

Durham E-Theses

Gene Expression in Neuroblastoma

Said, Sohair S.S.

How to cite:

Said, Sohair S.S. (1996) Gene Expression in Neuroblastoma, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5394/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.

Gene Expression in Neuroblastoma

By
 Sohair S. S. SAID B.Sc.

A thesis submitted for the degree of Master of science

$$
\begin{aligned}
& \text { Thesi= } \\
& 1996 / \\
& \text { SAi }
\end{aligned}
$$

II. Abstract

The aim of this project is to identify potential target genes (NTG's) which may be regulated by $\mathrm{N}-m y c$ in the cell line SK-N-SH which has no amplification of the oncogene N -myc.
$\mathrm{N}-m y c$ target genes were isolated using a modification of the protocol developed to identify p53 binding sites; this was done by generating a NTG library by isolating genomic DNA from SK-N-SH cells, digesting to completion with Sau3A, and mixing with nuclear extract from the same cell line. N-myc antibody was added and DNA-protein complexes immunoprecipitated to isolate DNA with N-Myc bound. DNA recovered from these precipitates was then cloned into pBluescript $\mathrm{SK}+.400$ clones were isolated, 4 of which were partially sequenced and compared to sequence data bases.
The NTG clones showed substantial sequence identity to a number of potentially interesting genes, among them several implicated in tumour suppression, and the expression of cell surface markers. Their significance for neuroblastoma is discussed.

II. Acknowledgement

I would like to give special thanks to my supervisor Dr. CH. Shaw for his constant support, encouragement and helpful advice.

Particular thanks to my research colleague Dr. D. Pearson for her assistance and helpful discussion through out the work.
Dr. B. Teakin, Miss V. Parker for their kind help.
I wish to express my deepest gratitude to my husband and parents for their constant love, encouragement and moral support which has made this research possible.

Thanks are also due to Durham Training and Enterprise council for their financial support.

II. Contents

I. Abstract 1
II. Acknowledgement 2
III. Contents 3
IV. List of figures 5
V. List of tables 6

1. Introduction 7
1.1. Description 8
1.2. Stage explanation 8
1.3. Treatment options 8
1.4. Molecular characteristics of neuroblastoma cells 9
1.5. Summary 14
1.6. Aim of research 15
2. Materials and Methods 16
2.1. Materials 16
2.1.1. NTG library 16
2.1.2. Colony blots 21
2.1.3. Filter hybridization 22
2.1.4. Protein analysis 22
2.2. Methods 25
2.2.1. Tissue culture 25
2.2.1.1.Recovering SK-N-SH cells from liquid Nitrogen 25
2.2.1.2.Trypsinisation of cells for passaging 25
2.2.1.3.Preservation of cells in liquid Nitrogen 25
2.2.2. DNA Manipulation 26
2.2.2.1.Complete sure cells 26
2.2.2.2.Competent DH5 \propto cells 26
2.2.2.3.Isolation of genomic DNA 26
2.2.2.4.Nuclear protein extraction 28
2.2.2.5.pBluescript SK + 29
2.2.2.6.Preparation of N -myc binding library 31
2.2.2.7.Isolation of plasmid DNA 35
2.2.2.8.SacI / EcoRI double digest 35
2.2.2.9.Insert size calculation 36
2.2.2.10.Colony blots 36
2.2.2.11.Colony hybridization 37
2.2.2.12.Glycerol stocks 40
2.2.2.13. Protein analysis 40
3. Results 42
3.1. NTG clones and homology search 42
3.2. Protein analysis 76
3.3. Colony hybridization 78
4. Discussion 79
4.1. Conclusion 84
5. References 85
5.1. Journals 85
5.2. Other bibliographic sources 86
5.3. Books 87
6. Appendices 88

