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Abstract 

The synchrotron emissivity distribution of the Milky Way Galaxy has been 
modelled from the 408 MHz allsky survey of Haslam et al.(1982) after separation of 
its thermal component with the help of I R A S 60 micron emission(Broadbent et al., 
1989). We have refined the spiral arm pattern in the inner part of the Galaxy by 
including a bar at the Galactic centre and an updated the Galactic distance scale 
and obtained fitted free parameters. At 408 MHz, there is very little absorption in 
the interstellar medium and the line of sight distribution of synchrotron emissivity 
was inferred mainly from its presumed relationship to the other tracers of spiral 
structure via these fitted free parameters. At lower frequencies, the absorption of 
synchrotron emission due to thermal electrons becomes significant and can give 
direct information of the nonthermal distribution along the line of sight. We have 
modelled the distribution of thermal electrons according to our synchrotron arm 
model and an alternative model based on pulsar dispersion measures using the 
Galactic rotation curve and the surveys of the distribution of H l 6 6 a emission. We 
have then used our synchrotron model applied at lower frequencies including the 
absorption to compare with the surveys of Dwarakanath et al.(l990) at 34.5 MHz 
and Jones and Finlay(1974) at 29.9 MHz. The result confirms that the absorption 
model of the synchrotron emissivity in the Galactic plane is broadly correct and 
illustrates the potentials of the absorption technique. However we were not able 
to distinguish the two models of ionised hydrogen spiral structure. To do this, 
recombination line surveys with improved frequency resolution are required. Using a 
new value of the cosmic ray gradient in the Galaxy from diffuse gamma-ray emission 
we obtain the separate variation of magnetic field and cosmic ray electron density. 
We give the global properties of the thermal and nonthermal emission that our 
model implies. 
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C h a p t e r 1 

Introduct ion 

A thousand miles' journey begins from the spot under one's feet. 

L A O T Z U 

1.1 Historical review 

The starting point of radio astronomy was in the experiments of K a r l G 

Jansky in 1931. He built a rotating antenna array operable at 14.6 m(20.5 MHz) in 

order to study radio disturbances. He found that he could identify the static into 

three groups as follows: intermittent and strong, intermittent and weak, and very 

steady and weak. The first two types were from local and distant thunderstorms. 

But the origin of the third type was not known. In 1932, he noted that the direction 

of this static changed gradually through nearly 360° in 24 hours. Because of this 

periodic behavior, he speculated that it might be associated with the Sun. However 

in 1933, he found that the direction of this disturbance was not in the same position 

as the Sun but came from a fixed position in space which was near right ascension 

18h and declination —10°. This position was in the general direction of the centre 

of our galaxy. In 1935, he was able to demonstrate that radiation was received 

continuously when an antenna swept along the galactic plane. A maximum in the 

emission intensity appeared in the direction of the galactic centre and a minimum 
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appeared in the anticentre direction. He concluded that the sources of this radiation 

are located either in the stars themselves or in the interstellar matter distributed 

throughout the Galaxy. He noted that if stars were the source then strong radiation 

should be observed from the Sun, but he had not detected any solar radiation. 

In 1937, Whipple and Greenstein suggested that the observations referred to the 

Rayleigh - Jeans tail of the blackbody distribution of interstellar dust at 30 K . 

In 1938, Reber made observations at frequencies 3300 and 910 MHz. The 

received power would have been greater at these frequencies if it followed the black-

body radiation law, but he was not able to detected any radiation. In 1939, he 

was at last able to detect the radiation at 162 MHz, and it also showed a marked 

concentration in the plane of the Galaxy. In 1940, he interpreted his fluxes as aris­

ing from thermal bremsstrahlung (free - free radiation) in a hot Te = 10 4 K , dense 

(n e = 1cm 3) interstellar gas. Henyey and Keenan showed that it was inconsistent 

with Jansky's lower frequency measurements which required a thermal medium with 

Te = 1.5 x 106 K . Reber(1944) interpreted secondary maxima in the longitudinal 

distribution at 162 MHz as being the directions tangential to spiral arms and con­

cluded that spiral arms existed in the directions of Cygnus, Cassiopeia and Canis 

Major. This was the first use of the galactic continuum radiation in mapping the 

structure of the Galaxy. The result confirmed that if stellar radiation produced the 

galactic radio background, then a population of radio stars quite distinct from the 

Sun was needed. 

Alfven and Herlofson(1950) considered stellar models that might produce 

extremely high radio brightness temperatures. They suggested that the emission 

might originate from highly energetic electrons trapped in the magnetic fields of 

such stars. The resulting radiation would then be synchrotron emission. Kiepen-

heur(l950) suggested a modified picture in which relativistic cosmic ray electrons 

spiral around the interstellar magnetic field and their synchrotron emission is re-
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sponsible for the galactic radio background. In 1953, Shklovsky noted that syn­

chrotron radiation should be polarized in order to explain the emission from the 

Crab nebula. It is now clear that in the frequency range 85 to 408 MHz, where the 

most complete large scale continuum surveys of the radio sky have been made, the 

major part of the emission is due to synchrotron radiation. This is termed 'nonther­

mal' emission. The remainder, the 'thermal' emission is due to bremsstrahlung of 

the thermal electrons as proposed by Reber. As we show in Chapter 2, the thermal 

component coming from an optically thin plasma has a rather flatter spectrum than 

the nonthermal component and at 5 GHz the two components contribute roughly 

equally in typical directions close to galactic latitude, b = 0°. Beyond |6| ~ 8° the 

nonthermal component dominates to much higher frequencies. As the frequency 

decreases below 85 MHz the thermal plasma begins to become optically thick and 

the thermal regions are seen in absorption. 

Mills(l959) showed that the radio continuum was correlated with the spiral 

arms of the Galaxy. Following on from this a number of workers produced models 

of the 2-dimensional distributions of the radio continuum emissivity in the plane of 

the Galaxy to fit the observed 1-dimensional profile of emission along the galactic 

plane. These distributions can be produced in two ways. Either, the 'Spiral Arm 

Method', the Galaxy's spiral arm pattern, based on other, independent, observa­

tions, can be used with a model for the variation of magnetic field and relativistic 

electron density across an arm, or, the 'Unfolding Method', the observed profiles 

may be unfolded, under some assumed symmetries to give the distribution directly. 

The Durham group has made a long term contribution to this work. French and 

Osborne(l976) applied the Spiral Arm Method by combining the spiral arm model 

of Georgelin & Georgelin, based on observations of HII regions, with the map of 

neutral hydrogen outside the solar circle of Verschuur. Comparison was made with 

the 'observed' profile at 150 MHz of Landecker and Wielebinski(1970). Brindle et 
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al.(1978) extended the model to 3-dimensions to compare with the complete 150 

MHz map. 

A disadvantage of using the Landecker and Wielebinski map was that in fact 

it was a composite of a number of surveys made at frequencies from 85 to 178 

MHz, scaled then added together, and of differing and rather large beam shapes 

(3.5° x 3.8°, 2.2° x 2.2° and 5° x 1.25°). Much improved radio continuum data were 

provided by the allsky map of Haslam et al.(1982). This was made from surveys at 

a common frequency of 408 MHz done at EfFelsberg, Jodrell Bank and Parkes, and 

smoothed slightly to a Gaussian beam with Half Power Beam Width ( H P B W ) of 

51'. Phillipps et al.(1981a), collaborating with Haslam on the prepublication data, 

from the galactic plane profile produced a map of the emissivity distribution in the 

galactic plane. This time the Unfolding Method was used to convert from 1 to 2-

dimensions the assumption being made that the galactic plane could be represented 

as being divided into 60 logarithmic spiral sections of 12° pitch angle each having 

its own emissivity level but all having the same radial dependence of emissivity. 

The Unfolding Method is straightforward to apply and can be used to obtain global 

parameters of the Galaxy such as the total synchrotron emission. The reality of the 

galactic plane distribution depends, however, on how well the Galaxy follows the 

assumed symmetry. At 408 MHz typically 20% of the emission observed at b = 0° 

is thermal although particular features in the galactic plane profile may be almost 

entirely thermal. It could be argued that without a prior separation of the thermal 

features an attempt to obtain a detailed distribution of the synchrotron emissivity 

in the plane by the Spiral Arm Method is not justified. Nevertheless Kearsey(1983) 

used it on the 408 MHz data in an unpublished part of his Ph.D Thesis. Phillipps 

et al.(1981b) then proceeded to derive a 3-dimensional model of the distribution of 

the synchrotron emissivity from the 2-dimensional map of the whole sky. Again an 

unfolding technique was used to determine the variation of emissivity with distance, 
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z, from the galactic plane. As the proportion of thermal emission decreases rapidly 

with z it is not important in this case to have a detailed separation of the thermal 

component and we believe that their deduced z-variation remains valid. 

Broadbent et al.(l989) developed a technique for separating the thermal and 

nonthermal components of the radio continuum emission based on the strong empir­

ical correlation between the former and the 60 micron infrared emission as observed 

by the I R A S satellite. Further details of this are given in Chapter 2. When it was 

applied to the 408 MHz survey it gave a clearer picture of the synchrotron emis­

sion and Broadbent concluded her thesis work with a 3-D model of the emissivity 

distribution derived by the Spiral Arm method. 

1.2 The aim of the present work 

The aim of the present work has been first to refine the model of Broadbent 

taking into account some more recent information on spiral arm structure. We have 

also rescaled the model to put the sun at the presently accepted distance of 8.5 kpc 

from the galactic centre as opposed to the 10 kpc distance which was used in all 

previous Durham models. 

By its nature a nonthermal emission region gives no direct evidence of its 

distance from the observer and judgement of the fit of the 3-dimensional model 

to the 2-dimensional observations has up to now been based only on the emission 

integrated along each line of sight. A new feature of the present work is to make 

use of the absorbing properties of the thermal component at low frequencies on 

a Galaxy wide scale to give a check on the relative distributions along the line 

of sight of the nonthermal emitting regions and the thermal, largely absorbing, 

regions. The thermal continuum does not of itself possess distance information 

but the regions of extended low density ( E L D ) ionised hydrogen gas which give 

the thermal bremsstrahlung also give a proportional intensity of recombination line 
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emission. By measuring the Doppler shift of this line emission and using knowledge 

of the differential rotation of the Galaxy one can infer the distance of the thermal 

regions. The E L D regions have appropriate optical depths for Galaxy wide studies 

at Decametre wavelengths. For our absorption studies we have used the recent 

34.5 MHz survey of Dwarakanath and Uday Shankar(1990) for the first quadrant 

of galactic longitude and the older 29.9 MHz survey of Jones and Finlay(1974) for 

the fourth quadrant. 

Although the distribution of the synchrotron emissivity in the Galaxy is in­

teresting in itself as a feature of galactic morphology, of more fundamental concern 

is the information on the distribution of galactic magnetic field and cosmic ray elec­

tron density that it contains. In the concluding chapter we examine the independent 

evidence for variation of cosmic ray electron density and the variation of magnetic 

field that this implies. 

1.3 Galactic spiral structure 

In order to calculate synchrotron emission from the Galaxy we have to 

consider its spiral structure. There have been many efforts for tracing the spiral 

arm pattern of the Galaxy. There are three main tracers: l ) the recombination 

lines of HII regions, 2) the 21 cm emission of HI gas, and 3) the C O lines associated 

with molecular hydrogen. 

HII regions surround young hot O and B type stars and are used as spiral 

tracers of spiral galaxies. HII regions can be seen optically or as thermal radio 

sources. In the plane of our Galaxy, beyond about 8 kpc from the Sun, because of 

dust it is difficult to make the optical detection of HII regions so radio measurement 

must be used. Therefore in the inner part of the Galaxy, HII regions are useful 

tracers because the ambiguity in their kinematic distances can be solved through the 

use of absorption spectra and optical measurements. Georgelin and Georgelin (1976) 
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studied the distribution of bright HII regions in the Galaxy which involved the 

determination of distance by using observations at optical and radio wavelengths. 

Distances measured from radio recombination lines are determined kinematically 

but there is a problem whether the HII region is at the 'near' or 'far' distance. 

Georgelin and Georgelin suggested that a four armed spiral pattern gives the best 

fit to the distribution of HII regions. 

The study of the spiral structure from 21 cm line observations has been based 

on the differential galactic rotation, which is the main cause of broadening of line 

profiles. In general, radiation from the various spiral arms along a line of sight will 

be received at different frequencies because the arms will have different apparent 

radial velocities. These velocity line profiles can be used to find a mean rotation 

curve i.e. the variation of the rotation velocity of gas with galactocentric radius 

assuming that the motion is all in circular orbits and is axisymmetric. In addition 

the line profile for a particular direction gives a relationship between brightness 

temperature and frequency (or velocity). In order to get the distribution of HI 

over the galactic plane, one has to convert this relationship to the density of HI 

gas in terms of distance under a certain set of assumptions. In early studies of the 

distribution of HI gas in the Galaxy, it was assumed that the gas was optically thin 

with a constant spin temperature and the motion of the gas was in a circular orbit. 

Burton(197l) found the evidence of non-circular motion of H I gas with deviations 

from the mean rotation curve of the order of ± 1 0 k m s - 1 , which is a few percent of 

the circular rotation velocity. Weaver(1974) looked for the curves and loops in the 

longitude-velocity diagram of the Berkeley 21 cm survey but still assumed circular 

rotation. Later studies of density and kinematic variation model had to consider 

the density wave theory. Simonson(1976) constructed a spiral pattern consisting of 

two arms with a small pitch angle originating 4 kpc from the galactic centre with a 

multiple arm structure of larger pitch angle beyond the solar circle. 
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To study the galactic structure from C O emission line surveys is a relatively 

new approach but there has been much discussion about their suitability. Cohen et 

al.(l980) show good evidence of spiral arm structure from C O data. These features 

also appear in the 21 cm surveys but the C O surveys showed a higher contrast 

of intensity between arms and interarms than in 21 cm measurements. Cohen et 

al.(l985) and Grabelsky et al.(1985) studied a similar C O survey made in the fourth 

quadrant and showed that the Carina arm can be clearly distinguished. Solomon, 

Sanders and Rivolo(1985) concluded from another C O survey of the north side of 

the Galaxy that it is only the warm molecular clouds that are the spiral tracers 

and the cold clouds have a more widespread distribution. We should bear in mind 

that H 2 and C O prevail in the central and inner parts of our Galaxy but there is 

mostly HI and very little HII in the outer parts. Robinson et al.(1983) studied C O 

data in the southern part jointly with the northern part analysed by Cohen et al. 

The result showed the four-armed spiral pattern. All the spirals fitted to data by 

Robinson et al. have pitch angles of 11° - 12°. Blitz et al.(1983) reported a result 

from an analysis of the Weaver-Williams HI survey and northern C O surveys that 

the four-armed spiral was traced but it is different from the model by Robinson et 

al. 

Broadbent(1989) studied several models of spiral structure of our Galaxy and 

adjusted it in order to fit with the synchrotron emission at 408 MHz. We will use 

this model as a starting point and attempt to improve it for our work. 

1.4 Dynamics of spiral structure 

It was realised that the spiral arms in our Galaxy could not be solid-bodied 

material arms because of the effects of the observed differential rotation would 

cause them to wind up into tight spirals within a few revolution periods. Lin 

and Shu(1964,1966) and Lin , Yuan and Shu(1969) proposed the theory that the 
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galactic spiral patterns were caused by density waves moving through the galactic 

disc. They found the spiral perturbations of the gravitational field . By using the 

rotation curve of Schmidt(1965), it was possible to solve the equations of motion 

of gas and stars which move across these gravitational perturbations. In order to 

solve these equations, they assumed that the spirals were tightly wound and there 

were only small perturbations in the gravitational field which made them able to 

linearise the equations. The result showed that the gas and stars were found to be 

spiral density perturbations and by equating this to the initial state the dispersion 

relation for the density waves was obtained. This dispersion relation predicts that 

there are two galactocentric radii which are known as the inner and outer Lindblad 

resonances between which the spiral density waves propagate as a rigid pattern. 

The inner resonance for an n-armed spiral pattern is at a galactocentric radius, r, 

such that fl(r) = f l p — « ( r ) / n , where ft(r) is the orbital angular velocity, fip is the 

pattern angular velocity and K is the epicyclic angular velocity. The latter is the 

velocity with which a particle, suffering a small perturbation from its circular orbit, 

undergoes small oscillations about the unperturbed orbit. The outer resonance is at 

r such that fi(r) = f l p + /c(r)/n. Using the Schmidt model of the Galaxy as shown 

in Fig 1.2, the '4 kpc ring' can be identified with the inner resonance. The co-

rotation radius is the galactocentric radius at which the spiral density wave pattern 

and the stars and gas both rotate at the same angular velocity. It occurs between 

galactocentric radii of 16 kpc and 18 kpc for a pattern speed of 11-13 km s _ 1 k p c _ 1 

in a two-armed spiral density wave pattern as shown in Fig 1.3. 

