 3.10) and finally a

section on other areas of N L G such as connectionism and revision (section 3.11).

The section on more relevant work (section 3.12) concerns generation systems

which assume a semantic network or graph input. As wi l l be discussed in sec­

tion 3.3, the assumption on the type of the input is one of the most constraining

aspects on the design of a generation system. The section w i l l detail systems and

approaches based on Conceptual Dependency Theory (C D T) [Schank, 1975], Con­

ceptual Graphs [Sowa, 1984] , the Semantic Network Processing System (SNePS)

[Shapiro and the SNePS Implementation Group, 1993] and the Meaning Text The­

ory (M T T) [M e l ' c u k and Polguere, 1970].

This chapter is not meant to be a stand-alone description of the aspects of

the state of the art in N L G , but a more active part of the thesis. Therefore the

overview w i l l include discussion about the relevance of different aspects wi th respect

to systems that take a semantic network or graph as input and, more specifically,

to the generator described in this work. A criticism of different techniques and

systems wi l l also be given; especially for the 'more relevant work' presented in

section 3.12. There are a few important criticisms that can be applied to the field

in general. Thus, as well as presenting a criticism of each individual system or

technique as they are introduced, a section is presented which discusses some of

these important common criticisms (section 3.2). The reader should bear these

general criticisms in mind whilst reading the rest of the chapter.

As outlined above, the chapter has been organised by subproblem rather than

by system or school of thought. Some systems cover more than one subproblem

therefore information about individual systems is often distributed throughout the

chapter. Furthermore, some systems have evolved and have been given different

names, wi th only the researcher's name being a constant. For these reasons Ap­

pendix B is provided to detail NLG work organised by system. This appendix, as

C h a p t e r 3: Re lated W o r k 33

well as cross referencing different systems wi th the information contained in this

chapter, provides a table summarising the properties of each system according to

the properties described in this chapter.

3.2 General Criticism of State of the Art

This section w i l l discuss criticisms that can be applied to the field of N L G in

general. While i t is definitely not the case that all these criticisms apply to all the

„ „ J „ „ „ — „ „ u „ „ J - U — „ „ „ „ f „ „ . :f T , : „ U

The overriding criticism is that most N L G work does not bear up to the im­

portant N L E principles defined in chapter 1. More specifically:-

• Many systems seem st i l l to be tied to particular l imited domains. Even

when researchers claim that the techniques they adopt can be transported

f rom domain to domain, the actual examples they give do not provide much

evidence for this.

o Many systems can st i l l be described as ' toy ' systems. Although in theory

the rules could be applied to large-scale systems (see section 1.2.2), actual

implementations have only been buil t on a small ' toy ' scale. Problems of

feasibility as the scale is increased have not been addressed.

• Some systems are based on assumptions which tie them to a particular natural

language. Some, for example, assume an isomorphic correlation between

concepts and words (see section 3.9).

• Some systems, more commonly those that concentrate on a particular subarea

of N L G , place unlikely assumptions on the output of other components (this

is the integration problem). For example, some realisers assume a very rich

input specification (section 3.6) and planners often assume the information

which they have to organise is already presented (by some missing module)

in clause-sized chunks.

C h a p t e r 3: Re la ted W o r k 34

e Finally, i t is often very diff icul t to determine the strengths of a particular

generator system, I t would seem likely that scientific papers concerning N L G

would be littered w i t h example output but this is not the case. Even when

example output text is presented i t is often misleading as the starting point

assumptions (i.e. the type of input) is not made explicit . There is a clear need

for researchers to present more information so that their generation systems

can be more easily evaluated. Investigation into how N L G systems can be

evaluated is a specific aim of this work (see section 2.2).

3.3 Input to the Generator

One of the most important factors which determine a generator's characteristics is

the input i t assumes. The type of input dictates the del imitat ion of the problem as

well as constraining the approaches to the design of its solution. Some generation

systems are responsible for a wide range of subproblems such as triggering the urge

to produce an utterance, choosing and ordering the content of the utterance and

final grammatical realisation. Others restrict the area of the problem by building

a component to cover one of the subproblems and assuming the rest is tackled

elsewhere. (The most common group of these systems are grammatical realisers

which produce a grammatical utterance for some specification: the specification is

assumed to be provided by other components.)

Generation systems can be coarsely split into two groups: those that assume

the content is a side effect of the application program and those that take on the re-̂

sponsibility of extracting the content f rom the application program. Meteer[Meteer,

1993](pg.26) argues that the first group is typical of more 'active' programs such

as simulations, expert systems or automatic translators; the latter being a good

example as there is no distinct independent application and the content is deter­

mined by the input text. Less active underlying systems such as databases, which

are static in the sense that they are not taking actions or passing representations

of actions to the generator, have to determine the content themselves.

C h a p t e r 3: Re la t ed W o r k 35

Typical inputs to a generation system are as follows :-

• Those which comprise a knowledge base and a communication goal. Accord-"

ing to the goal, relevant knowledge must be retrieved f rom the knowledge

base and expressed in a coherent manner.

• Those which assume that the content of the utterance is provided in the fo rm

of clause-sized chunks. An utterance is produced by the generator by ordering

the clauses into coherent sentences.

• Those which assume a complete specification of an utterance. They assume

that 'higher' modules in the system have provided the specification in suf­

ficient detail. In some cases these higher modules exist, but in others they

are simulated. The detail of the specification differs f rom system to system.

Some completely define the grammatical as well as semantic content of the

utterance and leave only the 'read out ' and morphology to the generator.

Others are more vague leaving more grammatical choice to the generator.

e Another group of systems take as input a semantic representation of the

information to be expressed in fo rm of a network or graph. This is the type

of input to the generator described in this work. Other systems which take

the same type of input are the most comparable and wi l l be examined in

more detail in section 3.12. I t wi l l be seen that even wi th in this group of

systems, there are variations as to the exact type of input and the methods

used to produce an utterance.

3.4 Control

Another categorisation of NLG systems is according to their method of control.

Meteer [Meteer, 1993] distinguishes between two types of control:-

o In a grammar directed (or declarative [Paris and McKeown, 1987]) system,

control lies in the reference knowledge, that is i t is governed by some prede­

termined body of tests that gate and order actions.

C h a p t e r 3: Re lated W o r k 36

• In a message directed (or procedural [Paris and McKeown, 1987]) system,

control lies in the input itself and is interpreted by some general control loop

wi th in the process.

This distinction is applicable to all stages of the generation process whether

i t be during content delimitation, planning or realisation. Meteer highlights the

difference between the two methods of control by examining the interface between

the application program and planner:

iii ct iiiebbage unveil byoieui events i u uic application bugger uxie urge

to speak' and provide the structures that determine the content of what

is to be communicated. This is in contrast to systems where the appli­

cation program only provides a 'communicatiqn goal' and the generator

searches the knowledge base of the application for information to f u l f i l

the goal using the generator to control the search."

An example of a message directed control generation system is SPOKESMAN

(see section 3.8.1). Paris and McKeown [Paris and McKeown, 1987] also argue for

a procedural approach especially when generating text to describe physical objects.

In this case they claim that the structure of the text often mirrors the structure

of the object being described. They use an analogy (originally identified by Linde

and Labov [Linde and Labov, 1975]) to a person describing an apartment: the

description could follow the layout of the apartment w i t h the speaker taking an

imaginary tour through the different rooms. Examples of grammar directed or

declarative systems are the N I G E L realiser (see section 3.6.3) and most RST and

schema based planners (see section 3.7.2).

[McDonald et a/., 1987] argue that because the action sequence is already im­

plici t ly determined by the process that buil t the input structure and no effort needs

to be expended on control decision, message directed control is more efficient. On

the other hand, other researchers (e.g., [McKeown and Swartout, 1988]) state that

the description directed or procedural control affects the clarity of the system.

They also argue that for message directed realisation systems there is no distinct

C h a p t e r 3: Re lated W o r k 37

grammar which means it is diff icul t to examine, adapt or expand.

There is a very strong link between the method of control and the type of input •

assumed by the generator (see previous section). I f , for example, input is just a

list of clause size predicates then a declarative system w i l l have to be adopted. I f

on the other hand the input is richer and contains information such as temporal

progression and causal information i t would be irrational to ignore this information

and mirror ordering knowledge in a declarative generator. Generally generators

w i t h static underlying programs (such as databases) adopt a declarative approach

whilst more active underlying programs (such as expert systems and translators)

adopt a procedural approach.

However, the categorisation of systems into the message and grammar directed

approaches is not alway possible. Rather, the definitions lie at either end of a range

w i t h different systems shift ing different emphasis to either control method without

belonging wholly to one category.

Generators which start f r o m a semantic graph representation usually contain

rich semantic information which is useful for formulating utterances and thus tend

to place emphasis on message directed or procedural control. This is indeed the

case for the L O L I T A generator which despite having a certain degree of declarative

control is highly dependent on the semantic network representation (SemNet) i t

receives as input.

3.^ Architecture

As introduced in chapter 2, generation involves three distinct stages (although some

include a four th revision stage): choosing the information to communicate, organ­

ising this information and then realising i t in NL. Traditionally, however, these

processes have been lumped together into two general classes of decisions: one

involves determining the content and organisation of the text, the other concerns

choosing lexical items and syntactic constructions which can present the informa­

tion most effectively. These 'what to say' and 'how to say i t ' stages have been

C h a p t e r 3: Re lated W o r k 38

(a) PIPELINED

Input

(b) INTERLEAVED

Input

(c) INTEGRATED

Input

Text Planning

Realization

Text Planning

Realization

Output Output

Figure 3.1: Generator organisations

Output

called Planning and Realisation components, Strategic and Tactical levels, Deep

and Surface generation, Text planning and Plan execution, Message and Form lev­

els, Functional and Positional levels and Conceptual and Grammatical levels. This

section wi l l provide an overview of approaches to the architecture of generation

systems.

Assuming this distinction between planning and realisation tasks, [Kantrowitz

and Bates, 1992] claim that there are two genres of generation architecture: sep­

arated systems and integrated systems. Separated systems can be further cate­

gorised into pipelined (or linear) and interleaved systems (see figure 3.1). These

generation architectures w i l l be introduced in the following subsections.

3.5.1 Separated Systems

Some researchers claim that i t is best to have a separate module for each of the

two main tasks. For example McDonald and Meteer [McDonald and Meteer, 1988]

suggest that:-

"(we should modulise) our systems so that the parts which handle well

understood processes need not be compromised to accommodate weak­

nesses in other parts of the system."

C h a p t e r 3: Re la ted W o r k 39

In the case of N L G , McDonald claims that the well understood process is linguis­

tic realisation while weaknesses are in the conceptual models and representations

of the programs underlying the generator. He thus developed his M U M B L E re-

aliser (see section 3.6.4) independently of a text planner (later, Meteer developed

S P O K E S M A N to interface M U M B L E with a variety of underlying programs, see

[Meteer, 1993] and section 3.8.1).

The approaches to realisation and planning in separated systems are introduced

in sections 3.6 and 3.7.

I t has become apparent, However, Ural the original realisation and planning split

is more complicated and a linear or pipelined execution of each component is not

necessarily the best way forward. The problem arises because semantic and syn­

tactic structures are not isomorphic [Elhadad and Robin. 1992] so that meanings of

lexemes and more generally grammatical functions are related unevenly to concep­

tual meanings [Horacek, 1992]. Researchers have discovered that f inding suitable

lexical information and grammatical forms to express conceptual information is not

necessarily a straight forward task (see also [Rubinoff, 1992]).

This problem has been called 'the generation gap' [Meteer, 1993]. Section 3.8

describes how this problem has been tackled by the use of either a pipelined or

interleaved interface between the two modules.

3.5.2 Integrated Systems

The alternative to having separate components is motivated by the same 'gener­

ation gap' problem. Kantrowitz and Bates, in defence of their integrated system

G L I N D A , state [Kantrowitz and Bates, 1992]:-

"Unfortunately in generating even modestly sophisticated texts the

planning stage is not independent of the realisation stage. In particular

if the planner isn't aware of syntax, i t can't take into account opportu­

nities and inadequacies that arise during the realisation stage."

C h a p t e r 3: Re la ted W o r k 40

The integrated approach is however relatively rare and wi l l not be discussed

further except for the following summarisation of the main systems which come

into this category:-

• DIOGENES [Nirenburg et ai, 1989] is unusual as i t is based on a blackboard

architecture [Engelmore and Morgan, 1988].The blackboard architecture uses

an agenda-style control w i th each decision module operating independently

and posting its decisions on the 'blackboard'. There are five decision mak­

ing modules i n DIOGENES (text structuring, lexical selection, syntactic se­

lection, co-reference treatment and constituent ordering) and whiist the or­

dering of the decisions is not fixed, each has a different base priori ty level.

This means that in i t ia l ly text structuring decisions are made before lexical

decisions for example. However, this strict ordering is not maintained as de­

cisions can be retracted. A crit icism of this approach (e.g., [Meteer, 1993]) is

its inefficiency: whenever a decision is retracted all other decisions which are

dependent on i t must also be re-checked.

• G L I N D A [Kantrowitz and Bates, 1992] is the generation module of the OZ

'v i r tua l reality' system. Its ambitious aims are to :-

"tune the generation to engender subtle emotional reactions in and

exert influences on the human 'player' and to present a variety of

v iv id views of the simulated world ' .

Because of the need for more flexible communication between what would be

separated planning and realisation levels, the strategy was to identify simi­

larities in the operations and representations of both levels and to generalise

them into a single framework that can be used for all aspects of generation.

The resulting integrated generator has a single engine and only the organisa­

tion of the rules creates modularisation.

• Appelt 's K A M P [Appelt, 1985] was one of the first systems to break away

f rom the traditional separated approach. Appelt argues that the planning

and action are essentially the same process:-

C h a p t e r 3: Re la ted W o r k 41

"Human language behaviour is part of a coherent plan of action

directed toward satisfying a speaker's goals... Thus, the planning

at each level involves consideration of both linguistic rules and goal

satisfaction, the distinction between 'what ' and 'how' then becomes

merely two points on a continuum between goal-satisfaction and

rule-satisfaction"

The K A M P system uses a uniform representation method and planning mech­

anism (based on Sacerdoti's N O A H [Sacerdoti, 1977]) throughout.

K A M P begins wi th a set of axioms about the state oi the world, agent's beliefs

and goals, and knowledge about physical and linguistic actions. The complex

planning mechanism involves building a network where each node represents

possible world and arcs represent actions which change the state of these

worlds. The K A M P planning mechanism is criticised for its complexity (i t

took nearly an hour to produce one complex sentence [Meteer, 1993],pg. 158)

and more recently Appelt has modified the integrated approach by separating

out the linguistic component T E L E G R A M [Appelt , 1983].

3.5.3 Architecture: Notes on Relevance

The major i ty of generation systems adopt a separated approach comprising a plan­

ner and a realiser. The distribution of tasks between these modules differs f r o m

system to system but, in general, the planner does much of the hard work (e.g

content selection and delimitat ion, clause organisation) whilst the realiser simply

produces a surface level utterance f rom the planner's (often detailed) specification.

The approach taken in this work is also based on a separated architecture. How­

ever, the distribution of tasks and effort between the two components is different.

The planner does provide instructions but not necessarily highly detailed ones.

The plan-realiser (named so as to distinguish the module f rom tradit ional realis-

ers) has to follow these instructions but, in the absence of specific details, i t must

perform tasks that are more traditionally achieved by the planner. The solution is

C h a p t e r 3: Re la ted W o r k 42

presented in detail in chapters 5 and 6.

3.6 Realisation

3.6.1 Introduction

A l l N L G systems must have a realisation component as i t is this stage which

actually maps internal representations into surface NL. The most t radi t ional N L

realisers have thr&p. d i s t i n c t p.ntit.ip.? [HOVY . 1988?.! >

• A set of grammar rules which govern how words can be put together.

• A lexicon comprising a collection of words together w i th their idiosyncratic

features.

• A mechanism that produces text by accepting an input representation, bui ld­

ing a syntactic tree structure on applying the rules of grammar to the input,

inserting into the tree lexical entries that are accessed f r o m the input repre­

sentation and finally saying the words.

There are many variations to this simplistic approach depending, for example,

on the input representation used, the control of the process (i.e description or

message directed, see section 3.2) and the organisation of the grammar and lexicon.

Some of the more widely used methods and their development are discussed in the

following subsections.

3.6.2 Functional Unification

A unification grammar (invented by Kay [Kay, 1979]) characterises linguistic enti­

ties by collections of features called functional descriptions (FDs). In realisation,

the input to the unification process is another FD which specifies the content of

the required utterance. Two functional descriptors can be unified by an algori thm

that is similar to set union [Appelt, 1983] [McKeown et a/., 1990]. The unification

C h a p t e r 3: Re lated W o r k 43

FD1 = { a r t i c l e { d e f i n i t e : y e s } , h e a d : { l e x : ' c a t ' } }

FD2 = { a r t i c l e : { l e x : ' t h e ' } , m o d i f i e r : { l e x : ' b l a c k ' } }

unify(FDl,FD2)= = { a r t i c l e : { d e f i n i t e : y e s , l e x : ' t h e ' } ,
h e a d : { l e x : ' c a t ' } ,
m o d i f i e r : { l e x : ' b l a c k ' } }

Figure 3.2: A simple example of unification of two FDs

of two FDs merges the features f r o m both to produce a more specific F D , the total

FD [Elhadad and Robin, 1992]. Figure 3.2 shows a simple example of unification

(taken f rom [McKeown et a/., 1990]).

Those who advocate the unification approach argue for the following advantages:-

• The abili ty to encode functional information directly in the grammar. There

has been a lot of linguistic research on the relation between functional infor­

mation and syntactic construction which can be incorporated [McKeown and

Swartout, 1988].

• Unification allows the input to grammar to be specified in simplified f o r m

[McKeown and Swartout, 1988].

• FDs allow the encoding of discourse features in the grammar [Appelt , 1983].

• The formalism relieves the high-level planning process of the need to consider

low-level grammatical details.

The main disadvantage wi th the approach is that the process of unification is

non-deterministic and therefore inefficient [McKeown and Swartout, 1988].

Systems which use a unification approach

o A functional unification grammar (FUG) was first used in generation for the

final surface realisation stage of McKeown's T E X T system [McKeown, 1985].

C h a p t e r 3: Re la ted W o r k 44

o Appelt 's T E L E G R A M [Appelt, 1983]1 considered the problem of efficiency

caused by non-determinism by closer integration of the planning and unifica­

t ion stages. Appelt modified the unification process by allowing the planner

to be re-invoked at various choice points in the grammar in order to guide

the process.

e McKeown et al. in their C O M E T system [McKeown et ai, 1990], expanded

the idea of FUG to include a unification stage for lexical selection and for

deciding when to explain information graphically or textually. These new ex-

tppsirmR n f the F U method termed FunctionoJ. Unifjci-tiop. Fovm,<j/».?*?>.? f F U F)

allow i t ' to be used more efficiently and to be used for other than purely

syntactic tasks'. The grammar was extended, for example, to also include

pragmatic features (such as mood and focus) that constrain the way the

message should be expressed.

3.6.3 Systemic Grammars

Systemic functional linguistics [Halliday, 1985] divides language not just into syntax

and semantics but on three functional lines of analysis [Meteer, 1993]:-

• ideational: the content of the utterance and the organisation of the speakers

experience in terms of processes, things, qualities etc.

• interpersonal: The relation of the speaker and hearer.

• textual: The organisation and cohesion of text.

A grammar comprises a network of systems which represent a choice point

where a feature must be selected f rom a set of alternatives. There are three lines

of traversal through the network, one for each of the functional lines of reasoning

listed above. The syntactic unit is specified cumulatively by all three lines.

T E L E G R A M evolved from Appelt's K A M P planner [Appelt, 1985] (section 3.5.2)

C h a p t e r 3: Re lated W o r k 45

((GIVE1 / GIVE ;; GIVE1 i s an i n s t a n c e of GIVE i n the domain model
: a c t o r J0HN1
: d e s t i n a t i o n MARY1
: o b j e c t B00K1
: tense PRESENT
:speechact ASSERTATIQN)

(JQHN1 / PERSON
:name John)

(MARY1 / PERSON
:name Mary)

(B00K1 / BOOK
: de te rminer A
:relations ((CI / COLORING

. QCiUcLiii uuu iu

:range BLUE)))
(BLUE / COLOUR))

Figure 3.3: Input to N I G E L for "John gives a blue book to M A R Y "

There are three main generative systemic grammars in existence:- N I G E L [Mann,

1983b] [Matthiessen, 1991], the systemic grammar of the P E N M A N project [Mann,

1983a], GENESYS [Fawcett and Tucker, 1990] [Fawcett, 1994] part of the C O M ­

M U N A L project and SLANG [Patten, 1988]. The rest of this section w i l l present

examples f r o m the N I G E L grammar and P E N M A N generator (GENESYS is of

similar size to N I G E L whilst SLANG is much smaller).

P E N M A N comprises a systemic grammar (NIGEL) , an input specification lan­

guage (SPL) and the general part of a knowledge base [McKeown and Elhadad,

1991]. Although originally a stand alone sentence generator, P E N M A N has more

recently been interfaced to planning systems, mainly those based on variants of

RST [Hovy, 1991] (see section 3.7.3).

The SPL specification to the systemic grammar is an extremely rich input

represented as a set of features. A special interpreter, however, allows the user to

enter specifications in a simpler way by only having to partially specify features.

See figure 3.3 for an example of a SPL specification [McKeown and Elhadad, 1991]

for the sentence 'John gives a blue book to Mary ' .

C h a p t e r 3: R e l a t e d W o r k 46

The values of the slots represent entities in the knowledge base. 'The N I G E L

grammar queries the knowledge base to make decisions through functions called in­

quiries and choosers. The grammar comprises a number of systems representing the

different choices possible for each type of syntactic constituent. The choice made

by one system may form the input for another independent system. A sentence

is produced by traversing the grammar systems starting w i t h the least delicate

choices (e.g. clause type or choice of passive/active voice). In each system a choice

is made by invoking the chooser funct ion associated w i t h the system which in tu rn

invokes one or more inquiry operators. Depending on the results of the choice

and the selected system, other systems w i l l be invoked un t i l very delicate systems

are reached (corresponding to lexical choice). Features can be preselected in the

input which means the path f r o m higher systems to that particular system can be

avoided.

For example, figure 3.4 (f rom [McKeown and Elhadad, 1991]) shows the top

level systems of the N I G E L grammar. This root system w i l l decide the rank of

the expression to generate. To make this decision, the inquiry funct ion of the first

branch wi l l determine whether the input includes a speech act. I f so, the next

system CLAUSE-CLASS w i l l be chosen and entered. The inquiry funct ion of this

system asks whether the speech act has a propositional parameter. I f so, as in

our example, the CLAUSE-ELLIPSIS system w i l l be entered. The CLAUSSETE

system, entered i f the input has no propositional content w i l l produce exclamations

or greetings. The CLAUSE-ELLIPSIS system wi l l determine i f the clause is to be

an answer to a question (in which case ellipsis can be produced) or not (the clause

must be fu l ly expanded).

Meteer [Meteer, 1993] states that the N I G E L grammar has one of the greatest

competences of any linguistic component. She also argues that its grammar directed

approach is very inefficient. She gives the example that when determining the

features of a noun phrase, the system asks 'Is there a colour a t t r ibute ' or 'Is there

a size attribute?' etc. even when there are no such attributes for the head of the

phrase in the demand expression. McKeown and Elhadad [McKeown and Swartout,

1988] in their case study of connective choice, argue that the strict ordering of

C h a p t e r 3: Re la t ed W o r k 47

RANK

CLAUSES

GROUP-PHRASES

WORDS

CLAUSE-CLASS

- C L A U S E - E L L I P S I S

' C L A U S E T T E

MORPHEMES

Figure 3.4: Top level systems of the N I G E L grammar

choices in the N I G E L grammar cannot allow 'low level' choices to effect higher

ones.

3.6.4 M U M B L E

Introduct ion

McDonald [McDonald and Meteer, 1988] developed the final realisation compo­

nent M U M B L E together w i th a specification language which facilitates interfacing

M U M B L E to a wide range of underlying programs and planners. Meteer [Meteer,

1992] mentions five examples of different underlying programs in differing repre­

sentations (including those that use the SPOKESMAN representation, see sec­

t ion 3.8.1).

The three main characteristics of M U M B L E ' s design are [McKeown and Swartout,

1988]:-

• M U M B L E is Description-directed (see section 3.4): MUMBLES ' s input is a

fu l l y specified message called an input realisation specification. Realisation

is carried out by 'executing' the message as i f i t were a program in a special

programming language (i.e by passing i t through an interpreter). Thus the

control rests in the message rather than in the knowledge of the grammar.

• M U M B L E relies on indelible processes. Once a decision has been made it

C h a p t e r 3: Re la ted W o r k 48

cannot be retracted. This is equivalent to Marcus's notion of determinism in

parsing [Marcus, 1980] and means that there is no parallelism or backtracking

in the generator.

e M U M B L E is psychologically motivated. McDonald hopes to model the hu­

man language process. Since decisions are indelible i t models a speaker rather

than a writer of human language. McDonald claims that his program wi l l

only produce errors only i n instances where humans would make them.

As already mentioned in section 3.4, whilst McDonald claims that a description

orientated approach leads to greater efficiency [McDonald et a/., 1987], other re­

searchers believe that i t affects the clarity and maintainabil i ty [McKeown and

Swartout, 1988]. The indel ibi l i ty of the process is also a source of efficiency. A

negative side-effect to this is that there can be no bi-directionality allowing low

level choices to affect higher level ones [McKeown and Elhadad, 1991]. However,

because M U M B L E has been developed and extended over a long period of t ime,

its coverage is extremely good [McKeown and Swartout, 1988].

An example of an input specification representing the noun phrase "53rd Mech­

anised Division" is shown in figure 3.5 (f rom [McDonald and Meteer, 1988]). Mc­

Donald claims that the specification language is easy to learn and has been used by

others researchers not involved in M U M B L E ' s development. However, the example

shows that even for simple noun phrases, a great deal of detail is required in the in­

put specification. To alleviate this problem [McDonald and Meteer, 1988] describe

the use of domain dependent templates which map messages f rom underlying ap­

plications to the M U M B L E input specification. The templates are abstractions of

specifications which stipulate some of the terms in the specification and parame-

terise others.

M U M B L E ' s realisation process

M U M B L E ' s realisation process comprises three subprocesses each of which builds

and refines the surface structure of the text to be generated.

C h a p t e r 3: Re la ted W o r k 49

#<bundle general-rip
: head #<kernel : r e a l i s a t i o n - f u n c t i o n

np-common-noun
: arguments ("d iv i s ion) >

: f u r t h e r - s p e c i f i c a t i o n s
((: s p e c i f i c a t i o n

#<kernel : r e a l i s a t i o n - f u n c t i o n a d j e c t i v e
: arguments ("53rd") >

:attachment-function r e s t r i c t i v e - m o d i f i e r)
(: s p e c i f i c a t i o n

#<kernel : r e a l i s a t i o n - f u n c t i o n a d j e c t i v e
: arguments ("mechanised") >

:attachment-function r e s t r i c t i v e - m o d i f i e r))

:gender neuter
:person t h i r d
:determiner-pol icy no-determiner)>

Figure 3.5: Realisation specification for "53rd Mechanised Division"

o Attachment: assigns plan units to positions w i th in the tree representing

surface structure. A t any t ime in the process, this surface structure has

attachment points to which new structures can be added. In i t ia l ly the only

attachment point is at the node dominating the first sentence but as the

process progresses there may be a choice of attachment point.

• Phase S tructure Execut ion (PSE). As soon as a plan has been attached,

the PSE takes over. PSE performs a depth first traversal of the tree perform­

ing transformations or invoking constraints indicated by tree labels. I f plan

units are found in the tree then realisation is invoked to determine how they

should be realised. I f an attachment point is encountered then Attachment

is called to determine i f new structures should be attached.

• Real isat ion: Realisation selects appropriate words or phrases to 'realise'

plan units. The realiser chooses between different syntactic choices according

to various tests and may only partially realise a particular plan unit before

re-invoking the PSE component.

M U M B L E ' s grammar is based on Tree Adjoining Grammar (T A G , [Joshi, 1987]).

C h a p t e r 3: Re lated W o r k 50

VP

NP
a u x qi

q lO / T T V P

q2 NP
a u x

Adj

D

I N

NP

q4/T

N

13 PP

NP
q7/T V P q6/T V

Pxep

(^q9/r) q9/T PP q8 NP

NP -> (DET) + (ADJ*) + N + (PP*)
PP -> PREP + NP
S ^ NP + (A U X) + V P
S -> A U X + NP + VP
V P -> V + (NP) + (PP*)

Figure 3.6: A n A T N and associated grammar

3.6.5 Augmented Transition Networks

Augmented transition networks (ATNs) , originally used in N L analysis by

Woods [Woods, 1970], have been used in generators which take semantic networks

or graphs as input. The method has been used, for example, by Simmons and

Slocum [Simmons and Slocum, 1972], Goldman [Goldman, 1975] (section 3.12.1),

Shapiro [Shapiro, 1982] (section 3.12.3) and McKeown (section 3.7.2). Figure 3.6

shows a context free grammar and its A T N representation (f rom [Simmons and

Slocum, 1972]). The grammar presented at the bottom of the figure is in the stan­

dard notation where labels on the left can be rewritten wi th the labels on the right,

w i th parentheses indicating optionality and an asterisk representing one or more

occurences. In the A T N representation, the nodes (or states) are circles and the

C h a p t e r 3: Re la ted Work 51

arcs are labelled wi th phrase names of other states (such as 'NP ' , ' V P ' etc.) or

the name of a terminal word class (' d e t ' , V , ' ad j ' etc.). States marked w i t h ' / T '

show possible terminators of the net or subnet. By traversing the graph f r o m node

to node and jumping between subnets when an arc labelled wi th a state is en­

countered, all possible combinations of the grammar can be achieved. For example

for the sentence ' W i l l the l i t t l e red man break a waggon' the order of nodes/arcs

traversed w i l l be :- S, A U X (wi l l) , q2, NP, Det (the), q3, adj (l i t t l e) , q3, adj(red),

q3, N (man), q4/ t , qlO, VP, V (break), q6, NP, Det (a), q3, N (waggon), q4/ t ,

q7 / t , / t t .

A T N networks were originally used to generate random sentences but were then

used for message-directed generation by allowing them to be driven by a semantic

representation of the desired utterance. In this case (see for example [Simmons

and Slocum, 1972]) the arcs are labelled wi th names of relations in the semantic

network and paths through the A T N are guided by the presence of such relations

in the semantic input.

3.6.6 The Use of a Formative Lexicon

Another approach to realisation is to contain formative (i.e grammatical) infor­

mat ion in the lexicon. Hovy, for example, argues [Hovy, 1988b] that instead of

spreading formative rules between the grammar and the lexicon, i t would be better

i f they were in the same place. In Hovy's P A U L I N E system all formative rules

are associated wi th entities in the lexicon: each entry includes rules for how the

particular word or phrase can be combined wi th others. P A U L I N E uses a phrasal

lexicon (based on Becker's lexicon [Becker, 1975]) which comprises 'stock' phrases

as well as individual words (e.g., ' to kick the bucket', 'Davy Jones' Locker'). The

use of such a lexicon is especially suited when t rying to create text in different

styles as stock phrases often have a great deal of stylistic effect.

Other systems not only contain grammatical information in their lexicons but

also contain information which shows how lexical entries are related to each other

semantically. The use of a ' f u l l ' lexicon seems especially common in those sys-

C h a p t e r 3: Re la ted W o r k 52

terns which generate f r o m a semantic network or conceptual graph input (see sec­

tion 3.12). These systems proceed by finding appropriate lexical entries to express

particular semantic concepts (usually verbs) in their input representation (see sec­

tion 3.12). Once such a lexicon entry has been found, its formative rules are used

to combine i t wi th other concepts in the input.

A problem wi th some of the systems which adopt this approach is that of scale.

I f a system is l imi ted to a particular domain and has a l imi ted number of lexical

entries then including formative and semantic information may be possible. When

considering a system in a wider domain where there is a need for many more lexical

items then the work and space required to encode each item may prove unrealistic

and, due to repetition between similar classes of i tem, wasteful.

The problem of 'stock' phrases is a diff icult one: phrases have fixed levels of

r ig idi ty (for example in some cases phrases may seem strange when transformed

to the passive voice e.g., 'The bucket was kicked by John' whereas others maybe

more flexible e.g., 'The excrement hi t the ventilation system') and even phrases

which may not be thought of as r igid always appear so in everyday use (e.g the

unnaturalness of 'butter and bread', 'Juliet and Romeo' etc). As yet there is no

'deep' solution to the problem but, in the meantime, the use of fixed phrases in the

lexicon can provide an effective and cheap solution.

3.6.7 Realisation: Notes on Relevance

Realisation is important in generation as i t produces the output text: any genera­

tion system w i l l need some sort of realiser. However, realisation depends heavily on

input . Systems that take sentence length specifications of what has to be said w i l l

be different f rom those which take semantic network portions. As mentioned above

(section 3.5), although the work described in this thesis uses a separated architec­

ture, i t places different responsibilities on the planning and realisation components.

Perhaps the most relevant work discussed above is the approach based on ATNs

(section 3.6.5) as this has been used by semantic network systems. There may be

C h a p t e r 3: Re la ted W o r k 53

concern that this work was done early on and has been superceded by more recent

approaches. However, this may be because the use of semantic network systems

themselves declined for a period before regaining popularity (see section 3.12).

3.7 Planning

3.7.1 Early work

of text structure [Hovy, 1993]. They adopted such mechanisms as h i l l climbing

(KDS [Mann and Moore, 1981], which described what to do in case of a fire alarm)

or proceeded according to the organisation of the domain semantics (e.g T A L E S P I N

a simple story generator [Meehan, 1977], PROTEUS which provided commentary

for tic-tac-toe games [Davey, 1979], B L A H based on the hierarchical structure of

tax-forms [Weiner, 1980]).

Some of the more modern generators are st i l l domain restricted and often rely

on domain dependent organisations to plan their discourse (e.g., Dale's E P I C U R E

generates recipes [Dale, 1990], Mellish's house building planner [Mellish, 1988],

Zukerman and Pearl's mathematical proof describerfZukerman and Pearl, 1986],

Horacek's financial advisor WE1BER [Horacek, 1990] and office space allocator

O F F I C E - P L A N N E R [Horacek, 1992], Cawsey's electronic circuit explainer E D G E

[Cawsey, 1990]).

There are however two common methods used in a variety of systems for plan­

ning multi-sentence pieces of text: the use of schemas and rhetorical structure

theory (RST) . These approaches wil l be considered in the following sections.

3.7.2 The Schema Approach

McKeown's T E X T system [McKeown, 1985] was one of the first generators

that took multi-sentence discourse structure into account. I t was developed to

C h a p t e r 3: Re la ted W o r k 54

SCHEMA
Constituency
Cause-effect*/Attributive*/

-Tn^ t̂ ̂ — icl o r t t i-~f icat iop /nort-t-Vi—»t tiribu'** i T r £
{ P a r t i c u l a r - i l l u s t r a t i o n / e v i d e n c e }
{Comparison/analogy}}+

{Amplification/Explanation/Attributive/Analogy}

' { } ' indicates opt ional i ty , 1 / ' indicates al ternat ives , '+ ' indicates that the i tem may
appear 1-n times, and '* ' indicates that the i tem may appear 0-n times.
E X A M P L E :

"Steam and electric torpedoes. (1) Modern Torpedoes are of 2 general
types. (2) Steam-propelled models have speeds of 27 to 45 knots and
ranges of 4000 to 25,000 yds.(4,367-27,350 meters). (3) The electric
powered models are similar (4) but do not leave the telltale wake
created by the exhaust of a steam torpedo"

C L A S S I F I C A T I O N OF E X A M P L E :

1. Constituency

2. Depth-identification; (depth-attributive)

3. Comparison

4. Depth-identification; (depth-attributive)

Figure 3.7: The constituency schema

C h a p t e r 3: Re la t ed W o r k 55

provide paragraph-length responses to meta-level questions about the structure of

a database containing information about mil i tary vehicles and weapons.

McKeown's approach was to analyse naturally occurring texts which describe

objects and class each clause as one of a set of possible rhetorical predicates. By

factoring out common patterns she was able to identify four patterns of discourse

strategies which she called schema. Coherent paragraphs are generated by enforcing

the correct nesting and f i l l ing of these schema. A n example of a schema and the

output generated f rom i t by the T E X T system is shown in figure 3.7.

r v i l 1 r . I ' l l • 1 . 1 . 1 . . r y
w LiiCi CXcliiiUiCio Ui b^obciiib VViiiCii piadi U6iiig cL cioiieiiici. Uddcu SL-i'auegy a.iC l \ .u -

kich's A N A [Kukich, 1988] (which summarises stock market moves), Cawsey's

E D G E system [Cawsey, 1990] (a dialogue system used to explain how electrical

circuits work, the plan content was buil t using domain dependent schemas), Ho-

racek's W E I B E R [Horacek, 1990] (a financial consultation dialogue system which

planned utterances such as ASK, ASSERT and R E C O M M E N D using schemas) and

Paris's generation work in the EES project [Paris, 1991] and the T A I L O R system

[Paris, 1993](which selected between different schemas according to a user model).

3.7.3 Rhetorical Structure Theory

Rhetorical structure theory (RST) was ini t ia l ly developed as a descriptive theory

of text organisation [Mann and Thompson, 1987]. RST analysis is buil t up using

instances of schema (not to be confused wi th the schema introduced in the pre­

vious section) which indicate how a particular unit (or span) of text structure is

decomposed into other units. Each schema (see figure 3.8) consists of a NUCLEUS

and zero or more SATELLITES whose function is to support the nucleus in some

way. Satellites are linked to the nucleus by a RELATION which indicates how the

satellite provides support. The schemata, are unordered (satellite and nucleus can

appear in any order in the text) and are recursive. A text span serving as the

satellite of one schema may itself be decomposed into a nucleus and satellite of its

own. By this recursive application of schema, paragraph length pieces of text can

be described.

C h a p t e r 3: Re lated W o r k 56

G E N E R I C R S T S T R U C T U R E

Relation Name

N U C L E U S S A T E L L I T E

Figure 3.8: The RST schema

Each relation also has constraints on the nucleus, constraints on the satellite(s),

constraints on the combination of nucleus and satellite(s) and an effect. Before a

particular relation can be applied to a piece of text, these constraints must be

satisfied.

For example, for the Evidence relation:-

e Constra ints on the Nucleus (the C L A I M) : The reader possibly does

not already believe the claim.

• Constra ints on the Satel l i te (the E V I D E N C E) : The reader either al­

ready believes the satellite or w i l l f ind i t credible.

• Constra ints on the combination of Nucleus and Satell ite: Compre­

hending the evidence w i l l increase the reader's belief in the claim.

• T h e Effect: The reader's belief i n the claim is increased.

Textual markers can suggest the application of a rhetorical relation (or be used

to realise the relations during generation). For example the Antithesis relation can

be marked by 'rather than' , 'instead o f , 'however', 'yet ' . The Evidence relation

by 'because', 'therefore' etc. Some relations however can only be indicated (or

constructed) by syntax (for example the Elaboration relation).

C h a p t e r 3: Re la ted W o r k 57

An early crit icism of the RST approach was that i t was unclear how the origi­

nally descriptive theory could be used to constructively bui ld text. How, for exam­

ple, could a generator control the application of relations wi th such a wide number

of possibilities of optionality and repetition for satellites?-It was also clear that the

relations provided (originally about 25) were not sufficient to encompass all types

of text and that discrepancies occurred when different researchers t r ied to analyse

the same piece of text.

Compar i son between the schema and R S T approaches

Mann and Moore [Mann and Thompson, 1987] claimed that schemas are nothing

more than stereotypically appearing collections of RST relations, or conversely,

RST relations are elemental building blocks of schemas.

Whils t schemas are easier to understand and to implement they do not contain

enough information to dynamically reassemble the basic parts of a text into new

paragraph types. RST relations, however, describe much smaller spans of text

leading to more variation.

A t this early stage of development, the way forward was to either generalise

schemas and build a hierarchy of increasingly general schema types (the approach

taken in C O M E T [McKeown et ai, 1990] for example) or to use RST to ident i fy

the basic building elements f r o m which coherent paragraphs (and also schemas) are

composed and develop a method of assembling them dynamically into paragraphs

on demand (see following sections). In fact, in more modern planning systems a

combination of both methods is being used (see section 3.7.4).

Using R S T to plan discourse content

Using RST in a constructive process during generation is very different f r o m using

it in analysis. When generating a text, none of the information to be included

is necessarily given. Instead an abstract specification of the utterance has to be

provided via a discourse goal and the planner must chose what information to

C h a p t e r 3: Re lated Work 58

include. This section wil l briefly describe some of the work which uses RST based

planning formalisms.

e Hovy [Hovy, 1991] was one of the first researchers to apply the originally

descriptive RST formalism to a constructive text structure planner. The

planner operates after the application program (e.g., expert system) and be­

fore the sentence generator N I G E L 2 (see section 3.6.3). The planner assumes

as input one or more communicative goals and a set of clause-sized predicates.

I t proceeds by recursively applying RST relations to units of the input and

other RST relations in order to bui ld a tree which represents the paragraph

structure (non-terminals are RST operators, the leaves are the input predi­

cates). In addition to constraints, nuclei and satellites contain growth points

(collections of goals that suggest the inclusion of additional input material in

the places they frequently occur in typical paragraphs). When a RST rela­

t ion is found whose effects match one of the communicative goals, the planner

searches for input predicates that match the requirements for the nucleus and

satellite. I f fu l f i l led , the planner considers growth points and continues re­

cursively unt i l either all the input entities have been incorporated into the

tree or no goals can be achieved by the remaining input entities. Once con­

structed the tree is traversed in a depth first left to right manner adding each

RST relation's characteristic cue words or phrases to the input entities and

transmitt ing them to the sentence generator N I G E L .

• Moore, Swartout and Paris's Explainable Expert System (EES, [Paris, 1991]

[Moore and Swartout, 1991]) 3 uses an RST-based text planner to construct

short explanatory dialogues of an expert system. They argue that expert

systems need to explain their decisions as well as just state them but the

problem is that there is often a lack of underlying domain knowledge. Expert

systems have information about problem solving techniques in a particular

2 The sentence generator based on the N I G E L grammar was originally called PENMAN. How­
ever as the project evolved, PENMAN was used for the whole of the project incorporating text
planning and realisation.

3 E E S developed from the XPLAIN system [Swartout, 1983]

C h a p t e r 3: Re la ted W o r k 59

domain but do not have any information regarding why the problem solving

rules can achieve the goals. Workers on EES 'tightened' the constraints so as

to guide the search required to choose information to include in a response.

One of Moore and Swartout [Moore and Swartout, 1991] criticisms of Hovy's

planner is that all the inputs are assumed to be present in advance. They

argue that any process which can identify all and only the information to

be included in a response would have to do much of the structurer's work

anyway. In contrast to Hovy's planner, the EES system does not assume

that all of the topics to be discussed are given to the planner as input . The

planner is given a discourse (or intentional goal, e.g., persuade the hearer

to do an act), the knowledge base of the expert system, the execution trace

of the expert's system's reasoning, the user model and the dialogue history

containing past utterances. The planner must plan an utterance to achieve

the goal, choosing what to say f r o m the knowledge base and organising i t

into a coherent structure.

9 [Scott and de Souza, 1990] argue that the aim of text is to represent a message

and this wi l l only be done i f the reader can derive this message. In order to

do this they claim that the relations described by RST must be as accurate

and unambiguous as possible. Some phrases can be used to l ink more than

one RST relation (e.g., 'and') so Scott and de Souza t ry to use the strongest

markers possible. The authors list other heuristics governing clause expres­

sion using RST operators so that clear text results. They are concerned wi th

Portuguese and English.

e Fawcett and Davis in the C O M M U N A L project [Fawcett and Davies, 1992]

consider the problem of moving f rom monologue to dialogue generation. They

have adapted RST to include an 'exchange mechanism' implemented using

systemic principles. They argue that RST is the best available method of

modelling text structure although they acknowledge its use comprises many

unresolved issues.

C h a p t e r 3: Re la ted W o r k 60

e [Rosner and Stede, 1992] describe T E C H D O C : an RST-based system which

considers the automatic production of technical manuals (more specifically

automobile maintenance instructions). They identify problems wi th describ­

ing texts using 'classical RST' and make their own (re)definitions. Because

their domain leads to highly regular text they have combined RST w i t h a

schematic approach to define high level patterns.

• The I M A G E N E (Instruction MAnua l GENErator) [Vander-Linden et aL,

1992] is another system which has combined two different approaches. I t

has used a systemic network to translate process structures that need to be

communicated into grammatically annotated RST relations. The constructed

rhetorical relations are then passed to N I G E L (section 3.6.3) for realisation.

The exact nature of the process structures that fo rm the input is unclear

but a great deal of work is left to a higher planning module which must pro­

vide this input. I M A G E N E concentrates on the domain of describing the

operation of cordless telephones.

• Other examples of very recent work based on RST are [Granville, 1994], [Delin

et ai, 1994], and [Wanner, 1994].

3.7.4 Combination of Planning Resources

Hybr id planning systems are now being developed which consider more than one

text planning representation and knowledge type. An example is the P E N M A N

system buil t jo in t ly at USC/ISI and GMD-IPSI [Hovy et a/., 1992]. This system

combines different knowledge source networks to build a declarative planner w i th

each resource co-constraining the others. The resources are:-

• Tex t type. Because linguistic phenomena closely reflect the genre of text, the

planner chooses the particular text type to be produced. The text type chosen

wi l l help pre-select or de-activate certain options in the other generation

resources by, for example, constraining the communicative goals it entails,

which discourse relations it favours and any grammatical features. The text

C h a p t e r 3: Re la ted W o r k 61

types are represented in a property-inheritance network ranging f r o m very

general genre (e.g., scientific) to very restricted text types (e.g., financial

newspaper article, yearly public reports).

• Communica t ive goal hierarchy. Another property-inheritance network

contains a taxonomy of communicative goals which describe the discourse

purpose of the speaker. This hierarchy starts f r o m very general goals (IN­

FORM, REQUEST, DESCRIBE, ORDER) right down to specific goals to

describe specific types of information for specific contexts (e.g., describe-

dnrn r.itir-<salp.<i)

e Schema. A lot of text exhibits stereotypical structures to which the schema

approach is well suited. Stereotypical structures can define text at a clausal

level (as in T E X T [McKeown and Swartout, 1988]) but equally well at a

more general level (i.e defining the order of sub-topics). A schema, therefore,

could be in the fo rm of a list of detailed communicative goals. For example

a descriptive financial report could comprise the schema of goals: describe-

total-sales-briefly, describe-total-sales-detail, describe-domestic-sales describe

export-sales.

• Discourse s tructure relations [Maier and Hovy, 1993]. This comprises

three systemic networks of extended RST relations organised according to

the three systemic functions of language (ideational, interpersonal and tex­

tual , see section 3.6.3). These networks constrain the relationships which

hold between segments of text as well as co-constraining the other knowledge

sources by, for example, preselecting theme patterns, posting communicative

goals or specifying aspects of grammatical realisation.

© T h e m e development. The final resource is another systemic network de­

scribing potential theme developments and shifts of focus in order to signal

the introduction of new topics and provide the relationships to previous top­

ics.

C h a p t e r 3: Re la ted W o r k 62

3.7.5 Planning: Notes on Relevance

The role of the planning module is, again, dependent on assumptions about input.

Planners which have to retrieve information f rom static databases w i l l be different

f rom those that simply have to organise a set of clause sized predicates, or more

important ly w i th respect to this work, plan how to produce text f rom a semantic

network.

The planner described in this work has different responsibilities f r o m those

described above. Furthermore, the plan-realiser has to undertake some planning

responsibilities in the absence of planning instructions. In most of the work de­

scribed above, the central concern of a planner is to choose the content of, and

then organise, sentences. The job of the planner in the L O L I T A system, however,

w i l l be to decide or even simply suggest how much information present in the se­

mantic network should be expressed. The planner may or may not impose fur ther

constraints on exactly how this information should be realised (see chapter 5).

Semantic network or graph representations typically have very rich inherent

information. This means that some of the ordering information which can be

imposed by the use of methods such as RST is already explicit in the input . For

example causal or temporal relationships between events w i l l already be known.

3.8 The Generation Gap

Although modulising the planning and realising components may have advantages,

i t leads to the problem at the interface between components caused by the non-

isomorphic nature of semantic and syntactic levels (see section 3.5). Even planning

systems which reduce competence by assuming clause-sized inputs can have dif­

ficulties when moving f rom a semantic text plan to a syntactic realisation. This

section w i l l discuss how this 'generation gap' interfacing problem has been tackled

when the decision to separate components has been taken. An alternative is to

pursue an integrated approach as described in section 3.5.2.

C h a p t e r 3: Re la ted W o r k 63

There are two general approaches to f i l l ing the generation gap depending on

whether the system is pipelined or interlea.ved. A pipelined system must make

sure at each decision stage that its representation must be 'expressible' in surface

language, whilst an interleaved system can relieve this constraint by passing infor­

mation and control between the components or by using a backtracking mechanism.

3.8.1 S P O K E S M A N

MeteerfMeteer, 1993] first coined the phrase 'generation gap' and i t is her work on

SPOKESMAN which has tackled the problem in most detail.

The SPOKESMAN planner and the M U M B L E realiser (section 3.6.4) on which

i t is buil t are psychologically motivated. Because of reasons of efficiency [McDon­

ald et al., 1987] both systems rely on indelible processes so that once a decision is

made, i t cannot be withdrawn and backtracking is not allowed: the architecture

is purely pipelined. Because the SPOKESMAN planner is indelible, an express-

ib i l i ty requirement has to be imposed: at all points in the generation process, the

generator must make sure that the representation of the utterance i t has bui l t is

realisable in the language. Meeter states:-

"In order to plan complex utterances and ensure they are expressible

in language, the text planning process must know:-

1. what realisations are available to an element, that is what linguistic

resources are available,

2. the constraints on the composition of the resources,

3. what has been committed to thus far in the utterance which con­

strains the choice of resource. "

Meteer's work meets these requirements and fills the 'generation gap' by introduc­

ing a new representational level, Text Structure, that both provides the choices

necessary for the text planner to take advantage of the expressiveness of natural

C h a p t e r 3: Re la ted Work 64

language and prevents i t f rom composing an utterance that is not expressible in

the language.

S P O K E S M A N starts wi th an input f rom an underlying application program

and uses i t to build the Text Structure. The Text Structure is a tree which captures

relationships between the subparts (constituents) of the utterances. Each node

represents a constituent and holds information such as what i t expresses, how i t

relates to its parent and discourse information such as what entities have already

been referred to. The input objects drive the building of the text structure using

mappings associated wi th their types. The text structure also constraints its own

construction by determining where additional information may be added. Figure

3.9 (f rom [Meteer, 1993]) shows the Text Structure for the utterance 'Karen likes

watching movies on Sundays'. The following information is shown in the figure:-

• Const i tuency: The nodes in the Text Structure reflect the constituency of

the utterance.

• S t r u c t u r a l relations among constituents: Each node is marked wi th its

relation to parent (top label) and children (bot tom label of parent node).

• Semant ic Category. The central node labels (in bold) show the lexical

head (italics) and the semantic category the constituent expresses.

Once the text structure has been bui l t , i t is traversed, top down and left to right,

to bui ld the linguistic specification (see section 3.6.4) for the M U M B L E realiser.

