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A B S T R A C T 

Plasma polymerizat ion is a solventless method fo r deposit ing 

polymeric layers onto any substrate at room temperature. This technique 

comprises excitation, fragmentation, and polymerizat ion of precursor 

molecules by an electrical discharge. A l though w i d e l y used, the 

fundamental molecular processes associated w i t h plasma polymerizat ion 

are not fu l ly understood. 

Basic plasma / polymer interactions were studied by investigating the 

surface treatment of polytetrafluoroethylene (PTFE) using inert and reactive 

gas discharges. Depending upon the feed gas employed, chemical, UV, or 

ion beam modificat ion of the PTFE surface were found to be important. 

A r g o n g low discharge treatment was f o u n d to result i n s imi lar 

physicochemical phenomena at the PTFE surface to that observed dur ing 

argon ion beam studies, thereby supporting the relative importance of ion 

bombardment dur ing noble gas plasma modif icat ion. I n h igh power 

discharges it has been shown that extensive ion bombardment of PTFE can 

lead to the simultaneous sputtering and plasma polymerization of ejected 

species onto an adjacent substrate. The chemical nature of the resultant 

fluorocarbon deposits for various gases was found to correlate to the earlier 

surface treatment studies. 

Another way of carrying out plasma polymerization is to use pulsed 

plasmas; these offer the advantage of greater retention of monomer 

structure w i t h i n the plasma polymer matrix. I n the case of maleic 

anhydride less fragmentation of the precursor, reduced beam damage of the 

polymer, and radically initiated polymerization was observed by increasing 

the off-per iod of the pulse. Similarly the structural characteristics of 2-

iodothiophene plasma polymers were found to be inf luenced by the 

electrical discharge power and pulsing parameters leading to a gradual 

destruction of the aromatic ring structure. 
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A N I N T R O D U C T I O N TO G L O W 
D I S C H A R G E PROCESSES A N D 

A N A L Y T I C A L T E C H N I Q U E S 



1.1 I N T R O D U C T I O N 

Plasma processing of materials has been investigated for over 25 

years. Dur ing this time progress has been made in the uti l ization of these 

methods but understanding of reaction pathways is still at a very basic level. 

This thesis is aimed at elucidating the important mechanisms occurring in 

plasma / polymer interactions and dur ing plasma polymerization. This 

chapter introduces the plasmas, plasma processes and analytical techniques 

used during the course of this work. 

1.2 PLASMAS 

The term 'plasma' was first used in 1929 by Langmuir^ to describe the 

ionized gases he studied during the development of vacuum tubes. These 

partially ionized gases, composed of ions, electrons and neutral species, are 

often termed the fourth state of matter^. This is illustrated i n figure 1.1^. 

For the discharge to be classified a plasma the number of positive and 

negative charge carriers must be approximately equal, leading to electrical 

quasi-neutrality3/4. This criterion is fu l f i l l ed when the dimensions of the 

gas discharge are larger than the Debye length, X^), the distance over which a 

charge imbalance can exist. A . D is defined in equation 1.1. 

X D = ( E 0 k T e / n e e 2 ) V 2 

where e 0 = permittivity of free space, k = Boltzmann constant, T e = electron 

temperature, n e = electron density and e = charge on the electron. 
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Figure 1.1 

Schematic diagram showing the states of matter versus temperature and 

particle energy (where the temperature range is of the gas neutrals). 
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1.2.1 Types of Plasma 

There are two main categories of plasma, equi l ibr ium and non-

equil ibrium plasmas. The equilibrium or 'thermal' discharges occur when 

the electron and gas temperatures in the plasma are approximately equal^. 

Their production and properties lead to uses in the deposition of coatings by 

plasma spraying, the reduction and smelting of ores, and even in attempts 

to create control led thermonuclear fus ion^ . The high temperatures 

obtained make processing of polymers impossible, so this type of plasma 

w i l l not be considered further. 

Non-equi l ib r ium or 'cold' plasmas are characterised by a lack of 

thermodynamic equil ibrium between the electrons and the ions, atoms and 

molecules in the discharge. The electron temperature is much higher than 
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that of other plasma particles a l lowing electron ini t iated physical and 

chemical reactions to occur while the gas is at a relatively low temperature^. 

1.2.2 Plasma Generation 

A plasma is created by applying an electric f ie ld across a volume of 

gas. Small numbers of free electrons are always present in the gas as a result 

of ionization by naturally occurring radioactivity or cosmic rays^. The 

electric f ie ld applied to the discharge accelerates these electrons and they 

collide w i t h gas atoms or molecules. I f the electrons have gained enough 

kinetic energy they will collide irt plastically w i t h the gas molecules causing 

ionization or dissociation. A cascade effect of free electron production 

quickly spreads through the entire gas, generating the plasma. Not every 

free electron participates in inelastic collisions. Many are lost by di f fus ion or 

d r i f t to the boundaries surrounding the plasma. Others are lost by 

recombination w i t h positive ions and attachment to neutrals to f o r m 

negative ions. The plasma attains steady state when electron generation and 

loss are equal. 

The min imal threshold voltage required to produce the g low 

discharge is called the breakdown voltage? Radiative energy decay of many 

of the electronically excited states of molecules and atoms account for the 

luminous glow of the gaseous discharge. The electron temperature (T e ) in 

the bulk of a non-equilibrium plasma is much greater than that of the ion 

temperature (Tj), typical values being T e = 3-30 eV and Ti = 0.5 eV^. This 

occurs because of the vast difference in mass between ions and electrons. 

Electrons, being much lighter, obtain more kinetic energy f r o m the applied 

f ield illustrated by equation 1.24. 

Work done by field = Eex = (Eet) 2 /2m (1.2) 
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where E = applied electric f ie ld , e = charge on an electron, x = distance 

travelled, t = time and m = mass of particle being considered. 

1.2.2.1 Electron Energy Distribution Function 

The electron velocity relationship is central i n defining the physical 

properties of a plasma as i t leads to the electron energy distribution, the 

average electron energy and electron transport properties^. The energy of 

electrons is governed by their interactions w i t h other particles and the total 

f ie ld they are subjected to. The distribution of electron energies, known as 

the electron energy d is t r ibu t ion funct ions /9 (EEDF), i n a plasma is 

approximately described by a Maxwellian distribution, shown in figure 1.2. 

Figure 1.2 

Examples of Maxwellian and Druyvesteyn distributions for an average 

electron energy of 1 eV. 
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However, this only provides a first approximation of the electron 

energy (or velocity) distribution in a cold plasma as it assumes that T e = Tj. 

For non-equilibrium plasmas a Druyvesteyn distribution is found to give a 

better aprroximation3/5 as it accounts for T e » TV This is also displayed in 

figure 1.2. The Druyvesteyn distribution is characterised by a shift toward 

higher average electron energies. Both distributions indicate the presence of 

a high energy tail of electrons which are significant as these sustain the 

plasma. 

1.2.2.2 Plasma Potential 

The electron density and ion density are, on average, equal within the 

plasma^. This number, which is lower in magnitude than the density of 

neutrals is often known as the plasma density^. As discussed above, the 

average speed of the electrons is very large compared with that of the ions 

and neutrals. This leads to electrons reaching the surrounding surfaces at a 

faster rate than the ions^^ and the plasma slowly becomes positively charged 

with respect to the surrounding surfaces. As the net charge increases on 

these surfaces, it becomes less energetically favourable for the electrons to 

escape because the walls of the chamber are more negative than the plasma. 

Eventually, a steady state arises when the plasma potential is high enough 

so that the rate of loss of electrons is reduced to the same level as the rate of 

loss of ions. This bulk 'plasma potential' is on average several volts more 

positive than surfaces in contact with the plasma^ and ions leaving the 

plasma are accelerated by this voltage to the reactor walls. 
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1.2.2.3 Floating Potential 

When an electrically isolated substrate is placed in a plasma it 

becomes negatively charged due to the greater flux of electrons compared to 

the flux of ionslO. After a short period of time the surface becomes 

sufficiently negative, with respect to the plasma bulk, that enough electrons 

are repelled to cause an equal flux of ions and electrons. The substrate has 

now reached its floating potential, which is typically negative of the plasma 

potentially. 

1.2.2.4 Plasma Sheaths 

Isolated substrates placed in plasmas are observed to have associated 

dark regions immediately adjacent to them. These are known as space 

charge regions or sheaths^. As the substrate begins to repel electrons a net 

positive charge builds up close to its surface. The low electron density in the 

'sheath' region leads to a low amount of gas excitation and therefore no 

visible emission occurs in this region, hence it is often called a dark space. 

1.2.3 Methods of Plasma Generation 

1.2.3.1 DC Glow Discharges 

The simplest means of forming a plasma is by using a DC discharge^. 

This is produced by applying DC voltage between two conductive electrodes 

inserted into a gas at low pressure. As the electrodes are in direct contact 

with the plasma, if the discharge is used for depositing dielectric films the 

electrodes become covered with an insulator. Consequently, although a DC 

discharge may be initiated, it wi l l quickly be extinguished as the electrons 

accumulate on the insulator and recombine with the available ions^. It is 



therefore often preferred to have the electrodes outside the reactor which 

can be achieved by alternating the polarity of the discharge, i.e. AC 

discharges. 

1.2.3.2 Radio Frequency Plasmas 

In RF plasmas (>lMHz) the electrodes can be remote from the 

reactor^. A frequency of 13.56 MHz has been adopted as the standard because 

it complies with government communication regulations. The energy is 

supplied to the discharge by either capacitive or inductive coupling via a 

matching unit. The unit is reauired to matrh thp impedance of the nartiallv 

ionized gas to the output impedance of the power supply^. RF plasmas are 

quite homogeneous because the electrical field wavelength is much larger 

than the reactor dimensions. This discharge can be operated at low 

pressures (as low as 1 mTorr) and has become the popular type of laboratory 

plasma. 

1.2.3.3 Microwave Discharges 

Microwave plasmas are sustained by power supplies operating at a 

frequency of 2.45 GHz^. The optimum operating pressure for efficient 

microwave absorption (0.5 - 10 Torr), is higher than that of RF discharges. 

The microwave plasma has its greatest glow intensity at the coupling 

microwave cavity. This diminishes rapidly outside the cavity because of the 

much smaller wavelength of the microwave compared to that of the RF 

wavelength^. The magnitude of the electric field can vary within the 

reactor and active species can be found persisting in the afterglow region^. 

Microwave plasmas have greater electron and ion densities than RF 

plasmas, and they have a higher population of high energy electrons*^>^. 
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1.2.4 Non-Equilibrium Plasma Chemistry 

The complex nature of glow discharges has now been illustrated. 

They are composed of many different reactive species such as ions, electrons, 

radicals, metastables and neutrals, all of which can undergo different sets of 

reactions simultaneously. 

1.2.4.1 Plasma Reactions 

Chemical reactions in a plasma reactor, shown in figure 1.3, can be 

classified into homogeneous and heterogeneous reactions. The gas phase 

homogeneous reactions result from inelastic collisions between electrons 

and heavy species, and between heavy species themselves. Some examples 

of the homogeneous reactions are given below ( A, B and C denote atoms 

and M is a third body)3/13. 

a) Excitation - the impact of electrons with heavy targets leading to 

excited states of atoms and molecules, 

e" + A -> e" + A* 

b) Dissociative attachment - low energy electrons attach to gas 

molecules, which dissociate producing a negative ion, 

e" + AB -> A + B" 

c) Dissociative ionization - leading to ion pair formation, 

e" + AB -> A + + B" + e~ 

d) Dissociation - inelastic collision of an electron with a molecule 

without ion formation, 

e" + AB -> A + B + e" 

e) Ionization - electron impact induced ionization, 

e" + A2 -» A 2

+ + 2e" 

9 



Figure 1.3 

Schematic diagram of reactions in a plasma reactor. 
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f) Recombination - charged particles are lost from the plasma through 

recombination (the excess energy is dissipated by radiative de-excitation), 

e" + A + —•> A + hv 

g) Recombination of ions, 

A + + B" -» AB + hv 

h) Charge transfer, 

A + B + -> A + + B 
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i) Associative detachment - collisions between negative ions and 

radicals leading to electron release and a new compound, 

A " + BC -» ABC + e" 

j) Penning ionization - the reaction of energetic metastables, involving 

the transfer of energy to the target, 

A + B* -» A + + B + e" 

k) Attachment of atoms, 

A + BC + M -> ABC + M 

1) Disproportionation, 

A + BC -> AB + C 

Heterogeneous reactions occur at surfaces (S) in contact with the 

plasma or plasma species which may be atoms (A or B), monomer (M), 

radicals (R) or polymer formed in the plasma phase (P). Examples of this 

type of reaction included/13;. 

m) Adsorption - plasma species adsorbed onto the surface, 

M( g ) + S -> M( S) 

(g) and (s) represent species in the gas and solid phases respectively. 

n) Recombination - atoms or radicals react with species already adsorbed 

to form compounds, 

S-A + A -> S + A2 

o) Metastable de-excitation, 

S + M* -> S + M 

p) Sputtering - accelerated ions with sufficient energy remove atoms 

from the surface, 

S-B + A+ -> S + + B + A 

q) Polymerization - radicals in the plasma react with radicals adsorbed 

on surfaces, 

R(g) + R(s) -» P(s) 

11 



1.2.4.2 Plasma Surface Interactions 

The various particles which can impinge on a surface in contact with 

a plasma are ions, atoms, radicals, metastables, electrons and photons*4. 

Unreactive particles only transmit small amounts of energy to a surface, 

usually resulting in substrate heating. Electron impact can lead to 

desorption and/or dissociation of adsorbed molecules and electron induced 

reactions. Positive ions, accelerated by the plasma sheath to energies of up 

to 100 eVl5 7 collide with surfaces imparting this energy to them. The 

photons, which have energies up to about 10 eV depending on the type of 

plasma, are able to break chemiral bonds and induce cross-linking in 

surfaces and activate surface molecules. 

1.2.5 Plasma Modification of Polymer Surfaces 

The ability of non-equilibrium plasmas to modify polymer surfaces 

has been known for over 25 years^. Many polymers are difficult to adhere 

to other materials. For instance fluoropolymers, characterized by high 

chemical inertness, thermal stability and electrical insulating properties also 

have very low surface tension, which causes difficulty in bonding to other 

materials. Plasma treatments allow modification of the surface 

characteristics of polymers without affecting bulk properties^'!7-34 other 

advantages of plasma methods are the speed and uniformity of 

modification, the chemical selectivity attained, and their positive 

environmental impact i.e. no solvent waste. These processes may be 

categorised into two major types of reaction, plasma modification (the focus 

of this section) and plasma polymerization (discussed in the next section). 

Surface modification of a polymer by plasma treatment refers to 

chemical and physical changes incurred by exposure to non-polymer 

12 



forming plasmas^5. These changes can produce more reactive surfaces and 

affect wetting properties, cross-linking and molecular weight3/5,17,36. 

Changes in the wettablity of a polymer are produced by adding 

functional groups to the polymer surface^. The bombardment of the 

polymeric network breaks covalent bonds in the surface region and leads to 

surface radical formation. These radicals are able to react with other species 

from the plasma to form new functional groups. For example, most types of 

polymer can be made hydrophilic by oxygen or nitrogen plasma treatment 

where the active species in the discharge attack the surface and cause 

incorporation of functionalities such as carbonyl, carboxyl, hydroxyl and 

amino S T O U ' D S ^ ^ ' ^ ^ . It is believed that radical suecics rstbcr than ions or .̂_ ~ . ~ ± ~ ~ 

electrons play the important role in this type of modification^. 

Molecular weight changes are a second property that may be altered by 

a plasma. Variations in molecular weight affects a number of physical 

properties of the polymer such as permeability, solubility, melt temperature 

and cohesive strength^. The principle processes by which the molecular 

weight of the surface layer is changed are bond scission, branching and cross-

l i n k i n g ^ , in general, for noble gas, nitrogen and hydrogen plasmas the 

molecular weight increases due to cross-linking, while for an oxygen plasma 

the molecular weight decreases due to bond breaking. The cross-linking 

effect of noble gas plasmas has been suggested to occur via the excited 

metastable states^. The energy transfer mechanism for this process, known 

as CASING (cross-linking by activated species of inert gases)^ is shown in 

reactions (1.1a) to (1.1c). 

R-H* + M (1.1a) 

R-H + M* • R« + H - + M (1.1b) 

R l « + R 2 » + M (1.1c) 
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Oxygen plasmas produce polymer free radicals which can cross-link, 

but competitive oxidation prevents rebonding and produces a decrease in 

the molecular weight by loss of volatile compounds which ablate from the 

surface^. The removal of volatile compounds illustrates another facet of 

polymer surface modification by plasmas, known as etching^O. 

Plasma etching generally refers to material removal performed with 

low ion bombardment and is caused mainly by chemical reaction with 

plasma species. It is carried out under conditions where physical effects are 

negligible and is usually an isotropic etching process, proceeding through 

the following steps^:-

1. active species are formed in the plasma from non-reactive gases, 

2. the active species adsorb onto the surface of the substrate and react 

with the surface to form volatile products, 

3. the volatile products leave the treated surface and are pumped out 

with plasma effluent. 

Reactive ion etching (RIE) is the most popular dry-etching technique 

and is particularly important in the electronics industry^!. RIE is based on 

the combined action of the reactive species generated in the plasma together 

with the physical effects caused by ion bombardment. The RIE arrangement 

generally causes the substrate to be exposed to higher energy ion 

bombardment than in the plasma etching mode. This is achieved by 

positioning the substrate on a powered electrode, where a larger negative 

potential relative to the plasma bulk is established, compared with the 

grounded electrode used in plasma etching. 

1.2.6 Plasma Polymerization 

The discussion so far in this chapter has centred on glow discharges 

ignited in atomic or molecular gases. However, almost all organic 

compounds that have a sufficient vapour pressure are polymerizable in a 

14 



plasma4^. At this stage it should be made clear that plasma polymerization, 

which is an atomic process, results in the preparation of new kinds of 

material and is not a type of conventional polymerization, which is 

molecular in nature 4^. Plasma polymerization is strongly system 

dependent and in most cases the polymers formed are highly branched, 

cross-linked and amorphous 4 4. These materials often have high thermal 

stability, high melting point and low solubility. Plasma polymerization is 

characterized by several important features^:-

1. plasma polymers have no discernible repeat unit , unlike 

conventional polymers, 

2. the properties nf nlasma nolvmers are determined r>v the process 

parameters and not the original monomer structure, 

3. monomers used do not have to contain a double bond for the 

polymerization to proceed. 

The mechanism of polymerization, which wi l l be discussed in detail 

shortly, consists of three major steps all of which can occur heterogeneously 

or homogenously3. Initiation involves formation of free radicals or atoms 

of monomer by the plasma. Addition of radical atoms to other radicals or 

molecules leaving a growing radical chain is the propagation step of the 

polymerization. Termination takes place by processes similar to 

propagation but ends in the final product or a closed polymer chain. 

While in conventional polymerization termination finishes the 

process, in plasma polymerization neutral products formed in the 

termination step can undergo reinitiation and propagation reactions. Chain 

fragments are reconverted into radicals by collision with electrons in the gas 

phase or by impact of energetic particles on the surface of the polymer f i lm. 

The homogeneous and heterogeneous nature of plasma polymer growth is 

shown in a scheme proposed by Poll 4 ^, figure 1.4. Reaction k i where the 

monomer is directly polymerized into the growing f i lm, is termed 'plasma 
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induced polymerization' 4 6 . Film formation through reactions k2 and k3 is 

called 'plasma polymerization"^. 

Figure 1.4 

Schematic diagram showing the different types of reaction involved in 

formation of plasma polymers^. 
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products 
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Propagation of the reaction scheme through plasma activation of the 

growing polymer is believed to be very important. Fluoropolymer f i lm 
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deposition has been explained in terms of an activated growth model 

( A G M ) 4 7 which is represented by the following scheme:-

addition compounds (1.2a) 

CF 
^ - X 

n (POL), n+l (1.2b) 

e , I + + (POL) n (POL)n* (1.2c) 

K 
(POL)/ (POL), n (1.2d) 

CFX radicals originating from the monomer may react with other gas phase 

radicals to form addition compounds, or with the activated polymer. K a is 

the activation step of the polymer f i lm by both electrons and positive ions 

depending on the substrate potential. K<j is the deactivation step. 

