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Abstract 

The nature of carbon monoxide adsorption on alumina supported platinum group 

metal catalysts was investigated using in-situ infra-red spectroscopy. Both adsorption 

and thermal desorption studies were made and the results combined to give a 

complete picture of the bonding schemes observed for each metal. In light of the 

conclusions drawn from this research, bimetallic samples were then investigated. The 

observations from these experiments were explained by comparison with the results 

from the constituent metals. 

When attempting to study the bonding schemes in more detail using an enhanced 

method of data collection, anomalous results were obtained. It was proposed that the 

species formed would be alumina carbonates, this was proven correct by comparison 

with the results from a standard preparation of these groups. Standard techniques for 

the analysis of catalysts and the treatment of results were developed during the course 

of this work. 
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1 Aims and Introduction 

The aim of this project was to design, commission and test a catalyst examination 

apparatus and then to use this equipment to investigate the adsorption of carbon 

monoxide to supported platinum group metals (PGM) under working conditions for 

exhaust catalysts. Catalysts of this type had previously been studied using infra-red 

spectroscopy (IR) and by ultra-high vacuum (UHV) surface techniques but it was 

normally the case that a study would concentrate on one metal. This study aimed to 

use the same in-situ infra-red spectroscopic method to study several different catalysts 

therefore producing comparative results. 

This area of research was of interest because the adsorption and desorption of CO 

with PGM catalysts is one of the processes that occurs within an automotive catalytic 

converter. The adsorption of CO to a metal surface allows activation of the CO bond 

making it susceptible to oxidation. 

The experimental conditions used for this study were designed to mirror those found 

within the exhaust stream of a standard car. Temperatures over 1000°C have been 

observed in test conditions; however under normal circumstances the temperature of 

the gases that pass through the catalytic converter do not exceed 500°C. The exhaust 

system of a car is connected directly to the atmosphere therefore most of the system 

remains at atmospheric pressure. The resistance caused by the addition of a catalytic 

converter to the exhaust system will result in a slight pressure increase though this 

should not exceed 4 bar. 
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2 Vehicle Exhaust Catalysts 

Every new car with a petrol engine produced in the United Kingdom has, by law, to 

be fitted with a catalytic converter. What is a catalytic converter, what does it do, and 

how does it work? 

A catalytic converter is a device fitted to the exhaust system of a car. It is a block 

through which the gases pass en-route to the atmosphere. As the exhaust stream 

passes through the converter it is converted chemically reacted to produce "less 

harmful" gases. 

Apart from air depleted in oxygen and the products of fuel combustion (C0 2 and 

H 2 0 ) , the exhaust from an engine contains the following pollutants: 

Carbon Monoxide 

Nitrogen Oxides (NO x) 

Hydrocarbons (including aromatics) 

Particulate matter (e.g. soot) 

Trace heavy metals 

1 2 
The gases are most readily dealt with by the following reactions: ' 

CO + j02—>co2 

CxHy + ( , + 1)0 2 >xC02 +^H20 

2CO + N02 >2C02 + N2 

Whilst the solids, particulate matter and heavy metals are best removed by filtration. 
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Any catalyst used must be able to cope with all of the above contaminants without any 

loss of activity. The catalyst must reduce the concentrations of the gases that pass 

over it without producing a side product that is considered more harmful. Most 

catalysts work by having a metal surface where gas molecules may adsorb and then 

desorb having first undergone some sort of reaction. 

HC 
N 

A O 
NOx 

CO 
t> / hLO 

CO 

Figure 2.1 Schematic representation of a modern catalytic converter 

There are many requirements of a catalytic exhaust system. The main points are listed 

below: 

• The catalyst system must not impair the efficiency of the engine. 

Any resistance of the gas flow from the engine will cause a reduction in the 

efficiency of the car - even the standard exhaust system causes a slight drop in 

power. A catalytic system should not impair the engine efficiency and must 

therefore have minimal restriction to gas flow. 

• The catalyst system must be able to cope with a wide range of temperatures. 

The operating temperature of an engine varies considerably from ignition to that 

encountered after running for a long period. The catalyst has to be able to operate 

between 0°C (ambient temperature on cold winter days) and temperatures up to 
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800°C that may be encountered after a long run. The catalyst has to be able to 

work at these temperatures and also has to be able to withstand the heat, and rate 

of heating, without physically or chemically degrading. 

a The catalyst and its mounting must be strong and light. 

In day to day use a car undergoes many vibrations, the catalytic converter must be 

able to withstand these for a period equal to the expected lifetime of the car. The 

catalyst must also be light, since i f it is too heavy it will reduce the operating 

efficiency of the car. 

• The system should be recyclable. 

The number of new cars produced each year is ever increasing. The catalyst 

systems that are scrapped with old cars must be disposed of in some way. 

Therefore the system must either break down under certain conditions to give a 

product that can be safely disposed of, or be recyclable. 

Another consideration in the design of catalysts is poison resistance. Trace elements 

that are found in fuel, such as sulphur and lead, can build up on the surface of the 

catalyst and poison it. This reduces the efficiency and in extreme cases prevents 

further catalytic activity. 

It has been found that the best catalysts for the breakdown of these pollutant gases are 

the metals platinum, palladium and rhodium. The expense of these metals has led to 

much research into cheaper alternatives such as nickel, copper, iron and cobalt4. None 

of these latter metals have the selectivity or activity of the platinum group metals, 

though work continues in the search for cheaper alternatives. 
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The metals in the catalyst are held on a support1'3, usually alumina, which is present 

not just to hold the metal in place but to form an integral part of the catalyst. 

Although the bulk of the support is alumina, other elements are present in varying 

quantities to help promote a variety of reactions. The function of the alumina is 

several fold: 

» The alumina has a very high surface area, which allows the catalytic metal to be 

highly dispersed throughout the main body of the catalyst. 

» Alumina can remove by absorption most of the materials that are poisonous to the 

catalyst, e.g. lead and sulphur. 

• Alumina is used because it has similar thermal expansion properties to the active 

metals that are used in the catalysts. This gives the system a greater resistance to 

thermal shock. 

There are several ways that a catalyst can be mounted within the converter: 

• A powder of the catalyst could be used, but this is impractical since retention of a 

powder is practically impossible without restricting airflow through the engine. 

• The catalyst and support could be formed under pressure into pellets. This kind of 

catalytic system is widely used in the chemical industry. It allows easy handling 

of the catalyst once produced however pellets are impractical for use in cars 

because of the vibration that system is subjected to which may lead to erosion of 

the catalytic surfaces. 

« The favoured system for catalytic converters in cars is a monolith7. This is a large 

block of inert material with channels cut into it to allow the gas to flow through. 
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The catalytic metals and support material can be applied to the surface of the 

block as a washcoat. 

A catalytic system that controls all three of the major pollutants (CO, NO x , 

hydrocarbons) is referred to as a three way catalyst (TWC). The major factor 

affecting the efficiency of the catalyst system is the amount of fuel and oxygen going 

into the engine at any one time. This is known as the fuel/air mix. Changing the 

stoichiometery of combustion can alter the different relative amounts of each pollutant 

in the exhaust stream. This will also affect the ratios of the non-pollutant gases, e.g. 

oxygen, to the pollutants, which will cause a change in the operating efficiency of the 

catalyst. Many of the catalyst systems in use today work using the feedback from an 

oxygen sensor so the fuel/air mix can be constantly adjusted by an electronic fuel 

injection system. The ability to change the fuel/air mix enables the system to cope 

with the different loads placed upon an engine whilst still maintaining maximum 

catalyst activity. An example of this kind of system is shown in figure 2.2. 

Fuel Injection 
System 

s 
\ 

Feedback Computer 
\ . I 

\ 

*t 

Catalytic 
Converter 

Sensor 
Catalytic 
Converter 
Catalytic 
Converter 

Exhaust 

Figure 2.2 Catalytic exhaust system with automatic fuel/air mix adjustment 

The temperature range in which a catalyst may both adsorb and desorb reactant and 

product molecules is known as the "light o f f region. Outside this range the catalyst 

is either too cold to undergo a desorption process with any detectable rate or so hot 

that the gaseous species cannot adsorb preventing reaction. Maintaining the operating 

temperature of the catalyst is a major problem as is heating of the surface, from 

Air Intake 

1''_ 
Engine 
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ambient to the light off region, to prevent build-up of surface species and poisons. I f 

too many adsorbed pollutant molecules are present there are no sites left for oxygen to 

attack. 

The general reactions that are performed on the surface of one of these catalysts are; 

co+^o2—>co2 

CxHy + ( , + >)02 > xC02 +^H20 

2CO + N02 >2C02 + N2 

As can be clearly seen the first two reactions are oxidations, because of this both can 

be performed under similar conditions. The other reaction is the more difficult since 

it involves the reduction of N O x to nitrogen. Many catalysts produce NH3 by the 

reduction of N O x but this is merely oxidised back to N O x by the oxygen rich 

conditions needed for the conversion of CO to C0 2 . This gives no decrease in the 

overall throughput of N O x pollutants, therefore a more specific catalyst is required to 

promote the required reaction. 

1 2 

The fuel/air ratio is another critical factor in the running of the engine ' . Engines are 

capable of running at a stoicheometry of reaction that is far less rich in fuel (leaner) 

than the catalysts allow. The main problem with running an engine at this, more 

efficient, fuel/air ratio is that the catalytic system becomes less efficient at the 

reduction of N O x pollutants, as shown in figure 2.3. 
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Conversion 
Efficiency /% 

100% • 

60% -

CO 

Hydrocarbon 

Operating 
window 

NOx 

1 : 1 Fue Rich Lean Burn £> 
Fuel/Air Mix 

Figure 23 The effect of fuel/air ratio on TWC efficiency1 

Since, by law, target reductions of NO x pollutants have to be met, engines have to be 

set to use more fuel in the combustion mixture than is necessary. This means the 

motorist spends more on fuel and causes our limited oil reserves to be used 

inefficiently. The aim of much of the research into these catalyst systems is to enable 

the engines of modern cars to run using a lean fuel mix whilst still meeting N O x 

reduction targets. 
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3 Studying Adsorbed CO By Spectroscopy 

3.1 IR Spectroscopy of surfaces 

Infra-red spectroscopy is the study of absorption or emission of energy in the IR 
1 2 

region of the spectrum 1 . The majority of the transitions in this region are the 

stretching and bending of bonds. At room temperature it is assumed that all 

molecules lie in their ground vibrational state (predicted by the Boltzmann 

distribution) which means that the usual transition studied is that of v=0 to v=l* 1 . 

This is complicated by rotational transitions that may occur at the same time hence 

producing a spectrum that will have a rotational fine structure superimposed over the 

vibrational transition. 

A molecule usually has 3n-6 modes of absorption (3n-5 for a linear molecule), where 

n is the number of atoms in the molecule. When a species is bound to a surface the 

rotational and translational modes change and become new modes. These are best 

considered as the analogues of the rotational and translational modes but hindered by 

attachment to the surface. This causes a shift in the frequency of surface groups when 

compared to free species. Any vibrations of the same symmetry can mix and wil l give 

frequencies removed from either of the two original absorptions. 