V.II. List of figures

1.1. The development of cancer 7
1.2. Catecholamine Metabolism 9
1.3. Functional domains of $\mathrm{N}-m y c$ 11
1.4. Speculative model for interaction and regulation of BR-HLH-Zip proteins in neuroblastoma 12
2.1. DNA extraction $(5 \mu \mathrm{l})$ on 0.8% Agarose gel 27
2.2. Sau3A cut genomic DNA $(2 \mu \mathrm{l})$ on 0.8% Agarose gel 28
2.3. BamH1 pBluescript ($2 \mu \mathrm{l}$) on 0.8% Agarose gel 30
2.4. CIP BamH1 pBluescript $(2 \mu \mathrm{l})$ on 0.8% Agarose gel 31
2.5. Stage explanation of preparation of N -myc binding library 31
2.6. Plasmid DNA for CIP transformants ($2 \mu \mathrm{l}$) on 0.8% Agarose gel 34
2.7. NTG-21 37
2.8. NTG-21 SacI / EcoRI digest ($5 \mu \mathrm{l}$) on 0.8 Agarose gel 38
2.9. Sau3 A cut NTG-21 ($5 \mu \mathrm{l}$) on 0.8% Agarose gel 39
3.1. A number of plasmid DNA digested with EcoRI/SacI ($2 \mu \mathrm{I}$) on 0.8% Agarose gel 42
3.2. Pure plasmid for $+13,+5,+8,+33(1 \mu 1)$ on 1.2% Agarose gel 43
3.3. Homology search of NTG +5 44
3.4. Restriction map \& DNA sequence of NTG+5 47
3.5. NTG+5 sequenced regions 48
3.6. NTG+5 SacI, EcoRI, SacI/EcoRI digest $2 \mu \mathrm{l}$ on 1.2% Agarose gel 48
3.7. SacI/EcoRI digestion of NTG+5 49
3.8. 10 different digests of NTG+5 $(2 \mu \mathrm{l})$ on 1.2% Agarose gel 49
3.9. HindII digestion of NTG+5 50
3.10. PstI digestion of NTG+5 50
3.11. Sequencing strategy for $\mathrm{NTG}+5$ sub-clones 51
3.12. SacI/PstI NTG+5 digest ($100 \mu \mathrm{l}$) on 1.2% gel 51
3.13. PstI NTG+5 digest \& SacI/PstI cut pBluescript $(100 \mu \mathrm{l})$ 51
3.14. SacI/PstI cut pBluescript 52
3.15. Homology search for 800bp SacI/PstI sub-clone of NTG+5 52
3.16. Restriction map \& DNA sequence for $800 \mathrm{bp} S a c I / P s t I$ sub-clone NTG+5 53
3.17. PstI cut pBluescript 54
3.18. Possible recombinants 55
3.19. 1.4Kb sub-clone $(2 \mu \mathrm{l})$ on 0.8% Agarose gel 55
3.20. Homology search for 1.4 Kb PstI sub-clones of NTG +5 56
3.21. Restriction map \& DNA sequence for $1.4 \mathrm{~Kb} P s t I$ sub-clone NTG+5 58
3.22. Homology search 59
3.23. Restriction map \& DNA sequence for 1.4 Kb PstI sub-clone NTG+5 62
3.24. Sequenced regions of NTG+8 62
3.25. EcoRI/SacI digestion of NTG+8 63
3.26. 10 different digest of NTG+8 $(2 \mu \mathrm{l})$ on 1.2% Agarose gel 63
3.27. Fragments of NTG +8 64
3.28. Products of HindII digestion of NTG+8 64
3.29. Sub-cloning strategy for $\mathrm{NTG}+8$ 65
3.30. NTG+8 SacI/HindII ($150 \mu \mathrm{l}$) on 2% agarose gel 65
3.31. SacI/HindII cut pBluescript 66
3.32. Homology search for 700bp SacI/HindII NTG+8 sub-clone 66
3.33. Restriction map \& DNA sequence for 700bp SacI/HindII NTG+8 sub-clone 68
3.34. HindII cut pBluescript 69
3.35. NTG+13 sequenced region 69
3.36. Homology search for NTG+13 70
3.37. Restriction map \& DNA sequence for $\mathrm{NTG}+13$ 74
3.38. NTG+33 sequenced regions 75
3.39. Restriction map \& DNA sequence for NTG +33 75
3.40. SDS PAGE of protein extraction from SK-N-SH \& SK-N-Be2c 77
3.41. Colony blots probed with NTG-2 1 78
V. List of tables
2.1. Dilutions for the standard curve of protein analysis 40
3.1. Example of some isolated NTG clones and their inserts sizes 43
3.2. Data table for NTG's $5,8,13,33$ 44
3.3. Standard curve results 76
3.4. Value in $\mu \mathrm{g}$ protein/ml for the cell line SK-N-SH \& SK-N-Be2c 77

1. Introduction

Cancer is a group of more than 100 different diseases. It occurs when cells become abnormal and keep dividing without control or order forming a mass of excess tissue called a tumour.
Tumours can be benign (not cancer) or malignant (cancer). The cells in malignant tumours can invade and damage nearby tissues and organs. Cancer cells can also break away from a malignant tumour and travel through the bloodstream or the lymphatic system to form new tumours in other parts of the body (Metastasis).

