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Abstract 

Two areas of affine Toda field theory are explored in this thesis. First the intro

duction of a boundary into the real coupling affine Toda field theory. I t has been 

shown by other authors that affine Toda field theory stays an integrable theory for 
(2) 

certain boundaries. One such theory is the one corresponding to 02 • Its integrable 

boundary condition is described by two continuous parameters. Also, i t is continu

ously connected to the natural Neumann condition, i.e. vanishing space derivative 

of the fields at the boundary. Classical reflection factors of incoming plane waves in 

the background of a static soliton solution are calculated for this theory. They fu l f i l 

a classical reflection bootstrap equation which is the classical l imi t of the reflection 

bootstrap equation for reflection matrices. 

The second part is concerned with the the ali^ affine Toda field theory with imaginary 

coupling. The behaviour of oscillatory solitonic solutions, breathers is investigated. 

Explici t construction for breather solution are given. They originate f rom two soliton 

solutions. I t is found that there are two different types of breathers depending on 

their constituent solitons. The constituent solitons are either of the same species or 

are anti-species of each other. Also, the topological charges of breather solutions are 

calculated and they are either zero or equal to a certain one soliton solution. These 

topological charges lie in the tensor product representation of the fundamental rep

resentations associated with the topological charges of the constituent solitons. The 

breather masses are, as expected, less than the sum of the masses of the constituent 

solitons. 
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Chapter I 

Introduction into AfRne Toda Field Theory 

1.1 Introduction 

Toda field theories are Lagrangian field theories characterised by Lie algebras. Their 

origin lies in early numerical work by Fermi, Pasta and Ulam. They investigated 

the behaviour of the energy of a one-dimensional dynamical system. In this system 

identical particles interacted with their nearest neighbours via a non-linear potential 

(spring)*. Later Toda suggested that these systems might well be integrable i f the 

potential is of an exponential nature [2]. This was subsequently proven to be true 

by Flaschka [3 . 

Toda field theory is a generalisation of the lattice theory. I t comes essentially in three 

different flavours 

(1) (conformal) Toda field theory 

(2) afiine Toda field theory 

(3) conformal affine Toda field theory. 

In the following a short introduction into each of these theories wi l l be given. 

Affine Toda field theory wi l l get special attention as i t is the main concern of this 

thesis. One should also mention that Toda field theory is connected to many other 

areas of mathematical physics. There is for example the Wess-Zumino-Novikov-

Wi t t en model. In [4] i t is shown the the SL{2, IR) W Z N W model can be reduced 

to the Liouville theory. To show this one makes use of the Gauss decomposition 

of elements of SL{2, IR) and the Polyakov-Wiegmann identity which allows one to 

express the W Z N W action of a product of three group elements as the sum of their 

actions respectively modulo some local terms. As wi l l be shown in the next section 

the Liouville theory is the "simplest" conformal Toda field theory and, as one would 

* A modern review of the work can be found in[l] 
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expect, the reduction of the WZNVV model can be conducted for other Lie algebras, 

and other conformal Toda field theories are recovered in this way. 

The Ising model at crit icali ty can be described by a conformal field theory with 

central charge c = | . Zamolodchikov [5] showed that the Ising model wi th an 

external magnetic field corresponds a perturbed conformal field theory which is an 

integrable model related to the Lie algebra eg. Mansfield and HoUowood [6] showed 

that this integrable theory corresponds to the conformal Toda field theory associated 

wi th the Lie algebra eg for a specific coupling constant. The affine Toda field theory 

associated with e% can be seen as an integrable deformation away fi 'om the critical 

point. 

More recently there has been some effort to investigate (2-|-l) dimensional models 

7]. This thesis wi l l deal only wi th two-dimensional theories. 

1.2 Conformal Toda field theory 

Conformal Toda field theory involves r scalar fields written as 

The signature of the spacetime described by the variables x, t ^ IR is Minkowskian 

(-(-,—). Also, the following notation wi l l be used throughout the thesis = 

x^ = t, x^ = X. The Lagrangian density of the theory is given by 

£ = ^-d^^^{x,t)d''^^{x,t) - V{^x,t)). (1.1) 

The potigntial V distinguishes between the different theories by its relation to different 

Lie-algebras g*. Each algebra g is characterised by its rank r and its simple roots 

a i , . . . , Or €• ZR'̂ . The potential is 

v{H^,t)) = '^±e^<^'-^(^'^) (1.2) 
^ 1=1 

where m is the mass parameter and /? the coupling constant. Classically the coupling 

constant is not important because it can be scaled away by defining $ = P^. The 

For short introduction see appendix. 



Lagrangian density is then 

For the quantum theory the important quantity is C/h because in the path-integral 

formulation the integral is taken over e x p ( 7 / C/Ji) to determine vacuum expectation 

values. So, the classical l imi t of the quantum theory as ^ ^ 0 corresponds to /? 0, 

the weak coupHng l i m i t * . 

The equations of motion for (1.1) are 

(df - dl)^ = d.d'^^xj) = t (1.3) 

As explained later this theory is conformal and integrable. A simple example for this 

theory is the Liouville equation which corresponds to the g = su{2) = ai theory. In 

this case the data given by the Lie-algebra is a i = \/2. The choice of = /? = 1 

yields the equation in the form 

5^6>^$(x,^) = -^ /2e^*(" '* ) . 

I f "x" is fixed in the equations of motion (1.3) they are identical with the lattice 

models studied by Toda initially. Then = • $ determines the displacement of 

the i - th mass on the lattice described by the Lie-algebra. 

1.2.1 Conformal Invariance 

To see the conformal invariance of the theory i t is useful to introduce light cone 

coordinates 

The equations of motions then are 

5 + a _ $ ( . T + , x _ ) = (1-4) 
1^ 1=1 

* For more on this topic for the sine-Gordon theory, see chapter 6.4 of [8] 
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The differential operator is denoted by d± = Now a conformal transformation 

x± —>• x±{x±) 

w i l l transform the lefthand side of equation (1.4) into 

<9+c'_$(x+,a;_) ^ a + a _ $ ( S + , x _ ) = ^ | ? ^ c / + a _ $ ( . T + , a ; _ ) . 

OXJ^ O X -

So, conformal invariance requires the field to transform in a particular way such that 

the right hand side w i l l cancel the extra factor 

V a.e^'^'-*(^+'^--) ^ E «,e^« ' * ( - + ' - - ) . (1.5) 
I^l dx+dx-^^ 

I f the field transforms as 

$ ( x + , : r _ ) H-x+,x-) = $ ( x + , x _ ) + | In (1-6) 

equation (1.5) is fu l f i l led i f the vector p in (1.6) satisfies 

and can therefore be expressed in terms of fundamental weights A, 

a , . A 2 A,: 

A more detailed and in depth discussion of this issue can be found in [9-11]. The 

quantisation of the conformal Toda field theory gives a coupling dependent represen

tation for the Virasoro algebra for the ade series [9-11 

, 2 / , 1 c{P) = r + 48n\p\'lf^ + - . (1.7) 

This formula reveals a symmetry of the quantum theory under the transformation 

0 ^ which is not present in the classical theory. 
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1.2.2 Integrability 

For a finite dimensional Hamiltonian system integrability means that there are A'̂  

conserved charges Ki for a system with a 2A'̂  dimensional phase space. These charges 

have to be in involution, i.e. {Ki,K-j} = 0 ( { • , • } denotes the Poisson bracket). 

Also, they are functionally independent. Liouville showed that the evolution of these 

systems can be completely determined in principle. However in practice there may 

be problems to do this explicitly. A field theory with Hamiltonian description is 

covered by this theorem when it is generalised to an infinite dimensional system. 

Integrability in this case requires the existence of infinitely many conserved charges 

which are again in involution and functionally independent. A good example in 

which the charges can be constructed explicitly is the K d V equation. Most text 

books, e.g.[12], on solitons give a derivation of the charges. 

For affine Toda field theory one can show the existence of infinitely many independent 

conserved charges, which are in involution, once the Lax-pair is known. Also, one 

can work out solutions of the conformal Toda field theories. This was first done by 

Leznov and Saveliev[13]. A good review article about how to find solutions is given 

by Olive [14]. For the affine Toda field theory the integrability shall be examined in 

a l i t t le more detail in the next section. 

1.3 Afflne Toda field theory 

Affine Toda field theory [15-19] is a generalisation of the Toda field theory which 

has been described in the previous section. Though i t wi l l be shown that the con

formal invariance of the theory is not preserved, the integrability survives. I t can 

be classified as a perturbed conformal field theory [6,20]. The study of affine Toda 

field theory is usually divided into two different regimes of the coupling constant, 

the real and the imaginary one. More precisely this corresponds to either real fields 

or complex fields as solutions. For real values of the coupling constant there exists 

a particle spectrum which has been studied extensively [21-34] The classical mass 

spectrum and the ^-matrices of the quantum theory wi l l be reviewed later. For 

the imaginary coupling constant (complex affine Toda field theory)[35] the theory 

possesses a spectrum of solitons. Again these soliton solutions have been examined 
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by many authors [35-40]. Efforts to determine 5'-matrices for complex affine Toda 

field theory have been made [41-44]. This wi l l be reviewed later. In the case of the 

ade series the masses of solitons and particles corresponding to the same node of the 

Dynkin diagram are linearly related for theories associated with the same Lie-algebra 

35,45 . 

1.3.1 T h e Or ig in of affine Toda F ie ld Theory 

A problem of the conformal Toda field theory is that the potential has its only 

min imum for $t —)• — oo i.e. e^*' = 0, where $, = a, • $. This behaviour can be 

seen as a hint for the conformal invariance of the system. To get a stable point for a 

finite field and to preserve the integrability of the theory one perturbs the potential 

(1.2) by 
£77? 

^ ( \ / ( $ ) ) = - ^ e x p [ / 3 a o $ ] 

where ao is an additional ("affine") root such that Y1\=QI^I(^I = 0. The Dynkin 

indices Ui G IN depend on the algebra g [46]. This yields the potential of affine Toda 

field theory 
2 r 2 

= ^ E exp[/?$t] + exp[Pao • . 

This potential has the minimum 

r 
Ea,exp[/?a,$(°)] = - e ao exp [/Jao$(°^] (1.8) 
1=1 

mult iplying (1.8) by and using the matrix Cij = ^ajCij, which is a conveniently 

rescaled Cartan matr ix, (1.8) relationship imphes 

exp[/?Q,$(°)] = -eCfj^ajaoexp[(3ao^^'^y. 

So a shift in the field by $ = </>+ yields the potential 

2 
V(</>) - ^ e x p [ / ? a o $ ( ° ) ] [ e x p [ / ? a o ( / ) ] - J2 exp[Pa^cf>]{C-%aJao 

i,3=l 

The potential can now be written as 

y ( $ ( x , o ) = ^ E " ^ ( ^ ^ " ' - * ^ " ' ^ - i ) (1-9) 
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where the mass 777,̂  has been redefined as exp[/?ao$^°^]. Subtracting —1 ensures 

that the potential vanishes for $ = 0. The Lagrangian density of affine Toda field 

theory is 

C = ^a^$°(x , 05"$"(x, t) - V($(x, t)). (1.10) 

The equations of motion are 

1=0 

1.3.2 Conformal Invariance 

By comparison with section (1.2.1) where the conformal invariance of the conformal 

Toda field theory has been shown i t becomes obvious that affine Toda field theory 

is not conformally invariant. Because Y1\=Q'^I(^I = 0 implies that for the vector p in 

(1.6) 
1 

p-ao = V 77j ^ 1 

which makes i t impossible to fu l f i l (1.5) after the transformation (1.6) of the field. 

This problem can be overcome by a redefinition of p. I t leads to the conformal 

affine Toda field theory which, as its name suggests, possesses conformal invariance. 

Instead of taking values in the Lie algebra g the field in the conformal affine Toda 

field theory takes its values in the Cartan sub-algebra of the associated afiine Lie 

algebra g [46]. In terms of the Cartan sub-algebra the field can be written as 

^ = ( f ) . H + ^k + i]d' 

where H, k and d! are explained in the appendix. The equations of motions are 

P 1=0 

where [E°'\ E"i] = S,jH°'' in the Chevalley basis. This theory has been investigated 

by Bonora [47,48] and Aratyn et al. [49-52]. I t has been useful in the algebraic 

solution of affine Toda field theory [45]. Its disadvantage is that its scalar fields are 

no longer in Euclidean space and therefore the energy is not positive definite. Its 

restriction to Euclidean space breaks the conformal invariance and introduces a mass 

scale. The result is again the affine Toda field theory. 
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1.3.3 Integrabil ity of affine Toda field theory 

To establish the integrability of affine Toda field theory i t is useful to examine the 

Lax pairs or the zero curvature condition [15-17,53] which can be stated as: 

Foi = doAi - diAo + [AQ, Ai] = 0. 

I f the two components of the two-dimensional vector potential A^ are written as 

follows one can retrieve the Toda equations 

^ .=0 ^ 

Ax = \ll- + E m , ( A £ , , + i £ ; _ , . ) e ° ' ^ / 2 . 

The operators / / j , , E-a are the usual notation for the Cartan sub algebra cor

responding the to simple and affine roots of the Lie algebra g (for their definition see 

appendix). The spectral parameter is A and the 77i,'s satisfies 

The classically unimportant parameters m and /? have been scaled away. Define a 

path ordered integral by 

T{a,b;X) = PexpJ^dx^Ai. 

I t satisfies formally 

j T = TAoib) - Ao{a)T 

and therefore the quantity Q{X) 

g ( A ) - t r r ( ( - o o , o o ; A ) 

is time-independent when di^ —> 0 as |a;^| -> oo and also 

$(oo) = $ ( - o o ) + 2K, {K-ai)eZ. 

The Lax pair allows a gauge transformation after which the potentials lie in the 

Cartan sub algebra: 

Ai^ai = XEi + J2^~'l^sI^'^ (1-12) 
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where E± = Yl'i=o ' • '^I -£±Q , and 5 are the exponents of the Lie algebra modulo h, 

hg = hs+n- Now the zero-curvature condition simplifies to 

doai = diao-

Which implies that the integral of ai is conserved over the whole line. Also, as the 

choice of A was arbitrary there are infinitely many conserved quantities Qs 

Qs = r dx'4' 
J—oo 

I t can be shown f rom (1.12) that A scales under a Lorentz transformation A —> /A such 

that the light cone components of the potentials transform correctly. The conserved 

quantities scale wi th a factor One also needs to show that the conserved quantities 

are in involution. This is done by showing the existence of a classical r-matrix for 

which 

[T{\)mi-^)]=.[r{\/^),T{X)®T{,,)] 

where T (A) = T ( — 0 0 , 0 0 ; A). Further details can be found in [19]. 

1.3.4 E x a m p l e s of afRne Toda field theories 

For the affine Toda field theory the simplest example is that related to the extended 

su{2) algebra, a^ '̂. Here ?7.o = 1, ni = 1, ao = —ai — —\/2, the resulting equation 

is the Sinh-Gordon equation 

2 (1-13) 
777. 

= - — 2 \ / 2 s inh\ /2 /3$(x , t ) . 

Another example is 02"^ for which no = 2, 721 = 1, o i = \ /2 , ao = 

equation of motion for this system is 

d,d^^x,t) = - ^ ( e / ^ ^ * ( - - . * ) - e-^72*(-' ')). (1.14) 

This equation is generally known as the Bullough-Dodd [54] or Jiber-Shabat [55] 

equation even though it has been known long before these publications. In 1910 

Tzitzeica [56] mentions the equation in connection with the geometry of surfaces as 

HabibuUin [57] has pointed out. 
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1.3.5 Dua l i ty 

The Dynkin diagrams of affine Lie algebras fa l l into two categories under the trans

formation of the roots 

a. 

First there is the set of theories which have roots of equal length, al^\ di!^\ ef,̂ ^ and 
(2) 

the only one with roots of three different lengths . They are mapped onto them

selves by the transformation and called self-dual. Secondly the remaining theories are 

mapped into each other by the tran.sformation and come in dual pairs {b^n\a^^,}_i), 

{clP,dl^^•^^), (^2^^f^^"^') and ( /4^\eg" ')- quantum affine Toda field theories there 

is a transformation mapping the coupling constant —> The quantum theories 

of self-dual theories are unchanged under the transformation. The situation for the 

quantum theories corresponding to those algebras which come as dual pairs appears 

to be more complicated. There is one quantum theory for each dual pair. A the

ory corresponding to, for instance {g2'\d^^^), wi l l have its approximation as /3 0 

provided by the theory associated with ^2^^ whereas the approximation as ^ —> 00 is 

given by the ^4 theory [32]. The transformation of the coupling constant effectively 

implements the mapping of the roots. 

1.3.6 Folding 

Due to the symmetry of some Dynkin diagrams there is a connection between the 

simply laced and non-simply laced theories. The procedure connecting them is known 

as folding and was introduced by Olive and Turok [18]. One can for instance fold 

0̂ 4̂ ^ into For this one has to identify the roots a,, z = 0 , . . . , 3, of d^^ with those 

of a'{> Q;, j = 0 , 1 , in the following way 

tto = ^(ao + 01 + 0:3-1- 0 4 ) and a[ - 0 3 . 

I f the T-functions (a concept that wi l l be explained later) of O Q , o i , 0 3 , 0 4 are the 

same, which they are for a special case, then OQ has the same r-function as ao and 

a[ the same as 0 2 . 

14 



a. 
Fig. 1.1: Folding of to a f^ 

> 

Fig. 1.2: The folding of ^2^^ into al'̂ ^ 

Alternatively one can fold aj^^ into ai^^ which is shown in figure (1.2). In this case 

G'Q is identified with Q Q and a[ with ^ ( a i -|- 0 2 ) . In this case O'Q is the longer root. 

1.4 AfRne Toda field theory with real coupling 

1.4.1 T h e classical Mass Spectrum 

Knowledge of the classical mass spectrum wil l prove useful in the discussion of the 

quantum theory later. * 

One way to find out about the classical mass spectrum is to expand the potential 

(1.9) for small/? 

y ( # ( x , 0 ) = ^ E n / / ? ( a . - $ ( x , 0 ) + ^ ( « r $ ( x , 0 ) V $ ( a r 4 ' ( x , i ) ) ' ) + O ( ^ 
y i=o \ ^ " / 

Due to the definition of the Uii, the linear term vanishes. The quadratic and the 

cubic part can be rewritten defining the mass matrix and the three point coupling by 

* For non-selfdual theories the assumption will be that the fusing angles and mass ratios stay the same 

before and after quantisation. 
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(1.15) 

1=0 

In terms of these the potential is 

vmx,t)) =: U'ix, tmY^'i^. t) + ^ $ ° ( ^ , m\x, t)^\x, t) + oia^). 

For higher powers of the expansion 7z-point couplings can be derived in a similar 

fashion 

1=0 

A nice compilation of known facts about mass matrices and coupling constants can be 

found in [22]. Earlier results can be found in [16]. I t is possible to determine masses 

and coupling constants explicitly given a suitable representation of the underlying 

algebra [22]. Because the couplings and masses wi l l appear in the theory on a half 

line (Chapter 2) a summary for the ai}"^ [22] and a^^ theories wi l l be given, following 

closely the presentation of the computation in [22 . 

1.4.1.1 aL^̂  

A n exception to this theory is a^^^ the sinh-Gordon theory as all three point couplings 

vanish for this model. This happens in no other theor)--. In the following 72 > 1 wil l 

be assumed.* 

A task easier than in most other theories is the diagonalisation of the mass matrix. 
2iri 

One has to find a particular representation for the simple roots. Define u) = e"+i , 

such that u""^^ = 1. This gives rise to a set of n complex 7i-dimensional vectors 7̂  

with components 
7 ° = c ^ " ^ t = 0,...,n, a = l , . . . , 7 7 . (1.16) 

Since E L o ^ ' ' = 0. 

* A change to an imaginary coupling constant gives the sine-Gordon theory which has soliton solutions 

cind a coupling dependent spectrum of breathers [58]. 
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A complex representation of the roots of aiP is then given by 

a. = - 7 i = ( 7 . + i - 7 0 * - (1-17) v n + 1 

One can check that the usual relations X]"=o = Oi 

0 « 7^ i and i ^ j + I 

Q i • aj = < -I i = j + 1 

.2 i = j 

are fu l f i l led . Choosing a complex basis for the scalar fields 

one has the property 

(a* • $)* = a* • (1.18) 

This follows f rom (1.16) and (1.17). One consequence is that the potential in the 

Lagrangian is real as well 

1=0 

W i t h the roots writ ten as (1-16) the square of the mass matrix (1.18) is given by 

7Z ~r i : 
1=0 

r 0 for a 7̂  6 

\ 477^- sin^ ^ for a = b ' 

So the matr ix is obviously diagonal and the masses are 

rua = 2m sin , a = l , . . . , n . (1-19) 
n + 1 

The masses for n = 2 and n = 3 are for example 

a2̂ ^ : mi = mo = VZm 

â ^̂  : m\ = m^ = V2m and m2 = 2m. 

When n is even every particle has a conjugate partner with the same mass. In the 

case n odd the heaviest particle is self-conjugate but the remaining particles again 
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• o o 

Fig. 1.3: The Dynkin diagram of a[P with masses associated to nodes. 

occur as mass degenerate conjugate partners. This is related to the 2Z2 symmetry 

of the an̂ ^ Dynkin diagram. 

