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ABSTRACT

This project is concerned with the development of software to invert seismic
reflection data for acoustic impedance, with application to the YY-reservoir area in
Gialo Field, Sirte Basin. The problem was that of inverting post-stack seismic
reflection data from two seismic lines into impedance profiles. The main input to the
inversion process is an initial guess, or initial earth model, of the impedance profile
defined in terms of parameters. These parameters describe the impedance and the
geometry of the number of layers that constitute the earth model. Additionally, an
initial guess is needed for the seismic wavelet, defined in the frequency domain using
nine parameters.

The inversion is an optimisation problem subject to constraints. The
optimisation problem is that of minimising the error energy function defined by the
sum of squares of the residuals between the observed seismic trace and its prediction
by the forward model for the given earth model parameters. To determine the solution
we use the method of generalised linear inverses. The generalised inverse is possible
only when the Hessian matrix, which describe the curvature of error energy surface, is
positive definite. When the Hessian is not definite, it is necessary to modify it to
obtain the nearest positive definite matrix. To modify the Hessian we used a method
based on the Cholesky factorisation. Because the modified Hessian is positive
definite, we need to find the generalised inverse only once. But we may need to
restrict the step-length to obtain the minimum. Such a method is a step-length based
method.

A step-length based method was implemented using linear equality and
inequality constraints into a computef program to invert the observed seismic data for
impedance. The linear equality and inequality constraints were used so that solutions
that are geologically feasible and numerically stable are obtained.

The strategy for the real data inversion was to first estimate the seismic
wavelet at the well, then optimise the wavelet parameters. Then use the optimum
wavelet to invert for impedance and layer boundaries in the seismic traces.

In the three real data examples studied, this inversion scheme proved that the
delineation of the Chadra sands in Gialo Field is possible. Better results could be
obtained by using initial earth models that properly parameterise the subsurface, and
linear constraints that are based on well data. Defining the wavelet parameters in the
time domain may prove to be more stable and could lead to better inversion results.
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Figure 5.22. The impedance profiles of the final impedance inversion run of
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Figure 6.5. Parameterising the phase spectrum of the Wiener wavelet
estimated at well YY31.

Figure 6.6. The estimated wavelet at YY31 (left) as compared to its
parameterised equivalent. Note that the vertical axis represents the two-way travel-
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Figure 6.17. The error traces that correspond to the solutions shown in Figure
6.16. Trace number 1 is the initial guess error trace, and trace number 18 is the final
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Figure 6.19. The first boundary locations inversion solutions when optimising
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Figure 6.20. The error traces corresponding to the solutions of Figure 6.19.
The first error trace is that for initial guess and the last error trace is that for the
seismic solution. Note that the vertical axis represents the two-way travel-time in ms.

Figure 6.21. The resulting wavelets in the first wavelet parameter inversion.
The wavelet number 1 is the YY31 parameterised wavelet, and wavelet number 49 is
the final wavelet. Note that the vertical axis represents the two-way travel-time in ms.

Figure 6.22. The solution traces that correspond to the wavelets of Figure
6.21. The first and last traces are the observed seismic trace, trace number 2 is the
initial guess which corresponds to wavelet number 1 in Figure 6.21. Note that the
vertical axis represents the two-way travel-time in ms.

Figure 6.23. The error trace that correspond to the solutions of Figure 6.22.
Error traces number 1 corresponds to the initial guess wavelet of Figure 6.21, and
error trace number 49 corresponds to the final wavelet. Note that the vertical axis
represents the two-way travel-time in ms.

Figure 6.24. The optimum wavelet for well YY31 is wavelet number 4. Note
that the vertical axis represents the two-way travel-time in ms.

Figure 6.25. The optimum impedance profile (solid line) for well YY31.

Figure 6.26. The optimum seismic solution for YY3! is trace number 5.
Traces 1 and 6 are the observed seismic trace. Note that the vertical axis represents
the two-way travel-time in ms.

Figure 6.27. The error traces corresponding to the seismic solutions of Figure
6.26. Error trace number 4 corresponds to the optimum seismic solution trace, which
is number 5 in Figure 6.26. Note that the vertical axis represents the two-way travel-
time in ms.

Figure 6.28. The acoustic impedance log of well YY04.

Figure 6.29. The parameterisétion of the acoustic impedance log of YY04
into eight layers. Chadra A is the 10 ms thick sand layer between 670 ms and 680 ms
two-way travel-time. The top of Augila Limestone is at 754 ms and extends to the
bottom of the log.

Figure 6.30. The solution traces for the first inversion for impedance when
optimising the wavelet at YY04. The first and last traces are the observed seismic
trace. Trace number 2 is the initial guess seismic response, and trace number 190 is
the final seismic solution. Note that the vertical axis represents the two-way travel-
time in ms.

Figure 6.31. The impedance profiles for the inversion of Figure 6.30. Zero
on the time axis corresponds to two-way travel-time of 610 ms.

Figure 6.32. The seismic solutions of the first boundaries inversion when

optimising YY04 wavelet. The first and last traces are the observed seismic trace,
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trace number 2 is the initial guess seismic response, and trace number 4 is the final
seismic solution. Note that the vertical axis represents the two-way travel-time in ms.

Figure 6.33. The impedance profiles for the solution of Figure 6.32, i.e. for
the first boundary location inversion when optimising the wavelet at well YY04. Zero
on the time axis corresponds to 610 ms of two-way travel-time.

Figure 6.34. The resulting wavelets in the first inversion for the wavelet
parameters in YY04. Wavelet number 1 is the initial parameterised wavelet. Note
that the vertical axis represents the two-way travel-time in ms.

Figure 6.35. The optimum wavelet in YY04 is wavelet number 5 Note that
the vertical axis represents the two-way travel-time in ms.

Figure 6.36. The optimum impedance profile in well YY04. Zero on the time
axis corresponds to 610 ms of two-way travel-time.

Figure 6.37. The observed seismic traces (CDP's 748-787) from Line 1973.
The two sand bodies concerned are the two positive reflections (peaks) at about 710
ms and 730 ms on CDP 748. Note that the vertical axis represents the two-way travel-
time in ms.

Figure 6.38. The initial earth model section for the observed seismic traces
from Line 1973 (Figure 6.37). Note that the vertical axis represents the two-way
travel-time in ms.

Figure 6.39. The initial earth model section of Figure 6.38 displayed without
the observed seismic traces. Note that the vertical axis represents the two-way travel-
time in ms.

Figure 6.40. The initial synthetic seismograms for the earth model section in
Figure 6.39. Note that the vertical axis represents the two-way travel-time in ms.

Figure 6.41. The initial error traces corresponding to the synthetic
seismograms in Figure 6.40. Note that the vertical axis represents the two-way travel-
time in ms.

Figure 6.42. The final impedance solution for the initial earth model of
Figure 6.39. Note that the vertical axis represents the two-way travel-time in ms.

Figure 6.43. The final synthetic seismograms for the impedance solution of
Figure 6.42. Note that the vertical axis represents the two-way travel-time in ms.

Figure 6.44. The final error traces corresponding to the synthetic
seismograms of Figure 6.43. Note that the vertical axis represents the two-way travel-
time in ms.

Figure 6.45. The observed seismic data of CDPs 1612-1661 in Line 1977.
The seismic event (peak) at about 730 ms is interpreted as positive reflection from a
Chadra sand body, and the broad positive reflection at 750-760 ms is a two step

limestone bed. The two events are separated by a low impedance layer that has a
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contact with the Chadra sand at 740 ms. Note that the vertical axis represents the two-
way travel-time in ms.

Figure 6.46a. The initial earth model section for CDPs 1612-1636 and the
corresponding observed. Note that the vertical axis represents the two-way travel-
time in ms.

Figure 6.46b. The initial earth model section for CDPs 1637-1661 and the
corresponding observed traces. Note that the vertical axis represents the two-way
travel-time in ms.

Figure 6.47a. The initial earth model section for CDPs 1612-1636. These
impedance profiles are also displayed in Figure 6.46a. Note that the vertical axis
represents the two-way travel-time in ms.

Figure 6.47b. The initial earth model section for CDPs 1637-1661. These
impedance profiles are also displayed in Figure 6.46b. Note that the vertical axis
represents the two-way travel-time in ms.

Figure 6.48. The initial synthetic seismograms for the earth model section of
Figures 6.47a and 6.47b. Note that the vertical axis represents the two-way travel-
time in ms.

Figure 6.49. The error section corresponding to the initial earth model
synthetic seismograms in Figure 6.48. Note that the vertical axis represents the two-
way travel-time in ms.

Figure 6.50a. The final impedance section for CDPs 1612-1636. The sand
layer that starts at about 730 ms appears to be a continuous sand body. The limestone
layer, however, becomes more sandy to the left of the section. Note that the vertical
axis represents the two-way travel-time in ms.

Figure 6.50b. The final impedance section for CDPs 1637-1661. The sand
layer that starts at about 730 ms appears to be a continuous sand body. The limestone
layer, however, becomes more sandy to the left of the section. Note that the vertical
axis represents the two-way travel-time in ms.

Figure 6.51. The final seismic solution section for CDPs 1612-1661. Note
that the vertical axis represents the two-way travel-time in ms.

Figure 6.52. The error traces section corresponding to the seismic solution in
Figure 6.51. Note that the vertical axis represents the two-way travel-time in ms.

Figure 6.53a. The initial earth model section for example 2 in Line 1977 for
CDPs 1536-1560. The upper sand at 705 ms is overlain by shale, and the two
limestone layers below are underlain by shale. Note that the vertical axis represents
the two-way travel-time in ms.

Figure 6.53b. The initial earth model section for example 2 in Line 1977,
CDPs 1561-1585. The upper sand at 705 ms is overlain by shale, and the two
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limestone layers below are underlain by shale. Note that the vertical axis represents
the two-way travel-time in ms.

Figure 6.54a. The same initial earth model section in Figure 6.53a
superimposed on the corresponding observed seismic traces of Figure 6.55. Note that
the vertical axis represents the two-way travel-time in ms.

Figure 6.54b. The same initial earth model section in Figure 6.53b
superimposed on the corresponding observed seismic traces of Figure 6.55. Note that
the vertical axis represents the two-way travel-time in ms.

Figure 6.55. The observed seismic traces CDP 1557-1581 for example 2 from
Line 1077. The positive seismic event at 705 ms is a sand body. Note that the
vertical axis represents the two-way travel-time in ms.

Figure 6.56. The synthetic seismograms of the initial earth model traces in
Figures 6.53a and 6.53b. Note that the vertical axis represents the two-way travel-
time in ms.

Figure 6.57. The error traces of the synthetic seismograms of Figure 6.56.
Note that the vertical axis represents the two-way travel-time in ms.

Figure 6.58a. The final impedance solution for example 2 on Line 1977,
CDPs 1536-1560. Note that the vertical axis represents the two-way travel-time in
ms.

Figure 6.58b. The final impedance solution for example 2 on Line 1977,
CDPs 1561-1585. Note that the vertical axis represents the two-way travel-time in
ms.

Figure 6.59. The final seismic solution section corresponding to the
impedance solution in Figures 6.58a and 6.58b. Note that the vertical axis represents
the two-way travel-time in ms.

Figure 6.60. The error section of Figure 6.59. Note that the vertical axis
represents the two-way travel-time in ms.

Figure 6.61. The results of the eight iterations of the first wavelet parameters
inversion at well YY31. Wavelet number 1 is the initial guess wavelet given by the
=[6 38 50 80 109000 109000 -0.2 0.115 0]7, and wavelet number
9 is the final optimised wavelet for this inversion run. This wavelet has the
parameters w,,, = [4 24 70 74 109000 109000 -0.209 0.115 0]”. Note that the -

vertical axis represents the two-way travel-time in ms.
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Figure 6.62. The impedance profiles for the only boundary locations
inversion needed when optimising the wavelet at well YY31. The initial guess
impedance profile is the dashed line with cross marks, and the solution impedance
profile is the solid line. Note that all boundary locations are adjusted by 2 ms (one

sample interval), except for the 10-th boundary location which was adjusted by 4 ms.
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Figure 6.63. The results of the nine iterations of the final wavelet parameters
inversion at well YY31. The optimum wavelet obtained is wavelet number 10 which
has the parameters w,, = [3.9 24 70 74 109022 108993 -0.206 0.115 0]7. Note
that the vertical axis represents the two-way travel-time in ms.

Figure 6.64. The results of the 38 iterations of the first wavelet parameters
inversion at well YY04. Wavelet number 1 is the initial guess wavelet given by the
parameters w;,; = [17 32 42 67 113330 113330 0.1 0.12 0.]”. Wavelet number 39
is the final optimised wavelet for this wavelet parameters inversion run, this wavelet
has the parameters w,, = [21 36 60 66 113330 113330 0.7962 0.115 0]”. Note
that the vertical axis represents the two-way travel-time in ms.

Figure 6.65. The impedance profiles for the only boundary locations
inversion needed when optimising the wavelet at well YY04. The initial guess
impedance profile is the dashed line with cross marks, and the solution impedance
profile is the solid line. It can be observed that only boundary locations 3 and 4 are
adjusted by 2 ms (one sample interval) each. This represents the minimum shift a
single boundary can be adjusted.

Figure 6.66. The results of the nine iterations of the final wavelet parameters
inversion at well YY04. The optimum wavelet obtained is wavelet number 44 which
has the parameters w_, =[16.4. 45.1 67.2 81.8 113330 113330 0.3128 0.118 O0]".
Note that the vertical axis represents the two-way travel-time in ms.

Figure 6.67. The initial guess impedance section, or earth model section, that
constitutes the input to the inversion of the observed section of Figure 6.68 around
well YY31. The well is located at CDP 555, and measures the time window 580-804
ms two-way travel-time. The earth model data strictly follow the impedance profile of
well YY31 given in Figure 6.14. The seismic time window was further extended, into
the Augila Limestone, to 900 ms two-way travel-time. Note that the vertical axis
represents the two-way travel-time in ms.

Figure 6.68. The observed seismic section used to invert for impedance
around well YY31. This section is part of seismic Line 1973 between CDP 535 and
CDP 575. The start of the well impedance measurements tie the seismic data at 580
ms and extends to 804 ms two-way travel-time. The 96 ms of section time between
804 ms and 900 ms is an extra section extended into the Augila Limestone. The
initial guess earth model section for this observed seismic data, shown in Figure 6.67,
has 18 layers. Note that the vertical axis represents the two-way travel-time in ms.

Figure 6.69. The initial guess seismic response section around well YY31.
The well is located at CDP 555. This section is generated from the initial guess earth
model of Figure 6.67 and the seismic wavelet optimised in section 6.9.1. Note that the
vertical axis represents the two-way travel-time in ms.
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Figure 6.70. The final impedance solution section around well YY31. The
Augila Limestone starts at about 800 ms and continues to 900 ms two-way travel-
time. The impedance contrast across the boundary represented by the top of Augila
varies from one profile to the next. There is a large impedance contrast for the middle
profiles that surround the well at CDP 555. The impedance contrast decreases to the
left and right. Note that the vertical axis represents the two-way travel-time in ms.

Figure 6.71. The seismic solution section of the final impedance solution of
Figure 6.70. The seismic events in this seismic section should be compared to the
seismic events in the observed section in Figure 6.68. Note that the vertical axis
represents the two-way travel-time in ms.

Figure 6.72. The observed seismic section used to invert for impedance
around well YYO04. This section is part of Line 1977 extending from CDP 1073 to
CDP 1113. The well is located at the middle trace which is CDP 1093. The well
impedance measurements start at 610 ms and extends for 234 ms to 844 ms two-way
travel-time. The 56 ms of section time between 844 and 900 ms is an extra section
extended into the Augila Limestone. The initial guess earth model section for this
observed seismic section has 10 layers and is given in Figure 6.73. Note that the
vertical axis represents the two-way travel-time in ms.

Figure 6.73. The initial guess impedance section, or earth model section, that
constitutes the input to the inversion of the observed seismic section of Figure 6.72
around well YY04. The well is located at CDP 1093, and measures the time window
610-844 ms two-way travel-time. The earth model profiles are obtained from the
impedance profile of well YYO04 given in Figure 6.29. The seismic time window is
further extended into the Augila Limestone to 900 ms. Note that the vertical axis
represents the two-way travel-time in ms.

Figure 6.74. The initial guess seismic response section around well YY04.
The well is located at CDP 1093. This section is generated from the initial guess earth
model of Figure 6.73 and the seismic wavelet optimised in section 6.9.2. Note that the
vertical axis represents the two-way travel-time in ms.

Figure 6.75. The final impedance solution section for inversion around
YYO04. The shallow layer is the Chadra A sand. It is thin at the middle traces and
thicker to the left and right. The Augila Limestone starts at about 750 ms two-way
travel-time. Note that the vertical axis represents the two-way travel-time in ms.

Figure 6.76. The seismic solution section corresponding to the impedance
solution in Figure 6.75. The high amplitude associated with the middle traces for the
shallow event is due to the thickness of the Chadra A sand being at, or near, the tuning
thickness. The decrease in amplitude of the shallow event to the left and right of the
middle traces is an indication of thickness increase of the sand body. The lower part
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of the section, starting at about 750 ms, describes the Augila Limestone and closely
resembles the corresponding section on the observed seismic section in Figure 6.72.
Note that the vertical axis represents the two-way travel-time in ms.

Figure 6.77. The 11-CDP observed seismic section which is part of Line
1073 used to invert for impedance around the intersection with Line 1977. The
middle trace, CDP 1042, is the trace located at the intersection. Correlation with Line
1977 produced only 7 seismic events that have good signal-to-noise ratio. The 7
interfaces are shown in the 8-layer initial guess impedance section of Figure 6.78.
Note that the vertical axis represents the two-way travel-time in ms.

Figure 6.78. The initial guess impedance section on Line 1973 containing 11
impedance profiles around the intersection with Line 1977. The impedance profile
located at the intersection is profile number 1042. this 8-layer impedance section was
generated from the correlation of 7 seismic events on the two lines that have a good
signal-to noise ratio, and the two impedance profiles of wells YY04 and YY31. Note
that the vertical axis represents the two-way travel-time in ms.

Figure 6.79. The initial guess seismic response section on Line 1973 around
the intersection with Line 1977. The shallow part of the section, above 700 ms two-
way travel-time, is the response of the three interfaces in the Chadra sands, and the
lower part, below 750 ms, is.the response of four interfaces in the Augila Limestone.
Note that the vertical axis represents the two-way travel-time in ms.

Figure 6.80. The final impedance solution section corresponding to the
observed seismic section on Line 1973 around the intersection with Line 1977. The
impedance profile at the intersection is profile number 1042. This impedance section
should be compared with the impedance solution section along Line 1977 given in
Figure 6.85. Note that the vertical axis represents the two-way travel-time in ms.

Figure 6.81. The final seismic solution section of the impedance solution on
Line 1973 shown in Figure 6.80. Note that the vertical axis represents the two-way
travel-time in ms. '

Figure 6.82. The 11-CDP observed seismic section which is part of Line
1077 used to invert for impedance around the intersection with Line 1973. The
middle trace, CDP 1707, is the trace located at the intersection. Correlation with Line
1973 produced only 7 seismic events that have good signal-to-noise ratio. The 7
interfaces are shown in the 8-layer initial guess impedance section of Figure 6.83.
Note that the vertical axis represents the two-way travel-time in ms.

Figure 6.83. The initial guess impedance section on Line 1977 containing 11
impedance profiles around the intersection with Line 1973. The impedance profile
located at the intersection is profile number 1707. this 8-layer impedance section was

generated from the correlation of 7 seismic events on the two lines that have a good

XiX




signal-to noise ratio, and the two impedance profiles of wells YY04 and YY31. Note
that the vertical axis represents the two-way travel-time in ms.

Figure 6.84. The initial guess seismic response section on Line 1977 around
the intersection with Line 1973. The shallow part of the section, above 700 ms two-
way travel-time, is the response of the three interfaces in the Chadra sands, and the
lower part, below 750 ms, is the response of four interfaces in the Augila Limestone.
Note that the vertical axis represents the two-way travel-time in ms.

Figure 6.85. The final impedance solution section corresponding to the
observed seismic section on Line 1977 around the intersection with Line 1973. The
impedance profile at the intersection is profile number 1707. This impedance section
should be compared with the impedance solution section along Line 1973 given in
Figure 6.80. Note that the vertical axis represents the two-way travel-time in ms.

Figure 6.86. The final seismic solution section of the impedance solution on
Line 1977 shown in Figure 6.85. Note that the vertical axis represents the two-way

travel-time in ms.
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CHAPTER

INTRODUCTION

To deduce information about the subsurface rock properties, we use seismic
reflection data recorded at the surface of the earth. The most straightforward
subsurface property which may be estimated from seismic reflection data is probably
the acoustic impedance. Estimating subsurface parameters from the surface recorded
seismic data is a seismic inverse problem. This thesis is concerned with inverting
seismic reflection data to deduce the acoustic impedance distribution in the
subsurface.

To solve the inverse problem, it is necessary to formulate the forward problem.
The forward problem, or the forward model, is a mathematical relationship that
predicts the observed data for a given set of model parameters. In the inverse problem
we start with the observed data and a mathematical modelling procedure, and we
estimate the model parameters.

The choice of the forward modelling procedure is crucial to solving the inverse
problem at hand. In this research the objective is to determine the lateral distribution
of the Oligocene Chadra sands of the Arida Formation in the Gialo Field, Sirte Basin.
To achieve this, I have attempted to estimate the acoustic impedance profiles of
observed seismic traces. The Chadra sands were deposited as sheet-like bodies, or
bars, over a gently dipping surface. The bars are elongate, widespread sand bodies
that interfinger and lens, and they extend for 4-6 km in width and 12-16 km in length,
with thicknesses of up to 30 m. Such simple layer-cake geology suggests that the

common depth point (CDP) stacking procedure is appropriate for this area, and the




application of normal-moveout correction followed by stacking approximates the
response of normal incidence plane waves in a layered medium. Thus an appropriate

trace model is assumed to be the convolutional model (Robinson, 1983)
s(t) = w(t) * r(t) . (1.1)

where s(t) is the synthetic seismic trace, w(t) is the seismic wavelet, r(t) is the
reflection coefficient function, t is a time variable, and = denotes convolution.

The advantage of using the convolutional model is that the continuous
representation (1.1) is readily adaptable for the discrete case. The discrete

representation of (1.1) is given by

8 = erw‘._j =0, 1,2, ... ,m+n (1.2)
j=0

where s, r, w are digital wavelets of length m+n+1, n+1, and m+1, respectively.

The estimation of reflection coefficients in (1.2) is obtained by using the
Goupillaud earth model which consists of a stratified system where all layers have
equal two-way travel-time (Goupillaud, 1961). Thus for an earth model with n+1
interfaces the reflection coefficient for particle displacement (or velocity) at the k-th
interface is

_ATAY 012 (1.3)
A +A

k+1

7

where A, is the acoustic impedance of the Jayer above the k-th interface. Equation
(1.3) shows how the reflection coefficients are related to the acoustic impedances for
the two-way travel-time to each interface.

When solving the inverse problem, we make estimates of the model
parameters. Thus it is important to know how many model parameters should be used
and which parameters are significant. These model parameters define a geologic
model whose seismic response agrees with the observed seismic data. The rock
property that can be readily estimated from observed seismic data is the acoustic
impedance, so that our aim becomes that of converting the seismic reflection data into
acoustic impedance profiles as a function of two-way travel-time. Thus the geologic
model parameters are those defining an acoustic impedance profile.

The acoustic impedance of the earth is a continuous function of time and to

parameterise it we use a restricted number of layers. To each layer we assign three




parameters: (1) a parameter defining the two-way travel-time to the bottom of the
layer; (2) an acoustic impedance parameter defining the starting value of the acoustic
impedance in the layer; and (3) a parameter defining the linear gradient of the
impedance within the layer. An example of acoustic impedance parameterisation is
shown in Figure 1.1.

Equation (1.2) shows that knowledge of the seismic wavelet is essential to
calculate the forward model response (synthetic seismogram). The seismic wavelet
can be estimated as a Wiener shaping filter at a borehole located on the observed
seismic data. This shaping filter converts the reflection coefficient sequence, obtained
from the sonic and density logs at the borehole, into the seismic trace recorded at the
well location. - The seismic wavelet is parameterised in the frequency domain using
nine parameters. They include four bounding frequency parameters defining a band-
limited amplitude spectrum, two amplitude parameters defining the amplitudes of the
two middle frequency parameters, and three phase parameters defining the phase

spectrum in the following form

O(f)=o+ ¢ f +0, 07 . (1.4)

In this expression ¢, is a constant phzise parameter, and has the most effect on the
wa\;elet (White; 1987). The term ¢, only produces a time shift so it has no effect on
the shape of the wavelet, and the quadratic term ¢, describes the frequency dispersion
in the wavelet. An example of amplitude spectrum parameterisation is shown in
Figure 1.2.

Choosing the appropriate forward model and model parameters is only part of
the inversion process. Indeed, the diversity of the inverse problem is not only due to
the numerous forward models that can be adopted for a specific problem but also the
variety of methods by which it can be solved.

A well studied impedance inversion method is recursive inversion. This
method was described by Lavergne and Wills (1977), and Lindseth (1979). The

recursive inversion is based on equation (1.3), where it can be rewritten to express
A,, interms of A, and r,:

1+
A, =4 :

1.5
- (1.5)

That is, the impedance of a layer can be deduced from the reflection coefficients and
the impedance of the layer above it. Although Lindseth (1979) demonstrated that the
inherent band-limitedness of the seismic data could be largely overcome, mainly by




extracting the low frequency components from other types of data such as sonic logs,
the recursive method still performed poorly in the presence of noise.

Describing the convolutional model for the seismic trace in terms of acoustic
impedance parameters for layers and wavelet parameters makes it possible to solve the
inversion problem using optimisation methods. Parker (1994) regarded the
geophysical inverse problem as an optimisation problem subject to various
constraints.
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Figure 1.1 Parameterising a continuous acoustic impedance log
(dotted line) into restricted number of layers (solid line).
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To use optimisation methods to solve the inverse problem, we use generalised
linear inverses, which are linearised least-squares procedures derived by replacing the
non-linear relationship between the observed data and the unknown parameters by a
linear approximation. Unique and stable generalised inverses are possible only when
the inverse problem is well-posed and noise-free. The important papers of Backus
and Gilbert (1967, 1968, 1970) analysed the problems of uniqueness, resolution and
stability of the inverse problem. In the Backus-Gilbert approach the unknown model
parameters are obtained from linear combinations of the observed data. That is,
observations are combined using an averaging kernel designed to optimise the trade-
off between the resolution and the accuracy of the model. The Backus-Gilbert method
was extensively applied to a variety of geophysical problems. Oldenburg (1981) and
Treitel and Lines (1982) showed how the Backus-Gilbert theory is related to seismic
wavelet deconvolution.

An elegant method for solving generalised linear inverse problems is based on
the singular value decomposition, or SVD. Such an inverse is known as Lanczos
inverse (e.g. Golub and Van Loan 1983). Jackson (1972) discussed using SVD to
obtain stable solutions from ill-conditioned systems. Wiggins et al. (1976) analysed
the residual statics problem and used SVD to obtain solutions for the linear systems of
equations that are inherently non-unique for the very long spatial wavelength of the
residual statics. van Riel and Berkhout (1985) used SVD to determine the resolving
power of the linear inverse problem. Bilgeri and Carlini (1981) used SVD to solve the

linear inverse problem for the reflection coefficients and also obtained wavelet




estimates, in the frequency domain. They then used the estimated reflection
coefficients to compute acoustic impedance profiles using equation (1.5).

A popular generalised linear inversion method was first discussed by
Levenberg (1944) and later refined by Marquardt (1963). To obtain a stable solution,
the Marquardt-Levenberg method restricts the deviations of the estimated parameters
from a reference parameter by using a damping factor. Draper and Smith (1981) and
Fletcher (1987) describe the method in great detail. Lines and Treitel (1984)
presented an excellent review of least-squares inversion and illustrated the use of
Marquardt-Levenberg method to obtain stable generalised inverses. They also
explained the damping factor in terms of the SVD method.

The Marquardt-Levenberg method has been widely used in geophysical
inversion problems. Jupp and Vozoff (1975) used a modified Marquardt-Levenberg
method to invert resistivity data. Sain and Kaila (1994) used the Marquardt-
Levenberg method, where they called it damped least squares, in the inversion of
wide-angle seismic reflection times to calculate interval velocities. More importantly,
the Marquardt-Levenberg method was applied to calculate estimates of acoustic
impedance profiles from stacked seismic data. Cooke and Schneider (1983) used the
Marquardt-Levenberg method to invert for acoustic impedance from mainly synthetic
data. Keys (1986) used the Marquardt-Levenberg method to show a relationship
between generalised linear inversion methods and another class of linear inversion
methods that are based on the Born approximation. Tian Gang and Goulty (1996)
used the method to invert for the coal seam thickness, with special emphasis on thin
layer inversion.

The Marquardt-Levenberg method is in a class of methods termed trust-region,
because the restricted step length to the estimated parameters from the reference
parameters is always taken to be unity (Gill et al., 1981). In practice it usually
becomes necessary, when the problem is ill-posed and contains noise, to compute
several trial steps before finding a satisfactory step. This means that algorithms based
on trust-region methods will tend to be slow, especially when the problem involves a
large number of parameters. A different class of methods are step-length-based
methods (Gill et al., 1981). In a step-length-based method a step-length procedure
must be included because a step length of unity does not necessarily satisfy the
conditions of a solution. In this way only one step is computed, then scaled if
necessary to obtain a satisfactory solution. This research uses an algorithm based on a
step-length method that uses Cholesky factorisation to obtain a stable generalised
linear inverse. Furthermore, this method lends itself to using linear equality and

inequality constraints which are used here to steer the solution into a region that
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satisfies geologic information known a priori, mainly from well log data, thus
reducing the problem of non-uniqueness.

This thesis is organised as follows: chapter 2 gives a statement of the geologic
problem and discusses the objectives of this research. It also describes the seismic
and well log data available from two wells, how the analogue paper displays of the
well data were digitised and used to compute a reflection coefficient sequence in each
well, and the wavelet estimation. In chapter 3 the generalised linear inversion is
discussed in terms of minimisation of the error energy function using the Gauss-
Newton method. The conditions that must be satisfied for a solution to be a minimum
are also discussed, and a Cholesky factorisation based method to obtain a stable
solution, and a step-length procedure known as line search by back-tracking are
described. Chapter 4 describes the theory of linear equality and inequality constraints,
then restates the minimisation problem of chapter 3 subject to linear equality and
inequality constraints. A computer program based on the active set strategy, which
implements the methods of chapters 3 and 4, is discussed in chapter 5. Included in
chapter 5 are tests on synthetic seismic data to assess the program performance and
establish the validity of its results so that a strategy for the inversion of stacked
seismic data could be developed. Inversion of the field data is discussed in chapter 6.
Three examples taken from two seismic lines recorded in the Gialo area, Sirte Basin,
are discussed. In each example, inversion for the Chadra sands was performed in an
attempt to delineate these sand bodies by inversion for acoustic impedance. The
conclusions of this research are summarised, along with recommendations for future

work, in chapter 7.



CHAPTER

GEOLOGIC PROBLEM, OBJECTIVES AND
DATA

2.1. Introduction

To extract stratigraphic information about the subsurface geology from seismic
reflection data that were recorded at the surface, we use the seismic inversion method.
The inversion method used here inverts the seismic data into acoustic impedance,
which is related to lithology. Section 2.2 starts by giving a brief description of the
regional geology of the Sirte Basin. The main aim of that section, though, is to
discuss the geologic problem to be solved by inversion, which concerns the potential
reservoir rocks, the Oligocene Chadra sands A, B and C. These sands will be
discussed in terms of their geologic aspects that are related to their inversion into
acoustic impedance. The important parameters of the Chadra sands are their geometry
and lithology; thus we describe their areal extent, orientation and thickness trends, and
also describe their lithology type and contact relationships. We especially concentrate
on the YY reservoir area where the seismic data available for this research were
recorded. Indeed the objective of this research is to attempt to delineate the Chadra
sands in the YY reservoir along the two seismic lines 1973 and 1977 using seismic
inversion.

The seismic and well log data available for this research are described in
section 2.3. Acquisition parameters for the seismic data were chosen to maximise the
useful band-width, then later processed with relative amplitudes preserved and zero

phase wavelet for best inversion results. The well data include mainly well log



measurements of sonic and density, but SP, caliper, gamma ray and resistivity
measurements are also available. All the well log data are available in analogue paper
display form, so they had to be manually edited first, then digitised to be used in a
computer program. The steps of a computer program that produces an acoustic
impedance log from the digitised sonic and density data are explained in section 2.4.
Another output of this program is the reflection coefficient sequence at the well
location. Section 2.5 discusses using the computed reflection coefficient sequence
and the seismic trace at the well location to find an estimate of the effective seismic
wavelet as a Wiener shaping filter.

Estimating seismic wavelets is always subject to errors. There are different
possible sources of errors and section 2.6 discusses these error sources in some detail.
The last section shows the results of estimating the effective seismic wavelets in the
two wells YY04 and YY31 on seismic lines 1977 and 1973, respectively.

2.2. Geology of the area and objective of research

The Sirte Basin, in north-eastern Libya, was formed by large scale subsidence
and block faulting which started in late Cretaceous time and continued, at least
intermittently, to the Miocene and perhaps the present. Basement is formed by
Precambrian to Cambro-Ordovician rocks, which were covered by early Palaeozoic,
Mesozoic and Cenozoic sediments. Late Palacozoic rocks were later removed by
erosion. In Upper Cretaceous time, thick organic-rich shales, terrigenous clastics and
evaporites were deposited on the down-faulted blocks or grabens. The horsts were
probably sub-aerial at this time. In early Tertiary time (Palacocene-Miocene) a marine
transgression inundated the basin resulting in the deposition of carbonates (Augila
Limestone). The carbonates grade into terrigenous clastics and evaporites to the
south. This event was followed by a regression of the seas that culminated in
Miocene time with relative emergence of the basin and retreat of the coastline to its
present position, and development of the present geography by the end of Palaeocene
time.

It was the Oligocene and Miocene regressions that resulted in the deposition of
the thick Arida Formation. The Arida Formation is made up of the upper Arida shale
and underlying Chadra sands. The Chadra sands were deposited on the Gialo
structure, which is a horst and graben structure of mild relief defined by northwest-to-
west trending faults. The Chadra sands may have a slightly unconformable contact
with the underlying Augila limestone, but are conformably overlain by the thick
Arida shale (Barr and Weegar, 1972).

The faults of the Gialo structure horst block break up the Gialo Field into

separate pools. The amount of movement on the faults is uncertain, but it appears




that, at the Oligocene level, a throw of 3-5 m is most common. It is a characteristic of
the Sirte Basin that deposition is contemporaneous with faulting. In this area fault-
controlled movements formed a structurally high feature that was probably expressed
as shoal during the deposition of the Chadra sands. Further, the orientation of the
sand bodies in the Gialo Field area is largely controlled by the faults. Thus the Chadra
sands are generally thinner over the high structure where it is approximately 60 m
thick; to the east they are more than 90 m thick; in the west and northwest they are
more than 120 m thick and more than 150 m thick in the south and southwest
(Shelton, 1976).

The Chadra sands may be broadly divided into three sandstone units
interbedded with shale, namely Chadra A, B and C. The sands are very fine to fine
grained and are unconsolidated. Some discrete sand bodies in the Chadra units are
recognised locally in Gialo Field. Units within A and B are more widely distributed
as distinct bodies than units in Chadra C (Shelton, 1976). The interbedded Chadra
shales that separate the sand bodies vary in thickness from less than a metre to
approximately 15 m thick. Also, it should be noted that in spite of the structural
growth, the thinner sections of the three sands are not vertically disposed but more
nearly compensatory. That is, sand build-ups of Chadra C apparently contributed to a
relatively thin section of Chadra B, and where Chadra B experienced build-up, Chadra
A may be relatively thin. In general, the sand bodies are widespread and interfinger.
They appear to have been deposited as sheet-like bodies or bars that pinch out up and
down dip over the gently dipping surface of the Gialo structure. The bars are 4-6 km
wide and 12-16 km long, and can be up to 30 m thick.

The contact relationships in the Chadra sands vary from massive sand bodies
with sharp top and bottom contacts to a coarsening upward sequence that grades
upwards from shales into sand, or a fining upward sequence that grades upwards from
sand into shale. More commonly though, the sand bodies tend to have coarsening
upward-fining upward cycles, with a hinge in the middle. In these cases, the hinge in
the middle of the cycles is where the best reservoir rock (i.e. cleanest sand, highest
porosity and permeability) and greatest hydrocarbon saturation occurs.

The Gialo Field is divided into three reservoirs, or pools, by the northwest
trending faults: the E pool, the YY pool and the 4V pool. It is the objective of this
research to define a seismic method to determine the distribution of the Chadra sands
in the Gialo structure area by studying the possibility of delineating the sand bodies in
the YY reservoir area.
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In the YY area, the Chadra A and B sands are the dominant sand bodies
(Shelton, 1976; Robinson, 1974). The Chadra B sand is older (stratigraphically lower)
and is well developed over all the reservoir area. The thickest part of the Chadra B
sand lies across the northwest portion of the YY reservoir forming a northwest
trending elongated sand which thins off gently to the southwest. The Chadra B sand
has a sharp lower contact and a thick shale bed which underlies the sand body. Figure
2.1 shows an isopack map of Chadra A, and Figure 2.2 shows an isopack map of
Chadra B.

The Chadra A sand in the YY area consists of three sand bodies. The lower
sand body is quite wide and covers most of the YY pool. The structurally high part is
at the centre of the pool and coincides with the thickest lower sand body where it has
about 30 m thickness. The sand pinches out rapidly in all directions. In most cases
the lower sand has a sharp bottom contact with a thick shale layer which directly
overlies the B sand. ,

The middle A sand body is found throughout the YY reservoir area. The
thickest section of this sand body is found to the southwest of the structural high.
This sand slopes off uniformly in all directions. A thick shale interbed lies between
the middle and lower A sands, and the contacts are sharp.

The upper A sand_body in the YY reservoir area occurs-only in the southwest
part of the area. It is thin and is separated from the underlying sand body by a
reasonably thick shale barrier. The upper A sand is overlain by the thick Arida shale.
For the purposes of this research, this sand is irrelevant since the seismic data
available does not cover the area where it is present.

As previously mentioned, the objective of this research is to investigate the
possibility of seismically delineating the Chadra sands in the YY reservoir area of
Gialo Field. To do this, the seismic inversion method will be used to invert the
seismic data into acoustic impedance to give an indication of lithology in the seismic
traces. A computer program that performs the inversion of seismic data has been
developed. The results from this research could later serve as a method to delineate
the Chadra sands throughout the Gialo area, and then possibly attempt to detect the
Chadra sands in Waha concession areas to the north and northeast of the Gialo area,
where these sands are known to exist, with possible sand pinch outs which make good

stratigraphic entrapment possibilities.
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Figure 2.1. Approximate isopach map of Chadra A sand around the six seismic lines
1973-1978 in the Gialo Area. The contour interval is 20 ft. After Robinson (1974).
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2.3. The well and seismic data available

2.3.1. Summary

The seismic data available for inversion are two intersecting seismic lines,
namely lines 1973 and 1977. Located on line 1977 at shot point 548 (CDP 1093) is
well YYO04, and located on line 1973 at shot point 245 (CDP 555) and offset by 50 m
is well YY31 (see Figure 2.1). In the sedimentary section of interest, sonic and den,Sity
log data were recorded in both wells. None of the wells had check shots recorded in
them, so problems with tying the well and seismic data are possible. The two seismic

lines were recorded and later processed with the Oligocene Chadra sands in mind.