Figure 1.1, The development of cancer.

Cancer is not a new disease, as sometimes humans and fossil bones of dinosaurs show evidence of the disease. Its apparent increase may be due to the increased longevity of humans.
Knowledge about the development of tumours is progressing, and new types of treatments are expected soon.
It is only in the past 50 years that generalised hypotheses about cancer have led to specific findings that shape the treatment people receive.
Cancer in children is not common, but the most common solid tumour is Neuroblastoma.

1.1. Description

Neuroblastoma occurs at a rate of about $1 / 100,000$ per year, most often in babies, very young children (under the age of 15 years), and in the unborn in rare cases. It is slightly more common in white children than in black and slightly more common in boys than girls. About 75% of cases are diagnosed before the age of 5 years.
Although most frequently presenting as a large abdominal mass, this tumour is metastasised in 70% of patients at diagnosis, and there has been little advance in survival over the last 20 years for advanced disease.
The most common primary site is the adrenal gland (40%), pelvis (5\%) and neck (5\%) are the other sites seen. The tumours arise from neural crest cells which form part of the sympathetic nervous system.

1.2. Stage explanation:

StageI. Localized resectable: The cancer is found only in the place where it started and can be removed by surgery.
StageII. Localized unresectable: The cancer is found only in the place where it started but it cannot be totally removed by surgery.
StageIII. Regional : The cancer has spread from where it started to the tissue around it or to the lymph nodes in the abdomen.
StageIV. Disseminated : The cancer has spread to lymph nodes outside the abdomen or to the bone, liver, or other organs.
StageV. The cancer is in the place where it began and has spread only to the liver, skin, and / or bone marrow.
StageVI. Recurrent neuroblastoma means that the cancer has come back after it has been treated.

1.3. Treatment options

Treatment for Neuroblastoma depends on: the stage of the child's disease, the child's age and the general health.
In general, four types of treatment are used:

- Surgery.
- Radiation therapy.
- Chemotherapy.
- Bone marrow transplantation (using high doses of chemotherapy with or without radiation therapy to destroy the cancer cells and putting bone marrow back into the bone.
1.4.1. Decreased expression of the major histocompatibility complex class 1 antigen MHC (they are cell surface glycoproteins that are required for the recognition of target cells by cytotoxic T lymphocytes). This decrease is thought to correlate with high level of expression of the $\mathrm{N}-\mathrm{myc}$ gene.

1.4.2. Urinary Catecholamines

At least $85-90 \%$ of tumours have increased levels of catecholamine in the serum and urine [dopa, dopamine, norepinephrine, normetanephrine, homovanillic acid (HVA), vanillylamaidlic acid (VMA)].
The levels are not a guide to prognosis but measurement of total catecholamines,(VMA) and (HVA) can be used as a marker of effective treatment if initially elevated.
Some evidence suggests that the ratio of VMA to HVA may correlate with prognosis in disseminated disease, the higher the ratio the better the prognosis. The presence of vanillyl acetic acid (VAA) in the urine may be associated with a poor prognosis as may be the elevation of urinary cystathionine levels. Plasma dopamine may be elevated but is rarely measured.

Figure 1.2, Catecholamine Metabolism

1.4.3. Deletion and loss of putative suppresser genes on $1 p$ and $14 q$

The most characteristic cytogenetic abnormality in neuroblastoma is the deletion at the distal end of the short arm of chromosome 1 from 1 p 36.1 to 1 p 36.3 , and it is
thought that the p arm of chromosome 1 probably harbours a series of suppresser genes that play a key role in neuroblastoma differentiation.
There is also recent evidence that a deletion or loss of the long arm of chromosome 14 also accrues with increased frequency in neuroblastomas [1,2] and probably represents loss of another suppresser gene .
Another allelic loss has been found involving 11 q and 13 q in some studies, but not in others $[1,2]$ so the significance of these findings is unclear.