Recent work using and extending the SPOKESMAN formalism is described in

[Meteer, 1994] and [Panaget, 1994]

3.8.2 The P E N M A N Upper Model

The P E N M A N system uses the systemic grammar NIGEL(see section 3.6.3). N I G E L

is traversed for every 'rank' to be realised f rom high level clauses right down to

low level words and phrases. At the end of the traversal enough features would

C h a p t e r 3: Re la ted W o r k 65

MATRIX

Like ::Stalc
HEAD

ARGUMENT ARGUMENT

Arg-realtion: Agent
Karen ::named

Arg-relation: Patient
activity

COMPOSITE z
MATRIX ADJUNCT

Watch ::activity
HEAD HEAD z X

ARGUMENT
Arg-relation'. Patient

movie • :sample-of-a-kind

ARGUMENT

Sunday ::sample-of-a-kind

Figure 3.9: Text Structure for "Karen likes watching movies on Sundays"

have been collected to be able to look up an appropriate word or syntactic struc­

ture. The P E N M A N system overcomes the generation gap and the assumption

that there wi l l be a suitable word or structure available by uti l ising the Upper

Model [Bateman et a/., 1990]. The Upper Model is a 'concept hierarchy encoding

basic semantic distinctions that manifest themselves on the linguistic surface'. The

Upper Model, which is accessed to make both grammatical and lexical decisions, is

a. semantic ontology that classifies the properties of words in a particular language

(for example a classification of verbs and restrictions on their arguments). Under­

lying applications (or planners) have to assign each object that they want to ' talk

about' to a category in the ontology. As each of these ontological categories have

carefully defined properties relating to how they can be generated, the generation

gap problem is avoided. However, i t is not always clear to which category an enti ty

may belong. For example the domain concept computer may be assigned to the

Upper Model concept of conscious-being or non-conscious-thing depending on

whether computers are to be talked about as active conscious entities or not. Thus

the ontology is designed to be used not to categorise things as to what they are in

the 'real world ' but to how they are talked about. Fawcett also describes a similar

ontology used in GENESYS [Fawcett, 1994].

C h a p t e r 3: Re la ted W o r k 66

REQUEST :<TEMPERATURE>

- 'weather' : MEDIUM
(MAKES-EXPLICIT <WEATHER>)
(INDIRECTLY-SUGGESTS <TEMPERATURE>)

- 'temperature' : VERY-HIGH
(MAKES-EXPLICIT <TEMPERATURE>)

- ' i t ' : VERY-HIGH
(MAKES-EXPLICIT <TEMPERATURE>)
(CONCISE-CONSTRUCTION)

Fio-ure 3.10: Examole of annotated linguistic cations in I G E N

3.8.3 I G E N

Rubinoff 's I G E N generator [Rubinoff, 1992] is an interleaved system in which the

linguistic realisation component provides feedback to the planner. This feedback

is in the fo rm of annotations which give abstract information about the effects of

choosing between various syntactic or lexical items. The planner can use these an­

notations to evaluate different options and indicate which i t prefers. The preferred

options can then be assembled subject to syntactic constraints to produce English

output. Rubinoff says the ranking of possible linguistic choices can be affected

by pragmatic and stylistic features. The annotations given are makes-expl ic i t ,

makes- implic i t and indirectly-suggests. Figure 3.10 shows an example of the

annotated linguistic structures returned to the planner after a request to express

the concept T E M P E R A T U R E . Both 'temperature' and ' i t ' get the highest rat­

ing and the preference wi l l depend on the verbosity parameter. I t is not clear how

the linguistic component chooses possible structures to express a concept but as

i t can return inappropriate items (such as "temperature" for the concept S E P T -

26-1992) the suggestion is that this process is exhaustive and therefore inefficient

and infeasible for large-scale systems.

C h a p t e r 3: Re la ted W o r k 67

3.8.4 W E I B E R

Horacek's W E I B E R system [Horacek, 1990] appears to be a pipelined system. He

describes a 'new' processing level responsible for finding a suitable selection of

predicates at the lexical level (lexemes and grammatical structures) that express

the information content associated wi th predicates in the conceptual level (concepts

and roles). He says that this transition can involve considerable restructuring

because meanings of lexemes and grammatical functions may be related unevenly

to the information content associated w i t h the conceptual predicates. To bridge this

"generation gap' he uses ZOOM Schemata to map elements between representation

levels. ZOOM schemata can be categorised fur ther : MICRO ZOOM schema relate

one-to-one mapping whilst other types (e.g., MIX and MACRO) map items which

are related in more complicated ways. The choice of one out of the possible selection

of valid schemata can lead to the production of variation (see section 3.10).

3.8.5 Crossing the 'Generation Gap' with F U G s

Elhadad and Robin [Elhadad and Robin, 1992] discovered the generation gap prob­

lem when they tried to extend the functional unification grammar to include content

realisation and lexical choice (see section 3.6.2). To overcome the problem they had

to alter the top-down control regime by adding two control tools to the formalism,

bk-class is used for dependency-directed backtracking and external allows a F U G

to cooperate w i t h external constraint sources during unification.

3.8.6 Generation Gap: Notes on Relevance

Due to the differing distribution of responsibility adopted in the solution presented

in this work, the generation gap problem manifests itself differently and in a less

critical way. I f the planner does not provide detailed instructions or even pro­

vides conflicting instructions, the plan-realiser wi l l be able to make decisions more

traditionally assigned to the planner itself.

C h a p t e r 3: Re la ted W o r k 68

These aspects wi l l be detailed in the solution chapters (chapters 5 and 6).

3.9 Lexicalisation

Lexicalisation is the process of selecting words and phrases to represent concepts in

an internal semantic representation. This process of l inking representation to words

would appear to be the most basic requirement of a N L generator but has been the

subject of much recent discussion (for example the panel discussion in [Horacek

j i . irvnol rOj-__l- i n n ^ l r A <T _ T / - _ - T - - - - i T T U I I . i i r t / n l r -r\ i i i ^ a i i
d l l ^ i i - j v y ^ K , XO'O'Uj, i.i/J~x^ j^ivi L i ' v C u *V Li c i i i Q i l / lI ia/ _ici .U. , ± l ^ o * X j , j^ iViCiy O l l c i i L i , ± c / e 7 J . j ,

[Fawcett, 1994], [McDonald and Busa, 1994], [Viegas and Bouillon, 1994]). This

is because many early or domain dependent systems have assumed a one to one

mapping between the concepts in their representation and words or phrases in

their lexicon. Natural language itself has often been used in the design of internal

representations; a concept is defined only i f a word exists in the particular N L used.

In such systems lexicalisation is made t r iv ia l as all concepts are linked directly to

a suitable word or expression. In general however, the relationship between the

'grain size' of concepts may well be more elaborate and an isomorphism between

lexical and conceptual structure cannot be assumed [Novak, 1993].

Although lexicalisation has to be considered in all generation systems the prob­

lem is especially important when generating f r o m semantic networks or graphs. The

following subsections wi l l provide a brief overview of how the problem of differing

word and concept granularity has been tackled by other researchers.

3.9.1 The use of Discrimination Networks

NLP systems in the 1970s were based on representations which comprised a few

highly abstract concepts (for example Conceptual Dependency Theory or C D T

[Schank, 1975]). I t was using these systems that discrimination nthoorks (or d-

nets) were first employed to relate these large 'grain size' concepts to surface words.

Goldman's B A B E L generator [Goldman, 1975] (see section 3.12.1) was the first to

C h a p t e r 3: Re lated Work 69

employ d-nets to generate f rom the semantic primitives of C D T . Each concept was

associated wi th a, d-net which consisted of a decision tree wi th words on the leaves

and path selection procedures attached to the nodes. These selection procedures

repeatedly queried the context of the concept to be expressed unt i l a suitable

lexical entry was found. The classic example given is for the pr imi t ive conceptual

act INGEST representing the activity of some substance entering the bodies of

animate beings. The selection procedures made queries as to the properties of the

substance being ingested and differentiated between verbs such as edit, drink, inhale

etc. Many other later systems adopted the d-net approach albeit in a sometimes

disguised manner [Stede, 1994]. For example :-

• Horacek's L O Q U I [Horacek, 1987] uses 'epistemological primitives ' that are

organised in an inheritance hierarchy. Horacek assumes that in general 'the

nodes of the network are attached to nouns reflecting exactly the semantics

of one node'. When this is not the discrimination network is attached

to the node.

• V I E - G E N [Buchberger and Horacek, 1988] again attaches d-nets to pr imi t ive

concepts arranged in a taxonomic knowledge base in the style of K L - O N E

[Brachman and Schmolze, 1985]. As well as action and object concepts,

relations are enriched wi th d-nets. The inheritance mechanism of K L - O N E

means that d-nets can be inherited f rom superordinate concepts.

• C O M E T [McKeown et aL, 1990] (see section 3.6.2) again uses a (disguised)

d-net approach. Before a semantic content specification is passed to the

unification grammar proper, i t is enriched with lexical information. This is

also based on unification but a provision is made which leaves this formalism

to call LISP procedures for making finer word choices. For example, the

concept C-TURN (turning a knob) can be lexicalised as set or turn depending

on whether the knob has discrete positions.

• Pustejovsky and Nirenburg [Pustejovsky and Nirenburg, 1987] again use a

system which discriminates concepts using d-nets. e.g., STOL, a subtype of

C h a p t e r 3: Re la t ed W o r k 70

furni ture produces items like table, desk, coffee table etc by asking questions

about the location and height of the item in question,

• Hovy's P A U L I N E [Hovy, 1988b] (see section 3.12.1) adopts the same strategy

but makes distinctions on pragmatic as well as semantic grounds.

• DIOGENES [Nirenburg and Nirenburg, 1988] (see section 3.5.2) represents

lexical items using a frame which defines the concept an i tem expresses as

well as restrictions on certain roles of that concept. For example, the word

boy has its concept slot f i l led by 'person' and additional slots which prescribe

:sex', to be : maie ; and 'age : to be between 2 and iS etc. The result is similar

to that produced by a d-net except a d-net w i l l always comes up w i t h an

answer. DIOGENES uses a numerical 'meaning matching metric ' to get the

best match. This 'nearest neighbour classification' restores the robustness.

3.9.2 The use of Taxonomic Knowledge Bases

As systems based on such abstract concepts became less popular, so too did the

discrimination net approach to lexicalisation. McDonald [McDonald, 1991] says :-

"Applications w i t h this style of representation are increasingly i n the

minori ty (having been replaced by designs where the comparable gen­

eralisations are captured in class hierarchies of taxonomic lattices)".

A taxonomic knowledge base (K B) organises objects (corresponding to nouns)

and verbs (actions) in is-a hierarchies where subordinate concepts inherit the prop­

erties of their super-ordinates. Stede claims that "[these hierarchies have been]

established as the de facto standard in knowledge representation [and] the idea of

fu l ly decomposing semantic definitions into minimal entities has been dispensed

wi th . "

However, even when using such knowledge bases, the problem of choosing con­

cept granularity st i l l remains. The interface between the taxonomic K B and its

associated lexicon is not necessarily a straightforward mapping. Approaches to

C h a p t e r 3: Re la ted W o r k 71

this problem have been solved in a variety of ways. The methods adopted by

those researchers who start generation f r o m a semantic or conceptual graph wi l l be

examined in more detail in section 3.12.

3.9.3 Lexicalisation: Notes on Relevance

The problem of the non-isomorphism between concepts and words has recently

been addressed. However, most researchers s t i l l adopt a representation where the

concept grain size is larger than that of words. For example Stede [Stede, 1994]

claims:-

"The task of the word concept l ink is to mediate between the granu­

larities of the K B and the lexicon: the problem is t r iv ia l when they are

identical, but often there are good reasons to make FINER distinctions

in the lexicon than they are required for reasoning purposes in the K B . "

This is in direct contrast to the philosophical approach to representation adopted

in the L O L I T A project. Here the belief is that language is motivated by concepts

and so, in general, all words which manifest themselves in a particular language

w i l l have a unique concept (except in the case of exact synonyms) whereas concepts

w i l l not necessarily have an associated word. Thus the grain size in the L O L I T A

SemNet representation is smaller for concepts than for words (this is discussed in

more detail in section 1.5.3).

This is clearly exemplified when more than one N L is being considered (i.e in

translation systems). There are often cases when a concept in one language can be

associated directly to a word whilst no equivalent word exists in other languages.

This problem has been confronted by Sondheimer et al. [Sondheimer et al., 1989]

(although they restrict themselves to objects and nouns and not actions and verbs).

They investigate several cases of 'unnamed' concept. For example i f an unnamed

concept is distinguished from its superordinate one by an additional role, the lexical

i tem f rom the superordinate concept is used as the head term for the noun group

and restrictive modifiers are added to express the role.

C h a p t e r 3: Re la t ed W o r k 72

This approach is similar to that undertaken in this work which wi l l be discussed

more fu l ly in the solution chapter (chapter 5).

3.10 Creating Variation

Human speakers produce a wide variation of utterance and an aim of N L G is to

be able to mimic this ability. As well as being more natural, this w i l l enable an

utterance to be tailored according to the communication goal, the intended listener,

j „ i 4. - c i . : . - i . . I . •• f ' . i . . :'.. , i • . i .
C L i H - i CL i i v v S u O'x p i t i ^ i i i i i u i i ^ OOiibuictiiiub ^ C g . , Si b U.O. U1 Oil , i Cilill i l CL11 i y , l i l i l lC C U i l S U I (±1111S ,

stylistic constraints). This section w i l l provide a brief overview of the ways variation

can be manifested in N L G generation systems. I t w i l l be concluded that the use

of a rich semantic network type input to the generator is particularly appropriate

for allowing variation. When systems of this type are examined in more detail in

section 3.12, the individual ways in which they tackle the problem of variation w i l l

be examined in more detail.

Variation can be produced throughout the generation process. A list of possible

areas and the relevance to this project is now presented:-

• Planning. The most obvious way to create variation in an utterance is by

changing the way content is selected and ordered. Because the planning prob­

lem is s t i l l a long way f rom being solved there is relatively l i t t l e work which

considers how to produce variation at this stage. What is more, planning in

the traditional sense is not a concern of the work presented here. Aspects of

planning in those systems which are to be detailed in the second part of this

chapter w i l l be described.

• Lexicalisation. The previous section outlined the lexicalisation problem con­

cerning l inking concepts to words or phrases in N L . There are many words

and phrases which have similar meanings but the selection of one rather than

the other can create a wide variety of stylistic effects. As already mentioned,

lexicalisation is a key procedure when generating f rom semantic network rep-

C h a p t e r 3: Re la ted W o r k 73

reservations and methods adopted to create variation at this stage w i l l be

outlined for individual systems in the second part of this chapter.

« Use of World knowledge. Systems which have a rich source of world knowledge

may use this information to create variation. Having information about the

different actors and roles in events, for example, enable such events to be

talked about f rom different angles. The systems to be described in the second

part of this chapter typically contain rich information which can be exploited

in this way.

e Choice ot starting point. This method of variation is particularly appropriate

to semantic network generation. When a piece of semantic network is realised

there is an obvious source of variation according f rom where in the input

representation the utterance starts.

• Choice of grammar. Even when the major i ty of the content of an utterance

has been chosen there are st i l l a variety of ways in which i t can be grammat­

ically realised. Choices, for example, between passive and active, dative and

non-dative sentences or the use of de-lexical verbs can lead to a variety of

utterances. The systems which are particularly good at being able to produce

a variety of grammatical variations are those which are based on linguistic

theories. This is especially the case of the large systemic grammars such as

N I G E L and GENESYS (see section 3.6.3).

3.10.1 Controlling Variation

There is a view that enabling a system to generate sentences in a variety of ways

without a process which is able to control and choose between these variations is

dangerous. I t could be argued that adding such variation capabilities in generation

modules only means that the problem of control in higher level components (e.g.,

high level planning) is made more diff icul t .

There is however the opposing view that, even without proper control, adding

the ability of variation is a good step forward.

C h a p t e r 3: Re la ted W o r k 74

3.11 Other Areas of N L G

3.11.1 Revision

There is some confusion as to the meaning of a revision stage during the genera­

tion process. Some use i t to mean revisions over a f inal piece of surface text while

others use i t when describing revisions over internal representations during in i t ia l

utterance generation. While the latter type of revision (termed optimisations by

Meeter [Meteer, 1993]) is wide spread (especially in interleaved systems) work on

hnai revisions has received less attention. Exceptions are the work by Yazdani

[Yazdani, 1987] who argues that the inclusion of a reviewing stage may s implify

the process of generation as mistakes or irregularities may be resolved later and

ClinefCline, 1994] who includes a final revision stage in his SNePs based generator

(see section 3.12.3). The former type of revision (or optimisation) is particularly

useful when there is a rich semantic input to the generator such as semantic net­

works or graphs. Transformations can be applied to such networks before final

realisation. This type of revision w i l l be considered in this work (chapter 6). Con­

versely, the second type of revision is usually required when the input is not rich.

By the t ime surface language has been achieved, there is l i t t l e information available

which can allow for further revisions. This kind of revision can be useful for those

systems concerned w i t h ordering clause-sized predicates when operations such as

aggregation for sentences wi th the same subject can be performed. Final surface

text revision w i l l not be considered in this project

3.11.2 Connect ionism

A quite different approach to NLG (in particular planning content in NLG) is the

connectionism approach an example of which is described by [Hasida et a/., 1987].

Hasida attempts to generate abstracts f rom an internal network representation

of knowledge by using a cognitive connectionist paradigm where

processing in the human brain is accounted for in terms of signal prop-

C h a p t e r 3: Re la ted Work 75

agation in a network which reflects the topology of neural connections"

Nodes in the network representation are given an explicit degree of importance

and the numbers are ' thrown at' the network so that when a node is activated, all

of its linked nodes are also activated (to a varying degree). When a network has

stabilised then the nodes wi th the top activation values are chosen for inclusion in

the abstract. The method, i t is argued, means that important concepts (nodes),

concepts linked to important concepts and concepts that are mentioned often are

likely to be those chosen.

The connectionist approach wi l l not be considered in this work.

C h a p t e r 3: Re la ted W o r k 76

3.12 Generation from a Semantic Network or Graph

input

The type of input has an important bearing on the design of of a generation system:

systems which take similar input often have similar designs and must perform

similar tasks. This section w i l l discuss generation systems which take similar input

to the L O L I T A generator: rich semantic information represented using a network

or graph (compared to, for example predicate calculus). The different inputs which

w i l l be considered are Conceptual Dependency Theory, Conceptual graphs, SNePs,

M T T and others.

A meta-point worthy of discussion is the gap between early work and more

recent work in this area w i t h a obvious lu l l in between (for example [Simmons and

Slocum, 1972] to [Nicolov et al., 1995]). A suggested reason for this lu l l is that

in the early 70s semantic network based systems were seen as the promising way

forward but, due to inadequacies of other areas (not least hardware capabilities),

only small scale ' toy ' systems were bui l t and progress was slow. The blame for

this rate of progress was put on the semantic network representations and the

approach was more or less abandoned in favour of other approaches (e.g predicate

calculus systems). More recently, people have realised that i t was not necessarily

the representation that was to blame and research on such systems has increased

once more.

3.12.1 Generation from C D T

Introduct ion to C D T

Schank's Conceptual Dependency Theory (CDT) was one of the earliest attempts at

a representation which aimed to capture the content of N L sentences (wi th the view

to perform reasoning activities such as translation or summarisation). In C D T ,

meaning representations are composed of semantic primitives. Actions for example,

are decomposed into a small set of primit ive acts such as INGEST (a substance

C h a p t e r 3: Re la ted W o r k 77

entering the body of an animate being), A T R A N S (movement of a physical object)

and M T R A N S (movement of a non-physical object such as information in speech

acts).

One or two dozen (depending on the version) of these primitives were employed

which although allowed reasoning algorithms to perform well w i th the hardware

available at the t ime, are too restricted for a serious large scale system. In fact,

Schank later moved away f r o m using such a restricted set of primitives and defined

higher level primitives such as PROMISE and T H R E A T E N .

H^wpver ^'"h^nk'^ effort wp»9 nioneeriT^f*" ' t ?s v/oH*-̂ ron^idcr'Tig the attempts

at generation f rom his representation.

B A B E L

Goldman's B A B E L system [Goldman, 1975] produces English sentences and para­

phrases of sentences f rom Schanks' CDT. There are obvious problems w i t h starting

f r o m this representation due to the small number of primitives relations allowed in

the theory. However, this helps the paraphrase problem as there are often many

verbs applicable to a particular pr imi t ive relation.

The first stage in B A B E L is to find the main verb which can be used to express

a port ion of C D T representation. This is achieved using a series of discrimination

networks (see section 3.9.1). These are binary trees whose nodes comprise pred­

icates which determine which child path to follow. A t the leaves of the trees are

pointers to a concexion entry which are used to build a syntactic network of the

utterance. The discrimination network predicates can :-

o test for particular patterns/values in the input. For example, 'is the act in

the RESULT of a conceptualisation ATRANS ?'

• consult the 'memory model' to see what semantic class a concept has. For

example, milk is a f luid.

» consult the memory model to see what concepts have passed before. For

C h a p t e r 3: Re la t ed W o r k 78

example i f 'John gave Mary a book' is in the memory model and now 'Mary

is giving John the same book', then the verb ' re turn ' may be used.

e consult the memory model to f ind the likely outcome to the mental states

of actors of a concept. The choice between 'threaten' and 'promise' may be

made in this way. Note that these queries are answered by a human user and

not inferred automatically by the system.

The concexion is used to build a syntactic network f r o m the conceptualisation by

tracing round the network finding values for various syntactic slots. This requires

a different concexion entry for each word sense. Syntax networks are realised

into surface N L using a A T N similar to that described by Slocum and Simmons

[Simmons and Slocum, 1972] (section 3.6.5).

B A B E L can produce paraphrases by returning more than one concexion for a

particular input conceptualisation. The leaves of the discrimination net, as well

as containing a pointer to a concexion, have pointers to other nodes in the net­

work which can be followed to find more concexions. For example the concexions

'advisel ' , 'suggestl' or ' t e l l l ' might be found leading to paraphrases:-

'John advised Mary to read the book'

'John suggested to Mary she would like to read the book'

'John told Mary she would like to read the book'

P A U L I N E

Hovy's P A U L I N E (Planning And Uttering Language In Natural Environments)

[Hovy, 1988b] is the most sophisticated generator which takes C D T representation

as input. Hovy's aim was to generate various text forms f rom the same semantic

input according to parameters which describe the pragmatic setting. His list of

features fo rm the most complex system of parameters considered and concern con­

versational settings (e.g., t ime, tone, conditions), individual characteristics of the

speaker (e.g., knowledge of topic, opinion of topic) and hearer (emotional state,

C h a p t e r 3: Re la ted W o r k 79

• formali ty (highfahdin, normal, colloquial)

0 s implic i ty (simple, normal, complex)

• t imidi ty (timid, normal, reckless)

• partial i ty (impartial, implicit, explicit)

9 detail (details only, interpretations, both)

• haste (pressured, unplanned, somewhat planned, planned)

0 force (forceful, normal, quiet)

9 floridity (dry, neutral, quiet)

9 colour (facts only, with colour)

9 personal reference (much ,normal, none)

9 open-mindedness (narrow-minded, open-minded)

9 respect (arrogant, respectful, neutral, cajoling)

Figure 3.11: Hovy's rhetorical goals and values

language abi l i ty) , their goals (e.g., affect hearer's opinions or emotional state) and

the relationship between them (e.g., depth of acquaintance, relative social status).

Once these factors have been determined (an assumed input to P A U L I N E) they

are used to constrain the text generated. However, Hovy claims that these factors

are too general to be used directly in the determination of an utterance:-

"Since the interpersonal goals are too far removed f rom the syntactic

concerns of language to provide such rules [to constrain generation],

there must exist a number of intermediate goals expressly de­

signed for this purpose"

These intermediate goals called rhetorical goals and their associated values are

given in figure 3.11. The values are determined on the basis of supplied values

of the conversation parameters. For example the rhetorical goal Formal i ty is set

according to the rule:-

1. set R G : f o r m a l i t y to:-

C h a p t e r 3: Re la ted W o r k 80

« colloquial when the d e p t h of acquaintance is marked friends, or when

the relative social s ta tus is marked equals in an atmosphere (tone)

marked informal.

• normal when the depth of acquaintance is marked acquaintances

• highfalutin when the depth of acquaintance is marked strangers

2. then reset R G : f o r m a l i t y one step toward colloquial i f desired effect on

interpersonal distance is marked close or i f tone is marked informal.

3. or reset R G : f o r m a l i t y one step toward highfalutin i f desired effect on

interpersonal distance is marked distant or i f tone is marked formal.

4. and invert the value of R G r f o r m a l i t y i f the desired effect on hearer's

emotion toward speaker is marked dislike (since inappropriate formal i ty

is often taken as an insult) , or i f the desired effect on hearer's emotional

state is marked angry.

Once set, the rhetorical goals affect future generation decisions in all subsequent

stages of the generation including content del imitat ion, sentence structuring and

final realisation. Continuing the R G : f o r m a l i t y example, P A U L I N E can apply the

following strategies:-

• Topic inclusion : For formal text make long sentences by selecting information

that contains causal, temporal or other relations to other sentence topics.

• Topic organisation: For formal text make complex sentences, select options

that are sub-ordinated in relative clauses, that co-join two or more sentences

or that are juxtaposed into relations and multi-predicate enhancer and mi t -

igator phrases. For more informal text select options without the above

characteristics in order to build short simple sentences.

• Sentence organisation: For formal text make sentences appear 'weighty' by

including many adverbial clauses at the beginnings and ends of sentences

(rather than in the middle), build parallel clauses wi th in sentences, use the

C h a p t e r 3: Re la ted W o r k 81

H I G H F A L U T I N :

"In early A p r i l , a shanty-town - named Winnie Mandela city - was
erected by several students on Beinecke Plaza, so that Yale University
would divest f rom companies doing business in South Afr ica . Later, at
5:30 A M on A p r i l 14, the shanty town was destroyed by officials; also
at that t ime, the police arrested 76 students. Several local politicians
and faculty members expressed crit icism of Yale's action. Finally, Yale
gave the students permission to reassemble the shanty town there and,
concurrently, the university announced that a commission would go
to South Afr ica in July to investigate the system of Apar the id . '

INFORMAL:

" Students put a shanty town, Winnie Mandela City, up on Beinecke
Plaza in early A p r i l . The students wanted Yale university to pul l their
money out of companies doing business in South Afr ica . Officials tore
i t down at 5:30 on A p r i l 14, and police arrested 76 students. Several
local politicians and faculty members criticised the action. Later, Yale
allowed the students to put i t up there again. The university said that
a commission would go to South Afr ica in July to study the system of
Apartheid."

Figure 3.12: Example of a formal and informal text produced by P A U L I N E

C h a p t e r 3: Re la ted Work 82

passive voice, use complex tenses such as the perfect tense, avoid ellipsis even

when i t is grammatical. For more informal text make simple clauses by se­

lecting at most one adverbial clause (placed toward the end of the predicate),

use the active voice, avoid complex tenses and ellipse words and clauses where

this is grammatically allowed.

• Clause organisation: For formal text make weighty formal clauses by includ­

ing adjective and adjectival clauses in noun groups, double nouns in noun

phrases (e.g., 'Government and Emperor', 'statements and expressions'), in­

clude many adverbs and stress words in predicates, use long formal phrases,

pronominalise where possible, do not refer directly to the interlocutors or the

setting. For informal text make simple clauses by selecting at most one adjec­

tive in noun groups, use short, simple phrases, use verbs and adverbs instead

of their nominal forms and refer to interlocutors and the setting directly.

• Word Choice: For formal text select formal phrases and words, avoid doubtful

grammar, popular idioms, slang and contractions (e.g., 'man ' rather than

'guy', 'cannot' rather than 'can't ') . For informal text use informal phrases

and words by selecting simple common words, using popular idioms, slang

and contractions where possible.

Using heuristics such as those described above, Hovy gives examples of texts

w i t h the same informational content but differing styles. Two pieces of text ex­

emplifying the difference between highfalutin and informal text are shown in fig­

ure 3.12. (Note that although the examples are of paragraph length i t appears

that P A U L I N E is not responsible for such a level of planning. I t is probable that

sentence length portions of C D T input are passed to P A U L I N E in turn.)

C r i t i c i s m of P A U L I N E

Although the example shows that PAULINE is capable of producing a range of im­

pressive output there are some doubts as to the depth of heuristics used [McKeown

and Swartout, 1988] [Mykowiecka, 1991b]. For example, McKeown claims :-

Chapter 3: Related Work 83

u Hovy attempts to show the effects of (rhetorical goal) influences on

far too many decisions in the generation process. As a consequence he

is unable to do a thorough analysis of the effect of these parameters

on choice. He provides few satisfactory rationales for how his input

parameters influence generation decisions. As a result, his values for

RGs and his rules for setting them sometimes appear arbitrary"

However, the weakest aspect of PAULINE is the fact that its input is CDT

which is based on a small set of primitives. Hovy did not pursue this work on

PAULINE after his move from Y a l e to TfiT w h e r e hp. w a s r nn rp rn i=r l w i t h hicrher

level planning components (section 3.7.4) for the PENMAN project.

3.12.2 Generation from Conceptual Graphs

Introduction to Conceptual Graphs

Conceptual Structures(CS) (or Graphs,CG) is a modern knowledge representation

developed primarily by Sowa [Sowa, 1984]. The driving motivation in the develop­

ment of CG theory was exactly to represent natural language semantics:

"Logical Form should be tailored to linguistic form in order to avoid

unnecessary complications in the grammar" [Sowa, 1984]

There has been an enormous dispersal of CG research including work on neural

networks, database systems and software development as well as NLP. [Nagle et ai,

1992] represents a recent summary of some of the best of this research. This section,

after giving a brief introduction to CG theory, will concern work on generation

starting from the CG representation.

A CG is a finite, connected, bipartite graph with nodes that are either concepts

or conceptual relations that relate two concepts. Nodes are connected by arcs:

a concept can only have arcs to conceptual relations and conceptual relations can

only have arcs to concepts. Examples of conceptual graphs are given in figures 3.13

and 3.15.

Chapter 3: Related Work 84

D R I N K

B A B Y : {*)

(A T T R)

B L I T H E

A U N T

(P A R T)

B E L L Y : { * }

A T T R

F A T

M I L K

A T T R C O N T

F R E S H

Figure 3.13: Example utterance graph input

B O T T L E : {*}

\

N E W

Although there some similarities between the CG representation and the Sem-

Net representation used in LOLITA, there are also many differences. A detailed

comparison is, however, beyond the scope of this thesis.

Sowa's Generation

Sowa's generation chapter in his book [Sowa, 1984] and related paper [Sowa, 1983]

concerns the mapping of conceptual graphs to natural language. He defines the

sequence of nodes and arcs that must be traversed in mapping a graph to a sentence

as the utterance path. He explains that for complex graphs, the utterance path

may visit a concept more than once and depending on the type of language to be

generated, words should be generated at the first, last or some intermediate visit

to a node. In the case of an in-order language such as English, words have to be

produced at intermediate visits.

Figure 3.13 shows an example conceptual graph from which Sowa generates. By

starting from different nodes in the graph and following different utterance paths

the following sentences could result:-

Chapter 3: Related Work 85

S {type(0)= AGNT) —>
NP (move AGNT-)- • ; mark AGNT-> • traversed;

case := NOMINATIVE;
person := person (referent (O));
number := count (referent (n)))]

VP (move A G N T V • ; voice := ACTIVE;
tense := tense of S; mode := mode of S;
person:= person of NP; number := number of NP).

Figure 3.14: Example APSG grammar rule

B l i t h e b a b i e s w i t h f a t b e l l i e s d r i n k f r e s h m i l k i n new b o t t l e s

F r e s h m i l k i n new b o t t l e s i s drunk by b l i t h e b a b i e s w i t h f a t b e l l i e s

B l i t h e b a b i e s t h a t d r i n k f r e s h m i l k i n new b o t t l e s have f a t b e l l i e s

D r i n k i n g f r e s h m i l k i n new b o t t l e s i s done by b l i t h e b a b i e s w i t h f a t

b e l l i e s

e t c . . .

However, not all word orders are possible. The utterance path can visit each

node a number of times and a concept can only be uttered at one of those visits. To

constrain the utterance path, Sowa presents six universal grammar rules which are

claimed to be language independent. To further constrain the utterance path to

allow for correct positioning of sentence constituents, these rules are supplemented

by language dependent rules. These rules decide which arc to follow when there

is a choice and also insert function words and inflections. These grammar rules

are encoded in an Augmented Phrase Structure Grammar (APSG). APSG is an

extension of a context-free grammar augmented with conditions to be tested (the

left hand side of the rule) and actions to be performed (right hand side). The rules

are applied in a top-down goal directed manner. Figure 3.14 shows an example

portion of this grammar which breaks a sentence (S) into a noun phrase (NP) and

a verb phrase (VP). In the notation, • refers to the current concept node of the

conceptual graph and O refers to the current conceptual relation.

There are three shortcomings to the generation approach described by Sowa.

Firstly, it is assumed that there is a one to one correspondence between concepts

Chapter 3: Related Work 86

in the conceptual graph and words. When the grammar rules decide that a node

should be realised at a particular visit, the name of that node is used (with the

necessary morphological variation). As discussed in section 3.9 this is a very strong

assumption to make.

Secondly, the 'blithe babies' example, although leading to a long sentence, is

produced from conceptual input which is a simple (at most binary) tree. In reality,

for more complex sentences, the graph will be cyclic and the control of the utterance

path will be more complicated. Sowa [Sowa, 1984] does say (page 234) that " i f the

graph has cycles, a concept that is reachable by two or more different paths will

only be uttered once with all of its qualifiers. If syntactic rules would also express

the concept at a visit reached by a different path, they must instead generate an

anaphoric expression". Sowa does not however expand on this point.

Finally, Sowa's examples assume that a portion of the conceptual graph can

be realised in one sentence. The realisation process has to try to cover all the

input by finding an utterance path that visits every node. Again Sowa recognises

the problem without giving a detailed solution: ' I f a graph is complicated, rules

of inference may break it into multiple simpler graphs before expressing it in a

sentence'.

Nogier and Zock's work

Nogier and Zock [Nogier and Zock, 1992] describe a method of generation from

conceptual graphs which is used in the information retrieval system Kalipsos.

The input to their generator is a CG called the utterance graph which is realised

by incremental matching with lexical entries that are also represented using CGs

(word definition, graphs).

Words in the lexicon have three kinds of information: a word definition graph

representing their meaning, a base form (lexeme) and their possible syntactic struc­

ture. Examples of lexical entries for the verbs 'to move', 'to run' and 'to drive' are

given in figure 3.16. The generation procedure is as follows (using the utterance

Chapter 3: Related Work 87

(A C T) > FAST X SPEED B0Y:$5< A G T X MOVEMENT

/ \ v
(m) (S) ® (D E S T PART OF SEE

\ / \
Figure 3.15: Example utterance graph input

V E R B (' t o move' ,VB_PRO) is

P E R S 0 N : * A S U B MOVEMENT: * AvERB

VERB(*to d r i v e ' , V B _ T R A N S) is

PERSON: *ASUB AGT MOVEMENT: * AyERB

VEHICLE: * A O T T >

V E R B (' t o r u n ' , V B _ I N T R A N S) is

PERSON:*AsUB MOVEMENT: * AyERB

INST

LEG:SET(*) G R O U N D

FAST

Figure 3.16: Example lexicon entries

Chapter 3: Related Work 88

graph shown in figure 3.15 as an examples-

Step 1: Preselection

Combinational explosion (due to the fact that the same conceptual input can be

expressed in many ways) is avoided by making a rough choice for the most central

concept of the conceptualisation. In this case the task is to find a word which

conveys the central idea of MOVEMENT. As this type of concept typically maps

onto a verb the task is now to find a verb which expresses movement. Thus lexical

items that contain the concept [MOVEMENT: AVERB 4] are selected, namely 'to

Step 2: Choice of candidates by pattern matching

In order to eliminate all but one of the candidate lexical entries a pattern

matching operation is carried out. The conceptual word definitions graphs are

projected onto the utterance graph and the system chooses those definitions which

are subgraphs of the input. In this example the entries for 'to walk', 'to move' and

'to run' will be successful and all others will fail (to drive will fail, for example,

because the relation OBJ cannot be unified with LEG and INSTR).

Step 3: Selection of best candidate

Since there may be more than one lexical entry that passes the projection filter,

the next stage is to chose the lexical item that best fits the utterance graph. A

correlation factor is calculated for each candidate word definition which is a measure

of the word's appropriateness or accuracy in expressing the input. The entry with

the highest correlation factor is chosen as the root lexical node. In this case 'to

run' is chosen as 'to walk' does not convey a speed and 'to move' does not convey

information about the instrument(legs) or location(ground).

Step 4: Replacement of the conceptual structure with syntactic struc­

ture

Since the selected lexical item contains information about the syntactic struc-

1 AVERB means the concept, is to be expressed as a verb

Chapter 3: Related Work 89

ture which can carry it , the conceptual graph can now be partially substituted

with syntactic information. In this case the verb 'to run' is expressed as a,n in­

transitive verb which associates the AGT(agent) of the conceptual action to the

SUB(subject) of the verb. At this stage the representation is hybrid as it contains

both conceptual and syntactic information. The lexical selection process will have

to be repeated for the remaining concepts in the utterance graph. In this example

the syntactic graph can be realised as the sentence 'the small boy ran to a house'.

Nogier and Zock argue that their method allows for a very natural way for

creating paraphrases. By selecting words with varying values of correlation fac­

tor, different paraphrases will result. Because different words are associated with

different syntactic structures these paraphrases will also differ in this respect.

Rather than trying to find a single path that visits all of the nodes of the

input (as Sowa), the approach tries to match pieces of the input to lexical items

incrementally (an analogy used is that of completing a jigsaw). This approach

is called incremental consumption. However the utterance path and incremental

consumption approaches are similar with respect to their goal of having to cover

all of the semantic input.

Criticism of this approach

Although the authors describe a very 'neat' solution to the problem of lexical

choice and generation there are a number of weak points. Although a system has

been implemented which can generate sentences in real time, they only consider

a lexicon of about 100 graphs. When this lexicon is expanded to a realistic size

(which in itself will be a big task since each lexical entry has to be very rich) the

search for entries which match onto input structures will become very inefficient.

This problem is compounded as words which can belong to more than one syntactic

category will have to have multiple lexical entries (for example if a verb allows both

for active and for passive voice, then the lexicon must contain a graph for each of

these forms).

The examples given in the paper start from a conceptual input that can be

expressed as a simple sentence. What is more, the generation mechanism is verb

Chapter 3: Related Work 90

driven. This places a high level of responsibility on any high level planner which

must be incorporated if more complicated sentences or multi-sentence utterances

are to be produced.

Finally, the approach aims to cover all the semantic input. In the LOLITA

generator (see chapter 5), the realiser takes the whole SemNet representation as

input and such a complete coverage approach is therefore impossible.

Other C G generation work

Work at IBM, Rome, [Velardi et ai, 1988] concerns an Italian NL system used to

analyse a database of press-agency releases on finances and economics. The system

uses a conceptual graph representation from which short sentence length replies to

queries are generated (e.g., 'a plan is the theme of an assembly of the delegates').

Concepts in the CG are related to syntactic structures using a table of relations

between them. The system can produce passive or active sentences (controlled by

the user) but the generation examples are simple and the grammar is small.

Dogru and Slagle [Dogru and Slagle, 1992] describe another system that gener­

ates English expressions for conceptual graphs. They say that this tool is useful as

complex graphs can look ambiguous and English translations can be used to verify

that they are correct. The authors claim that 'the implemented system can take

arbitrarily complex graphs as input and produce a corresponding English transla­

tion'. However they do not give examples of complex graph translations as 'space

limitations do not permit more complex graphs that show how various aspects

combined can result in high quality translations'. What is more the English trans­

lations they do give seem rather unnatural as they are a very literal translation

of the graphs (examples:- 'Persons John and Jane live in the city Minneapolis',

'There exists at least 2 persons among John, Jane and Ji l l ' , 'At least 100 students

from the group cultural-diversity'). This system may well be useful for interpreting

and checking CGs for development or reasoning purposes but its performance as a

generator seems limited.

Chapter 3: Related Work 91

Rijn [van Rijn. 1992] describes a system which generates from a special kind

of CG called a conceptual dependency graph (not to be confused with Schank's

conceptual dependency). These graphs contain low-level primitives for which there

is not necessarily a direct link to a word in the output NL. Again, only simple input

graphs are assumed.

Harrius [Harrius, 1992] describes work (which seems in an early stage of de­

velopment) to interface an RST based planner (see section 3.7.3) with the CG

representation.

3.12.3 Generation from SNePS

Introduction to SNePS representation

The SNePs (Semantic Network Processing System) [Shapiro, 1979] [Shapiro and

the SNePS Implementation Group, 1993] project has a long history beginning in the

early 70's. The project, which aims to develop a computational cognitive agent,

is based on a semantic network knowledge representation and reasoning system

that "allows one to design, implement, and use specific knowledge-representation

constructs and that easily supports nested beliefs meta-knowledge, and meta rea­

soning". Although the project has a long history and there is an abundance of

published work, there is a surprising lack of information specifically concerned

with NLG. This section will examine two exceptions: NLG work by the leader of

the project, Shapiro, and work by Cline.

Shapiro's generation

Shapiro [Shapiro, 1982] describes a generalisation of the ATN formalism (see sec­

tion 3.6.5) that supplies consistent semantics for both parsing and generating gram­

mars. This allows an ATN grammar to be constructed so that the 'parse' of a NL

question is the NL statement that answers i t . The goal of the generation part of

this process is, given a node, to express the concept represented by that node as a

Chapter 3: Related Work 92

user : Young Lucy saw a saw
SNePS: I understand that young Lucy saw a saw.
user : who saw a saw
SNePS: Young Lucy saw a saw
user : Lucy is sweet
SNePS: I understand that young Lucy is sweet
user : what was seen by Lucy
SNePS: A saw was seen by sweet young Lucy

Figure 3.17: Example SNePS interaction

NL surface string.

Figure 3.17 shows an example interaction using SNePSUL-the SNePS User Lan­

guage and figure 3.18 shows the SNePS semantic network that is built as a result

of this interaction.

K A L O S

Cline's KALOS system [Cline, 1994], based on SNePS, generates descriptions of

the M68000 processor. The system first generates very simple sentences and then

a revision component looks at the surface output together with the representations

that led to this output and passes revision suggestions back to both the deep

generator (for conceptual revisions) and the surface realiser (for stylistic revisions).

Cline argues for a uniform knowledge base. His system illustrates the flexibility of

the SNePS representation as it is used for:-

• Domain Knowledge : a detailed taxonomy of relations in the domain of micro­

processor operation. This knowledge largely comprises taxonomic links such

as 'sub-classes' and 'part-of links although it also contains some knowledge

about the operation of instructions.

• Deep Generation : Kalos uses a simple schema approach (see section 3.7.2)

but represents the schema (description, identification, constituency) rules for

filling the slots and instantiated schema using SNePS.

Chapter 3: Related Work 93

NOW

B E F O R E B E F O R E

B l M15 M7 M8

W H I C H M5

ADJ

ADJ M12 M O M3
O B J E C T A G E

L A S S N A M E N M B E R
V E <B

vi'Z iviy M l 1 M4 M6 M i

M l
L E X L E X L E X L E X L E X

L E X

LUCY

Figure 3.18: SNePS semantic network built by the example interaction

• Surface Generation: The system uses a unification based approach (see sec­

tion 3.6.2) with the grammar rules being represented in SNePS.

• Conceptual Revisor: Knowledge encoded in SNePS is used to look for concep­

tual defects in the output and pass back suggestions to the deep generator (i.e

the schema). Example conceptual revisions are removal of redundant infor­

mation, application of domain preferred words and phrases, proper ordering

of attributes and handling of inordinately long lists.

• Stylistic Revisor: Knowledge encoded in SNePS is used to look for stylistic

defects in the output and pass back suggestions to the surface generator (i.e

the grammar). Example stylistic revisions are to suggest the use of anaphora,

compound phrases and sentences, use preferred words and phrases, suggest

thematic progression and other cohesive constructions.

The initial output from the surface generator is very simple and comprises a long

list of short sentences which just seem to describe the taxonomy of the domain

Chapter 3: Related Work 94

the M 6 8 0 0 0 i s a microprocessor
the M 6 8 0 0 0 supports memory-mapped I/O
the M 6 8 0 0 0 address bus i s an address bus

the M 6 8 0 0 0 address r eg i s t e r s can be d iv ided
i n t o pure address r eg i s t e r s

the M 6 8 0 0 0 address r eg i s t e r s can be d iv ided
i n to special address r eg i s t e r s

etc (about 6 0 sentences)

the 16-bit M68000 microprocessor has an address space size of 16
megabytes and supports memory mapped I /O. It has 9 32 bit address
registers and 8 32 bit data registers ... etc

Figure 3.19: Example output from Kalos before and after revision

(mainly 'is-a' links). After revision the text is much better but is still very simple

(see figure 3.20).

The strengths of Cline's work are the use of the SNePS representation and the

theory and implementation of a revision stage. However, as noted in section 3.9,

'after realisation' revision is usually best suited to those systems that organise

clause sized chunks and this is clearly the case in the Kalos system. The domain

and application of the Kalos system is very restricted.

3.12.4 Generation from M T M

Introduction to M T M

Mel'cuk's Meaning Text Theory (MTT) [Mel'cuk and Polguere, 1970] is a well-

founded linguistic theory which has been used in generation.

A Meaning Text Model (MTM) describes the bidirectional mapping between

linguistic meanings and texts which carry those meanings. Seven levels of descrip­

tions are used [Iordanskaja et a/., 1991]:

L. semantic representations (SemR)

Chapter 3: Related Work 95

2. deep syntactic representations (DSyntR)

3. surface syntactic representations (SSyntR)

4. deep morphological representations (DMorphR)

5. surface morphological representations (SMorphR)

6. deep phonetic representations (DPhonR)

7. surface phonetic representations (SPhonR)

However, the M T M is meant to model a variety of languages as well as phonetic

levels. For generating languages such as English, the 'interesting' representation

levels are the first three [Iordanskaja et ai, 1991].

In the M T M , the generation process starts from a semantic network represen­

tation (see figure 3.20 for an example). Unlike other approaches which start from

such a representation, nodes and arc labels in a M T M semantic network correspond

directly to lexemes.

Realisation in M T M proceeds by performing a series of transformations that

restructure the network and allow for the production of various paraphrases.

The M T M lexicon

The rich lexical information in a M T M is presented in an 'Explanatory Combi­

natorial Dictionary' (ECD) which aims to cover all possible linguistic knowledge

governing the use of words in texts. Lexical information is split into three 'zones':-

• The Semantic Zone: specifies a semantic network which defines the mean­

ing of the lexical entry in terms of the next simpler word meaning elements

(semantemes).

« The Syntactic Zone: specifies the entry's syntactic class, syntactic features

(to identify special constructions containing the lexeme) and government pat­

terns which show how the semantic cases of the entry are represented in the

two syntactic levels (DSyntR and SSyntR).

Chapter 3: Related Work 96

e The Lexical Combinatorics Zone: specifies related lexemes as the values

of lexical functions. These functions can compute such things as synonyms,

super-ordinate terms and converse terms.

The following section will describe how the information encoded in each lexical

entry is used to generate NL and produce paraphrases.

G O S S I P

scribed by [Iordanskaja e£ a/., 1991] is based on the MT model. I t is a sentence

length generator which takes as input sentence length portions of semantic network

together with a communicative structure which marks the theme and rheme of the

sentence to be produced. Generation comprises four transformation stages each of

which can be a source of variation:-

o semantic network reductions,

• choice of root lexical node for the deep syntactic dependency tree,

• deep syntactic paraphrasing using lexical functions,

9 alternative renderings of deep syntactic structure as surface syntactic struc­

tures.

These variation sources will be considered in turn:-

Incremental semantic network reductions

The semantic network input represents the literal meaning of sentences. Be­

cause the semantic elements on the nodes of the network are usually simple lexemes

of English, these networks could be 'verbalised' directly. However, this direct ver­

balisation would lead to long and clumsy sentences which would not normally be

acceptable (sentence 1 is the verbalisation of the network shown in figure 3.20).

Chapter 3: Related Work 97

now *

'before'*
'7:32:12'

'system' <>

'def

n.
o

'compile'

program

th?me

type

program program

'> ! '

• 'ref

rhime
'edit'

Figure 3.20: M T M SemR for sentence 1

(1) The referred-to user(s) of the system used (before now) during the

referred-to period of 7 hours, 32 minutes and 12 seconds, more than

one program of a type such that someone compiles something with

these programs and someone edits something with these programs.

Instead, the semantic network can be incrementally reduced leading to shorter

verbalisations. Subnetworks which are the meaning definitions of semantically more

complex terms, can be replaced by the single node representing this term. In each

case the denning semantic subnetwork is found for each lexeme in the semantic

zone of the ECD lexicon (see above).

For example, the semantic subnetwork which leads to the verbalisation 'pro­

grams such that someone compiles something with these programs1 in sentence

(1) can be replaced by the node 'compilers'. Similarly the node 'editors' can be

substituted. With a further substitution involving the lexeme type, the resulting

semantic network would be verbalised as sentence (2).

Chapter 3: Related Work 98

(2) The aforementioned users of the system used compilers and editors

during .,

This reduction process will eventually terminate but each reduction stage will

lead to a different paraphrase when the network is verbalised. The authors note that

sometimes it would be more appropriate to use longer paraphrases (i.e networks

with fewer reductions) in order to meet certain stylistic constraints.

As well as variations caused by the amount of reduction, another source of

paraphrase arises when there is more than one way of reducing a network. The

authors say that this can lead to paraphrastic variant sentences with quite different.

lexicalisations. For example when a verb can incorporate some but not all of its

manner modifier there may be two alternative reductions, each leaving part of the

manner modification to another structure. An example of this is given in sentences

3a and b below.

(3a) Fred limped across the road quickly.

(3b) Fred hurried across the road with a limp.

Root lexical node choice

The second stage of the M T M generation process, and another source of para­

phrase, is during the transition form the semantic representation (SemR) to the

deep syntactic representation (DSyntR). This step involves choosing between dif­

ferent entry nodes of the semantic network which will determine the root verbal

lexeme of the DSyntR. A semantic node can be an entry node [Iordanskaja et ai,

1991] if it is a predicate node and either

(i) is the dominant node of the theme or rheme,

(ii) directly governs the dominant node of the theme or

(iii) connects the dominant nodes of the theme and rheme.

In figure 3.17 the entry node could be the predicate 'use' which fulfils condition

(ii) , in which case the DSyntR would have the root lexeme 'use' and result in a

C h a p t e r 3: Re la ted W o r k 99

sentence such as 4a. However, a second possibility for an entry node would be

' type' which connects the dominant nodes of the theme and the rheme (condition

i i i) and could lead to sentence 4b (because the chosen predicate is non-verbal, the

copula verb 'be' is the root).

(4a) System users ran compilers and editors during this t ime.

(4b) The types of programs that users ran during this t ime were com­

pilers and editors.

The communicative structure (i.e the theme and rheme regions) marked on the

semantic input can impose constraints on the entry node chosen. I f , for example,

there are two competing lexemes which could be chosen (for example send/receive)

then the preferred lexicalisation would be the one whose first actant is in the theme

region of the network.