1.2.6.1 Mechanism of Plasma Polymerization 

Conventional polymerization falls into two general groups of 

reaction, step-growth polymerization and chain-growth polymerization^. 

The former involves slow step-wise repetition of the same reaction, the 

product of which retains functional groups to react further. The latter 

mechanism is a series of consecutive steps completed quickly leading to 

final polymer, intermediates cannot be isolated as in step-growth 

polymerization. 

Yasuda43/44,46 h a s proposed that plasma polymerization proceeds 

according to a rapid step growth polymerization mechanism (RSGP) 

described by reaction (1.3). 
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( M m * + M n M M m + n ) x N (1.3) 

where N = number of repeat reactions and M* = reactive species produced 

from the monomer by the plasma. If M* is a monofunctional species (e.g. a 

free radical), reaction (1.3) is essentially a termination reaction and growth 

may only proceed by reinitiation of the product. The RSGP model is shown 

in figure 1.5 

Figure 1.5 

The rapid step growth polymerization scheme (RSGP)43. 

Cycle 1 

I 
M j — M « 

M j — Mj 

• M k — M 1 

• M k — M j * 

Cycle 2 

As can be seen, the RSGP proceeds through two parallel cycles. Cycle 1 takes 

place through repeated activation of the reaction products f rom 

monofunctional species. Cycle 2 occurs through difunctional or 

multifunctional species. The RSGP model illustrates the complex nature of 

the plasma polymerization process. 

Ionic species can contribute to the polymerization through ion-

molecule reactions or the interaction of positive and negative ions^. 

However, it appears that free radicals are the dominating species controlling 
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the polymerization by radical-molecule or radical-radical reactions4^/50_ 

The reason for this may be explained by considering the ionization energy of 

organic molecules and the bond energies of primary bonds, some of which 

are given in table l . l 5 1 . 

Table 1.1 

Examples of the energy of some common bonds. 

Bond Energy/eV Bond Energy /eV 

C-H 4.3 c=o 8.0 

3.4 

C-Cl 3.4 C=C 6.1 

C-F 4.4 CsC 8.4 

The energies required to disrupt such bonds are more easily attained by 

species in the plasma than the energies (i.e. > 10 eV) needed for ionization. 

Residual free radicals involved in the RSGP mechanism remain trapped in 

the polymer. Monomers with triple bonds yield the greatest number of 

trapped free radicals followed by monomer with double bonds 4 3 . 

To allow greater control over plasma polymer structure attempts 

have been made to limit the degree of dissociation during deposition, so 

that functional groups within monomers, such as oxygen or nitrogen 

containing groups, are preserved and incorporated in to the f i lm. Among 

the methods investigated are pulsed RF discharges' 2 ' ' 3 and remote plasma 

depos i t ion ' 4 . Pulsed plasma polymerization is the subject of studies in 

chapters 5 and 6 of this thesis. Minimization of precursor fragmentation can 

also be achieved by lowering the substrate temperature during deposition 

causing increased precursor adsorption which consequently increases the 

fraction of unfragmented monomer in the f i l m 3 . 
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1.2.6.2 Polymerization Parameters 

A distinguishing feature of plasma polymerization mentioned earlier 

is that the chemical structure of the resultant material is dependent on the 

process parameters and not the original monomer. The most important 

factor that governs structure under conditions of constant pressure, plasma 

excitation source, and monomer is the power (W) to flow-rate (F) ratio, 

W/F55. 

Taking into consideration the molecular weight of the monomer (M) 

a modified parameter43,56 w/FM is obtained. As the dissociation of a 

monomer into reactive fragments in the plasma should be related to the 

energy received per unit molecule the dependence of chemical structure on 

this parameter is well rationalized^. 

The parameter W / F M does not account for the effects of reactor 

geometry so straightforward comparison of specific W / F M values between 

different reactors is d i f f i c u l t ^ . Attempts have been made to include a 

reactor volume factor, but work in this area is far from complete4^. The 

major drawback is that plasma polymerization occurs in the glow discharge 

volume which for different reactor configurations is not always the same as 

the reactor volume. 

1.2.7 Aims of Current Work 

The aims of this thesis are two-fold. The first aim is to provide a 

greater understanding of the basic processes that occur within glow 

discharges. Both the chemical and physical nature of the plasmas wi l l be 

studied. The second aim is to explore the mechanisms that occur in plasma 

polymerization, and find ways of controlling the chemistry of the plasma 

polymer formed. 

20 



1.3 ANALYTICAL TECHNIQUES 

1.3.1 Introduction 

The analytical tools used in this work fall into three categories; 

surface characterization, bulk characterization, and plasma diagnostics. 

Surface analysis has been carried out using both X-ray photoelectron 

spectroscopy, to study the chemistry of the systems, and atomic force 

microscopy used to assess physical modifications. Bulk analysis was 

performed using infrared spectroscopy and the relatively new technique of 

X-ray absorption spectroscopy. Finally., optical emission spectroscopy has-

been used to probe the plasma phase. 

1.3.2 X-ray Photoelectron Spectroscopy 

Surface analysis by X-ray photoelectron spectroscopy (XPS) involves 

irradiating a solid under vacuum with monoenergetic soft X-rays and 

analysing the energy spectrum of emitted electrons^. Each element has a 

unique spectrum. As the inelastic mean free path of electrons in a solid is 

small, the detected electrons originate from only the top few atomic layers, 

making XPS an extremely surface sensitive technique. Quantitative 

compositional data can be obtained from peak areas and chemical states can 

be identified from exact measurement of peak positions and separations, as 

well as from certain spectral features^. 

Emitted photoelectrons studied in XPS lie in the energy range of 0 eV 

up to the energy of the X-ray source These electrons have inelastic mean 

free paths of 2-3 nm which corresponds to about 10 atomic layers in most 

materials^. Measurement of inelastic mean free paths is difficult so a 

parameter known as attenuation length, which also includes the effect of 
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elastic scattering, is determined. The variation of attenuation length w i t h 

the kinetic energy of escaping electrons^ i s shown in figure 1.6. 

Inelastic energy loss processes for electrons in solids include excitation 

of lattice vibrations (phonons), collective oscillations of the electron gas 

(plasmons) and electron interband transitions or i o n i z a t i o n ^ . A t very low 

kinetic energy electrons are unable to excite any of the above quantized 

transitions and their mean free paths are long. A t high kinetic energies the 

cross-section of exciting these transitions is low and escape depths are again 

large^O. A t the intermediate energies (those s tudied i n XPS) the 

photoelectrons lose a large proportion of their energy to these processes and 

so the mean free paths are very short. 

Figure 1.6 

A n illustration of how attenuation length varies w i t h increasing kinetic 

energy of the escaping photoelectron. 
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1.3.2.1 The Photoionization Process 

Photoelectron spectroscopy is based on the photoelectric effect^! 

which describes the ejection of electrons f r o m atoms or molecules upon 
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exposure to electromagnetic radiation. Each atom present at a surface has 

valence electrons invo lved in bonding and, except for hydrogen, core 

electrons not directly involved i n bonding62. The binding energy (Eb) of 

these core electrons is characteristic of the individual atom to which i t is 

bound. Informat ion on the binding energy of electrons w i t h i n a sample 

allows qualitative elemental analysis. In the XPS experiment, the sample is 

irradiated by low-energy X-rays under ultra high vacuum (UHV) conditions 

(better than 10"6 Torr). Photoionization occurs i n the sample surface and the 

resultant photoelectrons are ejected (provided they overcome the w o r k 

function of the solid, <(>, and they are not inelastically scattered) w i t h kinetic 

energy (Ek) which is related to the incident photon (Vm) energy and binding 

energy by the Einstein r e l a t i o n ^ equation 1.3. 

E k = ln)-Eb-<i> (1.3) 

Two other competing processes can occur simultaneously after 

photoionization63, all three are shown in figure 1.7. 

Figure 1.7 
The processes of photoionization, X-ray fluorescence and Auger electron 

emission. 
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During X-ray fluorescence the hole created by ionization is f i l led by an 

outer shell electron. A photon (usually i n the X-ray region) is emitted w i t h 

energy equal to the difference in energy between the hole and electron. This 

process can lead to information about the energy levels w i th in the sample. 

The Auger process occurs when a secondary electron is ejected after the 

outer shell electron fi l ls the hole. The ionization potential of the secondary 

electron must be lower than the available energy f r o m the relaxation 

processes. Auger electron spectroscopy (AES) also gives information about 

energy levels and elemental composition of mater ia l s^ ,63 ,64 X-ray 

fluorescence is the dominant de-excitation process i n small atoms and 

Auger electron emission dominates in larger atoms. 

Since X-ray fluorescence and Auger processes are independent of the 

pr imary ionization mechanism, they can be init iated by electron impact 

ionization as wel l as by photon impact. The kinetic energy of electrons 

emitted f rom photoionization increases w i t h increasing photon energy but 

the energy of an Auger electron is not affected due to the indirect 

mechanism of electron release. This provides a use fu l way of 

dist inguishing between photoelectrons and Auger electrons i n an XP 

spectrum63. 

The probabi l i ty that photoionizat ion w i l l occur is called the 

photo ion iza t ion cross-section, o. This is defined*^ as the transit ion 

probability per unit time of a core level electron w i t h a unit incident photon 

f lux of 1 c m - 1 s"1. Photoionization cross sections are a funct ion of photon 

energy, core level binding energy, atomic number and the relative directions 

of photon incidence and electron emission*^. 

1.3.2.2 Spectral Interpretation 

The XP spectrum is displayed as a plot of electrons counted per second 

versus electron binding energy. The number of photoelectrons collected 
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f r o m a particular atom's core level, per unit time, is a measure of the 

abundance of that element. The most intense photoelectron lines are 

relatively symmetrical and typically the narrowest lines observed i n the 

spectrum. Peak w i d t h is a combination of natural line w id th , X-ray line 

w i d t h and instrumental contr ibut ions^ . When comparing XPS lines f r o m 

the same element i n different chemical environments, shifts i n the peak are 

o b s e r v e d ^ . Chemical shifts can be understood by examining the basic 

physics involved w i t h the change in b ind ing energy. The attractive 

potential of a nucleus and the repulsive Coulomb interaction w i t h other 

electrons determines the energy of an electron i n a tightly bound core state. 

When the chemiral environment of the atom changes, a spatial 

rearrangement of the average charge distr ibution occurs because of the 

creation of a different potential by the nuclear and electronic charges of the 

other atoms in the compound. The magnitude of the shift is determined by 

the type and strength of the b o n d ^ . 

1.3.2.2.1 X-ray Satellites 

Standard X-^ray sources consist of a heated filament (cathode) and a 

target anode (usually M g or Al) wi th a large (kV) potential applied between 

them. Electron bombardment of the anode causes characteristic X-ray 

emission together w i t h a continuous background of bremsstrahlung 

radiation which results f r o m the electrons decelerated by impact w i t h the 

target. A magnesium anode produces an X-ray spectrum dominated by a 

very intense, unresolved, Koci - Kot2 doublet resulting f r o m transitions 2p3/2 

—> Is and 2pi /2 —> Is respectively. 

Most laboratory X-ray sources are non-monochromatic, and contain 

not only the characteristic X-ray energy, but also some minor components at 

higher photon energies (e.g. M g K0C3, Kct4, K0C5, Kot6 and Kp)66. Each of these 

can give rise to a fami ly of peaks in the XP spectrum at binding energies 
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below the peak position expected f r o m the most intense X-ray line. These 

less intense peaks are called X-ray sa te l l i tes '*^ 

1.3.2.2.2 Shake-up and Shake-off Satellites 

Due to rearrangement of charge around the core hole the 

photoionization event may be accompanied by excitation or emission of a 

valence electron. These processes are termed shake-up and shake-off 

respectively and are shown in figure 1.8. 

Fieure 1.8 

The processes of photoionization, shake-up and shake-off. 
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When this occurs the kinetic energy of the emitted photoelectron is reduced 

by an amount corresponding to the energy difference between the ground 

state and the excited state of the atom. This results i n the format ion of 

satellite peaks a few eV higher in binding energy (lower i n kinetic energy) 
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than the main photoelectron peak. I n organic compounds the presence of 

shake-up satellites is indicative of aromatic species (JC —> K* t ransit ions)^. 

1.3.2.2.3 Mult iplet Splitting 

Mult ip le t splitting arises when the system being studied has unpaired 

electrons i n the valence levels^ 6. Af te r photoionization an unpaired 

electron is lef t behind. If , for example, the system has unpaired electrons 

w i t h parallel spins and the unpaired electron generated on photoionization 

is parallel to these, then interactions can occur, resulting i n a lower energy 

than for the case of anti-parallel spin. 

1.3.3 Atomic Force Microscopy 

Atomic force microscopy (AFM) is an exciting technique available for 

imaging surface morphology. The A F M can be operated under atmospheric 

conditions and requires no special sample preparation. The method was 

developed by Binnig68 to examine non-conducting solids on the atomic 

s c a l e d i t belongs to the family of scanning force microscopies and is closely 

related to the scanning tunnelling microscope (STM). 

In the A F M experiment a sharp t ip, mounted on the end of a 

cantilever, is brought close enough to a sample such that i t interacts w i t h 

the atoms on the surface, figure 1.9. The A F M monitors the atomic force 

interaction between the t ip and the surface. The deflection of the tip is 

measured via a laser configuration as the surface is rastered under the tip 

using a piezoelectric scanner. The A F M can be operated i n either contact 

mode or T a p p i n g ® mode. The sample and t ip are kept i n close contact 

throughout the entire scan during contact mode. A feedback system is used 

to adjust the vertical position of the A F M tip above the sample surface to 

keep the deflection of the t ip, and therefore the force, constant. In Tapping® 
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mode the cantilever vibrates and small shifts in the vibration amplitude can 

be de tec ted^ hence the force imparted on the surface is very small. This 

mode is particularly useful for imaging soft samples. 

Figure 1.9 

A schematic diagram of the A F M experimental set-up. 
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A F M explores the interaction of potential functions between the tip 

and the sample w i t h no transfer of electrons, whereas STM requires a 

conducting sample. The technique is therefore gaining immense popularity 

in the imaging of polymers^ "75. 

1.3.4 Infrared Spectroscopy 

Surface analysis of plasma modified and deposited polymers is very 

important in order to elucidate their surface chemistry. Bulk analysis can 

also prove very useful especially in the case of plasma polymers and this 

section deals wi th the method of transmission infrared (IR) spectroscopy. 

When a molecule absorbs electromagnetic radia t ion it 's energy 

increases i n proport ion to the energy of the p h o t o n ^ as expressed by 

equation 1.4. 
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AE = h c A (1.4) 

where h = Plancks constant, c = speed of light, X = wavelength of the photon. 

The increase in energy may be in the electronic, vibrational, or rotational 

energy of the molecule. If a molecule absorbs radiation i n the microwave 

region only its rotational energy w i l l change. I f the radiation absorbed is in 

the infrared region both vibrational and rotational energies of the molecule 

w i l l change. I f the energy is much greater, i.e. UV l ight , there w i l l be 

increases i n the electronic, vibrat ional , and rotational energies of the 

molecule' 7 ' 7 . 

According to classical theory, absorption of electromagnetic radiation 

is possible only when there is a change in the dipole moment of the 

molecule dur ing the normal vibrat ion. This is the selection rule for 

infrared absorption, defining allowed transitions. When there is no change 

in the dipole moment of a molecule dur ing normal vibrat ion, i t w i l l be 

infrared inactive and the transition is said to be forbidden. I t is for this 

reason that a lower number of vibrat ional frequencies are sometimes 

observed than w o u l d be expected for certain molecules' 7 ' 7 , especially 

molecules wi th a high degree of symmetry. 

The vibrations associated w i t h covalently l inked atoms may be 

classified into stretching vibrations, i nvo lv ing periodic extension and 

contraction of the bonds, and bending or deformation vibrations involving 

periodic bending of bonds. Force constants for the bending mode are 

generally about an order of magnitude smaller than for stretching modes 

and are more sensitive to their chemical bonding environment. Complex 

types of vibrations involving both stretching and bending of several bonds 

attached to the same atom are also possible. Some examples of different 

stretching and bending vibrations of XY2 and XY3 groups are shown in 

figure 1.10. 
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Figure 1.10 

Molecular vibrations seen in the IR (a) XY2 symmetrical stretching, (b) XY2 

asymmetric stretching, (c) XY3 symmetrical stretching, (d) XY3 asymmetric 

stretching, (e) XY2 in-plane deformation (scissoring), (f) XY2 out-of-plane 

deformation (twisting), (g) XY2 out-of-plane deformation (wagging), (h) XY2 

rock ing , (i) X Y 3 symmetr ical deformat ion , (j) X Y 3 a symmet r i ca l 

deformation. (Note that + and - indicate above and below the plane of paper 

respectively). 
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Bending vibrations occur at lower frequencies i n the spectrum than 

stretching vibrations due to their smaller force constants. The infrared 

spectrum of a solid may differ significantly f r o m that of the free molecule 

due to intermolecular interactions restricting some bond movements. IR 

spectra of plasma polymers often bear some relationship to the spectrum of 
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the monomer or a conventional polymer of the monomer. Peaks in the 

spectra of plasma polymers tend to be broader and less wel l defined than i n 

the monomer. This indicates the format ion of a large variety of slightly 

di f ferent chemical environments for each funct ional group w i t h i n the 

plasma p o l y m e r ^ . 

Attenuated total reflectance (ATR) spectroscopy is a method often 

used to study the surface of materials^. A trapezoidal block of transparent 

material (e.g. thal l ium bromide / tha l l ium iodide known as KRS-5)80, as 

shown in figure 1.11, is used in this method^!. 

Figure 1.11 

A diagram of the ATR-IR cell set up. 
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The incident angle is chosen so that the radiation w i l l strike the f lat 

surfaces at less than the critical angle and w i l l undergo total internal 

reflection to emerge, only slightly diminished i n intensity. Al though the 

internal reflection is conventionally called ' total ' , the radiation penetrates 

slightly beyond the surface of the crystal during each reflection. I f a sample 

is pressed closely to the outside of the crystal the beam w i l l travel a small 

distance through the sample at each reflection and beam intensity is lost at 

wavelengths absorbed by the sample surface. The amount of penetration 

into the sample depends on the wavelength of the radiation, the angle of 
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incidence and the refractive index of both the crystal and sample, but is i n 

the order of 10™* to 10"3 cm for infra-red. During its passage through the 

crystal the beam may undergo some 10-20 reflections, so the total path 

length is 10' 3 -10" 2 cm which is adequate for the production of a reasonable 

spectrum. 

1.3.5 X-ray Absorption Spectroscopy 

Over the past twenty years X-ray absorption spectroscopy (XAS) has 

developed into a standard bulk technique for the determination of structure 

in condensed matter systems^. This is a consequer.ee of the increased 

availability of synchrotron radiation sources. The strength of the technique 

arises f r o m its ability to probe the local structure around a specific element 

w i t h i n the material83 _86 Since it has no requirement for long range order 

unlike X-ray diffraction, it is ideal for studying amorphous, disordered and 

biological systems. 

The basic physical processes involved in X-ray absorption are depicted 

in f igure 1.12. The energies of the core electron levels are determined 

uniquely by the atom and its bonding environment, therefore, tuning the 

photon energy to a particular core level immediately gives an atom-specific 

probe. When the photon energy is greater than the binding energy of the 

core level, a photon may be absorbed resulting i n the ejection of a 

photoelectronS? 

If the X-ray absorption cross-section of a particular element i n the 

solid state is measured as a funct ion of increasing photon energy, a 

characteristic absorption 'edge' is observed which corresponds to the onset of 

electron transitions f rom core states on the atom to unoccupied states of 

higher energy, figure 1.13. These cross-sections then typically reduce i n 

magnitude over a range of thousands of electron volts beyond the edge. 
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Superimposed on this gradual decay are modulations in the cross-section 

which appear as peaks in the XA spectrum. 

Figure 1.12 

Photon absorption by an atom followed by (a) photoelectron emission and 

(b) backscattering by neighbouring atoms. 
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Figure 1.13 

The S K edge X-ray absorption spectrum of a sulfur standard, the important 

features are labelled. 
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For photon energies immediately after (up to = 50 eV) the absorption 

edge, the photoelectron interacts w i t h the molecular orbital and so the" 

absorption cross-section is strongly affected by the electronic structure of the 

material, f igure 1.12(a). Two types of features may be observed in this 

region. Strong, narrow peaks at the absorption edge generally correspond to 

excitation to bound n* unoccupied molecular orbitals. Broader, less intense 

peaks at sl ightly higher photon energies are usually a* shape resonances 

f r o m transitions to quasibound a* states. The modulations i n this region 

are commonly referred to as X-ray absorption near edge structure (XANES) 

or near edge X-ray absorption fine structure (NEXAFS), f igure 1.13. A t 
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higher photon energies (more than 50 eV pass the edge), the photoelectron 

has a much higher kinetic energy and so behaves more like a free electron. 

