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Abstract 

Soliton Dynamics and Symmetry in C P2 Sigma Models 
by 

D.R.Bull 

The primary purpose of the work undertaken in this thesis is to in­
vestigate soliton scattering in the non linear C P2 sigma model. This 
has two spatial and one temporal dimension. The vector fields used to 
represent the model have three components and hence there exists a 
global SU(3) symmetry. 

The effects of adding an Hopflike term to the basic lagrangian is 
considered. A review of the model is given in chapter I. The second 
chapter discusses Noether's theorem which states that each symmetry 
of the lagrangian has associated with it a conserved charge. 

In the third chapter, the eight charges relating to the internal sym­
metry are calculated. Explanations are provided for the results calcu­
lated during the numerical simulations. The results for the C P1 model 
are also discussed. 

In the fourth chapter, these charges are used to predict the quali­
tative behaviour of the solitons. It will provide an explanation for the 
effect of the coefficient of the hopflike term on the scattering. The single 
soliton ansatz is also investigated. 

In the penultimate chapter, an alternative approach is used. This 
involves looking for the closest static approximation to the evolved so­
lution. It is able to predict the trajectory for pure C P2 and some 
confirmation is provided for the ansatz used in the full lagrangian. 

The last chapter summarises the results. It also provides some sug­
gestions for further work. 
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I 

Introduction 

Nature 1 and Nature 1S laws lay hid at night1 

God said: let Newton be! And all was light. 1 

It did not last! The Devil shouting ho! 

Let Einstein be and restored the status quo. 2 

1 Alexander Pope, epitaph for Sir Isaac Newton 
2 Sir John Collings 

1 
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I.i Physical Motivation 

The Greek philosopher Democritus postulated around 400 BC, that all 

matter was constructed from minute, indivisible particles [26]. How­

ever, at that time the more widely accepted view was that proposed by 

Aristotle. He believed that all matter was continuous in structure. This 

hypothesis dominated until the birth of modern scientific research in 

the seventeenth and eighteenth centuries. Then the proposed building 

blocks of matter were given the name atoms, derived from the Greek 

for indivisible: atomos. 

John Dalton is regarded as being the father of modern atomic the­

ory. In 1808 he proposed that all matter was composed of such atoms; 

that all the atoms of a particular element were identical and that the 

atoms of different elements differ in mass and other well defined proper­

ties. When two or more elements combine, their atoms joined to form 

molecules. Throughout the nineteenth century experimental results 

confirmed this theory. 

In the 1890s, J.J.Thomson first verified the hypothesis that the atvm 

had an internal structure by confirming the existence of electrons within 

the atom. This was followed by the discovery of the proton within the 

hydrogen atom by Rutherford in the 1920s. The existence of a neutron 

was shown by Chadwick in the 1930s. Thus by the early part of this 

century, it became clear that atoms were not the fundamental unit of 

matter. Instead, they are constructed from various combinations of 

protons, neutrons and electrons. 

Protons and neutrons are members of the class of particles known as 

hadrons (from the Greek word adros, meaning strong). All half integer 
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spin hadrons are called baryons whilst integral spin hadrons, such as 

the pion, are called mesons. 

After the second world war, high energy accelerators became avail­

able and this led to a plethora of new particles being discovered. Hence, 

a method of classification was urgently required. The quark model was 

proposed as a means of explaining the internal structure of sub-atomic 

particles and hence the means by which to classify them [10]. 

Experimental evidence from deep inelastic scattering in the 1960s 

indicated that the proton was constructed from smaller components, 

which Feynman named partons. In an experiment analogous to Ruther­

ford's, it was shown that the charged partons have point-like interac­

tions. It is now believed that quarks are equivalent to these pointlike 

partons. 

Before continuing, a mathematical tool which has proved extremely 

useful in high energy physics shall be introduced. It is possible to 

define physical dynamical systems in terms of the difference between 

the kinetic and potential energy, the Lagrangian. From this can be 

obtained the equations of motion and other useful information (fm an 

example of this process, see the last two sections of this chapter). 

Classical solutions of the Lagrangian fall into four categories [20]: 

1. constant solutions (time and space independent); 

2. static solutions (time independent but space dependent); 

3. time and space dependent solutions 

4. instantons (these arise from an analytical continuation of time to 

an imaginary variable). 
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However, classical theory is unable to explain physics at microscopic 

levels. Even quantum mechanics [25] breaks down at high energies. To 

explain the experimental results, quantum field theories were developed 

(see [26] for an historical perspective or [34] for an introduction to 

current methods). 

In the quark model [14], it is proposed that baryons are constructed 

from three quarks whilst mesons are constructed from quark antiquark 

pairs. They are influenced by the strong force which is short ranged 

and attractive. 

As far as the charged weak interaction is concerned, it is believed 

that quarks belong to three families, each of which contain a pair of 

quarks (for example, up and down). These quarks are bound into the 

hadrons by gluons, the carriers of the strong force. 

Quantum Chromodynamics [29] is a model proposed to explain this 

phenomenon. The quarks are assigned a colour, of which there could 

be N variations. Experimental evidence suggests that the number of 

colours in QCD is three. 

The quarks cannot exist on their own, but only within the olour 

neutral hadrons. This is described physically as confinement, which is 

believed to be a non-perturbative effect. 

In QCD, the strong force is described by a SU(3) Yang Mills gauge 

theory [3]. It is mediated by gluons which carry colour and anti colour. 

There are thus six colour changing, and two colour non-changing gluons. 

The cross section associated with any particular scattering process 

is complicated. The establishment of asymptotic freedom [8] was an 

important landmark in the development of QCD. It allowed perturba­

tive techniques to be used to study high energy deep inelastic scatter-
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ing (see, for example, (19) and (23]). This provided the experimental 

verification. 

The simplest approach to studying a gauge theory is to use an ex­

pansion where each term is given by the sum of all the Feynman di­

agrams for a particular order of the gauge coupling constant. This 

method has been helpful in the calculation of high energy processes 

such as the aforementioned deep inelastic scattering. However, for 

strong interactions involving hadrons in the infrared limit, the expan­

sion parameter becomes large and an alternative approach is therefore 

needed. 

To understand the alternative method proposed by 't Hooft (17], 

it is necessary to consider the quantal significance of the solutions of 

the Lagrangian. For constant solutions it is well known. They are first 

approximations to the vacuum expectation value of the quantum field. 

Frequently they signal the presence of spontaneous symmetry break­

down, for example the Goldstone phenomena. This is the appearance of 

a massless scalar whenever a continuous symmetry of a physical system 

is not apparant in the ground state. 

The existence of static solutions leads to a new form of state: the 

soliton. Note that, despite arising from a field theory, they behave 

like particles. Their energy density is strongly localised, total energy is 

finite and they are stable. 

An important property of most physical field equations is that they 

are Lorentz invariant. Therefore once a solution ¢>( x) has been found, 

there also exists the boosted solutions ¢>((x- vt)/)1 - v2 ). They are 

able to move within the space. 
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Most research into time dependent solutions, has been concerned 

with multisoliton scattering. This has been done by studying the time 

dependence of field configurations which, for large separations, describe 

isolated solitons. 

It can be shown that some of the quantum properties of these new 

states (such as the field form factors and soliton mass) are proportional 

to inverse powers of the coupling constants. This implies that these 

features are nonperturbative in their nature as they cannot be found 

in ordinary perturbation theory. 

The 1/ N expansion procedure was proposed as an alternative method 

by 't Hooft [17] for Quantum Mechanics and Quantum Field Theo­

ries [41]. For Yang Mills field theories it involves expanding around the 

reciprocal of the dimension of the symmetry group SU(N). In QCD 

this will involve powers of one third. Despite this not being particularly 

small, the expansion does provide useful results. 

The calculations are performed in Euclidean space. This can be 

considered as an analytic continuation of Minkowski space by using a 

Wick rotation: t -+ it [3]. This is not a trivial process and befo~e it 

can be used its validity must be tested. 

Of particular interest are the localised finite action solutions of the 

classical Euclidean field equations. These correspond to the fourth 

category of classical solutions listed above, the "instantons" (they were 

given this name by 't Hooft). The requirement of finiteness of energy 

for solitons is replaced by the requirement of finiteness of the Euclidean 

action for instantons. The Euclidean action has the same structure as 

the energy of a static field configuration in one higher spatial dimension. 
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The vacuum of a Yang Mills theory such as QCD is no longer 

unique [33]: it degenerates into infinite number of homotopically dis­

tinct classes. The true ground should be expressed as 

00 

lvac >e= L einOivac >n, (I.i.l) 
-oo 

where the integer n labels the different homotopy classes. It can be 

shown this will allow the possibility of tunnelling between two such 

vacua in Minkowski space. 

This scenario in Quantum Theory is called the 0-vacua. One of 

its most important effects is to lead to the violation of time reversal 

mvanance. However the calculations involving this case are complicated 

for QCD. 

Therefore toy models were sought. The purpose is to be able to 

study the effects of extended structures within a simpler model. They 

allow some calculations to be performed analytically, which can only 

be approximations to the physical theory. 

A popular class of such models is known, for historical reasons, as 

a-models. In 1960, Gell-Mann and Levy [11] proposed a theory for pi0n 

interaction which involved a sigma particle. Physical predictions using 

this model were eclipsed by the advent of QCD, but in recent years 

it has proved useful, as a toy model, in the study of non perturbative 

effects. 
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These models have four properties in common with the gauge theory 

in 3 + 1 dimensions [40]: 

1. They exhibit two dimensional conformal invariance. 

2. They are asymptotically free. 

3. They possess nontrivial solutions of their equations of motion. 

4. They have a parameter expansion which is analogous to the tt 
expansion in QCD. 

Mathematically they can be described as a field theory defined on a 

space with Riemannian metric whose nonlinearity arises from the cur­

vature of the target manifold [37]. 

The above provides the historical reasons for studying sigma models. 

More recently they have been used in models describing superconduc­

tivity and the quantum Hall effect. As an example of harmonic maps, 

they are also studied in their own right by differential geometers [31]. 

In 1 + 1 dimensions, the existence of solitons is associated with the 

integrability of the model. However, it is not clear whether integrability 

is a necessary condition or whether other models exist, especially in 

higher dimensions, with structures which behave like solitons. 

In particle theory, the most interesting models are Lorentz invariant. 

However, in 2+ 1 dimensions these all appear to be nonintegrable and 

hence numerical simulations of time evolutions must be used. 

Some of these models can be regarded as being "almost integrable" [42]. 

They have extended structures which resemble solitons in the sense that 

their scattering is quasi-elastic with little radiation. 
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Of particular interest to the present work are Grassmanian models 

in 2+ 1 dimensions, whose target manifold is represented by the coset 

space 

U(N)/(U(M)xU(N- M)). (I.i.2) 

There U(M) denotes the group of MxM unitary matrices. In partic­

ular when M = 1 the C pN-l sigma models are obtained. 

To ensure that the total energy is finite, the fields must have the 

same limit 

</>(X) --+ <Po (I.i.3) 

as lxl --+ oo. This has the effect of compactifying the physical space to 

a sphere. 

The aim of this thesis is to follow on from the work of Piette et al 

[31]. It is concerned with the scattering of solitons in the modified C P 2 

sigma model. In pure C P2 a head on collision results in scattering at 

90 degrees. 

However, if a Hopf-like term is added to the basic Lagrangian, the 

results are more interesting. The solitons now scatter at a non orthog­

onal angle, the value of which is related to the coefficient associatea 

with the Hopf-like term~ 

For C P2 the additional term is no longer a topological term as it 

cannot be expressed as a total divergence but, for brevity, it will still be 

referred to as a Hopf term. It will contribute to the classical equations 

of motion, in contradistinction to C P1
• 
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The conformal invariance of the models ensures that the extended 

structures can take any size. Hence during scattering they can change 

size. Their precise behaviour depends on the details of the interaction. 

In effect, each soliton is perturbed by the others. 

Even a single soliton is unstable to small perturbations. This can 

result from external factors or from the numerical procedure. The rate 

of change can be modified by spinning the solitons used in the initial 

conditions. 

The solitons can be stabilised by the addition of a scale defined over 

the whole space. For example, by adding a potential and Skyrme like 

term [22]. It was shown that, when separated, the solitons return to 

their canonical sizes determined by the paranieters of the model. 

The existence of the SU(3) symmetry in the model leads to eight 

conserved charges by Noether's theorem. These charges are calculated 

during numerical simulations of the scattering. 

This thesis will consider the effect the additional Hopf-like term has 

on the classical motion of solitons in C P2
• This will need to be fully 

understood before the quantised system can be investigated rigorously. 

The rest of this chapter will discuss some mathematical methods 

required for this project. It will then discuss the derivation of the 

Lagrangian being considered. Chapter II will consider some of the 

consequences of Noether's theorem. 

In the following chapter, the conserved charges associated with the 

SU(3) symmetry of C P2 will be derived and compared with the nu­

merical results obtained from the simulations. The fourth chapter will 

use these charges to investigate the trajectory of the solitons during 

scattering. 



l.i. Physical Motivation 11 

The fifth chapter will describe an alternative method. This will at­

tempt to find the closest static approximation to the predicted solutions 

during the evolution. Finally the results will be concluded. 

The simulations were programmed in FORTRAN 77 [28) and run 

on various Sun workstations within the Department and Computing 

Centre at Durham. The graphs were produced by MATLAB [24) and 

the typesetting performed by ~TEX [21) . 

To end this section a few words will be given on the notation used. 

Superscripts will be used to distinguish between pure C P 2 (0) and the 

contribution from the Hopf-like term (H). The specific charge under 

consideration will be labelled by an arabic numeral subscript. 

Subscripts shall also be used to indicate differentiation. Roman 

indices shall specify the spatial dimensions, x 1 and x2 , while Greek 

indices will cover all dimensions including time, x 0 . 

The standard shorthand for derivatives will be use in this work 

. a 
aJ.L=--. 

OXIJ. 
(I.i.4) 

So, for example, 80 will represent the differential operator with respect 

to time. 



I.ii. Homotopy Theory 12 

I.ii Homotopy Theory 

For a good review of homotopy theory, with particular attention paid 

to its applications in Theoretical Physics, see [12]. Some of the more 

relevant points for the current work will be summarised here. 

Two functions are said to be homotopic if it is possible to continu­

ously deform one into the other. To define this more rigorously, consider 

two functions J(x) and g(x) where x represents spacetime. They are 

said to be homotopic if there exists a map H(x, t) which is continuous 

over the range 0 :S t :S 1 such that 

and 

H(x, 0) = f(x) 

H(x, 1) = g(x) (I.ii.1) 

Thus it is possible to regard classical time evolution as a homotopy 

between the initial and final state field configurations. 

Topological spaces can be partitioned into homotopy classes, [f), 

inside which all functions are equivalent under the above relationship. 