The relation (1.19) allows to associate the nodes of the Dynkin diagram unambigu

ously associated with the particles (see fig. (1.3)), the mass degeneration reflects the 

.S2-symmetry of the Dynkin diagram. The equation (1.19) also implies 

rria-i + rrta+i = 2ma cos 
T T 

n + 1 
a = l , . . . , n 

with Tno = m „ + i = 0. Also, one should observe the following fact [22]. The n-

component mass vector 

m = ( 7 7 7 1 , . . . , ?77„) 

is an eigenvector of the Car tan matrix 

C. ab 
at 

, a , 6 = l , . . . , r 

of a^n' wi th the eigenvalue 4 sin" 2{n+i) 

Cm — 4 sin" — -m. 
2{n + i y 

(1.20) 

Thus the mass vector is the Perron-Frobenius eigenvector of the Cartan matrix, which 

guarantees that mi > 0. So, for example for 03^^ the Cartan matrix and the mass 

vector are given by 

C 

/ 2 - 1 0 \ 

- 1 2 - 1 

V 0 - 1 2 / 

and m = V2m{l,\/2,1) 

and clearly f u l f i l l mC ^ (2 - \ / 2 ) m . 
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The three point coupling can be determined as well [22] using the same complex 

representation of the roots (1.17) 

G — p m a, a, 

0 
Bm 

a + b + c ^ 0 mod n + I 

^ ( u ; « - l ) ( u ; ' ' - l ) ( a ; ^ - l ) a + + c = 0 mod + 1 " 

Given that c = k{n + 1) — (a + 6) for A; = 1 or 2 this simplifies for the non vanishing 

constants to the area rule 

\ / n + r \ / n T T n + 1 ^ ^ 

So the coupling is actually proportional to the area of a triangle with sides ma, mt, 

and mc, where mc is given by 

"^c = + '"6 + 2mam,,cos0l,j, = TT - 6^,^. (1.22) 

Fig. 1.4: The mass triangle 

The angle 9^^^ is the angle enclosed by ma and mi,. The angle ^ ^ j , is the fusing angle 

for the reaction ab ^ c, a, terminology that wi l l become clear later. The allowed 

values of 9^i^ are 

0' 

0+6 
n+l n for G + 6 + c = 1 + 7Z 

ab forG + 6 + c = 2 ( l + 7 z ) 

Note that the only dependence on the Lie algebra data in (1.21) is the factor = 

^ , i.e the Coxeter number of al^. 
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Before the end of the account on alP some examples for the coupling constants and 

fusing angles for 77 = 2 and 77 = 3 are given: 

• â ^̂ : There are only two non vanishing couplings 

3 3 

• 03^^ This theory has three non vanishing coupling constants 

C^^^ = ;5777 1 777 2 27 sin ^ = 7 4 7 7 7 ^ / ? , = ^ 

= p2zm2m3 sin ^ = -C''\ ^ = - J . 

1.4.1.2 a^2^ 

As mentioned earlier in section (1.3.6) the algebra a^^ is related to (/̂ ^̂  and a{^^ 

by the folding procedure. Its mass matrix and coupling constant can be recovered 

f r o m those two theories. For example the coupling constant of the single particle of 

a^^ should be equal to C^^^ of ( f ^ \ But one can also straightforwardly expand the 

potential and read off the mass and coupling. The theory has been introduced earlier 

(1.14) and then the following values were chosen for the roots and Dynkin indices: 

Q Q = — 7 7 0 = 2 and ai = \ /2 , 771 = 1. Using the definitions of the mass matrix 

and coupling constant (1.15) they are 

rui = 3m. 

,11 3 m V 20 ^ . n C ^^ ) 

One sees that in this normalisation the only particle has the same mass as the 03^^ 

particles and also the same fusing angle (see p. 17). The actual value of the coupling 

constant in terms of the particle mass is the same as that for the C"^" coupling of 

4 ' ^ (see [22]). 
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1.4-1-3 Generalisations 

A generalisation of equation (1.20) and an algebraic proof of i t can be found in 

27,28]. The generalised relation is 

C Q , = ( 2 - 2 c o s ^ ) Q , 

where s is the exponent of the underlying Lie-algebra and Qs is a vector whose 

components are the conserved quantities Q". 

The area formula (1.21) can be generalised to apply for any Lie algebra [34] 

4/? 

The factor A'̂ ''̂  takes care of the normalisation for different Lie algebras. The Coxeter 

number h has been replaced by A^'^' to ensure that for the Lie-algebra g^^^ 

the fusing angles are an integer multiple of j ^ . A general proof of the formula can 

be found in [27,28 . 

More details of the concepts mentioned in this section can be found in [22-25]. 

1.4.2 S-matrices 

A classically integrable theory has infinitely many conserved quantities Qs, where 

s is the spin. I t is convenient to write the momentum pa of a particle a of a two 

dimensional theory in terms of its rapidity 6a {va = tanh^a) 

Pa = ma(cosh^a ,s inh^a). 

In a quantum theory the conserved quantities of the classical theory correspond to 

locally conserved operators Single particle states are represented by simultaneous 

eigenstates of these operators. The locality of these operators implies that they act 

on multi-particle states additively. The evolution of mult i particle states is described 

by the S'-matrix of the quantum theory. Because the quantum theory has infinitely 
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many conserved operators the set of momenta and the number of particles for the 

in-going and the out-going multi-particle state is the same. Thus, there is no particle 

production. For the 5-matrices this means a multi-particle S-matrix factorises into 

two-particle 5-matrices. There are several arguments for this to happen, there is the 

wave argument by Zamolodchikov and Zamolodchikov [58], the wave packet argu

ment by Wit ten and Shankar [59] and rigorous arguments were given by lagolnitzer 

60]. The S'-matrix for an in-state of two particles Ai and Aj \Ai{6i)Aj{62))m and 

an out-state \Ak{0i)Ai{62))out of particles Ak and Ai wi l l be denoted as 

\A^{0l)A,{e2)hn = Sfj{eu)\Ak{ei)Ai{02))out (1.24) 

where the rapidity difference is written as 9i —02 = 0i2- Generally the 5'-matrix has 

to f u l f i l a cubic equation, the Yang-Baxter equation [58 

Fig. 1.5: Yang-Baxter equation 

S^^{O^S^S^n)S^{0^ = 5 ^ ( ^ i 2 ) 5 ^ ^ ( ^ i 3 ) 5 S ^ ( ^ 2 3 ) (1.25) 

where a summation over all possible states allowed by the selection rules has to take 

place (fig. (1.5)). I f the theory has no mass degenerate multiplets this equation is 

t r iv ia l ly fu l f i l led because the 5'-matrices are mere phases. 
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1.4-3.1 A ffine Toda field theory with real coupling 

Classically, for affine Toda field theory wi th real coupling there are no mass degener

ate multiplets. Each particle is uniquely labelled by one of the higher spin charges. 

The spins of these charges are the exponents of the underlying Lie algebra modulo 

the Coxeter number h [61]. Now, i t is tempting to assume that the quantum particle 

spectrum is essentially the same as the classical one. Also, the fusing angles of the 

classical and the quantum theory wi l l be assumed to be the same. This assumption of 

the existence of infinitely many conserved quantities is substantiated by calculations 

by Niedermaier [62] of the first few of them in affine Toda field theory. However, for 

the non-simply laced algebras the assumption of the mass spectra to be exactly the 

same in the classical and the quantum case seems not to be correct[63], one has to 

make certain modifications. In the remaining section the main concern wi l l be af,̂ ^ 

and one should bear in mind that for other theories modifications may have to be 

made. 

Lorentz invariance requires the action of the local operators on eigenstates to be 

Qs\Pa) = Qse'^lPa) s=p + khp,k^ZZ. 

where the spin is given by the exponents of the underlying Lie-algebra. So, for 

example for aL^' the spins are 

s = 1 ,2 ,3 , . . . , 71 mod (n + I). 

As mentioned before i t wi l l be assumed that multi-particle states can be eigenstates 

of the local operators as well. For a two-particle state this means that 

Qp\Pa,Pb) = » ^ ^ ' ' + 9 ^ e ' ' ' ^ ) | P a , P 6 ) . 

As mentioned in the beginning there are no mass degenerate multiplets therefore the 

two-particle i ' -matr ix is a mere phase for real Oab and and depends on the coupling 

constant 0 and the rapidity difference 6ab only. A two-particle scattering is described 

by 

Pa,Pb)\n = Sab{0ab)\Pa,Pb)out• 
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Fig. 1.6: Scattering of ab —>• cd in the s-channel and ad —)• be in the t-channel 

For a two-particle process there are two channels corresponding to the Mandelstam 

variables .s and t to describe the scattering (see fig. (1.6)). The Mandelstam variable 

s is 

•5 = {Pa + Pb f = ml + ml + 2m.amb cosh 0ab-

The rapidi ty difference can therefore be expressed in terms of the Mandelstam vari

able .s [58 

0ab = cosh — ^. 
Zm-ami, 

Analytical continuation of s gives two square root branch cuts at (7773 ± mi,)^. In 

this notation the s channel corresponds to lm6ab = 0, Re0ab > 0 and the ^-channel 

to lin0ab = TT, ReOab < 0. 

unphysical stripi 
W 1 

101(8) 

r 
t-channel 

physical strip. bound states 
\ 

- j—- s-channel 

0 * ReO) 

unphysical strl| 

Fig. 1.7: The s and t channel and bound states in the complex 0 plane 
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Poles of the 5-matrix corresponding to bound states lie in the physical strip, 0 < 

ImOab < T T (see fig. (1.7)). The S'-matrix is a meromorphic function in Oab and has 

to f u l f i l the following two requirements for all 9ab 

Unitar i ty : For any two particle process the probability resulting in a final state 

is one 

Sab{^ab)Sab{-^ab) = 1-

Cross ing: For non self-conjugate particles a,b the transformation 9ab —)• iT^ — 9ab 

implies the condition 

Sab{iT^ - 9ab) = Sbai9ab)-

This corresponds to saying the i ' -matr ix is invariant under a change f rom the s 

to the t channel. A change f rom s to i corresponds to a change f rom 9 to in — 9. 

For self-conjugate particles the 5'-matrix is crossing symmetric. 

These two conditions imply that the ^-matr ix is a 27r7 periodic function in the ra

pidi ty 6ab- This fact wi l l be used to express it in terms of trigonometric functions 

22 . 

A two-particle state may be dominated by a one-particle state \pc) which is also part 

of the conjectured particle spectrum 

Qs\Pa,Pb) ~ Qs\Pc)-

Then the charges have to f u l f i l 

This does not occur for any stable state c if the rapidity difference between the 

the two particles is real, 9ab — 9a — 9^ G IR- The conserved charges for s = ± 1 

correspond to the energy-momentum which has the consequence that (1.26) implies 

ml — ml + ml + 2mamb cosh Qab = rnl mf + 2mamb cos i ^ ^ ^ . (1-27) 

This looks very similar to equation (1.22) encountered in the discussion of the clas

sical mass spectrum which explains the expression fusing angle for ^ ^ j , introduced 
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there. Also, ( 1 - 2 7 ) implies that for imaginary 9^^^ ''he mass of ?77c is smaller than that 

of 777a + iTT-b- Using the notation = T T — the rapidities 0a and 0^ can be written 

as 

0a = Oc-t~0lb. 0b = 0,+ 101. 

I f the vacuum state dominates an anti-particle state and the rapidity difference is 

Oaa = then it follows f rom ( 1 . 2 6 ) that 

Therefore particles and anti particles are only distinguished by even spin charges. 

Also, theories with odd spins wil l only contain self-conjugate particles. 

Since the Yang-Baxter equation ( 1 . 2 5 ) can not help to determine i'-matrices one has 

to rely on the bootstrap principle to find consistency relations for the 5-matrices. 

I f the coupling constant of three particles a, b, c does not vanish, C"*"̂  ^ 0, the 

particles a and 6 can fuse to form the bound state c. There are two ways in which a 

four th particle d can scatter with these three particles. 

Fig. 1.8: Bootstrap principle 

Due to the factorisation the ^-matr ix has to be the same in both cases (fig. ( 1 - 7 ) ) 

SdciQ) = S,a{Q - iOl)Sdb{Q + i~0tc) ( 1 - 2 8 ) 

where 0 = — is the relative rapidity of c and d [64 ] . For a two-particle state 

a and a and a relative rapidity in this agrees with the crossing relation. Using the 
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crossing relation the bootstrap equation can be written as 

Sda{Q + ^(^ac + ^<^bc)Sdc{Q + ^Obc)Sdb{Q) = 1 

which is a product version of the charge bootstrap following f rom (1-27) 

The relation (1.28) and knowledge of classical couplings and fusion angles is enough 

to determine the ^-mat r ix given a reasonable ansatz for all simply-laced theories. 

1.4-2.2 Explicit formulae for the S-matrices 

A n element of the ^-matr ix ought to be unity for vanishing coupling /? —>• 0. For 

P ^ 0 fixed poles indicating the fusing should be the only poles and they should be 

situated in the physical strip. This follows f rom the assumption that the classical 

mass spectrum is complete and the quantum theory has no new masses. So, the 

^ -mat r ix has to contain some travelling zeros in the physical strip which cancel the 

fixed ones for (3 = 0. Uni tar i ty requires each of the zeros to have an accompanying 

pole in the unphysical strip for non-vanishing coupling. Also, the 5'-matrix should 

exhibit a symmetry under 0 ^ ^ because i t has been seen before (1.7) that the 

conformal Toda field theory has this symmetry after quantisation. I t is useful to 

introduce a so-called block notation which allows one to write the 5-matrices as 

factors 

( x ) , = ( x ) = s m l , ( ^ + ^ ) / s i „ h ( ^ - ^ ) . (1.29) 

A crossing symmetric block is 

[x] = {x){li — x). 

Some of the properties these blocks fu l f i l are 

(0) = 1, {li) = - l , {-x) = {x)-\ {x) = {x±2h) 

(1.30) 
{x)g^,j^{x)g_ijni_ = {x + y)e{x - y)e. 

A combination of fixed poles and travelling zeros may be writ ten as 

r 1 r 1 (x - l)(.-r + 1) 

^"^^ = ^-^^ = ( x - l + B) (x + l - B ) - ^ ' - ^ ' ^ 
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In this equation i? is a coupling dependent function 

1 /?2 
B = (1.32) 

2^ 1 + '•'̂  ^ ' 

Then { x } is unity for vanishing coupling and symmetric under /3 —> ^ since B{P) = 

2 — B{^). Though in principle other functions for B{(3) satisfying the constraints 

for (1.32) when f3 ^ 0,oo may be chosen, (1.32) is the usual choice which was first 

suggested by Arinshtein, Fateev and Zamolodchikov [15] for af,̂ ^ by comparison with 

the sine/sinh-Gordon model [58 . 

The bootstrap allows one to find the 5-matrices for the 03^^ theory as follows. The 

Coxeter. number is 3 and the two particles in the theory are conjugate to each other 

1 = 2 . The fusing angles (p. 19) are 91^ = 9^2 = So, 5 i i needs a fixed pole at 

3 , i.e. (2) describes the pole correctly, and a crossing symmetric 5'-matrix is given I2E 
3 

by 

Sn = S22 = {!}. 

Now the bootstrap (1.28) requires that 

S12 = S.i = 5 i i ( 0 - i f ) S n { e + 7 y ) 

which implies 

Sx2 = { 2 } . 

This expression has a zero at — y and a pole at 

The S'-matrices for all self-dual theories can be written down in closed form [22]. 

For example the ^-matrices of the â ,̂ ^ theories can be written as 

a + 6 - l 

Sab = n { ^ } -
i = |a-6| + I, 

step2 

Also, i t is possible to express the S'-matrices of the simply-laced series in terms of 

the root system of the underlying Lie-algebra [26]. For this one has to divide the 

indices of the roots of a,, into two sets of mutually orthogonal roots 

• = { 1 , . . . , /c} and o = {/c - f 1 , . . . , n}. 
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The Weyl reflection lui associated with a certain simple root a, 

Wi[x) = X — 2—9—ttj 

defines a Coxeter element w 

which is of order h, the Coxeter number of the algebra. A basis for the orbits of the 

Coxeter elements are the root vectors 

(pi = WnlVn-l - • -Wt+i{ai)-

Then i t is possible to write the S'-matrix as 

Sab=Y{{2p+l+Cab}^ (1.33) 

where too = e«» = 0 and Co* = —Coo = 1- The "-(-" index means that because all 

blocks are accounted for by traversing the positive part of the orbit of $ 5 only, for an 

extension of the product to the whole Coxeter orbit the numerator of the blocks are 

reconstructed by the positive part of the orbit and the denominator by the negative 

part. 

To lower orders S-matrices have been checked by perturbation theory [25,29,30,65 . 

Also the quantum mechanical mass corrections of simply laced theories have been 

calculated and i t was found that there is a universal renormalisation factor [29-31]. 

For the non-simply laced theories analytical investigations were done by Delius et 

al. [63]. Also, the mass ratios for one specific pair of non-self dual algebras has been 

tested numerically supplying evidence that the masses for these theories depend on 

the coupling constant as Delius suggested [66 . 

1.5 AfRne Toda field theory with imaginary coupling 

For affine Toda field theory with real coupling all solutions have been real and without 

singularities so far. This allowed one to interpret them as particles of the theory. 
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Also, the only real constant solution is $ = 0 which is usually called the vacuum 

state. 

If one allows complex solutions for the equations of motion (1.11) the picture changes. 

Instead of one constant solution there are infinitely many 

27r7 . 
$ = —LO with u G A 

where A* is the co-root lattice. These solutions all have zero energy and all of them 

have the right to be called vacuum states. Usually the equations of motion of the 

theory allowing complex solutions are written with an imaginary coupling constant, 

i.e. (3 iP in (1.10) and (1.11) [35 

£ = i a ^ r ( . T , O c / ^ $ ' ' ( a ; , 0 + ^ E e ^ ^ " ' - ^ ^ ' ' * ^ (1-34) 

and 
2 r 777 -

1=0 

Then the constant solution are 

$ = with u € A*. (1.36) 

Soliton solutions are non-constant solutions which interpolate between these constant 

field configurations. I t is instructive to study what happens to the sinh-Gordon 

equation (1.13) under a change in the coupling constant. Changing P i f ) in (1.13) 

one gets the sine-Gordon equation 

777^ 
d^,d^^x,t) = -—A sin/?$(.x-,0. (1-37) 

I t is well known that the sine-Gordon equation has multi-soliton solutions. However, 

there is one significant difference between the solution of the sine-Gordon equation 

(1.37) and the equations of motion of the general case (1.35). The solution of (1-37) 

are real whereas the solutions to (1.35) are complex. But as Hollowood [35] has 

pointed out for the a^}"^ theories, though the energy density of solutions to (1.35) 

is in general complex their energy-momentum is real. Using an algebraic method 

Olive et al. [45,67] were able to show that this true in the general case. This 
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algebraic approach is a generalisation of the Leznov-Saveliev solution [13] of the 

conformal Toda theory which has been discussed by Mansfield [68]. Hollowood [35] 

also mentioned that the masses of solitons and particles are proportional in the case 

of al^\ Later Olive et al. showed that this is true for other algebras as well [45 . 

Like masses of particles the masses of solitons can be associated to nodes of the 

Dynkin diagram. One important difference between solitons and particles is that a 

soliton with one specific mass may have several topological charges. This introduces 

a mass degeneracy of the theory which makes the quantisation, i.e. the finding of 

^-matrices, different f rom the approach taken for the real coupling theory because 

the Yang-Baxter equation (1.25) is not t r ivial ly fulf i l led. A problem of the quantum 

theory is however that the complex solutions give rise to a classical Hamiltonian 

which is not positive definite. Consequently the quantum theory of these theories is 

non-unitary and the interpretation of the soHton solutions is unclear. Sti l l , as pointed 

out in the beginning, theories wi th imaginary coupling are related to conformal field 

theories. So is, for instance, the theory associated with eg and P' = corresponds 

to a conformal field theory with central charge c = ^. 

1.5.1 Hirota's Method 

Soliton solutions can be found with Hirota's method [35-40,50,51]. Other approaches 

are Backlund transformations [70] and the algebraic approach [45,67]. The main idea 

of Hirota's method [69] is to change the variables of the equations of motion to an 

equation of "Hirota bi-linear type". To get an idea for an ansatz to achieve a correct 

change of variables one follows the lines of the calculations for Toda lattice equations 

(where $ depends on only and not on " x " ) . The ansatz is 

Hx,t) = -^j2w^^B^j (1-38) 

where rjj = [37]. Then the equations of motion (1.35) turn into the following 

expression 

j=0 

Where the Pj's are given as 

2rjP, = {rr^iD^ - D I ) T } - 2n?n,Tj ( f [ r - " ^ - ' ' - ^ - M l ) = 0, J ^ O , . . - , r 
V k=o I 
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where /.ii is an arbitrary parameter. The operators 0^ and Dt are Hirota's bihnear 

operators and are defined as 

In general the coefficient Pj = fi2nj for some constant jj.2- In order for the Hirota 

equation to hold for the lowest order of e one needs — /io = 0 which implies Pj = 0 

Vjirn - r] - r j V , + r f ) - 2m%T] { r - ' " ' - ^ - ^ _ l ) = 0, ; = 0 , . . . , r. (1.39) 
V fc=o / 

This formula holds for any affine Toda field theory. To find a solution one expands 

Tj in powers of an arbitrary parameter e 

T, = 1 + Sf^ eM4>) • e + exp(2</.) • + . . . + sf'^ exp{p,(f,) • e"̂ ' 

where cf) = a{x — vt) + ^ and 5^J^\ 1 < k < Pj and a, v and are constant defining 

the shape, velocity and topological charge of the soliton. Introducing the eigenvalues 

A of the matrix product A'̂ C with = diag( A ^ o , • • • ,?^r) and (Cij) = a, • aj a, v 

and m are related as 

(T2(1 - = m^A. 