However, a spiral pattern produced by the linear theory of density waves 

would not be very prominent due to an assumption of small perturbations and 

hence a small density contrast between arm and interarm. It was clear that non­

linear solutions of the equations of motion must be used. Roberts (1969) solved the 

equations by assuming that the gravitational perturbation was only caused by the 
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stars. Then he solved the hydrodynamic equations for the gas flowing through this 

spiral field by assuming that gas had only two phases (cool clouds in a warmer inter-

cloud medium). The velocity with respect to the gas of the density wave due to the 

stars would be higher than the sound velocity in the intercloud medium and the gas 

should react more violently to the gravitational perturbation. The solutions were 

obtained in a form in which the gas flowed in closed, nearly concentric stream tubes 

which contained two periodically located shock waves. He termed this the S T S so­

lution (Stream tube band through Two periodically located Shock waves) as shown 

in Fig 1.4. The complete family of S T S solutions gave the composite gas flow over 

the whole Galaxy, and it was referred to as the Two-Armed Spiral Shock(TASS) 

pattern. From this work, it was possible to see how narrow, well-defined, spiral arms 

might be formed. Roberts and Yuan(1970) found that incorporating the magnetic 

field into the TASS model was possible and the magnetic field direction lay nearly 

parallel to that of the spiral arms. Gas moving into such shocks would be com­

pressed and also any dust associated with the gas would be concentrated producing 

dust lanes. As the gas left the shock, it would be quickly decompressed and star 

formation would stop. One would expect that a region behind the dust lane would 

exist in which new O and B type stars and their associated HII regions would also 

be found as shown in Fig 1.5. 

It seemed that density wave theory might provide an excellent explanation of 

the presence of spiral structure in galaxies. However, Toomre(1969) demonstrated 

that these quasi-stationary state density waves had a tendency to split in half at 

the co-rotation radius and drift towards the nearest Lindblad resonance, where they 

were quickly dissipated. In order to maintain the density wave pattern, there must 

be some source of new waves to take place of those that drift away and disappear. 

Lin(1970) suggested that mechanisms for spiral arm have invoked the existence of 

bars in the galactic nucleus. Toomre(l98l) suggested that tidal disturbances caused 
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by close encounters with nearby galaxies may result in the triggering of spiral density 

wave patterns. As we shall see there is now evidence for a bar-like structure near 

to the centre of the Galaxy. Later the idea of spiral arms being formed from shocks 

in the interstellar medium has been brought into question because of the evidence 

that interstellar matter had four phases (McKee and Ostriker 1977). Their model 

has Cool clouds surrounded by inner and outer regions of Warm Neutral and Warm 

Ionised gas all embedded in a Hot Intercloud Medium. This new model appeared to 

be incompatible with density wave theory as it was supposed that the hot component 

had the largest filling factor and therefore would determine the dynamics of gas. 

However the sound speed in this plasma is too large to form strong shocks on 

encountering the density wave. Reinhardt and Schmidt-Kaler(1979) suggested that 

the hot component has a large filling factor only in the spiral arms , the interstellar 

medium between the arms being in a state capable of supporting density wave 

shocks. But Schmidt-Kaler and Weigandt(l980) pointed out that the difficulty 

may not exist if the effective sound velocity is determined largely by the 'warm' 

rather than the 'hot' component. Another mechanism proposed by Gerola and 

Seiden(1978) that the spiral arm forming mechanism is 'stochastic self-propagating 

star formation'. In this process, aggregates of stars are created by the chain reaction 

mechanism in which shock waves from the supernova explosions of high-mass stars 

induce the formation of more high-mass stars. The differential rotation of the 

Galaxy then stretches these strings of stars out into spiral arm features. They also 

demonstrated that the spiral patterns display correlations between morphological 

type and rotation curve that are similar to those found in other galaxies(Seiden and 

Gerola 1979). Although this theory seems to solve the problem of producing a strong 

shock in three phase ISM, Roberts and Hausman(1984) pointed out that some of the 

ordered structure evolving from the model may be a consequence of the modelling 

procedure rather than physical properties and assumed that the dense clouds of the 
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I S M dictate the dynamics of the medium. They considered each cloud as a particle 

in a N-body system orbiting the galactic centre and undergoing collisions with other 

clouds instead of treating the clouds as a fluid. The collisions were assumed to be 

inelastic and the clouds were effected by an increase in velocity from nearby SNRs. 

The collisions between clouds is the dominant star formation mechanism and the 

clouds are concentrated in spiral arms. The model by considering each cloud as a 

particle could resolve some of the problems of density wave theory. Also the case in 

which collisions between the clouds dominate seems to produce spiral patterns that 

persist for at least 10 9 years. The two-armed density wave is the fundamental and 

predominant one. Shu, Milione and Roberts(1973) suggested that the formation of 

branches and spurs and features could be the result of nonlinear responses to spiral 

gravitational perturbation. The simulations using the stochastic self-propagating 

star formation by Gerola and Seiden are also able to produce multiple arm spiral 

patterns. 

In the next chapter we discuss the theories of thermal and nonthermal emis­

sion which are used in our modified model to study the effect of the absorption by 

thermal electrons at lower frequencies. Earlier models of the distribution of syn­

chrotron emission in the Galaxy (French and Osborne(1976), Brindle et al.(1978), 

Phillips et al(l981a,b), Beuermann et al(1985)) had relied upon spectral index in­

formation in an attempt to separate the thermal and nonthermal components of the 

radio continuum emission. We describe the new technique of Broadbent et al.(l989) 

for this separation and its application to the 408 MHz survey. The initial model is 

based on the 408 MHz all sky survey of Haslam et al.(1982). We give some details 

of the 408 MHz all sky survey. 

In chapter three, we describe in more detail the parameters that are used in 

the earlier synchrotron model and how we modify those parameters to make them 

give a better fit with the observational data. In the earlier model, all the parameters 
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were based on a distance of the Sun from the galactic centre, RQ = 10 kpc but we 

have changed them to RQ = 8.5 kpc. Therefore all the parameters have been scaled. 

We have also shown that how we modified our spiral pattern by including the bar 

in the spiral arm pattern according to the evidence of the asymmetry in the near 

infrared emission from stars and kinematics of the gas in central bulge(Blitz, 1993). 

In this model, we consider that the irregular field component undergoes a certain 

degree of alignment along the arm. This field alignment parameter depends on the 

compression in the arms but in some other galaxies which are the same class of 

our galaxy this alignment is not apparent. We discuss why we continue to use this 

parameter in our model. 

At 408 MHz, there is very little absorption of synchrotron emission. But at 

lower frequencies (34.5 MHz made by Dwarakanath and Shankar(1990), and 29.9 

MHz made by Jones and Finlay(1974) have been chosen), the absorption due to 

thermal electrons becomes important. The thermal electrons in the interstellar 

medium absorb some of synchrotron emission along the line of sight. We discuss 

how we can obtain the absorption model in chapter 4. We consider the model of 

the distribution of thermal electrons which we have developed from H l 6 6 a emission 

of Lockman(1976) and Cersosimo et al.(1989). We have used two models to obtain 

the distribution; one is according to our synchrotron model and another is based 

on Georgelin & Georgelin's model(1976) as modified by Taylor and Cordes(1993). 

We have obtained the absorption model by using our synchrotron model applied 

to 34.5 MHz and 29.9 MHz together with the absorption due to the distribution of 

thermal electrons according to the two spiral arms patterns. Also in the chapter 4, 

we have compared the predictions by using these two models with the surveys at 

34.5 and 29.9 MHz. 

In chapter 5, we draw conclusions from our model concerning the synchrotron 

emissivity and consider the separate variation of cosmic ray electron density and 
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magnetic field strength. We suggest some ways in which such a model as ours might 

be improved following the acquisition of more observational data. 
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C h a p t e r 2 

T h e r m a l and non- thermal 
em ission 

2.1 Synchrotron radiation theory 

Synchrotron radiation is emitted by relativistic electrons moving in magnetic 

fields. An electron with velocity, v, moving in a magnetic field, H , has a magnetic 

force (Fig 2.1) 

_ ev x H , 
F = 2.1 

c 

The force causes it to move in a helical path around the field lines and produce 

electromagnetic radiation. If 9 is an angle between v and H and it has a total 

energy E = m c 2 / ( l — ^ ) 1 / 2 = qmc2 where 7 is the Lorentz factor, it spirals around 

the field with a frequency 

"a = « — = — (2.2) 
zn^mc 7 

where H± = Hs'm6 is the magnetic field component perpendicular to the electron's 

path and 

= 2 ^ <"> 

I I - l 



H 

6 

V 

c 

Figure 2.1: Synchrotron radiation from an electron accelerated by a magnetic field. 
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is the nonrelativistic electron gyrofrequency. 

The radiation is concentrated within a narrow cone of angular half-width 

i/> = 1 /"/. An observer intercepting this narrow beam will detect a pulse of radiation 

each time the velocity vector sweeps past him, assuming that further away from the 

direction of electron velocity, the radiation is negligible. The observer will see each 

pulse at the Doppler-shifted gyration frequency, uj', and all its harmonics, where 

v0 

9 sin 20 7sin 20 

and the time interval of each pulse is defined as 

(2.4) 

At-
1 1 

(2.5) 

Most of the energy will be radiated in harmonics which yield frequencies that are 

multiples of 

faAt)-1-^3 = u o l \ (2.6) 

For E » mc 2 , the harmonics are so closely spaced that the spectrum is essentially 

a continuum. The frequency which is near the maximum synchrotron emission is 

called the critical frequency, vc, and is given by 

3 , 3e 
uc = - 7 i / 0 = 

2 4nmc 
fTj.7 2 = 16.08 x 1 0 s H L E l MHz (2.7) 

where E is electron energy in GeV and H is in Gauss. 

The power spectrum for the radiating electron is 

P{y) = 
y/3e3 

mc 2 
(2.8) 

where Kz/^i) is a modified Bessel function and the fhape of the quantity in square 

brackets is shown in Fig 2.2 . 
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Figure 2.2: The synchrotron spectrum from a single electron as a function of 
x = v/ue where uc is the synchrotron critical frequency. 
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For a power law distribution of the number density of electrons defined by 

N{E) = NcE~adE (2.9) 

a is the spectral index of the differential energy spectrum of the cosmic ray electrons, 

and the total emissivity ev is 

where 

r lir roo 
/ / N{E)P{u)dE 
Jo Jo 

roo y roo 
HL / N(E)— / J fysKW 

JO Uc JvjVc 

V3e3 

4irmc2 

\ /3e 3 / 3e 

8irmc2 \ 4 7 r m 3 c 5 

[a-l)/2 

N t H L ^ l 2 u - ^ l 2 a { a ) (2.10) 

a(a) = [°° xl'-W T K5/3U)dtd, 
Jo J i 

' a + 7/3 

a + 1 
3a - 1 

12 

x 

3 a + 7 

12 

The observed brightness temperature is given by T), = c2e„s/2kv2. s is the 

distance along the line of sight. 

\/3e 

16nkm 
3e («-l)/2 

. 47 rm 3 c 5 . 

If a is taken to be 2.6, then 

j v e f f ± ( a + 1 ) / 2 i / - ( a + 3 ) / 2 r 
3a - 1 

12 
f3a + 7 

12 
a + 7/3 

a + 1 
(2.1 

K 
6.168 x 104 

MHz 

-2.8 

Jo - l 

T 1.8 ds 
kpc 

(2.12) 
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2.2 Thermal radiation 

Thermal radiation is radiation which is caused by interactions between free 

electrons and positive ions in a partially or fully ionized plasma. It is also known 

as free-free radiation or bremsstrahlung radiation. 

The brightness of the radiation from a blackbody is given by Planck's radi­

ation law, 

„ , m , 2hv3 1 
B * ( T ) = 2 ha. (2-13) 

c e*r — 1 

In the region of radio frequencies, hv is very small compared to kT [hu <C kT), so 

the factor(e£r — 1) is approximately equal to Therefore 

2u2kT 
MT) = - j - (2.14) 

Equation(2.14) is the Rayleigh-Jeans radiation law. 

If a beam of radiation with intensity I, passes through an absorbing cloud of 

thickness L, the intensity of the radiation when leaving the cloud is 

/ = I3e~T» (2.15) 

where the optical depth r„ = / 0

L Kvdx, KV is the absorption coefficient per unit length 

in the cloud, and the subscript u indicates the frequency. If the cloud itself also 

emits and absorbs radiation, then equation (2.15) becomes 

/ = I,z-T» + / c ( l - e - r " ) (2.16) 

where is the intensity emitted from the cloud. The second term is the contribution 

to the observed intensity due to emission and absorption by the cloud. If the specific 

intensity / is expressed as a brightness temperature T, these are related at radio 

frequencies by the Rayleigh-Jeans approximation, 
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2kTi>2 

(2.17) 

Thus expressing intensities as brightness temperatures, we can rewrite equa­

tion (2.16) as 

Tb = Tse~T" + 7 / c ( l - e - T " ) . 

The volume emissivity, E„, is given by 

(2.18) 

= [Pi{v,v)f{v)dv 
4TT J 

(2.19) 

where ne is the electron density, f(v) is the electron velocity distribution and 

Pi(v,u)du is the total power radiated per unit frequency interval in the collision 

of an electron of velocity , v, with n, ions, 

Pi(v,u)du = NivQr(v,v)dv. 

Here the radiation cross section, Qr(v,is), is given by 

(2.20) 

16 Z2ee 

3 m 2 c 3 

16 Z2e6 

3 m 2 c 3 v 2 

db 
b 

In 

The logarithmic Gaunt factor, In ( i m j l i ) , depends on the radian frequency, ui, of the 

bremsstrahlung radiation and the velocity, v, of the electron according to 

In 

for v < and u < 

for v < Z£ and w > f£ 
for v > ^ and w < 

for v > ^ and w > 4̂ 
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where 7 = does not exceed the order of unity. 

The velocity v = Ze2 jh may be related to the temperature T « 3.16 x 1 0 6 Z 2 

through the relation v « ( ^ ) 1 / 2 « 3.89 x 1 0 B T 1 / 2 and if f{v) is a Maxwellian 

distribution given by 

f(v)dv 
2A:T 

dv 

where M is the mass of the atom then equation(2.19) becomes 

where g(u, T) is the Gaunt factor 

(2kT\3/2 m 
g(v,T) « — I n 

7T \ 6m J ir6Ze2u 

v/3 
7T 

17.7 + I n 

1.382?-" 
GHz 

-0.1 

(2.21) 

(2.22) 

5 is Euler's constant in the form of exp(0.577) and Te is the electron temperature. 

The absorption coefficient is given by 

2hu3 exp 

8Z2e6 /TTXVS / m \ 3 / 2 

( 2 ) 9 ( " ' T ) -

(2.23) 

(2.24) 

For HII regions, an approximation for the absorption coefficient by Altenhoff et 

al.(1960) is 

0.08235n e

2 

t/a-ir. 1- 3 6 (2.25) 

Thus the optical depth is 
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0.082357; - 1 3 i V 2 1 / ne

2ds (2.26) 

The absorption coefficient for a line emission in local thermodynamic equi­

librium is 

KL = 1.070 x 1 0 7 A n — n e n , r e " 2 ' 5 exp ( ~ ) f [ v ) hu < kTe (2.27) 

where fnn> is the oscillator strength and E is the energy of the upper quantum level. 

For hydrogen, E/kTe = (1.579 x 1 0 5 ) / n 2 T e . 

The oscillator strength was suggested by Menzel(1968) as 

fnn, = nM (l + (2.28) 

where M = 0.190775, 0.26332, 0.0081056, and 0.0034918 for A n = 1, 2, 3, and 4 

respectively. The intensity at some frequency within the recombination line is the 

sum of that in the underlying continuum(/ c) and that from the l ine( i i ) : 

/ = h + h 

= Bv{Tt) [ l - e - ( T ° + r t ) ] (2.29) 

and the intensity contributed by the line is : 

IL = I - I c = Bv{Te)t-T^-e'TL) (2.30) 

^ Bv(Tt)rLioi rc,rL < 1. (2.31) 

Under the same conditions, we can write Ic = Bv(TE)TC and the ratio of the 

total energy emitted in the line to that emitted in the underlying continuum is 
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Jline I c J TC J KE 

Using equation(2.25) and (2.27) we get 

[ I J ^ . = 1.299 x l O ' A n ^ i / ^ r r ^ F e x p 
J Ic n 

fnn' , , 2 . 1 ^ -1 .15 ; 1.579 X 105 

n 2T 

(2.33) 

where du must be in kHz. The factor F accounts for the fraction of the free-free 

emission due to interactions of H e + with electrons : 

F = 1 
N H e \ 

N „ ) 
(2.34) 

Observations of radio recombination lines in HII regions have established that 

NHCINH is approximately 0.08, which leads to a value for F of 0.92. We can 

write equation(2.32) in term of temperature(Mezger, 1978) : 

/ TLdu 

jTLdu 

K • kHz 

= 2.478 x I O V - 1 ? ; - 1 - 1 5 

= 2.478 x 10 4 
V 2.1 Te 

-1 .15 

L G H Z J . K . K . 
(2.35) 

However, the observed brightness temperature is a mixture of thermal and 

non-thermal radiation, 

Tb = TT + ATN (2.36) 

where Ty is the thermal contribution, TV is the non-thermal contribution and A 

is an absorption factor which depends on the relative disposition of thermal and 

non-thermal material along the line of sight. In this case, we assume that the 

thermal and the non-thermal materials are similarly distributed (uniformly mixed), 

so A = (1 — e~T")/rv. Therefore the observed brightness temperature is 
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Table 2.1 The four surveys at 408 MHz. 

Telescope Beam width 

( ' ) 

Zone 
a 6 

Reference 

Jodrell 
250 feet 
(Mark I) 

48 0 * _ i 2 h - 2 0 ° + 6 0 ° 
Anticenter 

Haslam et al. , 1970 
M N R A S 147, 405 

Effelsberg 
100 meter 

37 12*-04 h - 8 ° + 48° 
Northern Sky 

Haslam et al., 1974 
A & A Suppl. 13, 359 

Parkes 
64 meter 

51 0h-24h - 9 0 ° + 24° 
Southern Sky 

Haslam et al., 1981 
A & A 100, 209 

Jodrell 
250 feet 

(Mark IA) 

48 Qh-24h +45° + 90° 
North Polar Cap 

Haslam et al., 1981 
A & A 100, 209 

Tb = T,t~T" + T , ( l - t~r") + TN{1 - e - r ") /r„ (2.37) 

2.3 408 MHz all-sky survey 

The basic observational data on which our model of the Galaxy is based is 

the all-sky survey at 408 MHz. It was the result of four individual surveys. These 

surveys are summarised in Table 2.1. 