A group structure can be formulated using the following operation: 

[! + g J = [!] + [g] (I.ii.2) 

Of particular importance to the present work is the group 1r n(M) 

which represents all functions of the form: 

(I.ii.3) 

where sn is the n dimensional sphere and M represents the target 

manifold. For C P 1 , this will be isomorphic to the sphere. Note also 

that the special case 1r1 ( M) is known as the fundamental group [2]. 
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An important result follows if the target manifold has the structure 

of a coset space. Assume that there is a continuous group of symmetries 

G which acts transitively on the manifold, M. Hence, there will exist 

a transformation g E G which will relate any two points, y1 and y2 , 

belonging to M, Yt = g(yo). 

When two elements, g1 and g2 for example , of the group give the 

same point on the manifold, it implies that 

(I.ii.4) 

Hence g21 g1 is the little group H of y0 : the subgroup of G which leaves 

the point y0 unchanged. The little group of G is formally defined by 

H ={hE Glh{po) =Po} {I.ii.5) 

The left coset of G with respect to H is the set of elements gh where 

h varies over H whilst g is kept fixed. It is denoted by 

gH = {ghlh E H} (I.ii.6) 

and there is a similar definition for- the right coset. 

Two group elements acting on a point y0 will give the same point in -­

the manifold if and only if they belong to the same left coset of G with 

respect to H. This implies that G may be partitioned into disjoint 

cosets such that each element of G belongs to one and only one left 

coset of G with respect to H. 

In fact, any point of the manifold can be obtained by the action of 

a member of some coset gH on y0 . Hence M can be identified with the 

space of left cosets G / H 

M ~ G/H = {gHig E G}. (I.ii. 7) 
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This is not, in general, a group. However when H is a normal 

subgroup (for which the left and right cosets are identical), then a 

group structure will exist. 

When the target manifold is a coset space, the following two useful 

results can be proved. Provided G is connected ( 1r0 ( G) = 0) and simply 

connected ( 1r1 (G) = 0, this requirement is simply that all closed paths 

in the group can be shrunk to a point), then 

1r2(Gj H) = 7rt(H) 

7rt(G/ H) = 7ro(H) (I.ii.S) 

To have stable topological structures for a d-dimensional system 

with trivial boundary conditions, it is necessary for 1rd(M) to be non 

trivial [12]. In other words, it must have more than one element. 

If· the group is isomorphic to the integers, Z then it is possible 

for all homotopy classes to be parametised by an unique number (and 

conversely all integers have a class associated with it). This number 

will be topologically invariant. 

The Hopf invariant is associated with the group 7r2n-t (Sn) (see [16l­

or [18]). For this report, the most important case is when n is two for 

which 1r3 (S2
) is isomorphic to the group of integers. 
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I.iii cpn Sigma Models 

The basic C pn model is given by the Lagrangian density 

(I.iii.1) 

where z is a n + 1 dimensional vector field subject to the orthogonality 

constraint ztz = 1 (see [30] and [36]). The covariant derivative is 

defined to be: 

(I.iii.2) 

for any '1/J. 

The complex projective space C pn can be represented by the coset 

space 8U(n+ 1)/(8U(n)xU(1)). The physical space is two dimensional 

and the effect of the constraint is to compactify R2 to the two sphere. 

Therefore the Lagrangian for static fields can be represented by the 

map 

8 2
--+ cpn ~ 8U(n + 1)/(8U(n)xU(1)). (I.iii.3) 

To test this for topologically stable structures it is necessary to 

consider 1r2 (CPn) which is isomorphic to 1r1(8U(n)xU(l)) (see previous 

section). It can be shown (see for example [2]) that the fundamental 

group of the product space of two path connected Hausdorf spaces 1 is 

given by 

(I.iii .4) 

with the free product being used on the right hand side. 

1 Hausdorf Space: A topological space in which every pair of distinct points have 
a pair of disjoint open neighbourhoods 
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Therefore as SU( n) has a trivial fundamental group, it follows that 

(I.iii.5) 

where Z represents the group of integers. The last result can also be 

found in Armstrong's book [2]. Hence there exists stable, non-trivial 

topological structures in the model under consideration. 

Before continuing, it will prove useful to consider the specific form of 

z. The orthogonality condition can be used to simplify the calculations 

by introducing the new field f, defined by 

f 
z =1fT (I.iii.6) 

The U(1) invariance of the Lagrangian can then be used to ensure 

that one of the components of f is real, or indeed unity. Hence the 

following ansatz will be used 

( 

1 ) 1 !t 
•=m L (I. iii. 7) 

Another useful consequence of the constraint is that for any constant 

matrix M, 

(I.iii.S) 

To proceed it is necessary to consider the topological charge which 

is defined to be [33] 

(I.iii.9) 
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Figure 1.1: Polar segment in two space 
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This can be written as a contour integral by the use of Stoke's theorem 

(see, for example, [4]). The calculations will be simplified if polar co­

ordinates are used and hence the topological charge should be written 

in the form 

QroP = -if tazde tazd 
211" z ae + z ar r. (I.iii.10) 

Consider integrating the general function I = f f d(} + gdr over the 

segment in polar coordinates shown in figure 1.1. The integral will be 

given by 

I= foaej(r, e)lr=b + 1adrg(r, e)le=x 

+ i0

d(} f(r, (})lr=a + 1bdrg(r, (})le=O· (I.iii.ll) 

The limits a ---+ 0, b ---+ oo and X ---+ 211" should to be taken to cover all 

two space. 

Consider the radial integral which can be written as 

(I.iii.12) 

Therefore, when the function g(r, (}) is periodic over [0, 21r], which is 

true for the topological charge and most other calculations considered 
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in this project, this contribution will trivially tend to zero when the 

limits are taken. Therefore 

QTOP -i { l' 12'1T tf)zd()l 121T tf)zd()l } -- lill z- - z-
- 271" b-+oo 0 f)() r=b 0 f)() r=O . 

(I.iii.13) 
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It was shown earlier, that the integrand terms can be rearranged 

into the form 
taz _ (ftaof- 80ftf) 

z ao - lfl 2 • 
(I.iii.14) 

Now consider the following ansatz for f, 

( 
1 l >..rneinO 

f ~ l'r;e;o +lower order terms in r, (I.iii.15) 

where the second component can be assumed to be of the highest order 

in r without loss of generality. 

For large r, both the numerator and denominator will be of order 

2n and hence the whole expression will be of order one. When r is zero, 

the denominator will be unity and hence the integrand will not diverge. 

However, the numerator will vanish because the derivative operator will 

ensure that all terms involve a positive power of r. 

Hence, when this form is used, the topological charge becomes 

- indO -i 1211" 
271' 0 

n. (I.iii.l6) 

Therefore the ansatz given by l.iii.15 will describe the n soliton sector 

of phase space. 

It was mentioned in the introduction, that only static solutions can 

be found analytically. To obtain a time dependent solution, the pa­

rameters associated with equation l.iii.15 can be made time dependent. 

This is not the general solution, it simply represents giving a static 

solution a boost. 
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HopfTerm 

This dissertation is concerned with the effect of adding the following 

term to the pure C P2 Lagrangian: 

(I.iv.l) 

It is the only additional term which has no more than three derivative 

terms that does not break the global symmetries of the Lagrangian (31]. 

On its own, this would be an arbitrary way of enhancing the target 

manifold of the Lagrangian. However, a more rigorous justification for 

this term can be given for the simpler C P1 model (see, for example, 

[42]). 

Consider a time evolution over the period [0, T]. If the final field 

configuration is identical to the initial field configuration, then the time 

orbit can be treated as if it were periodic. The physical space can 

therefore be represented by S 2xS1 which is locally isomorphic to 5 3
• 

The action can thus be viewed as a map of the form 

(I.iv.2) 

which can be described by the homotopy group 1r3{S2
). As discussed 

earlier, this is isomorphic to the group of integers. Hence the map is 

infinitely connected and will allow fractional statistics ([9] and (39]). 

To see this, take a single soliton and rotate it through 271' during this 

period. Feynman postulated that this would correspond to the wave­

function acquiring a factor of ei5 , where S is the action corresponding 

to the adiabatic rotation (38]. The angular momentum is then defined 

by 

(I.iv.3) 
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For pure C P2
, the action is quadratic in time. It is a standard 

result from dynamics that an object moving at constant angular ve­

locity around a circle has velocity inversely proportional to its period 

(see, for example, (13]). Therefore, S0 will be of order }, where T is 

the end time point. Now consider taking the limit T --+ oo. It can 

be clearly seen that S0 will go to zero and hence pure C P1 has zero 

angular momentum (35]. 

Wilczek and Zee (38] showed that it was possible to add a topolog­

ical term to C P1 which satisfied the mathematical criteria of a Hopf 

invariant. It is .locally a total derivative and as such does not affect 

the classical equations of motion. However, it does affect the quantum 

system describing the "spin" of the extended structures. 

They constructed the topological current 

(I.iv.4) 

which is clearly conserved. Hence it can be expressed as the curl of the 

gauge field, 

(I.iv.5) 

and taking I< AJ.tjf.L in the Lagrangian density results in the form given 

by equation l.iv .1. This term is linear in time and hence can be expected 

to give a nontrivial contribution to the angular momentum. 

The Hopf term can be shown to be analogous to the Chern Simons 

term in gauge theory and the 0-vacua in QCD (9]. To see the relation­

ship with the former result, define the tensor 

(I.iv.6) 
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If a current is defined in terms of this by, 

it can be shown to be equivalent to the earlier definition as 

~€~' 11 ,\a A 2 II ,\ 

~€~' 11 .\0 ztO Z 2 II ,\ 

~t:~' 11A(D 11 z)t D.\z plus symmetric terms. 
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(I.iv. 7) 

(I.iv.8) 

For a single soliton, spatial rotation is isomorphic to isospin rotation. 

It can thus be shown that the soliton will have angular momentum 

K/27r, where K = 21ri<. To see this, it is simpler to use the equivalent 

0(3) sigma model, which is related to C P 1 by 

(I.iv.9) 

where G'i are the usual Pauli matrices [25]. 

The following argument is taken from the canonical quantisation 

procedure given in [5]. They defined the gauge potential associated 

with the conserved current j ~' by 

(I.iv.lO) 

When the model is canonically quantised using the radiation gauge, 

oiA = 0, it can be shown to be given by 

J 2 I I . ( I) Ai(x)=EikOk dxD(x-x)JoX (I.iv .11) 

D(x- X
1

) is the Green's function which is defined by 

(I.iv.l2) 
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The canonical momentum conjugate is found by using 

(I.iv.13) 

From this can be derived the Dirac brackets required for quantisation. 

For further details of this, the interested reader is referred to Bowick's 

paper. 

The standard definition of angular momentum in d spatial dimen­

sions is given by (34] 

(I.iv.l4) 

TI-L"' is the stress energy tensor. 

However this definition, when applied to a two dimensional system, 

leads to an ambiguity because the generators will be scalar [5]. Hence 

they will not satisfy any nontrivial lie algebra and the angular momen­

tum will be arbitrary up to a constant. 

This ambiguity can be resolved by including the temporal dimension 

in the algebra. The full symmetry in Minkowski space will be S0(2, 1) 

and this can be used to define angular momentum as the commutato~ 

of the Lorentz boost generators 

J = ~iE· ·[JOi JOjl 2 tJ ' 
(I.iv.l5) 

It is thus possible to define the following two Poincare generators 

PIJ. j d2 xT0
1-L, 

J d2 x (xi-LT0
"'- x"'T0

1-L) (I.iv.l6) 
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which satisfy the Poincare algebra 

0, 

giL>. pv _ giLII p>., 

[PIL, PI/] 

i[PIL, Jv-'] 

i[JILII) J""] giiAJIL" _ giLAJIIK + giL"Jv>. _ gii"JILA. (J.iv.17) 

In Bowick's paper, it was shown that this satisfies the relevant covari­

ance criterion. 

From the last condition of I.iv.17, it can be seen that 
1 . . 1 .. 
2Eij [j0

', )
01

] 2 Eij/1 

Eij jd2xxiT0i. (I.iv.l8) 

Hence this more rigorous definition still satisfies the earlier, naive ansatz 

given for the angular momentum. 

Up until equation l.iv.15, the calculation holds for the general La­

grangian. However, introducing the stress energy tensor ties the cal­

culation to a specific model. For example, for C P 1 , it will be given 

by 

(I.iv.19) 

Using the above algebra it is possible to show that the angular 

momentum can written in the following form 

J j d2uiixi7ra(x)8j<pa(x) 

~1 d2x Eijfklfabc XiAk(x)<Pb(x) 8f<P(x)8j<Pa(x) (l.iv.20) 
27r 

where 1ra is the momentum conjugate to <Pas defined in I.iv.13. 

The first term is the standard orbital angular momentum. The 

second term can be rewritten as 

(I.iv .21) 
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by using the identity 

f J. ~A, a __ 1_ .,abc £l A,b £l A,C 
~v>. 'f' - 471" L Uv'f' U).. 'f' • (I.iv.22) 

Substituting for the gauge potential by using equation I.iv.ll, a few 

lines of calculation will show that 

~ jd2 d2 , x(x- x') ·o( ') ·o( ) 
X X I '12 J X J X 

1r x-x 

~ jd2 12 '{1 x' (x- x')} ·o( ') ·o( ) xa-x + I ,12 J x J x 
7r X- X 

!!'_Q2 
271" 

(I.iv.23) 

where Q is the topological charge, defined in this interpretation by 

(I.iv.24) 

This is equivalent to the earlier definition given by I.iii.9. 

Therefore it has been established that the Hopf term is responsible 

for the fractional spin. It can~ot be removed by a redefinition of the 

generators as J is fixed as the commutator of lorentz boosts. 

By considering soliton and antisoliton pairs, it is possible to show 

that the Hopfinvariant corresponds to the topological linking number 

(this next section follows the calculation of [38]). This can be shown 

heuristically by considering the maps S3 
-t S2

. The reverse image of a 

point in S2 can be thought of as a curve in R3 with infinity identified 

as a single point through stereo projection. 

Consider two special cases of ¢> for a single soliton. ¢> = (0, 0, 1) 

corresponds to the great circle lz11 = 1, z2 = 0 and (0,0,-1) to inter­

changing the components of z. Express the components of the fields in 
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the form 

( Z1, z2 ) = (cos~' sin~ cos 8, sin~ sin 8 cos <P, sin~ sinO sin <P) (I.iv .25) 

and stereographically project to r( ~) (cos 8, sin() cos~' sin() sin~) in R3
• 

The function r· ranges monotonically from infinity to zero as ~ varies 

from zero to 1r. It can then be clearly seen that the two curves will link 

only once for one soliton. 

Exotic statistics can be explored by considering soliton antisoliton 

pairs. To be able to use the above results, it is necessary for them to be 

created from a vacuum and for the evolution to result in their ultimate 

destruction. Consider one such pair and rotate them through 27r (if 

they were not rotated, the map would be homotopically trivial). This 

will correspond to an Hopf invariant of one. Hence the trajectories will 

link only once. 