2.3.2. Field recording parameters and arrangements
The two seismic lines 1973 and 1977 are part of a survey comprising six lines
totalling more than 60 km which were recorded in August 1989. The recording
parameters were designed to allow the optimum possible frequency bandwidth for the
Chadra sands section. In general, ground roll noise in the Sirte Basin tends to have
o __long_wavelength_components_and. high. amplitude,_so-that_source-and. receiver.-arrays-
are always designed to be long enough to cancel-out the ground roll noise. In order to
accommodate enough fold in the data, long receiver arrays translate into a long spread
arrangements. Having a long spread is not a desirable recording pattern for the
Chadra sands, because they are relatively shallow. Long off-set traces would have to
be muted because of extensive NMO stretch, or even because of interference due to
refracted arrivals. NMO stretch would add to the high frequency filtering effect of
o _lalé_reéei\}er and sources afrays. " The dilemma was that if one requires high
frequency content in the data, then short source and receiver arrays have to be used
implying that a dominant ground roll noise will also be recorded, thus resulting in
seismic data with low signal-to-noise ratio. Conversely, if one uses long source and
receiver arrays, which means also recording with long spread, then the resulting
seismic data will not have the desirable high frequency content. The solution to this
situation lies in the processing of the data: provided that the ground roll noise is
recorded without spatial aliasing, then fk-filtering can be used to eliminate it and short
receiver arrays will be satisfactory for recording the data.
From the analysis of two noise studies previously recorded in the area, it was
decided to use 10 m receiver arrays and 20 m source arrays. A 120-channel
symmetric split spread arrangement with the short 10 m length arrays were juxtaposed

at 10 m spacing. The nearest offset (i.e. the nearest live geophone) was 65 m away
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from the centre of the spread and the far offset was 655m. The energy source used
was Vibroseis with a linear 10-82 Hz sweep, and the sweep length was 10 s. This
arrangement gave a fold coverage of 30 fold. There was enough normal moveout at
the Chadra sands two-way travel-time of approximately 600-750 ms to largely
suppress multiple reflections. The sampling interval was 2 ms and the total two-way

time recorded was 3 s.

2.3.3. Processing parameters and sequence
The two seismic lines 1973 and 1977 were actually processed twice, with

Western Geophysical and CGG, both in London. Mainly the CGG processed lines

will be discussed here because they were processed with preserved relative amplitudes

and a zero phase wavelet; these data were used in the inversion analysis.
The processing sequence of the seismic data with CGG was as follows:

1. First, demultiplexing the field data, where the seismic traces for individual
receivers are reassembled.

2. Sweep signal cross correlation with field recorded signals. This is done to
compress the 13 s long frequency-sweep wave train into 3 s seismic traces.

3. Minimum phase conversion using the recorded sweep autocorrelation. This is
necessary for seismic deconvolution.

4.  Spherical divergence correction. This is applied to correct for geometrical
spreading, that is, the signal amplitude decrease due to the energy distribution on
expanding wave fronts.

5. Surface consistent amplitude correction to compensate for variations in coupling
and attenuation by gathering traces according to their offsets, sources or
receivers, and analysing their average amplitudes.

6. fk-filtering passing dips within the range — 5 ms/trace. )

7.  Gapped deconvolution where the operator length is 300 ms, the design window
is from 0.2 to 2.7 sec, and pre-whitening of 1% was used. The gap was 16 ms
long. This is a short gap in comparison to previous deconvolution gaps used on
other vintages of data in the same area. This is due to the higher frequency
content of this set of seismic data.

8.  Application of field static corrections computed from the 49 upholes drilled on
the six seismic lines, including the intersections. The seismic datum used is 100
m above sea level.

9. Long wavelength surface consistent residual static corrections. In CGG
terminology a long wavelength anomaly means more than one-half of the
maximum recording distance.

10. Short wavelength surface consistent residual static corrections. That is for less
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than one-half of the maximum source-receiver offset distance.
11. Normal moveout and mute.
12. 3000% stack.
13. Zero phase conversion.
14. Bandpass filter of 6-10-80-90 Hz applied to the whole trace.
15. Application of a constant regional equalisation to all the data, since the relative
amplitude of the data is preserved.
The dominant frequency obtained in these data was 50 Hz, which is better than
any data recorded in this area before, where the dominant frequency was normally 35
Hz.

2.3.4. Well Data

There are two wells that can be used in this area; well YY04 and well YY31.
Only YYO04 is actually located on a seismic trace on line 1977, whereas YY31 is offset
by 50 m to the nearest trace on seismic line 1973. Both of them have sonic and
density measurements in the sedimentary section of interest, that is, the section
between the Arida shale member, the three Chadra sand members (A, B, and C) of the
Arida Formation, and the top part of the Augila Limestone. They also have resistivity,
gamma ray, SP and caliper measurements. Well YY04 was recorded in 1970 and well
YY31 in 1975, which meant that no digital recordings were available only paper
displays. Furthermore, both wells have suffered from caving which sometimes is
severe. When the caving is severe, the sonic log readings do not accurately represent
the rock formation they measure, and this turned out to be a very important eiror to
correct so that reasonably accurate acoustic impedance estimates at the two wells

could be obtained.

2.4. Computing acoustic impedance from sonic and density logs

The acoustic impedance measurements at well locations are used to compute
the reflection coefficient sequence, to compute an estimate of the seismic wavelet, and
later in the inversion program to obtain an initial guess input for the seismic traces
near the well, and also to give a general acoustic impedance trend for the whole area
of study.

The impedance is computed from the velocity of the rock formations which is
obtained from the sonic log, and the density which is obtained from the density log.
In order to do this, we first need to digitise the analogue paper displays of these logs
(by digitising on the break points, so that the values between any two adjacent points
can be linearly approximated). The digitised data constitute the input to a FORTRAN
program which has been specifically written to produce an acoustic impedance log as

16




an output, sampled at the seismic data sampling interval of 2 ms, and from which the
reflection coefficient at the well is generated.

In this program, the first step is to transform the digitised data from the
digitising table coordinates to the well log coordinates. This involves the translation of
the point of origin of the digitised data to that of the well log, then rotating about this
origin so that the two coordinate systems are fitted onto each other, and then scaling
the data to the well log scale. This is done to both the sonic and density logs
independently.

Because the sonic measurements, recorded as transit times, represent the time
taken by an acoustic pulse to travel through a one foot thick section of the formation,
and are hence given in units of microseconds per foot, it becomes logical to subdivide
the section covered by the sonic log into one foot thick intervals and take their
corresponding log readings as a measure of the travel time (one-way) through each
interval. In doing so we have redigitised the sonic log into one foot thick intervals.
Now, if we add as many of these one foot intervals (or their fractions) as needed to
make the total of their corresponding transit time readings add up to 1 ms, the result
will be a redigitised sonic log into 1 ms intervals, that is, we have sampled the
sedimentary section measured by the sonic log into 1 ms sampling interval, or 2 ms
sampling interval of two-way travel-time, which is the sampling interval of the
seismic data.

To redigitise the sonic or density data into one foot intervals, the program
takes the digitised depth values and simply rounds them to the nearest whole (integer)
number of feet. This rounding will not result in great loss of accuracy in the depth
values if we consider that normally any two successive digitised points cover at least a
few feet of section; also an accuracy of — 0.5 ft at the ends of an interval of few feet
should give an acceptable error. Having established these intervals along the digitised
sonic or density log, the program then linearly interpolates within the end points,
taken one interval at a time, to determine the transit time and density values at one
foot spaced depth points. This is done for the complete log length, for both sonic and
density.

In both wells in this area the sonic log covers most of the sedimentary section
penetrated by the well while the density log covers only the zone of interest, including
all the Chadra sand bodies. For this reason, when the sonic and density information
are required to compute the acoustic impedance, the program selects only the zone of
overlap between the sonic and density measurements and disregards the rest. The
results of the program at this stage for the two wells are shown in Figures 2.3-2.6.

Figure 2.3 shows the one foot sarhpled sonic log of well YYO04 covering the interval

of overlap with the density log. The depth interval covered here is approximately
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600-951 m below the Kelly Bushing (KB). Only the one foot sampled data is shown
in the Figure since they do not differ from the digitiser results. Figure 2.3 shows the
one foot sampled density log for the same well in the same interval. In Figure 2.5 the
sonic display for well YY31 is shown, where in this figure the depth interval covered
is approximately 512-816 m, and Figure 2.6 shows the corresponding density interval.
It is important to note that the difference in depth to the top of each interval in the
wells does not reflect the structural dip in the area. The reason for this difference in
depth is that recording of the density log in YY31 started at a shallower stratigraphic
level and then only recorded a few metres in the underlying Augila Limestone, while
in YYO04 the density recording started at a deeper level and continued well into the
underlying Augila. Also, note that all the results shown in Figures 2.3-2.6 are
obtained after the analogue paper displays of the sonic and density measurements of
the two wells were manually edited.

Next the selected sonic part is redigitised at | ms sampling interval. As
previously mentioned, the way the program performs this is by adding as many of the
one foot intervals of the sonic data, or their fractions, as needed to make the total of
their transit times equal to | ms. It then determines their total thickness.

The thicknesses of the 1 ms intervals along with the selected density part (the
part of the density data that overlaps the sonic data redigitised into one foot thick
intervals) are used to define the thickness intervals in the density data that correspond
to those 1 ms intervals of the sonic data. This is done by adding as many of the one
foot thick intervals of the density log, or their fractions, as needed to make their total
thickness equal to the thickness of the corresponding 1 ms intervals of the sonic,
which were determined earlier, and then computes their average densities.

At this point we have 1 ms intervals with known thicknesses from which we
can calculate their interval velocities. Also available are the corresponding average
densities for these intervals, so we can readily compute their acoustic impedance and
the corresponding reflection coefficient sequence for the well locatlon The acoustic
impedance results for well YY04 are shown in Figures 2/5 and 2 6 In Fig. 2.6 the
acoustic impedance is displayed against the two-way travel-time sampled at 2 ms,
while Fig. 2.5 is a display of the same acoustic impedance sampled at the
corresponding depth intervals. The difference, due to interval velocity, in time
thickness and depth thickness of the limstone formations, starting at depth of about
790 m, and the shallower section of sandstone and shales is readily observed in the

two Figures. Similar results for well YY31 are shown in Figures 2.9 and 2.10.
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Figure 2.3 The sonic log of well YY04.
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Figure 2.4 The density log of well YY04.
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Figure 2.5 The sonic log of well YY31.
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Figure 2.6 The density log of well YY31.
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Figure 2.7 The acoustic impedance of well YY04 displayed against depth.
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Figure 2.8 The acouslic impedance log of well YY04 displayed against two-way
travel-time
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Figure 2.9 The acoustic impedance log of well YY31 displayed against depth.
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Figure 2.10 The acoustic impedance log of well YY31 displayed against two-way
travel-time.




2.5. Estimating the wavelet from seismic and well data

The sonic and density information in a well can be used to obtain an acoustic
impedance log, from which a reflection coefficient sequence at the well location can
be computed. By assuming the noise-free convolution model, an estimate of the
seismic wavelet can be made in a given seismic trace at, or close to, the well. That is,
given

s(t) = w(t) * r(t) 2.1)

where s(t) is the seismic trace at the well location with the computed reflection
coefficient sequence r(t), and w(t) is the seismic wavelet to be estimated (Lines and
Treitel, 1985), the problem becomes that of finding the equi-spaced coefficients, at the
same sampling interval as the seismic traces, of a finite length Wiener shaping filter
w(t) that shapes r(t) into s(t). This is done by minimising the error energy between
the desired output s(t) and the actual output c(t) = w(t) * r(t).

When minimising the error energy we obtain a system of linear simultaneous
equations in the unknown wavelet ceefficients. The solution of these normal
equations comprises the wavelet coefficients. In solving the normal equations we use
a recursive method developed by Levinson which exploits the symmetry about the
main diagonal of the reflection coefficients autocorrelation matrix, or Toeplitz matrix.
In order to stabilise the matrix division in the computation of the Wiener filter white
noise may be added (Danielsen and Karlsson, 1984). This is achieved by adding a
small positive constant to the diagonal in the Toeplitz matrix. |

In practice we find that the reflection coefficient series determined at a well
location is shorter than the seismic trace from which we need to compute the wavelet.
Consequently we select a window on the seismic trace, the desired output, that
corresponds to the reflection coefficient series. It is desirable to choose the seismic
trace window to have the same length as the reflection coefficient series so that we
can limit the contribution of those amplitude values outside the seismic trace window
to the cross correlation function of the reflection coefficient series and the seismic
trace window, hence limiting their effect on the wavelet estimate.

Estimates of the effective seismic wavelets in both wells YY31 and YY04
were made and the results are shown in Figures 2.11 and 2.12, respectively. In each
well a set of seven wavelets was estimated. The central wavelet in each figure,
wavelet number 4, is chosen as the effective seismic wavelet at the well location
because it had the lowest error energy. For YY31 the effective wavelet was obtained
when the tie between the acoustic impedance log and the seismic trace were at sample
280, which corresponds to two-way travel-time of 560 ms, while for YY04 the tie was
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at sample 295, which corresponds to two-way travel-time of 590 ms. This large
difference in the seismic tie for the two wells is largely due to the difference in depth
at which each density log start. In both Figures 2.11 and 2.12, the wavelet estimate
numbered 1 was obtained by shifting the acoustic impedance log 3 samples shallower
than the tie sample position. In the wavelet numbered 2 the shift was 2 samples
shallower, and in wavelet numbered 3 the shift was 1 sample shallower. For wavelet
estimates numbered 5, 6 and 7 the time shift was deeper by 1, 2 and 3 samples with

respect to the tie sample, respectively. This was done to optimise the wavelet

estimate.
1 3 5 7
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Figure 2.11 The wavelets numbered 1-7 are the effective seismic wavelets estimated
at well YY31. The wavelet numbered 4 has the least error energy so that it is selected
as the effective seismic wavelet at this well location. Note that the vertical axis
represents the two-way travel-time in ms.
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Figure 2.12 The wavelets numbered 1-7 are the effective seismic wavelets estimated
at well YYO04. The wavelet numbered 4 has the least error energy so that it is selected
as the effective wavelet at this well location. Note that the vertical axis represents the
two-way travel-time in ms.

2.6. The error in estimating the seismic wavelet in the area

It can be observed that there are two sources of error when estimating the
seismic wavelet in any of the two wells. The first is due to inconsistencies in the
seismic data and the second is due to inconsistencies in the well log data.

One obvious inconsistency in the seismic data applies to line 1973, where the
nearest seismic trace on this line to well YY31-59 is about 50 m away. Such a
distance could cause errors when estimating the wavelet, due to lateral variation in
geology.

The other possible source of noise in the estimated seismic wavelet is due to

the way in which the seismic amplitudes were processed. For example, if the seismic




data were processed toward structural interpretation, which is better achieved by
minimising amplitude differences between events, automatic gain control is applied to
the final display. This problem is minimised in this area by processing the two
seismic lines concerned with preserved relative amplitudes. Relative amplitude
preservation (Becquey et al., 1979; Lavergne and Wills, 1977) means that a given
reflecting horizon should show the same amplitude characteristic in the final
processed seismic data as those measured by the sonic and density readings. This
minimises the inconsistency in amplitudes between the computed reflection
coefficient sequence and the corresponding seismic trace window, thus minimising
errors in the cross correlation function and hence in the estimated seismic wavelet.

In this area, however, it is more likely that inconsistencies due to well log
measurement errors will cause more instability in the estimated wavelet rather than
inconsistencies of the seismic data. Errors in the log measurements are echoed as
errors in the computed reflection coefficient sequence, and these errors will show up
as high amplitude noise at the tail of the estimated wavelet.

To understand how errors in the computed reflection coefficient series are
generated, we first need to understand how the sonic measurements are made with the
sonic tool (Labo, 1986). In its simplest form a sonic tool consists of a pulse signal
transmitter and two receivers. The receivers are placed one foot apart while the
transmitter is positioned at least 5 feet away from the nearest receiver to separate the
different wave modes that are generated when the pulse travels in the borehole, thus
allowing the P-wave energy to arrive first at the receivers. The first arrival of each
receiver wavetrain is then timed using a pre-assigned amplitude threshold. The arrival
times at the two receivers are then subtracted and the difference Atz corresponds to the
transit time, measured in ,usft", of the one foot section of the formation between the
two receivers. The validity of the sonic measurements depends largely on changes in
the hole diameter (Labo, 1986; Rider, 1986; Kokesh and Blizard, 1959). When the
hole diameter is uniform and similar to the drill-bit size, the sonic readings are very
reliable and no noise should be generated in the estimated seismic wavelet from the
reflection coefficient series computed at such a well-behaved hole. When the hole
diameter is larger than the drill-bit size, however, the hole is caved, due to fracture or
erosion by the circulating mud, sonic readings may be unreliable. Caving is expected
to occur in this area because the shales are young and unconsolidated, and also the
Chadra sands are known to be fine-grained and loose. When the caving is serious, the
travel path for the emitted pulse becomes considerably longer causing its amplitude to
be significantly attenuated before it reaches the receivers. The far receiver signal will
suffer more attenuation than the near receiver signal.

When the far receiver amplitude is attenuated enough and becomes near that of




the threshold amplitude, its detection time will come later than that of the near
receiver causing the difference in detection time to be stretched. This is called At
stretch and it can easily be up' to 10 us. The reading obtained by the sonic tool in this
case will erroneously give a longer transit time, or lower velocity value, for the
measured interval. In caved zones the far rcceiVer attenilation may be so severe that
the amplitude of the first cycle of the emitted signal drops below the threshold
detection level, so this cycle is skipped and the second cycle is detected instead. This
is called cycle skip and again gives an erroneous lower velocity value for the
measured interval. If the cycle skip persists throughout the caved zone, the whole
zone will be indicated as a low velocity zone by the sonic log. In some cases the
caving is so severe that it becomes shorter for the transmitted pulse to travel through
the mud than travelling through the formation, that is the P-wave energy lags the mud
wave so the two receivers record the mud wave. In this case the sonic log gives a
reading corresponding to the mud transit time, which is about 190 ,usft'l, instead of
that of the formation. On the other hand, zones where the hole diameter is smaller
than the drill-bit size are tight spots where the sonic tool might get obstructed while
being pulled out during the recording of the sonic log. Such obstruction causes
vibrations when the tool collides with the tight spots, and if they reach the receivers
before the transmitted signal a higher velocity noise spike will be indicated by the
sonic log. These can be readily seen on the sonic log as isolated spikes and thus
edited out.

These unwanted logging effects will tend to increase (in the case of noise
spikes), or decrease (in the case of At stretch, cycle skip or when recording the mud
wave) the velocity values measured by the sonic log.

Enlargements in the hole diameter cause similar unwanted effects for the
density log measurements because of the shallow depth of investigation of the density
tool (about 10 cm) (Rider, 1986). If the hole diameter becomes large, the density tool
loses contact with borehole wall and thus measures more of the drilling mud density
which results in low density measurements.

The combined effect of enlarged holes is the measuring of low acoustic
impedance in the zone where the hole was enlarged. When a reflection coefficient
series is computed from this well, we obtain high amplitude reflection coefficients at
the boundaries of the caved zone which do not represent the actual subsurface
reflection coefficient series at the well location. When a seismic wavelet is estimated
at the well, the computed reflection coefficient series does not compare to that in the
seismic trace window; thus the cross correlation function will be in error which results
in noise in the estimated seismic wavelet. Figure 2.13 shows an example of sonic log
editing.
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Figure 2.13. An example of sonic log editing. The spike denoted by cs, at depth -
1828 feet, is an example of cycle skip. The part of the log marked by a cross is to be
approximated by the solid line of lower transit time. '
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CHAPTER

LEAST SQUARES INVERSION

3.1. Introduction

In this chapter the theory of least squares inversion is discussed. The least
squares problem is presented as a minimisation of the error energy function which is
the L,-norm squared of the residual, or error, vector. The error vector is the
difference between the observed seismic trace and the forward model, i.e. the
synthetic seismogram. Thus the L,-norm is a measure of the degree of fit between
the observed and the synthetic trace. Since the synthetic seismogram is a function of
certain subsurface parameters, the least squares inversion is an optimisation process
in which the subsurface parameters are optimised to produce the best fit between the
observed trace and the synthetic trace.

Where the synthetic seismogram is a linear function of the parameters, the
optimisation problem becomes that of finding a generalised inverse of a rectangular
matrix of derivatives, called the Jacobian matrix, which defines the variation of each
of the error vector elements due to a change in each of the parameters. Where the
synthetic seismogram is a non-linear function of the parameters, however, we
linearise the problem and seek the solution iteratively, making use of the generalised
inverse.

In section 3.2 the least squares problem is defined as the minimisation of the L,-
norm function. To find the minimum point, it is necessary to determine the gradient
vector and a square matrix, called the Hessian matrix, that describes the curvature at
the current point. For linear, or linearised, problems the Hessian can be
approximated using the Jacobian matrix alone. Section 3.3 starts by defining a
minimum point and discusses the sufficient and necessary conditions for its
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existence. Since we are minimising problems with a linear forward model, this
section also includes a brief discussion of the quadratic approximation. of an error
energy function. Section 3.4 discusses minimising a general error energy function
using Gauss-Newton method. Since the error energy function to be »minirnjsed is not
necessarily quadratic, the method is iterative. Section 3.5 shows that fér the Gauss-
Newton method to converge the Hessian matrix must be at least positive semi-
definite. In practice, however, even if thé- Hessian is positive definite the Gauss-
Newton solution might not give a reduction in error energy. The solution to this
problem is to make linear search. Also, when the Hessian is posifivc definite but
poorly conditioned, the Gauss-Newton solution may fail to produce a reduction in
error energy; the obvious alternative in this case is to take the steepest descent
direction. When the Hessian matrix is singular or indefinite, then the Hessian has to
be modified so that it is positive definite for the Gauss-Newton method to converge.
Section 3.6 describes approximating the Jacobian matrix using finite differences.
Section 3.7 gives a brief review of Cholesky factorisatioh and illustrates the
important feature that the square root of any diagonal element of the positive definite
symmetric Hessian constitutes an a priori bound on the elements of the
corresponding row in its Cholesky factor. This feature is exploited in section 3.8 to
modify an indefinite Hessian into a positive definite matrix in a minimum sense so
that a sufficiently positive definite Hessian is not modified unnecessarily. Section
3.9 discusses a linear search using a backtracking strategy. In this method a local
one dimensional quadratic model, in the Gauss-Newton descent direction, is
minimised to obtain a step length that produces a decrease in error energy. In the
final section 3.10, the problem of coping with a saddle point is discussed; at such a

point the new descent direction must be defined in a direction of negative curvature.

3.2. Non-linear least squares inversion of seismic data

Seismic inversion may be viewed as a process of obtaining the best fit between
the synthetic seismogram calculated from a subsurface geologic model and the finite
set of field seismic observations. The subsurface geologic model is defined by two
sets of parameters: the boundary location parameters, and the acoustic impedance
parameters. The set of boundary location parameters describe the geometry of the
geologic model and consist of the two-way travel-times to the base of each of the n
lithologic units, or layers, that the model contains. Using vector notation they will be
denoted by the n-vector t=[z, #, ... £,]' . The set of acoustic impedance parameters
describes the lithology of the geologic model. Each lithologic unit is described by
two acoustic impedance parameters: the starting acoustic impedance and the linear
acoustic impedance gradient within the unit. Thus for the n-layer model described

by t, we have an n-vector X=[x, x, ... x,], where each element x, describes the




starting acoustic impedance of the i-th layer in the model, and an n-vector
y =[ V1 Yy oo Yn ]T whose elements y; describe the corresponding linear impedance
gradients. Besides the boundary and acoustic impedance parameters, we also
include in the inversion process the wavelet parameters that define the wavelet in the
frequency domain. The wavelet parameters are four bounding frequency paraméters,

two amplitude parameters and three phase parameters, so that in vector form the
- ‘

wavelet is a 9-vector w =[w, w, ... w,] .

The synthetic seismogram is generated in the time domain using the noise-free
convolutional model

S=wxr 3.1

where s is the computed seismogram, or model response, w is the wavelet and r is
the reflection coefficient sequence as defined by equation (1.1) in chapter 1. The
actual computation of the synthetic seismogram is performed digitally, so that the
resulting signal is a discrete time series denoted by s, with a finite number of
samples, say m. Similarly, the observed seismic data are also recorded in digital
form and are denoted by s/

The calculation of the time domain wavelet w(z) from its parameters, and the
calculation of the reflection coefficient sequence r(t) from the boundary location and
acoustic impedance parameters was the subject of a previous chapter. In this chapter
we would like to think of the synthetic seismogram as a function of time represented
by an m-vector s sampled at a sampling interval A7 for time values 7,,7,,....,T,, of
the time variable 1. Thus s is a function of 7, and the boundary location, acoustic
impedance and wavelet parameters. If we denote by an n-vector x the set, or in
practice the subset, of those parameters of interest for a specific inversion problem,
then s is a function of both T and x; i.e., s(T,x), with elements s, =s(7;,x) for
i=1,2,....,m. Corresponding to the synthetic seismogram are the field seismic

A

observations s’ recorded digitally at the same sampling interval. The purpose of

inversion then becomes that of extracting model parameter estimates x that give the
best fit of the synthetic seismogram s, = s(7,,X) to the observed seismic data s** .
The best fit criterion used in this inversion is least squares, where the best fit is
achieved when the sum of squares of the errors, or residuals, between the synthetic
seismogram and the observed data is minimum. The m-vector of errors, or residuals,

is defined as
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r=rx) =[x nx ..ol (3.2)
where
r(x)=s,—-s™ , fori=l2,..,m. (3.3)

The total sum of the squares of the errors, the error energy, can be written as the dot
product of the error vector, so that if we denote by F(x) the function of this sum we
have

FO) =4 [r0] =427 0r(x) (34)

where multiplication by 7 is included to avoid the appearance of .a factor of two in

the derivatives. This is the non-linear least squares problem (Fletcher, 1987), where
the synthetic seismogram is treated as a non-linear function of the parameters x.
The contribution to the value of error energy F(x) due to changes in the

parameters x,, x,, ... ,x, defines the gradient n-vector g. Clearly the change in one
parameter x; will affect all elements of r(x) and each of these contributes to the

total error energy F(x) of (3.4). It is therefore convenient to define a new matrix
J(x), called the Jacobian matrix of F(x), which gives the variation of each r,(x), for
i=1,2, ... ,m, due to variation of each parameter x, that is

[ dr, o or, |
o ox, ' 0x
dr, dr, ar,
dax oy, T ox,
Jxy= - . 3.5)
dr, or, ar,
| dx, dx, = ox,|

Since we always have m > n the matrix J is not a square matrix.

The elements of the gradient vector g(x) can now be derived by differentiating
(3.4) with respect to each of the parameters x;:




IF(x) _OF ar(x)
d, o é[( ’ (36)

J J

so that the gradient vector

Tkl [ M Il
AN EE R
£ 3 Dm
ox, or, ok, ox,, ry (X)

gx)=| . |= ,
gF Jrl 3r2 arm r. (x)

— . —_— T m =
L *n _axn &rn : 8an
or
gx)=J(x)"r(x) . (3.7

Assuming that F(x) is twice continuously differentiable, so that the order of
differentiation is interchangeable, a second differentiation of F(x) gives

0°F (X) & 9r(x) Ir,(X) <& d%r, (x)
dx, dx, —.-Z=n dx, Ox; +2 ri(x)&xké’xj ’

i i=1

or in matrix form, we obtain the Hessian matrix H(x) of F(x),
H(x) = J(x)" J(x) +8(x) , (3.8)

where S(x)= Er( )82r(x)

The problem with (3.8) is that the matrix S(x) is difficult to compute due to the
92r(x)

L s

second derivative term , which will be expensive to approximate using finite

differences.
At this point we would like to distinguish between linear or small residual

problems, and non-linear or large residual problems. If we judge that the residuals
r,(x) are small , then a good approximation to H(x) is still obtained after neglecting

the last term S(x) in (3.8), (Fletcher, 1987), which gives
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H(x) = J(x)" J(x) : (3.9)

This is equivalent to making linear approximation to the residuals r;(x). Thus using
only the information from r(x) and J(x), which are required to determine the
gradient (first derivative) vector g(x), it is possible to approximate the Hessian
(second derivative) matrix H(x).

If, on the other hand, the residuals r,(x) are large, or the residuals are highly
non-linear in the parameters vector X, then the contribution to H(x) in (3.8) from
S(x) is significant and S(x) should either be calculated or approximated. Any
method that attempts to include S(x) to define H(x) is called the Newton method. If,
however, H(x) is approximated by (3.9) the resulting method is called the Gauss-
Newton method. The Gauss-Newton method can be used to solve non-linear least
squares inverse problems iteratively, that is, by taking a sequence of linear steps to
the minimum (Lines and Treitel, 1984). This is the method used to minimise the
error energy function F(x) in this work.

3.3. Minimisation of the error energy function F(x)

3.3.1. Definitions of minimum points

Before proceeding to discuss the Gauss-Newton method used in the
minimisation of the error energy function F(x), local minimum definitions, the
conditions by which it could be verified, and a brief discussion of quadratic
functions are first given.

Definition 1: A point x  is said to be a strong local minimum of the
function F(x) if there exists a scalar § defining a neighbourhood of x" such that
F(x') < F(x"+p), for all p satisfying 0<| p| <8, where ||. | denotes the L,-
norm.

Definition 2: A point X" is said to be a weak local minimum of the function
F(x) if there exists a scalar & defining a neighbourhood of x°, such that
F(x')< F(x" +p), for all p satisfying 0<| p|<é.

These two definitions imply that x is not a local minimum if every
neighbourhood of x* contains at least one point with a strictly lower function value
(Gill et al., 1981).
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3.3.2. The first order condition

The firsi~order condition, by which we can verify. that the function F(x) has a
minimum at the point X', can be deduced by approximating thé function value
F(x" +p) at a-neighbouring point X +p by using the first three terms of the Taylor

series expansion
Fx +p)=F(x)+p g ) +ip"HX ) p+ .... (3.10)

given that g(x") = VF(x") is the first derivative vector or gradient of F(x) at x’, and
H(x") = V?>F(x") is the matrix of second derivatives, or Hessian, of F(x) at x. The
higher order terms involving higher derivatives can be neglected for small enough

el

The first-order condition is proved by contradiction from the first two terms of
eqﬁation (3.10) (Scales, 1985). If pTg(X')<0, then the first-order Taylor series
expansion ‘implies that F(x" +p)< F(x") which contradicts the definition of the
minimum given above. If, however, p'g(X )>0, then F(x -p)< F(x') which
again contradicts the definition of the minimum, Hence, unless p'g(x’) =0, which
implies that g(x*) = 0, every neighbourhood of x"contains points with strictly lower
function value than F (x). This proves that at every local minimum

g(x')=0 (3.11)

which is the first-order condition for F(x) to have a minimum. If condition (3.11) is

satisfied, X~ is said to be a stationary point.

3.3.3. The second-order condition

The first-order condition is necessary but not sufficient for the point X to be a
minimum. This is because a maximum or a saddle point at X can also satisfy the
first-order condition (Gill et al., 1981).

For x” to be a local minimum we have to consider the second-order condition
which can be derived from the first three terms of the Taylor series expansion (3.10)
and the first-order condition (3.11) '

F(x +p)=F(x)+ip'Hp (3.12)

for a small enough ” p || If H is an indefinite matrix, then p # 0 can be chosen so
that p"H(x )p <0 . This would imply from (3.12) that every neighbourhood of x"-

contains points of lower function value, which contradicts the definition of the




minimum. If, on the other hand, p"H(x )p > 0 for all p # 0, which implies that H
is positive definite, then there is no point x’ +p in the neighbourhood of x* with
lower function value. Therefore, for X" to be a local minimum the Hessian matrix H
has to be positive definite, which is the second-order condition.

For a general function F(x), the second-order condition is not nécessary for a
strong minimum, because a minimum can still be strong if, for some p,
p"H(x")p =0, but the third-order term in Taylor series expansion (3.10) is positive.
The second-order necessary condition for a strong minimum at x is that H is
positive semi-definite (Scales, 1985). For a quadratic function F(x), however, a
positive definite H(x") implies that x” is a strong minimum, and a positive semi-

definite H(x") implies that the point is a weak minimum,

3.3.4. Function approximation using quadratic models
In the minimisation of a smooth error function F(x), the approximation

F(x+p)=F(x)+p'g(x) +3p ' HX) p (3.13)

is applied to give a quadratic approximation to F(x+p) and the process of finding

the minimum is iterative. Iterative methods based on the quadratic approximation

are simple and have rapid rates of local convergence when applied to general

functions. Indeed if the function F(x) is quadratic the minimisation is reduced to
solving a linear system of equations, and so converges in only one iteration. Some
of the reasons for using the quadratic approximation are the following:

1. For a quadratic function, any derivatives of order higher than the second are
zero, and so the first three terms of its Taylor series expansion are exact
regardless of the value of p.

2. For a general function having a continuous second derivative, quadratic
behaviour could be obtained over a sufficiently small neighbourhood of a local
minimum x’.

3. Even away from the local minimum, quadratic information is more effective
than linear information in predicting directions p in which a substantial
decrease in the error function are made. This is because a Taylor series
expansion of F(x+p) about the point X truncated after the quadratic terms will
approximate F(x+p) to a given accuracy over a much larger neighbourhood of x
than will the series expansion taken to linear terms only (Fletcher, 1987).




3.4. Minimisation of F(x) using the Gauss-Newton method

The Gauss-Newton method when applied to the minimisation of a general
function F(x) is iterative. At the beginning of the k-th iteration let the current
estimate of the minimum point be x,. A descent vector p,, called the Gauss-
Newton vector, is determined and used to update x, to obtain a new estimate x,,, of
the minimum. '

The method is based on the quadratic approximation of F(x), where derivatives
of F(x) that are higher than second-order are neglected. The quadratic
approximation is obtained from the Taylor series expansion of F(x) about x,. That
is, given the function value F, = F(x,), the gradient g, =g(x,) and the Hessian
H, =H(x,), at the point x,, we have

F(x,+p)=F,, =F,+g p+ip'H,p (3.14)
where p=x-x, and F,,, is the quadratic approximation of F(x) following the k-th
iteration. Then the next estimate of the minimum is X,,, =X, +P,, where p,
minimises the quadratic approximation F,,,. The point x,,, minimises F,,, only if

the Hessian H, is positive definite, which is the second-order condition. Then at the
minimum point X,,, we have

VE ;=8 =8(X, +p,) =0 (3.15)

which is the first-order necessary condition. Thus from (3.14) and (3.15), we have
g. =8 +H,p, =0, (3.16)

Then p, is given by
H,p.=-8 (3.17)

If F(x) is quadratic, the global minimising point X,,; =X, +P, will be found in one

iteration by solvihg the linear system (3.17) for p,. For non-quadratic F(x),
X, 1 =X, +P, will not be the minimum of F(x) and the process has to be repeated

iteratively.




3.5. Convergence of Gauss-Newton's Method
For the Gauss-Newton method to converge, it is of course required that p « has to

be a descent direction. This follows from rewriting equation (3.17) as
p.=-H, g, (3.18)
hence
gp, =g H'g, <0. (3.19)

This is true for g, #0 if H;' is positive definite. This means that H, is also
positive definite. In the neighbourhood of a strong minimum, the Hessian matrix H
is positive definite and the function F(x) resembles the corresponding quadratic
approximation. Therefore, Gauss-Newton's method converges to the minimum given
that a sufficiently good quadratic approximation of F(x) is possible.

In practice, however, difficulties with convergence to a minimum X may arise
because H, may not be everywhere positive definite. Even if H, is positive definite
at a point that is not a minimum, the point x,,, may lie outside the region for which
the quadratic approximation at x, is valid; that is, the non-linearity of F(x) between
X, and x,,, =X, +p, cannot be predicted by the Hessian alone. For example, if the
curvature of the function F(x) in part of the region between x, and x,,, =x, +p, is
sharper than that predicted by the quadratic approximation, then the step p, is too
large and p, has to be scaled to make a smaller step. This modification to the
Gauss-Newton method can be achieved by doing a linear search along p, to
determine a scalar o > 0 such that F(x, +ap,) < F(x,). The actual method of
linear search used to find o will be discussed later in this chapter. However, it is
important to emphasise that the natural value for o is unity, and we should expect
that a—1 as x, = x" (Gill et al., 1981; Fletcher, 1987).

Other situations where Gauss-Newton's method might not converge are likely.
One possibility is that the Hessian H, is positive definite, but g} p=0 when g, #0,
which means that x, is already a well determined minimum along p, , because p, is
orthogonal to g,, that is, moving along p, is like moving along the contour line
defined by x, so that further progress in convergence would not be possible. One
readily available solution in this case is that p, takes the steepest descent direction.

This behaviour can be explained if we consider equation (3.19) (Gill et al., 1981),
from which it can be noticed that if the condition number of H, is not bounded by a
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constant that is independent of x, , then the solution of (3.17) will not be bounded
away from orthogonality to the negative gradient.

Another possibility is that H, is singular, in which case, as indicated by
equation (3.17), there will be a solution p, if g, is a linear combination of the
columns of H, , one of many possible solutions, so that no unique solution exists. If
g, is not a linear combination of the columns of H,, then no solution will exist at
all.

One last possibility is that the Hessian H, is indefinite. Then x, is a saddle
point if H, is non-singular and g, = 0; hence the only solution is the trivial solution
p, =0. In this case the quadratic approximation is unbounded below (Gill et al.,
1981) and thus indicates that an infinite step could be taken from x,. One possible
direction for p, that could be taken in this case is a direction of negative curvature.

Clearly, the Gauss-Newton method is not always satisfactory in minimising
general functions, even when used in conjunction with linear search. Fortunately, it
can be modified to provide a very reliable method. The general idea behind the
modified Gauss-Newton method, as used here, is to replace H, by a matrix H,
which is guaranteed always to be positive definite. The matrix H, is chosen to be
H, whenever H, is sufficiently positive definite.