The selection rule for absorptions of molecules at a surface also plays an important 

role in any spectroscopic study . The usual requirement for absorption of IR radiation 

by a molecule is that the transition that occurs causes a change in the molecular 

electric dipole moment. For molecules adsorbed to a surface this is enhanced by the 

requirement that this be in a direction perpendicular to the surface. This requirement 

is caused by a screening of the parallel component of any electric field by the metal 

surface, such as the molecular dipole. The metal also produces an opposite 

*' v is the vibrational quantum number 
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instantaneous dipole parallel to the surface. This second effect can be best explained 

in terms of the metal producing a mirror dipole in opposition to that belonging to an 

adsorbed molecule. I f this is for a perpendicular molecule then the original field is 

reinforced by this "induced dipole". When the field is parallel, the "induced dipole" 

is directly opposed to the original and hence cancelled out by it. This is shown by the 

figure 3.1 below. 

A. 

© 
A 

\ ; 0 

i i 
i i 

/ / / / / / / / / / / / / / 
© 
A 

0 

• © 

© < — 0 

A. Perpendicular and B. Parallel arrangements 

Figure 3.1 Mi r ro r dipoles formed by an adsorbed diatomic molecule. 

3.2 Modes of CO adsorption 

Carbon monoxide can adsorb to metal surfaces in several different ways. These, 

known as modes of adsorption, are shown below in figures 3.2-3.4. 

A. o O O B. 

-Pt Pt Pt Pt Pt-

Figure 3.2 Terminal CO adsorbed on Platinum (100)4 
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Figure 3.3 u.-2 bridging CO adsorbed on Platinum (100)' 

O O B 

/ \ / \ 
Pt Pt Pt Pt Pt 

Pt Pt Pt Pt Pt 

Figure 3.4 u,-3 bridging CO adsorbed on Platinum (111)4 

3.3 Bonding in metal carbonyl clusters 

Many correlations can be drawn between the adsoiption of CO on metal surfaces and 

the bonding of carbonyl ligands to metal clusters5. Many of the ways in which the 

atoms are bound to the surfaces of metal catalysts can also be seen in the 

corresponding metal cluster systems. This bonding has been extensively studied and 

the forces which hold these groups of atoms together are well understood. The study 

of metal carbonyl clusters can provide an insight into CO adsorption on metal 

catalysts which cannot be gained through conventional analysis. Information on the 

bond lengths and angles within a cluster can be precisely ascertained using x-ray 

diffraction, a technique which is inappropriate to the study of catalysts. 

Five main methods of carbonyl bonding have been observed for metal clusters, these 

are shown below in figure 3.5. 
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0 o 
III II 
c c 
1 / \ 

o 

C ^ / c 
/ \ ' / l \ 

\ \ / 

Type 1 Type 2 Type 3 Type 4 Type 5 

Figure 3.5 Ways in which carbonyl ligands can co-ordinate, s 

Two of these species (type 3 and 5) include interaction of a metal centre with the CO 

bond, this type of bonding has been observed in the manganese cluster 

Mn2(CO)5(Ph2PCH2PPH2)2- In this system the carbonyl ligand is bound terminally 

to one of the manganese atoms whilst bonding in a dihapto fashion to the other. The 

dihapto bonding of metals to CO is shown below in figure 3.6. 

C = 0 
n orbital CTT^ 

M 

^ O <\ 
7r* orbitak c = 0 ^ 

x < 7 ^ • 

M 

c — o 

M 

c - c P 

M 

Figure 3.6 Molecular orbital diagram showing dihapto metal/CO bonding 5. 

3.4 Absorption of IR by CO bound to a M / A 1 2 0 3 surface 

The most important consideration for IR studies of alumina supported M-CO is that 

the absorption of the transition relating to M«-»CO cannot be directly observed. The 
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absorption of M-C occurs at 470cm"1* which cannot be seen as the absoiption of the 

alumina obscures the detection of the M-C absorption. Instead the absorption 

corresponding to stretching of the CO bond can be seen (M-C«-»0). 

The stretching absorption of CO(g) occurs at 2143 cm"1. This should be shifted by the 

mechanical coupling of the two bands to give a value of aproximately 2200cm"1 when 

bound to platinum. The actual observed frequency for this system is aproximately 

2100cm -1 a difference of 100cm-1 from what was predicted. This discrepancy arises 

because of two different effects. Reinforcement of the electrical dipole by the metal, 

as described in the previous section, causes a shift to lower frequency of 

approximately 50cm"1 for CO bound to a transition metal. However the more 

important effect is a bonding consideration. Carbon monoxide bonds to a metal 

surface by means of donation of electrons from the carbon lone pair to the surface, as 

shown in figure 3.7. These electrons are accepted by a hybrid metal orbital and form 

a a M<-C bond. 

O W t 3— @ > C ^ O : » ( ^ ( T T ^ C p Q 

Figure 3.7 Formation of cr M<— C* 

The donation of electron density to the surface gives it a partial negative charge and to 

neutralise this charge imbalance there is donation of electrons from the metal d-

orbitals to CO. The only orbital of correct symmetry to accept these electrons is the 

C-0 antibonding (n*) orbital as shown below in figure 3.8. 

Figure measured using electron energy loss spectroscopy. 
Shading on orbital diagrams represents the sign (±) of the wavefunction. 
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Donation of electrons from the metal d x z or d y z to the CO 7 i * p forms a u M — C bond. 

This new bond that is formed will strengthen the bonding between the surface and the 

carbon but since it populates an orbital that is CO antibonding it will weaken the 

bonding between the carbon and oxygen. Since the major contribution to the 

observed IR band results from the force constant of the C-0 bond, an observed 

decrease in frequency wil l be the result of an increase in M-C bond strength. The 

process by which this occurs is known as synergic bonding or "back donation", and 

carbon monoxide, like phosphines (R3P), alkenes (R 2C=CR 2), alkynes (RC=CR) and 

many other ligands with suitable orbitals to receive electrons from metals in this way 

are referred to as 71-acid ligands. 

A consideration of bond order also shows the expected change in frequency with the 

changing co-ordination. 

P t — C = 0 

Pt. 

Pt' 
:C = 0 

Pt 

Pt 

Pt 

0 

CO bond 
3 7 

order 
Figure 3.9 C-O bond order in platinum surface species 

As can be seen from the diagram 3.9 above the bond order of CO decreases as the 

number of platinum atoms to which the group is bound increases. The decrease in 
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bond order wi l l lead to a decrease in the vibrational frequency. This is explained by 

Hookes Law of vibration which states that the frequency (v) is proportional to the 

square root of the force constant (k) divided by the mass (m). 

In this case the mass remains constant and the force constant is a measure of the bond 

order. 

3.5 Crystal faces and Miller indices 

Miller indices are a method by which a crystal face can be defined. The Miller index 

describes the plane through which the unit cell is cut to create a surface. The 

arrangement of atoms within a surface can be determined i f the crystal face and the 

bulk arrangement are known. Platinum, rhodium and palladium all have the same, 

face centred cubic arrangement within the bulk and so the arrangements below are 

correct for all of the metals considered in this thesis4. The faces displayed below are 

those on which carbon monoxide adsorption has been reported. 

V O C 

Figure 3.10 FCC (100) 
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The (100) surface of a face centered cubic metal possesses sites for terminal 

adsorption (1), \i-2 bridging (2) and (J.-4 bridging (3) species. 

Figure 3.11 FCC (111) 

The (111) surface of a face centered cubic metal possesses sites for terminal 

adsorption (1), u,-2 bridging (2) and (J.-3 bridging (3) species. 

Figure 3.12 FCC (210) 

As can be seen in figure 3.11, the (210) face is considerably more complex than the 

(100) or (111). The inter-atomic distance as measured between two atoms in the same 

layer (e.g. two white atoms) is aproximately 3.9A in platinum. This distance is too 

great for u-2 or (J.-3 bridging to occur between atoms within the same layer. 
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3.6 Other spectroscopic methods of studying adsorbed CO 

Other spectroscopic methods have been used in the study of carbon monoxide 

adsorbed to supported metal catalysts. The two main methods are detailed below. 

3.6.1 Low energy electron diffraction (LEED) 6 

The wavelength that is associated with low energy electrons is of the same order of 

magnitude as the interatomic spacing within crystals. This means that electrons of the 

correct energy can be diffracted by atoms within a crystal and the resultant pattern 

analysed to give information on atomic position. The low energy of the electrons 

means that the penetration of the surface is slight and only the first few atomic layers 

can be studied. This technique can also be used to look at the re-arrangement of 

surface atoms following adsorption of gas molecules. The technique uses ultra high 

vacuum since the crystal surface has to be kept free of gaseous contaminants, and the 

scattering from electrons colliding with gas molecules needs to be minimised. 

3.6.2 Infra-red reflection-absorption spectroscopy (IRAS) 6 ' 7 ' 8 

IRAS (or RAIRS as it is also known) is another UHV technique. It can be used to 

study a monolayer of adsorbate on a metal surface since it has excellent sensitivity 

and stability. The optical geometry of the IRAS system is shown in figure 3.13 

below. 

21 



R 

Vacuum s 9 1 

Adsorbate 

/ / / / / / / / / / / / / / Metal £ 

Figure 3.13 Optical geometry in IRAS exeriment 

As can be seen the infra-red beam passes through three phase changes (si-£2> 8 2~ E 3~ £ 2 

and £2" £lX because of this, optimisation of the geometry is important to achieve 

strong signals. The optimum angle (8) for the incident beam is dependent on the 

wavenumber for 2100cm"1 this is 87°. Originally dispersive IR instruments were used 

with this technique but an improvement in the accuracy of interferometers has led to 

the use of Fourier transform spectrometers because of the signal to noise enhancement 

that can be achieved. IRAS is a useful technique because, when optimised, it allows 

detection of sub-monolayer concentrations of surface species. 

3.6.3 HREELS and UPS 6 ' 7 

High resolution electron energy loss spectroscopy (HREELS) is another technique 

that has been widely used to study PGM catalysts. This technique allows accurate 

measurement of the vibrational energy levels and hence gives spectra similar to IR 

spectroscopy. The main advantage of this technique is the experimental set-up which 

allows the probing of energy levels in the sub-800 cm"1 region. This allows detection 

of the metal-carbon bond vibration in CO adsorption studies. 
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Ultraviolet photoelectron spectroscopy (UPS) is a method by which the energy levels 

and density of states of valence level electrons can be obtained. The sample is 

irradiated with UV radiation, this interacts with electrons in the valence levels and an 

electron will be emitted. This electron can then be captured and the energy of the 

level from which it originated found using the final kinetic energy and the wavelength 

of UV radiation used. 

This technique has been applied to M-CO studies because it allows measurement of 

the energies of bonding and anti-bonding energy levels and the populations of these 

levels. This is useful since the amount of 7t-back bonding can be determined. 
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Chapter 4 

Previous studies of carbon monoxide 
adsorbed on metal surfaces. 
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4 Previous studies of carbon moeoxid© 
adsorbed on metal surfaces 

4.1 Im-sitm IR spectroscopy studies 

Much of the recent work looking at the interaction of gases with surfaces under 
#3 

working conditions has been performed using in-situ techniques. In-situ work is 

based on a situation where a reaction can be studied as it proceeds without any change 

in the conditions. Infra red spectroscopy is especially suited to this technique because 

of its unintrusive nature and because the range of temperatures and pressures used for 

catalyst studies of this type are all within the scope of IR spectroscopy. 

4.2 Platinum systems 

The most comprehensive work produced on the platinum/alumina system has been 

done by R.Barth et al. A comprehensive study of the adsorption and subsequent 

desorption of CO with a supported platinum catalyst has been documented in two 

papers1'2. 

The first study was performed using a home-made cell which consisted of a sealed 

quartz tube with KC1 windows1. A self supporting disc of catalyst was mounted in a 

quartz sample holder, heated by a resistance heater controlled via a thermocouple 

which was sheathed in stainless steel to prevent contamination. 