The modulations in this region are due to scattering of the photoelectron 

wavefunction by neighbouring atoms, which modifies the amplitude of the 

wavefunction by interference. Thus the oscillations i n this energy region 

are sensitive to the structure of the material and using r igorous 

mathematical analysis the short range order may be determined. These 

modulations can extend hundreds of electron volts above the edge and so 

are known as extended X-ray absorption fine structure ( E X A F S ) ^ figure 

1.13. 

1.3.6 Optical Emission Spectroscopy 

Analysis of the surface and bulk of materials resulting f r o m plasma 

processes have been described. Diagnostic techniques are also available 

allowing the active plasma to be probed during deposition. One of the most 

commonly used diagnostic tools is optical emission spectroscopy (OES) 

which operates by spectral analysis of the light emitting f rom the plasma. It 

has the advantage of being external and non-intrusive to the plasma*^. 

Optical emission can be produced in a plasma as a result of electron 

impact excitation or dissociation:-

A + e~ -> A* + e" 

AB + e" -> A* + B + e" 

or by ion impact process:-

A+ + X -» A*(+M) 

which creates an excited species A* followed by release of this energy 
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A* -> A** + hi) 

I n the above reactions A* = an excited emitting species, X = a neutral, a 

negative ion, an electron plus a third body or a surface in contact w i t h the 

plasma, A** = a ground state or excited state in an energy level lower than 

A * . 

Usual ly , the most intense radiat ion emitted f r o m the plasma 

originates in the transition f rom the f irs t excited state W\, to the ground 

state Wo of the particle^. As every particle has precisely quantized levels, 

each emits a characteristic spectral line of frequency:-

vi,o = W i - W 0 / h 

and wavelength:-

XhQ = hc/W1-W0 

where c is the velocity of light. 

The apparatus for OES comprises a monochromator to disperse the 

light emitted f r o m the plasma , optics to image the light and a photodetector 

to measure the dispersed light. Al though the emissions f r o m the plasma 

span a very large range of frequencies , f r o m the infrared to the soft X-ray, 

the spectra most widely used in OES span the range 200 to 900 nm^. 

For ion identification the detector must be able to monitor lines w i t h 

wavelength X < 200 nm because ion transitions occur at shorter wavelengths 

and the monochromator must be under vacuum to avoid absorption of 

these shorter wavelengths. Emission spectra f r o m plasmas are often very 

complicated. Atomic or diatomic species have simpler, narrower spectra 

than polyatomic species which have broad spectra due to their vibrational 

and rotational transitions. 
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CHAPTER 2 

S U R F A C E T E X T U R I N G AND C H E M I C A L 
M O D I F I C A T I O N OF PTFE U S I N G NON-

E Q U I L I B R I U M P L A S M A S 
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2.1 INTRODUCTION 

The surface of polytetrafluoroethylene (PTFE) can be modif ied by a 

vast range of methods which are discussed shortly. For environmental 

reasons, the recent trend has been to move away f r o m the traditional wet 

chemical techniques towards cleaner, dryer processes. Plasmas have 

provided a major alternative route in recent years when m o d i f y i n g the 

bonding characteristics of polymers. In this chapter, surface treatment of 

PTFE by O2, H2, N2, He, Ne, Ar, and CF4 non-isothermal glow discharges is 

investigated. X-ray photoelectron spectroscopy and atomic force microscopy, 

are used to evaluate how the chemical and tODQTarjhira) modification of 

the polymer surface is influenced by the type of feed gas employed. 

2.1.1 Wet Chemical Modification of PTFE 

The solution most commonly used for PTFE modificat ion is sodium 

in l iquid ammonia. It is believed that the sodium is solvated or coordinated 

into a complex w i t h several molecules of ammonia*. This complex still has 

an unshared electron, and the group of atoms may be considered as a free 

radical. The complex can act as a Lewis base by donating its lone electron to 

the acidic fluorine atoms in PTFE leaving the surface fluorine deficient. The 

lone electrons then combine to f o r m crosslinked carbon leading to a 

modified polymer surface*. 

A sodium-naphthalene complex i n tetrahydrofuran (THF) has been 

found to attack the surface of Teflon^. The electrical properties remained 

identical to those of untreated Teflon, however the surface became much 

more wettable^. Another method of modify ing the PTFE surface uses alkali 

metal amalgams (e.g. L i in Hg)3. I t is believed that the reaction is 

electrochemical wi th both active materials forming a typical galvanic cell^. 
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I t is possible to reduce PTFE using the benzoin dianion to give a 

surface which has a reflective metallic lustre as opposed to the black colour 

that arises when using alkali metal solutions. Costello^ has reported that 

exposure of PTFE f i l m to the potassium salt of benzoin dianion (in DMSO 

solvent) produces changes consistent w i th reduction of PTFE to polymeric 

carbon, scheme 2.1. 

Scheme 2.1 

Benzoin dianion reduction of PTFE. 
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2.1.2 Plasma Modification of PTFE Surfaces 

2.1.2.1 Oxygen Plasma Treatment 

Morra 6,7 has previously carried out an examination of oxygen 

plasma treated PTFE. From XPS and scanning electron microscopy (SEM) 

results he concludes two kinds of reaction are competing. The f i rs t is 

chemical modi f ica t ion leading to f luorine depletion and some oxygen 

introduction, the second is etching leading to a chemically 'PTFE-like' but 

morphologically 'spongy-like' surface. Chemical modification is dominant 

at first, but is then overwhelmed by etching. Golub^ has also shown that an 
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' equi l ibr ium' oxygen uptake, soon after ini t ial exposure, results f r o m the 

dynamic competition between oxidation and etching (surface regeneration). 

2.1.2.2 Hydrogen Plasma Treatment 

Hydrogen plasmas have been used to mod i fy the surface of PTFE 9 . 

Hydrogen atoms are considered to be one of the main constituents of a 

hydrogen plasma 9 , and can be used to defluorinate PTFE. C la rk 9 has shown 

a hydrogen plasma may react chemically and combine w i t h the polymer 

surface to form stable products. 

2.1.2.3 Nitrogen Plasma Treatment 

Plasma treatment of PTFE by nitrogen has been studied by many 

workers 13 jhe surface was found by Yasuda 10 to be modif ied w i t h the 

removal of f l uo r ine , and incorporat ion of n i t rogen and oxygen. 

KusabirakilO reported similar effects and also noted a change in morphology 

using SEM. Similarly to oxygen plasma treatment, G o l u b ^ has shown 

steady state chemical composition of the PTFE surface is soon attained. 

2.1.2.4 Carbon Tetrafluoride Plasma Treatment 

I n general, CF4 plasma treatment of polymers is similar to that of 

oxygen plasmas, as i t can be used for etching. However, E g i t t o l ^ has 

suggested that different etching mechanisms apply as the SEM of CF4 treated 

PTFE is very smooth compared to the rough surface observed after O2 

exposure. The contact angle of water is increased by CF4 treatment as 

reported by Klausnerl5. This was not attributed to morphological changes 

but to a chemical contribution, since the C(ls) XP spectrum shows the 

development of a small CF3 shoulder. 
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2.1.2.5 Inert Gas Plasma Treatment 

Inert gas plasma (particularly argon) treatment of PTFE is a very 

popular method of surface modif icat ion^/^ ,16-20. M o m o s e ^ recently 

studied argon plasma treatment of PTFE fo l l owed by exposure to the 

atmosphere. He concluded that the oxygen was captured at the surface 

mainly i n the f o r m of the peroxy radical bonded to carbon in the crosslinked 

structure. I t was also suggested that the chain scission peroxy radical is 

generated in the bulk by the effect of the UV radiation in the plasma. 

Morra ' 7 has studied the argon plasma treatment over a range of times. 

A large oxveen incorporation was initially observed which was reduced on 

fur ther exposure. SEM indicated that Ar plasma does not alter the 

morphology of the PTFE. 

2.1.2.6 Miscellaneous Plasma Treatments 

PTFE has been treated in an AC glow discharge in a i r^ l and analysed 

for changes i n wettabili ty (contact angles), surface functionalities (IR) and 

morphology (SEM). The contact angle of water decreased to a l imi t ing value 

after about 2 minutes treatment time, while ATR-IR showed -C(F)=0 groups 

( lSOO-^OOcm - 1 ) , and SEM indicated topographical changes. G i l m a n ^ l 

concluded the difference i n wettability may be related to the morphological 

changes, but d i d not rule out a role for the oxygen bearing groups, which 

may contribute to the phenomenon. 

Tran^2 treated PTFE grafts wi th an argon plasma followed by a hexane 

plasma and then an ammonia plasma. Collagen was successfully bound to 

the graf t and the treatment was confined to the surface so the bulk 

properties of the graft were preserved. Hollahan23 also used ammonia 

plasma and nitrogen/hydrogen plasmas in the attachment of amino groups 

to PTFE surfaces. The mechanism of NH2 groups entering the surface was 
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believed to involve plasma bombardment, forming CF2-CF*- radicals which 

subsequently combined wi th »NH2 radicals in the plasma. 

2.1.3 Summary 

The good dielectric properties, high thermal stability, l o w surface 

energy and chemical inertness of PTFE makes bonding vi r tua l ly impossible 

wi thout some fo rm of surface pretreatment. Activation methods include 

e lect rochemical r educ t ion^ , sodium solut ion e tching! and plasma 

modification6-23 

Mnn-icofViorrp^l fylr\TAr Hicrl i aro^o l-ro:a Frrvcm f r~*f r-*rv1-rr-rv-* r%y ci i**(3 r'PC rr^T*! . . . . _ ^ ••.-.i i..vij iif_i ' 

give rise to desirable adhesive and wettabil i ty characteristics24/25, j h e 

active plasma medium consists of atomic and molecular species, as wel l as 

ions, electrons, and a broad electromagnetic s p e c t r u m ^ . This h ighly 

reactive and complex mixture can offer a low cost and attractive route for 

altering the surface properties of a polymer at ambient temperatures^. 

This study examines the chemical and topographical changes 

encountered during the glow discharge treatment of PTFE using a variety of 

non-polymerizable gases. 

2.2 EXPERIMENTAL 

Small str ips of po ly te t ra f luoroe thylene (Goodfe l lows) were 

ultrasonically washed in an isopropyl alcohol ( B D H ) / hexane (BDH) 

mixture for 30 seconds and dried in air. H igh puri ty oxygen (BOC 99.6%), 

hydrogen (BOC 99.99%), nitrogen (BOC 99.995%), helium (BOC 99.995%), 

neon (BOC 99.999%), argon (BOC 99.999%), and carbon tetrafluoride (Ai r 

Products 99.7%) gases were used in the different types of electrical discharge 

treatments. 
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Electrical, inductively coupled plasmas were ignited i n a cylindrical 

glass reactor (4.5 cm diameter, 460 c m 3 volume, base pressure of 1.0 x 10"3 

Torr, and w i t h a leak rate better than 4.0 x 10"3 c m 3 m h v 1 ) enclosed i n a 

Faraday cage^S. This was fi t ted wi th an externally wound copper coil (4 m m 

diameter, 9 turns, spanning 8 - 15 cm f rom the gas inlet), an Edwards LV 10 

needle valve gas inlet, an Edwards PR-10K Pirani pressure gauge, and a 

Leybolds 27 L min" l two-stage rotary pump attached to a l iqu id nitrogen cold 

trap. A home built L-C matching network was used to match the output 

impedance of the RF (13.56 MHz) generator to that of the partially ionized 

gas load, this was achieved by minimising the standing wave ratio (SWR). 

A schematic diagram of the set up used is shown in figure 2.1. A i l joints 

were grease-free. Gas f l ow and leak rates were calculated by assuming ideal 

gas behaviour^ 9 as described in section 2.2.2. A typical experimental run 

comprised in i t ia l ly scrubbing the reactor w i t h detergent, r insing w i t h 

isopropyl alcohol, and oven drying, this was fo l lowed by a 30 min high 

power (50 W) air plasma cleaning treatment. Next, the reactor was opened 

up to atmosphere, a strip of polymer was inserted into the centre of the RF 

coils, the system was evacuated back down to its original base pressure and 

the leak rate determined. Subsequently, i f the leak rate was acceptable 

(typically better than 4 x 10"3 c m 3 m i n - 1 ) the gas of interest was introduced 

into the reaction chamber at a pressure of 0.2 Torr, and a f l ow rate of 

approximately 1.0 c m 3 m i n - 1 . After allowing 5 min for purging, the glow 

discharge was ignited at 20 W for 5 min. Upon termination of treatment, 

the RF generator was switched off, and the system flushed w i t h feed gas for 5 

m i n pr ior to venting up to atmospheric pressure. Each sample was 

characterized immediately after electrical discharge treatment. 
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Figure 2.1 

A schematic of the reactor set up. 
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2.2.1 Analysis 

A Kratos ES200 photoelectron spectrometer equipped w i t h an 

unmonochromatized M g K a X-ray source (1253.6 eV) and a hemispherical 

analyser was used for XPS surface analysis. Photo-emitted core level 

electrons were collected at a take-off angle of 30° f r o m the substrate normal, 

w i t h electron detection in the f ixed retarding ratio (FRR, 22:1) mode. 

Instrument performance was calibrated wi th respect to the gold peak at 

83.8 eV w i t h a f u l l w i d t h at half-maximum (FWHM) of 1.2 eV. XP spectra 

were accumulated on an interfaced PC computer. Ins t rumenta l ly 

determined sensitivity factors for uni t stoichiometry were taken as being 

C( l s ) : O ( l s ) : N ( l s ) : F(ls) equals 1.00 : 0.55 : 0.74 : 0.53. XPS was used to check 
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cleanliness of the PTFE substrate and for the absence of any surface-active 

inorganic additives. Gross and experimental errors were calculated for each 

surface treatment. 

A Digi tal Instruments Nanoscope I I I atomic force microscope was 

used to examine the topographical nature of the PTFE surface prior to and 

after electrical discharge exposure. A l l of the A F M images were acquired in 

air using the Tapp ing® mode^O, and are presented as unfiltered data. This 

technique employs a stiff silicon cantilever oscillating at a large amplitude 

near its resonance frequency (several hundred kHz). The root mean square 

(RMS) amplitude is detected by an optical beam system. A large RMS 

amplitude is used to overcome the caoillarv attraction of the surface layer, 

whilst the high oscillation frequency allows the cantilever to strike the 

surface many times before being displaced laterally by one t ip diameter. 

These features offer the advantage of low contact forces and no shear forces. 

2.2.2 Calculation of Leak and Flow Rates 

A t the pressures used in glow discharges the gases and vapours can be 

regarded as ideal and behave according to equation (2.1)31;-

PV = nRT (2.1) 

where P = pressure, V = volume, n = number of moles of gas, R = universal 

gas constant, and T = absolute temperature. Rearrangement gives equation 

(2.2):-

n = PV (2.2) 
RT 
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I n a reactor continually fed by gas, i f the pump is sealed off at t=0, F v 

(volumetric f l ow rate) is related to the pressure increase as follows:-

F = jdn = _ V x _dP f t = t 

v dt RT dt J t=0 

i f the value of _dE j t - t is approximated as _AP :-
dt J t=0 At 

F - ^ -
v RT At 

A t STP one mole of gas occupies 22414 c m 3 , and w i t h V i n c m 3 , R = 82.06 

atm c m 3 K" 1 mol" 1 , T in Kelvin, P in atm, and t in min :-

F = — ^ — x 22414 cm 3 m i n 1 

v RT At 

For mass f l ow rates, F m , which are used in later chapters, a similar argument 

outlined as above leads to:-

„ M V v AP . . - i F_ ~ x kg min 

RT At 5 

where M = relative molecular weight of monomer. 
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2.3 R E S U L T S 

2.3.1 Clean PTFE 

The C : F ratio for untreated PTFE f i l m obtained f r o m XPS is in good 

agreement w i t h the theoretically expected value of 1 : 2, table 2.1. C(ls) XP 

spectra were f i t ted w i t h Gaussian peaks of equal f u l l F W H M 3 2 , using a 

Marquardt minimisation computer program, and showed only a main >CF2 

peak at 291.2 eV, and the corresponding M g K c ^ satellite at lower binding 

e n e r g y 3 3 , f igure 2.2(a). Throughout this thesis errors stated for elemental 

include an error of between 1-2% due to the Marquardt min imiza t ion 

program. 

A common method for making PTFE f i l m is by compaction and 

sintering of PTFE granules 3^. The constituent particles and surface voids 

are clearly discernible in the A F M micrograph of untreated PTFE, figure 2.3. 

Furthermore, uniaxial alignment of the surface texture is indicative of the 

substrate h a v i n g undergone t r i b o l o g i c a l d e f o r m a t i o n d u r i n g 

manufacture 3 ^. 

Table 2.1 

Elemental surface composition fo l lowing plasma modification of PTFE 

(20 W, 5 min). 

Gas % C % F % O % N 

PTFE 33.3 + 0.6 66.8 ± 0.6 — — 

CF 4 32.8 ± 0 . 6 67.2 ± 0.6 — — 

O2 33.0 ± 0.2 65.4 ± 0.2 1.7 ± 0 . 4 — 

N 2 
33.2 ± 0.0 64.0 ± 0.6 1.6 ± 0 . 3 1.3 ± 0 . 4 

N e 34.6 ± 1 . 3 62.0 ±1 .0 2.6 ± 0.4 0.9 ±0 .0 

A r 37.2 ± 0.5 56.8 ± 0.8 4.3 ±0 .2 1.8 ± 0 . 1 

He 38.7 ± 0 . 4 55.8 ± 2.0 4.1 ±1 .4 1.5 ±1 .0 

H 2 56.1 ± 1 . 1 37.7 ± 0.4 4.7 ± 0.7 1.5 ± 0 . 1 
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Figure 2.2 

C(ls) XP spectra of PTFE: (a) clean, (b) C F 4 plasma treated, (c) 0 2 plasma 

treated, (d) N2 plasma treated, (e) Ne plasma treated, (f) Ar plasma treated, 

(g) He plasma treated, and (h) H2 plasma treated. 
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Figure 2.3 

Atomic force micrograph of clean PTFE 
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Figure 2.4 

Atomic force micrograph of Cb plasma treated PTFE. 
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Figure 2.5 

Atomic force micrograph of H2 plasma treated PTFE. 
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Figure 2.6 

Atomic force micrograph of N2 plasma treated PTFE. 
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Figure 2.7 

Atomic force micrograph of He plasma treated PTFE. 
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Figure 2.8 

Atomic force micrograph of Ne plasma treated PTFE 
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Figure 2.9 

Atomic force micrograph of Ar plasma treated PTFE. 
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Figure 2.10 

Atomic force micrograph of CF4 plasma treated PTFE. 
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2.3.2 Oxygen Plasma Treatment 

XPS shows that there is virtually no change in the chemical nature of 

the PTFE substrate during oxygen plasma treatment, figure 2.2(c) and table 

2.1. 

However there is a substantial degree of surface roughening, which is 

discernible in the form of a micro-roughness superimposed upon the 

original macro-roughness of the starting material, figure 2.4. 

2.3.3 Hydrogen Plasma Treatment 

Hydrogen plasma treatment of PTFE results in a dramatic 

defluorination of the surface^, table 2.1. The C(ls) envelope has shifted to 

lower C(ls) binding energy values, which are more typical of hydrogenated 

carbon centres^, figure 2.2(h). A small amount of oxygen and nitrogen was 

detected on the treated samples, the most likely origin for this being reaction 

between trapped free radical centres at the surface and the atmosphere 

during transport of the modified substrate from the glow discharge 

apparatus to the XP spectrometer^,36 

In many ways the hydrogen and oxygen glow discharge treated PTFE 

surfaces are topographically very similar in appearance, except that the level 

of macro-roughness is less extensive for the former, figure 2.5. 

2.3.4 Nitrogen Plasma Treatment 

Nitrogen glow discharge treatment of PTFE results in a small amount 

of nitrogen incorporation together with a slight broadening of the C(ls) 

envelope^0-13f figure 2.1(d) and table 2.1. 