All the surveys were made by using the nodding scan technique in which the 

telescope is fixed in azimuth along the meridian and nods up and down in elevation 

at a constant rate between the declination limits of the survey. The rotation of the 

earth provides the Right Ascension coverage. By applying an appropriate offset in 
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the starting times of the scans from day to day, scan lines were made less than half 

a beam width apart and each downward scan was crossed by regular upward scans 

allowing a consistent zero level to be set. 

Each of the contributing surveys measured the intensity of the left-hand cir­

cular polarised component. The synchrotron emission from a collection of cosmic 

ray electrons in a given magnetic field is about 70% linearly polarized perpendicu­

lar to the direction of the field. The observed radiation is generally less than 10% 

linearly polarized, however. This is due partly to the superposition of regions of 

emission in which the field runs in different directions but is mainly due to differen­

tial Faraday Rotation of the emission coming from various distances along the line 

of sight. Although the linearly polarized components of the radio continuum contain 

information about the magnetic field direction it is very difficult to interpret this 

from our position in the plane of the Galaxy. Our present model deals only with 

the total intensity. There is no intrinsic circular polarization in the synchrotron 

emission so measurements of the left hand circular component are equivalent to 

total intensity measurements. 

The absolute zero levels and brightness temperature scales of the Northern 

hemisphere surveys were calibrated using the 404 MHz survey of Pauliny-Toth & 

Shakeshaft (1962). This was an absolutely calibrated survey made of a grid of points 

with a 7.5 m paraboloid. The grid point temperatures had been measured relative 

to that of the North celestial pole and the pole temperature was found from a 

separate series of measurements. The 32° to 40° of Declination overlap between the 

Parkes and Northern surveys allowed calibration of the former. The data of all the 

surveys were convolved to the same resolution of 51'. The error of the temperature 

scale of the final allsky survey is believed to be less than 10 % whilst the absolute 

zero level has an error of ± 3 K . Positional pointing errors are ± 1 ' and are negligible 

compared with the beam width. 
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Before the Galactic synchrotron emission can be modelled and fitted to the 

observations one has to remove extragalactic and thermal contributions. The cos­

mic background radiation has a temperature of 2.7 K . It is black body radiation 

and therefore contributes this amount to the Brightness Temperature at 408 MHz. 

Extragalactic radio sources, unresolved by the survey also provide an isotropic back­

ground. Lawson et al. (1987) estimate their contribution as 3.2 K . We have sub­

tracted this total of 5.9 K from the survey values. In the galactic plane this is a 

rather insignificant contribution but near to the galactic poles where the observed 

temperature is ~ 20 K it is important. 

In contrast the thermal component is important in the plane but contributes 

little at high latitudes. 

2.4 Thermal - nonthermal separation technique 

As has been explained in chapter 1 there is a problem near to the galactic 

plane of distinguishing the thermal and nonthermal components of the radio con­

tinuum emission. Because of their different spectra the nonthermal, synchrotron 

emission dominates at low frequencies while the thermal bremsstrahlung becomes 

prominent at higher frequencies. The standard method of separation requires accu­

rate absolute measurements of brightness temperature of the continuum emission 

at high and low frequencies and an a priori knowledge of the spectral index of the 

nonthermal component. 

A new technique has been developed by Broadbent et al.(1989) by using a 

correlation between the I R A S 60 /zm band emission from the galactic disc and the 

radio continuum emission measured with a similar angular resolution by Reich et 

al.(1984) at 11 cm and Haynes et al.(1978) at 6 cm. A significant part of the radio 

continuum emission at these frequencies is from thermal bremsstrahlung and it was 

known prior to the I R A S survey that discrete HII regions were sources of radio and 
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infrared continuum emission and that the distribution of far infrared ( F I R ) emission 

along the galactic plane was similar in form to the high frequency radio continuum. 

The surprising fact, first pointed out by Haslam and Osborne(l987), was that the 

correlation was so detailed. An example of this is shown in Fig. 2.3 

It is apparent, however, that there are some discrete radio sources on the 

top map for which there is no F I R counterpart on the bottom map. The most 

obvious is the source at I = 34.7°, 6 = —0.4°. This is the supernova remnant 

(SNR) W44. There is no reason why a SNR, whose radio brightness is due to 

synchrotron radiation from enhanced cosmic ray electron density and magnetic field 

should show any corresponding enhancement in the F I R . A closer examination of 

the two maps show 12 other discrete sources which are seen only in the radio and 

these are all catalogued SNRs. This lead to Haslam and Osborne proposing a simple 

test for distinguishing candidate SNRs from the much more common H I I regions 

on the basis of their much higher rad io /FIR brightness ratio. The main part of 

the nonthermal emission of the galactic disk, however, is the diffuse emission from 

cosmic ray electrons in the general galactic magnetic field and this should also show 

no detailed correlation with the F I R emission. 

Prior to the I R A S survey it was accepted that the F I R emission from the 

plane of the Galaxy came from dust heated by starlight. There were discrete sources, 

identified with individual bright HII regions, and a diffuse component. The latter 

could be from dust mixed with the ionised gas of the, so-called, extremely low den­

sity ( E L D ) HII regions of Mezger(1978) or from dust grains in molecular clouds 

heated by invisible O stars within the clouds. As HII regions, resulting from star 

formation, would be expected to have some spatial correlation with molecular clouds 

the earlier low resolution surveys were unable to distinguish between the two possi­

bilities. With the 4' resolution of the I R A S survey the close correspondence between 

the 60 /xm band F I R and the 11 cm radio continuum, which has a thermal com-
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Figure 2.3: Comparison of the distributions of far infrared and radio continuum 
emission near to the Galactic Plane. The bot tom panel shows the 60 band 
emission f r o m the IRAS survey for galactic longitude 35° > £ > 23° and galactic 
latitude +1 .5° > b > —1.5°. The colour scale plotted ranges f rom 0 to 2 GJy s r _ 1 . 
The maximum intensity is 16 GJy s r _ 1 at I = 30.8°, b — 0°. The top panel shows the 
same region as observed at 11 cm wavelength by the Effelsberg radio telescope (Reich 
et al.,1984). Here the colour scale plotted is f rom 0 to 10 K in brightness temperature 
and the max imum is 82.6 K at the same position as the maximum on the infrared 
map. Both maps have an angular resolution of 4'. A t 11cm the conversion factor 
f rom brightness temperature to intensity units is 0.22 MJy s r _ 1 K _ 1 . 
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ponent from the E L D HII regions, shows that the main part of this F I R must also 

be from the dust in these regions. Broadbent et al. showed quantitatively that the 

correlation of the 60 fim F I R and the radio continuum is much stronger than the 

correlation with the column density of molecular hydrogen as given by the 1 2 C O 

line emission. 

There is also some F I R , but no radio continuum, emission from the dust 

associated with clouds of neutral atomic hydrogen (HI). At galactic latitudes greater 

than about 10°, where this is the only F I R component, an empirical relation between 

the F I R intensity and the hydrogen column density can be established. This gas is 

local to the sun in terms of galactocentric radius. There is of course HI gas in clouds 

throughout the plane of the Galaxy. If its F I R emission followed the same relation 

to column density its contribution to the profile of emission along the galactic plane 

would follow the dashed line in Fig. 2.4. It is expected however that the emission 

per HI atom increases with decreasing galactocentric radius. This is partly because 

the 'metallicity', and hence the ratio of dust to gas, increases. A much larger effect is 

due to the interstellar radiation field also increasing leading to a higher equilibrium 

temperature for the Hi-associated dust. The lower solid line shows its calculated 

contribution to the F I R intensity for the model of the interstellar radiation field 

of Cox et al.(1986). Using the available 21cm surveys of the galactic plane, where 

the Doppler shift tells the galactocentric radius at which the emitting H I along a 

given line of sight is located, Broadbent et al. calculated the HI contribution and 

subtracted it pixel by pixel from the I R A S maps. 

It is also necessary to subtract the contribution from dust in the Solar System, 

i.e. the Zodiacal Light. Here it was assumed as a first approximation that the 

zodiacal emission is a function only of ecliptic latitude. This function was then 

determined from the observations at high galactic latitudes, where the zodiacal 

emission predominates, and applied to the subtraction from the galactic plane maps 
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Figure 2.4: Profile of 60 /im I R A S intensity along the galactic plane averaged over 
—0.5° < b < +0 .5° . The dashed line shows the contribution of Hi-associated dust 
if it was all at the temperature in the solar neighbourhood. The lower solid line 
shows the contribution for dust whose variation in temperature with galactocentric 
radius follows the model of Cox et al.(1986). 
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where it is generally a minor component. We note that the I R A S team have now 

released a new set of maps from which the zodiacal emission has been removed 

according to a multi-parameter model. This is particularly important for studies of 

the high latitude galactic emission but there may be small changes on a broad scale 

to some of the galactic plane maps in comparison with the subtraction used here. 

Having removed these extraneous contributions the next stage was to find an 

empirical relation between the radio and F I R emission from the E L D H I I regions. 

This was done by producing scatter plots of the radio versus net F I R emission pixel 

by pixel for 6° wide sections around the galactic plane, the pixel size being 2.5'. 

An example is given in Fig. 2.5. It shows a rather well denned lower envelope 

to which a straight line could be fitted. The interpretation was that in general a 

pixel on the radio map would contain both thermal and nonthermal contributions 

but those points on the lower envelope are from directions where the nonthermal 

contribution, above a constant background level for that interval of longitude is 

negligible. The slopes of the lower envelopes were found for the 13 plots of the 

first quadrant of longitude from the 11cm survey and for the 20 plots from the first 

and fourth quadrants from the 6cm survey. There was no systematic variation of 

slope with galactic longitude and the resultant 60 fim to 11 cm and 60 / im to 6cm 

intensity ratios were respectively 700 and 810. 

The explanation for the correlation between the F I R and the thermal radio 

emission is that they are both proportional to the recombination rate, r, in the H I I 

regions. For an HII region which is optically thin at frequency v the emissivity is: 

e„(radio) = 2 x l O " 3 6 ^ 0 A * u ~ Q lr W cm" 3 Hz" 1 sr" 1 (2.38) 

where Tt is the electron temperature. Most of the Lyman continuum photons in­

volved in the ionization are degraded into L a photons which are absorbed by the 

dust grains in the HII region and their energy is reradiated in the F I R . There is an 

enhancement factor, / , termed the infrared excess ( I R E ) to take account of photons 
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Figure 2.5: Scatter plots of 11 cm brightness temperatures against 60 /zm intensities 
from which the modelled HI-associated component has been subtracted, the region 
covered is 35° > I > 29°, +1 .5° > b > - 1 . 5 ° , i.e. the left half of the maps of 
Fig . 2.3. The solid line is the least square fit straight line which has a correlation 
coefficient 82% but is reduced by points close to the vertical axis due to the bright 
SNR W44. The dashed line is the fitted lower envelope showing the relation between 
the thermal component of the radio emission and and the net 60 ^m intensity. 
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of longer and shorter wavelength. The infrared emissivity is therefore 

c(IR) = frhva/{4w) = 1.3 x 1 C T 1 9 f r W c m " 3 s r " ' . (2.39) 

Using the appropriate emissivity law and grain temperature the emissivity at 60 

fj,m is 

e^&Ofim) = 1.9 x 10~32 fr W cm" 3 H z - 1 sr" 1 (2.40) 

With Te = 7000 K the ratio of emissivities is e l / (60/ im)/e l / ( l lcm) = 190/. The 

implication is therefore that the I R E has a value of 3.7, which is reasonable. The 

surprising fact is that it appears to be so uniform. 

The thermal-nonthermal separation technique was applied to the area within 

8° of the galactic plane of the 408 MHz allsky map. The empirical scaling factors 

were applied to the net 60 /im maps to give the distributions of purely thermal 

emission at 11cm and 6cm. These were then scaled to 408 MHz using a thermal 

spectral index of 2.1 which applies to all emitting regions which remain optically 

thin down to this frequency. This is true except for a few very bright H I I regions, 

for which Shaver and Goss(l970) give directly measured flux densities at 408 MHz. 

For these the observed flux was used when it was less than those obtained from 

scaling the F I R emission. Finally the maps were convolved to the 51' resolution 

of the 408 MHz survey. The results of this are shown as the central maps of Fig. 

2.6a and 2.6b. These maps can then be subtracted from the observed maps to give 

the pure nonthermal emission. Since we are interested in modelling the larger scale 

distribution of this emission the contributions of all catalogued SNR's within 2° 

degrees of the galactic plane that are unresolved at 51' have also been subtracted to 

give the lower maps. The same data are shown as profiles along the galactic plane 

in Fig. 2.7. One can see that the thermal contribution in the second and third 

quadrants of galactic longitude is very small except in a few isolated regions. 

There are two points to note about the profile for the first and fourth quad­

rants. First , close to I — 0° noncircular motions can lead to wrong values for the 
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distances of HI clouds so the calculated Hi-associated 60 fim emission cannot be 

relied on. Therefore although the estimated thermal contribution to the central 

peak appears reasonable we do not try to include the region within 5° of the galac­

tic centre in our modelling. Secondly there may still be a few bright HII regions 

which are not entirely optically thin at 408 MHz and whose contributions are over­

estimated. If the subtraction of a sharp peak in the thermal component from the 

observed intensity results in a sharp dip in the nonthermal it is more likely to be 

due to a problem of optical depth rather than to be a genuine dip. 
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Figure 2.6a: Contour maps of the 408 MHz emission from the galactic disc in 
the first quadrant of galactic longitude showing thermal non-thermal separation. 
Upper map: the total brightness temperature observed by Haslam et al.(1982). 
Middle map: the thermal component deduced from the 60//m band I R A S data 
as detailed in the text. Bottom map: the non-thermal component with known 
supernova remnants removed. Contour levels for the total and non-thermal maps 
are from 20 K , by 5 to 50 K , by 10 to 100 K , by 20 to 200 K , by 50 to 400 K , and 
then by 100 K . Contour levels for thermal map are from 5 K , by 5 to 20 K , by 10 
to 60 K , by 20 to 100 K , by 40 to 200 K , and then by 100 K . 
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Figure 2.6b: As for Fig. 2.6a but for the fourth quadrant of galactic longitude. 
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Figure 2.7: The profiles along 6 = 0° of the 408 M H z emission. Top solid curve: 
to ta l emission. Dashed curve: non-thermal emission. Lower solid curve: thermal 
emission. 
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C h a p t e r 3 

y n c h r o t r o n e n i i B B i © n m o d e l 

Sol Introduction 

I n chapter 2, we have discussed the synchrotron radiat ion theory and the 

derivation of the brightness temperature (Tj ) along the line of sight at frequency v. 

I t is given by equation 2.12 : 

K 
= 6.168 x 10 4 

V -2.8 y 

IMHZJ 
Nt(s) 1.8 ds 

kpc m - ^ r - i s - ^ e V " 1 

From the above equation, we can see that the brightness temperature depends on 

the electron density Ne(s) and the perpendicular component of the magnetic field 

H±(s) as a func t ion of distance, s, along the line of sight. 

As discussed below, the magnetic field can be considered to have two com­

ponents, a regular component whose direction lies along the spiral arms, parallel 

to the galactic plane, and an irregular component. I t was assumed tha t the overall 

d is t r ibut ion of orientation of the latter is isotropic. This means that , to a good 

approximation, above equation can be rewri t ten as 

Tb{u) = 6.168 x I04v-28JNe(s)[HLtee{s) + H 1 W r M } 1 S ^ (3-1) 

French(1977) showed that equation 3.1 can be approximately w r i t t e n i n the f o r m : 
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Tb{u) « 6.168 x l O V - 2 8 f ^ N e { s ) H l i e s { s ) l s + N^Hr^sY^ds (3.2) 

I n this chapter, we w i l l discuss the parameters which are used for calculating 

the emission according to this model. Note that all the parameters are now based on 

a distance of the Sun f r o m the Galactic centre, RQ - 8.5kpc. A l l the earlier Durham 

models including that of Broadbent, which is used as the immediate s tar t ing point 

for the present model, took RQ = lOkpc so al l lengths have been scaled accordingly. 

3,2 The Electron flux density 

I n equation (3.2) the high energy cosmic ray (CR) electrons, of energy E 

GeV, which are accelerated by the magnetic field are assumed to have a power law 

differential intensity spectrum: 

Flux = Ne{s)E-2*dE m ^ s r ^ s - 1 (3.3) 

Ini t ia l ly , to s impl i fy the parameterisation, the electron intensity is assumed to have 

no radial dependence w i t h i n the plane of the Galaxy. A l l the var ia t ion of emissivity 

is assigned to the overall radial dependence of the Galactic magnetic f ield and 

its modulat ion by the presence of a spiral arm. I n Chapter 5 we consider the 

independent evidence for a radial gradient in the electron density and its implicat ion 

for the f i t t ed radial variation of magnetic field strength. We therefore assign the 

locally measured value to Ne. I n the earlier D u r h a m models i t was taken that 

Ne = 80lJo m ^ s r - V ^ e V " " 1 f r o m a review by Meyer (1974). Since then there 

have been increases i n the size of the CR electron detectors and in their abi l i ty 

to discriminate against the CR nuclear background, which has about two orders 

of magnitude higher intensity. A recent measurement was tha t of Golden et al . 