The initial results were very simple: A sharp peak at 2060cm"1 with a shoulder on the 

high frequency side (2080cm" •) and a second broader peak at 1845cm-1 which was of 

much lower intensity. These peaks were assigned to the terminal (2060 & 2080cm"1) 

and u-2 bridging (1800cm"1) modes of CO adsorption discussed in chapter 3. The 

° 3 The term "working" in this context means realistic to conditions under which the catalyst would be 
operated. 

26 



main peak at 2060cm"1 was lower than had previously been observed on platinum and 

therefore it was suggested that this was CO bonding to small numbers of platinum 

atoms or to disordered surfaces whilst the higher frequency peak was a result of 

extended Pt-CO systems on larger platinum crystallites. 

A second low frequency peak was detected at 1760-1780cm-1 but was not assigned 

due to the interference with water at this frequency*4. Barth continued his 

investigation to look at the way that the frequency of the main peak changed with 

temperature. This followed the general trend that frequency dropped with increasing 

temperature. There were however two points on the curve plotted where the 

frequency remained the same (c.a. 200°C & 300°C). Another experiment was earned 

out with a sample where the metal loading was different and this produced a different 

shaped graph (though the major features remained the same). 

The integrated intensities of the various peaks were investigated as a function of 

temperature. The findings were of interest as they showed an initial increase in the 

intensity of the main peak. This was interpreted as either being a result of conversion 

from bridged CO to terminal or due to an increase in CO absorbivity at increased 

temperatures, but no other works have been found to corroborate this claim. 

A later work by the same group2 looked at the difference between alumina and silica 

as supports for platinum catalysts. A species at 2000cm -1 was found to be present 

only when the metal was supported by alumina, not with silica. This species was 

assigned to the interaction between terminal bound CO to platinum sites and the 

support. The interaction was proposed to be the transfer of electron density from CO 

bonding orbitals to acceptor sites on the support. 

4Water appears on an infra red spectrum at 1630cm" 
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The adsorption of CO on platinum was investigated in a paper by Anderson and 

Rochester3. The spectra included in the report were the result of subtraction of a 

"reduced" spectra from the original data. This method is unreliable because the IR 

spectrum of the alumina support changes with heating. The results from this 

experiment showed the presence of a species at 2080cm -1 as well as the main terminal 

peak which was reported at 2070cm -1. This new species was described as an 

additional terminal CO complex. This species was unaffected by further heating 

although the main peak continued to shift to lower frequency. Bridging species were 

detected at about 1850cm-1 and were quickly desorbed upon heating to 523K. Upon 

cooling in CO two entirely separate peaks were visible at 1885 and 1836cm-1. 

A review of CO/Metal adsorption by Sheppard and Nguyen4 compared the results of 

single crystal studies with those where supported catalysts were used. The 

frequencies for terminally adsorbed CO for both single crystal and supported metal 

studies are very similar. From single crystal work CO absorption on Pt (111) occurs 

at about 2065cm - 1 5 -6> 7 and increases with increasing coverage to about 2100cm - 1. 

Only one of these studies7 reported a bridging species and this was found to be 

present at 1870cm -1. 

Further work on CO adsorption on single crystals of platinum have been performed 

since Sheppard and Nguyen's review. The adsorption of CO to Pt (100) has been 

described by two groups8-9- the first of which describes the bonding of terminal CO 

to platinum and reports the change in absorption frequency from 2074cm -1 to 

2094cm -1 with increasing coverage. This is also documented in the later work of 

Pirug et al9, who also report the presence of a u-2 bridging peak at 1950cm-1. As can 

be seen there is a large variation in the frequency of the u-2 bridging species for 

different crystal faces. There is also a difference in the frequency of the terminal CO 
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but this is less well pronounced. The reason for the bigger change with bridging 

species is that there is a change in the Pt-Pt distance for different crystal faces, this 

wil l alter the amount of back donation from the metal and hence the vibrational 

frequency. This change should not affect the frequency of the terminal species though 

the variation of surface density of Pt atoms will alter the frequency by a small amount. 

With supported metals, terminal CO absorption occurs at about 2060-2070cm"1 and 

where investigation into coverage was made it was found that the absorption 

frequency increased with coverage from 2050cm"1 to 2120cm"1. Bridged species 

were observed in most studies at about 1820cm"1 (though a range from 1850-1780cnr 

1 was seen). One study 1 0 reported a second bridging peak at a frequency of 1605cm"1 

this was formed on small platinum particles (10A) though it was ill-defined. These 

studies were carried out either using silica or alumina as the support and the frequency 

of absorption appears independent of the support used. 

Two of the studies are of interest because they use different experimental methods7'1 1 

to observe metal-CO interactions. The first used a self supporting disk of metal 

particles pressed with KBr and the other used a suspension of the metal in oil. In both 

of these studies it was possible to observe the metal-carbon bond stretch at about 

470cm"1. It is not possible to observe this feature in alumina or silica supported 

systems because of absorption by the support at this frequency. 

The interaction of potassium with the CO/Pt system was studied on a single Pt (111) 

crystal using high vacuum (UHV) techniques12. A combination of low energy 
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electron diffraction (LEED) and reflection absorption infra-red spectroscopy (RAIRS) 

was used to investigate adsorbed CO on platinum and the interaction of this system 

with potassium. The results of the study show that three bands are present when CO 

is adsorbed to a platinum surface, a sharp peak at 2100cm"1, a shoulder on the low 

frequency side of the main peak (2095cm"1) and a small peak at 1842cm"1. The 

doping of a surface, that had previously been exposed to CO, with potassium results 

in a shift to lower frequency in the terminal peak and an increase in the peak width. 

Potassium doping also leads to a number of new states appearing in the range 1300-

2000cm - 1 and a drop in the intensity of the terminal peak. The study theorises that 

potassium doping causes a change in the favoured adsorption site from on top 

(terminal) to bridging and it is the interaction between the potassium and bridging CO 

that causes the appearance of these new states. 

The LEED study compares the experimental data with theoretical data that was 

generated from supposed surface arrangements. Several important approximations 

were made in the calculation of the theoretical data but similarities can be seen 

between theoretical and experimental results. Explanations are offered to the surface 

arrangement of potassium and CO species through the combination of LEED and IR 

data and several possible surface configurations for these atoms are suggested. These 

conlusions mainly focus on the influence of the potassium which is beyond the scope 

of this study. 
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4.3 Rhodium systems 

A group working on the adsorption of CO on supported rhodium catalysts have 

obtained spectra of CO bound to the alumina support13. This, they claim, is observed 

at 2199cm -1 and is carbon monoxide chemisorbed to A l 3 + sites. This group compared 

the results they obtained using supported catalysts to those reported in the literature 

both for single crystal studies and for model supported systems . 

Thermal desorption results from this group showed the loss of the Al 3 + -CO group at 

-100°C whilst loss from rhodium sites occurs over a very much wider range 

(150-400°C) with maximum desorption rate occurring a t « 220°C. Infra-red results 

for this system included 5 separate peaks as detailed in table 4.1. 

Peak Frequency Assignment 

1 1923cm"1 Rh-CO (bridging) 

2 2038cm"1 Gem-dicarbonyl 

3 2069cm"1 Rh-CO (terminal) 

4 2104cm-1 Gem-dicarbonyl 

5 2199cm"1 Al 3 + -CO 

Table 4.1 Peak assignments in reference 13. 

The results are very similar to those seen for the platinum system with the exception 

of the gem-dicarbonyl. The term gem-dicarbonyl refers to a group where there are 

two carbon monoxide groups bonded to a single surface metal site as shown below. 

A model system in this context refers to rhodium deposited onto a single crystal of AI2O3 or onto a 
film of AI2O3 which had been grown on a molybdenum crystal. 
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However, the assignment of a gem-dicarbonyl in the work by Diaz et a/.1 3 is 

questionable as the spectra presented in this paper show little evidence of gem-

dicarbonyl species. However where IR absorption bands at 2105cm -1 and 2035cm -1 

are expected, Diaz et al. reported the higher frequency peak (2104cm -1) as a small 

shoulder on the side of the terminal peak (2069cm -1) whilst the low frequency peak 

(2038cm - 1) was not visible on the spectra. 

Gem-dicarbonyl species have been reported elsewhere3'14. The paper by Yates et 

al.14 shows that the peaks relating to the gem-dicarbonyl species have a higher 

intensity than all the other groups present in the spectrum. The gem-dicarbonyl 

species are proposed to be present on rhodium sites that are sterically unhindered, i.e. 

on isolated rhodium atoms. Angular strain occurs in this system because of the 

proximity of two separate % systems, as shown below. 

O O O <x=90° //A 
\ / 

M — M — M — M — M — M — M — M 

Figure 4.2 Steric interactions on metal surfaces. 

Another reason for proposing that the gem-dicarbonyl exists only on highly dispersed 

surfaces is the stability of the associated frequencies. There is little or no change in 
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the observed frequency of gem-dicarbonyl species when either the temperature or 

coverage is changed. A change in coverage would not affect the frequency of species 

bonded to small Rh x clusters or isolated atoms as the coverage dependence is 

primarily a surface effect. 

The other features reported in the paper by Yates1 4 are a broad band at 1870cm"1 

assigned to bridged CO (Rh2-CO) and a sharp band at 2070cm"1 which is assigned to 

CO bound to a single surface site. A desorption study by this group shows that the 

terminal peak is lost before both the gem-dicarbonyl and bridging species. 

The paper uses the integrated areas of the various peaks to estimate the proportion of 

isolated rhodium atoms to those contained in Rh x groups. This calculation is based 

upon the assumption that the only sites capable of adsorbing two CO groups are 

isolated atoms. No account is taken of adsorption at edges or steps which may also be 

able to support Rh(CO)2 groups. Another assumption is that the absorptivity of gem-

dicarbonyl and bridging species is similar. There is no reason for this to be so. 

A paper by Rasband et al.15 claims that the nature of the gem-dicarbonyl species is 

very different to that proposed by Yates. The observations of this paper are that the 

gem-dicarbonyl is easily desorbed from the surface and that this is the first species to 

be lost on heating. This is contrary to the report in reference 14 where gem-

dicarbonyl species were stable to temperature. The spectra produced by this group are 

similar to those observed for the platinum experiments though these are using silica 

and not alumina as a support. 

The reasons for the markedly different spectra that have been observed in the papers 

above are explained by Rice et al)^ In a series of experiments they demonstrated 

how the spectra of CO-RJ1/AI2O3 were dependent on both the metal loading and the 

reduction temperature used prior to CO adsorption. The gem-dicarbonyl species 
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remained constant with changing reduction temperature whilst the other species that 

were observed (terminal and bridging CO) showed dependence both with frequency 

and intensity. The general trend observed was that the higher temperatures gave 

higher frequencies and in most cases higher intensities. A maximum temperature was 

also observed beyond where the trend was reversed. 

The paper by Rice suggested that the gem-dicarbonyl species were formed on the 

edges of small Rh x rafts. The frequencies of Rh-CO and Rh2-CO are justified by 

comparison with analogues observed in cluster studies. Species are also proposed for 

other bands observed as shown below. 