Thus, there are different r functions for each A. Furthermore py, rij and rjj are 

related by 

This constitutes a generalisation of the work by HoUowood [35] and more details can 

be found in [36,38]. 

1.5.2 Examples 

1.5.2.1 4"^ 

As before the Lie algebra data is HQ = 2, n\ — I, CCQ = Q̂ i = \/2- In addition 

one needs 7;o = 4, 7̂ 1 = 1 and po = 1, pi — 2 and finally A = 3. The equations (1.39) 

yield the following two equations 

(roro - - T ^ ' T Q + T Q ^ ) - ^ ^ ( r i - r j ) = 0 

T i r i - f 2 - r f n + r f - 2 7 n 2 ( r o ^ - r 2 ) = 0 . 
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These eue solved by the r functions 

ro = 1 ± e"̂  and n = 1 ^ Ae"^ + e^'^ 

here (j) = V^y=^=2 ("̂  ~ ^ ^ ) ' solution can be written as 

1 ' 

w 

$ ± = - ^ X ^ ? 7 i a , T n r , 

" ( l ± e ^ ) 2 • 

(1.40) 

This solution to (1.14) wi l l be used in the next chapter for the static background 

solution of the theory. 

1.5.2.2 a\}^ 

Assuming that (1.39) decouples one can rewrite i t for the a}, case as 

.2 _ + rf = m 2 ( T , _ i r , + i - t ] ) J = 0 , 1 , . . . , n , 

The index j is modulo the Coxeter number h = n + I. The one soliton solution can 

be writ ten as 

r<"' = l+exp[na+p„ + ijda], (1.41) 

where, 

f)a = CTa{x - Uat), Pa = J]a + Oa = (1-42) 
n 

(^a^Ua, 1^0,^,0 G JR- The parameter (TQ and the velocity Ua are related by 

al{l-ul)^4m'^sm^'^. (1.43) 
n 

There are n species of single soliton solutions with a certain number of topological 

charges each for an affine Toda field theory corresponding to alP. The superscript 

of r j °^ indicates to which species i t corresponds. Sometimes it is useful to write 

r-functions in terms of "light-cone"-coordinates, x± = -^{t ± x), the quantity fia 

can be writ ten as 

n, = si-h+-si+)x-, 
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with , 

As well as one soliton solutions multi-soliton solutions can be achieved with Hirota's 

method. A 

for yV < a 

method. An A'' soliton solution is obtained by setting t^^^ = 0 in the expansion of Tj 

r, = E ^ ' t f -

The two-soliton solution may be writ ten as 

r j°^) = l + exp[na+Pa + ijOa] + exp[nh+Pb + ijOb] + A^„k)eM^++P++iJ&+] (1-44) 

where 0 + = Cta + ^bi p+ — Pa+ Pb a-iid &+ = Oa + &b, which can be compactly written 

as, 

r(;') . 1 + ^r^;) _ 1) + _ 1) + A ( „ , ^ ( , H _ ) _ 1). 

is the interaction coefficient of the two solitons r j ° ' and r j ' ' ' . This phrase 

suggests that the two-soliton solution rj°^^ can be thought of being constructed f rom 

the two single-soli ton solutions [ 3 5 ] . The interaction coefficient is given by 

_ (ĉ g - CTbf" - {crgUg - afciffc)^ - 4m^ sin^(^(a - 6)) 

^"'^ " {<7a + <rb)' - i^aua + CTbUb)' ' im^ sm^U^ + b)) ^ • ''"^ 

In ( 1 . 4 5 6 ) the rapidity difference 0 = GQ — 0;,, with Ua = tanh 0a was introduced. 

For details of the construction of soliton solutions of more than two solitons see 

[ 3 5 ] . I t is worth noticing that the general A'^-soliton solution depends on two-soliton 

interaction coefficients only. For example the r-function of the three-soli ton solution 

is given by 

r j = 1 + e^j + e^i + e^J + Aabe 1 e J + Acfce J e J - f Aace J e J 

. . . 4''^ + AabAbcAace 3 e 3 e 1 , 

where A^b is the interaction coefficient in ( 1 . 4 5 )and ^^^^ = fifc /5jt - 1 - ijQk- This 

is somewhat reminiscent of the situation for the ^-matr ix of affine Toda field theory 

wi th real coupling which factories into two-particle S'-matrices. 
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1.5.3 Energy 

As mentioned before, the energy-momentum tensor of soliton solutions is complex, 

but the energy is st i l l real. An elegant method to see this for single and multi soliton 

solutions was described in [45]. Following this paper the energy-momentum tensor 

can be writ ten as 

T^u = {rj^.d'~-dMC. (1.46) 

Alternatively (1.46) can be expressed in light-cone components as 

T+-=d+d-C, (1.47a) 

T±± = -die. (1.476) 

r - f - is the trace of the energy-momentum tensor (1.46) and (1.47 )can be written as 

^ 3=0 

The function C can be determined up to a constant using the one-soliton solution 

Because the mass £ and the momentum V densities are given by components of the 

energy-momentum tensor, E = TQQ and V = Tio, the mass of the soliton can be 

calculated as follows. Consider the light-cone energy-momentum density 

v/2 ' 

which tells one with the help of (1.46) that 

To evaluate the limits one has to look at the single soliton solution for which 

d±C = T ^ E 
i=0 
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The ratios -̂ ^—l̂ ) vanish in the l imi t x —oo and tend to 1 for x oo. Using 

(1.43) and wri t ing the rapidity of the soliton as 0a = ^ In ( ^ i i ^ ) allows to write the 

energy-momentum tensor of a single soliton as 

P ^ = i ^ s i n ( ' ^ ' | e ^ « « . 
v/2/? 2 \ 9 

Therefore its mass is 

Ml = 2 P + P 
Ahm . fOa 

sm 
^ - \ 2 J J • 

Apparently the mass of a species a soliton is proportional to the mass of the funda

mental Toda particle of alP affine Toda field theory, nia = 2??isin(^), as mentioned 

before. 

A similar calculation for multi-soliton solutions can be done and in the special case 

of two solitons of species a and b the result for the energy-momentum tensor is 

v/2P* = Mae^®" + Mfce^®^ (1.48) 

In [35,37] i t was shown that solitons of the species a carry topological charges which 

lie in the highest weight representation of the a*'' fundamental weight of the a,i 

algebra. Therefore i t is natural to associate the species of the soliton with the nodes 

of the Dynkin diagram of the associated Lie algebra a,,. 

1.5.4 Topological Charges 

In the soliton solutions of the complex affine Toda field equations, the topological 

charge is a conserved quantity of zero spin. For the â ^̂  series, topological charges 

of the single and multi-soliton solutions have been calculated [37] . 

The topological charge q o{ & solution 4> is defined by 

q = f / 5 , 0 d x = f X m U 4 > { x , t ) - c t > { - x , t ) ) . (1.49) 
ZTT J~oo iT^ a.->oo 

Wri t ing the solution in terms of the breather r-functions, defining / , = ^ for 

j — \ .. .n and making use of the definition of the logarithm of a complex number, 
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(1.50) 

(1.49) can be recast as 

q ^ f ^ a , \\n^ [ i n | / , ( . T , O I - In | . f , ( - . T , O I 

+ I arg( / j ( . r , t)) + -Inrk' - i a r g ( / j ( - . T , i ) ) - 2^7^^^"], 

where /c',/c" G (J- A simplification of (1.50) results f rom the fact that 

l im | / , (a ; ,0 | = l , 

thus 

q = - ^ j l a, ^liiT^ [ a r g ( / , ( . T , 0 ) - a r g ( / , ( - x , 0 ) + 2Trk] (1.51) 

wi th k = k' — k". The number /c determines the curve f j in the complex plane, 

and in particular, how often and in what direction i t winds around the origin. The 

topological charge is therefore determined by the change in the argument of f j as |.x 

goes to infini ty. 

For the theory the following facts are known concerning topological charges 

37]. For the a*'' single soliton , i.e. the one corresponding to the a-th node of the 

Dynkin diagram, there are 

gcd(a,/z) 

different topological charges. The "highest topological charge" is 

,(1) ^a{h-j)modh 

The general formula for all ha topological charges is 

(fc) " a{h~j)modh " 
- 2 ^ 7 OC3 - 1^ 1^ (>a{h-])modh,h~lgcd{a,h)'^3-

3=1 1=1J=l 

Furthermore i t can be shown that the topological charges of the a-th single soliton lie 

in the a-th fundamental representation. One problem is that the topological charges 

fill the fundamental representations for the end nodes onl}'. The construction of 

topological charges of mul t i solitons is relatively straightforward and it turns out that 

their topological charges is the sum of the topological charges of their constituent 

solitons. 
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Chapter II 

Boundaries in Affine Toda Field Theory 

2.1 Field Theories on a half Line 

Studies of two dimensional field theories have been focussed on those defined on the 

fu l l line, xi = x G ffi, XQ = t ^ 1R. These theories are often called bulk theories. 

Since many physical systems are finite in their spatial dimensions i t is interesting to 

study theories which are defined for a finite line or at least for a half line, e.g. x < 0. 

Such a theory should take boundary effects into account. In the past few years there 

has been progress in the understanding of integrable systems defined on the half-line. 

The foundations of this work were laid by Cherednik [71] more than a decade ago. 

He formulated an algebraic approach to scattering on a half line, x < 0. In terms of 

field theory this can be stated as follows. Let D he a. dynamical system integrable 

on the full- l ine which implies the factorisability of the 5-matrix then the assumption 

are 

a) When D is restricted to the half-line the particle content (mass spectrum) does 

not change; 

b) The S'-matrices describing the mutual interactions of particles are not changed, 

c) The boundary reflects particles elastically (up to rearrangements of mass degen

erate particles). 

2.1.1 Classical and Quantum Integrability 

One of the first theories to receive some attention was the sine-Gordon theory. As 

wi th all other theories there were two main steps. Firstly one had to find out under 

which condition the classical theory would be integrable on a half line. Secondly one 

had to determine the reflection matrices which describe the influence of the boundary. 
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For the Sine-Gordon model both problems were solved by Ghoshal and Zamolod-

chikov [72,73]. They conjectured that the most general boundary potential leaving 

the classical theory integrable was 

B{^) = M c o s p { ^ ^ ) (2.1) 

where M and $o are arbitrary constants and /3 is the coupling constant for the 

Lagrangian 

The entire Lagrangian for the theory on the half line can then be written as 

C^ei-x)Co-5{x)6. (2.2) 

This formula for $o = 0 or $o = f has appeared in classical considerations earlier 

74-76]. Later Mclntyre , and Saleur et al. gave a proof of this conjecture indepen

dently [77,78]. Ghoshal and Zamolodchikov found their conjecture by investigating 

under which conditions the first non-trivial integral of motion stays conserved for a 

theory with boundary. Generally, one would expect the boundary to harm some of 

the infini tely many conserved quantities. The introduction of a boundary destroys, 

for example, the translational invariance which means the momentum is no longer 

conserved. Also, the topological charge of the soliton solutions is conserved only for 

the case M oo [72,73 . 

For the second problem, the scattering theory, new relations which generalise 

the Yang-Baxter equation, crossing unitarity and the bootstrap principle have to 

be found. Following Cherednik's rules outlined above the presence of a boundary 

is described by the introduction of reflection matrices Kai^a) for a particle a with 

rapidity Oa {ua = tanh^a) 

\a,Oa >out= Ka{9a)\a,-6a >in . (2.3) 

In general, Ka{0) should mix two particles states a and 6, but for affine Toda field 

theory there w i l l only be one refiection matrix for each particle. For real 9, K has to 

f u l f i l a unitari ty condition just like the ^-matr ix 

Ka{ea)K-a{-ea) = L ( 2 - 4 ) 
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ia,e> 

ia,-e> 

Fig. 2.1: Reflection of a particle on a boundary 

Cherednik [71] found the generalisation of the Yang-Baxter equation, the reflection 

Yang-Baxter equation 

/ V 2 ( ^ 2 ) 5 ( ^ l + d2)IU{dx)S{ei - 62) = 5 ( ^ 1 - d2)Kl{6i)S{di + d2)K2{02). (2.5) 

Fig. 2.2: The boundary Yang-Baxter equation 

The Yang-Baxter equation can be understood and analysed with the help of quantum 

groups. Sasaki mentions that the reflection Yang-Baxter equation can be treated in 

terms of the reflection equation algebra which is related and inherits a lot properties 

f r o m quantum groups (references in [79]). Equation (2.5) has no consequences for 

affine Toda field theory because the K and S'-matrices of this theory are diagonal. 

More important is the crossing unitarity condition found by Ghoshal and Zamolod-

chikov [72,73 

Ka{B)Ka{0 - I T T ) = Saam = Saa{2d) (2.6) 
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and the reflection bootstrap equation found by Fring and Koberle [80,81 

(2.7) 

Fig. 2.3: The reflection bootstrap 

where the angles 0^^^ are the fusing angles discussed in the context of 5'-matrices 

earlier. I f the reflection boundary equation applies (an exception is for instance a^^') 

the crossing condition (2.6) is a consequence of (2.7) when all fusings are taken into 

account as pointed out by Sasaki [79]. But solutions of (2.6) do not necessarily 

solve (2.7). Also, Sasaki points out that is is easy to generate more solutions to 

the bootstrap equations once a single solution is known. Compare for instance the 

bootstrap equation for the i ' -matr ix and the one for the reflection matrix 

S,d^SU0'ri0\,)Sbd{0-i0lc) 

Kc{0) = Ka{0 + i~0l)I<b{0 - i0bc)Sab{20 + ^0l - ^ C ) 

Assuming Kc{0) is a solution i t follows that 

K{0) = Kc{0){Scm 
± 1 (2.8) 

is a solution as well for arbitrary d. Assuming the CPT invariance of the 5-matrix 

survives in the half-line theory there is another possible solution 

Ka{0) = Ka{0). 
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Similarly 

<(^) = I<a{6 - ^7^) = S,amiKa{e). (2.9) 

follows f r o m the crossing condition (2.6). Finl ly Sasaki mentions the reflection matrix 

chosen as 

Ka{0) = ^Saa{2e) 

formally satisfies the the reflection boostrap equation. But Sasaki does not make fur

ther use of the equations ((2.8) and following) and considers meromorphic solutions 

only. 

2.2 Reflection matrices for afRne Toda field theory 

Assuming the integrability of the quantum theory and the known exact i'-matrices, 

Fring and Koberle [80,81] and Sasaki have worked out reflection matrices for the 

ade series of aflfine Toda field theory with real coupling. Sasaki gives examples 

for some algebras whereas Fring and Koberle give general formulae and in the later 

publication they give examples for some non-simply laced algebras. Sasaki introduces 

a new block notation for the reflection matrices similar to the one for ,S'-matrices. 

Using (x) defined in (1.29) define [x] as 

( , T - J + f ) ( x + l - | ) ' 

The S-matrix block at 28 can be expressed as 

[x/2]g [x/2] 

- [h - x/2]g - [ A ^ 7 7 2 ] • 

Now i t is worthwhile to look briefly at two of the examples given by Sasaki. 

Oj^' : As mentioned earlier the three point coupling for the only, neutral, particle 

of this theory vanishes which means that the reflection bootstrap equation (2.7) is 

void. But the crossing unitari ty equation (2.6) gives rise to the following reflection 

matrices assuming a minimali ty of the number of poles 

Kx{Q) = [1/2] or [3/2]-^ for Sxx = [ l /2 ] [3 /2 . 

42 



: This theory is the first in the alP series where the reflection bootstrap wi l l 

be used. The theory has two particles 1,2 with 1 = 2 and h = 3. The reflection 

bootstrap equation (2.7) are 

K2i0) = Ki{0 + i~)Ki{0 - il)Sn{20) 

K,{e) = K2{0 + i^)K2{0 - ^^)5•l l(2^) 

The S'-matrix of this theory is 6 ' i i(2^) = [ l / 2 ] / [ 5 / 2 ] . One obvious solution with two 

poles and zeros is 

h\ = 1, K2i0) = 5'u(2^) or Kii0) = Sni20), K2 = L 

Another solution with six poles and zeros is 

Ki = A'2 = [ l /2][3/2] or [3 /2] [5 /2] - i 

which are related by (2.9). 

Sasaki gives far more examples but instead of listing all of them one might rather 

compare the 0 2 I'esult with that of Fring and Koberle [80,81]. They generate their 

solutions f r o m the reflection bootstrap equation (2.7) as well. In their notation they 

are looking for a wall matrix Wi which is A', in the above notation. Amongst others 

they give a formula for reflection matrices of the a[,^' series 

W^{e) = n W n + 2 . ( / ) - 2 . ( . ) ( ^ ) - (2-10) 
/ = 1 

Here some new notation has to be introduced 

, . f z i < [h/2] ^ ( i I odd 

— I I > [n/Z\ [i + n I even 

lUi-^-Bi0)w-l-x+B{0) 

and finally 

M « ) = - ( ^ ) . 
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For the case ^4^^ one has the following data f.i{l) = ii[2) — 1 and the resulting 

matrices due to the ± sign are 

Wx = W2 = [ -5 /2 ] or [ 1 / 2 . 

These two factors do not obey the reflection bootstrap (2.7). Only their coupling 

independent factors satisfy this equation. Fring and Koberle call this the minimal 

theory. For a>^^ the reflection coefficients coincide with those of Sasaki. So, the 

formula can be expected to work for aiven cases only and has not been proven in 

the general case. Recently, K i m [82] has conjectured a general formula for the the 

reflection matrices he calculated perturbatively in terms of the root system similar 

to the notation which can be used to write the S'-matrix (1.33). He derives a matrix 

Ja{0) which is essentially the reflection matrix 

Ja{O) = Ka{0)/^Saa{29). 

W i t h the definition of e, = 1 and to = 0 the matrix Ja{0) is given by 

h-i 
M0)= Ul'^p+l + eh]^-(^o^''-^-''fb), (2.11) 

p=0 ^ 

The factor | is probably given because the sum is over all orbits not just the positive 

ones as in (1.33). Since both (2.10) and (2.11) are products i t might be interesting 

to investigate whether (2.11) is in some way the "correct" version of (2.10). 

2.2.1 Missing Link 

So far only the solutions to the reflecton bootstrap equation correspond in the clas

sical l im i t to only one type of boundary condition, the natural Neumann condition 

83,84]. But affine Toda field theories allow classically non-trivial boundary condi

tions (see next section). I t is unclear how their reflection coefficients for non-trivial 

boundary conditions of the classical theories correspond to reflection matrices in the 

quantum theory. Also, there is no way to say why one should prefer one solution to 

the reflection bootstrap equation to the other. 

In the weak coupling l i m i t , the classical regime, ^ 0, the S'-matrix becomes the 

unit matr ix and (2.7) transforms to the classical reflection bootstrap equation 

K{ec) = K{ea)I<{9b) (2.12) 
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where 0a = 6c — i0ac-> 6̂ = ^c + «^bc (0 = n — 9). The rapidities correspond to particle 

fusions ab —)• c, i.e 0c has to be a pole of the 5-matrix. In the context of integrable 

boundary conditions for the classical affine Toda field theory [85-88] i t was discovered 

that solutions to (2.12) can be found f rom reflection factors. This wil l be discussed 

in the following section. From the solutions of (2.12) one can construct solution of 

(2.7) which have a dependence on the boundary potential. 

For the affine Toda field theory with natural Neumann boundary conditions reflection 

matrices have been worked out perturbatively by K i m [83,84]. Again some of these 

coincide wi th the ones found by Sasaki. As already mentioned, recently i t turned 

out that these solutions can be written in terms of the root system (2.11) similar to 

5-matrices (1.33) [82]. 

2.3 Boundary conditions for affine Toda field theory 

Integrable boundary conditions for the alP series affine Toda field theory have been 

conjectured first in [85]. In a later publication [86] this conjecture was generalised 

to ail simply laced theories. The Lagrangian C of affine Toda theory on the half line 

differs f r o m affine Toda theory (1.10) on the fu l l line. The Lagrangian for the half 

line theory is given by (2.2) 

£ = 0(-x)C-5{x)B. 

The boundary potential B depends on the fields (t>{x,t) but not their derivatives. 

Therefore the equations of motion are (1.11) 

a^5'V(.x-,o = - ^ E « . « . e ^ " ' - * ^ " ' ' ^ 
^ .=0 

with the restriction x < 0 and 

= _ : i ^ ^ _ : : i V a , ^ e ^ " ' - ^ . (2.13) 
=0 86 23^^ ^ d 

d4> _ dB_ ^ Y ^ ^ , . , . ^ ^ a . . ^ 
.=o--d<p--2pto''''''' 

The generic form for is 

^ = S E ^ ^ ^ " " - ' ^ (2.14) 
^ t=0 
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with At e JR, which generalises (2.1). Except for o^ '̂ the coefficients Ai are con

strained for all non-simply laced algebras by 

f 2 for I = 1 . . . ?̂  

0 for i = I .. .n (natural Neumann condition). i-^-^^) 

The sinh-Gordon theory is an exception which allows an continuous deformation of 

any boundary condition to those of the natural Neumann conditions. This theory wil l 

be discussed in some detail later. The conjecture (2.15) was subsequently proved 

[87] by finding a Lax-pair representation of the boundary problem. Also, i t was 

shown that a more general boundary condition that includes time derivatives leads 

to even stricter conditions on the boundary potential [88]. One should note here 

that the aL^^ theory is special in the sense that i t allows the solution 0 = 0 for non-

t r iv i a l symmetric boundary conditions. Other theories only allow this for the natural 

Neumann condition. 