3.6. Finite difference approximation of the Jacobian matrix

To compute the Hessian matrix or the gradient vector, we must compute the
Jacobian matrix J. The partial derivatives of the Jacobian are approximated by finite
difference derivative methods. Using the forward difference formula, the partial
derivatives of the Jacobian (3.5) are approximated by

Br. r,'(xj+6xj)_r,'(xj)
— = , 3.20
ox . ox (3:20)

J i
where dx; is a small step size for the j-th column of the Jacobian. A crucial decision

to be made here is the choice of the step size dx;.
Dennis and Schnabel (1983) suggested using a step size dx, =,/8M .Xx; , Where

€, is the machine precision. This will ensure that the rounding errors are
acceptable. Notice that a constant step size is not used, since each dx; depends on
the value of x;. This is highly recommended because in practice using a uniform

step size could be disastrous if the components of x differ widely in magnitude.
However, because x i could become close to zero, the step size dx i should be chosen

in the following way:




ox; = VE, .,max{_lxj|, typical x,}.sign(x;) , (3.2

where typical x; is a typical size of x;. A typical x; chosen will depend on which

set of parameters we are trying to invert for. For example, if we are inverting for the
acoustic impedance, a typical starting impedance is x j'=8000‘g_cm'3msec-1, while for
the impedance gradient a typical x;=100 gém'3rilsec-1/sanip]e interval

Dennis and Schnabel (1983) suggested further that to improve the accuracy of
the step x; as given by (3.21), we should make the following calculation

O, =(x;+0x;)—x; .

This should improve the accuracy of any finite difference approximation in practice,
since this tends to cancel out the rounding errors in machine representation of X;.

3.7. The Cholesky factorisation

When, at the k-th iteration, the symmetric Hessian is the positive definite matrix
H, , it can be factored using the LDL" factorisation as

H,=L,D,L’ (3.22)

where L, is a unit lower triangular matrix, and D, is diagonal matrix with positive

diagonal elements.
Since the diagonal elements of D, are strictly positive, then (3.22) can be

written as
H,=L,0D,L’ =L,D!D:L =R'R, (3.23)

where R, is upper triangular matrix. Factorisation (3.23) is known as Cholesky

factorisation. For the purpose of this work, however, either of the forms (3.22) or
(3.23) will be referred to as the Cholesky factorisation (Gill et al., 1981).

An important feature of the Cholesky factorisation could be revealed if we
express the k-th diagonal element of H, in equation (3.23) in terms of the elements
of the s-th row of R, that is

RR+ri+ .. +ri=h,, s=1,2,..,n. (3.24)
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Because the diagonal elements of H, are strictly positive, expression (3.24)

provides the following a priori bound on the elements of R, ,

Ir| <R, - (3.25)

Thus the elements of R, cannot grow without a bound, which makes this
factorisation numerically stable even for a Hessian matrix dominated by zero, or
very small, elements (Gill and Murray, 1974).

3.8. A Cholesky factorisation method for an indefinite Hessian

In this method we construct a positive definite matrix Hi from a modified
Cholesky factorisation of H, , that is

H: =L,D L’ . (3.26)

where L, and D, are the modified Cholesky factors of Hi (Scales, 1985).

The Cholesky factorisation (3.22) can be performed column-wise, where at each
step a column of L, and D, are determined, so that the j-th step is given by

d,=h, —Z *d, (3.27)

h; —Zl,,l,,d,
z,.,.:—d—— , i=j+l, j42, ... n. (3.28)

J

We can make the analysis and computations more suitable if we rewrite (3.27) and
(3.28) by making the substitution

c.=ld. . (3.29)

jr jr

Thus we have,

d=h-Nlc . (3.30)

and
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j-1
¢ =hy= D L,c i, j42, . . (3.31)
r=1

According to eqliation (3.28), if the off-diagonal elements are too'large then
their size can be decreased by increasing the elements of the diagonal matrix D, .

This allows the Cholesky factors L, and D, to be computed subject to two
requirements: (1) the elements of the diagonal matrix D, are strictly positive, and
(2) the elements of the factors L kDZ satisfy an a priori bound (Gill et al., 1981).

The factorisation is computed in column order and at the j-th step the first j-1
columns are already computed. Let B be a constant that defines the bound on the
elements of L kDi, and J be a small positive number; then

1 d

rsTs

<B ,s=1,2,..,j-1, r=1,2,...n (3.32)

and

d.>é.

J

The value of B will be discussed later. d is introduced to improve the condition of a
positive definite, but very ill-conditioned H, . A suitable choice for § is the relative
machine precision £,, (Gill et al., 1981).

To compute the modified factors, we first compute

= , (3.33)

and set an estimate for d ; as

d;=max{so |} . | (3.34)

and then compute

c.=h —N1lc i+l j+2, ... n. (3.35)




9}

==L,
y d’j
When H, is not sufficiently positive definite, then equation (3.33) will give ¢ ;<0.

In this case we could set d =8 . However the choice d; = l¢ j‘ has proved to be a

better choice in practice (Gill and Murray, 1974).
At this point the initial estimate d; of the diagonal element d, could be

modified if the off-diagonal column elements Ld? | i=j+1, j+2, ... ,n are not

yJ
bounded by f. Let

0, =max{le,i=j+1,j+2,....n}. (3.35)

Since ¢, =1,d, then clearly if 8% =jd; the elements of [, d} < B, that is they are
bounded by B. On the other hand if 65 > 8°d;, we choose d; such that

B= max{llnd 4

/i

,i=j+1,j+2,....,n} ,

so that the largest in modulus of the elements /,d J% is taken to be exactly equal to .

Thus 4 J is set as follows:

djzmax{;l,-,ei/ﬁ}.

Having determined d,, the elements of the j-th row of L, are computed as in the
unmodified Cholesky factorisation method. Also, when the j-th column of L, is
ultimately computed it is bounded as follows,

1.d?

U

<B , isj+l, j+2, ... 0.

When the process is completed for all the columns of H, , the resulting matrices
L, and D, are the factors of a positive definite matrix H that is related to H, in

the following way
H:=L,D,L} =H, +E, , (3.37)

where E, is a non-negative diagonal matrix whose j-th diagonal element is e;;.

Thus the positive definite matrix Hy differs from H . only in its diagonal elements.
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To find the value of B, we observe that a lower bound should be imposed so that
H, is not modified unnecessarily, and an upper bound should also be imposed to

preserve numerical stability and prevent excessively large elements in the factors.
When H, is positive definite, (3.27) shows that , for j=1, 2, ..., n and each r (r <), it
holds that I},d, <h; . Thus f should satisfy

(3.38)

where 7 is the largest in magnitude of the diagonal elements of H, , to ensure that
E, will be identically zero if H, is sufficiently positive definite.
To impose an upper bound on f, Gill and Murray (1974) demonstrated that, for

n>1,

[, <(&/B+(n-DBY +2(y +(n-DBH+5={(P), (3.39)

where the infinity norm of E, is defined as the maximum absolute row sum, i.e.,

n
B, = maxiqq, {Z \eu‘}
j=1 ,

and ¢ and y are the largest in modulus of the off-diagonal and diagonal elements of
H, . A reasonable value for f then is that which minimises {(f8). This bound is

minimised when
B2=&/n*-1 . (3.40)
Thus from equations (3.39) and (3.40) the chosen value for 8 should be

p = madfy /e, ) |

where €,, is the relative machine precision of the computer used and was included

to allow for the case when [H, IL =0.
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3.9. Line search by backtracking method

The aim of the line search is to find a step ¢, which gives a significant
reduction in function value along a descent, or search, direction p,. Because the
search direction p, and the starting point X, are constant throughout the line search,
the error function becomes a function of the single variable «,; that is
F(x, +a,p,)=F(a,). The function F(¢,) is assumed to possess a certain degree
of smoothness, therefore we use a search method that exploits this smoothness
(Luenberger, 1984). The search method should also make it possible to include the
minimising value of o, when F(¢,) is a quadratic with positive curvature.

One technique that satisfies the above requirements is based on curve fitting, in
which we fit a smooth quadratic curve to the points F(0) and F(1) that are already
available to us, in order to determine an estimate of the minimum point «,. The
only condition that should be imposed, in order to obtain a significant decrease in
function value, is that

F(x, +a,) < F(x,)+pogp, (3.41)

for some value p € (0,7) that, in practice, is taken to be very small so that a small
decrease in function value is considered to be significant enough. Equation (3.41)
states that the new point x,,, should fall below the current point x, and the line
passing through x, and having a slope that is a fraction p of the slope of the function
at x,. If F(x, +o,p,) has positive curvature at x, , then it can be proven that a
step «, that satisfies (2.1.1) exists (Dennis and Schnabel, 1983; Fletcher 1987).

The strategy for choosing ¢, is to try the full Gauss-Newton step first, that is set
o, =1, then if x, +p, is not acceptable, i.e., does not satisfy (3.41), we backtrack by
reducing o, until an acceptable «, +p, is found (Dennis and Schnabel, 1983).
Reducing ¢, is restricted within upper and lower fractions of the previous
unsatisfactory step. That is @, « Ac,,, for some A €[l,u], where 0 <l<u<l so

prev
that we do not reduce the step either too little or too much (the values for / and u will
be discussed later in this section). Defining

F(a)=F(x,+op,) , (3.42)

as the one dimensional error energy function through x, in the direction p,, if we

need to backtrack, we use all the information available about F to make a quadratic
approximation F (), then find & that minimises ﬁ( o) and take it as the next o, to
evaluate ﬁ(xk +o,p,).
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Initially, the information available to us about I:" (o) is
FO)=F(x,) , (3.43)
and
F=¢gp, . (3.44)
Then after taking the Gauss-Newton step we would have calculated
F(l)= F(x, +p,) . (3.45)

Thus if (1) does not satisfy (3.41); i.e., if F(1)> F(0)+pF (0), we make the one

dimensional quadratic approximation

§(o) = F(0)+ F (Q)a+[F(1) - F(0)- F (0)|o (3.46)

which satisfies (3.43), (3.44), and (34.5) and should have its minimum, for which
g (a)=0, at

A _F‘(O)
O =—— = — .
2[F(1)—F(O)—F (0)]

(3.47)

For & to be a minimum we must have § (&) > 0, that is,
§ (o) =2[F(1)- F(0)- F'(h]>o0.

This expression is satisfied at &, since F(1)> F(0)+pF (0)> F(0)+ F (0). Also
&> 0 because F '(0) is negative. This minimum value & is taken as the new value
for o, and then set o, < A, to evaluate F(x, +o,p,) to see if we have obtained
a reduction in the error energy function F(x) satisfying (3.39); if not we need to
backtrack again. To backtrack we setF(x, +a,p,) = F(1) and calculate the new
minimising & according to (3.47), and continue the process until the required «, is

found.
There remains to find numeric values for the bounds / and u of A e [l,u], where

0 <l<u<1. Note that since

F()> F(0)+pF (0),
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we have

a< I )
2(1-1)

This shows that if F(1)> F(0), then &<1, so that (3.47) gives the implicit upper
bound of u =1 on the first value of A. If, on the other hand, F(1) is much larger
than F (0) then & can be very small, in which case F(x, +o,p,)=F(x,) and
F (1) = F(0). Thus we do not want to decrease o, too much, since this is probably
due to the poor approximation of F (o) by the quadratic model (3.46), so we impose
a lower bound /, taken tentatively to be %. The bounds [ and # mean that if @ <0.1
then we take @, =0.1, and if &> 0.5 then we take o, =0.5.

3.10. Descending in a direction of negative curvature
The point x, where the gradient g, is zero, or in practice [g,[, <&, where eis a

small tolerance, has a descent direction p, given by

Ilepk =8>

that is obviously zero for a modified Hessian H,. If the Hessian H, is positive
definite this indicates that the point X, is a strong local minimum. If, however, H,
is indefinite then x, is not a local minimum and an alternative descent direction
should be defined.

The point x, where H, is indefinite and ||gk ||2 < € is a saddle point, and the new
descent direction to be taken is a direction of negative curvature. This direction p,
must exist if H, is indefinite and is defined as

p;H,p, <0 . (3.48)

To derive the negative curvature direction p, , we will use the Cholesky factors
of Hx and the diagonal matrix E,. The diagonal elements of E, are non-zero if
H, is not sufficiently positive definite.

Gill and Murray (1974) showed that such a direction p, is given by the system

of linear equations

Lip, =e, (3.49)




where € is a unit vector having its s-th element as unity, and s is the index at which
the quantity d, —e_, is least for s=1, 2, ... ,n.
If H, is indefinite then from (3.27) we could have

s—1
d,=h,+e,~» I’d, =§. (3.50)
r=1

If in equation (3.50) 6=0, then the quantity d —e,, is negative for an indefinite
Hessian. Gill and Murray (1974) argued that it is safe to assume that this conclusion

could still be obtained when 8 is small.
For the solution p, of equation (3.49) to be a direction of negative curvature it

has to satisfy (3.48) (More and Sorenson 1979). From equation (3.37) we have
H,=H:-E, .
Thus
piH,p, =p;Hip, ~p;E,p, .
Given the factors L,D,LY of Hy and equation (3.49), we have
p:H,p, = €L} (L,D,L,)Le, —p;E,p,
p.H,p, =D -pEp, ,

so that,
P:Hkpk =d, —preﬁ . (3.51)
i=l
From equation (3.49) it follows that p, =0 for i=s+1, s+2, ... ,nand p, =1, so that

s—1
p'lfHkpk =d,—e,— 2 pizeii .

i=1

Since from (3.50) we have concluded that

d —e_ <0,




then it follows that

s—1
pH,p, =d —e, - ple, <O0. (3.52)

i=1

s-1 ‘
Since ¢, 20 for i=l, 2, ... ,n, then ) p’e, >0, giving p;H,p, <0. Thus p, is a
i=1

direction of negative curvature when H, is indefinite.
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CHAPTER

LEAST SQUARES INVERSION WITH
CONSTRAINTS

4.1. Introduction

' The least squares seismic inversion problem could be thought of as an
optimisation problem where the error energy function is minimised subject to various
constraints. These constraints may be in the form of geologic information known a
priori, or are used to make the inversion process numerically stable. The constraints
can be equality and/or inequality, but in either case they are a linear combination of
the forward model parameters.

Section 4.2 discusses how the linear constraints arise in the three different
sets of parameters used in the least squares seismic inversion. In section 4.3 the linear
constraints are subdivided into five types. Then for numerical stability reasons, when
no values are assigned to the constraints, default values are assigned within the
computer program. Section 4.4 describes the equality and inequality constraints on
the boundary location problem, and hence on the time thickness of the lithic units in
the input earth model. Section 4.5 discusses the constraints on the wavelet
parameters, and section 4.6 discusses the constraints that can be imposed on the
acoustic impedance parameters.

In section 4.7 the Gauss-Newton method subject to linear equality and
inequality constraints is introduced. In this section, a binding direction of movement
is defined as a move along an active constraint, and a non-binding direction of
movement is defined as a feasible move off an active constraint, thus making an active




constraint inactive. It is also stated that the constrained descent direction is
determined in the null space of the subspace defined by the set of active constraints.
In section 4.8 the necessary and sufficient conditions of a minimum point subject to
linear equality constraints are described, while section 4.9 discusses these optimality
conditions subject to linear inequality constraints.

Section 4.10 describes a method that uses the QR factorisation to determine a
basis for the null space of the subspace spanned by the active set of constraints; such a
basis defines the direction of the constrained descent vector. Section 4.11 illustrates
using the QR factors of section 4.10 to obtain a least squares estimates of the
Lagrange multipliers. The Lagrange multipliers are used to decide if a non-binding
direction exists. If such a direction exists, the corresponding inequality constraint has
a negative multiplier, and a move off the constraint could be made thus it could be
deleted from the active set. When more than one constraint has a negative Lagrange
multiplier, we delete one constraint at a time and choose the one with the most
negative multiplier. Section 4.12 combines all the previous theory so far into a
method called the active set method, which is used in the algorithm for a computer
program to implement the inversion.

4.2. The constraints problem

In some cases, the straightforward minimisation of the error energy function
F(x) will not give results that are geologically possible, or numerically stable. In other
cases there may be geologic information known a priori that should be included in the
final solution of the inversion. For example, when determining the boundary location
problem we sometimes find a descent vector p, that gives an updated vector X.;= X;
+ oy pr with a lithic unit having a greater travel-time at its lower boundary than the
layer below, for any value of the step length ¢, , or we might obtain a negative value
for one or more of the layer boundaries. This of course should not be allowed since it
is physically impossible. A similar situation might arise for the bounding frequency
parameters of the wavelet and its calculated amplitude spectrum.

To solve this problem, we should always keep the boundary location vector
elements and the bounding frequency elements of the wavelet parameters vector in
ascending order and they should differ by specified minimum values. For the
boundary location vector the difference should be at least a sample interval az because,
in this case, to compute the Jacobian matrix J, we use the forward difference formula
to find a finite-difference approximation to the derivatives of the synthetic
seismogram with respect to the boundary location parameters. The sample interval
difference is necessary as a minimum because we need to perturb each boundary
location by one sample interval to obtain a reasonable approximation of the




derivatives. In the case of the bounding frequencies of the wavelet parameters, the
bounding frequency parameters are perturbed forward by an amount &, corresponding

to frequency f; which is i-th bounding frequericy where i=1, 2, 3, 4. The perturbations
df, depend on f; , but they always obey the relationship & < Af, where Af is the
frequency increment 1/T and T is wavelet period, so that the bounding frequency
parameters are always kept apart by an amount Af . This was found to be a
reasonable choice for the 128-sample (7=256 ms) wavelet that we use in this
inversion process. , ‘

Finally, the starting acoustic impedance vector elements should also be
constrained to fall above a specific value for these impedance parameters to have any
geological significance, and avoid any numerical problems. If we allow some of the
starting acoustic impedance vector elements to become negative or zero, we might
obtain reflection coefficients that are very large, or numerically undefined, and which
are completely unrepresentative of the area’s lithology. Indeed, unless the starting
acoustic impedance of each layer is above a certain value, the acoustic impedance log
would not be representative of the lithology of the area, so each starting acoustic
impedance for each lithic unit is constrained to be greater than or equal to a pre-
defined value depending on the area of study.

In addition to those constraints on the final solution that we must include in
the inversion problem, there are other desirable constraints that we would like to
include. Such constraints are usually used to confine the set of all iterative solutions {
X; } to be constrained within a region that is geologically feasible, and also to
overcome, to some degree, the problem of non-uniqueness that is inherent in the
inversion process. These constraints are generated from the geological information
obtained from interpreting the well-log and the seismic data. They represent the limits
to how far an initial geological model, represented as an acoustic impedance model,
can be perturbed by the inversion process to reach the final solution. In other words,
these constraints represent geological information known to us that the final solution
should include. For example, it is probably known that a certain layer has a constant
time thickness, or that it should not be less than a known time thickness. In other
cases, we may require that the phase spectrum of the seismic wavelet be kept the same
throughout the area of study. One important constraint that might often be used is to
set some acoustic impedance gradient vector elements to a constant positive value
where there is known to be a fining upward sequence within the input geologic model
or, in some cases, we might want to set all the impedance gradient elements to zero
throughout the inversion operation because all the layers in the geologic model are
lithologically uniform. This will result in each of the lithic units having a constant
acoustic impedance equal to its starting acoustic impedance.
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4.3. Types of constraints and default bounds

All the constraints discusséd above are examples of linear constraints. They
are linear functions of the variables, say the elements of a vector x, that have the
general form I(x)= a’x—f, for some row vector a’and a scalar f. | The linear
function /(x) is specified to be exactly zero, non-negative, or non-positive. Thus we
have two types of linear constraints to be considered ( Gill et al., 1981):

1. equality constraint having the form of aTx-ﬂ=0, and is written asa’x=f3 ;

2. inequality constraint having the form a"x-5>0, and it is written as a’x > f3.
Constraints of the form a”x— <0 are equivalently stated as —a’x>—f. A simple
form of linear constraints occurs when the function I(x) involves only one variable,
that is one element of the vector x, say x;, then other possible constraint forms are:

3. x;isfixed at §3, so x; =f;

4. x;has alower bound f3, so x; > f3;

5. x; has an upper bound B, so x; < .

The constraint forms 4 and 5 are called simple bounds on x;

No parameter in this inversion process is allowed to overflow. Thus a large
enough default constant has been chosen to indicate that one, or more, of the
parameters are becoming unacceptably large. The value of this constant is taken to be
1021; therefore, any parameter that exceeds this constant will indicate a numerical

€ITor.

4.4. Constraints on the boundary location variables

The constraint forms 1 and 2 will be used in the boundary location problem
to constrain the two-Way travel-time thickness of any layer between boundary location
variables ¢ and f;,;, where i=1, 2, ... , n-1 is the number of interfaces between the n

lithic units. Thus, if we require an equality constraint on the i-th layer, then we have
~t; +1,, =B, 4.1)
or if we require an inequality constraint the we obviously have

—t,+t,,2B,. 4.2)

Clearly the row vector here is aT=(-l, 1).
It was mentioned in the previous section that for reasons of finding an
approximation to the derivatives of the Jacobian matrix J,, each lithic unit should be

at least one sample thick in terms of two-way travel time. This translates to having an
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inequality constraint for each lithic unit where each 8, = Ar. Thus if we do not have

any other equality or inequality constraint of the forms of equations (4.1) or (4.2), an
inequality constraint of the form (4.2) with B, = Ar should always be imposed. For
example, suppose we have a five layer model, then we have a boundary location
vector with four variable elements, namely ¢, #, f; and t, and they represent the
interfaces between the lithic units. The two way travel-time to the base of the lower
unit, 5, should always stay constant. Then if we do not have any equality or
inequality constraint on the layers time thickness, we should honour the following

constraints throughout the inversion process:

s+ 1 2At
-ty + 13 2At
“ty+ 1y 2AL

-ty 2At 1,

Put into a matrix form, they become

-1 1 0 0Ty At
0 -1 1 0| | A
0 0 -1 1{¢t| | A

0 0 0 -1f¢, At -1
which is equivalent to
At>b (4.3)

If, on the other hand, the first two layers have to be 20 and 30 ms (two-way time)
thick each, then we have the equality constraints

-1 1 0 07| [20
0 -1 1 0]zl |30

or
At=b 4.4)

and the inequality constraints




or
At=>b . (4.5)

4.5. Constraints on the wavelet parameters
All the five forms of constraints discussed in section 4.2 are used for the

wavelet parameters vector. The four bdunding frequency parameters, f, f>, f3, and fj,
are allowed to take any value within the interval [Af , fu—248f ] The only

requirement is that the closest two successive frequency parameters can be is Af Hg.

The frequency parameters of the wavelet can only be inequality constrained. The
constraints for the amplitude and the phase parameters of the wavelet involve only one
variable each; they are represented by forms 3, 4, and 5. Unless otherwise specified,
the two amplitude parameters can vary in the interval [0,10”'] and the three phase
parameters can vary only in the interval [-10*,10*']. Thus the wavelet solution

should at least satisfy the following set of inequality constraints:
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where w; through wy are the nine parameters of the wavelet, fy is the Nyquist

frequency, Af is the frequency increment, and the constant c=10%", Clearly, the first

five constraints represent the inequality constraints on the frequency parameters of the
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wavelet; then each successive two constraints represent the lower and upper bounds
on the amplitude and phase parameters of the wavelet. Obviously, by changing the
right-hand side of any constraints 6 through 15 of the set (4.6) we can change the
lower or upper bounds of any of the amplitude and phase parameters.

4.6. Constraints on the acoustic impedance parameters -

The acoustic impedance parameters include both the starting acoustic
impedance parameters and the acoustic impedance gradient parameters. A positiVe
lower bound that depends on the geology of the area should be imposed on all the
starting acoustic impedance parameters. An upper bound could also be globally
imposed but the default is 10* gem3ms .

On the other hand, it is possible that the acoustic impedance gradient
parameters would not be constrained so that it has an upper bound of 10*!
gem3ms1/sample interval, and a lower bound of -10* gem3ms1/sample interval.
Howevér, it is sometimes desirable to constrain all the acoustic impedance gradient
parameters to be zero, and thus they are included in the set of equality constraints

instead.

4.7. Linearly constrained Gauss-Newton method

Before proceeding to discuss using the Gauss-Newton method to minimise
F(x) subject to linear equality and inequality constraints on the variables vector x, we
first consider the optimality conditions for the minimisation of F(x) subject only to
(1) linear equality constraints, and (2) linear inequality constraints. For optimality of
either minimisation problem, we need only to consider the points x which are feasible,
that is which satisfy all the constraints Ax =D in the equality case, and Ax2b in the
inequality case.

When minimising subject to the equality constraints
Ax=b , 4.7

the matrix A has m rows corresponding to the number of equality constraints, and n
columns corresponding to the number of variables, or parameters, in the problem.
The i-th row of A is denoted by 4], and its elements are the coefficients of the i-th

constraint;

AT, _ ~ A A
a xXx=a,x +a,x+..+a4,x, .




In the equality constraints (4.7) a feasible point will exist only if b is in the column
space of A (Strang, 1988), which means that the constraints have to be consistent.

When minimising subject to the inequality constraints
Ax>b , . (4.8)

the i-th constraint a]x >b, is active, or binding, at the feasible point X if a]% =lA)i,

and inactive if a% > Bi. A constraint is violated when a]X < f),. at the point X, which

of course is not feasible. If the i-th constraint is active at the point X, then there are

two possible feasible directions of movement p. The first is when p satisfies

then p is a binding direction of movement with respect to the i-th constraint, because
the constraint remains active at all points X+ op for any o, and the new point X + op

remains on the constraint. The second direction of movement is when p satisfies

a’p>0 ;

then p is non-binding direction of movement with respect to the i-th constraint,
because 3; (X+ap)=b,+aa/p>b, for any 0>0. The i-th constraint becomes

inactive at the new point X+ P which now is moved off the constraint.

4.8. Conditions for a minimum subject to linear equality constraints
We now consider the optimality conditions for the problem

4.9)

minimise F(X)
subject to Ax=b

where A is mxn matrix with the i-th row corresponding to the i-th equality constraint,
and the rows of A are linearly independent. Consider the step between any two
feasible points X and x. Since (4.7) applies, then by linearity

AX-Ax=AX-%)=b-b=0

Thus any step p between two feasible points must satisfy

~

Ap=0 (4.10)




which states that p is orthogonal to the columns of A. Such a vector p is a feasible
direction with respect to-the set of equality constraints (4.7).

The set of vectors that satisfy (4.7) lie in-a subspace for which a basis must
exist, and every feasible direction p can be written as a linear combination of the basis
vectors that span -this subspace (Gilbert, 1988). If we let the basis vectors be the
columns of a matrix Z, then

and every feasible vector p satisfying (4.10) can be written as
p=Zp, , (4.11)

for some vector p, called the projected feasible (descent) direction.
Now, if we write the Taylor series expansion of F(x"), about the minimum

point X", as given by equation (3.14) in chapter 3, in terms of p = Zp,, we get

F(x'+Zp,)=F(x')+plZg(x")+1p’Z"H(x")Zp, . (4.12)

Using a similar argument to that in the unconstrained case, in chapter 3, we can
conclude that a necessary condition for x~ to be a local minimum of (4.9) is that

p.Z7g(x)=0 ,
for every p,; thus

Z'g(x")=0 . (4.13)

This is the necessary first order condition for X" to be a local minimum. The vector
Z7g(x’) is called the projected gradient at x. The point x at which the projected

gradient vanishes is called a constrained stationary poiht.
Equation (4.13) states that g(x") is in the null space of the matrix 7. This
implies that g(x") lies in the row space of A (Gilbert, 1988), that is

g(x) =Y 4 =Ax (4.14)
i=1
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The vector A’ is the vector of Lagrange multipliers (Gill et al., 1981).
To derive the second order conditions for x* to be a local minimum, we

substitute (4.13) in the Taylor series expansion (4.12)

F(x'+Zp,)=F(x")+1p,Z"H(x")Zp, . (4.15)

Similar to the unconstrained case, (4.15) indicates that the sufficient condition is that
the matrix Z"H(x")Z be positive definite (not H(x")), but the necessary condition is

that Z"H(x")Z be positive semi-definite (Scales, 1985).

4.9. Conditions for a minimum subject to linear inequality constraints
We now consider the optimality conditions for the problem:

minimise F(X) } @16

subject to Ax>b

where A is mxn matrix with the i-th row corresponds to the i-th inequality constraint,

and the rows of A are linearly independent.
We derive the optimality conditions for the feasible point X  in a manner

similar to that for the equality constrained problem. Suppose that there are s rows of
the matrix A contain the coefficients of the constraints that are active at X . If we let
these s rows form the rows of a matrix A, we then have Ax" =b. Since the rows of A
are linearly independent, so are the rows of A. Let Z be a matrix whose columns
form a basis for the set of vectors orthogonal to the rows of A. Then every vector p

satisfying Ap =0 can be written as a linear combination of the columns of Z.

The Taylor series expansion of F about X along a binding direction
p=12Zp, is given by

F(x'+Zp)=F(x")+p!Zg(x" ) +1p’Z"H(x")Zp,

k]

which states that the first order necessary condition for X  to be a local minimum is
that Z"g(x") = 0, which is equivalent to

gx)=ATx . (14.7)

Note that the Lagrange multipliers, A,, correspond only to the s active constraints.
The first order condition (14.7) guarantees that x~ is a stationary point along

all binding directions p. However, in this case, where the active constraints are




inéquality constraints, we have the added complication that other non-binding feasible
directions could exist, and moving along such directions is a move off one, or more,
constraints (Scales, 1985).

Now suppose' that the point x° satisfies the active constraints as equalities,

then we have

Ax' =b - (4.18)
If p is a feasible non-binding descent direction then

A +p)2b . (4.19)

Subtracting (4.18) we obtain

Ap>0 , (4.19)

which shows that when the i-th constraint becomes inactive at the point x +p, we

have
a,.Tp >0 4.21)

Also, because p is a descent direction then ,

g"(x)p<o0 . (4.22)

From (5.17) we have,
T, * «T 2
g (x)p=21 Ap ,
since p is non-binding for the i-th active constraint, then
gx)'p=2Xalp . (4.23)

From (4.21) and (4.22) we conclude that if A, <O it is possible to make a descent

move off the i-th constraint an consequently x  is not a minimum. Clearly it is
necessary to add the condition A, >0 to the necessary condition (4.22) for x” to be a

local minimum.

The second order necessary condition for inequality constraints is similar to
that for the equality constraints if all A, >0, for i=1, 2, ... , s of the active inequality
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constraints, since we can regard these constraints as equality. In this case the
sufficient condition is also the same, that is Z"H(x")Z is positive definite (Gill et al.,

1981).

If , on the other hand, the Lagrange multipliers for the i-th active inequality
constraint is zero, A, =0, then equation (4.23) gives g’ (x')p =0. This is neither an

ascent nor a descent direction. Here we consider only the active inequality constraints
with A, >0 (Scales, 1985). If there are g such constraints with a corresponding

coefficients matrix A 4> and Z  defined as A L, =0, then the second order necessary
condition is Z H(x")Z, is positive semi-definite, and the second order sufficient

condition is Z H(x")Z, is positive definite.

4.10. Determining the null space matrix Z

There are several methods that can be used to define the null space basis
matrix Z, but the method based on the QR factorisation of the equality constraints
matrix A has many advantages due to the orthogonal matrix Q. For example,
Q'Q=QQ"=I so that Q" is the inverse of Q, and that the orthogonal
transformation Qx preserves the Euclidean length of the vector x, and the partitioning
of Q into submatrices, say Q, and Q,, results in the submatrices being orthogonal as

well. Furthermore, the matrices Q and R obtained can readily be used to find
estimates of the Lagrange multipliers at a possible minimum point X .
We start with the full column rank matrix A” and find the factorisation

A R
Q'A" = [0:| , (4.24)

where Q is nxn orthogonal matrix, R is mxm non-singular upper-triangular matrix,
and 0 is (n-m)xm null matrix. We then form, by taking the transpose of both sides of
(4.24),

AQ=[L 0], (4.25)

where L =R, and the partition Q = [Q, Qz] such that Q, is nxm and Q, is nx(n-m)

are two orthogonal matrices, thus from (4.25) we can obtain
AlQ, Q]=[L 0], (4.26)
so that

AQ, =L , | (4.27)
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and

A

AQ,=0 . (4.28)

An obvious candidate for the null space basis matrix Z is Q,. The columns of Q,

will form the orthonormal basis of the null space of, the full row rank matrix, A.

4.11. Estimating Lagrange Multipliers

It is of interest to compute the vector X of Lagrange multipliers at the
solution x* to the linear equality constraints problem (4.9). This information is
required by the active set method, which will be discussed in the next sectibn, to make
a decision about which of the active inequality constraints to be deleted from the
matrix A (Fletcher, 1987). The vector A’ is defined by (4.17):

g(x)=A"x

where A can be computed because the linear system (4.17) is consistent. However,
Lagrange multipliers are not defined at a non-stationary point, and (4.17) is not
generally consistent at such a point (Gill and Murray, 1979). Even if (4.17) were
consistent, the computation of the multipliers using finite precision arithmetic causes
computational error, so no exact values can be obtained. Nonetheless, it is essential to
estimate A’ at points for which (4.17) does not hold. Thus we compute a Lagrange
multipliers vector estimate A, at the iterate x,, such that A, has the property that (Gill
etal., 1981)

x, o x implies that 4, - A .

The QR factors of A can be used to compute a least squares estimate of the
Lagrange multipliers at any point x, at which the gradient vector is g,. Then we wish
to find an estimate A, such that (Gill and Murray, 1979):

[A2, -, . (4.29)

is minimum, where the Lagrange multipliers vector A, is of length m corresponding to
the m active constraints in A. Because the Euclidean length is preserved by
orthogonal transformations, the Euclidean length of the residual (4.29) transformed by

Q7 stays the same; thus
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A7, e o 72, - oA, @'

o]
Q] |
substituting for Q7 and Q"A”, then we have for (4.29)

Partitioning Q” such that Q” =

, where Q] is mxn and Q] is (n-m)xn, then

2

T2k

thus we see that the residual vector will be minimised when

2

| RA, —Qngk =0

or

RA, =Qlg,, (4.30)

Because R is upper triangular, we use back-substitution to compute the least squares

estimate of the Lagrange multipliers A, of (4.17).




CHAPTER

IMPLEMENTATION OF LEAST SQUARES
INVERSION

5.1. Introduction

The objectives of this chapter are to develop and test a strategy for solving the
seismic inversion problem with linear equality and inequality constraints. A computer
program has been written to carry out the inversion using an algorithm based on the
active set method. The inversion program is tested on some synthetic seismic
examples. Linear equality and inequality constraints are used to steer the inversion
process into a region that contains geologically feasible solutions, thus reducing the
problem of non-uniqueness, and feducing the risk of convergence to minima other
than the global one.

Section 5.2 discusses the active set method. We start by determining the
active set of constraints, then at each iteration we first determine if any of the inactive
constraints could become active. The best candidate is the nearest inactive constraint
in the direction of descent, so this section also describes how to calculate the step
length to such a constraint. Section 5.3 describes in some detail the steps taken to
implement, into a computer program, the least squares inversion of seismic data, with
linear equality and inequality constraints using the active set method. In section 5.4
we discuss the region of convergence for the initial guess, and give as measure of the
quality of convergence the error energy as a percentage of the energy in the observed
trace. Synthetic examples showed that, when solving for the boundary location
problem, the region of convergence is determined by the central lobe width of a zero




phase seismic wavelet. ~When solving for the acoustic impedance problem,
convergence is almost always achieved, but not necessarily to the correct solution; i.e.,
we might obtain a non-unique solution, so this section also includes a discq.ssion of
the uniqueness of the inversion solution. In section 5.5 severai synthetic examples are
given to illustrate inversion for boundary locations, impedance values, boundaries-
impedances combined, wavelet parameters, and boundaries-impedances-wavelet
parameters combined. In section 5.6 some concluding remarks are given which
should help in developing a strategy for the real seismic data inversion in the next
chapter.

5.2. The active set method
This method uses the technique discussed in section 4.7 for solving an equality
constrained problem to solve a general problem that contains both equality and

inequality constraints. Thus the problem we need to solve is the following:

minimise F(x)
subjectto Ax=b (5.1)
Ax2>b

where the matrix A contains the coefficients of the equality constraints, the vector b
contains the equality values, the matrix A contains the coefficients of the inequality
constraints, and the vector b contains the inequality bounds. The optimality
conditions for equality and inequality constraints have been discussed in sections (4.7)
and (4.8), where we recall that only the constraints active at the current point x, are
significant. In this section we will assume that the projected Hessian Z!H,Z, is
always positive definite so that a descent direction p, = Z,p, can be found using the

Gauss-Newton step
ZH,Z,p, =-Zg, (5.2)

which is equation (3.17) of chapter 3 in the null space of A , defined by Z, (when the
projected Hessian is not positive definite then it should be modified as discussed in
section 3.8).

The first step in the active set method is to construct the active set of
constraints. An obvious candidate for this set is the set of equality constraints. This
set is always included in the active set. Next we include those inequality constraints
that are active at the current point x .- Suppose that we have s equality constraints and

r inequality constraints, and suppose further that g of the inequality constraints are




active at x,. Let us denote by A . the mxn matrix, where 1 <m < s+q, whose i-th row
contains the coefficients of the i-th equality constraint for 1 < i < s, and the
coefficients of the (i-s)-th inequality constraint for s+1 < i < s+q. The rest of the
inequality constraints that are not active are temporarily disregarded. The problem

then becomes

minimise F(x) } 53

subject to ;\,‘xk = f)k

which of course is the equality constrained problem of section 4.7, and for which a
null space basis matrix could be computed as described in section 4.10.

When using the active set method to solve problem (5.1), there will always be
some inequality constraints that are not active and so not included in the active set.
The linear search step «, obtained by the backtrack method (see section 3.9) must
always take into account the possibility of violating one, or perhaps more, of the
inequality constraints that are not active at the current point x,. Therefore, it is
important to know beforehand the step length ‘@ to the nearest inactive constraint. To
find @ we compute all the step lengths o, from the current point x, along the current
search (descent) direction p, to each of the inactive inequality constraint a] and take
the smallest as @.

To find ©,, suppose for some p, that a’p, >0, then any positive move along
p, will not violate the constraint a;. That is, if ap, is non-negative for all such
constraints then they impose no restriction on the step length o,. However, if

a/p, <0, then the constraint a] becomes active at the critical step o, satisfying
T
a; (x,—op,)=b; ,
which implies that

b, —a’x
=ttt 5.4
a; P,
where i is an index describing the inequality constraints not included in the active set.

The step length @ is then taken as

, (5.5)

{min{q}, if a’p, <0 for some i - th constraint not in the active set

+oo , if a]p, =0 for all the constraint not in the active set




and it is the maximum non-negative feasible step that can be taken along p,. Thus it
represents an upper bound on-the line search step 1ength o,.
The following steps summarise the active set strategy:

1. Start at the current feasible point x, with A, b,, and Z, .

2.  Test for convergence. If x, is a minimum in the subspace defined by Z,, then
we consider deleting a constraint from the active set. The deécision to delete a
constraint is based on the sign of the computed estimates of the Lagrange
multipliers of the active set. The best constraint to delete is the active inequality
constraint with the most negative multiplier. When all the multipliers are non-
negative (A, 20), or when none of the inequality constraints are included in the
active set, then clearly convergence has been achieved and the inversion process
terminates with the solution X" =x,. If a constraint is deleted from the active
set, the matrices A > b «»and Z, are updated accordingly.