34 



Frequency Proposed Structure 

2096 -2102 cm"1 

2022-2032 cm"1 

Rh'-(CO)2 

2080-2100 cm"1 Rh'-CO 

2042-2076 cm"1 Rh°-C0 

2000-2020 cm"1 
0 

ck A 
Rh Rtl 

1900-1920 cm-1 
0 
II 
C 

o--c / \ c - ° 
Rh Rh 

1845-1875 cm"1 
0 

C 

/ \ 
Rh Rh 

Table 4.2 Proposed structures for adsorbed Rh/CO groups from reference 16 

There has been considerable difference in the frequency of u-2 brigding species 

caused by other groups bonded to surface sites. As can be seen in table 4.2 above 

there are three species based on the u-2 system. The presence of either chlorine or 

carbonyl species has been suggested as a reason for an increase in frequency of the 

main carbonyl group with respect to the unsubstituted groups. 

The presence of gem-dicarbonyl bands in IR is questioned in the review by Sheppard4 

because according to the surface selection rule*6, the out of phase (anti-symmetric) 

vibration should be forbidden since the molecular dipole lies parallel to the surface of 

the molecule. This is shown in figure 4.3 below: 

6See section 4.1 
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Figure 4.3 Diagram showing dipolar polarisation in symmetric and anti

symmetric stretches of gem-dicarbonyl species. 

The fact that the anti-symmetric stretch would not be seen on an extended surface 

supports the argument that these structures are formed on isolated Rh atoms since the 

surface selection rule would not apply for a small group of atoms. A review on CO 

adsorption to various metals by Sheppard and Nguyen4 gives an excellent comparison 

of many results. Some of the results detailed by the review did not include gem-

dicarbonyl species17-18. 

A comparison between the results observed with single crystal, supported catalyst and 

cluster studies has been made by Dubois and Somorjai8. A summary of the data 

presented in this report is included below in table 4.3: 
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CO bonding mode 

System Analysis 

Technique 

u-2 Terminal Gem-dicarbonyl 

R h ( l l l ) 8 EELS 1870cm"1 2070cm-1 

Rh/A1 2 Q 3

1 9 IR 1870cm"1 2070cm"1 2031,2101cm"1 ; 

Rn /S i0 2

2 0 IR 1890-

1900cm"1 

2040-2065cm"1 1990-2020, 

2080cm"1 

Rh 2(CO) 821 IR 

(solution) 

1845, 

1861cm-1 

2061,2086cm"1 

Rh 4(CO) 1 222 IR (solid) 1848cm"1 2028-2105cm"1 

Rh 6(CO) 1 623 IR (solid) 1770cm"1 2016-2077cnr1 

Table 4.3 Comparison of Rfa-CO absorption frequencies 

This report shows the importance of considering the cluster studies that have been 

mentioned in chapter 3. Comparison of the data from cluster studies can give insights 

into the bonding arrangements in other systems. The gem-dicarbonyl species that are 

observed in the alumina supported catalyst19 are far more similar to the gem-

dicarbonyl species in Rh 4 (CO)i 2 than those in the other clusters listed. The advantage 

of drawing comparisons with clusters are that the geometries and bonding 

arrangements can be precisely identified using x-ray diffraction. 

4.4 Palladium systems 

The adsorption of carbon monoxide on supported palladium catalysts has been widely 

studied23>24>25 The survey by Palazov et a/23 [ s u s e f u l in understanding the various 

modes of adsorption seen on this catalyst. Palladium adsorbs carbon monoxide to 
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give features that are not present with either platinum or rhodium. The table below 

shows the adsorption states reported by Palazov. 

Frequency Notes Assignment 

2075 cm-1 High coverage CO adsorbed terminally to 

Pd (111) and/or Pd(100) 

1980 cm-1 High coverage CO bridging Pd (100) 

1930 cm-1 High coverage CO bridging Pd (111) 

1900 cm"1 Low coverage CO bridging Pd (100) . 

1820 cm-1 Low coverage u-3 CO on Pd (111) 

Table 4.4 CO species observed on Pd crystals from reference 23 

The frequencies of bridging species are far higher than those previously observed for 

either of the other two metals examined. The shift in frequency that is seen upon a 

change in the coverage is explained as being dipole-dipole coupling and interaction 

via the metal. 

The review4 by Sheppard and Nguyen compares data obtained from single crystal 

studies to that measured using supported catalysts and evaporated metal films. In 

most cases the results show a terminal group (2060-2100cm"1) and a number of 

bridging groups (2035-1786cm"'). The appearance of terminal groups is prevalent 

where the metal support interaction is strongest, either in supported studies or where 

finely divided metal particles are used. This is suggested as being a result of the 

electronic influence of a strong support interaction. 

The single crystal work by Bradshaw et afi6 gives the best insight into the various 

species that have been observed on the surface of palladium. This work, performed 
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by RAIRS, shows that the spectrum of CO/Pd is highly dependent both on the crystal 

face that is studied and the CO coverage achieved. The results of studies on three 

different faces (100), (111) and (210) are detailed in table 4.5 below and illustrated in 

figure 4.4. 

Species Frequency Crystal Face 

u-3 bridge 1820-1840cm"1 111 

|.i-2 bridge 1890-1930cm-1 100 

u-2 bridge 1890-1946cm"1 111 

(i-2 bridge 1898-1945cm-1 210 

Compressed ^ O ^ S c n r 1 100 

Compressed 1950-1995cm-1 210 

Table 4.5 CO adsorbed to Pd crystals. Data from reference 26 

Compressed species are those where there is a forced interaction between one group 

and the next because of the high coverage. There will be a steric repulsion from the 

two n systems being held close together which result in angular strain and a shift to 

lower frequency. LEED data was used in the above experiment to produce accurate 

analysis for the species seen. 

Pd (210) has an open top layer structure with an interatomic distance of 3.88A. The p. 

-2 bridging species cannot be bridging two sites in the first layer as the inter-atomic 

distance is too great. Instead it is proposed that the species is bridging between atoms 

in the first and second layers of the open structure as shown in figure 4.4. 
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A. B 

2 

1. Terminal CO, 2. u-2 bridging CO, 3. u-3 bridging CO, 4. u-4 bridging CO 

Figure 4.4 CO bonding to a. (100), b. ( I l l ) and c. (210) crystal faces off Pd 

40 



References 

1. R.Barth, R.Pitchai, R.Anderson, X,Verykios J.Catal, 1989, vol.116, pp. 61 

2. R.Barth, A.Ramachandran J,Catal, 1990, vol.125, pp. 467 

3. J.Anderson, C.Rochester J.Chem.Soc Faraday, 1991, vol.87, pp.1479 

4. N.Sheppard, T.Nguyen , Advances in Infra-red and Raman Spectroscopy, (ed. 

R.Clark, R.Hester), 1978, Vol. S, pp.67 

5. K.Horn, J.Pritchard, J. Phys, 1977, vol.38, C4-1 

6. H.Froitzheim, H.Hopster, H.Ibach, S.Lehwald, Appl. Phys., 1977, vol.13, 

pp. 47 

7. G.Blyholder, R.Sheets, J.Phys. Chem., 1970, vol.74, pp. 4335 

8. L.Dubois, G.Somorjai, Surf.ScL, 1980, vol.91, pp. 514 

9. G.Pirug , J.Chem.Phys., 1979, vol.71, pp. 593 

10. R.A.Dalla Betta, J.Phys Chem, 1975, vol.79, pp. 2519 

11. R.Cooney, M.Fleischmann, P.Hendra, Chem. Comm., 1977, pp. 235 

12. M.Tushaus, P.Gardner, A.M.Bradshaw, Surf. ScL, 1993, vol.286, pp. 212 

13. A.Diaz, W.Quigley, H.Yamamoto, M.Bussell, Langmuir, 1994, vol. 10 , 

pp.1461 

14. J.T.Yates, T.M.Duncan, S.D.Worley, R.W.Vaughan, J.Chem.Phys., 1979, 

vol.70, pp. 1219 

15. P.Rasband, W.Hecker J.Catal, 1993, vol.139, pp.551 

16. C.Rice, S.Worley, C.Curtis, J.Guin, A.Tarrer, J.Chem.Phys., 1981, vol.74, 

pp.6487 

17. C.Guerra, J.Schulman,1967, vol.7, pp.229 

18. N.Kavtaradze, N.Sokolova, Russ.J.Phys. Chem, 1970, vol.44, pp. 603 

19. J.T.Yates, T.M.Duncan, S.D.Worley, R.W.Vaughan, J.Chem.Phys., 1979, 

vol.70, pp. 1219 

20. C.Guerra, J.Schulman,1967, vol.7, pp.229 

41 



21. R.Whyman, J. Chem.Soc. (Chem Comm), 1970, pp. 1194 

22. W.P.Griffith, A.J.Wickham, J.Chem.Soc (A), 1969, pp. 834 

23. A.Palazov, G.Kadinov, Ch. Bonev D.Shopov J.Catal, 1982, vol.74, pp. 44 

24. D.Tessier, A.Rakai F.Bozon-Verduraz J. Chem.Soc (Faraday), 1992, vol.88, 

pp. 741 

25. P.Gelin, A.Siedle, J.Yates, J.Phys.Chem, 1984, vol.88, pp. 2978 

26. A.Bradshaw, F.Hoffmann, Surf.ScL, 1978, vol.72, pp. 513 

42 



Experimental 

43 



§ Experimental 

5.1 Spectrometer 

The spectrometer used for these experiments was a Mateson Genesis series 

spectrometer. This is a Fourier transform spectrometer controlled by computer. The 

principle of a Fourier transform spectrometer is that of a Michelson interferometer, 

which passes a broad band of frequencies through the sample. The interference 

pattern is observed because of the difference in path length between the main beam 

and the fraction of the beam split off through the moving mirror, as shown above. 

The laser beam is used as reference beam to allow alignment of the system since the 

IR beam is by definition not within the visible range of the spectrum. This type of 

spectrometer is illustrated in figure 5.1. 

Moving 
Mirror 

M' 

Source 

Beam Splitter 

\ / 
Sample 

Detector 

AL 

Fixed 
Mirror 

Figure 5.1 An FTIR spectrometer 
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The Fourier transform is a mathematical process whereby data can be collected in a 

'time' domain and can be subsequently converted into a frequency. The main 

advantage of the Fourier transform infra-red spectrometers is that all of the data, 

across the whole spectrum, is collected in one pass of the mirror. This means that it is 

possible to quickly collect a large number of scans that can be averaged to help reduce 

the noise contribution. The improvement in the signal to noise ratio is defined by the 

following equation: 

AS.N = 4n 
Clearly the change in the signal to noise ratio (AS.N) depends on the square root of the 

number of scans {n) taken. This will mean that by taking 100 scans there will be a 10 

fold improvement over a single scan. Where samples transmit little radiation, this 

enhancement in resolution can be an enormous advantage since there is only a small 

difference between the peak intensity and the background noise. 

5.2 Preparation of catalyst samples 

The catalyst samples studied consisting of platinum group metals supported by 

alumina, were supplied by Johnson Matthey. These samples were the scrapings from 

a monolith after the catalytic washcoat had been applied, therefore they contained 

materials such as alkali metals and ceria which form an effective catalyst rather than 

the kind of system used for abstract studies. The samples included both unimetallic 

species (Pt, Pd and Rh) and mixtures of two or three of the metals. In effect the 

unimetallic samples formed a control for any further experiments. The samples were 

supplied as a powder which was pressed into a disk suitable for mounting within the 

sample holder in the infra-red cell. 
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The disks made were 13mm in diameter and were created by pressurising the powder. 