2.3.1 Evidence and Proof of classical Integrability 

In i t ia l ly the above result for the boundary potential was found for al}^ by looking at 

spin ± 2 charges of the half-line theory [85]. Similar calculations had been done for 

the f u l l line before [62,63]. A general formula for the spin ± 3 densities on the whole 

line using light-cone coordinates {x^ = (x° ± x^)/\/2) is 

where the coefficients Aabc are completely symmetric and the coefficients Bab com

pletely anti-symmetric. The spin ± 3 density corresponds to a spin ± 2 charge. To 

construct conserved quantities the densities have to satisfy 

d±T±3 = d±Q±i 

where 0 ± i can be calculated to be 

1 dV 

wi th the constraint 

dV d'^V , ^ j ! X _ _ n 
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Further examination shows that in the case of al,^' that the charge 

P2 = /° dx\T+3 - e+i + r_3 - e_i) - E2 
7—00 

is conserved on the half line i f the boundary potential is chosen as 

8 = i E - 4 . ' = ' -
^ 1=0 

with either all A,- = 0 or A] = 4. The boundary contribution in this case 

E2 = -x/2BabdQcj>aBb. 

The next higher charge does not reveal any new restrictions but exactly the same 

[86]. For the (/i,̂ ^ theory one finds conditions leading to (2.15) by investigating spin 

± 3 charges and for Cg^^ one has to look at spin ±4 charges. For a fu l l list of boundary 

conditions see [89 . 

However, this approach does not prove that the theory is integrable at all as one needs 

the conservation of infinitely many quantities which are involution. This problem was 

solved in [87]. A Lax-pair representation is given and it is shown that (2.15) is the 

most general boundary condition guaranteeing the integrability of aflfine Toda field 

theory with real coupling for the ade series with the exception of the sinh-Gordon 

theory. 

2.3.2 Solutions for the (classical) reflection Bootstrap Equation 

In this section reflection factors satisfying the classical bootstrap equation (2.12) 

w i l l be presented. Also, they wil l be shown to be classical l imits of solutions to the 

reflection bootstrap equation(2.7). The calculations can be found in [86,87 . 

2.3.2.1 Symmetric Boundary Conditions 

W i t h the restrictions (2.15) the equations of motion for affine Toda field theory on 

the half line are ^ 

(2.16) 
m " 
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The total energy of a solution to the half-line afhne Toda held theory is given by 

„ 

J-a 
E= I £dx + B 

-oo 

where 

f = ^(0' + 0'') + ^ E ( < = ' ' ° - * - i ) -

I f zero energy solutions exist, bound states are allowed for 5 < 0 as the total energy 

would be negative and could be trapped as a small oscillation. The solution ( f ) can 

be writ ten as an expansion in the coupling constant /? 

oo 

<^= E /^V^''^- (2-17) 
i=-i 

I t is necessary to start the expansion at i = — 1 because the right hand side of the 

boundary condition in (2.16) might not be zero for the /?~^ contribution. Now it is 

possible to expand the equations of motions (2.16) and for the first two terms they 

are 

1=0 

^ t=0 

(2.18) 

(2.19) 

4 ^ 

As remarked before the a\P case (2.18) has the solution ^' = 0 for symmetric 

boundary conditions, i.e. Ai = A for all i = 0, . . . , n where A G { 2 , - 2 , 0 } . This 

represents a static "ground-state" solution of lowest energy and a quantum theory 

could be constructed in terms of perturbations around this basic solution. I f <^(~^) = 

0 is not a possibility one might still be able to find a static solution of least energy 

which would serve as an effective potential for the solution of (2.19). This wi l l be 

the case for asymmetric boundary conditions of the a^^ theory. 

The solution of (2.19) is, in terms of the eigenvectors pa of the mass matrix M" 
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where 

The reflection factor is given by the ratio 

Ka = ^ = + (2-20) 
la ipa - Am-/4m 

For the boundary condition A = 0 the reflection factor is 1. For the cases A' — 4 

the reflection factor has poles at 

.Am^ 

The masses of the a^n^ affine Toda field theory are 7na = 2ms in (^ : ^ ) . For the 

boundary condition Ai = —2 the potential (2.14) is negative and allows bound states 

wi th the masses given by 
2 2 • 2 f 2«7'" \ 

u; = 777. sm 
^7 + 1^ 

for the a-th channel. The corresponding solution to the linear problem decays expo

nentially away f rom the boundary as —>• —oo. For 77 even the masses are doubly 

degenerate, whereas for n odd there is a four-fold degeneracy and W(„+i)/2 = 0. 

2.3.2.2 A connection between solutions of the classical and quantum reflection boot-

stra-p equation 

To keep things simple consider the â ^̂  theory whose two conjugate particles have 

the masses 

7771 = "^2 = \/3777. 

In the block notation introduced earlier (1.29) the reflection factor for the negative 

boundary condition can be written as 

Ka = i - = - ( 1 ) ( 2 ) , with p = \/3777 sinh0. (2.21) 
ip+'-f 

One of the 5-matrices of this theory is 511(61) = JQ^ITB)- Now, one should observe 

that the boundary conditions do not distinguish between the two particles. So the 

reflection matrices should be the same for both particles. Also, i t has just been shown 
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that the classical reflection factor lias a simple pole at ^ = I ' T T / S . In the fu l l line theory 

the quantum particle spectrum of the simply laced theories is essentially the same as 

the classical one. Assuming the same happens for the half-line a "minimal" solution 

for a reflection matr ix solving (2.7) and (2.6) is 

r.-0/a\ _ L-Oro^ _ (^)(2 + f ) 

( I ) 

The classical l imi t for this matrix is the reflection factor (2.21). So in contrast to 

the solution of Fring and Koberle [80,81]and Sasaki [79]this reflection matrix is not 

the unit matrix in the classical l imi t . Also, note that the expression (2.22) is not 

invariant under the weak strong coupling transformation P ^ ^ like the S'-matrix. 

A further discussion of this case and generalisation of (2.22) for ali^ can be found in 

85,86]. Also, i t is worth mentioning that the reflection factor for A, = 2 is 

'^"<'" = l i m = - ( - " ( - ^ ' -

The reflection matrix is expected to have no bound states since there are no classical 

bound states because B > 0 and a quick check shows that a solution fu l f i l l ing the 

reflection bootstrap (2.7) and the classical l imi t is 

( 2 ) ( l - f ) 

2.3.2.3 Asymmetric Boundary Conditions for 03̂ ' 

For all affine Toda field theories, except a\n^ with symmetrical boundary conditions, 

= 0 is only a solution for natural Neumann boundary conditions. So, looking at 

a^2^ wi th asymmetrical boundary conditions might be a place learn some techniques 

which are useful for other theories, especially the a^ theory later on (The following 

calculation can be found in [86].). 

The solution to (2.18) wi l l provide a non-trivial static background potential for the 

solution, of the linear scattering problem (2.19). These solutions are related to static 

single soliton solutions in the imaginary coupling theory (1.5). Their singularities 

w i l l be chosen to lie in the positive real x-axis. 
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A choice for asymmetrical boundary conditions is Ai = 2, A2 = AQ = —2. Wi th the 

ansatz 

(t>^~^\x,t) = aip{x) = aip 

which is compatible with the boundary condition equation (2.18) turns into the time 

independent Bullough-Dodd equation (1.14) 

p = e ' — e X < 0 

Integrating this equation once yields the following diff'erential equation 

(p')2 = + 26-" + 3, 

which can be used at the boundary x = 0 to give with the second equation in (2.2.3) 

( 6 ^ - 6 - ^ ) 2 = 6"'' + 26"" + 3. 

This equation has three solutions for e''^~ 

= I \ 
. p ^ 00 , i.e. a singularity at a; = 0. 

Only the second solution is without any problems. The relevant solution* of the 

Bullough-Dodd equation {p 0 for x —> —00) is (1.40) 

(l-EY- ^ s i n h 2 y 3 ( . T - x o ) / 2 ' • ^ ' 

The parameter XQ is determined by the boundary condition and must satisfy XQ > 0 

because the singularity of (2.24) is otherwise not in the positive half of the .r-axis. 

The positive solution of 

coth^ \/3xo/2 = 3 

satisfies this condition. Now, one should turn to the equations for (f)^^"^ (2.19). They 

are wi th the choice made for <^(~^) 

1 / 9p2p_ - p / 2 A \ / 3 / 4 0 \ 

This solution is similar to the soliton solutions first mentioned by Aratyn et al. [90]. 
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First the second component of (j)^^"* wi l l be solved. As in the case with symmetric 

boundary conditions the expected form of ^('^^ is 

^(0) ^ 

Changing to the variable z = \ /3x /2 , $ ( x ) has to satisfy 

^ sinh (2 - 2o) 

Also, it is convenient to set 

A2 = (4/3)(a;2 _ 3^ ^ ^4 /3)^2 ^ 4 gj^^j;2 ̂  .̂̂  .2ĝ  

A solution to this equation can be written as [91 

= - 2coth(2 - ZQ)){^ - coth{z - zo))e'^^ (2.27) 

and the general solution is then 

^ z ) = a ^ L { z ) + a * ^ l { z ) . 

The reflection factor can be read off the following expression for CLS z -00 

$ ^ a{iX + 2){iX + l)e'^' + a*{-iX + 2)(-zA + l)e-*^'' = le'^' + Re"^'. 

Which yields (2.20) 

r = - = ^ ( z ! A ± M z ! A ± l l 
' ~ / ~ a {i\ + 2){i\ + l) • 

The ratio ^ is determined by the boundarj' condition. One needs to work out the 

values of $ L ( 0 ) and $'^(0) 

$^(0) = (2A)2 + 3v/3(zA) + 8 

$'^(0) = {iXf + 3\/3(^A)2 + 14(zA) + 12\/3. 

This has to f u l f i l (2.25) and therefore 

a{{iXf + V3{iX)^ - 4{iX) - 4 \ ^ ) + c.c. = a{iX + ^/3){{^Xf - 4) + c.c. = 0 
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implying that the ratio is 
a^ _ iX + Vd 

a ~ i X -

Remembering (2.26) the reflection coefficient can be written with A = 25 

_ is + v / 3 / 2 7 5 - 1 75 - 1/2 

^ ~ 75 - x/3/2 is + l is+ 1/2' 

In the usual block notation (1.29) this is 

_ (l/2)(3/2) '(5/2) 
(1)(2)(3) • 

Since (.3) = —1 the denominator is the same as in the symmetric boundary case. 

Also, Ki satisfies the classical bootstrap equation (2.12) which implies that the 

other channel has to have the same reflection factor. Using the observation that the 

denominator is the same in the symmetric case it easy to write an extrapolation of a 

coupling dependent refection matrix which satisfies the bootstrap equation and has 

(2.28) as its classical l im i t 

A' l = K2 = ( l / 2 ) ( 3 / 2 ) 2 ( 5 / 2 ) ^ ^ ^ ^ ^ | ^ . 

But this is not the only possibility. For any function C(/?) which vanishes for 0 = 0 

there is another reflection matrix 

A-i = K2 = (1/2 + C ) ( 3 / 2 - C ) ( 3 / 2 + C ) ( 5 / 2 - C ) ^ ^ ) ( 2 ) 
( 2 

which solves all necessary equations. 

One way to check the above calculation is to work out the reflection for the other 

channel directly f r o m the equations of motions. As already said, the result should 

be the same due to the classical reflection bootstrap equation. 

The only difference is the linear approximation in the linear background potential 

which has the following form for the second channel 
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where 

r = - 6 E ( 1 - 6 E + 3E" + 4E^ + 3^' ' - 6E^ + E^) 

q = {1 + 4E + E'"){1 - E ) \ E = e^^'-''\ 

This time the solution $ takes the form 

where A satisfies (2.26) and the general solution of $ is given by (2.27), the function 

p depends on A and is up to an overall factor 

p = (2 + ^A)(1 + iX) - 2(A2 + A){E + E^) + 6(2 + X~)E'^ + (2 - zA)(l - iX)E\ 

For 2 = 0 the following boundary condition is given by (2.25) 

$'(0) = ^m-
One can calculate the ratio ~ again and finds 

a* iX + s/2> 

a I X - y / 3 ' 

Altogether one gets the same result for the reflection factor as in (2.28). I t is sur

prising that the classical reflection factors obtained here obey the classical reflection 

bootstrap (2.12). This is true for other theories, as for example ( f ^ \ as shown in 

[86 . 

2.3.8.4 The sinh-Gordon Model 

Since this model has boundary conditions with a continuous parameter, as wil l be 

seen has the Bullough-Dodd model, i t wi l l be instructive to repeat the analysis in 

the context of the method just applied to other Toda models. This discussion can 

also be found in [86]. In the disguise of the sine-Gordon model there is already a lot 

of information in the literature. 
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The static background solution wil l again be called p = 4>^ and it has to satisfy 

the equations 
/ = - v / 2 ( e ^ ^ - e - ^ ' ' ) , T < 0 

(2.29) 
/9' = - y 2 ( e i e ' ' / ^ - e o e ~ ' ' / ^ ) x = 0. 

Integrating the first equation the boundary equation implies 

p'= V2{eieP/^ - eoe-"/^^) x<0 

V2p 1 + eo „ 
1 + e i 

So, assuming eo > ^ i (otherwise shift XQ in the solution by i7r /2) with coth,To 

the ground state is 

_ 1 + e2(^-^°) 
^ 1 _ e2(x-x-o) • 

Then the linearised wave equation in this background is 

ai</,(0) = -(eo tanh XQ + ti coth .x-o)( '̂°^ x = 0. 
(2.30) 

I t is possible to compute the reflection coefficient in terms of the parameters of the 

boundary potential. Again write ^(^^ = e~"^*$(2) which allows one to express the 

solution as 

$(2) = a{iX - coth(2 - zo))e'^^ + c.c, X = sinh 6, 

the ratio a*/a is again determined by the boundary condition. Using the parametri-

sation 

= cosa,7r, |a,| < 1, 7 = 0,1 (2.31) 

the reflection factor can be written as 

K = - ( 1 ) ^ [ ( 1 + ao + a i ) ( l - ao + a i ) ( l + ao - a i ) ( l - ao - a i ) ] " ^ (2.32) 

A n extension beyond the limits of flj in (2.31) is achieved by «, -> ai + 2. The 

reflection factor is similar to the reflection matrix given by Ghoshal [72] of the lightest 

sine-Gordon breather i f one takes a suitable l imi t for the classical case after analytic 

continuation of /?. 
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In this case one can give an example of how to check the stability of the background 

potential by examining the energy of the solution = p [92]. The energy is given 

by 

E= f dx + i ^ ^ ' - e " ^ " + 2)) + AiePo/^' + AQC'"'!^-. 

J-oo ^ 2 ' 

Using the Bogomolny argument this can be rewritten by replacing the integrand with 

^-{p' - V2{e^'' - e-^'P))' + V2p'{e^'^ - e"^^), 

yielding 

E>-4 + {Ao + 2 ) 6 - ^ ° / ^ + {Al + 2)e^°/A 

So, provided AQ and Ai are at least —2, the energy is bounded below which indicates 

a stability of the solution. 

2.4 Reflection factors of a^^^ theory 

(2) 

In this section reflection factors for the cij theory wil l calculated [93] along the lines 

of the previous section [86]. This theory is the simplest example for the self-dual 

non-simply laced theories. Though the calculation will be similar to the one for a^^ 

there w i l l be a difference in the boundary condition which allows in this case a con

tinuous parameter. Therefore i t is continuously connected to the Neumann boundary 

condition. Both Fring and Koberle [80] and K i m [83] give reflection matrices for this 

model and they wi l l compared with the results presented here. 

The bulk theory has been met before (1-14) in the first chapter and for m' = 2 and 

P = \/2 the Lagrangian is 

£ = ]-d^4>d^^ - (e2^(^'*) - f 2e-'*(^'') - 3). (2.33) 

The equation of motion is given by 

d'^(l){x,t) = -2exp(2(/>(x,^)) + 2exp(-</>(.T,0)- (2-34) 

In [87] the boundary condition is given as 

B = A,exp{cl^{x,t)) + A o e x p { - ^ ^ ) . (2.35) 
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W i t h (2.35) the boundary condition is therefore 

d.H^,t)l=o = -Aiexp{4>iO,t)) + ^ e x p ( - ^ ^ ) , 

where AO{AI - 2) = 0. 
(2..36) 

In [87] this condition is derived f rom the spin ± 6 charge, insisting that the combina

tion Te — T-e -|- 04 — 0_4 is a total time derivative in the presence of the boundary 

term. Explicit expressions for the densities are 

and 

o±4 = -^[4(5±0)24<^(- i5y ' + 6V"') + i2{dy)'V" + {d±^)\iov" - QV"") 
8 '• 

such that they satisfy 

with 

d±T±e = d±Q±4 

]/(({,) = e2<̂  + 26"^. 

The approach via the Lax-pair gives the same result. There is, however, a different 

approach to the problem of finding integrable boundary conditions [57]. This ap

proach tries to identify conditions under which symmetries of the equation are still 

conserved. However this approach hasn't been applied to affine Toda field theory in 

general. But, in the case of the Bullough-Dodd equation, HabibuUin finds the same 

condition for the boundary. 

2.4.1 Solutions to the classical Reflection Bootstrap Equat ion 

As in the cases discussed before, one way to find potential solutions to the classical 

reflection bootstrap is to expand the solution ( f ) in powers of the coupling constant 

(2.17) and work out reflection factors of the linear approximation in the static back

ground. For the a^2^ the equations of motion (2. IS) and (2.19) for the first two terms 

are (</>(-!) = $o and (/>(°) = $ i ) 

dHo{x,t) = -2exp(2$o(a-,0) + 2exp(-$o(a.-,0) (2-37a) 

d.^o{x,t)\^^o = - A i e x p ( $ o ( 0 , O ) + Y e x p ( - ^ ^ ) , (2.-376) 
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and 

5 2 $ i ( x , i ) = - [4exp(2$o(a;,0) + 2 e x p ( - $ o ( x , 0 ) ] * i ( a ; , 0 (2.38a) 

^a:$l(•^^^)Uo = - [^iexp($o(0,O) + Y ^ ^ ' P ( - ^ ^ ) ] ^ i ( - ^ - ' 0 , (2.386) 

where, in both cases, A O ( A 2 — 2) = 0. Due to these conditions the discussion wil l 

have to be split into several cases later on. First some common features of the 

background potential and the linear approximation wil l be shown. 

2.4.1.1 General features of the background potential 

Unless one chooses the natural Neumann boundary conditions $0 = 0 is not a 

valid solution for (2.37) because of the boundary condition. As in the ai^^ case the 

background solution $0 should be constant in time and of least energy. Therefore 

assume <^o{x,t) = ^o{x) and (2.37a) reduces to 

c/2$o(a;) = 2exp(2$o(3;)) - 2exp( -$o (3; ) ) for < 0. (2.39) 

This is again the time independent Bullough-Dodd equation (2.23). Its solutions 

have been calculated in the introduction of the thesis and are for the static case 

1 + 

1 

—J = ^+'^^+^" sinh solution 

3 
cosh solution 

cosh" ^(x—XQ 
i-4£;+£:-

( l + £)2 

(2.40) 

wi th E = exp(\ /6( .T — XQ)). The solutions wi l l be called sinh or cosh solution 

respectively in this chapter. Note that the transformation E ^ —E connects both 

solutions. Unlike the cases discussed before the cosh solution wi l l actually be used for 

this model. For later reference it is useful to list the properties of the two solutions. 

Fig. 2.4: The sinh solution$o(-'J^) 

58 



Fig. 2.5: The sinh solution plotted as e-*o(^) 

• The sinh-solution has ^Q{X) < 0. Also XQ has to be positive in order to have the 

singularity outside the negative half-line. From the graph one easily reads off 

that 0 < e*o(*) < I and e-*°(^) > 1, for the sinh solution. 

• The cosh solution e~*°^^") has no real singularities except at x±, given by x± = 

xo ± y | a r c o s h y f , e~*°(*'±^ = 0. Therefore the solution ^o{x) has singularities 

at those points. In order to avoid a singularity in the negative half-line . T _ has to 

be chosen appropriately. This wil l be discussed in detail later. In contrast to the 

sinh solution, for the cosh solution e*°(^) > 1 and 0 < e~^°^^^ < 1. Also for the 

cosh solution, ^o{x) is always positive, or complex between the singularities. 

Fig. 2.6: The cosh solution ^o{x) 

The value's of XQ are determined by the boundary condition and wi l l be calculated 

in the detailed discussion of both cases later on. 

Again i t is possible to integrate (2.39) once with the assumption that ^o{x) vanishes 

for x —̂  —oo the result is 

{d^^x)f = 2exp(2$o(•^•)) + 4 e x p ( - $ o ( x ) ) - 6 for x < 0. (2.41) 
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Fig. 2.7: The cosh solution, plotted as e-*''̂ '-"' 

Squaring equation (2.376) and using the above result gives the following relation for 

a; = 0, where e^" = e^°(°\ 

{Al - 2)e2*o - / loAie*o /2 + M _ ^ e - * ° -h 6 = 0. (2.42) 

This equation wi l l s implify later on. 

2.4.1.2 General features of the solution in the background potential 

The solution to the linear background equation (2.38a) is the same for all boundary 

conditions. The actual computation wil l be very similar to the one for af/^ with 

asymmetric boundary conditions. The reflection coefficient wil l be determined from 

its solution and the specific boundary condition. In the following calculation the sinh 

solution wi l l be used when e*° has to be expressed in terms of E. 