Atomic force microscopy shows a fine globular texture which has 

wiped out the original parent polymer microstructural features, figure 2.6. 
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This is consistent with previous SEM studies where the PTFE topography 

was reported to undergo change to a fibrous pattern^ 1. 

2.3.5 Inert Gas Plasma Treatment (Helium, Neon, and Argon) 

Inert gas plasma treatment of PTFE results in a small amount of 

oxygen and nitrogen incorporation into the surfaced table 2.1. This 

can be accounted again in terms of the activated surface undergoing reaction 

with the atmosphere during substrate transfer to the XP spectrometer!6,36 

The relative order of surface defluorination is He > Ar > Ne. This is 

accompanied bv the emerppnre of a low binding; pner^y shoulder on the 

main > C F 2 C(ls) peak, which is characteristic of Mg Kai ,2 components 

corresponding to -CF-CFn- (289.5 eV), -CF- (288.3 eV), -C-CFn- (286.6 eV), and -

C x- (284.6 eV) environments^?, figures 2.2(e)-(g). 

The atomic force micrographs following inert gas plasma treatment, 

figures 2.7-2.9, are in many ways similar to the surface texture previously 

seen following nitrogen glow discharge modification. Fine globular features 

are evident in all cases. However, the way in which these are distributed 

varies a great deal depending upon the gas used. On moving from helium-

to-neon/nitrogen-to-argon glow discharges, there appears to be a local 

ordering phenomenon taking place which gives rise to the formation of 

fibrils. These results are in contradiction with previous SEM studies which 

mentioned that Ar plasma treatment does not alter the PTFE surface 

morphology?. This discrepancy could be attributed to the masking of any 

topographical features during the metallization of the substrate prior to SEM 

characterization. 
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2.3.6 CF4 Plasma Treatment 

CF4 plasma treatment of polytetrafluoroethylene effectively produces 

very little chemical change in the PTFE substrate, except for a small amount 

of fluorine incorporation. This leads to a slight shoulder at higher C(ls) 

binding energy (293.6 eV), which can be assigned to - C F 3 environment, 

figure 2.2(b). 

The treated PTFE surface exhibits the smoothest texture amongst the 

series of feed gases under investigation, figure 2.10. Similar behaviour has 

been previously observed by SEM for other polymer substrates which have 

been exposed to pure CF4 plasma s^. 

2.4 DISCUSSION 

Differing rates of physical sputtering between amorphous and 

crystalline regions of PTFE cannot solely account for the observed changes in 

surface topography for the various plasma treatments39,40 A range of 

energy transfer mechanisms are in operation within a low pressure RF 

discharge, as illustrated in chapter 1. These include electron acceleration in 

the bulk of the plasma, electron deflection from sheath potentials, 

formation of energetic neutrals by charge-exchange and elastic collisions 

between ions and neutral gas species, and ion and electron acceleration in 

the wall boundary sheaths^l. In terms of surface modification, the most 

important criteria of a glow discharge are the nature, the arrival rates, and 

the angular and energy distributions of the species impinging upon the 

surface^. Electron impact processes influence the density of ions, radicals, 

metastables, and photons contained within the plasma. The energy 

distributions for neutral and ionic species contained within a non-
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equilibrium plasma correspond to approximately ambient temperature, 

whilst the electron temperature is considerably higher. 

Non-isothermal plasmas interact with organic substrates via a direct 

energy transfer component arising from ions and metastables down to ~ 10 

A (lOxlO" 1 0 m), and a radiative transfer component consisting of vacuum 

ultraviolet (VUV) photo-irradiation which can penetrate up to ~ 10 um 

(lOxlO"6 m) below a polymer surface^'^3,44^ both are illustrated in figure 

2.11. 

Figure 2.11 

A schematic diagram of the dirprf anH radiative enerfv transfer rriechs-i^mc 

occurring during polymer surface modification by inert gas plasmas (not to 

scale). 

photon 

10 A 

10 urn 

BULK 

Typically, ion densities lie in the range of 108 - 1 0 1 0 cm - 3 with energies of 0 -

100 eV45-48; whilst mean electron energies span 0 - 20 eV with a high energy 

tail reaching out to 100 eV due to reflections at sheath boundaries45,49. 

Within the glow region, the plasma exists at a positive potential with 

respect to the substrate surface, this results in positive ions contained in the 

66 



plasma being accelerated through a space charge sheath towards the 

substrate^. 

Prolonged oxygen plasma treatment of PTFE results in a 

morphologically spongy-like surface 6 ' 7 ' 8 . Pure O2 plasmas yield a much 

rougher surface in comparison to CF4 glow discharge treatment of PTFE^^. 

Although a large number of chemical reactions are possible in an oxygen 

plasma, oxygen atoms are generally regarded as being the primary reactive 

species in conjunction with vacuum UV surface activation26,51,52 Also 

the average potential difference between the plasma and the substrate 

(plasma sheath potential) is much greater for an oxygen plasma than for a 

CF4 plasma-^. Therefore., a greater level of substrate etching can be expected 

for the case of an oxygen plasma. The most likely initiation step during. O2 

plasma treatment of PTFE is reported to be polymer radical formation 

during ion/photon/electron bombardment^ to yield either:-

-CF2-CF2- + KE • -CF2-CF«- + F* (2.1) 

-CF2-CF2- + KE -CF2» + «CF 2- (2.2) 

The reaction of O atoms or O2 with a polymer radical wi l l inhibit cross-

linking, leading to scission of the polymer backbone^. Fluorine abstraction 

from PTFE by oxygen radicals to form OF* is energetically unfavourable 14 

and studies using atomic oxygen (0( 3P)) have exhibited negligible surface 

oxidation54. 

A hydrogen plasma defluorinates PTFE to a large extent. Low energy 

electron impact of H2 produces photons in the vacuum ultraviolet region^, 

but this cannot solely account for the high level of surface defluorination 

observed. A comparison of H24" and H e + ion bombardment of PTFE has 

shown that the former is better at defluorination of the surface, and this can 

be attributed to a chemical effect^. Defluorination of the PTFE surface by a 

hydrogen glow discharge must therefore be governed by the chemically 
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reducing nature of the constituent hydrogen atoms^, whereas for the other 

gases, any loss of surface fluorine can only be attributed to vacuum 

ultraviolet (VUV) photons^?/^ ion bombardment^ or electron impact 

dissociation^O/61. Fluorine abstraction from PTFE by hydrogen atoms to 

form HF is known to be energetically favourable^/ l^ a n c j n a s been 

previously identified by IR emission spectroscopy62:-

RF + H« > R° + HF 

A mechanism has been proposed by Clark^ which is thought to be initiated 

by abstraction of fluorine :-

-(CF2-CF2-CF2-CF2)- + H» HF + -(CF-CF2-CF2-CF2)- (2.3) 

Recombination of the polymer radical with a hydrogen atom leads to the 

formation of a vibrationally excited (*) chain segment that may be quenched 

by the lattice, or decompose with the elimination of HF. 

-(CHF-CF2-CF2-CF2)- (2.4) 

-(CF-CF2-CF2-CF2)- + H» • -(CHF-CF2-CF2-CF2)-

-(CF=CF-CF2-CF2)- (2.5) 
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Any unsaturation produced could be rapidly saturated by H ° , reaction (2.6). 

Once hydrogen has been incorporated into the polymer chain, various 

reactions (2.7, 2.8, or 2.9) may occur. 

(2.6) (CF=CF-CF2-CF2) (CFH-CFX-CF2-CF2) 2.7) 

+ H° + H° or F° 

(CF-CF-CFo-CFo) 

H 

+ R° 

(2.8 (CHF-CF=CF-CF2) (CF-CF-CF2-CF2) 2.9 

H 

Additional reactions such as oxygen uptake and crosslinking can occur due 

to the interaction of residual oxygen-containing species with radicals and the 

recombination of radicals respectively. 

Ion beam modification of PTFE is known to induce topographical and 

chemical changes at the surface63-65/ a n a r e a expanded upon in chapter 3. 

The floating potential of the substrate can be calculated to be approximately 

the same for the three noble gases used in this study66. On moving from He 

to Ne to Ar plasmas, the observed trend in the degree of PTFE 

defluorination is contrary to what might be expected in terms of a direct 

energy transfer perspective, where momentum transfer to the substrate 

should become more predominant with rising noble gas atom mass^?. 

Therefore radiative energy transfer must also be taken into 

considerationl8,68,69. Crossed-beam electron impact induced fluorescence 

studies with inert gas atoms have shown that intense vacuum ultra violet 

(VUV) M I emission lines are produced (where M represents the inert gas 
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e.g. A r l ) wh ich correspond to transitions between the lowest l y i n g 

electronically excited states and the ground state of the atom (e.g. for Ar: 

S s ^ p ^ s 1 --> 3 s 2 3 p 6 ) 7 0 ' 7 1 . These display a maximum excitation cross section 

at electron energies of - 30 eV 7 ^ . A weaker M i l line and a background 

radiation continuum arising f r o m excited inert gas molecules M2* is also 

present. There is emission in the UV/vis ib le , but the intensity is at least 

two orders of magnitude lower than for the V U V region. Such V U V 

photons typically possess energies corresponding to the order of f i r s t 

ionizat ion potentials of p o l y m e r s 4 4 . Therefore, the anomalously h igh 

defluorination of PTFE by the helium glow discharge can be accounted for, 

since the M I resonance lines bprome less enpreelic on descending the inerL 

gas s e r i e s 4 4 ' 7 ^ whereas momentum transfer effects w i l l make a greater 

contribution for the heavier noble gas plasmas. Figure 2.12 shows how the 

two effects compete. 

Figure 2.12 

A schematic diagram showing how the VUV and direct energy transfer 

mechanisms change as the noble gas series is descended. 

Increasing V U V MI photon energy 

He Ne - A r Increasing atomic mass 

Increasing ion size/cross section 

Primary processes during inert gas plasma treatment of PTFE w i l l 

include rupture of the C-F bond, and main chain C-C scission fo l lowed by 

the chain fragments undergoing crosslinking or d e s o r p t i o n l 7 . Polymer 

radicals located on adjacent chains w i l l c r o s s l i n k ^ whi l s t radicals on 

ne ighbour ing carbon atoms w i l l f o r m double b o n d s ^ . Greater 

fragmentation at the surface should produce a greater number of molecular 

fragments, w i t h their respective mobilities decreasing w i t h increasing chain 
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length and crosslinking. The C-C bond distance along a polymer backbone is 

much shorter than the intermolecular C-C separation between adjacent 

polymer chains, therefore, the net effect of crosslinking is to cause surface 

s h r i n k a g e ^ and internal stress. This could contribute to the observed 

reorganization of surface texture during noble gas glow discharge treatment 

of PTFE. The observed morphology in these studies is markedly different to 

the f ine cone-like structures observed dur ing ion sputter-etching of 

P T F E 7 3 ' 7 4 and therefore cannot be ascribed to just a manifestation of ion 

bombardment i n the convent ional sense. However , since i on 

bombardment is dependent upon the plasma sheath and the constituent 

ions, anv macro-rouehness anH / nr ln ra l ized charrp b n i l r l - n n v.Hll r a u ^ -i 

strong perturbation upon the local electric f ield experienced by the incident 

ions, leading to higher kinetic energy ions reaching the protruding and / or 

charged polymer regions. This can give rise to heterogeneous etching at the 

sur face 7 ^ , and w i l l be expected to become more evident w i t h increasing 

mass of incident noble gas ion. Furthermore, agglomeration and 

orientation of charged low molecular weight species at the surface 7^ may be 

influenced by such local surface electric fields. This effect wou ld be expected 

to be greatest for an argon plasma, since the heavier argon ions w i l l incur 

more polymer chain rupture , whi le its relatively weaker vacuum U V 

emission w i l l yield less subsurface crosslinking, and therefore one w o u l d 

expect a more mobile surface in this case. 

Nitrogen plasma treated PTFE experiences comparable physical and 

chemical changes to those observed d u r i n g neon g low discharge 

modification. Atomic nitrogen and neon are very close to each other in the 

Periodic Table, thereby giving rise to similar momentum transfer behaviour 

(small difference in atomic mass) and VUV emission spectra (vir tual ly 

equivalent atomic orbitals). 

A CF4 glow discharge can be regarded as a source of fluorine atoms 

w i t h a small concentration of CF, CF2, and CF3 r ad i ca l s 7 7 "^ ! . This is 
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supported by electron impact experiments w i t h CF4, which indicate that F 

atoms are the primary species^2. The identification of -CF3 centres fo l lowing 

CF4 plasma treatment can be taken as evidence for the main PTFE backbone 

undergoing cleavage fol lowed by f luorinat ion of the -CF2 radicals. The 

alternative explanation of -CF3 functionalities attached to the main PTFE 

backbone can be ruled out since there are no corresponding crosslinked 

carbon centres present in the C(ls) spectrum at lower binding energy values 

f rom the main -CF2- peak. The contact angle of water increases dur ing CF4 

plasma t rea tment^ . This cannot be attributed to morphological changes 

(since Wenzels Law states 'on roughening a wettable surface becomes more 

wettable and a non-wettable surface becomes more r i O r L - v v c t t a b l e ' ) " ^ " ^ , 

therefore this must be due to the extra -CF3 groups. CF4 plasmas are widely 

used for polymer etching, in a similar way to O2 plasmas. However, E g i t t o ^ 

has suggested that different etching mechanisms apply, since the two 

treatments result in very different morphologies. Fluorine abstraction f r o m 

PTFE by fluorine radicals to form F2 is energetically unfavourab le^ , whilst 

recombination or termination of polymer radicals w i th f luorine atoms w i l l 

favour the formation of stable fluorocarbons species w i t h inherently poor 

etch characteristics!4,85 

2.5 CONCLUSIONS 

Non-equ i l ib r ium glow discharge treatment of PTFE using non-

polymerizable gases results in surface modif icat ion. The chemical and 

topographical changes induced depend heavily on the gas used. Oxygen 

plasma treatment gives rise to the highest level of surface roughening 

together w i t h virtually no change in chemical composition. Etching of the 

PTFE to reveal a chemically similar but topographically spongy-like surface 

is the l ikely mechanism. Hydrogen glow discharge treatment causes the 
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greatest loss of fluorine f r o m the surface as hydrogen atoms i n the plasma 

can react w i th , and abstract, fluorine f rom the polymer. Nitrogen and noble 

gas plasma treatment promotes the formation a fibri l lar micro-texture. Both 

the direct and radiative mechanisms of energy transfer were found to play 

important roles, the level of which depends on the particular gas molecule. 

CF4 glow discharge treatment of PTFE causes polymer chain rupture 

followed by fluorine atom capping to yield -CF3 end groups. 

Future work on in situ modification and chemical analysis could be 

performed to elucidate the or igin of the surface oxygen and nitrogen 

incorporation. Recently apparatus has been built i n this laboratory which 

w i l l allow this to be studied. Use of suitable window materials should allow 

the substrate to be shielded f r o m all but the VUV component of the plasma 

to asses its individual contribution to the modification process. Biasing of 

the substrate may be possible to direct selected charged particles, wi th in the 

plasma, away f r o m or towards the PTFE. 
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CHAPTER 3 

MODELLING OF NON-ISOTHERMAL 
ARGON GLOW DISCHARGE 

MODIFICATION OF PTFE USING LOW 
ENERGY ARGON I O N BEAMS 
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3.1 I N T R O D U C T I O N 

Many methods of PTFE modification have been i l lustrated in the 

previous chapter. Surface modification was observed when using an argon 

plasma, a major constituent of which is argon ions. In this chapter 

modification using low energy argon ion beams is compared to that caused 

by an argon plasma in an attempt to quantify the effect ions have in plasma 

surface modif ica t ion of polymers. Similarities and differences i n the 

resultant surface structures are considered i n terms of p r imary and 

secondary interactions between the polymer substrate and incident ion beam 

or plasma species. 

3.1.1 Ion Beam Modification of Polymers 

Most technologies based on irradiation effects in polymers make use 

of the fact that the chemistry of the organic f i l m is easily changed^. Ion 

bombardment of organic f i lms is known to result in irreversible changes, 

and modification of polymer surface properties has been observed using ion 

beams of various energies for some time^. 

3.1.1.1 Fundamentals of Ion-Polymer Interactions 

Chemical modification of polymer films by ions differs to that caused 

by other ionizing particles in three main ways^:-

(i) t w o d i f f e r en t mechanisms of energy deposi t ion can occur 

simultaneously, electronic excitation and interparticle collisions, 

( i i ) the spatial distribution of reactive precursors is homogeneous, 

( i i i ) the amount of energy deposited is greater for ions. 

Each of these points w i l l now be considered in turn. 
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The two energy deposition mechanisms (electronic excitation and 

interparticle collisions) differ because the electronic term produces excited 

species and radicals in the polymer which relax according to thermodynamic 

rules (minimizat ion of energy), whereas the interparticle collisions are 

random and can produce non-thermodynamic species (h ighly unstable 

f ragments) 3 . This leads to a large variety of available reactive species in the 

polymer surface. 

The spatial distr ibution of reactive precursors generated by ion 

bombardment is important in the case of polymers compared to other 

materials. The primary species generated on impact may recombine or react 

wi th in a larger volume than that of the ion trark due to d i f fus ion processes 

or propagation of radical species along the chain. I n general, polymers have 

low thermal and electrical conductivity and radicals persist for some time, 

so excited states f r o m successive impacts may interact effectively. This 

differs greatly to the effects observed in metals or semiconductors. 

The effect of ion beams on molecular solids differs w i t h the ion dose 

received. A t high fluence (10 1 4 atoms c m - 2 or greater) a 'plasma-like' region 

along the ion tracks has been evoked, where all existing bonds are broken 

producing a graphitized surface. The resulting amorphous carbonaceous 

surface is often said to have lost all memory of the init ial po lymer 4 . Loss of 

volat i le species and continuous bond rearrangement is i nvo lved i n 

formation of the f inal structure. A t lower fluence (10 1 3 atoms c m - 2 or less) 

many of the primary interactions are described as 'mi ld ' reactions 3 which 

combine to give new functional groups, a different backbone and electronic 

structure. The modifications at low fluence produce chemically different 

products than those formed at high fluence. Figure 3.1 shows how typical 

chemical reactions and physical properties of bombarded polymers vary 

w i t h increasing ion fluence^. 
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Figure 3.1 

The trends of ion fluence versus typical chemical reactions and related 

physical properties of bombarded organic polymers^. 
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In summary ion-polymer interactions are essentially non-linear, high 

density energy deposition events that induce intense chemical changes such 

as dehydrogenation, decarbonylation, decarboxylation, ejection of other 

stable molecules, reduction of functional groups, loss of aromaticity via r ing 

opening, loss of heteroatoms, backbone rearrangements, etc1*. For the 

purpose of this work the effects of ion beams on PTFE are the important 

factor and these w i l l now be reviewed. 

3.1.1.2 Ion Beam Modification of PTFE 

The modification of PTFE using energetic particles such as X-rays^'", 

electrons ' 7 ' !^, a t o m s ^ , ^ l a se r s^"^ , and ion beams-^ / l^ have all been 
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studied. In particular, ion beams of a broad spectrum of energies and origin 

are reportedl8-24 Residual gas analysis of irradiated PTFE using He, N2, 

and Si ion beams in the energy range 0.2 to 2.0 MeV yielded CF and CF3 

g r o u p s 1 8 . XPS and gas analysis performed after irradiation of PTFE w i t h 20 

MeV 3 4 C 1 4 + i o n s 2 2 indicated better adhesion to th in gold f i l m s and 

defluorination. A reduction in the number of CF2 groups has has also been 

observed after 750 eV H2 and He ion beam exposure^. The enhancement of 

f luor ine removal by H2 ion bombardment was attributed to a chemical 

reaction between hydrogen atoms produced in the beam and radical sites on 

the p o l y m e r ^ a s discussed in the previous chapter. The removal of CF2 

groups and fluorine by inert ion bombardment is believed to occur by ion 

beam induced desorption. 