3. Solve (5.2) then find a descent direction p;, =Z,p,.

4. Find the step length @ to the nearest inactive inequality constraint using (5.4)
and (5.5).

5. Decide on the step length «,, taken in the direction p, , that gives a reduction in
error energy. If o, =@, then add the constraint that corresponds to @ to the
active set, and update A % IA)k ,and Z, .

6. Compute x,,, =x, +0,p,, set k < k+1, and repeat the process at step 1.

5.3. The steps of the inversion algorithm

The inversion algorithm, using the active set strategy as implemented here, can
be broadly divided into four basic steps: (1) handling of the active and inactive
constraints, (2) determining the descent vector p,, (3) determining the step length «,
and (4) testing for convergencé to the solution.

The set of all possible linear constraints that are applicable to the problems at
hand, should always be determined first, before going into any other inversion step.
This is equivalent to stating the region of feasible geologic solutions that we are
seeking, so avoiding any other solutions that are mathematically possible but
geologically not feasible. This, of course, requires a prior knowledge of the dominant
lithological trends of the area in study, a requirement that is normally satisfied since
we already have at least one well location at which a seismic wavelet was estimated,
as discussed in chapter 2. For every problem to be solved, e.g. boundary locations,
acoustic impedances or the wavelet at a well location, we always construct two
matrices for the constraints coefficients, a matrix A that contains coefficients of the

equality constraints and the active inequality constraints, and a matrix A that contains




the coefficients of all possible inequality constraints; that is all active and inactive
inequality constraints.

There is a lot of housekeeping when using constraints in an inversion program.
Any inactive constraint that becomes active at any current point X, should be added to
the matrix A, and any active constraint that should become inactive should be deleted
from A. Thus we need to keep track of which of the inequality constraints are active
and which are inactive at the current point x,. To do this we observe that only the
inequality constraints could be added to, or deleted from, the active set, so we
construct two position index sets. The first set includes the position indices for all the
inequality constraints of A, either active or inactive. This set will be called the
inequality constraints set. The second set includes the position indices for all the
active inequality constraints of A. This set will be called the working set. When an
inactive inequality constraint becomes active at an updated point x,,,, its position
index in the matrix A, which is included in the inequality constraints set, is added to
the end of the working set. If, on the other hand, an active constraint becomes
inactive at x,,,, then its position index is deleted from the working set. The actual
inequality constraints never change position in the matrix A, only their respective
position indices are added to, or deleted from, the working set. In this way, whenever
we need to find the step to the nearest inactive constraint, we only need to consider
those constraints whose position indices in A, i.e., in the inequality constraints set, are
not included in the working set.

The second step in the inversion algorithm is to determine the descent vector
p,. This is the Gauss-Newton descent vector which can be computed in two steps.
First, the modified Cholesky factors of the projected Hessian Z H,Z are given by

H,=Z'H,Z, +E,=L,D,L] . (5.6)
We solve
Ekﬁkl_jkpz = —ngk (5.7

for p,, which is in the null space of A defined by Z. Then we find p, =Z P, The
resulting descent vector p, satisfies all the active constraints defined by A at the
current point X, .

To solve (5.7), we set

ﬁkijll;pz = uk 4
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so that
Lp,=D;'y, , (5.8)

and
Lu =-Zg, . (5.9)

At this point the advantages of using the Cholesky factorisation become obvious.
Because of the structures of the diagonal matrix D, and the lower triangular matrix
L,, no explicit matrix inverse computation is necessary to find p,. We first solve
(5.9) for u, by forward substitution, then solve (5.8) for p, by back substitution. The
descent vector p, = Z,p, is then computed.

The third step in the inversion algorithm is to determine the step length used to
update the current point x, to obtain x,,, =x, +,p,. The natural value for ¢, in the
Gauss-Newton method is unity for quadratic error energy function F(x). However, for
a general error energy F(x), quadratic approximation may be valid only at points x,
close to the minimum solution point x . Nonetheless, we always first consider o, =1
as the best choice for the step length whenever possible. In practice, however, it is
useful to limit the maximum change that can be made in X, at any one iteration, so
that we attempt to force convergence to a solution nearest to the initial guess. This, of
course, is also consistently achieved if reasonable upper and lower bounds are placed
on the elements of x, using the inequality constraints. But by simply limiting the step
length we could possibly prevent all the extra housekeeping due to addition and
deletion of constraints and the associated matrix updates. To limit the maximum
change in x, we compute, at each iteration, the step length ¢ that satisfies |5z p kl <A,
where D is a pre-defined constant parameter. Obviously, a different value for D has to
be assigned depending on which set of variables we are considering. For example, if
we are solving for the acoustic impedance problem, then we must have a constant A
for the starting impedance variables X, and a constant A for the impedance gradient
variables y. Thus we need to evaluate &, and 5:), and then set & = min{&x,& y}.
When solving for the wavelet problem we evaluate & =&, for a predetermined A,,.

For the boundary location problem, however, we also require that the minimum step
length ¢ results in at least one boundary location variable being perturbed by a
minimum of one sample interval. This is because, if none of the boundary locations
are perturbed, there is no change in the error energy.

Another upper limit imposed on ¢, is due to the step length o, which is the
step to the nearest inactive constraint, see section 5.2. The step length o is the

minimum step of all possible step lengths to the inactive inequality constraints. If ‘&
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is taken as o, then the inactive constraint that corresponds to @ should be added to
the active set of constraints by adding a row to A and then updating the position index
set and the QR-factors of AT, so that we obtain a new Z, and Q, by partitioning Q.

The choice of the step length ¢, is determined basically in three steps. First, if
the min{@, &} <1, then ¢, is taken to be the min{e, @}, otherwise «, is set to 1.
Second, we test if F(x, +o,p,) < F(x,); if this is the case when o, = &, then we
accept o, as the step length. However, when a, = @, we further investigate whether
P.8,. is positive or negative (g,,, is the gradient vector at x,,,). In the case when
P81 <0, we accept o, =& and add the corresponding constraint to the active set.
In the case when p,g,,, > 0, then this would mean that there is a point between x, and
X, +o,p, that should have a lower error energy value than F(x, +a,p,). The
reason for doing this is to avoid adding a constraint to the active set whenever
possible. Third, when F(x, +a,p,) > F(x,), then we use the linear search method to
find a new o, for which we obtain a reduction in the error energy function as
described in section 3.9.

The final step in the inversion program is to establish convergence to a
solution x". To do this we need to satisfy one of four convergence criteria. Two of

these convergence tests are concerned with the error energy value, one with the
projected gradient magnitude ”Zng“ at x,, and one with the total number of

iterations. When the error energy value at the current point is less than or equal to a
small tolerance value etol, i.e. F(x,)<etol, then convergence is established and the
current point becomes the solution x". Also, when the decrease in error energy is
within the tolerance, i.e. F(x,)—F(x,,,) <etol, then the iteration process should
terminate and accept the current point as the solution x .

The third criterion for convergence is applied to the projected gradient
magnitude at the current point x,. When x, is at, or close to, a minimum then, for a
small tolerance grol, lIZ:gk " < gtol. This means that we are either at a weak minimum

or at a saddle point. The decision that the point x, is a weak minimum or a saddle
point depends on whether the projected Hessian Z,H,Z, has been modified by E, to
obtain the Cholesky factorisation L, D,L’. When at least one of the elements of the
diagonal matrix E, is non zero, then Z,H,Z, is indefinite which means that x, is a
saddle point, otherwise the projected Hessian is positive definite and x, is a weak
minimum.

A weak minimum at x, indicates that convergence has been achieved at the
subspace defined by Z,. However, there remains the possibility that further
reductions in error energy could still be obtained if one, or more, of the active
inequality constraints is deleted from the active set defined by A. Thus we compute
the vector A, of the Lagrange multipliers. Reduction in error energy can be obtained
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only if one, or more, of the constraints has a negative Lagrange multiplier (see section
4.9). We delete only one constraint at a time, and choose the one that is most negative
first. When a constraint is deleted from the active set, the QR factors of AT are re-
computed and a new null space matrix Z, is determined. The case when all A, 20
corresponds to a weak minimum, and the point x, is accepted as the solution x .

When x, is a saddle point, we choose to take the projected descent direction
P, as a direction of negative curvature (see section 3.10) defined by

YT —
Lkpz =€,

where e_ is a unit vector having the value 1 at the coordinate s, and s is the direction
that was modified the most to obtain the modified Cholesky factors L, and D,. That
is, we choose s such that d —e__ is least, where d_, are the diagonal elements of D,
and e, are the diagonal elements of E, of (5.6). Having determined p_, it follows that
p, =Z,p,, which is then taken as the descent direction of this iteration.

The last criterion for convergence is simply to assign a maximum number of
iterations the inversion program can perform. Once this number of iterations is
reached, the program terminates with x, as the solution x .

A schematic flowchart of the main steps of the algorithm is shown in Fig. 5.1.
In the diagram we start at the k-th iteration with an initial guess x,, (i.e., boundary

locations, acoustic impedances, or wavelet parameters at a well location.) and a
Jacobian matrix J,, from which we can compute the gradient vector g, and a

Hessian matrix H, using the residual vector r(x,) = s(x,)—s"".

5.4. The initial guess and convergence to the correct solution
5.4.1. The region of convergence

The parameterised initial guess must be within a region of convergence around
the solution for the inversion process to converge to the correct solution. In the case
of the boundary location problem, this region is found to have a radius of one-half of
the central lobe width for a zero phase seismic wavelet.

This can be illustrated by considering a three layer model, so that we have two
boundary variables representing the middle interfaces; say ¢, and ,. An error energy
function was computed for a correct boundary locations solution t=[28 54 76]’,
with a starting impedance x = [5000 3000 4000]T and a zero impedance gradient at
each layer, so that y :[0 0 O]T. The error energy function F(x) was generated by
scanning through all possible points.f,= 2, 4, ...., 74 for each t,= 4, 6,...., 76, so that

the linear inequality constraint ¢, —¢, =2 was always satisfied. The wavelet used was

near a zero phase having the parameters w = [1020 6075 110 110 0.418 0.113 O]T.
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Figure 5.1. A schematic flowchart of the main steps of the inversion program
using the active set strategy.




This wavelet has a central lobe width of approximately 18 ms. At each point (,,t,),
the initial guess was evaluated by convolving the reflection coefficient series
generated from the two-way time at that point and the acoustic impedance information
X and y, sampled at 2 ms with the 20 samples time domain wavelet obtained from the
wavelet parameters w. The resulting 3-dimensional error energy surface is shown in
Fig. 5.2a, where it can be seen that the point (28, 54) represents the global minimum
error energy.

S VA R TN G NN D [ SO GRS SN A SN SN T WA Y SN TN SN SN N N S N TN AN NS SN S N N

2
8 g g 3

| N T T NN PO SN NN SN SN S [N RN TR S SHN AN N N SO |

(<]
(=]

LIRS A S B MY BN [ B B B NN B AN R RS M S B B BN RO

LI A T S BN (N SN SN S N S (RS A S e S N SN BN R E S AN R B BN B B R B B |

10 20 30 40 50 60 70
t

Figure 5.2a. The error energy surface showing the region of convergence
for the global minimum (28, 54).

Figure 5.2a also illustrates that any point in the region surrounding the point
(28, 54) at a radius of 8 ms will converge to this global minimum. The 20-sample
time domain wavelet is shown in Figure 5.2b, where it can be seen that the central
lobe width is approximately 18 ms, which also explains why other local minima tend
to be separated by about 18 ms away from the global minimum along the lines #,= 28
and t,= 54. This is because the overlap of the secondary lobes of the wavelets from
each of the two reflecting boundaries will result in lower error energy if they are
separated by a multiple of the central lobe width.
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Figure 5.2b. The time domain wavelet used to generate the error energy surface
of Figure 5.2a. Note that the vertical axis represents the two-way travel-time in
ms.

5.4.2 The convergence criteria and solution quality

As previously mentioned in section 5.3, the convergence to a solution is
established when one of four criteria is satisfied. When convergence is established
because F(x,) < etol, then obviously the convergence is perfect, although it might not
be unique. However, when convergence is reached due to F(x)-F(x,,,) < etol, or
HZ:gk || < gtol | or when the maximum number of iterations allowed is reached, then
the solution obtained may still contain error energy that is probably much larger than
etol, due to the high amplitude value of the samples in the problem at hand. In such
cases we need to obtain a relative measure of the error energy with respect to the
observed seismic trace. This relative error energy measure is obtained as a

percentage:

2(error energy value at X )

E. (%)= x 100

observed trace energy

i(s,. (x) - s,.””“)2

=| & x 100

n

> (s)

where s, (x") represents the synthetic seismic trace at the solution x, and s,.‘””
represents the observed seismic trace. Obviously when F(x,) < etol, then E,,, is very

small, or possibly zero, for a small efol, while in the case of convergence with any of




the criteria E,,; could still be large, but the maximum is 200%, which is obtained when
the traces s(x*) and s** are out of phase.

5.4.3. Uniqueness and resolution of inversion solutions

Obtaining a solution to the inversion problem with zero error energy does not
mean that there is no other solution with zero error energy. This is the problem of
non-uniqueness in inversion solutions. The uniqueness of the inversion solution is
discussed by Backus and Gilbert (1970) and Parker (1977). The non-uniqueness, or
ambiguity, in this inversion process is a product of the way we construct the earth
model to obtain the initial guess and the inversion solution, and the criteria we use to
establish the degree of fit between the inversion solution and the correct, or observed,
seismic solution after each iteration.

The initial guess impedance profile, and also that of the solution, is
constructed in such a way that we have discontinuities at the boundary locations. This
would mean that the solution has infinite bandwidth. The synthetic seismogram and
the observed trace are actually band-limited, thus when we compare them for their
degree of fit, we can only make the comparison in this limited frequency band. The
frequency components that are outside this band are filtered out by the wavelet filter
when computing the synthetic seismogram. The result of this is that low frequency
components can be added to the impedance profile and still obtain the same degree of
fit with the observed data, so that the inversion process can add any low or high
frequency components outside the frequency band defined by the wavelet and yet still
give a perfect fit. This indicates that the more we require our solution to have a
resolution higher than that defined by the band-limited seismic data, i.e. by making
our impedance solution broad-band, the more non-uniqueness, or ambiguity, we
introduce in the obtained impedance solution.

Another form of ambiguity occurs when, for example, we have a sand layer
immersed in shale, and this layer is at or below its tuning thickness. At the tuning
thickness of such a layer, we obtain a maximum reflection amplitude (Widess, 1973).
This is due to the constructive interference between the primary and secondary lobes
of the seismic wavelets that are reflected from the top and bottom boundaries of the
layer, thus giving a strong trough and a strong peak amplitudes. For layer thickness
less than the tuning thickness, the peak to trough time separation becomes invariant to
the tuning thickness, and all thickness information becomes encoded in the peak to
trough amplitude, which becomes progressively smaller as the layer becomes thinner.
When inverting for a thin layer the ambiguity arises because the inversion process can

either decrease the thickness of the layer or decrease the contrast in acoustic




impedance between the layer and its surrounding material, and still obtain the same
seismic response.

5.5. Synthetic examples

Several examples will be given in this section to study the performance of the
inversion program, and then to attempt to use the results to reach a conclusion on how
to invert the field recorded seismic data. The synthetic examples are divided into
inverting for (1) boundary locations, (2) acoustic impedance variables, (3) a
combination of boundary locations and acoustic impedance variables, (4) wavelet
parameters, and (5) a combination of boundary locations, acoustic impedance
variables and wavelet parameters.

In almost every synthetic example discussed in the following sections, the
observed trace is obtained by the time domain convolution of the earth model with the
parameters shown in Table 5.1. In all cases the sampling interval is 2 ms. The
boundary location vector t is in units of ms of two-way travel-time, the starting
impedance vector x has units of gcm-3ms-! and the impedance gradient y has units of
gem-3ms-!/sample interval.

observed observed observed
layer boundary starting impedance
number  locations  impedances gradients
(ms) (gem™>ms™!)  (gem>ms Ysample)
n £ obs Xobs Yobs
1 60 11000 0
2 74 6000 0
3 82 8000 0
4 112 5000 0
5 126 7000 0
6 180 6000 0

Table 5.1 The synthetic observed earth model used to generate most of the
observed seismic data for the synthetic examples studied in this chapter.

The wavelet used to generate the observed seismic trace has the parameters
vector w,, = [24 28 55 84 115000 115000 0.418 0.113 0]". The initial guesses for
all the synthetic examples are variants of the observed data of Table 5.1 and the

wavelet parameters above.

5.5.1. Examples of boundary location inversion
Two representative examples are discussed here. First, we discuss an example
where the boundaries are within the region of convergence and with correct polarities

across the boundaries. In the second, we add the complication of having polarity
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reversals across some of the boundaries. We then discuss the effect of random noise
on the inversion for boundary locations. We examine the inversion results when the
signal-to-noise ratio in the observed trace is 4, 2, 1 and Ya.

5.5.1.1. A simple boundary location problem

In this example all the boundary locations are misplaced, with respect to
observed earth model boundaries, by up to 8 ms. The observed boundary locations
and the initial guess data are shown in Table 5.2.

observed solution initial observed observed
layer boundary boundary boundary starting impedance
number  locations locations locations  impedances gradients
(ms) (ms) (ms) (gem™ms)  (gem>3ms /sample)
n t obs t sol tim’ X obs y obs
1 60 60 52 11000 0
2 74 74 70 6000 0
3 82 82 88 8000 0
4 112 112 104 5000 0
5 126 126 132 7000 0
6 180 180 180 6000 0

Table 5.2. Data for the boundary location inversion problem of section 5.5.1.1.
Since this is a boundary locations inversion problem, no impedance variables are
present, and only the constants x , and y_, are shown,

obs

The 8 ms difference in boundary locations for layers t; and t, represents the
maximum value for any of the boundaries to converge, that is the radius of the

convergence zone. For this example convergence to the correct solution, i.e. t , , was

obs®

obtained in five iterations. The initial relative error energy, with respect to t_, , was

obs
E. = 184%, and the final solution had zero error energy. The impedance profiles for
the observed data, initial guess and inversion solution for this example are shown in
Figure 5.3a. The solutions after each iteration are shown in Figure 5.3b. In Figure
5.3b, the first and last traces are the observed seismic trace, and it is shown twice so
that it can be compared to the initial guess and the final solution. The second trace is
the seismic response of the initial guess impedance profile, and the trace before the
last, i.e. trace number 7, is the seismic response to the final impedance solution.
Corresponding to each iteration is an error trace. The set of all error traces is shown
of 184% the last error

trace has all its elements being zero and represents the final error energy; and the

in Figure 5.3c. The first error trace represents the initial E,

middle error traces show the progression of the error trace towards zero at each
iteration. This example illustrates that the boundary location solution can converge to

the global minimum when the initial guess is within the region of convergence.
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Figure 5.3a The impedance profiles for the example of section 5.5.1.1. Note: for
all the impedance profile figures in this chapter, the initial guess profile is a
dashed line, the observed profile is a dotted line and the solution profile is a solid
line. Note that t; and t, are misplaced by 8 ms. In this example convergence to
the correct solution was obtained.
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Figure 5.3b. The solution traces for the example of section 5.5.1.1. The first and
last traces, i.e., traces numbered 1 and 8, are the observed seismic traces. Trace
number 2 is the initial guess seismic response. Traces 3-7 represent the seismic
response of the five iterations of inversion performed to obtain the final solution
of trace 7. Observe that traces 7 and 8 are exactly the same. Note that the vertical
axis represents the two-way travel-time in ms.
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Figure 5.3c. The error traces for the example of section 5.5.1.1. These traces
correspond to the solution traces of figure 5.3b. The first error trace corresponds
to the solution trace numbered 2 and the last error trace corresponds to the
solution trace numbered 7. Note that the vertical axis represents the two-way
travel-time in ms.

5.5.1.2. Boundary locations problem with a polarity reversal
In this example the observed earth model was altered so that a polarity reversal

was introduced in layer 4 in the initial guess. The observed and initial guess earth
models are listed in Table 5.3.

observed solution initial observed initial starting  observed
layer boundary boundary boundary starting impedances  impedance
number  locations locations locations  impedances  (gem>ms!) gradients
(ms) (ms) (ms) (gem>ms™) Xinit (gemms™/sample)
n tab: t.wl tini xnbx ynbs
1 60 60 56 11000 11000 0
2 74 72 72 6000 6000 0
3 82 86 86 8000 8000 0
4 112 108 108 5000 7500 0
5 126 126 130 7000 7000 0
6 180 180 180 6000 6000 0

Table 5.3. The observed, solution and initial guess data for the example of
section 5.5.1.2, the initial guess is showing incorrect boundaries and a reversed
polarity in layer 4.
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The initial E,,= 105% and the inversion program terminated after two iterations
because the solution converged with E,,= 35% after both the first and second
iteration. The impedance profiles of this example are shown in Figure 5.4a, where it
can be observed that the inversion solution has converged to the two correct boundary
locations for interfaces 1 and 5, while for the interfaces in between the inversion has
failed to converge to the correct boundary locations. This, of course, is due to the
polarity reversal across interface 4, at 108 ms. The error traces shown in Figure 5.4b
give a better insight into the optimum solution obtained. In the second trace much of
the error energy is concentrated around the interface where the polarity reversal is
found. There is also strong error energy at around 84 ms, but this is mainly due to the
difference in reflection strength, i.e. impedance contrast, around that boundary in the
initial guess impedance profile as compared to that in the observed profile. Thus the
concentration of error energy should give us an idea on where adjustments in the earth
model should be made to obtain an improved initial guess.

5.5.1.3. The effect of noise on boundary locations inversion

In the previous two synthetic examples of boundary locations inversion, the
signal-to-noise ratio was infinite because no noise was present in the observed trace.
In real seismic data, however, we should not expect the observed trace to be noise-
free, so that in this section we consider the performance of the inversion process when
the observed trace is contaminated with different levels of noise energy.

The type of noise that will be added to the observed trace is random noise with
zero mean energy value. The random noise is generated from a flat band-limited
amplitude spectrum and random phase spectrum which are then transformed into the
time domain by inverse Fourier transformation (Fox, 1987). By making use of
Parceval's theorem, (Brigham, 1988), we can determine the appropriate amplitude
value of the band-limited amplitude spectrum to generate random noise of specified
energy.

We re-consider the boundary locations inversion problem of section 5.5.1.1,
see Table 5.2, with different added random noise energies so that the observed trace
has a signal-to-noise ratio of 4, 2, 1 and %2. In all cases the random noise is band
limited in to the range 10-85 Hz.
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Figure 5.4a. The impedance profiles for the example of section 5.5.1.2 showing
the polarity reversal at boundary location 4. Only the first and last boundaries
converged to their correct locations.
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Figure 5.4b. The error traces for the example of section 5.5.1.2. They are the
error traces for the two iterations performed by the inversion program, trace
number 1 belongs to the first iteration. Note that the vertical axis represents the
two-way travel-time in ms,

The solution traces when the signal-to-noise ratio is 4 are shown in Figure
5.5a. The initial E,, = 220%, and in this case convergence to the correct solution was
obtained in five iterations with E = 25%, which could be expected since signal-to-
noise ratio is 4. In Figure 5.5a the first and last traces are the noise contaminated
observed traces, and traces 2-7 are the seismic responses for each of the five iterations.
The corresponding error traces are shown in Figure 5.5b where, because convergence
to the correct solution was achieved, the last error trace represents the total random
noise that is contained in the noisy observed trace. The impedance profiles for this
example are shown in Figure 5.5c, where convergence to the correct solution is
shown.
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Figure 5.5a The solution traces for the boundary locations inversion problem
when the observed trace (numbered 1 and 8) has a signal-to-noise ratio of 4. The
solution traces for the five iterations are traces 2 to 7. Note that the vertical axis
represents the two-way travel-time in ms.
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Figure 5.5b The error traces corresponding to the solution traces of Figure 5.5a.
Because inversion to the correct solution was obtained, the last error trace, number
6, represents the total random noise in the observed seismic trace. Note that the
vertical axis represents the two-way travel-time in ms.
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Figure 5.5¢. The impedance profiles for the noise added boundary locations
inversion example of section 5.5.1.3 when the signal-to-noise ratio of the observed
trace is 4. For such a signal-to-noise ratio convergence to the correct boundary
locations was obtained.

The previous example was repeated with a lower signal-to-noise ratio of 2. In
this case the initial E, = 237%, and that, except for the first boundary, all boundaries
failed to converge to their correct locations, so that the final E, = 42%. The inversion

input and results are shown in Table 5.4.




observed solution initial observed observed

layer boundary boundary boundary starting impedance
number  locations locations locations  impedances gradients
(ms) (ms) (ms) (gem>ms!)  (gem3ms /sample)
n t obs t sal tini X obs y obs
1 60 60 52 11000 0
2 74 72 70 6000 0
3 82 84 88 8000 0
4 112 114 104 5000 0
5 126 134 132 7000 0
6 256 256 256 6000 0

Table 5.4. The data for the boundary locations inversion when the signal-to-noise
ratio of the observed trace is 2.

Figure 5.6a shows the solution traces, which are numbered 2-7, for the six
iterations the program performed. The impedance profiles for this example are shown
in Figure 5.6b where it can be seen that the solution of the fifth boundary was in error
by as much as 8 ms; i.e. the solution has diverged from the correct boundary. It is

more likely for this boundary to have a large error in the final solution because of the

low impedance contrast across it.
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Figure 5.6a The observed trace (numbered 1 and 8) has a signal-to-noise ratio of
2. The solution traces for the six iterations the inversion program performed are
traces 2 to 7. Note that the vertical axis represents the two-way travel-time in ms.
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Figure 5.6b. The impedance profiles for the boundary locations inversion data
listed in Table 5.4. The signal-to-noise ratio of the observed trace in this example
is 4. Note that, except for the first boundary, no boundary has convergence to its
correct location.

To examine the effect of noise even further, the previous example was

repeated with a signal-to-noise ratio of 1. The data for this test are listed in Table 5.5.
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observed solution initial observed observed

layer boundary boundary boundary starting impedance
number  locations locations locations  impedances gradients
(ms) (ms) (ms) (gem>ms™!y  (gemms /sample)
n o bt L X obs Yobs
1 60 62 52 11000 0
2 74 72 70 6000 0
3 82 82 88 8000 0
4 112 114 104 5000 0
5 126 142 132 7000 0
6 256 256 256 6000 0

Table 5.5. The data for the boundary locations inversion when the signal-to-noise
ratio of the observed trace is 1. The observed traces are shown in Figure 5.7a
numbered 1 and 13.

The observed and solution traces are shown in Figure 5.7a. The initial E, =
413%, then after 11 iterations the program terminated with E, = 78%. The impedance
profiles are shown in Figure 5.7b, where it can be seen that only the third boundary
converged to its correct solution, and that the fifth boundary, with the low reflection
coefficient, actually diverged even further from its correct location as compared to the

previous case when the signal-to-noise ratio was 2 that is shown in Figure 5.6b.
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Figure 5.7a The observed trace (numbered 1 and 13) has a signal-to-noise ratio
of 1. The solution traces for the 11 iterations the inversion program performed are
traces 2 to 12. Note that the vertical axis represents the two-way travel-time in
ms.
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Figure 5.7b. The impedance profiles for the boundary locations inversion data
listed in Table 5.5. The signal-to-noise ratio of the observed trace in this example
is 1. Note that, except for the third boundary, no boundary has convergence to its
correct location.

To take noise investigation one last step further, Figure 5.8a shows the same
example with the observed trace having signal-to-noise ratio of ¥2. Figure 5.8a shows
the solution traces of the 10 iterations the inversion program took to reduce E,,; from
287% to 183%. Although the first boundary, which has the highest reflection
coefficient, and the second boundary converged to their correct values, the other
boundary locations stayed well away from their correct locations. Table 5.6. shows

the inversion results, and Figure 5.8b shows the impedance profiles for this example.
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observed solution initial observed observed

layer boundary boundary boundary starting impedance
number  locations locations locations  impedances gradients
(ms) (ms) (ms) (gcm'3ms‘ l) (gcm’3ms' l/sample)
n tab.r tsal tim' xulz.r yob.r
1 60 60 52 11000 0
2 74 74 70 6000 0
3 82 96 88 8000 0
4 112 116 104 5000 0
5 126 142 132 7000 0
6 256 256 256 6000 0

Table 5.6. The data for the boundary locations inversion when the signal-to-noise
ratio of the observed trace is ¥2. The observed traces are shown in Figure 5.8a
numbered 1 and 12.
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Figure 5.8a The observed trace (numbered 1 and 12) has a signal-to-noise ratio
of 2. The solution traces for the 10 iterations the inversion program performed
are traces 2 to 11. Note that the vertical axis represents the two-way travel-time in

ms.
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Figure 5.8b. The impedance profiles for the boundary locations inversion data
listed in Table 5.5. The signal-to-noise ratio of the observed trace in this example
is V2. Although the first boundary, which has the highest reflection coefficient, and
the second boundary converged to their correct values, the other boundary
locations stayed well away from their correct locations.

5.5.2, Examples of impedance inversion

A number of examples of impedance inversion are given here. The first is a
straightforward impedance inversion problem where the boundary locations and
wavelet parameters have their correct values. We then examine the same example
with the impedance of the first layer fixed. We also examine an interesting case
where the initial guess impedance profile has a constant value. The second example
has polarity reversals across some of the interfaces. We then repeat the same example
with the added complication of having impedance gradients in the observed
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impedance profile. Finally, we consider the effect of random noise on impedance
inversion.

5.5.2.1. A simple impedance inversion problem

The input and output data for this problem are shown in Table 5.7. Here we
are only solving for the starting impedance vector x, so that each element in the vector
y is equality constrained to zero.

The initial E ,= 11%, and the final error energy for the inversion solution x,,
is zero. The impedance profiles for this example are shown in Figure 5.9. Obviously
this is a case where convergence to a non-unique solution is obtained. It is important
to notice that in this solution the ratio of any of x,,, elements to the corresponding
element in x,,, is always 1.07, that is x,,= 1.07x,,, so that they are equal except for a
scale factor of 1.07. Convergence to x,,, occurred after four iterations.

observed observed solution initial observed
layer boundary starting starting starting impedance
number  locations  impedances impedances impedances gradients
(ms) (gem>ms’!) (gem3ms™) (gem™>ms™)  (gem3ms !/sample)
n tobs xab.r xsnl xl'ni y abs
1 60 11000 10220 10000 0
2 74 6000 5603 5500 0
3 82 8000 7471 9000 0
4 112 5000 4669 7000 0
5 126 7000 6536 7500 0
6 180 6000 5603 5000 0

Table 5.7. The input and output data for the simple impedance problem of section
55.2.1.

To solve the non-uniqueness problem in this example it is necessary to equality
constrain only one of the starting impedance values. This is because by fixing the
impedance in one layer we are forcing the impedance profile of the solution to have
the low frequency trend that is present in the observed impedance profile, thus the
inversion impedance solution will converge to the same values as those in the
observed impedance profile. Figure 5.10 shows the impedance results obtained when
the first layer of the problem of Figure 5.9 is fixed, i.e. equality constrained, to its
correct value. The correct solution was achieved, i.e. zero error energy, in four
iterations.

An interesting example is shown in Figure 5.11 were the same impedance
ini» had
all its elements equal to that of the first layer impedance value. This solution was

solution was obtained, with zero error energy, when the initial guess vector, X
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obtained in four iterations, and the impedance of the first layer was fixed. In this case,
the initial £, = 100%.
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Figure 5.9. The impedance profiles of the example of section 5.5.2.1 showing a
non-unique convergence of the impedance solution.
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Figure 5.10. The impedance profiles after equality constraining the first layer for
the example of section 5.5.2.1.
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Figure 5.11. The impedance profiles for the example shown in Figure 5.10 where
the initial guess impedance is constant and equal to the first layer impedance.

5.5.2.2. Impedance inversion with polarity reversals
The input and output data for an example where three polarity reversals were
introduced in the initial guess are shown in Table 5.8. When solving for the

impedance problem with these reversals, convergence to the correct solution was

achieved in only four iterations with zero error energy.




observed observed solution initial starting  observed

layer boundary starting starting impedances  impedance
number locations  impedances impedances  (gem3ms!) gradients
(ms) (gem>ms™) (gem>ms™) 3 (gemms !/sample)
n tob.\' X oby X sol y obs
1 60 11000 11000 11000 0
2 74 6000 6000 5500 0
3 82 8000 8000 4000 0
4 112 5000 5000 7000 0
5 126 7000 7000 6000 0
6 180 6000 6000 5000 0

Table 5.8. Input data and solution for the impedance inversion with three polarity
reversals example.

In this example the initial error energy is 194%, and the first layer impedance
is fixed to its correct value of 11000 gcm3ms'!. The impedance results of this
example are shown in Figure 5.12.

Inverting for impedance with polarity reversals in the initial guess in the above
example was done with the impedance gradient at each layer fixed to be zero. To see
the effect on the inversion result of having impedance gradients in the observed data,
when the initial guess has polarity reversals, a test was performed by using the data in
Table 5.9. The reason for this example is to investigate the possibility that polarity
reversals could be removed simply by changing the gradients in the layers at the
bottom of which we have the polarity reversals. Table 5.9 shows the input and
inversion results when the two reversals are present in the initial guess, and the

observed impedance profile layers have both positive and negative gradients. The
initial E_=194%.

observed observed solution initial starting  observed solution initial
layer boundary starting starting impedances  impedance impedance impedance
number  location impedance impedances  (gem®ms) gradients gradients gradients
(ms) (gem>ms'!) (gem>ms™t) X,,; (gemms™!/sample) (gem>ms /sample) (gemms !/sample)
n toss X obs X sol Yobs Y so Yini
1 60 11000 11000 11000 -50 -50 0
2 74 6000 6000 5500 50 50 0
3 82 8000 8000 4000 -100 -100 0
4 112 5000 5000 7000 100 100 0
5 126 7000 7000 6000 -20 -20 0
6 180 6000 6000 5000 0 0 0

Table 5.9. The initial guess has two reversals introduced at boundaries 2 and 3,
and a non-zero observed impedance gradient vector.




The inversion converged to the correct solution in four iterations with zero
error energy. At each iteration the starting impedance of the first layer was fixed at
11000 gcm3ms-1. The impedance results of the problem of Table 5.9 are shown in
Figure 5.13.
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Figure 5.12. The impedance profiles when three reversals were introduced in the
initial guess impedance.
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Figure 5.13. The impedance profiles when the initial guess has two reversals at
boundaries 2 and 3, and a non-zero observed impedance gradient vector.

5.5.2.3. The effect of noise on impedance inversion

Quantitatively inverting for impedance depends largely on the magnitude of
the reflection across boundaries. The addition of random noise to the observed trace
will significantly effect the amplitude of the reflection. Thus, for any amount of noise
contained in the observed trace, we should not expect the value of the inverted
impedance to converge to its correct value. But it is important to investigate for what
signal-to-noise ratios could we obtain reasonable estimates of the observed impedance
profile, so in this section we consider the impedance inversion example shown in
Figure 5.10 for signal-to-noise ratios of 4, 2, and 1. In all cases the impedance of the

first layer is equality constrained to its correct value of 11000 gcm‘3ms"1.




The input and output data for the case when the signal-to-noise ratio is 4 are
shown in Table 5.10.

observed observed solution initial starting  observed
layer boundary starting starting impedances  impedance
number locations  impedances impedances  (gem?ms!) gradients
(ms) (gcm‘3m5‘ hy (gcm‘3ms‘ ly X, (gcm‘3ms' I/salmple)
n 2 Xobs X 5ol Y obs
1 60 11000 11000 11000 0
2 74 6000 6168 5500 0
3 82 8000 7993 9000 0
4 112 5000 4182 7000 0
5 126 7000 6685 7500 0
6 256 6000 6321 5000 0

Table 5.10. The data for the impedance parameters inversion when the observed
trace has a signal-to-noise ratio of 4. The impedance solutions for this example
are shown in Figure 5.14.

The impedance profiles for this example are shown in Figure 5.14. The
relative error energy for the initial impedance guess E, = 47%, and for the final
solution E, = 22%, which was reached in four iterations. It can be observed from
Figure 5.14 that the impedance solution for the shallow layers resembles the observed
impedance more closely than the deeper layers impedance solution. This can be
attributed to the high impedance contrast between the shallow layers than between the
deeper ones. That is, the added random noise effects deeper layers, which have
weaker reflections, more than the shallower reflections which have stronger
reflections. However, no polarity reversals were introduced in the final solution, and
that the impedance trends are still reasonably preserved, i.e. the second and last layers
have close impedance values and the fourth layer has the lowest impedance.

The same example was repeated with the signal-to-noise ratio in the observed
trace being 2. the data for this example are given in Table 5.11, and the impedance
profiles are given in Figure 5.15. The initial £ ,= 54% and the inversion program
performed four iterations to reduce E,; to 48%.
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Figure 5.14. The impedance profiles for the data in Table 5.10. The signal-to-
noise ratio of the observed trace is 4. In this inversion for impedance the solution
is closer is closer to the correct impedance values for the shallow layers where
there is a high impedance contrast across their boundaries

observed observed solution initial starting  observed
layer boundary starting starting impedances  impedance
number locations  impedances impedances (gem>ms') gradients
(ms) (gem3ms™) (gem>ms™!) X, (gem>ms Ysample)
n tabs xnb.w X sol ynb:
1 60 11000 11000 11000 0
2 74 6000 5194 5500 0
3 82 8000 7010 9000 0
4 112 5000 4358 7000 0
5 126 7000 5462 7500 0
6 256 6000 4452 5000 0

Table 5.11. The data for the impedance parameters inversion when the observed
trace has a signal-to-noise ratio of 2. The impedance solutions for this example
are shown in Figure 5.15.
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From the impedance profiles of Figure 5.15 we notice that no polarity
reversals occurred, the best impedance estimates are for the shallow layers with high
reflection coefficients, and that the solution profile impedance trends are deteriorating
as compared to the correct, observed, impedance profile. For example, the impedance
value for the fourth layer is comparable to that of the sixth layer, which is the trend in
the observed profile, even though the fourth layer has less impedance than its correct
value. Also, notice that the impedance of the fifth layer has become considerably
smaller.
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Figure 5.15. The impedance profiles for the data in Table 5.11. The signal-to-
noise ratio of the observed trace is 2. Comparing the impedance solution with that
of Figure 5.14, where the signal-to-noise ratio is 4, we notice that the impedance
trend of the solution profile has deteriorated for the deeper layers. But no polarity
reversals resulted across any of the interfaces.
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Finally, Table 5.12 shows the input and output data when the signal-to-noise
ratio of the observed trace is 1. Figure 5.16 shows the corresponding impedance

profiles.
observed observed solution initial starting  observed
layer boundary starting starting impedances  impedance
number locations  impedances impedances  (gem®ms!) gradients
(ms) (gem>ms™) (gem>ms™) X, (gem™ms™/sample)
n tos X obs X st Y obs
1 60 11000 11000 11000 0
2 74 6000 5734 5500 0
3 82 8000 7724 9000 0
4 112 5000 5607 7000 0
5 126 7000 8779 7500 0
6 256 6000 11279 5000 0

Table 5.12. The data for the impedance parameters inversion when the observed
trace has a signal-to-noise ratio of 1. The impedance solutions for this example
are shown in Figure 5.16.

from 124% to
86%. The impedance solution profile in Figure 5.16 shows the extent of deterioration

The inversion program performed seven iterations to reduce E,
to the impedance trend that can occur when the signal-to-noise ratio is low. Layer 6,
which is of low impedance that is comparable to shale type lithology, has its
impedance greatly increased so that now it could be interpreted as limestone. There is
a polarity reversal between layers 6 and 5. Layers 2 and 5 almost have the same
impedance value. Obviously, it is the deeper layers with low impedance contrast that

had their impedance values differ the most from their correct impedance.