Now consider two such pairs and during the evolution exchange the 

two solitons. This will also have an Hopf invariant of one which can be 

seen by plotting the trajectories of each soliton and antisoliton. This is 

easier than calculating the Hopf invariant directly. Thus the Skyrmions 

obey exotic statistics which interpolate continuously between Bose and 

Fermi statistics. 

Before leaving this section, it is worth emphasizing why the above 

calculation does not hold in C P 2
• The Hopf like term makes a contribu­

tion like a stress force to this model and is no longer purely topological. 

An alternative way of looking at it is to regard stress as being a Hopf 

like term. 
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This thesis is concerned with the effect of this additional term on 

the classical scattering of solitons in the higher dimensional system. 

This is done through an analysis of the conserved charges associated 

with the symmetries of the Lagrangian. The next chapter will consider 

Noether's theorem. 



I. v. Equations of motion 28 

lo v Equations of motion 

To finish this chapter, the equations of motion will be calculated for 

the sigma model under consideration. The coefficient associated with 

the Hopf term ensures that it is possible to consider the contribution 

from £ 0 and £H separately. 

Recall that the Lagrangian for pure C pn, with the addition of the 

associated Lagrange multiplier for the constraint, is 

(I.v.l) 

It can be shown that 

(I.v.2) 

and 
aco - ta D e --t- - Z pZ pZ , 
a(ze) 

(I.v.3) 

from which it follows that the equations of motion for pure C pn is 

DP D pZ - >.z = 0 (I.v.4) 

and its complex conjugate. 

Now consider the contribution from the Hopf term, 

(I.v.5) 

for which 

(I. v .6) 

and 

(I.v.7) 
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Therefore equation l.v.5 will contribute 

(I.v.8) 

to the Euler Lagrange equations. Note that this will not contribute for 

C P1
• However for higher dimensional models, such as C P2

, it will play 

an important role. 

It now remains to calculate the Lagrange multiplier, ,\, This is 

found by taking the scalar product of equation I.v.4 (after inserting the 

additional term given above) with Ze and using the constraint, ztz = 1. 

Hence the full equations of motion are given by 

(I.v.9) 

and its complex conjugate. 



II 

Conserved Charges 

If it looks like a duck, walks like a duck and quacks like a 

duck, then it probably is a duck. 1 

1 Senator Bob Dole 

30 
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According to Noether's theorem, all symmetries of the Lagrangian have 

associated with them a conserved charge [34). To see this consider the 

general form of the Lagrangian for a constrained dynamical system, 

£ £( </>r, ail<t>Tl )..i) 

£' ( </>r, ail<t>T) + Adi( </>r, ail<t>T) 

where for the model under consideration </>r will be z or its complex 

conjugate. The functions fi represent the constraints on the system 

and Ai their associated Lagrange multipliers. For C pn it will be a 

function of </>r only. 

Now add an infinitesimal variation to </>r, 

(II.i.1) 

and the corresponding variation in £ can be shown to be 

8£ =(:~-ail (a(;~<l>r))) 8</>r +ail (a(~~<t>r/<t>r) + ;~ 8)..i· 
(II.i.2) 

The first term is simply the field equations. The constraint in C pn is 

unaffected by an SU(n + 1) rotation. Therefore the third term will not 

contribute and hence can be ignored. 

If the Lagrangian is invariant under the variation in </>n then the 

second term must be zero, and so 

j il = constant (a( ~~</>r) 8</>r) (II.i.3) 

is conserved. The constraints will only contribute to this when they 

are dependent on the derivatives, which is not the case for the current 

model. 
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The constant obviously has no effect on the conservation of the 

charge and thus can be dropped. Rearranging 8~-'j~-' as 

!1 ·O !1 ·i 
uoJ = -ui) (II.i.4) 

and integrating will lead to the conserved charge being defined as 

(II.i.5) 

provided P and j2 vanish on the boundary. 

For a complex scalar field with a gauge invariant constraint, the 

charge density is 

(II.i.6) 

As mentioned earlier, the constraint lzl 2 = 1 will not contribute to this. 

The purpose of this work is to shed some light on the meaning of 

the Hopf term. It makes no contribution to the energy momentum 

tensor [31]. Also each term of the contribution to the Euler-Lagrange 

equations is dependent on time derivatives. Therefore, it will not con­

tribute to these equations when the fields are static and, although this 

may seem a trivial result, it will prove useful later. 

The results of Piette et al [31] suggest that the term can be thought 

of as an "internal magnetic" field. They also used it to test the validity 

of the collective coordinate approximation. 

In the above derivation the field equations were assumed to be true. 

There are other more rigorous proofs (see, for example, [19], [23] or 

[34]), but none as succinct as the above. However it is interesting to 

note that the equations of motions themselves can be shown to be a 

consequence of Noether's theorem. 
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They are obtained by assuming the Lagrangian is invariant under a 

total variation in the field as before. However an additional constraint 

is placed by assuming that the variations are restricted to those which 

vanish on the boundary. For a physical system, this must leave £ 

unchanged. 

The total derivative terms will then be trivially zero and the only 

term which is left will lead to the Euler-Lagrange Equations. Note, 

though, that these equations involve terms of the form 8£/ 8<Pr and 

hence the constraint will affect the result in C pn. 
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PreHminary Calculations 

All the calculations to be considered in this thesis have the same form 

for the denominator when expressed in terms of renormalised fields. 

Although this is not conserved it will prove useful to consider this term 

in detail first. The following calculations shall be restricted to C P2
, 

from which the results for C P1 can easily be deduced. 

It is now necessary to consider the representation used to describe 

the solitons. Recall from the previous chapter, that the U(l) invariance 

in the Lagrangian could be used to set the first component of the field 

z to unity. Therefore, the term to be considered is of the form 

(II.ii.l) 

raised to some power. In most calculations it will be squared. 

Using the notation introduced in the previous chapter, the standard 

ansatz for the complex fields used in the present work is given by 

·where 

and II represents the multiplication operator. 

exists for W 1 . 

(II.ii.2) 

(II.ii.3) 

(II.ii.4) 

A similar expression 

Two assumptions have been made. Firstly that l :::; k and secondly 

that none of the factors cancel. It will correspond to the topological 

charge being k in units of 271". 
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For most simulations it is possible to use a simplification. It can be 

assumed that the denominator and the coefficient 7J both tend to infin­

ity, whilst their ratio remains finite. In this scenario, the dependency 

on x+ is restricted to the numerator. 

An additional approximation which can be used is to assume that 

the ansatz can be expressed in the form 

w p(x~- a), 

Jt(X~ -b). (II.ii.5) 

The powers nand mare positive integers and it can be assumed, with­

out loss of generality, that n 2:: m. 

Two solitons are represented by taking n to be two and m to be 

one. In this particular case, when b is zero and they are well separated, 

the position of the solitons is approximately given by vfa· 
It is worth emphasizing that this is only an approximation. When 

the position is calculated numerically (by looking for the location of the 

maximum of the energy density), there could be a noticeable difference 

which will increase as they both approach the origin. 

In particular, when the solitons pass through each other, the soli­

tons themselves are not well defined. Hence, during this stage of the 

evolution the position of the individual lumps can not be determined 

analytically. The trajectory of each soliton can thus only be given sub­

jectively during the actual scattering process. 

When the above ansatz is substituted into the denominator, it be-

COUleS 
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where the n functions are defined to be 

(II.ii. 7) 

This is of order 2n for large r. Therefore for most calculations, for 

which jfj 2 is squared, the denominator will be approximately of order 

r 4n. When the Jacobian for converting the integrals to polar coordinates 

is taken into account, it can be seen that the integrals will diverge if 

k;:::: 2(2n- 1), (II.ii.8) 

where k is the order of the numerator. 

Hence, as non trivial conserved charges will be finite, the range of 

physically relevant values of n and m can be deduced. There will not 

be a problem at the origin, because of the existence of the constant 

term in the denominator. So, for example, for two solitons the order of 

the numerator must be less than six to obtain a finite result. 

To proceed further, it is necessary to consider special cases. First,ly, 

assume that m and n are equal. In this case, the denominator can be 

simplified to 

To deduce any useful results, either a and b must be assumed to be 

equal, or b must be zero. In both cases, the above will reduce to an 

expression of the form 

A + Br·m cos 2m() + Cr2m, (II.ii.lO) 
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where A, B and C are real constants. This is odd in 0 and hence, any 

term in the numerator which is even, for example sin2m0, will trivially 

integrate to zero over the whole two space. 

Now assume that when n =2m the following relations hold 

and (II.ii.ll) 

Once again, nothing can be deduced for general a and b. However, if b 

is taken to be zero, then the denominator becomes 

(II.ii.l2) 

Now consider in detail f!a. This can be written in the form 

f!a =(a+ a) cos nO- i(a- a) sin nO (II.ii.13) 

Therefore, by defining 'TJ implicitly using 

cos 'TJ a+ a 

and SlllfJ i(a- a), (II.ii.14) 

the omega function reduces to 

na = cos(nO + 'TJ ). (II.ii.15) 

This, in turn, leads to the obvious change in variables of 

and s (II.ii.l6) 

The denominator will now take the form 

(II.ii.17) 
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Any term in the numerator which is even in ¢ will trivially integrate to 

zero. For example, it can be shown that 

einO "' 2a cos ncp (II.ii.18) 

under integration, where ¢is as defined in equation Il.ii.16. 

Before leaving this section, consider the two soliton static model 

when the lumps are situated at the origin. For general p and Jl, they 

will form a ring like structure, as shown in figure II.l. 

However, when the two coefficients are expressed in terms of the 

complex parameter A defined by equation II.ii.ll, then the ansatz cor­

responds to the two solitons having a single peak at the origin, as in 

figure 11.2. 

Also, the parameter A can initially be taken to be real without loss 

of generality and this is the ansatz used for the initial conditions in 

the numerical approximations. It should be noted though, that this 

coefficient can not be assumed to remain real throughout the predicted 

evolution. 

For most simulations b is initially taken to be zero. Time evolution 

is simulated by the use of a Galilean boost, 

a(t) = a(O)(l - vt)2 (II.ii.19) 

where v is defined to be the velocity of the solitons. The most general 

scenario would be to assume that p, 11 and b are also time dependent. 
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Figure ILl: Two solitons at the origin with general p and ~· 
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It is of interest to know, how valid an approximation the boost 

given by equation Il.ii.19 is. In the remainder of this chapter and the 

next, the charge densities of interest will be calculated for the general 

case. The expressions will then be given for the programme ansatz. 

These results will be used in chapter IV to predict the behaviour of the 

solitons during scattering. 
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II.iii Energy Momentum Tensor 

An important consequence of Noether's theorem is the conservation of 

the energy momentum tensor and, in particular, the Hamiltonian [34]. 

Assume in variance under translations and after a few lines of calculation 

the standard result is obtained 

(II.iii.l) 

For C pn, it takes the form: 

(II.iii.2) 

and, as discussed in [31], this tensor will receive no contribution from 

the Hopf term. The energy density, or hamiltonian, is given by Too, and 

is a conserved charge density. With a Minkowski metric, it is simply: 

(II.iii.3) 

Expressed in terms of the analytic functions W and W 1 , the hamil­

tonian becomes 

H = ,:,4 { W~<WJL + W~w; + (W1WJL- ww;)(W1 W~<- WW~)} 
(II.iii.4) 

The kinetic energy is given by setting fL = 0 and the potential. energy 

by summing the contributions from when fL equals 1 and fL equals 2. 
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II.iii.a Kinetic Energy 

Substituting for components of the field reduces the numerator of the 

kinetic energy density to: 

Tnum = IPol2(r2n + ial2- rnna) + IPI2 laol2 

- pao[Po(rne-inO- a)]- pao[Po(rneinO- a)] 

+ IJLol2(r2m + lbl2- rmnb) + IJLI2 lbol2 

b [ - ( m -imO -b)] - b- [ ( m imO b)] - Jl o Jlo r e - - Jl o Jlo r e -

+ iJLPo- JloPI2 {r2(m+n) + r2nlbl2 + r2mlal2 + iabl2 

+ab[rm+ne-i(m+n)O _ rnbe-inB _ 7.mae-imB] 

+ab[rm+nei(m+n)B _ rnbeinO _ rmaeimB] 

-rm+2nna - r2m+nnb- rn+mnab)} 

+ IJLPI2{Iaol2(r2m + lbl2- rmnb) -lbol2(r2n + ial2- rnna) 

-aobo [rn+me-i(m-n)B + ab- rmae-imO- rnbeinB] 

-aobo [rn+m ei(m-n)O + ab - rm aeimO - rn be -inO]} 

{ (IJLI 2PPt -IPI2J1Jlt) [at(rn+2meinO + rme-im0ab- ar·2m 

-br·n+mei(n-m)O _ brn+mei(n+m)O + aibl2 

-abr·meimB _ lb212rneinB) 

bt (rm+2neim0 + rne-in1Jba _ br2n 

-arm+nei(m-n)O _ arm+nei(m+n)O + blai2 

-barneinO _ ia212rmeim0)] 

+ complex conjugate} (II.iii .5) 
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where the additional n function is defined to be 

f2ab = abei(m-n)B + abei(m-n)B (II.iii.6) 

It is known that the total energy is conserved and will not diverge. 

For large values of 1· the numerator is clearly of order 2(n + m). There­

fore by using the test given in equation II.ii.8 it is clear that T will only 

be finite when n- m ~ 1. This does not place much constraint because 

of the assumption that m is not larger than n, but it does imply that 

the ansatz used within the programme will lead to a divergence. 

However, it can be clearly seen that, except for the special case 

when m and n are equal to one, the divergent terms arise from the 

time dependency of f.l and p. If these are taken to be constant, then 

the kinetic energy will be finite for all n as it reduces to: 

Tnwn = ,;,4 {lf.lPI 2 [Iatl 2(r2
m + lbl 2

- rmnb) + lbtl 2 (r 2n + ial 2
- rnna) 

-atbt(1'n+mei(m-n)B _ 1 nbe-inB _ 1 maeimB + ab) 

-atbt(rn+me-im-nB _ 1'nbeinB _ 1 mae-imB + ab)] 

+IPI~atl 2 + if-ll 2 lbtl 2
} (II.iii. 7) 

The order of the numerator is now 2n and hence if p and f.l are 

constant throughout the evolution, then the kinetic energy will be finite 

for all n > 1, for any value of m. 