The collection of sentences below (5abc) gives another example of variation

created by choosing differing entry nodes. A l l three sentences are good paraphrases

of each other however, while 5a and 5b have the same theme/rheme structure, this

is inverted in 5c.

5(a) The user who ran editors is called Mar t in .

5(b) The name of the user who ran editors is Mar t in .

5(c) Mar t in is the name of the user who ran editors.

Deep structure paraphrasing

The ECD lexicon relates semantically related lexical items using a set of lexical

functions (LFs) 5 . These functional expressions can be used to represent structural

correspondences such as those between 6a,6b and 7a,7b below.

(6a) Mar t in used Emacs a lot.

(6b) Mar t in made heavy use of Emacs.

5Boyer and LaPalme [Boyer and Lapalme, 1985] also describe transformations using lexical
functions.

C h a p t e r 3: Re la t ed W o r k 100

(7a) Mar t in edited a large text file,

(7a) Mar t in did some editing of large text file.

I n both example 6 and 7, the simple verb f o r m is paraphrasable by a complex

de-lexical verb phrase. Both illustrate the use of the lexical function Operl below:-

X V E R B = = > O p e R I (X) - - / / - - > S 0 (X)

TV.!. . «M,1«. o U t ~ . f-U~t- - ,r~-~U A~ : « T \ C . . „ f T ? _ a _ T - _ _ - _ ,] - - - -1 1...- f«r.-. . . . 1-.

dependency tree specified in the right side of the rule. The second syntactic ar­

gument of the new verb is the action nominal (So) of the old verb (X) . The par­

ticular lexical values of the items Operi(X) and SQ(X) are contained in the ECD

of the language. In example 6, Oper-i(use) = make, So(use) = use and in 7,

Operi(edit) = do, So(edit) = editing.

The transition f rom 6a to 6b also requires a change in the degree adverbial using

another lexical function Magn. In the DSyntR representation of 6a the i tem 'a lot '

is not explicit but labelled by the node 'Magn' attached to the verb node 'use' (the

X verb). When the Operl function is applied, all the dependents of the X node

are carried over as dependents of the node So(X). Af ter the transition, therefore,

the lexical function Magn w i l l apply to the new verb 'make' and correspond to the

value 'heavy'.

Surface realisation

The final source of paraphrase in the M T model is during surface syntactic

realisation. Variations can be achieved by using a different grammatical ordering

or, i f applicable, by choosing between two or more possible values of the lexical

functions described in the previous section.

C h a p t e r 3: Re la ted W o r k 101

M T M : S u m m a r y

The direct use of lexemes for nodes and arcs in the semantic input means that the

granularity of concepts is the same as the granularity of words. The M T M takes

the most basic words of the language as the set of primitives. The theory is thus

language driven and assumes that these basic words are sufficient to define other

words (see section 3.9).

Although some of the associations provided by lexical functions are useful to

handle surface relationships between words (e.g., by providing exact synonyms,

or giving an appropriate de-lexical construct) they seem to take this notion to an

extreme by defining semantic relationships in the same way. For example taxonomic

relations such as part-of&re represented as in the same way as is information such

as the actors and sub-events of verb entries (actor(to shoot) = gunman, marksman.

Prepare(to shoot)= [to] charge (the gun)).

Another l imi ta t ion to the approach is the assumption that the generator receives

sentence sized portions of semantic representation as input . This puts more work

on the planning component and is similar to the restriction to clause size predicates

imposed by other systems.

The solution presented in this work (see chapter 5) depends on the plan-realiser

taking the whole semantic network as input. The approach therefore of incremen­

tally s implifying the network unt i l a suitable utterance results, would be highly

inefficient in this case.

3.12.5 Other Similar Work

K I N G

Jacobs' K I N G (Knowledge Intensive Natural language Generator)[Jacobs, 1987]

is a sentence level, unification based generator which was developed f rom Jacobs'

PHRED (a Unix consultancy system) [Jacobs, 1985].

C h a p t e r 3: Re la ted W o r k 102

Jacobs advocates a knowledge intensive approach which:-

'addresses the language generation task f rom wi th in the broader con­

text of the representation and application of conceptual and linguistic

knowledge'

Jacobs makes the point that many other generation systems operate wi th a

great deal of linguistic knowledge specific to the generation problem. They serve

to illustrate the importance of the need for specialised constructs and the abil i ty

systems tend to use knowledge which is too specialised leading to the coding of

redundant knowledge so that the specification of linguistic choice is more conve­

nient. Certain knowledge about the world and knowledge about language is treated

instead as knowledge about generation. He claims:-

"the problem is not only the lack of a parsimonious representation;

more importantly, the representations fa i l to support the interaction

of general and specialised knowledge required for a broadly applicable

system

This diff icul ty proves to be a major handicap in building versatile gen­

eration systems; A key element is to facilitate the exploitation of gen­

eralisations while st i l l providing for specialised uses.'

Jacobs, therefore, builds a lot of information into his representation so that

these generalisations can be exploited. The representation based on A C E [Jacobs

and Rau, 1985], defines events in a hierarchy wi th each event inheriting properties

for those above and the roles of the events defined f rom a number of 'views'. Jacobs

provides the example for the commercial transfer event. In this example :-

"(figure 3.21) illustrates that the commercial-transaction is a complex

event that consists of a transfer of merchandise and a transfer of ten­

der. The merchant receives the tender f rom the customer, and the

C h a p t e r 3: Re la ted W o r k 103

E V E N T z D

S I M P L E - E V E N T

z
C O M P L E X - E V E N T

T R A N S F E R - E V E N T O B J E C T articpiant

particpiant S O U R C E

S U B - E V E N T

commercial-trans R E C I P I E N T D

)an rt
D s-e

/ C U S T O M E R
rce recipient

/
Knurri ct-tender-transfer ct-merch-transfer M E R C H A N T rmpirnt

b i e c t \ object object

M E R C H A N D I S E

object

T E N D E R object

PARTICIPANT

Figure 3.21: KING's commercial transfer event

customer receives the merchandise f r o m the merchant. Concepts, such

as merchant, customer, merchandise and tender are aspectuals of the

commercial transaction; that is they are specific concepts whose mean­

ing is un-detachable f rom the commercial-transaction event."

The rich representation forms an important core of knowledge about commercial

transactions. For example, the knowledge that merchandise and tender play object

roles is linked to knowledge about transitive verb forms so that phrases such as

'bought a book' and 'paid five dollars' conform to a general rule.

Moreover, Jacobs' system allows events to be 'VIEWed ' in terms of other events

using structural associations. For example, commercial transaction events would

normally be realised using the verbs 'buy' and 'sell' but because of the hierarchical

arrangement, and the use of V I E W S , these events can be related to 'giving ' and

' taking ' concepts and thus the verbs 'give' and 'take'. V I E W S are used to represent

knowledge about concepts that may be used in expressing other concepts, (e.g. a

transfer action may be VIEWed as a giving action or a taking action). Jacobs claims

C h a p t e r 3: Re la ted W o r k 104

that V I E W S and structural associations can also be used to create metaphorical

expressions such as 'give permission' and 'give a hug' (i t is disputable as whether

these de-lexical verb phrases are metaphorical).

Unfortunately Jacobs does not give many more examples of the variations pro­

duced by the K I N G generator. He claims that the system can produce 200 struc­

tured associations on the representation but this comprises a total of only 150

concepts.

Jacobs concedes that the abili ty to apply structured associations leads to the

the context of the utterance (beliefs, intentions, situational knowledge and discourse

knowledge) but can lead to good results using simple heuristics. The heuristics he

uses include expression by super-category rather than by expressing a concept by

describing a component, favouring a metaphorically related concept rather than one

that is too specific or too general and those associations which produce linguistic

structures directly.

Grammatical information is held in the same A C E representation (for example,

a verb phrase hierarchy) and conceptual information is associated wi th the gram­

matical information using referential links. Thus, for example, verb phrases can

be linked to conceptual role (for example, the recipient of a transfer event can be

linked to the indirect object of a verb).

The work presented in this thesis also takes the view that a representation

for generation needs to be knowledge intensive. Other systems have bui l t this

knowledge directly into the generator which reflects their building of a generator

independently f rom a complete natural language processor. In a complete system

(such as L O L I T A) this type of knowledge has to be encoded for other components

as well as the generator and should be generalised as much as possible. The small

number of concepts in Jacobs' system mean that although intensive, the knowledge

can only be extremely l imi ted and only applicable for generation in a restricted

domain.

C h a p t e r 3: Re la ted W o r k 105

Horacek's work

Horacek [Horacek, 1990] [Horacek, 1992] [Horacek, 1994] describes two systems,

W E I B E R and O F F I C E - P L A N which also take comparable semantic network input.

W E I B E R is a German N L consultation system. I t covers 'the whole spectrum

of NL processing tasks including analysis, response determination and generation'

[Horacek, 1990] in the l imited application domain of financial investment. OFFICE-

P L A N is an expert system which provides an explanation to its problem solution.

The system solves room assignment problems in offices, represented as a constraint-

satisfaction problem. OFFICE-PLAN's generation module is called D I A M O N D .

Like the work described in section 3.12.4 by Iordanskaja et ai, Horacek adopts

an approach where intermediate representations are simplified in the generation

process. However, as well as describing a simplification process at the lexicalisation

level (see 'Terminological transformations' section below) he describes a similar

process at the planning stage.

Integrated P lanning

Horacek's transformations at the planning stage involve simplification of the

content allowed by inference rules. His ' integrated' 6 view of text planning takes

into account conversational implicature. The generation process starts w i t h an

argumentative structure which conveys the original and internal content of a sys­

tem's communicative intentions. This representation is then augmented by adding

(possibly redundant) supporting arguments to provide a source of variabil i ty in

presenting the conceptual specifications. The f inal text structure is derived by suc­

cessively modifying it to leave some parts impl ic i t and thus making the utterance

shorter. The content of the utterance which is made impl ic i t has to be inferred in

the following ways:-

• The inference is drawn by the hearer due to world knowledge a t t r ibuted to

him/her. For example (f rom [Reiter, 1990]) if a system wished to inform the

6 not to be confused with the integration of planning and realisation components, section 3.5.2

C h a p t e r 3: Re la t ed W o r k 106

user that a flight lands at La Guardia airport, i t has, in addition to stating

this fact explicitly, the option of simply calling the flight a shuttle and relying

on the user's knowledge that shuttles land at La Guardia.

• The inference is carried out by the speaker. When t ry ing to elicit information

f rom a dialogue partner, the system, instead of asking a direct question,

may ask another question the answer of which makes i t possible to infer

the information ini t ia l ly required. In the W E I B E R domain for example, to

determine whether the user wants to buy an asset w i t h a high or low l iquidi ty ,

the system may ask 'Do you want to have access to your money during the

term of investment?'

• The inference is justif ied by the context and the hearer is supposed to draw

i t . This applies to newly established common knowledge and matters of

coherence. In the office planning domain, for example, i t would be adequate

to answer the question 'Why is Smith assigned to group?' w i t h 'Smi th is a

group leader' instead of cit ing the generic condition and class membership of

the entities involved.

Terminological transformations

These transformations involve selecting an appropriate level of granularity on

a conceptual basis by performing terminological equivalence operations. The aim

of these transformations is to chose a concise but st i l l comprehensible alternative

according to the known or assumed knowledge of the user.

The transformations are carried out by a tool called F T R A N S L A T E which has

two procedures wi th inverse functionali ty E X P A N D and C O N T R A C T . Horacek

only considers the former procedure as he assumes that the dialogue component

passes only the most compact representation to the generator. (Note that this is

the opposite of the assumption in the M T M work where semantic networks are

replaced by more compact ones). The E X P A N D operation substitutes subexpres­

sions representing specialised concepts wi th more generalised ones augmented by

additional roles and restricted fillers to maintain the terminological equivalence.

C h a p t e r 3: Re la ted W o r k 107

'Notgroschen' (money s e t a s i d e f o r a r a i n y day)

EXPANDS to ' a s a v i n g s account w i t h more than two net months income'

'High l i q u i d i t y a s s o c i a t e d w i t h an investment'
EXPANDS to 'the p o s s i b i l i t y of i t s owner to have a c c e s s to t h e money

du r i n g t h e term of investment'

Figure 3.22: Examples of Horacek's terminological transformations

Examples Horacek gives of terminological transformations are given in figure 3.22,

The W E I B E R system does not attempt to infer the user's experience f rom

the course of the dialogue but performs terminological transformations based on a

priori assumptions about the user (i.e the system assumes which terms the user is

familiar wi th) . Horacek mentions that there may be a choice of how to expand a

specialised concept but this is not considered further.

Verbal isat ion

Verbalisation in Horacek's W E I B E R system has already briefly been discussed in

section 3.8.4. Horacek shows that when mapping f rom the conceptual representa­

t ion to lexical structures there may be a choice of Z O O M schemata to apply at

a particular point. Examples Horacek gives of variations resulting f rom differing

applications of Z O O M Schemata are given in figure 3.23.

W i t h respect to controlling which particular Z O O M schema to apply, Horacek

says that decisions are made implic i t ly by favouring what is to be considered the

locally best choice of ordering and by accepting the first legal solution. The ordering

is governed by 'stylistic constraints' which, for example, comprise the avoidance of

indefinite pronouns, production of complete sentences and a preference for concise

verbalisations.

Horacek's work, whilst considering the whole generation process seems to st i l l

be in an experimentfil stage. Furthermore the constraints which guide the choice of

C h a p t e r 3: Re la ted Work 108

'name of t h e p r o j e c t ' ' B i l l ' s p r o j e c t '
' t h e name i s WEIBER' ' B i l l leads the p r o j e c t '
' t h e p r o j e c t has a name' ' B i l l i s t he l e a d e r o f t h e p r o j e c t '
' t h e name WEIBER'

'bonds a t a va lue o f 40000DM' 'Bonds are recommendable'
'40000DM i n t he f o r m of bonds' ' i t i s a d v i s a b l e t o buy bonds '

Figure 3.23: Variations caused by application of differing Z O O M schema

variation seem rather simplified (e.g., the user model and the simple stylistic con­

straints described above) and the examples are given in rather restricted domains.

3.13 Conclusions

This chapter has presented an overview of the state of the art in Natural Language

Generation. I t has concentrated on the areas of research that are the most rele­

vant to that which is presented in this work. Because the chapter has not been

organised by system, Appendix A provides such an organisation by summarising

some of the most important generation systems (wi th references to more details

presented in this chapter). The Appendix also includes a system summary table

which categorises them according to some of the aspects discussed in this chapter.

The latter part of the chapter has concentrated on systems which take semantic

rich information similar to the SemNet representation used in the L O L I T A system.

The advantages of such input are as follows:-

• Such input can be a knowledge rich representation. This allows a knowledge

intensive approach to generation [Jacobs, 1987] and means that information

useful for ordering (for example temporal and causal information) is explicit .

• The input allows for a message directed control approach which is often more

efficient (see section 3.4).

• The knowledge rich input can lead to the variation in the utterances pro­

duced. Furthermore, this variation can often be achieved separately f rom the

C h a p t e r 3: Re la ted W o r k 109

realisation process. The semantic representations can often be transformed

in a separate process thus alleviating the realiser f rom extra burden.

Despite the advantages of these approaches, the systems which use such seman­

tic network input have common limitations and disadvantages.

9 The methods employed st i l l rely on total coverage of the semantic input.

This w i l l cause a generation gap problem as the planner, which has to delimit

semantic network portions, must know if these portions can be expressed in

surface la.ngna.pe.

o Because of this, the systems discussed comprise planners (or assume the f u ­

ture existence of planners) which are able to carefully delimit semantic net­

work portions into sentence or clause sized chunks. Thus although the type

of input has the potential to move away f rom the restrictions imposed by

adopting other inputs (e.g., predicate calculus) this potential is not really

exploited.

o The problem of lexicalisation (see section 3.9) st i l l exists. The inputs consid­

ered comprise semantic network 'nodes' which are either pr imi t ive concepts

(e.g C D T , CG) or actual lexical items (M T M) . These assumptions are differ­

ent to those imposed by the L O L I T A SemNet representation (see section 1.5.3

and 4.3.2).

Chapters 5 and 6 wil l detail the solution adopted in the L O L I T A generation

system which takes LOLITA' s semantic network representation, SemNet, as input.

Chapter 4

The LOLITA System

This work forms part of the L O L I T A project. This project was briefly introduced

in section 1.4 when the project's bearing on the methods adopted were discussed.

This chapter wi l l describe the L O L I T A system in more detail w i th special attention

to the aspects most relevant to N L generation.

4.1 History and Background

L O L I T A (Large scale, Object-based, Linguistic Interactor, Translator and Anal­

yser) has been under development at the University of Durham since 1986. I t

is a large project wi th an increasing number of researchers working on different

areas and modules. Such a long term core project is rare in many areas of sci­

ence including N L E and NLG (exceptions are the SNePS and Penman projects,

for example). The project provides an exciting environment for research as work

on individual sub-projects can contribute towards the total system (compared to

other environments which only support isolated projects w i t h short t ime spans).

C h a p t e r 4: T h e L O L I T A Sys t em 111

4.2 Advantages of General Purpose Base Research

L O L I T A is termed a general purpose base (see section 1.5.5) and forms a core

platform upon which different N L applications can be bui l t .

Although demonstration prototypes have been bui l t using L O L I T A for vari­

ous tasks and domains (these w i l l be introduced in section 4.4) no polished final

application has yet been developed. This is because research resources have con­

centrated on the 'base' of the system rather than task-dependent development.

The procedure has been to bui ld prototypes for different tasks to see i f these tasks

are feasible and to concentrate on the general purpose base rather than specific

application development.

One motivation for developing a general purpose base system is that of saving

effort by using the same software for different tasks or applications. This is the

flexibility aspect of N L E introduced in section 1.2.5.

Another advantage in general purpose base system research is that i t forces de­

velopment in general and fundamental terms. When designing the system compo­

nents no particular task, domain or application was in mind . This generality often

has unforseen benefits; for example, L O L I T A was not specifically intended to be

used for machine translation but because of the generality of the work, l i t t l e effort

was needed to produce a prototype Italian to English translator (see section 4.4).

4.3 System Overview

This section outlines L O L I T A ' s architecture and introduces some of its important

components. The information in this chapter is adapted f rom [Long and Garigliano,

1994] which itself was adapted f rom [Garigliano el a/., 1992]. Figure 4.1 shows a

block diagram of LOLITA ' s components.

C h a p t e r 4: T h e L O L I T A Sys tem 112

12 10 1 1

24 14 15 13 16
7 N

37 18 17

38
\ 19 8 /

\
1 \ 32 39 \ 31

f

33

A
41 34

27
35

20
23 28

21
36

29
22

1 30 \

Figure 4.1: The L O L I T A system

C h a p t e r 4: T h e L O L I T A S y s t e m 113

Legend for LOLITA diagram
• square = internal processing module
• diamond = interface module
® circle = application module
• triangle = data
© continuous line = module connection
© broken line = subpart relation

1 = semantic net 23 = style analysis

2 = inference engine 24 = tree structure

3 = syntax analysis 25 = semantic net fragment

4 = semantic analysis 26 = L O L I T A model

5 = pragmatics analysis 27 = aser models

6 = discourse analysis 28 = dialogue structure models

7 = natural language generation 29 = student models

8 = syntax tree normalisation 30 - tutor models

9 = pre-semantic normalisation 31 = global switches

10 = morphological analysis 32 = query module

11 = grammatical analysis 33 = template module

12 = parsing search control 34 - dialogue module

13 = misspelt words recovery 35 = translation module

14 = new words guessing 36 = Chinese tutor module

15 = grammar structure handling 37 = N L P interface

16 = grammar feature analysis 38 = semantic net interface

17 = structure analysis 39 = query interface

18 = structure reconstruction 40 = template interface

19 = consistency checks, data compression etc. 41 = dialogue interface

20 = dialogue planbox generation 42 = translation interface

21 = emotion analysis 43 = Chinese tutor interface

22 = constraints analysis

C h a p t e r 4: T h e L O L I T A Sys tem 114

The following subsections wi l l give details about, the operation and main com­

ponents of the L O L I T A system.

4.3.1 Syntactic Analysis

In i t ia l Preparat ion and Morphology

The first stage of syntactic analysis is to build a surface representation of the input

string. Firstly, punctuation in the input is used to separate i t into grammatical

. . r , ; ^ r^r;.-! +.hr>n « r r » n r r v.rA f n " . ~ r - . r . r n f . ~ f l v > 3 ~ « r i f . . ~ . individual words SllOit

hand words are replaced by their longer versions (e.g., ' I ' l l ' to ' I W i l l ') and when a

word could relate to more than one concept node in the SemNet representation, all

possibilities are included in the intermediate representation (e.g., 'bow' for a ship's

bow or a violin bow)(see section on WordNet, section 4.3.2).

The morphological process extracts and labels the roots of the input words.

Sometimes multiple extractions are required. For example, morphological analysis

on the word 'unworthiness' w i l l extract and label the word 'wor th ' by separating out

the components 'ness' which makes an adjective into a noun, 'un ' which indicates

a negative, and 'y ' which turns a noun into an adjective. There is also a faci l i ty

at this preparation stage for recovering misspelt words [Parker, 1994] and guessing

unknown ones.

Pars ing

The prepared input representing the surface structure of the text is then ready for

parsing where the words and constructs of the natural language input expression are

grouped and labelled into a parse-tree. The parse-tree represents the grammatical

structure of the text and the relationships between the component words.

The parser is based on the T O M I T A algorithm [Tomita, 1986], a variant of

the shift-reduce parser wi th a graph-based stack. This parser produces a large

amount of possible parse trees (a parse 'forest '). LOLITA ' s grammar uses a set of

Chapter 4: The L O L I T A System 115

sen
detph

det THE
coranoun COW [Sing,Female,Per3]

auxphrase_advprepph
compintransv JUMP [Past]
prepp

prep OVER
detph

det THE
comnoun MOON [Sing,Neutral,Per3]

Figure 4.2: Example of parsing

features and penalties in order to discard unlikely parse trees. Lazy evaluation (see

section 7.2.5) is carefully used so that only a minimal part of the parse forest is ever

generated. This is a crucial step which allows us to use the TOMITA algorithm

efficiently on long sentences (e.g., more than 30 words) which have a high degree

of potential ambiguity.

The LOLITA parser produces the best parse tree (according to the penalties

assigned by the grammar) or a list of possible parses representing the deep gram­

matical structure of the input. Each parse tree has all word features extracted

(e.g., verb root rather than third person singular etc), errors (structural or feature

caused) printed out, missing parts inferred and un-parseable parts isolated. Fig­

ure 4.2 shows the parsing of the sentence 'The cow jumped over the moon' whilst

figure 4.3 shows an example of parsing the ungrammatical sentence 'and I likes him

own'.

Normalisation

The next step in the analysis process is normalisation: equivalent parse trees are

converted to a normalised form in order to reduce the number of mappings between

parse-trees and the SemNet representation that the semantic translator must cope

with. These normalisations include grammatical transformations (e.g., passive to

Chapter 4: The L O L I T A System 116

subsen_phrase
j o i n AND
sen * cla s h : Per3 *
defpronoun I [Sing,Sexed,Norn,Perl]
sentvbph

sentverb LIKE [Pres,Per3]
sen * cl a s h : NoPer3S *

defpronoun HIM [Sing,Male,Nom,Per3] * c l a s h : Acc *
transvp

comptransv OWN [Pres,NoPer3S]
conjtermph * MISSING *

t igure 4.3: An example oi parsing the grammatically incorrect sentence "and 1
likes him own'

active, dative to non-dative), filling in missing phrases (e.g., 'John was kicked' nor­

malised to 'John was kicked by someone'), rearrangement of prepositional phrases

(e.g., raising prepositional phrases to the verb level) and removal of de-lexical con­

structs (see chapter 6).

During generation, the opposite process is useful: paraphrases should result

from the same semantic input. This can be achieved using abstract transformations,

an aspect of the solution presented in chapter 6.

4.3.2 Knowledge Representation

LOLITA's semantic network representation (SemNet) is important as it affects

nearly all other parts of the system. This representation is especially important

with respect to the work described in this thesis as it forms the input to the

generator. Section 3.3 describes the importance the chosen input has on the design

and operation of a generation module.

The structure

The LOLITA semantic network representation, SemNet, is a powerful representa­

tion scheme based upon a directed hyper-graph (i.e. it comprises links from a node

Chapter 4: The L O L I T A System 117

pointing to a set of nodes).

The nodes of the graph correspond to concepts (e.g., entities or events). Each,

node within the semantic net has a unique number by which it is identified (the

node-ref).

Attached to each node is a set of control variables which contain basic informa­

tion about the node (see section 4.3.2). The links between the nodes correspond

to relationships between the nodes. A link is composed of a list of node-refs which

are the range of the link, and an arc which identifies the type of the link, e.g.,

s i i \~\ "i(*r*i\ _ oVfci ^ / ^ t _ . LIP^ v e r G ? I _ \ c! 1.V)1 0f*t h n k . fo 1' e v^i"Hr>!^ f o r n p r t ^ .̂ .Ti f^yr^pt

node with the nodes which correspond to the event's subjects, a universal- link

connects a node to its universals etc.

Figure 4.4 shows an example event node together with an English description

of what it represents (this description is produced by the LOLITA generator, the

subject of this thesis).

The definitions of meaning, concepts and the relationship between concepts

and language in SemNet have been discussed in section 1.5. Nodes (concepts) in

SemNet are arranged in hierarchies with entities and events lower in the hierarchy

inheriting properties from those higher up.

The LOLITA semantic network currently comprises in the order of 100,000

nodes.

WordNet

Although the LOLITA representation is concept rather than language driven (see

section 1.5.3), it is often useful to use surface language information to build con­

ceptual information. This assumption is based on the argument that language has

evolved so as to provide a way of communicating important concepts: the existence

of a word (especially common words) is a good indication of a useful concept.

The LOLITA SemNet representation has been built with the aid of WordNet

Chapter 4: The L O L I T A System 118

[Miller, 1990]. WordNet is a lexical reference system comprising lexical and seman­

tic information about word forms in English (American English). Word meanings

are represented by synonym sets - a list of synonymous word forms that are inter­

changeable in some context.

Control variables

As mentioned above, a list of control variables is associated with each node in

SemNet. These variables contain standard information which is shared by a large
- T „ _ J T « U : - '.-c 1.:— :. r- ... • -i. r :

(including generation) and needs to be accessed often and quickly.

This information could be represented elsewhere in the network (e.g., as part

of the hierarchy) but because it is required often it is stored explicitly with each

node: this is a straight sacrifice of memory resource for faster execution speed.

There are currently about sixty different types of control variables used in the

LOLITA representation, three examples of which are discussed below:-

• Rank: The rank of a node gives the node's quantification and can have

the following values :- individual, prototype, general, universal, bounded ex­

istential, named individual, framed universal or class. The system uses a

multi-sorted logic representation to deal with the concept of rank. Instead

of just having two kinds of entities, variables and constants, and quantifying

over these variables, the LOLITA system just uses constants.

There are various types of these constants, indicated by the rank, which obe}'

different inferential rules. The complete set of inferential rules together with

these constants is equivalent to a first order logic. This representation method

has two advantages, efficiency and naturalness.

From the point of view of efficiency, the multi-sorted representation allows

a node to be considered on its own merit rather than (as in the case of a

quantified variable) as part of an event. This limits the need to access such

associated events and improves look-up efficiency.

Chapter 4: The L O L I T A System 119

Secondly, under the naturalness point of view, the multi-sorted deep represen­

tation is more similar to the surface structure of the language. For example,

in the sentence "Every man owns a dog", the constructs 'Every man' and 'a

dog' have the same grammatical type (i.e noun phrases) but have different

quantifications ('Every man' is a universal quantifier, 'a dog' is an existential

quantifier). These types can be directly represented by constants of different

ranks.

• Type: A node can have the following values of type control :- entity, relation,

typeless, event, fact, greeting, procedure, determiner, punctuation, attribute,

mode, preposition, pronoun, conjunction or sub-conjunction. These control

values are very similar to grammatical qualifications with a few exceptions

and additions. For example the relation type mainly represents verbs, at­

tribute represents adjectives and entity represents nouns.

e Family: This control classifies nodes into the semantic and pragmatic groups

to which they belong. The values for this control are:- living, vegetal, an­

imal, human, inanimate man-made, inanimate, animal or human, generic,

inanimate organic, abstract, concrete, not human, temporal and location.

Of course there are many ways in which a node could be categorised but

these family values are used to discriminate between the possible meanings

of verbs. For example consider the phrases 'drive a car' and 'drive sheep'

which contain different meanings of the verb 'to drive'. Because a car is clas­

sified in the family inanimate man-made and sheep in the family animal the

correct meaning of the verb 'to drive' can be identified in each case. If an

alternative classification, for example invertebrate or vertebrate were to be

used, the problem would be more difficult to handle.

Prototypical events

LOLITA's SemNet representation contains 'prototypical' events which define events

by imposing selectional restrictions on the roles associated with that event.

Chapter 4: The L O L I T A System 120

A typical example of such an event is 'ownership' which can be represented by

the surface utterance 'HUMAN OWNERS OWN THINGS'. This event encodes the

following selectional restrictions: that a subject of the action 'own' has to be human

(in fact it has to belong to a set of 'humans who are also owners') and that the

object of 'own' must be non-human. Any event whose action will be 'own', will be

represented in SemNet as a specialisation of this prototypical event. Consequently

the same restrictions on the subject and object will apply to the more specific

event.

This information can be used during pragmatic analysis for enrichment and

disambiguation of meaning. For example, given the sentence 'He owns a motorbike'

(and in the absence of any specific context) the semantics will produce an event

whose subject is very general - i.e. 'a male creature'. The prototypical event

associated with 'own' will allow the pragmatics to further specify the subject and

determine that it is 'a man owner'.

Prototypical events, like entities, are arranged hierarchically with lower events

inheriting properties of those above. It is important to note that actions themselves

do not form a hierarchical structure: it is the prototypical events that define those

actions that form such a hierarchy.

Prototypical events are important in generation as they allow knowledge inten­

sive transformations leading to paraphrases (see chapter 6, abstract transforma­

tions).

4.3.3 Semantic and Pragmatic analysis

The purpose of the semantic analysis is to map the deep grammatical representation

of the input (the information carried by the parse tree) onto nodes in the network.

The analysis must determine whether a node already exists, if and how to build

a new node and how to connect existing and new portions of the network. An

existing node must be identified or a new node built for each object and event

involved in the input text. For example, for the parse tree given in figure 4.2,

Chapter 4: The L O L I T A System 121

«fc 3f« 2̂ * ^ 3|c 3̂C 3f* «fc 3̂ * *fc «fC 3fc «0C 3f* 3§C

* event: 32035 *

event - 7688 - rank: universa l - d e f i n i t i o n ,
sub jec t . :

repor t - 32024 - rank: universa l - suspended,
a c t i o n . :

suggest - 3435 -
t i m e . :

pas t . - 20991 -
date:

31 October 1992
source.:

telegraph - 9994 - rank: named i n d i v i d u a l
s t a tus . :

suspended. - 29025 -
obj ect_:

explosion - 32011 - rank: i n d i v i d u a l - suspended.

First reports suggested that at 9pm at night when a forceful person forced a
driver to drive a black taxi to Whitehall, a bomb went off in it on a corner
outside Cabinet Office and outside 10 Downing Street.

Figure 4.4: Example of an event in the LOLITA representation

Chapter 4: The L O L I T A System 122

nodes representing the coiv, the moon and the event of the cow jumping over the

moon must be created or identified. This process can be separated into different

stages.

The first step is to make references absolute. There are many contextual refer­

ents in speech. The referent T , for example must be replaced with the person who

is speaking and the referent 'you' with LOLITA. There are more complicated ex­

amples, consider the phrase " I ' l l do that tomorrow". The word 'tomorrow' cannot

be directly represented as it is contextual: instead it must be represented by the

concept for the day after the particular day when this input was uttered.

The second stage is to disambiguate the grammatical parse tree in order to

decide on one of many possible interpretations. For example, take the sentence " I

like the bottle of wine on the table because of its fruity taste". Here the referent

' i t ' refers to the bottle of wine (in fact not even to the bottle but to the wine inside

it) and not the table. This ambiguity will be resolved by looking at the semantic

network to find that taste is an attribute of wine and not tables. In fact such

ambiguities are present in what could seem, at first thought, to be very simple

words. The word 'the' for example has at least six possible semantic meanings (see

section 5.4.3).

Once a new or modified portion of the semantic network has been built there is

still a problem in checking that this portion is consistent with the existing network.

Pragmatic and more semantic analysis is necessary to achieve this. Take for exam­

ple, the sentence " I saw a pig flying", here the syntax is correct and the semantics

might also be considered well formed. If this is the case then the pragmatic analy­

sis must be able to conclude that there is a problem with the acceptability of this

sentence. Alternatively, this sentence may be incorrect under the semantic point

of view if there is some definition explicit in the semantic network saying that pigs

do not fly.

There are many instances however, when there is no way in which the semantic

analysis could find such an error and the problem is purely pragmatic. For example,

in the sentence ' I bought a car from the Japanese manufacturer Ford', there may be

Chapter 4: The L O L I T A System 123

nothing in the semantic representation which says that Ford cars are American and

not Japanese. The pragmatics will have to work this out using inference techniques.

The role of pragmatics is, therefore, to adjust the semantic representation of any

new or modified nodes so they can fit into the overall network. This may cause

drastic actions such as attaching disbelief to events or assuming a misunderstanding

and asking further questions for clarification.

One way to deal with a clash of pragmatics between new and old information

in the network is using source control. This comprises deciding whether or not to

accept or attach a certain degree of belief to a piece of information by looking not

at the information itself but at where (or from whom) the information came from

and the way in which this information was provided. Work on source control has

been carried out at Durham for several years [Bokma and Garigliano, 1992] and a

large model has been built which is currently being incorporated into the LOLITA

system.

4.3.4 Dialogue

Many dialogue systems have been attempted, but due to the fact that no universal

theory of dialogue has been defined, these have concentrated on particular appli­

cations. Such a general dialogue theory is being developed as part of the LOLITA

project [Jones, 1994] and is loosely based on Schank's script theory [Schank and

Abelson, 1977]. As we encounter different experiences in our lives, we come to

expect certain types of dialogue in different situations, and we learn what is the

'norm'. If a computer system is to understand and then generate natural language

in a dialogue, it must be capable of recognising what is appropriate within the dia­

logue. Because of the lack of a universal theory, it is impossible to describe all the

possible dialogue situations (an infinite number) which may occur. The LOLITA

dialogue project overcomes this problem by standardising dialogue using Dialogue

Structure Models (or DSMs). The DSM is a schema which holds information about

a stereotypical dialogue. The DSMs can be used not only to help in the understand­

ing of a. dialogue (by constraining what to expect) but can also aid the generation

Chapter 4: The L O L I T A System 124

of dialogue (by constraining how to respond or continue the conversation).

DSMs are composed of fundamental elements called Dialogue Structure Ele--

merits (DSEs). Each DSE describes one fundamental property of a dialogue: the

presence, absence and, in some cases, strength of a DSE will affect the dialogue

structure.

DSEs are classed into three categories:-

e External elements (EE) are those which can be observed with no other knowl­

edge of the dialogue. Number of participants and - time lim.it. are e.va.mples nf

this category of DSE.

• Motivational elements (ME) are those which describe the purpose of the di­

alogue. As every dialogue is assumed to have a purpose, every DSM must

possess a DSE of this type. Examples are persuasive, emotional exchange

and information seeking.

• Verbal elements (VE) describe other verbal elements which may or may not

be present in a dialogue. Rhythm and rigidity are examples.

By adding, deleting or changing the strength of a DSE in a DSM, the dialogue

that the DSM models will become fundamentally different. A completed DSM will

allow the system to know all it needs to know about what to expect from a dialogue

situation. The model can be used to aid the generation of dialogue through a list

of constraints which are associated with each DSE. These constraints are actions

which a system may or may not carry out during a dialogue if a particular DSE

is present. The constraints associated with each DSE are not fixed. Thus whilst

the presence of a set of DSEs in a DSM will define the dialogue, the constraints

associated with each DSE will provide more subtle information.

For example the following constraints may be associated with the Dominance

DSE :-

• The right to initiate the dialogue.

http://lim.it

Chapter 4: The L O L I T A System 125

e The right to terminate the dialogue.

• The right to interrupt the other participant(s).

• The right to choose the topic.

• The right to change the topic.

• The right to initiate sub-dialogues.

The dialogue theory is currently being implemented and interfaced with the

LOLITA system and its the generator.

4.4 L O L I T A Applications

4.4.1 Analysis of Text

The basic operation of the LOLITA NL general purpose base is to analyse text in

order to build a representation of its meaning (i.e., the operation discussed above,

sections 4.3.1 to 4.3.3). Information gleaned for input text is identified in or added

to the SemNet representation. This is the general base operation for most other

applications.

4.4.2 Query

This application allows a user to interactively provide information to LOLITA and

interrogate the system using NL utterances. Once a piece of text has been analysed,

for example, a user may ask NL questions about the information that LOLITA has

gleaned from this article.

4.4.3 Translation

This prototype exemplifies the flexibility of LOLITA (see section 1.2.5): machine

translation was not an original goal of the system but with only a small amount

Chapter 4: The L O L I T A System 126

of modification, a prototype has been developed. By adding a few rules to the

LOLITA grammar, Italian text ca,n now be interpreted and the information it

contains added to SemNet. Since the generator can produce English from SemNet,

a framework for Italian to English translation results. For more information see

[Morgan et ai, 1994].

4.4.4 Database Front-end

A project has recently been initiated to use LOLITA as a NL front-end to a

database. This project will involve translation of the SemNet representation of

NL database requests into the database querj' language SQL [Smith et a/., 1995]

[Garigliano et a/., 1995].

4.4.5 Contents Scanning

This application involves analysing input texts and filling domain dependent tem­

plates so as to summarise the content of the original text. This application is of

particular interest as it is actually performed by a wide range of agencies (for exam­

ple intelligence gathering organisations, communication centres etc). Until recently

there were two existing methods for performing this task; manual and automated

keyword search. Manual search is labour intensive, prone to errors, costly and time

consuming. Keyword search on text can improve on this time problem but cannot

cope with phenomenon such as negative, hypothetical or distributed information.

More recently NL techniques have been applied to the problem with the aim of

developing systems which are able to provide the accuracy of a manual search with

the speed of keyword search.

Existing NL systems for content scanning fall into two types, those which at­

tempt to perform a semantic analysis to arrive at a representation of the meaning

of text (for example PROTEUS[Grishman and Sterling, 1993], TACITUS[Hobbs,

1991]) and those which focus on specific understanding tasks such as looking for pat­

terns of particular words (for example JASPERfAndersen, 1992], SCISOR[Jacobs

Chapter 4: The L O L I T A System 127

and Rau, 1990]). The choice between the two methods is again a choice between ac­

curacy and speed: the former group can build a much deeper understanding of the

input while the latter can work at speeds which are adequate for real applications.

The LOLITA content scanning prototype [Garigliano et al., 1993] falls into the

former group of systems as it based on the LOLITA general purpose base. As this

general purpose base is designed to be domain independent this should lead to

advantages in portability compared to other systems (for example, some of those

which have competed in the recent series of DARPA 1 sponsored MUC competitions,

p o \T) A R 1993] < 5 p , a section 8 11) th.?.t h?ve been designed to operate in one

specific domain.

However, a domain and template dependent module is still required in the

LOLITA scanner which is responsible for searching new portions of the SemNet

representation in order to find relevant information with which to fill template

slots. The requirement for such a hard-wired domain dependent search module is a

disadvantage. There are plans to interface the contents scanning module with the

dialogue module so that specification of template requirements can be initialised

and modified using NL interaction.

Very recent work in collaboration with an industrial partner has concerned

evaluating the LOLITA contents scanner with domain independent templates. Ar­

ticles of average length of about 100 words from a wide variety of domains were

analysed in order to fill templates with domain independent slots such as 'per­

sonal name','organisation', 'locations', 'animates', 'inanimates' etc. The system

was found to be 100% robust (i.e it always managed to produce a template and

never crashed) and resulted in recall and precision scores comparable with other

state of the art systems. These results are extremely promising as these other

state of the art systems were restricted to doing the template task in a single pre­

defined domain. The LOLITA system is entered in the MUC6 competition (see

section 8.1.1 and [DAR, 1993]) which comprises, among others, a similar template-

filling evaluation.

1 Defense Advanced Research Projects Agency

Chapter 4: The L O L I T A System 128

Parse Tree:
chinese.sen

en_prop_ph TRANSFER ERROR
noun_per %L 8 (Prof.)
proper_per ^ (a surname)

en_prep_vp TRANSFER ERROR
trans_vp

trans_v2 f̂e (go)
proper_noun ffe *fc (London)

prep_ph
prep m (with)
per_pronoun IS ft] (us)

Figure 4.5: Example of a Chinese parse tree

4.4.6 Chinese Tutoring

The wide variety of possible applications which can be built on the LOLITA base is

exemplified by the Chinese tutoring prototype [Wang and Garigliano, 1992] [Wang,

1994]. The prototype involves helping students learning Chinese to overcome the

problem of transfer errors caused by mother tongue influence.

By using the existing parser and adding Chinese words and grammar rules a

tutoring module has been built which uses intelligent tutoring techniques (by using

and updating various models of the situation, e.g., student model, expert model

etc.) to ask users to perform English to Chinese translations. Users' translations

are then parsed and the resulting parse tree is diagnosed for transfer errors.

An example Chinese parse tree showing an error caused by transfer is shown in

figure 4.5.

4.5 The Role of Generation in L O L I T A

Most of the applications that have been or are to be built 'on top' of the LOLITA

general purpose base will need some generation capability. The generator described

Chapter 4: The L O L I T A System 129

in this thesis must provide the required capabilities and be as flexible as possible

to allow its use in future applications (see Aim 3, section 2.2.3).

This section will describe the generation capabilities required by each of the

prototype applications described above. It is important to note that these ap­

plications were not built without generation capabilities before this project was

initiated. Rather, their development has been in parallel with the generation work

described here. This has allowed the development of applications and the generator

to influence each other (see the NLE principle of integration, section 1.2.6).

• To rebuild surface language expressions for SemNet. As the construction of

semantic representation from input text is the base operation for the LOLITA

system as a whole, re-building surface language expressions from this repre­

sentation is the basic operation required for the generator. As well as forming

the base for other applications, surface expressions are useful for checking the

consistency of SemNet during, for example, development. As mentioned be­

fore (section 1.5.1), in theory a concept in SemNet is defined by the whole of

the network. In practice however this is both unnecessary and un-practical

for generation: depending on the application, the generator (and perhaps,

application dependant controlling mechanisms) will have to decide on how

best to produce an expression. This project is concerned with the generation

of such surface expressions in English.

• Query. During the query application, a generator is required to produce NL

utterances in response to questions. As in other applications this is achieved

by passing a concept in the SemNet representation which corresponds to the

desired response to the generator. During query sessions, it is also important

(e.g., for context reasons) to represent the semantics of the question that was

asked. It is therefore necessary for the generator to be able to re-build surface

expressions for the semantic representations of these questions as well as the

answers.

• Dialogue. Obviously, dialogue will require LOLITA to produce NL utter­

ances. Again, this is to be handled by passing SemNet concepts to the gen-

Chapter 4: The L O L I T A System 130

erator. In this case the dialogue component (see section 4.3.4) will interface

with the generator so as to drive it to produce appropriate responses. In

dialogue, not only the content but also the method of presentation of the

content is important. According to the constraints imposed by the presence

of the different DSEs, the dialogue and utterance planning (see chapter 5)

modules should be able to control the content and desired style of the utter­

ance. The dialogue module currently uses a simple reactive planner, there are

plans in the future to integrate the module with a more involved hierarchical

abstraction planner based on the AbNLP planner [Long and Fox, 1995] [Fox

and Long, 1995].

• Translation. By adding the ability to analyse languages other than English,

a prototype machine translator has been built. By building semantic rep­

resentations from foreign language input and then rebuilding the semantic

representation in English, the content of the original expression can be trans­

lated. For a polished translation, not only content but some aspects of pre­

sentation and style have to be conveyed. Although this is beyond the current

capabilities of the prototype translator, the generator should be built so that

it can be controlled as much as possible in the future. Work has recently

been initiated to build a generator for Spanish and there are plans to build

generators in other target languages in the future.

• Contents Scanning. The template filling module will require the generator to

build NL utterances in order to fill the various slots in the template. Again

this is done by passing down relevant SemNet concepts. This time, due to

the desired summarisation effect of the templates, instructions will also be

passed down to favour brief utterances.

Chapter 5

Solution: The General Approach

and the Plan-realiser

5.1 The General Approach

The solution to natural language generation (NLG) in the L O L I T A system is based

on two important principles which are different f r o m those adopted in other gen­

eration systems. These factors are:-

1. Generator Input. The generator receives as input the whole of the semantic

network (SemNet) and this is available throughout the generation process.

2. Generator Architecture. This input allows a novel architecture which avoids

the 'generation gap' problem in tradit ional two-component architectures (see

section 3.8). Although a two component approach is adopted (see section 3.5),

the distribution of tasks between the planner and plan-real iser modules is

different f rom that between traditional planner and realiser modules. More

specifically :-

e The role of the planner. The planner's job is to constrain the plan-

realiser by passing i t instructions.

C h a p t e r 5: Solution: T h e G e n e r a l Approach and the Plan-rea l i ser 132

• The role of the plan-realiser. The plan-realiser is autonomous. I t tries

to follow the instructions passed by the planner but in the absence of

these instructions (or i f these instructions are not achievable) i t must

be able to make default decisions of its own. The plan-realiser may

sometimes perform some of the tasks (e.g., content selection) that are

more traditionally undertaken by the planning component.

The rest of this section w i l l expand on these factors and relate them to the

more tradit ional approaches.

5.1.1 The Input

As discussed in the methodology chapter (section 1.4) the use of L O L I T A is a

starting assumption for this work: more specifically the generator must take input

in the fo rm of LOLITA' s semantic network representation, SemNet. There are

some systems which take comparable semantic based input (i.e., those described

in section 3.12). However, these systems operate by delimiting content by 'cut t ing

out ' semantic network portions. These semantic portions, which can typically be

expressed in one sentence, are then passed to a realisation module. The delim­

i ta t ion task is either assigned to a planning module (which may or may not be

implemented), left to the underlying application or simply assumed to be achieved

elsewhere.

A major decision in this work was not to base the solution on this 'cut t ing out '

of portions approach. Rather, the generator and its subparts (i.e., the planner and

plan-realiser) have access to the whole of SemNet. This approach conforms to that

applied across the whole of the L O L I T A system: every component of the system

has access to the complete SemNet and is based on the philosophical assumption

that the meaning of a node in SemNet is represented by the whole of that network

(see section 1.5.1).

The enforced use of SemNet as input and the decision not to perform an explicit

del imit ing (or 'cut t ing out ') process has a impact on the architecture and design of

C h a p t e r 5: Solution: T h e G e n e r a l A p p r o a c h and the Plan-real i ser 133

the generator. Solutions applied to systems wi th vastly different input cannot be

applied here. Many generation systems, for example take predicate calculus and

other linear structures as their input. These inputs already contain explicit content

and ordering: the ways in which they can be used for generation are different

to those that have to be used for a non-linear input structure such as SemNet.

Furthermore, methods adopted for systems which do take a similar non-linear input

often rely on the fact that portions of this input are explici t ly delimited or 'cut

out ' . Sowa's notion of an utterance path ([Sowa, 1984], section 3.12.2), for example,

means that the realiser has to f ind a path which visits every node in the semantic

input. Similarly, incremental reduction ([Nogier and Zock, 1992] [Nicolov et ai,

1995], section 3.12.2) aims to incrementally match portions of the semantic input

to linguistic structure unt i l all the semantic input is covered.

5.1.2 The Architecture: Introduction

Like the major i ty of NLG systems, the solution is modularised into two components:

a planner and a plan-realiser (see section 3.5). The L O L I T A generator therefore,

adopts a separated architecture. However, to overcome the generation gap at the

interface between traditional planning and realisation modules, the roles of the

two components wi th in the generator architecture are different f rom that of other

approaches.

The planner provides a list of instructions specifying the content and the style

of the utterance to be produced. A t the very least this must be a reference (or

list of references) to nodes in SemNet. The planner does N O T cut out portions

of SemNet: rather i t provides instructions on where to start in the network and

indications of how to realise i t . In general the planner makes decisions according

to issues which are not surface language specific. A complete planner has not yet

been implemented but its role w i l l be discussed further in section 5.1.3.

The plan-realiser must act on the instructions of the planner. I f no explicit

instructions are passed except for content (which must be provided by either the

planner or an underlying application) then default instructions are assumed. I f the

C h a p t e r 5: Solution: T h e G e n e r a l Approach and the P lan-rea l i ser 134

planning instructions axe vague, or even conflict, then the plan-realiser w i l l have

to perform some tasks which are more traditionally assumed by planning modules.

For example, influenced greatly by the actual content of the SemNet input , the

plan-realiser may have to make decisions on content del imitat ion and sentence

organisation. The plan-realiser has been implemented and w i l l be discussed in more

detail in section 5.1.4 and in the bulk of the remainder of this chapter (sections 5.2

to 5.12).

A n example il lustrating the range of instructions which could be passed f rom

the planner to the plan-realiser is given below:-

• The plan-realiser might get the instruction to say something about an explo­

sion. A l l the planner wi l l provide is the reference to the node representing

the explosion in the network.

o The plan-realiser might get the instruction to produce 'a medium sized utter­

ance about the explosion, mention the casualties and the damage but don't

say anything about who was responsible for the explosion. Use short sen­

tences wi th l i t t le colour and avoid using the passive voice'. 1

5.1.3 The Architecture: The Role of the Planner

Although some L O L I T A modules contain simple planning procedures (for example,

dialogue, section 4.3.4) a f u l l planner has not been implemented and is outside the

scope of this work. However, in the interest of integration (see section 1.2.6), its

fu ture operation has to be described, particularly wi th respect to how i t interfaces

wi th the plan-realiser.

As introduced above, the role of the planner in this novel architecture is to pro­

vide instructions to the plan-realiser which constrain how SemNet is to be realised.

Although it is not necessary to define exactly the type of instructions that the

planner wi l l provide, i t is necessary to have an architecture in which the planner

'Of course the instructions will not be in the form of NL as used in this example !

C h a p t e r 5: Solution: T h e G e n e r a l Approach and the P lan-rea l i ser 135

has access to 'hooks' into the plan-realiser so that its instructions can be carried

out. The plan-realiser should then be able to produce a wide variation of output

according to these 'hooks'.

The N L E principle of integration also demands that unimplemented or missing

modules should be achievable. The assumption that the planner described in this

architecture is achievable is validated because:-

• The planner wi l l not have to f ind the optimal solution. There is a general

planning theory that suggests that a planner which simply provides a set of

useful constraints is easier to develop than one which tries to f ind the opt imal

path. For example, i t is not too diff icul t to develop a planner which plans

good chess moves but very diff icul t to develop a planner which provides the

best move. The NLG planner in the architecture described here does not

have to produce the optimal path. In fact, i t does not even have to provide

a consistent set of instructions (see section 5.1.5) as the plan-realiser w i t h

its heuristics about how instructions can be linguistically realised, can chose

between them. In effect, the proposed architecture has shifted responsibility

away f rom the traditional planner to the plan-realiser.