Assume that the solution in the background potential factorises into an x dependent 

and a t dependent term $ i ( x , f ) = 'I'(a;)e"^*. Then (2.38a) simplifies to 

vp(.^)" = [-u;2 ^4g2$o + 2e-*° ]*( .T) . (2.43) 

Again one introduces the variable A depending on the rapidity 

a ;2_6 = 6 s i n h 2 ^ = 6A2 (2.44) 

and rewrites the equation as 

^ ( x ) " = [ - 6 A 2 - 6 + 4e2*o + 2e-*°]«5(x) . 
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Now i t is useful to change variables z = .r\/6 such that E changes to Z? = 

The potential for this linear scattering problem is given by 

l / ( , ) = _ l + i(2e2*oW + e - * o W ) ^ i L 
3 q-

where 

r = - ^ E { \ - 4 E - 6E^ -4^ + E^) 

q= l + ZE - ZE''" - E^. 

The equations (2.38a, 6) are, in these new variables, 

^[z)" = [ - A 2 - f ̂ ]^{z) (2.45a) 

*(-~)'|^=o = + Aoe-^^l'']^{z). (2.456) 
4\/6 

The differential equation (2.45a) is solved by 

*(2) = a^e^^^ + a*^e-^^ 
q q* 

where a is a complex number determined by the boundary condition and 

p = ( 1 - f 72A)(1 + iX) - 3E{1 - ^2A)(1 + 7A) 

-f- 3^2 (1 + j2A) ( l - 7A) - E^{1 - i2X){l - tX). 

By looking at '^{z) as 2 -> -00 the reflection coefficient is found to be (2.20) 

a * ( l - i 2 A ) ( l - 2 A ) 
K = 

a (1 + 72A)(1 - i - 7A) 

as p —̂  (1 -H 72A)(1 - f iX) and g —>• 1. Using the block notation (1.29) this can be 

wri t ten as 

K = - ( 1 ) ( 3 ) 2 ( 5 ) (2.46) 
a 

where one should keep in mind that even though the Coxeter number for 02 \s h = 3 

i t is better to use h^^^ = 2 - 3 = 6 because i t is a non-simply laced algebra, to get 
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integer values for the poles of the .S'-matrix [25,94]*. Using the explicit formula of 

the solution ^'(z) in terms of p and q equation (2.456) can now be written as 

^ q q t > 
- j - c.c. 

2=0 

= — i - ( 4 . 4 i e * o + /loe-*o /2\ (V_ ^ \ 
AJ(\\ I ^ n 2=0 / 

(2.47) 

4x/6 ' 

This equation determines the ratio ^ 

apq -f p'q - pel + ^ ( 4 A i e * o -F Aoe-^°/2)pg 

a -iXp*q + p'*q - p*q' + ^{iAie^o + Aoe-^o/2)p*g-
(2.48) 

The expression for the cosh solution can be gained by replacing E by —E in 

p, p' , g, (?'ande*o. 

2.4.1.3 Two Cases 

Now i t is time to look at the condition which the coefficients AQ and A\ of the 

boundary potential (2.35) have to fu l f i l 

AO{A\ - 1) = 0. 

The solutions to this equation can be split into two cases 

• Ao = 0, Al e m 

• ^ 2 = 2, AQ e m. 

The first case contains the natural Neumann condition. K i m [83] has calculated 

reflection factors fu l f i l l ing the bootstrap for this boundary condition. However, his 

solution tends to unity in the classical l im i t and i t wi l l not be possible to say whether 

i t corresponds to any of the solutions presented here. 

Case A: AQ = Q 

For Ao = 0 equation (2.42) simplifies to 

(/l^ - 2)e*° - 4e-*o + 6 = 0. (2.49) 

* A comprehensive list of Coxeter numbers for all affine Toda field theories can be fomid in [34]. 
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W i t h g = e*" this can be written as a cubic equation in p 

f{g) = {A\-2)g^ + &g-4 = 0. (2.50) 

I t was mentioned before in (2.40) that the sinh solution requires 0 < e*" < 1 for all 

x < 0 and the cosh solution > 1 for all x < 0. Because g = e*°(°^ a discussion 

of the polynomial f{g) is going to help to decide which solution matches a particular 

boundary condition. The polynomial has turning points for g^ = . There are 

two different situations 

• If A\ > 2 there are no real turning points. This means there is a unique solution 

to (2.50) wi th g > 0 because /(O) is negative and the factor of g'^ positive. Also 

/ ( I ) = AI > 0 therefore the root p of (2.50) has to satisfy 0 < g = exp($o) < 1 

which indicates that the sinh solution is relevant 

Fig. 2.8: A plot of f{g) for Ai = 3(eq.(2.50)) 

((2.8) illustrates this wi th a plot of f{g) for Ai = 3 . ) 

• I f 0 < < 2 there are two real turning points at p± = : 
2-Ai' 

The values 

of the polynomial at these points are f{g±) = 4[±^j^^ — I). So, the value 

at the positive turning point gj^ is always positive, 5+ > 0. Again /(O) = —4 

and because f{p) tends to —00 for g ^ 00 there must be two positive roots 

gi,92- Furthermore / ( I ) = Af > 0 so one root is smaller than one, pi < 1 

corresponding to the sinh solution, and the other one is bigger than one, g2 > ^ 

corresponding to the sinh solution 

((2.9) illustrates this with a plot of f{g) for A i = 1). 

The reflection coefficient 
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Fig. 2.9: Figure 2: A plot of f{g) for Ai = l(eq.(2.50)) 

To determine the reflection factor equation (2.48) has to be solved. For AQ = 0 i t 

simplifies to 
iXpq + p'q-pq'+ ~^Aie'^°pq 

(2.51) a 
a 

iXpq + p'q - pq' + ^Aie'^^pq 

-i\p*q + p'*q - p*q' + -^Aie^op*q 

In the equations above p, ; / , ( / ' , $o have been evaluated at z = 0. 

I f one parametrises the coefficient Ai in a similar fashion to the one used for the 

sinh-Gordon model earlier [86 

Ai — ± \ / 2 c o s h a i 7 r , ai £ JR (2.52) 

the equation (2.49) is solved by 

' l , 27r«i 
- + c o s h - j -

- 1 

Comparing this with the sinh solution (2.40) one can express EQ = e ^° in terms of 

the boundary 

,-*o = l + ^ . i + e o s h ? ^ . (-153) 
sinh" f 2 

The relevant solution for Ai = \/2coshai7r is 

y/3 + u + t<- i 
E = e-^o = 

wi th u = e^^^l^. Now all variables in (2.48) depend on a i . The relation (2.53) can 

also be used to test whether ZQ can always be chosen to be positive. The equation 

implies 
.3 / 2-Kax 1\ , , , ,2 20 
- ( c o s h — - - J + l = c o t h ' y . 
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The positive root indeed allows one to choose a positive ZQ for any a i . 

The ratio ^ (2.48) can now be rewritten as 

a* _ 1 + t2s/3\u + u2 - 4X~u" + ilV^Xu^ + u'^ 

T ~ 1 - i2V3Xu + tt2 - 4Xhr - 22\/3AK3 + 

_ - A 2 + t^\{u-^ + u) + i (u2 + u-2 + 1) 

' - A 2 - I ^ A ( U - 1 +U) + J(u2 + u-2 + 1) • 

This expression can be factorised with x — 2 + iai and y = x 

a* _ (^A + s i n f ) ( ^ A + s i n f ) 

" (zA - sin f ) l^X - sin f ) ' 

Using the block notation (1.29) and observing the fact that 

\l2[iX ± sin -A=T s i n h ( - T ^ ) s i n h ( - - — ( 6 ± x)) 

one can rewrite — as 
a* ( - y ) ( x - 6 ) 

a {x) ( 6 - y ) " 

Therefore the entire reflection factor (2.46) is given by 

A + - ( 1 K 3 ) ( 5 ) ( 2 , , ^ ^ 2 ) ( 2 ^ a l + 4)• 

For the case A\ — — \/2coshai7r the relevant solution to (2.53) is 

- \ / 3 + u + u-^' 

This yields the reflection factor 

r . . > _ n u „ 2 , . ^ ( 2 ' « i + 2 ) (2.01+4) 
^ ' - = ( l ) P « 5 ' ( 2 . , . , - 2 ) ( 2 . « , - 4 ) -

For the boundary condition A\ = ±.\f2 the reflection factors are 

K> = (1)(3)2(5)(2)2(4)2 

Kl = (1)(3)2(5) ^ 
(2)2(4)2-
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So far only the regime > 2 has been investigated. For the remaining range of A i 

a suitable parametrisation is 

A i = ± \ / 2 c o s a i 7 r CH 6 [0,1/2] or 6 [ -1 /2 ,0 . 

Notice that this is same parametrisation as before, only with the change iai ai. 

The change of u as defined above f rom a real to a complex expression does not 

change the outcome. So, the reflection coefficients are 

A ± - ( l ) ( 3 ) ( 5 ) | ^ 2 a , + 2 ) ( 2 a i + 4 ) / " 

They coincide wi th the expressions of A '^ for A i = ± \ / 2 and, for the natural Neu

mann condition A i = 0 ,a i = ± | , they are unity. 

new One should stil l check whether ZQ can be chosen to be positive. W i t h the 

parametrisation (2.50) is solved by 

/ I 2 7 r a i \ - i $ 
5 = ( 2 + c o s — J =e*o . 

Due to the symmetry of (2.50) under ai ^ a i + 1 and ai ai + 2 there are two 

more solutions differing f rom the above in the shift of a i . They wil l be neglected in 

the following. For all ai G [—|, 5 is greater than one thus indicating the relevant 

solution is the sinh solution. So, to match the boundary conditions, has to satisfy 

1 27rai 3/2 
+ cos = e-*o = 1 + ' 

2 3 sinh^ f 

Implying 

- cos — + 1 = coth —. 
2^ 3 2̂ * 2 

So that the positive root always allows one to pick a positive ZQ for any a i 6 [—^, \ \-

I t possible to write all this in one formula 

A\ = ± \ / 2 c o s a i 7 r , with either a\ = ± 6 i , 61 6 [0, - ] or a i G iIR 

K ( n f 3 ) ^ r ^ J C ^ " ^ ~ ^ ^ ( 2 a i - 4 ) ] ^ ^ ^^-^^^ 
A ± - ( l ) ( 3 ) ( 5 ) | ( 2 « , ^ 2 ) ( 2 « i + 4 ) | " 
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Case B: A\ = 2 

In case B the equation (2.42) simplifies to 

which can be writ ten as a cubic polynomial in g = e*°/2 

= 0. (2.56) 

Again a discussion of this polynomial / ( ^ ) is going to tell which solution is to be used 

with what boundary condition. The polynomial j{g) has two turning points </i = 0 

and ^2 = ~^A[-' where g\ is a local maximum and is a local minimum. The values 

of the polynomial at these points are / ( ^ i ) = and / ( ( / i ) = _ (/lo-8)- < 0 . 

The last interesting point of the polynomial for the discussion is is 5 = 1, / ( I ) = 

- i ( / l o - 2 A i ) 2 < 0 . 

Depending on the sign of the coefficient of in (2.56) there are two cases. 

• A i ^ o < 0: In this case g^ is negative, so there can be only one zero to the 

right of ^1 = 0 because ^{g] tends to —00 for g ^ 00. The zero only exist i f 

/(O) = ^ ^ ^ ^ > 0 i.e. AQ < 16. Because / ( I ) is negative the zero has to occur 

between 0 < p = e^°/2 <; i This indicates that the sinh solution is relevant. 

Fig. 2.10: f{p) for AQ = 2 and Ai = - \ / 2 

There is no zero with a positive p for AQ > 16. Figure illustrates this with AQ = 

2, Ai = - V 2 . 

• AiAo > 0: Here g2., the position of the local minimum, is positive. I f AQ < 16 the 

polynomial is positive for g = 0, /(O) > 0. Also, f{g) tends to +CXD as +00. 
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Thus the there two positive zeros. One is always between 0 and 1 and the other 

one always greater than 0 because / ( I ) is negative. Therefore both the sinh and 

the cosh solution are relevant. 

Fig. 2.11: f{p) with Ao = 2, A i = s/2 

This is illustrated in figure (2.11) with Ao = 2, A i = \ /2 . I f AQ > 16 the polynomial 

is negative at p = 0 and /? = 1, therefore there is only one zero for which is greater 

than 1. 

Fig. 2.12: f{p) for AQ = 5, A i = \/2 

Thus only the cosh solution is relevant. This situation is sketched in figure (2.12) 

wi th Ao = 5, A i = \ /2 . 

First the cases wi th AQ < 16 shall be investigated. A natural parametrisation of AQ 

seems to be 

Ao - 4cosao7r ao 6 JR. (2.57) 

W i t h A i = ± \ / 2 , s = e'̂ 'o'̂ /̂  j^nd q = gy/2 = \/2e*o/2 the equation (2.56) is 

transformed to 

±{s^ + s-^)q^ - Zq^ - (s^ - s-^f = 0 (2.58) 
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where the coefficient of in (2.58) depends on the sign of A\. Due to its symmetry 

under s ^ f i s —> fl^s the three solutions to the cubic equation (2.58) are 

where Q = e'2'^/3, j g { 0 , 1 , 2 } . Introducing the variable 5"̂  = W^^^s = e'^(f'o+j) the 

solution can be writ ten as 

Also, note that the boundary condition (2.57) can be written as 

AQ = 4{-iy cos(ao + j > ao € /R, j € Z. 

A l l boundary conditions can be matched by the sinh or cosh solutions, i.e. a positive 

ZQ can be chosen. For instance for the case Ai = ^/2 the sinh solution has to satisfy 

o . - 1 * 2 27ran 
= 1 + |(cotI,^ I - 1) = 4 = 2 ^ ^ ! ! ^ ^ (2.60) 

2 2 T sin" TXUQ 

This means the positive square root of 

( ^ - l ) H l = c o t h 2 | 

wi l l always allow one to choose a positive ZQ such that (2.60) is fulf i l led because 

4- > 1 due to the choice of ao. 

As in case A the calculation wi l l differ a lit t le depending on whether Ai is positive 

or negative. First set A\ = + \ / 2 and write — qj. To express E = e~'° in terms 

of ao for the sinh solution the equation 

\/2 V l + 4 ^ o + (^^)-
(2.61) 

has to be solved for EQ where the index j indicates to what solution the E belongs. 

One of the solutions is 

El = ( ^3 - 2 ) 4 - 1 ^ 4 ^ = (V3 - , ) 2 c o s y ( a o + , ) - ^ 
° ^ 'S] + S f + s/2> ^ ^ 2 c o s ^ ( a o + i ) + \/3 
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I f one wants to work with the cosh solution instead one has to change the sign of EQ 

in (2.62). Because the sign also has to be changed in (2.48) these changes cancel and 

further calculation reveals the same results for both solutions. Using (2.62) to write 

all variables in terms of Sj, i.e. the boundary condition (2.48) simplifies to 

— = - UMP + pq-PQ + ^-^ 
s] + sfY^{s] + s-')is]-s-') 

pq fee . 

(2.63) 

This expression factorises in similar fashion to case A as follows 

(^A + f ) ((zA)2 + ^ A f ( 5 | + S f ) + i ( 5 j + 1 + S-')) a* 
( _ , A + f ) ((zA)2 - ^ A f (52 + 5-2) + i ( 5 j + 1 + 57-^)) 

1 (4ao + 4j - 2) (4ao + 4 j - 4) 

(2)(4)(4ao + 4 j + 2 ) ( 4 a o + 4 j + 4 ) ' 

In the last line the block notation (1.29) was used. For each j the equations (2.59) 

and (2.61) impose limits on ao. For the cosh solution one needs qj/2 > 1 and for the 

sinh solution 0 < g | /2 < l .Also, because of (2.61), 0 < EQ < 1. Because the sinh 

and the cosh solution give the same reflection factor there is no need to distinguish 

between them and the allowed values are ao € [—1,1] for j — 0, ao G [1,3] for j = I 

and ao G [3, 5] for j = 2. 

The entire reflection factor is, for A i = \/2 and AQ = ( —l)-'cos(ao + j j^ r with 

«o = bo + J bo^ [ - 1 , 1 ] , 

u^^i •^ nuQ^2/,^ ^ (4ao + Aj - 2) (4ao + 4 j - 4) 
A + (ao, , ) = -(1)(.3) ( 5 ) ( ^ ( 4 , , + 4,. + 2)(4ao + 4 ; + 4 ) -

I t is quite instructive to evaluate the expression for some special values. For instance 

j = 0 and 

• Ao = 0 i.e. ao = 1/2 gives the factor 

1 
/v-+(ao,0) = (l)(3)2(5) 

(2)2(4)2' 

This coincides wi th the expression for the case A and shows that both cases are 

continuously connected. 
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Ao = 2\/2 i.e. ao = 1/4 gives the factor 

1 
A''+(ao,0) = 

(2)(4)-

In this case an simple calculation allows one to check this result because the 

solution ^o{x,t) = 0 is permitted with these special boundary conditions. 

• AQ = 4 i.e. ao = 0 gives the factor 

/ r+(ao,0) = - ( l ) ( 3 ) 2 ( 5 ) ^ ^ . 

So this looks extremely similar to the first special case and it seems that the 

second parameter of the boundary conditions amplifies the other one. 

For Ai = —\/2 one has to make use of the second solution to (2.61) which is simply 

the inverse to the one used previously 

Also, one has to use the qj solutions. W i t h these changes the result for the ratio 

(2.48) is 

h-(n n U->^2..wow.^ (4ao + 4 j + 2) (4 + 4ao + 4 j ) 
A (ao, ;) = - ( 1 ) ( 3 ) (5)(2)(4)^^^^ ^ _ ^^^^ ^ _ 

The allowed values for ao are ao = bo + j where bo £ [ | , 1^] U [ l | , 2 | . . 

• For AQ = —2\/2 i.e. ao = l | one gets the factor 

K- = - ( 2 ) (4 ) 

which can again be verified by a simple calculation. 

• Also,,Ao = —4 i.e. ao = 1 give the same as before 

K- = (1)(3)'^(5). 

• And Ao = 0 i.e. ao = | gi ves 

K- = (1)(3)2(5)(2)2(4)2 
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which is again the result found in case A. 

The reflection factors are periodic under ao «0 + 3. They seem to inherit their 

periodicity f r o m the solution of (2.56). A change from j to j + I effectively inverts 

the ao dependent part of the reflection factor. The factor 

/ 1 

could be interpreted as caused by the A i — ±\/2 parameter. A l l factors are sym

metric under ao —> —ao-

Reflection factors for AQ > 16 and A Q A I > 0 

The obvious parametrisation of this case is 

Ao = ± cosh aoTT ao G IR-

The real solution to (2.58) is then 

sinh aoTT 
q = . , 0 ^ — • 

smh ^ a o 

From the discussion of the polynomial one knows that only the cosh solution is 

relevant. There are two cases to look at: 

a) Ao > 4 and A i = — \ /2 . Here the cosh solution is allowed for all ao because 

^ ,9 1 sinhaoTT 
e'^ol- = > 1 V ao G 

\/2smh2/3ao7r 

and also EQ which is 

2 cosh ^ a o - f v 3 

is positive and smaller than 2 — \ /3 for all ao. Therefore the reflection factor is 

1 {AtciQ - 2) (4iao - 4) 
A'(ao) = -(1)(3)^(5) 

(2)(4) (4?ao-f 2) (42ao + 4) ' 

b) Ao < - 4 and A i = \/2. In this the same solution for (2.58) can be used as in 

case b) . And 

f i = ~ l ( v / 3 - 2 ) ^ " ° - ^ ' - ' 
2 cosh ^ o o + \ /3 
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is greater than 2 + \/3 for all ao G IR. And therefore the reflection factor is 

( 4 / a o - 2 ) {AiaQ-A)Y^ 
A > o ) = - ( l ) (3 )^ (5 ) (2 ) (4 ) . 

(4iao + 2) (4zao + 4) 

2.4.2 The energy of the static background solutions in dependence on the 

boundary 

For the static background solution (2.40) one can work out the energy in the following 

way. The energy density for the Toda theory on the half line splits into two parts, 

the kinetic and potential energy density on the negative axis 

^ = ^ P o ) - ' + ( $ ( ) ) ' ] + [e--"̂ *̂ ''̂ ^ +2e -

The second part is the contribution of the boundary potential 

As $o(-'c) does not depend on time, the expression for the total energy W simplifies 

to 

.0 1 
W I dx -{^'o{x)f + e2*o(̂ )̂ + 2e-*°(^-) - 3 

^—oo 2 

V \/2 
+ (e*o(^') - l ) \ / 2e -*oW + 1 

- y2$[) ( : r ) (e*°W _ i ) \ / 2e -*oW + l ] + Aie'^° + ..4oe-*°/-

Using the Bogomolny argument one can now estimate that the energy is 

rO 
W > - y / 2 \ j </a-$[,(.x-)(e*°(^') - l ) \ / 2e -*oW + l ] + Axe^'> + Aoe"*"/ 

Using the substitution rule twice, the second time for e 

sinh^ u\ = 2e*° this can be written as 

r$(o) 

-z ^ smhlu^ ^ j ^ j sinh^ uo = 2 

W > -V2[ [ dz (e' - l)V2e-' + l ] + Aie^° + AQC''^'^/^ 
J 0 

= 2V2\rdu cosh^u ^ ~ . ' ! ' f ' ' 1 + A i e ^ ° + /loe-'^°/-^ 

2\/2 cosh u 

sinh" u 

cosh^Mui^^^^^ . , 0^^^^ -^0 /2 

(2.64) 

sinh^ u «o 

= - 3 \ / 6 + v ^ e * o ( l + 2e-*°)3/2 + Aie*o + Aoe-"^''-. 
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Stability of the background solutions 

For the case A A^ < 2 the energy of the sinh solution is 

W>-3^+^^ +I^Z[|X^SC0S3 ^ ± COSTTai). 