It would thus appear to be reasonable to take ). to be initially con­

stant in equation Il.ii.ll when considering scattering. For complete­

ness, the kinetic energy will be given below for this ansatz 

(II.iii.8) 
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When m and n are both one, then there exists other infinite terms in 

the expression which are proportional to the derivative of the parameter 

a. Therefore, for the kinetic energy to be finite it is necessary for these 

divergences to cancel. Hence for this single soliton ansatz, it is necessary 

for the parameters p and 11 to remain time dependent. 
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II.iii. b Potential Energy 

The numerator for the potential energy density is given by: 

Vmun=2{ IP12n2r2(n-l) + m21tt12r2(m-1) 

+ 1Pttl2 [n2r2(n-l)(r2m + lbl2- rmnb) 

+m2r2(m-l)(r2n + lal2- rnna) 

-nmrn+m-2 (2rn+m +nab- rmna- rnnb)]} 

(II.iii.9) 

and the denominator is the same as for the kinetic energy. The order 

of V is 2( m + n- 1) and thus is clearly finite for all n greater than one. 

For completeness, this will also be given in terms of the simpler 

ansatz with b equal to zero 

(II.iii.lO) 

When m and n are equal both to one, it can be shown that the 

divergences cancel if p is also equal to tt· The numerator simplifies to 

(II.iii.ll) 

which is clearly finite. 
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II.iii.c Angular Momentum 

The angular momentum will now be considered. It was mentioned in 

the previous chapter that the angular momentum is not well defined in 

two dimensions. Therefore as before, the standard definition for three 

dimensions will be utilised by using the time dimension as a means to 

overcome the ambiguity. 

The following derivation was taken from [34]. The action for a 

physical system must be invariant under spatial rotations. If the La­

grangian is defined to be a function of ¢>(xi), then this corresponds to 

the variations 

and 0. (II.iii.12) 

Furthermore, as the rotation group is a subgroup of the Lorentz group [5], 

this can be generalised by replacing the roman indices with greek in­

dices. 

For a symmetric hamiltonian, this will lead to the definition of the 

angular momentum used in the model under consideration. 

(II.iii.13) 

and after a few lines of calculations it can be shown that for the current 

model this will give the following expression for the integrand of M 

M = 1 
( t t ) lfl 2 8ef 8tf + 8tf oef 

1:14 (atrtr rtaef + oertr rtatr). (II.iii.14) 
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When expressed in terms of the components off, it simplifies to: 

M = l:l4 { WoW!WW
1 + W/W0W

1
W 

+WJWtW
1
W + wtW1

0WW 1 

-(1 + IW1
1
2 )(WtWo + WoWt) 

-(I+ IWI 2 )(W1tw; + w!wn }· (II.iii.15) 

Substituting for W and W 1 results in the angular momentum being 

expressed as 

where 

M = 2ilm(A) 
lfl4 (II.iii.l6) 

A = ILJ.io{ nipizrn [rn+2m- rn+mnb- rnaeino + rnibi2 

+rm(abe-i(m-n)O + abei(m+n)O) _ aibi2ein0] 

+[1 + IPI2(r2n + ial2- rnna)][mr2m + rmbeimO]} 

+ PPo{ mif£2irm [1'2n+m- rn+mna- rmbeimO + rmlal2 

+rn(abei(m-n)O + abei(n+m)O) _ biai2eim0] 

+[1 + lfll2(r2m + lbl2 - rm0b)][nr2n + rnaeinO]} 

+ ao{ mifli21PI2 [rn+2me-ino + abrme-imo _ r2ma, _ rn+m be-i(n+m)ol 

-[1 + ifli2(r2m + lbl2- rm!1b)]iPi2nrne-inO} 

+ bo{nlfli21PI2 [1.2n+me-imO + abr·ne-inO _ r2nfj _ rn+mae-i(n+m)O] 

-[1 + IPI2(r2n + ial2- rnna)]ifli2mrme-im0} (II.iii.17) 

The order of this is the same as for the kinetic energy numerator, 

2( m + n), and hence it will diverge for the same range of values. How-
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ever, once again the problem is circumvented if p and J.t are assumed 

to be constant. 

In this case, the order is m - 2n and hence the angular momentum 

will now be finite for n greater than one, if m is zero or one. The 

expression will reduce to 

A = ao{ m1J.ti21PI2 [rn+2me-ino + abrme-imo _ r2ma, _ rn+mbe-i(n+m)o] 

-[1 + IJ.tl 2(r2m + lbl2 - rmnb)]IPI2m·ne-ino} 

+ bo{ n1J.ti21PI2 [1.2n+me-im0 + abrne-in8 _ r2nl) _ rn+mae-i(n+m)O] 

-[1 + IPI2(r2n + lal2- r·nna)]IJ.tl2mrme-imO} (II.iii.18) 

The simplified expression for the ansatz used in the simulations is 

given below 

- complex conjugate}· (II.iii.19) 

Expressed in terms of the new variables this becomes 

Now consider the case when m and n are both unity. There will be 

divergent terms arising from the coefficients of a0 as well as from po and 

J.to. Therefore the angular momentum can only be finite when both a 

and the coefficients of x+ are time dependent. This confirms the earlier 

conclusion deduced from the calculation of the kinetic energy. 
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Summary 

After a brief review of Noether's theorem, it was shown that it was rea­

sonable to use the following simplified ansatz for the field components, 

W p(x~- a), 

W 1 J.t(x~ -b) 

This thesis is primarily concerned with scattering and hence for 

most of the work m is taken to be one whilst n is assumed to be 2. 

The coefficients p and J.l are chosen so as to ensure that when the two 

solitons are both located at the origin, they will have a single peak 

when b is zero. 

The last section of this chapter considered the energy momentum 

tensor. It was shown that when n is less than three, then both the 

kinetic energy and the angular momentum will diverge. 

For the two soliton ansatz, this problem is resolved by assuming 

that p and J.l are both constant. In this scenario, both these conserved 

quantities will be finite. 

For the single soliton model the converse is true. The quantities 

can only be finite if all four (three, if b is taken to be zero) complex 

parameters are time dependent. If p and J.l are constant, then the 

resultant charges will be divergent. 



III 

Charges Arising From The 
Internal Symmetry 

Three's the magic number, 

not one nor two but three. 

Three's the magic number. 1 

1 De La Soul 
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Introduction 

In the last chapter it was shown that every symmetry of the Lagrangian 

has associated with it a conserved charge. The C pn sigma models 

under consideration have associated with them a global SU(n + 1) 

symmetry. There will thus be a set of charges corresponding to this 

internal symmetry. 

C P1 will have three conserved quantities whilst C P 2 shall have 

eight. They are obtained from the following generators of the complex 

projective space 

fjz 
iX"'( 
-( z 

2 'Y 

fjzt 
ti,\'Y 

(III.i.1) -z -t: 2 'Y 

where E-r is infinitesimal. 

In the simpler C P1 model, the Pauli matrices give a suitable repre-

sentation for the gamma matrices. InC P2 the Cell-Mann-Low matrices 

will be used, 

A'= u 1 n u -z n 0 ,\2 = 0 
0 0 

A3= 0 0 n u 0 n -1 ,\4 = 0 
0 0 

( ~ 0 -n 0 0 n ,\5 = 0 ,\6 = 0 
0 1 

A'= 0 0 -n A'= 0 0 J) 0 1 (III.i.2) 
z 0 
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where A8 has an additional normalisation factor 1/VJ. However, be­

cause the charges are only defined up to an overall arbitrary constant, 

normalisations factors such as these, and the halves given in equa­

tion III.i.l, can be ignored. 

By using equation I.v.2, it can be shown that for general A\ the 

charge density can be split into the following two components 

jg i ( Oozt X"Yz- zt xr OoZ + 2(ztaoz)zt XYz) 

j{/ iKEva (ovztoaz ztA"~z- ztoaz ov(ztA"~z)) (III.i.3) 

Six of the charges can be regarded as being pairs. They are [Qt, Q2], 

[Q4, Q5] and [Q6, Q7]. This can be deduced from the form of the Gell­

Mann- Low matrices given on the previous page. Each element of a pair 

will correspond to the real and imaginary components of a covering 

function. 

Furthermore, the first pair is related to the second by interchanging 

W and W 1 in the expressions. Hence the second pair can be deduced 

from Q1 . These links reduce the amount of calculations which need to 

be performed to four. 

It can be shown explicitly that the sum of j 0 and jH will be con­

served on integration. Consider first taking the time derivative of the 

contribution from the pure C P 2 Lagrangian 

Oojg = i [o5zt A "~z - zt A"~ o6z + 2 { oo(zt Ooz)zt xrz + (zt Ooz)oo(zt XYz)}] 

(III.i.4) 

Now substitute for the second derivative using the equation of mo­

tion. The Lagrange multiplier will not be explicitly given, as it will 

make the calculation easier to read. Once the Euler-Lagrange equation 
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has been rearranged into the form 

o~z AZ + 8o(ztooz) + 2(ztooz)8oz- (ztooz)(ztooz)z 

+ DiDiz 

+ 2KiE~'va { (D~'z)t Dvz} (Dpz)t, (III.i.5) 

the substitution becomes clear. 

After a few lines of calculation, it is possible to show that the terms 

on the first line of the right hand side of the above equation will cancel 

the other terms in equation III.i.4. It thus only remains to consider the 

effect of the other two contributions. 

The second term in equation III.i.5 can be expressed in terms of 

a total divergence. It can be shown that this will vanish due to the 

action being finite. Therefore, it has been confirmed that the charges 

will converge for pure C P2
• 

Now consider the effect of switching on the Hop£ term, which cor­

responds to the third term given above. This can be shown to reduce 

to 

- 80 j!/ + surface integral terms. (III.i.6) 

For the ansatz under consideration, the surface integral can easily be 

shown to vanish. 

Therefore, on integration of these charge densities, it becomes clear 

that 

(III.i. 7) 

In other words, the total charge will be conserved, but there is no reason 

to believe that Q0 and QH will be individually conserved. 
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IIIJi Numerical Predictions 

III.ii.a C P 1 
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The simpler C P 1 model will be considered first. There will only be 

three conserved charges. However, the simulations for this model were 

run using the C P 2 simulation codes, with W 1 being identically zero. 

Hence eight quantities were calculated. 

Now consider the contribution to the first three charges from the 

pure C P 1 part of the Lagrangian. The first two, as predicted in the 

previous section, behaved like the real and imaginary component of a 

covering function. 

In particular, when a was real, Q1 was finite whilst Q2 was zero. 

This can be seen in figure III.l. It was confirmed numerically that they 

were approximately proportional to the real and imaginary component 

of the velocity respectively. 

Figure III.l: Ql and Q2 for CP1 when QTOP = 2 
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The third charge was also numerically shown to be zero. All the 

terms in the remaining five charges involved the third component of 

the C P 2 field and hence need not be considered for this reduced phase 

space. 

As mentioned in the introduction to this chapter, the Hopf term 

will be a total divergence in this scenario and hence will not contribute 

to the classical equations of motion. It was therefore expected that the 

charge density coming from the Hopf term would have no meaning and 

hence unlikely to be conserved. However, it was found that for two of 

the charges, the contributions from the Hopf term were conserved, see 

figure III.2. 
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Figure III.2: Qf/ and Q~ for C P1 when QTOP = 2 

It was also noticed that the ratio of these two unexpected conserved 

charges was integral. As the Hopf term should not introduce any new 

conserved quantities into the model, these charges had to be propor­

tional to an existing charge. The most likely candidate for this role 

would be the topological charge. 
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III.ii.b CP2 

Several numerical simulations were performed for various values of the 

input parameters, from which the following table was compiled. 

Charge cp2 CP2+ Hopf term 

Q1 oc I m( velocity) indirectly oc velocity 
Q2 oc Re( velocity) indirectly oc velocity 
Q3 zero oc topological charge 
Q4 zero 
Qs zero 
Q6 zero 
Q7 zero 
Qs zero oc topological charge 

List of SU(3) Hopf Charges 

The nontrivial charges for a typical value of K are shown in fig­

ures 111.3 and III.4. The initial velocity for this evolution was low, 

v = 0.1 and the grid size was set to be ± 12 in both spatial coordinates. 

To show the effect of the velocity on the first two charges, they 

are plotted in figure III.5 for a higher velocity, v = 0.5. All other 

parameters are set to be the same so as to emphasise the dependency 

on this initial boost. 

Finally, for completeness, the sole non trivial charges for pure C P2 

when the initial velocity is real (in this case v = 0.2) is shown in fig­

ure III.6. This was calculated from a smaller grid (±8 in each direction). 
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Figure III.3: Q1 (solid) and Q2 (dashed) for C P2 when I< = 1 
with a low initial velocity 

Figure III.4: Q3 (solid) and Q8 (dashed) for C P2 when I< = 1 
with a low initial velocity 
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Figure III.5: Q1 (solid) and Q2 (dashed) for CP2 when/{= 1 
with an high initial velocity 

Figure III.6: Q2 for pure C P2 when the initial velocity is real 
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Figure III. 7: Component of Q3 during scattering for two solitons with 
/{ = 1 

When the Hopf term was added, Q1 and Q2 have a small additional 

contribution which is independent of the velocity. It was also confirmed 

that Q0 and QH are not conserved separately unless /{ = 0 (see, for 

example, figure III.7: iarger grid, v = 0.2 ). These results can be 

confirmed analytically for two static solitons placed at the origin. 

Hence, to summarise. The internal symmetry gives rise to four· 

nontrivial charges. Of these, Q1 and Q2 are also nontrivial for pure 

C P2 (with the proviso that Q2 is zero when the initial velocity is real). 

The remaining two, Q3 and Q8 , are of the most interest. This pair 

only arise when the additional term is switched on in the full model. 

They are independent of the initial velocity which would suggest the 

possibility of a link with the topological charge. 
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Figure III.8: Q8 charge when boundary is at ±8 
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It was noticeable that Q8 was much more sensitive to the bound­

ary conditions. If the boundary was cut off too close to the solitons, 

the charge conservation was noticeably affected (see figure III.8. In 

figure III.3 the boundary was at r· = 12). This is probably due to it 

being a more complicated expression. Q1 and Q2 are also affected by 

the boundary, but they are still approximately conserved for such an 

abrupt cut-off. 

The boundary should obviously be at infinity, but this causes com­

putational problems and hence an approximation of some form must 

be used. For most purposes, it is sufficient to approximate the plane 

with a finite grid because of the nature of the field distribution. It was 

believed that the errors this brought in would be insignificant. 
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To test this hypothesis, that the errors produced by a finite bound­

ary are minimal, some calculations were performed on a pseudo infinite 

grid. This was created by using the map 

Sx 
m = ---:----:-

1 + Slxl 
(III.ii.1) 

with a similar map for y. It maps zero to zero and infinity to one. The 

coefficient S is simply a scale factor. 