• The demands on the planner need not necessarily be high. The planner

w i l l have to automatically choose relevant instructions to pass down to the

plan-realiser but i t is assumed that this task w i l l be achievable, especially

when compared to the aims of the more tradit ional planner (which must, for

example, carefully delimit semantic content, order each clause and, to avoid

the generation gap, ensure that the plan-realiser can cope wi th its results).

• A n intermediate planner does already exist. The dialogue application (sec­

tion 4.3.4, [Jones, 1994]), for example, uses a planner which comprises a

template element and a motivation based reactive element. The template as­

pect of the dialogue planner defines the current situation in terms of dialogue

structure elements which constrain the behaviour of the system. The reactive

aspect models the ' individual i ty ' in a dialogue situation: the characteristics

of the speaker, her motivations and immediate emotions are used to con-

C h a p t e r 5: Solution: T h e Genera l Approach and the P lan-rea l i ser 136

strain the next utterance produced. A t the moment the reactive element

of the planner only 'reacts' to the last utterance entered in the dialogue so

currently no 'long term' plans can be executed.

• The planner does not have to know linguistic details. The architecture allows

the planner to make decisions on a conceptual level without having to take

into account linguistic details. The 'generation gap' problem is avoided as the

plan-realiser can ultimately overrule suggestions made by the planner which

cannot be realised in surface language.

9 The planner w i i i not operate in isolation. The planner w i l l have access to the

many other components of the L O L I T A system. The rich information held

in the SemNet representation and components such as the user model, the

dialogue planner and source control (see chapter 4) w i l l aid the planner in its

task.

• Planner development is already under way. Substantial work on the develop­

ment of the L O L I T A NLG planner has already been achieved. The planner

uses state of the art hierarchical abstraction planning methods [Long and

Fox, 1995],[Fox and Long, 1995].

A t the present t ime, and for the purposes of this work, the operation of the plan­

ner is simulated. A series of operation methods, commands and switches (termed

realisation parameters) have been provided and w i l l be discussed in the next sub­

sections.

I t is important to note that a planner is not always needed for the generation

system. This is illustrated by the fact that although no planning module exists, the

realiser is now able to be used to provide useful output . Some applications may by­

pass the planner even if it did exist. For example, for each slot in the template, the

contents scanning application passes references to nodes in SemNet that i t wants

to be described. Instructions which constrain how the utterance for each slot is

realised may also be provided (by setting the required realisation parameters, see

below).

C h a p t e r 5: Solution: T h e G e n e r a l Approach and the P lan-rea l i ser 137

Node by Node

In this method of operation, a planner is not required, the plan-realiser is simply

passed SemNet and a reference to a particular node inside i t . The plan-realiser

assumes that the realisation parameters (see below) are set to their default values.

This is equivalent to the instruction 'say something about x' , where x is a node in

SemNet. This operation is utilised in LOLITA' s basic semantic analysis task (see

section 4.4.1) where a description of each node is produced for each new SemNet

node created by the syntactic and semantic analysis. This generation has been

extremely useful in the debugging of L O L I i A as natural language utterances are

much easier to understand than SemNet itself. Development is extremely important

in N L E , and without the generator the development of L O L I T A would be extremely

slow, i f not impossible. I t is very diff icul t for a developer to progress when faced

w i t h an output of twenty or so nodes (which is typical for the paragraph length

pieces of text that L O L I T A can analyse). A n alternative would be to develop a

graphical interface that could be interpreted more easily than a textual output

of the nodes. However, this type of graphical interface would only be useful for

development where as the generation of N L utterances is needed for other purposes.

The use of the plan-realiser in the development process is strong evidence to support

its success even in the absence of a planner.

Real i sa t ion Parameters

Realisation parameters are switches which can be set by the planner (or simulated

planner) or the underlying application to directly affect the way the plan-realiser

produces utterances. Alternatively, to produce a variation in utterances, these

realisation parameters can be set randomly. These parameters can be set globally

to affect a complete utterance or more locally to affect individual sentences (see

'story' command below).

There are four categories of realisation parameter :-

• Grammatical: this type of realisation parameter can directly affect the gram-

C h a p t e r 5: Solution: T h e G e n e r a l Approach and the Plan-real i ser 138

matical style of the utterance. Examples are the self-explanatory Passive/

Active and Dative/ Non-Dative realisation switches.

• Style: this type of realisation parameter wi l l affect the generic style of the

utterance. For example, a colour parameter can be set to affect the use of

colourful synonyms, the number of adjectives and punctuation. A r h y t h m

parameter controls the lengths of individual sentences and clauses wi th in the

utterance.

• Content: as well as explicitly indicating information which should or should

not be said in an utterance, there are more general content parameters. A

length parameter, for example, can control the total length of an utterance

and thus how much content i t contains.

• Abstract Transformations: the four th set of realisation parameters can deter­

mine which abstract transformations should be carried out. Abstract trans­

formations (which wil l be discussed at length in chapter 5) can be used to

produce variations and paraphrasing of utterances by modification of SemNet

prior to realisation.

Realisation parameters are derived f r o m work on style analysis by Emery [Emery,

1994]. This work takes as a starting point the work on style by Hovy [Hovy, 1988b]

(see also section 3.12.1) and DiMarco and Hirst [DiMarco and Hirst, 1993] which

suggests sets of high level classifications of style together wi th a set of low level

rules for how they are manifested on the surface level. Emery performed extensive

analysis of a wide variety of real life texts in order to identify parameters which

can be used to connect these two levels. The existing realisation parameters were

chosen according to the evidence provided by Emery. Although there is not a di­

rect corelation between these parameters and the ones identified by Emery, the

realisation parameters form a subset which is sufficient to show that they can be

used in this architecture.

C h a p t e r 5: Solution: T h e G e n e r a l Approach and the Plan-real i ser 139

T h e 'story' C o m m a n d

The story command has been buil t to allow a user to be able to mimic the planner

and to interactively build paragraph length pieces of text. The user can formulate

instructions to the plan-realiser by input t ing a series of SemNet event node refer­

ences and a list of realisation parameters to be associated w i t h each of these nodes.

For each node the user also provides information as to the importance of the node.

The various options are :-

a AAiis'f'. H^pr 'T ' iKfi Q^r>5*T*p"i:fil"\f ' the concept must be described ?*° ?. sen.?r.?te

sentence or principle clause wi th in a sentence.

• M u s t describe: the concept must be mentioned somewhere in the utterance

but not necessarily as a separate sentence or as a principle clause.

• M a y describe: the concept can be described i f i t fits well into what is being

said.

• D o not describe: the concept should not be described. In the case of events,

the event should not be mentioned at al l . In the case of an entity acting

as a role of the event, then the event can be expressed without explicit ly

mentioning that role. For example i f a subject of an event should not be

mentioned, the event can be passified and the subject omit ted (e.g., 'The dog

was kicked).

Figure 5.1 shows an example of the story command in operation. Af te r analysing

input text, L O L I T A displays a N L summary of each of the events contained in that

input. The user, playing the part of the planner, can then enter instructions which

the plan-realiser can follow to form an utterance.

5.1.4 The Architecture: The Role of the Plan-realiser

The aim of the plan-realiser is to produce surface English expressions for concepts

represented in the LOLITA representation (SemNet). There are two important

C h a p t e r 5: Solution: T h e G e n e r a l Approach and the Plan-rea l i ser 140

96018: You were t i r e d .
96020: You c a l l e d a warm t a x i .
96022: You own a home.
96023: You went to your home.
96024: A t a x i was warm.
96028: A d r i v e r was c o o l .
96029: A d r i v e r was c o o l and a t a x i was warm.
96068: You gave a d r i v e r a b i g t i p .
96045: <96068> because <96029>.
96066: <96023> because <96018>.
96046: <96020> because <96018>.

Example 1.

I n s t r u c t i o n s :-
96018, s e p a r a t e l y , s h o r t rhythm then
96020, s e p a r a t e l y , s h o r t rhythm then
96023, s e p a r a t e l y , s h o r t rhythm then
96024, s e p a r a t e l y , s h o r t rhythm then
96028, s e p a r a t e l y , s h o r t rhythm

(mark d r i v e r i n s c r i p t u r a l c o n t e x t) then
96068, s e p a r a t e l y , s h o r t rhythm.

Output : -
You were t i r e d . You c a l l e d a t a x i . You went home. The t a x i was warm
The d r i v e r was c o o l . You gave him a b i g t i p .

Exampl e 2.

I n s t r u c t i o n s :-
96045, s e p a r a t e l y long rhythm, c o l o u r f u l (mark dr i v e r i n

s c r i p t u r a l c o n t e x t) then
96046, s e p a r a t e l y .

Output: -
You gave the d r i v e r a b i g huge t i p because he was c o o l and t h e cab
was warm! You c a l l e d i t because you were t i r e d .

Figure 5.1: Example of the 'story' command

C h a p t e r 5: Solution: T h e G e n e r a l Approach and the Plan-rea l i ser 141

differences between the plan-realiser and more tradit ional realisation modules:-

o The plan-realiser has access to all information held in SemNet both linguistic

and semantic.

• This allows the plan-realiser to be autonomous. Wi thou t sufficient instruc­

tions f rom the planner, or when these instructions cannot be realised, the

plan-realiser may make planning decisions on its own.

Given the complete semantic network and a reference to a particular node in the

network, the realiser w i l l generate an English expression for that node and follow

as many planning instructions as possible. The tasks of the plan-realiser therefore,

can range f r o m having to do a lot of work normally associated wi th a planner itself

(for example content selection) to merely following detailed planning instructions.

Ult imately, the plan-realiser must relate concepts in SemNet to lexical items.

However, as described in section 1.5.3, the granularity of concepts in the SemNet

representation is much smaller than that of words. Only some concepts (i.e., nodes)

in the semantic representation wi l l have a l ink to a lexical entry which w i l l be

adequate to convey the meaning of that concept (a discussion about how a concept

can be 'adequately' realised is presented in section 5.4.1). These concepts are

termed 'language-isomorphic' concepts or nodes (see section 1.5.3). The plan-

realiser must specify non language-isomorphic concepts in terms of other concepts.

This happens recursively unt i l language-isomorphic concepts are reached that can

be expressed as single lexical items (when presented wi th the correct quantification,

morphology and formative linking expressions).

The job of the plan-realiser, therefore, is to search the network in order to

'decompose' a concept into language-isomorphic concepts that can be used to de­

scribe the original concept. To adopt a term used elsewhere (e.g [Sowa, 1983]) this

search process finds the utterance path. Sowa's utterance path, however, aims to

visit every node in the semantic input. This is clearly not the case in the L O L I T A

plan-realiser as the semantic input comprises the whole of SemNet (in the order of

100,000 nodes). In LOLITA' s terms the utterance path is the path the plan-realiser

C h a p t e r 5: Solution: T h e G e n e r a l Approach and the P lan-rea l i ser 142

must follow in order to produce an 'adequate' utterance for a particular concept.

The search for this utterance path is critical and depends on the following three

factors:-

• What is present in the network: The SemNet input , representing the knowl­

edge f r o m which the utterance is to be drawn, is the most important fac­

tor determining the plan-realiser's search. The search depends heavily on

what is actually contained in the network (in terms of arcs and controls,

see section 4.3.2). This property represents the procedural control i n the

plan-realiser (see section 3.4). Because the semantic network is a rich source

of information i t would be irrational to ignore i t and adopt a declarative

approach.

o The grammar: The plan-realiser itself contains grammar rules which con­

strain the search so that correctly formed utterances can be bui l t in the

surface language.

e The realisation parameters: These parameters represent instructions passed

down f r o m the planner and can affect the order in which arcs are followed.

5.1.5 The Architecture: The Interface between Planner

and Realiser

The interface between planning and realisation has been the subject of much de­

bate. The 'generation gap' problem (see section 3.8) concerns how a planner can

make decisions without knowing i f they can be carried out at the linguistic level.

This section w i l l discuss the interface between the planner and plan-realiser in the

architecture adopted in this work and discuss its relation to the more tradit ional

generation gap problem.

In traditional architectures, planners take on a lot of responsibility: they are

responsible for such tasks as accurately delimit ing content and ordering. The re-

aliser's task is less complicated, i t merely has to produce surface N L f rom the

C h a p t e r 5: Solution: T h e G e n e r a l Approach and the Plan-rea l i ser 143

detailed input provided by the planner. The 'generation gap' problem can be se­

rious i f the realiser cannot follow these instructions because of the nature of the

surface language. In this case either the planner has to make sure that its decisions

can be realised at the surface level (the approach used in pipelined systems, sec­

tion 3.8) or i t receives feedback f rom the realiser (the approach used in interleaved

systems, section 3.8). The 'generation gap', therefore, often causes problems in

either efficiency (due to complex interactions between the planner and realiser) or

in overloading the responsibility of the planner (so i t has to know about linguistic

issues).

In the architecture described here, responsibility is shifted away f rom the plan­

ner to the plan-realiser. In the absence of detailed instructions, or in the case of

conflicting instructions, the plan-realiser can s t i l l , make decisions on its own and

should always produce a correct utterance. Of course, there is s t i l l no guarantee

that the plan-realiser w i l l be able to carry out all of the planner's requests. In this

case the plan-realiser w i l l have the 'f inal say' in which instructions w i l l override

others. This decision is based on the philosophical assumption that the commu­

nication is ul t imately controlled by what constructs and words are available in

surface language 2.

There are s t i l l however two alternatives which can be developed at the interface

either of which may be utilised once a more advanced planner is buil t : -

• Pipelined interface. The plan-realiser can t ry to follow as many of the plan­

ning instructions as possible. In the case of conflicting instructions i t wi l l

have default rules to determine which are more important .

• Feedback interface. The plan-realiser can consider alternative utterances,

each of which conform to different subsets of the planner's instructions. The

planner may then chose between these options according to the list of sat­

isfied constraints that the plan-realiser presents for each alternative. This

approach is different f rom the more tradit ional interleaved approach where

2Although with respect to NLE, the validity of the assumption is not important.

C h a p t e r 5: Solution: T h e Genera l Approach and the P lan-rea l i ser 144

after receiving information back from the realiser, the planner has to re-plan

the utterance.

5.2 Solution Detail : The Plan-realiser

The rest of this chapter w i l l provide further details about the plan-realiser. This

component of the L O L I T A generator has been the subject of the ma jo r i ty of the

work in this project and i t has been successfully implemented (see chapter 7 for

implementation details). I t is important to note that these sections do not aim

to present all the heuristics present in the plan-realiser: instead the overview of

a broad range of heuristics aims to give the reader a taste of the plan-realiser's

operation. Throughout the discussion relevant examples produced by the L O L I T A

generator wi l l be included in this font,

5.3 Generation of Language-isomorphic Concepts

Language-isomorphic (LI) concepts are those which can be 'adequately' (see sec­

t ion 5.4.1) described by a single lexical entry: they have a l ink in SemNet f rom

the conceptual level to the linguistic level. These links are obviously language de­

pendent: for the English generator described here, i t is the E n g l i s h - l ink which is

used (currently, the L O L I T A system also has Italian, Spanish, French and Chinese

concept-to-language links). Whether or not a concept is L I is also dependent on

language. For example, the concept for ' lawn' is L I in English (and w i l l have an

E n g l i s h - l ink to the lexical i tem ' lawn') but not in Italian (there is no exact word

in Italian for the concept of lawn), the lexical i tem 'molle ' (meaning 'disgustingly

soft ' in Italian) has no corresponding lexical i tem in English (thus the concept for

'molle ' is L I in Italian but not in English). I f a concept is not L I in the chosen

language then i t must be decomposed into concepts that are. This approach is in

contrast to work which assumes that concepts have a larger grain size than words

and have to decide between lexical items in order to realise a particular concept

C h a p t e r 5: Solution: T h e G e n e r a l Approach and the P lan-rea l i ser 145

(see sections 1.5.3 and 3.9). Lexicalisation is somewhat similar in an aspect of the

P E N M A N system explored by [Sondheimer et a/., 1989] where, " i f a concept does

not have an appropriate lexical association, the algorithm generates a phrase w i t h

a more general head term and restrictive modifiers." (Note that 'concept' here is

knowledge-base concept rather than the definition we adopt, see section 1.5.2).

In the case of exact synonyms, concepts may have a larger grain size than words

and can be linked to more than one lexical i tem in a particular language. This is

the case when the only difference in meaning is that of style 3 (for example, the only

difference between 'cab' and ' t ax i ' is fo rmal i ty) . In such a situation the generator

may chose between synonyms so as to conform to the imposed stylistic constraints

(via the realisation parameters) or randomly.

One current weakness of SemNet is the representation of concepts that can be

expressed using phrases rather than individual words. There are often many ways

of describing a concept by using synonymous phrases (for example, ' to die', ' to

pass away', ' to kick the bucket') but the linguistic level in the L O L I T A system is

largely restricted to single root lexical entries and therefore such phrases cannot be

expressed as easily as in lexicons such as Becker's phrasal lexicon [Becker, 1975] (see

section 3.6.6). This weakness comes f rom the fact that LOLITA's representation

is semantic rather than surface-linguistic based (for example, compared to the use

of a phrasal lexicon in P A U L I N E , section 3.12.1 and the approach used in M T M

based systems, section 3.12.4, where concentration is shifted to the linguistic level).

I t would be easy to modify LOLITA' s representation and generator to provide a

' temporary' solution which allows the use of such fixed phrases but as discussed

in section 3.6.6 there are also problems associated wi th this phrasal approach. A n

exception to the single lexical i tem restriction in L O L I T A is for compounded verbs

(which compound a verb wi th a preposition, for example 'go off ' or 'blow up ') .

3Some may argue that such differences in style manifest themselves on the conceptual level,
e.g., inherent style factors in a word influence their meaning. This approach is not adopted in
the LOLITA representation.

C h a p t e r 5: Solution: T h e Genera l Approach and the P lan-rea l i ser 146

5.4 Generation of Entities

This section w i l l describe how concepts representing entities are realised.

5.4.1 How can an Entity be Adequately Described?

The SemNet representation adopted in L O L I T A comprises a hierarchy of concepts

representing entities. Theoretically, each of these entity concepts is defined by the

whole of SemNet (section 1.5.3). However, i t is of course impractical and unneces­

sary to realise the whole semantic network each time an entity is to be expressed.

Instead, i t is necessary to generate an expression which defines a particular entity in

sufficient detail. For example, i f an expression for a particular motorbike is required

it would be usually insufficient to say 'a vehicle' (although this is true) whereas,

for example, something like 'the red motorbike which is in John's garage' could be

sufficient. I t is a diff icult problem to determine what is required to uniquely define

a enti ty as i t is dependent on context (e.g., i f the object has been mentioned before,

either explici t ly or implici t ly , then less description is usually required) as well as

the user model (what the reader can infer or already knows etc). This problem

while not being ignored completely has not been directly tackled in this work. I t is

assumed that i n future the planner w i l l be able to pass down instructions to help

the plan-realiser produce adequate entity descriptions. What is important in this

work, however, is that the plan-realiser must be able to cope correctly w i t h such

instructions and, when they are not available, be able to adopt reasonable default

heuristics.

A recent at tempt at generating adequate descriptions of entities is described by

ReiterfReiter, 1990] and concerns customising object descriptions according to the

extent of the users' domain and lexical knowledge. He formalises the process by

defining three constraints that a utterance must satisfy (based on Grice's maxims

[Grice, 1975]):-

« accuracy: the utterance should be t r u th fu l .

C h a p t e r 5: Solution: T h e Genera l Approach and the P lan-rea l i ser 147

• validity: the utterance should trigger the desired inferences in the hearer.

• freedom from false implicature: the utterance should not lead the hearer .

to draw incorrect conversational implicature.

Reiter illustrates these constraints wi th the example below:-

1. There is a shark in the water.

2. There is a dangerous fish in the water.

Reiter argues that on reading sentence (1), the knowledgeable hearer would not

just infer that a member of a certain fish species was present in the water but

would access her domain knowledge about sharks and recall that they were large,

carnivorous and possibly dangerous. I f , however, the reader did not have such

domain knowledge about sharks, she may decide, for example, that i t was s t i l l safe

to swim in the water. For such a naive hearer a more explicit utterance such as (2)

would be better. I f the hearer did know about sharks however, sentence (2) may

seem rather odd and in fact the hearer might draw the conversational implicature

that the animal in question was not a shark (because she would have thought that

i f the fish was a shark, the speaker would have said so expl ic i t ly) .

The default in the L O L I T A generator is to generate the most specific realisation

of the concept i f i t exists (i.e. i f i t is L I) . However, there are some instances

when, even though a certain way of expressing a concept is adequate, a paraphrase

may be more appropriate. As in Reiter's example i t might be better to generate

'dangerous fish' and not 'shark'. Reiter's algorithm makes the large assumption

on the availability of a very rich user model in which every concept is marked

as understood or not for a particular user: this would be easy to implement for

systems wi th a few concepts but would be diff icul t to scale up to larger systems.

The problem of deciding when to chose an alternative paraphrase for a concept

has not yet been tackled in this work. The decision wi l l ul t imately be a task which

is distributed between the planner and plan-realiser:-

C h a p t e r 5: Solution: T h e G e n e r a l Approach and the Plan-real i ser 148

• In some cases the planner may decide that a concept should not be described

directly (for example in the do_not_describe list in the story environment,

section 5.1.3).

o I f the plan-realiser is asked to express a concept which has no lexical reali­

sation in the surface language (i.e. i t is non LI) then i t wi l l have to find an

alternative expression (see section 5.4.2).

• In the general case, because the planner has no linguistic information (and

therefore does not know whether a concept is language isomorphic), i t cannot

„ „ i j : _ : I j _ ._ - . „ , \ T. . , ' .. .1 : .1 i

wi l l pass instructions to the plan-realiser which may indicate whether or not

to express a particular concept directly, but the f inal decision must be the

responsibility of the plan-realiser. I n the 'shark/dangerous fish' example, the

planner may pass the information that clarity is essential but that the listener

has a poor control of the particular surface language (in this case English)

then the plan-realiser may well use heuristics to decide to paraphrase 'shark'.

These aspects wi l l be the subject of further work but in the meantime the plan-

realiser must be able to create paraphrases once this decision has been assumed

(see section 6.8).

5.4.2 Realising Entity Concepts that are non L I

I f a concept node is language isomorphic, and therefore has a link to a lexical i tem,

then the plan-realiser can use that lexical i tem wi th the correct quantification. This

quantification wi l l be indicated by the rank control (see section 4.3.2) and range

f rom the universal of a set, through to a bounded existential number (explicit ly

numbered or not) of a set to an individual or named individual . I f a concept repre­

sents a set of entities then the root lexical i tem has to be pluralised. Morphological

rules produce standard pluralisations f rom the root of the word whereas words wi th

irregular plurals wi l l be present in the linguistic part of SemNet.

C h a p t e r 5: Solution: T h e G e n e r a l Approach and the P lan-rea l i ser 149

If , however, a concept node is non L I and therefore has no link to a, lexical i tem

in a particular language, then the plan-realiser has to search for an alternative

expression. I f the node has more than one universal then i t is an intersection of

universal sets: the plan-realiser must move across the universal l ink to f ind the

lexical items for each of these sets. Heuristics can then be used to order these

names (e.g., adjectives w i l l come before nouns). For example, a universal node

wi th universals of the node for the concept 'b ig ' and the node for the concept

'motorbikes' 4 w i l l be realised as 'big motorbikes'. This process may be recursive as

even the universals of a particular concept may not be L I , the plan-realiser w i l l have

to recursively decompose the concept unt i l L I concepts are reached. Addit ional ly,

an entity may be involved in an event which can be used to define that enti ty

more ful ly . This information may be described using a relative clause or a 'special'

relative clause. This is described further in sections 5.4.4 and 5.4.5.

Even i f an enti ty concept is L I , i t may be desirable to express i t differently

(see section 5.4.1 above). This can be achieved using abstract transformations (see

section 6.8).

5.4.3 Determiners and Quantifiers

I t is not usually sufficient to just realise a concept using a suitable lexical root item

wi th the required morphology: a determiner may also be required. This section

wi l l describe different determiners, and discuss how and when the plan-realiser may

use them.

The use of determiners is a complex linguistic issue and there are often cases

when more than one determiner could be correctly used for the same concept in a

particular utterance. As in other areas the plan-realiser does not necessarily have

to be able to generate every case: what is important is that a correct determiner

is always used. However, the more cases the plan-realiser can cope w i t h , the more

powerful i t w i l l be.

''i.e. a node which represents the intersection of the set of 'big things' and the set of
'motorbikes'

C h a p t e r 5: Solution: T h e G e n e r a l Approach and the Plan-rea l i ser 150

1. 'Men like cats': both subject and object roles have implic i t universal quan­
tification i.e, 'a l l men like all cats'.

2. 'Men drink liquids': the subject role has impl ic i t universal quantification
whereas the object has impl ic i t bounded existential quantification i.e., 'a l l
men drink some liquids',

3. 'Men die in wars': both subject and object roles have impl ic i t bounded
existential quantification i.e, 'some men die in some wars'.

Figure 5.2: Examples of impl ic i t quantification associated w i t h verbs

T h e determiner 'some'

When describing a set of entities which is not the universal set, i t is sometimes

necessary to explicit ly indicate this quantification by using the determiner 'some'.

Verbs have impl ic i t quantification rules that govern the 'default ' quantification

of their subject and object roles [Garigliano and Long, 1988] (see figure 5.2 for

examples). I f the quantification of the subject or object roles in the meaning

to be expressed is different f r o m the default quantifications associated w i t h the

verb (which w i l l be marked by a control in SemNet, see section 3.4) then the

quantifications wi l l have to be made explicit . Bounded existential sets can be

indicated explicitly using the quantifier 'some', universal sets can be indicated

using quantifiers such as 'every' or 'each'.

T h e definite article

Although there has been extensive linguistic work concerning the use of the definite

article (see for example [Kramsky, 1972]) there seems to be very l i t t l e in the N L G

literature which explicitly lists rules for generation of articles 5 .

There are at least six uses of the definite article in English (see [Garigliano,

1992]). These uses w i l l be discussed together w i th notes on how and when they

can be generated.

5Perhaps this is because many generators start from predicate logic which makes quantification
explicit.

C h a p t e r 5: Solution: T h e G e n e r a l Approach and the P lan-rea l i ser 151

• The definite article is used to refer to a unique element in the external world

or at least to a unique element in the common knowledge of the writer and

reader. For example, 'The Moon' 'the Government'. Concepts that are al­

ways unique w i l l be indicated as such wi th in the SemNet representation. For

context dependent 'uniqueness', i t w i l l be up to the planner to mark concepts

as being uniquely defined by the context.

e The definite article is used to show the uniqueness of a concept when i t

is defined in the sentence. For example "the motorbike that I keep in my

garage". When building relative clauses (see section 5.4.4) the plan realiser

can use the definite article 6 .

• The definite article is used to refer to something that has been introduced

before and is unique in the focus of discourse. For example, " / met a dog, the

dog bit me". This use of the definite article is linked to the use of anaphora: i f

the plan-realiser cannot refer to a previous entry w i t h a pronoun then i t can

use the definite article and an appropriate referring expression (see section

5.11).

• The definite article is used to refer to something that is impl ic i t ly unique in

the focus of discourse. For example " I went to a restaurant. The waitress "was

pret ty". For generation of this type of definite article, the planner w i l l have to

mark concepts as being in context. This can be done using 'scripts' [Schank

and Abelson, 1977] containing information about commonly occurring situa­

tions. In this example the 'restaurant script ' may contain information about

such things as 'the waitress', ' the b i l l ' , ' the table' and 'the menu': each of

these concepts may be marked as impl ic i t ly in context and the definite article

used to express them.

• The definite article is used as a determiner for universal sets. For example,

'The horse is a beautiful animal ' . This use can only be used for highly

6 N O T E : The SemNet representation is normalised so that concepts with the same properties
are grouped together. If, for example there were 'two motorbikes in the garage', there would be
a concept for 'the motorbikes that are in the garage' which would have two specific instances.

C h a p t e r 5: Solution: T h e G e n e r a l Approach and the P lan-rea l i ser 152

structured relations such as 'is_a' and 'has_part' relations (e.g., i t is unnatural

to say 'The horse does not feel well ') . Currently the plan-realiser only uses

the definite article in this way for realising 'is_a' relations.

• Finally, the definite article can be used in a situation where there is no 'script '

but i t is used to trigger one. For example T was looking for Russell. The office

was empty' . This complex use of the definite article has not been considered

in this work.

T h e indefinite article

I f a concept has a singular rank and the definite article (or another article such as

a possessive noun phrase, see section 5.4.5) cannot be used, then the plan realiser

must use the indefinite article. The plan-realiser wi l l use 'a' or 'an' depending on

whether the following noun phrase (not the head of the noun) starts w i th a vowel.

O t h e r determiners

In some cases, no article is required. This is the case for ' f ixed' or 'continuous'

concepts (marked w i t h a control, see section 4.3.2) such as ' ra in ' , ' f lour ' , 'sugar'

etc.

There is a variety of other determiners which could be used such as 'each',

'every', 'each and every', ' a l l ' , 'many', 'most' etc. Although these determiners are

not yet covered they could easily be incorporated. Their use w i l l be dependent on

the realisation parameters (e.g., the length and colour parameters could have an

affect on determiner choice), the type and required precision of the information to

be conveyed (e.g., i f the information is a defining clause then determiners such as

'each' and 'every' w i l l be common) and the grammar of the surface language (the

position of the determiner wi th in the sentence structure w i l l affect how natural a

determiner w i l l be).

C h a p t e r 5: Solution: T h e G e n e r a l Approach and the Plan-real i ser 153

5.4.4 Describing Entities with Relative Clauses

When producing an utterance to describe entities, relative clauses can be used

to describe events in which the entity is involved (i.e., events in which the entity

plays a role). As discussed in section 5.4.1, the problem of when a relative clause is

needed to adequately define a concept w i l l ul t imately be the job of the planner: the

planner's instructions about which events can be mentioned w i l l be passed down to

the plan-realiser. I t could be possible to include heuristics in the plan-realiser that,

in the absence of planning instructions, determine an ordering of possible relative

clauses according to how much they define the entity. This, however, would be an

example of bad integration (see section 1.2.6) as the plan-realiser would be t ry ing

to achieve something that is best left to another module (i.e the planner).

In the absence of instructions f r o m the planner, the default operation of the

plan-realiser is to generate relative clauses for entities depending on the informa­

t ion held i n the relevant part of the SemNet representation (the plan-realiser cannot

generate relative clauses when no information exists), the grammar and the value

of the rhy thm realisation parameter. The number of relative clauses allowed is

dictated by the grammar. In theory a grammar may allow an infini te amount of

perhaps nested relative clauses but in practice this would lead to very confusing

sentences. In practice i t is necessary to l im i t the total number and number of nested

clauses that are allowed. This is achieved using the rhy thm parameter which con­

strains the number and nesting of clauses to zero, one or two. I t has been found

(informally) that a greater number leads to complex and incomprehensible utter­

ances. I f an event has to be mentioned (indicated by the planning instructions),

but cannot be said as a relative clause (constrained by the rhy thm parameter) then

a separate sentence w i l l have to be constructed. The realisation of relative clause

events is very similar to the generation of normal event clauses (see section 5.5):

more details wi l l be left un t i l section 5.6. Relative clauses may be suppressed so

that they appear later in the utterance. This prevents 'front-loaded' sentences and

leads to more natural utterances. This wi l l be discussed further in section 5.6.

C h a p t e r 5: Solution: T h e Genera l Approach and the P lan-rea l i ser 154

5.4.5 Describing Entities with 'Special' Relative Clauses

Some events in which entities are involved cannot be expressed using normal relative

clauses. These events are often internal events and, as such, need special rules for

their realisation. Examples of these special clauses follow:-

• Possessive clauses.

I f an enti ty node (01) is the object of an event (E l) which has the action

'to own' or the internal action possrelate then the plan-realiser can use

the Saxon genitive to express the event. T h e internal ar.finn pnssrelate is

used when a Saxon genitive or possessive pronoun in the input has not been

completely disambiguated - although it may be equivalent to the ' to own'

action, i t may correspond to a different semantic relationship (for example

in the sentences 'The King's executioner', 'my executioner' etc). Even when

semantics is unable to further disambiguate the possrelate relation, however,

the realiser can use the Saxon genitive.

The plan-realiser w i l l generate the subject of E l (by recursively calling the

plan-realiser w i t h this node), followed by ' V followed by the realisation of

0 1 . Figure 5.3 shows a portion of the semantic network which represents

(and is realised by) 'John's motorbike'.

A n event w i th the action 'to own' can also be realised as a normal relative

clause (in the above example 'The motorbike that John owns1). This is not

the case for the possrelate action however.

• Noun co-locations.

There are a host of internal events that can be realised using a co-location of

nouns. For example:-

— is_part_of: I f an entity is the subject of an event w i t h the action

is_part_of then the object of that event can be used as a co-location

before the entity. For example 'car bomb', 'computer screen'.

C h a p t e r 5: Solution: T h e G e n e r a l Approach and the Plan-rea l i ser 155

* motorbike: 19868 *
u n i v e r s a l . :

motorbike - 19862 - rank: u n i v e r s a l
obj e c t _ o f :

event - 19871 - rank: u n i v e r s a l
L» \J ii. v- o _ •

motorbike - 19868 - rank: i n d i v i d u a l
e n g l i s h _ :

motorbike - 19868 - rank: i n d i v i d u a l

John's motorbike

* event: 19871 *
g e n e r a l i s a t i o n . :

ownership - 20946 - rank: u n i v e r s a l
s u b j e c t . :

john - 19845 - rank: named i n d i v i d u a l
a c t i o n . :

own - 16943 -
o b j e c t . :

motorbike - 19868 - rank: i n d i v i d u a l
time.:

p r e s e n t . - 20989 -

John owns a motorbike.

Figure 5.3: SemNet representation for 'John's motorbike'

C h a p t e r 5: Solution: T h e Genera l Approach and the P lan-rea l i ser 156

— controls-: Similarly, i f an entity is the subject of an event w i th the

action controls_ then the object of that event can be used as a co-

location before the entity. For example 'train driver', 'car mechanic'.

— is_in: I f an entity is the subject of an event w i t h the action is_in then

the location of that event can be used as a co-location before the entity.

For example 'town square'.

— relates. As for the case of Saxon genitives, the L O L I T A system is some­

times unable to fu l ly disambiguate noun co-locations. In these cases

SemNet uses internal events wi th the internal action relate_. Even

though the meaning of the input noun co-location has not been repre­

sented correctly, the plan-realiser may st i l l use a co-location to realise

such expressions.

— is_a clauses as adjectives: I f an entity is the subject of an event w i t h an

'isa' action and the object of that event is marked to be an at t r ibute

(wi th the type control) then the object of this event can be expressed as

an adjective instead of a normal relative clause (e.g.,'I called the warm

taxi' instead of ' / called the taxi that ruas warm').

5.4.6 Proper Nouns

Entities wi th a rank control of value N a m e d Ind iv idua l are realised as proper

nouns. As a default, the plan-realiser currently assumes that a named individual

is adequately specified using its name alone: no fur ther specification using relative

clauses is required. This is a s implifying assumption as the context w i l l have a

bearing on whether the name alone wi l l be sufficient. In the future i t w i l l be up to

the planning module to dictate whether further information w i l l be needed.

The plan-realiser uses heuristics to order any mult iple universals a named indi­

vidual concept has (see section 5.4.2) of the entity (e.g., surnames last, John Smith;

titles f i r s t , ' M r Jones'; locations last, Downing Street, Central Park etc.) and uses

capital letters.

C h a p t e r 5: Solution: T h e G e n e r a l Approach and the P lan-rea l i ser 157

5.5 Generation of Events

Once expressions for entities can be generated, the relationships between them

(expressed in SemNet as events) can be realised by l inking them together. The

different roles present in an event are realised as different clauses. English grammar

allows a variation in the order of these clauses: the only order that English grammar

dictates is that the subject comes before the verb (except in passive sentences, see

section 5.5.2).

The planner may provide instructions which l im i t the number of clauses to

be expressed or dictate clause order. I n the absence of such instructions, and

depending on the length and rhy thm realisation parameters, the plan-realiser w i l l

generate all clauses (although i t is unlikely that every clause w i l l be present in a

particular event) in the following order (where only the subject and verb clauses are

mandatory):- certainty, t ime, subject, verb, object, co-subject, origin, destination,

instrument, location and goal.

5.5.1 Generation of Actions

The most important part of an event is its action which is usually (but see section

5.7.2) realised as a verb. However, the approach to the generation of events is not

verb-driven as in other work (for example, the incremental consumption approach

to realising conceptual graphs [Nogier and Zock, 1992], section 3.12.2).

Generat ion of Non Language Isomorphic Act ions

As for the case of entities, not all action concepts wi l l be language isomorphic. I f

an action is not connected to a lexical entry in the chosen language then the plan-

realiser w i l l have to search for a paraphrase that is expressible. Unlike entities

however, actions themselves do not form a hierarchy. Actions only have a concep­

tualisation wi th in the framework of an event: i t is the definitions of prototypical

events which form a hierarchy (see section 4.3.2).

C h a p t e r 5: Solution: T h e G e n e r a l Approach and the P lan-rea l i ser 158

I f an action in a particular event is non L I , the plan-realiser w i l l have to first

find the prototypical event for that action and then find the first prototypical

event above that event that does have a L I action. The plan-realiser may use

this L I action but, in order to express the extra meaning conveyed by the original

action, the roles in the original prototypical event which differ f rom those in the L I

prototypical event must also be made explicit .

Sometimes, even i f an action is L I , i t may be desirable to paraphrase i t using

the verb f rom a higher action together w i t h restricting clauses. This is achieved

using an abstract transformation which w i l l be discussed further i n chapter 6.

S u b j e c t / V e r b agreement

Once a language isomorphic action has been found, morphology rules must be

applied so as to ensure the correct subject/verb agreement. The plan-realiser w i l l

find the grammatical number (e.g., first person singular, etc) of the subject of

the event and generate the correct verb endings. The rules for realising regular

verbs are incorporated wi th in the plan-realiser: irregular verb information is held

in SemNet (at the linguistic level).

Tenses and other aspects

Time and tense representation in the L O L I T A system is currently under develop­

ment [Short, forthcoming 1995]. However, by using either an explicit tense carried

in the t ime_slot of an event, or by using an algorithm to determine a correct tense

by looking at the relative times of events, the following tenses can currently be

realised: present (e.g. ,I see), future (e.g.,I will see), past (e.g.,I saw), fu ture perfect

(e.g.,I will have seen), and past perfect (e.g.,I had seen).

In addition the following aspects can be realised in combination wi th the above

tenses and each other: non_action (e.g.,I do not see), conditional (e.g.,I would see),

hypothetical (e.g.,I may see), inf ini t ive (e.g.,I went home in order to see my mother)

and continuous (e.g.,I am seeing).

C h a p t e r 5: Solution: T h e G e n e r a l Approach and the Plan-rea l i ser 159

In complex events (see section 5.7) i t may be necessary to override information

in the time_ slot and force an event to have a particular tense or aspect.

C l a u s e order

The action of the event may affect the presence and ordering of other clauses in

the event. Two examples follow:-

• Transitive and intransitive actions: A transitive action (marked w i t h the

relation_type control) requires an object clause to be realised whereas an

intransitive action does not. I f a transitive action is present in an event which

does not have an explicit object l ink, the object w i l l have to be inherited f rom

an higher event in the hierarchy.

o Dative and non-dative actions: I f the action is dative (marked w i t h the dative

control) then the plan-realiser can produce a dative grammatical construct:

the destination clause w i l l be realised before the object clause. The default is

that actions marked as dative w i l l be realised in a dative construct but this

may be overridden by the dative/non-dative realisation parameter. Example:-

'I gave the cab driver a big tip' (dative); ' / gave a big tip to the cab driver'

(non-dative).

5.5.2 Generating Event Roles

This section wi l l describe how some of the roles associated wi th events can be

realised. The algorithm to realise these roles is an example of procedural control

wi th in the plan-realiser. The plan-realiser w i l l only attempt to realise clauses

corresponding to roles if these roles are actually present in the input event. There

may be cases, however, when a clause is required for a role that is not explicit in

a particular event. In this case the role has to be inherited f rom an event higher

in the hierarchy. This is most common for the subject, action, and in the case

of transitive verbs, object roles. However, according to planning instructions this

inheritance could equally well apply to any of the other roles.

C h a p t e r 5: Solution: T h e G e n e r a l Approach and the Plan-real i ser 160

Some of the individual clauses are discussed below. Note that there may be

alternative methods of realising each clause (using different l inking phrases for

example) which could easily be added. The choice of which alternative to chose

could be made either randomly or set via the planning instructions (for whatever

reason).

• T ime clause (the time_ l ink) . The t ime slot, as well as determining the

required tense of the event, may refer to an explicit t ime or a t ime relationship

w i t h other events. For explicit times, simple heuristics are used to generate

tYip rnrrprt ImWiner nriraspg (fov eX?.m.T>le 'On M'oTiddV '. l.-ast T)if!ki'. 'At

9pm', I n 1995'etc)7. I f an event appears in a t ime slot, then depending on

whether the event is to be 'opened' or 'closed' (see section 5.7.2), the phrases

'when' or 'at the t ime of ' w i l l be used (e.g., 'When the bomb exploded, the taxi

was destroyed' ov 'At the time of the bomb explosion, the taxi was destroyed').

After the l inking phrase the plan-realiser is called recursively to generate the

noun or event phrase.

• Certainty clause (the certainty_ l i nk) . The certainty link can be added to

events by LOLITA' s analysis process (e.g., using inference methods such as

analogy [Long and Garigliano, 1994], or source control [Bokma and Garigliano,

1992]) and is a measure of LOLITA ' s acceptability of the t ru th of an event.

The plan-realiser uses phrases (dependent on their value of certainty, and the

planning instructions) such as 'there is a slight chance that..','it is pi^obable

that..'it is odds on that..' etc.

• Co-subject clause (co_subject_ l i nk) . Co-subjects are realised using ' w i t h '

and a recursive call to the plan-realiser. For example 'I went with John to

the Supermarket'. (See also abstract transformations, section 6.5.)

• Origin clause (origin_ l ink) . Origin clauses are realised using ' f r o m ' and a

recursive call to the plan-realiser. For example 'I received a kiss from Mary'.

7 When the time representation of LOLITA is improved these heuristics will be more precise
as more information about the 'kind of time' will be explicit in the semantic representation.

C h a p t e r 5: Solution: T h e G e n e r a l Approach and the Plan-rea l i ser 161

• Destination clause (dest inat ion- l ink) . Destination clauses are realised using
' to ' and a recursive call to the plan-realiser. For example '7 gave a kiss to
Mary'. I f the verb is dative however, the word ' t o ' can be omit ted and
the destination clause generated before the object. I f the destination has
already been mentioned and pronominalisation (see section 5.11) is allowed
then 'there' can be used.

• Instrument clause (ins trument- l ink) . I f the instrument is not an event then

i t can be realised using ' w i t h ' and a recursive call to the realiser. For example

'Brutus stabbed Caesar with a dagger'. (See also abstract transformations,

section 6.8.1.) I f the instrument is an event then i t can be realised using 'by '

w i t h a recursive call to the plan-realiser w i t h the action forced to be i n a

continuous tense. For example 'people can book rooms by calling the hotel'.

• Location clause (location- l ink) . Location clauses are produced by realis­

ing the location wi th the correct preposition. Section 5.10.3 w i l l describe

the algorithm for generating such locations f rom L O L I T A ' s representation

of positions. For example 'Bolzano Hotel is near a cathedral and in a town

centre'.

e Goal clause (goal- l ink) . I f the goal is not an event then i t can be realised

w i t h ' for ' and a recursive call to the plan-realiser. For example ' / robbed the

bank for money'. I f the goal is an event then 'so tha t ' and a recursive call

to the plan-realiser can be used. For example 'John married Jill so that his

children had a mother'. However, i f the subjects are the same for the event

being realised and the goal event the construct ' i n order' can be used and the

event generated wi th a forced infini t ive. For example 'John married Jill in

order to get her money'.

T h e Passive Voice

Although the default is to produce sentences in the active voice, the realiser also

has the capability to generate sentences in the passive voice. The choice of when

C h a p t e r 5: Solution: T h e G e n e r a l Approach and the Plan-rea l i ser 162

to do this wi l l be made by the planner in order to meet stylistic constraints, aid

coherence or in order to avoid the necessity of explicit ly describing the subject of

the sentence.

The passive voice can be generated if:-

• The action of the event is transitive.

e There is an explicit object associated wi th an event (the passive voice could

be used w i t h inherited objects but this would lead to unnatural sentences).

e 'The event is not marked as a command (see section 5.8.1).

e The action of the event is not a sentential verb which requires an 'open'

event (see section 5.7.2). For example 'reporters suggested that a bomb ex­

ploded in Whitehall' cannot be realised as 'A bomb exploded in Whitehal l

was suggested by reporters'.

A n event is realised in the passive voice by saying the object of the event followed

by the correct fo rm of the auxiliary verb ' to be' followed by the correct fo rm of the

verb. The subject may then also be realised (according to planning instructions)

using the l inking word 'by' . For examples: 'The dog was kicked by a postman', 'The

Sheriff was shot'.

5.6 Generation of Relative Clause Events

As described above (section 5.4.4) entities can be defined in more detail by using

relative clauses to describe events in which they are involved. As discussed in sec­

t ion 5.4.4 the problem of whether and when to express an event as a relative clause

w i l l depend on the planning instructions. I f these do not exist the plan-realiser

w i l l use simple default heuristics to l im i t the number of clauses and permitted

the number of levels of embedded clauses (depending on the rhy thm realisation

parameter).

C h a p t e r 5: Solution: T h e Genera l Approach and the P lan-rea l i ser 163

Another default adopted by the plan-realiser is to generate relative clauses when

I.hey are first encountered. This leads to front loaded sentences wi th relative clauses

being attached to entities near the beginning of the sentences. However, some

heuristics are included so that events that may be mentioned later in a sentence

can be suppressed. For example, i f a relative clause is to appear in the goal slot of

an event i t can be suppressed. This would lead, for example, to the sentence 'the

man married the girl in order to get her money' instead of the more awkward 'the

man who may get a girl's money married her in order to do this'.

When generating relative clauses, the plan-realiser must first generate a relative

pronoun according to the role the entity plays in the event to be expressed. Some

examples of these rules are:-

• I f the enti ty is the subject of the relative clause event then say ' tha t ' or i f the

entity is marked (by a control) as animate say 'who'. For example, 'The car

that won the race','The man who owned a motorbike'.

© I f the enti ty is the object of the relative clause event then say ' tha t ' or i f the

entity is marked (by a control) as animate say 'whom' . For example, 'The

car that you drive','The man whom Jane loves'.

• I f the enti ty is a position in the relative clause say the correct preposition

followed by 'which' followed by the rest of the event (see section 5.10.3 on

how prepositions are realised).

• I f the event is an 'is_a' event use 'of whom' (or 'of which') followed by the

subject of the 'is_a' event followed by 'are one' (i f the subject is singular)

or 'are members' (otherwise). For example, 'Mad men of whom Rasputin is

one.' or 'Companies that manage their hotels and of which Sogno is one.'

• Other examples:- for destinations say ' to which' (or ' to whom') ; for instru­

ments say 'w i th which'; for goals say 'for which' etc. In the absence of any

other rule to produce a pronoun, ' that ' is used.

Af ter the relative pronoun, the plan-realiser generates the relative clause using

C h a p t e r 5: Solution: T h e G e n e r a l Approach and the P lan-rea l i ser 164

similar rules to those that generate normal events. Some exceptions are:-

• The plan-realiser must keep careful track of the events that are currently being

described or that have already been described. This wi l l prevent information

being repeated or sentences of infini te length being produced. For example,

the plan-realiser wi l l not produce a sentence such as 'the cat that sat on the

mat on which the cat sat' as the embedded relative clause event (marked

in bold) w i l l not be described as i t is already being mentioned.

o The plan-realiser does not have to mention the entity that is being described

in the relative clause event in whatever role i t appears. For example: 'the cat

that sat on a mat' not 'the cat that a cat sat on a mat ' , 'the mouse that the

cat chased','the charity to which you gave some money'.

• However, i f the relative clause event is reflexive then a reflexive pronoun is

needed in the object slot: For example 'the cat that licked itself.

9 I f there is an embedded relative clause (i.e., a relative clause inside another)

then the original entity must be at least pro-nominalised in this embedded

clause. For example 'People who want to destroy things that they hate'.

5.7 Complex Events

Events in SemNet are not isolated and are often related to each other. Events

may be connected wi th causal or temporal links or can appear as roles in other

events. This section w i l l discuss these possibilities and how they are realised by

the plan-realiser.

5.7.1 Causal Links

Events which are the cause of, or are caused by other events are linked by the arcs

cause and its inverse cause_of. The realisation of such related events also depends

on the status of the events ; \ i question, particularly if they are hypothet ical events

C h a p t e r 5: Solution: T h e G e n e r a l Approach and the Plan-real i ser 165

meaning that they may have occurred in the past or might occur in the future.

Example heuristics are presented below:-

• Cause: to produce an N L expression for event E l which has cause E2 (i.e.,

E I is linked via cause_ to E2).

- I f E2 is hypothetical, the events can be generated using the structure

' E l i f E2' w i th E l forced to be conditional (unless E l is in the future

tense when this subsumes the conditional aspect) and E2 forced not to

be in the future tense (i.e., i f E2 is in the future tense then i t is realised

in the present). For example, 'You would like the motorbike if you knew

that Mary owned it', 'The pavement ivill get wet if it rains'.

- I f E2 is not hypothetical then the plan-realiser can use the construct ' E l

because E2'. For example, 'You like the motorbike because you know that

Mary owned it','The pavement will get wet because it will rain'.

- I f an event has more than one cause and planning instructions dictate

that only one should be made explicit (via, for example, a Short-Length

realisation parameter) but does not specify which one, then the plan-

realiser wi l l choose hypothetical causes in preference. This is because the

hypothetical causes w i l l usually convey the most important information.

For example, taking E l the hypothetical event 'I may go to London' w i th

cause E2 'I want to see the Queen' and the hypothetical cause E3 'there

may be a train'. I f no length restrictions are present the plan-realiser

wi l l be able to realise all the events w i th hypothetical causes before non-

hypothetical ones, i.e., 'I will go to London if there is a train because

] want to see the Queen'. I f , however, there are length restrictions but

the planner does not give any instructions as to which events should be

realised, 7 will go to London if there is a train'is prefered (as the default)

to 'I may go to London because I want to see the Queen'. The planner

wil l be able to override this default operation by indicating that the non-

hypothetical event should be expressed in preference to the hypothetical

one.

C h a p t e r 5: Solution: T h e G e n e r a l Approach and the P lan-rea l i ser 166

e Cause_of: to produce a N L expression for event E2 which has a cause .of E l :

— I f the event E2 is hypothetical then the plan-realiser uses the structure -

' i f E2 then E l ' w i th E2 forced not to be in the future tense and E l forced

to be conditional or future. For example, 'if it rains then the pavement

will get wet', 'if you knew that Mary owned the motorbike then you would

like it'.

— I f E2 is not hypothetical then the plan-realiser can use the construct 'E2

so E l ' . For example, 'it will rain so the pavement will get wet'.