Low energy (30-3000 eV) inert gas ( A r + and Xe + ) ions have been 

shown to defluorinate PTFE without incorporation of the inert gas a t o m 2 ^ 

and 400-1000 eV A r + beams have been used to sputter PTFE targets 2^, a topic 

that is covered in greater detail in chapter 4. The interaction of A r + ions in 

the energy range 1-5 keV w i t h tetraf luoroethylene/ethylene (TFE.E) 

copolymer and PTFE has been studied p r e v i o u s l y 2 4 . The rate of PTFE 

defluorination was found to decrease wi th increasing incident ion energy, 

which was attributed to the increased sputtering of PTFE revealing fresh 

p o l y m e r 2 4 . 

Modification of polymer surfaces by non-equilibrium glow discharges 

comprise of reaction and degradation of the substrate by ions generated in 

the plasma and also by other plasma species such as free radicals, excited 

species (i.e. metastables), electrons and electromagnetic rad ia t ion 2 ^ . The 

prime objective of this study is to evaluate the relative importance of ion-

substrate interactions during the argon plasma treatment of PTFE. 
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3.1.2 Ion Source 

The ion source used i n these experiments is the cold cathode electron 

impact type ion source^. This is composed of an anode surrounded by a 

can, the f ront surface of which has an aperture for ion removal figure 3.2. 

At the other end is mounted the cold cathode, which is held at a negative 

potential relative to the anode. The potential difference between the 

cathode and anode causes ion bombardment of the cathode resulting in 

secondary electron emission. The gas for the discharge (in this case argon) is 

introduced near the cold cathode and becomes ionized by the secondary 

electrons emitted from the cathode. The ions generated are accelerated by an 

extraction electrode and then focused into a beam after they leave the 

source. A min imum of two power supplies are required to operate the 

source, one for the anode-cathode potential and one for the extraction 

potential. 

A cold cathode ion source differs f r o m a hot cathode ion source 

because the primary ionization of the gas in the hot cathode source is by 

electrons emitted f rom a hot thermionic cathode. 

Schematic of the cold cathode ion source used i n these experiments 

Figure 3.2 
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3.2 E X P E R I M E N T A L 

3.2.1 Plasma Modification 

Glow discharge experiments were carried out i n a electrodeless 

cylindrical reactor as described in chapter 2 (section 2.2). The experimental 

set up and procedure was also the same as in chapter 2, and w i l l not be 

repeated here. After the reactor was cleaned a large strip of PTFE was 

inserted into the centre of the reactor, which was then pumped down to its 

base pressure. Subsequently argon was introduced into the reaction 

chamber at 2 x 10"1 Torr pressure, and a f low rate (F y ) of approximately 1.0 

c m 3 m i n - 1 . After allowing 5 min for purging, the glow discharge was ignited 

at 50 W for 20 min. Upon termination of modification, the RF source was 

switched off, and argon was allowed to continue f lowing through the reactor 

for another 5 min. Finally the system was let up to atmosphere and XPS 

analysis was performed as detailed in chapter 2 (section 2.2.1). 

3.2.2 Ion Beam Modification 

In situ A r + ion irradiation/XPS studies were performed in a Vacuum 

Generators ESCALAB instrument (base pressure 2 x 10" 1 1 Torr). A cold 

cathode ion gun (Vacuum Generators AG21) wi th a 1-2 % energy spread was 

used. A constant flux of A r + ions was maintained by keeping the ion beam 

current hi t t ing the substrate fixed at 5 x 10" 1 0 A w i t h the ion energy at 0.8, 

1.4, 3.0, or 4.0 keV for each successive experimental run. Ion irradiat ion 

times were successively doubled between each exposure i.e. 30 s, 1 m i n , 2 

min , 4 min , etc. The low ion current was due to the defocused nature of the 

ion beam, which covered the whole sample surface (1 cm 2 ) . The angle of 

incidence of the ion beam to the sample surface was 20°, which was identical 

to the take off angle for the photo-electrons emitted f r o m the sample. XPS 
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analysis was carried out using Magnesium K a radiation as the photo-

excitation source and constant analyser energy mode (CAE, 50 eV pass 

energy) photoelectron detection. 

3.3 R E S U L T S 

3.3.1 Argon Plasma Modification 

Clean PTFE displays a main C(ls) peak at 291.2 eV, and a weak M g 

Kcu 4 satellite at Inwpr bi^Hins enerffv. figure 3 3 

The C(ls) XP spectra of each treated surface was f i t ted w i t h six M g 

K a ^ 2 components having equal F W H M corresponding to -Ox- (284.6 eV), -

C-CF n - (286.6 eV), -CF- (288.3 eV), -CF-CF n- (289.5 eV), -CF 2 - (291.2 eV),-CF 3 

(293.6 eV) e n v i r o n m e n t s 2 6 . Addi t iona l M g Kot3;4 sa te l l i t e s 2 7 (w i th a 

different f ixed FWHM) were also taken into consideration. 

Negligible variation in the C(ls) envelope throughout the R.F. coil 

region was observed dur ing argon glow discharge modif icat ion of PTFE. 

The plasma treated surface composition was calculated to be 53.6% C, 36.7% 

F, 8.3% O, and 1.3 % N (oxygen and nitrogen containing groups are most 

likely to arise f rom reaction between trapped free radicals at the surface and 

the atmosphere during sample transfer to the XP spectrometer2**, as seen in 

the last chapter). Clearly a high degree of surface defluorination (F:C = 0.69) 

has taken place during the argon plasma treatment of PTFE, figure 3.4. The 

modif ica t ion is much greater than that for argon plasma treatment in 

chapter 2. However, this is not too surprising after considering the longer 

treatment time and higher plasma power employed here. 
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Figure 3.3 

C(ls) XP spectrum of clean PTFE. 
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Figure 3.4 

C(ls) XP spectrum of argon plasma modified PTFE (50 W, 20 min). 
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3.3.2 Argon Ion Beam Modification 

F(ls) : C(ls) ratios plotted against A r + ion dose (ions cm - 2 ) , f igure 3.5, 

show that the extent of surface defluorination of PTFE increases w i t h ion 

dose (i.e. irradiation time), and i n the energy range investigated the lower 

energy ion beams appear to be more effective in promoting defluorination. 

The most defluorinated surface (F : C = 0.63) was generated during a lengthy 

exposure (total of 128 min) to a low energy A r + ion beam (0.8 keV), i n this 

case the low binding energy side of the C(ls) envelope predominates, figure 

3.6. Higher energy A r + ion beams cause much less def luorinat ion; for 

instance, 4 keV energy ions yield a F : C ratio of 1.37 after the same exposure 

time. This is in common w i t h H u t t o n s ^ results, who also f o u n d the 

modi f ica t ion to be un i fo rm throughout the sampling depths for C( ls) 

electrons excited by M g K a radiation. It has been reported that argon ions, in 

the energy range used in the present work, have a penetration depth of 

about 10 nm in Teflon29 which is greater than the sampling depth of the 

XPS experiment. Trapped argon w i t h i n the polymeric matr ix was not 

detected by XPS, and all of the modified surfaces were found to be stable w i t h 

respect to ageing under an ultra high vacuum environment. 
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Figure 3.5 

A plot of F : C ratios against ion dose (ions cm - 2 ) . 
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Figure 3.6 

C(ls) XP spectrum of argon ion beam modified PTFE (0.8 keV, 128 min). 
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3.4 DISCUSSION 

Surface modification of PTFE by plasma techniques is appealing as a 

dry process for altering the polymer substrates hydrophobicity^O. ion beam 

modification of polymer surfaces can result i n crosslinking, defluorination, 

backbone rearrangement, and the formation of amorphous carbon, graphite, 

and d i a m o n d - l i k e - c a r b o n 2 ' 3 1 as detailed i n the in t roduc t ion . S u c h 

treatments can yield desirable electrical, optical, abrasive, and adhesive 

properties2/22,32-34 j n fae c a s e 0 f argon, there appears to be a strong 

chemical similarity between the PTFE surface created by plasma and low 

energy ion beam treatments 

Generally, treatment of PTFE wi th a noble gas ion beam results in loss 

of f luorine i n the surface region (as studied by X P S ) 2 4 ' 3 5 . The XPS C(ls) 

envelope init ially consists of a single narrow peak for - C F 2 - , which broadens 

upon ion bombardment, w i t h a concomitant decrease in the F(ls) signal. 

The presence of - C F 3 funct ional i ty is reported to originate f r o m the 

recombination of chain fragments and f luor ine a t o m s 2 4 . Differences 

between the relative amounts of f luorinated functionalites seen in the 

plasma treated surface and ion beam treated surface may be due to 

modification induced by the additional species present in the argon plasma. 

The shorter times required for plasma treatment could be again due to the 

effect of additional plasma species or may indicate that the plasma generates 

a greater dose per unit time (flux) of ions. The ion dose was seen to be an 

important factor regarding the level of defluorinat ion i n the ion beam 

experiment. 

Ion bombardment results in the emission of electrons, neutrals, ions, 

and photons36 at comparable energies to those typically f o u n d i n non-

isothermal glow discharges. The maximum energy of ions bombarding a 

substrate dur ing plasma exposure is equal to the difference between the 

plasma potential and the surface potential, which can range f r o m tens to 
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hundreds of eV^7,38 Therefore low energy A r + ion beam irradiation of 

PTFE may serve as a good model for argon glow discharge modif icat ion 

(where ion-surface interactions are regarded as being a predominant 

process). However, at higher A r + ion beam energies, extensive sputtering 

occurs leading to the continuous unveiling of fresh PTFE24. 

Static secondary ion mass spectrometry (SSIMS), a recently developed 

method of polymer surface analysis, is based on the mass analysis of ejected 

species after surface irradiation wi th a low density ion beam. Low beam 

currents, 10~ n to 10"8 A c m - 2 , and energies, 0.5 to 4 keV, are used39 which 

are of the order of the argon ion beams used in this study (5xl0~ 1 0 A cm ' 2 , 0.8 

A T V > « - ^ > ^ — — ~ f - ! , „ , - . , - . . - , , „ £ . - . . , . . C.-.V. T: :_, 

ion b u r i a l ^ 6 i s a n important feature which needs to be taken into 

consideration when interpreting SSIMS spectra of polymeric substrates. 

3.5 CONCLUSIONS 

Clearly a number of similarities are evident between argon plasma 

treatment of PTFE and the low energy A r + ion beam experiments. These 

can be explained in terms of similar physicochemical phenomena occurring 

at the polymer surface during argon glow discharge modification and low 

energy A r + ion burial into PTFE. 

Further work could include in situ plasma modificat ion/XPS which 

w i l l soon be possible in this laboratory to compare wi th the in situ ion beam 

modification. Similar modelling studies using different polymer substrates 

and ion/plasma environments may lead to further mechanistic details of 

ion-polymer interactions occurring in plasmas. For instance, Groning^O has 

recently shown that noble gas plasma and low energy ion beam treatment of 

P M M A produce exactly the same chemical modifications at the surface. 
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CHAPTER 4 

PLASMA POLYMERIZATION OF 
SPUTTERED PTFE 
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4.1 I N T R O D U C T I O N 

The last two chapters concentrated on plasma modification of PTFE 

surfaces. I n this chapter the same RF glow discharges are ut i l ized to 

synthesize TTFE like' thin films. Non-equilibrium plasmas are useful for a 

variety of chemical reactions, these include the generation of atoms^, 

radicals 2 , isomerization 3 , rearrangement 4, etching^, and polymerization^. 

Polymeric layers can be prepared by introducing saturated or polymerizable 

solid fo rming species into such low temperature glow discharges as outlined 

in chapter 1. Plasma polymerized fluoropolymer fi lms offer many potential 

applications, including use as non-wettable surfaces^, dielectrics'-, optical 

layers^, and wear resistant coatings^. The most popular preparative route 

fo r m a n u f a c t u r i n g these materials has been the in jec t ion of a 

fluoromonomer into a non-isothermal glow discharge. Alternatively, radio 

frequency (RF) sputtering of a PTFE substrate^/H/l 2 can be used. Such RF 

sputtering of PTFE is understood to evolve C2F4 ( tetrafluoroethylene)H~l 3 , 

which subsequently undergoes plasma polymerization i n the RF sputter 

f i e l d 1 4 . 

4.1.1 Plasma Sputter Deposition 

Al though plasma polymerization was introduced i n chapter 1, the 

concept of plasma sputter deposition has not yet been touched on. I t is the 

purpose of the next section to review this area. 

Sputtering is a process where material is dislodged and ejected f r o m 

the surface of a target due to momentum exchange associated w i t h surface 

bombardment by energetic particles. Substrates are positioned in front of the 

target so that they intercept the f lux of sputtered atoms. The most common 

method of providing the ion bombardment is by use of a plasma. Since the 

ejected species are created by physical rather than chemical or thermal 
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processes, vir tual ly any material can be sputter deposited. This has led to 

many applications part icularly in the electronics industry , e.g. i n the 

product ion of oxide microcircui t insula t ion layers* piezo-electric 

t ransducers* 6 , photoconductors* 7 and luminescent f i l m s ^ f o r display 

devices, and photolithographic mask b lanks^ . 

Generation of the plasma required for sputter deposition can be 

achieved using several methods, for instance DC g low discharges, 

magnetron devices, and RF plasmas. Of these RF plasmas are the most 

popular because they can be used w i t h conducting, semiconducting or 

insulating targets. 

4.1.2 Sputter Deposited PTFE 

Sputtered PTFE has been studied for many yearsl4,20,21 w i t h a recent 

resurgence in the a r e a 2 2 ' 2 ^ . Depending on deposition conditions, these 

polymer fi lms can exhibit excellent properties comparable to PTFE 2 l / 2 4 . The 

g rowth mechanism of f luorocarbon materials synthesized by PTFE 

sputtering is not wel l understood. The stoichiometry of a ( C F x ) n polymer 

f i l m depends on the mass distribution of the molecular fragments arriving 

at the substrate surface. During sputtering of a PTFE target by ions, low 

weight fragments are ejected and further molecular dissociations may occur 

in the plasma. As a result RF sputtered f i lms exhibit a fluorine def ic iency 2 2 

compared to PTFE. 

Growth of plasma polymerized f i lms has been described by the 

activated growth model (AGM) in which f i l m deposition occurs only at 

specific polymer sites that have been 'activated' by energy transfer f r o m the 

plasma to the polymer site, typically by ion bombardment 2 ^/ 2 6 . Measurable 

differences i n f i l m composition wi th substrate material have recently been 

observed, which is consistent wi th the A G M model in that plasma-surface 

interactions during init ial stages of deposition dominate and establish the 
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growth mechanism and characteristics of the f i l m 2 ? . It has been suggested 

that both sputtered PTFE and plasma polymerized fluorocarbon fi lms grown 

i n a similar manner have closely related s t ruc tu re 1 4 , although it 's now 

believed this may be an over simplif icat ion 2 ^. There has never previously 

been a systematic study of the influence of sputter gas on the character of the 

resultant plasma polymer f i l m . In this chapter, plasma polymerization of 

RF sputtered PTFE is examined in the context of to what extent the chemical 

nature of the deposited fluoropolymer layer is influenced by the carrier gas 

(He, Ne, Ar , N2, H2) used in the glow discharge. The chemical composition 

of the plasma phase has been monitored by u l t rav io le t emission 

nature (as evaluated by X-ray photoelectron and infrared spectroscopy) of the 

obtained fluorocarbon deposits. 

4.2 E X P E R I M E N T A L 

4.2.1 Glow Discharge Experiments 

The experimental set-up and procedure were the same as i n chapter 2. 

The cleaning plasma treatment (50 W air plasma for 40 min) was carried out 

in the presence of glass substrates, but i n the absence of any polymer f i l m . 

After cleaning, the entire inside of the glass reactor was l ined w i t h fresh 

PTFE f i l m (Mupor Ltd) using a PTFE covered glass support and the reactor 

was pumped down to its base pressure. Subsequently the carrier gas of 

interest was introduced into the reaction chamber at 2 x 10"1 Torr pressure, 

and a f l o w rate (F v ) of approximately 1.0 cnv^min ' 1 . After al lowing 5 min 

for purging, the glow discharge was ignited at 50 W for 20 min . Upon 

termination of deposition, the radio frequency source was switched off , the 
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carrier gas was allowed to purge the system for 5 min , and then vented to 

atmosphere before immediate analysis of the deposited f i l m . 

4.2.2 Analysis 

A Kratos ES200 spectrometer was used for (XPS) analysis as described 

in chapter 2 (section 2.2.1). This was operated i n the f ixed analyser 

transmission (FAT) mode, at a pass energy of 65 eV. Instrumental ly 

determined sensitivity factors for unit stoichiometry were taken as C(ls) : 

O ( l s ) : F( ls) : N(ls) : Si(2p) equals 1.00 : 0.46 : 0.33 : 0.37 : 1.31. 

A FTTR Mattson Polaris instrument was used for transmission 

infrared analysis of RF plasma sputtered fluorocarbon layers deposited onto 

pressed potassium bromide (KBr) discs. A reference infrared spectrum of 

PTFE substrate was obtained by using a variable angle attenuated total 

reflection (ATR) cell f i t ted w i t h a KRS-5 crystal; an incident beam angle of 

45° resulted in 14 internal reflections. Typically, 100 scans were acquired at a 

resolution of 4 cm" 1. 

A home-built U V emission spectrometer based upon a Czerny-

Turner type monochromator was used for plasma glow analysis. A 

computer was used to rotate the grating via a stepping motor, and also to 

accumulate the counts f r o m the photomul t ip l ie r tube detector. This 

instrument could scan continuously f r o m 180 to 500 n m at 0.5 n m 

resolution. 



4.3 RESULTS 

4.3.1 X-ray Photoelectron Spectroscopy 

Clean PTFE displays a main C(ls) peak at 291.2 eV, and a weak M g 

Ka34 satellite shifted by approximately 9 eV towards lower binding energy, 

figure 4.1(a). For each type of glow discharge treatment investigated, there 

was negligible variation in the C(ls) envelope across the region of the RF 

coils, w h i c h reflects a homogeneous chemical composi t ion . This 

a . - K . - . T ^ l - . r - ! - iV».-. •-. • K . ~i 
U L r ' S C i VaUUil iD -̂UiLDiD iv-ill. rtiiii U t V , iViiUiC v/i iiLC ICaviUi UCiiLg ijUteij W ill i 

PTFE, and therefore being able to provide a uniform source of polymerizable 

species. The absence of any Si(2p) signal f rom the underlying glass substrate 

was taken as being indicative of complete coverage by the plasma polymer. 

A small amount of oxygen was detected, the most likely origin for this being 

reaction between trapped free radical centres at the surface and the 

atmosphere during transport of the deposited layer f rom the glow discharge 

apparatus to the XP spectrometer^ (contamination wi th in the bulk of the 

deposited f luoropolymer layer can be ruled out since oxygenated carbon 

functionalities were absent i n the transmission infrared analysis of these 

f i l m s ) . 

The C(ls) XP spectra of each coating was fit ted w i t h six M g K a i r 2 

components having equal F W H M corresponding to -C x - (284.6 eV), -C-CF n -

(286.6 eV), -CF- (288.3 eV), -CF-CF n - (289.5 eV), -CF 2 - (291.2 eV), and -CF 3 

(293.6 eV) env i ronmen t s 2 ^ figure 4.2. Addi t ional M g Kot.3,4 satellites-^ 

shif ted by approximately 9 eV towards lower binding energy (wi th a 

different f ixed F W H M ) were also taken into consideration. Table 4.1 

summarizes the relative proportions of f luorinated carbon centres present 

fo r each g low discharge treatment. Surprisingly, no f luoropo lymer 

deposi t ion was observed for the hydrogen carrier gas experiments. 
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Fluoropolymer deposits resulting f r o m the noble gas plasmas displayed a 

gradual loss in fluorine content w i th increasing atomic mass of the carrier 

gas, whilst nitrogen plasma sputtering of PTFE produced the greatest -CF 2-

component. The XP spectrum of fluorocarbon f i l m produced w i t h argon 

carrier gas shows a strong resemblance to the argon plasma modi f ied PTFE 

investigated in the last chapter. 

Table 4.1 

Summary of C(ls) XPS peak fits (NB [Total -C-] = [-C-] + [-C-CF n-], and 

[Total -CF-] = [-CF-] + [-CF-CFn-]). 