1.4.4. Expression of the nerve growth factor receptors

As mentioned before, neuroblastoma is derived from the sympathoadrenal lineage of the neural crest. Neurotrophic factors and their receptors have been implicated in the pathogenesis of neuroblastoma. Neurotrophins are a family of related molecules that promote neuronal survival and differentiation in the central and peripheral nervous system, these includes nerve growth factor (NGF), brainderived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4/5 (NT-4/5) [3].
NGF, the first of the neurotrophins to be discovered, has been shown to be essential for survival and differentiation of neural crest-derived peripheral sympathetic and sensory neurones, as well as cholinergic neurones in the central nervous system [4].
Two (NGF) receptor sub-units, the high affinity NGF receptor with tyrosine kinase activity ($\mathrm{P} 140^{\mathrm{TRKA}}$), and a transmemberane glycoprotein, the low affinity NGF receptor ($\mathrm{P} 75^{\mathrm{NGFR}}$), are thought to be required for high affinity NGF binding, and probably for signal transduction [5,6], and that detectability of the NGF receptor sub-unit P140 ${ }^{\text {TRKA }}$), expressed at different levels by the majority of neuroblastoma's, was associated with lower stage of disease, lower age of patients, and was inversely related to $\mathrm{N}-m y c$ amplification [7].

1.4.5. $\mathrm{N}-m y c$ amplification and expression

Amplification of cellular oncogenes is one of the major genetic alterations that appears to contribute to tumorigenesis [8,9], while most tumours show sporadic amplification of cellular oncogenes, human neuroblastoma tumours show frequent amplification of the $\mathrm{N}-m y c$ gene which correlates with aggressive tumour growth.
A study involving 64 tumours of patients not subjected to therapy revealed that amplification of $\mathrm{N}-m y c$ gene was limited to stage III and IV tumours [10]. Amplification was discovered in approximately 50% of all stage III and IV tumours. This implies that amplification of $\mathrm{N}-m y c$ is a late event in the development of neuroblastomas.
The amplification sequence ($\mathrm{N}-m y c$) is found either on extrachromosomal double minutes (DMs) or on the homogenous staining regions (HSRs) on different
chromosomes in neuroblastoma cell lines, and the normal single-copy locus was mapped to the distal short arm of chromosome 2 band p23-24 [11,12].
Subsequent studies revealed amplification of $\mathrm{N}-m y c$ also in small cell lung cancers, retinoblastoma, malignant gliomas and astrocytomas, also low expresion of $\mathrm{N}-\mathrm{Myc}$ is detectable in neuroblastoma cells lacking amplification such as the human neuroblastoma line SK-N-SH or the murine neuroblastoma line Neuro2a, the SH-SY5Y cell line, and GI-ME-N cell line.
The process of gene amplification in general usually involves co-amplification of extensive regions of DNA that share a common origin but which become rearranged with subsequent amplification events [13].
Recently another gene DDX1, has been shown to be co-amplified with N-myc in two retinoblastoma cell lines [14], however rarely in neuroblastoma cell lines, and if so limited to stage $4,4 \mathrm{~s}$.
DDX1 is a member of the DEAD box gene family, has eight highly conserved amino acid motif and maps to the chromosomal region 2 p24, the same chromosomal band that N -myc maps to (2p-23-24).
It is still unclear whether the DDX1 protein directly affects $\mathrm{N}-m y c$ processing or it's stability or the rate of translation of the N-Myc protein.
Another gene which has been shown to be co-amplified with $\mathrm{N}-m y c$ in neuroblastoma cell lines is the ornithine decarboxylase (ODC1) gene which maps to chromosome $2 \mathrm{p} 24-25$, it co-amplifies with $\mathrm{N}-\mathrm{myc}$ in one of six primary neuroblastomas [15].
As a result of $\mathrm{N}-\mathrm{myc}$ amplification, elevated levels of the N -Myc protein are expressed.
N-Myc is like other proteins of the MYC gene family, a short lived protein, located in the nucleus of the cell, phosphorylated by Casein Kinase II (CKII) and binds DNA. It contains a carboxy-terminus, that has a nuclear localisation signal (N), a basic region (BR) responsible for DNA binding, helix-loop-helix (HLH) and a leucine zipper domain (Zip).