5.7.2 Events within Events

In the frames and slots representation adopted by L O L I T A (SemNet), events can

appear in the role slots of other events (e.g., the object of an event could itself

be an event). Events, and specifically these embedded events, should sometimes

be expressed as a noun phrase (i.e, they should be kept 'closed', e.g., 'I saw the

explosion'), or sometimes as an event clause (i.e they should be 'opened' up, e.g.,

'/ saw the car bomb explode'). I t is not only the generation of the embedded event

that changes: different l inking phrases may also be required (e.g., in the case of

generating phrases for the t ime slot, section 5.5.2. For example, 'At the t ime of

the bomb explosion, ..' compared to W h e n the bomb exploded, ..').

The heuristics adopted to cope wi th this problem depend on the context of the

generation, properties of the action in the main 'surrounding' event and properties

of the embedded event itself:-

• The context: The context of the utterance can affect whether the default

is to 'open' or 'close' events. This is relevant to the realisation of events in

general rather than specifically to embedded events. I f the utterance is part

of a dialogue the default may be to keep events closed. For example, i f the

utterance is in answer to a question it would be more natural to express a

closed noun phrase (e.g., user: 'what did you see ?', L O L I T A : 'a bomb explo­

sion'). This default operation for a particular utterance wi l l be set either by

C h a p t e r 5: Solution: T h e G e n e r a l Approach and the P lan-rea l i ser 167

the planner using a realisation parameter, or by whatever application is call­

ing the plan-realiser (e.g., a particular slot filler in the template application,

section 4.4.5, may prefer events to be closed rather than open).

o The action of the main event. Events which contain events in the object

slot are signalled by the action being marked (using a control variable, sec­

tion 4.3.2) as sentential or infinitive.

There are three types of sentential verb (also distinguished w i t h controls 8):-

— Those that require the event objects they take to be open (e.g., ' to

know', ' to understand', ' to suggest', ' to th ink ' , ' to hear' in the sense of

understanding). For example 'I know thai? the man hit the girl', 'I heard

that the bomb exploded', 7 think that the man died'.

— Those that require the event objects they take to be closed (e.g., ' to

describe'). For example 7 described the hitting of the girl by the man',

7 described the bomb explosion', 7 described the man's death'.

— Those that are indifferent i f the event object they take is transitive but

require embedded intransitive events to be closed (e.g., ' to watch', to

smell ' , ' to see', ' to hear' in the physical sense). For example 7 watched

the man hit the girl', 7 watched the hitting of the girl by the man, 7

watched the bomb explosion'.

Inf ini t ive verbs require the object event to be open and the verb in the em­

bedded event to be forced to be inf ini t ive. For example, the verb ' to force':

'The policeman forced the crowd to go home'.

o The embedded events themselves w i l l sometimes be more naturally expressed

as a noun (closed) or an event (opened). This wi l l largely depend on the kind

and type of the roles in the event. For example, i f the event inherits most of

its roles f rom the prototypical event for that action, then a noun phrase is

usually prefered (e.g.,'the explosion'compared to 'explosive devices exploded').

8 I t is important to note that these controls are not generation specific but are required in
other areas of analysis (e.g., syntactic parsing).

9 Note the word 'that' is optional in this case

C h a p t e r 5: Solution: T h e G e n e r a l Approach and the Plan-rea l i ser 168

On the other hand i f an event contains explicit roles then i t is often more

natural to realise these using 'opened' events (e.g., 'In 1963, Oswald murdered

Kennedy in Dallas' is better than 'The 1963 murder of Kennedy by Oswald

in Dallas').

I f there is a conflict between what the verb of the main enclosing event requires

and the naturalness of the embedded event then the following heuristics are used:-

• I f the verb of the enclosing event requires an open event but the embedded

event would normally be closed then the euiueudeu event can be opened'

using the correct fo rm (i.e., tense and subject/verb agreement) of the verb 'to

happen'. For example, 'The reported suggested that the explosion happened'.

• I f the verb of the enclosing event has chosen a closed event but the embedded

event would normally be open then the realiser uses the continuous fo rm of

the embedded verb. For example, ' / described the man hitting the girl', 'I

watched the bomb exploding'.

5.7.3 Temporal Links

Events can be related to each other temporally. The plan-realiser must be able to

make such relations explicit in the utterances i t produces. A t the present t ime how­

ever, SemNet's representation of temporal relationships is being improved [Short,

forthcoming 1995]. For this reason related heuristics that are currently employed

by the plan-realiser wi l l not be discussed.

5.8 The Realisation of Commands, Questions and

Answers

Applications may require that commands, questions and answers are generated by

L O L I T A (for example the 'query' application, see section 4.4.2). These types of

C h a p t e r 5: Solution: T h e G e n e r a l Approach and the Plan-rea l i ser 169

events, which are distinguished using the status_ slot, require different realisation

rules.

5.8.1 Commands

Command events are represented using normal events w i th the subject being the

person L O L I T A is talking to (i.e. the user) and a status_ of command . These

are realised by simply omi t t ing the subject of the event. For example, 'give me a

kiss', 'take the rubbish outside'. According to realisation parameters the realiser

could make the utterance more polite by adding 'please' or 'could you ' etc.

5.8.2 Answers

Answers and, more generally, any response to an utterance (e.g., 'I do not under­

stand', 'I do not know') are stored as explicit events in SemNet. Among other

reasons, this is to allow the context of the dialogue to be kept for fu ture reference.

The node representing an utterance for an unknown answer, for example, would be

represented as an event w i t h L O L I T A as a subject (which wi l l be realised as T) ,

a non-action of ' to know' and the original question as the object (see section 5.8.3

below for discussion of embedded question realisation). A successful answer to

a question is represented using the internal action answer_of w i t h a s u b j e c t ,

which represents the answer, an object- which represents the original question

and a cause- which represents the evidence for the answer. There are a variety of

ways in which these answers can be realised. One of which is simply to generate

the subject followed by the cause_ events. For example, in answer to the question

'Do I own a vehicle ?', 'Yes, you own a big fast motorbike.'.

5.8.3 Questions

The plan-realiser must be able to produce utterances for various types of questions

as described below. The type of question is obtained using the status_ slot.

C h a p t e r 5: Solution: T h e G e n e r a l A p p r o a c h and the Plan-real i ser 170

'To be' or 'to do' questions

These questions are represented as normal events w i t h a s t a tus , of question. I f the

question is an 'is_a' question then the subject and the action are inverted (e.g., 7s

the cat black?'), otherwise an auxiliary word ('do', ' d id ' , ' w i l l ' etc. depending on

the required tense) is used before the normal realisation of the event w i t h the tense

forced to be present (e.g.,'Did the cat chase the mouse?').

wh-questions

' W h ' questions (i.e., 'who, what, where, when, why' etc) are represented using

normal events wi th the role to which the question relates marked (wi th a s ta tus ,

of Unknown) . Depending on the question type, they are realised using a wh-word,

followed by the correct auxiliary (i.e., ' to be', or ' to do', see above), followed by the

normal realisation of the event w i th the omission of the role which dictates the type

of question. For example, i f i t is the cause_ that is marked as being U n k n o w n ,

'why ' questions are realised (e.g., 'Why did John hit Jill ?); i f i t is the location that

is marked, 'Where' questions (e.g., 'Where is the black caf); i f i t is the subject then

'Wha t ' or 'Who ' (depending on the type of subject) is used (e.g., 'Who shot the

Sheriff ?'/What is the meaning of life?' etc.).

Recurs ive questions

Just as the rules for realising embedded events are different f rom those of normal

events (section 5.7.2), so embedded questions have to be realised differently f r o m

normal questions:-

• Embedded ' W h ' questions are realised in the same way as normal ' W h ' ques­

tions except the auxiliary ('do ' , ' d id ' , 'wi l l ' etc.) is not repeated. For example,

'Why did you ask why the man gave me a car?' and not 'Why did you ask

why did the man give me a car?'.

C h a p t e r 5: Solution: T h e G e n e r a l Approach and the P lan-rea l i ser 171

• For other (i.e., non-wh) embedded questions the l inking word ' i f has to be

used and the embedded question generated as a normal event. For example,

'why did you ask if the man gave me a car?' instead of 'why did you ask did

the man gave me a car?'.

5.9 Punctuation

There is l i t t l e i n the N L G literature concerning how utterances are realised w i t h

uiic cui'ieCb puiicbuiMixoii. i i i c LiKjuixtx.pitui-reajiser is aoic to cope wiwi i u i i suops,

question marks and exclamation marks (useful i n generating colour) at the end of

sentences. Similarly, when producing lists of more than two clauses (ranging f r o m

simple list of nouns to a list of events) the plan-realiser is able to realise appropriate

commas. More sophisticated punctuation, for example colons and semi-colons is

not yet covered. A simple post-processor is used to check the output i n order, for

example, to ensure that f u l l stops do not immediately follow other punctuation.

5.10 Generation of Special Portions of Semantic

Input

In order to represent complicated aspects such as positions, t ime and other special

relationships, SemNet adopts representations that cannot be realised in the normal

way. The plan-realiser has to have special rules and heuristics in order to cope wi th

these special SemNet constructs. The following subsections w i l l give examples.

5.10.1 Internal Events

Some events in SemNet are represented using events which are not directly express­

ible in any language. They usually arise when input text has not been fu l l y dis­

ambiguated and are distinguished by having an internal action role which does not

correspond to a verb in the surface language (such as is_a, relate. , poss_relate,

C h a p t e r 5: Solution: T h e G e n e r a l Approach and the P lan-rea l i ser 172

has .part , controls_ etc.). These internal events can sti l l be used to convey infor­

mation during generation. The most common way in which these internal events

are used is to generate special relative clauses (see section 5.4.5) such as possessive

and noun co-location expressions. Normally the internal events themselves are not

realised in surface language (when asked to produce an expression for these events

the plan-realiser responds wi th 'internal event*). Exceptions are:-

• Internal events w i th the actions is_a , exist_, and is_in_state can be ex­

pressed using the verb ' to be'. For example 'Rasputin is a mad man', 'The

fan is o f f . '

• Internal events w i th the action poss_relate which are usually used to realise

a Saxon genitive (see section 5.4.5) can also be realised using the verb 'to

have'. Although the exact relationship in these events is ambiguous the

verb 'to have' conveys the same ambiguity. For example 'The King has an

executioner', 'The man has two legs'.

• Internal events w i t h the action is J n are realised differently according to the

type of the event's subject. I f this subject is an event the verb ' to happen'

is used (e.g., 'The explosion happened near Downing Street'). I f the subject

is an entity then the verb ' to be' is used (e.g., 'The bomb was near Downing

Street).

5.10.2 Time Representation

As mentioned previously (sections 5.5.1 and 5.7.3) the representation of t ime and

the way in which events are temporally related is under development and has

not been fu l ly implemented. The SemNet representation of t ime w i l l incorporate

internal events which wi l l require special realisation rules. Because these aspects

are the subject of ongoing work [Short, forthcoming 1995] they wi l l not be discussed

further.

C h a p t e r 5: Solution: T h e Genera l Approach and the P lan-rea l i ser 173

5.10.3 Positions

The representation of positions is another area which requires special SemNet con­

structs and rules for their realisation. SemNet builds explicit position nodes [Short

and Garigliano, 1993] 1 0 which can be realised in isolation, (e.g., 'On the wall near

the ^replace','On a mat') as a relative clause (e.g., 'The picture on the wall that

John painted') or as a location role in an event (e.g., 'The picture is on the wall',

'the cat sat on a mat'). Position nodes (e.g., node 95999 in figure 5.4, representing

'on a mat *) are the subjects of special internal events which have the internal-action

refer_Lo_ioc (event node 96000 in figure 5.4). i h e object associated wi th the po­

sition (in this example 'a mat ') is held in the object slot of the event and the

relative position of this object is held in special slots which indicate the range,

the direction and the horizontal and lateral positioning between the position and

the object wi th which i t is referenced. The realiser must use the values of these

measurements to generate an appropriate preposition: each combination of values

has a list of prepositions which can be used to express that combination (examples

of prepositions the SemNet can represent and the generator realise are 'between,

i n , on, upon, in front of, on the back of, on top of, around, near, next to, beside,

outside, by, over, under, behind, far below, far above' etc). The generator can also

realise more complex positions represented by SemNet such as 'Roberto placed a

stone every 100 metres'. For more details see Short and Garigliano [1993].

5.11 Generation of Anaphora and Referring Ex­

pressions

When an entity has already been mentioned either explicit ly or impl ic i t ly (i.e., i t

is in context, for example due to a 'script ') the rules for producing an adequate

description (see section 5.4.1) w i l l be different. Sometimes a simple pronoun wi l l

suffice and in other cases a shorter noun phrase wi l l be required. There has been a

1 0 This allows LOLITA to reason about positions explicitly

C h a p t e r 5: Solution: T h e G e n e r a l Approach and the P lan-rea l i ser 174

* event: 96001 *
u n i v e r s a l . :

event - 7688 - rank: u n i v e r s a l - d e f i n i t i o n ,
subj e c t _ :

c a t - 95993 - rank: i n d i v i d u a l - suspended,
a c t i o n . :

s i t - 27678 -
l o c a t i o n . :

p o s i t i o n . - 95999 - rank: i n d i v i d u a l - suspended,
time.:

p a s t . - 20991 -
**
The c a t s a t on a mat
**

* p o s i t i o n . : 95999 *
u n i v e r s a l . :

p o s i t i o n . - 11456 - rank: u n i v e r s a l
s t a t u s . :

suspended. - 29025 -
subj e c t . o f :

event - 96000 - rank: i n d i v i d u a l - suspended,
l o c a t i o n . o f :

event - 96001 - rank: i n d i v i d u a l - suspended.

On a mat.

* event: 96000 *
u n i v e r s a l . :

event - 7688 - rank: u n i v e r s a l - d e f i n i t i o n ,
subj e c t . :

p o s i t i o n . - 95999 - rank: i n d i v i d u a l - suspended,
a c t i o n . :

r e f e r . t o . l o c - 11497 -
obj e c t . :

mat - 95998 - rank: i n d i v i d u a l - suspended,
s t a t u s . :

suspended. - 29025 -
range.:

r a n g e . l . l - 11472 -

I n t e r n a l event.

Figure 5.4: An Example of the SemNet representation of positions

C h a p t e r 5: Solution: T h e G e n e r a l Approach and the Plan-real i ser 175

great deal of work on handling anaphora (e.g., an overview [Hirst, 1981], referring

expressions [Dale, 1990], the use of focus [Grosz, 1977]): however, this has largely

concentrated on anaphora used for interpretation rather than generation. In gener­

ation, there is always the option of generating f u l l references to events and entities

without the use of anaphora and pronominalisation. This would lead to unnatural

text, but i t illustrates that the use of anaphora in generation is different to that

in interpretation: in the latter case all possible uses of anaphora and pronominal­

isation w i l l have to be interpreted while a generator can use anaphora only i f the

reader w i l l be able to decipher i t unambiguously.

Complex handling of anaphora at the paragraph level using context, focus,

scripts etc. wi l l require the help of the planner. However, in the absence of these

instructions the plan-realiser must provide its own default heuristics in order to

produce anaphora at the 'few' sentence level. The plan-realiser keeps a record (in

the form of a stack) of all the entities and events to which i t has referred (the

planner may also place entities on this stack representing entities and events in

context). I f an entity is to be referred to again then:-

• I f the entity is the only one of its pronoun class (i.e., singular male 'he',

singular female 'her', singular un-sexed ' i t ' , event ' this ' and plural ' they') on

the referred-to stack, then i t can be pronominalised.

• I f there is more than one enti ty on the stack wi th the same pronoun class

then a pronoun cannot be used. Instead a shortened noun phrase is realised.

A t the moment the plan-realiser simply generates the head of the original

noun phrase.

These heuristics are very oversimplified and can lead to ambiguous utterances

and utterances where i t would be more natural to use pronouns. For example, 'The

red car and the blue car raced. The blue car won' would be better than 'The red

car and the blue car raced. The car won', and 'The dog chased the cat. I t barked'

would be better than 'The dog chased the cat. The dog barked'.

However, the simple heuristics are usually sufficient at this level and it would

C h a p t e r 5: Solution: T h e Genera l Approach and the P lan-rea l i ser 176

be unwise to include more involved heuristics in the plan-realiser when they would

be better left to the planner (see section on integration 1.2.6).

5.12 Conclusion

This chapter has discussed the architecture of the L O L I T A N L generator and given

details of some of the heuristics involved in the plan-realiser component. The

implementation of these heuristics, together w i th many more that have not been

detailed have resulted in a pian-reaiiser component that can successfully produce

N L utterances f rom the SemNet representation.

Chapter 7 w i l l discuss some of the issues involved in the implementation of the

plan-realiser and the solution w i l l be evaluated wi th respect to the project aims in

chapter 8.

Chapter 6

The Solution: Abstract

Transformations

Chapter 5 detailed the architecture of the solution to N L G adopted in the L O L I T A

system. I t described the organisation of the planner and plan-realiser components

before detailing aspects of the plan-realiser. This chapter wi l l discuss another

aspect of the solution: the use of Abstract Transformations. These transformations

act on the SemNet input before i t is passed to the plan-realiser. They can be

invoked (for example, by planning instructions) between sentences in an utterance

or between clauses in a sentence, to alter the SemNet input to the realiser and

therefore change the utterance produced. Abstract transformations move f r o m

normal forms of SemNet representation to alternative forms which represent the

same or very similar meaning. The application of such transformations leads to

the abili ty to express events in different ways. Besides being more natural and

'human-like' abstract transformations can help satisfy stylistic constraints.

The abili ty to produce such paraphrases could be incorporated in the plan-

realiser module itself (for example, by adding heuristics to search the SemNet

input differently). However, abstracting these transformations away f rom the plan-

realiser takes away some of the responsibility f rom the plan-realiser and leads to a

more modularised and better integrated solution (section 1.2.6).

C h a p t e r 6: T h e Solution: Abs trac t Transformat ions 178

The normal forms used in LOLITA's SemNet representation are not as re­

stricted as other normalised forms (for example Schank's C D T , see section 3.12.1,

where a very restricted set of about twenty pr imi t ive actions are employed). How­

ever, as there are many ways of expressing an event without significantly changing

the meaning, i t is advantageous to have a normal fo rm f r o m which the generator

can produce more than one utterance. This work, although approached f rom a gen­

eration viewpoint, is also applicable to N L understanding when normalisation (see

section 4.3.1) concerns mapping different SemNet representations onto a normal

fo rm.

This chapter describes various abstract transformations, w i th discussions on

why particular normal forms are chosen, the rules which allow us to move away

f r o m these normal forms and what effect the transform has on the f inal utterance

(apart f r o m the obvious reason that variations are more natural). Before discussing

these abstract transformations, a summary of other relevant work in this area is

provided.

6.1 Other Work at this Level

Various other researchers have included a similar level of manipulation in their

solutions to generation.

T h e C Y C Pro jec t

Work by [Barnett and Mani , 1990] on generation in the MCC (Microelectronics

and Computer Technology Corporation) 'Large Common Sense Knowledge Base'

project (CYC) includes a manipulation process called goal revision which involves

the modification of semantic representation before i t is realised. Although other

aspects of generation are very different f rom those adopted in L O L I T A (CYC for

example is predicate calculus based and its generation uses a unification grammar,

see section 3.6.2), goal revision is similar to the use of abstract transformations.

C h a p t e r 6: T h e Solution: Abs trac t Transformat ions 179

Barnett also recognises that such a process should allow for bi-directionality

to allow goal revision to be used in both interpretation and generation. Whereas

the abstract transformations described in this chapter concentrate on generation

aspects, Barnett's work has concentrated on interpretation. Moreover, the type

of transformations Barnett considers are different (and more restricted) to those

presented in this chapter. Barnett concentrates on problems of noun compounding

(e.g., the representation of a 'Lisp machine') and that of metonymy (for example

' I read Shakespeare'). Noun co-location in L O L I T A is represented by different

relate actions (see section 5.4.5) which are generated as special relative clauses.

L O L I T A does not yet consider figurative methods such as metonymy. However such

metonymy could be achieved using an abstract transformation which, for example,

allows the substitution of an artist's (e.g., composer, painter, author etc.) work by

the artist's name (e.g., ' I like listening to Beethoven', ' I studied Shakespeare').

Barnett argues that other researchers solve some of these problems (i.e. noun

compounding, metonymy, use of de-lexical verbs) by having separate entries in the

lexicon and that this would cause the problem of lexical explosion and the inabi l i ty

to cope w i t h novel cases. This argument is specially valid for large-scale N L E

systems where i t would be infeasible to contain lexical entries for every possible

noun compound, use of metonymy, or de-lexical structure.

T h e K I N G Generator

Many abstract transformations rely on the depth of knowledge about concepts

held in SemNet. Jacobs also advocates such a 'knowledge intensive' approach in

his K I N G generator [Jacobs, 1987] (see section 3.12.5). Jacobs' paper, however,

concentrates on how this knowledge is represented rather than how i t is used to

generate variation. His intensive knowledge about different events allow them to be

expressed or ' VIE WED' f r om different angles. Section 3.12.5 has shown K I N G ' s

representation of commercial transfer events (i.e. the representation of 'buying '

and 'selling' etc). Cline's KALOS system [Cline, 1994] (see section 3.12.3) also

advocates such a knowledge intensive representation but this is used in a final

C h a p t e r 6: T h e Solution: Abs trac t Transformat ions 180

I like hot curries —» I do not dislike hot curries
(or:- I really do not dislike hot curries. 1 do not dislike curries at all.)

Figure 6.1: Example of antonym substitution abstract transformation

revision process rather than transformations that occur before realisation.

M T M

The use of lexical functions in systems which are based on M T M (see section 3.12.4)

also lead to similar paraphrases. Lexical functions, as their name implies, work

purely on the lexical or surface level: even semantic information such as the 'ac­

tors' in particular events are stored as lexemes. Furthermore, the use of lexical

functions st i l l require the lexical information to be made explicit for every case.

One lexical function (Operl), for example, returns a de-lexical structure for a par­

ticular verb (see 3.12.4) but the possible de-lexical structures for each verb must

st i l l be explicitly stored in the 'Explanatory Combinatorial Dictionary' (ECD) .

Again this information rich lexicon may work well for small systems wi th a l imi ted

vocabulary but would lead to lexical explosion for larger-scale systems.

6.2 Substitution of an Antonym Action

The first type of abstract transformation to be considered can be performed when

the action concept of an event is deemed by the semantics to have an antonym. The

action l ink in such an event can be negated (i.e. actions made into non-actions and

vice-versa) and the action replaced by its antonym (see figure 6.1 for an example).

The normalised form has been chosen to be events which have actions rather than

non-actions. The effect of the generator choosing to perform such a transformation

is often to under-exaggerate a particular event by negating its opposite. I f however,

mode modifiers such as 'at a l l ' or 'really' are added to the negation of the antonym,

the effect is the opposite and events can be exaggerated (Hovy [Hovy, 1988b] also

considers ' imput ing ' affect or bias on text in this manner).

C h a p t e r 6: T h e Solution: Abs trac t Transformat ions 181

Copula verbs:- to be, to feel, to appear, to become, to look, to seem, to smell , to
taste etc
Kennedy is dead —> Kennedy is not alive
Velvet feels smooth Velvet does not feel rough
(or:- Velvet does not feel at all rough)

Figure 6.2: Examples of copula verbs and copula action abstract transforms

Some confusion may arise when i t is unclear i f an antonym pair forms a par t i t ion

of all possible states. I t could be argued, for example, that between the areas of

'dislike' and ' l ike ' is an area of neutrality. Whether this transformation preserves .

mean in fit wi l l depend on the semantics: if a complete p a r t i t i o n is deemed to exist

then this abstract transformation may always be applied. I f not, the decision on

whether to perform such a transform w i l l depend on the level of precision required.

6.3 Transformations on Copula Actions

Another very similar transformation can be carried out on events wi th copula

actions. Copula actions are those which take complements, the most common

example being the verb ' to be'. Other examples of copula verbs are give in figure 6.2,

together w i t h examples of transformations of this type. I f the complement these

actions take (which in SemNet are held in the object slot) have an antonym, then

the complement can be replaced by this antonym and the action of the event

negated (i.e. actions made into non-actions and vice-versa). As previously stated,

the normalised SemNet wi l l have events wi th actions rather than non-actions and

the effect of performing this type of transformation can again be under-exaggeration

or, w i t h the use of modifiers, exaggeration. The problem of having neutral states

(as discussed in section 6.2, above) is also applicable here.

6.4 Transformations on Complemented Verb Pairs

Some actions which describe a transfer f rom an origin or to a destination have a

complement which can be used to describe the same event in the different (i.e.

C h a p t e r 6: T h e Solution: Abs trac t Transformat ions 182

(1) John bought a car f r o m the salesman —> The salesman sold a car to John.
(2) I gave the dog a bone —> The dog received a. bone from me
(3) * I gave the dog a bone —> The dog took a bone f r o m me
(4) * The vicar gave five pounds to charity —v The charity took five pounds f r o m
the vicar

Event 1 Event 2

Subject..: Subjectj

John
tion

> se
object

a car

John

the salesman

action :

buy
object_:

a car
originj

the salesman

(other roles) (other roles)

Figure 6.3: Examples of complemented action pair transformations

C h a p t e r 6: T h e Solution: Abs trac t Transformat ions 183

opposite) direction. An abstract transformation can be performed by changing the

action (or non-action) of an event to its complement and swapping the various role

arcs in the following ways:-

• I f the original event describes a transfer f r o m an origin role, make this origin

the subject role and change the original subject role to a destination role (see

figure 6.3).

a I f the original event describes a transfer to a destination role, make this

destination the subject role and change the original subject to a origin role.

I t has been chosen (arbitrari ly) to have those events w i t h origin links as the nor­

mal fo rm held in SemNet. This means that the generator needs only to consider

transformations in one direction. Apart f rom creating variety in its output, the

generator may chose to make such a transform in order to stress the original origin

(or give less stress to the subject).

Examples of action complement pairs (which are linked by a complement ,

l ink) are ' to buy ' / ' to sell' and 'to give ' / ' to receive'. Examples of different sentences

resulting f r o m a complement pair transform are given in figure 6.3.

This transformation is only strictly valid i f the ' f ami ly ' (marked by a control,

see section 4.3.2) of the subject and destination or origin roles are of a compatible

type. Otherwise the meaning of the transformed sentence may be slightly different

or even incorrect (for example ' / bought some food from the supermarket' —>• 'The

supermarket sold me some food7). Again, a precision flag set by the planner wi l l

indicate i f these less precise transformations are allowed. In some instances i t

would seem that two actions form a complement pair when, in fact, they do not.

For example, i t may seem that the pair ' to give ' / ' to take' in example (3) would be

more natural than ' to give ' / ' to receive' in example (2). However ' to take' usually

implies that its subject has an active part in obtaining the object. So although,

example (3) seems a valid abstract transform, example (4) shows that these actions

do not form a strict complement pair.

C h a p t e r 6: T h e Solution: Abs trac t Transformations 184

John, Mary and Sue went to the supermarket —»
John and Mary went to the supermarket wi th Sue —>
John went to the supermarket wi th Sue and Mary

Figure 6.4: Example of a multi-subject transformation

6.5 Transformations on Multi-subject Events

When an event has more than one subject, any combination of these subjects may

be expressed as a normal subject or as a co-subject. The plan-realiser normally

(i.e. in the active voice, see section 5.5.2) generates subjects beiore the verb oi an

event and the co-subjects after the verb (using the word ' w i t h ' , see section 5.5.2).

Thus by changing some of the subject links to co-subject links, different emphasis

can be placed on each of the original subject roles. The only constraint on the

combinations of subjects which can be transformed in this way is that at least one

original subject must remain as a subject (so the resulting event does not have an

empty subject). The normalised version of the semantic network contains mult iple

subjects rather than co-subjects: thus the transform must only decide which of

these subjects to make into co-subjects rather than vice-versa. See figure 6.4 for

an example of a multi-subject transformation.

6.6 'Give' Related Transformations

A further group of transformations can be applied to events which can be expressed

as the transfer of an object or of an event. In these events the object or event which

has been transferred can be mentioned explicitly, or be inferred by the action (see

figure 6.5 for examples).

Unlike the other abstract transformations described, there is not one universal

normal form for these type of events; the normal form for a particular event depends

on the object or event which is transferred. I f this object or event only has a

meaning when bound to this particular event, then the normal form is that which

impl ic i t ly describes the object or event in the action. This is because a separate

C h a p t e r 6: T h e Solution: Abs trac t Transformat ions 185

(1) John kissed Mary (NF) —> John gave Mary a kiss
(2) John punched Mary (NF) —>• John gave Mary a punch
(3) John beat Mary (NF) —> John gave Mary a beating
(4) John promised Mary —> John gave Mary a promise (NF)
(5) John lied to Mary John told Mary a lie (NF)
(6) * John poisoned Mary —> John gave Mary some poison
(7) John poisoned Mary —> John administered poison to Mary (NF)

Figure 6.5: Examples of 'give' related transformations

node representing the transferred object or event is not required in the SemNet

representation. I f however an object is transferred which can be referred to and

have a meaning independent of the original event then i t must have a separate

node in the semantic network. The normal forms of the example sentences in

figure 6.5 are marked wi th (NF) . In the first three pairs of sentences, 'the kiss',

'the punch' and 'the beating' that 'John gave to Mary ' are bound uniquely to these

events whereas 'the promise' and 'the lie ' can be conceptualised without the original

events (e.g., 'the promise' or 'the lie ' could be described as another event). The last

example is of interest as although the sentence 'John gave Mary some poison' seems

to f i t into the pattern described above, the semantics must differentiate between

actual poisoning events and events which involve the transfer of poison (e.g., 'John

gave Mary some rat poison'). To conceptualise an actual poisoning, therefore, the

semantics must make explicit the fact that poison is administered. This normal

fo rm may be then generated as (the more natural) 'John poisoned Mary ' . Jacobs

[Jacobs, 1987] (see section 3.12.5 and 6.1) also describes how similar 'give' variations

can arise in his K I N G system (the example he uses is ' to give a hug'). However a

special entry in KING's representation for the concept of 'hug giving' is required

and thus the problem of lexical explosion and scale-up is not really solved.

Because there are two alternative normal forms, there are two kinds of transfor­

mation which work in opposite directions f r o m the normal form to the alternative

fo rm. The algorithm for one of these transformations, where the transferred object

is not explicit in SemNet, is discussed in the next subsection. The algorithm which

works in the opposite direction is similar.

C h a p t e r 6: T h e Solution: Abs trac t Transformations 186

6.6.1 Making an Implicit Object Explicit

The transformation can take place i f the following conditions exist:-

• The event(E) has an action that can be represented wi th a transitive verb.

• The prototypical event(PE) in which this action appears either has a sub-

event(SE) 1 (e.g., in figure 6.5, example (1), the node representing 'kisses') or

is identified by a word ending in ' ing ' (e.g., 'beating' in (3)) .

The transformation steps are as foiiows:-

e Make an entity node(N) wi th its universal being either the sub-event(SE) of

the prototypical event(PE) (e.g., 'a kiss') or the prototypical event itself (e.g.,

'a beating').

a Change the action of the event to a 'give' related action (see below). .

• Make a destination l ink in the original event to the original object of that

event.

• Change the object of the original event to the newly created node (N) .

Examples of other actions which can be used in similar ways are:- ' to administer ' , ' to

apply' , ' to deal', 'to deliver', ' to hand over' etc.

Further variations can be achieved i f the original event has m o d e , roles which

can be expressed as adverbs. In this case, the information contained in this role

can either be left as an adverb to the new 'give related' verb (i.e. left as a mode

link in the new event) or made into an adjective of the explicit noun (by making it

a universal of the new node in the semantic network). For example, the semantics

representing the sentence 'John quickly kissed Mary ' can be transformed into either

'John quickly gave Mary a kiss' or 'John gave Mary a quick kiss'.

^ote: a sub-event link is required in SemNet for other areas of processing: it does not appear
specifically for this kind of abstract transformation

C h a p t e r 6: T h e Solution: Abs trac t Transformat ions 187

6.7 Other De-lexical Transformations

'To give' is an example of a verb which can be used in a de-lexical construct. De-

lexical verbs are those that add very l i t t l e meaning in themselves so that most of

the meaning is given by the noun which is the object of the verb. The funct ion

of de-lexical verbs is therefore to provide a verb for the structure and very l i t t l e

else; there is often an equivalent verb which can be used instead. Other examples

of de-lexical verbs are ' to have' (e.g., ' to have a bath ') , ' to take' (e.g., ' to take

a shower'), ' to do' (e.g., ' to do some shopping') and ' to make' (e.g., ' to make a

decision'). Although the number of these verbs are small, they contain some of

the most common verbs in English and de-lexical structures are very abundant in

everyday English.

Actions used in their de-lexical capacity w i l l never appear in SemNet when

there is an alternative. That is, the SemNet normal fo rm is the f o r m which does

not contain actions which are realised using de-lexical verbs 2. I t is important to

note, however, that de-lexical verbs always have another meaning which is not de-

lexical (e.g., 'have' in the sense of ownership, 'make' in the sense of construct or

produce). For example, in the phrase 'to make a noise' the verb ' to make' does not

fa l l in the adopted definition of de-lexical verb so i t can appear as a normal fo rm

in SemNet.

Some phrases which use de-lexical verbs have adjectives attached to the object

phrase which cannot be used as adverbs (e.g., 'Mary had a hot shower'). In these

cases however, there is always an alternative way of semantically conceptualising

the event i n normal form without the use of de-lexical action (in this case 'Mary

showered wi th hot water'). In fact, any portion of semantics which uses a de-lexical

action w i l l not be sufficient to conceptualise the required meaning.

Other approaches to the handling of the interpretation or generation of de-

2However the normalisation process in LOLITA is not yet good enough to convert all de-
lexical structures into a normal form. This work on generation of de-lexical verbs aims to be
bi-directional and thus will be beneficial to the normalisation process. In the meantime, the
realiser can cope with de-lexical actions in the SemNet input by treating them as normal events.

C h a p t e r 6: T h e Solution: Abs trac t Transformat ions 188

lexical verbs involve either incorporating de-lexical structures in the lexicon (e.g.,

the phrase "to have a walk' is present in the lexicon as well as ' to walk') or mark­

ing each verb as suitable for specific de-lexical structures. The first solution w i l l

quickly lead to lexical explosion as the scale of a system is increased; the alterna­

tive 'marking ' process w i l l be laborious and unable to deal w i t h novel or previously

unseen constructs. The methods of Natural Language Engineering (section 1.2.9)

advocate the use of rules wherever possible. No matter how ad-hoc and contrived

these rules may appear, i f they are applicable to a wide range of cases then they

are valid. Section 6.7.3 w i l l provide an informal cost-benefit analysis to support

such a rule based approach compared to that of explici t ly marking individual verbs

according to the de-lexical structures they can use.

Apart f rom creating stylistic utterances or producing variations, i t appears that

de-lexical verbs are often used either to single out a specific event or to emphasise

that the subject is taking part in the event. Using this hypothesis we can find

rules which allow or disallow the use of de-lexical verbs in different cases. The

next subsections discuss possible abstract transformations for the de-lexical verbs

'to have' and ' to make' and how the above hypothesis is used to govern when

they can be used. Rules for other de-lexical constructs are in various stages of

development and implementation and are a possible subject of fur ther research.

In the meantime however, the temporary solution of explici t ly marking verbs wi th

possible de-lexical structures could be utilised (especially i f an application is to

work in a l imited domain and requires a small lexicon).

6.7.1 Example of De-lexical Rules for 'to have'

The verb 'to have' is perhaps the most commonly used de-lexical verb. Its uses

can be categorised into two classes depending on whether the action i t replaces is

intransitive or transitive: only the former case is discussed here.

I f the event to be expressed has an intransitive action and the prototypical event

for the action is language isomorphic (see section 1.5.3) then the de-lexical verb 'to

have' can often be used. The 'naturalness' of the resulting utterance wi l l depend

C h a p t e r 6: T h e Solution: Abstrac t Transformat ions 189

(1) 1 walked to the shops —> I had a walk to the shops
(2) I showered —y I had a shower
(3) I laughed at the clown -» I had a laugh at the clown
(4) John died —> John had a death (*)
(5) The prisoner escaped f rom gaol —> The prisoner had an escape f rom gaol (*)
(6) The prisoner escaped f rom gaol luckily —» The prisoner had a lucky escape
f r o m gaol

Figure 6.6: Examples of natural and unnatural uses of the de-lexical verb ' to have'
w i t h intransitive verbs

on the repeatability of the event 3. I f the event is highly repeatable (for example,

strolls, baths, showers, walks, laughs etc) then the use of the de-lexical verb is

common. Unrepeatable events or those which are usually unrepeatable and 'one-

off ' lead to very unnatural de-lexical phrases (for example, 'deaths' , 'weddings',

'bir ths ' , 'escapes' etc.) and should not normally transformed in this way. The

hypothesis above claims that one use of a de-lexical verb is to single out specific

events. I f however an event is unique and un-repeatable i t is not necessary to single

i t out and the use of the de-lexical construct is not natural.

There are two exceptions to this general rule. First ly the semantics may indi­

cate that a normally un-repeatable event is repeatable in the current context (for

example an escapologist may talk about 'having escapes'). Secondly, i f the event

is modified w i t h an adjective then natural expressions such as ' to have a lucky

escape', ' to have a gruesome death' w i l l result. These constructs are in fact often

more natural than their corresponding non-de-lexical forms (e.g., ' I escaped luck i ly '

or ' I escaped wi th luck') . Examples of the ' to have' de-lexical transform are given

in figure 6.6.

3 The repeatability of an event will be marked using a control on the prototypical event. Again
this control is not added specifically for this type of transform: it is needed for other areas of the
L O L I T A system

C h a p t e r 6: T h e Solution: A b s t r a c t Transformat ions 190

(1) Scott attempted to reach the South Pole —>• Scott made an attempt to reach
the South Pole
(2) Columbus claimed that the Earth was a globe —> Columbus made the claim
that the Earth was a globe
(3) Jack arranged to meet J i l l at the top of the h i l l —¥ Jack made an arrangement
to meet J i l l at the top of the h i l l
(4) I thought that the woman was beautiful -> I made a thought that the woman
was beautiful (*)
(5) I did not believe that ghosts existed before I saw one! —>• I did not make a
belief that ghosts existed before I saw one ! (*)

Figure 6.7: Examples of natural and unnatural uses of the de-lexical verb ' to
t n a V w i t h sentential verbs

6.7.2 Example of De-lexical Rules for 'to make'

I f the action of an event is sentential (i.e., i t takes an event as an object) and the

object event i t takes is language isomorphic 4 , then the de-lexical verb ' to make'

may be used. There are again exceptions which can be treated by returning to the

hypothesis that a de-lexical structure can be used to emphasise the subject of a

particular event. There is a class of actions which are in themselves very personal

and already emphasise that the subject of the action is the one doing the action

(e.g 'to hope', ' to dream', ' to th ink ' , ' to believe'). This means i t is unnecessary and

unnatural to further emphasise the subject of these verbs by using the de-lexical

' to make' construct. However for such personal verbs, the de-lexical verb ' to have'

can often be used instead (e.g., ' I had a dream that . . ') .

I f applicable, the abstract transformation can be applied by constructing a de-

lexical event in the semantics wi th the same subjects as the original event, the

action ' to make' (and relevant t ime information so as the correct tense results) and

the original event as the object. I t is this newly constructed event which can then

be passed to the realiser resulting in transformations exemplified by the sentences

in figure 6.7.

4Note: the name of the event must be language isomorphic, not the action of that event.

C h a p t e r 6: T h e Solution: Abs trac t Transformat ions 191

6.7.3 Cost-Benefit Analysis of the Rule Based Approach

for Handling De-Lexical verbs

Cost-benefit analysis is an important aspect of N L E (see section 1.2.10). Although

extensive formal cost-benefit is not always necessary or practical, a required crite­

rion for success is that informal investigations into possible solution alternatives is

performed. This section wi l l give an example of such analysis by comparing the

costs and benefits of adopting a rule-based approach to the generation of de-lexical

structures (as discussed in the previous sections) w i th the alternative of explici t ly

adding information about which verbs can be used w i t h which de-lexical structure

into SemNet.

The values of the parameters used in this analysis are estimated. To determine

accurate values would in itself require a good deal of work. This is an example of

the cost of cost-benefit analysis itself (see section 1.2.10).

M a r k i n g Ind iv idua l Verbs

Costs:-

• Data Entry. Every verb in SemNet wi l l have to be analysed by hand to see i f

i t can be used wi th any de-lexical structure. For each of these verbs, further

analysis w i l l be required to ascertain exactly which de-lexical structure i t can

use. For each of these possible de-lexical structures a l ink w i l l have to be

added to SemNet. A estimation of the t ime costs is as follows:-

- In i t i a l analysis of every verb node in SemNet. Approximately 10,000

nodes at about 1 minute a node = approx. 4 person weeks 5

— Analysis of which structures can be used wi th each suitable verb. Es­

t imation of 1000 verbs which can take de-lexical structures at about 5

minutes a node = approx. 2 person weeks

51 person, 8 hours a day, 5 days a week

C h a p t e r 6: T h e Solution: Abs trac t Transformations 192

— Adding the links to the data. Estimate that each of the 1000 verbs can

take an average of 3 different de-lexical structures. Therefore 3000 links

at about 1 minute a l ink = approx. 1 person weeks

- Tota l t ime cost = 7 person weeks

• Memory Cost: The memory cost of adding 3000 links = approximate ly

200k.

o Search Cost: The extra links in SemNet w i l l be an extra burden on the

various search algorithms employed in L O L I T A . When the new links are

encountered they may have to be followed or at least checked to see i f they

should be ignored. This cost may well be significant under a complexity point

of view, especially as de-lexical verbs are very abundant in N L .

• Robustness Cost. The significant data entry task described above w i l l be

prone to mistakes which w i l l cause L O L I T A to generate unnatural de-lexical

structures or prevent i t f rom generating valid ones. To ensure the data is

correct i t would have to be either checked and rechecked or corrected for

each individual verb as errors were found. Furthermore the method w i l l not

allow for new or novel cases.

Benefits:-

• Development Benefits: No t ime w i l l be required to design, implement and

improve rule-based algorithms.

o Execution Benefits: the generation of a de-lexical structure wi l l require l i t t l e

run-time cost. A simple lookup process w i l l be needed to determine which

de-lexical structures can be used for a particular verb.

R u l e B a s e d Approach

Costs:-

C h a p t e r 6: T h e Solution: Abs trac t Transformat ions 193

o Design Cost: The cost of designing and implementing algorithms for each de-

lexical structure estimated at 3 days. For the de-lexical verbs 'give, have, take,

do and make' development time wi l l be less that the explicit verb marking

approach = 3 person weeks.

• Memory Cost: No extra links w i l l be require in SemNet. The controls and

links required for the algorithms are required for other aspects of L O L I T A .

• Search Costs: because no new links are added, various search algorithms in

L O L I T A w i l l not be affected.

• Robustness Costs: I t is unlikely that the in i t ia l algorithms w i l l cover all cases.

As exceptions are discovered the algorithms w i l l have to be developed so as

to cover these cases. Although ini t ia l ly the rule-based approach may not

cover as many cases as the explicit data approach, rule development when a

individual exception is found w i l l cover more than one case.

o Execution Cost: the cost of applying the de-lexical rules w i l l be slightly

more than in the data approach. However as can be seen in the example

algorithms (sections 6.6 and 6.7.1), only 2 or 3 inexpensive look up processes

w i l l be required.

Benefits:-

• Preparation Benefits: no tedious and t ime consuming data entry and checking

w i l l be required.

• Theoretical Benefits: the development of rules w i l l give a better theoretical

understanding about the use of de-lexical structures.

• Development Benefits: as mentioned above, when a missing case is discovered

rather than just adding data to cover this particular case, rules can be buil t

so as to cover other similar cases.

C h a p t e r 6: T h e Solution: Abs trac t Transformat ions 194

Conclus ion

Informal investigations into the cost and benefits of each approach together wi th '

estimations of the parameters involved have clearly shown that the rule-based ap­

proach is favoured. Although the rule-based approach is slightly more expensive

at runtime and in i t ia l ly w i l l not cover as many cases, i t is cheaper w i t h respect to

preparation time, memory and search times. Furthermore, the rule-based approach

w i l l provide an insight into the use of de-lexical verbs which the simple one-off data

entry approach would not.

6.8 Generalisation or Specialisation of Concepts

Another way of producing variation or generating style is to paraphrase the utter­

ance by describing entities and actions in different ways.

Because of the nature of the SemNet input (more particularly the relationship

between concepts and words, see section 1.5.3) and the architecture of the solution

(see chapter 5), the plan-realiser already has the ability to f ind paraphrases. A l l

that the abstract transformation is required to do is to temporarily mark an entity

or action as being non-language isomorphic (non-LI) by removing the relevant

language l ink. As the plan-realiser w i l l not be able to find a lexical i tem for that

concept, i t must find a paraphrase (see sections 5.4.2 and 5.5.1). The plan-realiser

w i l l find a more general concept which is L I and realise this concept together w i t h

defining information which conveys the difference in meaning between the original

and more general concept. Examples of such paraphrases are shown in figure 6.8.

The success of these transformations is dependent on the amount and quality of

data in SemNet: information which defines the differences between a general and

more specialised concept has to be present.

The normal form in SemNet is to use the most specialised concept. However, the

process of obtaining the normal form (normalisation, see section 4.3.1) is not often

straightforward. I t is useful therefore, to investigate how to move in the opposite

C h a p t e r 6: T h e Solution: Abs trac t Transformat ions 195

(1) remove L I link to 'motorbike' -» 'motor vehicle wi th two wheels'
(2) remove L I link to 'murder' —> 'unlawfully k i l l '
(3) remove L I link to 'sleet' —>• 'rainy snow'

Figure 6.8: Example generalisation paraphrases

(l a) I wounded you wi th a gun —> I shot you
(l b) I wounded you wi th a hand gun —> I shot you wi th a hand gun
(l c) I wounded you wi th a knife —> I stabbed you
(I d) I wounded you w i t h a kni t t ing needle —> I stabbed you wi th a kn i t t ing needle

(2a) I stuck the wood wi th glue —> I glued the wood
(2b) I joined the wood wi th Bostick -> I glued the wood wi th Bostick
(2c) T attached the. wood with nails —v T nailed the wond

(3a) I called you on the 'phone —> I 'phoned you
(3b) I called you on the radio —> I radioed you

Figure 6.9: Examples of verb specialisation by instrument clause

direction and consider abstract transformations which lead to the replacement of

concepts w i th more specialised ones. These abstract transformations can be used

in either the normalisation stage of interpretation, or in generation to produce a

'normalised' utterance f r o m a portion of SemNet which is not already normalised.

A n event, for example, may contain enough information to allow a move further

down the event hierarchy (see section 4.3.2) to f ind a more specialised action. The

information which allowed this action substitution may then be dropped. A subset

of this kind of transformation are those which involve instrument roles; these are

discussed in the following subsection.

6.8.1 Ac t ion Special isation

A n instrument role in an event can often allow the action of the event to be substi­

tuted by a more specialised one. Example sentences resulting f rom this transform

are shown in figure 6.9.

The algorithm for this transform is now described using figure 6.10 as an ex­

ample of simplified SemNet input:-

C h a p t e r 6: T h e Solution: Abs trac t Transformat ions 196

• Find the prototypical event for the original event (e.g., for the event ' I

wounded Ji l l w i th a gun ' (E l) , the prototypical event for woundings (PE1)

w i l l be found).

• Find any specialisations of this prototypical event (in the example these wi l l

be events representing 'woundings' by, for example, 'stabbing' and ' thumping '

as well as woundings by 'shooting' shown on the diagram, E2).

• Find the instrument slots in these events. These w i l l most likely have to be

inherited f rom the prototypical event for the new specialised action as the

GpG-„î iiio^--u ' v

 i. 'vui vuii uuy i iv^\^ijDCj* i i j Uc ti p i O K J O h j piCcli tiVeiiL ibScii. i l l LliiS

example the instrument 'firearms' w i l l be inherited f rom the prototypical

event for shooting (PE2). E2 is not a prototypical event itself as shootings

are not necessarily specialisations of woundings (e.g., 'shooting at a target ') .

» I f the instrument in the original event is a specialisation of (i.e., somewhere

below in the hierarchy) one of these prototypical instruments, then the action

of the original sentence can be replaced by the relevant, more specialised,

action. In this example, the node representing 'the gun w i t h which Jack

wounded J i l l ' is below the node representing 'firearms' so the action ' to

wound' can be substituted by the action ' to shoot'.

Sometimes i t is possible to drop the instrument clause f r o m the original event

once this type of transform has been performed. This can be done when the instru­

ment is the same as the prototypical instrument or the most common specialisation

of this instrument. This most common specialisation is what would most usually

be inferred to be the instrument of the event i f i t were not present. For example,

'a gun' could be inferred to be the instrument of a shooting event in the presence

of no other information, similarly 'a pen' could be the most common specialisation

of wr i t ing instrument. However, the most common specialisation l ink in SemNet

must be dynamic as i t is context dependent. In some circumstances the most com­

mon specialisation could differ dramatically f rom the norm. This area of context

and semantics has not yet been fu l ly developed and so, for the t ime being, the

static most common specialisation link wi l l be used unless a special context flag is

C h a p t e r 6: T h e Solution: Abs trac t Transformat ions 197

P E : 2 P E :
s: People \

s: Things instrument Firearms a: Shoot
a: Wound V J

nost /
omon/
pec /

{

o: Things
o:Animate things ;

i mos

comon
specs

spec prototype

'prototype E:2
r ^

a: Shoot
rifles guns ec.

s: Jack
insnumen a: Wounded A gun

Jill

K E Y : s: Subject o: Object a: Action > Direct link > Indirect link

Figure 6.10: Simplified SemNet portion showing how instrument/action trans-
forms can be made

present. I f the original instrument node has any additional information to the most

common instrument specialisation then i t cannot be dropped f r o m the transformed

event without losing information (e.g., 'hand gun', 'Bostick glue' in figure 6.9).

There is a problem when the action derived f rom the instrument of the event

conveys some directionality. For example the transform between the sentences ' I

talked to you w i t h a phone' and ' I phoned you' is not a valid abstract transformation

as the second sentence contains more information; the directionality of the event.

6.9 Multiple Transformations

Many of the transformations described in the above sections can be carried out in

combination wi th each other. Figure 6.11 shows how four transformations can be

carried out on one original event. The types of transformation carried out are as

follows :-

C h a p t e r 6: T h e Solution: Abs trac t Transformat ions 198

e Sentence 1 is transformed in to sentence 2 by generalisation of the action ' to

murder' into 'to k i l l ' and the addition of the information which determines the

difference between these two actions; that murder is 'unlawful k i l l ing ' . I n fact,

i f the special context flag is not set, the information about unlawful k i l l ing

can be dropped as 'murder' is normally the most common specialisation of

'k i l l ing ' .

• Sentence 3 is created using another generalisation transform. This t ime 'to

k i l l ' is transformed to 'wound causing death'. This sentence is rather un­

natural but as well as being a transitional sentence for transforms producing

more natural sentences, there are instances when this unnatural style maybe

useful.

• A specialisation of an action using instrument information results in the

four th sentence. This is the same example as described in section 6.8.1.

I t is assumed that there is no special context flag and so the most common

instrument of a shooting, 'a gun' can be dropped f rom the sentence.

e The final sentence does not in fact result f rom an abstract transform but

f r o m a grammatical transform operating in the realisation stage. I f an action

of a subject on an object causes the object to change state and there is a

concept describing that state which can be realised as an adjective, then a

substitution is possible. In this case 'Jack causes J i l l ' to change state f r o m

'being alive to being dead' and there is an adjective 'dead' which describes

this state.