No externa] support material was needed to make the disks though the effect of adding 

additional alumina was investigated and found to be small in terms of the spectra 

produced. A small amount of the sample, usually about 25mg, was then placed 

between the polished surfaces of two stainless steel disks. The press assembly was 

then placed in a hydraulic press and approximately 3 tonnes of pressure was applied 

for 2 minutes. 

5.3 Spectral cell 

The sample cell was supplied by Greasby Specac. It was designed to sustain 

pressures of 50 bar and temperatures up to 800°C. The temperature was controlled by 

a thermocouple on the main sample holder linked to an external temperature 

controller. A heating element in the main body of the cell allowed the temperature of 

the cell body and windows to be controlled, this prevents gaseous species condensing 

within the apparatus. 

The samples were mounted in the sample holder (pictured below in figure 5.2). 

13mm disks could be placed within the mount and held in place by two keep rings. 

Uniform heating was ensured by the use of a block of large thermal mass which meant 

that the sample was heated evenly. 

Thermocouple for 
sample h e a t i n g ^ 

on 
Sample Mount 

Heater Control 

Figure 5.2 Sample holder from infra-red cell 
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Gas can be supplied to the cell by any or all of three inlets, the outlet has a larger bore 

so that only one outlet is needed for any of the inlets that are used. The outlet from 

the cell was connected to a valve to allow the cell to be pressurised. Al l gases used in 

the experiments were vented through a fume cupboard to the atmosphere after first 

being cooled by passing through a coil of 1/8" tubing. The supply system, shown 

below in figure 5.3, was designed and built so that any one of three gases could be 

supplied to the cell. The nitrogen line was fitted with a drying tube packed with 3A 

molecular sieve to prevent contamination of the sample by water, this was only 

deemed necessary for nitrogen because of the large volumes used. Non-return valves 

were fitted to all of the lines to prevent cross-contamination of the supplies. 

Cooling Coil 

IR Cell 

0 - CO 

N 
Drying Tube 

I—C Buffer Vessel H 

Figure 5.3 Gas flow diagram 

This system was extensively pressure tested to ensure reproducibility and so that no 

oxygen was admitted to the cell during experiments. Loss of gas at a maximum rate 
#7 

of 0.1 bar in 12 hours was deemed satisfactory for these experiments . 

Two slight modifications were made to the system shown in figure 5.3 during 

experiments. Exhaust gas could be sampled using the gas vessel on the exit from the 

* 7 Compressed air at 6 bar was used to pressure test the apparatus. 
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cell, as shown below in figure 5.4. The bracketed section could be isolated so that the 

contents could later be sampled by gas chromatography or mass spectroscopy. 

Isolation valves were added to both the hydrogen and CO lines to eliminate any 

leakage through the cross valve. 

Figure 5.4 Gas sampling system 

5.4 Data analysis 

Using the "First" software each spectrum was smoothed using a boxcar smoothing 

routine and then exported from the spectral analysis software as an x,y table so that 

spectra could be displayed using any spreadsheet or graphics package. Microsoft 

Excel was used to handle the collected data. Spectra were buffered*9, by adding a 

constant to the y-value of each spectrum. Buffering allows clear comparisons to be 

made between different spectra on the same axis when diagramatically represented. 

5.5 Baseline correction 

The collected data was superimposed on the absorption profile for the support. Peaks 

were reported at an artificial frequency and their shape was distorted by the curved 

baseline. The usual method to correct for this is to take spectra of the support without 

A boxcar routine weights all points in the spectrum equally when smoothing. 

To Atmosphere 
<3 - K %=4 J * 

From Cooling Coil 
> <a 

*9, Stacked one on top of the other. 
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impregnated metals at different temperatures and to subtract these from the result with 

the metal. This was not possible because no sample of the support was available. 

Subtraction of a spectrum from the previous one was also not possible. This method 

is a standard technique for showing the change between spectra. The change in 

frequency with changing coverage, observed in these experiments*10, meant that 

spectral information became disguised. Subtraction in these cases resulted in spectra 

with both positive and negative components. 

To overcome this problem it was decided that an artificial baseline be produced and 

subtracted from the original spectrum to give a corrected result. Several attempts 

were made using linear regression to produce a "line of best fit" to be used as the 

baseline. This method proved unsatisfactory since the accuracy of the correction was 

dependent on the fit of the line to the curve (The curvature of the baseline meant that 

no straight line could provide an adequate description). This method produced spectra 

that were distorted in both line shape and frequency. 

An improvement on the previous method was devised so that an accurate artificial 

baseline could be produced which could then be subtracted from the original. This 

was done using a computer algorithm to fit a curve to a set of data points. The 

algorithm produced a polynomial to the f if th degree which was used to create a curve. 

This curve could then be subtracted from the original data to produce a "corrected" 

spectrum. An example of this process is shown in spectrum 5.1. 

* See section 6.5.2 
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i.6 Experimnemtafl procedure 

In order to preserve integrity and reproducibility of results the first task that was 

undertaken was to develop a standard procedure for all experiments to follow. The 

basic experimental procedure is outlined below: 

1. Reduction 

The catalyst was heated to 500°C. A mixture of hydrogen and nitrogen was 

passed over the surface (usually in the ratio of 1:10 H 2 :N 2 ) . This was maintained 

for 30 mins and the absence of adsorbed species is verified by IR spectroscopy. 

The criterion that was used to judge i f the sample had been successfully reduced was 

the absence of any species in the IR region 1200-2900cm"1. This was used because it 

was easy to monitor yet many impurities would be immediately visible although many 

possible contaminants would be IR inactive in this region (e.g. S, CI & C). The 

hydrogen percentage was judged so that there was sufficient hydrogen present to 

reduce the sample at the temperature used, but too little to damage either the sample 

or cell. I f the sample was judged to be insufficiently reduced the process was 

repeated, i f necessary at higher temperature. 

2. CO adsoiption 

The catalyst was cooled to a temperature around 75°C. Pure (100%) carbon 

monoxide was passed over the surface for 30 seconds. The atmosphere within the 

cell was then replaced with nitrogen. 

Though 30 seconds has been the most efficient exposure time to produce a reasonable 

coverage at 75°C for some experiments a far longer exposure was necessary. 
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3. Desorption experiments 

The temperature of the catalyst was raised to 100°C and a spectrum taken. The 

sample was then heated at a constant rate and the temperature held every 50°C so 

that further spectra could be taken. This continued until a temperature of 750°C 

was reached (the maximum working temperature of the apparatus) or until total 

desorption had occurred. The gaseous atmosphere was not disturbed during 

desorption experiments. 

The sample was heated at a constant power which means that the heating rate was not 

uniform. The experiment continued until either the sample temperature had reached 

the operating limit (750°C was judged the maximum temperature which could be 

safely maintained) or until total desorption. The absence of any visible species in the 

IR spectrum of the sample was used as the criterion forjudging whether total 

desorption had occurred. 
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Chapter 6 

Results and Discussion 
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6 Results and Dnscmsstom 

6.1 CO adsorption! ons tuMimmetalMc catalysts 

Three supported metal catalysts were used in this study: platinum, rhodium and 

palladium. Each catalyst was treated in the same way. The catalyst was reduced at 

high temperature (500°C) cooled to 75°C in a non-oxidising atmosphere (100 % 

nitrogen) and carbon monoxide adsorbed by passing pure CO (4-bar) over the 

catalyst. The spectrum taken for each of the catalysts is included below (spectra 6.1-

6.3). 

6.1.1 Platinum 

Spectrum 6.1 shows the results from the adsorption of carbon monoxide on platinum. 

The frequencies of peaks shown in this spectrum are summarised in table 6.1 below. 

Label Frequency Assignment 

1 1360 cm-1 

2 1655 cm - 1 

3 1830 cm"1 Pt2-CO 

4 2080 cm"1 Pt-CO 

5 2170 cm"1 Residual C O ^ 

6 2330-2360 cm"1 
C 0 2fe> 

Table 6.1 Frequencies of peaks shown in spectrum 6.1 
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Assignments that have been made in the table above are on the basis of observation 

(gaseous species) and on previous studies1'2'3-4. The major peak was that at 2080cm" 

1 which was attributed to the bonding of CO to a single Pt atom. It has been 

previously shown that the frequency of this state is highly dependent on the platinum 

particle size1. 

The narrow peak that has been implied that the distribution of particle sizes within the 

sample was small. This could be attributed to the high reduction temperature that was 

used which could induce thermal sintering of the catalyst. 

The peak at 1830cm"1 had been previously assigned to carbon monoxide species 

bridging two platinum surface sites 1' 2- 3' 4. The peak was broad when compared to the 

terminal peak which suggested that the frequency of absorption was site-specific with 

contributions from CO bonded to several different platinum crystal sites combining to 

give the observed peak*11. 

The next peak was that at 1655cm"1' which has not been previously reported by 

groups studying this system. There are several possible systems that could lead to an 

absorption at this frequency. One possible inference is that the peak relates to a 

carbon monoxide species sitting over 3 or 4 platinum surface sites. The arrangement 

would be dependent on the particular platinum crystal face present and may explain 

why this species has not been previously observed. 

Another possibility is that this species is related to formate or a similar group. It has 

been proposed that the observed species is the result of the interaction of CO and 

surface OH groups which are prevalent in alumina supported catalysts. To test this 

hypothesis a sample of platinum catalyst was heated in 2 H 2 0 to promote deuterium 

Different crystal faces are shown in section 3.5 
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exchange with any adsorbed water or hydroxy species. The result from this 

experiment was then compared to samples where both 2 H 2 0 and ' H 2 0 were present, 

the untreated catalyst, and a control sample where just ' H 2 0 was used. A l l of these 

experiments gave identical spectra showing that any proposed species cannot contain 

hydrogen, otherwise an isotope shift would be observed. Further experiments with 

labelled H 2

1 8 0 would show whether oxygen from adsorbed groups is involved in the 

oxidation of surface CO. 

6.1.2 Rhodium 

The spectrum obtained using a supported rhodium sample are shown in spectrum 6.2. 

Peak frequencies are given in table 6.2 

Label Frequency Assignment 

1 1413 cm-1 

2 1448 cm"1 

3 1627 cm - 1 

4 1861 cm-1 Rh2-CO 

5 2057 cm"1 Rli-CO 

Table 6.2 Frequencies of peaks shown in spectrum 6.2 

There have been several previous studies on this system and these have all made 

similar observations 5' 6' 7' 8' 9. The main discrepancy between the results observed 

above and those made elsewhere has been the absence of gem-dicarbonyl species. 

Gem-dicarbonyl species produce two bands in the infra-red spectrum, a symmetric 

stretch at 2029cm-' and an anti-symmetric at 2098cm -1. It has been proposed5 that 

these species are primarily formed on dispersed R h 1 + atoms on the surface of the 
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catalyst. These surface sites were either present in very low concentrations or not 

present at all under the conditions used above because of the absence of peaks in the 

correct region of the spectrum. 

An alternative hypothesis is that the gem di-carbonyl species have not been formed in 

this study because of the high surface concentrations of CO that are present. Most 

work by other groups has used very small amounts of gaseous CO adsorbed to the 

surface of their catalyst in order to study the effect of monolayer formation and the 

bonding modes associated with low surface coverages. Here, however, monoxide 

coverage has been made deliberately high in order to mimic the conditions found in 

real catalytic converters. A high surface concentration of CO would prevent the 

formation of di-carbonyl species because of steric interactions due to surface 

crowding. 