Although there still had to be a cutoff (as there would be problems 

with the upper boundary value, m = 1) it enabled a much larger grid 

in real space to be used without introducing excessive computational 

time. The results from these simulations confirmed the validity of the 

cruder approximation. Hence the simpler method was used as it was 

able to run significantly faster. 
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IIIoiii Explicit Calculations of Charges 

III.iii.a Q1 and Q2 

Consider Q1 for pure C P 2
• The charge density will be: 

·0 
h 

1 -
lfj2(Wo- Wo) 
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1 t t -+ lff(f 80f- 8of f)(W + W) (III.iii.1) 

After a few lines of calculations to combine the two terms, the numer­

ator of the charge density can be shown to be 

i{ Wo(1- WW + jW1 j2)- Wo(1- WW + IW1 j2 ) 

-(W + W)(W
1
WJ- W~W1 )} (III.iii.2) 

Substituting the general anatz for the fields and combining the 

terms, the numerator becomes the real component of the following 

2i{ [i7o(rne-iniJ- a)- pat)] [1-p2(r2nei2niJ- 2areiniJ + a2) 

+IJLI2(r2m + lbl2- rmnb)] 

...:. [(iiJLo- iioJL)(r2m + lbl 2- rmnb) 

-(boe-imiJ- boeimiJ)rmiJLI 2 - (bob- fob)] 

[rn(pe-in1J + pein9) _ pa + pa]} 

(III.iii.3) 

The order of this expression is 3n and therefore, by using the formula 

deduced in the last chapter it can be seen that this will diverge for n 

less than or equal to two. 
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Consider the two cases separately, and initially take n to be two. 

From this it follows that m must be one or two, as it has been assumed 

that the order of W 1 is less than or equal to the order of W. 

Once again, it is necessary to assume that p and J.i are constant to 

ensure the numerator of the charge density is finite. When m is one, it 

will reduce to the real component of 

2i{.Pao[l- p2(r4ei49- 2ar·2ei29 + a2) -JJ.LJ2(r2 + JbJ2- d1b)] 

+ [(b0e-i9 - b0ei9r)JJ.LJ 2r +(bob- bob)] 

[r2(pe- 29 + pe- 29 )- (pa + pa)]} (III.iii.4) 

This will be of order 4 and hence the charge Q~ will be finite in this 

scenario. It can similarly be shown, that the equivalent expression for 

when m is also equal to two will be finite. 

Now consider the ansatz used in the programme. The numerator of 

the charge density simplifies to be the real part of 

This will be proportional to the time derivative of a, which is usually 

taken to be the velocity of the solitons. 

For small .A, it will be approximately proportional to the imaginary 

component of the velocity. This can be confirmed analytically when a 

is zero, as all the terms involving trigonometric functions will trivially 

vanish on integration in this particular case. 

Unfortunately, it is not possible to integrate analytically for non­

trivial a. However, this does confirm the numerical results for pure C P 2 

as the charge will be independent of the initial value of this parameter. 
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When m and n are both unity, there will be two divergences in the 

charge density. One of these is the coefficient of the time derivative of 

p, as above, but the other is multiplied by the a0 . These will have to 

cancel each other for the charge to be finite. Hence, it confirms the 

requirement for the coefficients of x+ in the single soliton ansatz to be 

time dependent. 

Now consider the Hopf contribution to the charge density which will 

be, in terms of the renormalised fields, 

jf = K tttvl:l 4 { (W + W)8tt(ftavf) 

-tav(W + W)(ftattf- 8ttftf) }· (III.iii.6) 

It is now simply a matter of substituting for the components of f 

using the standard ansatz. After some elementary algebra, this will 

result in 

j{f -~:~4 { [n21PI2,.2(n-t) + 2m21JI-12r2(m-t)] 

[rn(peinll + pe-ini1) _ (pa + pa)] 

-nmrn+m-2111-12 [peimll + pe-imi1 _ pbei(n-m)ll 

-pbe-i(n-m)ll]} (III.iii.7) 

This will be of order 3n - 2. Therefore, it has been shown to be finite 

for all n. 

With the ansatz used in the programme, this will simplify to 

jf = - 4~~~ { (1 + X2r2) [7·2(ei211 + e-i211)- (a+ a)] 

-(1 + >.2r2) [r2(ei211 + e-i211)]} (III.iii.S) 
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Hence there will be a nonzero contribution to Q1 from the Hopf term 

which is independent of the velocity. 

The Q2 charge is obtained from Q1 and hence does not need to be 

discussed in detail. However, it does provide an useful check on the 

calculations. It also confirms that for small A, Qg is approximately 

proportional to the real component of the velocity. For pure C P 2
, and 

always when located at the origin, the proportionality is direct. Q!j 

also introduces a component which is independent of the velocity. 
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III.iii. b Q3 

Qg will now be considered. Expressed in terms of the normalised fields 

it becomes: 

Qo = i J J d2x-
1-(a rt .X3f- rt .X3a f). + (l - IWI

2
) (fta f-a rtr) 

3 lfl2 0 0 lfl4 0 0 

(III.iii.9) 

After some simple algebra, this can be expressed in the simpler form 

j~ = l:l4 { (2 + IW112)(WoW- WWo) 

(1 -IWI2)(W~W1 - W1 W~)} 

Substituting for W and W 1 , this expands out to 

j~ = 1:14 { [2 + IPI2(r2m + lbl2- rmnb)] 

(III.iii.10) 

[(r2n + lal2- rnna)(ppo- PoP) 

-IP12(rn(aoe-ino- aoeino)- (aao- aoa))] 

+ [ 1 - IPI2(r2n + lal2- rnna)] 

[(r2m + lbl2- rmna)(Jlfto- flop) 

-IP12((boe-imO- boeimO)rm- (bbo- bob))]} 

(III.iii.ll) 

The order of this expression for large r is 2( rn - n ), although if fl and 

p are identical the divergences will cancel. This means that jg will 

diverge on integration if n - rn ~ 1. 
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However, once again, when n is two the problem is removed if p and 

f-L are assumed to be constant. In this scenario, the divergence will only 

arise if 2n ~ m + 2 and the density simplifies to 

j~ 
1
;

1
: { [2 + if-LI

2(r2m + lbl2- rmnb)] 

iPi2[(aoe-ine- aoeine)r·n- (aao- aoa)] 

+ [ 1 - iPi2(r2n + iai2- rn!la)] 

if-LI 2 
[ (boe-ime- boeime)rm - (bbo- bob) J} 

(III.iii.12) 

For the ansatz used in the programme, this becomes 

·O .21.\1
4

{ I 12 2 [ ) 13 = z lfT4 ( 1 + ,\ r ) ( aa0 - a0a 

-r·2(aoe-ine- aoeine)]} (III.iii.13) 

At the origin this will trivially integrate to zero. There will not be any 

contribution from the time derivative of a. Hence for pure C P 2
, this 

charge will be trivially zero, thus explaining the numerical results. 

When n and m are both unity, then there will be divergent factors 

associated with the time derivative of a. Once again, the charge can 

only be finite if the divergent term associated with the time derivatives 

of p and f-L cancels with the other infinite quantity. Thereby confirming 

the need for more than one parameter to vary with time for a single 

soliton. 
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Now consider the Hopf contribution to Q3 . 

(III.iii.l4) 

Substituting for ztA3 z and rearranging, it can be shown that: 

Qf = (27rKQTOP- h), (III.iii.15) 

where 

/3 i j j d2
x ~;,: { 8JL(ztovz)(2IWI 2 + IW1

1
2

) 

+(rtaJlf- oJlftf)ov(ztA3z)} (III.iii.l6) 

and QTOP is the topological charge, as defined in equation I.iii.9. 

Hence, because QTOP is by definition conserved, it follows that 

Qg - I< ! 3 must also be conserved. It is this expression which will be 

considered in detail. As discussed on page 54, there is no evidence to 

suggest that for general I< either term would be separately conserved. 

Note that / 3 does not involve time derivatives and hence will not vanish 

for static fields. 

Expressed in terms of the components of the normalised field, this 

expression simplifies to 

h = ,;, {IW 1
1
2(WxWv- WyWx) + 2IWI 2(W~w:- W~w;) 

1--1 1 I 1---1 ---1 
-2[WW (WxWy- WvWx) + WW (WxWv- WvWx)J 

+~[WW1 (WxW~- WyW~)- WW1(Wxw:- WyW;)J} 

(III.iii.l7) 

Now consider the special case for C PI, where either W or W 1 is 

zero. It is obvious that in this case, the above will trivially vanish. For 
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this model, Q!f is an integral multiple of the topological charge, thus 

explaining the numerical results illustrated by figure III.2. 

Returning to C P 2 and substituting for the components, the contri­

bution from the Hopf term becomes 

13 = lft4 { 2IJLI21P12[n2r2(n-l)(r2m + lbl2- rmnb) 

+2m2r2(m-l)(r2n + lal2 - rnna)] 

-3nmrn+m-2 [2rn+mnab- rnnb- rmna]} 

(III.iii.18) 

where the n functions are as defined previously in equation II.ii. 7. 

When n is greater than m, this will clearly be finite. 

However, it appears to be divergent when n equals m. However, a 

few lines of calculations will show that in this scenario, the divergences 

will cancel. Therefore this integral will be finite for all values of n and 

rn. 

When the ansatz used in the programme is considered, it reduces 

to 

(III.iii.19) 

This will be zero at the origin, but is nontrivial away from there. 
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III.iii.c Q4 and Qs 

The pair [Q4 , Q5] does not need to be considered in detail as they can be 

deduced from Q1. It is just necessary to interchange Wand W 1
. This 

corresponds to interchanging n, a and p with m, b and 11 respectively, 

in the above equations. 

However, in the analysis it was assumed that n would never be 

smaller than m. Therefore the order of the full equation for Q~, assum­

ing time dependency of the coefficients of x+, will be 2m + n. Hence 

it will diverge for 2n S 2 + m. It is thus necessary to discuss the cases 

for which n is either one or two. 

The solution is the same as for Q~. If the parameters p and 11 are 

taken to be constant, then the divergences will not contribute. In this 

scenario, when n is two, the charge density reduces to 

2{jtbo[l + !12(r2ei2B- 2breiB + b2)+ IPI2(r4- r2f!a + lal2)] 

-!lbo[l + il2(r2ei2B- ibreiB + P) + IPI2(r4- r2f!a + ia12)] 

+ [ ( aoe-i211 - iioei211)r21PI2 + ( aoa - aoa)] 

[r(jte9 + /le-9
)- (jtb + 11b)]} (III.iii.20) 

With the particular ansatz used in the simulation, b is taken to be 

zero. Therefore the expression will become 

To analyse this, it is necessary to expand the exponential terms. 

Those terms involving sink(), for any integer k will trivially integrate 

to zero. It thus becomes the imaginary component of of 

(III.iii.22) 
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When a is zero, this will vanish trivially on integration. Therefore as 

it is conserved, Q~ will be zero for pure C P2
. A similar argument will 

show that Q~ will also be zero. 

Now consider the Hop£ contribution. This will be of order 2n+m-2 

and hence will always be finite. When b is zero, the numerator will take 

the form 

(III.iii.23) 

This is trivially zero at the origin but it is not obvious what happens 

away from the origin. However, because the total charge is trivially 

zero at the origin, it must be zero everywhere. Hence this confirms the 

numerical results. 

When m and n are both equal to one, then the charges will have 

two divergent terms. Therefore it confirms the requirement that for 

this ansatz, the coefficients of x+ must also depend on time. 
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III.iii.d Q6 and Q7 

The contribution from the C P2 Lagrangian to the charge density can 

be shown to be: 

j~ l;l4 { (1 + IW112)(HioW
1

- WoW
1

) 

+(1 + IWI 2)(W~w- w~W) 
-1- -- 1 

-WWW Wo+ WWW Wo 

-W1W1 WW~ + W1W1WW~} (III.iii.24) 

When the components are substituted for, the charge can be ex­

pressed as 

Q6 = 2i j j rdr·dO 
1

171~ 
where the integrand function is defined to be: 

-pJ.Lao(r·meimO- b)] 

+ [1 + IPI 2(r2n + lal 2
- rnna)] 

[p2(r2nei26 + a2 _ 2arnein6] 

(III.iii .25) 

[Jlpo(r·m+ne-i(n+m)O + ab _ arme-im6 _ brne-in6) 

-jlpao(rme-im6 -b)] 

[J.L2(r2mei26 + b2 _ 2br·nein6)] 

(III.iii.26) 
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This will lead to a divergent integral when n - m :::; 2. 

However, even when p and f-L are taken to be constant, the charge 

will still be infinite for n :::; 2 as the integrand becomes proportional to 

the imaginary component of 

A = [1 + lf-LI2(r2m + lbl2- rmnb) + IPI2(r2ne-i28 + a2- 2arne-in8)] 

[jtpao(rme-imO- b)] 

+ [1 + IPI2(r2n + la12- rnna) + lf-LI2(r2mei28 + ]j2- 2brne-in8)] 

(III.iii.27) 

This would appear to contradict the numerical results which pre­

dicted Q6 to be zero. However, it can be seen that the divergent term is 

dependent on b. If this parameter is set to zero (as it is in the numerical 

simulations), then the charge density will be finite when n is two. 

When ansatz II.ii.11 is used, the charge density function becomes 

A= vf2.\2{ 1 + 2.\2r2 + .\4(r4e-i2B + a2- 2ar2e-i2B).\aorme-ie}. 

(III.iii.28) 

which is clearly finite. It can be seem that when a is also zero, then all 

terms are proportional to a trigonometric function. Therefore for pure 

C P 2 this charge will be trivial, confirming the numerical results. 

When n is unity, then there will be a divergent term associated with 

a0 • Once again, this is confirmation that in the single soliton ansatz, 

the coefficients of x+ must be time dependent. 
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Now consider the contribution from the Hopf term. The charge 

density can be shown to be: 

·H iK - 1 -1 - - -1 1 -1 1 
JB 2IJI 4 {(WW + W W)(WxWy- WyWx + WxWy- WyWx) 

2 12- 1 - 1 -1 -1 + (!WI + IW I )(WxWy- WyWx + wxwY- WyWx) 

+ (W1W 1
- WW)WxW~ + (WW- W 1W 1)Wxw;}. 

(III.iii.29) 

Expressing this as a function of the imaginary component of a vari­

able A, in an analogous way to the above, and substituting for the 

components W and W 1 , results in the integrand being a function of 

A = 2 [n21PI2r2(n-1) + m21,ul2r2(m-1)) 

[ 
n+m - i(m-n)O n- b -inO m- -imO + - -b] r p,ue - r p,u e - r ,upae p,ua 

+ 2nm [IPI 2(r2n + ial2- rnna) 

+l,ul2(r2m + lbl2- rmf!b)]pprm+n-2e-(m-n)O 

nm[,u2(r2mei2m0 + b2 + 2beim0) + p2(r2nei2n0 + a2 + 2aein0)] 

- n+m-2 -i(m-n)O p,u1· e (III.iii.30) 

This will only lead to a divergent integral only when m equals n. 

For completeness, it will be given for the ansatz used in the pro-

gramme 

A = 4V2..\2~e-i0{7'3(1 + 2l..\l2r2) + r[I-AI2(r4 + ial2- r2!1a) + 2r2] 

_ 2..\2r2ei20 + ..\4(r4ei40 + a2 + 2aei20)} 

(III.iii.31) 
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By using a similar argument to before, It is possible to see that 

this will also vanish on integration. Thus, for the ansatz used in the 

simulations, Q6 will always be trivial. 