6.10 Conclusion

Abstract transformations are a novel way of allowing the L O L I T A generator to

produce variation and paraphrasing. By performing transformations on the SemNet

input before realisation (i.e. before the input is passed to the plan-realiser) or

during realisation (e.g., before the realisation of each clause) the power of the

generator is increased while avoiding over-complication at the realisation stage.

C h a p t e r 6: T h e Solution: Abs trac t Transformat ions 199

1. Jack murdered J i l l wi th a gun

2. Jack (unlawfully) killed J i l l wi th a gun

3. Jack (unlawfully) wounded Ji l l w i th a gun causing Ji l l to die

4. Jack (unlawfully) shot J i l l causing Ji l l to die

5. Jack (unlawfully) shot J i l l dead

Figure 6.11: Example of a mult iple transformation

Other systems have capabilities for similar paraphrasing (see section 3.10): how­

ever, the need for explicit lexical entries or annotations to indicate that various

alternatives are possible would cause problems i f these systems were to be sealed

up. The rule-based approach adopted here avoids such problems and allows novel

cases to be handled.

One possible crit icism is that the addition of such variation capabilities to the

generator without careful concern for how they w i l l be controlled (by the planner)

is dangerous. There is the opposing view, however, that (even without detailed

consideration of control) adding the ability of variation is a good step forward.

Indeed, un t i l generators have been given such capabilities, the problem of control

w i l l not arise and may be ignored (see section 3.10.1).

This chapter has introduced examples of different abstract transformations:

there are many more possibilities which could be the subject of fur ther research.

This stage of processing is also relevant to the process of normalisation during N L

interpretation.

Chapter 7

Implementation

The first part of this chapter (section 7.1) w i l l provide an overview of the imple­

mentation of the plan-realiser described in chapter 5. Some of the most important

datatypes used in the implementation are described before a simplified portion of

code is presented and explained.

One of the most significant decisions which must be made in the design of a

system is which programming language to use in its implementation. A n appro­

priate language can minimise the difficulties in code design; make the program

more readable and therefore easier to maintain, and reduce the amount of testing

required [Sommerville, 1992]. The choice of the functional programming language

Haskell [Hudak et a/., 1994] was a starting point assumption for this work (see

section 1.4). However an explicit aim of the project is to examine the suitabil i ty of

Haskell for NLG (section 2.2.6). The second part of the chapter (section 7.2) wi l l

f u l f i l this aim by examining the most important features of Haskell and discussing

how i t has affected the system implementation and development.

C h a p t e r 7: Implementat ion 201

7.1 Implementation Overview

7.1.1 Some Important T y p e s

This section wil l briefly introduce the important types (see also section 7.2.4) used

in the implementation of the L O L I T A natural language generator.

• Global : The G loba l datatype is perhaps the most important of those used

in the L O L I T A system. Functional programming languages do not allow side

„JT~ - J - / T O -i \ 4.1. _ i 4 . . 4. _ > _ r 4.1. _ _ . » . . _ „ . i . _ _ 4. _ I . ^ , _i _ i ; u

and passed round between functions rather than leaving i t impl ic i t (as in im­

perative languages). The G loba l datatype corresponds to this overall system

state. I t holds, among other things, the whole of L O L I T A ' s SemNet repre­

sentation (both its conceptual and linguistic levels) together w i t h information

on how the SemNet has been most recently changed. The G l o b a l also holds

all the SemNet information f rom which to generate and the various planning

instructions set by the planner or the underlying application (see chapter 5).

• Noderef: A Noderef is simply a reference to a particular unique node wi th in

the SemNet representation. A Noderef together w i t h the complete SemNet

held in the Globa l , defines the meaning of that node (see section 1.5.1).

• Meaning: The Meaning datatype is simply a 'repackaging' of information

held in the Global and Noderef datatypes to make i t more suitable for gener­

ation. A Meaning holds the meaning of a particular node in the SemNet by

combining a starting point node and the complete SemNet representation.

• Generator: The Generator is a datatype which acts as a 'building block'

during the generation process. As an utterance is bui l t , generators represent­

ing different parts of the utterance are composed together to fo rm a more

complete generator. This generator is then applied to the input instructions

f r o m the planner to produce a N L utterance. The generator comprises the

utterance generated so far as well as planning instructions and switches set

by the planner.

C h a p t e r 7: Implementat ion 202

* event: 95979 *
u n i v e r s a l . :

event - 7688 - rank: u n i v e r s a l - d e f i n i t i o n ,
subj e c t _ :

c h a r i t y - 95973 - rank: i n d i v i d u a l
a c t i o n . :

r e c e i v e - 78714 -
obj e c t _ :

money - 95975 - rank: i n d i v i d u a l
o r i g i n . :

john - 95977 - rank: named i n d i v i d u a l
t i me.:

p a s t . - 20991 -

> SAY Event 95979, A c t i v e , Short Rhythm ... e t c

Figure 7.1: Simple input event and instruction passed to the plan-realiser

• GenVal s : The G e n V a l s datatype is a collection of flags set by the generator

which can affect the future choices that the generator must make. Examples

are a flag to force embedded events to be open or closed (see section 5.7.2)

and a flag to force nouns to be singular or plural.

7.1.2 G e n e r a l Operat ion

This section wi l l introduce some basic details about how the generation process is

implemented using the datatypes described above.

Figure 7.1 shows a simple (and simplified) representation of an event node

in L O L I T A ' s SemNet together wi th simple planning instructions that could be

provided to the plan realiser. A possible utterance describing this event would be

'A charity received money from John'.

Figure 7.2 shows a much simplified portion of the generator code. I t is not

necessary for the reader to understand every aspect of this sample code, nor for

this section to describe each aspect in great detail. The code and the following

commentary are intended to give the reader a taste of how the generation process

C h a p t e r 7: Implementat ion 203

is implemented. Some of the aspects of the sample code which are specific to

functional languages (and more specifically Haskell) w i l l be discussed further in

section 7.2. One important aspect which needs to be explained at this point is that

function application, mathematically expressed in the notation f(x,y), is expressed

in Haskell as f x y (see section 7.2.3).

The type declaration (l) 1 defines say .meaning to be a funct ion which takes

a parameter of type G e n V a l s and a parameter of type Mean ing and returns

a result of type Generator . The code fragment first checks (2) using the if_ 2

function and the funct ion is_event_m to see i f the node for which a description is

to be generated is an event. Because (in this example) node 95979 is an event, the

embedded condition (3) w i l l be reached. This condition depends on the function

forced_close_event_gv which 'queries' the GenVals parameter to see i f a switch

has been previously set to force the event to be expressed as a noun. Assuming

that this is not the case the function w i l l call the say_event funct ion (4).

The fragment of the function say_event shows the simplified code to decide

whether an event should be expressed in the passive or active voice (see sec­

tion 5.5.2). The query function if_gen (5) queries the hidden parameter.passed

by Generator type (as mentioned above the generator type incorporates the ut­

terance so far as well as the planner's instructions, see also section 7.2.3). I n this

case the is_style function determines whether the planner has requested an ac­

tive or passive event. I n this example the active voice is required so the funct ion

say_active_event (6) is called.

The simplified function say_active_event controls the generation of active

events. The function calls other functions to generate phrases for each of the

roles in the event (say_subject, say_action, say_object etc). Each of these functions

returns a Generator and the before_ (9) funct ion is used to compose or merge

'The general type signature of a function is given as, for example:-
f :: a- > b- > o
meaning the function ' f ' takes a parameter of type 'a' and a parameter of type 'b ' and returns a
parameter of type 'o'

2the occurences of if_ before., if_gen etc. are not Haskell constructs but functions in their
own right (see section 7.2.3)

C h a p t e r 7: Implementat ion 204

the generators together. So for example, the say_act ion (10) function w i l l have

access to information produced by the say . s u b j e c t (8), and before_ (9) wi l l add

together the utterance strings produced by each.

There are two important simplifications in the example presented above:-

• The example code presented is in a 'grammar directed' rather than a 'message

directed' style (see section 3.4 and 5.5.2) as control appears to be 'hard-wired'

into the code. The function calls functions such as say_origin (11) even i f

the input event has no such link. In the 'unsimplified code' control is passed

to the SemNet input and functions to realise particular roles are only called

when they are present in the input event. The unsimplified code checks that

arcs are present in the input before calling functions that produce utterances

for them.

e Throughout the example the value of the G e n V a l s parameter gv and the

meaning parameter e have not been changed. In a more complex example,

the GenVals parameter may be changed by adding or changing flags in order

to constrain or direct future generation. The generation process w i l l also need

to generate utterances for different Meanings. The say . subject funct ion, for

example, w i l l contain a recursive call to the say .meaning function w i t h the

meaning parameter representing the subject of the event (e.g., the meaning

for node 95973 in the example in figure 7.1).

7.2 Features of Haskell

The following subsections wi l l discuss the properties of functional programming

(and more specifically Haskell) which are different to more common programming

languages (e.g., imperative languages). The effects of each of these properties on

the implementation of the L O L I T A N L generator wi l l be discussed.

C h a p t e r 7: Implementat ion 205

say. .meaning:: GenVals -> Meaning -> Generator (1)
say. .meaning gv n

= i f _ (i s _ e v e n t _ m n) (2)
(i f _ (f o r c e d _ c l o s e d _ e v e n t _ g v gv) (3)

say_event_as_noun gv n
' o r _ e l s e '

s a y _ event gv n (4)
)

' o r _ e l s e '
s a y _ e n t i t y gv n

e t c

say. .event:: GenVals -> Meaning -> Generator
say. .event gv e

= i f _ g e n (i s _ s t y l e A c t i v e) (5)
s a y _ a c t i v e _ e v e n t gv e (6)

' o r _ e l s e '
i f _ g e n (i s _ s t y l e P a s s i v e) (7)

s a y _ a c t i v e _ e v e n t gv e

e t c

say. _ a c t i v e _ e v e n t : : GenVals -> Meaning -> Gene r a t o r
say. _ a c t i v e _ e v e n t gv e

= s a y _ s u b j e c t gv e (8)
'before_' (9)

say ..action gv e a (10)
'before_'

say ..object gv e
'before.'

s a y _ o r i g i n gv e (11)
where

a = action_m e

Figure 7.2: Simplified portion of the NLG Haskell co de

C h a p t e r 7: Implementat ion 206

7.2.1 Referent ia l Transparency

Pure functional programming languages- such as Haskell have the mathematical

property of referential transparency which prohibit side-effects such as assignments

which are rife in imperative languages (e.g., Pascal, C etc). The value of a function

or expression in Haskell is dependent solely on the values of its sub-expressions and

not dependent on 'hidden' values. Unlike imperative languages where a variable

may be assigned several different values wi th in an expression, different occurences

of the same variable name in a Haskell funct ion always have the same value. The

properties of referential transparency can contribute to the ease of understanding

of a program wri t ten in a functional language such as Haskell [Hazan et ai, 1993].

Ease of understanding is of course, closely related to ease of development.

Function declarations in Haskell clearly define the 'interface' of each funct ion.

The declaration states what the function takes as arguments and what i t returns

to the function that called i t . No other hidden side effects can occur.

For example the top level N L G funct ion has the following type 3

n i g : : G l o b a l -> Noderef -> [Char]

The funct ion nig takes as parameters the Global (see above), a reference to a

particular node in the SemNet input and returns a list of characters which form a

N L utterance describing that node. No other parameters or values w i l l be changed.

In particular, in this example, the state (i.e the Global) of the system w i l l not

change after generation.

7.2.2 Higher-order Funct ions

A higher-order function is a function which takes another function as an argument

or delivers one as a result[Bird and Wadler, 1988]. The use of such higher-order

functions is an important feature of functional languages such as Haskell. They

3 This example, as other examples in this chapter, maybe somewhat simplified.

C h a p t e r 7: Implementat ion 207

allow concise forms of expression [Turner, 1987] and together wi th lazy evaluation

allow for new levels of modularity to be attained: this enables programs to be more

easily read and understood [Hughes, 1989]. Functional programming languages

treat functions as 'first-class' citizens allowing them to be used in abstract datatype

representations.

The example code fragments presented in section 7.1.2 show the use of higher

order functions. The abstract datatype Generator is represented by a funct ion

which takes a datatype which comprises planning instructions and details of the

generated utterance so far, and returns a datatype which includes a new Inngp.r

utterance.

7.2.3 C u r r y i n g

Haskell and other functional languages support currying where structured argu­

ments can be replaced by a sequence of simpler ones [Bird and Wadler, 1988]. A

funct ion f applied to two arguments x and y is represented in Haskell as f x y,

meaning that the result of applying f to x is a funct ion which is then applied to y.

For example the function add could be defined by :-

add x y = x + y

and the expression add 2 3 is interpreted as (add 2) 3 where (add 2) is a

function which takes a single argument and adds the value 2 to i t . Currying makes

i t possible for functions to be greatly simplified merely by leaving out unnecessary

arguments, thus aiding readability and abstraction [Hazan et a/., 1993].

The example code fragments presented earlier give an example of currying al­

though this may not be immediately obvious because of its use in combination wi th

the use of abstract datatypes and higher order functions. The functions (for exam­

ple say_meaning) return a result of type Generator which is in itself a function.

The use of this datatype could be replaced by an explicit reference to the functions

C h a p t e r 7: Implementat ion 208

type, for example (1) could be replaced by 4 :-

say_ m e a n i n g : : GenVals -> Meaning -> GenTypeA -> GenTypeB

say_meaning gv n

e t c

The signature of the funct ion say .meaning now indicates that the funct ion should

expect 3 input parameters but using currying, only two (gv and n) are made explicit

in Hit; iuiiciiOii aeiirnuon.

7.2.4 A b s t r a c t T y p e s

A n abstract datatype is a portion of code which appears to the programmer as

independent of any particular representation. Values of an abstract datatype can

only be processed using functions specifically provided to access the type. This

means that the 'concrete' representation of an abstract type can be altered without

any effect on other portions of code that use i t : the type is completely determined

by the provided 'access' functions and their behaviour [Holyer, 1991]. To implement

an abstract type, a programmer needs to provide a representation of its values and

define operations on the type in terms of this representation. Apart f r o m these

obligations a programmer is free to choose between different representation on the

grounds of efficiency and simplicity [Bi rd and Wadler, 1988].

Section 7.1.1 introduced some of the abstract datatypes used in the L O L I T A

generator and section 7.1.2 gave examples of how they are used. The examples have

shown how abstract datatypes can aid in abstraction: i t is possible to show how

the generator process is carried out in abstract terms without having to describe

representation details. The effective use of abstract datatypes and the careful def­

ini t ion of functions used to manipulate them can be used to define a high level

'language' useful for specific tasks. In the code fragments provided in section 7.1.2,

4 That is we replace 'Generator' by 'GenTypeA — > GenTypeB'

C h a p t e r 7: Implementat ion 209

for example, most of the constructs and functions used (e.g., if_, if_gen, before_

or_else etc.) have been defined as part of an abstract datatype and are not stan­

dard Haskell.

7.2 .5 L a z y Eva luat ion

Lazy evaluation allows unevaluated expressions to be passed to a funct ion leaving

the function to be responsible for evaluating them as and when their values are

needed [Holyer, 1991]. Lazy evaluation allows programs to manipulate extremely

complicated and large values (potentially infini te values) whose complete evalua­

t ion would otherwise be time-consuming or even impossible. Lazy evaluation can

also aid abstraction and program clarity by allowing the programmer to separate

different aspects of a solution that would otherwise (i.e., in an imperative language)

need to be combined. For example, in a search problem Haskell would allow a set

of functions to be bui l t which generated possible solutions (perhaps an infini te

number) and a separate set of functions to decide which of these solutions should

be chosen. In an imperative language all the possible solutions would have to be

generated before being passed to a selection function: i f the chosen solution is in

fact the first one to be generated then the cost of building all the other solutions

would not be necessary. The abil i ty to separate such components of an algorithm

can also improve the modularity of algorithms.

Lazy evaluation is used extensively in the implementation of the L O L I T A sys­

tem and its generator. The if_ and if_gen functions rely on lazy evaluation (again,

these are not Haskell constructs but functions in their own r ight) . When using

the if_gen function, for example, only one of the two branches is required to be

evaluated. In figure 7.2 the if_gen function in line (5) takes two arguments, one

being the function say_active_event (6), the other being the result of the embed­

ded if_gen statement in line (7). I t is desirable that only one of these branches is

evaluated (branch (6) in our example).

C h a p t e r 7: Implementat ion 210

7.2.6 T h e Haske l l T y p e Sys tem

In imperative languages, type-checking ensures that types are consistent w i th in

each program statement, but they rely on the sequence of statements being cor­

rect; the type-checker cannot detect errors at this level. In functional languages,

however, the type-checker checks the program at the level of funct ion application.

This means not only that a greater proportion of errors are 'caught' by the Haskell

type-checker but also that the type specification gives more information about what

the funct ion does than in an imperative language [Hazan et ai, 1993].

This type-checking feature greatly aids development as most logical and ty­

pographical errors are caught during compilation: once a funct ion successfully

compiles most of the work has been done.

7.2.7 D a t a Structures and Management

Low level operations such as allocating sufficient memory for datatypes (e.g., malloc

in the ' C language) do not have to be performed in Haskell. What is more, dynamic

datatypes (such as stacks, lists or trees) can quickly and easily be implemented

without the use of, for example, pointers.

These features relieve a burden f r o m the programmer and both aid program

comprehension and shorten program development t ime.

7.2.8 Prototyping

The properties of Haskell (and other functional languages) presented above mean

that they are highly suited for rapid prototyping:-

o referential transparency allows the clear definition of the interface between

functions.

• the use of lazy evaluation allows complex data structures to be passed be­

tween functions without the worry of memory allocation or efficiency. Lazy

C h a p t e r 7: Implementat ion 211

evaluation can also improve the modulari ty of programs.

e the use of abstract datatypes and manipulation functions allow high level

abstract problem specific programming languages to be defined.

e i t has been estimated [Turner, 1982] that each line of code in a functional

program is equivalent to about 10 lines wri t ten in an imperative language

such as ' C . Prototypes can therfore be wri t ten more quickly in a functional

language than an imperative one and the whole software development process

is shorter as less t ime needs to be spent in the debugging and maintenance

of the program [Holyer, 1991].

7.2.9 Suitability for Parallel Execution

Referential transparency and the lack of side effects in functional programs makes

them suitable for parallel execution as the problem of propagating side effects

between processors is avoided. The problem of correctness in parallel functional

programs is the same for normal non-parallel functional programs: there may be

no difference in code at all between parallel and non-parallel functional programs.

This is in great contrast to the diff icul ty of solving the correctness problem for

imperative parallel programs [Peyton Jones, 1989].

The L O L I T A system code (including that for the generator) can be compiled

using the Glasgow Haskell Compiler [The A Q U A Team, 94]. This compiler has been

designed to produce executable code which can be run on parallel machines and

work is in progress both on L O L I T A and GHC (e.g [Garigliano et ai, 1995] [Peyton

Jones, 1989]) to produce a parallel version of L O L I T A . Many of the problems

associated with N L E (for example, concurrent searches, the handling of ambiguity)

lend themselves very well to parallel solutions. Running L O L I T A on a parallel

platform wil l be greatly beneficial wi th respect to execution time.

C h a p t e r 7: Implementat ion 212

7.2.10 Disadvantages of Haskell

The section w i l l discuss the disadvantages and problems wi th the Haskell program­

ming language :-

• Despite the use of Haskell being relatively wide spread in academia, there

is a lack of general acceptance and a good deal of scepticism as to whether

Haskell can be used in the commercial environment. Recently, however, this

situation seems to have improved (e.g., this is reflected in a recent conference

dedicated to the use ol functional programming in the real world [Uiegench

and Hughes, 1994]).

9 This lack of acceptance means that there is l i t t l e support available in terms of

support tools and standard libraries. However, other research at Durham is

concerned w i t h providing debugging tools[Hazan and Morgan, 1992] and pro­

filing techniques [Morgan and Jarvis, 1995] for Haskell. Libraries for Haskell

and other functional languages are also becoming available (e.g., the L M L

fudget l ibrary [Carlsson and Hallgren, 1993]) although there are currently no

standards.

• Although the lack of side effects in functional languages (see section 7.2.1)

leads to a variety of advantages, i t also has disadvantages. Some algorithms

are most easily expressed in terms of side effects. However, monads [Wadler,

1992] can be used to express such algorithms in such a side effect style.

e Some operations such as input and output (which are of course important

in N L E) are more diff icult to handle using Haskell and other functional lan­

guages compared to imperative languages. However, using abstraction tech­

niques these problems can be 'hidden away' f r o m the programmers of other

modules.

• Another important drawback wi th the use of Haskell for large-scale systems

such as L O L I T A is its inefficiency. The programmer does not have to worry

about low level aspects such as storage allocation but this leads to inefficiency

C h a p t e r 7: Implementat ion 213

at runtime. Memory requirements are often high and the frequent process of

garbage collection leads to slower execution times. However, although Haskell

is not yet as efficient as the more common imperative languages, its efficiency

has increased dramatically recently.

7.3- Other Implementation Details

The L O L I T A system as a whole comprises about 37,000 lines of Haskell (estimated

io be equivalent to about 400,000 lines oi imperal i v.e codej aiiti 2UUU lines of U in

about 200 modules. L O L I T A is probably the largest application (i.e., non-complier)

in the world to be wri t ten in Haskell. The generation component consists of about

7500 lines of Haskell (equivalent to 75,000 lines of imperative code) i n 20 modules

(although the generator also makes heavy use of shared code).

The L O L I T A system and thus its generator currently runs on a Unix Sun Sparc

workstation wi th 80Mb of memory.

The L O L I T A generator runs in real t ime unless the system performs a garbage

collection during generation (in this case output takes a couple of seconds).

7.4 Conclusions

This chapter has given a brief discussion of the operation of the L O L I T A generator

and, following an explicit aim of the project, discussed the effects of the chosen

implementation language Haskell on the generator's development.

Section 7.2 highlighted the properties of Haskell (and functional languages in

general) and discussed their impact on the implementation and development. In

particular, the features of such languages make them particularly suitable for devel­

oping large-scale prototypes. Whether Haskell wi l l be suitable for real commercial

applications remains to be seen but if its development (particularly development

which w i l l tackle the problems listed in section 7.2.10) continues at the same rate

C h a p t e r 7: Implementat ion 214

as recently, then the future is promising.

Chapter 8

Evaluation and Results

This section aims to evaluate the L O L I T A N L G system wi th special attention to

the adopted methodological approach (chapter 1) and the problem specific aims

(chapter 2). Unlike other sciences (including other branches of computer science),

the evaluation of NLP systems and especially NLG systems is not well documented

or developed. A n explicit aim of the project (aim 7, section 2.2.7) is that the

discussion and suggestions concerning evaluation of NLG presented in this chapter

should be useful in themselves.

The first part of the chapter (section 8.1) presents a brief survey of NLP evalua­

t ion methods including comments about a particular method suggested by Galliers

and Sparck Jones [1993] (section 8.1.2) and information about evaluation specific

to N L G . The chapter then details a particular evaluation of the L O L I T A N L gen­

erator following the Galliers and Sparck Jones method (section 8.2) before giving

conclusions about the current state of the art in NLG evaluation (section 8.3). F i ­

nally, the chapter turns to the evaluation of each of the project aims (section 8.4)

against their criteria for success detailed in chapter 2.

C h a p t e r 8: Eva luat ion and Resu l t s 216

8.1 Evaluation of Natural Language Systems: A

survey

8.1.1 Competitions

One method of evaluation is by competition. In the field of N L , there have been

many competitions in areas such as machine translation, message understanding,

speech recognition, database interfaces and parsing.

The M U C series of evaluations [DAR, 1993] have involved the evaluation of

information extraction systems applied to common tasks in order to measure and

foster progress in information extraction. For the next M U C competition (MUC-6,

to be held in the autumn of 1995) the objectives have been increased in order to

push information extraction systems towards greater portabi l i ty to new domains,

and to encourage more basic work on natural language analysis by providing eval­

uations of some basic language analysis technologies. The areas of evaluation are

now co-reference identification, named entity and ' m i n i - M U C template f i l l ing [Gr-

ishman, 1994]. The L O L I T A system is entered for all three areas of the MUC-6

competition.

There have been no such competitions specifically for N L generation evaluation.

8.1.2 Galliers and Sparck Jones

This report on NLP evaluation [Galliers and Sparck Jones, 1993] is presented in

three parts. The first discusses the concepts which are important to NLP evaluation

and uses the authors' experience in the field of Information Retrieval evaluation to

define an extensive terminology and framework for NLP system evaluation. Sec­

ondly, a report on the state of the art for NLP evaluation is presented. Details

of previous and current evaluation methods, competitions and workshops are dis­

cussed, particularly in the areas of machine translation, message understanding,

speech recognition, and database query. The diff icul t problem of evaluating sys-

C h a p t e r 8: E v a l u a t i o n and Resul t s 217

tems which have not been designed for a specific setup (which are termed generic

systems, see section 1.5.5), is also discussed.

Finally, part three of the report presents a general approach to NLP evalua­

tion which is "aimed at methodologically-sound strategies for test and evaluation

motivated by comprehensive performance factor identification" (page 140). This

method is illustrated mainly through the use of examples. I t is important to note

that these examples, although precisely defined, are not evaluations on real existing

systems but on hypothetical systems in hypothetical situations. The recommenda­

tions associated with the examples, together with the terminology and framework

defined in the first part of the report, fo rm the most developed general N L eval­

uation methodology at present and w i l l be investigated further in the following

subsections and used to build an evaluation for the L O L I T A N L generator in sec­

t ion 8.2.

T h e Eva lua t ion Framework

The first, perhaps obvious, conclusion made by Galliers and Sparck Jones [1993] is

that due to the variety of systems and tasks in the area of NLP, there can be no

'magic', all-encompassing evaluation method. They say:-

"We cannot offer instructions along the line 'Take 14 texts consisting of

14 messages f rom the UP wires Just hypothesising concrete instruc­

tions of this sort shows what a mistaken idea this would be, even i f some

of the evaluation literature suggests that i t might be both desirable and

feasible." (page 140)

Instead, evaluations have to be designed for each individual case. I t is paramount

to define carefully the environment of the system, subsystem or component under

evaluation: the entity under evaluation operates wi th in a larger envelope and can­

not be evaluated in isolation. An evaluation has to apply to both the system and

the setting which together comprise the setup. In order to systematically identify

the important setup factors, Galliers and Sparck Jones provide a framework of

C h a p t e r 8: Eva luat ion and Resul t s 218

relevant questions which can be used to decompose the evaluation subject. These

questions and their answers are used to build an evaluation remit and an evaluation

design. The pro-formas for a remit and design are shown in figure 8.1, these w i l l

be discussed further as a particular example is bui l t (section 8.2).

E x t e n d i n g the Eva luat ion Framework

Although Galliers and Sparck Jones give detailed descriptions of how to design

evaluation experiments, they pay l i t t l e attention to the procedure after the evalu­

ation has taken place. This procedure w i l l obviously comprise the presentation of

the evaluation results but i t would also be useful i f the evaluation review should

also contain a crit icism, wi th the benefit of hind-sight, of the evaluation meth­

ods. Thus the Eva luat ion R e v i e w incorporates the evaluation Resu l t s , a review

of the evaluation Methods and the evaluation Conclusions . Comments on the

mistakes made in the evaluation, explanations as to why the results were perhaps

unexpected and ideas for improvements could be useful for other researchers both

to understand the evaluation fu l ly and to be able to design better evaluations.

8.1.3 N L G Evaluation

The previous sections have been concerned w i t h evaluation of NLP systems in

general rather than the more specific problem of evaluating generation subcompo­

nents (although the general framework defined by Galliers and Sparck Jones, can

be applied to the NLG module as wi l l be done in section 8.2).

In fact, there has been very l i t t le work on evaluation of N L G . Perhaps this

is because it is stil l a relatively young field and researchers have concentrated

resources on development rather than evaluation. Alternatively, researchers may

have thought that since generation leads to actual readable output, evaluation can

be done informally. I t is interesting to note that although it might be expected

that papers on generation would be littered wi th examples of output, this is not

the case !

C h a p t e r 8: Eva luat ion and Resu l t s 219

EVALUATION REMIT
• Motivat ion: Why evaluate ?

- Perspective: task/financial/administrative/scientific ...

- Interest: developer/funder ...

- Consumer: manager/user/researcher ..

• G o a l : What to discover ?

• Orientat ion intrinsic/extrinsic

• K i n d : investigation/experiment

• T y p e : black box/ glass box

• F o r m (of yardst ick) : ideal/attainable/exemplar/given/judged

e Style: suggestive/indicative/exhaustive

o Mode: quanti tat ive/quali tat ive/hybrid

EVALUATION DESIGN
• To identify:

- Subject 's ends: What is subject for ?

- Subject 's context: What is in i t ?

- Subject 's constitution: What is i t of ?

• To determine:

- Performance factors

* environment variables

* 'system parameters'

- Performance cr i ter ia

* performance measures

* application methods

- Eva luat ion data

- Eva luat ion procedure

Figure 8.1: Framework for building an evaluation remit and design

C h a p t e r 8: Eva luat ion and Resu l t s 220

Gal l i ers and Sparck Jones

In their extensive report on NLP evaluation, Galliers and Sparck Jones [1993]

include only a small subsection on the evaluation of N L G . This is a reflection of

the small amount of work achieved in this area. They say :-

" Evaluation for NLG remains at the discussion stage. Evaluating gen­

eration is diff icul t ; i t is hard to define what the input to a generator

should be and i t is hard to objectively judge the output." (page 98).

They suggest one solution is to evaluate NLG in the context of a specific ap­

plication by evaluating task performance. Of course, this requires that a specific

task exists: this is not the case when evaluating the N L G component of a gen­

eral purpose base as in the L O L I T A system (see section 1.5.5). They also report

that Moore suggests a task-orientated evaluation of N L G by assessing the impact

of the generated utterances on a user's behaviour. Again this assumes an actual

sophisticated substantiating application.

T h e Seventh Internat ional Generat ion Workshop

N L G evaluation was the subject of a panel discussion at the recent workshop in

Maine [NLG94, 1994]. Experts f rom other N L fields (such as speech recognition

and machine translation) were present to give their experience on how evaluation

in their fields had evolved. The consensus was that, because of the state of current

generation systems, the adoption of certain specific metrics for evaluation would

not be possible and would perhaps even be detrimental. However i t was concluded

that generation evaluation is extremely important and that i t should be up to each

research group to include information about how their systems are evaluated.

C h a p t e r 8: Eva luat ion and Resu l t s 221

8.2 Example Evaluation

8.2.1 Introduction

The following sections present an evaluation of the L O L I T A generator using the

method described by Galliers and Sparck Jones [1993] together w i th the suggested

extensions (section 8.1.2).

The aim of this evaluation exercise is two-fold:-

• To help evaluate the project's aim to build a generator which can produce

N L descriptions of nodes in LOLITA ' s SemNet (aim 2, see section 2.2.2).

• To evaluate the evaluation method presented by Galliers and Sparck Jones [1993].

The example evaluations presented in Galliers and Spark Jones concern hy­

pothetical systems in hypothetical environments. The evaluation presented

here aims to apply the theoretical evaluation methods to a real system and

environment.

I n this evaluation method the 'setup' is paramount: the system's task and its

relationship wi th the environment must be precisely defined. In the examples given

by Galliers and Sparck Jones [1993], evaluations are given for complete application

systems (although hypothetical). The following example evaluation, however, w i l l

not concern such a final application for two reasons:-

• The L O L I T A generator is not part of such an application and so no natural

setup exists in the L O L I T A case: instead a more 'a r t i f ica l ' setup has to be

chosen and i t is this setup that has to be defined. I t is important that this

'setup' is really evaluating the generator module rather than other L O L I T A

modules (e.g., the syntactic or semantic analysis).

• Evaluation of a final application rather than a more generic subcomponent

wi l l be easier and result in more precise results but may actually measure

much less. A generation system which provided instructions on how to op­

erate an appliance, for example, could easily be evaluated by seeing if users

C h a p t e r 8: Eva luat ion and Resu l t s 222

could work out how to use that appliance. I t could not however measure any

of the generators capability in any other task. Since the L O L I T A generator

is part of a general purpose base, its evaluation needs to be more generic.

The general idea of this evaluation is to compare human generated descriptions

w i t h those produced by L O L I T A and measure the acceptability of the computer

generated utterances. There are many different variations that could be achieved

using this basic procedure. The rest of the section w i l l go through the process

of building a remit and design for one particular evaluation. As this evaluation

is being buil t , alternatives which would lead to different experiments w i l l also be

discussed.

8.2.2 The Evaluation Remit

This section describes the evaluation remit presented in figure 8.2. Each slot is

now discussed:-

• Motivat ion: The Perspective of the evaluation is scientific both for the spe­

cific evaluation task itself and, at a meta-level, for evaluating the evaluation

process itself. I n this case the interest prompting the evaluation and the

consumers of the results are likely to be the same: either developers of the

L O L I T A system or other researchers in the field. Once again, the interest

and use of results could be associated wi th the evaluation task itself or the

evaluation procedure.

• Goa l : This slot should summarise what the evaluation is intended to achieve.

In this case ' to indicate the effectiveness of the L O L I T A N L generator w i th in

the general semantic analysis operation of L O L I T A (in comparison w i t h hu­

mans performing the same task)'. I f the K i n d of evaluation is to be an

experiment instead of an investigation (see below), a further goal could be to

indicate weaknesses in the generator.

C h a p t e r 8: Eva luat ion and Resu l t s 223

• Orientat ion: A n evaluation can either be intrinsic and relate to a system's

objective or extrinsic and relate to its funct ion (i.e. to its role in relation to

its setup's purpose). In this example evaluation the orientation is extrinsic:

the performance of how well the generator can do in a particular task.

• K i n d : The evaluation is pr imari ly an investigation to determine the perfor­

mance of generator in the semantic analysis setup (see section 4.4.1). W i t h

slight modifications the evaluation could also be an experiment: i t could in­

dicate areas in which the generator is poor and show where resources should

1.., ..u...,..„u,..i

• T y p e : The evaluation wi l l be black box as this is an input / 'output only

evaluation.

• F o r m : There are no recognised benchmarks that can be employed to evaluate

the generator's performance as there are no 'correct answers'. The evalua­

t ion must therefore be judged: the generator's results wi l l be compared w i t h

human performance and judged by humans.

• Style: This example evaluation can only be suggestive rather than indicative

or exhaustive.

• Mode: Hybrid . Results wi l l be both quantitative and qualitative, as both

the quantity of acceptability and quality of output wi l l be measured.

8.2.3 The Evaluation Design

Identif ication

The identification part of evaluation design 'defines the evaluation subject at the

level of detail necessary to conduct the evaluation' (page 141, [Galliers and Sparck

Jones, 1993]). In this case, the identification is diff icult because it is an artif ical

setup: instead of merely identifying parameters f rom an environment, i t is necessary

to first define that environment.

C h a p t e r 8: Eva luat ion and Resul t s 224

EVALUATION REMIT
• Motivat ion:

— Perspective: scientific

— Interest: developer/ other researchers

— Consumer: developer/ other researchers

9 Goa l : To indicate the effectiveness of the L O L I T A N L generator wi th in the
general semantic analysis operation of L O L I T A (in comparison w i t h humans
performing the same task).

• Orientat ion extrinsic

e K i n d : Mainly investigation (some aspects of experiment)

o T y p e : black box

• F o r m (of yardst ick) : judged

a Style: suggestive

• Mode: hybrid

Figure 8.2: Evaluation remit for the L O L I T A NLG evaluation experiment

C h a p t e r 8: Eva lua t ion and Resul t s 225

e Subject's Ends: (i.e. the subjects objectives/function): To generate descrip­

tive utterances in the general text analysis operation (section 4.4.1).

e Subject's Context. As part of a complete system which produces 'correct'

results. As the realiser is part of a system that is assumed to be capable of

other tasks we have to choose examples where these other areas are correct.

I f this were not the case we would be evaluating other areas of the system

and not the generator in isolation.

• Subject's Constitution: SemNet input (comprising both conceptual and lex­

ical information), Grammar rules, realisation parameters.

Performance factors

• Environment Factors: Domain of input (terrorist incident). Length of input

(paragraph length). The rest of the L O L I T A system (i.e syntactic, semantic

analysis). Human judges. Ideally many articles of differing lengths and do­

mains should be used: however as this is just an suggestive experiment this

ideal is relaxed.

• System Parameters: Realisation parameters (set randomly, or by hand to get

a variety of system utterances)

Evaluat ion C r i t e r i a

The evaluation criteria indicate what is measurable in the evaluation (measures)

and how these measures are made (methods) :-

• Measures: a quantitative measure of success of the generator (in this setup)

based on judged qualitative results. There are four scales of generator ac­

ceptability (Unacceptable, OK, Good and Best of the group), the latter three

indicate success. There is also a comparative measure as the judges were

asked to mark utterances according to whether they thought they were com­

puter or human generated.

C h a p t e r 8: Eva luat ion and Resul t s 226

• Methods: questionnaires filled in by human 'judges'. The judges were f r o m a

wide variety of ages, both sexes and included native and non-native speakers

of English.

Eva luat ion D a t a

The data used in the evaluation was as follows (see appendix C for more details):-

One article (five sentences, seventy-two words) which comprised information on

fifteen events and entities. Five descriptive utterances were collected for each of

these entities and events (this data was collected f r o m L O L I T A generator out­

put and a sample of ten humans doing the same task). There were thus a total

of seventy-five utterances involved, seventeen computer generated and fifty-eight

human generated.

These utterances were then analysed by a different group of ten people. Com­

ments as to why utterances were marked as unacceptable or as computer generated

were also collected.

There is no scientific reason why the sizes of these data sets (i.e., 17 computer

generated utterances, 58 human generated utterances etc.) nor the domain or art i ­

cle type were chosen. A t the evaluation design stage, when there is no information

about prior experiments, there is no way of knowing the required size of the data

set. On a particular run of the L O L I T A system analysing a article for which the

rest of the L O L I T A system (e.g., syntactic and semantic analysis), 17 utterances of

reasonable length were produced. For the purposes of this investigative evaluation

experiment this was deemed to be sufficient.

Evaluat ion procedure

The evaluation procedure was as follows (again the exact instructions given to

participants are presented in appendix C):-

1. Give the first set of participants the paragraph and ask them to generate

utterances about each event and entity described.

C h a p t e r 8: Eva luat ion and Resu l t s 227

2. Run the same paragraph through L O L I T A and collect the generated sen­

tences.

3. Give a selection of computer and human generated utterances to different set

of people and ask them to mark each utterance according to its acceptability

and as also to whether or not they were human generated. The judges were

also asked for comments as to how their decisions were made.

4. Analyse results.

8.2.4 The Evaluation Review

E v a l u a t i o n Resul t s

The results of the evaluation were as follows:-

1. Acceptabi l i ty

Total of 750 utterances marked:-

Totals : 55% good or best 29% Okay 16% Unacceptable

Computer: 33% good or best 50% Okay 17% Unacceptable

Human utterances marked as best of group = 138/580 = 23%

Computer utterances marked as best of group = 12/170 = 7%

These results indicate that human utterances were of better quality than computer

generated ones but that the level of acceptability (i.e., proportion marked Okay,

good and best) was very similar (84% total , 83% computer).

C h a p t e r 8: Eva luat ion and Resu l t s 228

2. H u m a n or C o m p u t e r

506 (67%) of utterances were marked as being human or computer

244 (33%) of utterances were not marked i.e., the judges could not tell

if the utterance was human or computer generated

103 (41%) of the ones marked as computer generated were correctly assigned

235 (92%) of the ones marked as human generated were correctly assigned

506 (67%) of all utterances marked to be either human or computer

generated were correctly assigned

This indicates that the judges were very good at deciding i f an utterance was

generated by a human but poor at identifying computer utterances.

3. T h e judge's comments

Comments were also collected as to why certain utterances were marked as being

unacceptable. Those comments that applied to computer utterances can be used for

future generator improvement. For example, one commonly occurring comment was

that of 'over-generation'. Some people found sentences wi th redundant information

unacceptable (e.g 'a forceful person forced the driver to drive to . . ') . This over-

generation results f rom the way the semantics are buil t (for inference purposes

the semantics may need this information) but suggests that some of the SemNet

information could be left out of an improved generator.

E v a l u a t i o n method

This section describes how the evaluation experiment could be improved (using the

benefit of hindsight).

Primarily, the experiment was over complicated: judges were asked to do too

many different things. The reason for the over complication was because the experi­

ment was not only an evaluation of the generator but a investigation into evaluation

techniques. The experiment tried to collect different types of data so as to be useful

C h a p t e r 8: Eva luat ion and Resul ts 229

for this latter purpose. I f the experiment was to be done purely as a evaluation of

the L O L I T A generator, i t should be both simplified and expanded, for example :-

• The different grades of acceptability reduced to just two (i.e. acceptable,

unacceptable).

e The experiment to ascertain whether or not each utterance was computer

generated should be separated out f rom the acceptability part (i.e. run as a

separate evaluation).

© The number of utterances each judge had to evaluate should be lessened. This

is because i t was obvious that people began to recognise patterns in grammar

and style which helped them ascertain whether they where generated by

L O L I T A or a human and this might have influenced utterance acceptability.

• In other respects the experiment should be expanded: more articles should

be used as well as more participants (i.e. writers and judges).

E v a l u a t i o n Conclus ion

The evaluation has been useful both in indicating the success of the L O L I T A

generator and in judging the usefulness of the evaluation method adopted when

applied to a real working system. Meta-comments about the use of this sort of

evaluation technique are left to the following section.

8.3t Evaluation of Natural Language Systems: Con­

clusions

As can be seen f rom the previous sections, evaluation of N L systems and particu­

larly generation systems, is stil l at a discussion stage.

One of the most extensive pieces of work in this area is that by Galliers and

Sparck Jones [1993]: at the very least the careful definitions of the terms used in

C h a p t e r 8: Eva luat ion and Resu l t s 230

evaluation that they adopt w i l l be useful. Resulting f r o m the study and application

of their 'divide and conquer' method of evaluation to a working system rather than

hypothetical situations, an extension has been suggested to include an evaluation

review (see section 8.1.2). This is especially useful at the present t ime when N L G

evaluation is at a young stage: there are no benchmarks for N L G evaluation so i t is

important that people can understand the evaluations others have performed and,

i f necessary, learn f rom other people's mistakes.

The investigation into this evaluation method has suggested that i t is more eas­

i ly applicable to final application svstems rather than more generic environments.

In application systems, the existence of a real set-up, environment and end-users

would help to identify the evaluation goals, parameters and variables. In these

cases the evaluation method w i l l probably be able to be used to define comparative

evaluations which can be applied to more than one system (although the systems

would have to be perform very similar tasks). The process is more diff icul t when

this setup is not real because, before the evaluation parameters can be identified,

an artificial setup has to be defined. This process can be tedious and liable to mis­

use as the definition of the setup can be altered so as to ensure that the evaluation

of the system is successful. Similarly, the evaluation method is prone to difficulties

when a subcomponent is to be evaluated. In this case i t is very diff icul t to define a

setup so as only the subsystem in question is evaluated. Mistakes in other parts of

the system could be accredited to the subsystem. This is particularly the case for

generation as this is the final manifestation of many other sub-processes (including

parsing, semantics, pragmatics, inference etc).

Although the results of applying the evaluation method to a final application

system may be more precise, they may not be as useful as the results f rom an eval­

uation of a generic system or component. Specific application system evaluation

w i l l only provide results of the performance of the system or component for that

l imi ted task. In order to learn something about the generic capabilities or portabil­

i ty of the system/component, i t must be modified to run for different applications

and the evaluation process repeated.

C h a p t e r 8: Eva lua t ion and Resul ts 231

In conclusion, there is no well defined generation evaluation method which can

be utilised. However, the suggestions made by Galliers and Sparck Jones [1993]

(together wi th the extensions presented here) fo rm a promising framework for defin­

ing such evaluations in the future. In the meantime, i t is important for researchers

to bear in mind the problem of evaluation and include information about how

their systems have been evaluated. A t the very least i t would be helpful i f NLG

researchers include examples of generated utterances in their literature.

C h a p t e r 8: Eva luat ion and Resu l t s 232

8.4 Results Versus Criteria for Success

This section w i l l discuss the results and findings of the project wi th respect to the

criteria for success described in section 2.2.

8.4.1 Aim 1

To follow the A I G o a l and principles of N L E .

e The A I goal. The criteria for success for the A I goal was to aim for behaviour

that mi mi eked but not modelled human behaviour. No claim is made that

the solution to the N L G problem presented in chapters 5 and 6 is similar to

processes in the brain. The production of grammatically well formed English

output, however, does mimic human behaviour. The example evaluation

presented in section 8.1.3 indicates that for a particular task the human-

judged level of acceptability is similar for human and computer generated

utterances. What is more, human judges found i t very diff icul t to correctly

ascertain i f utterances were computer generated or not (this is a small subset

of the Turing test).

• Scale. The L O L I T A system is a very large-scale system no matter how this

scale is measured:- the system has been developed over a period of eight

years and the group now exceeds 20 members, SemNet comprises over 100,000

highly connected concepts, the interpretation grammar comprises over 1600

rules, the program comprises somewhere in the order of 40,000 lines of Haskell

code (equivalent to many more lines of code in an imperative language).

As a highly integrated subsystem, the generator automatically inherits many

of the L O L I T A system's large-scale properties (e.g., the size of the lexicon,

the knowledge contained in prototypical events etc.). One aspect of the gen­

erator that may not appear large-scale is its grammatical coverage (especially

compared to those generators which have been buil t specifically for large cov­

erage such as those based on systemic linguistic principles. E.g., N I G E L and

C h a p t e r 8: Eva luat ion and Resul t s 233

GENESYS, see section 3.6.3). Because the L O L I T A generator does not com­

prise separate grammatical rules and is based on a highly procedural control

mechanism (i.e. control is highly dependent on the SemNet inpu t) , the gram­

matical coverage is diff icult to measure. Of course, grammatical coverage in

generation is not as critical as in interpretation: a generative grammar's cov­

erage must be sufficient to produce utterances adequate for its tasks. This

adequacy has been confirmed as part of other project aims (e.g., A i m 2,

below).

e R o b u s t n e s s The cr i ter ia , w i t h rpsnprt. t.n t.Vi/> a r r p p f a h l H t v of results h?.S been

measured as part of other aims.

As the L O L I T A NLG module develops, i t is tested using a variety of methods.

As a change is made to the module, regression testing is used to ensure that

the change does not have detrimental effects on both other aspects of the gen­

eration and the L O L I T A system as a whole. Af te r a change white box knowl­

edge is used to test the generator using relevant examples. Before adding

modified code1 to the revision control mechanism a set of automatic tests

(currently about 100) have to be carried out. These black box tests cover all

aspects of the L O L I T A system. The generation specific tests comprise Sem­

Net nodes and the N L utterances which should result f r o m their generation

under specified realisation parameters. In addition, extensive testing is car­

ried out each night (when around 15 test articles are semantically analysed

by L O L I T A , section 4.4.1) and over weekends (around 30 articles). Many

other people are regularly using the L O L I T A system and, more specifically,

the generation module is used to aid other areas of development (section 4.5).

Thus the generation module has been the subject of extensive acceptance test­

ing. Any errors reported by the 'users' (i.e., developers of other areas) are

recorded and corrected. Defect testing is then used to show that the error

has been corrected and to t ry and expose similar errors.

from an}' module of LOLITA, not just the generation module

C h a p t e r 8: E v a l u a t i o n and Resul ts 234

Robustness under a software engineering point of view is also crit ical . Even

i f the performance of the system is not as expected, the system should never

unexpectedly terminate or enter an infinite loop (i.e., 'crash'). I f the input

to the system (i.e., the SemNet) is erroneous or requires behaviour which is

beyond the scope of the generator (i.e., i t requires an unimplemented gram­

matical structure), the generator tries to produce something sensible. Useful

error messages are also produced so that any problems are brought to the

attention of the developer (e.g., an error in the input SemNet might lead

to the generator producing the error message 'Warning: no object found for

a transitive verb' and an utterance w i t h a 'generic' object 'The man kissed

somebody yesterday). Robustness in this sense has been rigourously tested

as the L O L I T A system is often run continuously for long periods of t ime. As

well as the regular overnight and weekend evaluations described above, other

batch jobs are run which require L O L I T A to analyse (and generate f r o m the

resulting SemNet, see section 4.4.1) many (e.g., around f i f t y at a t ime) previ­

ously unseen pieces of text (typically one or two paragraph length newswire

bulletins): the L O L I T A system and the generator i t incorporates, very rarely

crashes.

© Maintainabili ty. In general, many people have worked on the L O L I T A system

in order to add functionali ty and f ind and remove existing bugs. The L O L I T A

project uses a strict revision control system which allows simultaneous system

development.

The generation system, however, has been largely developed and maintained

by one researcher only (i.e. the author of this thesis). Thus i t is d i f f icul t to

ascertain maintainabil i ty w i t h respect to how other people can understand the

code. A good indication however, comes f rom the recent work on generation

of Spanish: a person new to the group has been able to understand the

English generator and begin to modify i t to enable generation in another

language [Fernandez, forthcoming 1995].

Maintainabil i ty wi th respect to adding additional coverage and to cope wi th

changes in the input SemNet structure has been successful. This is indicated

C h a p t e r 8: Eva luat ion and Resul t s 235

by fact that i t has only required one person to perform this task. Furthermore,

when producing deliverables, maintenance of the generation modules to cope

wi th enhancements in other parts of the system, has typically been achieved

in a short time.

• Flexibil i ty. The L O L I T A system as a whole has proved to be flexible. Pro­

portion of t ime and code spent on domain and task specific development

compared to general system development has been extremely low. The code

required specifically for the template application, for example, comprises 1%

o f t h e t o t a l r o d e a n d r p r m i r e d a s i m i l a r n r n n n r t i n n o f r]p\rp]nr\rnpr\t t\rr\p

A i m 3, below, w i l l show that the generator has been used by different pro­

totypes. I n fact, there has been no generation development which has been

specific to any one particular prototype: all the prototype applications which

use the generator interface to i t using the same funct ion.

• Integration. The generation module is highly integrated both in respect to

the L O L I T A system as a whole and internally (i.e. the relationship between

the generator's subcomponents).

The generation module has a clear place in LOLITA ' s design: prototype

applications have been able to use the generator using the same general func­

tion (see flexibility). The generator has been developed in tandem w i t h the

development of the SemNet representation: experience f rom generation de­

velopment has influenced the development of the SemNet representation as

well as the other way around.

Internally, the generation has been designed to be integrated. Each compo­

nent of the generator (i.e. the planner and plan-realiser) has specific roles

and does not depend on unlikely assumptions made about each other. The

use of realisation parameters has provided a mechanism for integrating these

subcomponents both wi th each other and wi th the L O L I T A system in gen­

eral.

The generator has benefited f rom code re-use. Where code to achieve the

required functionality was already present in other modules, i t was used (for

C h a p t e r 8: E v a l u a t i o n and Resul ts 236

example functions to cope wi th SemNet inheritance were already used in

reasoning modules). Furthermore, when new code was required, i t was often

bui l t in a more general way than was actually needed for the generator so

that i t could be used by other modules.

o Feasibility. The L O L I T A system currently operates on a Sparc workstation

w i t h 80Mb of memory. Full semantic and pragmatic analysis of paragraph

length pieces of text (e.g., Teletext articles) takes in the order of a few min­

utes.