F:C 
Ratio 

Total 
-c-

Total 
-CF-

-CF 2- -CF 3 % C % F % N % O 
„ 

PTFE 2.00 0.0 0.0 100.0 0.0 33.7 66.3 0.0 0.0 

Ni t rogen 1.21 14.6 37.5 34.9 13.1 40.1 48.6 8.7 2.5 

H e l i u m 1.02 25.6 39.9 25.4 9.2 45.3 46.0 3.1 5.6 

N e o n 0.82 38.8 33.4 20.2 7.5 50.7 41.3 1.0 7.0 

Argon 0.78 39.7 33.2 18.9 8.0 52.0 40.4 0.9 6.8 
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Figure 4.1 

C(ls) XP spectra of: (a) clean PTFE; (b) nitrogen sputter deposited 

fluoropolymer; (c) helium sputter deposited fluoropolymer; (d) neon sputter 

deposited fluoropolymer; and (e) argon sputter deposited fluoropolymer. 
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Figure 4.2 

Typical C(ls) XPS peak f i t (argon glow discharge, 50 W 20 min). 
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4.3.2 Infrared Spectroscopy 

Absorption bands i n the ATR-FTIR spectrum of clean PTFE, figure 

4.3(a), can be assigned as f o l l o w s 3 1 : 514 cm" 1 (CF 2 wagging), 556 c m ' 1 (CF 2 

rocking) and 640 cm" 1 (CF 2 rocking), 1152 cm" 1 (asymmetric C-F stretch), 1208 

c m - 1 (symmetric C-F stretch). Infrared absorption bands i n the sputter 

deposited fluoropolymer layers, figure 4.3(b)-(e), were assigned as follows: 

740 c m - 1 (-CF3 stretching deformat ion 3 ^ and/or symmetric C F 2 v ib ra t ion 

which becomes active due to distortion of (-CF 2 -) n chains 3 3 ) , 1000 - 1400 cm" 1 

(C-F stretching 3 4 ~ 3 6), 1515 c m - 1 (absorption bands i n this region have been 

p r e v i o u s l y observed f o r p lasma p o l y m e r s p r e p a r e d f r o m 

p e r f l u o r o b e n z e n e 3 ? ) , 1626 c m - 1 (-CF=C< stretch in a crosslinked 

e n v i r o n m e n t 3 4 ' 3 8 ) , 1730 cm" 1 (-CF=CF- s t r e t c h 3 4 ' 3 5 ' 3 8 ' 3 9 ) , and 2077 cm" 1 (-

CF=C=CF- stretching - f luor ine substitution causes a sh i f t to higher 

vibrational frequencies away f rom the usual 2000-1900 cm" 1 r e g i o n 3 4 ' 3 8 ) . 

On moving f r o m nitrogen, to helium, to neon, to argon, the 1515 c m - 1 

absorbance bands rises in intensity at the expense of the 1626 cm" 1 and 1730 

c m - 1 features, this is consistent w i t h a greater number of crosslinked / 

aromatic environments. 

4.3.3 U V Emission Spectroscopy 

C o m m o n methods used for i d e n t i f y i n g and m o n i t o r i n g the 

intermediates w i th in fluorocarbon plasmas include mass spectrometry and 

emission spectroscopy. Mass spectrometry can be used to sample ions and 

radicals or analyze stable end products in the e f f l u e n t 4 ^ " 4 ^ . Emission 

spectroscopy is useful for iden t i fy ing excited intermediates w i t h i n the 

plasma phase although the determination of absolute concentrations 

requires knowledge of the relative amounts of ground and excited state 

species 4 3 . Since the optical diagnostic tool is external to the reactive plasma 
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chamber, this makes i t a non-intrusive technique enabling the direct 

observation of short l ived species 4 4 . Previous conclusions obtained by 

eff luent mass spectrometry for fluorocarbon discharges tie i n w i t h the 

appropriate optical emission spec t ra 4 4 . For instance, CF 2 species are 

believed to play an important role in fluorocarbon plasmas 4 ! ' 4 5" 4 9, m e rate 

of plasma polymerization has been shown to correlate w i t h the CF 2 radical 

concentration i n the glow discharge^O-52 

Assignment of emission spectra f r o m fluorocarbon plasmas can be 

c o m p l i c a t e d 5 3 . A number of bands in the 197-420 n m U V region are 

reported to be characteristic of CF, CF 2 , and CF 3 radical species53-56^ these 

provide a basis for identification of emission bands obtained vn <-hp nvQSQV-t 

study. U V emission spectra were acquired for excited g low discharges of 

helium, neon, argon, and nitrogen gas in the absence and presence of PTFE, 

figures 4.4 to 4.7. Two U V band systems are observed for CF: these being 

( A 2 £ + - X 2 n ) and ( B 2 A - X 2 n ) transitions i n the 220-295 n m 5 5 ' 5 6 and 197-220 

n m 5 6 , 5 7 r a n g e s respectively. The CF 2 ( 1 B 1 - 1 A 1 ) band system at 240-325 n m 5 4 

has been previously noted for tetrafluoroethylene (C2F4), perfluoropropene 

( C 3 F 6 ) , and perfluorobutene (C 4 F 8 ) glow discharges4^/53,54,58-61 There is 

some overlap here wi th the CF ( A 2 I + - X 2 n ) transition between 220-295 nm. 

U V emission features for CF3 radicals are reported to have been observed by 

Suto62-64 m t h e 180-300 nm region; however a theoretical analysis by 

Larrieu65 raises some ambiguities concerning this assignment of CF3 bands. 

I n fact the main UV emission features for CF3 radicals occurs in the 450-750 

n m r e g i o n ^ whilst atomic F lines appear in the 680-720 n m region^6-69 

Unfortunately for both of these species, there is no overlap w i t h the scan 

range available i n the present study. The disappearance of any lines f r o m 

the pure gas glow discharge during PTFE sputter plasma polymerization can 

be explained in terms of the absorption of these lines by sputtered 

fluorocarbon species. 

107 



Figure 4.3 

FTIR absorbance spectra of: (a) clean PTFE; (b) nitrogen sputter deposited 

fluoropolymer; (c) helium sputter deposited fluoropolymer; (d) neon sputter 

deposited fluoropolymer; and (e) argon sputter deposited fluoropolymer. 
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Figure 4.4 

U V emission spectra of He glow discharge in the absence (lower) and 

presence (upper) of PTFE f i l m in the 180-500 nm region. 
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Figure 4.5 

UV emission spectra of Ne glow discharge in the absence (lower) and 

presence (upper) of PTFE f i l m i n the 180-500 nm region. 
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Figure 4.6 

U V emission spectra of A r glow discharge in the absence (lower) and 

presence (upper) of PTFE f i l m in the 180-500 nm region. 
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Figure 4.7 

U V emission spectra of N2 glow discharge in the absence (lower) and 

presence (upper) of PTFE f i l m in the 180-500 nm region. 
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In the case of helium plasma treatment of PTFE, all peaks between 320 

and 500 n m can be assigned to helium, figure 4.4. Forty-four lines i n the 

CF 2 (lBi-lAi) band system are evident between 240 and 320 n m (many more 

than for neon) and only one CF band is evident at 202.3 n m ( B 2 A - X 2 n 

transition). Furthermore, fourteen of the lines which appeared i n the pure 

helium glow discharge are absent during sputter deposition. 

The UV emission peaks measured dur ing neon g low discharge 

sputtering of PTFE spectrum can be assigned to neon, CF2 or CF transitions, 

figure 4.5. A l l of the bands in the 280-500 nm range are characteristic of a 

clean neon plasma. The intense feature between 240 and 280 n m can be 

resolved into thirty lines of the CF2 OB^Aj) band system. The lines at 229,6 

and 223.2 nm are CF (A 2 X+-X 2 n) transitions, and those at 207.7 and 202.4 are 

CF (B 2 A-X 2 n) transitions. Twelve of the UV emission bands seen for the 

pure neon glow discharge were found to disappear during RF sputtering of 

PTFE. 

Apart f rom one intense line at 253.3 nm which is d i f f icul t to precisely 

assign, al l of the UV emission bands ident i f ied dur ing argon plasma 

sputtering of PTFE originate f rom the argon glow discharge, f igure 4.6. 

Three characteristic bands of the pure argon plasma at 388.0 nm, 357.4 nm 

and 336.9 n m were also absent during glow discharge sputtering of PTFE. 

Most of the peaks observed during nitrogen glow discharge sputtering 

of PTFE can be assigned to those characteristic of pure nitrogen plasmas^O, 

figure 4.7. Addi t ional bands are present at 394.0 nm, 370.8 nm, 297.6 nm, 

296.1 n m and 295.7 nm, the last three of these fa l l in the C F 2 ( 1 B 1 - 1 A 1 ) 

region, although exact assignment is diff icul t . It is of interest to note that 

the overall absolute UV spectral intensity was greatest for the pure nitrogen 

glow discharge, this can be explained in terms of each nitrogen molecule 

effectively dissociating to fo rm two excitable nitrogen atoms. 
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4.4 DISCUSSION 

Decomposition of PTFE during glow discharge sputtering results 

mainly i n the evolution of tetrafluoroethylene (C2F4) . These species 

undergo plasma polymerization i n the v ic in i ty of the electromagnetic 

sputter f ield* 1'13/71. High deposition rates occur when a carrier gas (such as 

argon) is used dur ing RF sputtering of P T F E 2 0 , this behaviour may be 

attributed to greater momentum transfer (substrate etching) by the heavier 

argon species 7 2. Modification of the PTFE substrate itself has been shown in 

the previous chapters to take place during exposure to inert gases, nitrogen, 

and hydrogen plasmas73/74_ 

XPS analysis of the sputtered f i lms has shown that the f luor ine 

content drops on moving f rom helium to neon to argon glow discharges, 

this appears to be a direct manifestat ion of m o m e n t u m transfer 

phenomena^ ,? 2 . j n e _cp 2 - wagging and rocking vibrations in the infrared 

fingerprint region of PTFE are not evident in the plasma polymer spectra, 

this can be taken as being indicative of a highly crosslinked fluorocarbon 

network. Since the CF 2 ( 1 B 1 - 1 A 1 ) UV emission band system is evident for 

al l the noble gas sputter plasma polymer iza t ion experiments, i t is 

instructive to compare the number of lines present i n the CF2 OB^Ai) 

band system for each gas, although no conclusions can be made f r o m the 

absolute line intensities because these w i l l depend on the type of noble gas 

atom used. On moving f r o m helium to neon to argon i t is f o u n d that 

during glow discharge sputtering of PTFE there is a decrease i n the number 

of lines contained in the CF2 OBj-iA-j) band system, which can be attributed 

to absorption of the emitted CF 2 O B ^ A ^ ) band system lines by unsaturated 

fluorocarbon species, resulting in their effective absence. Overall, a direct 

correlation exists between the level of def luorinat ion i n the coating as 

measured by XPS, the FTIR absorbance strength of the carbon-rich/cross-

l inked/aromatic species, and the observed attenuation i n the number of 
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lines contained i n the CF 2 ( 1 B 1 - 1 A 1 ) band system due to photoabsorption by 

unsaturated f luorocarbon moieties. The nitrogen glow discharge U V 

emission results are anomalous due to the very intense lines of nitrogen 

itself, which effectively masked out any fluorocarbon features. 

The stark contrast in deposition behaviour between hydrogen and 

helium carrier gas experiments is slightly puzzling at first glance. Since both 

gases are very light, yet no plasma polymer was generated i n the case of 

hydrogen. There are two possible explanations for this paradox: either the 

sputter rate is very low for a hydrogen glow discharge; or the evolved 

species may not readily succumb to plasma polymerization but prefer to 

r . j L j U ; . u . . - J , , - I . - ~ ~ T-TT7 — - J / " " ' T . T . c — f , i ;r: <.: _ r T V T , T 7 T 7 I -
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hydrogen plasma was seen, in chapter two, to result i n defluorination of the 

polymer substrate via HF e l imina t ion^ (i.e. hydrogen atom exchange wi th 

the PTFE backbone^ 3 ) . Indeed, very low concentrations of carbon-

containing moieties are evolved during the exposure of a f luoropolymer 

surface to a hydrogen glow discharge, whereas all noble gases (including 

helium) eject a variety of fluorocarbon species into the plasma p h a s e d 

Fluoropolymer f i lms deposited f r o m ni t rogen g low discharge 

sputtering of PTFE appears to yield the highest F:C ratio. Since atomic 

nitrogen (atomic mass - 14) does not differ significantly f rom neon (atomic 

mass = 20), this anomalous behaviour by the nitrogen plasma can be 

attributed to either a greater density of sputtering moieties (dissociation of 

each nitrogen molecule in the glow discharge w i l l generate two nitrogen 

atoms), or some type of chemical interaction between excited nitrogen 

species and the PTFE substrate (e.g. the formation of excimers). 

The argon sputter polymerized f i l m bears a strong resemblance to the 

argon plasma modif ied PTFE in the last chapter. It was shown that the ion 

component of the plasma was very important in the modification of PTFE 

surfaces. The correlation here w i t h the argon sputter polymerized f i lms 

suggests ion interactions are important in plasma polymerization and in fact 
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the influence of ion bombardment on the growth mechanism of plasma 

polymerized fi lms has been apparent in several studies^-77 

4.5 CONCLUSIONS 

N o n - e q u i l i b r i u m g l o w d i s c h a r g e t r e a t m e n t o f 

polytetrafluoroethylene results in the simultaneous sput ter ing of the 

substrate accompanied by plasma polymerization of ablated fluorocarbon 

species. In the case of noble gases, the extent of fragmentat ion and 

def luor inat ion can be accounted for in terms of a simple momentum 

transfer model; whereas additional chemical factors may be i n play i n the 

case of hydrogen and nitrogen glow discharges. 

The nature of the carrier gas strongly influences the composition of 

the resulting fluoropolymer. For the inert gases a correlation is observed 

between the presence of CF2 in the plasma and the amount of CF2 

incorproated into the final polymer f i lm . 
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CHAPTER 5 

P U L S E D PLASMA P O L Y M E R I Z A T I O N OF 
M A L E I C A N H Y D R I D E 
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5.1 INTRODUCTION 

The method of plasma polymerization described i n the last chapter is 

relatively unusual for thin f i l m synthesis. Normally, instead of sputtering a 

solid substrate into the gas phase, a monomer vapour is introduced into the 

plasma. Dur ing polymerization, significant fragmentation of the molecule 

occurs, leading to a highly crosslinked material containing few of the 

functionalit ies that the monomer possessed. In this chapter control of 

plasma excitation is used to dictate the polymerizat ion pathway and 

composition of resulting polymer. 

Maleic anhydride is a widely used organic reagent which contains two 

types of reactive site: the anhydride functionality and the >C=C< double 

bond, structure 5.1. 

O 

o 

o 
Structure 5.1 

This molecule can participate in a variety of reactions including: the Diels-

Alder reaction^ (i.e. a [4 +2] cycloaddition), attack on an allylic hydrogen 

atoms to fo rm asymmetric carbon centres^, photochemical r eac t ions^ / and 

polymerization. Conventional polymerization^, copolymeriza t ion^- l^ a n c j 

graft po lymer i za t i on^ of maleic anhydride have been extensively studied. 

I n general, maleic anhydride functionalized polymers are sought for their 

improved interfacial a d h e s i o n ^ p o l y m e r / p o l y m e r compatabi l i ty l^ , and 

t he i r a b i l i t y to undergo subsequent surface r e a c t i o n s ^ . 

Homopolymerization of the monomer can be initiated by a variety of means 

w h i c h include y - r a d i a t i o n l ^ u v radiat ion20 / f r e e radicals^! , ionic 

c a t a l y s t s ^ , or the application of high pressure^, i n addit ion, maleic 
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anhydride can participate in condensation po lymer iza t ion to f o r m 

unsaturated polyesters^ 4 . Copolymerization of maleic anhydride w i t h a 

variety of other monomers can lead to random a d d i t i o n a l 0 , alternating 

a d d i t i o n ^ I ' l ^ and graft copolymers25-30 

In the this study, the homopolymerization of maleic anhydride using 

an RF glow discharge is investigated using both continuous wave (CW) and 

pulsed excitation. This solventless method can be used to deposit polymeric 

layers w i th a whole spectrum of chemical and physical properties depending 

upon the specific electrical discharge parameters deployed dur ing plasma 

polymerizat ion (e.g. input power, feed gas ratio, monomer pressure, 

substrate temperature, and substrate position). The number and lifetimes 

of the various reactive species contained w i t h i n the plasma (ions, radicals, 

electrons, metastables and photons) influence which reaction pathways are 

pursued during glow discharge polymerization. Hence, there is considerable 

scope for structural and compositional tailoring of growing polymeric fi lms. 

For instance, average input power is recognised as being a critical parameter 

which can be varied by either altering the peak power in a continuous wave 

(CW) electrical discharge or alternatively by pulsing the applied RF voltage. 

The latter technique has been mostly overlooked in the past, yet i t offers 

scope for the optimization of reactive intermediates as we l l as access to 

conventional polymerization reaction pathways dur ing the duty cycle off-

period. 

5.1.1 Pulsed Plasma Polymerization 

A n important aspect of CW plasma polymerization is the extensive 

fragmentation of the monomer that occurs. I t is this feature that allows 

saturated molecules to be polymerized and leads to plasma deposited 

coatings d i f fe r ing significantly f r o m conventional polymers. Al though 

these new materials are extremely u s e f u l greater control is often required 
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over their resultant chemical structure. Reduction of the RF power can 

reduce the extent of gas-phase fragmentation and generate a closer similarity 

between the plasma and conventionally polymerized monomer. However, 

this has limitations as a minimum absorbed power is required to ignite and 

maintain the plasma and uni form f i lms are generally obtained only over 

relatively restricted power regimes for a given monomer under specific f low 

c o n d i t i o n s ^ . Other approaches to controlling f i l m composition include 

reduced substrate temperatures^ and variation of substrate position, for 

example location downstream of the plasma^. 

Pulsed power is of interest because it enables control over the rate at 

which reactive species (radicals) are generated and it allows time for these 

species to react wi thout additional fragmentation during the time that the 

power is o f f35 , i n the event that there are species present that can 

polymerize by a chain mechanism (e.g. v iny l bonds) it w o u l d be expected 

that pulsed power wou ld lead to a greater contribution of this mechanism 

and result i n a plasma polymer that more closely resembles the parent 

monomer and its convent iona l po lymer35 . a more complete 

understanding of the pulsed plasma polymerizat ion process should 

introduce a new dimension of controllability over the f inal polymeric f i l m . 

5.2 E X P E R I M E N T A L 

A t room temperature maleic anhydride has a vapour pressure of 

approximately 0.2 Torr^6. Briquettes of maleic anhydride (Aldr ich , 99% 

puri ty) were ground into a fine powder and loaded into a monomer tube. 

Plasma polymerization experiments were carried out in the same reactor as 

used i n chapter 2 (section 2.2) except that the gas inlet was replaced by a 

monomer tube containing maleic anhydride. A glass substrate was located 

in the centre of the coils. For the pulsed power experiments, the RF supply 
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was triggered by a signal generator, and a cathode ray oscilloscope was used 

to monitor the pulse wid th and amplitude. The pulse rise and fa l l time was 

limited by the response of the RF generator to 0.5 us. The peak power (P p ) 

delivered to the glow discharge spanned 5-90 W. Pulse on-times ( t o n ) and 

off-times (t 0ff) could be varied between 20-800 us and 20-1200 (is respectively. 

The average power <P> delivered to the system d u r i n g puls ing was 

calculated using the fol lowing expression^?: 

<P> = Ppx{ton/(ton+toff)} 

where t o n / ( ton+t 0 f f> is defined as the duly cycle. 

After cleaning using detergent and an air plasma (30 m i n at 50 W) the 

reactor was evacuated back down to its base pressure. Subsequently the 

monomer vapour was introduced into the reaction chamber at a pressure of 

approximately 0.2 Torr (which is the vapour pressure of maleic anhydride at 

room temperature), and at a f low rate of approximately 1.59 x 10"9 kg s"1. 

Then the plasma was ignited and allowed to run for 10 m i n to provide 

sufficient plasma polymer for XPS analysis, or 30 min to generate f i lms thick 

enough for infrared characterization. Upon completion of deposition, the 

RF generator was switched off, and the system flushed w i t h monomer for 5 

m i n prior to venting up to atmospheric pressure. Each plasma polymer 

layer was characterized immediately after electrical discharge treatment by X-

ray photoelectron spectroscopy or infrared analysis. 

XPS surface analysis was performed as detailed i n section 2.2.1. 