Figure 1.3, Functional domains of N-myc

The HLH-Zip domain is responsible for the physical interaction with another HLHZip protein, Max, this principal structure of the C -terminus is shared among all members of the myc family of proteins (C-,L-, and $\mathrm{N}-\mathrm{Myc}$),
The MYC family of proteins are thought to be involved in transcription because of having both a carboxy-terminal basic-helix-loop-helix-zipper (bHLH-Z) domain, common to a large class of transcription factors [16], and an amino-terminal fragment which, for C -Myc has transactivating function when assayed in chimaeric constructs [17].
As mentioned before, $\mathrm{C}-, \mathrm{N}$ - and L-Myc proteins heterodimerize in vitro and in vivo with the bHLH-Z protein Max. In vitro, Max homodimerizes but preferentially associates with Myc, which homodimerizes poorly [18].
The resulting Myc-Max heterodimer, binds the nucleotide sequence CACGTG with higher affinity than either homodimer alone [20].

Figure 1.4, A speculative model for interaction and regulation of BR-HLH-Zip proteins in neuroblastoma.

It is thought that Max-Max and Myc-Max complexes have distinct transcriptional functions, thus the relative amounts of Max homodimers and Myc-Max hetrodimers may affect the transcriptional activity of a reporter gene containing promoter-proximal Myc-Max binding sites.
Transcription from such a reporter gene is stimulated by Myc over expression and repressed by Max over expression, activation is dependent on N - and C - terminal regions of Myc, while repression is dependent on the Max DNA-binding domain.

Max and Myc differ in several important biochemical properties, Myc is a highly unstable protein, whose synthesis is rapidly induced upon cell cycle entry, and maintained at a constant level in proliferating cells.
By contrast Max is highly stable and is expressed at equivalent levels in both resting and proliferating cells [21].
As Max seems to be in excess of Myc in vivo and Myc's short half-life is unaltered by dimerization with Max, the rate of Myc synthesis determines the ratio of MaxMax to Myc-Max complexes.
In continuously growing neuroblastoma cells, where N -myc is overexpressed as the result of amplification, the presence of $\mathrm{N}-m y c$ forces Max into abnormal amounts of N-Myc-Max heterodimeric complexes, which could perturb the fine tuned expression of unidentified genes or possibly genes involved in control of the cell cycle and differentiation, see figure 4.
The $\mathrm{p} 21-$ and $\mathrm{p} 22^{\max }$ are the major variants that are expressed in a wide variety of species and cell types, and probably the predominantly expressed forms of Max in neuroblastoma cells.
Expression of Max proteins is not restricted to cells with high levels of N-Myc, but was also observed in neuroblastoma cells without detectable N -myc expression.
Max also interacts with C-myc. The C-myc proto-oncogene is a key regulator of cell growth and differentiation, it is localized in the nucleus and can activate transcription when brought to DNA by heterologous DNA binding domains [22], it contains an activation domain in its amino terminus, the integrity of which is correlated with its ability to cause oncogenic transformation [23].
Max protein is expressed in all tissues in which C-myc is expressed, and in some, including the adult brain in which C-myc is not.
Max-Max homodimers and C-myc-Max heterodimers bind tightly to the E-box CACGTG, and while DNA bound C-myc-Max hetrodimers activate transcription, Max-Max homodimers do not. This fact strengthened the hypothesis that transcription regulation is important to Myc function [24,25].
The interaction between Max and C-myc is dependent on the integrity of the Cmyc HLH-Zip domain, but not on the basic region or other sequences outside the domain. As for C-myc there is substantial evidence that the bHLH region and the adjacent leucine zipper motif are functionally important, deletions within these regions result in loss or alteration of transforming activity as well as reduction of the capacity to autoregulate endogenous Myc expression and to inhibit cell differentiation [26,27].
It is suggested that because most C -myc in vivo is associated with Max and C -myc-Max heterodimers bind CACGTG sites more tightly than C-myc-C-myc homodimers, that one function of Max is to facilitate the binding of C -myc to these
sites, and the fact that N-Myc and L-Myc as well as C-Myc specifially associate with Max suggests that Max may also serve to integrate the functions of these three proteins that are differentially expressed during development, differentiation, and neoplasia.