The generation n i u u u i e requires iess resources than that oi the rest oi the

L O L I T A system (although of course i t is impossible to run the generator

as a separate system). I t produces utterances in real t ime, certainly faster

than can be achieved by humans doing the same task (e.g., in the case of the

example evaluation).

Figures 8.3 and 8.4 show examples of results obtained by profil ing the L O L I T A

system and its generator. In these examples L O L I T A was given a paragraph-

length piece of t ex t 2 to analyse and profiled for heap (figure 8.3), t ime and

memory usage (figure 8.4). The heap usage diagram shows that the the gen­

erator requires negligible heap storage compared to the rest of the system

(the generator's heap is represented by one of the th in lines at the bo t tom

of the graph). The t ime/memory profile shows that for that particular ar­

ticle which involved the generation of about 30 SemNet node descriptions,

the generator took under 10 percent of the total t ime and 15 percent of the

memory. The to ta l t ime spent generating therefore was under 15 seconds

(8.5% of 174 seconds) or less than 1/2 a second an utterance.

Because the feasibility of the generation component of L O L I T A is clearly

not a problem (at least compared to the rest of the L O L I T A system) formal

complexity analysis has not been undertaken.

2 This text was in fact the same shown in the contents scanning example, figure 3.9 and the
evaluation experiment, Appendix C

C h a p t e r 8: E v a l u a t i o n and Resu l t s 237

lolita.exec +RTS -hC -M .00 -RTS 94,795,176 bytes x seconds Wed Aug 23 17:40 1995

fH WholeTextAn iimoOuLanatyseS
£_j WholeTextAn :parse2prag
^ ControlData«AFsJn_...
I I GramTabte9:CAFs_ln_...
flj WholeTextAn.-whoteTextAnatysl
H GramFeatSet:CAF8jn_...
• IMain:CAFs_ln_...
H SyntaxCateg:CAFsJn_...
H NomiaJlseCAFsJn....

: B WWdHioms:CAFsJn_...
M l Sem:CAFsJn_...
IHJ TotalCAFsJn....
jESJ Generatomlgl
j O Sem2.-CAF8.Jn_...

i H SemU»ls«AFs_in_...
i H Parsino.'CAF8jn_...
i H Nomialise6£AF8_in_...
• j Main:CAF8_ln_...

' • O T H E R

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 seconds

Figure 8.3: Example Heap Profile

Wed Aug 23 17:40 1995 Time and Allocation P r o f i l i n g Report

l o l i t a . e x e c +RTS -H40M -K2M -p -h -RTS

t o t a l time = 173.88 sees (8694 t i c k s 0 20 ms)
t o t a l a l l o c = 289,944,372 bytes (23011979 closures)

(excludes p r o f i l i n g overheads)

COST CENTRE MODULE sec subec °/,t ime '/.alloc

timeOut.analyses WholeTextAn 7 7 41 3 58 3
parse2prag WholeTextAn 7 7 28 0 8 9
GC GC 119 0 11 5 0 0
n l g l Generator 48 48 8 5 13 1
wholeTextAnalysi WholeTextAn 5 5 6 9 8 4
nlgen WholeTextAn 44 44 1 5 2 6
nig Generator 44 44 0 1 0 2
test_meaning Generator 48 48 0 0 0 0
tag WholeTextAn 44 44 0 0 0 0

10

1200k

1,000k

800k

600k

200k

Figure 8.4: Example Time/Memory Profile

http://Sem2.-CAF8.Jn_

C h a p t e r 8: Eva luat ion and Resu l t s 238

9 Usability. The tasks for which applications have been developed and in which

the generator is utilised are useful. This is reflected in the amount of research

dedicated to these applications and by the fact that work in these areas

continues to be funded by commercial organisations.

Usability is more important when final products are being sold. However,

potential customers f rom industry have been impressed wi th the L O L I T A

system as a whole and, in particular, the generation aspects have often been

singled out as being impressive. Of course, a system which utilises N L G w i l l

be useful (as N L is how humans communicate) but this wi l l only be the case

if the N L produced is acceptable. This aspect has been covered elsewhere

(see aim 2 for example). The NLG component has been especially useful

in system development, without i t , progress would undoubtedly been slower

(see section 4.5).

• Wide range of techniques. The L O L I T A system uses a f u l l range of techniques

ranging f rom generalised theories right through to rule exceptions (chapter 4).

To meet the criteria for success, however, i t is not necessary for each indi ­

vidual subproblem to adopt such a wide range i f they are not required. This

is the case for the generation module. The generator is largely based on

a rule-based approach. I f a general rule cannot cover all cases (and cost-

benefit considerations mean that the cost of redesigning the rule outweighs

its benefits, see below) then exceptions are used. Conversely, i f aspects of

the generator have functionali ty that cannot be controlled by an existing rule

then this functionali ty is not suppressed. I t is assumed that a controlling

rule wi l l exist in future and unt i l then a more ad-hoc approach such as ran­

domness is utilised. The project has also tried to suggest more generalised

theories such as the particular roles of the planner and plan-realiser.and the

application of abstract transformations (see chapters 5 and 6).

• Cost-benefit. As discussed in chapter 1, cost-benefit analysis is a rather grey

area: i t is essential at a certain level but dangerous i f applied too extensively

(when the cost of doing the analysis outweighs its benefits).

C h a p t e r 8: Eva luat ion and Resul ts 239

Before this project was initiated, the L O L I T A system did not have any gen­

eration capabilities. Generically, therefore, the benefits which have resulted

f r o m the development of the generator have greatly outweighed the costs.

The need for a generator to be buil t quickly has influenced the cost-benefit

analysis throughout the project; rather than t rying to design general theories

which cover a small subset of the problem in great detail, the project has

concentrated on achieving practical and useful results.

Formal extensive cost-benefit analysis is not always practical or necessary

in N L E . However a criterion for success was that informal investigations of

alternatives should be undertaken. Section 6.7.3 presented an example of such

informal cost-benefit analysis when considering the alternative of adopting

a rule-based or explicit data-entry approach to the generation of de-lexical

structures.

This section has shown that the N L E principles set out in chapter 1 and their

criteria for success have been met in the L O L I T A system and more particularly in

the L O L I T A generator described in this work.

8.4.2 Aim 2

To generate E n g l i s h expressions for concepts represented by L O L I T A ' s

S e m N e t representation.

One criterion for success for this aim was to judge the generator's capability

compared wi th that of humans doing a similar task. This has been the subject of

the extensive evaluation experiment in the first half of this chapter. Although not

conclusive (due to the fact that the evaluation itself was an experiment), the results

indicate that this criteria has been met. Another less stringent, but none-the-less

important , indication, is the acceptability of the utterances produced from SemNet

nodes resulting f rom demonstrations. The L O L I T A system has been extensively

demonstrated to a wide range of both academic and industrial people and the

generation capabilities have received few (i f any) comments as to its unacceptability.

C h a p t e r 8: Eva lua t ion and Resul t s 240

In fact, the generation aspect has often been singled out as an impressive system

feature. Finally, as discussed in sections 2.2 and 4.5, one use of the utterances

generated f r o m SemNet concepts is in the ongoing development and debugging of

the system. The usefulness of these utterances has become so important that they

are now used as the first measure as to whether the rest of the system is operating

correctly. A n alternative method of debugging would be to utilise a graphical

representation of SemNet. Figure 8.7 however illustrates that the complexity of

such a graphical input would mean that i t would be diff icul t to use for this task.

8.4.3 Aim 3

To provide N L G capabilit ies for existing L O L I T A prototypes.

A l l existing prototypes which require N L G capabilities have successfully utilised

the generation system described in this work.

One problem encountered in evaluation (see section 8.3) is that i t is hard to

evaluate subsystems in isolation. This is specially the case in N L G as the utterances

produced are the manifestation of the process of the whole application. A n error

in another subcomponent could manifest itself in NLG and it would be dif f icul t to

ascertain i f i t is the generator or the application which is at fault . As mentioned in

section 8.3, evaluation is easier when an actual application and setup exists. How­

ever, only prototype applications have thus far been developed and these w i l l not

be expected to stand up to rigourous evaluation. Instead this section w i l l give a few

examples of how the generator has been used to generate utterances which high­

light its f lexibi l i ty in different applications (section 4.5 explains the requirements

of N L G for each application).

Analys i s of text

The basic operation of the L O L I T A system is to analyse input text in order to

build a SemNet representation of its meaning. The generator must then produce

a N L utterance for each of the SemNet nodes which has been bui l t . Figures 8.5

C h a p t e r 8: Eva luat ion and Resu l t s 241

and 8.6 show two examples of SemNet nodes and the English utterance generated

to describe them.

I t is important to stress that the utterances shown are not generated solely f rom

the two nodes shown. The generator takes as input the whole of SemNet together

wi th a starting node f rom which to generate (see chapter 5). In order to produce

the utterances shown the plan-realiser visits somewhere in the order of 30 nodes

for each of the two examples. Figure 8.7 shows a graphical representation of some

of the SemNet which is used to produce the utterance in figure 8.6. This diagram

serves to illustrate the complexity of the SemNet f rom which the plan-realiser must

generate.

Q u e r y

Figure 8.8 shows an example query session. A l l the utterances produced by L O L I T A

(marked ' L : ') are produced by the N L generator. As well as producing responses

to the user's input, the generator is also able to produce utterances for the original

questions (e.g., 'how many vehicles do I own?*). The utterances produced by the

generator in this example are short and simple and do not show the f u l l capabilities

of the generator. This is due to the l imitations of the query module rather than

the generator.

Trans lat ion

Figure 8.9 shows an example of translation. As explained in sections 4.4.3 and 4.5

the current prototype does not produce a single polished translation but rather a

series of utterances produced for each of the SemNet nodes that are bui l t f r o m the

analysis of the input text. Work is currently underway to build a generator for

different target languages (e.g., Spanish [Fernandez, forthcoming 1995]) although

this is beyond the scope of this work.

C h a p t e r 8: Eva luat ion and Resu l t s 242

* event: 31941 *
un i v e r s a l . :

event - 7688 - rank: u n i v e r s a l - d e f i n i t i o n .
cause_:

event - 31938 - rank: u n i v e r s a l - suspended,
subject.:

roberto - 19845 - rank: named indiv i d u a l
action.:

give - 3936 -
object.:

t i p - 31940 - rank: i n d i v i d u a l - suspended,
destination.:

d r i v e r - 31936 - rank: ind i v i d u a l - suspended,
time.:

p a s t . - 20991 -
date:

26 September 1993
source.:

roberto - 19845 - rank: named indiv i d u a l
s t a t u s . :

suspended. - 29025 -

event:
You gave a dr i v e r a big t i p because he was cool and
the t a x i that you c a l l e d was warm. You were t i r e d so
you went to your home.

(note: In t h i s example 'Roberto' i s the system user and so LOLITA
uses 'you' to r e a l i s e t h i s node)

Figure 8.5: Example of a SemNet node wi th its generated N L description

Chapter 8: Evaluation and Results 243

* event: 29180 *
generalisation.:

event - 7688 - rank: u n i v e r s a l - d e f i n i t i o n .
s n h i p.r.t. •

report - 29169 - rank: u n i v e r s a l - suspended,
action.:

suggest - 3435 -
time.:

past. - 20991 -
date:

31 October 1992
source.:

telegraph - 9994 - rank: named ind i v i d u a l
status.:

suspended. - 29025 -
object.:

explosion - 29156 - rank: ind i v i d u a l - suspended,

event:
F i r s t reports suggested that at 9pm at nights when
a f o r c e f u l person forced a dr i v e r to drive a black
t a x i to Whitehall, a bomb went off in i t on a corner
outside Cabinet Office and outside 10 Downing S t r e e t .

Figure 8.6: Example of a SemNet node w i t h its generated NL description

liapter 8: Evaluation and Results 244

I
IS

i l i i -

'Y
/ \ A is

I

r
3 I

1 I

1
i
!

iuU
i

7

/ !

X \ r Is

55
1 4

rr 11 i

!

t: t

I
1

t

3
1

i

i

1 /i
i

I

Figure 8.7: Portion of the SemNet f rom which the utterance in diagram 8.6 was
generated

Chapter 8: Evaluation and Results 245

U: do I own a motorbike?
L: Yes, you own a big f a s t motorbike.
U: do I control a vehic l e ?
L: Yes, you own a big f a s t motorbike.
U: what do I use?
L: An o f f i c e .
U: how many ve h i c l e s do I own?
L: At l e a s t 1.
U: What do I own?
L: A big f a s t motorbike and a home.
U: why did I go home?
L: You went to your home because you were t i r e d .
U: I was owned by a motorbike
L: I do not believe that a motorbike owned you.
U: was I owned by a motorbike?
L: no
U: do I l i k e you?
L: I do not know i f you l i k e me.
U: I l i k e you
L: I understand.
U: and Keith too.
L: I understand.
U: do I l i k e you?
L: Yes, you l i k e me.
U: whom do I l i k e ?
L: Keith and me.
U: Keith
L: What about Keith?
U: you admire him
L: I understand.
U: whom do you admire?
L: Keith.
U: I l i k e you.
L: I know.
U: I hate you
L: I do not believe that you hate me.
U: do you know that I l i k e you?
L: Yes, you l i k e me.
U: does Rick know that I l i k e you?
L: I do not know i f Rick knows that you l i k e me.

Key:
U: user's utterances,
L: LOLITA's utterances (produced by the generator)

Figure 8.8: Example query session

C h a p t e r 8: Eva lua t ion and Resul t s 246

ITALIAN INPUT:-
se a v e s s i saputo che l a grossa moto veloce che mi hai dato
era posseduta da l e i , mi sarebbe p i a c i u t a , perche' l e i mi
piace davvero.

HUMAN TRANSLATION
(i f I had known the big and f a s t motorbike you gave me was
owned by her I would have l i k e d i t , because I love her.)

LOLITA GENERATOR OUTPUT:-

I gave a woman owner's big f a s t motorbike to you.

The woman owner whom you love owned the big f a s t motorbike that
I gave to you and that you would l i k e i f you knew that she owned i t

I f you knew that the woman owner whom you love owned the big
f a s t motorbike that I gave to you then you would l i k e i t .

You would l i k e a woman owner's big f a s t motorbike that I gave
to you i f you knew that she owned i t .

You love the woman owner who owned the big f a s t motorbike that
I gave to you. You would l i k e i t i f you knew that she owned i t .

Figure 8.9: Example of translation

Content Scanning

Figure 8.10 shows an example of the content scanner or template-fill ing prototype

application. The L O L I T A system analyses input articles and fills templates w i t h

relevant information. The content scanning module invokes the generator to pro­

duce utterances for each of the template slots. The numbers in brackets after each

utterance refer to the SemNet node f rom which they are produced.

8.4.4 Aim 4

T h e suitabi l i ty of L O L I T A ' S SemNet representation for generation.

Not only has the SemNet representation been shown to be suitable for gener-

Chapter 8: Evaluation and Results 247

T E L E G R A P H
31/10/92
A car bomb exploded outside the Cabinet Office in Whitehal l last night, 100 yards
f r o m 10 Downing Street.
Nobody was injured in the explosion which happened just after 9pm on the corner
of Downing Street and Whitehall . Police evacuated the. area.
First reports suggested that the bomb went off in a black taxi after the driver
had been forced to drive to Whitehall . The taxi was later reported to be burning
fiercely.

Template: Incident
Incident: The bomb explosion. (29156)
Where: On a corner. (29165)

Outside Cabinet Office and outside 10
Downing Street. (29153)

In a black t a x i . (29172)
When: 9pm. (29159)

Past . (20991)
Nights. (29152)
When a f o r c e f u l person forced a d r i v e r to drive
a black t a x i to Whitehall. (29178)

Responsible:
Target: Cabinet Office. (28969)
Damage: Human: Nobody. (3295)

Thing: A black t a x i . (29171)
Source: telegraph
Source_date: 31 October 1992
Certainty: Facts. (18664)

Relevant Information

Pol i c e evacuated 10 Downing Str e e t . (29167)

Figure 8.10: Example of contents scanner

C h a p t e r 8: Eva luat ion and Resul t s 248

ation, but some aspects of this representation are critical for the approach taken.

The architecture of the generation module and its sub-components has been dis­

cussed in chapter 5. The use of an input similar to SemNet is not just convenient

but necessary to this proposed solution.

Other examples of aspects of SemNet which have been found to be useful in

generation are:-

• SemNet contains rich information required for generation. What is more, this

information is close at hand and where i t is needed. For example, controls

associated wi th each SemNet node (section 4.3.2) contain important infor­

mation for generation (both semantic e.g., the rank, and linguistic e.g., the

presence of an irregular verb).

• The special representations adopted for positions, t i m e 3 and other internal

representations have been useful. This is not least because they have been

bui l t i n tandem wi th the generator's needs as well as the needs of other

L O L I T A subcomponents.

• The rich knowledge in SemNet allows knowledge intensive generation. Pro­

totypical events (section 4.3.2, for example, allow paraphrasing via abstract

transformations, see chapter 6).

• The size of SemNet and its lexicon mean that wi th respect to the lexicon the

generator has large coverage: i t can chose f rom over 100,000 root nodes.

• The SemNet assumptions on the relationship between concepts and words

have positive effects on generation. The granularity means that there are

many language isomorphic concepts which have a direct l ink to a lexical

i tem that can express that concept. This is in contrast to systems that use

pr imi t ive concepts or concepts that have a larger grain size than words: in

these cases the lexicalisation process is more complicated as for each concept

more than one possible word or phrase could be used. For non-language

3 this development is ongoing.

C h a p t e r 8: Eva luat ion and Resu l t s 249

isomorphic concepts, i t is easy to follow round the SemNet representation in

order to decompose these concepts into language isomorphic ones.

8.4.5 Aim 5

To adopt a broad coverage approach.

As mentioned in the relevant criteria for success (section 2.2.5), a broad cov­

erage approach is necessary for aims 2 and 3 to be successful. The generator has

had to cope wi th such subproblems as realisation, planning, the generation ga,p.

anaphora and referring expressions, style, paraphrasing, user modelling, context,

control methods etc.

8.4.6 Aim 6

To investigate the suitabil i ty of Haske l l

L O L I T A is the largest application program wri t ten in Haskell (i.e. discounting

compilers) or indeed any pure functional language. Furthermore, the N L generator

described in this thesis is, as far as is known, the only generator wr i t t en in this

language. Therefore the project is well qualified to evaluate the usefulness of this

language for N L G .

Chapter 7 has discussed the features of functional languages and their effect

(both advantageous and disadvantageous) on the development of L O L I T A and its

N L generator. I t was concluded that Haskell is a suitable programming language

for N L E tasks, especially for high-speed prototype development. I t remains to be

seen, however, i f Haskell w i l l be a success in the commercial environment.

8.4.7 Aim 7

To investigate N L G evaluation methods

The project has investigated existing methods of N L system evaluation wi th

C h a p t e r 8: Eva luat ion and Resul t s 250

particular interest to generation. One of these methods (that suggested by Galliers

and Sparck Jones [1993]) has been applied to a real-life working N L G system rather

than to hypothetical systems in hypothetical environments. This practical use of

the evaluation method has resulted in suggestions as to its usefulness and possible

extensions (i.e. the addition of an evaluation review, see section 8.1.2). The project

has, therefore, been successful w i t h respect to this aim.

Chapter 9

Conclusions

Chapters 1 and 2 discussed criteria for success for this project: chapter 1 discussed

the methodological criteria for this work f rom the Ar t i f i c ia l Intelligence and Natu­

ral Language Engineering viewpoints; chapter 2 presented seven Natural Language

Generation specific project aims. After aspects of the solution and their implemen­

tat ion were presented, chapter 8 re-examined these criteria to ensure that they had

been met.

This final chapter w i l l conclude the thesis by summarising the project's successes

(both practical and theoretical) and shortcomings. Possible avenues for fur ther

research arising f rom these shortcomings are also discussed.

9.1 Successes of the Project

9.1.1 Theoretical Impact

This section summarises the theoretical successes of the project :-

e The project has defined and followed methodological principles of Natural

Language Engineering: sca/e, robustness, maintainability, flexibility, integra­

tion, feasibility, usability, the use of a wide range of techniques and cost-

benefit analysis. Although other researchers may well have considered these

C h a p t e r 9: Conclusions 252

problems, they have rarely made their adopted methods explicit. Many re­

searchers have ignored these problems altogether and their solutions to the

problem of N L G generation and other NLP tasks have often been small-scale

' toy ' prototypes. The following of such N L E principles is important i f research

is to lead to useful large-scale N L applications.

e The adopted solution to N L G is based on a novel theoretical architecture.

Although, like many other N L G systems, the architecture is based on a two

component arrangement, the roles of the planner and plan-realiser are dif­

ferent f rom traditional planners and realisers. By allowing both components

access to the whole of the SemNet input, the effect is to shift some respon­

sibili ty away f rom the planner to the plan-realiser. The planner need not

formulate a complete plan of the utterance to be produced but merely pass

down suggestions (maybe even conflicting) to the plan-realiser. Since the

planner need not know any surface linguistic information, the problem of the

'generation gap' is avoided. The adopted solution was heavily influenced by

the SemNet representation which is the input to the L O L I T A N L generator.

Assumptions about certain aspects (such as the relationship between con­

cepts and words and the meaning of each particular concept being defined

by the whole of the SemNet) have both influenced and allowed this adopted

solution.

• The use of Abstract Transforms. Abstract transformations are a novel way

of allowing the L O L I T A generator to produce variation and paraphrasing.

By performing transformations on the SemNet input before realisation (i.e.

before the input is passed to the plan-realiser) the power of the generator

is increased while avoiding over-complication at the realisation stage. The

rule-based approach adopted to f ind possible transformations avoid the need

for explicit lexical entries and the problems of lexical explosion which they

may cause.

• The project has examined the problem of NLG evaluation. Because of the

lack of evaluation and discussion about how to evaluate NLG systems it is

C h a p t e r 9: Conclusions 253

very diff icul t to judge the strengths and weakness of individual N L G systems

let alone compare them. Chapter 8 discusses a possible generic evaluation

method and suggests some extensions to allow for a review stage in the eval­

uation process. Although i t would be both impossible and unwise to adopt a

universal evaluation method or metric at this early stage i t is recommended

that other researchers consider and discuss how their systems are evaluated.

A t the very least researchers should include examples of their systems' output

in their literature.

• The project has examined some theoretical issues of the adopted functional

implementation language Haskell. The use of functional programming lan­

guages for N L processing tasks is novel. Although the use of Haskell was a

starting point assumption for this work, its effect on the solution has been

discussed. Chapter 7 shows how properties of functional programming such

as referential transparency, lazy evaluation, higher order functions, currying,

the type system and data structures and management are beneficial for the

N L G task. Although Haskell (and other functional programming languages)

have disadvantages its use is particularly suitable for the development of

large-scale prototypes.

9.1.2 Practical Impact

This section summarises the practical successes of the project :-

• The project has resulted in a useful working generator for the L O L I T A sys­

tem. Before the project was ini t iated the L O L I T A system had negligible gen­

eration capabilities. Despite the fact that a complete planner has not been

implemented, the plan-realiser is already being successfully used for L O L I T A

application prototypes such as query, content scanning and translation. Per­

haps more importantly, the generator has been crucial for the development of

the L O L I T A general purpose base. The first way of checking the consistency

of SemNet and the success of text analysis is by reading the N L descrip-

C h a p t e r 9: Conclusions 254

t ion generated for each SemNet node. Without this facili ty, tracing through

the SemNet internal representation for errors would be extremely laborious

(figure 8.7 illustrates the complexity of the SemNet output) . The practical

success of the generator is largely indebted to the in i t ia l aim of adopting a

broad coverage solution: such practical results may not have been achieved

i f the project had tackled one specific generation subproblem in isolation.

• The theoretical discussion concerning N L G evaluation led to a practical eval­

uation experiment being carried out. This experiment aimed not only to

evaluate the L O L I T A N L generator but to show how such a practical eval­

uation could be achieved. The review stage of this evaluation allows us to

learn f r o m its shortcomings in order to design and execute better evaluations

in the future.

• The implementation of the generation module and L O L I T A as a whole has

resulted in probably the largest functional application program in the world.

As well as its successes concerning N L E , this program is a useful practical

testbed for functional programming research. The L O L I T A code has already

been useful for work on error detection and profil ing of functional programs.

Ongoing work wi th the developers of the Glasgow Haskell compiler on parallel

development of L O L I T A w i l l shape the development of Haskell as a parallel

language.

9.2 Project Shortcomings and Suggestions for Fur­

ther Work

This section describes some of the shortcomings of the project and suggests areas

of further research:-

• Lack of a complete planner. Work on the design and development of the

planning component, although underway, has not been completed. However,

the plan-realiser has been designed and implemented wi th future integration

C h a p t e r 9: Conclusions 255

with the planner in mind, and can already be successfully used without the

planning component. As well as further design and development of the plan­

ning component more work on the plan-realiser may be required so as to

improve and 'fine-tune' the interface between the components. More realisa­

tion parameters, for example, may be required.

• Coverage of the generation grammar. Compared to some generation systems

(especially those based on systemic principles, section 3.6.3) the grammatical

coverage of the plan-realiser is poor. Coverage in generation however is not as

critical as in interpretation: the grammar must only be sufficient to generate

utterances to convey the meaning represented in the input. As the SemNet

representation develops, the grammatical coverage of the plan-realiser may

have to be extended to cope, for example, wi th an increase in the variety of

possible SemNet structures. The procedural approach to generation means

that the grammar is not made explicit and can therefore be diff icul t to modify

(this is a common crit icism of procedural systems, see section 3.4). Further

work may t ry to extend the grammar and its representation. A n ult imate goal

would be to develop a unified bi-directional grammar for both interpretation

and generation in L O L I T A .

• Further development of solutions to the sub-problems in generation. One

aim of the project was to adopt a broad coverage approach. Although this

has resulted in a complete and practically useful generator, some of the sub-

problems associated wi th generation have been solved using over-simplified

algorithms. Further work could look into the 'deeper' development of these

areas. Better algorithms described by other researchers may be incorporated:

this wi l l require work to modify the algorithms so they are not dependent on

other formalisms and are compatible wi th the architecture and SemNet rep­

resentation. Furthermore, any incorporated algorithms must conform to the

principles of N L E .

• Further development of abstract transformations. The heuristics presented in

chapter 6, which determine when and how certain types of abstract transfer-

C h a p t e r 9: Conclusions 256

mations can be performed, could be expanded to cover more cases. Other pos­

sibilities for abstract transformations could be investigated so as to increase

both the efficiency of normalisation during interpretation and the abil i ty to

paraphrase during generation.

• The generation of other languages. The project has only concerned the gen­

eration of English. Work is already underway to enable Spanish genera­

tion [Fernandez, forthcoming 1995]. The Spanish generator has been bui l t

based upon the same theoretical principles as the English generator and has

utilised a good deal of the same code. The experience obtained f rom mod­

ifying the English generator to a Spanish one can be used to abstract away

some of generation principles so as to allow the generation of other target

languages.

• Further work on NLG evaluation. Because of the state of the art in NLG

evaluation, the evaluation experiment carried out on the plan-realiser is far

f rom conclusive. As generation systems develop, fur ther work on evalua­

tion w i l l be crucial. Experience gained f rom past evaluations (which can

be conveyed using Evaluation Reviews) should allow evaluation methods to

improve. Eventually N L G evaluation techniques should be able to compare

systems explicit ly rather than just evaluate a single system as is the current

case.

Appendix A

Examples of Generator output

Sentences generated f r o m an input article concerning hotels and booking arrang
ments. This text was generated using the 'story' command to simulate the planner
(see section 5.1.3):-

Sogno is a company that manages its hotels. Sogno needs to
modify its information system. New systems may improve
reservation services in order to get a better integration level.
Bolzano Hotel is near a cathedral and in a town centre. It is
a four-star hotel. Bolzano has 5 single rooms and 15 double
rooms. Single rooms and double rooms contain a small balcony
and a bath. Bolzano has a garden, a private car park and a
restaurant.
Koenig is a hotel which Sogno owns. It is not far outside a
railway station. Koenig is a big new three-star hotel.
Sirena is a hotel which Sogno owns. It is by a sea. The rooms
that Sirena has have a balcony. 10 rooms look out upon the
sea by which Sirena is. Sirena has restaurants, a disco and a
garage.
Guests make a reservation by calling Sogno's central office or
make a reservation by calling the hotels that Sogno owns. A
person asks guests about a room type and arrival-departure
times. The guests may leave a payment way, a telephone num­
ber and a name. A receptionist would propose a room in other
hotels of the chain if there is not a vacant room. Guests would
loose the deposit if they cancel the reservation.

Appendix A: Examples of Generator output 258

Variations for generator output f rom the input sentence:-

' I was very t i red, so I called a taxi and went home. The cab was warm
and the driver was cool, so I gave h im a big t i p "

You gave a driver a big tip because he was cool and the taxi that you
called was warm. You were tired so you went to your home.
You gave a driver a big tip. A taxi was warm. You called it. You were
tired. You went to your home.
A driver was cool and the taxi that you called was warm so you gave
him or her a big tip.
The driver to whom you gave a big tip was cool.
The cool driver to whom you gave a big tip.
i ne tax i that you caiiea was w a r m .
You called a warm taxi because you were tired.
This tremendous enormous tip was received by this driver from you.
This cab was warm. It was called!
A big tip was received by a driver from you.
You gave a driver a tremendous gigantic tip because this cab that you
called was warm. You were tired.
A big tip was received from you!
This driver received this big tip from you because this taxi that you
called was warm.
You gave a driver a tremendous gigantic tip. A cab was warm. You
called it.

A p p e n d i x A : E x a m p l e s of Generator output 259

Variations for generator output f rom the input sentence:-

' i f I had known the big and fast motorbike you gave me was owned by
her I would have liked i t , because I do love her.'

I gave you a woman owner's big fast motorbike that you would have
liked if you knew that she owned it.
Y o u received this woman owner's big fast motorbike from me!
A woman owner's big fast motorbike that you would have liked if you
knew that it was owned by her was given by me to you.
Y o u love the woman owner who owned the big fast motorbike that I
gave to you. Y o u would have liked it if you knew that she owned it .
Y o u love a woman!
Y o u love a w o m a n . She owned a b i g f a s i m o t o r b i k e . Y o u w o u l d have
l iked it if you knew that she owned it. Y o u received it f rom me.
T h i s woman is loved.
Y o u would have liked a woman owner's big fast motorbike if you knew
that she owned it!
T h i s woman owner's big fast motorbike would have been liked if you
knew that it was owned by her. Y o u received it f rom me!
Y o u would have liked this woman owner's big fast motorbike that I gave
to you if you knew that she owned it.
I f you knew that the big fast motorbike that I gave to you was owned
by the woman owner w h o m you love then it would have been l iked by
you.
A big fast motorbike was owned!

Examples of abstract transformations:-

I like comics.
I do not dislike comics.
Clowns are happy.
Clowns are not sad.
A greedy salesman sold J o h n a car.
J o h n bought a car f rom a greedy salesman.
M a r y and J o h n went to a supermarket .
J o h n went w i th M a r y to a supermarket .
R o m e o kissed Ju l i e t .
R o m e o gave Ju l i e t a kiss.
A m a n c la imed that he c l imbed Everes t .
A m a n made a c la im that he c l imbed E v e r e s t .
B r u t u s wounded C a e s a r wi th a knife.
B r u t u s stabbed C a e s a r wi th a knife.

Appendix B

Summary of Systems

• A N A pg.55. [Kukich, 1988]
A system that summarises stock market movements. I t uses domain specific
templates derived f rom studying real life reports and uses a special lexicon
containing the most used phrases.

• A T N section 3.6.5, pg.50,78,91. Augmented Transition networks. [Woods,
1970]
ATNs were originally used in N L analysis but have more recently been used
in generation. Generation systems that use ATNS are B A B E L , T E X T ,
Shapiro's S N e P S generator and Simmons and Slocum's generator (section
3.6.5).

e B A B E L section 3.12.1. pg 68,77. [Goldman, 1975]
B A B E L produces English sentences f rom C D T . Uses discrimination networks
to choose appropriate verbs to express C D T primitives.

• B L A H pg.53. [Weiner, 1980]
A system which explains why deductions were taken on income tax returns.
One of the first systems to use naturally occurring texts as a basis for text
organisation. However the system is very domain restricted and small-scale.

© Conceptua l Dependency Theory , C D T section 3.12.1 pg.76. [Schank
and Abelson, 1977]
Conceptual Dependency Theory was one of the first attempts at a representa­
tion which aimed to capture the content of N L sentences. This representation
is used by the generation systems B A B E L and P A U L I N E . C D T is based
on a small set of pr imit ive acts which are too restrictive for a serious large
scale system.

• Conceptua l G r a p h s section 3.12.2, pg.83. [Sowa, 1984]
Conceptual graphs are a modern and well used representation for N L seman­
tics. They have been used as the input to various generators including Sowa's
(page 84) and Nogier and Zock's (page 86).

A p p e n d i x B : S u m m a r y of Systems 261

• C O M E T (Coordinated Mult imedia Explanation Testbed). pg 44,57,69.
[McKeown et a/., 1990]
The C O M E T system provides explanation for equipment maintenance and-
repair in which text and graphics are integrated and coordinated. I t has a
generation component which is based on the S c h e m a planning approach (see
T E X T and T A I L O R) and the Functional Unificat ion Formalism F U F .

• D I A M O N D pg.105. [Horacek, 1993]
D I A M O N D is the generation component of O F F I C E - P L A N N E R a expert
system that tries to solve office allocation problems. The system is similar to
Horacek's W E I B E R .

e C O M M U N A L pg.45,59. [Fawcett, 1994]
The C O M M U N A L project (COnvivial Man-Machine Understanding through
NAuurai Language) is concerned with applying and developing Systemic junc­
tional linguistics (section 3.6.3) in a very large, fu l l y working computer sys­
tem. The generation component for the project is G E N E S I S .

• D I O G E N E S pg.40,70. [Nirenburg et ai, 1988]
DIOGENES is unusual as i t is an integrated system bui l t using a blackboard
architecture.

• E D G E pg.53,55. [Cawsey, 1990]
The EDGE (Explanatory Discourse GEnerator) is a dialogue system used
to explain how electrical circuits work (using a combination of graphics and
text) . I t uses a domain dependent S c h e m a approach to plan utterances.

s E E S pg. 55,58. [Paris, 1991]
The EES (Explainable Expert System) is a system which aims to generate
explanations for expert systems. I t uses a planner system based on R S T .
See also X P L A I N (the predecessor of EES).

• E P I C U R E pg.53. [Dale, 1990]
This system concentrates on how to bui ld referring expressions which pick
out complex entities in connected discourse. The domain is that of cooking
recipes and so the generator ensures that ingredients, for example, are referred
to in a correct way.

• Funct ional Unif icat ion G r a m m a r s / F o r m a l i s m (F U G / F U F) section
3.6.2 pg 42,67. [Kay, 1979] [Elhadad and Robin, 1992]
The process of functional unification has been used in many areas of NLP. I t
has been used for realisation in the T E X T and T E L E G R A M systems and
extended (into FUF) in the C O M E T project.

e G E N E S I S pg.45,73. [Fawcett et ai, 1993]
GENESYS is the generation component of the C O M M U N A L project. I t is
based on a very large systemic grammar which gives extremely good gram­
matical coverage. I t is unclear, however, how this realiser is controlled.
Demonstrations of the system, for example, constitute either a human making

A p p e n d i x B : S u m m a r y of Systems 262

decisions or them being made randomly (according to probabilities assigned
to each decision).

• G L I N D A pg.39,40. [Kantrowitz and Bates, 1992]
G L I N D A is the generator used for narration and inter-character communi­
cation in the OZ interactive fiction and vir tual reality project. I t is based
on an integrated architecture where there are no divisions into planning and
realisation components.

o G O S S I P 3.12.4 pg.96. [Iordanskaja et a/., 1991]
The GOSSIP system (Generation of Operating System Summaries i n Prolog)
is based on the Meaning Text Model .

• I G E N section 3.8.3, pg.66. [Rubinoff, 1992]
T V , ^ TCI F . N m m u c t t r r e t a i l o a t i r m ^ r u T i r v r m ^ n f fr> "Fp^rlKayL-

information to the planner thus preventing the generation gap problem. No
information is given about the domain or scale of the generator but, as many
lexical items have to be checked for each input concept, the mechanism is
clearly not feasible for large-scale systems.

• I M A G E N E pg.60. [Vander-Linden et a/., 1992]
I M A G E N E (Instruction MAnual GENErator) operates in the domain of de­
scribing the operation of cordless telephones. I t uses systemic networks to
bui ld R S T structures f rom a list of processes that need to be expressed.
Neither the exact nature of the input nor where i t comes f rom is detailed.
I M A G E N E uses N I G E L for final realisation.

o J O " C E [Rambow and Korelsky, 1992]
J O Y C E is the generator of the Ulysses project concerned w i t h describing soft­
ware design diagrams. I t uses a domain dependent Schema-based planner
and a realiser based on the M T M model.

• K A L O S pg.92. [Cline, 1994]
K A L O S uses the SNePS formalism throughout the generation process. I t
contains an 'after realisation' revision process to improve the original output .
The generator works in the restricted domain of generating descriptions of
the M68000 processor systems.

• K A M P pg.40. [Appelt, 1985]
The K A M P (Knowledge and Modalities Planner) is a system which formu­
lates the best noun phrase to describe a particular object. I t was one of the
first systems to break f r o m the tradit ional separated architecture. The com­
plex planning mechanism works f rom first principles and thus takes nearly
an hour to produce one sentence. See also T E L E G R A M .

• K D S pg.53. [Mann and Moore, 1981]
The KDS (Knowledge Delivery System) uses a hil l cl imbing search mechanism
to combine clause length propositions into complex sentences. I t works in the
l imi ted domain of fire emergency procedures.

A p p e n d i x B : S u m m a r y of Systems 263

• K I N G pg.101. [Jacobs, 1987]
K I N G (Knowledge INtensive Generator) is a small-scale generator (w i th no
given task or domain) which illustrates a knowledge intensive approach to .
generation. I t illustrates the advantages of an input representation which
has rich information.

• L I L O G [Dobes and Novak, 1991] [Novak, 1987] [Herzog and Rollinger, 1991]
L I L O G is a dialogue system in the domain of street descriptions and route
planning. Its generation component can answer questions in this domain. The
system uses an adaptation of Meteer's Text Structure (see S P O K E S M A N)
in a pipelined architecture. I t uses KL-ONE[Brachman and Schmolze, 1985]
for semantic representation.

• L O Q U I pg.69. [Horacek, 1987]
T T 1 i T T 1 1 1 * 1 1 * . I 1 1 . • _

i i t i i i i i c b i i O i & C c K iitlb U c c i l l i l V O i V t i U i i i biiti ClGVtJiOplUtJIlo Oi V'&.fiOU& gdierctbiOii

systems (for example W E I B E R V I E - G E N and D I A M O N D) as well as the
generator for the L O Q U I project. I t utilises a largely one to one relationship
between its concepts ('epistemological primitives ') and lexical items. When
this relationship is one-to-many a discrimination network is used.

• Meaning Text T h e o r y / Mode l section 3.12.4 pg.94. [Mel'cuk and Polguere,
1970]
Meaning Text Theory or Model is a linguistic theory which associates l i n ­
guistic meanings and the texts that carry out those meanings. I t has been
used for generation in , for example, the systems G O S S I P and J O " ' C E .

• M U M B L E section 3.6.4 pg.39,47,63. [McDonald and Meteer, 1988]
M U M B L E is a final realisation component which realises a semantic notation
into surface fo rm. A l l decisions about the structure of the text are assumed
to be contained in this input specification which is then 'executed' as i f i t
were a program in a special programming language. Although M U M B L E
leaves a lot of the work to other modules, the S P O K E S M A N program has
been buil t to interface w i t h i t .

• P A U L I N E pg.51,70,78. [Hovy, 1988a]
P A U L I N E (Planning And Uttering Language In Natural Environments) gen­
erates single sentences f r o m an input expressed in C D T . P A U L I N E can pro­
duce a great variation of sentences f r o m the same input using large set of
stylistic features. P A U L I N E is based on a formative lexicon. Its main weak­
ness is that i t is based on C D T which is now rather outdated.

o P E N M A N section 3.6.3, section 3.8.2 pg.45,60,64. [Mann, 1983a] [Bateman
et al, 1990]
P E N M A N was originally the name of a surface realiser based on the N I G E L
systemic grammar and a specification language called SQL. The P E N M A N
project then evolved based on this N I G E L realiser but also incorporating
higher level planning components (see section 3.7.4) and the P E N M A N Upper
Model (section 3.8.2).

A p p e n d i x B : S u m m a r y of Sys tems 264

e P H R E D pg.101. [Jacobs, 1987]
PHRED is the generator for a project which provides information about the
Unix operating system. I t is based on the idea of pattern concept (PC).
pairs which relate concepts to phrases in the lexicon. The generation process
involves the incremental fetching of possible PC pairs for a given concept and
checking that the pattern meets given constraints.

• P O P E L [Reithinger, 1991]
POPEL (Production Of (Perhaps, Possibly, P..) Eloquent Language) is
the generator in the X T R A (eXpert TRAnslator) system which provided
N L access to expert systems. I t is an interleaved system in which there is
bidirectional interaction between the realiser (POPEL-HOW) and the R S T -
based planner (P O P E L - W H A T) . The system has also been integrated w i t h
a 'gesture generator' (ZORA) which points to relevant parts of the screen as
text is generated.

e P R O T E U S pg.53. [Davey, 1979]
PROTEUS was a very early generation system which provided commentary
for a game of tic-tac-toe. I t is based on systemic networks.

• R h e t o r i c a l Structure T h e o r y section 3.7.3 pg.36,55,61. [Mann and Thomp­
son, 1987]
RST was originally a formalism for describing the structure of text but has
more recently been used to prescribe text order in generation planners (for
example see P E N M A N , E E S , P O P E L , T E C H D O C) . RST is most com­
monly used for building texts f rom a set of clause-sized input predicates.

• S L A N G pg.45. [Patten, 1988]
SLANG (Systemic Linguistic Approach to Natural language Generation)
is a generator based on a S Y S T E M I C grammar. Unlike N I G E L and
G E N E S I S however, i t appears that this system did not progress beyond
the prototype stage.

« S P O K E S M A N section 3.8.1, pg.36,47,63. [Meteer, 1993]
The SPOKESMAN system was buil t 'on top o f the M U M B L E realiser and
shares many of its psychologically motivated assumptions (such as an indelible
pipelined architecture). I t aims to cross the the 'generation gap' by using
a representation called 'Text Structure'. This text structure is bui l t using
the output of underlying application programs and provides a mechanism to
take advantage of the expressiveness of N L while preventing the building of
utterances that are not expressible.

• S U N D I A L [Youd and McGlashan, 1992]
S U N D I A L (Speech UNderstanding in DIALogue) is a large collaboration
project concerned wi th building real-time integrated computer systems ca­
pable of maintaining co-operative dialogues over the phone (e.g flight reser­
vations, train enquiries). I t is based on a unification formalism (Unification
Categorical Grammar [Calder et a/., 1989]) which relies on a formative lexi­
con.

A p p e n d i x B : S u m m a r y of Systems 265

9 S U S " [Luckhardt, 1988]
A machine translation system which can deal w i th several languages. I t
translates text into a semantic, universal representation (SEMSYN, [Rosner,.
1988]) and then transforms i t to the target language.

• S U T R A [Busemann, 1988]
The SUTRA (SUrface TRAnsformation) system is the surface realiser of the
H A M - A N S project. German is a language wi th a rich inflectional system:
SUTRA is responsible for correct word order.

• S Y S T E M I C G R A M M A R section 3.6.3, pg.44. [Halliday, 1985]
Grammars based on Haliday's systemic functional linguistics have been the
basis of generation systems such as N I G E L , G E N E S I S and S L A N G .
Systemic networks have also been employed in other areas of generation (e.g
i n the P E N M A N project).

• T A I L O R pg.55. [Paris, 1993]
T A I L O R is a generation system that produces N L descriptions of devices i n
the knowledge base of RESEARCHER (a system which reads, remembers
and generalises f r o m patent abstracts). I t adopts a schema-based approach
to planning and uses a user model to select appropriate schemas. For exam­
ple, depending on the level of expertise, T A I L O R uses a constituency schema
which describes the structure of an object, or the process schema which de­
scribes its operation.

• T E C H D O C pg.60. [R6sner and Stede, 1992]
T E C H D O C is a generation system for the automatic production of technical
manuals (more specifically car maintenance instructions). I t uses a combina­
t ion of R S T and schema for planning and uses the P E N M A N realiser.

• T E X T section 3.7.2 pg.43,53,61. [McKeown, 1985]
T E X T was one of the first systems to produce multi-sentence discourse and
was the first system to use schemas. I t provides paragraph-length responses
to questions about the structure of a mi l i ta ry vehicle and weapon database.

e V I E - G E N [Buchberger and Horacek, 1988]
V I E - G E N is the generation component of the German Dialogue system (V I E -
L A N G) . I t is based on a semantic network representation that uses primitives
and discrimination networks to choose relevant lexical entries for these p r im­
itives.

o W E I B E R section 3.8.4, pg.53,55,67. [Horacek, 1990]
W E I B E R is a financial consultation dialogue system which plans utterances
such as ASK, ASSERT and R E C O M M E N D using schemas. I t uses a novel
level in the generation process which maps conceptual predicates to linguistic
ones.

• X P L A I N pg.58. [Swartout, 1983].
A predecessor of the E E S system which aimed to allow expert systems to
explain their decisions as well as simply presenting them.

A p p e n d i x B : S u m m a r y of Systems 266

e " H [Gabriel, 1988]
The Y H system generated lisp program descriptions on basis of their text
and included comments. Gabriel concentrates on t rying to to create vivid,
and continuous images; a process he termed 'deliberate wr i t ing ' .

A p p e n d i x B : S u m m a r y of Systems 267

S Y S T E M Archi tec ture Contro l Input P l a n n e r Rea l i ser
A N A PIPE DEC ? Schema ?

B L A H ? ? ? Schema ?

B A B E L - - CDT- - D.net 1

C O M E T I L DEC Pred Schema F U G
DIOGENES I T Black Pred - -
E D G E ? DEC Pred Schema ?

EES SEP DEC Pred RST ?

E P I C U R E c SEP ? ? Schema F U G
GENESYS SEP G R A M - Systemic
G L I N D A I T - Pred - -

GOSSIP SEP ? SemR ? M T M
I G E N I L PRO Pred ? ?
TTV i" A f ^ P M P
i l l - L i k ' ^ J J _ j l Hi

T7>TT7>T̂ n u n D J • O C T * 2

JOYCE PIPE DEC Pred Schema M T M
K A L O S I L DEC SNePS Schema FUG
K A M P I N T PRO Pred - -

KDS SEP ? ? H i l l ?
K I N G SEP PRO SEM ? F U G
L I L O G PIPE PRO PRED
L O Q U I ? ? ? ? d-net
M U M B L E PIPE PRO -

P A U L I N E PIPE PRO C D T - F O R M
P E N M A N PIPE G R A M - Systemic
PHRED ? PRO Pred -

POPEL I L DEC ? Pred RST
SLANG - G R A M - Systemic
SPOKESMAN PIPE PRO ? - -
S U N D I A L PIPE PRO U G 3

SUTRA PIPE DEC
T A I L O R PIPE DEC Pred RST A T N
T E C H D O C PIPE DEC - RST 4 Systemic
T E X T PIPE DEC Pred Schema A T N
V I E - G E N PIPE DEC SemR - d-net
W E I B E R PIPE DEC Pred Schema -

Y H PIPE PRO - -

N O T E S F O R T A B L E

1. Restricted by number of primitives

2. Uses a systemic network for applying RST relations

3. Also uses a formative lexicon

4. Also uses Schema

A p p e n d i x B : S u m m a r y of Systems 268

K E " T O T A B L E

Archi tec ture

• SEP - Separated but not clear whether interleaved or pipelined.

• I L - Interleaved

e P IPE - Pipelined

• I T - Integrated

Contro l

e PRO - procedural

• DEC - declarative

• G R A M - grammar directed (used for realisers)

o black - Blackboard

Input

• Pred - predicate based. Note: some systems assume the existence of the
predicates to be expressed, others have to retrieve the required ones f r o m a
knowledge base.

• SemR - a semantic network type of input (section 3.12)

« C D T - Conceptual Dependency Theory (section 3.12.1)

• SNePs - Semantic Network Processing System (section 3.12.3)

P l a n n e r

• Schema - Schema based (section 3.7.2)

• RST - RST based (section 3.7.3)

• H I L L - based on h i l l climbing techniques

Real i ser

e M T M - Based on the M T M model (section 3.12.4)

a D.net - Uses Discrimination networks (section 3.9.1)

• F O R M - Uses a formative lexicon (section 3.6.6)

• A T N - Uses Augmented Transition Networks (section 3.6.5)

A p p e n d i x B : S u m m a r y of Sys tems 269

e Systemic - Uses Systemic grammar (section 3.6.3)

• FUG - Uses Functional Unification (section 3.6.2)

Other

• - not applicable

• (blank) cannot be placed in the above categories

• ? no information

Appendix C

The Evaluation Instructions

Instructions to the writers

Background

M y PhD is concerned wi th Natural language processing - the manipulation of
typed English text by a computer. This research w i l l hopefully lead to products
such as automatic text summarisers and translators. More specifically, my work is
concerned w i t h generating English text f rom the internal representation stored in
the computer.

One of the things the system we are developing does is :-

1. Takes an input piece of text (ranging f rom one sentence to a couple of para­
graphs)

2. Analyses this piece of text

3. For every thing and every event mentioned in the input text, the system
builds a internal representation in its memory.

4. The generation module then takes each of these internal representations and
rebuilds a piece of English to describe i t .

So the overall effect is to repeat the input text f r o m different angles.

Simple Example

For the input sentence 'the cat sat on the mat ' , the computer would build utterances
describing 'the cat', 'the mat ' and the 's i t t ing event'. For example, 'The cat that
sat on the mat ' , 'The mat on which the cat sat' and 'The cat sat on the mat ' .

Of course this is a very simple example and there are very few differing ways
in which each utterance can be expressed.

A p p e n d i x C : T h e Eva luat ion Instruct ions 271

When the input sentence is more involved however, the job becomes harder
and there is more than one way of doing it. A n utterance might be short and only
contain some of the information, or in order to express the concept in more detail i t .
might be necessary to produce longer utterances, perhaps more than one sentence.

For example, in the utterance :- ' I f I had known the big and fast motorbike you
gave me was owned by her I would have liked i t , because I do love her',

Example utterances for the woman could be :-

e The woman who owned the big and fast motorbike that you gave me and
whom I love.

e The. woman T love who nwnprl t.hp rnnfrvrbike

• The woman I love

• The woman that owned the motorbike that I gave you.

• The woman that owned the big and fast motorbike. You would like the
motorbike i f you knew she owned i t because you love her.

• The woman that owned the big fast motorbike that I gave you. I f you knew
she owned i t you would like i t because you love her.

The Experiment

The idea for the experiment is to get people (i.e you !) to do the same task as the
computer and then to ask another group of people i f they can tell which utterances
were computer or human generated. (This is a scaled down version of the Turing
test).

So what I want you to do is read the following paragraph and produce a few ut­
terances describing the different entities and events mentioned, i.e for each en t i ty /
event (list given below) I want a few utterances which vary in depth of description
(and therfore length) and perhaps in grammatical style.