For a single soliton, m = n = 1, then the same argument as used for 

Q1 can be followed. This will confirm the need for all three parameters 

to be time dependent for this charge to be finite. 

The value of charge Q7 can be obtained from Q6 by taking the real 

component of the two functions defined above as A, thus confirming 

the numerical prediction that this should also be zero. 
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III.iii.e Qs 

The contribution from pure C P 2 to the charge density for Q8 can easily 

be shown to be 

j~ = ~~~4{1W1 1 2 (Wo11V- vVWo) + (1 + IWI 2)(W1oW1
- W1WJ)} 

(III.iii.32) 

and substituting for W and W 1 gives the expression: 

·0 
Js = 

3' 
lf~4 { IPI2(r2m + lbl2- rmnb) 

[p,Oo(r2n + la12- r·nna) -IPI2(rneinO- a)ao 

-(,Opo(r2n + la12- rnna) - IPI2(rne-in0 - a)ao)] 

+[1 + IPI2(r2n + lal 2- rnna)] 

[P.Uo(r2m + lbl 2- rmnb)- IPI 2(rmeimO- b)bo 

-(.U~-to(r2m + lbl2- r·mnb)- l~-tl2(rme-im0- b)bo)J} 

(III.iii.33) 

This will give a divergent charge if n - m ~ 1, in particular if n is 

two and n is one. The assumption that p and 1-l are constant will once 

again surmount this problem for all cases except m and n being equal 

to one. 

This simplification is given below. 

j~ = ~~~4 { l~-tl 2 (r· 2m + lbl 2- r·mnb) 

IPI2[(rne-in0- a)ao- (rneinO- a)ao] 

+[1 + IPI 2(r2n + lal2- rnna)] 

llkl2[(rme-im0- b)bo- (rmeimO- b)boJ} 

(III.iii.34) 
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This will give a divergent answer when 2n - m :::; 1. For the ansatz 

used in the numerical work, the charge density reduces to 

(III.iii.35) 

As with jg, this involves terms involving just the temporal derivative 

of a. Therefore, it may be finite even at the origin. Hence it doesn't 

contradict the numerical results. 

Also like the third charge, when m and n are both equal to one, 

there will be two divergences. Hence Qg can only be finite if p and 11 

are also time dependent. 

Now consider the Hop£ contribution. This takes the form 

Q~ = if{ J J d2XEJ-IV { al-'(ztavz)(l + IWI2- 2IW1
1
2) ,:,2 

-zta~-'za!L(zt ,\8 z)} (III.iii.36) 

and hence in an analogous argument to that for Q3 , it can be shown 

that Qg - I< Is must be conserved, where 

I - ·jjd2 !LV{IW112a ( ta ) ta a ('W112)} 
8 - Z XE w IL Z vZ + Z vZ J-1 w · (III.iii.37) 

This is clearly zero for C P1
. Hence Q~ has also been shown to be 

an integral multiple of the topological charge for this model, agreeing 

with the numerical results shown in figure III.2. 

For C P 2 the integrand simplifies to 

3i 12- -2TJTf{[2IW I (WxWy- WyWx) 

-1- 1 1 1 -1- -1-w W(Wx Wy- WY Wx) + W W(WxWY- WyWx) 
1- -1 -1 -1 1- 1-+ W W(WxWu- WyWx)- W W(Wx Wy- WY Wx)]}. 

( III.iii .38) 
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Substituting for the components gives the following expression. 

Is = . -31;141J.LI21PI2{ 2n2r2(n-1)(r2m + lbl2- rmnb) 

-nmrn+m-2 [2rn+m + abe-i(m-n)O + abei(m-n)O 

-rmna- rnnb]} 

79 

(III.iii.39) 

and this will obviously be a finite quantity if m =/:. n. 

When n ,is two and the programme ansatz is used, this becomes 

(III.iii.40) 

Note that this will definitely be nonzero at the origin. 

When m and n are equal , a similar calculation to that for Q3 will 

show that the divergent terms will cancel. Thus this term will be finite 

for all values of n and m. 
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Illoiv Summary of Results 

In the general ansatz for C P2
, the components of the vector fields are 

taken to be 1, W and W 1 . It is assumed that W is of order n and W 1 

of order m where n 2 m. There are problems with divergences arising 

from all eight charges for n ::; 2. 

When n is equal to two, then taking the coefficients of x+ (!-L and 

p) to be constant solves most of the problems. Q6 and Q7 will still be 

divergent unless b, the term in W1 independent of the spatial coordi­

nates, is assumed to be constantly zero. The other six charges charges, 

however, will be finite for all values of b. 

When the particular ansatz used in the programme is taken, then 

m pure C P2 two of the charges ( Q1 and Q2 ) are dependent on the 

velocity of the solitons. The remaining six charges are trivially zero. 

When the Hopflike term is added, these two charges have an additional 

contribution which is independent of the velocity. 

In addition, the two charges Q3 and Q8 are no longer trivial in the 

enhanced model. They are now related to the topological charge. In the 

simpler C P1 model, the relationship can be shown to be an equivalence. 

However, there is also an additional contribution which is separately 

conserved. Hence, these two charges are of the most interest to the 

current project. 

When m and n are both equal to one, then it is necessary for the co­

efficients of x+ in W and W 1 to be dependent on time. Otherwise most 

of the charges will diverge. This confirms the result from earlier work. 

However for two or more solitons, it is possible for these parameters to 

be conserved. 



IV 

Trajectory of Solitons 

Well Toto 1 I guess we ain 1t in Kansas anymore. 1 

1 Dorothy in Wizard of Oz 
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IV.ii Introduction 

In the preceding chapter, the charges arising from the internal sym- . 

metry of sigma models were discussed. The numerical results from 

simulations were explained by explicit calculations of the charges. This 

section will primarily be concerned with two solitons in the C P2 model 

using the ansatz defined by equation II.ii.11. 

It was mentioned in the introduction, that the equations of mo­

tion cannot be solved explicitly for time dependent solitons. Instead, 

static solutions are given a Galilean boost in the programme to emulate 

evolution. 

The predicted scattering of two solitons has been documented in [31 ]. 

For pure C P2
, the impact results in orthogonal scattering, as shown in 

figure IV .1. 

2 ............ · ...... :. 

1.5 

0 0.5 1 1.5 2 2.5 
X 

Figure IV.l: Soliton trajectory for pure CP2 
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However, when the Hopf term is added to the Lagrangian, the scat­

tering angle becomes acute. The results for a typical value of this 

parameter is shown below. The reason for this was suggested to be. 

that the Hopf term represented an internal rotation of the soliton. 

Figure IV.2: Soliton trajectory for C P 2 with K = 1 

In reference [30], the solitons were given a phase angle so that they 

rotated away from the real axis. This enabled a non zero impact pa­

rameter to be considered. The results predicted scattering at an obtuse 

angle. 

The purpose of this chapter is to try and understand these results. 

This will be done by considering the charges arising from the internal 

symmetry, in particular Q3 and Q8 • The energy density will also be 

used. It was also hoped that the results would be able to predict the 

trajectory of the solitons. 
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The chapter will end with a brief discussion of the single soliton 

phase space. It was hoped that this would confirm and, possibly even 

add to, the interpretation of the Hopf term given in earlier work. 
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IV oii Two Solitons 

IV.ii.a Simplified ansatz 

In this section, it shall be assumed that the initial ansatz used in the 

programme will remain valid throughout the simulation. Therefore, b 

in equation II.ii.5 will be constantly zero and the two coefficients p and 

f.L will be given by the functions in equation II.ii.ll. Furthermore, as 

the parameter.\ can be taken to be real without loss of generality, only 

two equations will be needed to solve for all the variables in the ansatz. 

Now consider the equations arising from the two SU(3) charges Q3 

and Q8 . Expressed in terms of the variables <P and s, they are 

Q~- I<l3 = (atat- atat) [I.XI2(a + {3)- 2(8 +c)] 

-2KI-\I2 [2I.XI21a12a + 8] 

Q~- I< Is 3 {(a tat- atat) [2c- f31.\l2] - K(21- l.\128)} 
(IV.ii.l) 

where the results from equation Il.ii.18 have been used to combine the 

terms in the· contributions from pure C P 2• 

The five standard integrals are given by 

0' j j dsd</J 1:14 

f3 j j dsd</J 1;14 -

I j j dsd</J 1;;4 

8 j j dsd</J s cos 2</J 
lfl4 
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and 

E = 

with the denominator being 

jj d d,/,. s 2 
cos 2</J 

s 'f' lfl4 
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(IV.ii.2) 

(IV .ii.3) 

The initial behaviour of pure C P 2 can be seen at this stage when 

the solitons are initially placed on the real axis. As a is real, the right 

hand sides of the first two equations are zero. Thus the two solitons 

will move along the real axis until they collide. However, it is not clear 

from this first impression what will happen when a is zero or imaginary. 

This deduction is confirmed by the numerical results obtained from 

this and earlier work (see, for example, figure IV .1). The coefficients 

of x~ and x+ were chosen so as to ensure that two solitons will form a 

peaked topological structure if they are both placed at the origin. 

To proceed, it proves convenient to express the parameter a in terms 

of complex polar coordinates, 

a(t) = p(t)ei1/J(t). (IV.ii.4) 

Hence 

(IV .ii.5) 

Therefore the two equations reduce to 

2p2 ~~ [IAI 2 (a + (3)- 2(8 + t)] + 2KIAI 2 [2IAI 2p2 a + s] 

3 {p2 ~~ [2t- fJIAI 2
] - 2/( [21- IAI 28]} (IV.ii.6) 
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where the left hand sides have been expressed in terms of the numerical 

prediction of the charges from the programme. Both of these equations 

are of the form 

(IV .ii. 7) 

Consider first pure C P2 • The function G(p) does not contribute 

because both Qg and Qg have be shown to be zero. This can be seen 

from the numerical results or, alternatively, it can be calculated when 

the solitons are at the origin. 

It therefore confirms that for pure C P2 the phase will remain con­

stant for all p except when p = 0. At this value, which corresponds to 

the two solitons being located at the origin, the derivative is undefined. 

Therefore the two solitons will move in a straight line both before 

and after the impact. Hence it provides an explanation for the numer­

ical results. 

Unfortunately, the actual scattering angle cannot be deduced an­

alytically from this. But the empirical evidence gives an orthogonal 

scattering angle. 

Now consider the full model. It is clear from this equation that the 

velocity of the soliton picks up an imaginary component which rotates 

the solitons away from the real axis. Thus there is no longer a head 

on collision between them. The two solitons-no longer go through the 

origin, they only skirt around it before scattering. 

However, it should be remembered that p is a parameter which 

only approximates the position when the two solitons are far apart. 

Therefore the possibility that p becomes zero needs to be considered. 

When this happens, the rate of change in the phase is undefined. 
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The numerical values were found to be close to 47r and hence G(p) 

will be small. Hence the rate of change of the phase is approximately di­

rectly proportional to I< before the impact. This thus predicts differing 

angles of scattering for various values of this parameter. 

This agrees qualitatively with the numerical result. After the lorentz 

boost has been applied, the soliton position does start to pick up a 

small complex component. However it is so small that it is easy to miss 

on the usual position plots (see figure IV.3 for the effect of I< on the 

trajectory). 

Soliton scattering with a non zero impact parameter was considered 

for pure C P2 in [42] and shown to result in non orthogonal scattering. 

However the scattering angle obtained was obtuse and not acute. It 

should be recalled, however, that when the solitons are close together, 

their positions are not well defined. Hence the trajectory through the 

origin is a subjective path. The difference between an obtuse and an 

acute scattering angle is simply a matter of interpretation. 

The fact that the rate of change of the phase angle is small suggests 

an acute angle, but it is no more than a suggestion. It is not possible 

to calculate what happens when the parameter p is zero and, because 

it is simply a parameter, it is not possible to assume it doesn't become 

zero during the impact. 

Even if p doesn't become zero, as may be expected in the naive in­

terpretation, then the positions of the solitons during the scattering are 

not well defined. Hence it is not possible to give a definite relationship 

between the solitons going into the scattering and those coming out. 
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Figure IV .3: Distance trajectory predicted by programme for various 
values of I< 
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Notice that the two Hopf charges being considered give the same 

information. This can be used to provide a test for the validity of the 

simple ansatz under consideration, in particular the assumption that 

only one parameter is time dependent. 

To see the rate of change in the distance from the origin, it is nec­

essary to consider a third equation. The simplest candidate is the total 

energy which, in terms of the new variables and standard integrals, 

becomes 

When expressed in terms of p and 'ljJ the right hand side reduces to 

H (-:;:)' + p' ( ~n }<" + 2(3) + 2 ({I+ 1-'l'p')a + 2(3 + 21-'1'•) 

It is expected that ~~ will be small relative to 

above equation is approximately of the form 

dp 
dt = H(p). 

(IV .ii.9) 
dp 
dt . Therefore, the 

(IV.ii.lO) 

Note, though, that this will not hold during scattering. It thus 

predicts that before scattering, the distance from the origin will be 

independent of the Hopf coefficient K. This is also in agreement with 

the numerical results, see figure IV .4. 

The difference after scattering will be partly because there will be 

a large phase change during the scattering. Even for pure C P2 it will 

change by ~ during this process. 

Also other parameters, including the velocity, will be affected by 

the Hopf term. Therefore the energy and hence the rate of change of p 

after scattering, will be indirectly dependent on the value of K. 
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Figure IV .4: Effect of I< on distance trajectories 
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So far, the arguments given have all been subjective. It is now 

necessary to consider qualitative values if any more information is to 

be obtained. 

It has not been possible to integrate directly the integrals in IV.ii.2, 

even for this simple case. They can only be expressed in terms of 

elliptic integrals. Therefore, a mixed analytical and numerical scheme 

was required. 

The angular integration regwn was performed analytically using 

tables (see for example [6] ). Only three results were needed, 

{~ d¢ d¢ 
lo (B + C cos a¢) 2 

_ B [~ d¢ d¢ 
C2- B 2 lo (B + Ccosa¢) 

{~ d¢ d¢ cos a¢ 
lo (B + C cos a¢)2 

- c {~ d¢ d¢ 
B 2 - C 2 lo ( B + C cos a¢) 
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and 

(i d</J d</J 
lo (B + C cos a</J) 

2 7r 

A{(B2- C2) 2 
(IV.ii.ll) 

·where 

and c -s. (IV.ii.12) 

The integrals will now be in a suitable form for numerical integra­

tion. This was performed using Xmaple [7] and checked by using NAG 

subroutines [27] to perform the double integration. 