Which is bounded below and indicates that the solution is stable [92]. For Af < 2 

one has to replace cos wi th cosh. 

For case B the result for the sinh solution is 

W > — 3V 0 - I - < sm Trao - j - 4 sin — - — ± sm — - — sin" Trao 
IV 3 / 3 

. 27rao . 2 1 / [ AT • 2 27rao . 
i-4 cos Trao s i n — — s i n 7rao>/' v z s i n —-—sin Trao 

which has no singularity and is bounded below. Again this indicates that the solution 

is stable [92 . 

2.5 Conclusions 

In both cases A and B classical reflection factors were found. They can be written 

in the block notation (1.29) of the the 5-matrix. A l l factors fulf i l led the classical 

refiection bootstrap equation (2.12) with 9 = iw/3 coresponding to a pole of the 

5-matr ix. One can write the reflection factors of both cases in one formula. For 

j = 1 this is 

iIR for Al > 16 

Ao = 4cosao7r ao G { [—1,1] for A i > 0 

[ i , i i ] u [ i | , 2 | ] «o G [ J , l J ] U [ l J , 2 | ] f o r A i < 0 

A i = ± \ / 2 c o s a i 7 r ai G iIR or a i = ±bi bi G [0,1/2] (2-65) 

A^ = - ( l ) ( 3 ) ^ ( 5 ) (2)(4) 
2 . . ^ ^ . o ^ / . ^ ( 4 « o - 2) (4ao - 4) (2ai - 2) (2ai - 4) 

± 1 

(4ao + 2) (4ao + 4) (2ai + 2) (2ai + 4) j 

To prove that the classical reflection bootstrap (2.7) is fulf i l led one has to show that 

K{0) = K{9 + in/3)K{e - in/3). 
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The parts of the reflection factor not depending on ao and a\ have to fu l f i l the 

bootstrap separately. Due to (1.30) and the Coxeter number being / i = 6 

Which implies for the constant factors 

K{e + zn/3)K{e - ^7r/3) = +( - l ) (3 ) ( l )2 (5 )2 (3 ) (7 ) ( (0 ) (4 ) (2 ) (6 ) ) 

= - ( l ) (3 )2 ( ,5 ) ( (2) (4) ) '^ ' = A'(^?). 

± 1 

(2.66) 

Similarly the part depending on ao gives 

K{e + nT/3)K{0-nT/3) = 

j (4ao - 4)(4ao) (4ao - 6)(4ao - 2) (2ai - 4)(2ai) 
\ (4ao + 4)(4ao) (4ao + 2)(4ao + 6) (2ai)(2ai + 4) 

( 2 a i - 6 ) ( 2 a i - 2 ) 1 ^ ^ (2-67) 

(2ai + 2)(2ai + 6) j 

^ / (4ao - 2) (4ao - 4) (2ai - 2) (2ai - 4) ] 

[ (4ao - f 2) (4ao + 4) (2ai - f 2) (2ai + 4) J 
A ' (^) . 

Together (2.66) and (2.67) show that the bootstrap is fulf i l led. One should note 

that the two parts of the ao and a i independent part of (2.65) namely (1)(3)"(5) 

and —(2)(4) obey the reflection bootstrap (2.12) by themselves. Because the factors 

obey the classical reflection bootstrap (2.12) any multiple of them with a reflection 

matr ix obeying the reflection bootstrap equation (2.12) solves this equation (2.7) 

again . Both cases A and B are continuously connected. Case A can also correspond 

to the natural Neumann condition. However, in that case, the reflection factor is 

one. I t is worth mentioning that the expression (2.65) looks similar to the one for 

the sinh-Gordon model (2.32) with the difference that one has two parameters in 

the Bullough-Dodd model. Also, one should not overlook that the BuUough-Dodd 

model inherits the reflection factor of the a.ĵ ^ model (2.28) which is the the same as 

the constant factor (2.66). 

K i m [83] gives an "exact" solution to (2.7) for the a," theory 

A'(^) = [ l /2] [3/2] 
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where h = 3. This clearly fulfi ls the bootstrap but has the serious drawback of 

introducing square root branch cuts in 6 which are hard to explain. 
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Chapter I I I 

Breathers in Affine Toda Field Theory 

3.1 Introduction 

The sine-Gordon model is the simplest example of the af,̂ ^ affine Toda field theories, i t 

corresponds to a[^'. A n interesting feature of the sine-Gordon model is the existence, 

not only of soliton and anti-soliton solutions, but of oscillating, solitonic solutions, 

breathers. A breather is the bound state of a soliton and an anti-soliton in the sine-

Gordon model. Because a^P affine Toda field theory is the generalisation of the 

sine-Gordon theory i t is legitimate to ask whether breather solutions exist there as 

well. There have been many speculations [35,45,67,96] about their existence. Also 

calculations of scattering processes [41] in a[P affine Toda solitons give hints of the 

existence of breathers. The soliton 5-matrices have poles which should correspond 

to bound states of soliton pairs. In [95] an explicit construction of breather solutions 

was given. This construction and the discussion of their topological charges will be 

described in the following sections. 

For the a^ '̂ Toda field theory, which is the sine-Gordon theory, the single soliton 

solution is given by, 

In I . . , „ 1 , (3.1) 

wi th the constraint 0-2(1 — ^2) = 4m". The parameter p = ?/ -(- is complex, and 

its imaginary part determines the topological charge of the soliton. For ^ = ± ^ 

the expression (3.1) becomes real and is either a soliton or anti-soliton. They have 

the same mass, equal to According to [97] the first time breathers have been 

mentioned is in the work of Kochendorfer and Seeger [98]. They were investigating the 

Frenkel-Kontorova model which describes a one dimensional line of atoms which are 

coupled to their nearest neighbours and interact with sine-like background potential. 

This chapter is a slightly niodifiecl version of the publication [95]. Section 3.3 to 3.5 have been taken 

from [95] with only minute changes. 
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In the continuum l im i t the displacement of the atoms is given by solutions of the sine-

Gordon equation, this is discussed in [98]. In part three of their work they describe 

static "dislocations" and their interactions with breathers, which they call oscillatory 

displacements. They derive their solutions f rom Backlund transformations. In their 

interpretation, breathers correspond to solutions which travel faster than the speed of 

sound in the line of atoms. They also mention the double-sine-Gordon equation [99 

and that earlier work has shown that i t allows soliton solutions for certain parameters 

100]. Unfortunately they give no information to show what this equation is good for 

in the context of solid state physics. They also mention a two-dimensional formulation 

of the sine-Gordon equation. 

The sine-Gordon breather is constructed from two approaching soliton solutions by 

changing the velocity v into iv, 

breather = In ^ ^a(x-wt)+p, ^ ^a(x+xvt)+p. _ y2^2ax+{p,+po) ^ ' 

Taking = —^2 — — f and r\\ = lyi = yields a soliton solution oscillating 

about the point *"̂ '̂ 2g"'"̂ '' • constructed f rom a soliton-anti-soliton pair, this 

sine-Gordon breather has zero topological charge; its mass is equal to and 

hence smaller than for a tvvo-soliton solutions. Following the prescription of taking 

imaginary velocity, the breathers of the af,^' affine Toda theories can be constructed 

f r o m two soliton solutions. I t turns out that, in order for the energy of the brea.thers 

buil t f rom two solitons to be real, the constituent solitons must be of the same mass 

and approaching each other with the same imaginary velocity, resulting in a stationary 

breather. To obtain a moving breather, one can apply the usual Lorentz boost to the 

breather solution. The condition of real energy also produces an expression for the 

masses of these breathers which is less than the sum of the constituent solitons. One 

type of breathers can carry topological charge which coincides with the topological 

charge of a certain single soliton, while the other type has zero topological charge. 

The work presented here has been extended for other algebras in [101], one can find 

results for breathers in Toda theories other than those corresponding to a | / \ 

3.2 Breather Solutions for a^n^ Toda theory 

Following the prescription used to obtain breather solutions in the Sine-Gordon model 
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one can change the velocity u into an imaginary iv in the r-functions of the two-soliton 

solution of al^^ affine Toda soliton solutions. 

However one has to be careful with this analytic continuation u -> iv as one wants to 

keep the the energy and the momentum real although the densities become in general 

complex. 

Changing u into iv also means changing a real rapidity into an imaginary rapidity, 

wi th a relation between velocity v and rapidity Q, v = tan(—10). From the light-

cone energy-momentum (1.48) of the two soliton solution, i t is clear that a real 

energy and momentum can be achieved provided that the two solitons forming a 

breather are of the same mass and moving towards each other with the same velocity 

giving a stationary breather. One can make an oscillating solution f rom solitons of 

two different masses, but the energy and momentum of this solution wil l not be real. 

Generally, one can add a real rapidity 0o as a phase in the energy-momentum tensor, 

which acts as a Lorentz boost to the breather solution. Thus, 

n ^ e . . , e , = ^ c o , s ( e „ ) e ^ « o , (3.2) 

m-a above is the mass of the classical Toda particle of the â ^̂  theory. For simplicity, 

in what follows only stationary breathers are considered. Hence (3.2) becomes, 

^breather ^^^2 / f T ^ ' ^'-'l 

and the mass of a breather is, 

Mbreather = r—-^ = r—-^- (3.4) 

Obviously the mass of a breather is less than the sum of its constituent solitons. This 

result generalises the sine-Gordon case, i.e. taking /), = 2 in (3.4) gives the mass of 

the sine-Gordon breather. 

The masses nia of the fundamental particles of the a\l^ series are degenerate with 

respect to the Zo symmetry of the An Dynkin diagram, i.e. ma = mh-a- Hence, 

there are two possibilities of forming a breather. Either the two constituent solitons 

are of the same species, these breathers wi l l be called type A breathers, or the two 

constituent solitons are of opposite species, type B breathers. Exceptions to this 
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classification are the breathers constructed f rom sohtons of species (??. + 1) of the 

ci2n+i theories. These breathers are sine-Gordon embedded breathers which belong 

to both type A and B as wi l l be explained in the following sections. 

Looking back at the r-funct ion of a two soliton solution (1.44) of the same constituent 

mass, choosing Ua = —Ufe = iv yields the breather r-function, 

^(ab) _ 2 ^ exp[a-a(.'r - ivt) + Pa + ijOa] + exp[crfc(.T + ivt) + pb + ijOb 

(3.5) 
+ exp[cr+a; + X + p+ + ijd+], 

the interaction coefficient (1-45) is written as A = with A = 4- i6, where (,5 £ 

m and 

( 7 ± = CTQ ± (Jfc, P±= Pa± Pb, ^± = (^a ± ^b, 

V± = na±Vb, U=U±^b-

The positive interaction coefficient has 6 = 0 and the negative one 5 = n. Note 

that for solitons of the same mass, CTQ = cr;,. The ansatz (1.38) requires each Oj 

component of the solution ( f ) to be well defined in order to have a well defined solution. 

Thus, for each j , the ratio ^ must not become zero or infinite. Evaluation of the 

behaviour of the r-funct ion can be done easily by writing the real and imaginary 

part of (3.5) explicitly. I t turns out that to avoid the real and imaginary part of 

(3.5) becoming zero simultaneously at the same point, the parameters and 77- are 

restricted to a certain range of definition. For later use one should write down the 

breather r function for positive and negative interaction coefficient. For both cases 

define R{x) = ^{2ax + ( + 77+) and = | ( f ± + je±). In the case of the positive 

interaction coefficient the r function is then 

r f = 2 exp [R{X) - f T + + | cosh R{x) cos T + + cosh y cos{avt - T ' ) 

-\- i sinhi?(.T) sin T'^ — sinh y s.\n{avt — T~)j | . 

(3.6) 

For the negative interaction coefficient the result is 

r f = 2 exp [R{X) + + z^) | - cosh R{x) sin - sinh ^ sm{avt - T ' ) 

-\- i sinh R{x) cos T'^' — e"2 cosh -— cos{avt — T- ) >^<JO\̂ L/ J. j j J j ' 

(3.1 
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3.2.1 Properties of the Interaction Coefficient 

The interaction coefficient A has properties similar to the properties of the 5-matri.\ 

of the fundamental Toda particles. For type A and B breathers, the interaction 

coefficient (1.45 )is given by 

^ _ i<7a - cTbf - [cFgi'^a - cThiVb)- - 4777,̂  sin'(j^(a - 6)) 

"̂̂ ^ (o-fl + (TbY - WaiVa + (ybm)'' - s in-(^(a + b)) 

s m ( f + ^ ) s i n ( | - ^ ) 

where 0 = —iQ. For the type A breathers the interaction coefficient is, 

(3.8) 

Mr 

(1+?;2)cos2(^) - 1 cos2^ ..(^' 2 5 ^ - 1 
(3.9) 

where the critical velocity v[^\ when the interaction coefficient changes sign, is 

v[^) = t a n ( | ) . (3.10) 

The term 9a is given by formula (1.42). In terms of rapidity difference 0 the coeffi

cient can be writ ten as, 

s i n ^ d ) 
Ann — 

s i n ( f + f ) s i n ( f - | ) 

8 

« 

i 

\ 
? 

0 

•2 
• y 

-s 
•e 

-e 

0 

•2 
• y 

-s 
•e 

-e 

\ \ 
1 
1 
i 

Fig. 3.1: The interaction A' is given by A' = A cos'""{6/2), the velocity as x = uV^c-
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I t can have either positive or negative value. For breathers with constituent solitons 
h 
2-

And for type B breathers. 

of species a = y , the interaction coefficient never changes sign. 

9 
Aaa = ( l + ^ ' ) c O s 2 ( ^ ) - r , 2 = c O s 2 M l - ^ , (3.11) 

where v^^^ is the critical velocity; in terms of rapidity difference 0 , 

c o s ( f + ^ ) c o s ( f - g f ) 

C0S2(|) 

The critical velocity at which the interaction coefficient changes sign is, for a type B 

breather, 

= 4 y . (3.12) 

As the case of ^-matrices of fundamental Toda particles, these interaction coefficients 

admit a pole. For type A breathers, 

V = or, 0 = 

and, for type B breathers, 

f —>• GO or, 0 = Tf. 

I t is readily seen that the pole of Aaa is exactly the fusing angle related to the process 

a + a ^ (/7 — 2a) of the fundamental particles [22] . HoUowood noted that the same 

fusing rule also applies to soliton fusings in theories [35] . In fact, the fusing rule 

of fundamental particles applies also to all simply laced affine Toda solitons [45,102j. 

The fusing of two solitons of species a into {h — 2a) hinted that the topological charge 

of type A breathers has to be found in the same representation as the topological 

charges of (h — 2a) single solitons. 

I t is not surprising that, at the pole of the interaction coefficient, the breathers fail to 

exist. Using the breather r-funct ion (3.5) with the interaction coefficient approaching 

its pole, the interaction term dominates. Hence, the solution falls into one of the 

vacuum solutions of the complex affine Toda potential, 

1 " 
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On the other hand, if the positions of the constituent solitons are simultaneously 

shifted by —^, i.e. changing 7 ; 77 — ^, the breather turns into a static solution as 

the interaction coefficient approaches its pole. 

Furthermore, the interaction coefficient A has the following general properties some 

of which are similar but not the same as the properties of the 5'-matrix, 

• Crossing symmetry 

Aaa{v) = A-,\-_) or, AaaiQ) = A'^^Q - n). 
V 

• Evenness 

• Symmetry 

A{v) = A{-v) or, .4(6) = A{-Q). 

Aaa{v) = A^a{v) or, Aaa{Q) = AaaiQ)-

• Periodicity 

A{e) - Aie + 2n). 

When the interaction coefficient is zero the r-functions do not give a well defined 

solution, as the r-functions wi l l vanish at a particular point in space-time. For the 

type A breather a vanishing interaction coefficient can only occur for a vanishing 

rapidity difference. Thus the solution wil l be static and not "breath" at all. For the 

type B breather the situation less simple. I t is best to look at the r function written 

in terms of the rapidity. The interaction coefficient vanishes for Q = n ±6a. In that 

case the r function is 

( 0 Q 9 Q \ 
r " ° = 1 + exp 2mx sin 7 7 cos — — 2imt sin sin — -|- 77a -|- i{^a + jOa) 

\ 2 2 2 2 ) 

( 0~ Q 6- Q \ 
+ exp 2mx sin cos — + 2iint sin sin — -1- 775 -f- i{^a + jQa) • 

\ 2 2 2 2 j 

To check whether this r function vanishes for any (xo,io) given any parameter one 

has to write i t separated into real and imaginary part again. For this introduce 

r(3;) = -277?a;sin^ ^ + ?7/2, A j ( 0 = -2772i sin f cos | - + jO-) and finally 
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Tj = \{^+ + j9+)- Then the r can be written as 

r f = 1 + 2 e ^ ( ' ^ ) ( c o s r j C o s h ^ c o s A ^ ( 0 + s i n r j s i n h ^ s i n A j ( i ) 
\ 2 2 

+ i ^ sin Tj cosh cos Aj (<) — cos Tj sinh sin A j ( i ) j . 

For cos T j 7̂  0 and sinTy ^ 0 the imaginary part vanishes at 

tan A j ( i o ) = tan Tj coth — . 

So, the real part wi l l vanish simultaneously at 

sin A j ( i o ) 
cos TJ cot TJ cosh ^ coth ^ -f- sin T j sinh ^ 

Because the time is given via a tan the sign of the left hand side of the equation 

defining XQ can always be chosen to be positive. If cosTj = 0 or s inT j = 0 one can 

f ind a point for which the r function vanishes similarly. The case 7 7 - = 0 is different 

in that one has to examine the ratio instead. Again one finds a point where the 

T function vanishes. 

3.2.1 Type A Breathers 

The breathers wi th constituent solitons of the same species wil l have a negative 

interaction coefficient, A < 0, when v'^ < Uc'̂ *̂  (see (3.1)). As mentioned before 

to have a well-defined r function for all {x,t) there are certain restrictions on the 

parameters if+ and These can be deduced from the r functions (3.6) and (3.7). 

First the negative interaction coefficient wi l l be discussed. Because one is actually 

interested in the ratio the factor in front of the curly bracket in (3.7) is a constant 

phase. I f the r function vanishes for a certain point (xo,<o) in space time, real and 

imaginary part have to vanish simultaneously. This implies that 

^,„sinh ^ s'm(avto — T~) 
cosh Rixo) = 2 J ^ ^ gjj^ (3^3) 

sm TJ 

^ ,.,cosh V cos(avto - T, ) 
smhR{xo) = e-^l- ^ = C.COSAQ (3.14) 

cos TJ 
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with ci = e C/2'^'"'^^ Co = e C/2 and Ao = sin(avto-T. ). If sin 21^ = 0 the 
smTj cosTj ^ J ' ] 

singularity can be avoided by choosing 7 7 - = 0. Squaring and subtracting conditions 

(3.13) and (3.14) impHes 

> 1 and C2 > — 1 . 

This means the singularity can be avoided i f 

c\<l =^ s in l r ^ < l A l s i n ^ r / . (3.15) 

This can only be achieved i f 

e+ ^ (27r - j ^ + ) mod 27r, j = 0 , . . . ,7Z. (3.16) 

This divides the range of into several regions which will determine the topological 

charge of the breather. Furthermore, the maximum "distance" of separation ? 7 _ 

between the two constituent solitons is restricted by (3.15). For a non-singular 

solution one has to choose the minimum value of all 7 7 - ' s allowed 

min('?c) < < m . i n ( 7 7 ^ ) , (3.17) 
0 J 

where, 

/i th j = 0 , . . . , 72. 

77^' = cosh-^ [2 | / l | s in2r+ + 1 ] , (3.18) 

For breathers of type A with positive interaction coefficient it can be derived in a 

similar way to that the parameters ^+ must not have the following values, 

^+ = ( 7 r - j ^ + ) m o d 2 7 r , j = 0,...,72. (3.19) 

The separation "distance" 7 7 - is restricted as above with, 

7 7 ^ = arcosh[2A cos" r + - l ] =^ A cos^ T + > 1. 

As 7 7 ^ are defined through an arcosh-function, these 7 7 ^ in turn wi l l restrict the 

allowed velocity of the constituent solitons because A depends on the velocity (3.9). 

Generally, not all > vif^^" are allowed. In fact all velocities with absolute value 
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greater than the absolute value of the critical velocity are allowed if, for all j , the 

following is true, 
r cos2r+ 

^ C 0 S 2 ( ^ ) J 

Otherwise the velocity is bounded f rom above by 

.(-4)2 

max 
j 

cos2T+ 

r n s - l —t a) 

3.2.2 Type B Breathers 

The constituent solitons of type B breathers are of opposite species. The negative 

interaction coefficient regime is accomplished with > Vc^^". In this case, the real 

and imaginary part of the r-functions wi l l be tr ivial ly zero for 

if + = 0 mod 27r, (3.20) 

i.e. the parameter ^+ must not be an integer multiple of 27r. For each TJ to avoid 

zero, the separation parameter ?7_ is l imited to take values between 

where. 

— m i n ( ? 7 ^ ) < 7 7 - < m i n ( 7 7 ^ ) , 
J i 

7 7 ^ = arcosh 2|A| sin^ 

with j = 0,... ,n. As for type A breathers, each TJ has its own 7 7 ^ , and the smallest 

of these is taken as the l i m i t . 

For negative interaction coefficient the condition on ^+ is 

^+ ^ mod 2TT. 