A car bomb exploded outside the Cabinet Office in Whitehal l last night,
100 yards f rom 10 Downing Street. Nobody was injured in the explosion
which happened just after 9pm on the corner of Downing Street and
Whitehal l . Police evacuated the area. First reports suggested that the
bomb went off in a black taxi after the driver had been forced to drive
to Whitehal l . The taxi was later reported to be burning fiercely.

So I need utterances for the following:- the bomb, the cabinet office, 10 Downing
street, the explosion, the corner, the injure event, the evacuation event, the report,

A p p e n d i x C : T h e Eva luat ion Instruct ions 272

the taxi , the driver, the driving event, the forcing event, the suggesting event, the
burning event and the reporting event.

I hope these instructions are clear ! I t is diff icult to describe the task without
giving fuller examples. I f I did this however, the experiment would not be valid as
you responses would be affected by my examples. I f you need clarification please
e-mail me.

Thanks again for you help !

Instructions to the judges

This is the second part of an experiment to evaluate the L O L I T A natural language
generator.

The Task

I previously asked people to read a paragraph length piece of text and write English
expressions to describe the different entities and events that are mentioned. I asked
people to write utterances in differing levels of detail and styles.

The L O L I T A system on which I am working also does this task. I t analyses a
piece of text and builds an internal representation of the meaning of each of the en­
tities and events described. The generation module - the subject of this evaluation
- then regenerates different English utterances f r o m these representations.

The evaluation

Following is an example input text together w i t h utterances produced according
to the task above. Some of these utterances were generated by humans, some by
the computer.

I want you to mark each of these utterances on two counts.

Firstly, I want to you to mark the acceptability of each sentence. This 'accept­
abi l i ty ' is diff icult to define and w i l l differ f rom person to person. I t is basically a
measure of clarity and accuracy and subdivided as follows. :-

e G or Good: The utterance is a clear an accurate description of the enti ty or
event.

• O or Okay : The description is acceptable but may be slightly inaccurate or
grammatically clumsy.

• U or Unacceptable : The utterance is not a good description of the entity
or event. I t may contain inaccurate information, not enough information for
the description or just not make sense.

A p p e n d i x C : T h e Eva luat ion Instruct ions 273

e B or Best: use this code for the utterance which is the best wi th in each
group.

I f you have time, i t would also be useful i f , when you use code U , you could
include a quick comment to say why the utterance is unacceptable.

Secondly, I would like you to mark some of the utterances as follows :

• C or Computer : i f you think the utterance was wr i t ten by a computer

• H or Human : i f you think the utterance was wr i t ten by a human

e (no code): i f you cannot tel l .

I w i l l not give any hints on the criteria for making this decision - I just want
you to use your instincts.

Finally I would welcome comments about the difficulties you had in doing this
evaluation.

The Input text

A car bomb exploded outside the Cabinet Office in Whitehal l last night,
100 yards f rom 10 Downing Street. Nobody was injured in the explosion
which happened just after 9pm on the corner of Downing Street and
Whitehal l . Police evacuated the area. First reports suggested that the
bomb went off in a black taxi after the driver had been forced to drive
to Whitehal l . The taxi was later reported to be burning fiercely.

The utterances:-

1. about the Bomb.

a) The bomb that exploded b) The car bomb that exploded 100 yards f r o m
10 Downing Street c) The bomb that went off i n a black taxi d) The car
bomb that went off on a corner outside the Cabinet Office and 100 yards
f r o m Downing Street in the black taxi that a driver drove to Whitehal l e)
The bomb that exploded just after 9:00 P M outside the cabinet office at
Whitehal l .

2. about the Cabinet Office.

a) The Cabinet Office that is in Whitehal l 100 yards f rom 10 Downing Street
b) The Cabinet Office that is in Whitehal l b) The Cabinet Office c) The
Cabinet Office outside which the car bomb exploded d) The Cabinet Office
was the scene of an explosion.

A p p e n d i x C : T h e Eva luat ion Instruct ions 274

3. 10 Downing Street

a) 10 Downing Street that is 100 yards f rom the Cabinet Office b) 10 Downing
Street c) 10 Downing Street which nearly got done in by a bomb last night d) '
10 Downing Street which is 100 yards f rom where the explosion happened (the
corner of Whitehall and Downing Street 10 Downing Street) e) 10 Downing
Street that was evacuated by police

4. The explosion

a) The explosion that happened in a taxi which was passing through White­
hall , just outside the Cabinet Office, b) The explosion which happened just
after 9pm c) The bomb explosion on a corner outside the Cabinet Office and
100 yards f rom 10 Downing Street in the black taxi that a driver drove to
Whitehal l d) The explosion that happened on the corner of Downing Street
and Whitehall ej Explosion in Whitehal l , but no one got hurt at all.

5. The corner

a) The Whitehall and Downing Street corner, b) The corner of Downing
Street and Whitehall where, last night at just after 9, a car bomb exploded
in a taxi whose driver was being forced to drive there, c) The corner of
Downing Street and Whitehal l d) The corner on which the explosion that
injured nobody happened e) The corner which is 100 yards f r o m 10 Downing
Street

6. The injure event

a) Nobody was injured b) Injuries didn' t happen even though the bomb went
off in Whitehall c) The explosion just after 9pm on the corner of Whitehal l
and Downing Street injured nobody d) No injuries after Whitehal l explosion!
e) Nobody was injured by the bomb explosion outside Whitehal l in a black
taxi

7. The evacuation event

a) A n evacuation of the area near the cabinet office was carried out by the
police after a bomb went off in a passing cab. b) Whitehal l was evacuated
last night after an explosion outside the Cabinet Office where there were no
injuries, c) An area is being evacuated after an explosion, d) The bomb
explosion did not cause an evacuation at the corner of Whitehal l + Downing
e) Police evacuated Whitehal l

8. The reports

a) The ini t ia l reports said the taxi driver was made to drive a bomb to the
scene, b) The report which suggested that the driver of the black taxi in
which the bomb went off had been forced to drive to Whitehal l c) The report
indicated no injuries because of the bomb explosion d) First reports suggested
that at 9pm last night, after a forceful person forced a driver to drive a black
taxi to Whitehall , a bomb went off in i t e) The report that suggested that
the bomb went off after the driver had been forced to drive to Whitehal l

A p p e n d i x C : T h e Eva luat ion Instruct ions 275

9. The taxi

a) The black taxi whose driver had been forced to drive to Whitehal l b) The
taxi which was the subject of the first reports about where the bomb went off '
c) The taxi that was later reported to be burning fiercely d) The black taxi
that a driver drove to Whitehal l and that burnt fiercely e) The taxi that had
been forced to drive to Whitehal l and that contained a bomb which exploded.

10. The driver

a) The driver of a black taxi that was forced to drive to Whitehal l , last night,
w i th a bomb b) The driver who drove a black taxi c) The driver who had
driven the taxi that the bomb went off in d) The driver who had to go in his
cab w i t h the bomb to Whitehall , e) A driver. He or she drove a black taxi
to Whitehal l

11. The driving event

a) A driver drove the black taxi that later burnt fiercely b) A black taxi
was driven close to 10 Downing Street last night. In i t was a bomb which
exploded but there were no injuries, c) The drive that the driver had been
forced to do to Whitehal l d) Car bomb driven to Whitehal l , e) Dr iv ing the
cab the bomb went off in was a driver who had been made to go to Whitehal l .
His taxi was later seen blazing fiercely.

12. The forcing event

a) A driver was forced to take his car to Whitehal l last night, b) A forceful
person forced a driver to drive a black taxi to Whitehal l , c) A person or
persons unknown forced a taxi driver to drive w i t h a bomb in his car to
the Cabinet Office in Whitehal l last night. There i t exploded just after 9pm
causing no injuries but the taxi burned fiercely, d) The driver had been forced
to drive to Whitehal l e) The driver had been forced

13. The suggesting event

a) Suggestions were made that the bomb went off i n a taxi which caught
fire, and the driver made to drive the bomb to Whitehal l b) First reports
suggested that the driver had been forced to drive to Whitehal l c) First
reports suggested that after a forceful person forced a driver to drive a black
taxi to Whitehal l , a car bomb went off in i t d) I t was suggested at first that
the bomb went off in a black taxi e) The suggestion as to the cause of the
explosion point to a black taxi , which was reported to be burning fiercely,
was involved. The area has been evacuated by the police

14. The burning event

a) Fierce flames were seen coming from the taxi after the explosion, b) On
fire was the taxi used to bring the bomb which exploded, c) The black taxi
that a driver drove to Whitehall and in which the bomb explosion happened
burnt fiercely d) The taxi was burning due to the exploding bomb e) Fierce
burning was later noticed in the cab.

A p p e n d i x C : T h e Eva luat ion Instruct ions 276

15. The reporting event

a) Reporters reported later that the black taxi in which a bomb exploded
burnt fiercely, b) A report said the driver had been forced to drive to Whi te - '
hall , c) The taxi was reported to be burning after an explosion which took
place just after 9pm. d) I t was reported that the taxi was burning fiercely e)
I t was reported that a taxi which was burning had been driven to the corner
of Downing Street and Whitehal l before i t exploded.

Appendix D

Glossary

abstract transformations: A process in the solution of the L O L I T A generator
that involves transformations on the SemNet input before realisation by the plan-
realiser. (See chapter 6.)

abstract types: A section of code which appears to the application programmer
as independent of any particular representation. (See section 7.2.4.)

black box testing: A testing technique where only input and output conditions
are used.

closed events: A n event which is expressed as a noun phrase. For example:- 'The
bomb explosion', 'The assasination of Kennedy'. (See section 5.7.2.)

concept: A concept in the L O L I T A system is any node in the SemNet represen­
tation. Its meaning is given by that particular node together w i th the whole of the
semantic network. (See section 1.5.2.)

context: The linguistic or non-linguistic environment in which language is used.

deep structure: A n underlying level of representation which captures the meaning
of language (cf. surface structure).

currying: A device used in functional programming languages where a. sequence
of structured arguments are replaced by a sequence of simpler ones, (see section
7.2.3.)

de-lexical verbs: A verb which adds l i t t le meaning to a sentence but provides
syntactic structure. Examples are 'to have', ' to give', ' to do'. (See section 6.7.)

determiner: A n i tem that co-occurs wi th a noun phrase to express such meaning
as number or quantity (e.g., the, some, each).

events: An event node in SemNet represents some relation between concepts.

flexibility: A principle of Natural Language Engineering concerned w i t h the abil­
i ty to modify systems between tasks or domains. (See section 1.2.5.)

formative lexicon: A lexicon which includes information about how words can

A p p e n d i x D : Glossary 278

be grammatically combined together.

Haskel l : A functional programming language used for the implementation of
L O L I T A and its generator (see chapter 7).

higher order function: A function which takes either a funct ion as an argument
or delivers one as a result. (See section 7.2.2.)

language isomorphic. A concept is language isomorphic (L I) i f its meaning can
be exactly expressed by a lexical i tem.

lexicon: Information about the vocabulary of a language.

lexicalisation: The process of choosing surface level words or phrases to express
deep level concepts.

1 „ „ „ „ „ 1 TVTT A M T u„—

for a particular application or for a particular domain. The system must perform
certain core tasks such as syntactic and semantic analysis of text. Specific appli­
cations can be buil t 'on top' of the general purpose base. L O L I T A is an example
of a general purpose base N L system. (See section 1.5.5).

generation: The term generation in the sense 'natural language(NL) generation'
is used by different researchers to mean different things (see section 1.5.4). I n this
thesis, generation is the process of producing English utterances given the whole
of LOLITA ' s SemNet representation as input.

the generation gap: A term used to describe the problems which can occur at
the interface between traditional planning and realisation modules. The solution
adopted in this work avoids this problem by shift ing responsibility f rom the planner
to the plan-realiser.

internal events: Events in the SemNet representation that cannot be directly
expressed in any language. They usually arise when input text has not been fu l ly
disambiguated and are distinguished by having an internal action role which does
not correspond to a verb in the surface language (such as is_a, relate_, possre-
late_, has_part, controls_ etc.)

lazy evaluation: A property of functional languages which allows unevaluated
expressions to be passed to a funct ion leaving the function to be responsible to
evaluate them as and when their values are needed. (See section 7.2.5.)

L O L I T A : A Natural Language general purpose base system based on the principles
of Natural Language Engineering. L O L I T A is the acronym for Large scale, Object-
based, Linguistic Interactor, Translator and Analyser.

maintainabil i ty: A principle of Natural Language Engineering concerned wi th the
usefulness of a system over a long period of t ime. (See section 1.2.4.)

meaning: The meaning of a. node in the SemNet representation is defined by that
node and the whole of the SemNet network. (See section 1.5.1.)

N a t u r a l Language E n g i n e e r i n g , N L E : A practical approach to NLP which in-

A p p e n d i x D : Glossary 279

corporates engineering ideas and practices f rom other disciplines. (See section 1.2.)

open events: Events in the SemNet representation that are expressed wi th an
utterance containing a verb. (See section 5.7.2.)

planning: Traditionally, a component in the generation process which is respon­
sible for deep level tasks such as choosing and ordering content. I n the solution
adopted in this work however, planning involves merely suggesting a series of in­
structions which are to be followed by the plan-realiser. (See section 3.7 for details
of planning approaches in other systems and chapter 5 for information about plan­
ning in the L O L I T A generator.)

plan-realiser: The realisation component in the L O L I T A generator which pro­
duces utterances f r o m the SemNet representation and a list of instructions provided
by the planner. (See section 1.5.7 and chapter 5.)

realisation: The process of actually producing surface level language f r o m some
deeper level representation. (See chapter 5 for approaches to realisation.)

rhetorical s tructure theory: A formalism originally used to describe the struc­
ture of text which has been used to prescribe text order in generation planners.
(See section 3.7.3.)

referential transparency: A property of functional languages which ensures that
a funct ion wi th a particular set of arguments w i l l always return the same value
whatever the context in which the evaluation takes place. (See section 7.2.1.)

robustness: A principle of Natural Language Engineering concerned w i t h the
abil i ty of a system to recover f r o m error conditions. (See section 1.2.3.)

SemNet: The semantic network representation used in the L O L I T A system which
forms the input to the L O L I T A generator. (See section 4.3.2.)

schema: A n approach to generation planning; schema ident ify patterns of predi­
cates which can be combined to produce coherent text. (See section 3.7.2.)

scale: A principle of Natural Language Engineering concerned w i t h the desire to
bui ld systems of a realistic size rather than the development of ' toy ' prototypes.
(See section 1.2.2.)

surface structure: A representation level which is close to how an utterance
actually appears (e.g., comprising syntactic information, cf. deep structure).

syntax: Rules for sentence structure and word combinations for surface language.

systemic grammar: A grammar based on functional analysis as well as syntax
and semantics. (See section 3.6.3.)

universal: A universal concept in SemNet represents quantification over all mem­
bers of a set. E.g., the universal concept for 'cats' represents the set of all cats.

unification grammar: A formalism for grammar which involves unifying compat­
ible collections of features to fo rm a more specific description. (See section 3.6.2.)

A p p e n d i x D : Glossary 280

usability: A principle of Natural Language Engineering concerned wi th building
systems that perform tasks that real end-users require and that are user friendly.
See section 1.2.8.

user model: A model of the user which contains information useful for specific
tasks. In the generation process the user model may contain such informat ion as
what the user already knows.

white box testing: A testing method where knowledge of the internal working
of the algorithms and implementation is used to f ind test cases.

W i z a r d of Oz experiments: Experiments where subjects are lead to believe they
are operating an automated computer system when, i n fact, they are interacting
w i t h a human simulating system behaviour.

Bibliography

[Andersen, 1992] P. M . Andersen, "Automatic Extraction of Facts f rom Press
Releases to Generate News Stories", in Proceedings of the 3rd Conference on
Applications of NLP, Italy, A p r i l 1992.

[ANLP-92, 1992] Proceedings of the Third ACL Conference on Applied Natural
Language Processing, Trento, Italy, 1992.

[Appelt , 1983] D. E. Appelt , " T E L E G R A M : A Grammar Formalism for Language
Planning", in Proceedings of the Eighth International Joint Conference on Arti­
ficial Intelligence (IJCAI-83), pages 595-599, Karlsruhe, West Germany, August
8-12, 1983.

[Appelt , 1985] D. E. Appelt , Planning English Sentences, Cambridge University
Press, Cambridge, U K , 1985.

[Ballard and Jones, 1990] B. Ballard and M . Jones, "Computational Lingusitics",
in Shapiro [1990].

[Barnett and Mani , 1990] J. Barnett and I . Mani , "Using Bidirectional Semantic
Rules for Generation", in Proceedings of the Fifth International Natural Language
Generation Workshop, pages 47-53, Dawson, PA, 1990.

[Bateman et al, 1990] J. A . Bateman, R. T . Kasper, J. D. Moore, and R. A. W h i t ­
ney, "A General Organization of Knowledge for Natural Language Processing:
The Penman Upper Model", Unpublished technical report, USC Information
Sciences Institute, 1990.

[Becker, 1975] J. D. Becker, "The Phrasal Lexicon", in Proceedings of Theoretical
Issues in Natural Language Processing (TINLAP-1), volume 1, pages 60-64,
University of Illinois at Urbana-Champaign, July 1975, Also appears in B B N
Tech Report 3081.

[Bennett et al., 1990] K. H . Bennett, B . J. Cornelius, and D. J. Robson, "Software
Maintenance", in J. McDermid, editor, The Software Engineer's Reference Book,
Butterworth Scientific L td . , 1990.

[Bird and Wadler, 1988] P. Bi rd and P. Wadler, Introduction to Functional Pro­
gramming, Prentice Hall International (U K) L td . , 1988.

B I B L I O G R A P H Y 282

[Bokma and Garigliano, 1992] A. F. Bokmaand R. Garigliano, "Uncertainty Man­
agement through Source Control: A Heuristic Approach", in Proceedings, Inter­
national Conference on Information Processing and Management of Uncertainty.
in Knowledge-Based Systems, Mallorca, Spain, July 1992.

[Boyer and Lapalme, 1985] M . Boyer and G. Lapalme, "Generating Sentences f r o m
Semantic Networks", in Natural Language Understanding and Logic Program­
ming: Proceedings of the First International Workshop on Natural Language
Understanding and Logic Programming, Amsterdam, Netherlands, 1985, Nor th
Holland.

[Brachman and Schmolze, 1985] R. Brachman and J. Schmolze, " A n Overview of
the K L - O N E knowledge representation system.", Cognitive Science, 9:171-216,
1985.

[Buchberger and Horacek, 1988] E. Buchberger and H. Horacek, " V I E - G E N : A
Generator for German Texts", in McDonald and Bole [1988], pages 166-204.

[Busemann, 1988] S. Busemann, "Surface Transformations During the Generation
of Wr i t t en German Sentences", in McDonald and Bole [1988], pages 98-165.

[Calder et ai, 1989] J. Calder, M . Reape, and H . Zeevat, " A n Algor i thm for Gener­
ation in Unification Categorial Grammar", in Proceedings of the Fourth European
Meeting of the ACL, pages 233-240, Manchester, U K , A p r i l 10-12, 1989.

[Carlsson and Hallgren, 1993] M . Carlsson and T . Hallgren, "FUDGETS: A
Graphical User Interface in a Lazy Functional Language", in Proceedings of
Conference on Functional Programming Languages and Computer Architecture
(FPCA 93), pages 321-330, June 1993.

[Cawsey, 1990] A. Cawsey, "Generating Explanatory Discourse", in Dale et al.
[1990], pages 75-101.

[Cercone and Pattabhiraman, 1992] N . Cercone and T . Pattabhiraman, "Special
Issue on Natural Language Generation: Introduction", Computational Intelli­
gence, 8(l):72-76, February 1992.

[Cline, 1994] B. E. Cline, Knowledge Intensive Natural Language Generation with
Revision, PhD thesis, Virginia Polytechnic Institute and State University,
Blacksburg, Virginia, May 1994.

[COLING-88, 1988] Proceedings of the 12th International Conference on Compu­
tational Linguistics (COLING-88), Budapest, August 22-27, 1988.

[Dale et al., 1990] R. Dale, C. Mellish, and M . Zock, editors, Current Research in
Natural Language Generation, Academic Press, New York, 1990.

[Dale et al, 1992] R. Dale, E. H . Hovy, D. Rosner, and O. Stock, Aspects of Au­
tomated Natural Language Generation, Lecture Notes in Ar t i f ic ia l Intelligence,
587, Springer-Verlag, Berlin, A p r i l 1992.

B I B L I O G R A P H Y 283

[Dale, 1990] R. Dale, "Generating Recipes: A n Overview of Epicure", in Daleet al.
[1990], pages 229-255, Also appears as EUCCS Tech Report RP-37, Edinburgh.

[DAR, 1993] DARPA, Proceedings of the Fifth Message Understanding Conference,
Baltimore, Maryland, August 1993, Morgan Kaufmann Publishers.

[Davey, 1979] A. C. Davey, Discourse Production, Edinburgh University Press,
Edinburgh, 1979.

[Delin et al., 1994] J. Delin, A . Hartley, C. Paris, D. Scott, and K . V . Linden,
"Expressing Procedural Relationships in Mul t i l ingual Instructions", in NLG94
[1994], pages 61-70.

[DiMarco and Hirst, 1993] C. DiMarco and G. Hirst , "A Computational Theory
of Goal Directed Style in Syntax", Computational lingusitics, 19(3), September
1993.

[Dobes and Novak, 1991] Z. Dobes and H.-J. Novak, "From Constituent Planning
to Text Planning", in Proceedings of the Third European Workshop on Natural
Language Generation, pages 46-54, Judenstein, Austria, 1991.

[Dogru and Slagle, 1992] S. Dogru and J. R. Slagle, "A System That Translates
Conceptual Structures Into English", in Nagle et al. [1992].

[Elhadad and Robin, 1992] M . Elhadad and J. Robin, "Controlling Content' Real­
ization w i t h Functional Unification Grammars", in Aspects of Automated Natural
Language Generation [1992], pages 89-104.

[Emery, 1994] S. K . Emery, " A n Investigation into the Characterisation of Style
in Everyday Text", Master's thesis, University of Sunderland, 1994.

[Engelmore and Morgan, 1988] R. Engelmore and A. Morgan, Blackboard Systems,
Addison Wesley, 1988.

[Fawcett and Davies, 1992] R. P. Fawcett and B . L. Davies, "Monologue as a Turn
in Dialogue: Towards an Integration of Exchange Structure and Rhetorical Struc­
ture Theory", in Aspects of Automated Natural Language Generation [1992],
pages 151-166.

[Fawcett and Tucker, 1990] R. P. Fawcett and G. H . Tucker, "Demonstration of
GENESYS: A very large, semantically based systemic functional generator", in
Proceedings of the 13th International Conference on Computational Linguistics
(COLING-90), volume 1, pages 47-49, Helsinki, 1990.

[Fawcett et al., 1993] R. P. Fawcett, G. H . Tucker, and Y. Q. Lin, "How a Systemic
Functional Grammar works: The role of realization in realization", in Horacek
and Zock [1993], pages 114-186.

[Fawcett, 1994] R. P. Fawcett, "On Moving On On Ontologies", in NLG94 [1994],
pages 71-80.

B I B L I O G R A P H Y 284

[Fernandez, forthcoming 1995] M . Fernandez, "Spanish Generation in L O L I T A " ,
Master's thesis, Durham University, forthcoming, 1995.

[Fox and Long, 1995] M . Fox and D. Long, "Hierarchical Planning using Abstrac­
t ion" , to appear in IEE Procs. Control Theory and Applications, May 1995.

[Gabriel, 1988] R. P. Gabriel, "Deliberate Wr i t i ng" , in McDonald and Bole [1988],
pages 1-46.

[Galliers and Sparck Jones, 1993] J. Galliers and K. Sparck Jones, "Evaluating
Natural Langauge Processing Systems.", Technical Report 291, Computer Lab­
oratory, University of Cambridge, 1993.

[Garigliano and Long, 1988] R. Garigliano and D. Long, "Inheritance Hierarchies",
in COLING-88 [1988].

[Garigliano et al., 1992] R. Garigliano, R. G. Morgan, and M . H . Smith, " L O L I T A
: Progress Report 1.", Unpublished Research Report 12/92, Department of
Computer Science, University of Durham, 1992.

[Garigliano et al., 1993] R. Garigliano, R. G. Morgan, and M . H . Smith, "The
L O L I T A System as a Contents Scanning Tool" , in Proceedings of the 13th In­
ternational Conference on Artificial Intelligence, Expert Systems and Natural
Language Processing, Avignon, France, May 1993.

[Garigliano et al., 1995] R. Garigliano, R. Morgan, M . H . Smith, and S. Peyton
Jones, "DEAR: Project summary", in Proceedings of the 1st AIKMS Conference,
Oxford, March 1995.

[Garigliano, 1992] R. Garigliano, "A Computational Semantics for 'The '" , Tech­
nical report, Department of Computer Science, Durham University, 1992.

[Giegerich and Hughes, 1994] R. Giegerich and J. Hughes, editors, Dagstuhl-
Seminar-Report 89, May 1994.

[Goldman, 1975] N . M . Goldman, "Conceptual Generation", in R. C. Schank and
C. K . Riesbeck, editors, Conceptual Information Processing, American Elsevier,
New York, N Y , 1975.

[Granville, 1994] R. Granville, "Building Underlying Structures for Mult ipara-
graph Texts", in NLG94 [1994], pages 21-28.

[Grice, 1975] H . P. Grice, "Logic and conversation", in P. Cole and J. L. Morgan,
editors, Syntax and Semantics, volume 3: Speech Acts, pages 41-58, Academic
Press, New York, 1975.

[Grishman and Sterling, 1993] R. Grishman and J. Sterling, "Description of the
PROTEUS system as used for MUC-5" , in Proceedings of the Fifth Message
Understanding Conference [1993].

[Grishman, 1994] R. Grishman, "Report on a MUC-6 Planning Meeting", Decem­
ber 1994.

B I B L I O G R A P H Y 285

[Grosz, 1977] B. J. Grosz, "The Representation and Use of Focus in a System for
Understanding Dialog", in IJCAI-77 [1977], pages 67-76.

[Halliday, 1985] M . A. K. Halliday, An Introduction to Functional Grammar, Ed­
ward Arnold , London, 1985.

[Harrius, 1992] J. Harrius, "Text Generation in Expert Cri t iquing Systems using
Rhetorical Structure Theory", in Nagle et al. [1992].

[Hasida et al., 1987] K . Hasida, S. Ishizaki, and H . Isahara, "A Connectionist
Approach to the Generation of Abstracts", in Kempen [1987], pages 149-156.

[Hazan and Morgan, 1992] J. Hazan and R. Morgan, "The Location Of Errors
in Functional Programs", Unpublished Research Report 2/92, Department of
Computer Science, University of Durham, 1992.

[Hazan et al., 1993] J. Hazan, S. Jarvis, and R. Morgan, "Understanding L O L I T A :
Program Comprehension in Functional Languages", in Proceedings of IEEE
Conference on Program Comprehension, Capri, Italy, June 1993.

[Herzog and Rollinger, 1991] 0 . Herzog and C. Rollinger, Text Understanding In
Lilog, volume 546, Springer Verlang Lecture notes in A l , 1991.

[Hirst, 1981] G. Hirst , Anaphora in Natural Language Understanding: A Survey,
Springer-Verlag, 1981.

[Hobbs, 1991] J. Hobbs, "Description of the TACITUS system as used for M U G ­
S'', in Proceedings of the Third Message Understanding Conference, SRI Inter­
national, Morgan Kaufmann Publishers, May 1991.

[Holyer, 1991] I . Holyer, Functional Programming with Miranda, P i tman Publish­
ing, 1991.

[Horacek and Zock, 1993] H. Horacek and M . Zock, editors, New Concepts in Nat­
ural Language Generation: Planning, Realization, and Systems, Pinter Publish­
ers, New York, 1993.

[Horacek, 1987] H. Horacek, "Choice of Words in the Generation Process of a
Natural Language Interface", Applied Artificial Intelligence, 1(2):117—132, 1987.

[Horacek, 1990] H. Horacek, "The Architecture of a Generation Component in a
Complete Natural Language Dialog System", in Dale et al. [1990], pages 193—
227.

[Horacek, 1992] H. Horacek, " A n Integrated View of Text Planning", in Aspects
of Automated Natural Language Generation [1992], pages 29-44.

[Horacek, 1993] H. Horacek, "Decision Making Throughout the Generation Pro­
cess in the Systems WISBER and D I A M O D " , in Horacek and Zock [1993], pages
215-237.

B I B L I O G R A P H Y 286

[Horacek, 1994] H . Horacek, "Building Another Bridge over the Generation Gap",
in NLG94 [1994], pages 221-224.

[Hovy et al., 1992] E. H . Hovy, J. Lavid, E. Maier, V . M i t t a l , and C. L. Paris,'
"Employing Knowledge Resources in a New Text Planner Architecture", in
Aspects of Automated Natural Language Generation [1992], pages 57-72.

[Hovy, 1988a] E. H . Hovy, "Generating Language w i t h a Phrasal Lexicon", in
McDonald and Bole [1988], pages 353-384.

[Hovy, 1988b] E. H . Hovy, Generating Natural Language under Pragmatic Con­
straints, Lawrence Erlbaum Associates, Hillsdale, NJ , 1988, Based on PhD
thesis, Yale University.

[Hovy, 1991] E. H . Hovy, "Approaches to the Planning of Coherent Text", i n Paris
et ai. [l y y i j , pages 83-1U2.

[Hovy, 1993] E. H . Hovy, "Automated Discourse Generation Using Discourse
Structure Relations.", Artificial Intelligence, 63:341-385, 1993.

[Hudak et al., 1994] P. Hudak, S. P. Jones, and P. Wadler, "Report on the Func­
tional Programming Language Haskell, Version 1.2", May 1994, A C M S I G P L A N
Notices 27.

[Hughes, 1989] J. Hughes, "Why Functional Programming Matters", The Com­
puter Journal, 32(2), 1989.

[IJCAI-77, 1977] Proceedings of the Fifth International Joint Conference on Arti­
ficial Intelligence (IJCAI-77), M I T , Cambridge, M A , August 1977.

[Iordanskaja et al., 1991] L. Iordanskaja, R. Kittredge, and A. Polguere, "Lexical
Selection and Paraphrase in a Meaning-Text Generation Model" , in Paris et al.
[1991], pages 293-312.

[Jacobs and Rau, 1985] P. S. Jacobs and L. F. Rau, "Ace: Associating Language
w i t h Meaning", in T . O'Shea, editor, Advances in Artificial Intelligence, pages
295-304, North-Holland, Amsterdam, 1985.

[Jacobs and Rau, 1990] P. S. Jacobs and L. F. Rau, "SCISOR: Extracting infor­
mation f rom On-Line News", Communications of the ACM, 33(11), November
1990.

[Jacobs, 1985] P. S. Jacobs, "PHRED: A Generator for Natural Language In­
terfaces", Computational Linguistics, l l (4):219-242, October-December 1985,
Revised version of Berkeley Tech Report CSD-85-198.

[Jacobs, 1987] P. S. Jacobs, "Knowledge-Intensive Natural Language Generation",
Artificial Intelligence, 33(3):325-378, November 1987.

[Jones, 1994] C. Jones, Dialogue Structure Models : An Engineering Approach to
the Analysis and Generation of Natural English Dialogues, PhD thesis, Depart­
ment of Computer Science, Durham University, 1994.

B I B L I O G R A P H Y 287

[Joshi, 1987] A. K . .Joshi, "The Relevance of Tree Adjoining Grammar to Gener­
ation", in Kempen [1987], pages 233-252.

[Kantrowitz and Bates, 1992] M . Kantrowitz and J. Bates, "Integrated Natural
Language Generation Systems", in Aspects of Automated Natural Language Gen­
eration [1992], pages 13-28.

[Kay, 1979] M . Kay, "Functional Grammar", in Proceedings of the 5th Annual
Meeting of the Berkeley Linguistic Society, pages 142-158, Berkeley, CA, Febru­
ary 17-19, 1979.

[Kempen, 1987] G. Kempen, editor, Natural Language Generation: New Results
in Artificial Intelligence, Psychology and Linguistics, N A T O ASI Series - 135,
Martinus Ni jhoff Publishers, Boston, Dordrecht, 1987.

[Kramsky, 1972] J. Kramsky, The Article and the Concept of Definiteness in Lan­
guage, 1972.

[Kukich, 1988] K. Kukich, "Fluency in Natural Language Reports", in McDonald
and Bole [1988], pages 280-311.

[Lientz and Swanson, 1980] B. Lientz and E. Swanson, Software Maintenance
Management, Addison-Wesley, 1980.

[Linde and Labov, 1975] C. Linde and W. Labov, "Spatial Networks as a Site for
the Study of Language and Thought.", Language, 57:924-939, 1975.

[Long and Fox, 1995] D. Long and M . Fox, " A Hybr id Architecture for Rational
Agents", in C.Thornton and S.Torrance, editors, Hybrid Models of Cognition,
AISB, 1995.

[Long and Garigliano, 1994] D. Long and R. Garigliano, Reasoning by Analogy
And Causality: A Model and Application, Ellis Horwood, 1994.

[LRE, 1992] "Linguistic Research and Engineering European Programme", 1992.

[Luckhardt, 1988] H.-D. Luckhardt, "Generation of Sentences f rom a Syntactic
Deep Structure wi th a Semantic Component", in McDonald and Bole [1988],
pages 205-255.

[Maier and Hovy, 1993] E. Maier and E. H . Hovy, "Organising Discourse Structure
Relations using Metafunctions", in Horacek and Zock [1993], pages 69-86.

[Mann and Moore, 1981] W . C. Mann and J. A . Moore, "Computer Generation of
Multiparagraph English Text", American Journal of Computational Linguistics,
7(l):17-29, 1981.

[Mann and Thompson, 1987] W . C. Mann and S. A. Thompson, "Rhetorical Struc­
ture Theory: Description and Construction of Text Structures", in Kempen
[1987], pages 85-96, Also appears as USC/Information Sciences Insti tute Tech
Report RS-86-174, October 1986.

B I B L I O G R A P H Y 288

[Mann, 1983a] W. C. Mann, "An Overview of the N I G E L Text Generation Gram­
mar", in Proceedings of the 21st Annual Meeting of the ACL^ pages 79-84,
Massachusetts Institute of Technology, Cambridge, M A , June 15-17, 1983.

[Mann, 1983b] W . C. Mann, " A n Overview of the Penman Text Generation Sys­
tem", in Proceedings of the Third National Conference on Artificial Intelligence
(AAAI-83), pages 261-265, Washington, DC, August 22-26, 1983.

[Marcus, 1980] M . Marcus, A Theory of Syntactic Recognition for Natural Lan­
guage., M I T Press, 1980.

[Matthiessen, 1991] C. Matthiessen, "Lexico(Grammatical) Choice in Text Gen­
eration", in Paris et al. [1991], pages 249-292.

[McDonald and Bole, 1988] D. D . McDonald and L. Bole, Natural Language Gen­
eration Systems, Springer-Verlag, New York, N Y, 1988.

[McDonald and Busa, 1994] D. D . McDonald and F. Busa, "On The Creative use
of Language: The Form of Lexical Resources", in NLG94 [1994], pages 81-90.

[McDonald and Meteer, 1988] D. D. McDonald and M . Meteer, "From Water to
Wine: Generating Natural Language Text f r o m Today's Applications Programs",
in Proceedings of the Second ACL Conference on Applied Natural Language Pro­
cessing, pages 41-48, Austin, T X , February 9-12, 1988.

[McDonald et al., 1987] D. D. McDonald, M . M . Meteer, and J. D. Pustejovsky,
"Factors Contributing to Efficiency in Natural Language Generation", in Kem-
pen [1987], pages 159-182.

[McDonald, 1990] D. D. McDonald, "Natural Language Generation", in Shapiro
[1990], pages 642-655.

[McDonald, 1991] D. D. McDonald, "On the Place of Words In the Generation
Process", in Paris et al. [1991], pages 227-248.

[McKeown and Elhadad, 1991] K . R. McKeown and M . Elhadad, "A Contrastive
Evaluation of Functional Unification Grammar for Surface Language Generation:
A Case Study in Choice of Connectives", in Paris et al. [1991], pages 351-396.

[McKeown and Swartout, 1988] K . R. McKeown and W. R. Swartout, "Language
Generation and Explanation", in Zock and Sabah [1988], chapter 1, pages 1-52.

[McKeown et al., 1990] K . R. McKeown, M . Elhadad, Y . Fukumoto, J. L i m ,
C. Lombardi, J. Robin, and F. A. Smadja, "Natural Language Generation in
C O M E T " , in Dale et al. [1990], pages 103-139.

[McKeown, 1985] K. R. McKeown, Text Generation: Using Discourse Strategies
and Focus Constraints to Generate Natural Language Text, Cambridge Univer­
sity Press, Cambridge, 1985.

[Meehan, 1977] J. R. Meehan, "TALE-SPIN: An interactive program that writes
stories", in IJCAI-77 [1977], pages 91-98.

B I B L I O G R A P H Y 289

[Mellish, 1988] C. Mellish, "Natural Language Generation f rom Plans", in Zock
and Sabah [1988], chapter 7, pages 131-145, Also appears as CSRP Tech Report
031, University of Sussex.

[Mel'cuk and Polguere, 1970] I . Mel 'cuk and A. Polguere, "Towards a Functioning
Meaning-Text Model of Language", Linguistics, 57:10-47, 1970.

[Meteer, 1992] M . Meteer, "Portable Natural Language Generation using
S P O K E S M A N " , in ANLP-92 [1992], pages 237-238.

[Meteer, 1993] M . Meteer, Expressibility and the Problem of Efficient Text Plan­
ning, Francis Pinter Publishers, London, 1993.

[Meteer, 1994] M . Meteer, "Generating Event Discriptions w i th SAGE : A Simu­
lation and Generation Environment", in NLG94 [1994], pages 99-108.

[Mil ler , 1990] G. Mil ler , "WordNet: A n On-Line Lexical Database", International
Journal of Lexicography, 3(4), 1990.

[Moore and Swartout, 1991] J. D. Moore and W . R. Swartout, "A Reactive Ap­
proach to Explanation: Taking the User's Feedback into Account", in Paris et al.
[1991], pages 3-48.

[Morgan and Jarvis, 1995] R. G. Morgan and S. A. Jarvis, "Profi l ing Large-Scale
Lazy Functional Programs", in Proceedings of the Conference on High Perfor­
mance Functional Computing, Denver, USA., A p r i l 1995.

[Morgan et al., 1994] R. G. Morgan, M . H . Smith, and S. Short, "Translation by
Meaning and Style in L O L I T A " , in Proceedings of Machine Translation: Ten
years on, Cranfield University and the Br i t i sh Computer Society, November 1994.

[Mykowiecka, 1991a] A. Mykowiecka, "Natural-Language Generation — an
Overview", International Journal of Man-Machine Studies, 34(4):497-511, A p r i l
1991.

[Mykowiecka, 1991b] A. Mykowiecka, "Text Planning — How to Make Computers
Talk in Natural Language", International Journal of Man-Machine Studies,
34(4):575-591, A p r i l 1991.

[Nagle et al., 1992] T . Nagle, J. Nagle, L. Gerholz, and P. Elklund, editors, Con­
ceptual Structures: Current Research and Practice, Ellis Horwood, New York,
N Y , 1992.

[Nicolov et al., 1995] N . Nicolov, C. Mellish, and G. Ritchie, "Sentence Generation
f r o m Conceptual Graphs", in Proceedings of the International Conference on
Conceptual Structures, ICCS'95, Santa Cruz, August 1995.

[Nirenburg and Nirenburg, 1988] S. Nirenburg and I . Nirenburg, "A Framework
for Lexical Selection in Natural Language Generation", in COLING-88 [1988],
pages 471-475.

B I B L I O G R A P H Y 290

[Nirenburg et al., 1988] S. Nirenburg, R. McCardell, E. Nyberg, P. Werner, E. Ken-
schaft, S. Huffman, and I . Nirenburg, "DIOGENES-88", Technical Report C M U -
CMT-88-107, Center for Machine Translation, Carnegie Mellon University, 1988.

[Nirenburg et al., 1989] S. Nirenburg, V . Lesser, and E. Nyberg, "Controll ing a
Language Generation Planner", in Proceedings of the 11th International Joint
Conference on Artificial Intelligence (IJCAI-89), volume 2, pages 1524-1530,
Detroit , M I , August 20-25, 1989.

[NLG94, 1994] Proceedings of the Seventh International Workshop on Natural Lan­
guage Generation, Nonantum Inn, Kennebunkport, Maine, June 21-24 1994.

[Nogier and Zock, 1992] J. Nogier and M . Zock, "Lexical Choice as Pattern Match­
ing", in Nagle et al. [1992].

[Novak, i987j H . - j . Novak, "Strategies for Generating Coherent Descriptions of
Object Movements in Street Scenes", in Kempen [1987], pages 117-132.

[Novak, 1993] H.-J. Novak, "Ontology and Lexical choice", i n Horacek and Zock
[1993], pages 70-93.

[Panaget, 1994] F. Panaget, "Using a Textual Representation Level Component
in the Context of Discourse and Dialogue Generation", in NLG94 [1994], pages
127-136.

[Paris and McKeown, 1987] C. L. Paris and K . R. McKeown, "Discourse Strategies
for Describing Complex Physical Objects", in Kempen [1987], pages 97-116.

[Paris et al., 1991] C. L. Paris, W . R. Swartout, and W . C. Mann, editors, Natural
Language Generation in Artificial Intelligence and Computational Linguistics,
Kluwer Academic Publishers, Boston, 1991.

[Paris, 1991] C. L. Paris, "Generation and Explanation: Building an Explanation
Facility for the Explainable Expert Systems Framework", in Paris et al. [1991],
pages 49-82.

[Paris, 1993] C. L. Paris, User Modelling in Text Generation, Francis Pinter Pub­
lishers, London,1993.

[Parker, 1994] B. Parker, "Spell Checking in L O L I T A " , Master's thesis, Durham
University, 1994.

[Patten, 1986] T . Patten, Interpreting Systemic Grammar as a Computational
Representation: A Problem Solving Approach to Text Generation, PhD thesis,
Edinburgh University, Department of Ar t i f i c ia l Intelligence, 1986.

[Patten, 1988] T . Patten, Systemic text generation as problem solving, Cambridge
University Press, New York, 1988, Based on PhD Thesis [Patten, 1986].

[Peyton Jones, 1989] S. L. Peyton Jones, "Parallel Implementation of Functional
Languages", The Computer Journal: Special Issue on Lazy Functional Program­
ming, 32(2), A p r i l 1989.

B I B L I O G R A P H Y 291

[Pustejovsky and Nirenburg, 1987] J. D. Pustejovsky and S. Nirenburg, "Lexical
Selection in the Process of Language Generation", in Proceedings of the 25th
Annual Meeting of the ACL, pages 201-206, Stanford University, Stanford, C A , .
July 6-9, 1987.

[Rambow and Korelsky, 1992] 0 . Rambow and T . Korelsky, "Applied Text Gen­
eration", in ANLP-92 [1992], pages 40-47.

[Reiter and Mellish, 1993] E. Reiter and C. Mellish, "Opt imizing the Costs and
Benefits of Natural Language Generation", in Proceedings of the 13th Interna­
tional Joint Conference on Artificial Intelligence (IJCAI-93), Chambery. France,
1993.

[Reiter, 1990] E. Reiter, "Generating Descriptions that Exploit a User's Domain

[Reithinger, 1991] N . Reithinger, "POPEL: A Parallel and Incremental Natural
Language Generation System", in Paris et al. [1991], pages 179-200.

[Rosner and Stede, 1992] D. Rosner and M . Stede, "Customizing RST for the
Automatic Production of Technical Manuals", in Aspects of Automated Natural
Language Generation [1992], pages 199-214.

[Rosner, 1988] D. Rosner, "The Generation System of the SEMSYN Project: To­
wards a task-independent generator", in M . Zock and G. Sabah, editors, Ad­
vances in Natural Language Generation: An Interdisciplinary Perspective, vol­
ume 2, chapter 6, pages 76-85, Ablex Publishing Corporation, Norwood, NJ ,
1988.

[Rubinoff, 1992] R. Rubinoff, "Integrating Text Planning and Linguistic Choice",
in Aspects of Automated Natural Language Generation [1992], pages 45-56.

[Sacerdoti, 1977] E. Sacerdoti, A Structure for Plans and Behaviour, Nor th Hol­
land, 1977.

[Schank and Abelson, 1977] R. C. Schank and R. P. Abelson, Scripts, Plans, Goals
and Understanding, Erlbaum, Hillsdale, N.J , 1977.

[Schank, 1975] R. C. Schank, Conceptual Information Processing, Nor th Holland,
Amsterdam, 1975.

[Scott and de Souza, 1990] D. R. Scott and C. S. de Souza, "Getting the Message
Across in RST-based Text Generation", in Dale et al. [1990], pages 47-73.

[Shapiro and the SNePS Implementation Group, 1993] S. C. Shapiro and the
SNePS Implementation Group, "SNePS 2.1 User's Manual", Technical report,
State University of New York at Buffalo, Buffalo, N Y , 1993.

[Shapiro, 1979] S. C. Shapiro, "The SNePS Semantic Network Processing Sys­
tem", in N . Findler, editor, Associative Networks: Representation and use of
Knowledge by Computers, Academic Press, 1979.

B I B L I O G R A P H Y 292

[Shapiro, 1982] S. C. Shapiro, "Generalized A T N Grammars for Generation f rom
Semantic Networks", Computational Linguistics, 8:12-26, 1982. .

[Shapiro, 1990] S. C. Shapiro, editor, Encyclopedia of Artificial Intelligence, John'
Wiley and Sons, 1990.

[Short and Garigliano, 1993] S. Short and R. Garigliano, "The Representation of
Location in L O L I T A " , Unpublished research report, Department of Computer
Science, University of Durham, March 1993.

[Short, forthcoming 1995] S. Short, Semantic Representation and Analysis in the
LOLITA System, PhD thesis, Department of Computer Science, University of
Durham, forthcoming, 1995.

[Simmons and Slocum, 1972] R. F. Simmons and J. Slocum, "Generating English
Discourse f r o m Semantic Networks", Communications of the ACM, i o (I 0) : S 9 I -
903, October 1972.

[Smith et al, 1995] M . H. Smith, R. Garigliano, and R. G. Morgan, "The D E A R
project: A Natural Language Interface to Databases", in Submitted to the 'Office
Systems, translation, multilingual interfaces and software cluster' of the Lan­
guage Engineering Convention, London, October 1995.

[Sommerville, 1992] I . Sommerville, Software Engineering, Addsion-Wesley Pub­
lishing Company, 1992.

[Sondheimer et al., 1989] N . K . Sondheimer, S. Cumming, and R. Albano, "How
to Realize a Concept: Lexical Selection and the Conceptual Network in Text
Generation", Technical Report RS-89-248, USC Information Sciences Inst i tute,
1989, Also appears in the proceedings of the Workshop on Theoretical and
Computational Issues in Lexical Semantics, Brandeis University, A p r i l 1989 and
in Machine Translation 5(l):57-78, March 1990.

[Sowa, 1983] J. F. Sowa, "Generating Language f rom Conceptual Graphs", Com­
puters and Mathematics with Applications, 9(1):29—43, 1983.

[Sowa, 1984] J. F. Sowa, Conceptual Structures (Information Processing in Mind
and Machine), Addison-Wesley, 1984.

[Stede, 1994] M . Stede, "Lexicalization in Natural Language Generation: A Sur­
vey", Artificial Intelligence Review, 1994.

[Swartout, 1983] W. R. Swartout, " X P L A I N : A System for Creating and Ex­
plaining Expert Consulting Programs", Artificial Intelligence, 21(3):285-325,
September 1983, Also appears as USC Information Sciences Insti tute Tech Re­
port RS-83-4.

[The A Q U A Team, 94] The A Q U A Team, "The Glorious Haskell Compilat ion Sys­
tem, User's Guide", 94.

[Tomita, 1986] M . Tomita, Efficient Parsing of NL: A Fast Algorithm for Practical
Systems, Kluwer Academic Publishers, Boston, Ma, 1986.

B I B L I O G R A P H Y 293

[Turner, 1982] D. Turner, "Recusion Equations as a Programming Language", in
Darlington, editor, Functional Programming and Its Applications, Cambridge
University Press, 1982.

[Turner, 1987] D. Turner, " A n Introduction to Miranda", in S. Peyton-Jones,
editor, The Implementation of Functional Programming Languages, Prentice Hall
INternational (U K) L td . , 1987.

[van R i j n , 1992] A. van R i j n , "Generating Language f r o m Conceptual Dependency
Graphs", in Nagle et al. [1992].

[Vander-Linden et al., 1992] K . Vander-Linden, S. Cumming, and J. Mar t i n , "Us­
ing System Networks to Bui ld Rhetorical Structure", in Vander-Linden [1992],
pages 183-198.

[Velardi et al., 1988] P. Velardi, M . T . Pazienza, and M . De'Giovanetti, "Concep­
tual Graphs for the Analysis and Generation of Sentences", IBM Journal of
Research and Development, 32(2):251-268, March 1988.

[Viegas and Bouillon, 1994] E. Viegas and P. Bouillon, "Semantic Lexicons: The
Cornerstone for Lexical Choice in Natural Language Generation", in NLG94
[1994], pages 91-98.

[Wadler, 1992] P. Wadler, "The Essence of Functional Programming", in Invited
talk : 19th Annual Symposium on Principles of Programming Languages, Sante
Fe, New Mexico, January 1992.

[Wang and Garigliano, 1992] Y . Wang and R. Garigliano, An Intelligent Tutoring
System for Handling Errors Caused by Transfer, Lecture Notes in Ar t i f i c i a l
Intelligence, 608, Springer-Verlag, Montreal, Canada, 1992.

[Wang, 1994] Y . Wang, An Intelligent Computer-based Tutoring Approach for the
Management of Negative Transfer, PhD thesis, Department of Computer Sci­
ence, Durham University, 1994.

[Wanner, 1994] L. Wanner, "Building Another Bridge over the Generation Gap",
in NLG94 [1994], pages 137-144.

[Weiner, 1980] J. L. Weiner, " B L A H , a System which Explains its Reasoning",
Artificial Intelligence, 15(l):19-48, 1980.

[Woods, 1970] W . Woods, "Transistion Network Grammars for Natural Language
Analysis", Communications of the ACM, 13(10):591-606, October 1970.

[Yazdani, 1987] M . Yazdani, "Reviewing as a Component of the Text Generation
Process", in Kempen [1987], pages 183-190.

[Youd and McGlashan, 1992] N . J. Youd and S. McGlashan, "Generating Utter­
ances in Dialogue Systems", in Aspects of Automated Nahiral Language Gener­
ation [1992], pages 135-150.

B I B L I O G R A P H Y 294

[Zock and Sabah, 1988] M . Zock and G. Sab ah, editors, Advances in Natural Lan­
guage Generation: An Interdisciplinary Perspective, volume 1, Ablex Publishing
Corporation, Norwood, NJ, 1988.

[Zukerman and Pearl, 1986] I . Zukerman and J. Pearl, "Comprehension Driven
Generation of Meta-technical Utterances in Math Tutor ing", in Proceedings of
the Fifth National Conference on Artificial Intelligence (AAAI-86), pages 606-
611, Philadelphia, PA, August 11-15, 1986.

m