As mentioned earlier, equation IV.ii.7 also provided a useful check 

on the calculations, as the two equations have to be consistent for aU 

p. Therefore these will be considered in detail first. The two equations 

can be written in the form 

Q~- I< Is (IV .ii.13) 

where the values of the coefficients on the right hand sides can be read 

off from equation IV.ii.6. The left hand sides should be taken from the 

numerical predictions. 

At t = 0, the Hopf charges will corresponds to those for a static 

solution. Therefore, as Qg(O) and Qg(O) are both zero, the equations 

will reduce to 

-I<l3(0) 

-I< fs(O) (IV.ii.14) 
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For these two equations to be consistent, it is necessary for the two 

ratios (!3 + B3)IA3 and (!8 + Bs)IAs to be equal. This is not true in 

general and therefore a more general ansatz needs to be considered. 

A difficulty with this analysis is that any numerical integration pro­

cedure will require a value for p. Hence, the differential equations can 

only be solved for fixed values of the parameters. 

Thus it can only reliably predict the situation for the period just 

after the starting time. The possibility that the inconsistencies are 

caused by the crudeness of the integration method cannot be ruled out. 
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IV.ii.b Nonconserved b 

The simplified ansatz leads to inconsistent equations for the rate of 

change in the phase. A more general ansatz thus needs to be used. 

Therefore, it was initially assumed that only the phase of b was 

dependent on time. As it was initially taken to be zero in the simulation, 

then its absolute value would remain zero during the evolution. Hence 

it would ensure a compatibility between the two approaches. 

The denominator will still be the same as it was in the previous 

section. Hence, terms which can be expressed in terms of the sine func­

tion in the numerator will still trivially integrate to zero. An additional 

standard integral is needed. This takes the form 

( = jj ds d¢> VB cos ¢> . 
V21fl 4 

(IV.ii.15) 

Therefore, the two SU(3) charges under consideration will now lead 

to the following 

Q~- /(Is 

2~t{ 2p2l.\l 2(a + f3) + 2K(2I.\I2p2a + 8) 

[1- (s 2
- 21.\128 + I.\I4P2)] 

[(bt + bt)/(2p) cos~ 

+i ( (bt- b1)/(2p) sin~)] (} 

3~t{P2 (2t- 2/31.\1 2) + 2K(22!- l.\1 28) 

[ 1 + ( s 2 - 21 " 12 8 + I " 14 P2 ) ] 

[(bt + bt)/(2p)cos ~ 

+i ((bt- bt)/(2p) sin~)] (} (IV.ii.16) 
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It is now necessary to consider the phase of b. Assume that it takes 

the form 

(IV.ii.17) 

Therefore the derivative takes the form 

(IV .ii.l8) 

Hence, if b is zero, the terms involving the derivative of its phase will 

vanish. 

Weakening the constraint, so that q is taken to be sufficiently small 

as to make q2 approximately zero, will complicate the issue. This is 

because the denominator will now have to include the term rDb. All 

that can be said is that odd terms in the numerator will still vanish on 

integration. 

Therefore, the problem reduces to solving the following two coupled 

ODEs 

Q~ - K 13 21/Jt{ 2p2 I-XI 2
( 0' + {3) + K(21-XI 2p2 a + 8) 

+ [1- (s2
- 2I-XI 28 + I-XI4P2

)] 

qEteifj(2p) sin~ (} 

Q~- K /g 31/Jt{P2(a- 2a8) + K(28 + !) 

+ [ 1 + ( S2 
- 2I-XI 28 + I-XI 4

P
2
)] 

qEteifj(2p) sin~(]} (IV.ii.l9) 

where the standard integrals have to be modified accordingly. Note 

that equations IV.ii.2 are no longer valid. 
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As the integrals can only be solved numerically, values for p and q 

are required. The initial conditions dictate the value of p and, therefore, 

it can be taken to be equal to two. 

What to take for q presents more of a problem. It should be approx­

imately zero. However, it was necessary to establish whether it could 

be taken to be zero without affecting the accuracy of the analysis. 

Assuming that q was sufficiently small so as to be able to approxi­

mate q2 as zero does not help. There will still be a term in the denom­

inator which depends on the square root of s. 

The alternative is to assume that q will remain real, but with a 

varying magnitude. Again, this will cause problems as the differential 

equations cannot be solved analytically as it will involve the value of q 

in the numerator and denominator. 

The problem is even worse if b is assumed to vary both its phase 

and its magnitude. The integrals cannot be solved analytically, and 

numerical procedures will not be very reliable. 

Therefore the regrettable conclusion is that this procedure cannot 

give quantitative results. It can only give qualitative predictions for 

the behaviour of the solitons. 
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IV.iii Single Soliton 

This chapter shall conclude with a brief look at the simplest single 

soliton ansatz. Consider first the denominator which is, in general, 

To be able to obtain a feel for the results, it is necessary to make 

some assumptions to simplify the calculations. Firstly assume that b is 

zero and that 11 and p are equal. Then, the above will reduce to 

(IV.iii.2) 

Now consider the kinetic energy. Under the above assumptions, this 

will become 

(IV.iii.3) 

For this to be finite, the following relationship must hold 

(IV .iii.4) 

This emphasises the requirement for p to be time dependent in this 

phase space. 

Now consider the charge Q3 • The contribution from the pure C P2 

Lagrangian can be shown to be the integral of the following charge 

density 

j~ = [P11t-Pt11] [3r·2 lal 2 -4r· cos¢>]+ [aat-ata] [1111 2r 2 +2] [ 1-2r cos <P] 1111 2 

(IV.iii.5) 
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The contribution from the Hopf term is 

(IV.iii.6) 

For the total charge to be finite it is necessary for the coefficient of 

r2 to be zero. This provides the constraint 

(IV.iii. 7) 

However, before this can be used to express the derivative of J.L in 

terms of a0 , it must be checked for consistency with the equivalent 

expression derived from Qg. 
The contribution to this from the £ 0 is 

For completeness, the Hopf contribution is 

(IV.iii.9) 

All terms in the contribution from the pure C P2 Lagrangian are 

infinite. The constraint to make this zero is not consistent with the 

previous constraint for Q3 • Therefore quantitative predictions cannot 

be made. 

If this problem is overlooked, then the finite contribution from £ 0 

to Q3 is 

j~ =- [llJ.Lo- lloJ.L] [2p2
- 2r cos 4>] + 2 [aao- a0 a] [1 - 2r cos 4>]. 

(IV .iii.l 0) 

This does not provide any new qualitative information about the be­

haviour of a single soliton. 
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The same conclusions which were drawn for the two soliton case 

may be applied here. The ansatz being tested is only an approximation 

to the solution. To proceed further it would be necessary to consider 

more general cases, with particular regard to which components should 

be taken to be time dependent. 



v 
Shadowing of Solitons 

Have you ever danced with the Devil in the pale moonlight? 

I ask that of all my prey, I just like the sound of it. 1 

1The Joker in the film Batman 

100 
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VJ. IntJroduction 

Following on from the work in [32] and the doubts raised by the pre­

vious section, it was decided to test whether the solitons do follow the 

expected homotopy of static solutions using the simplified ansatz de­

scribed in section IV.i. This was done by stopping the simulation at 

regular, short time intervals and finding the static approximation which 

best matched the numerical data. 

It was first necessary to consider what was meant by the closest solu­

tion. A method was proposed for the 0(3) sigma model in [32]. However 

this only involved comparing one field. Various ways of generalising to 

two fields were considered. It was initially decided to concentrate on 

two methods. 

The first involved finding the smallest error in lfl 2
. This had the 

advantage of testing boths components with one comparison test and 

that it would never be zero. It was therefore possible to consider both 

absolute and relative error distributions. 

The second test used was to generalise the method used in Piette's 

paper [32] and consider the sum of the absolute difference in each field: 

error= IWevolved- Wstatic1
2 + IW~volved- w~tatic1 2 (V.i.1) 

As there remains the possibility that either or both of the fields could 

be zero, only the absolute error could be used for this test. 

It then remained to consider whether the maximum absolute error 

or the average should be minimised. It was decided to initially use both 

on the first test and see which performed better. 
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An alternative but much cruder test is to pick five points from the 

field distribution for each component. These are then used to match 

the five complex coefficients given by 

w(z) = ,\ (z- a)(z- b). 
(z- c)(z- d) 

Some useful results can be obtained from this. 

(V .i.2) 

The scattering behaviour in pure C P 2 is fairly well understood (see 

for example [42] for a review) and therefore it was an obvious choice to 

test the various comparison procedures. 

When the data in this chapter is compared with earlier work, it 

should be borne in mind that for the initial results, the velocity used was 

set low. This meant the scattering period was prolonged and allowed 

more information to be taken from it. 

Also to be remembered is that in all the numerical simulations time 

is relative as it depends on the algorithm used. It is expressed in terms 

of seconds for aesthetical reasons alone. 
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V.ii.a JEntrod.uction 

The initial results from the comparison procedure over a short time 

period suggested that b in equation II.ii.5 remains zero throughout the 

numerical simulation. Therefore, it appeared to be justified to take b 

to be constant in equations IV.ii.8. 

There was though a problem when the solitons passed through the 

origins. It did not give, as expected, the best static approximation to 

be two solitons on top of each other at the origin. This meant that it 

was necessary to investigate whether the test procedure or the initial 

ansatz was fundamentally flawed. 

For this reason, the ansatz for the fields were modified to be 

w 
and 

h(r)x~ 

g(r)x+. (V.ii.1) 

For a static solution of this form, the Euler Lagrange equations will 

give the following second order ODEs for h and g 

(1 + lr·4 + h2 r· 2 )(9rrr + 5gr) gr·4 (rg; + 4ggr) 

+ hr2 (r·grhr + hgr + 2ghr) 

(1 + lr·4 + h2 r2 )(hrr1' + 3hr) hr·2 (rh; + 2hhr) 

+ gr4 (rgrhr + hgr + 2ghr) 

(V.ii.2) 

For equation V .ii.l to be a valid ansatz, the above equalities must be 

trivially true. 
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Assume that a polynomial- approximation can be used in the region 

close to r = 0, 

h(r) 

g(r) 

It is clear that the constant term trivially satisfies the ODEs. 

(V.ii.3) 

Substitute the polynomial expansions into the differential equations. 

There will be a divergent term of order ~ and, as the Euler Lagrange 
r· 

equations must be finite, the coefficient to this must be trivial. There-

fore this will imply that a1 and b1 must be zero. 

However, consistency in the two equations will require a2 and b2 

(and also, by induction, an and bn, for all n) to be zero. Therefore 

this analysis simply confirmed that the coefficients g and h must be 

independent of r in pure C P 2 • 

Further examination of the data with the comparison procedure, 

revealed the true nature of the problem. The distance trajectory pre­

dicted by the programme appeared to suggest that the solitons were at 

the origin for a finite length of time (see, for example, figure V.l). 

However this is misleading. By looking at the contour plots for C P 2 

at a time period taken to be within the scattering process, it becomes 

clear that the two solitons are not coincident, see figures V.2. 

They are overlapping, but the small separation distance between 

them causes a distortion in the energy distribution which pushes the 

maximum of the field to be between the two centres of the solitons. The 

programme uses this maximum to calculate the position of the solitons 

and hence fails to pick out the true structure. 
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3r-----------~------------~ 

e e 
0 0 

• • 
e 0 

0 0 

0 
0 5 10 

Time 

Figure V .1: Distance trajectory predicted by programme for pure C P 2 

The real picture is that the solitons pass through the origin but do 

not remain there for a finite period of time. However this should be 

qualified: the individual solitons are not well defined when there is so 

much overlap. Therefore this can only be a subjective description. 
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Figure V.2: Comparison of Contour Plots 
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V .ii. b Minimising the denomhmator 

It now remains to decide which of the minimising procedures to use. In 

figure V .3 the trajectory for C P2 is shadowed using the first procedure. 

6~----------~------------~ 

+ ........................................ 

+ 

o~----~~~~----------~ 

0 5 
Time 

10 

Figure V .3: Numerical prediction compared with predicted static solu­
tions 

+++ when average error is minimised 
xxx when maximum error is minimised 

The two types of error tested agree closely up until scattering. The 

slight discrepancy between the simulation and the predicted solution is 

due to the closeness of the two solitons: they are not "well separated". 

However they do not predict the same trajectory afterwards and 

both methods diverge away from the expected result soon after the 
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scattering. This result, taken at face value, would suggest that the 

simple ansatz is beginning to break down. It is therefore important to 

consider whether the procedure being used is valid. It is necessary to 

look for the main cause of the discrepancy. 

The programme uses the energy density to calculate the position. 

Therefore the maximum total and kinetic energy are plotted in fig­

ure V.4. They are well behaved over the time evolution and hence there 

is no reason to believe that this could be the cause of the problem. 

• 0 • • 

0 0 ° 0 0 0 o 0 0 0 'I' 0 0 0 o• 0 0 0 0° 0 0 0 ~ 0 0 0 

. . . . . . . . . . . . : ..... .. . ·.· . . ·.· . . ·. · .. ·.· .. · .· . . · : ... : . . . 

o~~~~--~~~~~~~_J 

0 1 2 3 4 5 6 7 8 9 10 
Time 

~6 .... 
Q) 
c: w 
as4 

:;:::. 
c: 
Q) -c£2 
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. . . . . . . . . . . . . . . . . . . . ... .. ... . . .. . . . ... . . ... . . . .,. . . . , .. . 

o~~~~--~~~~~~~_J 

0 1 2 3 4 5 6 7 8 9 10 
Time 

Figure V.4: Kinetic Energy for C P2 

Also the value of lfl2 is always strictly greater than one. Therefore 

the calculational errors brought into the comparison procedure should 

be small. The problem appears to be in the test used. 
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The distribution of errors around the optimal values of the param­

eters were recorded. There is no clear way to represent graphically the 

variation in three complex parameters on a single graph. Therefore, 

a way had to be found for expressing this information in two or three 

dimensional plots. 

As all the evidence indicated that b was constantly zero, the error 

distribution in this was not calculated. Initially, J-l was kept constant 

and three dimensional graphs were plotted for the variation in a. 

Consider the error distribution around optimal parameters for the 

closest static solution corresponding tot being ten seconds in figure V.3 

(the error distributions for positions just after the starting are expected 

to be insignificant and hence are not of much use). Figure V.5 shows 

the maximum error distribution, figure V .6 the average error distri­

bution for the absolute error, and the next two graphs give the same 

distribution for the relative errors. 

It can be seen from these results that the distributions are not well 

defined. Therefore it would appear that the position of the minimum 

becomes blurred and hence the procedure becomes unreliable. 
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The distribution of the errors for ,\ was also considered. Due to the 

conclusions drawn from the previous chapter, it was believed that this 

should be constant throughout the evolution. All the tests agreed that 

it would remain real, and hence it is not necessary to consider three 

dimensional plots, only the real component of ,\ will be considered. 