Max (but not Myc) also interacts with other HLH-Zip proteins, Mad and Mxil and may also probably contribute to transcriptional control in neuroblastoma Mad-Max and Mxil-Max hetrodimers bind efficiently to the Myc-Max E-box. Thus, (Mad / Max heterodimers formed during the differentiation of cells are thought to be more effective repressors than max homodimers because of their higher DNA binding activity).

It is also thought that Mad-Max and Mxil-Max heterodimers inhibit Myc-Max transactivation by sequestering Max and therefore preventing formation of MycMax heterodimers, and also by competing with Myc-Max heterodimers for common target sites at promoters (E-Box), see figure 4.
The outcome of this whole system is that; In the normal situation both homodimeric and heterodimeric populations of BR-HLH-Zip proteins exist at a level that is strictly regulated, and if the level of one member of this system is altered as a result of a genetic change, regulation is lost with the consequence of neoplastic cell growth.

1.5. Summary

From what has been written so far, the following out-lines are drawn:

- $\mathrm{N}-m y c$ is a cellular oncogene, which seems to contribute to the growth control of cells.
- The process of gene amplification usually involves co-amplification of extensive regions of DNA.
- Co-amplification of the DDX1 gene is rare in neuroblastoma cells, and often limited to stage $4-4 \mathrm{~s}$.
- N-myc co-amplifies with the ODCl gene in one of six primary neuroblastomas.
- The protein produced by $\mathrm{N}-m y c$ oncogene is $\mathrm{N}-\mathrm{Myc}$, which is thought to be a putative transcription regulator (may be responsible for either "turning on" or "turning off" other genes).
- $\mathrm{N}-m y c$ normal activity may require a fine tuned interplay with at least two or more proteins, and might be regulated at least in part, through interaction with these proteins.
- Enhanced levels of N -Myc could result in disturbance of the balanced interaction (with the other proteins).
- N-Myc and Max work together in binding DNA, and probably enhanced levels of N-Myc lead's to a greater number of transcription activating complexes.

1.6. Aim of research

The aim of this project is to identify potential targets for N -myc regulation using the cell line SK-N-SH.
SK-N-SH are human neuroblastoma cells; a metastasis from a bone marrow sample and comprise of two distinct populations of cells:

- $\quad \mathrm{N}$ - type cells show neuroblastic morphology.
- S - type cells are large and epitheliod.

Karyotype shows chromosomal translocation between chromosome 7 and chromosome 22, and finally this cell line has no amplification of the oncogene N -myc (low levels of N -Myc protein).
$\mathrm{N}-m y c$ target genes were isolated using a modification of the protocol developed to identify p53 binding sites [28], and as follows (see figure 5):

- Generating NTG library, by isolating genomic DNA from SK-N-SH cells digested to completion with $\operatorname{Sau} 3 A$ and mixed with nuclear extract from SK-N-SH cells, and finally immunoprecipitated with $\mathrm{N}-m y c$ antibodies.
- DNA recovered from these precipitates was cloned into pBluescript $\mathrm{SK}+$, and repeated immunoprecipitation on the primary N -myc selected library either:
- In the presence of poly dIdC $\rightarrow+$ NTG clones.
- Without competition \rightarrow-NTG clones.
- 400 clones have been isolated, their size of insert calculated, and pure plasmid prepared for inserts larger than 300bp.
- Inserts were then sequenced using reverse and universal primers.
- DNA sequence homology searches have been carried out using the Daresbury data base.