(1994) performed in 1989 using a large superconducting magnet spectrometer and 
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an imaging calorimeter. The results are shown in F ig 3.1 together w i t h those of 

other experiments published over the previous 10 years. The flattening in the 

spectrum below 4 GeV is consistent w i t h the effects of solar modula t ion. For the 

production of 408 M H z synchrotron radiation equation 2.7 implies that , in a 3 

fiG f ie ld , the electron energy of interest is around 3 GeV. Taking into account the 

solar modulat ion, i t can be seen that the above value of Ne s t i l l gives a reasonable 

representation of the local interstellar intensity. 

The assumption that the electron f lux density does not vary between the 

a rm and interarm regions requires that the electrons diffuse fast compared w i t h 

the speed of the ro ta t ion of the density wave. The density wave takes ~ 3 x 10 7 yr 

to pass a given point . Measurements of the age of CR nuclei i n the galactic disk 

indicate that they diffuse w i t h a diffusion coefficient ~ 3 x 10 2 8 c m 2 s _ 1 and tha t CR 

electrons, i f they propagate in the same way, therefore diffuse ~ 2 kpc in this t ime. 

This is sufficient to move freely f r o m the arm to the interarm region or vice versa. 

Although in the plane the electron flux density is taken to be the same everywhere, 

out of the plane one would expect there to be a decrease w i t h height above the 

plane due to diffusive escape of electrons f r o m the Galaxy. I n our parameterization 

of the synchrotron emissivity dis tr ibut ion we assign essentially al l of the variat ion 

w i t h 2 , the distance f r o m the Galactic plane to the variat ion in the electron flux. 

The exception to this is the decrease in modulat ion of the magnetic f ie ld strength 

due to compression in the spiral arms w i t h height above the plane. 

Phill ipps et al. (1981b) i n the derivation of a 3-dimensional model of the 

emissivity dis t r ibut ion by the unfolding technique obtained the fol lowing polynomial 

expression for the z-dependence of Ne 
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Figure 3.1: A plot of the CR electron intensity at the top of the atmosphere f r o m 
Golden et al . (1994). The results f r o m experiments over the previous 10 years 
are also shown. The line shows the spectrum adopted by us for nearby interstellar 
space, 80t5o m - ' s r - ^ G e V 1 . 
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= 80 x { 

1.063 + 0.9344 ( ^ ) - 3.551 ( ^ ) 2 + 

2 . 6 4 5 ( ^ ) 3 - 0 . 8 1 9 2 ( ^ ) 4 + 

0 . 1 1 3 4 ( ^ ) 5 - 0 . 0 0 5 7 9 ( ^ ) 6 < 1.1 
(3.4) 

0.30788-0.01844 ( ^ ) l . K < 16.7 
• Zn 

0 > 16.7 
Stn 

when RQ = 10 kpc. This represents a ' thick disk' surrounded by an extensive, low 

emissivity 'halo' . The synchrotron emit t ing halo does not, however, have the quasi-

spherical shape that is normally assumed for the material halo. Such a spherical 

f o r m would result in higher brightness temperatures at |6| ~ 45° towards the inner 

par t of the Galaxy than is observed. Instead they proposed that the halo and thick 

disk mirrors the thinner gaseous disk i n having a scale height tha t decreases towards 

the galactic centre. The above expression therefore contains an iE-dependent scaling 

factor, z0, normalised to uni ty at RQ: 

However this polynomial has its maximum value at 2 / 2 0 = 0.15 kpc which 

leads to a small dip in the latitude profile cut at z = 0. As we go on to investigate 

the absorption in the plane at low frequencies i t is best to remove this ar t i fact in 

the model. Thus we have modified this f o r m in order to give a f la t top by setting 

Ne = 80 x 1.063 i f z / z 0 < 0.34105 as seen in Fig 3.2 

This has a significant effect on the fine scale (1 /4 )° calculation out to |6| ~ 1°. 

For the 408 M H z modelling, Ab was 1° and the data were convolved to 51° H P B W . 

When this is done w i t h the new model : 

1) the reduction in the convolved Aft = 1° profile is too small to see at b = 0 

therefore the f i t to the observation is the same (Fig 3.3). 

z0 = 0.591 - 0.0652.R + 0.0106/?2 

I I I -5 



I 

1) 

0 5 10 

Z (kpc) 

Figure 3.2: The distribution of electron flux density with height above the plane at 
the solar galactric radius, RQ = 10 kpc. The dot line uses equation 3.4. The solid 
line shows the modifying form of Ne. 
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Figure 3 3: The convolved profile of latitude at / = 0°, solid line used equation 
and dot line shows the value after modifying the form of Ne (equation 3.5). 
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2) the changes in the lati tude profile are < 1% so there is no significant 

change to the lati tude cut fits. 

The dis t r ibut ion of electron flux density, w i t h this change and the rescaling 

to RQ = 8.5kpc becomes 

- < 0.2899 

0.2899 < < 0.935 ( 3 , S ) 

— «0 — 

0.935 < ^ < 14.195 

> 14.195 

where 

z0 = 0.591 - 0.0767iZ + 0.0147i2 2 

So3 The Galactic magnetic field 

3.3.1 Measurements of the field 

The first indication of the properties of the galactic magnetic field was 

obtained f r o m studies of the polarization of starlight. Hi l tne r (1951) observed cor­

relations on a large angular scale on the sky of the polarizat ion vectors of stars. 

The polarization is a few percent. This had to be due to to the alignment of elon­

gated grains in the interstellar medium. Preferential absorption of the E-vectors of 

the incident light at visual wavelengths took place parallel to the major-axis of the 

grains. 

The alignment mechanism proposed by Davis and Greenstein was paramag­

netic relaxation. The variation in direction of the internal field lags the variat ion 

1.063 

z \ 

z0J 
= 80 x { 

1.063 + 1.099 ( ^ ) - 4.915 (̂ )V 
4 . 3 0 7 ( £ ) * - 1 . 5 6 9 ( £ ) 4 + 

0 . 2 5 6 ( ^ ) 5 - 0 . 0 1 5 ( ^ ) 6 

0.30788 

0 

0.0217 ( J ) 
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in direction of the external field producing a torque which tends to align the short 

axis w i t h the axis of rotat ion and to make this parallel to H. Thus the grain has 

its long axis perpendicular to H and the resultant polarization is parallel to the 

projection on the sky of the magnetic f ield direction. The polarization of a given 

star gives the direction of the _L component averaged along the line of sight. The 

deduced field strength depends on the assumed magnetic properties of grains so 

these observations do not give a measure of the magnitude of H I f grains were pure 

graphite the field strength would need to be ~ 50^G - much higher than obtained 

by other methods. Ellis and Axon (1978) examined a collected catalogue of stellar 

polarization data for stars w i t h i n 2 kpc of the sun and concluded that the field 

generally pointed towards (or away f rom) I ~ 60° . I t was apparent, however, that 

there were irregularities in the field and that such objects as the N o r t h Polar Spur 

caused perturbations i n the field. 

A direct method of measuring magnetic fields in objects emi t t ing line ra­

diat ion is Zeeman Spl i t t ing. I n magnetic fields of the magnitude of those in the 

interstellar medium, however, the spl i t t ing is very small , Av = 2.8Hz//xG. In 

practice this means that measurements can only be made in the 21 cm line i n cold 

H I clouds and in the 18 cm O H line i n molecular clouds. One cannot therefore 

use this for measuring the general magnetic field. The denser clouds generally have 

higher fields and i f one assumes that the mechanism causing this was the com­

pression of a 'frozen i n ' field as the cloud contracts one can infer the original value. 

Trol land and Heiles (1986) extrapolated their observations to an average gas density 

of 1 a tom c m - 3 and obtained a field strength of 5 fiG. 

The best way of measuring the galactic magnetic field is by measuring the 

Faraday rota t ion of radio emission f r o m a linearly polarized source. For radia t ion of 

wavelength, A, coming a distance, d, through a plasma of thermal electron density, 
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ne(s), the angle of rotat ion, 0, of its polarization vector is 

(0/radians) = 0 .81(A/m) 2 / (n e (s ) /cm~ 3 H| | (s ) / /xG) (ds/pc) 
Jo 

By making measurements at a number of wavelengths one obtains the Rota-

The f i rs t measurements were of radio galaxies and a large number of these have now 

been measured (e.g. Simard-Normandin and Kronberg, 1980). The interpretat ion 

is d i f f icu l t for low galactic latitudes, however, because of the integrated effect of 

varying fields over long path lengths to the 'edge' of the Galaxy and the uncertainty 

in ne(s) over this distance. 

The measurement of the RMs of pulsars is more informative, however, as one 

can also find the Dispersion Measure, D M , f r o m the var ia t ion of arr ival t ime of the 

pulse w i t h frequency. This is directly related to ne(s) by D M = ne(s) ds c m - 3 

pc. Therefore < H\\ >= 1.232 R M / D M gives the weighted mean field independent 

of any assumptions concerning ne. A model of the d is t r ibut ion of n e i n the Galaxy 

such as tha t of Taylor and Cordes(1993), discussed in Chapter 4 allows an estimate 

of the distance over which the mean has been taken. 

A n early analysis of pulsar RMs was performed by Manchester (1974). He 

made a least squares fit of longitudinal field for those w i t h i n 2 kpc of the sun and 

obtained a direction towards / = 90° ± 11° and H = 2 .2±0 .4 /zG. Later studies have 

added more pulsars out to greater distances and have obtained evidence for a rever­

sal of f ie ld direction in the next inner spiral a rm of the Galaxy. The interpretat ion 

is complicated, however, by the clear indication tha t there is a strong irregular 

component to the field. The most recent work is by Ch i and Wolfendale (1990), 

who have concentrated on obtaining the ' local ' f ield w i t h i n 1.5 kpc of the sun. For 

the in terarm region, where the sun is located, between the inner Sagittarius a rm 

and the outer Orion Spur they obtain a field strength for the regular component 

t ion Measure, 

6/X2 = 0.81 / 
Jo 

n.Hw ds R M 
d 
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of Hres - 3.2 ± 1.0 nG directed towards / = 57 ± 14°. We adopt this value, i.e. 

^rego = 3.2 nG. As we see later the direction is also i n agreement w i t h our spiral 

a rm model. 

A l l the above observations indicate a substantial irregular component of the 

magnetic f ield. A number of different analyses indicate 5 i r r e g ~ B r e g w i t h a typical 

scale size of 50 to 100 pc. The rat io between the magnitudes of the regular and 

irregular components of the field is an important parameter when considering how 

the d is t r ibut ion of synchrotron emission appears f r o m our viewing point w i t h i n the 

galactic disk. For a given overall radial variat ion of the magnetic field strength the 

contr ibut ion of the regular field to the tota l emissivity w i l l be more strongly peaked 

towards small galactic longitudes than that of the irregular f ield because the regular 

field w i l l be running more nearly perpendicular to the line of sight there. The spiral 

arms, however, w i l l be much more apparent in the irregular component's emission. 

The line of sight through an a rm reaches a max imum near to the tangential point 

where the perpendicular component of the regular f ie ld w i l l be at a m i n i m u m . We 

have therefore to regard the ratio, F, of regular to irregular f ie ld strength as a free 

parameter of the model. 

3.3.2 Alignment of magnetic field in the arms 

We assume that the ratio of the regular and irregular f ie ld , F, is constant over 

the Galaxy in the interarm regions but i n the arms one would expect i t to change. 

In the absence of any other effects one would expect the irregular component to 

undergo a certain degree of alignment along the direct ion of the arm, the extent 

of which depends on the compression in the arm. French calculated the effective 

component of the regular field perpendicular to the line of sight i n terms of the 

regular component, the compression ratio and the ra t io , F, of the regular to irregular 

field in the uncompressed state. The equation(3.2) then becomes : 
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Tb{u) = 6.168 x 1 0 4 i / - 2 ' 8 ^ (Nt{s)[pc{s)Hres{s)sm9\l s 

+0.6861N e { s ) 

where 

pc{s)HTeg{s) 1.8 
Y{s) ds (3.6) 

Y{s) = 1 - 0.477 ( ^ T ^ ) c o s 2 0 - ( 3 - 7 ) 

and pc is the rat io of the density of the gas at a certain point to the density that 

i t would have in the uncompressed state. I t has been assumed tha t the variat ion 

of Hreg is independent of z and all variations in that direction are included in the 

electron density and the demodulation of the compression factor, pc, i n a spiral arm. 

3.3.3 Gas compression factor in spiral arms 

The Two-armed Spiral Shock model had a definite predict ion for the com­

pression profile across the spiral a rm w i t h a sharp rise of density on the inner edge 

followed by an exponential f a l l . For example at the solar radius the compression 

factor could be represented by pc = 4.1 exp(—13.7a/yl) + 0.7 where A is the radial 

separation between the two arms adjacent to the point being considered and a is the 

distance f r o m the inner arm. When such a compression profi le was applied to the 

early model of Brindle et al . (1978) the predicted peaks at the tangential points of 

the arms were much sharper than in the observed profile. As pointed out in Chapter 

1, fur ther developments in the understanding of the state of the interstellar medium 

now cast considerable doubt on this model. 

As an alternative Roberts and Hausman(1984) assumed tha t each cloud was 

a particle i n a N-body system orbi t ing the galactic centre and undergoing inelastic 

collisions w i t h other clouds. The collisions between the clouds is assumed to be 

the dominant star format ion mechanism. Modell ing shows tha t galaxy-wide shocks 

formed and the clouds became concentrated in spiral arms. Broadbent calculated 
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the Gaussian funct ion to fit w i t h the profile of the variat ion of number density of 

clouds w i t h spiral phase at a galactocentric radius of 8 kpc as shown i n F i g 3.4 by 

assuming that the w i d t h of the a rm is the number of degrees between the first points 

either side of the peak where the density is equal to the average cloud density and 

taking this to be equivalent to 1 kpc in distance. The Gaussian func t ion has a peak 

value of 2.5, implying that the max imum compression is 3.5:1, and a = 0.207kpc. 

Hence, pc after rescaling to RQ — 8.5kpc can be wr i t t en i n the f o r m : 

The term, f { z ) , accounts for the variat ion of compression of the f ie ld w i t h 

distance, z f r o m the plane. The magnetic field increases the effective square disper­

sion speed of the gas and damps down the compression in the density waves, i.e. 

the forcing mechanism for the density wave has to overcome an extra pressure. I f , 

as the lat i tude variation of the synchrotron radiat ion indicates, the scale height of 

the magnetic field is considerably greater than that of the gas, the damping effect 

of the field on the compression w i l l increase rapidly w i t h z. The result of a simple 

calculation of this effect, due to Brindle et al . (1978), which does not pretend to 

be an accurate quantitative description is as follows. I f one assumes tha t the mag­

netic field, the sound speed, C„, and the velocity of entry into the shock, U are all 

constant for heights above the plane up to several hundred parsecs the strength of 

the shock is given by 

pc = CRf{z)exp{-Q.5a2 /0.031) + 1 (3.8) 

where a is the distance to the nearest arm, inner or outer. 

CR 
(12.75 - R)0.5 

R < 8.5kpc 
12.75 > R > 8.5kpc (3.9) 

{[(5VA

2 + &C2 + 2U2)2 + Z2U2VA

2]1'2 - {5VA

2 + &C2 + 2U2)}/2VA

2 
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The Alfven velocity, V^, increases with z and the gas density decreases. 

Taking H = 3/uG for the uncompressed field, U = 35 km s~l, Cs = 7 km s _ 1 and 

the variation of gas density of Schmidt(1956), the compression will be reduced to 

a half at z = 200pc and is essentially zero beyond 425 pc. For ease of calculation 

the following polynomial has been fitted to f ( z ) , the damping factor by which the 

compression in the plane should be multiplied 

» f 1 + 0.9082 - 23.52922 + 3 7 . 3 5 2 s z < 0.425kpc 
'M = { 0 2 > 0.425kpc < 3 - 1 0 ) 

The calculations of synchrotron emission based on expressions 3.8, 3.9 and 

3.10 for pc gives a better fit to the observational data at 408 MHz compared to the 

earlier parameterisation. 

3.3,4 Large-scale radial variation of magnetic field 

It is believed that the galactic magnetic field is generated by dynamo action 

due to a combination of differential rotation and cyclonic motion in the same way 

that the magnetic fields of stars and planetary bodies are generated. The galactic 

dynamo theory is not sufficiently advanced to be able to predict details but it is 

likely that the radial variation of field strength will be such that it rises to a peak 

within a few kpc of the galactic centre and then falls as exp(—i? 2). 

In the Kearsey (1983) model the following equation was used(for RQ = 

lOkpc): 

HTEG(R) = H 0 ( l - exp exp ( - ( | ^ ) ) (3.11) 

where RQ is a free parameter and Ho is a constant which gives the observed field 

strength at the position of the Sun. Therefore it is necessary to fix the value F and 

RQ by means of a normalization procedure. Two points along the galactic plane 
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Figure 3.4: The solid line shows the variat ion of gas cloud density w i t h phase 
across a spiral a rm at 8 kpc by Roberts and Hausman(1984). The density of clouds 
is expressed relative to the average and marked underneath the curve is the f u l l 
w i d t h of the a rm amounting to the linear distance of 1 kpc. The dash line is a 
Gaussian fit and has a — 0.207kpc. 
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were chosen, one is at / = 180° and the other is near the galactic centre but not at 

an emission peak otherwise it would depend on the chosen model of the variation 

of the compression across the arm much more than on the variation of quantities 

on a Galaxy-wide scale. RQ and F are not calculated directly but via the value RQ 

and R A T I O = F 1 8 / 0 . 6 8 6 1 . At both longitudes, for a given value of RQ2, we found 

the value of R A T I O to produce the exact observed temperature. Thus two curves 

can be drawn of R A T I O vs RQ2 , one for each longitude. The values at which these 

two lines cross are the values which give the exact observed temperatures at both 

longitudes and will produce normalized temperatures for other positions in the sky. 