But the restriction (3.18) implies with (3.11) that 

1 -
cos^ ^ cos^ 
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This can never be satisfied because cos^ ^ cos^ Ty" > 0. Contrary to the type 

A breathers, i t is not possible to have type B breathers with positive interaction 

coefficient, or to have velocity v' < vi^^^. Since the r-functions would necessarily 

pass the origin, this would lead to a solution which is not well-defined. 

3.3 The Topological Charges 

Unfortunately, the calculation of topological charges of multi-soliton solutions used in 

37] is not applicable for breathers because the two solitons constituting the breather 

only separate a finite "distance" f rom each other. 

St i l l , for the type A breather i t is not too difficult to deduce the number of distinct 

topological charges in the fashion of [37] . The number of the topological charges is 

determined by the number of sectors of allowed values of From the expression 

for forbidden if+'s, (3.16) or (3.19) , i t follows that one looks for the smallest number 

p for which 
2an 

-j^ = k\v\thp,k ^ IN. (3.21) 

Here a is the species of the constituent solitons and h is the Coxeter number. 
^ ' •^^ 2^ = gcd{2a,h)' ^ ^ gcd{2a,h) ^^^^^ ("^-^l) ^an be rewritten as 

2dp = Ilk. 

Because 2a and h are coprime it follows that p = h and k = 2a. Thus the range of the 

allowed values for is divided into h sectors. This leads to the following formula 

for the maximum number of topological charges of type A breather with constituent 

solitons of species a 

This argument holds independently of the sign of the interaction coefficient. The 

argument of f j { x , t ) can only change when f j { x , t ) is undefined or zero, hence the 

topological charge within each sector is constant. I t turns out that in each of these 

sectors, the topological charges take a different unique value. These topological 

charges are related by permutation of the roots for j = 0 , . . . , 7Z. The topological 

The remaining sections of this chapter are identical with the publication [95]. 
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charge of a specific sector wil l be determined first, and is called the highest charge 

37] . Then i t wi l l be shown that in all other sectors, the topological charges wil l be 

different. This means that h is indeed the number of topological charges associated 

with a breather. 

In the following, calculation of the highest charge wil l be performed for a type A 

breather wi th negative interaction coefficient. The calculation for positive interaction 

coefficient is the same and wi l l not be presented here. To calculate the highest 

topological charge, one has to employ a lit t le trick first to simplify the breather 

r - funct ion. The type A breather r-function is given by 

^ j f f ) _^ exp[aa{x + ivt) + p + ijOa] + exp[aa{x - ivt) + p + ijOa] 

- exp[C -t- 2<7a.T + P+ + 2ij0a . 

First choose t = 0 because the topological charge does not depend on the time. 

Second choose p = —(/2 + p and p' = —(/2 + p', this corresponds to a simultaneous 

shift of the constituent solitons to the left. By this shifting, the last term in the 

breather r - funct ion wil l not depend on the interaction coefficient A, 

= 1 + exp{aax + ijOa - C/2)(e^ + e^') - exp{2a,x + p+ + 2ijea). 

W i t h iJ.a{2j) = ^ mod27r, the hmits - ) > O O of f j wil l give 

l im / , = e'̂ "''̂ ^^ 

(3.23) 
Hm / j = 1. 

x—y—oo 

Moreover one can take the l imi t ( approaching -|-oo, this corresponds to choosing the 

velocity v very near to vi'^^ As long as v is not equal to Vc^^ the breather solution 

is well-defined by construction. Write y = ê *̂ "̂ , then provided one does not take 

the l im i t a; —> oo, the y^^" term can be dropped, 

r j " " ) = 1 + expiijO, - C/2)(e^ + e^') -yexp{p+ + 2ij0,) 
(3.24) 

= 1 -yexp{p+ + ii^a{'2j)). 

By splitting the ratio f j into its real and imaginary part one can now easily show 

that f j traces out a clockwise curve in the complex plane, i.e. the winding number k 
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is zero. To see this take p = p' = i ( 7 r — f ) where £ is a real, positive and infinitesimal 

parameter, 

Tj = l - y exp{i{i.iai2j) - £)). 

Then the ratio f j can be written as 

f j = 1̂  _y^p+\2^^ - J/(cos(/ia(2j) - £) + cos(e)) + y~ cos(pa{2j)) 

+ «{-y(s in (^ fa (2 j ) - e ) + sin(e)) + y " s m { i . i a { 2 j ) ) } . 

The only zeros for the imaginary part occur when y = 0 and 

_ sm{pa{2j) - e ) + sin(t) 

sin(Aia(2;)) 

wi th / ia (2 j ) 7̂  0 or T T . For small £ this is 

J - c o s M 2 , ) ) ^ (3.25) 
sin(Ma(2;)) 

Now inserting (3.25) into the real part of f j results in . 

One should also observe that in the small £ regime the imaginary part behaves for 

small y like 

9=m(/ , | l - ye^+|2) = - y s i n ( ^ 4 2 j ) ) + . . . . 

So, for 0 < f^iai'^j) < T T , the curve starts at (1,0) with a negative imaginary part and 

crosses the negative part of the real line. For TT < paC^j) < 27r, it starts at (1,0) with 

a positive imaginary part and crosses the positive part of the real line. In any case, 

it winds around the origin in the clockwise sense. Thus, the change of argument of 

f j is given by Pai'^j) — 27r. The explicit formula for the highest topological charge is 

therefore determined by (1.51) 

In the summation above the extended root ao is included for convenience in the 

permutation of the simple roots and Q Q . A S mentioned previously, this result does 

not depend on the sign of the interaction coefficient. 
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From this highest charge, one can obtain all the other charges as follows. Suppose 

ini t ia l ly the value of is chosen. Then, making a shift of ^ on this amounts to 

sending the breather solution to a different sector of Successive applications of 

this shift w i l l bring the breather solution to every allowed sector of With the / V ' 

application i t wi l l return to the original sector. Recall that with (3.24) the breather 

solution is given by. 

Making the shift if+ —>• if+ — ^ in the above solution gives. 

Thus this shifting is the same as cyclically permuting the roots aj for all j = 0 , . . . , n. 

And hence, each shifting results in a different topological charge. Since the maximum 

number one can shift (f+ is h times, then h. is exactly the number of topological charges 

of the breather solution. The expression for all the topological charges is 

" 2a(/i - j ) m o d / i , i r 
9 r = E - ^ r k=l,2,...,K (3.20 

j=o 

where the roots aj are labelled modulo h. 

This is analogous to the one soliton case [37] . Furthermore, as explained in the same 

paper, all these topological charges lie in the same representation because they are 

related by a Weyl transformation as wil l be shown in the next subsection. 

For the type B breather i t has been determined in a preceding calculation that there 

is only one sector of allowed values for The only possible way for the topological 

charge to change is when the ratio f j is not well-defined, i.e if+ changes f rom one 

sector to another. So, in this case there cannot be a change in the topological charge. 

The only open question now is what value the topological charge takes. To determine 

this one simply follows the previous prescription [37] . The r-functions for the type 

B breather are given by 

_^{aa) _^ exp[(Ta(a; + ^vt) + p + ijOa] + exp[(7a(.T - ivt) + />' - ijda 

- exp[C + 2c7a .T - f / )+] , 
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where a = h — a. Because the topological charge is time independent one can set 

t = 0. Also, one can substitute exp{aax) = z, p = p' = i{TT -\- ^) with e E IR and 

infinitesimal. The r-function is then given in the compact form 

r f ' ' = l - 2 ^ c o s ( A ) e ' l - ^ 2 e ^ + " ^ 

Let f j be defined as before. The start and end point of the curve traced out by f j 

as x goes f rom —oo to oo are, in this case the same, f j { x = ± 0 0 ) = 1. Solving an 

equation for the imaginary part of f j one finds that these are also the only points for 

which the imaginary part vanishes. Therefore the winding number k is zero, because 

the curve cannot wrap around the origin. Moreover, since the change of arguments 

of f j as X goes f rom —00 to 00 is zero, the topological charge of any type B breather 

is deduced to be zero. In a sense, type B breathers are sine-Gordon like breathers. 

The constituent solitons are of opposite topological charges such that the resulting 

breather has zero topological charge. In fact, as wi l l be discussed in the next section, 

type B breathers do not come f rom a sine-Gordon embedding in the theory. 

3.3.1 Topological Charge and Representation Space 

I t is natural to expect that the topological charges which have been derived in the 

previous calculation lie in the tensor product representation of the fundamental re])re-

sentation associated with the topological charges of the constituent solitons. In fact, 

for the type A breather, with the exception for breathers built f rom species (77 4-1) in 

the a^2nJri cases, the topological charges lie in the fundamental representation which 

is a component of the Clebsch-Gordan decomposition of the tensor product represen

tation. For type B breathers and the exceptional cases above, the topological charge 

(which is zero) lies in the singlet representation component of the Clebsch-Gordan 

decomposition of the tensor product representation. 

For the non-zero highest topological charge, the first step is to show that i t lies in 

the Tl\2amo<ih fundamental representation. This wi l l be shown using a combination 

of Weyl transformations [37] . Then the second step is to show the other topological 

charges are related to the highest charge by a special Coxeter element of the Weyl 

group. I t is convenient to write the highest charge (3.26) as 

(1) ^ mod h 
= 2^ 7 0!j, (3.28) 
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where b = h — [2a mod h). Because of the Z2 symmetry of the simple roots, it is 

necessary only to consider the case 6 < ^ . The notation [x] means the largest 

integer less than or equal to x, hence for h even, | = and for h odd, | = 

Furthermore, (3.28) can be rewritten in terms of the fundamental weights Xj defined 

by "^^2°^ = (̂ jX- as follows, 

f/J^) = ^ { 2 [ 6 mod h] - [2b mod / i ] } A i -|- ^{^[hn mod h\ - [b{n - 1) mod h]}X„ 

n-l J 
+ • r { 2 [ ^ i mod h] - [b{j - 1) mod h] - [b{j - f 1) mod h]]Xj. 

Then the following can be demonstrated easily, 

1 j = n, 

0 or - 1 j = 7?, — 1, 

0 or - 1 or 1 I < j <n - 1. 

The part qi^^ • a-j = — 1 for j < n — I wi l l be demonstrated in the following. Let, 

bj = ch + d where d < b and c > 0, thus j = 1 is excluded. Then with (3.29) one 

finds that, 

9(1) . aj = ^ { 2 [ / > i mod h] - [b{j - 1) mod h] - [b[j - f 1) mod h\] 

= U2d - i d - b ^ h ) - [ d + b)] = - \. 
h 

There are (6—1) terms of q^"^ • a-j = —I iov j < n — I since this happens only when 

d < b. Furthermore, i t is straightforward to see that for 1 < j < 7?. — 1 

Thus, i f the scalar products of f/a^' with the simple roots [aj] are written as a row 

vector, i t has the entry 1 at the n^^ position and there are (6—1) pairs of ( 1 , - 1 ) to 

the left of i t , 

g ( i ) . { a , } = ( 0 , . . . , 0 , 1 , - 1 , 0 , . . . , 1 , - 1 , 1 , - 1 , . . . , 0 , 1 ) , 
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the j * ' ' entry of the row vector on the right-hand side is (yi^' • QJ. 

It is also elementary to see the following. Suppose a weight 71 has a scalar product 

wi th the simple roots 71 • {oj} = ( 0 , . . . , 0 ,1 , —1,0 , . . . , 0). Consider the VVeyl reflec

tion r wi th respect to the simple root Q X - where 71 - ax- = - 1 . The action of 7- on 71 

wil l shift the pair (1 , —1) in 71 • {cxj} one step to the right, i.e. r : 71 —> 7I with 

7 ' i - K } = ( 0 , . . . , 0 , 0 , 1 , - 1 , . . . , 0 ) . 

For a weight 72 which has 72 • {ccj} = ( 0 , . . . , 0 , 1 , — 1 , 1 , . . . ,0) , consider the Weyl 

reflection 7 ' ' wi th respect to the simple root a .̂ where 72 • O f c = — 1 . The action of 7-' 

on 72 w i l l give 7 , where, 

7 2 - K } = ( 0 , . . . , 0 , 0 , 1 , 0 , . . . , 0 ) . 

So, using a combination of these Weyl transformations, qi^^ can be transformed into 

a fundamental weight, gP' —> A, where 

A - { a , } = ( 0 , . . . , 0 , 1 , 0 , . . . , 0 ) . 

Since there are (6 — 1) pairs of ( 1 , - 1 ) in the row vector<ya '̂ • {aj}. then after these 

combinations of Weyl transformations the entry 1 wil l appear at the position 77 — 

(6 — 1) = 2a mod h. Hence the highest topological charge qi^^ lies in the fundamental 

representation TZx 
2a mod b ' 

Recall that the rest of the topological charges are obtained by cyclically permuting 

the simple roots and QQ, (3.27) . This cyclic permutation is the same as the action 

of the following Coxeter element of the Weyl group on qi^\ 

7 - i r 2 . . . r „ , (3.30) 

where Vj is a Weyl reflection with respect to the simple root aj. Then, the topological 

charges are related to the highest charge by, 

^ » = - ^ H ^ ^ (3.31) 

Note that the ordering of Weyl reflections above is special, other orderings do not 

necessarily relate one topological charge to another. The relation (3.31) is straight

forward to see using the fact that, 

(^tc(aj) = " j + i foi'i = 0 , 1 , . . . , 77 (3.32) 
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where the simple roots and QQ are labelled modulo h. Further examination of (3.27) 

shows that the set of topological charges {^a''^} coincides wi th the topological charges 

of the species 2a mod h single solitons. 

The next task is to show that "T^Aoamod/. ^ component of the Clebsch-Gordan de

composition of TZxa ® ^ A a - This wi l l be shown using a conjecture attributed to 

Parthasarathy, Ranga Rao and Varadarajan [103] . The PR.V conjecture may be 

stated as follows: let 7 be a unique dominant weight of the Weyl orbit of 7 = X-\-U>I.L 

for any u in the Weyl group and A , ^ are highest weights, then 71=^ appears with mul

t ip l ic i ty of at least one in the decomposition of 'JZx®'R^, where Tlx and 71^^ are finite 

dimensional irreducible representations with highest weights A and p respectively. 

This conjecture has been proved recently [104] ; it was first used in the context of 

affine Toda theories by Braden [105 . 

For convenience of calculation, one can write the fundamental weights of the Lie 

algebra An as follows, 

A {h - a)j " a { h - j ) 

By the Z2 symmetry of the simple roots of An, one has to consider only the case 

« < [ T ] - Choose u> to be the Coxeter element defined in (3.30) . Then, remembering 

the action of this Coxeter element on the simple roots, c.L (3.32) , it is easy to show 

that 

Aa + OJtc'^a = Aoa. 

I t is obvious that X2a is a unique dominant weight of the Weyl orbit. Thus by the 

PRV conjecture Tlx.^^^^,, C Hx^ O Tlx,. 

This completes the claim that all the topological charges lie in the same fundamental 

representation '^X2amodii ^h ich is an irreducible component of 7̂ ;̂ ^ ® T ^ A a i 

However, as noted in the previous calculation, the number of topological charges is 

h = gej(2a h) is generally less than the dimension of T^X2amodk- ^̂ ^̂  topolog

ical charges of type A breathers, normally do not fill the fundamental representation 

'Rx2amo<iir Cnly particular combinations of the topological charge of the constituent 
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solitons can make up a breather. A special case of the type .A breather is when the 

constituent solitons come f rom the fundamental representation 'R\^ which is self-

conjugate, this happens for T^A^+i in the representation of A2n+i- This breather 

belongs to both type A and B. 

For the type B breathers and the exceptional case above, the fundamental representa

tions of its constituent solitons are conjugates of each other (or self-conjugate). Thus, 

the topological charge of these breathers wi l l lie in the tensor product ® ^ • A / , _ „ -

Using the PRV conjecture as before, i t can be shown that 

Xa + i^tch-a = 0. 

Hence, the t r iv ia l singlet representation appears in the Clebsch-Gordan decomposi

tion of this tensor product. I t is in this singlet representation that the topological 

charge lies. 

3.4 Sme-Gordon Embedding 

Automorphisms of the Dynkin diagram can be used to reduce an affine Toda theory to 

another affine Toda theory with fewer scalar fields [17] . Using this reduction method, 

Sasaki noted that in the alP affine Toda theories with a real coupling parameter, there 

are ways to reduce some members of the a\P family to the theory, i.e. the sinh-

Gordon theory [106] . The same procedure can be applied in the case of complex 

Toda theories. Define the solution to the equation of motion (1-11) as 

<̂  = A'0 , (3.34) 

where p is some vector to be determined. Then (1.11) becomes 

pd'^ifS^P) = 7777- oj (e'^"^-^"^ - e'/^«o-^"/') . (3.35) 

The aim is to reduce (3.35) above into the sine-Gordon equation of motion by choos

ing a suitable p 

pd\/3^l^) = im^p [e'^"^ - e-'^'^) - -2m^ps\n[(34>). (3.36) 
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There are two kinds of reductions. A direct reduction results when several nodes 

of the afRne Dynkin diagram which do not have a direct link are identified. When 

linked nodes are transposed, this results in a non-direct reduction. 

One can reduce the a^o^-^i theories to the cS^^ theory using a direct reduction by 

choosing / i as follows [106] , 

= Q i + 03 + . . . + a2n-\ + Q:2n+1-

The vector / . f i is an invariant vector under the Z^+i symmetry which identifies QJ —> 

a j + 2 - Projecting the simple roots of a^2il+l A î subspace gives the simple roots of 

â ^̂  w i th mult ipl ici ty {n -\- 1), 

Oj • ^L\=2 or - 2, 

for j odd or even respectively. There are two choices of jjL for the non-direct reduction 

106], 

/f 2 = Ctl + Ot-l + Q'S + a'6 + . . . + a 4 i i - 3 + 014,1-2 •, 

— ao + as + Oq + a j + . . . + Q'4n-2 + tt4ii-l, 

in the above, 113 is obtained f rom /.lo by cyclically permuting the simple roots of a^|,Li 

once. Together wi th the vector /.ii, these three vectors are invariant under the Z„ 

symmetry which identifies QJ - > The simple roots of a[]^_i can be projected 

to fj,2 or 1.13 giving the simple roots of a^^^ with multiplicity 2n. 

In terms of the single soliton r-functions (1.41) , direct reduction forces some r-

functions to be equal leaving only two different r-functions, 

J") _ _(°) _ _ J") and T^") - r^"^ - - r^"^ 37^ 

wi th 

Since uj^ ~ e x p ( ^ ^ j ) , i t is clear that for the ci2!i+i theories, only solitons of species 

a = [n + I) are the true sine-Gordon solitons embedded in the theory. For the non-

direct reductions, one has to have the following condition for the r-functions. Using 
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/Lio yields, 
J") _ ^ ( « ) _ J") _ _ J") _ ^(") 

^0 ~ 3 ~ '4 — • • • — '4,j-4 — ' 4 r j - l i 

^(a) _ Ao) _ M _ _ (a) _ (a) 

and for the choice of /ia, 

'O ~ ' l ~" '4 — • • • — '4,1-4 — ' 4 n - 3 ' 

J^) _ J^) _ ^(«) _ _ J ° ) _ ^(°) 
^2 - ^3 - ~6 - • • • - Un-2 - ~4n-l-

These conditions on the r-functions of a ^ i - l ^^^^ never be satisfied. This is because 

for h — 472, the factor cû  cannot be equal to cj^"''^ since j and ( j + i ) are coprime. 

Thus, the solitons associated with the middle spot of the Aon+i Dj-nkin diagram are 

the only sine-Gordon solitons embedded in the ii2n-\-\ ^ f f i ^ ^ Toda theories. Hence, 

these solitons can bind together resulting in sine-Gordon breathers, i.e. type A 

breathers wi th zero topological charge. Note also that type B breathers by the above 

definitions are not formed f rom any sine-Gordon embedded solitons. 

3.5 Examples 

In this section the case of a'^^ and â ^̂  breathers wil l be given as examples. 

3.5.1 

The number above each spot on the Dynkin diagram are the number of topological 

charges of the type A breathers constructed f rom solitons 

Fig. 3.2: Dynkin diagram of az with the number of breathers for each node 
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associated with each spot (see fig. (3.2)). The topological charges of the type A 

breather, qi^\ are listed below. The subscript denotes the species of the constituent 

solitons and the superscript labels the topological charges, qi^^ is the highest topo

logical charge. 

and, 

(1) 1 ^ 1 

(2) 1 1 

4'^ = 0. 

The topological charges {qs} are the same as {qi} and are not listed above. A l l type 

B breathers have zero topological charge. 

The topological charges { q i } , and hence also {(73}, lie in the second fundamental 

representation, TZx^ C T^Ai ® "^Ai or TZx^ ® TZx^. The dimension of TZx^ is 6, and 

there are only 2 topological charges for 4>n or (̂ 33 breathers. Thus, these topological 

charges do not fill up TZx^. For qo-, as explained in the previous section, this is an 

embedded sine-Gordon breather, hence q2 = 0. 

Since topological charges are conserved quantities, i t follows that for both type A 

breathers and type B breathers is equal to the sum of the topological charges of 

the constituent solitons. Thus only a special combination of constituent solitons can 

make up a breather. 

3.5.2 a[^^ 

The solitons of this theory are associated with the nodes of the Dynkin diagram for 

A4. 

0 - 0 0 ^ 

Fig. 3.3: Dynkin diagram of with the number of breathers for each node 
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The number of breathers for each node can be found in figure (3.3). The topological 

charges of type A breathers in â *̂ are listed as follows. Breathers from species a = 1 

solitons: 

(1) 3 1 4 2 
q\ = -Oil + -02 + -0;3 + - Q 4 , 

(2) 2 1 1 2 
= - - a , - f - a 2 - - a , + - a , . 