5.5.2.4 Inverting for impedance with slightly incorrect boundaries

The examples of sub-section 5.5.2.2 have illustrated that if no noise is present
in the observed trace then convergence to the correct solution is almost always
possible, even in the presence of polarity reversals. But, up to now, when solving for
impedance, all the boundary locations and wavelet pafameters have the correct values.
In the next two examples we investigate impedance inversion with incorrect boundary

locations, while having correct wavelet parameters, and the observed trace is noise-

free.
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Figure 5.16. The impedance profiles for the data in Table 5.12. The signal-to-
noise ratio of the observed trace is 1. In this inversion for impedance the solution
profile differs greatly from the observed profile at layers 5 and 6 at which we have
a small impedance contrast. At the boundary between layers 5 and 6 there is a
polarity reversal in the solution profile.

With incorrect boundary locations one should not expect to converge to the
correct impedance solution, but we would like to examine the optimum solution
obtained. A simple approach to this problem is to use the correct solution as the
initial guess except that only one of the boundary locations is perturbed by a small
value, say 4 ms, and observe the resulting optimum impedance solutions.

An example where the fifth boundary location is perturbed by 4 ms is shown
in Table 5.13. The first layer impedance is fixed at its correct value of 11000 gcm-
3ms’!. In this example the initial E,, = 2.6%. '
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observed initial observed solution initial observed

layer boundary boundary starting starting starting impedance
number  locations locations  impedances impedances impedances gradients
(ms) (ms) (gem>ms™) (gem3ms™) (gem>ms!)  (gem3ms Ysample)
n bobs L X obs X sol Xini Yons
1 60 60 11000 11000 11000 0
2 74 74 6000 5999 6000 0
3 82 82 8000 8011 8000 0
4 112 112 5000 5021 5000 0
5 126 130 7000 7483 7000 0
6 180 180 6000 6989 6000 0

Table 5.13. Inversion for impedance when the initial guess has boundary location
5 perturbed by 4 ms, i.e. 2 samples.

The resulting optimum impedance solution is shown in Figure 5.17a, which was
reached in three iterations with E_= 1.5%. It can be seen that for the inversion
process to accommodate the 4 ms difference in the fifth boundary, it had to increase
the reflection coefficient at the boundary at 112 ms and decrease the reflection
coefficient at the boundary that is wrongly located at 130m. This it did by increasing
the impedance contrast at the 112 ms boundary and decreasing the impedance contrast
at the 130 ms boundary. To understand the reason for this, we need to look at Figure
5.17b, where it can be seen that by shifting the boundary location from 126 ms to 130
ms, we have shifted the reflection to a lower location so that it is not in alignment
with the corresponding reflection energy in the correct solution. To correct this, in
order to reduce error energy, the inversion process reduced the reflection energy from
the initial guess in the lower boundary. The only way for the inversion process to do
this was by reducing the reflection coefficient, thus reducing the impedance contrast
across the boundary. But by reducing the reflection coefficient across the boundary at
130 ms, the constructive interference zone between the boundaries at 112 ms and 130
ms also required the reflection coefficient at 112 ms to be increased. Of course this
has to be done in an optimum way and there will be a limit to how much the error can
be reduced, so a minimum error energy was still present as shown by the error traces
of Figure 5.17c, which is a display of the error traces for each of the iterations (the

first error trace belongs to the initial guess). It is important to note that the error is

concentrated around the 126-130 ms interval.
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Figure 5.17a. Impedance profiles for impedance inversion with slightly incorrect
boundaries. Note that the impedance solution is in error only across the boundary
that is incorrectly located.
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Figure 5.17b. The solution traces after each iteration in solving the example of
Figure 5.17a. Traces numbered 1 and 7 are the observed trace, while trace 2 is the
seismic response of the initial guess and traces 3-6 are the seismic response after
each iteration. Note that the vertical axis represents the two-way travel-time in

ms.
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Figure 5.17¢. The error traces corresponding to the iterations of Figure 5.17b.
Trace 1 is the error trace of the initial guess. Note that the vertical axis represents
the two-way travel-time in ms.

5.5.2.5. Impedance inversion with grossly incorrect boundaries

In this case the boundary locations could be incorrect by as much as the radius
of convergence. Similar to the previous example, the fifth boundary was perturbed by
10 ms, which is about equal to the radius of the convergence region. The input data
and impedance inversion solution are given in Table 5.14.

observed initial observed solution initial starting  observed
layer boundary boundary starting starting impedances  impedance
number  locations locations  impedances impedances (gem>ms?) gradients
(ms) (ms) ( gcm'3ms' ly (gcm‘3ms’l) X, (gcm'3ms' l/samplc)
n tobs tini X obs X sol y obs
I 60 60 11000 11000 11000 0
2 74 74 6000 6000 6000 0
3 82 82 8000 8006 8000 0
4 112 112 5000 5011 5000 0
5 126 136 7000 7255 7000 0
6 180 180 6000 8094 6000 0

Table 5.14. Showing that the boundary location 5 is perturbed by 10 ms, ie. 5
samples, in the initial guess.

Similar to the previous example, the input impedance is the same as that of the
observed impedance, and the impedance of the first layer is fixed at 11000 gcm>3ms-1.
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The initial E,,;= 7%, and after three iterations the program reached an optimum
solution with E,,= 0.8%. Figure 5.18a shows that by perturbing the interface by 10
ms, which is equivalent to about one half cycle of the seismic wavelet, means that the
reflection energy at the synthetic seismogram is out of phase as compared to the
corresponding correct solution. To accommodate this the inversion program had to
reverse the polarity of the reflection coefficient, thus reversing the impedance contrast
trend across the perturbed boundary. Figure 5.18b shows that the inversion process
has achieved this by increasing the impedance value of the lower layer. Note that a
small increase in impedance contrast across the boundary above the perturbed one was

also necessary in this example to accommodate the polarity reversal at the fifth

NI
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W X))
W) V)
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Figure 5.18a. Solution traces when the boundaries are grossly incorrect. Traces
numbered 1 and 6 are the observed trace, while trace 2 is the seismic response of
the initial guess and traces 3-5 are the seismic response after each iteration. Note
that the vertical axis represents the two-way travel-time in ms.

5.5.3. Inversion of both impedance and boundaries

The synthetic examples of section 5.5.2 are more representative of inversion of
field data since it is more likely that the initial guess will be in error in both
impedance and boundary locations. However, to invert only for impedance when the
boundary locations are incorrect will not give the correct impedance results. One way

to solve this inversion problem is to invert first for impedance and then boundary
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locations; then, if convergence is not achieved, repeat the sequence as many times as
necessary until the program terminates, with any of the convergence criteria, for both
problems.
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Figure 5.18b. The impedance profiles when the boundaries are grossly incorrect.
The solution profile has a polarity reversal at the incorrect boundary.
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5.5.3.1 Example of impedance and boundary inversion

In this example four of the five boundary interfaces of our observed earth
model have been perturbed. Two interfaces were perturbed by up to 4 ms. The first
layer impedance is fixed at 11000 gecm3ms-!, and all the other layers had their

impedance perturbed. The input data and output results are shown in Table 5.15.

observed solution initial observed solution  initial starting  observed
layer boundary boundary boundary starting starting impedances  impedance
number  locations locations locations  impedances impedances (gcm>ms’!) gradients
(ms) (ms) (ms) (gcm‘3ms’ D) (gcm'3ms' hy X ( gcm‘3ms' l/sample)
n tab,r t.\'ol tini xabx xsal yab.v
1 60 60 56 11000 11000 11000 0
2 74 74 72 6000 6000 7000 0
3 82 82 82 8000 8000 9500 0
4 112 112 108 5000 5000 4000 0
5 126 126 128 7000 7000 6000 0
6 180 180 180 5000 5000 4500 0

Table 5.15. Input and output data for impedance and boundaries inversion. The
correct boundaries and impedance solutions were achieved in four impedance
inversion runs and three boundary inversion runs.

The initial E,, was 50%. It took four impedance inversions and three
boundary inversions to reach the zero error energy final solution given in Table 5.15.
The progression to this final solution is summarised in Table 5.16.

Run number 1 2 3 4 5 6 7
Inversion type Imp Bnd Imp Bnd Imp Bnd Imp
Error energy (%) 22 10 52 4.95 1.8 1 0
Max. impedance 21246 21246 16278 16278 9372 9372 8000

Table 5.16. Impedance solution progression when inverting for boundaries and
impedance. The maximum impedance values shown are those for layer 3. Imp
means impedance inversion run, and Bnd is boundary inversion run.

One important observation from Table 5.16 is the value of maximum impedance for
one of the impedance variables, namely for layer 3, has reached 21246 gcm3ms-!.
Such an unrealistically high impedance value occurred because the first impedance
inversion run had to accommodate the fourth layer which was initially guessed to be

too thin. This was corrected after the right layer thickness was retained in the
boundary inversion at run 6.
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5.5.3.2. Impedance and boundary ~inv5ersio’h with constraints

The inversion exarhtile in thc last sﬁb-section sdecd fhat unrealistically high
impedance values can sometimes arise d'urihg" raﬁcﬁtéd inVéfsion runs for boundary
locations and impedance. One way to. avoid suCh'-highiimpedzinCe &al_ues is to impose
an upper bound on ‘the impedance allowed in each layér, that is we make use of
inequality'cohstraints. |

The ‘previous example was rerun, but this time -an upper bound of 12000
gecm3ms! was globally imposed on all the layers: Convergence to the zero error
energy solution was reached in two impedance inversion runs and only one boundary
inversion run. The progression to this solution is summarised in Table 5.17.

Run nurmber 1 2 3
Inversion type "Imp. Bnd  Imp
Error energy (%) 30 9 0
Max. impedance | 12000 12000 . 8000

Table 5.17. Impedance solution progression for the same problem in Table 5.16
after imposing a global upper bound of 12000 gecm3ms™! on all the layers.

As expected, the maximum impedance value imposed was not exceeded which
made it possible for the boundary locations to converge in one inversion run.
Obviously, imposing upper bounds on the impedance values contributed significantly

to the stability of the problem, thus reducing the number of iterations required for
convergence.

5.5.3.3. The effect of noise on impedance and boundaries inversion

The first test of impedance and boundaries inversion when the observed trace
is contaminated with noise is summarised in Table 5.18. The signal-to-noise ratio for
these data is 10.

observed solution initial observed solution initial starting  observed
layer boundary boundary boundary starting starting impedances  impedance
number  locations locations locations  impedances impedances  (gem>ms!) gradients
(ms) (ms) (ms) (gcm‘3ms") (gcm‘3ms") X, (gem>ms™ l/samplc:)
n tobs t sol tim' X obs X sol y obs
1 60 60 56 11000 11000 11000 0
2 74 72 72 6000 5824 7000 0
3 82 84 82 8000 8915 9500 0
4 112 112 108 5000 6000 4000 0
5 126 126 128 7000 7456 6000 0
6 256 256 256 5000 4930 4500 0

Table 5.18. Input and output data for impedance and boundaries inversion when
the signal-to-noise ratio is 10. The final boundaries and impedance solutions were
achieved in four impedance inversion runs and three boundary inversion runs.
The progression toward the final solution is summarised in Table 5.19.
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For this test the impedance of the first layer was 'equality constrained -to its
correct value of 11000 gcm'3ms 1 and an-upper bound of 11000- gcm'?’ms‘1 and a
lower bound of 4000 gcm'3ms'1 were 1mposed globally on all the other layers. The
initial E, = 68%, then after four impedance inversions and- three boundary inversions
E,, was reduced to 8%. The progression toward the solutions t,, and x,, is
summarised in Table 5.19. One important observation in Table 5.19 is the high
number of iterations for the impedance inversion runs as compared to th_e boundaries
inversion runs. This is mainly due to additions and deletions of bounding constraints
during each run of impedance inversion.

Run number 0 1 2 3 4 b) 6 7
Inversion type - Imp Bnd Imp Bnd Imp Bnd Imp
Error energy (%) 68 56 24 13 12 9 8.8 7.7
Numbeér-of iterations - 9 4 8 2 6 2 5

Table 5.19. A summary of the progression towards the solution when inverting
for boundaries and impedance when the observed trace signal-to-noise ratio is 10.
The solution results are given in Table 5.18. Imp means impedance inversion run,
and Bnd-is boundary invefsion run.

The impedance profiles of the first impedance run are shown in Figure 5.19
which illustrates how the impedances of the deepest two layers have decreased while
the impedance of the shallower layers have generally increased, thus changing the
impedance trend as compared to the observed profile.

The impedance profiles of the first impedance run are shown in Figure 5.20
where it can be noticed that all boundaries have converged to their correct locations
except for boundaries 2 and 3. One possible reason for this is that the enclosed layer,
i.e. layer 3, has a thickness that is very close to the tuning thickness for the given
seismic wavelet, where non-unique solutions could exist.

The impedance profiles for the final impedance run are shown in Figure 5.21,
where it can be observed that despite of the impedance of layer 3 being higher than its
correct value (which was accommodated by the inversion program by increasing the
impedance of layer 4 and slightly increasing the impedance of layer 5), the general

trend of the solution impedance profile reasonably represents that of the observed

profile.
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Figure 5.19. The impedance profiles of the first impedance inversion run of
Table 5.19. No polarity reversals were introduced, but the impedance trend of the
solution profile have largely changed as compared to the observed impedance
profile.
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Figure 5.20. The impedance profiles of the first boundaries inversion run of

Table 5.19. Note that in this run only boundaries 2 and 3 did not converge to their
correct locations
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Figure 5.21. The impedance profiles of the final impedance inversion run of
Table 5.19. Note that only the impedance of layers 3 and 4 differ greatly from
their correct impedance values, the other layers have their solution impedance
close to their correct values.
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The previous test was re-run with a signal-to-noise ratio of 2 in the observed

trace. The input and output data are given in Table 5.20, and a summary of the

progression toward the final impedance profile solution is given in Table 5.21.

observed solution initial observed solution initial starting  observed
layer boundary boundary boundary starting starting impedances  impedance
number  locations locations locations  impedances impedances (gem®ms’) gradients
(ms) (ms) (ms) (gem>ms™) (gem>ms’!y X, (gem™ms/sample)
n t abs sol tini X obs sol y obs
1 60 58 56 11000 11000 11000 0
2 74 74 72 6000 5447 7000 0
3 82 82 82 8000 8433 9500 0
4 112 112 108 5000 4908 4000 0
5 126 126 128 7000 6837 6000 0
6 256 256 256 5000 5125 4500 0
Table 5.20. Input and output data for impedance and boundaries inversion when
the observed trace has a signal-to-noise ratio of 2, The final boundaries and
impedance solutions were achieved in two impedance inversion runs and one
boundary inversion run. The progression toward the final solution is summarised
in Table 5.21.
Run number 0 1 2 3 4 5 6 7
Inversion type - Imp Bnd Imp Bnd Imp Bnd Imp
Error energy (%) 68 56 24 13 12 9 8.8 7.9
Number of iterations - 9 4 8 2 6 2 5

Table 5.21. A summary of the progression towards the solution when inverting
for boundaries and impedance when the observed trace signal-to-noise ratio is 2.
The solution results are given in Table 5.20. Imp means impedance inversion run,
and Bnd is boundary inversion run.

Despite the considerably lower signal-to-noise ratio in this test as compared to
the pervious one, the final impedance profiles given in Figure 5.22 show that all the
boundaries have converged to their correct locations, except the first boundary which
remained away from its correct location by one sample interval. This resulted in an
impedance solution profile that closely resembles the observed one.

One conclusion that could be drawn from this test is that the distribution of the
random noise in the observed trace is probably more important than the amount of
noise energy present. That is, if there is more noise energy present at the intervals
where there is a small reflection energy, or a layer that is close to its tuning thickness,

then this noise energy will have a large effect on the final solution.
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Figure 5.22. The impedance profiles of the final impedance inversion run of
Table 5.21. Even though the signal-to-noise for this test is much lower than the
results of Figure 5.21, the final impedance solution obtained here is better.

5.5.4. Wavelet parameters inversion

Inverting for wavelet parameters in the following synthetic examples will be
divided into three sets, namely the four frequency parameters, the two amplitude
parameters, and the first two phase parameters, which are the constant phase
parameter and the linear phase parameter. The third, or quadratic phase parameter,
will always be fixed at zero; i.e. we are making the assumption that no wavelet
dispersion is taking place. When inverting for any one set of parameters, the other
parameters are kept fixed, i.e. equality constrained, except for the frequency
parameters, which cannot be constrained neither equality nor inequality (see section
4.5). The reason for this is that the wavelet parameters inversion problem is very

poorly conditioned, which results in a poor rate of convergence. The observed earth
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model given in Table 5.1 and the observed wavelet w,,,= [24 28 55 84 115000
115000 0.418 0.113 0] in section 5.5 will be used to generate the observed seismic
trace.

To invert for the frequency parameters an initial guess wavelet was generated
by perturbing the observed wavelet to w;,;= [10 33 60 100 115000 115000 0.418
0.113 0]”. This wavelet gave initial E,,, of 6%. After six iterations convergence to
the correct (observed) wavelet with zero error energy was obtained.

When inverting for the amplitude parameters the initial guess wavelet was
W= [24 28 55 84 120000 110000 0.418 0.113 0]". The initial E, = 0.52%, and
after 36 iterations convergence to the wavelet solution w,,= [23.9 27.9 56 84.1
113197 110013 0.418 0.113 0]” was obtained with error energy value of 33, which
was equivalent to E, = 0.000012%.

The constant phase parameter ¢, and the linear phase parameter ¢, were
inverted for separately, that is, when inverting for one the other parameter was fixed at
its correct value. When inverting for ¢, the initial wavelet was w;,;= [24 28 55 84
115000 115000 0.0 0.113 0]” which gave an initial E, = 18%. Convergence to the
correct solution, with zero error energy, occurred after 143 iterations. When inverting
for the linear phase parameter ¢, the initial guess wavelet used was w;,,= [24 28 55
84 115000 115000 0.4138 0.12 0]". This wavelet had E,,= 11%, and convergence

to the correct solution with E_ = 0% was obtained after 55 iterations.

5.5.5. Inversion for impedances, boundaries and wavelet parameters

In this case all the variable types, namely impedance, boundary locations and
wavelet, are considered to be incorrect. It was found that the best approach for this
problem is to first invert for the impedance parameters then the boundary location
parameters, and then repeat this sequence until convergence is achieved. Next, we
invert for the wavelet parameters, then repeat the impedance-boundaries inversion
sequence until again convergence is achieved. We then keep repeating the inversion
for wavelet parameters and seek convergence of the impedance-boundaries inversion
until we judge that the improvement in the obtained solution does not justify any extra
computer time.

In the above approach, when inverting for the wavelet parameters the linear
phase parameter ¢, should not be allowed to vary significantly, indeed it should only
be allowed to vary so that the time shift it produces is within the interval %2 sample
interval. The privilege of producing a time shift that is close to a sample interval
should be reserved to the boundary locations inversion. This tends to numerically
stabilise the inversion process by limiting the non-uniqueness of the solution.
Furthermore, the constant phase term ¢,, should also be restricted by using inequality
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constraints to impose upper and lower bounds to a limited interval about ¢,=0. In this
way we prevent the solution from catapulting away from the nearly zero phase
wavelet that the observed trace contains. It was found that when the constant phase
term changes substantially from its near zero value, the boundary locations will tend
not to converge to their correct solution. This implies that one should have as good an
estimate of the wavelet as possible, and only allow the wavelet phase parameters to
vary as little as possible.

5.5.5.1. Example of inversion for impedances, boundaries and wavelet
parameters

For this example we use the observed and initial guess impedance and
boundary locations data given in Table 5.22, which were used previously in section
5.5.3.1. For the observed wavelet we use the wavelet of section 5.5.4, which is w ;=
[24 28 55 84 115000 115000 0.418 0.113 0], and from which we generate an
initial guess wavelet w;,,= [22 35 60 90 115000 115000 0.3 0.115 07",

observed solution initial observed solution initial observed
layer boundary boundary boundary starting starting starting impedance
number  locations locations locations  impedances impedances impedances gradients
(ms) (ms) (ms) (gem>ms™) (gem>ms™) (gem>ms?!)  (gem>3ms Ysample)
n tab.\' tsn[ tiru' xabs x.ml xl‘ni yabs
1 60 60 56 11000 11000 11000 0
2 74 72 72 6000 6880 7000 0
3 82 84 82 8000 10746 9500 0
4 112 112 108 5000 7254 4000 0
5 126 126 128 7000 10011 6000 0
6 180 180 180 5000 6957 4500 0

Table 5.22. Example of inversion for impedance, boundaries and wavelet
parameters.

Except for the impedance of the first layer, which was equality constrained at
11000 gem3ms-!, all impedance parameters had imposed on them lower and upper
bounds of 3500 and 12000 gcm3ms-!, respectively. The constant phase parameter of
the wavelet was restricted to be in the interval [0, 0.5] radians, and the linear phase
parameter was restricted to vary between 0.111 and 0.117 radians/Hz.

The initial guess gave a relative error energy of 63%. The first impedance
inversion reduced E,, to 36%, and during which the third impedance reached the
12000 gcm-3ms! bound, so that the corresponding inequality constraint became active
and was added to the active set. The first inversion for the boundaries reduced E,,, to
11%, and only two boundaries, the second and the third, did not converge to their
correct values by a sample interval. In the second impedance inversion the active
constraint was deleted from the active set, and the E,,, was reduced to 1.5%. The
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second inversion for the boundaries failed to reduce the error energy, so E,,, remained
at 1.5%.

The next inversion was for the wavelet parameters which reduced E,,; to
1.14%. Then inversion for the boundary locations failed again to reduce E,,,. The
next impedance inversion reduced E,; to 1.11%.

A further inversion for the boundaries, after a second inversion for the wavelet
parameters, did not reduce the error energy. It seemed that the boundary locations
have converged, but unfortunately not to the correct locations.

Several alternating impedance and wavelet parameter inversions were
performed until E,,

s Was 1.096%. The final boundary locations and impedance values

are given in Table 5.22 , and the final wavelet parameter solution was w_,= [18.1

36.6 60.9 82.9 115000.3 14999.9 0.4497 0.111 0]".

sol—

5.5.5.2. Second example of inversion for impedances, boundaries and wavelet
parameters

In the last example, convergence to the correct solution was not achieved. The
reason was that layer 3 became thinner than its correct thickness, and the boundary
inversion was not able to correctly adjust this thickness. An obvious reason for this is
that the impedance of the same layer has increased to 10746 gcm-3ms-!, which resulted
in convergence to a local minimum other than the global one. The remedy for this is
to prevent the inversion process from moving into a region that contains a local
minimum. To do this, we notice that the initial guess impedance of layer 3 is 9500
gem>ms-1, and we could judge, possibly from information known a priori, that such a
value is already high enough, so it should constitute an upper bound. Thus for this
example we solve the same problem as the last example, only this time we impose an
upper bound of 9500 gcm>ms! on all layers, except the first. The data for this

example are given in Table 5.23.
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observed solution initial observed solution initial starting  observed

layer boundary boundary boundary starting starting impedances  impedance
number  locations locations locations  impedances impedances  (gem?3ms) gradients
(ms) (ms) (ms) (gemms™) (gem>ms™) X, (gem>ms™/sample)
n tobs bl bini X obs Xl Yobs
1 60 60 56 11000 11000 11000 0
2 74 74 72 6000 6007 7000 0
3 82 82 82 8000 8093 9500 0
4 112 112 108 5000 5013 4000 0
5 126 126 128 7000 7027 6000 0
6 180 180 180 5000 4975 4500 0

Table 5.23. The second example of inversion for impedance, boundaries and
wavelet parameters.

We started by inverting for impedance. This time the initial £

ot Was reduced

from 63% to 45%, layer 3 stayed at the upper impedance value of 9500 gcm-3ms-1, and
every other layer, except the first, had less impedance value. A first inversion for the
boundary locations reduced E,,, to 12%, and not all the boundaries converged to their

correct locations. Then a first inversion for impedances reduced E,

to 5%, and layer
3 still had the highest impedance value of 9500 gcm3ms'!l. A second inversion for
boundaries reduced E,,; to 2.85%, and all but two boundaries (the top and bottom of
layer 3) did not converge to their correct locations. A second inversion for
impedances reduced E,,, to 1.75%, and layer 3 was still at 9500 gcm-3ms-!. The third
inversion for boundaries failed to reduce E, ;.

The next step was to invert for the wavelet parameters. This wavelet inversion
reduced E,, to 1.31%. Then inversion for boundaries reduced E,,, to 0.58%, and this
time the boundaries converged to their correct locations. Next inversion for
impedances reduced E,, to 0.3%, during which the constraint defining the upper
bound on layer 3 was deleted from the active set, and the impedance for layer 3
became 8690 gcm-3ms-L.

Several wavelet-impedance inversions later reduced E,,, to a mere 0.01%. By
then it was possible to stop the inversion and the final impedance solution is given in
Table 5.23. The wavelet parameters converged to w,,= [18.1 36.6 60.9 82.9
115000.3 14999.9 0.4497 0.111 01".

5.5.5.3. The effect of noise on inversion for impedance, boundaries and wavelet
parameters

The same example in the previous section is repeated in this section with
signals-to-noise ratios of 4, 2 and 1 added to the observed trace. Another change in
this example is the linear phase term in the initial guess wavelet is equality

constrained to its correct value of 0.1 radians/Hz, so that the initial guess wavelet

125



w,;,=[22 35 60 90 115000 115000 0.3 0.1 0]%, while the observed wavelet w_, =
{24 28 55 84 115000 115000 0.4138 0.113 0]7. The input and output impedance
and boundary locations data are given in Table 5.24, and a summary of the
progression towards the final solution is given in Table 5.25.

observed solution initial observed solution initial starting  observed
layer boundary boundary boundary starting starting impedances  impedance
number  locations locations locations  impedances impedances  (gemPms!) gradients
(ms) (ms) (ms) (gem>ms™) (gem>ms) X,,; (gem3ms/sample)
" Cobs toor tini X obs X ol Y obs
1 60 60 56 11000 11000 11000 0
2 74 74 72 6000 5343 7000 0
3 82 82 82 8000 7941 9500 0
4 112 112 108 5000 5352 4000 0
5 126 126 128 7000 7560 6000 0
6 256 256 256 5000 5500 4500 0
Table 5.24. The input and output data for the example of inversion for
impedance, boundaries and wavelet parameters when the signal-to-noise ratio in
the observed trace is 4. The summary of the progression towards the solutions is
given in Table 5.25.
Run number 0 1 2 3 4 S 6 7 8 9
Inversion type - Imp Bnd Imp Wyl Imp Wyl Imp Wyl Imp
Error energy (%) 99 80 40 26 23.08 23 2298 22975 22967 22.691
Number of iterations - 4 4 10 4 4 4 2 3 2

Table 5.25. A summary of the progression towards the solution when inverting
for boundaries and impedance when the observed trace signal-to-noise ratio is 4.
The solution results are given in Table 5.24. Imp means impedance inversion run,

Bnd is boundary inversion run, and Wvl means a wavelet parameters inversion
run.

As Table 5.25 illustrates, the initial E, = 99%, the first impedance run reduced
E,,, to 80% in four iterations. The impedance profiles for this run are shown in Figure
5.23. The next inversion run was for boundary locations which reduced E,, to 40% in
four iterations. The impedance profiles for this boundaries inversion run are shown in
Figure 5.24 where it can be observed that all the boundaries have converged to their
correct locations. Another impedance inversion run reduced E,,, to 26%.

Because the boundary locations are already at their correct locations, the next

rel

inversion runs are wavelet parameters and impedances. The first wavelet parameters
inversion reduced E,,, to 23.08% in four iterations. The resulting wavelets are shown
in Figure 5.25. Then after three more impedance inversion runs and two wavelet
parameters inversion runs E,, levelled at 22.96%. The final impedance profiles are
shown in Figure 5.26 where it could be noticed that a reasonable estimate of the

observed impedance profile is obtained. The final wavelet parameters inversion
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results are shown in Figure 5.27 where the final solution is obtained in three iterations.
The final wavelet solution parameters are w = [4.2 443 548 79.1 115000.
115000. 0.3826 0.113 0],
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Figure 5.23. The impedance profiles for the first impedance run (run number 1 in
Table 5.25) when inverting for impedance, boundaries and wavelet parameters
with a signal-to-noise ratio of 4 in the observed trace.
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Figure 5.24. The impedance profiles for the first, and only, boundaries inversion
run (run number 2 in Table 5.25) when inverting for impedance, boundaries and
wavelet parameters with a signal-to-noise ratio of 4 in the observed trace. This is
the only boundaries inversion needed because all the boundaries converged to
their correct locations in this run.
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Figure 5.25. Wavelet number 1 is the initial guess wavelet, and wavelets
numbered 2-5 are the solution wavelets for the four iterations of inversion run
number 4 in Table 5.25. Note that the vertical axis represents the two-way travel-
time in ms.
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Figure 5.26. The final impedance profiles corresponding to the solutions given in
Table 5.24. A reasonable estimate of the observed impedance profile is obtained.
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Figure 5.27. The final wavelet parameters inversion results in the three iterations.

The final solution wavelet is w,,= [4.2 44.3 548 79.1 115000. 115000.
0.3826 0.113 O]Twhich is wavelet number 4.
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This example was repeated for a signal-to-noise ratio of 2 in the observed
The input and output data for this test are listed in Table 5.26, and the
progression toward the solutions is given in Table 5.27.

trace.

observed solution initial observed solution initial starting  observed
layer boundary boundary boundary starting starting impedances  impedance
number  locations locations locations  impedances impedances  (gem3ms) gradients
(ms) (ms) (ms) (gem>ms’1) (gem“ms™!) X,,; (gem>ms™/sample)
n tubx t.ml tini xobx xml ynbs
1 60 60 56 11000 11000 11000 0
2 74 72 72 6000 70438 7000 0
3 82 82 82 8000 8962 9500 0
4 112 114 108 5000 4120 4000 0
5 126 122 128 7000 6282 6000 0
6 256 256 256 5000 5241 4500 0
Table 5.26. The input and output data for the example of inversion for
impedance, boundaries and wavelet parameters when the signal-to-noise ratio in
the observed trace is 2. A summary of the progression toward the solutions is
given in Table 5.27.
Run number 0 I 2 3 4 5 6 7 8 9
Inversion type - Imp Bnd Imp Wyl Imp Wvl Imp Wyl Imp
Error energy (%) 99 80 40 26 23.08 23 2298 22975 22967 22.691
Number of iterations - 4 4 10 4 4 4 2 3 2

Table 5.27. A summary of the progression towards the solution when inverting
for boundaries and impedance when the observed trace signal-to-noise ratio is 2.
The solution results are given in Table 5.26. Imp means impedance inversion run,
Bnd is boundary inversion run, and Wvl means a wavelet parameters inversion
run.

The final impedance profiles in this test are shown in Figure 5.28. In the
figure, boundaries 2, 4 and 5 did not converge to their correct locations, but the
general impedance trend in the solution profile resembles that in the observed profile.
[25.8 29.7 57 81 115000. 115000.

The final solution wavelet parameters are W, =

0.3981 0.113 0]7, which closely resemble the observed wavelet parameters W, = [24
28 55 84 115000. 115000. 0.4138 0.113 0.
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Figure 5.28. The final impedance profiles corresponding to the solutions given in
Table 5.26. The signal-to-noise ratio is 2. Boundaries 2, 4 and 5 did not converge
to their correct locations, but the general impedance trend in the solution profile
resembles that in the observed profile.

Finally, the same test was repeated for a signal-to-noise ratio of 1 in the
observed trace. Only the final impedance profiles are shown in Figure 5.29, where we
notice that the impedance values for layers 3 and S are much higher than their correct
values, and for layer 6 it is much lower than its correct value. The general impedance
trend in the shallow part of the profile is generally preserved, but in the lower part the
impedance trend has largely changed. Notice that in this case all the boundaries
converged to their correct locations. The final solution wavelet parameters converged
to w,=[257 29.7 58 78.6 115000. 115000. 0.307 0.113 0], which is a good

sol—

approximation to the observed wavelet parameters.
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Figure 5.29. The final impedance profiles for the case when the signal-to-noise
ratio in the observed trace is 1, and when inverting for impedance, boundaries and
wavelet parameters. Notice that even for this low signal-to-noise ratio, all the
boundaries converged to their correct locations.

5.6. Conclusions

The synthetic examples of the previous sections illustrate the following:

1.

For the impedance inversion to converge to the correct solution, it is extremely
important to have the boundaries as close as possible to their correct locations.

The boundaries that are located incorrectly will lead to polarity reversals when the
error in their locations approaches the radius of convergence.

When the wavelet is also incorrect, we should expect the tolerance in the boundary

locations error to be less than the radius of convergence.




4. To avoid the impedance solution from catapulting away from the correct values, it
1s necessary to use inequality constraints.

5. We start the inversion by inverting for impedances.
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CHAPTER

REAL DATA INVERSION

6.1. Introduction

The different synthetic inversion examples of chapter 5 suggest the following
procedure for the inversion of field seismic data. First, we start at a well location
where a Wiener estimate of the seismic wavelet was made (see section 2.5). We
parameterise the amplitude and the phase spectra of the wavelet and obtain the nine
parameters describing it. We also parameterise the acoustic impedance log of the well
to obtain the earth model describing the subsurface geology there. ~ When
parameterising the acoustic impedance log we always keep the number of the earth
model parameters to a minimum, and only use the layers that contribute significantly
to the synthetic seismogram energy, or use only earth model parameters to which we
can associate the reflection energy on the observed seismic trace. We then invert for
the wavelet parameters to obtain an optimum wavelet using the earth model generated
by parameterising the acoustic impedance log at the well. Finally, we make the
assumption that the seismic wavelet does not change throughout the seismic line. This
is because the specific shape of the wavelet tends to remain fairly consistent from one
shot point to the next for the same seismic survey using the same source, geophones
and recording instruments, and this wavelet propagates in the earth under similar
circumstances thus remaining largely unchanged in character. The recorded seismic
data are then processed using the same processing sequence; thus the effective seismic
wavelet will also remain fairly consistent from one seismic trace to the next in the
final seismic data. This would imply that we can invert for the boundary locations
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and impedance parameters away from the well using the same wavelet optimised at
the well. Furthermore, we try as far as possible to make a good initial guess for the
boundary locations by making a structural interpretation of the seismic data, so that
only small adjustments to the boundary locations will be necessary; thus the inversion
problem becomes mostly that of inverting for the acoustic impedance. Also, using the
proper constraints on the impedance in each layer we can prevent the final solution
from converging to an incorrect one (non-unique problem), and prevent polarity
reversals across boundaries which might occur due to the presence of noise, thus
minimising the effect of the noise on the inversion results.

In section 6.2 we discuss the parameterisation of the wavelet estimated at well
YY31, and section 6.3 discusses the parameterisation of the wavelet estimated at well
YYO04. Section 6.4 discusses the parameterisation of the impedance log at YY31 to
obtain an earth model which will be used in optimising the wavelet estimated there,
and section 6.5 discusses the optimisation of the wavelet at YY31. Section 6.6
discusses the parameterisation of the acoustic impedance of well YYO04, which is used
to optimise the wavelet estimated at that well in section 6.7. Having obtained the
optimum wavelet at YY31 and YYO04, section 6.8 discusses the acoustic impedance
inversion of part of Line 1973 and of two parts of Line 1977. In section 6.9 we
consider a different method of optimising the wavelet at well YY31 and YY04. In
this method we only invert for the wavelet parameters and boundary location, and
assume that the impedance of the layers is the same as that in the well impedance
profile. Section 6.10 discusses inversion for impedance around well YY31 using the
wavelet optimised at the well in section 6.9, and section 6.10 discusses inversion for
impedance around well YY04 also using the wavelet optimised at the well in section
6.9. In section 6.12 we discuss the inversion at the intersection of Lines 1973 and
1977. In section 6.13 we draw some conclusions on the inversion of the real seismic
data.

6.2. Parameterising the wavelet estimated at well YY31

The method of estimating the effective seismic wavelet as a Wiener shaping
filter was discussed in section 2.5. The time domain wavelet estimate in YY31 is
shown in Figure 6.1 To parameterise the wavelet we use the Fourier transform to
obtain its amplitude and phase spectra which we parameterise by nine parameters that
describe the wavelet in the frequency domain. It is these nine parameters that we
optimise in order to obtain an optimum wavelet at a well location.

Figures 6.2 and 6.3 show the amplitude and the phase spectra of the wavelet of
Figure 6.1. In these two figures, and for the other amplitude and phase spectra

figures, only the amplitude and the phase values for frequencies up to 100 Hz are
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shown since the seismic signal in the observed data is below 90 Hz due to the band
pass filter of 6-10-80-90 Hz applied during processing the data.

0.0 0.0
20.0 20.0
40.0 40.0

Figure 6.1. The wavelet estimated as a Wiener shaping filter at well YY31. Note
that the vertical axis represents the two-way travel-time in ms.
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Figure 6.2. The amplitude spectrum of the Wiener wavelet estimated at well YY31
and shown in Figure 6.1.
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Figure 6.3. The phase spectrum of the Wiener wavelet estimated at well YY31 and
is shown in Figure 6.1.
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To parameterise the amplitude spectrum, we use four bounding frequency
parameters, f, f,, f; and fy, and two amplitude parameters a; and a,. The amplitude
value of f; and f, are always kept at zero, while the amplitude parameters a; and a,
describe the amplitude values for f, and f;. To obtain the amplitudes for those
frequencies between the four bounding frequencies we use linear interpolation.
Figure 6.4 shows how the amplitude spectrum of the seismic wavelet estimated at
YY31 was parameterised. The dotted line is the amplitude spectrum shown in Figure
6.2, and the solid line is the parameterised amplitude spectrum defined by the four
bounding frequencies which are marked by circles on the frequency axis. Also, the
four corresponding amplitude values are marked by asterisks. In Figure 6.4 the four
bounding frequencies, I f2, f3 and f4 are 6, 38, 50 and 80, respectively. The
amplitude values for both f,, and f; are 108821.

Amplitude

0 10 20 30 40 50 60 70 80 90
Frequency Hz

Figure 6.4. Parameterising the amplitude spectrum of the Wiener wavelet estimated
at well YY31.