From the above equation, we can see that the radial decrease in the uncom­

pressed field was constructed to fall off as exp(—R 2 f RQ2) at large R and this also 

gives a zero magnitude at the centre. This model failed to fit the observational 

data at longitude range 20° < / < 330°. so it had been suggested that the variation 

should be much steeper towards the centre of the Galaxy. Thus, the form of the 

radial variation for RQ = 8.5kpc became : 

HTei{R) = H0(l - exp(-2.768iE 2))(exp - + exp - ( J ^ j ) ( 3 > 1 2 ) 

The additional term, e x p ( — ( R / R i ) 4 ) was introduced to make the field fall off more 

rapidly compared with the earlier one. This new form has a much higher and 

sharper peak, as seen in Fig 3.5. From the figure, the two distributions behave the 

same way beyond about 3.8 kpc. 

This new form has another free parameter, R\. Therefore a new method 

of normalizing the predictions has been adopted to get all three parameters, Ri, 

RQ and R A T I O . This has been renormalised by setting RQ = 11.2kpc(taken from 

the Kearsey model) for determining the values of Ri and R A T I O which produced 

Tb = 34K at / = 180° and Tb = 370K at / = 10°. The fitted values are RQ = 11.2kpc, 

Ri = 1.91kpc and R A T I O = 0.692, so Hies/H\TTeg = 0.66. H0 is chosen to give the 
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Figure 3.5: Radial variation of the magnitude of the regular component of magnetic 
held, # r e g / # r e g 0 . 1) of the form used by Kearsey(equation 3.11) but scaled RM to 8 5 
kpc. 2)used in equation 3.12. 
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observed value of 3.2 fiG at the Sun. 

3»3.5 The spiral arm pattern 

Having determined the underlying variation of magnetic field strength with 

galactocentric radius and having set up our model of how the spiral arms will 

modulate the emissivity the final step is to find the spiral arm pattern that best 

fits the observed galactic plane profile. Here we are able to build on work that has 

been done over a considerable period by the Durham group. The starting point 

was the combined model of Georgelin's HII region arms and Verschuur's map of 

neutral hydrogen that was used by French and Osborne (1976) to fit the 'observed' 

profile at 150 MHz of Landecker and Wielebinski(1970). Kearsey(1983) was able 

to refine this by moving and reconnecting the arms within the uncertainties of the 

original maps when the 408 MHz survey data became available. After removing 

the thermal features from the observed profile Broadbent, in her thesis was able to 

obtain the best fit so far to the synchrotron profile. In the outer half of the Galaxy 

we have no reason to further modify her final spiral arm pattern but there is now 

some independent evidence for the structure of the inner part of the Galaxy that 

needs to be taken into account here. 

Blitz(1993) has shown that there is actually a bar running across the Galactic 

centre as evidenced by the asymmetry in the near infrared emission from stars and 

the kinematics of the gas in central bulge. We therefore have refined the spiral 

structure of the Galaxy by including the bar with the geometry indicated by Blitz 

in the centre part of the Galaxy as shown in Fig 3.6. We do not attempt to 

model the bar itself in synchrotron emission for two reasons. Firstly because the 

orientation of the bar is such that it falls almost entirely in the region |/| < 5° where 

the thermal and non-thermal separation technique cannot be applied and secondly 

because there is no prediction about the orientation and regularity of the magnetic 

field in the bar. Because the bar is at a small angle to the line of sight, one has the 
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paradoxical situation that a strong effect of the bar in lining up the magnetic field 

along it might result in a deficit in the synchrotron emission as observed from the 

sun. On the other hand, from the evidence of bars in other barred-spiral galaxies, 

we can assume that the ends of the bar are connected to the spiral arms. We have 

therefore adjusted the inner end of the arms accordingly and adjusted their shapes 

to restore best agreement with the observed profile. The result is shown in Fig. 3.6 

where each arm is given a number. The positions of the arms labelled with these 

numbers are tabulated in Table 3.1. (f>0 is the angle at the inner end of the arm and 

A<£ is its angular extent. Each column in the table contains the distances of the 

arm from the galactic centre, in units of 0.85kpc, at angles : 

K = [4>o - 15n)° where n = 0 , 1 , 2 , . . . , 24. 

All the expressions introduced to model the distribution of emissivity in the 

Galaxy are listed in Table 3.2 together with the chosen values of their parameters. 

When they are used together with the spiral arm pattern of Fig. 3.6 the model of the 

2-dimensional distribution of Brightness Temperature in / and b can be calculated. 

The final step was to convolve this to the 51' H P B W of the observations. Fig. 3.7 

shows the cut along 6 = 0° and the corresponding observed nonthermal profile from 

which we have removed the contributions of all catalogued supernova remnants 

which are smaller than the H P B W of the survey. We have also blacked in the 

sharp minima in the profile due to the over subtraction of bright HII regions in 

our thermal separation procedure. One sees that the modelled profile follows the 

observed one quite closely but that the former is smoother than the latter. Our 

explanation for this is that the actual synchrotron emissivity along the spiral arms 

is clumpy and that our model represents an average over the clumps. Three regions 

on the profile where there is a particular observed excess of emission over that of 

the model are worth mentioning. That in the longitude range 86° > / > 77° is the 

remaining contribution of the Cygnus complex after the subtraction of a relatively 
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Figure 3.6: The final spiral arm pattern. The position of the Sun, between the inner, 
Saggitarius arm, and the outer, Orion spur, is marked by 0 
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Table 3.1: Positions of arms corresponding to Fig 3.6 

A R M 1 2 3 4 5 6 7 8 9 10 11 
15 330 150 300 300 135 45 45 65 90 195 

A(f> 330 285 285 165 210 75 90 150 75 60 255 
3.00 4.16 4.16 6.89 6.89 10.54 9.31 9.31 8.63 5.14 3.00 
3.40 4.20 4.46 7.53 7.61 10.97 10.24 9.40 8.80 5.23 3.40 
3.80 4.05 4.59 7.91 8.50 11.60 11.22 9.61 8.54 5.31 3.80 
4.16 3.80 4.89 8.33 9.69 12.07 11.48 10.03 8.46 5.48 4.16 
4.46 3.55 5.14 8.84 10.20 12.58 11.99 10.58 8.71 5.61 4.20 
4.63 3.35 5.48 9.35 10.71 14.41 12.45 10.88 9.61 4.05 
4.80 3.25 5.78 9.56 10.97 13.39 11.22 3.80 
5.10 3.25 6.16 9.69 11.26 11.90 3.55 
5.40 3.35 6.59 9.90 11.65 12.33 3.35 
5.65 3.60 6.89 10.11 11.94 13.09 3.25 
5.95 3.95 7.48 10.24 12.37 13.90 3.25 
6.42 4.42 8.03 10.54 12.75 3.35 
6.84 5.10 8.69 12.75 3.60 

R{4>) 7.31 5.95 9.08 13.26 3.95 
7.91 6.80 9.08 14.07 4.51 
8.59 7.61 9.73 5.36 
9.27 7.99 11.01 6.19 
9.44 8.37 11.65 6.89 
9.86 8.80 12.37 
10.54 9.31 13.22 
11.14 
12.45 
13.85 
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Table 3.2: Summary of all the parameters that used for predicting synchrotron emission of 
the Galaxy 

Quantity Equation/Description/Value E q n . 
Brightness 
temperature 

Th{v) = 6.168 X 10 4 i /- 2 8 / jV e (s)[p c ( S )tf r e K (a)sin0] 1 8 + 

0M61Ne{s)\pe^H

F"^]XSY{s)ds 
3.6 

Irregular field 
realignment 
in arms 

y(s ) = l - 0 . 4 7 7 ( ^ i ) cos20 3.7 

Gas 
compression 
factor across 
an arm 

pc = Ci?/(z)exp(-0.5a 2/0.031) + 1 
| 2.5 R < 8.5 kpc 

~~ | (12.75 - R)0.5 12.75 < R > 8.5 kpc 
3.8 

Compression 
demodulation 
with z 

j 1 + 0.908* - 23.529z2 + 37.35Z3 z < 0.425 kpc 
~ \ 0 z > 0.425 kpc 3.10 

Flux of 
electrons 

Spectral index: 
Energy 
Frequency 

Flux = Ne{a)E-'1dE 

NeQ = 8 0 m - 2 s - 1 s r - 1 G e V - 1 

7 = 2.6 
a = (f + 3)/2 = 2.8 

3.3 

Electron 
flux density Ne(±)=80x< 

z0 = 0.591 + 0.0*3 

' 1.063 fa < 0.29 

1.063 + 1.099 ( £ ) -

4 . 9 1 5 ( i ) ' + 4 . S 0 7 ( i ) ' -

1 . 5 6 9 ( ^ ) % 0 . 2 5 6 ( ^ ) 5 -

0.015(f ) 6 0.29 < f < 0.94 

0.30788 - 0.0217 0.94 < -S- < 14.20 
\zo J — zo — 

, 0 j-a < 14.20 
r67fl + 0.0147 R2 

3.5 

Regular 
field 

Hreg(R) = H0{1 -exp(-2.768fl 2 ))(exp-

HregO — 3.2/iG 

3.12 

Normalization 
parameter 

scale lengths: Rq = ll.Okpc 
Ri = 1.91kpc 

RATIO = 0.692 => F = = (0 .6861RATIO) 1 / 1 8 = 0.66 

111-22 



large thermal component. In our model the junction of arms 7 and 8 is in this 

direction. The observed emission in the direction 30° > / > 27° partly fills in the 

predicted trough in the profile due to a long line of sight in the interarm region. In 

this direction there lies the bifurcation of the spur 10 from the main arm 9. In the 

region of / = 330° the observed excess is in the direction which includes the splitting 

of arms 1 and 2. We suspect that there is some mechanism, not included in our 

model, which produces this enhanced emissivity near to a point where arms split. 

This may be due either to an increase of overall magnetic field strength or simply 

to a relative increase in the irregular component of the field due to turbulence. 

3.3.6 Field irregularities in arm and inter arm regions 

In the model considered so far the irregular magnetic field component un­

dergoes a degree of alignment along the arm due to compression of the frozen in 

field as the density wave acts on the interstellar gas. This was accounted for by the 

Y(s) term in equation 3.6. Irregularities in the field will be generated by supernova 

explosions, and the stellar winds of young O and B type stars. These are more 

common in the spiral arms than in the interarm regions so it is possible that the 

alignment factor is reduced or even reversed. 

One can search for evidence for this in the synchrotron emission from other 

spiral galaxies of a similar type to our own. There is a small number of these that 

are near enough that the beam size of the radio telescope is less than the typical 

spiral arm separation. It is believed that the Hubble Type and Luminosity Class of 

our Galaxy is SbcII although there is some uncertainty because it is viewed from the 

inside. M81 is a two-armed spiral galaxy classified Sab I - I I . The best radio continuum 

mapping has been done by Krause et al.(1989) using the Effelsberg telescope at 6.5 

cm and the V L A at 20 cm. At the latter wavelength the resolution is 0.7 x 1.1 kpc in 

the plane of the Galaxy. The two main spiral arms are clearly seen in total intensity 
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Figure 3.7: The profile along the galactic plane of the observed and predicted syn­
chrotron emission at 408 MHz. The smoother line shows the predicted. Local minima 
in the observed nonthermal emission due to over subtraction of high luminosity H I I 
regions are shown blacked in . 
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and the polarization vectors indicate that the regular component of the field runs 

along the arms. However the degree of polarization has its greatest values in the 

interarm regions. In the southwest interarm the deduced mean magnitudes of the 

two components of the field are i f r e g = 4.5 ± 1.0/^G and -fl"irreg = 4.0 ± 1.0 fiG, while 

in the northeast interarm they are Hree = 3.5 ± 1.0 ̂ G and #i r r e g = 5.5 ± 1.0/iG. 

The implication is that for this galaxy there is a greater degree of turbulence in 

the arms. The galaxy M51 is classified Scl . Horellou et al (1992) have studied 

this at 18cm and 20.5cm using the V L A with a resolution of 2 kpc. Again the 

total emission peaks along the optical spiral arms and the degree of polarization is 

generally weak suggesting appreciable turbulence of the magnetic field in the arms. 

However, for this galaxy the most pronounced minima in polarization occur in the 

interarm regions implying alignment of field by compression in the arms. 

It is not clear from the above whether the field alignment factor Y(s) should 

be applied to our Galaxy. We have tried therefore removing this factor. It is 

necessary, in order to retain a good fit with the overall longitudinal variation of 

emission, to adjust the ratio of the regular to the irregular component and the 

values of R0 and Ri. 

We can see in Fig 3.8 and Fig 3.9 that removing the parameter Y(s) from 

the calculation, gives a significantly worse fit although we have adjusted the free 

parameters in order to give the same value of observed temperature 370 K at lon­

gitude / = 10° and 34 K / = 180°. The removal of the parameter Y(s) gives much 

higher values at the emission peaks corresponding to directions where the arms are 

viewed tangentially than in the observed profile. We conclude that in our Galaxy 

the alignment of the field by compression in the arms is not removed by additional 

turbulence there and we shall continue to include the parameter Y(s) in the cal­

culation of the 408 MHz emission and the calculation of the synchrotron emission 

with absorption at decameter wavelength that is discussed in the next chapter. 
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Figure 3.8: The profile along the galactic plane of the observed and predicted syn­
chrotron emission at 408 MHz. The smoother line shows the predicted after removing 
Y(s) and ref i t t ing by setting R\ = 11.0 kpc. The new value for RQ is 1.89 kpc and F 
is 0.697. 
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Figure 3.9: As for Fig. 3.8 but w i t h the predicted line fitted by setting 
kpc. The new value for ^ is 11.77 kpc and F is 0.698. 
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C h a p t e r 4 

T h e A b s o r p t i o n m o d e l 

In chapter 3, we discussed the synchrotron emission model and described 

how we refined it to get a better fit with the observational data at 408 MHz. 

At this frequency there is very little absorption in the interstellar medium. As 

we know, at lower frequencies, the free-free absorption due to thermal electrons 

becomes significant. The thermal electrons in the interstellar medium absorb some 

synchrotron emission along the line of sight. Here we develop our synchrotron 

model to include the effect of absorption at lower frequencies (34.5 MHz and 29.9 

MHz have been chosen) in order to obtain direct information on the line of sight 

distribution of the emissivity and some indication of the relative positions of the 

peaks of synchrotron radiation and ionised hydrogen emission. 

Reynolds(1984) suggested that instead of two major phases, (i.e. cold clouds 

in a warm intercloud medium) the atomic component of the interstellar medium is 

composed of four phases: (1) cold(T ~ 80 K ) , dense, and largely neutral hydrogen, 

HI, clouds (cold neutral medium or CNM); (2) a warm(T < 8000 K ) HI, surrounding 

the cold clouds in an envelope or distributed through much of space as an "inter­

cloud medium" (warm neutral medium or WNM); (3) a warmer (T ~ 8000 K ) , 

ionized hydrogen medium (warm ionized medium or W I M ) ; and 4) a hot(T ~ 106 

K ) , highly ionized but low density medium (hot ionized medium or H I M ) . The 
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C N M is distributed in relatively dense clouds that occupy an insignificant frac­

tion of the interstellar volume. In contrast, the W N M is widely distributed and 

fills a substantial fraction of interstellar volume. The distribution of C N M and 

W N M can be found from HI 21cm emission data. The distribution of the W I M 

appears to be widely spread, constituting ~ 30% of the mass of diffuse gas. Kulka-

rni and Helies(1987) showed that most of interstellar thermal electrons come from 

the W I M whose 3-dimensional distribution can be deduced by studying (1) pul­

sar dispersion measures, (2) optical H a and radio recombination line emission and 

(3)low-frequency radio absorption. From studies of the diffuse soft X-ray emission 

and O V I U V absorption, it appears that a large fraction of interstellar space is 

occupied by the HIM. However, there is no consensus on the filling factor of the 

HIM. 

In this chapter we model the distribution of thermal electrons by studying the 

distribution of radio recombination line emission as a function of Galactic longitude 

and velocity but first we consider the available low frequency surveys. 

4.1 Low frequency surveys 

At frequencies below ~ 50 MHz, the brightness temperature of the syn­

chrotron emission from the Galaxy is nearly everywhere higher than the electron 

temperatures of the ionized gas clouds of the Galaxy. These clouds behave like ab­

sorbers for the low frequency radiation passing through them. Especially at frequen­

cies around 30 MHz, the absorption of the radiation by the ionized gas throughout 

the disc of the Galaxy can be observed because the absorption is important but 

we can still see the transmission of radiation from the inner part of the Galaxy. 

However at frequencies below about 15 MHz, the absorption is almost complete. 

Hence, surveys at frequencies ~ 30 MHz can provide information on the pattern 

of the disc better than the former one which can provide only information within 
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a few kiloparsec of the Sun. There are two surveys at 34.5 MHz and 29.9 MHz 

which we have chosen for comparison with our model. In order to understand the 

reliability of the deduced absorption one needs to consider the angular resolution 

and the method of the calibration of the surveys so this is dealt with next. 