,(3) 1 

(4) 3 1 1 2 
q\ - - « i + - t t 2 - -as + - « 4 , 

5 5 5 5 

-.(5) 2 1 1 3 
q\ = - - a i + -02 - -Q 's - - 0 4 . 

0 0 i) 0 

Breathers f rom species a — 2 solitons: 

1 2 3 4 
ao -f- + 7 ' 

0 5 

3 2 1 

5 0 
1 3 2 1 

C ' = 5 « i - 5 « 2 - - a 3 - - a 4 , 

1 2 2 1 
9 9 ' ' = + 5*^2 - -C13 - - 0 : 4 , 

/2 

/2 

,(3) 
?2 

-,(4) _ 

(5) 1 2 ^ 3 1 
<72 - 7 a i + 7(^2 + -03 - -0:4. 

0 0 o 0 

q>, = -ai + -ao -f- ^ " 3 + 704, 
5 D D 5 

5 5 0 5 

Breathers f rom species a = 3 solitons: 

4 3 2 1 
93 = ^ " 1 + ^ " 2 + - " 3 + - 0 : 4 , 

,(2) 1 3 2 1 
Qs = - 7 0 1 + 7<^'2 + -03 + -0:4, 

0 0 0 o 

,(3) 1 2 2 1 
'̂ 3 = - 5 " i - K ^ ' 2 + 5 " ^ + 5 " ^ ' 

1 2 3 1 
<?3 = ~ ^^^2 - -0!3 + - " 4 , 

.(5) 1 2 3 
= - 5 " ^ - 5 ^ ' 2 - 5 " ^ - r ' ^ -
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Breathers f r o m species a = 4 solitons: 

(1) 2 4 1 3 
q\ = g " ! + ^ " 2 + - 0 3 + 

(2) 3 1 ^ 1 2 

(3) 2 1 1 3 
ql = r o i - - 0 2 + - 0 3 + - 0 4 , 

5 5 5 5 

(4) 3 1 4 2 
q\ = - - o r - - a 2 - - 0 3 - - 0 4 , 

(5) 2 1 1 2 
= 5 0 i - - a 2 + - 0 3 - - 0 4 . 

These topological charges lie in the following fundamental representation, 

{ g f ^ } € nx,cnx,®nx,, 

{qi'^} G 71A, C 7 1 A 3 ® 7 1 A 3 , 

{ ^ f ^ } € 7^A3 c 7 ^ A , 0 7^A,. 

There is no sine-Gordon embedding in this case and the topological charges of all 

type B breathers are zero. 

3.6 Conclusions 

Following the example of the sine-Gordon theory, classical oscillating soliton solutions 

of the af,̂ ^ affine Toda theories have been constructed as bound states of soliton pairs. 

These breathers are classified by the species of the constituent solitons. These can 

either be two solitons of the same species (type A breathers) or solitons of anti species 

(type B breathers). 

The topological charges of these breather solutions have been calculated. Type 

A breathers carry topological charges which lie in the fundamental representation 

^hamodh C T^Xa ® ^^Aa, wlierc CI IS the species of the constituent solitons. To be 

precise, these topological charges coincide with the topological charges of the single 

100 



soliton of species 2a mod h. Therefore the fundamental representation 'T̂ Aonmod/. '-̂  

normally not filled up [37] . I t is a mystery that only certain combinations of the 

topological charges of the constituent solitons are allowed to bind together to yield a 

breather. A n understanding of these phenomena is far f rom complete. I t is conjec

tured that in the quantum theory there are more states than classical solutions [41] . 

In other words, the topological charges in the quantum theory have been conjectured 

to fill up the associated fundamental representation. As part of the spectrum of the 

quantum theory corresponds to classical soliton and breather solutions, one might 

have thought that the classical breather solutions give at least some of the missing 

topological charges. This appears not to be the case, at least for breathers with two 

constituent solitons. 

Exceptional cases of type A breathers are those constructed f rom solitons of species 

(72 -f- 1) in the theories. These are embedded sine-Gordon breathers which 

belong to type A and type B since both carry zero topological charge. They differ 

f rom the type B breathers as type B are sine-Gordon like breathers. I t has been shown 

that in both of these cases, the topological charge lies in the singlet component of the 

Clebsch-Gordan decomposition of the tensor product of a fundamental representation 

with its conjugate representation. 

Of no less important interest are breathers in other affine Toda theories. I t would 

be interesting to know how many breathers can be constructed f rom their solitons. 

For the d^^^ theory this has been done in [101]. 
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Chapter I V 

Discussion and Outlook 

4.1 Affine Toda Field Theories with Boundaries 

The conditions for classical integrability of affine Toda field theories with a boundary 

are well established now [85-88]. For the quantum theory integrability has only been 

assumed following the ideas of Cherednik [71]. This has led to the discovery of 

reflection matrices for the quantum theory [79-84]. Unfortunately there seems to be 

a multitude of possible reflection matrices and their correspondence to particular 

boundary conditions is far f rom being well understood. It might be interesting to 

t ry to show explicitly, perhaps for a special case of affine Toda field theory first, 

that Cherednik's assumptions are indeed valid. I t might be that this investigation 

would show that there are certain selection rules for the boundary conditions and the 

reflection matrices. 

I f that should prove too difficult one could t ry to adopt the perturbation scheme used 

by K i m [83,84] for the natural Neumann condition to work out reflection matrices for 
(2) 

non-vanishing boundary conditions. This could be done in the a.," case where there 

is a continuous connection between the natural Neumann condition and non-zero 

boundary conditions for the classical integrability. 

Another option for future research would be to perform numerical checks on the 

theory as Watts and Weston [66] have done for the mass ratios of a particular affine 

Toda field theory. The difficulty of this approach would be that i t is not easy to 

reduce the error of numerical calculation easily to find evidence for two values to 

be the same. Sti l l , i t might give a surprising clue if the mass ratios for states in 

the boundary theory should turn out to be very different f rom the ones of the bulk 

theory. 
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4.2 Breathers in afRne Toda Field Theories 

Afte r the successful calculation of breathers in the a[P theory [95] one should nat

urally look for breathers in other theories. One would expect them to exist and it 

would be interesting to see whether their topological charges behave in a similar 

manner to the ones in a^P. In part this has been done for the case of d[^^ in [101 . 

Because the search for breathers was motivated by the desire to find some of the 

"missing" topological charges in (Sn^ and failed to provide them, one is tempted to 

review the situation and check whether there are actually missing solutions which 

have been overlooked. Recently Beggs and Johnson [107] published a preprint in 

which they claimed to have new solutions for ali \ The example they discuss, ag^^ 

gives a valid r function but they are not well behaved because their energy momentum 

is not real. Also, their topological charges are not well defined. It is possible to show 

in a similar manner as in chapter 3 that the r functions pass through zero and are 

therefore not well behaved for any choice of parameters [108]. However to show this 

for the general case seems very difficult . But the fact that the example has faults 

casts doubts on the conjecture that this is a way to find new solutions. 

One assumption has always been that the quantum theory would provide some ex

planation for the "missing" topological charges but so far this has not been the 

case. Breathers in affine Toda field theories however play an important part in the 

calculation of soliton S'-matrices [42-44 . 

Af ter the disappointment of not finding the charges one could perhaps try to find 

some arguments why they do not exist since the evidence of their non-existence seems 

strong. 
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Appendix A 

Lie Algebras 

For the description of Toda theories a certain understanding of Lie-algebraic concepts 

is necessary. For affine Toda field theory infinite dimensional Lie algebras wil l be 

used. St i l l , i t is easier to with finite dimensional Lie algebras and generalise to 

certain infinite dimensional Lie algebras, Kac Moody algebras. 

A . l Finite Dimensional Lie algebras 

A complete and rather exhaustive description of finite dimensional Lie algebras can 

be found in [109]. A finite dimensional Lie algebra L is a vector space over IR or (P 

wi th a bilinear mapping [ • , • ] : L x L L called the commutator or bracket which 

satisfies the following conditions: 

V « G L : [ f l , o ] = 0 (.4.1a) 

Va, 6, c G L : [a, [6, c]] -|- [c, [a, b]] + [6, [c, aj] = 0. (.4.16) 

The relation {A.la) together with the bilinearity implies that [x,y] = — [ J / , . T ] for all 

x , y G L . The condition (AAb) is known as the .Jacobi identity. The bracket [•, •] can 

usually be thought of as being the usual commutator for k x k matrices, M, N G 

Mk : [ M , K] = MN — NM. But there are cases where i t is, for instance, the Poisson 

bracket { • , • } , e.g. in classical mechanics for generalised momenta, coordinates and 

the Hamiltonian. By introducing a basis { T Q } for the Lie algebra L much of its 

behaviour is encoded in the structure constants / ^ j ^ . They are given as the coefficients 

of the brackets expressed in terms of the basis elements 

vTa,ne{T,}:[Ta,n] = r,kTa. 

The axioms (AA) can be expressed in terms of structure constants. 

A sub-algebra U of a Lie algebra L is a sub-vector space of L which is closed under 

the bracket. I f for a sub-algebra I , I C L , for all .T G L and y G I the bracket 

of these two elements is in I , [x,y] G I , I is called an ideal of L . The derived 
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algebra L ' of a Lie algebra L is given by all linear combinations of brackets of L , 

L ' = { x | 3 y , z G L : x = [y,z]}. L ' is an ideal. A simple Lie algebra is a Lie 

algebra L which has {0} and L as its only ideals and the derived algebra L ' is not 

zero, L ^ 0. For most applications and calculations involving Lie algebra one needs 

a representation of the Lie algebra. A representation $ of a Lie algebra L is a 

homomorphism f rom L to the endomorphism of a vector space V , i.e. the set of 

linear functions / : V V. 

$ : L ^ End(VO-

So for each element x G L $ finds a linear mapping in V. This linear mapping can 

then be expressed in a basis of V. I f V is finite dimensional there is a matrix M $ 

for each The dimension of V does not have to coincide with that of L. I f $ is a 

monomorphism the representation is called faithful. More generally representa.tions 

are classified as reducible and irreducible, depending on whether or not there is a 

subspace W C V which is invariant under the action of the Lie algebra, W ^ 

{ { 0 } , V}. An important role plays the adjoint representation. As L itself is a vector 

space one can look at the representation 

ad : L ^ E n d ( L ) . 

The mapping is specified in terms of elements x 6 L : ada: = [x, •] G E n d ( L ) . The 

image of the adjoint representation is the derived algebra, its kernel is the centre of 

L . These linear functions can then be expressed as matrices with respect to a basis 

of L . Often the set {x\x G e n d ( L ) , 3y G L : x = [y, •]} C E n d ( L ) is called the adjoint 

representation of L , though i t is actually only Im(ad). 

Also there is the Killing form K which is a symmetric bilinear form on L 

/v : L X L ^ (T , (x, y) H-> K{x, y) = Tr(adx ady). 

The Ki l l ing f o r m of a Lie algebra is non-degenerate, i f and only i f the Lie algebra is 

semi-simple. One way to check whether a given bilinear form is degenerate or not 

is to compute the determinant of the matrix in a particular basis. I f and only if the 

fo rm is degenerate the determinant wi l l be zero. In the case of the Kil l ing form the 

matr ix is given in terms of the structure constants as 
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A Lie algebra is called compact if the matrix for the Kil l ing form is the negative of 

the unit matrix 

M{K) = -iS,,). 

This is only the case if the structure constants are totally antisymmetric. 

The maximal Abelian sub-algebra of a Lie algebra is called the Cartan sub-algebra, its 

dimension is called the rank of the Lie algebra. A compact Lie algebra has a unique 

Cartan sub-algebra. Any Lie algebra can be decomposed into simple, compact Lie 

algebras 

r = l 

A . 1.1 C a r t a n decomposition 

Assume L is simple and find the Cartan sub-algebra H denoting a basis of i t by {Hi} 

I = 0,... ,r. By definition all elements of the basis commute 

[HuHj] = Oyi,j G { 0 , 1 , . . . , r } . (A:2) 

W i t h these elements Hi find basis elements Ea for the remaining algebra which obey 

H^E""] = a ' E " a G H*. (.4.3) 

The element a G H* is called a root. The set of all roots is denoted by If a is 

a root so is —a. The step operator corresponding to the negative root of a is 

give by hermitian conjugation E " * = (£ '*)^. The commutation relation for the step 

operators are as follows: 

( e ( a , ^ ) £ ; « + ^ i f f -o + Z? G $ 
[E-,Ef^] = \ 2 ^ ma =^-(3 (A.4) 

0 otherwise. 

A basis satisfying all relations (A.2) to (A.4) is known as a modified Cartan-VVeyl 

basis. For each root a G $ there is an su{2) sub-algebra of L , generated by 

E", E~°' a.nd'^^^. This fact is used to show that is an integer for any roots 

o, /? G 
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An important tool when dealing with roots is the Weyl-reflection. The VVeyl-

reflection r acts on roots as a permutation 

ro : $ - > $ , a H-> r^ia) = a -

The group generated by this transformation is called the Weyl-group. To classify 

all possible simple Lie algebras one has to take a linearly independent subset of all 

roots $. This subset A = { o j } is chosen in such a way that any root can be written 

as linear combination of the basis elements with integer coefficients 

r 
Q = ^ UtOi n, G V a G ^. 

Actually all roots can be written with either the coefficient all being positive or 

negative. Hence they are called positive or negative roots, and the set of all roots 

can be writ ten as sum of negative roots and positive roots $ = U 

The height of a root is the sum of its coefficients 

r 

ht(Q;) = J2 
1=1 

Simple groups turn out to be completely detern-iined by all scalar-products of their 

simple roots. Writ ten as a matrix, known as Cartan matrix, this is 

_ 2a,a, 

The diagonal of this matrix is obviously 2 for all Cartan matrices. The common 

feature which all Cartan matrices share is that the off-diagonal entries are either 

zero or negative integers. An alternative way to describe a simple group is the 

Dynkin diagram. Each simple root is represented as a dot. Neighbouring roots are 

connected by CijCij lines. They correspond to the angle between the roots. An 

arrow points to the longer of two roots if they are of different length. 

A.1 .2 Weight representations and the Chevalley basis 

For any finite dimensional representation of a simple Lie algebra the action of the 

elements of the basis of the Cartan sub-algebra on the basis elements of the repre

sentation can be diagonalized 

FI\lJ,) = 
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The vector /.t = ( /n , • • • ) A*'-) is called the weight vector. I t can be shown that 

the eigenvalue of acting on |/:i) is an integer. The set of all |;<) is called the 

weight lattice A m / ( L ) . The root lattice A, ( L ) is a subset of the weight lattice. A l l 

Aj G A m / ( L ) satisfying —^p- = S^j form a basis of the weight lattice. Any weight 

A G Ai4/(L) can be writ ten as linear combination of this basis with integer coefficients 

A = Yli=i Ai '^ i , ni G I f all coefficients ni are positive the weight is called 

dominant. I f no is a weight corresponding to the state Ino), the differences I-IQ —/t for 

any other root /.i can be expressed as sum of roots. If further for all positive roots a, 

E°^\Ho) = 0, then this difference can be expressed using positive roots only. In this 

case i-iQ is called a highest weight. The weights of the adjoint representation are the 

roots. The highest weight is denoted as ^ and its height is the Coxeter number k. 

The Chevalley basis can be derived f rom the Cartan Weyl basis as follows. Set 

[Y 2a-H 
ea = \ — and ha - — 5 — 

V a-

For simplici ty the quantities wi l l be numbered by the index of the simple root 

Ca,- = Cj, e_a, = /,:, and ha- = hi. 

The commutators for this basis turn out to be 

[hiJij] = 0, [hi,ej] = CjtCj, [hiji] = - C j j j , [ e , , / , ] = Sijhj. 

Now a few words on gradings of algebras. One can define the following operator T'^ 

which grades the Lie algebra L 

3 _ l^2a-H 

Grading means that [T'^,E"] = ht{a)E°', or written in a multiplicative form with 

5 = e x p ( ^ ) 

SE^'S-' - e^^^ '^ ' i?" = e T M o ) ^ o ^ ^ht(a)^o 

wi th u the / i * ' ' root of unity. So, the algebra exhibits a grading 

L = L o ® . . . ® L „ _ i . 
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The subscripts denote the height of the root associated with each operator. In par

ticular Lo is the Cartan sub algebra. 

A.2 Infinite dimensional Lie algebras 

Untwisted affine Lie algebras are a particular sort of infinite dimensional Lie algebras. 

They are closely related to the simple Lie algebras discussed in the previous section. 

As for the simple Lie algebras they can be classified by Dynkin diagrams and Cartan 

matrices. These generalised Cartan matrices are those of the simple algebras with 

one column and row added. Similarly the Dynkin diagram has simply one dot added. 

The algebras are described by introducing the concept of a loop algebra. For this 

take the algebra of all Laurent polynomials £ = [A, A~^] with complex coefficients 

over G. Define the following bilinear function 

</.: £ X £ ^ 

(P,Q)^4>{P,Q) = ResC-^Q). 

W i t h the Laurent polynomial written as 

-l-oo 
P = ^ c„A", Res(P) = c _ i . 

n=—oo 

The function cf) fulfi ls the two following equations: 

</.(g,p) = - 0 ( p , g ) 

<^(Pg, R) - f cf>{QR, P) + (j>{RP, Q) = Q V Q , P, /? G £ . 

This is used to define the loop algebra £ ( L ) = £ ®c h f L with the bracket 

[-,•] : £ ( L ) X £ ( L ) ^ £ ( L ) 

{P®luQ®h)^[P®luQ®l2] = PQ® [/i, /2]. 

A bilinear £ on £ ( L ) is defined by 

(•[•) : £ ( L ) X £ ( L ) ^ £ 

{P®li,Q®l2) ^ {P®luQ®l2) - PQ®{li\l2)-
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A derivation D on C can be extended to one on £ ( L ) by 

D{P®k) = D{P)®li. 

A (F-valued cocycle ^ on on £ ( L ) is defined as 

ia,b)-^^{ab) = Res{~\b) = {lij2)4>{P.Q) a = P ® lu b = Q ® lo. 

This functions has the following properties 

»I'(a,6) = -vp(6,a) 

* ( [a , 6], c) - f *([6, c], a) + *([c , a], 6) = 0. 

The one dimensional extension of £ ( L ) is £ ( L ) = £(L)- |-(F A ' w i t h [a-|-/./ / \ , 64-r//\'] = 

[a, 6] + I ' ( a , 6) A'. 

Now, the affine Lie algebra L associated with the simple Lie algebra L is given by 

adding a derivation d = A ^ which provides a homogeneous grading of L with 

dK = 0 

d,X'^®li]=mX"'®li for lieC{L) 

L = CiL) ®Gd = £ ( L ) © A' © f/ 

where the last line is the decomposition of the Lie algebra. The bracket of L is given 

by 
[(A"' (g) L i ) © ^1 A' © 7/if/, (A" ® L2) © 1.12K © ipJ = 

(A ' "+" ® [ L i , L2] + 7?iA" ® L2 - r?2mA"' ® L i © mSin, -7z(L|L2) A'. 

The Cartan sub algebra / i of L is r -(- 2 dimensional if r — rank L and 

h = h®(SK®Gd. 

Its Chevalley basis is 

hi = A° <8) //«••, e, = A° ® E"\ fi = A° (g) E'"'* i / 0, 

ho = A° 0 / f - * , eo = A^ ® /o = A - i 0 E * 
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in terms of the Chevalley generators of L . So, the new Chevalley generators satisfy 

[lii,hj] = 0, [lii,ej] = Kj,ej, [hu .ft] = -t<ji.f], [ e t j j ] = 6ijhj 

and determine the algebra together with the Serre relation 

(ade.y-^^''^ej = 0 , (ad/,f-^^••^•/, = 0, i ^ j . 

K is defined as the extended Cartan matrix of the algebra L defined like the one for 

L but wi th an additional column and row for 4* = -CCQ. A complete list of Dynkin 

diagrams can be found in Kac's book [46 . 

A.2.1 G r a d i n g , Coxeter Numbers and Weight Representations 

When expressed in the Chevalley generators the algebra L exhibits a grading struc

ture wi th the element d' — clh - f AQ ® 

d'ji,\ =, [f/-,ej] = e,:, [(/',/,] = - f i 

where hi and di span the Cartan sub algebra. Define the smallest set of natural 

numbers for which 

= Kijiiii = 0 and ^ = Ki-jUj = 0 

T 2 

then m = — T ^ . The Coxeter number and the dual Coxeter number are defined as 

h = X ] , n i and h — Yliirii respectively. The element x = ^ = ^^-^ is central. I f 

the central extension of L is non zero there is a highest weight representation. These 

representations are formed by a highest weight state |A) acted on by an arbitrary 

number of negative step operators. The highest weight state is characterised by the 

action of / i , 

/ i , |A ) = A( / i , ) |A) = = ^ | A ) . 

The fundamental weights Ay generate the weight lattice Aiv 

2 A ^ _ 
a] 
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The root space is similar to that of the corresponding non-affine Lie algebra with 

extra dimensions for k and d 

a^ = ( a „ 0 , 0 ) I ^0 ao = ( - * , 0 , 0 ) . 

The definition of the inner product is 

{(3l,Ci,di) • {p2,C2,d2) = fSip2 + Cid2 + C o f / l . 

W i t h an arbitrary final component the fundamental weights take the form 

A, = ( A „ m t * V 2 , 0 ) t + 0, Ao = ( 0 , * V 2 , 0 ) . 
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