Figure 6.5 shows the parameterisation of the phase spectrum of the wavelet
estimated at YY31, which was shown in Figure 6.3. The relevant frequency range is
determined by f;, f5, f3 and f; which are obtained by parameterising the amplitude
spectrum. Figure 6.5 shows that the phase spectrum can be reasonably approximated
by the line ¢(f)=¢,+¢,f , that is the quadratic phase term ¢, of equation (1.4) is
set to zero. The dotted curve in Figure 6.5 is the phase spectrum of Figure 6.3, and
the solid line is the linear approximation to the phase spectrum in the interval [f}, f,],
and is drawn after wrapping it around -% and . The lower frequency limit f;= 6 Hz is

marked on the frequency axis by an asterisk. The solid line is extrapolated to /= 0 Hz
to obtain the value of ¢,. The solid line has a slope of ¢,. From Figure 6.5 ¢,=-0.2

radians, and ¢, = 0.115 radian/Hz.
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Figure 6.5. Parameterising the phase spectrum of the Wiener wavelet estimated at
well YY31.

The parameterisation results of Figures 6.4 and 6.5 define the wavelet of well
YY31 by the 9-vector w=[6 38 50 80 108821 108821 -0.2 0.115 0]”. The time
domain representation of the of the nine parameter wavelet, obtained by doing the
inverse Fourier transformation, is shown in Figure 6.6, along with the Wiener wavelet
so that the two wavelets can be compared to assess the degree of similarity. Clearly

the parameterised wavelet is a good approximation to the Wiener wavelet.

0.0 0.0
200 — 20.0
40.0 40.0

Figure 6.6. The estimated wavelet at YY31 (left) as compared to its parameterised
equivalent. Note that the vertical axis represents the two-way travel-time in ms.

6.3. Parameterising the wavelet estimated at YY04

Following the same procedure as in section 6.2, we determine the nine
frequency domain parameters that define the wavelet at the well YY04. The time-
domain wavelet estimated as a Wiener shaping wavelet is shown in Figure 6.7.

The amplitude spectrum of the Wiener wavelet at YY04 is shown in Figure
6.8. The amplitude notch present at about 17 Hz can be explained by the presence of
a prominent d.c. component in the wavelet (Bath, 1974). The parameterisation of the

amplitude spectrum is shown in Figure 6.9, where it can be observed that the four
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bounding frequencies are 17, 32, 42 and 67 Hz, and the amplitude for each of the two
middle frequencies is 113330.

0.0 0.0
20.0 20.0
40.0 40.0

Figure 6.7. The Wiener wavelet estimated at well YY04. Note that the vertical axis
represents the two-way travel-time in ms.
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Figure 6.8. The amplitude spectrum of the Wiener wavelet estimated at well YY04
and is shown in Figure 6.7.

1.010° |

0 10 20 30 40 50 60 70 80 90
Frequency Hz

Figure 6.9. The parameterisation of the amplitude spectrum of the Wiener wavelet
estimated at well YY04.
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The phase spectrum for the wavelet estimated at YY04 is shown in Figure

6.10 and its parameterisation is shown in Figure 6.11, where the linear approximation
gives ¢,= 0.1 radians, and ¢, = 0.12 radian/Hz. The resulting parameterised wavelet

is w=[17 32 42 67 113330 113330 0.1 0.12 0] which is plotted along with the

Wiener wavelet in Figure 6.12.
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Figure 6.10. The phase spectrum of the Wiener wavelet estimated at well YY04 and
is shown in Figure 6.7.

Phase

Figure 6.11. Parameterisation of the phase spectrum of the Wiener wavelet
estimated at well YY04.
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20.0 20.0

40.0 40.0

Figure 6.12. The estimated wavelet at YY04 (left) as compared to its parameterised
equivalent. Note that the vertical axis represents the TWO-WAY TRAVEL-TIME in
ms.

6.4. Parameterising the acoustic impedance log of YY31

The acoustic impedance log of YY31 is shown in Figure 6.13. The high
impedance layer at the bottom of the log is the thin part of the Augila limestone that
was measured by the log. The Augila limestone is overlain by the Chadra sands
which is present from the top of Augila to about 720 ms of two-way travel-time.
Then the Arida shale overlies the Chadra sands and extends to about 690 ms two-way
travel-time. The more recent material overlying the Arida shale is made up of
interbedded sandstones and shales with some limestone as well, which are not of
interest in this work but which will also be included in the impedance log
parameterisation.

Figure 6.14 shows the parameterised impedance log of YY31. The dotted line
is the impedance log of Figure 6.13 and the solid line is its parameterisation into 12
layers of constant acoustic impedance, that is y, =0 for i= 1, 2, .. , 12. This
parameterised acoustic impedance will be used to optimise the wavelet parameters at
YY31 obtained in section 6.2.

6.5. Optimising the wavelet estimate at YY31

In order to optimise the estimated wavelet parameters we use a similar
approach to that in section 5.5.5. We first invert for impedance, then for boundary
locations, then we repeat the impedance and boundary locations inversion sequence as
many times as needed until convergence is achieved for both problems. Then we
invert for the wavelet parameters, and then again repeat inverting for impedance and
boundaries in succession until convergence. The whole sequence is then repeated
until convergence is achieved in the three problems, or until the improvement in error
energy reduction is very small. The resulting wavelet parameters obtained are then
the optimum parameters we are seeking, which are used to invert for the impedance
and boundary locations across the seismic section.
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Figure 6.13. The acoustic impedance log of YY31.
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Figure 6.14. Parameterising the acoustic impedance log of YY31 into 12 layers.

Optimising the wavelet at YY31 gave the following results: the first
impedance inversion started with the earth model with E_, = 47%, then after 18
iterations the relative error energy was reduced to E_, = 32%. The initial earth model
is shown in Figure 6.15 as a dashed line with cross marks, and the final solution is
shown in the same figure as a solid line. No constraints on the boundary locations
were applied, but the impedance was constrained to vary between 3500 and 9000 gcmr
3ms! in all layers except the first and last, which were allowed to vary in broader the
range of 1500 to 20000 gcm>ms-!. This is because the reflection energy at he first
boundary could be contaminated by reflection energy from the layer(s) above it, and
we should try to minimise its effects on optimisation results. Similarly, the last layer

reflection energy could contain reflection energy from the layers below it.
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Figure 6.15. The first impedance inversion results when optimising the wavelet at
YY31. The dashed line with crosses is the initial earth model, and the solid line is
the inversion solution.

The progression of the impedance inversion solutions in the 18 iterations is
shown in Figure 6.16, where the first and last traces are the observed seismic trace at
the well and is displayed twice only for comparison purposes. The first trace after the
observed trace, trace number 2, is the initial guess synthetic seismogram. Figure 6.17
shows the corresponding error traces. The first error trace in Figure 6.17 illustrates
how the initial error energy is distributed in the initial guess synthetic seismogram,
and the last trace should reveal where most of the reduction in error energy has taken

place.
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The first boundary locations inversion results are shown in Figure 6.18, where
the dashed line represents the initial guess and the solid line is the solution. After one
iteration the resulting E_, = 21%. The solution trace for the single iteration is shown
in Figure 6.19 and its error trace is shown in Figure 6.20. This boundary location
inversion was the only boundaries inversion required to converge to the boundaries
solution. Thus, one impedance inversion was required before inverting for the

wavelet parameters. This impedance inversion reduced the error energy to E = 17%.
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Figure 6.18. The impedance profiles for the first boundary locations inversion when
optimising the wavelet at well YY31.
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800

Figure 6.19. The first boundary locations inversion solutions when optimising the
wavelet at well YY31. Traces number 1 and 4 are the observed seismic traces, trace
number 2 is the initial guess seismic response, and trace number 3 is the seismic
response solution of the single iteration performed. Note that the vertical axis

represents the two-way travel-time in ms.
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Figure 6.20. The error traces corresponding to the solutions of Figure 6.19. The
first error trace is that for initial guess and the last error trace is that for the seismic
solution. Note that the vertical axis represents the two-way travel-time in ms.

The results of the first wavelet parameter inversion are shown in Figure 6.21,
where it can be observed that 49 iterations were performed by the program to reduce
the error energy to E_, = 14.8%. Notice that in Figure 6.21, wavelet number 1 is the
parameterised wavelet obtained in Section 6.2. The solution traces for the 49
iterations in this wavelet inversion are shown in Figure 6.22 and their corresponding

error traces are shown in Figure 6.23.
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Figure 6.23. The error trace that correspond to the solutions of Figure 6.22. Error
traces number 1 corresponds to the initial guess wavelet of Figure 6.21, and error
trace number 49 corresponds to the final wavelet. Note that the vertical axis

represents the two-way travel-time in ms.
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The optimum wavelet parameters were obtained after three more alternating

inversions for impedance and wavelet parameters. The optimum wavelet is shown in
Figure 6.24 as wavelet number 4 which was obtained with E_, = 14.375%. The
optimum wavelet parameters vector is w=[15.8 21 62.5 66.5 110000 110000 -.229
116 0]7

Figure 6.24. The optimum wavelet for well YY31 is wavelet number 4. Note that

the vertical axis represents the two-way travel-time in ms.
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A final inversion for impedance gave the impedance solution shown in Figure
6.25 with E_, = 14.3 in four iterations. The final solution traces are shown in Figure
6.26 for this impedance inversion, and the corresponding error traces are shown in
Figure 6.27.

ACOUSTIC IMPEDANCE (g/cc)(mvs)
0.0*10° 5.0*10° 1.0*10' 1.5%10" 2.0"10'
580 T VR NN U (N TN T VNN SN NN Y N W A WA N N O S

600

VR

620

640

660

S

680

TErE I I BT IR R B
=

700

TWO-WAY TIME (ms)

720

740

760

780

| INSNETENE ETENETETT TASTETE EVETETETE BTSN

800

1

Figure 6.25. The optimum impedance profile (solid line) for well YY31.
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Figure 6.26. The optimum seismic solution for YY31 is trace number 5. Traces 1
and 6 are the observed seismic trace. Note that the vertical axis represents the two-
way travel-time in ms.
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Figure 6.27. The error traces corresponding to the seismic solutions of Figure 6.26.
Error trace number 4 corresponds to the optimum seismic solution trace, which is
number 5 in Figure 6.26. Note that the vertical axis represents the two-way travel-
time in ms.
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6.6. Parameterising the acoustic impedance log of YY04

The acoustic impedance log of well YY04 is shown in Figure 6.28. The top of
the Augila limestone is at 750 ms two-way travel-time and it extends to the bottom of
the log, so that this well covers a thicker section of the limestone. The
parameterisation of the impedance log is shown in Figure 6.29 as a solid line. The
dotted line is the impedance log of Figure 6.28. In this parameterisation, more
emphasis was given to the limestone section since the limestone beds produce most of
the reflection energy on the seismic trace. The only other layer that was parameterised

is the Chadra A sand. Thus, this well was parameterised using only 8 layers.
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Figure 6.28. The acoustic impedance log of well YY04.
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Figure 6.29. The parameterisation of the acoustic impedance log of YY04 into eight
layers. Chadra A is the 10 ms thick sand layer between 670 ms and 680 ms two-way
travel-time. The top of Augila Limestone is at 754 ms and extends to the bottom of
the log.

6.7. Optimising the estimated wavelet at YY04

The wavelet parameters we want to optimise here are those obtained in section
6.3 which are w = [17 32 42 67 113330 113330 0.1 0.12 0]". To optimise this
wavelet we use the earth model obtained in section 6.6. The impedance of the first
and last layers was allowed to vary in the range 500-95000 gcm-3ms!, but the other
layers had their impedance constrained within the range 450-15000 gcm-3ms-!.

The initial guess wavelet and earth model produced a relative error energy of

E = 58%. The first impedance inversion reduced the error energy to E_, = 53% after
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nine iterations. The solutions for the nine iterations are shown in Figure 6.30 and the

impedance solution for this impedance inversion is shown in Figure 6.31.

e | "E:;z
=7 S
730{ )730
=5y ) -
A BDIDIDIDIDIDE
22D
SEESEE AR AR AR N

Figure 6.30. The solution traces for the first inversion for impedance when
optimising the wavelet at YY04. The first and last traces are the observed seismic
trace. Trace number 2 is the initial guess seismic response, and trace number 190 is
the final seismic solution. Note that the vertical axis represents the two-way travel-
time in ms.

155



ACOQUSTIC IMPEDANCE (g/cc)(m/s)
0.0*10° 5.0"10° 1.0*10* 1.5*10 2.0"10"
0 L1 |4* t g b a e g a b g a0 by

20

40

60 *
| [

=

80
100

120

140

TWO-WAY TIME (ms)

160

180

200

Lo o by o o o 0 o b b b b b

220

Figure 6.31. The impedance profiles for the inversion of Figure 6.30. Zero on the
time axis corresponds to two-way travel-time of 610 ms.
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The first boundary locations inversion reduced the error energy to E_, = 46%
in three iterations. The solutions for this boundaries inversion are shown in Figure
6.32. The impedance profile for these boundaries inversion is given in Figure 6.33.

The first wavelet parameters inversion was done after two more impedance
inversions runs and one boundary locations inversion run. This has reduced the error
energy so that E , = 41% after 43 iterations. The resulting wavelets for all the
iterations are shown in Figure 6.34.
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Figure 6.32. The seismic solutions of the first boundaries inversion when optimising
YYO04 wavelet. The first and last traces are the observed seismic trace, trace number
2 is the initial guess seismic response, and trace number 4 is the final seismic
solution. Note that the vertical axis represents the two-way travel-time in ms.
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Figure 6.33. The impedance profiles for the solution of Figure 6.32, i.e. for the first
boundary location inversion when optimising the wavelet at well YY04. Zero on the
time axis corresponds to 610 ms of two-way travel-time.
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Figure 6.34. The resulting wavelets in the first inversion for the wavelet parameters
in YY04. Wavelet number 1 is the initial parameterised wavelet. Note that the
vertical axis represents the two-way travel-time in ms.

The final optimum wavelet obtained is shown in Figure 6.35, and the final
impedance solution obtained after one more impedance inversion run is given in
Figure 6.36. The optimum wavelet has parameters w = [23 30 34 83 113330
113330 0.018 0.128 0.]". This optimum wavelet will be used to invert for acoustic
impedance in parts of Line 1977.
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Figure 6.35. The optimum wavelet in YY04 is wavelet number 5 Note that the
vertical axis represents the two-way travel-time in ms.
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Figure 6.36. The optimum impedance profile in well YY04. Zero on the time axis
corresponds to 610 ms of two-way travel-time.

6.8. Impedance inversion examples from Lines 1973 and 1977

In the next examples of inversion the objective is to obtain an impedance
section of a number of traces from Lines 1973 and 1977 in a limited time window. In
each example, the resulting impedance section represents an interpretation of the
lithology within this limited number of traces and time window as determined by the
inversion program. In all the examples, each observed seismic trace has its own
initial guess, and we use the seismic wavelet optimised for each seismic line as
described in sections 6.6 and 6.7. The process is to first solve for impedance then
boundary locations then repeat this sequence as many times as is needed to obtain
convergence for both impedance and boundary location inversion. The result will

represent the final solution required. This process is repeated for every trace selected
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for inversion. Then all the impedance solutions obtained are displayed together to
represent the lithologic interpretation of the geology.

Before the data are inverted, we first structurally interpret the seismic data so
that the number of layers is defined for every seismic trace, which need not
necessarily be the same for every trace. Also, by picking the boundary locations as
accurately as possible, we make certain that we are within the convergence zone
defined by one-half of the central lobe width of the optimised seismic wavelet. Thus
we satisfy most of the requirements reached in section 5.6 of chapter 5. In this way
the inversion problem becomes mostly that of impedance inversion with small

boundary locations adjustments.

6.8.1. Inversion for impedance example from Line 1973

This example represents the inversion of two seismic events originally
interpreted as two Chadra sand bodies, and which extend for 40 seismic traces. The
observed seismic data for this example are shown in Figure 6.37, and they are CDP
numbers 748-787 in line 1973.
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Figure 6.37. The observed seismic traces (CDP's 748-787) from Line 1973. The
two sand bodies concerned are the two positive reflections (peaks) at about 710 ms
and 730 ms on CDP 748. Note that the vertical axis represents the two-way travel-
time in ms.
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The two sand bodies concerned show up as two positive reflections (peaks) at
about 710 ms and 730 ms two-way travel-time. The lower event has better continuity
and seems to extend across the whole section in Figure 6.37, while the shallower
event seems to terminate, possibly due to the sand body pinching out at about CDP
number 779. The trough above the shallower event is interpreted as a negative
reflection from the top of a shale layer that overlies the sand body and extends across
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the section. The weak trough below the deeper event is interpreted as a possible low
velocity sand layer.

To help solve the seismic boundaries (structural) problem, we display in
Figure 6.38 the initial guess for each seismic trace on to the seistnic trace plOtted only
in variable area display, i.e. not in a wiggle trace, so that we can"lvisuélly‘ confirm that
the structural problem is properly solved. The display in Figure 6.38 also enables us
to detect where a relative increase or decrease in acoustic impedance contrast across
any boundary is present, so that they can be adjusted accordingly in the initial earth
model. This would imply that we start with initial guesses that are closer to the
solution.
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Figure 6.38. The initial earth model section for the observed seismic traces from
Line 1973 (Figure 6.37). Note that the vertical axis represents the two-way travel-
time in ms.

The initial guess section comprising the 40 earth models is shown in Figure
6.39, their synthetic seismograms section is shown in Figure 6.40, and the
corresponding initial error traces are shown in Figure 6.41. The error traces section
will give an indication to the degree of improvement of the final impedance solution
obtained after the inversion of all 40 seismic traces. During the inversion of these
data the top and bottom layers were allowed to vary over a wide range, but the other
layers were constrained to vary within 3500-9000 gcm=3ms-!.
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Figure 6.39. The initial earth model section of Figure 6.38 displayed without the
observed seismic traces. Note that the vertical axis represents the two-way travel-
time in ms.

748 757 767 777 787

Figure 6.40. The initial synthetic seismograms for the earth model section in Figure
6.39. Note that the vertical axis represents the two-way travel-time in ms.
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Figure 6.41. The initial error traces corresponding to the synthetic seismograms in
Figure 6.40. Note that the vertical axis represents the two-way travel-time in ms.
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The final impedance section is shown in Figures 6.42, their synthetic

seismograms are shown in Figure 6.43 and the corresponding error section is shown

in Figure 6.44.
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Figure 6.42. The final impedance solution for the initial earth model of Figure 6.39.
Note that the vertical axis represents the two-way travel-time in ms.
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Figure 6.43. The final synthetic seismograms for the impedance solution of Figure
6.42. Note that the vertical axis represents the two-way travel-time in ms.
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Figure 6.44. The final error traces corresponding to the synthetic seismograms of
Figure 6.43. Note that the vertical axis represents the two-way travel-time in ms.

The inversion results shown in Figure 6.42 could be interpreted as follows.
The upper shale cover is persistent across the section. The sand body at 710 ms is
present at those traces where it was originally thought to exist. However, the shale
layer that underlies the upper sand body seems to terminate at CDP 779, and this sand
body merges with the lower sand at CDP traces 780-787. There is no shale layer that
underlies the lower sand, so that the lower sand body at 730 ms continues to lower
depths.
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6.8.2. Example 1 of inversion for impedance from Line 1977

The observed seismic data for this example are shown in Figure 6.45 which
consists of 61 séismic traces representing CDPs 1612-1661. ‘The seismic event at
about 730 ms two-way travel-time is interpreted as positive reflection from a Chadra
sand body that is overlain by a shale cover. The top of the shale gives the negative
reflection at about 720 ms. The Chadra sand body overlies a lower impedance layer
which in turn overlies a possible limestone bed that is composed of two layers with
the lower one having highef impedance, soi that there is a two step increase for the

limestone in the acoustic impedance profile in this model.

1612 1621 1631 - 1641 1651 1661

o I »mmnmw J1
o IR
e SR
e j?% st~

Figure 6.45. The observed seismic data of CDPs 1612-1661 in Line 1977. The
seismic event (peak) at about 730 ms is interpreted as positive reflection from a
Chadra sand body, and the broad positive reflection at 750-760 ms is a two step
limestone bed. - The two events are separated by a low impedance layer-that has a
contact with the Chadra sand at 740 ms. Note that the vertical axis represents the
two-way travel-time in ms.

The initial earth model section is shown in Figures 6.46a and 6.46b super-
imposed on the observed seismic traces. The initial earth model section is also shown
separately in Figures 6.47a and 6.47b. Although the ‘two successive positive events
between 750 and 760 ms are possible limestone layers, they are actually assigned
impedance values that are comparable withAsandstone impedance. This is also to
investigate how the program woﬁld deal with such situations. The wavelet used in the

inversion of this example is the optimum seismic wavelet obtained in section 6.7.
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Figure 6.47a. The initial earth model section for CDPs 1612-1636. These
impedance profiles are also displayed in Figure 6.46a. Note that the vertical axis
represents the two-way travel-time in ms.
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Figure 6.47b. The initial earth model section for CDPs 1637-1661. These
impedance profiles are also displayed in Figure 6.46b. Note that the vertical axis
represents the two-way travel-time in ms.

The initial guess synthetic seismogram section is shown in Figure 6.48, and

the corresponding initial error traces are given in Figure 6.49. The error traces section

shows a consistent error at about 750 ms in all the error traces.
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its seismic response section is given in Figure 6.51 while its final error traces section
is given in Figure 6.52. Clearly the seismic event at 730 ms which was interpreted as
The

underlying shale is also present across the section. The limestone layer, however,

a sand shows as a prominent sand body in the final impedance section.

seems to become more sandy in some places. This actually agrees with the known

distribution of this limestone in this area. That is, the continuous limestone layer is

1612 1621 1631 1641 1651 1661
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Figure 6.48. The initial synthetic seismograms for the earth model section of Figures
6.47a and 6.47b. Note that the vertical axis represents the two-way travel-time in ms.
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Figure 6.49. The error section corresponding to the initial earth model synthetic
seismograms in Figure 6.48. Note that the vertical axis represents the two-way
travel-time in ms.

The final impedance solution section is shown in Figures 6.50a and 6.50b, and
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somewhat below this level, and at this level the limestone is more discontinuous.
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Figure 6.50a. The final impedance section for CDPs 1612-1636. The sand layer
that starts at about 730 ms appears to be a continuous sand body. The limestone
layer, however, becomes more sandy to the left of the section. Note that the vertical
axis represents the two-way travel-time in ms,
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Figure 6.50b. The final impedance section for CDPs 1637-1661. The sand layer
that starts at about 730 ms appears to be a continuous sand body. The limestone
layer, however, becomes more sandy to the left of the section. Note that the vertical
axis represents the two-way travel-time in ms.
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Figure 6.52. The error traces section corresponding to the seismic solution in Figure
6.51. Note that the vertical axis represents the two-way travel-time in ms.

6.8.3. Example 2 of inversion for impedance from line 1977

In this example we are interested in a sand body and two limestone layers. All
three layers are interbedded with shale. The sand body is overlain by shale, and the
lower limestone layer is underlain by shale. The initial earth model section is shown
in Figures 6.53a and 6.53b, and also in Figures 6.54a and 6.54b where the earth model
traces are superimposed on the observed seismic traces. The observed seismic traces
are shown in Figure 6.55, where the sand body is represented by the positive
reflection at about 705 ms two-way travel-time, the first limestone layer is the positive
seismic event at about 735 ms and extends from CDP 1536 to CDP 1581, and it
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seems to thin out towards the left and right of the section. The second (lower)

limestone is interpreted to be positive seismic reflection at about 750 ms.
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Figure 6.53a. The initial earth model section for example 2 in Line 1977 for CDPs
1536-1560. The upper sand at 705 ms is overlain by shale, and the two limestone
layers below are underlain by shale. Note that the vertical axis represents the two-
way travel-time in ms.
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Figure 6.53b. The initial earth model section for example 2 in Line 1977, CDPs
1561-1585. The upper sand at 705 ms is overlain by shale, and the two limestone
layers below are underlain by shale. Note that the vertical axis represents the two-
way travel-time in ms.
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Figure 6.54a. The same initial earth model section in Figure 6.53a superimposed on
the corresponding observed seismic traces of Figure 6.55. Note that the vertical axis
represents the two-way travel-time in ms.
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Figure 6.55. The observed seismic traces CDP 1557-1581 for example 2 from Line
1077. The positive seismic event at 705 ms is a sand body. Note that the vertical
axis represents the two-way travel-time in ms.

The synthetic seismograms of the initial earth model section are given in
Figure 6.56 and the corresponding error traces in Figure 6.57. We observe that much
of the error in the time window of interest is consistently concentrated at the level of

the shale between the lower sand and the limestone.
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Figure 6.56. The synthetic seismograms of the initial earth model traces in Figures
6.53a and 6.53b. Note that the vertical axis represents the two-way travel-time in ms.
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Figure 6.57. The error traces of the synthetic seismograms of Figure 6.56. Note that
the vertical axis represents the two-way travel-time in ms.

The impedance inversion results are given in Figures 6.58a and 6.58b, the final

synthetic seismograms are given in Figure 6.59, and the corresponding error traces are

given in Figure 6.60.
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Figure 6.58a. The final impedance solution for example 2 on Line 1977, CDPs
1536-1560. Note that the vertical axis represents the two-way travel-time in ms.
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Figure 6.58b. The final impedance solution for example 2 on Line 1977, CDPs
1561-1585. Note that the vertical axis represents the two-way travel-time in ms.
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Figure 6.59. The final seismic solution section corresponding to the impedance
solution in Figures 6.58a and 6.58b. Note that the vertical axis represents the two-
way travel-time in ms.
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Figure 6.60. The error section of Figure 6.59. Note that the vertical axis represents
the two-way travel-time in ms.

Similar to the results of the first example on this line, there is strong evidence
for the existence of the sand on top of the limestone, but the shale below it seems to
disappear in some places. Also, the upper limestone layer changes to sand on some of
the traces, but the lower limestone is more extensive, and is present in almostn.all,,the
traces.

6.9. Another approach to optimising the wavelet parameters at the wells YY31
and YY04

The various synthetic examples that contain noise in the previous chapter
suggest that when random noise is present in the observed seismic trace the
impedance values resultmg from the inversion process should not be taken as the
correct values representing the impedance of the subsurface layers. Since at a well
location it can be safely assumed that the impedance values of the subsurface layers
are already known, it becomes logical, when optimising the wavelet parameters at a
well location, to omit the step of inversion for impedance and only invert for wavelet
parameters and then boundary locations. We then repeat this sequence until
convergence is achieved. Furthermore, to minimise the influence of noise we include
in the earth model only those layers to which we can attach a strong reflection (Brown
et al.; 1989).

6.9.1. A new optimum wavelet at well YY31
Well YY31 ties the observed seismic trace at 580 ms two-way travel-time, and

measures an impedancé section having 224 ms thickness. The initial guess earth
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model used is the same 12-layer earth model shown in Figure 6.14. The initial
wavelet parameters are those obtained in section 6.2 which has the parameters w,,; =
[6 38 50 80 109000 109000 -0.2 0.115 0]7. To obtain an optimum wavelet, we
first inverted for the wavelet parameters, then inverted for boundary locations, and
finally inverted for the wavelet parameters.

In the first wavelet parameters inversion the initial E,,, = 47%, then after eight
iterations E,,; = 45%. Figure 6.61 shows the results of the first wavelet parameters
inversion, where wavelet number 1 is the initial guess wavelet of section 6.2, and
wavelet number 9 is the final solution wavelet for this inversion run. This final
solution wavelet has the parameters w,,; = [4 24 70 74 109000 109000 -0.209
0.115 0]

e

Figure 6.61. The results of the eight iterations of the first wavelet parameters
inversion at well YY31. Wavelet number 1 is the initial guess wavelet given by the
parameters w;,; = [6 38 50 80 109000 109000 -0.2 0.115 0]7, and wavelet
number 9 is the final optimised wavelet for this inversion run. This wavelet has the
parameters w,,; = [4 24 70 74 109000 109000 -0.209 0.115 0]7. Note that the
vertical axis represents the two-way travel-time in ms.

The next inversion run was for boundary locations. This reduced E,,; to
34.47% in three iterations. The final impedance profiles for this inversion run are
given in Figure 6.62. This was the only boundary locations inversion needed and, as
illustrated by Figure 6.62, all boundary locations were adjusted by 2 ms, except for
boundary 10 which was adjusted by 4 ms.

The final inversion run needed to obtain an optimum wavelet was wavelet

parameters inversion. This inversion run reduced E,

.1 10 34.37% in nine iterations.

The resulting wavelets are shown in Figure 6.63 where wavelet number 10 is the
optimum wavelet obtained at well YY31 and has the parameters w,,, = [3.9 24 70 74
109022 108993 -0.206 0.115 0]7.
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Figure 6.62. The impedance profiles for the only boundary locations inversion
needed when optimising the wavelet at well YY31. The initial guess impedance
profile is the dashed line with cross marks, and the solution impedance profile is the
solid line. Note that all boundary locations are adjusted by 2 ms (one sample
interval), except for the 10-th boundary location which was adjusted by 4 ms.
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Figure 6.63. The results of the nine iterations of the final wavelet parameters
inversion at well YY31. The optimum wavelet obtained is wavelet number 10 which

has the parameters w,,; = [3.9 24 70 74 109022 108993 -0.206 0.115 0}". Note
that the vertical axis represents the two-way travel-time in ms.
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6.9.2. A new optimum wavelet at well YY04

Well YYO04 ties the observed seismic trace at 610 ms two-way travel-time, and
measures an impedance section having 234 ms thickness. The initial wavelet
parameters were obtained from the parameterisation of the Wiener wavelet estimated
at this well. The parameterised wavelet was determined in section 6.3 to be w;,; = [17
32 42 67 113330 113330 0.1 0.12 0.J7. The initial guess earth model was
determined in section 6.6 and is shown in Figure 6.29. In this earth model the
impedance profile in well YY04 is represented by 8 layers.

Similar to section 6.9.1, we only needed to invert for the wavelet parameters,
then boundary locations, and finally for wavelet parameters to obtain a new optimum
wavelet in well YY04.

The first wavelet parameters inversion results are shown in Figure 6.64. The
initial E,,, = 58% which was reduced to 51% in 38 iterations. The final wavelet for
this inversion run had the parameters w,,, = [21 36 60 66 113330 113330 0.7962
0.115 O]

1 5 10 15 20 25 30 35 39
0 0
40 40

Figure 6.64. The results of the 38 iterations of the first wavelet parameters inversion
at well YY04. Wavelet number 1 is the initial guess wavelet given by the parameters
w;,; =[17 32 42 67 113330 113330 0.1 0.12 0.]7. Wavelet number 39 is the
final optimised wavelet for this wavelet parameters inversion run, this wavelet has the
parameters w, , = [21 36 60 66 113330 113330 0.7962 0.115 0]7. Note that the
vertical axis represents the two-way travel-time in ms.

We next invert for the boundary locations. This was the only boundary
locations inversion needed, and it reduced E,,; to 45.74% in three iterations. The
impedance profiles for this inversion run are shown in Figure 6.65, where it can be
noticed that only two boundary locations, namely boundary locations 3 and 4, were
each adjusted by 2 ms, or one sample interval, which represents the minimum shift a
single boundary could be adjusted.
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Figure 6.65. The impedance profiles for the only boundary locations inversion
needed when optimising the wavelet at well YY04. The initial guess impedance
profile is the dashed line with cross marks, and the solution impedance profile is the
solid line. It can be observed that only boundary locations 3 and 4 are adjusted by 2
ms (one sample interval) each. This represents the minimum shift a single boundary
can be adjusted.

The last inversion needed to obtain an optimum wavelet in YY04 was for
wavelet parameters. This inversion run reduced E,, to 40.79% in 43 iterations. The
resulting wavelets are given in Figure 6.66, where wavelet number 44 is the optimum
wavelet obtained at well YYO04, and has the parameters w_, = [16.4 45.1 67.2 81.8

113330 113330 0.3128 0.118 0O]".
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Figure 6.66. The results of the nine iterations of the final wavelet parameters
inversion at well YY04. The optimum wavelet obtained is wavelet number 44 which
has the parameters w,, =[16.4 45.1 67.2 81.8 113330 113330 0.3128 0.118 0]".
Note that the vertical axis represents the two-way travel-time in ms.

6.10. Inversion for impedance around well YY31 on Line 1973

Well YY31 is located on CDP 555 on Line 1973. A seismic section
comprising of 41 seismic traces was chosen with the well location in the middle, i.e.
the 21-st trace. To invert for acoustic impedance we use the initial guess model data
of well YY31. The time window for the 41 seismic traces is 320 ms two-way travel-
time. The seismic window starts at 580 ms and ends at 900 ms, so that it extends to a
lower seismic time than what well YY31 measured. This means that inversion for
impedance covers 96 ms more of the Augila Limestone section than the well has
measured, so that the initial guess impedance section has 18 layers instead of the 12
layers in well YY31 impedance profile of Figure 6.14.

The initial guess impedance section is shown in Figure 6.67, where for the
time window 580-804 ms we strictly follow the initial guess of well YY31, but for the
lower part we attach to every strong positive reflection (peak) a boundary location
across which there is an increase in impedance, and attach to every strong negative
reflection (trough) a boundary location across which there is a decrease in impedance.
The resulting initial guess impedance section has 18 layers and is shown in Figure
6.67.

The observed seismic traces are shown in Figure 6.68 where well YY31 is
located at the middle trace, which is CDP 555. The initial guess seismic response
section is shown in Figure 6.69. This seismic response section is generated using the
initial guess earth model of Figure 6.67 and the seismic wavelet which was optimised
in section 6.9.1.
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Figure 6.69. The initial guess seismic response section around well YY31. The well
is located at CDP 555. This section is generated from the initial guess earth model of
Figure 6.67 and the seismic wavelet optimised in section 6.9.1. Note that the vertical
axis represents the two-way travel-time in ms.

The final impedance section is given in Figure 6.70 and its corresponding
seismic solution section is given in Figure 6.71. A comparison between the seismic
solution section in Figure 6.71 and the observed seismic section in Figure 6.68 reveals
that the positive reflection from the top of Augila Limestone across the section, at
about 800 ms, has been properly reproduced in Figure 6.71. That is, the changes in
the reflection amplitude in the seismic solution section from the top of the limestone
resembles that in the observed seismic section. This is echoed in the final impedance
solution section of Figure 6.70, at 800 ms, as an increase in the impedance contrast
across the boundary representing the Augila Limestone for the seismic traces with
large reflection amplitude. Indeed the seismic response of all the limestone section
below 800 ms in Figure 6.71 closely resembles the corresponding observed seismic
section of Figure 6.68.
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example, the positive-negative reflection character around 660 ms, which is most
prominent at CDP’s 560-574. However, it should be mentioned that the lack of exact
fit between the seismic solution section of Figure 6.71 and the observed seismic
section of Figure 6.68 could be attributed to the generally poor signal-to-noise ratio of
the observed seismic data, so that only the strong reflection events, such as the

Figure 6.70. The final impedance solution section around well YY31. The Augila
Limestone starts at about 800 ms and continues to 900 ms two-way travel-time. The
impedance contrast across the boundary represented by the top of Augila varies from
one profile to the next. There is a large impedance contrast for the middle profiles
that surround the well at CDP 555. The impedance contrast decreases to the left and
right. Note that the vertical axis represents the two-way travel-time in ms.
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Figure 6.71. The seismic solution section of the final impedance solution of Figure
6.70. The seismic events in this seismic section should be compared to the seismic
events in the observed section in Figure 6.68. Note that the vertical axis represents
the two-way travel-time in ms.

Similar comparisons could be made for the shallower seismic events. For
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reflection from the top of Augila Limestone, could be inverted for with reasonable
results.

6.11. Inversion for impedance around well YY04 on Line 1977

Well YYO04 is located at CDP 1093 on Line 1977. To invert for impedance
around well YY04, a 41 CDP traces seismic section was chosen with the well located
at the middle trace. This observed seismic section extends from CDP 1073 to CDP
1113 and ties well YY04 at 610 ms two-way travel-time. The time window chosen
starts from 610 ms to 900 ms, i.e. 290 ms. This implies that the Augila Limestone is
represented by a thicker time section than what has been measured by YY04. The
observed seismic section is shown in Figure 6.72.

the initial guess impedance section is shown in Figure 6.73. The initial guess
impedance profiles of Figure 6.73 were obtained from the parameterised impedance
profile of YYO04 given in Figure 6.29. But because the observed seismic section
covers more limestone section, the initial guess impedance profiles have 10 layers
instead of 8 layers as given in Figure 6.29. The first 8 layers of each of the initial
guess impedance profiles were strictly obtained from the parameterised impedance
profile of well YY04.

R
i
R R T I =

Figure 6.72. The observed seismic section used to invert for impedance around well
YY04. This section is part of Line 1977 extending from CDP 1073 to CDP 1113.
The well is located at the middle trace which is CDP 1093. The well impedance
measurements start at 610 ms and extends for 234 ms to 844 ms two-way travel-time.
The 56 ms of section time between 844 and 900 ms is an extra section extended into
the Augila Limestone. The initial guess earth model section for this observed seismic
section has 10 layers and is given in Figure 6.73. Note that the vertical axis represents
the two-way travel-time in ms.
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Figure 6.73. The initial guess impedance section, or earth model section, that
constitutes the input to the inversion of the observed seismic section of Figure 6.72
around well YY04. The well is located at CDP 1093, and measures the time window
610-844 ms two-way travel-time. The earth model profiles are obtained from the
impedance profile of well YY04 given in Figure 6.29. The seismic time window is
further extended into the Augila Limestone to 900 ms. Note that the vertical axis
represents the two-way travel-time in ms.

The initial guess seismic response section is shown in Figure 6.74. This
section was generated from the initial guess impedance profiles of Figure 6.73 and
the seismic wavelet that was optimised at YY04 in section 6.9.2.

The final impedance solution section is given in Figure 6.75, and the
corresponding seismic solution section is given in Figure 6.76. The trace to trace

amplitude variation of the shallow seismic event at 670 ms two-way travel-time,

2 s
IR 2
T

Figure 6.74. The initial guess seismic response section around well YY04. The well
is located at CDP 1093. This section is generated from the initial guess earth model
of Figure 6.73 and the seismic wavelet optimised in section 6.9.2. Note that the
vertical axis represents the two-way travel-time in ms.
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which is the positive reflection from the top of Chadra A sand, in the seismic solution
section in Figure 6.76, is almost the same as the corresponding seismic event in the
observed seismic section in Figure 6.72. The final impedance solution section shows
that this sand body is thinnest at CDP 1088 and it thickens to the left and right.
Indeed the high amplitude of this seismic event is due to the sand body thickness at
the traces around CDP 1088 being at the tuning thickness. Then as the thickness of
the sand increases in the traces on the left and right of CDP 1088, the resulting
amplitude of the seismic reflection decreases. Note that the solution impedance
profiles 1100 to 1112 in Figure 6.75 show a two-step increase of impedance in the
sand body. This is an indication of the thickness increase in the sand body, and that
the base of the sand body in these impedance profiles is at a somewhat lower level,
possibly at 690 ms, which was not parameterised in the initial guess impedance
profiles. Thus the base of the sand body is not present in the solution impedance
profiles 1100 to 1112.