4.1.1 The 34.5 MHz G E E T E E survey 

The 34.5 MHz survey was made by Dwarakanath and Uday Shankar(l990), 

using the Gauribidanur Radio Telescope located at 13°36'12" N near Bangalore in 

India, the G E E T E E array. The antenna system is in the shape of letter T and 

consists of 1000 East-West aligned full wavelength dipoles. There are 4 rows of 

160 dipoles along a 1.4 km East-West arm and 90 rows, of 4 dipoles each, down 

a 0.45 km long South arm. In the actual survey only one of the East-West rows 

was used together with 88 of the North-South rows. The array is used as a transit 

instrument and in theory the whole of the visible sky could be surveyed in 24 

hours. In fact 15 days of observations were recorded to check the repeatability 

of the measurements. The instrumental zenith is at Declination 14.1° and the 

survey covers the Declination range —50° to +70° and the complete 24 hours of 

Right Ascension. The synthesized beam has a half power beam width ( H P B W ) of 

26' x 42' sec {6 — 14.1°) and the survey can thus be convolved to the 51' circular 

beam of the 408 MHz survey for comparison. The effective area of this telescope 

is approximately 20,000 m 2 . The mean sky brightness is about 10,000 K and the 

minimum detectable flux density is of the order of 10 Jy with an integration time of 

24 s and a bandwidth of 400 kHz. To calibrate the brightness temperature scale of 

the survey the bright radio galaxy Cygnus A was used whose absolute flux density 

at 34.5 MHz is known to 5%. 

We are grateful to Drs. Dwarakanath and Uday Shankar for providing us 

with the survey in digital form. This consisted of 72 maps, each covering 2 Hr of 
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Figure 4.1: The 34.5 MHz survey of Dwarakanath and Uday Shankar made 
wi th the G E E T E E Array(The Gauribidanur Radio Telescope), plotted in 
celestial coordinates. The declination range covered is f rom —50° to +70° . 
The range of brightness temperature plotted is f rom 0 to 80,000 K . 
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R.A. and 20° of Dec. The result of our mosaicing these together is shown in Fig. 

4.1. The bright emission of the Galactic plane along the first quadrant of Galactic 

longitude can be followed from the Galactic centre at R.A.= 265.0°, Dec.= -28.9° 

to / = 90° at R.A.= 317.6°, Dec.= +48.1°. Falling across this however are the 

residual sidelobes of the Cygnus A source at R.A.= 299.4°, Dec.= +40.6°. Those of 

the even brighter Cas A supernova remnant at R.A.= 350.3°, Dec.= +58.5° cover 

more of the plane towards the anticentre. The authors of the survey point out some 

other artifacts that can also be seen on this figure. These are the areas of extended 

emission centred around R.A.= 265°, Dec.= +42° and R.A.= 255°, Dec.= +30° 

which do not appear on surveys at higher frequencies. Horizontal banding can be 

seen between Dec. ±15° on some of the darker parts of the map. The bright features 

below Dec. —40° are mostly spurious although the Vela nebula at R.A.= 130° is 

real. The spurious areas of extended emission could be related to problems with the 

low spatial frequency calibration. This was done by extrapolation from the longer 

baseline calibration given by the Cygnus A point source. 

In order to attempt to remove these effects we used the 38 MHz survey of 

Milogradov-Turin and Smith (1973) and Milogradov-Turin (1984). This was made 

with the Jodrell Bank 75 m Mk I telescope. At this frequency the beam width is 

7.5°. This is far too large to give any information about absorption features along 

the Galactic plane but it is expected to be reliable for large angular scale features. 

We were able to use a digitised version of their published contour map that had 

been prepared by Lawson et al. (1987) for their study of the spectral index of the 

radio continuum emission. This is shown in Fig. 4.2. It extends down to Dec. —25° 

and so includes almost all of the first quadrant of Galactic longitude. 

To compare the two maps we convolved the G E E T E E map to a circular 7.5° 

beam and divided all the pixels by a constant 1.27 to convert to the equivalent 

brightness temperature at 38 MHz. By dividing this map, pixel by pixel, in the 
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Figure 4.2: The 38 MHz survey of Milogradov-Turin and Smith made with 
the Jodrell Bank Mk I radio telescope. The declination range covered is 
from —25° to +90°. The range of brightness temperature plotted is from 0 
to 50,000 K. 
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region of overlap by the observed 38 MHz map we obtained a map of correction fac­

tors. When we divided the original G E E T E E map by his we obtained a 'corrected' 

G E E T E E map as shown in Fig. 4.3. This map shows the same fine detail as the 

original but would agree with the Jodrell Bank map if it were convolved to the same 

beam size and converted in frequency assuming a uniform spectral index. For the 

small difference in frequency this is not a critical assumption. Along the Galactic 

plane the absorption would have been rather weaker at the higher frequency but 

the much larger beam size would have made this negligible. 

One sees in Fig. 4.3 that most of the spurious features have gone away or 

have been much reduced. The arc of the 'North Polar Spur', identified with the 

shell of a nearby, old, supernova remnant can be more clearly seen also. 

Fig. 4.4 shows the same map, replotted in Galactic coordinates to show 

the details of the first quadrant of Galactic longitude. The range of brightness 

temperatures plotted has been adjusted to show the details of the absorption near 

to the Galactic plane. A comparison of these absorption regions with the contour 

plot of separated thermal emission at 408 MHz in Fig. 2.6a shows qualitative 

agreement. We shall use this map, convolved to the 408 MHz beam of 51' to deduce 

the 'observed' absorption. 

4.1.2 The 29.9 MHz Fleurs survey 

This survey was made by Jones and Finlay (1974). The published part 

of the survey covers the area 225° < / < 30° and -10° < b < +10° observed at 

Fleurs Observatory N.S.W. (latitude 33.86°S). The aerial used for the 29.9 MHz 

survey consisted of an East-West array of 212 colinear half-wave dipoles which gave 

a fan beam along the meridian. This fixed array was used in conjunction with two 

movable arrays which were placed symmetrically to the north and south of the EW 

array at a total of 50 different spacings in order to obtain resolution in the North-
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Figure 4.3: The 34.5 MHz survey of Dwarakanath and Uday Shankar after 
we had corrected some of the large angular scale anomalous areas of emission 
by the use of 38 MHz map. The range of brightness temperatures plotted is 
from 0 to 50,000 K. 
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Figure 4.4: The 34.5 MHz brightness temperature of Fig.4.3 replotted in 
Galactic coordinates for the first quadrant of Galactic longitude. The latitude 
range is ±8.33°. The range of brightness temperature plotted is from 0 to 
100,000 K. 
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Galactic Longitude 

Figure 4.5: The fourth quadrant of Galactic longitude of 29.9 MHz as digi­
tised by us from the published contour map of Jones and Finlay(1974). The 
range of brightness temperature is from 0 to 250,000 K. The black region is 
further south than dec—64°, the limit of the survey. 
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South direction using aperture synthesis. Each of these movable arrays consisted 

of three half-wave dipoles. The HPBW of the synthesized beam was 48' x 48' sec 

(6 + 33.86°). The temperature scale was calibrated with reference to the bright 

source Hydra A. Because of interaction between the E W array and the NS elements 

when at the close spacing position the central 2A portion of the former had to be 

removed. This means that the corresponding broad scale component of the sky map 

would be missing. The authors describe how the restoration of this component was 

attempted using a low resolution 30 MHz survey made with the Parkes 64 m dish. 

This being an old survey no original digital data were available so we made 

our own digitisation of the published contour maps. Fig. 4.5 shows the 4th quadrant 

of Galactic longitude plotted from this digitisation. The range of Galactic longitude 

which is of interest to us is from 297° to 355° this covers a Dec. range from —33° 

to —62°. This in turn means that the HPBW in Dec. varies between 48' and 54'. 

Overall then the effective resolution of this survey is very similar to that of the 408 

MHz survey and no further convolution is required. 

4.2 The distribution of ionized hydrogen 

In order to calculate the absorption of the synchrotron radiation the dis­

tribution of the mean square density of thermal electrons, < n\ >, along a line of 

sight through the Galaxy must be known. It can be deduced from the brightness 

temperature of an appropriate recombination line as a function of frequency. In the 

second chapter (equation 2.35), we have shown that 

/ TL(u)d 2.478 x l O V ^ T . v 

/ 1.35 n. dr v 

-1 .15 

r = 0.082352; 

Tc = 
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where TL is the recombination line temperature, Tc is the thermal continuum tem­

perature and Te is the electron temperature. 

When gas travelling at a velocity v with respect to the observer radiates a 

line frequency i/i, the frequency is shifted to 

v = - -) c 
(4.1) 

and 

dv dv 
c 

Equation 2.35, can then be written as 

x 1.633 x 10"9 x 
[ n e

2 1 
\ T l ] 

dv 
c m - 6 [KJ Tr 

v 
I MHz J . K . 

i 15 

(4.2) 

If we take Tt = 7000 K which is deduced by Mezger(1978) for E L D HII regions then 

the above equation becomes : 

cm - 6 
= 9.5639 x 10" 4 \ T l } dv 

V L K J dr X LMHZJ (4.3) 

It has been common to assume that the motions of the gas around the galactic 

centre are circular and the angular velocity, fl(iE), is a decreasing function only of 

distance, R, from the galactic centre. The distance from an observer to the emitting 

region is r. The observer is at the distance, RQ, from the galactic centre and rotating 

about the centre with an angular velocity f2Q. The radial velocity, v, measured by 

the observer is the Doppler-shifted velocity of the gas along the line of sight minus 

the component of the observer's motion, n oJ2 0, as shown in Fig 4.6. This difference 

is 

v{R, I) = niEcos(90° - 1 - 9 ) - n oi2 ocos(90° - /) 
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Figure 4.6: Diagram illustrating the construction used in the deriving equation 4.4. 
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= ni2(sin0cos/ + costfsin/) — no-R0sin/ 

where I is the galactic longitude(at 6 = 0°) of the line of sight in equation and 6 is 

galactocentric azimuth. Fig 4.6 shows that i?sin0 - rsin/ and RcosO = R0 — rcos/, 

thus the radial velocity can be written as 

v(R,l) = R0[n - n o]sin/. (4.4) 

If the function R0{Q — no] is known, in principle, distances along the line 

of sight in the galactic plane can be attributed to each measured velocity. IAU 

commission 33 recommended the use of the standard values, distance of the Sun 

from the galactic centre, Ra — 8.5 kpc and the linear velocity 0 O = n o iE 0 = 220 

km/s. 

From equation 4.3, we have the relationship between electron density, line 

frequency and the line temperature from which we can find the value of dv/dr from 

the radial velocity in equation 4.4. From Fig. 4.6, we can find the relationship 

between Ra, R, and r as written in the following equation: 

R2 = R0

2 + r2 - 2rR0cosl (4.5) 

From this relationship, at any longitude we can find two values of r which we call 

'near' and 'far' distances that have the same galactocentric distance R. It means 

that these two points will appear at the same position in / — v diagram. From the 

above equation, we then get dv/dr by using the chain rule: 

dv 
Tr 

dv 
dU{R) 
dn(R) 

dR 

dv dU(R) dR 
dU(R) dR ~d7 

R0s'ml 

(4.6) 

= W ) 

rv-i4 



dR 
dr 

(r — R0cosl) 
R 

therefore 

dv 
dr 

R0s'ml(r — R0cosl) 
R f'(R) (4.7) 

Clemens(1985) fitted a polynomial of the following form to the rotation curve 

in Fig 4.7 with the coeffients shown in Table 4.1. 

Of the Hydrogen recombination lines that fall within the parts of the radio 

spectrum reserved for radio astronomy the Hl66a is the most appropriate for the 

observation of the relatively low density ionised gas with which we are concerned. 

Currently surveys are available only for 6 = 0°. 

In the northern galactic plane we have used the data observed by Lock-

man(l976), and shown in Fig 4.8. 

This covers the area of longitude 358° < / < 50° .5. (There is little emission at 

larger longitudes except for the region of the Cygnus complex, which we cannot deal 

with because of the problem of the strong source Cygnus A). These data were taken 

with the 42 m telescope of the NRAO with HPBW of 21' at the recombination line 

frequency 1.425 GHz and velocity resolution of 5.48 km s - 1 . (Note that Lockman 

used Tl as an antenna temperature, therefore the value of the emission has to be 

multiplied by 1.32). 

In the southern galactic plane we use the survey of Cersosimo et al.(1989), 

shown in Fig 4.9. This covers the area 298° < / < 4°. The data were taken by using 

the 30 m diameter antenna of the IAR with HPBW 34' at the same frequency and 

a velocity resolution of 15.8 km s _ 1 . 

>2AiR\ where R < O.Q9R0 

UBiR*. 0.09iEo < R < 0.45iEo n (R) 
0.45i2o < R < 1.6R0 

D R > 1.6Ra 

(4.8) 
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Figure 4.7: Plots of the rotation speed versus galactocentric radius(Taken from 
Clemens, 1985). The solid line correspond to the polynomials in equation 4.8. 
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Table 4.1: Coefficients of the Rotation Curves 

Coefficient R < 0.09Ro 

A0 
0.00 

Ax +3069.81 
A2 -15809.80 
Az +43980.10 
A< -68287.30 
A, +54904.00 
A6 -17731.00 

0.09i2o < R < 0A5Ra 

Bo +325.0912 
Bx -248.1467 
Bz +231.8701 
B4 -110.7353 
Bs +25.0730 
Be -2.1106 

0A5Ro <R< l.GR0 

Co -2342.6564 
+2507.6039 

c2 -1024.0688 
C s +224.5627 
c 4 -28.4080 
c 6 +2.0697 
c 6 -0.0805 
C7 +0.0013 

R > 1.6R0 

Do 234.88 
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Figure 4.8: Distribution of recombination line (H166 a) emission in the first quad­
rant of Galactic longitude as measured by Lockman(l976). The emission is given 
terms of Antenna Temperature in velocity-longitude coordinates. Contours are 
drawn every 0.01 K from 0.01 K to 0.05 K and at 0.07, 0.10, 0.15, 0.25, and 0.40 K. 

IV-18 



1 r- l ( " I 
10 

360 

20 

0 H166<* 

350 20 

20 
(0 

60 

330 
20 

iO 

g2> 
20 CP 

310 

20 

20 

100 100 in 

Figure 4.9: Distribution of recombination line (H166 a) emission in the fourth 
quadrant of Galactic longitude as measured by Cersosimo(1989). The emission 
is given terms of brightness temperature in velocity-longitude coordinates. The 
contour interval is 0.02 K. 
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In principal the rotation curve together with the above relations allows these 

distributions of recombination line brightness temperature as a function of / and 

v to be converted to a map of the distribution of < n2

e > in the Galactic plane. 

Such a distribution is shown in Fig 4.10 where the rotation curve of Clemens under 

the assumption of purely circular motion of gas about the Galactic centre is used 

to convert velocity to distance. Note that we have ignored the emission within 5° 

of the Galactic centre as this clearly shows considerable non-circular motion. For 

each longitude equal contributions to the brightness temperature are assumed to 

be made from gas at the far and near points that have the same velocity along the 

line of sight. It is apparent, however from this figure that the velocity resolutions 

of the recombination line surveys are not sufficient to assign the gas to spiral arms 

of realistic width. The faintness of the emission is the reason why such a broad 

velocity resolution was chosen. 

From Ha pictures of other Sbc galaxies, we would expect the main part of 

the HII emission of the Milky Way galaxy to be concentrated in arms with FWHM 

w 0.5 kpc. Therefore we have assumed that for each longitude, the emission comes 

from the spiral arm nearest to the position which is indicated by its velocity. And 

we also assumed that the mean electron density is highest in the centre of the arms 

and gradually declines according to a Gaussian distribution with FWHM = 0.5 kpc 

when it is far from the centre. We therefore need additional information about the 

position of the spiral arms of thermal electrons. One model that we can take is that 

the arms coincide with the peaks of the spiral arms of synchrotron emissivity that 

we have already deduced in Chapter 3. We shall label this the 'synchrotron spiral 

arm' model. The distribution of < n\ > according to this model is shown in Fig. 

4.11. 

It is certainly the case that for some galaxies, such as M51, the nonthermal 

radio spiral arms coincide with the arms picked out by HII regions. For others 
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Figure 4.10: The distribution of mean square electron density, < n2

e >, 
derived from the longitude-velocity distribution of H166q emission by way 
of the Galatic rotation curve. The range of density is from 0 to 3 cm" 6 . The 
position of the Galactic centre is [0,0] and the Sun is [0 ,8 .5] . 
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Figure 4 . 1 1 : The distribution of mean square electron density, < n\ >, 
derived as for Fig.4.10 but with the constraint that the electrons fall within 
the 'synchrotron spiral arms'. The range of density is from 0 to 3 c m - 6 . 
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it is not so clear. As an alternative model we take it that the relevant arms are 

the spiral arms in the distribution of thermal electron density, ne, as derived from 

pulsar dispersion measures by Taylor and Cordes(1993), referred to from now on as 

T C . 

4.3 The distribution of electron density according 
to T C 

Taylor and Cordes(1993) have modelled the distribution of mean electron 

density, < ne > , to fit the dispersion measures of pulsars for which there is inde­

pendent information on their distances. Currently there are upwards of 550 known 

pulsars. Of these there are constraints on the distance for about 70. These con­

straints are generally the presence or absence of 21 cm absorption lines in their radio 

continuum spectra at velocities corresponding to those of H I spiral arms along the 

line of sight. If the absorption line is present the pulsar lies beyond the arm, if 

absent it lies in front. 