Instrumentally determined sensitivity factors for uni t stoichiometry were 

taken as being C(ls) : O(ls) equals 1.00 : 0.55. U n i f o r m plasma polymer 

coverage was determined by the absence of any Si(2p) XPS signal f r o m the 

underlying glass substrate. 
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A FTIR Mattson Polaris instrument was used for transmission 

infrared analysis of maleic anhydride precursor mixed w i t h potassium 

bromide, as wel l as the respective continuous wave and pulsed plasma 

polymer layers deposited onto pressed potassium bromide discs. Typically, 

100 scans were acquired at a resolution of 4 cm - 1 . 

5.3 R E S U L T S 

5.3.1 Continuous Wave Plasma Polymerization 

The C(ls) XPS envelope obtained f rom a low power (5 W) continuous 

wave plasma polymerization experiment can be curve f i t ted w i t h f ive M g 

Kai ,2 components having equal F W H M corresponding to 55% C_xHy (285.0 

e V ) 3 8 , 10% >C-C(0)=0 (285.7 e V ) 3 8 14% >C-0 (286.6 e V ) 3 8 11% >C=0 / O-

C-O (287.9 e V ) 3 8 , and 10% -C(0)=0 (289.4 e V ) 3 9 environments, f igure 5.1. 

Hydrocarbon/cross-l inked carbon, C x H y / is found to be the predominant 

carbon centre i n the C(ls) envelope, wi th smaller amounts of oxygenated 

functionalities. This is significantly different f rom the equal contributions 

expected f r o m just the > C - C ( 0 ) = 0 and - C ( 0 ) = 0 environments i f the 

monomer had undergone conventional polymerization. 

Table 5.1 summarises the infrared assignments for maleic anhydride. 

A comparison of the infrared spectra for the maleic anhydride precursor, 

and the 5 W CW plasma polymer shows that the sharp spectral features 

characteristic of the monomer are broadened (and in some cases lost), figure 

5.2. This can be attributed to a high level of cross-linking 31. Certain bands 

are still discernible i n the CW plasma polymer: 2995 cm" 1 (C-H stretch), 1860 

c m - 1 (asymmetric C = 0 stretch), 1780 c m - 1 (symmetric C = 0 stretch), 1647 c m - 1 

(C=C stretch), 1240 cm" 1 (C-O stretch), 1053 cm" 1 (C-H deformation), and 920 

cm" 1 (C-H out of plane bending). 
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Figure 5.1 

Typical C(ls) XPS peak f i t for a 5 W CW maleic anhydride plasma polymer. 
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Figure 5.2 

Infrared spectra of: (a) maleic anhydride monomer: (b) 5 W CW plasma 

polymer; and (c) pulsed plasma polymer (on-time = 20 us, off-time = 1200 us, 

and peak power = 5 W). 
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Table 5.1 

Assignment of infrared absorbance bands for maleic anhydride monomer^O. 

Wave number / c m - 1 Assignment 

3190 v(C-H) (adjacent to C H 2 ) 

3131 v(C-H) (adjacent to CH) 

1858 va(C=0) 

1782 vs(C=C») 

1593 v(C=C) 1 

1280 v(C-O) 

1242 5(C-H) 

1059 5(C-H) 

897 v(C-C) 

839 5(C-H) 

698 5(maleic anhydride ring) 

564 5(C=0) 1 

v - stretching, 5 = deformation, a = asymmetric, s = symmetric. 

5.3.2 Pulsed Plasma Polymerization 

The variation in anhydride group retention was investigated as a 

funct ion of duty cycle parameters (on-time, off-time), and peak power. A 

f ixed duty cycle off-period of 1200 us, and peak power of 5 W produced a 

significant enhancement of the -C(0)=0 anhydride group C(ls) component 

at 289.4 eV at the expense of cross-linked carbon/hydrocarbon (Cxliy) species 

w i t h decreasing on-times down to 20 us, beyond which incomplete coverage 

of the glass substrate was observed, figure 5.3(a). Curve f i t t i ng of the C(ls) 

envelope also shows that there is an insignificant variation i n the amount 

of > C - 0 groups, whilst the >C=0 / O-C-O concentration is reduced at shorter 
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on-periods, f igure 5.3(b). This is accompanied by an increase i n the total 

oxygen : carbon ratio, figure 5.3(c). 

Similarly, for a constant duty cycle on-time (20 us) and peak power (5 

W), the -C(0 )=0 anhydride group concentration rises w i t h longer off-times 

at the expense of C x H y and > C = 0 / O-C-O centres together w i t h a parallel 

increase in oxygen to carbon ratio, figures 5.4 (a) to (c). 

I t can be concluded that anhydride funct ional i ty incorporation is 

favoured by short on-times and long off-times. In both cases, this amounts 

to a lower average power input. Therefore a further study was undertaken 

in which the on- and off-times were kept f ixed whilst the peak power was 

varied, fieures 5 5 fa) to (c). The -C((y\=r) anht'dridp rroiiri fpjif-urr .-if ?P,9 4 sV 

in the C(ls) spectrum disappears at higher peak powers. This suggests that 

retention of the anhydride functionality also depends on the average power 

as wel l as the duty cycle parameters ( t o n and t 0 f f ) . 

Infrared analysis of the pulsed plasma polymer layers unveils a closer 

resemblance to the maleic anhydride monomer absorption spectrum 

compared to the CW plasma polymer, figure 5.2. Bands in the 1250-900 c m - 1 

region are sharper indicating less cross-linking. The >C=C< stretch seen at 

1647 c m - 1 for the CW plasma polymer is absent. Hydrolysis of the anhydride 

functionality by air can be ruled out in the plasma polymer f i lms because of 

the lack of any infrared absorbance due to C = 0 acid stretching^ at 1708 cm" 1. 
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Figure 5.3 (a) 

C(ls) XP spectra of pulsed plasma polymerization experiments w i t h variable 

on-time (peak power = 5 W , and off-time = 1200 (is). 
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Figure 5.3 (b) 

Variation of C(ls) functionalities for pulsed plasma polymerization 

experiments w i t h variable on-time 

(peak power = 5 W , and off-time = 1200 |is). 
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Figure 5.3 (c) 

Variation of oxygen to carbon ratio for pulsed plasma polymerization 

experiments wi th variable on-time 

(peak power = 5 W , and off-time = 1200 us). 
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Figure 5.4 (a) 

C(ls) XP spectra of pulsed plasma polymerization experiments wi th variable 

off-time (peak power = 5 W, and on-time = 20 us). 
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Figure 5.4 (b) 

Variation of C(ls) functionalities for pulsed plasma polymerization 

experiments wi th variable off-time (peak power = 5 W , and on-time = 20 
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Figure 5.4 (c) 

Variation of oxygen to carbon ratio for pulsed plasma polymerization 

experiments wi th variable off-time (peak power = 5 W , and on-time = 20 us). 
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Figure 5.5 (a) 

C(ls) XP spectra of pulsed plasma polymerization experiments w i t h variable 

peak power (off-time = 1200 us, and on-time = 20 us). 
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Figure 5.5 (b) 

Variation of C(ls) functionalities for pulsed plasma polymerization 

experiments wi th variable peak power 

(off-time = 1200 (is, and on-time = 20 us). 
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Figure 5.5 (c) 

Variation of oxygen to carbon ratio for pulsed plasma polymerization 

experiments w i t h variable peak power 

(off-time = 1200 us, and on-time = 20 us). 
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5.4 DISCUSSION 

Continuous wave glow discharge polymerization of maleic anhydride 

yields a material which is predominantly a hydrocarbon network w i t h a 

small level of oxygenation. This is i n agreement w i t h other studies which 

have shown that oxygen-containing organic precursors generally tend to 

f o r m plasma polymers w i t h a low oxygen content^ . For instance, maleic 

anhydride has been previously shown to undergo plasma polymerization 

using a CW microwave energy source^. 

Pulsed plasma polymerization leads to greater funct ional group 

retention*^. Indeed this is found to be the case in the present study where 

anhydride group incorporation into the plasma polymer is governed by the 

duty cycle parameters, w i t h greater chemical selectivity being attained at 

short on-periods and long off-times. Electron impact, ion bombardment, 

and VUV irradiation by the electrical discharge w i l l result in the formation 

of free radical centres at the growing f i l m surface and in the vapour phase^l. 

These can subsequently act as ini t iat ion centres for conventional chain 

growth polymerization during the duty cycle off-time: 

On-time: Plasma polymerization —> R» (incorporated into plasma 

polymer) 

Off-time: Radical initiated chain growth:-

R e R 

0 O^o 0 

R 

n 

o^o o o~o o 
n 
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The maleic anhydride end-group on the growing polymer chain w i l l be 

stabilized by a resonance effect^; 

o o o o. o o 

Effectively, the maleic anhydride monomer undergoes plasma initiated graft 

polymerization during the duty cycle o f f -pe r iod^ . The lack of any alkene C-

H stretching (3200 - 3100 cm" 1) b a n d s 4 0 in the infrared spectrum of the 

pulsed plasma polymer materials is consistent w i t h the free radical initiated 

unzipping of maleic anhydride double bonds during the duty-cycle off-time. 

On a theoretical basis, one w o u l d expect a 50% contribution f r o m the -

C . (0 )=0 anhydride funct ional i ty towards to the C(ls) envelope if a 

conventional maleic anhydride polymer had been synthesized. Pulsed 

plasma polymerization is capable of generating 28% anhydride centres, 

wh ich is a 167% improvement compared to continuous wave plasma 

polymer iza t ion of maleic anhydride at 5 W. A plot of anhydride 

concentration versus the average power, shows that a drop i n average 

power (obtained by any combination of on-time, off-time, and peak power) 

enhances the anhydride group incorporation, f igure 5.6. Previous CW 

studies using an olefinic carboxylic acid precursor have also demonstrated 

that there is greater retention of the acid groups at lower powers which can 

be attributed to less monomer fragmentat ion 4 ^, a drop i n plasma sheath 

potential at lower powers reduces ion bombardment of the growing f i l m 4 3 , 

accompanied by less VUV i r r a d i a t i o n 4 4 ; both of these effects w i l l help to 

minimise the occurrence of excessive surface damage during the plasma on-

time. Furthermore any suppression of monomer fragmentation at lower 

input energies w i l l reduce surface etching by atomic oxygen by-products^S. 
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Figure 5.6 

Variation in anhydride selectivity wi th average power (using different 

combinations of peak power, off-time, and on-time). 
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5.5 CONCLUSIONS 

A comparison between continuous wave and pulsed plasma 

polymerizat ion of maleic anhydride has shown that there is greater 

retention of the anhydride funct ional i ty or iginat ing f r o m the parent 

monomer during pulsing of the electrical discharge. This can be explained 

in terms of lower average powers resulting in less fragmentation of the 

precursor molecule and reduced beam damage of the g rowing plasma 

polymer layer during the duty cycle on-time combined w i t h radical initiated 

polymerization of maleic anhydride during the off-period. 
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CHAPTER 6 

C O N T I N U O U S W A V E A N D P U L S E D 
PLASMA P O L Y M E R I Z A T I O N OF 

2 - I O D O T H I O P H E N E 
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6.1 I N T R O D U C T I O N 

The effect of pulsed plasmas on the retention of monomer structure 

and funct ional groups in a plasma polymer was illustrated i n the last 

chapter. The behaviour of a different molecular system is now studied 

under continuous wave and pulsed plasma conditions. 2-iodothiophene, 

structure 6.1, is a 5-membered aromatic heterocycle w i t h iodine substituted 

at the a pos i t ion . The thiophene f a m i l y of polymers has been 

conventionally synthesised by either chemical^ "3 or electrochemical^/4-6 

routes; but more recently attempts have been made to employ non-

~ 1 i _ „ _ l , „ 4 ~ c ~ ( •-»-..-. :Z -.1 K . - . - , - , . - . fU . - .-.£ . ] . . . 
» w \J lIL'Oi i i LCLi. ^ . - ' i . £i -3 i l LCI i. ^ v_ i - i i - i ^ J *_/A l i l t - j^/Wi.OiitiCii L / C i L ^ i l CO s j i . KA.1 jf 

application to any substrate geometry ' 7 "^ . Most plasma polymerized 

organic th in f i lms are dielectric in nature, possessing good electrical 

insulat ing p r o p e r t i e s ^ . Exceptions to this general rule include plasma 

p o l y m e r s syn thes i zed f r o m ace ton i t r i l e^ ^ , t h i o p h e n e ^ ' ^ , 1-

benzothiophene^5 / 2-chloroacrylonitri le^, and p-xy lene^ precursors. Post 

doping of these materials w i t h elements such as iodine can further improve 

their electrical conductivities by up to six orders of magnitude^. Recently, 2-

iodothiophene has been polymerized using microwave frequency discharges 

in an attempt to simultaneously synthesize and dope the growing polymer 

l aye r^ /10 ,18 This should in principle lead to a chemically more 

homogeneous material. I n this chapter the radio frequency plasma 

polymerization of 2-iodothiophene is examined in order to compare the 

resultant plasma polymer f i l m stoichiometry w i t h previously reported 

studies employing microwave (MW) excitations/1048. 

Structure 6.1 

( ) 
S 

I 
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6.1.1 Polymerization of Thiophene 

Two techniques are used to conventionally synthesize polythiophene 

and its derivatives, chemical and electrochemical polymerizat ion. The 

chemically produced polymer is found to be i n its undoped insulating state, 

whereas electrochemically produced polymer is obtained i n the oxidized 

conducting stately. 

Thiophene has been chemically polymerized w i t h a variety of 

initiators e.g. sulfuric acid, iron chloride and Zeigler catalyts^^. Kossmehl^O 

has also synthesized poly(five membered heterocycles) by br inging together 

the monomer and the complex ASF5 generating black insoluble polymers. 

The mechanism is believed to proceed as follows:-

O 
s O 

s 
O. 

s 

AsF 

H 

H 

M 3 a n 
+ H 

Polymer Polymer 

Electrochemical po lymer iza t ion is carried out i n a single-

compartment cell wi th the classic three electrode configuration!9,21-23 

working electrode: Pt, A u , or glass coated wi th SnC>2 or In2C>3, 

reference electrode: saturated calomel electrode (SCE), 

auxiliary electrode: Pt, N i , or C electrode. 
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The electrolytic medium typically consists of an organic solvent (THF), a 

supporting electrolyte (M +X") and the monomer. The general mechanism 

proposed is:-

+ o 
s 

o 
s 

H H € M 1 2H 
H + + + 

H 

r. / V V > Polymer 
2H 

Glow discharges are now beginning to be employed in the 

polymerization of thiophene with some success. Films of insoluble, black 

material can be obtained which show promising electronic properties after 

doping with iodine. The stiochiometry of these polymers is very different to 

the monomer or conventional polymer and the mechanism of formation is 

poorly understood. 

6.2 E X P E R I M E N T A L 

Plasma polymerization experiments were carried as detailed in the 

last chapter (section 5.2). The monomer tube was filled with 2-

iodothiophene (Aldrich, 98+%) which was further purified by using freeze-

pump-thaw cycles. After the reactor was cleaned and evacuated down to its 

base pressure the monomer vapour was introduced at a pressure of 

approximately 0.1 Torr, and at a flow rate of approximately 2.14 x 10"8 kg s~l. 

Then the electrical discharge was ignited and allowed to run for the 
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Then the electrical discharge was ignited and allowed to run for the 

following times: 1 min in order to provide sufficient plasma polymer 

material for XPS analysis; 10 min to generate films thick enough for infrared 

characterization; and 1 hr to deposit enough material for X-ray absorption 

spectroscopy. Upon completion of deposition, the RF generator was 

switched off, and the system flushed with monomer vapour for 5 min prior 

to venting the system up to atmospheric pressure. Each plasma polymer 

layer was then characterized by the respective analytical technique. Pulsed 

plasma experiments were performed by the method described in chapter 5. 

The pulse times, ton and t0ff, could be varied over the range 50-1000 jo.s. The 

peak power (P D) delivered to the glow discharge spanned 5-40 W. These 

films were only analyzed by XPS and IR. 

XPS surface analysis was performed as before (section 2.2.1). 

Instrumentally determined sensitivity factors for unit stoichiometry were 

taken as being C(ls) : I (3d 5 / 2 ) : S(2p) : O(ls) equals 1.00 : 0.11 : 0.54 : 0.55. 

Uniform plasma polymer coverage was confirmed by the absence of any 

Si(2p) XP signal showing through from the underlying glass substrate. The 

iodine region was always run first in order to minimize any potential loss of 

molecular iodine under UHV conditions 

XAS characterization was performed at the E P S R C Daresbury 

Synchrotron facility in Warrington UK, operating at 2 GeV energy and with 

electron currents between 100 mA and 200 mA. The sulfur K edge spectra 

were collected (beamline station 3.4) using total electron yield measured 

directly from the isolated sample holder. Plasma polymer and reference 

samples (sulfur and 2,5-diiodothiophene) were prepared by grinding a 90% 

graphite / 10% sample mixture, this was then pressed into thin discs and 

fixed onto a sample holder using a small amount of conductive paint. The 

first inflection point in the XANES spectrum for a sulfur standard was taken 

as the calibration reference at 2472.0 e V ^ . Iodine Lin edge XAS spectra were 

obtained in fluorescence detection mode (beamline station 8.1) using a 
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Canberra solid-state multichannel detector. Rejection of beam harmonics 

was achieved by detuning the double S i ( l l l ) monochromators to 50% of 

maximum reflectivity. The resulting incident X-ray flux was monitored by 

an ion chamber (20% absorbance at Lni edge) containing a He / Ar mixture. 

In this case, ground samples were placed into a liquid nitrogen cooled 

aluminium sample holder. The liquid 2-iodothiophene monomer was 

loaded into a PTFE container and mounted onto a liquid nitrogen cryostat. 

A FTIR Mattson Polaris instrument was used for transmission 

infrared analysis of 2-iodothiophene monomer and the plasma polymer 

layers deposited onto pressed potassium bromide discs. Typically, 100 scans 

were acquired at a resolution of 4 cm"^. 

6.3 R E S U L T S 

6.3.1 Continuous Wave Plasma Polymers 

6.3.1.1 X-ray Photoelectron Spectroscopy 

Negligible variation was found in C(ls), I(3ds/2), and S(2p3/2,i/2) XPS 

peak shapes over the 2 - 20 W power range. The C(ls) region consists of a 

major component centred at 285.0 eV corresponding to most of the carbon 

atoms being located in a hydrocarbon/crosslinked environment (C x Hy) , and 

a weak shoulder at slightly higher binding energy reflecting the 

incorporation of the more electronegative sulfur and iodine atoms into the 

plasma polymer structure^ figure 6.1. The S(2p3/2,i/2) region comprises an 

unresolved 2 : 1 doublet centred at 164.3 eV which is characteristic of 

covalently bound sulfur centres-^, figure 6.2 The I(3ds/2) envelope could be 

fitted with two components centred at 619.1 eV and 620.8 eV corresponding 

to 13" and covalently bonded iodine environments respectively25,27 / figure 
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6.3; the two weaker peaks discernible at 622.5 eV and 624.0 eV can be 

attributed to shake-up satellites associated with the two major peaks^S 

(having taken into account the I(3d3/2) Mg Kct3,4 X-ray satellite lines). 

The monomer contains 66.7 % carbon, 16.7 % sulfur, and 16.7 % 

iodine (ignoring hydrogen because it can not be detected by core level 
28 

XPS ). Iodine incorporation into the plasma polymer film was found to be 

lower than in the original monomer, whilst sulfur content was greater; 

however, both of these percentages were found to diminish with increasing 

glow discharge power, figure 6.4. A small amount of oxygen incorporation 

was observed at higher glow discharge powers; the most likely origin of this 

being reaction betwppn [Tar>r)P(i free radical centres at the surface cind the 

laboratory atmosphere during transport of the substrate from the plasma 

reactor to the XP spectrometer^. 

6.3.1.2 X-ray Absorption Near Edge Structure 

X A N E S spectroscopy provides detailed information about the 

molecular orbitals associated with a chemical structure by identifying dipole 

electronic transitions from low lying core levels to unoccupied molecular 

orbitals. Peak positions and assignments from some previous XAS studies 

on a variety of sulfur containing compounds are listed in table 6.1. In the 

present work 2,5-diiodothiophene which is a solid was used as a substitute 

standard for the 2-iodothiophene liquid monomer, since the latter is 

incompatible with a high-vacuum environment. The sulfur K-edge 

XANES spectrum of 2,5-diiodothiophene shows two prominent features, 

figure 6.5; peak a can be assigned to the overlap of a 7t*ring resonance with a 

a*c-s shape resonance, whilst peak b is characteristic of a a*c-c resonance^O. 