The lower part of the initial guess impedance section that starts at about 750
ms two-way travel-time represents the Augila Limestone. The seismic solution for
this part is given in Figure 6.76, and resembles the corresponding observed seismic
section given in Figure 6.72. This indicates that the inversion process has determined
a final impedance solution, shown in Figure 6.75, that closely represents the limestone
section impedance. This is possible because we have included in the initial guess

impedance section only the layers that have a high signal-to-noise ratio.
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Figure 6.75. The final impedance solution section for inversion around YY04. The
shallow layer is the Chadra A sand. It is thin at the middle traces and thicker to the
left and right. The Augila Limestone starts at about 750 ms two-way travel-time.
Note that the vertical axis represents the two-way travel-time in ms.
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Figure 6.76. The seismic solution section corresponding to the impedance solution
in Figure 6.75. The high amplitude associated with the middle traces for the shallow
event is due to the thickness of the Chadra A sand being at, or near, the tuning
thickness. The decrease in amplitude of the shallow event to the left and right of the
middle traces is an indication of thickness increase of the sand body. The lower part
of the section, starting at about 750 ms, describes the Augila Limestone and closely
resembles the corresponding section on the observed seismic section in Figure 6.72.
Note that the vertical axis represents the two-way travel-time in ms.

6.12. Inversion for impedance around the intersection of Lines 1973 and 1977

Inverting for impedance at the intersection of Lines 1973 and 1977 would test
the reliability of the inversion process in a location where the seismic data were
recorded in two different directions, and the seismic wavelet used in the inversion of
each line was estimated, and later optimised, at a different well location so that each
wavelet could be slightly different from the other.

The inversion for impedance at the intersection of the two lines is performed
on two sections each having 11 CDP traces. Each section is chosen so that the CDP
trace at the intersection is located in the middle of the section, i.e. the 6-th seismic
trace. For Line 1973 the seismic trace at the intersection is CDP 1042, and for Line
1977 it is CDP 1707. The seismic section from Line 1973 starts at CDP 1037 and
ends at CDP 1047, and the seismic section from Line 1977 starts at CDP 1702 and
ends at CDP 1712.

When generating the initial guess impedance sections we only considered the
seismic events that could be correlated across the two observed seismic sections, so
that we only consider those seismic events with good signal-to-noise ratio. This was
necessary so that the comparison of the inversion results around the intersection is not
effected by the noise in the observed seismic data. Such a seismic correlation
produced two seismic events from two Chadra sands and three seismic events from
the Augila Limestone layers. Thus the initial guess impedance section comprises of 8
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layers, i.e. 7 interfaces. The initial impedance values for both sections are estimated
using the impedance profiles of wells YY04 and YY31.

The observed seismic section used to invert for impedance on Line 1973
around the intersection with Line 1977 is shown in Figure 6.77. The middle trace,
CDP 1042, is located at the intersection. The 8-layer initial guess impedance section
used in the inversion is given in Figure 6.78, and its initial guess seismic response
section is shown in Figure 6.79. The final impedance solution section is shown in
Figure 6.80, and its final seismic solution section is given in Figure 6.81.

The observed seismic section used for inversion on Line 1977 around the
intersection with Line 1973 is shown in Figure 6.82. The middle trace, CDP 1707, is
located at the intersection. Similar to the intersecting seismic section on Line 1973,
the initial guess impedance section comprises of 8 layers and is shown in Figure 6.83,
and its initial guess seismic response section is shown in Figure 6.84. The final
impedance solution section is shown in Figure 6.85, and its final solution section is
given in Figure 6.86.

AP AP AP IR NP AP & JP A7 4
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Figure 6.77. The 11-CDP observed seismic section which is part of Line 1073 used
to invert for impedance around the intersection with Line 1977. The middle trace,
CDP 1042, is the trace located at the intersection. Correlation with Line 1977
produced only 7 seismic events that have good signal-to-noise ratio. The 7 interfaces

are shown in the 8-layer initial guess impedance section of Figure 6.78. Note that the
vertical axis represents the two-way travel-time in ms.
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Figure 6.78. The initial guess impedance section on Line 1973 containing 11
impedance profiles around the intersection with Line 1977. The impedance profile
located at the intersection is profile number 1042. this 8-layer impedance section was
generated from the correlation of 7 seismic events on the two lines that have a good
signal-to noise ratio, and the two impedance profiles of wells YY04 and YY31. Note
that the vertical axis represents the two-way travel-time in ms.
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Figure 6.79. The initial guess seismic response section on Line 1973 around the
intersection with Line 1977. The shallow part of the section, above 700 ms two-way
travel-time, is the response of the three interfaces in the Chadra sands, and the lower
part, below 750 ms, is the response of four interfaces in the Augila Limestone. Note
that the vertical axis represents the two-way travel-time in ms.
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Figure 6.80. The final impedance solution section corresponding to the observed
seismic section on Line 1973 around the intersection with Line 1977. The impedance
profile at the intersection is profile number 1042. This impedance section should be
compared with the impedance solution section along Line 1977 given in Figure 6.85.
Note that the vertical axis represents the two-way travel-time in ms.
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Figure 6.81. The final seismic solution section of the impedance solution on Line

1973 shown in Figure 6.80. Note that the vertical axis represents the two-way travel-
time in ms.
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Figure 6.82. The 11-CDP observed seismic section which is part of Line 1077 used
to invert for impedance around the intersection with Line 1973. The middle trace,
CDP 1707, is the trace located at the intersection. Correlation with Line 1973
produced only 7 seismic events that have good signal-to-noise ratio. The 7 interfaces
are shown in the 8-layer initial guess impedance section of Figure 6.83. Note that the
vertical axis represents the two-way travel-time in ms.
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Figure 6.83. The initial guess impedance section on Line 1977 containing 11
impedance profiles around the intersection with Line 1973. The impedance profile
located at the intersection is profile number 1707. this 8-layer impedance section was
generated from the correlation of 7 seismic events on the two lines that have a good
signal-to noise ratio, and the two impedance profiles of wells YY04 and YY31. Note
that the vertical axis represents the two-way travel-time in ms.
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Figure 6.84. The initial guess seismic response section on Line 1977 around the
intersection with Line 1973. The shallow part of the section, above 700 ms two-way
travel-time, is the response of the three interfaces in the Chadra sands, and the lower
part, below 750 ms, is the response of four interfaces in the Augila Limestone. Note
that the vertical axis represents the two-way travel-time in ms.
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Figure 6.85. The final impedance solution section corresponding to the observed
seismic section on Line 1977 around the intersection with Line 1973. The impedance
profile at the intersection is profile number 1707. This impedance section should be
compared with the impedance solution section along Line 1973 given in Figure 6.80.
Note that the vertical axis represents the two-way travel-time in ms.
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Figure 6.86. The final seismic solution section of the impedance solution on Line
1977 shown in Figure 6.85. Note that the vertical axis represents the two-way travel-
time in ms.

Comparing the two solution impedance profiles at the intersection, we observe
that the thickness of the two shallow Chadra sand layers are noticeably different, but
their corresponding observed traces are also different at the time level of these sands.
This is due to the random noise contained in each of the observed traces. The
impedance trends, however, are still largely preserved in each impedance profile,
especially at Augila Limestone level. Indeed both the layer thicknesses and
impedance trends of the limestone layers are similar in the two impedance profile.
This indicates that even though the two observed seismic traces at the intersection of
Lines 1973 and 1977 are so contaminated with noise that we can only correlate the
seismic events in short intervals, their inversion results showed that we could obtain

reasonable impedance results but not layer thickness results.

6.13. Conclusions

The following points could be deduced from the previous examples:

1. The observed seismic data used in this work has a poor signal-to-noise ratio,

which could be severe at some interval.

2. Observing the differences in the error traces sections before and after the inversion |
would reveal the degree of fit of the final seismic solution section to the observed
data section. The seismic solution section generally agrees with the observed data,

but some error still remains.
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. The remaining error could be attributed to error in the wavelet since this wavelet

was optimised at the well, which is some distance away in all the examples.

. The final impedance solution always differs from the initial earth model. This
implies that a better initial earth model is needed, which in turn requires a detailed
knowledge about the subsurface geology of the area. This can only be achieved if
a geologist who knows the area is available to participate during the development
of the earth model.

. Despite all the above, the inversion strategy and the computer program developed
in this research produced encouraging results about Chadra sands delineation. But
it is important to analyse more data, with more wells, and with the participation of

a geologist.
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CHAPTER

CONCLUSIONS AND SUGGESTIONS FOR
FUTURE WORK

7.1. Conclusions

1. Using the Cholesky factorisation is both simple and numerically efficient. It also

uses less computer time since no function values are evaluated unnecessarily.

2. The inversion of seismic data into impedance can be a very useful tool. However,
it must be applied with care, since a poor initial guess or incorrectly chosen
constraints could lead to misleading results.

3. A good initial guess depends largely on the availability of well data. In each of the
two seismic lines available for this research, only one well was available, and they
were 4 km apart. This has limited our ability to detect any changes in the shape of
the wavelet away from the well. Although the two estimated Wiener wavelets
were closely similar, there still remains the possibility that each wavelet could
change in shape away from the well.

4. Tt is essential to involve a geologist that is familiar with the subsurface geology in

the area. This will make it possible to arrive at initial earth models that better

model the lateral variations in geology away from the well.
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5. Using linear equality and inequality constraints proved to be a very useful and
practical way to obtain solutions that accommodate desirable geologic information
into the inversion process. This reduces the problem of non-uniqueness and

increases the chance of converging to the correct impedance solutions.

6. Inversion at the two well locations showed that we can obtain a good match, i.e.
with low error energy, between the well impedance profile and the impedance
profile of the inversion solution. This is largely because the wavelet was
estimated there, and a good initial guess could always be determined from the well
data.

7. The real data inversion examples of chapter 6 showed that the Chadra sands could

be delineated away from the two wells with reasonable results.

8. It is always more stable to invert those parts of the seismic trace that contain
strong reflection energy. This is due to the low signal-to-noise ratio in the parts
where not enough contrast is present across the interfaces that produce the

reflection energy.

9. The impedance inversion results should not be considered as accurate
measurements of the acoustic impedance profile at the observed seismic location;
instead they should be interpreted in terms of their geologic feasibility, initial

guess model limitations and observed seismic data reliability.

7.2. Suggestions for future work

Probably the most important suggestion that one could make is to reconsider
the way we parameterise the wavelet. Parameterising the wavelet in the frequency
domain resulted in a poorly conditioned inverse problem. This is due to the fact that
the error energy function is highly sensitive to changes in the phase parameters while
it is considerably less sensitive to the amplitude parameters. One remedy is to invert
for the phase parameters separately from the frequency and amplitude parameters.
That is, we optimise the phase spectrum independently from the amplitude spectrum.

Another possibility is to parameterise the seismic wavelet in the time domain.
That is, we consider the sample amplitudes of the estimated Wiener wavelet as the
wavelet parameters. This may produce a better conditioned inverse problem. This
would be at the expense of determining more parameters, since in our case we will
need to determine twenty parameters instead of nine. Also, increasing the number of
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parameters increases the problem of non-uniqueness, but with a proper choice of
constraints this could be minimised.

Furthermore, the assumption that the wavelet stays the same from one trace to
the next, might not be a sufficiently correct one. I believe that much of the error
energy in the final seismic solution could be attributed to changes in the wavelet from
trace to trace. This would suggest that we should also consider inverting for the

wavelet parameters in each trace along with boundaries and impedances.
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Appendix: Computer program listing.

This appendix gives a listing of the computer program used to invert for
impedance and boundary locations of the seismic traces in this research. The program

is written in Fortran 77 and runs successfully on HP or Sun4 workstations.
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IF{perform.EQ. sc’) WRITE(6,*) ’‘Exit status: 0’
IF(perform.EQ.’fl’) WRITE(15,*) ’Bxit status: 0’
ENDIF
IF({prblm.EQ. ’bn’} THEN
problm(2)=.TRUE.
problm{2)=.FALSE.
ENDIF
IF(pxblm.EQ. ‘ai’) THEN
problm{l}=.FALSE.
problm¢2}=.TRUE.
ENDIF
IF(perform.EQ. sc’) WRITE(6,%) * °
IF{perform.EQ. 'fl’) WRITE{15,*) * '
DO 452 I=1,K
ER{I)=0.
452 CONTINUE
Do 712 1=1,M
. FSIMP{I,JK)=ACOU{I)
FYRSP(I,JK)=RSPI2{I)
FSERR(I,JK)=DSC2{I)
IF(1.LE.NI) THEN
KF8(I,JK)=XN{I)
YFS(I,JK)=¢N(I)
TFS{I,JK)=TN(I)
ENDIF
712 CONTINUE
GO TO 999
ELSE
IF(problm(1)) THEN
problm{1)=.FALSE.
problm(2)=.TRUE.
IF{perform.EQ. ac’) WRITE(6, ("’'* ai:’’,$)’)
IF({perform.EQ.’ f}/) WRITE(15,'(/'* ai:’’,$)")
DO 450 I=1,N
T(I)=TN{I}
450 CONTINUE
co TO 467
ENDIF
IF(problm{2)) THEN
problm(2)=, FALSE,
probim(1)=.TRUE.
IF(perform.EQ. sc’} WRITE(6,/{’‘* bn:'’,§)’}
IF(perform.EQ. £1/} WRITE(15,'(’‘* bn:’’,$)")
DO 451 I=1,NI :
X{I)=XN{I}
¥{I)=YN{I)
451 CONTINUE
GO TO 467
ENDIF
ANDIF
;:(.sn -
IF{.NOT.KEEPJG) THEN
CALL PRDMAT{DJM2T,DJIM2, H, NP, MP, NP, N, M, N}
DO 369 I=1.,M
DSC1{I}=DSC2¢(I}
IF(I.LE.N) 6{I)=GP1{I)
DO 369 J=1,N
DIM{I,J) =DIM2(I,J)

DIMT(J, T}=DIMAT(T, 1)
369 CONTINUE
KX=0
KY=0

Do 370 I=1,N s
IF(problm(1l)) T(I)=IN{I)
IF(problm{2)) THEN

IF(MOD(I,2).GT.0) THEN
KX=KX+1
K(KX)=AN(KX)
ELSE
KY=KY+1
Y{KY)}=YN{KY)
ENDIF
ENDIF
370 CONTINUE
ENDIF *
IF(DELION) DELION=.FALSE.
IF{ADDION} ADDIOR=.FALSE.
IF(KEEPJG) KEEPJG=.FALSE.
GO TO 15
ENDIF
99  CONTINUE

<
€ wWrite an exit status to the screen.
PRINT*
IF(VIO.OR.FVIOL.OR.LWESHRT.OR.SINGUL.OR.
(problm{1) .AND, {MA.GT.MACL)) .OR,
(problm({2) .AND.{MA.GT.MAC2)).OR.
{problm(1).AND.{INDB.LT.0}).OR.
{problm(2) .AND, {INDB.LT.0})) THEN
IF(VIO) PRINT*,’ Exit status: VIO=Ll’
IF(FVIOL) PRINT*,’ Exit gtatus: FVIOL=1’
IF{LWSHRT) PRINT#*,’ Exit status: LWSHRT=1'
IF(SIRGUL) PRINT#*,’ Exit status: SINGUL=1'
IF(problm(1).AND. (MA.GT.MACL)) PRINT*,’ Exit status: MA > MACL’
IF(problm(2).AND. (MA.GT.MAC2)) PRINT*,’ BExit status: MA > MAC2’
IF((problm{1}.OR,problm(2)).AND. (INDB,LT.0))
+ PRINT*,’ Exit status: INDB < 0’
ELSE
PRINT+,’ Exit status: 0/
ENDIF
PRINT*
PRINT#*,’ Number of traces : ’,JK
PRINT*,! Number of samples: ', M
IF{perform.EQ. £1/) WRITE{1S5,*) ’ Number of traces : ',JK
IF(perform.EQ. f1’) WRITE({15,%) / Number of samples: ‘,M
395 CONTINUE

CLOSE(15)
ynans=BLK
WRITE(6,530)

530 FORMAT(’' ivob> SCALE IMPDENCE solution to max.? (y/n): /,$)
READ{5,’{A)") ynans
IF{(ynans.EQ.’N’).OR.(ynans.EQ.’n’)) THEN

IMPNORM=.FALSE.
GO TO 510
ELSEIF((ynans.EQ.'¥’}.OR.{(ynans.BQ. "y ")) THEN
IMPNORM=.TRUE.
VIMAX=0.
VALMAX=0.
DO 531 J=1,JK
CALL MAXVAL(FSIMP{1,J),VALMAX, IPOS, MP, M)
FSIMAX(J)=VALMAX
IF(VALMAX.GT.VIMAX) THEN
JPOS=J
VIMAX=VALMAX
ENDIF
531 CONTINUE
DO 533 J-1,0K
IF(J.EQ.JPCS) GO TO 533
SCALIMP=VALMAX/FSIMAX{J}
DO 532 I=L,M
FSIMPSC(I,J)=FSIMP{I,J)*SCALIMP

532 CONTIRUE
533 CONTINUE
ELSE
PRINT*,’ Warninig: Answer y/n.’'
GO TO 395
ENDIF

O A% % % % & % % & %% &% 2 % b b & %k *0

Apply higheut filter on impedence data.

500

501
502

396

503

504

OPEN{18,FILE="ivo_filtout')
WRITE(18,500}
FORMAT(//,” GIIMP and FSIMP: before Filtering:’,/)
DG 501 I=1,NSWIN
WRITE(18,502) I,(GIIMP(I J) J=l,JK}, (FSIMP(I,J}, I=1,JK)
CONTINUE
FORMAT(3X,I3,2X,3({1X,F8.2),5X,3(1X,F8.2))

FRQHEC=100.
DO 396 J=L,JK

CALL LPFIL(GIIMP(1,J),M,MP,FRQHC,SAVEQ,SINTB,SI})

CALL LPFIL(FSIMP(1,J}M,MP,FRQHC,SAVEQ, SINTB, ST}

IF(IMPNORM) CALL LPFIL(FSIMPSC(1,J),M,MP,FRQHC,SAVEQ, SINTB,SI)
CONTINUE

WRITE{18,503)
FORMAT(//,’ GIIMP and FSIMP: after Filtering:’,/)
DO 504 I=1,NSWIN
WRITE(18,502) I,(GIIMP(I,J),J=1,JK),(FSIMP(I,J},d=1,JK)
CONTINUE

Go into graphics.

510

511

513

515

516

517

520

521

532

CONTIRUE

ynans=BLK

PTYPE=’Observed Seismic data:’

ATORSEI=’SEIDAT'

WRITE(6,511)

FORMAT{' ivob> Plot observed SEISMIC Data? {(y/nj: ',$)

READ(S5, {A)’) ynans

IF((ynans.EQ.’Y’}).OR.{ynans.8Q. 'y’)) CALL PRESUL{AIORSEI,SEIDAT,
1P, NTP, NSWIN, JK, 51, PTYPE, FNGDAT, FNGCON , nsss)
ynans=BLK *
PTYPE=‘Fipal impedence sclution:’

AIORSEI='AIMDAT'

WRITE(6,512)

FORMAT(® ivob> Plot FINAL IMPEDENCE Solution? (y/n): ’,$)
RERD{5,"(A}’) ynans

IF{(ynans.EQ.’Y‘) . OR.{ynans EQ.’y’)) CALL PRESUL{AIORSEI,FSIMP,
+

MP,NTP, M, JK, ST, PTYPE, FNGDAT, PNGCON, ness )
IF{ IMPNORM} THEN
ynans=BLK
BTYPE='Final normalised impedence solution:’
AIORSEI="AIMDAT’
WRITE{6,534)
FORMAT(/ ivob> Plot FINAL NORMAL. IMPEDENCE Solution? (y/n): /,

$)
READ{S5, {A}") ynans
IF({ynans.EQ.’Y’).OR.(ynans.EQ.'y’)) CALL PRESUL({AIORSEI,
FSIMPSC,MP,NTP,M,JK,SI, PTYPE, FNGDAT, FNGCON, nsss)

ENDIP
ynans=BLK
PTYPE='Final seismic solution:’
AICRSEI='SEIDAT’
WRITE({6,513)
FORMAT{’ ivob> Plot FINAL SEISMIC Solution? {y/n): *,$)
READ(5,’ {A)") ynans

IF{{ynans.EQ.'¥’).OR.(ynans.EQ.’'y’)) CALL PRESUL{AIORSEI,FSRSP,
+

MP,NTP,M,JK, SI, PTYPE, FRGDAT, FNGCON, nsss)
ynans=BLK
PIYPE='Final exror traces:’
AIORSEI='SEIDAT’
WRITE(6,514)
FORMAT(’ ivob> Plot Final ERROR traces? (y/n): ’,$)
READ(S5,“{A)’) ynans
IF{{yrans.EQ.’Y’).OR.(ynans.EQ.’y’)) CALL PRESUL(AIORSET,FSERR,

MP,NTP,M,JK,SI,PTYPE, FNGDAT, FNGCON, ness)
ynans=BLK
PTYPE='Initial guess impedence:’
ATORSETI='AIMDAT’
WRITE{6,515)

FORMAT(’ ivob> Plot INITIAL GUESS IMPEDENCE? {y/n): ’,$)

READ{5,’(a}') ynans

IF{{ynans.EQ.’¥’).OR.(ynans.EQ.‘y’)} CALL PRESUL{AIORSEI,GIIMP,
MP,NTP,M,JK,SI,PTYPE, FEGDAT, FNGCON, nsss)

ynans=BLK

PTYPE=‘Initial guess seismic response:’

AIORSEI='SEIDAT’

WRITE(6,516)

FORMAT{’ ivob» Plot INITIAL GUESS SEISMIC response? (y/n): ’,§}

READ(S,*(A)’) ynans

IF({ynans.EQ.’Y').OR. (ynans.EQ.'y’}) CALL PRESUL{AIORSEI,GIRSP,

# MP,NTP,M,JK,S1,PTYPE, FNGDAT, FNGCON, nsss)

ynans=BLK

PTYPE=‘TInitial Guess errar traces:’

AIORSEI=’SEIDAT’

WRITE(6,517)

FORMAT(’ 1ivob» Plot INITIAL GUESS ERROR traces? (y/n): ',§)
READ{5,’{A}’) ynans

IF{(ynans.EQ.’¥Y’).OR.(ynans.EQ.’y’}) CALL PRESUL({ATICRSEI,GIERR,

+ MP, NTP, 1, JK, ST, PTYPE, FHGDAT, FNGCON, NS5}
CONTINUE

ynans=BLK

WRITE(6,519)

FORMAT(’ ivob> Plot ALL results AGAIN? (y/n): ',$)

READ{5, {A)’) ynans
IF{(ynans.EQ.‘¥’}.OR.(ynans.EQ.’y’}) THEN
GO TO 510
ELSEIF{{ynans.EQ.‘N’).OR.{ynans.EQ.’n*)) THEN
GO TQ 520
ELSE
PRINT*, ‘Warning: Answer y or n.’
GO TO 5i8
ENDIF
CONTINUE

FORMX=" (20{1X,F7.0}}’
FORMY='(20({1X,F7.3))’
FORMT="{20{1X,F5.0})’
ynans=BLK
WRITE{6,521}
FORMAT{’ ivob> Want to write INPUTP XYT to file? {y/m): ’.$)
READ(S5,‘{A)") ynans
IF{(ynans.EBQ. Y’ ).OR.{ynans.EQ.’y’')}) THEN
OPEN(16,FILE='ivob. ‘ //FNGDAT( : INDEX( PNGDAT,BLK)-1}//’ .input’)
OPEN(16,FPILE=’ivob.input’)
SWRITE(16,%)
WRITE(16,%*) ’** Input boundaries T:’
CALL PRMATX{16,TIG,50,NIMAX,JK, 13, FORMT)
SIRITE(16,%)
WRITE(16,*) ‘*+ Input impedence X:’
CALL PRMATX(16,XIG,50,NIMAX,JK, 10, FORMX)
ENDIF
ynans=BLK
WRITE({6,522)
FORMAT(’ ivob> Want to write OUTPUT XYT to file? (y/n}: /,%)
READ(5, ‘(&) ') ynans
IF({ynans.EQ.’Y’).OR.{ynans.EQ.’y‘)) THEN
QPEN{17,FILE=*ivob.’//FNGDAT(; INDEX(FNGDAT,BLK}-1)// .output’)
OPEN{17,FILE=’ivob.output’)
WRITB(17,*}
WRITE{17,*) *%* Output boundaries T:’
CALL PRMATX{17,TFS,50,NIMAX,JK,13, FORMT)
WRITE(17,*}
WRITE({17,%) '** Output impedence X:'
CALL PRMATX(17,XFS,50,NIMAX,JK,10, FORMX}
ENDIF
ynans=BLK
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KX=KX+1
51=S1+AC(INDX2(I),J)*X(KX)
ELSE
KY=KY+1
$1=S1+AC(INDX2({I},J)*¥(KY)
ENDIF
ENDIF
CONTINUE

c
C Pind step length D{I) to the I-th constraint.

D(I)=S1-BC{INDX2(T}}
IF(D{I).EQ.0.) THENW
IF({S2.EQ.0.) THEN
D(I)=0,
BELSEIF({S2.GT.0.) THEN
D({I)=1.E20
ELSE

ELSEIF(D{I).GT.0.) THEN
IF{52.EQ.0.) THEN

D(I)=1.E20
ELSEIF({S2.GT.0.) THEN
D{I)=1.E20
ELSE
D(I})=-D{I)/S2
ENDIF
ELSB
D(I)=-1.E20
print*’a constraint is violated.’
ENDIF
20 (CONTINUE
c
¢ Test|if any (or some) of the constraints could become active, if so
C then| find the minimum step length DMX of the positive steps and its
C position IA in the constraints watrix AC so that if we need to move
¢ the ffull step length we know which passive constraint we add to the
€ set ©f active constraints.
DO 30 I=1,IND2
EF{D(I).1T.0.} GO TO 30
IF{.NOT.CD} THEN
TEMP=D(I}
ixn =I
CD =.TRUE.
ELSE
IF{D(I).LT.TEMP) THEN
TEMP=D(I)
Ia  =INDX2(I)
ENDIF
ENDIF
30 CONTINUE
IF(CD) DMX=TEMP
c
HETURN
END
e e e T o S
f>:
SUBROUTINE LSQ(X,XN,Y,¥N,T,TN,NP,NI, N, FNO,FNT,FNN,G,P, DS, RSPN,
+ RSP0, MP, M, WV, LWP, LWV, ST, RSPT, MRP, ACOU, REF , ALAMDA,,
o 8TP, IMPROV, problm, NSWIN)
c
¢ pexforms quadratic line seaxch along P, using backtrack method.
C Parameter ALF ensures sufféfient decrease in function value.
c

INTEGER MP,NP,LWP, LWV, MWP, NI, N,M,KX,KY, NSWIN
LOGICAL IMPROV,preblm(2)

) FNOGT
REAL X{NP),XN(NP),Y(NP),YN{NP), 6 T(NP),TN{NP},G(NP),P(NP},RBPO({MP},
+ WV{LWP) , REPT{MWP) ,RSPN(MP), DS (MP) ,ACOU(ME) ,REF{MP} , FNN, FNT,
+ FNO, STP, TOLX, ALAM1, THPLAM, ALAMDA , ALAMN, SLOPE, TEMP, TEST,
STPLAM

PARAMETER (ALFA=1.E-5,TOLX=1.E-7)

TEST = 0.
SLOPE= 0.
ALAM1= 1.

¢
¢ Find slope.

1o
<

IF{problm(1l)}) STP=1.

Do 10 I=1,N
SLOPE=SLOPE+STP*G(I}*P (I}

CONTINUE

€ Compute minimum step ALAMN.

12

c

KX=0
K¥=0
DO 12 I=1,N
IF(problm(l)} TEMP=ABS(P{I))/AMAX1(ABS(T{I}),1.)
TEMP=ABS (STP*P{I))/AMAXL(ABS(T{I)),1.)
IF(problm(2)) THEN
IF(MOD(I,2).GT.0) THER
KX=KX+1
TEMP=ABS (STP*P{I))/AMAXL(ABS (X{KX)), 1.}
ELSE
KY=KY+1
TEMP=ABS { STP*P{I)) /AMAXL(ABS (¥ (KY)),1.)
ENDIF
ENDIF
IF(TEMP . GT.TEST) TEST=TEMP
CONTINUE
ALAMN=TOLX/TEST

C Use quadratic model.

13

c

CONTINUE

THPLAM=-SLOPE/ (2. *{FNT-FNO-SLOPE) }

IF{TMPLAM,LT.0.) THEN

PRINT*, ‘Warning:; TMPLAM_LSQ negative. Set to: TMPLAM=,5’

TMPLAM=.5

ENDIF

IF{TMPLAM.EQ.0.) THEN
PRINT*,’Warning: THMPLAM in ISQ is zero.’
PRINT®, * set to: TMPLAM=.5 €
THELAM=.5

ENDIF

C Set TMPLAM within [0.1+ALaM1,0.S5*ALAML].

¢

IF(TMPLAM.LT.0.1*ALAML) TMPLAM=0.1*ALAM1
IF(TMPLAM.GT. 0 .5+*ALAML) TMPLAM=0.S*ALAML

C Compute a new point and function value FNEW.

15

STPLAM=STP*TMPLAM
KX=0
KY=0
DO 15 I=1,N
IF{problm(1l}) TN(I)=T{I)+3I*REAL(ANINT(STPLAM*P(I)/SI))
IF(problm(2)) THEN
IF(MOD{I,2).ST.0) THEN
KX=KX+1
XN(KX)=X({XX)+STPLAM*P (T)
ELSE
KY=KY+1
¥N{KY)=Y{KY)+STPLAM*P(I)
ENDIF
ENDIF
CONTINUE
IF{problm{1}) CALL RESPON{X,Y,TN,NP,NI,¥V,6 WP, LWV,S1,RSEN,MP,H,
+ RSPT, MWP, 2COU, REF, NSWIN)
IF(problm(?)) CALL RESPON{XN,YN,T,NP,NI,WV, LWP,LWV,SI, RSPN,MP, M,
RSPT, MWP,ACCU, REF, NSWIN}

6 15:40:24 1996

5

c
(=

0% % %% % % % % 4 % ¥

o

CALL SUBVEC{RSPN,RSPO,DS,MP, M}
FRN=VNORM{DS ,MP, M) /2.

Test for convergence.
IF{FNR.LT.FRO) THEN
ALAMDA=STPLAM
IMPROV=.TRUE.
RETURN
ELSEIF{ (TMPLAM.LT.ALAMN) .OR.{ABS (PNN-FNO} .LE.ALFA)) THEN
KX=0
Ky=0
Do 20 I=1,N
IF({problm(l)} TN(I)=T(I)
IF{problm{2)) THEN
IF{MOD(I,2).GT.0) THEN
KX=KX+1
AN(KX)=X (KX}
ELSE
KY=KY+1
YN(KY)=Y{KY)
ENDIF
ENDIF
20 CONTINUE
FNN =FNO
ALAMDA=STP
IMPROV=.FALSE.
RETURN
ELSE

Interchange FNN and FNT, ALAM1 and TMPLAM, and repeat.
ALAMI=TMPLAM

FNT =FNN

GOTO 13 ”
ENDIF
END

SUBROUTINE VIOT(C,B,T,N,D,SI,CVIOL,ACTY)

INTEGER N
REAL C(N),T(N},B,D,S,ST
LOGICAL CVIQL,ACTV

CVIOL=
ACTV

FALSE.
FALSE.

s :
DO 10 I=1,N-1
S=S+C(I}*T(I}
10 CONTINUE
s=s-B
IF{S.LT.0.) CVIOL=.TRUE.
IF{(S.LE.D).AND.(S.GE.0.)) ACTV=.TRUE.

RETURN
END

SUBROUTINE VIOXY(C,NP,B,X,N,D,CVIOL,ACTV,XCASE)

INTEGER N
REAL  C(NP),X{N),BD,8
LOGICAL CVIOL,ACTV,XCASE

CVIOL=. FALSE.
ACTV =.FALSE.
§=0.

K=0

JI=2

IF{XCASE) J=1
DO 10 I=J,2*N,2
K=K+1
S=S+C(I}*X(K}
10 CONTINUE

S=5-B
IF{ABS{S).LE.D) THEN
ACTV=.TRUE.

ELSEIF{{S.LT.0.).AND. (ABS{S).GE.D)) THEN
CVICL=.TRUE.

ELSE
CONTINUE

ENDIF

*

IF(S.LT.0.} CVIOL=.TRUE.
IF{{5.LE.D}.AND. (S.GE.0.})) ACTV=.TRUE.

*

IF{ABS(S).LE.D) THEN
ACTY=.TRUE.

ELSEIF({S.LT.0.) THEN
CVIOL=.TRUE.

ELSE
CONTINUE

ENDIF

RETURN
END

suaaou‘rms VLT{T,LOGTE, TE, LOGTL, TL, LOGTU, TU, AE, BE, AC, BC, INDXa,
INDXB, SAVE, MAE, MAC, INDA, INDB, MC1P, NP, N, NI, S,
+ NECT, VIO)

INTEGER MAE,MAC, INDXA(NP), INDXB(MCLP) , INDA, INDB,NECT, IEQ, ILB
REAL  T(NI},TE(NI),TL{NI),TU(NI),AE(NP NI), BE{NP)},

+ AC(MCLP,NI),BC{MCLP) , SAVE({NI} , TMAX, TOTEQ, TOTLE
LOGICAL LOGTE(NI),LOGTL(NI},LOGTU(NI},CVIOL,ACTY,VIO

DT =
HSI =
MAE =
MAC =0

VIO=.FALSE.
TMAX=T(NI)
TOTEQ=0.
TOTLB=0 .
IEQ =0
LB =0
DO 30 I=1,NI
IF{LOGTB({I}) THEN
TOTEQ=TOTEQ+TE(I)
IEQ=IEQ+l
ENDIF
IP{LOGTL{I}) THEN
TOTLB=TOTLB+TL(I)
ILB=ILB+1
ENDIF
30 CONPINUE
UBMAX=TMAX - TOTEQ - TOTLB- { (NI-IEQ- ILB-1)*SI}
Do 14 I=1,NI
IF{LOGTE({I)) THEN
NECT=NECT+1
IF(I.EQ.1) THEN
0o 10 J=1,N
IF(J.EQ.T) THEN
SAVE(J)=1.
ELSE
SAVE(J)=0.
ERDIF
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€ an upper or lower triangular matrix with unit diagonal elements.

€ When A is upper triangular the value of FBFLAG is set to +1.0 to solve
¢ for X by forward-substitution. Mowever, when A is lower txiangular the
C value of FBFLAG is set to -1.0 to solve for X by back-substitution.

c

EAL  A(NP,NP),X{NP),B(NP},FBFLAC
NTEGER ¥

po 50 I=1,N
X(I)=0.
50 'ONTINUE
F(FBFLAG.LT.0.) THEN
DO 20 I=N,1,-1
SUM=0.
DO 20 J=N,I,-1
SUM=SUM+A( T, T} ¥X{J)

10 CONTINUE
X(T)=B(I)-SUM
20 CONTINUE
ELSE
DO 40 I=2,N
| sum=0.
Do 30 J=1,I
SUM=SUM+A (I, J)*X(J)
30 CONTINUE
X(I)=B{I)-SUM
40 CONTINUE
ENDIF
c
RETURN
END
G
<
SUBROUTINE FBSUBB(A,X,B,FBFLAG,SINGUL,NP,N)
c
¢ This subroutine performs both back- and forward-substitution depending
¢ on the value of FBFLAG:
(54 FBFLAG=-1.0 then performs back-substitution.
c FBFLAG=+1.0 then performs forward-substitution.
[
C Basically this subroutine solves the linear system AX=B, whexe 2 is
€ an upper or lower triangular matrix. When A is upper triangular the
€ value of FBFLAG is set to +1.0 so we can solve for X by forward-
C substitution. However, when A is lower triangular the value of FEFLAG
C is set to -1.0 to solve for X by back substitution.
c
REAL A(NP,NP),X(NP},B{NP), FBFLAG, TINY
10GICAL SINGUL
INTEGER W
c

C set the singularity Jfest value TINY.
1INY=10.E-20
IO 50 I=1,N
X(1)=0.
50  CONTINUE
1F(FBFLAG.LT.0.) THEN
DO 20 I=N,1,-1
SUM=0.
Do 10 J=N,I,-1 o
SUM=SUMtA{I,J)*X(J}
10 CONTINUE
IF(ARS(A{I,I)}.LE.TINY) THEN
WRITE(*, *} *Thesatrix A is singular at subroutine FBSUBB/
SINGUL®. TRUE.
RETURN
ENDIF
X(I})=(B(I)-SUM}/A(I,I)
20 CORTINUE
ELSE
DO 40 I=1,N
SUM=0.
Do 30 J=1,1
SUM=SUM+A{I,J}*X(J)
30 CONTINUE s
IF(ABS(A(I,I)}.LE.TINY) THEN
WRITE(*,*)’***The matrix A is singular at the subroutine

*FBSUBB’
SINGUL=.TRUE.
RETORN
ENDXIF
X(L)=(B(1}-SUM)/A(L, I}
40 CONTINUE
ENDIFP
c
R ETURN
END
s e i 5 ) W S
c
SIUBROUTINE MINVAL(X, VAL, IPOS,NP,N)
c !

€ This subroutine finds the first minimum value VAL of the array X,
¢ and returns its position in the array IPOS. If there is more than
C one ejual minimum value, IPOS will contain the position of the
¢ first minimum.
<

R EAL X(NP),VAL

INTEGER. IPOS, ¥

VAL =X(1}
I?708=1
DY 10 1=2,N
IF(X{I).LT.VAL) THEN
VAL =X(I}
. IPOS=I
ENDIF
10 CONTINUE
<

RIETURN
END

SUJBROUTINE ABSMNV{X,VAL,IPOS,NP,N)
< ‘
€ Pinds ' the first ABSOLUTE minimum value VAL of the array X,
€ and returns its position in the axray IPOS. If there is more than
C one ecqual minimum value, IPOS will contain the position of the
€ first minimum.

c
REAL X(NP},VAL
INTEGER IPOS,N

VAL =ABS({X(1))
ipos=1
DO 10 I=2,N
IF(ABS(X(I)).LT.VAL) THEN
VAL =ABS(X({I)}
IPOS=I
ENDIF
10 CONTINUE
c
RESTURN
END

SUBROUTINE MAXVAL(X,VAL, IPOS,NP,N)
This subroutine finds the first maximum value VAL of the array X,

and re:turns its position in the array IPOS. If there is more than
one ecjual minimum value, IPOS will contain the position of the

nnoa

<€ first maximum.

c
REAL  X(NP),VAL
INTEGER IPOS,N
L o1
VAL =X(1)
1P0S=1
DO 10 I=2,N
IF(X(I).GT.VAL) THEN
VAL =X(I}
1POS=1
ENDIF
10 CONTINUE
c
RETURN
END
N
¢

SUBROUTINE ABSMXV(X,VAL, IPOS,NP,N)

o

C Finds the first ABSOLUTE maximum value VAL of the array X,

C and returns its position in the array IPOS. If there is more than
C one egual minimum value, IPOS will contain the position of the

C first maximum.