T C started from the same Georgelin and Georgelin spiral arm pattern that 

was the starting point for our synchrotron arms. In the T C model, arm 3 has been 

moved slightly inward in regions inside the Sun, as shown in Fig 4.12, to correspond 

with the improved measurements of Downes et al.(1980) and also arm 4 has been 

extended at the outer end according to data by Caswell and Haynes(l987). The 

coordinates of the spiral arms are shown in table 4.2. Fig . 4.12 shows < ne > 

distributed according to this pattern. 

The electron density at any point according to the T C model(Fig 4.13) is 

the sum of contributions from four components; 1) an outer disk(ni), 2) the inner 

galaxy (n 2 ) , 3)the spiral arms(n a) and 4)the G u m nebula(n 9): 
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Figure 4.12: Grey-scale picture of the distribution of mean thermal electron density 
< ne > in the Galactic plane as modelled by Taylor and Cordes(1993) from pulsar 
dispersion measures. The maximum density in the arms is ~ 0.18 c m - 3 : the density 
near the sun is ~ 0.019 c m - 3 . 
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Table 4.2: Coordinates of the spiral arms in T C model 

A R M 1 A R M 2 A R M 3 A R M 4 

r r r r 
9 (kpc) 9 (kpc) 9 (kpc) 0 (kpc) 

164° 3.53 63° 3.76 52° 4.90 20° 5.92 
200° 3.76 120° 4.56 120° 6.27 70° 7.06 
240° 4.44 160° 4.79 170° 6.49 100° 7.86 
280° 5.24 200° 5.70 180° 6.95 160° 9.68 
290° 5.36 220° 6.49 200° 8.20 180° 10.37 
315° 5.81 250° 7.29 220° 8.89 200° 11.39 
330° 5.81 288° 8.20 252° 9.57 223° 12.08 
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Figure 4.13: Mean thermal electron density as functions of galactic radius, r, and 
distance from the galactic plane, z as modelled by Taylor and Cordes(l993). 
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ne(x,y,z) = n 1 0 1 (r)sech 2 (z / / i 1 ) + n2g2(r)sech2 (z / h2) 
4 

+ra 0 sech 2 (z// i a ) fj9a{r,Sj) + nGgG(u) (4.9) 
;'=i 

where r = (x2 + y 2 ) 1 / 2 is the galactocentric distance projected onto the plane, hi is 

the scale height for component i and scale factors / , are defined by 

A = h = 1 (4.10) 

i , o < 215° 
f 2 = I 1 + {9 - 215°) /20° , 215° < 0 < 235° (4.11) 

[ 2 , 0 > 235° 

f3 = [ ( 3 + c o s ( 2 7 r ( 0 - 120°) /40°] ) /4 , 120° < 0 < 160° 
| 1 , elsewhere ^ * ' 

Here 0 is an angle measured counterclockwise from the negative y direction. And 

the functions gu g2,ga and gG are defined by 

0i (r) = sech 2 (r /A 1 ) / sech 2 (8 .5 /A 1 ) 

g2(r) = exp < - — 
1.8 

So 
M = J exp[-((u - 0.13)/0.05) 2)] , u > 0. 
1 1 \ 1.0 , u < 0. 

13kpc 
13kpc 

(4.13) 

(4.14) 

- ( e x P } - ^ > a ) ; j s e c h 2 [ ^ - ^ ) / 2 - ° l for ' > ^ ( 4 . 1 5 ) 

[ exp[ - ( s i / ty a ) 2 ] r<Aa

 v ' 

(4.16) 

where Sj is a distance on the plane from the nearest point on the axis of spiral arm 

j and u is the distance from the Gum Nebula. And other parameters are shown in 

Table 4.3. 
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Table 4.3: Parameters of the electron density model taken from Taylor and 
Cordes(1993) 

Parameter Estimated value Adopted value 

n 1 / i 1 (cm 3kpc) 0.0165 ± 0.0006 0.0165 
hi (kpc) 0.88 ± 0.06 0.88 
Ai (kpc) >20 20 
Ft 0.36lg:3g 0.4 
n 2 ( c m - 3 ) 0.10 ± 0.03 0.1 
/ i 2 (kpc) 0.15 ± 0.05 0.15 
A2 (kpc) 3.7 ± 0.3 3.5 

4o+30 40 
n a ( c m - 3 ) 0.084 ± 0.008 0.08 
K (kpc) 0.3 ± 0.1 0.3 
wa (kpc) 0.3 0.3 
Aa (kpc) 8.5 8.5 
Fa 6t5

2 6.0 
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From table 4.3, we can see the parameter F is a fluctuation parameter which 

differs widely for the various galactic components, increasing nearly 100 times from 

outer to the inner of the galaxy. It is not so clear how to obtain these fluctuation 

parameters so we cannot use this electron density distribution directly to obtain 

the distribution of mean square electron density. In other words < ne > from the 

dispersion measures cannot be directly used to find < n2 > because there is a factor 

which we call the 'filling factor', / , involved. The true electron density, ne(s), is 

related to the mean electron density, < ne(s) >: 

< ne(s) >= f(s)ne(s) (4.17) 

and similarly 

< n]{s) >= f{s)nl{s) (4.18) 

The relationship between < ne > and < n\ > in terms of the filling factor 

as: 

For lines of sight towards the inner parts of the Galaxy the values of < n2 > required 

to account for the thermal continuum emission are in general much larger than the 

squares of the < ne > values got from pulsar dispersion measures. Thus the filling 

factor f{s) is clearly < < 1 and varies from place to place. 

We cannot therefore use the T C model for the < ne > distribution directly 

to predict the absorption. Instead we simply use the spiral arm pattern of T C to 

define the positions of the arms of ionised gas and assign < n\ > derived from the 

recombination line brightness temperature to the nearest arm as indicated by its 

Doppler shift. The resulting distribution, the ' T C spiral arm' model is shown in 

Fig. 4.14 
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Figure 4.14: The distribution of mean square electron density, < n\ >, 
derived as for Fig.4.10 but with the constraint that the electrons fall within 
the 'TC spiral arms'. The range of density is from 0 to 3 c m - 6 . 

IV-30 



4o4 Tike predicted amd observed absorpt ion 

4.4.1 Calculation of the predicted absorption 

It follows from sections 4.2 and 4.3 that we have two models for the distribu­

tion of < n\ > along lines of given / and are able to calculate brightness temperatures 

in those directions taking into account absorption. The recombination line surveys 

are restricted to 6 = 0 and give no information on the 3-dimensional distribution 

of < n\ > so our comparison can only be with the profile along the plane. We still 

need, however, to convolve the predictions to a 51' H P B W so a calculation of, at 

least an approximate, 2-dimensional variation of absorption is needed. To do this 

we assume that < n\> varies with distance, z, from the plane as sech 2(2//i) where 

h = 0.08 kpc. This represents the distribution of molecular gas in the inner Galaxy 

to which the ionised gas that we are considering is expected to be related. We note 

that such a distribution has a F W H M of 140 pc, which means that the beams used 

in the two recombination line surveys would lie within the ionised gas layer over 

the full path length in the Galaxy. We implicitly assumed this in our derivation of 

< tij > from the recombination line brightness temperatures. 

To calculate the brightness temperature with absorption we divide the chosen 

line of sight into steps of length A s = kpc. We start the calculation at the 

furthest point on the line of sight. The brightness temperature after the nth step 

then follows from equation 2.37 as 

Tn = r n _ x exp(-AT-) + r , ( l - e x p ( - A r ) + A T ( 1 ^ A f ) ) (4.20) 

A T 

where the optical depth of the step is 

< n\ > As A r = Jfc-
c m - 6 kpc 

with k = 0.6243 and 0.8431 for 34.5 MHz and 29.9 MHz respectively. The first term 

on the R H S gives the intensity from the previous step, attenuated by the step. The 
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second and third terms give the thermal and nonthermal components of emission 

from the step in the presence of absorption. At ~ 30 MHz and with Te = 7000 K 

the synchrotron emission from the step A T > > TeAr so the second term is much 

smaller than the third. 

To obtain the corresponding relation for negligible absorption let A r —• 0 

then T n - Tn_x + A T . After the final step the ratio of the brightness temperature 

with absorption to that without gives the effective transmitted fraction which may 

be compared with observation. 

Fig . 4.15 shows the relative contributions from points along a particular 

line of sight to the brightness temperatures, with and without absorption, in that 

direction. From the upper line one can see how much of the emission comes from the 

arm regions and how much from the interarms. From the lower line it is apparent 

that, for that particular line of sight, the detailed structure of the arms beyond 

~ 10 kpc has only a minor effect on the total brightness temperature. 

The same information is contained in Figs. 4.16 and 4.17 but this time for 

all longitudes in the inner Galaxy. Fig. 4.16 is the 'no absorption' case. It can 

be noted that in directions where the line of sight from the sun meets a spiral arm 

tangentially the apparent brightness of the arm is reduced. This is the effect of the 

regular field component which lies along the line of sight at that point and therefore 

gives a minimal contribution to the synchrotron emission as observed from the sun. 

This effect would not be present, of course, for an observer viewing the Galaxy face 

on where the regular field would always be perpendicular to the line of sight 

From Fig. 4.17, the picture with absorption, one can judge how much the 

details of the more distant spiral arms contribute to the predicted absorption. 
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Figure 4.15: An example of the contributions of points along the line of sight / = 330°, 
b — 0° to the total brightness temperature in that direction. The upper line shows 
the contributions with no absorption. The lower line shows the contribution after 
absorption at 29.9 MHz by thermal electrons distributed according to the 'synchrotron 
spiral arms' model. 
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Figure 4.16: The contributions of points along the line of sight to the pre­
dicted longitude profile of brightness temperature as observed from the Sun's 
position. The range of the emissivity is from 0 to 10000 K/kpc. 
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Figure 4.17: As for Fig.4.16 but with the inclusion of absorption by thermal 
electron distributed according to the 'synchrotron spiral arms' model. The 
range of the emissivity is from 0 to 2000 K/kpc. 
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4.4.2 Comparison with the 'observed' absorption 

We now come to the comparison of the predicted and observed absorption. 

Of course it is not possible to turn off the absorption for the low frequency obser­

vations. What we have to do is to predict what the observations would look like 

if there was only the nonthermal component with no absorption. For this we use 

the nonthermal component of the 408 MHz emission as obtained in Chapter 2 and 

scale it to the equivalent brightness temperature at 34.5 or 29.9 MHz. We have 

to assume that the brightness temperature spectral index of the nonthermal com­

ponent is uniform over the region of interest, which is equivalent to assuming that 

the cosmic ray electron spectral index is constant over that region. To determine 

this brightness temperature spectral index we make use of the fact that the thermal 

emission in quadrants 1 and 4 of Galactic Longitude is confined to within 5° in 

latitude of the Galactic plane, as can be seen in Figs. 2.6a and 2.6b. This means 

that, for |6| > 5°, there is no thermal component and no absorption and the ratio 

of low and high frequency brightness temperatures gives the required index. 

For the first quadrant the longitude range of interest is 5° < / < 50°, the 

region covered by the recombination line survey, excluding that within 5° of the 

galactic centre where non-circular velocities are too large. In this region we take 

the ratio of the 34.5 MHz and the 408 MHz nonthermal brightness temperatures and 

find that its mean value for 7.0° < |6| < 8.3° is 423. We therefore multiply the whole 

of the 408 MHz nonthermal brightness temperature map by this value in order to 

obtain a prediction of what the observed unabsorbed brightness temperatures would 

be at 34.5 MHz. Finally by dividing this into the directly observed 34.5 MHz map, 

after convolution to a H P B W of 51' and taking the cut along b = 0° we obtain the 

'observed' transmission of 34.5 MHz continuum emission as shown by the solid lines 

in the two plots in Fig. 4.18. The ratio of 423 implies an effective Temperature 

spectral index between 408 and 34.5 MHz of 2.45. 
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The same procedure is applied to the 29.9 MHz data in the 4th quadrant. In 

this case the longitude range of interest is 300° < / < 355° and the mean ratio of the 

29.9 MHz and the 408 MHz nonthermal brightness temperatures for 7.0° < |6| < 8.3° 

is 1280. The resulting 'observed' transmission of 29.9 MHz continuum emission is 

shown by the solid lines in the two plots in Fig. 4.19. The ratio of 1280 implies 

an effective Temperature spectral index between 408 and 29.9 MHz of 2.73. We do 

not believe that the spectral indices are really so different in the two quadrants and 

attribute this to differences in the absolute calibration of the two surveys. As we 

have already applied a correction to the calibration of the 34.5 MHz map to give 

agreement with the 38 MHz survey we believe that the fault lies in the calibration 

of the older 29.9 MHz survey. If this simply affects the overall temperature scale it 

does not change the values of the 'observed' transmission that we have derived. 

The dotted lines in Figs 4.18 and 4.19 are the predicted transmissions dis­

cussed in the previous section with the pair of plots in each figure. One can see that 

there is agreement in the general level of the predicted and observed transmissions 

and the maxima and minimum usually occur at the same longitudes. This confirms 

that the absorption model of the synchrotron emissivity in the Galactic plane is 

broadly correct. There is not a great deal of difference between the predictions of 

the 'synchrotron spiral arms' model and the ' T C spiral arms model' and there is no 

overall best fit. For instance in the region 35° < / < 40° the 'synchrotron' appears 

favoured while for 28° < / < 35° the ' T C model fits better. In some regions one sees 

that neither of the predicted lines agree very well with the observed one. We shall 

discuss in the final chapter some of the simplifying assumptions and other factors 

that may cause this. The main effect on the predicted absorption, however, is likely 

to be our having to deal with the distance ambiguity by assuming that the H166a 

emission comes from the near and far points equally. This is a reasonable assump­

tion overall but can give the wrong result at any particular longitude. If all of this 
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Figure 4.18: The 'observed' transmission of 34.5 MHz continuum emission(solid line) 
compared w i t h the predicted transmission. Three cases are shown concerning the 
treatment of the distance ambiguity i n converting recombination line Doppler shift to 
the distance of thermal electrons: (i) all at the far distance(dashed line), ( i i ) half at 
the far and half at the near distance(dotted l ine), ( i i i ) all at the near distance(dash-
dot line). The upper plot is for thermal electron following the 'synchrotron spiral 
arms' model. The lower one is for the 'TC spiral arms' model. 
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Figure 4.19: The 'observed' and predicted transmission as for Fig.4.18 but concerning 
the 29.9 MHz emission. 
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emission in fact comes from the near point the absorption will be stronger than if it 

all comes from the far point. To show the full range of possible absorptions at each 

longitude we have reconstructed the two distributions of < n2

e > first with all of 

the ionised emission at the far points and secondly with all of the ionised hydrogen 

at the near points. We have then recalculated the transmission. The results are 

shown as the dashed and dash-dot lines respectively in the two figures. In general 

then the 'observed' transmission lies between the predicted transmissions for the 

near and far cases. 
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C h a p t e r 5 

C onclus ion 

5.1 Summary 

In this final chapter we summarise our results, discuss some of the overall 

properties of the Galaxy and consider possible future developments. 

The derivation of our model of the distribution of synchrotron emissivity in 

the Galaxy is described in Chapter 3. The model is defined by the expressions and 

parameters given in Table 3.2 with the spiral arm structure plotted in Fig . 3.6 

and tabulated in Table 3.1 One should make clear that as this is based on a radio 

survey which has H P B W of 51' it can represent detail down only to a scale size of 

typically 130 pc. This is roughly the thickness of the molecular gas layer in the inner 

Galaxy but is considerably smaller than the deduced thickness of the synchrotron 

emitting disk. We had started with a model derived by Broadbent which was then 

modified in a number of ways. Firstly we adopted the, now standard, distance to 

the Galactic center of 8.5 kpc. Then we took into account the new evidence of a 

Galactic bar (Blitz, 1993). We did not try to model the synchrotron emission from 

the bar itself because the thermal and non-thermal separation technique cannot be 

applied so close, in angular distance, to the Galactic centre as the region of the bar 

and also the prediction of how the magnetic field alignment at the center of the 

Galaxy is affected by the bar is not clear. The bar does, however, have implications 
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for the geometry of the spiral arms as they approach the Galactic centre and this 

was taken into account. 

In view of the evidence from some nearby external galaxies to the contrary, 

we tested our model's assumption that the magnetic field suffers a net alignment 

along the spiral arms by compression (the Y-factor of equation 3.7). With this factor 

omitted, however, the profiles of the arms viewed tangentially gave a significantly 

worse fit to the observations than for the original model. The fit could have been 

restored to a certain extent by reducing the compression in the arm but then one 

would have the problem of accounting for the observed contrast of star formation 

rate between the arm and interarm regions. We conclude that for our Galaxy the 

disruption of the magnetic field by supernova explosions and the stellar winds of O 

stars does not overcome the alignment due to compression. 

Our model is symmetric above and below the Galactic plane and does not 

include Loops I , I I and I I I , as designated by Berkhuijsen et al. (1971), which are 

taken to be old supernova remnant shells of the order of 100 pc in diameter but 

sufficiently nearby to subtend large angles at the sun. The North Polar Spur, which 

forms part of the arc of loop I is the most prominent of these features and can be 

seen extending from the Galactic plane at around Dec. + 1 0 ° to + 2 0 ° in Fig . 4.3. No 

account was taken of the warp of the Galactic disk as observed in the HI gas layer 

outside the solar galactocentric radius. As shown by Phillipps et al. (1981b) because 

of the fall off in synchrotron emissivity outside the sun this has a minor effect on 

the latitude profiles of emission in the second and third quadrants of longitude. As 

no arms are viewed tangentially in these quadrants the longitude profile is rather 

insensitive to changes in the positions of arms there. This together with the fact 

that we normalise the model to fit the observed emission in the anticentre direction 

meant that it was unnecessary to make any adjustment to the position of the arms 

outside the sun from those in the Broadbent model. 
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Figure 5.1: Latitude cuts across the Galactic plane showing the observed non­
thermal emission at 408 MHz(solid line) and that predicted by our model(dotted-
line).(Continued on next page.) 
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Fig. 5.1 shows latitude cuts of observed and modelled nonthermal emission 

in the first and fourth quadrants of Galactic longitude, spaced at 20° intervals of 

Galactic longitude (except that a cut at / = 350° is substituted for that at / = 0°). 