A clear comparison can be made between the rhodium and platinum spectra. Both 

have bands in the region 1800-2100cm"1 which can assigned to similar species. The 

immediately noticeable difference between the two spectra is the ratios of the height 

of the two main peaks. With platinum the terminal peak was 6 times greater in height 

than the bridging peak, whereas with the rhodium the ratio is very much reduced. A 

greater importance should be attached to the difference in the areas of the two 

* 12 

peaks . With platinum the area of the terminal peak is again roughly 6 times greater 

than that of the bridging peak, but with rhodium the areas of the two peaks are 

roughly equal. The change in relative intensities represented by these observations 

shows that different metals have different characteristics with regards to the 

adsorption of CO. Platinum has a clear preference for the adsorption of CO in a 

terminal mode whilst rhodium adsorbs a far greater proportion of CO in a bridging 

1 2The area of the peak is proportional to the concentration of the species in IR spectroscopy. 
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mode. Observations such as these highlight the possible uses of CO adsoiption as a 

tool for surface analysis. 

Again several of the peaks that have been seen in this experiment have not been 

previously mentioned in the literature. The frequencies of the two peaks (1413 & 

1448cm"1) are not comparable to those of the species seen for platinum. There are 

possible explanations for why these peaks should exist, as there are with similar peaks 

in the experiment with platinum, such as the formation of carbonate or formate-like 

species, as well as multiple bonded CO species (though species below 1600cm"1 are 

too low in frequency for this possibility). 

Formate (-C0 2H) carbonate (-C0 3) and carboxylate (-C0 2) have been previously 

observed adsorbed to metal oxides1 0. Formate absorbs infra-red radiation at 2841, 

1567,1377 and 1366cm"1 when adsorbed on alumina. Carbonate absorbs in the region 

3610, 1700 and 1350cm"1. 

6.1.3 Palladium 

Spectrum 6.3 shows the results from the adsorption of carbon monoxide on a alumina 

supported palladium catalyst. Table 6.3 below shows the frequencies of the peaks in 

spectrum 6.3. 
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Label FreqEeiicy AssBgmnimeinit 

1 1368 cm"1 

2 1442 cm"1 

3 1632 cm - 1 

4 1925 cm"1 Pd( l l l ) 2 -CO 

5 1975 cm-1 Pd(100)2-CO 

6 2073 cm"1 Pd-CO 

j 7 2170 cm-1 Residual CO ( g ) 

Table 6.3 Frequencies of peaks shown in spectrum 6.3 

There are 8 clearly visible peaks on spectrum 6.3 resulting from CO adsorption on 

palladium. The last peak (2170cm"1) is residual gaseous CO, which has either not 

been completely displaced by nitrogen or has been regenerated after evacuation from 

the system. 

Previous studies11,12,13,14 h a v e assigned the main peak (1975cm -1) to CO bridging 

two atoms on the (100) face of palladium. The shoulder that is visible (1925cm -1) on 

the main peak has also been assigned in the literature as bridging species on the 

Pd(l 11) face. The peak at higher frequency (2073cm-1) has been assigned to 

terminally adsorbed CO. This peak has a very much reduced intensity when 

compared to the corresponding peaks for both platinum and rhodium. 

Baddour et al.1 ' » 1 2 have previously shown that palladium only adsorbs carbon 

monoxide in a terminal mode when the surface coverage is very high. In general the 

bonding in the terminal mode only occurs when CO is adsorbed to a site where there 

are no vacant adjacent sites. 
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The peak at 1632cm-1 can be related to bonding between CO and palladium atoms in 

a u,-3 (or higher) mode. The shape of the peak suggests that it consists of 

contributions from several states, perhaps those of differing crystal faces as well as 

those where there is interaction with the CO bond rather than the carbon atom as had 

been previously seen. 

6.2 Thermal desorption experiments 

A thermal desorption of adsorbed species was carried out on the catalysts. CO was 

adsorbed to the surface as in the previous experiment and was then removed by 

heating. Spectra were taken at regular intervals so desorption could be monitored. 

The results are summarised below. 

6.2.1 Platinum 

The thermal desorption of carbon monoxide from platinum reveals new information 

about the states that have been previously identified and also shows the location of 

some new states. The general trend that can be seen is the reduction in intensity of 

states previously attributed to being CO-Pt (see section 4.2.1) and an increase in the 

intensity of the carbon dioxide peak. This is consistent with the observation that 

platinum is catalytically active in the reaction: 

CO + '/202 -» C 0 2 

The main question posed by this reaction is where the oxygen comes from. This 

reaction was observed in this study, yet efforts were made to isolate all possible 

sources of oxygen. One explanation that has been offered 1 3 is that the oxygen comes 

from adsorbed OH groups on the alumina support as shown: 

C 0 ( a d s ) + O H(support) ~^ C 0 2 ( g ) + 1 / 2 H 2(g) 
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Jackson et al13 also suggested that the oxidation of CO over this type of catalyst was 

possible without the evolution of dihydrogen. No explanation of this mechanism was 

offered though dissolution of hydrogen within the metal lattice is possible. 

Another change that was visible when the sample was heated was to a shoulder on the 

low frequency side of the main peak. The shoulder became more prominent as the 

temperature was increased, because the desorption temperature of this species was 

higher than that attributable to the main peak. At 200°C the shoulder is most obvious 

but this desorbs and at 400°C this peak was hardly visible. A further change could be 

seen at 1500cm"1. At this frequency a peak appeared at 300°C which grew as the 

temperature was increased. The species which this peak relates to was one of the few 

species present at very high temperatures (700°C) 

The peak at 1655cm"1 is attributable to the first species to desorb. The species 

showed almost complete desorption over the temperature range 100-200°C. Another 

peak was revealed, which began as a barely visible shoulder on the low frequency side 

of the main peak, at 1580cm"1. As the temperature was increased to 400°C this 

became hidden by a peak at 1512cm"1 which was absent at low temperature but 

increases in intensity with temperature from about 300°C. 

One of the most interesting and important changes was to the peak at 1830cm -1. This 

peak has been previously assigned as a CO species bridging two platinum 

atoms 1 ' 2- 3 ' 4. In this study, careful analysis showed that this peak was attributable to 

two separate species. At 100°C the observed peak was that of a single species with an 

absorption at 1830cm"1. Upon heating this peak was observed to shift to lower 

frequency, broaden and then split, so that two peaks could be seen. Between 300°C 

and 400°C it was seen that both peaks shifted in frequency, the higher frequency peak 

(1855cm -1 at 400°C) to a higher frequency and the lower frequency peak (1767cm -1 
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at 300°C) to a lower frequency. This can be best seen on the expanded view of 

spectrum 6.4. 

100°C 
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Arrows denote positions of possible peaks. 

Spectrum 6.4 Expanded view of CO-Pt/A^Og 

It is possible that the lower frequency of these two peaks could itself consist of two 

states. The spectrum at 400°C suggested that there were two peaks one at 1770cm-1 

and another at 1730cm-1. 

The consideration of what these peaks may represent allows their importance to be 

recognised. In previous studies the single peak at 1830cm-1 has been assigned as CO 

bonded, in a bridging mode, to two surface platinum sites. The sensible conclusion to 

be drawn from the close proximity of these two states is that these are similar in 
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nature. This would imply that these are both double-bonded sites with the difference 

in frequency being caused by the bonding distances Pt 2-CO. Different crystal faces 

of a metal have different interatomic bonding distances and the distance between the 

metal atoms on the surface will affect the amount of 7r* back donation that wi l l occur. 

The rapid loss of the state at the higher frequency could be due to the thermal 

instability of the face to which it is bonded. 

It is also important to note that one of the few species visible at 700°C is the terminal 

Pt-CO (2080cm-1 at 100°C). In chapter 3 it was discussed that the frequency of CO 

absorption was inversely related to the strength of metal carbon bonding. Here it is 

apparent that the Pt-CO species with highest frequency is the one that persists at 

highest temperature. No explanation for this apparent inconsistency has been offered. 

An explanation to the identity of peaks in the 1700-1900cm-1 region has been offered 

elsewhere7 with reference to rhodium. The suggested structure that could relate to 

both of these states is that shown below in figure 6.1. The presence of both (J.-1 and \x 

-2 sites on the same surface site would affect the frequency of absorption for both 

groups. This theory would also tie in with the shoulder that is seen on the low 

frequency side of the peak related to the single bonded CO. What has been observed 

here would suggest that some of the electron density usually donated to the bridging 

group is instead being given to the terminally adsorbed groups. 

O 
O O 

// 
C 

Pt Pt 

Figure 6.1 Extended CQ/Pft structure 
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6.2.2 RHiodiram 

The thermal desorption spectra of CO from a rhodium catalyst revealed the presence 

of two new states. The general trend, observed with the platinum catalyst, could be 

seen here, with a gradual increase in the amount of C 0 2 present as the temperature 

was raised. In the first spectrum there was a disturbance at the frequency where C 0 2 

would be expected to absorb which was caused by the presence of a negative amount 

of C 0 2 in comparison to the background spectrum. In the second there was no 

detectable dioxide. The third spectrum showed a detectable amount and the final trace 

showed a large amount showing that in the region 300-400°C there had been 

significant desorption from the surface. 

The peak at the lowest frequency (1380-1500cm_1) was easily removed, with a 

substantial reduction in intensity over the first temperature increment(100-200°C) and 

total desorption by 400°C. The desorption of the peak at 1627cm"1 revealed the 

presence of a further species when heated. The species that was originally attributed 

to a peak at 1627cm"1 desorbed at low temperature (100-300°C) and a further species, 

seen as a peak on the low frequency side of the original, became visible. This species 

(1600cm"1 at 200°C) was far more thermally stable showing only a slight reduction in 

intensity over the range 300-400°C. 

The species that was originally assigned as being the peak 1861cm"1 and relating to 

Rh2-CO also revealed a further peak on heating. The main peak was substantially 

reduced in intensity over the range 200-300°C and a second peak became visible. 

This new species is present as a peak observed at 1910cm"1 and was thermally 

unstable with visible desorption occuring in the range 300-400°C. This peak has been 

previously observed by Rice et al1 and is the same as that proposed above for 

platinum. There would need to be a corresponding peak for the terminally bound 

species involved in this extended carbonyl structure. This could be accounted for by a 

68 



lODT 
4J 

63 

200°C 

3DO°C 

40O°C 

2300 2100 1700 1500 1900 300 

Wavemumbers 

Thermal desorption spectrum 6.2 CO-RI1/AI2O3 



shoulder that was present on the low frequency side of the main, (0,-1, peak. The 

shoulder, which was best seen on the spectrum at 300°C could be seen to decrease in 

intensity over the range 300-400°C the same temperature as the 1910cm-1 peak, 

suggested that the loss of this group occurred by loss of the Rh2"CO converting the 

other groups within the original species to normal terminal carbonyl as shown below: 

0 0 0 

O O II II 

Rh Rh Rh Rh 

Figure 6.2 Conversion of extended carfooiiyl structure to terminal CO 

6.2.3 Palladium 

Of all the desorption spectra contained in this report the palladium spectra contain the 

most information in terms of the hidden states and low temperature reaction. The 

scope of variation is so great that the easiest place to start the description is with the 

species that show the smallest change. 

The lowest frequency peak shown (1368cm -1) is strange in that it shows no change in 

frequency as the temperature is increased, unlike most other adsorbed species 

observed in this study. It also shows no sign of desorption at temperatures up to 500° 

C. This would suggest that this species was unaffected by a change in the coverage of 

the surface. Species adsorbed on sites that were on edges or steps would have this 

property as would species adsorbed to isolated atoms of Pd. The peak at 2073cm -1 

slowly desorbs with increasing temperature, accompanied by a shift to lower 

frequency. 