[+
REAL  X(NP},VAL
INTEGER IPOS,N
¢
VAL =ABS(X{1l))
1POS=1
DO 10 I=2,N
IF(ABS{X(I)}.GT.VAL) THEN
VAL =ABS(X(I)} )
1P0S=1 #
ENDIF .
10 CONTINUE
{
RETURN
END
5l i o B S R G e
c
SUBROUTINE UNIVEC(UVEC, IVEC,MP,M)
L o4

C This subroutine finds a unit vector UVEC having its only unit value
¢ at the position IVEC. UNIVEC has physical length MP, and actual

C length M.

c

REAL UOVEC (MP)
INTEGER IVEC

Do 10 I=1,M
UVEC(I)=0.
10  CONTINUE
UVEC{IVEC}=1.0

RETURN
END
SUBROUTINE DLINDX(INDEX,ID,NP,N)

This subroutine removes the ID-th element of the integer
array INDEX. It is similaxr to DELROW,

aann

INTEGER INDEX(NP)
c
€ Test if the set INDEX is empty, if so reduce the dimension of
¢ INDEX by unity, write a message and return.
IF(N.EQ.0) THEN
WRITE(*,*)’ !
WRITE(*,*)‘You are trying to delete an index from an epmty’
WRITE(*,*) set INDXB. This error message came from DLINDX.’
GO to 20
ENDIF
Do 10 I=1,N
IF{I.EQ.N) THEN
INDEX{I)=0
ELSEIF(I.LT.ID) THEN
G0 TO 10
ELSE
INDEX{I)=INDEX{I+1}
ENDIF
10 CONTINUE
20 CONTINUE
N=N-1

RETURH
END

SUBROUTINE FINDMX(AC,BC,INDX1, IND1, INDX2,IND2,NE,X.¥,T,SI,P,D,
+ CD,DMX, IA,MCP, NP, N,NI, problm)

Finds which constraints that are not in the active set closest to the
current point in the direction P, and finds the step length DMX to it.
It will also return the position IA of this closest constraint in the
constraints matrix AC (and constraints vector BC). If the full step
length in the Qirection P is taken, the the constraint defined by AT
will become active and is added to the active set a.

The way this subroutine finds DMX is by detexmining the step length
D{I) to each I-th passive constraint and choose the minimum of the
positive steps as DMX (the reason we consider the positive step
lengths only because if the step length is negative then we are
woving away from the constraint if we are moving in the direction of
P, so that constraint will never become active.

cannaoannNnaanna

REAL . AC({MCP,HP),BC(MCP),D(MCP),X(NP),Y(NP} T{NP},
+ P{NP),DMX, TEMP, 81,52

INTEGER INDX1{NP),INDX2(MCP} NE,IA,N, KX, K¥,III,IT
LOGICAL CD,pxoblm{2)

Hn
2]
2
"

constant variables.

a0

Multiply the constraints (rows of AC) with Z and P.
DO 20 I=1,IND2
§1=0.
82=0.
I1=0
KX=0
Ky=0
DO 5 JI=NE+1,IND1

c next statement is only an extra caution.
c the one after is the real test needed.
IF{INDXL1(JJ).LP.0) GO TO 5
IF{INDXL(JJ) . EQ.INDX2(I))} THEN
D{I)=-10000.
GO TO 20
ENDIF
5 CONTINUE
PO 10 J=1,N

S2=S2+AC{INDX2(I),J}*P(J)
IF{problm{1l}} S1=81+AC{INDX2(TX), J)*T(J)
IF{problm{2)) THEN

IF{MOD{J,2}.GT.0) THEN
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SUBROUTINE UNIMAT(UNIT,NPP,N)

c
REAL UNIT(NPP,NPP)
c
VO 20 I=1,N
DO 10 J=1,N
UNIT(I,J)=0.
10 CONTINUE
UNIT(I,T}=1.
20 (JONTINUVE
RETURN
1END
c
c
SUBROUTINE PROMAT(A,B,C,MPP, IRP,NPP,M, IR, N)
C
REAL A(MPP,IRP),B(IRP,NPP),C(MPP, NPP)
C
10 20 I=1,#
Do 20 J=1,N
SUM=0.
DO 10 K=1,IR
SUM=SUM+A{I,K}*B(K,J)
10- CONTINUE
C(I,J)=SUM
20 CONTINUE
© RETURN
BND
O B S e R O e S S
¢
SUBROUTINE TRANSP(ONE,TWO,MPP,NEP,M,N)
c
REAL ONE(MPP,NPP}, TWO{NPP,MPP)
L <4
DO 10 T=1,M
Do 10 J=1,N

TWO(J,I}=ONE{I,J)
10  CONTINUE

RETURN
END
7S T
€ v
SUBROGTINE PMIVEC(A X,Y,MPP,NEP,H,N)
c
REAL A(MPP,NPP) X({NPP),¥{MPP)
c -
‘PO 20 I=1,M -
SUM=0.
DO 10 K=1,N
SUM=SUMFA (I,K) +X(K)
10 CONTINUE
Y(I}=5UM .
20 CONTINUE
RETURN
'END
B oo R R R BRI S A P
c
‘S5UBROUTINE DELROW(A,B,ZMDEX1, IND1, IDEL,MP, NP, M, N}
c
C This subroutine deletes row number IDL from the matrix A, and an
¢ element at position IDEL from both B and INDEX1l. Then adds the
C element that was deleted from INDEX1 to the end of INDEX2.
<

REAL A(MP,NP) ,B(MP)
INTEGER INDEX1(MP},IDEL,IND1,M,N

c
IND1=IND1-1
DO 30 1=1,4
IF{1.EQ.M) THEN
Do 10 J=1,8
A(1,3)=0.0
10 CONTINUE
B(I) =0.
INDEX1(%}=0
ELSEIF(I.LT.IDEL) THEN
GO TO 30
ELSE
DO 20 J=1,N
B(I,J)=A({I+1,J}
20 CONTINUE
B{I) =B{I+1}
INDEXL{T)=TINDEX1(I+1)
ENDIF
30  CONTINUE
MaM-1
<
RETURN
END
c
€ mmmmmmmmmmmmm A AR B A SR S mrmm m n R e R AT s nn e s S AP RREEEEE
c

SOBROUTINE ADDROW(A,B,AC,BC, INDEX, IAD, MCP, NPP, M, N, MC}
€
¢ This subroutine adds a row to the working set.
=]

REAL A(NPP,NPP) ,B{NPP),AC (MCP,NPP), BC(MCP)
INTEGER INDEX(NPP),IAD
'
Ineremenc the row dimension and test if we are trying to add a
non-existent constraint, if so write a message and return to exit.
M=M+L
IF{M.GT.MC) THEN
WRITE(*, %)/ *
WRITE(*,*)’You are trying to add a constraint numbered ’,MC+i
WRITE(*,*)’You do not have more than ’,MC,' constraints.’
WRITE(*,*)’This exror message came from ADDROW.‘
GO TO 20
ENDIF

nao

c
C Put the IAD-th row of AC into the N-th row of A, and the IAD-th
¢ element of BC into the N-th element of B.
PO 10 J=1,N
A(M,J)=AC(IAD,J)
10 CONTINUE
B(M) =BC(IAD)
c
C Update INDEX.
INDEX(M)=IAD
20 CONTINUE

RETURN
ERD

SUBROUTINE CHOLSK(G,L,D,B,C,NP,M, perform)

c
REAL G(NE,NP),L(NP,NP),D(NP}, E(NP),C(NP, NP),
+ GAMA, XI,XNU, EM, DELTA , COLSUM
REAL DS DR,COND
INTEGER IPOS
CHARACTER perform*{*)
c
C Set constants, and compute the norm of ¢ and then DELTA.

GAMA=0.

3

XI1=0.
EM=1.92092896E-7
COLSUM=0.
Do 12 J=1,M
SUM=0.
DO 11 I=1.M
SUM=SUMTABS (G(X,J) )
11 CONTINUE
IF{SUM.GT.COLSUM) COLSUM=SUM
12 CONTINUE
DELTA=AMAX1 { EM*COLSUM, EM)
<
¢ Find the maximum magnitude diagolnal element GaMa and the maximum
C magnitude off-diagonal element XI of the matrix ¢.
Do 15 1=1,M
DO 15 J=1,M
IF{I.EQ.J) THEN
IF(ABS{G(X,J)).GT.CAMA) GAMA=ABS(G(I,J))
ELSE
IF(ABS{G(I,J}).GT.XI) XI=ABS(G(X,J})
ENDIF
15  CONTINUE

c

C Finding BS
XNU =AMAX1{1.,SORT(FLOAT{M}*FLOAT(M)-1.))
XNU=XI/XNU
BS =AMAX1{GAMA,XNU,EM)

c

C Put diagomal of G into diagonal of C.
DO 20 I=1,M

C(I, I}=G(X.I)
20 CONTINUE

<

C Start Looping. ¥
J=0

25 J=J+1
c
¢ Step 4.
DO 45 K=1,3-1
L(J,K)=C{J,K}/D(K)
45 CONTINUE
DO 55 I=J+1,M
SUM=0.
DO 50 K=1,7-1
SUM=SUM+L (J, K} *C{I,K}
50 CONTINUE
C{I,J)=G{I,J}-SUM
55 CONTINUE
THETA=0.
IF{J.EQ.M) GO TO 65
DO 60 I=J+1,M
IF{THETA.LE.ABS(C(X,J))) THETA=ABS(C(I,J})
60  CONTINUE
65 CONTINUE
D{J}=AMAX1{DELTA,ABS{C(J,J)) , THETA*THETA/BS)
E(J)=D{J)-C(J,J}
IF{J.EQ.M) GO TC 80
DO 70 I=J+1,H
C(I,T)=C(I,I}-C{I,T)*C(I,J)/D{J)
70 CONTINUE
€ Return to loop.

GO TO 25
80  CONTINUE
c
C Set diagonal elements of L to unity, and restore DELTA.
Do 85 I=1,M
L{I,I)=%.
85 CONTINUE
c

CALL MINVAL{D,DR,IPOS, NP, M}
CALL MAXVAL{D,DS,IPOS,NP,M}
COND=DS/DR
IF{perform.EQ. ’sc’) THEN
IF{COND.LT.10.} WRITE(6,112) COND
IF{ {COND.GE.10.).AND. (COND.LT.100.}) WRITE{6,113) COND
IF{ (COND.GE.100.) .AND. (COND.LT.1000.)) WRITE(6,114) COND
IF( (COND.GE.1000.).AND.{COND.LT.10000.}) WRITE(6,115) COND
IF{ {COND.GE.10000. ) .AND. (COND,LT.100000.)) WRITE{6,116) COND
IF{{COND.GE.100000.) AND.{COND.LT.1000000.)) WRITE{&,117}) COND
IF{{COND.GE.1000000.)) WRITE(6,118) COND
ENDIF
IF(pexfoxm.EQ. f1) THEN
IF(COND.LT.10.) WRITE{15,112) COND
IF({COND.GE.10.) .AND. (COND.LT.100,.)} WRITE(15,113) COND
© IF{{COND.GE.100.}.AND.{COND LT,1000.)) WRITE(15,114) COND
IF({{COND.GE.1000.}.AND. (COND.LT.20000.)) WRITE{1lS,11l5) COND
IF({COND.GE.10000.) .AND. (COND.LT.100000.)) WRITE({15,116} COND
IF({COMD.GE.100000.).AND, {COND.LT.1000000.}) WRITE({15,117) COND
IF({COND.GE.1000000.)) WRITE(15,118} COND
ENDIF
112 FORMAT{3X,‘Hc=',F7.5,§
113 FORMAT{3X, ‘Hc=’,F7.4,$
114 FORMAT{3X, ‘He=',F7.3,%
115 FORMAT{3X,‘Hc=’,F7.2,$
116 FORMAT{3X, Hc=',F7.1,%
117 FORMAT(3X,’He=’,F7.0,$
118 FORMAT(3X, 'He=’,E7.2,$

<

RETURN

ERD
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c

SUBROUTINE PARTQ(CQ,01,02,NP,N,INDX,NQ2)
[
C Partitions the matrix Q into two matrices Q1 and 02.
c

REAL Q{NP,NP),Q1(NP,NP),Q2(NP,NP)
INTEGER N,INDX,NQ2
c
¢ Start at column 1 and loop to column N of 0.
Do 30 J=1,N
IF{J.LE.INDX) THEN

DO 10 I=1,N
QL{X,J)=Q(I,d)
10 CONTINUE
ELSE
DO 20 I=1. N
Q2(I,J-INDX)=Q(I,J)
20 CONTINUE
ENDIF

30 CONTINUE

NQ2=N-INDX
<

RETURN

END
a8 A S B
c

SUBROUTINE FBSUBA(A,X,B,FBFLAG,NP,N)
<
¢ This subroutine performs both back- and forward-substitution depending
C on the value of FBFLAG:
c FBFLAG=-1.0 then performs back-substitution.
c FBFLAG=+1.0 then perfoxms forward-substitution.
[
C IMPORTANT:
c The diagonal elements of the matxix A SHOULD equal unity;
e i.e., each diagonal elemen should equal to 1.0.
¢ Basically this subroutine solves the linear system 4X=B, where 2 is
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PROGRAN 1VO

C This prog:um performs nonlinear least-squaxes inversion with
€ linear equality and inequality constraints.

c

*
*
<

O % wor

725

726

750

751

754

755

756

T

+

CHARACTER BLK*1
pAR)\MEr[‘ER(HP’1024 NP=100, NTP=720, LWP~256, MWP=MP+LWP-1,
MC1P=2#NP,MC2P=4 *NP,MC3P=18,BLK=" ')

REAL X(NP),XN(NP),Y{NP}, YB(NP), T(NP), IN(NP),WP{9)
WV (LWP) , PH{LWP}, TEB(NP) , TLB{NP) , TUB{NP),
XEB(NP) , XLB(NP) , XUB(NP) , YEB(NP) , YLB(NP) , YUB{ NP} ,
ER(500),ES(NP),RSPI(MP),RSPI2(MP) , RSPO(MP)
RSPT(MWP} ,REPP {MP} ,RSPM(MP) , DIM(MP, NP) , DJUT{NP,MP) ,
DJIM2{MP, NP} , DIMZT (NP, MP) ,Q1 (NP, NP) ,QLT(NP, NP} ,QLTG{NP),
VECLAG (NP), Z (NP, NP) , ZT{ NP, NP) , H{NP, NP) , HTE( NP, NP) ,HP (NP, NP} ,
G(NP),GP (NP}, GPL(NP),DSC1(}P),DEC2(MP) , TK{NE), P (NP) , P2 (NP},
AL{NP,NP},BL(NP},AZ(NP, NP),B2(NP),A{NP,NP) ,AT{NP NP),
B{NP) ,ACL{MC1P,NP},BC1{MC1P),AC2 (MC2P, NP} ,BC2{MC2P) ,
Q(NP, NP}, R{NP,NP),QT{NP, NP}, SAVEQ(#P),CL(NP, NP} , CLT (NP, NB),
CD(NP} ,CDRCP (NP) ,CE(NP) , SIGS {NP) , DIST(MC2P) , ACOU(MP) , REF(MP) ,
DSCN(MP) , DMAX,GPC (NP} , trace {2000) , AWV (LWP) , FWV{LWP) , HEK(NP) ,
HPKG{NP),ALF, PGP, ERT, PSTPMN, ERRLMT, PMAG,ALFLMTT, ALFLMTX,
ALFLMTY, PNORM1, PNORM2 , ALFMAX, TDUR, SI, CC{NB,NP) , ERSEO, EPCENT,
GIIMP (MP,NTP),GIRSP(MP,NTP) ,GIERR(MP, NTP ) , FSIMPSC(MP,NTP} ,
FSIME({MP, NTP) , FSRSP(MP, NTP) , FSERR(MP, NTP) , VIMAX, VALMAX,
SEIDAT(MP,NTP),XIG(50,NTP),¥IG(50, NTP), TIG{50, NTP),
XFS(50,NTP}, YFS (50, NTP), TFS (50, NTP)
+ ,SINTB(MP) , FRQEC
TNYEGER INDXAL(NP), INDXAZ(NP), INDXA(NP), INDXBL(MCLP), INDXB2 (MC2P),
INDXB(MC2P), INDAL, INDA2, INDB1, INDB2, INDA, INDB, IADD,
KX, KY, NECT, NECXY , LWEST, LWV, irp, NI, M, LWWNR , KLIMIT,
NSSS, NSWIN, NSAMPT, iinput, ipos, NREC, NCREC, LENREC, NIMAX,
NTOTREC { NTP) , FS TMAX { NTP)

COMPLEX CWV{LWP)

+++ 4

LOGICAL LOGTEB{NP}),LOGTLB{NP),LOGTUB(NP), LOGXEB{NP), LOGXLB{NP},
LOGXUB{NP}, LOGYEB{NP) ,LOGYLB(NP) , LOGYUB{NP) ,CHDIST, TERMNT,
DELION,ADDION, SINGUL, NEGLAG, IMPROV, FVIOL, DONEA, retry,
LWSHRT, CENTRL, V10, KEEPJG , problm(2) , READWY , CSTATE
PRESNT, WWEINR, bneonv, aiconv, iginfo, PCHNGED, IMPNORM

c]u\RAC’l‘ER GARBG*15/BLK/, PIWHNR*60/BLK/, PNGDAT#*60/BLK/,

+

FNGCON*60/BLK/, FNSEIS*60/BLK/, ibuff*32/BLK/,
ynans*1/BLK/, prblm*2/BLK/  perform*2/BLK/,
FORMX*80/BLK/, FORMY*80/BLK/, FORMT*80 /BLK/

CHARACTER PTYPE*40/BLK/,AIORSEI*6/BLK/
SOPTION RANGE O¥
$OPTION LIST ON

external common_handler

WRITE(*, ' (/) "}

'&
PRINT*, ’ivob V.26.8.56"
WIRITE(H, (/) ')

]

j.eemieee_handler("set", "common",common_ handler)
j.f(iee.ne.0) PRINT*, 'Could not establish fp signal handler.’

LEINREC=6000
ixp=0

CONTINUE

PRINT*

WRITE(#,726)

FORMAT({’ ivob> Which pESELEN to alvays solve FIRST? (bn/ai):
READ(5,’{A)‘) prblm
IF(prbim.EQ. bn’) THEN

]pxoblm(l)-.mui:.

'48)

problm(2)=.FALSE.
ELSEIF(prblm.EQ.’ai’) THEN
=.T

|problm(2 RUE.

|problm{1)=.FALSE,
ELSE

irp=irp+l

IF(irp.GE.4) STOP': program terminated.’
[PRINT*,’ Warninig: Please answer bn/ai.’
GO TO 725
EIJDIE‘
u-p =0
CONTINUE
PRINT#*
WRITE(6,751)
FDRMAT(' ivob» Use WEINER wavelet estimate? {(y/n):
READ(S,’(A) } ¥nans
IE({ynans.EQ.’¥’).OR. {ynans.EQ.'y’}) THEN
WREINR=.TRUE,
CONTINUE
PRINT*
WRITE(6,753)
FORMAT(' ¢gnrlp> Enter WEINER wavelet FILE name: ’,§)
READ(S, ' (A)’) FNWWNR
INQUIRE(FILE=FNWWNR{ : INDEX{ FNWWNR, /
IF(.NOT.PRESNT) THEN
| irp=irp+l
| IF(ixp.GT.4) STOP’: program terminated.’
' PRINT*,’ Warning: Enter another WEINER wavelet file.’
GO TO 752
ENDIF
OPEN{UNIT=9, FILE<FNWKNR{ : INDEX { FNWWNR, /
LW@WNR=0
CONTINUE
LWANR=LWANR+1
READ( 9, FMT=+%,IOSTAT=1err) WV{LWWNR}
IF(ierr.EQ.0) GO TO 754
IF(ierr.¢T.0)STOP! :ERROR reading unit attatched to WEINER WV
LWANR=LWWNR- 1

%)

’)-1), EXIST=PRESNT)

-1

\ELSEIF{ (ynans.EQ.’N’}) .OR.{ynans.EQ.’n')) THEN

© WWEINR=.FALSE.
ELSE
irp=irpt+l
IF{irp.GT.4) STOP‘: program terminated.’
PRINT#,/ Warninig: Answer y/n.‘
60 TO 750
ENDIF

irp=0
CONTINUE
PRINT®
WRITE(6, 756}
FORMAT( " -ivob> Enter GUESS DATA FILE name:
READ(5,’(A)}’) FNGDAT
INQUIRE(FILE=FNGDAT{ : INDEX { FNGDAT,
IF{.NOT.PRESNT) THEN
ixp=irpg+l
IF(irp.GT.4} STOP’: program terminated.’
PRINT*,’ Warninig: the File entered does not exist.’
PRINT* * Enter anothex GUESS DATA file.’
GO TO 755
ENDIF
irp=0
CONTINUE
PRINT*
WRITE{6,758)
FORMAT( ivob> Enter CONSTRAINT FILE name:
READ{S, ’ (A}’} FNGCON
INQUIRE(FPILE=FNGCON{ : INDEX{FNGCORN, '
IF{.NOT.PRESNT) THEN
jrp=irp+l
1FP{irp.GT.4) STOP’: program terminated.’
PRINT#*,’ Warninig: the File.entered does not exist.’

%)

73-1), EXIST=PRESNT)

7.8

7)-1),EXIST=PRESNT})

1996

1

764

770

765

PRINT#, * Enter another GUESS CONSTRAINTS file.’
GO TO 757

ENDIF

irp=0

CONTINUE

PRINT*

WRITE(6,760)

FORMAT{‘ iveb> Enter SEISMICDAT FILE name: /,$)

READ(S, ' (A)') FNSEIS

INQUIRE{FILESFNSBIS{

IF(.NOT.PRESNT} THEN
irp=irp+1
IF(irp.GT.4} STOP’:
PRINT*,’ warninig:

: INDEX(FNSEIS, ! ’)-1),EXIST=PRESNT)

program terminated.
the File entered does not exist.’

PRINT®, ' Enter another SEISMIC DATA fila,’
co To 759
ENDIF
OPEN({UNIT=10, FILE=FRCDAT( : INDEX{FNGDAT, / ()-1})
OPEN(UNIT=11, FXLE=FNGCON( : INDEX{ FRGCON, ¢ ')-1))

OPEN(UNIT=12, FILE=FNSEIS( : INDEX{FNSEIS, ' }-1},ACCESS='DIRECT',

RECL=LENREC)
PRINT+*
irp=0
continue
write(§,762)
format(’ fvob> Enter the START seismic sample : ’,$)
read(5,'(A}’) ibuff

retry=.false.

call redchr{ibuff,iinput,retry,ipos)

if (retry) then
print#,’ Warning: Non-numeric character at index:’,ipos
irp=irp+l
IF(irp.gt.3} stop’ Fatal Error: too iﬁany trials.‘
print#*,’ Enter the START seismic SAMPLE again.'
irp=irp+l
go to 761

endif

nsss=iinput

irp=0

continue

write(6,764)

format(' ivob> Seiasmic WINDOW length (samples):

read(5,'{A)') ibuff

retry=.false.

call redchr{ibuff,liinput, retry,ipos)

if(retry) then
print*,’ Warning:
irp=irp+l
IFfirp.gt.3) stop’ fatal error: too many trials.’
print+, Enter Seismic WINDOW length (samples) again.’
irp=irp+l
go to 763

endif

nswin=iinput

fe5}

Non-numeric character at index:’, ipos

continue
ynans=BLK
write(6,768}
format{’ ivob> Want PERFORMANCE information (y/n):
read({5,'{A)’) ynans
IF{{ynans.EQ.’X’) .OR.{ynans . EQ. y’)) THEN
write(6,770)
format(’ iveb> Information on SCREEN or in FILE {sc/fl):
read(5,’(a)’) perform
IF{perform.EQ. ‘sc’}) THEN
CONTINUE
ELSEIF(perform.EQ. f1’) THEN
OPEN({15,FILE="'1ivob.per’)
PRINT*, '+ Performance file name is called:
ELSE
PRINT*,’ Waxning: Expexted answer sc or fl.-

“i$)

ivob.pex’

PRINT*®, " Start again.’
GO TO 769
ENDIF
ELSEIF({ynans.EQ. N‘}.OR.{ynans.EQ. ’n’}) THEN
perform=blk
ELSE

PRINT*,’ Warning: Expexted answer y or n.’
PRINT*,’ start again.’
GO TO 769

ENDIF

CENTRL=.FALSE.
readwv=.FALSE.
PSTPMN=2.
ALFLMTT=6.
ALFLMTX=5000.
ALFLMTY=500.
KLIMIT =INT{MB/3)-1
ERRLMT =1.E+1
TDUR =256
GTOL=2

SI=2.
HSI=SI/2.
NSAMPT=1500
NIMAX=0

JK=0

PRINT*

PRINT*
CONTINUE
JK=JK+1
CHDIST=.FALSE.
TERMNT=.FALSE.
DELION=.FALSE.
ADDION=.FALSE.
SINGUL=.FALSE.
FALSE.
FALSE.
FALSE.
FALSE.
FALSE.
.FALSE.
FALSE.
iginfo= FALSE.

IF(.NOT. (WWEINR.OR.READWV)) THEN

READ{10,*) GARBG

READ{10,#) (WP(I),I=1,9),LWV,LWEST

READ{10,*} GARBG
ENDIF
READ(10,*) GARBG
READ{10,*) NREC,NI,CSTATE
IF{NREC,EQ.9999%) THEN

** go to plot results

WRITE({6,*) ’ Trace: Last Recoxd:!,NREC
IF(perform.EQ. f1') WRITE(15,%) ' Trace: Last Record:’,NREC
JK=0K-1
GO TO 99
ENDIF
print*,’ Trace:’,JK,’ Record:’,NREC

IF{perform.EQ. £1’) WRITE{15,*) ! Trace:;’,JK,’ Record:’,NREC
NTOTREC{JK)=NREC
IF(NI.GT.NIMAX) NIMAX=NI
DO 765 I=1,NI
READ{10,*) NTXYD,T(I) X(X),Y(I)
CONTINUE
IF{CSTATE) THEN
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CALL TRANSP(DJM, DIMT,MP, NP, M, N)
CALL PIMTVEC (DJMT, DSC1,G, NP, MP, N, M)
CALL 'PRDMAT (DIMT, DJM, H, NP, MP, NP, N, ¥, N)
DONEA=.TRUE.

ENDIF

c

€ 'Find HP and CP.
CALL PRDMAT(2T,H,HTE, NP, RP,NP,NZ,N,N)
CALL PRDMAT(HTE,Z,HP,NP,NP,NP,NZ,N,N2)
CALL PMTVEC(2T,G,GP NP, NP, NZ,N)

c

¢ Find Cholesky factors €L, CD and CE of HP, magnitudes CEM of CE,
¢ and GRM of GP.

dALL CHOLSK(HP,CL,CD,CE,CC, NP, NZ, perform)

* CALL ZERO2D{CLT,NP,NP, NP, ¥P)

ALL TRANSP(CL,CLT,NP,NP,NZ,NZ}

QEM=SQRT ( VNORM{CE, NP, NZ} }

GRM=SQRT (VNORM{GP, NP, NZ) }

c
¢ Test if GRM is large.
TF(GRM.GT.CTOL} THEN
c
c if so find P using PZ, CL and CD.
N2
-GP(I)

52 CONTINUE
CALL FBSUBA(CL,TK,GPC,1.,NP,NZ)
DO 53 I=1,NZ
CDRCP{I}=TK(I)/CD(I}
52 CONTINUE
CALL FBSUBA(CLT,PZ,CDRCP,-1.,NP,N2Z)
CALL PMTVEC(Z,PZ,P,NP,NP,N,NZ)

E}ILSEIF(CEM.GT. 0.) THER

an

Or else modified HBP, find negative curvature P.
CALL SUBVEC(CD,CE,SIGS,NP,N2})
CALL MINVAL(SIGS,VAL,ISIG,NP,NZ)
CALL UNIVEC{ES, ISIG,NP,NZ)
CALL ZEROLD(PZ,NF,NP)
CALL FBSUBA(CLT,PZ,ES,-1.,NP,NZ)

<
¢ Test Wf the small GRM is positive, so saddle point. Or GRM is zere,
C so a weak minimum.
IF(GRM.GT.0.) THER
SSIGN=PRODIN(PZ,GP,NP,NZ)
CALL PMTVEC(Z,PZ,P,NP,NP N,NZ)
IF{SSIGN.GT.{.) THEN
DO 54 I=1,N
P{I)=-P({I)
54 CONTINUE o
ENDIF "
SLSE
CALL PMTVEC(Z,PZ,P, NP, NP, NZ, N}
EZNDIF
E}JSE

c
€ CEM *f zero, positive definite HP.
¢ Find Lagrange multipliers,decide on deletian,
IF(INDA.EQ.0) THER
NEGLAG= . FALSE.
GO TO 56
ENDIF o
DO 252 I=1,N7Z
GPC{I)= -GP(X)
252 CONTINUE
CALL FBSUBA(CL,TK,GPC,1.,NP,N2)
DO 253 I=1,NZ
CDRCP{ I)=TK{I}/CD{I}
253 CONTINUE
CALL FBSUBA{CLT,PZ,CDRCP, -1.,NP,NZ)
CALL PMTVEC(Z,PZ,P,NP,NP,N,Nz)
CALL PMTVEC(H,P,HPK,NP,NP,N,N)
Do 255 I=1,N
HPKG(L)=G(I}+HPK(X)
255 CONTINUE
CALL PMTVEC{Q1T,HPKG,QLTG, NP, NP, 1A, NA)
|CALL FBSUBB{R,VECLAG,QLTG, -1.,SINGUL, NP, MA)
'IF(SINGUL) THEN
WRITB{12,*)/**t***vx** Fatal ERROR: Singular R,’
GO TO 99
ENDIF
NEGLAG=.FALSE.
DO 55 I=l,MA
TP{ (VECLAG(I).LT.0.).AND.{INDXA(I) .GE.0)) THEN
IF(problm{l) .AND.(I.GT.NECT)} THEN
NEGLAG=. TRUE.
GO TO 56
ENDIF
IF(problm¢{2).AND. {I.GT.NECXY}) THEN
NEGLAG=.TRUB.

GO TC 56
ENDIF
ENDIF
55 CONTINUE
56 CONTINUE

IF(.NOT.NEGLAG) THEN
TERMNT= . TRUE .
KEEPJG=. TRUE.
GO TO 199
ELSE
IP(problm{1)) THEN
CALL MINVAL(VECLAG{NECT+1),VAL, IDEL,MA, MA-NECT)
IDEL=NECT+IDEL
ENDIF
IF{problm(2)) THEN
CALL MINVAL(VECLAG{NECXY+1},VAL, IDEL,MA, MA - NECXY)
IDEL=NECXY+IDEL
ENDIF
ENDIF
CALL DELROW {A,B,INDXA,INDA, IDEL,NP,NP,MA, NA)
IF{MA.EQ.0) THEN
MA=NZ
CALL UNIMAT(Q,NP,N&a)
CALL UNIMAT(Z,NP,N&)
CALL UNIMAT(R,NP,NA}
CALL ZERO2D(AT, NP, NP, NA,MA)
CALL TRANSP(Q.QT.NP,NP NA,NA)
CALL TRANSP(Z,ZT,NP,NP,NA,NA)
NZ=NA
CaLL ZERO2D(Q1, NP, NP, NA,NA)
BLSE
CALL 2ERC2D(AT, NP, NP, NA, NA)
CALL TRANSE(A,AT,NE,NP,MA,NA)
CALL QR{AT,QT,R,SAVEQ, NP, NP, Na, MA)
CALL TRANSP(QT,Q,NP,NP,NA,NA)
CALL PARTQ{Q,Ql,2,NP, N2, INDA,NZ}
CALL TRANSP(Q1,Q1T,NP,NP,NA,MA)
CALL TRANSP(Z,ZT,NP,NP,NA,NZ)
ENDIF
c
¢ set logical variable DELION.
PELION=. TRUE.
ENDIF

o0

stage 2. Deciding the step length.
IF{DELION) THEN
ALF=0.
KEEPJG=.TRUE.
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ELSE
IF(INDB.EQ.Q0) THER
CHDIST=. FALSE.
GO TO 64
ENDIF
IF({problm{1)) THEN
CALL ABSMXV{P, EMAXV, IPMX,NP,N)
IF( (ABS(PMAXV) .GE.{.9*HSI)).AND.(ABS{PMAXV} LT.PSTPMN}} THEN
DO 167 I=1,N
B{I)=P{I)*PSTPMN/ABS{PMAXV)
167 CONTINUE
ENDIF
CALL BNP(P,N,SI,1)
CALL FIRDMX{ACL,BCLl,INDXA, INDA, INDXB, INDB,NECT,X,¥,T,S1,P,
+ DIST,CHDIST, DMAX, IADD, MC1P, NP, NA, NI, problm)
ENDIF :
IF{prablm(2)) CALL FINDMK{AC2,BC2,INDXA, INDA, INDXB, INDB, NECXY,
+ X,Y,T,S1,P,DIST,CHDIST, DMAX, IADD,MC2P, NP, NA NI, problm)
64 CONTINUE
PNORM1=(,
PNORM2=0.
KX=0
K¥=0
Do 177 I=1,N
IF(prchlm(2)) THEN
IF{MOD{I,2).GT.0) THEN
KX=KX+1
PNORM1=PNORM1+ABS (P(1)}
ELSE
KY=KY+1
PNORM2=PNORM2+ABS (B(1))
ENDIF
ELSE
PNORML=PNORML+ABS(P(I)) &
ENDIF
177 CONTINOE
PCHNGED=. FALSE.
IF{probim(1)) THEN
IF{PNORM1.LE.1.E-7) THEN
ALFMAX=ALELMTT
ELSE
ALFMAX=AMIN1 (ALFLMTT, ALFLMTT/PNORML }
ENDIF
IF{DMAX.GT.0.) THEN
DC 783 I=1,N
IF({SI*{ (AINT(DMAX*P(T)/SI))/DMAX)).NE.P(I}) THEN
PCHNGED®. TRUE .
GO TO 784
ENDIF
783 CONTINUE
ENDIF
ENDIF
784 CONTINUE
IF{problm(2)) THEN
IF{(PNORM1.LE.1.E-7).AND. (PNORM2 . LE.1.E-7)) THEN
ALFMAX=AMIN] (ALFLMTX ALFLMTY)
ELSEIF({PNORML.LE.1.E-7) THEN
ALFMAX=AMINL (ALFLMTX, ALFLMTY/PNORM2}
ELSEIF{PNORM2.LE.1.B-7) THEN
ALFMAX=AMINL (ALFLMTX/PNORML, ALFLMTY }
ELSE
ALFMAX=AMIN1(ALFLMTX/PNORM1, ALFLMTY/PNORM2 )
ENDIF
ENDIF
IF{CHDIST.AND.{DMAX.EQ.0Q.)) THEN
ALF=DMAX
¢ Ad@ IADD constraint. Keep the point, G, B and ER.
IF(INDA.EQ.0) MA=INDA
IF{problm{1l); CALL ADDROW(A,B,ACL,BCLl, INDXA, INDXB{IADD),MC1P,

+ NP, MA,NA,MAC1)
IF{problm(2}) CALL ADDROW(A,B,AC2,BC2, INDXA, INDXB(IADD),4C2P,
+ NP, MA,NA, MAC2)

c

C If add nonexistent constraint to A, or delete from empty INDXB exit.
IF(problm{l).AND.{MA.GT.MACLl)) GO TO 359
IF{problm(2).AND. (MA.GT.MAC2)) GO TO 99
IF{INDB.LT.0} GO TO 99

INDA=INDA+1

CALL TRANSP(A,AT,NP,NP,MA NA)

CALL QR{AT,QT,R,SAVEQ, NP, NP, NA MA)

CALL TRANSP(QT,Q,NP,NP,NA,NA)

CALL PARTQ{Q,Q1,%,NP,NA,INDA,NZ)

CALL TRANSP(Q1,QlT,NP,NP,NA,MA)

CALL TRRNSP(Z,ZT,NP,NP,NA,NZ)
ADDION=.TRUE.

KEEPJG=.TRUE.

ELSEIF(CHDIST.AND. (DMAX.LE.1.) ,AND, (DMAX.LE. ALFMAR)
+ .AND. { .NOT.PCHNGED)) THEN
ALF=DMAX
€ Move step ALF, find ERT, if ERT<ER(K) and PGP1<0 Add IADD, else do LS.
IF(preblm(i)) THEN
DO 780 I=L,N
P{I)=ALF*P(I)
780 CONTINUE
CALL BNP{P,N,SX,-1)
DO 66 I=1,N
TN{I}=T(I)+P(I}
66 CONTINGE
ENDIF
IF{problm(2)) THEN
RX=0

KY=0
Do 65 I=1,N
IF{MOD(I,2).GT.0) THEN
KX=KX+1
XN(KX)=X(KX)+ALF+P(I)
ELSE
KY=KY+1
YN(KY)=Y(KY)+ALF+P(I)
ENDIF
65 CONTINUE
ENDIF
IF{problm{1)) CALL RESPON(X,¥,TN,NP,NI,WV,LWP,LWV,SI,RSPI2,
+ MP, M, RSPT, MWP, ACOU, REF, NSHIN)
IF(problm(2}) CALL RESPON(XN,YM,T,NP, NI, WV,LWP,LWV,SI,RSPI2,
+ MP, M, RSET, MWP , ACOU, REF, NSWIN}
CALL SUBVEC(RSPI2,RSPO,DSC2,MP,M)
ERT=VNORM(DSC2, P, M) /2.
IP(problm(1}) CALL' JCB(X,Y.TN,NI,WV,LWP,LWY,SI,RSPI2, RSPP,

+ RSPM, ACOU, REF ,RSPT, MWP, DJM2 ,MP, NP, M, N, CERTRL, problm, NSWIN)
IF{problm(2)) CALL JCB(XN,¥N,T,NI,WV,LWP,LWV,SI,RSPI2,RSPP,
+ RSPM, ACGU, REF ,RSPT, MWP, DIM2,MP, NP, M, N, CENTRL, problm, NSWIN)

CALL TRANSP(DJM2,DJM2T,MP,NP,M,N)
CALL PMTVEC (DJM2T,DSC2,GP1,NP,MP,N,M)
PGP1=PRODIN(P,GP1,NF,N)
PMAG=SQRT(VNORM(P, NP, N} )
IF{ (ABS (ERT-ER(K) ) .LB.ERRLMT) .AND. ( (PMAG) .LE.ERRLMT)} THEN
K=K+1
ER({K}=ERT
KEEPJG=. TRUE.
ELSEIF(ERT.LT,ER{K)) THEN
IF{PGFL.LT.0.) THEN

K=K+1
ER({K)=ERT
€ add IaDD.
IF(INDA.EQ.0) MA=INDA
IF(problm(1l)) CALL ADDROW(A,B,ACL,BCl, INDXA, INDXB{IADD),
+ MC1P,NP,MA, NA,MAC1)