There are some features on these cuts which are not included in the model. In 

the / = 280° cut the extra emission centred on 6 = —1° is due to the edge of the 

Vela supernova remnant. The circle of emission from the loop I supernova remnant 

crosses the plane near / = 340° and the brightest part of its arc of emission crosses 

again between / = 20° and / = 40° and accounts for the additional emission in the 

wings of these profiles. The cut at / = 80° passes through the Cygnus region, a 

nearby complex region of thermal and nonthermal emission which, in our model 

coincides in direction with the bifurcation of the Orion spur and the Sagittarius 

arm. As can be seen from Fig. 2.4a the thermal separation technique indicates that 

the major part of the emission from the Cygnus complex is thermal in origin and the 

'observed' nonthermal emission which is in excess of the model could still contain 

some unidentified thermal emission. It would have been particularly interesting to 

study the absorption at 34.5 MHz in this region but this was made impossible by 

the residual side lobes of the very bright Cygnus A radio galaxy which happens to 

lie in the same direction. 

It might be argued that the number of parameters that we have introduced 

into our model is larger than necessary and that our approach should have been to 

use the smallest possible number required to turn a two dimensional distribution of 

intensity into a three dimensional distribution of emissivity. We believe that all of 

the parameters that make up our model are there for a good reason concerned with 

the physics of the synchrotron emission and the spiral structure and that they have 

to be included in any realistic model. Similar arguments might be made about the 

T C model of the < ne > distribution. Certainly the information from the dispersion 

measures of the 70 pulsars for which there is some constraint on the distance is not 
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sufficient to define all the parameters in Table 4.3 as well as fix the spiral structure 

and they too had to invoke physical arguments and analogies with external galaxies 

to construct their model. 

In chapter 4 we modelled the absorption of the continuum emission at de­

cametre wavelengths by ionised gas and compared it with observation. The aim 

was to test the line of sight distribution of synchrotron emission in our model and 

to distinguish between two variants of the distribution of the mean square thermal 

electron density. The result confirmed that the absorption model of the synchrotron 

emissivity in the Galactic plane was broadly correct. We were unable to distinguish, 

however, between the two spiral arm distributions of thermal electrons, for which 

the main differences were in the form of the arms within 4 kpc of the Galactic 

centre. The reasons for this were that the available recombination line surveys did 

not really have sufficient frequency resolution and the inherent distance ambiguity 

when converting Doppler shifted frequency to the distance along the line of sight. 

At almost all longitudes the 'observed' transmission of the decametre emission did 

fall between the predicted limits, corresponding to the assumption that all of the 

ionised gas was either at the near or far points. In certain directions one may 

be able to resolve this distance ambiguity. For example at I ~ 15°(Fig 4.18), the 

thermal emission should come from the near point. Georgelin & Georgelin(1976) 

showed that there is a giant HII region at 15° situated at about 2.5 kpc. At / ~ 31°, 

the emission should come from the far point while from the Georgelin & Georgelin 

data, there is a giant HII region at 7 kpc. The way in which these two authors 

determine the distance is by finding an O B association which coincides in direction 

with a particular giant HII region. The star spectral types and magnitudes then 

allow their distance to be estimated with sufficient precision to tell if the region 

is at the near or far point. Unfortunately it is not possible to identify all of the 

extended HII regions with specific groups of stars. 
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If one was completely confident of the model and the observed transmission 

one could turn the problem around and for each longitude assign the ionised gas 

between the near and far points in the proportion required to give agreement with 

observation. This would then give a way of deriving the distribution of the ionised 

gas in the Galaxy without the distance ambiguity. There are some uncertainties 

to bear in mind, however. Firstly, in order to obtain the 'observed' transmission 

we assumed that the spectral index of the unabsorbed radiation would be constant 

across the plane. If for instance the electron spectrum were flatter in the inner 

part of the Galaxy (although there is no evidence for this) the spectral index at 

6 = 0° would be lower than we assumed and we would have underestimated the 

transmission. Secondly, in separating the thermal and nonthermal emission we 

took the electron temperature in the HII regions to be 7000 K . This is the best 

estimate of the average for a large number of clouds along the line of sight. If, 

however, at a particular longitude a large proportion of the thermal emission was 

contributed by a single cloud its temperature could differ from the mean and the 

calculated transmission could be wrong. Finally, as already mentioned in chapter 4, 

there are some uncertainties in the calibration of the Fleurs and G E E T E E surveys 

over the full range of spatial frequencies. The former array no longer exists but the 

latter is still operating and it may be possible to check the calibration. 

For some ranges of / the 'observed' transmission falls outside the range of 

predictions. One should note that for 40° < / < 48°, for instance, most of the 

recombination line Brightness Temperature on the / — v plot is defined by only 1 

contour level so the calculated transmission cannot be very precise. 
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5.2 The magnetic field and cosmic ray electron 
density 

The Galactic magnetic field, H and the cosmic ray electron density, Ne 

occur explicitly in our model but what we have done is to find the distribution of 

emissivity, which is proportional to NeH18, which fits the observations. We have 

already pointed out that it was only for convenience in the parameterisation that 

we attributed the radial variation of the emissivity solely to the variation of H and 

the variation with distance from the Galactic plane, z, to the variation in Ne. In 

order to separate these two factors one needs independent information concerning 

one of them. Measurement of the diffuse gamma-ray emission from the Galactic 

disk provides information on Ne. 

The C O S - B satellite and the currently operating E G R E T detector on the 

Compton Gamma-Ray Observatory satellite have made such measurements in the 

energy range 35 MeV to several GeV. Both are multiplate spark chambers operating 

by the production of positron-electron pairs via which the direction and energy of 

the incident gamma-rays are measured. E G R E T has a larger collecting area and has 

now collected more data than was got by C O S - B . Both have an angular resolution 

of about 5° for gamma-rays above 100 MeV. 

The diffuse component of the gamma-rays from the interstellar medium in 

this energy range is produced by three processes. Cosmic ray electrons may interact 

with starlight photons or with photons of the Cosmic Microwave Background via 

the Inverse Compton interaction. On starlight photons the electron energy required 

is of the order of 4 GeV while C M B photons require 200 GeV electrons. Outside 

the gaseous disk of the Galaxy only these gamma-rays are generated but within the 

disk the other two processes dominate. The second process is Bremsstrahlung of 

the cosmic ray electrons on the interstellar gas. Typically the gamma-ray produced 

has 80% of the initial energy of the electron. The Bremsstrahlung gamma-rays are 
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predominant below about 100 MeV but above this energy the third process takes 

over. This is n° production by the interaction of cosmic ray nuclei, mainly protons, 

with the interstellar gas, followed by their decay into two gamma-rays. Typically 

the original protons will have had 3 to 10 times higher energy than the resultant 

gamma-ray. 

The gamma-ray emissivity of the Galactic disk is therefore proportional to 

the product of the cosmic ray density and the gas density and if the latter is known 

the former may be deduced. Cosmic ray electrons that generate the 408 MHz 

emission would produce Bremsstrahlung gamma-rays of 2 to 3 GeV. At this energy 

the gamma-ray flux is mainly due to the 7r° production and decay. If , however, the 

cosmic ray electrons and nuclei are produced by similar sources one would expect 

the ratio of electrons to nuclei to be constant in the Galaxy and a measurement of 

the diffuse gamma-ray flux should give the required information about the electron 

density. 

Strong and Mattox have analysed the E G R E T data obtained in the first 28 

months of its operation (A.W. Strong, private communication at 24th International 

Cosmic Ray Conference, Rome, August 1995) and have obtained a radial distribu­

tion of cosmic ray density in the Galaxy. Their method of analysis is the same as 

used by Strong et al. (1988) on the C O S - B data. They remove an isotropic extra-

galactic background, the Inverse Compton contribution and the flux from identified 

point sources. They then assume that the observed gamma-ray intensity at longi­

tude, /, can be represented as the sum of the contributions of a series of concentric 

rings about the Galactic centre each having uniform emissivity as follows: 

HE,I) = £ 9j^-(NHi,i + 2X(E,R)WCOli) (5.1) 
,=i 4 7 r 

The term qi(E,R) gives the productipn of gamma-rays of energy, E, per 

Hydrogen atom at galactocentric radius, R, and includes the density of cosmic ray 



nuclei and electrons as a function of energy and R. The terms in brackets are the 

total column density of hydrogen atoms in atomic and molecular form. The column 

density of HI is directly measured but the column density of molecular hydrogen has 

to be inferred from the Brightness Temperature of the microwave emission from the 

associated C O gas, Wco, with X as the effective conversion factor. The factor X 

is R dependent because of the variation of the composition of the interstellar gas. 

The energy dependence is allowed because of the possibility of the lower energy 

cosmic rays being partially excluded from dense molecular clouds. Strong et al. 

tried various combinations of R and E dependence. The simplest case, where both 

X and the shape of q(R) were taken to be energy independent gave a reasonable fit 

to the data but the best fit was obtained for a mild energy dependence for X but 

no energy dependence of the shape of q(R). The latter implies no variation of the 

shape of the cosmic ray energy spectrum as a function of R and gives some support 

to our earlier assumption of constant spectral index across the plane. Fig. 5.2 shows 

the C O S - B results of Strong et al. regarding q(R) together with the results of the 

new E G R E T analysis. The former are consistent with the latter, which have higher 

statistical accuracy. 

In Fig. 5.3 we show the radial dependence of the underlying magnetic field 

strength normalised to its value at the sun. The solid line is a plot of the expression 

3.12 in our model which shows the radial dependence required to give the radial 

dependence of synchrotron emissivity which fits the observations under the assump­

tion that Ne is independent of R. As the emissivity is <x NeHl s one may obtain 

the true H(R) by dividing expression 3.12 by ( iV e ( i2) / iV e ( i2 0 ) ) 1 / 1 - 8 as also shown in 

Fig. 5.3. Apart from the rapid variation of H required in the inner 2.5 kpc of the 

Galaxy our picture is then of a field strength falling slowly with R. One can also 

see that the variation does not fit Ne oc H2 as would be required by equipartion 

of energy density between the cosmic rays and the magnetic field. Our evidence is 
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that except at the outermost part of the Galaxy the magnetic field energy density 

has a stronger radial variation than does that of the cosmic rays. The equipartition 

argument, though often invoked, is not so easy to justify. It has been widely used 

to infer the total energy involved in providing the synchrotron emission of radio 

galaxies where there is no independent evidence for the magnetic field strength: 

the combination of field strength and cosmic ray flux which produces the observed 

luminosity and at the same time gives the most conservative estimate of the total 

energy in field and cosmic rays is that which is close to equipartition. One has no 

guarantee that this minimum total energy situation is always the case, however. 

When considering the stability of the cosmic ray, magnetic field and inter­

stellar gas system in spiral Galaxies the picture is that the gas layer is held down by 

its self-gravitation and the gravitational field of the stellar disk. The magnetic field 

is largely frozen in to the gas by the conductivity of the interstellar medium and 

the cosmic rays are in turn tied to the magnetic field. When considering the need 

for energy equipartion it is important to remember that both the cosmic rays and 

the magnetic field are providing outward pressure on this system. It is true that 

the energy density of cosmic rays cannot be very much greater than that of the field 

because, if it were the field orientation would tend to be perpendicular to the disk 

as the cosmic rays escaped from the Galaxy. There is no reason, however, why the 

magnetic field energy density should not be much greater than that of cosmic rays 

in some regions, as indeed seems to be the case in the inner parts of the Galaxy. 

The gamma-ray data has as yet given no clear information about the in­

dependence of the cosmic ray flux. The polynomial expression 3.5 gives the re­

quired variation under the assumption of no z-dependence of H (apart from the 

demodulation of the spiral arm compression). If one takes it that H will actually 

be a decreasing function of z then equation 3.5 gives the minimum rate that Ne 

can decrease with z. One can reverse the argument and infer that the 1/1.8 root of 
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expression 3.5 gives the maximum rate of decrease of H with z assuming only that 

Nt must be a constant or decreasing function of z. This is a useful constraint when 

discussing the effect of the magnetic field on the stability of the galactic disk. 

5.3 Global emission of the Galaxy 

It is useful to give the values of the global emission of the Galaxy that our 

model implies. Integrating our model distributions we find that at 408 MHz the 

nonthermal luminosity is 6.1 x 10 2 1 W H z - 1 . The thermal luminosity at the same 

frequency is 1.5 x 10 2 0 W H z - 1 . The small ratio of total thermal to nonthermal 

emission may seem surprising when one considers the significant fraction of thermal 

Brightness Temperature in the Galactic plane profile of Fig . 2.7. The reason is the 

much smaller thickness of the thermal emission disk compared with the nonthermal 

disk and halo. 

The infrared luminosity of the Galaxy in the 100 fim band as given by the 

work of Broadbent et al. (1989) after scaling to the revised size is 1.2 x 10 2 4 W H z - 1 . 

There is a tight correlation between the infrared and radio continuum luminosities 

of spiral galaxies (Hummel et al. 1988). The ratio for our Galaxy agrees closely 

with that for other Sbc galaxies. 

As an illustration of the form of the Galactic halo that our model describes 

we show in Fig. 5.4 the predicted external edge on view. Of the few external spiral 

galaxies that are sufficiently edge-on and nearby for a radio continuum halo to be 

observed that most nearly resembling this form is N G C 4631. 

5.4 Future Work 

Further developments of our method of using the absorption due to the 

ionised gas to check and improve the synchrotron model depend mainly on im-
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under the assumption that there is no /^-dependence in the cosmic ray density. Ne. 
The dotted line shows (Ne(R)/Ne(R0)Y^-8 as derived f rom a weighted f i t to the data 
in Fig.5.2. The dashed line shows our estimate of the actual radial variation of H(R) 
obtained by dividing the first curve by the second. 

V-14 



Figure 5.4: The distribution of surface brightness temperature at 408 MHz of the 
Galaxy viewed edge-on according to our model. The contour are plotted every 10 
K from 10 K to 50 K and every 50 K beyond 50 K 

V-15 



provements in the angular and velocity resolutions of the recombination line sur­

veys. There is no particular problem in improving the latter. Longer integration 

times with the largest single dish telescopes would increase the sensitivity and allow 

narrower channels in the frequency domain. The problem of the distance ambiguity 

would remain but with the range of distances about the two allowed choices reduced 

it would be less likely that both near and far choices would correspond to the pos­

sible position of a spiral arm. A 2-dimensional survey in both / and 6 is, of course 

desirable, allowing a three-dimensional picture of the ionised gas distribution. Re­

garding improvements in the angular resolution, these could only come about by 

using aperture synthesis rather than single dish instruments as the frequency is 

fixed by the need to study the H166a line in order to be sensitive to the ionised gas 

of the appropriate density. A survey at the 4' resolution of the I R A S and Parkes 

6 GHz continuum surveys would be ideal but such a large scale aperture synthesis 

survey is a long way off. 

We have already remarked that our model aims at describing the synchrotron 

emission on a scale of detail of typically ~130 pc. If one surveys the nonthermal 

emission at a higher angular resolution then, to a certain extent there is just more 

detail to explain. However such detail may help to confirm or deny the picture of 

Galaxy wide shocks being formed by the collisions of clouds in the spiral arms that 

we have adopted to explain the enhanced emission in the arms. It may also give 

more information on the role of supernova explosions and stellar winds in disrupting 

the regular field in the arms. There is a recently published Parkes survey of the 

galactic plane at 2.4 GHz with an angular resolution of 10' (Duncan et al. , 1995), 

which shows a considerable amount of detail including low surface brightness loops 

and spurs which are probably nonthermal features. The Durham group is playing a 

part in the analysis of data from the new Mauritius Radio Telescope. This operates 

at 150 MHz where the nonthermal features would be stronger. Data has already 
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been collected to give a 10' resolution map of the southern hemisphere. Ultimately 

a 4' resolution map will be produced. 

Radio Astronomy, since its birth 65 years ago, has lead to the discovery of 

the most distant and energetic objects in the universe. Nevertheless the problems 

that were tackled by the two lone radio astronomers, Jansky and Reber, in the first 

decade of its life, namely, identifying the processes that generate radio waves in 

between the stars in our own Galaxy and how they vary from place to place, are 

still well worth further study. 

V-17 



List of symbols in general use in this thesis 
b galactic latitude 
c velocity of light 
e electron mass 
E cosmic ray energy 
h Planck constant 
H magnetic field intensity in Gauss 
I radiation intensity 
k Boltzmann constant 
I galactic longitude 

m electron mass 
ne 

thermal electron number density 
rii ion number density 
Ne cosmic ray electron intensity per GeV at 1 G e V 
R distance from the Galactic centre 

RQ distance of the Sun from the Galactic centre 
s path length along the line of sight 

Z electron temperature 
Tb brightness temperature 
V velocity 
w angular frequency 
z height above the Galactic plane 
Z atomic number 
a spectral index 
v> frequency 
e emissivity 
K absorption coefficient 
T optical depth 
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