The largest peak on the spectrum (1975cm -1) showed the most distinct change. This 

peak shifted to lower frequency and slowly desorbed up to a temperature of 300°C. 
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When the temperature was increased further this state disappeared. A further peak 

became visible on the low frequency side of the main peak as it desorbed (1902cm"1 

at 400°C). This new peak was visible as a shoulder on the original spectra at 100°C 

but from 400°C this was the only peak present in this region with the exception of a 

shoulder on the low frequency side (1830cm"1) which was only apparent at 500°C. 

In the previous section (section 6.1.3) the higher frequency peak (1975cm -1) was 

assigned to CO adsorption to Pd(100) and the lower was assigned to adsorption on 

Pd(l 11). This was of interest since it showed that CO was adsorbed to one crystal 

face stronger than another. The rapid change between 300°C and 400°C could be 

symptomatic of a surface rearrangement. 

The most dramatic changes can be seen in the peaks at 1632cm-1 and 1442cm"1. Both 

of these showed a large change at the lowest temperature increment 

(100-200°C). There was almost total desorption of the species generating the lower 

frequency of the two peaks and the other revealed a second peak on its low frequency 

side (1590cm -1 at 300°C) and this species was totally desorbed by 300°C. This new 

peak was related to a species that was desorbed in the region 300-500°C. 

6.3 Studies of bi-metallic catalysts 

Along with the standard unimetallic samples, two bi-metallic catalysts were supplied 

by Johnson Matthey. These samples were mixtures of two of the platinum group 

metals that had been previously studied. Due to industrial confidentiality, the 

dispersion of metals within the sample, the metal loading and relative proportions was 

unknown. 
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6.3.1 Studies off platiniuiim/rlhodram catalyst 

The result obtained from the platinum/rhodium catalyst is shown overleaf as spectrum 

6.5 and the peak frequencies from this spectrum are listed below in table 6.4. 

Label Frequiemcy Assignmefflt 

1 1409 cm"1 

2 1470 cm"1 

3 1643 cm"1 

4 1837 cm"1 

5 2064 cm"1 

6 2115 cm"1 Residual C O ^ 

7 2175 cm-1 Residual CCy^ j 

Table 6.4 Frequencies of peaks shown in spectrum 6.5 

The results from this catalyst are similar to those observed for the unimetallic 

catalysts that have been previously tested. There is a single main peak which at 

100°C absorbs at 2064cm"1. At this temperature terminal CO on platinum absorbs at 

2080cm"1 whilst on rhodium it absorbed at 2057cm'1. The peak that was seen here 

lay between the values observed for the constituent metals. This result was partly 

consistent with the observations of Anderson and Rochester3 who reported a peak 

which shifted from 2070cm"1 at 50°C, to 2060cm"1 at 150°C. The study of Anderson 

et al also observed two very strong bands either side of the main peak that were 

attributed to gem-dicarbonyl species . These twin bands were not of equal intensity, 

which could be a result of the forbidden nature of the anti-symmetric stretch*13, and as 

See figure 4.3 
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desorption occurred the peak intensities did not reduce at the same rate. This would 

suggest that these peaks are not due to different stretches of the same surface group. 

The paper by Anderson and Rochester3 referred to the presence of a bridging state 

which was visible on their spectra, the frequency of this species was not quoted. This 

species was unusual because as the temperature was increased from 50°C to 300°C 

the peak could be seen to increase in intensity. 

The peak at 1837cm-1 observed above, lies within a similar region of the spectrum to 

the bridging peak observed by Anderson. The frequency of 1837cm-1 again lies 

between the frequencies observed for the two constituent metals: platinum absorbs at 

1830cm-1 and rhodium at 1861cm-1. 

The peak at 1643cm-1 is perhaps comparable to the species observed at 1655cm-1 and 

1627cm-1 for the unimetallic samples. There was an obvious shoulder present on the 

low frequency side of this peak at 1590cm-1. It is possible that the peaks at 2064cm -1 

and 1837cm-1 are the bonding of CO in the terminal and \x-2 bridging modes. The 

question of which metal these species are bonded to remains unanswered. 

A possible explanation could be that the peaks observed relate to carbon monoxide 

bonding to either of the metals. The frequencies of the observed peaks and the 

absence of any double peaks would suggest that there is significant alloying and 

synergy between atoms of the two metals. It could be that one metal had migrated to 

the surface of any alloy particles and that the energy of this metal had been altered by 

the close proximity of the other metal. In this case only bonding with one of the metal 

would be observed. The alternative is that the two metals have formed an alloyed 

surface. This would mean that there would be CO bonding to both metals but there 

would only be one observed frequency because of the synergy within the surface. 
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6.3.2 Studies off palladiuiM/rhodiuiim catalyst 

The result obtained from the palladium/rhodium catalyst is shown overleaf as 

spectrum 6.6 and the peak frequencies from this spectrum are listed below in table 

6.5. 

Label Frequency Assignment 

1 1404 cm"1 

2 1439 cm"1 

3 1563 cm - 1 

4 1850 cm"1 

5 1977 cm"1 

6 2022 cm"1 

7 2054 cm"1 

8 2089 cm"1 

9 2123 cm - 1 Residual CO(g) 

10 2173 cm-1 

11 2340 cm"1 Residual C0 2 ( g ) 

1 12 
2360 cm-' 

Table 6.S Frequencies of peaks shown in spectrum 6.6 

The major difference between this system and those previously observed in this study 

was the considerably smaller amount of CO that was adsorbed here. Spectrum 6.6 is 

at a larger scale than has been previously used and even then the peaks that relate to 

CO adsorption are quite small. The small peaks within this system have meant that 

baseline correction was very difficult and the spectrum obtained has not been totally 
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corrected. The failure to correct this spectrum could result in the distortion of 

reported frequencies by up to 10cm"1. 

The twin peaks at 2022cm -1 and 2089cm -1 can perhaps be related to the gem-

dicarbonyl species described by other groups looking at rhodium and rhodium 

containing systems. The amount of CO adsorbed to this sample was too small for a 

thermal desorption experiment to be earned out, this could have provided better 

evidence for the existence of gem-dicarbonyl species since these have, in most 

instances, been seen to desorb at low temperatures (under 300°C). 

The peak that lies between the two gem-dicarbonyl peaks can be assigned as a 

terminal CO species. The peak frequency of 2054cm-1 observed for this species is 

very close to that observed for terminal CO adsorbed to rhodium (2057cm -1). The 

peak at 1977cm-1 lies near that which has been previously assigned to u-2 bridging 

species on the Pd (100) surface (1975cm -1). 

The next peak is at 1850cm-1. There have been no species of comparable frequency 

observed in the study of palladium therefore the closest peak frequency that has been 

previously seen is the species observed at 1861cm-1 which was assigned to u-2 

bridging on a rhodium catalyst. The discrepancy between the frequencies observed 

for the unimetallic and bimetallic systems could either be due to the interaction of the 

second metal or the inaccuracy of spectral correction (see above). 
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6A Study off peak area and position 

Previously1 studies have been carried out to determine how the frequencies peaks 

attributed to adsorbed species change with temperature. Since the temperatures where 

adsorbed CO was observed differed greatly in this study to the literature values this 

type of investigation has been repeated. The frequency of the terminal Pt-CO peak 

was used to generate the results below in graph 6.1. The data used to produce this 

graph was collected from the results shown in section 6.2.1 
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Graph 6.1 Peak position vs temperature for terminal CO-Pt /A^Oj 

It can be seen from the graph above that the frequency does not change in a linear 

fashion. The line of best fi t which has been included purely as a guide to the eye, 

highlights the deviation of the relationship from linear. As can be seen the deviation 

is both above and below the line. There are two regions (250-300°C) and (600-650° 

C) where the change in peak frequency occurs at the largest rate. 
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It was also possible to plot the integrated peak area against temperature. The 

integrated area of a peak is proportional to the number of species that are absorbing 

the infra- red radiation, and hence the surface coverage by CO. Integration using the 

Simpsons rule approximation*14 was performed between 1900cm-1 and 2150cm -1 and 

the results displayed in graph 6.2. The frequency range used ensured that the whole 

of the terminal peak was contained within the integration. 
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Graph 6.2 Peak area vs temperature for terminal CO-Pt /A^Oj 

The maximum area of the peak can be seen to occur between 100 and I50°C, this is in 

accordance with the results of Barth et al.1 who reported the maximum at 120°C. 

There are two possible explanations for the increase in peak area with temperature. 

o It is possible that the absorption of IR increases with temperature. This may be 

related to the enhancement in absorbtivity caused by adsorption to step sites, this 

would also be caused by the limited surface mobility of CO at low temperatures 

* l 4Simpsons rule is a mathematical device which can be used to accurately estimate the area under a 
curve by using the vertical height at set points above a baseline. 
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resulting in CO island formation. Raising the temperature would allow CO 

migration to form a surface more uniformly covered. 

o The increase may also be caused by the conversion of CO adsorbed in other 

modes to terminal (e.g. bridging to terminal). This has been proposed13 as being a 

conversion of support adsorbed CO to surface CO. Changing the support material 

would affect the results i f this proposal were correct. The results do not show any 

significant changes when different support materials are used 1- 2 ' 1 4. This would 

imply that the proposal of Jackson et al. is incorrect. 

There is a further deviation from the best fit line that can be seen at 600°C. This 

correlates nicely with that seen in graph 6.1. It could be suggested that these maxima 

could be the temperatures where the rate of desorption is at a maximum. Placing both 

of the above graphs on the same axis showed the clear correlation: 
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Graph 6.3 Peak area and position v§ temperature for terminal CO-P1/A1203 
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There are two possible explanations for this correlation. Either of these could be the 

major factor though it is more likely that both of these affect the observed frequency 

of adsorbed carbon monoxide: 

o The surface has to donate electron density into the CO anti-bonding orbital to 

decrease the bond energy. This will become less pronounced i f there are more 

molecules present and hence there will be an observed increase in the vibrational 

frequency. 

o I f there are many molecules present on the surface then the molecules cannot get 

as close to the surface as when there are few. Less back donation can be made to 

the CO n* orbital i f the distance is great. This is known as surface crowding. 

These results agree well with the results of Wade et al.15 who showed that in clusters 

the bond energy of metal CO bonds decreases with increasing substitution. 

6.S Anomalous results 

More recent studies of the platinum/CQ system produced different results. Spectrum 

6.8, obtained after CO adsorption on a sample of the platinum catalyst, gives an 

example of these findings. No changes had been made to experimental procedure yet 

the results were visibly different. There were 7 peaks present in spectrum 6.7, the 

frequencies of these are shown in table 6.6 below: 

Peak Table 
(frequencies in cm - 1) 

1 2 3 4 5 6 7 
1228 1346 1434 1607 1655 1841 2084 

Table 6.6 Peak frequencies for states observed in CO-Pt/AI^Os 
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The spectrum was obviously very different to that previously observed for this 

system. The ratio of peak areas for the terminal and bridging species was very much 

increased with a greater preference shown for the terminal state. There are also 5 

other, previously unobserved, states present. From the IR spectra it was difficult to 

form any definite conclusions for the identity of any of these species. 

In an attempt to determine the identities of these species the exhaust gas from the cell 

was analysed following a desorption experiment. This was done using the gas 

collection and sampling equipment shown in figure 5.4. The analysis was performed 

using a gas chromatograph with a column which would allow detection of many 

common gases including CO and N2, which are normally difficult to separate using 

chromatography. The detection of CO would suggest that these species were some 

sort of adsorbed CO, it was also possible that these species were a result of 

hydrocarbon contamination which would also be detected using a gas chromatograph. 