The results for the maximum and average error being minimised are 

shown in figures V.9 and V.lO respectively. They are both well defined 

and predict ,\ to be approximately 0.6, which was the initial value. 

The relative average error (shown in figure V.12) is also well defined 

and agrees with the absolute error minimisation. However the relative 

maximum error (see figure V.ll ) is not as refined and gives a different 

value. 

This is the first indication that it is preferable to test the average 

rather than the maximum error distribution. It also shows that there 

is no advantage in taking the relative error and, in fact, it could well 

be more vague. 

All the evidence therefore suggests that this first test is too crude. 

There exists a range of values of a which it predicts to give the best fit. 

The programme keeps the first value it comes across and ignores the 

others, thereby missing the closest approximation. 

There is not an obvious way to surmount this problem. The test 

has thus been shown to be unsatisfactory. 
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Figure V .9: Effect of the real component of>.. on the maximum absolute 
error in lfl 2 

Figure V.lO: Effect of the real component of >.. on the average absolute 
error in lfl 2 
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Figure V.ll: Effect of the real component of,\ on the maximum relative 

error in 1!12 
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V.H.c Minimising the difference in the fields 

Now consider the second test. The distribution of the errors around the 

optimum value of a for fixed A is shown in figure V.13 for the maximum 

error and figure V.l4 for the average error. It can clearly be seen that 

these tests are more focused with the average being the better of the 

two. 

The corresponding graphs for the real part of A are shown in fig­

ures V.l5 and V.l6. Once again the average error minimisation gave 

the better focus. Therefore the average error in equation V .i.l was 

minimised to find the nearest static solution for a range of time points. 
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Figure V .15: Effect of the real component of A on the maximum abso­
lute error in the fields 
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Figure V.l7: Numerical prediction compared with closest static solu­
tions 

.... Numerical prediction 
+++ Closest static solitons 

Consider first the distance of the solitons from the origin. The 

programme calculates this from the maximum of the energy distribution 

and in figure V .17 this is compared with the results from the comparison 

procedure. 

The positions are calculated from the optimal values for the param­

eters predicted by the comparison test, using the same method as for 

the evolution programme. There is still some discrepancy during the 

scattering, but by ten seconds it is converging on the known solution. 
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Figure V.18: Numerical prediction compared with predicted value of 
parameter a. 

. ... Numerical prediction 

+++ a 

In figure V.18 the distance predicted by the programme is compared 

with the parameter a associated with the closest static soliton solution. 

There is a discrepancy at the start because the solitons are initially 

placed close together. Therefore a is not expected to be equal to the 

position of the solitons. 

Also, as expected the difference widens during the scattering itself. 

However, when the soliton are sufficiently far apart there is close agree­

ment. This confirms the interpretation of a as being approximately the 

position of two well separated solitons. 
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Figure V.19: Numerical prediction compared with closest static solu­
tions 

.... Numerical prediction 
+++ Closest static solitons 

Now consider the actual positions of the solitons in two space. These 

are compared in figure V.l9. It can be seen that they are not inconsis­

tent, they both predict orthogonal scattering. 

In figures V.20 and V.21 the x and y co-ordinates respectively are 

plotted against time. It can be seen that the x co-ordinate is predicted 

well. The y coordinate disagrees during the scattering, but soon settles 

clown to a good agreement after a finite time. 

The last remaining concern is whether .X varies. Recall from chapter 

III that if this parameter varied, it caused the differential equations to 

diverge. As can be seen from figure V.22, the variation is insignificant 

until eight seconds. 
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Figure V.21: Numerical prediction compared with predicted static so­
lutions 

.... Numerical prediction 
+++ Closest static solitons 
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Figure V .22: Variation of ,\ during scattering process for pure C P2 

Examination of the three dimensionals plots suggest that the soli­

tons are elongated during scattering. This could provide a reason for 

the variation in .-\. 

Alternatively, the discrepancy could simply be due to calculatioLal 

errors. Note that computational problems caused the programme to 

crash just after eleven seconds. 

Hence a relatively reliable test has been found for pure C P2 and the 

simplified ansatz holds during the scattering process. The next section 

shall consider the effect of the Hopf term on this hypothesis. 
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V oiiii JFuH Lagrangian 

V .iii.a Minimising the difference in the fields 

The results for the model with I< = 1 is shown in figure V.23. The 

numerical results agree with the ansatz until just before scattering. 

It also agrees with the quantitative picture seen from a sequence of 

contour plots taken at half second intervals. 
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Figure V.23: Comparison of numerical prediction (dotted) with pre­
dicted static solutions (crossed) 

However, there is severe disagreement after scattering. The predic­

tions for the actual position of the solitons is even worse, see figure V.24. 

The reason for this had to be established. 
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Figure V.24: Comparison of numerical prediction (dotted) with pre­
dicted static solutions (crossed) 

The co-ordinates of the position were plotted against time, the re­

sults being shown in figures V.25 and V.26. Once again the x co­

ordinate has been predicted fairly well but the comparison programme 

has a tendency to over estimate the y co-ordinate. 

Therefore the validity of the comparison programme was once again 

under suspicion. The energy distributions were well behaved and hence 

did not suggest a fundamental problem. 
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Figure V.25: Comparison of numerical prediction (dotted) with pre­
dicted static solutions (crossed) 
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Figure V.26: Comparison of numerical prediction (dotted) with pre­
dicted static solutions (crossed) 
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It can be seen from figure V.27 that the modulus of A is predicted to 

be approximately conserved. However it does pick up a small imaginary 

component. This is probably because the Hopf term affects the phase 

of the position. 
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Figure V.27: Optimal values of f.l for each static solution closest to the 
numerical results 

However, a clue to the problem may have been given in figure V.25. 

There is an indication that the results may be starting to converge 

at seven seconds. It is possible that the programme crashed before 

agreement was reached. 

The numerical evolution programme was more liable to crash for 

small velocities. Therefore, the comparison procedure was repeated for 

a faster velocity ( v being set to 0.5 as opposed to 0.2 ). 
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The results for the distance from the origin is shown in figure V.28. 

There is good agreement before the solitons collide, but not during the 

collision itself. It can be seen that the results start to oscillate violently 

around the numerical solution after approximately six seconds. 
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Figure V.28: Comparison of numerical prediction (dotted) with prP­
dicted static solutions (crossed) 

The positions of the solitons are shown in figure V.29. These results 

are even worse. It shows that the procedure is clearly breaking down. 

When the coordinates are plotted against time (see figures V.30 and 

V.31 ), it can be seen that the major problem is with the imaginary 

component. The "closest fit" is not even close to the predicted solution. 

For completeness, the variation in A for each predicted solution is 

shown in figure V.32. 
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Figure V.29: Comparison of numerical prediction (dotted) with pre­
dicted static solutions (crossed) 
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Figure V.30: Comparison of numerical prediction (dotted) with pre­
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Figure V.31: Comparison of numerical prediction (dotted) with pre­
dicted static solutions (crossed) 
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The error distribution around the "optimal" value of a is shown on 

the next page. It can be seen that this is not well defined and hence 

the minimum value is blurred. Therefore, the comparison procedure 

is unsatisfactory for the full Lagrangian. It does not provide a useful 

means of testing for the closest solution. 

A modified version of this test was also considered. It involved 

dividing the fields by lfl 2 raised to some integral power. However, this 

did not affect the shape of the error distributions and hence will not be 

considered in detail. 
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V .111. Full Lagrangian 
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V .iii. b Crude Test 

The crude test mentioned in the introduction was considered. As only 

five points wee considered, the fit was was not independent of the choice 

of points. However, it was hoped that some useful results would come 

from it. 

The following expression, 

w(z)=A(z-a)(z-b) 
(z- c)(z- d)' 

(V .iii.l) 

was to be fitted to the data. The fields distributions are symmetrical 

and it was therefore decided to reflect this in the points chosen. 

Therefore, because an odd number of points were needed, one of 

the points was taken to be the origin. The next two points were taken 

to be close to the location of the maximum of the field densities. This 

reflected the importance of fitting these points. 

The final two points were taken to be near the boundary in the 

opposing quadrants. It was hoped that choosing data values in all the 

quarters of two space would minimise the errors. 

The symmetry in the data was reflected in the fit given to the pa­

rameters. It indicated that a equalled -band c equalled -d, as was to 

be expected. 

The three parameters c, d and A were noticably affected by the 

position of the two data values located nearer the boundary. The closer 

they were to the boundary, the larger these parameters became. 

This is compatible with the notion that they tend to infinity whilst 

their ratio remains finite. It does not confirm the result, but it gives an 

measure of plausibility to the simplified ansatz used in the simulations. 
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The procedure was used at various time points during an evolution 

for which the initial velocity was v = 0.5. The results are compared 

with the numerical predictions below 
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Figure V.34: Comparison of trajectory with points fitted by the crude 
test 

There is good agreement except for during the scattering and at 

t = 5 seconds. The former was as expected. The latter is more of a 

concern. However, it should be remembered that this is a crude test. 

It is trying to match three dimensional structures with only five points. 
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Figure V.35: Comparison of soliton positions with points fitted by the 
crude test 

The value of a is highly sensitive to the points chosen to be close to 

the maximum of the energy distribution. This is reflected in the poor 

result for the point when t is five seconds. It is encouraging, however, 

that this method is able the otheer points so well. 

The trajectory of the solitons are compared in figure V.35. The 

individual coordinates are shown in figures V.36 and V.36. There is 

reasonable agreement, except for the points referred to above. 

Therefore, neither of the rigourous tests proposed at the start of 

this chapter were able to predict the trajectory of the full Lagrangian. 

However, some useful information was obtained which confirmed the 

validity of the simplified ansatz used in the programme. 
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Figure V.36: Comparison of x coordinate with points fitted by the 
crude test 
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Figure V.37: Comparison of y coordinate with points fitted by the 
crude test 



VI 

Conclusion 

Regrets? I've had a few, 

but then again, too few to mention. 

But more, much more than this, 

I did it my way 1 

1 Frank Sinatra, My Way 
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The work in this thesis was concerned with the C pn nonlinear sigma 

model. This has two spatial and one time dimension. The nonlinearity 

arises from the compactification of two spatial dimensions into a sphere. 

Most of the work was concerned with the scattering of two solitons in 

CP 2
. 

In the simpler C P1 model, it is possible to introduce a total diver­

gent term which satisfies the numerical criteria of a Hopf term. The 

effect of this expression in the higher dimensional model was investi­

gated. 

After a review of earlier work in this area, a discussion on Noether's 

theorem was given. This associates a conserved charge with each sym­

metry of the Lagrangian which is used to define the model. 

The charges associated with the internal symmetry in the model 

and the energy momentum tensor were calculated. They were used to 

explain the results obtained from numerical simulations of C P 1 and 

CP2
• 

In C P 1 there are three charges arising from the internal S'U(2) sym­

metry. One of these was shown to be trivially zero. The remaining two 

are proportional to the real and imaginary components of the velocity 

of the solitons. 

Moving on to pure C P 2
, there will now be eight conserved charges. 

Two of them will also be proportional to the velocity of the solitons. 

This pair corresponds to the two non trivial charges in C P1 • The 

remaining charges were found to be trivially zero. 
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When the Hopflike term is added to the Lagrangian, the charges 

referred to above received a contribution which is independent of ve­

locity. There are an additional two nontrivial charges which are related 

to the topological charge. 

The project then diversified into two strands. The first used the 

charges which had been calculated to find expressions for the rate of 

change in the position of the solitons. 

The ansatz used in the numerical simulations was 

W p(x~- a), 

W 1 JL(x~ -b) 

Initially it was assumed that only a was dependent on time. 

It was able to provide a qualitative explanation for the behaviour 

of the solitons during the evolution. It explained why in pure C P 2 the 

phase of the solitons' position is constant before and after impact. It 

also predicted that when the Hopf term is added there will be a small 

phase change as the solitons move towards each other. 

Hence they will no longer collide with a zero impact parameter. 

Thus the results could be compared with earlier work into the scatter­

ing of solitons which were forced to rotate away from the axis. This 

showed that a non zero impact parameter would lead to non orthogonal 

scattering in pure C P 2
. 

Also successfully predicted, was the fact that the absolute distance 

from the origin of the solitons would be approximately independent of 

the coefficient term associated with the Hopf term. It also showed that 

during and after scattering this was no longer expected to be the case. 
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However, the original ansatz used was only an approximation. Hence 

it led to inconsistencies in the equations and thus quantitative predic­

tions could not be made. 

The possibility of introducing additional time dependent parameters 

was investigated. However, due to the problems associated with trying 

to integrate numerically the expressions concerned, this did not provide 

any useful information. 

The single soliton ansatz was then considered. It was able to confirm 

that, in this scenario, it is necessary for more than one parameter to 

be time dependent for the conserved charges to be finite. 

An alternative method of investigation was then followed. It in­

volved shadowing the trajectory of the solitons with the closest static 

approximation. A method was derived which was able to predict the 

trajectory for pure C P 2 . 

However, in the full Lagrangian, it was found that these methods 

were not able to predict the evolution after scattering. The explanation 

of this was found by plotting the error distributions around the optimal 

value of the parameters. 

The minimum was not clearly defined. Hence the comparison test 

was unable to pick out the best fit. There is not an easy way to overcome 

this problem. 

It was possible to provide some validation of the simple ansatz ap­

proximation. This involved crudely fitting the following ansatz to the 

data 

(z- a)(z- b) 
w ( z) = -\ ( z - c) ( z - d) . 
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This was able to confirm that it is possible to assume the denom­

inator is constant. It also gave reasonable predictions for the soliton 

trajectory in the full Lagrangian. 

Further work could concentrate on the time dependency of other 

parameters in the ansatz. This would fully test the veracity of the 

assumption that evolution could be predicted by only varying one. Is 

it sufficient to use only a Galilean boost? 

It would also be of interest to consider the effect of the Hopflike term 

on the SU(3) conserved charges in the geodesic approximation. This 

involves the assumption that if the lumps are given a small amount of 

kinetic energy, then they will stay in a configuration close to a static 

approximation [32]. 

Therefore the parameters of the static ansatz are assumed to be 

time dependent. They are then substituted into the Lagrangian which 

is integrated over the spatial dimensions. The resulting ordinary dif­

ferential equation can be integrated numerically. For the pure model, 

this gives results in close agreement to integrating the full model. 

It would be useful to test further the validity of the initial ansatz 

used. For example, it would be interesting to perform the simulations 

with the initial lumps being exponentially localised (see [1]). This 

may provide more insight into the behaviour of the extended structures 

during the scattering. 

Also, other methods for the shadowing procedure could be found 

and tested on the full Lagrangian. If a new procedure were able to 

predict the trajectory for the full Lagrangian, it would also need to be 

tested on pure C P 2
. 
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More work could be performed on relating the effects of the Hopflike 

term with the effect of scattering rotating solitons. In particular, would 

it be possible for the two effects to cancel? This would provide confir­

mation that the additional term provides an internal rotation. 
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