The relatively intense appearance of peak b can be taken as being indicative 

of delocalisation of the c * c . c orbitals throughout the aromatic thiophene 

ring system. 

153 



Figure 6.1 

C(ls) XP spectra of 2-iodothiophene plasma polymer as a function of 

glow discharge power. 

C I s 

0 w 

15 W 

W 

W 

u 

96 300 9 84 0 

/eV indin B 
154 



Figure 6.2 

S(2p) XP spectra of 2-iodothiophene plasma polymer as a function of 

glow discharge power. 
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Figure 6.3 

K3d5/2) XP spectra of 2-iodothiophene plasma polymer as a function of 

glow discharge power. 
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Figure 6.4 

Variation in elemental composition of 2-iodothiophene plasma polymers 

with power (0 W corresponds to the monomer composition). 
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Figure 6.5 

S K edge XANES spectra of 2,5-diiodothiophene with 5 W , 8 W and 20 W 

2-iodothiophene plasma polymers. 
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Table 6.1 

S K-edge XANES assignments from previous studies. 

Photon Energy / Assignment System Studied Reference 
eV 

2473 S 0 2 on Ni (111) 31 
2478 c* 

2473.4 it*, a* (C-S) Thiophene gas 30 
2475.1 4s 
2475.6 4p 
2476.3 5p 
2478.4 IP 
2480.8 a* (C-C) 
2482.5 a* (C-C) 
2487 Shakeup 

2473.2 K* (C-S) Thermal ageing 32 
2481.8 7T* (S-O) of (poly-3,4-
2479 K* ( C 4 H 8 S 0 3 ) ethylenedioxy-

thiophene) 

2473.4 Unassigned Bis(4- 33 
2475.7 Unassigned hydroxyphenyl)-

disulphide 

2473.5 Unassigned Thionin 33 
2475.5 Unassigned 

2476.8 Unassigned 

2474.6 Unassigned Thiosalicylic acid 33 

2475.0 Unassigned Benzothiophene 33 

2472.3 a* (C-S) Thiolane 30 
2479 a* (C-C) 
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Table 6.2 

Peak assignments from figure 6.5. 

Peak Energy / eV Proposed Assignment 

a 2476.8 %*, o* (C-S) 

b 2486.7 c* (C-C) 

c 2476.0 7i*, a* (C-S) 

d 2486.3 o* (C-C) 

e 2473.5 71* 

f 2477.8 a* (C-S) 

g 2489.2 a* (C-C) 

h 2476.5 T Z * , a* (C-S) 

i 2486.6 a* (C-C) 

Plasma polymerization of 2-iodothiophene at 5 W yields very similar 

near edge features (c and d) to those observed for the 2,5-diiodothiophene 

reference compound. This suggests that a significant proportion of the 

sulfur atoms are retained in a monomer-like environment at low glow 

discharge energies. These features become perturbed with increasing glow 

discharge power. The low photon energy peak c observed at 5 W splits into 

two components (e and f) at 8 W. A greater extent of aromatic ring rupture 

is to be expected with increasing glow discharge energy; this loss of 

aromaticity will result in a lowering of the K* energy levels^, which will in 

turn shift the n* resonance towards smaller XANES photon energies (peak 

e). The observed shift in the o* c. s resonance towards higher photon energy 

at 8 W (peak f) suggests a shorter C-S bond^S relative to the 5 W case (peak 

c). This shift in the c* c - s resonance together with the intense 7C* resonance 

would indicate the incorporation of some C=S double bond environments 

within the 8 W plasma polymer network. It has been previously reported 
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that on comparing the sulfur K edge X A N E S spectra of the aromatic 

thiophene molecule to its saturated analogue, thiolane, the o~*c-c resonance 

appears at higher photon energy in the aromatic system^. The difference 

between the positions of peaks d and g along with the broadening of the 

latter suggests a mixture of C - C environments, some of which must at least 

be C=C double bonds. The loss in intensity of the o*c-c resonance is 

consistent with a diminishing delocalisation of the cr*c-c orbitals onto the 

sulfur atoms as would be expected upon loss of aromaticity. At even higher 

glow discharge powers (20 W), the sulfur K edge X A N E S spectrum is 

reminiscent of the spectra observed for the 2,5-diiodothiophene model 

f n i n n r i i i n H a n H t-ha R 1A7 O- i^f lr^f l - i j ." .^^^"^ r i l n c m n n r t l v m s r T h i = 1-.= 

attributed to the complete fragmentation and rearrangement of the 2-

iodothiophene precursor molecule to form a plasma polymer containing a 

conjugated network of unsaturated centres, such a bonding arrangement 

will raise the K* energy levels and cause delocalisation of the C-S bonds, 

thereby causing the K* and a*c-s resonances to shift towards each other and 

coincide (peak h). The rise in intensity of peak i , the o* c- c resonance is 

consistent with a return to a greater delocalisation of the a*c-c orbitals onto 

the sulphur atom. Following the line of argument mentioned above for the 

o"*c-c resonance based upon thiophene versus thiolane, there must be 

increased conjugation at 20 W relative to the 8 W case. 

In comparison to the sulphur data, the iodine Lni edge X A N E S 

spectra for the 2-iodothiophene plasma polymers are relatively featureless 

and do not show much change with glow discharge power, figures 6.6 and 

6.7. Comparison with inorganic ( K I O 3 and KI) and organic (2-

iodothiophene, IBr and I2) standards suggests that most of the iodine centres 

contained in the plasma polymer deposits are located in a covalent 

environment. 
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Figure 6.6 

I Lni edge XANES spectra of reference compounds; iodine, iodine bromide, 

potassium iodide and potassium iodate. 
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Figure 6.7 

I Lin edge XANES spectra of 2-iodothiophene with 5 W, 8 W and 20 W 

plasma polymers. 
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6.3.1.3 Infrared Spectroscopy 

The following absorbances were assigned in the transmission infrared 

spectrum of the 2-iodothiophene monomer, figure 6.8: 450 cm"1 (C-I 

stretch36) ; 700 cm"1 (C-H out of plane vibration of a 2-substituted 

thiophene 3 7); 821 cm - 1 (ring skeletal breathing vibration38,39) ; 542 c m - l a n ( j 

947 cm"1 (C-H out of plane deformations3 9); 1043 cm"1 and 1085 cm"1 (C-H in 

plane deformation vibrations of 2-substituted thiophenes 3^' 3 9); 1222 cm"1, 

1338 c m - 1 , 1396 cm"1, and 1506 cm"1 (characteristic aromatic ring stretches of 

2-substituted thiophenes 3 9); and 3100 cm"1 (aromatic C - H stretch3**). 

IVfost of the infrared absorption features characteristic of the 2-

iodothiophene monomer are retained during plasma polymerization, figure 

6.8; although the peaks become broader which is consistent with the highly 

disordered nature of plasma polymers in general. The C-I absorbance shifts 

to 500 c m - 1 during plasma polymerization, this increase in stretching 

frequency suggests that the iodine substitution of the aromatic rings changes 

from exclusively 2-substituted thiophene. With increasing glow discharge 

powers, both the C-I band at 500 cm"1 and the C - H out of plane vibration at 

700 cm"1 (characteristic of 2-substituted thiophenes) lose signal intensity 

with respect to the C - H out of plane deformation (842 cm" 1) and the 

aromatic ring skeletal breathing (821 cm"1) modes, this is consistent with the 

loss of iodine as previously observed by XPS analysis. The 1222 c m - 1 

absorbance (aromatic C=C stretching) widens in line width at higher powers 

which reflects the disruption of the aromatic thiophene rings. The C - H 

stretch at 3100 c m - 1 remains unperturbed throughout the range of plasma 

polymerizations conditions investigated. The weak features in the 2250 -

2350 cm" range are associated with a small amount of background CO2 in 

the FTIR spectrometer. 
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Figure 6.8 

Infrared spectra of 2-iodothiophene monomer and plasma polymers as a 

function of glow discharge power. 
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6.3.2 Pulsed Plasma Polymers 

Similar studies were performed wi th 2-iodothiophene to those used 

in the last chapter wi th maleic anhydride. A fixed duty cycle off-period of 

1000 (is, and peak power of 5 W produced very little compositional changes 

in the resultant polymer w i t h decreasing on-times down to 50 us, beyond 

which incomplete coverage of the glass substrate was observed, table 6.3. 

Similarly, for a constant duty cycle on-time (50 us) and peak power (5 W) no 

variation in polymer stoichiometry is seen wi th increasing off-times, table 

6.4. A f inal study was undertaken in which the on- and off-times were kept 

£• _ J _ 11 _ L . 1. - l . . 1 . ' i — ' — ' ' . . . 

i i A S U W i i i i b l l i l t : pUciiS. p U V V c i Vv'cib V c i r i c U . , tauie U . D . l i l t puiyiilci W r t S dgdill 

unaffected by the changing pulse parameters. The iodine content of all 

pulsed plasma polymers is much lower than for the low power (2 W) 

continuous wave polymer, but the sulfur content in both cases is 

comparable. 

The IR spectra of two pulsed plasma polymers along w i t h that of the 2 

W CW plasma polymer and the monomer are shown in f igure 6.9. The 

peaks appear sharper than those produced under CW conditions. 
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Table 6.3 
Elemental composition of 2-iodothiophene pulsed plasma polymer (peak 

power = 5 W, off-time = lOOOus, and on-time varied). 

On-Time A v . Power % I % C % S % O 

1000 jus 2.50 W 8.0 ± 0.4 66.8 ± 0.1 23.1 ± 0.5 2.2 ± 0.8 

500 M-S 1.67 W 7.9 ± 0.2 67.7 ± 2 . 3 22.4 ± 3.3 2.0 ±1 .2 

350 us 1.30 W 8.0 ± 0 . 3 67.6 ± 0.4 22.6 ± 2 . 1 1.5 ± 1 . 0 

250 us 1.00 W 6.2 ± 0.8 68.3 ± 3.0 22.1 ± 1.8 3.5 ± 0.4 

50 us 0.24 W 5.710.4 69.6 ± 0.1 23.2 ± 0.2 1.7 ± 0 . 2 

Table 6.4 

Elemental composition of 2-iodothiophene pulsed plasma polymer (peak 

power = 5 W , on-time = 50us, and off-time varied). 

Off-Time A v . Power % I % C % S % O 

50 us 2.5 W 6.6 ± 0.2 69.4 ± 1 . 1 22.9 ± 2.6 1.3 ± 1 . 8 

250 us 0.83 W 6.1 ± 0.4 68.2 ± 0.2 24.3 ± 1 . 0 1.5 ± 0 . 4 

500 us 0.45 W 6.2 ± 0.7 68.8 ± 2.5 23.9 ± 2 . 1 1.2 ± 0 . 4 

750 us 0.31 W 6.0 ±0 .4 69.4 ± 0.8 23.3 ±1 .6 1.4 ± 0 . 4 

1000 us 0.24 W 5.7 ±0 .4 69.6 ± 0.1 23.2 ± 0.2 1.7 ± 0 . 2 

Table 6.5 
Elemental composition of 2-iodothiophene pulsed plasma polymer (on-

time = 50us, off-time = lOOOus, and peak power varied.) 

Peak Power Av . Power % I % C % S % O 

5 W 0.24 W 5.7 ± 0.4 69.6 ± 0.1 23.2 ± 0.2 1.7 ± 0 . 2 

20 W 0.95 W 6.3 ± 0.1 68.6 ± 0.4 22.6 ± 1.5 2.6 ± 1 . 7 

40 W 1.90 W 5.9 ±0 .1 68.8 ± 0.1 22.1 ± 0.3 5.4 ± 0 . 5 
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Figure 6.9 

Infrared spectra of; (a) 2-iodothiophene monomer, (b) pulsed plasma 

polymer t o n = 50 us, t 0 f f = 1000 (is at P p = 5 W, (c) pulsed plasma polymer t, 

50 us, t 0 f f = 50 us at P p = 5 W, (d) 2 W CWplasma polymer. 
on 
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6.4 DISCUSSION 

XPS, XANES, and FTIR analysis of continuous wave plasma 

polymerized 2-iodothiophene films show that there is a drop in iodine and 

sulfur content w i th increasing power. This is consistent w i t h C-I (D°298 = 209 

k j m o F ) 2 4 and C-S (D° 2 98 = 698 k j m o l " 1 ) 2 4 bonds being weaker than the 

C=C bond (D°298 = 720 k j m o l " 1 ) 2 4 i n the 2-iodothiophene precursor 

molecule. The preferential retention of sulfur into the plasma polymer 

layers w i t h respect to iodine incorporation can be accounted for on the basis 

of the C-I bond being weaker than the C-S bond. The observed loss i n 

arrvm a Hr T A M t-h i n r r o a c i n r t r r l n i A r H icr-H arrro nniAror i c r r » n c i c t o n f l A n f h 
-Ul' l-l-I- . . . ^ ^ . . . . . j ^ . . . . . . . . . . . . . . . . _ . . . . . . . 

previous studies carried out using other aromatic heterocyclic monomers 

(e.g. l-benzothiophene!5). Higher powers lead to a shift i n population of 

energetic electrons in the tai l of the M a x w e l l i a n electron energy 

d is t r ibu t ion 4 ^ , thereby providing a more energetic plasma environment. It 

is also interesting to note that there appears to be more sulfur and iodine 

incorporation during RF plasma polymerization compared to corresponding 
10 11 18 

microwave studies ' ' ; this can again be explained i n terms of the 

higher population of energetic electrons i n the ta i l of the Maxwel l ian 

electron energy d i s t r i b u t i o n 4 ^ / 4 ! in conjunction w i t h increased electron / 

ion dens i t ies 4 2 for the microwave discharges. Clearly this w i l l lead to a 

greater f ragmenta t ion of any precursor molecule d u r i n g plasma 

polymerization. 

A l l pulsed plasma polymerization experiments yielded very similar 

results. XPS showed the pulsed plasma polymer to have similar sulfur 

content but much lower iodine retention than that of the low power (2 W) 

CW plasma polymer. Infrared analysis indicated the structure of the 2 W 

CW and pulsed plasma polymers to be very similar. Pulsed plasmas were 

shown i n chapter 5 to increase the possibility of radical chain growth 

polymerization. Conventionally polythiophene polymerizes through the 2-
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and 5- positions of the ring, wi th removal of hydrogen, structure 6.2. I f this 

mechanism occurred d u r i n g the off-cycle of the pulsed plasma 

polymerization, H I wou ld be eliminated f rom this monomer so reducing 

the level of iodine incorporation in the polymer. 

X T 
n 

Structure 6. 

6.5 CONCLUSIONS 

Continuous wave RF plasma polymerization of 2-iodothiophene 

produces a polymeric network which retains many of the structural 

characteristics associated w i t h the original precursor molecule. Sulfur and 

iodine incorporation into the growing plasma polymer layer drops w i t h 

increasing glow discharge power due to the weaker C-S and C-I bond 

linkages contained in the monomer. Pulsed plasma polymerization leads to 

a reduct ion i n the iodine content w i t h o u t effect ing the sulphur 

incorporation i n the polymer. 
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7.1 CONCLUSIONS 

This thesis has examined the processes occurring in non-isothermal 

g low discharges and the mechanism of polymer format ion w i t h i n such 

discharges. Plasma polymerization and surface modification are found to be 

a function of both the nature of the discharge and the type of excitation used. 

Interactions between a polymer (PTFE) and the plasma were studied 

using various feed gases. Chemical modification at the surface was greatest 

for a hydrogen plasma due to its reducing nature. A F M studies illustrated 

the physical effects that plasmas have on polymers. Oxygen treatment gave 

the hiffhest level of surfarp rmiahppine 

There is a wide range of excited species present in g low discharges. 

The types and proportions of these species obviously varies w i t h the nature 

of the discharge. The importance of the ion component w i t h respect to 

po lymer modi f i ca t ion has been studied. The extent of chemical 

modification was found to be approximately the same for both argon plasma 

and low energy argon ions. In future individual components w i t h i n the 

discharge environment should be studied. For example, the VUV radiation 

could be fi l tered out in order to asses its impact on surface modification. 

Selecting certain components of the plasma whilst blocking out others may 

lead to more specific surface modification of polymers, therefore enabling 

them to be tailored for particular requirements. 

The physical effect of ions wi th in a plasma were used for sputter 

plasma polymerization. Changing the carrier gas led to differences in the 

polymerizable species available. The nature of these gas phase species was 

correlated to the composition of the resulting deposit. Thus, different 

mechanisms of polymerizaton were able to occur and f i lms containing 

different amounts of f luorine were obtained. Polymers that were more 

'PTFE like' or more 'carbonaceous' in nature may be synthesized by choosing 

different plasma conditions. 
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Manipula t ing the outcome of a plasma polymerization process is 

usually d i f f icu l t . The materials manufactured are normally crosslinked, 

branched and different i n nature to their parent monomer. I n order to 

make a polymeric material more specific the species present in the plasma 

phase must be controlled. Using different feed gases in the sputtering of 

solid substrates appear to be one way of achieving this. Another method is 

to modi fy the type of RF excitation used. 

Pulsing the power supply allows control over how much energy the 

system receives. As the on-time is shortened and the off-t ime lengthened 

the degree of monomer fragmentation is reduced. There is a concomitant 

Hprrpasp i n f l i p nnmVipr nf o v r i f o / j c n o r i o c f - V > p r o f < - » r o c ,urfar , p rsf !"V)P 

growing polymer receives less damage. In the off-phase of the pulse, excited 

species that exist f r o m the on-phase may react w i t h conventionally 

polymerizable functionalites wi th in the monomer 

For maleic anhydride this leads to radically initiated opening of the 

double bond, during the off phase, leading to the anhydride functionali ty 

remaining intact in the polymer. These processes become particularly 

important when the pulse on-time is of the order of the l i fet ime (i.e. 

microseconds) of the heterogeneous excited species present. 

I n complicated molecular systems more elaborate analytical 

techniques may be required to elucidate polymerization mechanisms. In 

continuous wave plasmas the effect of power on the fragmentation of 2-

iodothiophene was found to be critical. The technique of XANES, which is 

only just beginning to be explored for plasma polymer systems, revealed 

large structural changes in the polymer which were not f u l l y appreciated 

using XPS or IR. 

In summary, this thesis has shown that w i t h careful choice of 

reaction conditions (i.e. carrier gas and discharge excitation) selective 

chemistry can be achieved in plasmas. Control of reaction pathways during 

plasma polymerizat ion can lead to more regular polymer structures. 
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Finally, new techniques of analyzing plasma polymers can be used to gain 

further information on their structure and chemical composition. 
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Prof. A. Davies, University College London 
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October 28 Dr. J. K . Cockcroft, University of Durham 
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November 5 Dr. C. J. Ludman, University of Durham 
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December 9 Dr. A. N . Burgess, ICI Runcorn 

The Structure of Perfluorinated Ionomer Membranes. 
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Energy Flow in Chemical Reactions. 

March 3 Dr. K. J. P. Williams, B.P. 

Raman Spectroscopy for Industrial Analysis. 
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Prof. J. A. Pople, Carnegie-Mellon University, Pittsburgh, 
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Applications of Molecular Orbital Theory. 
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Chemistry in Solution versus Catalysis on Surfaces -

How Do We Bridge the Gap. 

October 27 Dr. R.A.L. Jones, Cavendish Laboratory, Cambridge 

Perambulating Polymers. 

November 10 Prof. M.N.R. Ashfold, University of Bristol 

High Resolution Photofragment Translational 

Spectroscopy : A New Way to Watch Photodissociation. 

November 17 Dr. A. Parker, Rutherford Appleton Laboratory, Didcot 

Applications of Time Resolved Resonance Raman 

Spectroscopy to Chemical and Biochemical Problems. 
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January 26 Prof. J. Evans, University of Southampton 
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February 2 Dr. A. Masters, University of Manchester 

Modell ing Water Without Using Pair Potentials. 

February 16 Prof. K . H . Theopold, University of Delaware, USA 

Paramagnetic Chromium Alkyls : Synthesis and 

Reactivity. 
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Heterogeneous Catalysis. 
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Some Aspects of Ag(II) and Ag(III) Chemistry. 
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Surface Mass Spectrometry. 
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January 18 Dr. G. Rumbles, Imperial College, London 

Real or Imaginary 3rd Order Non-Linear Optical 

Materials. 
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