The results of this experiment were surprisingly simple with the only gases that were 

detected being C 0 2 and N 2 . 

This gas analysis would suggest that the unidentified species were carbonates. In an 

attempt to verify this proposal, an experiment was performed using carbon dioxide 

instead of carbon monoxide. Carbonate species have previously been prepared on 

metal oxide surfaces by simple adsorption16. 

This experiment was conducted using the same method as had previously used. The 

catalyst was first reduced at 600°C in 15% H 2 / N 2 . The sample was then cooled in a 

stream of N 2 to 75°C (flow rate 10 1/hr). C 0 2 was then passed over the surface at a 

pressure of 4 bar and the atmosphere retained for 5 minutes. Spectrum 6.8 was then 

taken immediately. 
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The similarities between spectra 6.7 and 6.8 were striking. Table 6.7 contains the 

peak frequencies for both the above spectra as well as that for the directly analogous 

spectrum for CO (i.e. where CO(g) was still present). 

Gas Present Frequency of absorption (cm - 1) 

None (ex CO) 1228 1346 1433 1607 1655 1840 2084 2336 2360 

CO 1228 1341 1434 1655 1844 2093-2167** 2335 2362 

c o 2 1228 1344 1439 1654 2336 2362 j 

Peak description s/w m/m s/m b/m s/m b/1 s/h -

* This state was present as a shoulder of the peak at 1655cm - 1 and was not detected as a peak. 

** This is an area of high absorption associated with C O ^ 

Table 6.7 Peak frequencies for CO/CO2 adsorption to platinum 

The last row row of table 6.7 describes the visual appearance of the peaks. The first 

letter describes the shape of the peak (s) sharp, (m) medium and (b) broad whilst the 

second letter describes the relative absorbance (w) weak, (1) low, (m) medium and (h) 

high. 

From the table it can clearly be seen that the first 5 states present in both spectra are so 

similar that it can be suggested be suggested they are from the same surface species. 

The absence of the corresponding peaks at 1607cm"' for the two samples is merely a 

result of being unable to assign a precise frequency to a broad shoulder. 

The experimental procedure did not change from the time when the results were 

collected for section 6.1.1 nor was any contamination detected in either the gases, the 

cell and pipework or the catalyst. This means that the obvious change which has 

occurred has to be caused by something else. The logical explanation is that the 

catalyst has changed with time. 
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A review of C 0 2 adsorption to metal oxides by Lorenzelli et a/ 1 0 gives an excellent 

account of the different carbon and oxygen surface species that may be formed by 

reactive adsorption to the surface of a metal oxide surface. The section detailing the 

results of alumina/C02 is reproduced below: 

Sample a-alumnina y-aluniina •n-atamiinia K-alumina 

Symmetrical - - - 1460 cm"1 

Bnidentate 1610-1570 cm-1 

1385-1350 cm"1 

1530 cm"1 

1370 cm-1 

1630-1600 cm-1 

1515-1470 cm"1 

-

Bidentate 1710 cm-1 

1310 cm"1 

1675-1660 cm"1 

1345 cnr 1 

1730-1660 cm"1 

1270-1230 cm-1 

1710 cm"1 

1315 cm"1 

1652 cm- ' 

1234 cm"1 

Bridged 1810 cm"1 

1730 cm"1 

1310 cm-1 

1900-1750 cm"1 

1180 cm"1 

1900-1750 cm"1 

1180 cm-1 

Bicarbonate 3627 cm-1 

1655 cm"1 

1440 cm"1 

1227 cm"1 

3610-3605 cm"1 

1650-1639 cm"1 

1490-1440 cm"1 

1236-1225 cm"1 

3618-3612 cm"1 

1650-1636 cm"1 

1480-1440 cm-1 

1235-1230 cm"1 

Table 6.8 Results of CO2 adsorption to alumina samples1 0 

The table above shows the results for 4 phases of alumina (a,y,r| and K ) . As can be 

seen from this table there are several different modes of coordination that carbonate 

can employ to bond with alumina, these are shown below in figure 6.3. Species A is 

the symmetrical configuration, this relates to surface states where the spectroscopic 

data is identical to free carbonate. Species B and C are both unidentate carbonate, IR 

spectroscopy will show the difference between the two forms because species C 

contains two identical groups. This will therefore give two peaks (symmetric and anti 
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symmetric stretches) whereas with species B the two groups are non-degenerate so 

will not split in this manner. 

O 

O 
O ' 

0 

"0 o 
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O ' 
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O 

Figure 6.3 Simplified models off carbonate species 

Species D is the bidentate bonding of two oxygen groups to a single surface site 

whilst species E is the bonding of two oxygen groups to two seperate metal sites. 

Bicarbonate species have also been observed, usually present as a dimer (shown in 

figure 6.4) though the monomeric form has been isolated. 

0----H — O 
( - ) ^ \ ( - ) 

o — c c — o w 

\ // 
O—H----0 

Figure 6.4 Bicarbonate dimer 

The data in table 6.8 shows that there is good correlation between the results observed 

elsewhere10 and those in spectrum 6.8. This correlation can be better seen in table 6.9 

which gives a direct comparison between the data for a-alumina and that in table 6.6. 

The figures for a-alumina have been used here since this gives the best correlation (5 

matches and one possible). 
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from table 6=6 

Bicarbonate 3627 cnr 1 

1655 cnr 1 

1440 cm"1 

1227 cm-' 

1654 cm' 1 

1439 cm"1 

1228 cm"1 

Bidentate 1710 cm-1 

1310 cm-1 

1675-1660 cm-' 
1345 cm"1 

1654 cm-" 
1344 cm"1 ! 

Unidentate 1610-1570 cm-' 
1385-1350 cm"1 

1607 cm"1 j 

Table 6.9 Comparison between results from tables 6.8 and 6.6 

Upon inspection of the data for spectrum 6.8, no species can be detected in the region 

above 3000cm"1, because of the strong absorption of the catalyst in this area. 

Previously4 it had been supposed that this was absorption by alumina, however it 

must relate to a different component of the support since the absorption of carbonates 

on alumina has been observed in this region 1 4- 1 5 . 

It was proposed that these species could be related to the formate suggested in section 

6.1.1. The frequencies of absorption observed here do not in any way match those 

seen elsewhere10 for the adsorption of formate to supports or the M - C 0 2 group as can 

be seen in table 6.10. 
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Mode of absorptioni M » C 0 2 H 

v(cm 2841 cm"1 

antisymmetric V(QQ) 1567 cm-1 

5 f c m 1377 cm-' 

1 symmetric V(QQ) 1366 cm-1 

Table 6.10 Absorption frequencies for M-CO2H 

The obvious correlation between the two sets of data in table 6.9, immediately 

suggests that the species observed on the surface of the catalyst are unidentate and 

bidentate carbonate as well as bicarbonate bound to a-alumina. It is unknown i f the 

alumina has changed phase to produce this result or whether it is a change in the 

function of the metal which has allowed the alumina to adsorb molecules when it had 

not been able to previously. 
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Chapter 7 

Conclusions 
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7o Suiiinimairy amid Comdarisioinis 

This study has achieved all of the aims laid out in chapter one: 

1. To design, commission and test a catalyst examination apparatus. 

The design of the system was seen as an extremely important stage in this project. 

In order to encompass future work the apparatus was designed with a degree of 

flexibility, avoiding the need for significant reconstruction at a later date. 

The gas supply system functioned as it had been designed, by allowing flexible 

delivery of all the required gases without risk of contamination of the supply or 

safety hazard. It was tested to a pressure of 6 bar which exceeded by 50% any 

planned working conditions. 

2. To use the catalyst testing system to investigate the adsorption of CO to 

supported PGM catalysts. 

A l l of the experiments with unimetallic catalysts produced results that broadly 

agreed with the literature whilst providing additional material for discussion. A l l 

of the species that were observed were achieved in a reproducible mamier and the 

possibility of contamination of either samples or gas supply was eliminated by 

careful handling and rigorous testing. 

The results for platinum included terminally bound CO (2080cm"1) and u-2 bridge 

species (1830cm - 1) as well as two other states (1655cm"1 and 1360cnr'). It is 

proposed that these species are the result of higher bonding interactions. Thermal 

desorption studies showed a thermal stability of adsorbed CO in excess of that 

which had been previously observed. 
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Similar results were seen for the rhodium catalyst sample. Both terminal 

(2057cm"1) and u-2 bridging (1861cm'1) species were observed. The absence of 

gem-dicarbonyl species which had been previously reported was a feature of note 

as was the presence of a species in the region of 1600cm-1. This could be a u-3 

bonding interaction similar to the type that has been observed in the Rli 6(CO)ig 

cluster. 

The palladium system had been extensively investigated but species were still 

identified, in the 1300-1650cm-1 region, that had not been previously reported. 

Terminal (2073cm -1) and \x-2 bridging (1975cm-1 and 1925cm -1) CO species were 

again identified, however the L4.-2 species could be resolved into those bound to 

the (100) and (111) metal faces respectively. 

3. To investigate novel catalysts using the techniques previously developed for 

existing systems. 

Two bimetallic catalysts of markedly different character have been examined. 

The nature of CO adsorption to these catalysts has been explained and suggestions 

for the structure of these catalysts have been made in light of these results. This 

study highlights the possible use of CO adsoiption as a tool for structure 

determination. 

Two other important achievements have been made during the course of this study: 

1. A novel spectral preparation has been developed. 

The baseline subtraction method that has been developed during the course of this 

investigation has allowed the identification of species that would otherwise have 

gone unnoticed. This method has been extensively tested and delivers 

reproducible results that are accurate in both shape of spectral features and 

frequency. 
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2. Conditions for catalyst testing have been investigated. 

It is important when using catalysts of this type that a balance be achieved 

between adequate reduction and damage to the sample. Thermal sintering can 

occur at temperatures that are not far removed from those used for reduction and 

care needs to be used to prevent unwanted reaction. The conditions necessary for 

reduction were investigated and those that were used in this study were the 

minimum required to achieve complete reaction. 

The conditions required for CO adsorption were investigated. The temperature of 

75°C that was used for this study, is a compromise between the time taken for the 

sample to cool and the requirement for complete adsorption. The time constraint 

is important because a reduced sample cannot be maintained in that state 

indefinitely. Species gradually adsorb to the clean surface of the catalyst 

following reduction, these wil l affect the results of adsorption. 

Several of the observations of this study remain unexplained: 

1. The appearance of species assigned as alumina carbonates. 

The alumina carbonates that were observed in the later experiments had been 

unprecedented in the results observed in the course of this study. No cause was 

found to precipitate the prominent change despite rigorous testing of all 

contamination sources. The only variable that cannot be controlled is time and it 

is the ageing of the catalyst which has been proposed as the cause of these results. 

Further experiments using the other catalysts could further elucidate the cause of 

this difference. 
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Rapid re-adsorption of contaminant molecules 

On many occasions during the course of this investigation samples were judged to 

have been reduced and where then cooled to allow for adsorption of CO. The 

samples adsorbed some gaseous species during the cooling which was detected 

when a spectrum was taken prior to adsorption. These samples required a further 

reduction cycle before adsorption could proceed. This process usually took about 

3 hours which confounded all further practical work on several occasions. The 

identity of these re-adsorbed contaminants has not been identified though this 

could be a source of further interest within this system. 
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