2. Materials and Methods

2.1. Materials:

2.1.1- NTG library

\Rightarrow Solution I (Cell resuspension solution)

- Glucose $\quad 50 \mathrm{mM}$
- Tris.Cl (pH 8.0) 25 mM
- EDTA (pH 8.0) 10 mM
- Autoclave at 15 lb . in ${ }^{-2}$ for 20 min .
\Rightarrow Solution III (Potassium acetate)
- Per 100 ml :
- KOAc (5 M) 60 ml .
- Glacial acetic acid 11.5 ml .
- Autoclave at $15 \mathrm{lb} . \mathrm{in}^{-2}$ for 20 min .
\Rightarrow Sodium Acetate (3M)
- Per litre:
- $\mathrm{NaOAc} .3 \mathrm{H}_{2} \mathrm{O} \quad 408.1 \mathrm{~g}$.
- Adjust to pH 5.2 with glacial acetic acid.
- Autoclave at 15 lb . in ${ }^{-2}$ for 20 min .
$\Rightarrow 1 \mathrm{M}$ Tris. Cl pH 7.5
- Per litre:
- Tris 121.1 g
- Adjust to pH 7.5 with HCl .
- Autoclave at 15 lb . in ${ }^{-2}$ for 20 min .
\Rightarrow Trypsin
1 ml of Trypsin (Gibco BRL) +10 ml PBS/EDTA. Make up immediately prior to use.
$\Rightarrow 1$ M TRIS. $\mathrm{pH}(8)$
- Per $100 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$:
- 12.11 g
\Rightarrow Solution II (Cell lysis solution)
- SDS 1\%
- NaOH
0.2 M
- Prepare a 2% solution of SDS and a 0.4 M solution of NaOH , separately. Autoclave at 15 lb . in ${ }^{-2}$ for 20 min . Mix $1: 1$ prior to use to give a 1% and 0.2 M solution.

$\Rightarrow 0.5 \mathrm{MEDTA} \mathrm{pH} 8.0$

- Per litre:
- EDTA Na $2.2 \mathrm{H}_{2} \mathrm{O} \quad 186.1 \mathrm{~g}$
- Adjust to pH 8.0 in order that the EDTA will dissolve.
- Autoclave at $15 \mathrm{lb}^{\text {in }}{ }^{-2}$ for 20 min .
\Rightarrow TFBI.
- KOAc (1M)

6 ml (fc 30 mM)

- RbCl
2.418 g (fc 100 mM)
- $\mathrm{CaCl}_{2}(\mathrm{lM}) \quad 2 \mathrm{ml}$ (fc 10 mM$)$
- $\mathrm{MgCl}_{2}(\mathrm{lM}) \quad 10 \mathrm{ml}$ (fc 50 mM$)$
- Glycerol 30 ml (fc 15\%)
- $\mathrm{H}_{2} \mathrm{O}$ to 200 ml . Adjust to pH 5.8 with 0.2 acetic acid (few drops). Filter sterilize, store $4^{\circ} \mathrm{C}$.
\Rightarrow TFBII.
- MOPS
0.2093 g (fc 10 mM)
- CaCl 2 (1M)
7.5 ml (fc 75 mM)
- RbCl
0.1209 g (fc 10 mM)
- Glycerol 15 ml
- $\mathrm{H}_{2} \mathrm{O}$ to 100 ml . Adjust to pH 6.5 with KOH (drop or two). Filter sterilize, store $4^{\circ} \mathrm{C}$.
\Rightarrow Ammonium Acetate 10 M
- $1.92 \mathrm{gm} . / 25 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$.
\Rightarrow Leupeptin $0.5 \mathrm{mg} / \mathrm{ml}$
- Dissolve 1 mg in 2 ml of sterile $\mathrm{H}_{2} \mathrm{O}$, store at $-20^{\circ} \mathrm{C}$.
\Rightarrow Pepstatin A $5 \mathrm{mg} / \mathrm{ml}$
- Dissolve 5 mg in 5 ml of ethanol, store $\mathrm{at}-20^{\circ} \mathrm{C}$.
\Rightarrow NETN
- NaCl
100 mM
- EDTA
1 mM
- Tris.Cl pH 8.0

20 mM

- Nonidet P-40
0.5 \%
- PMSF 1 mM
\Rightarrow PMSF 100 mM
- Dissolve 17.4 mg in 1 ml of isopropanol, store at $-20^{\circ} \mathrm{C}$.
\Rightarrow Leupeptin $0.5 \mathrm{mg} / \mathrm{ml}$
- $7.5 \mu \mathrm{~g}$ in $100 \mu \mathrm{l}$ NETN.
\Rightarrow RNAase A
- $10 \mathrm{mg} / 1 \mathrm{ml}$ buffer:
- Tris.Cl (pH 7.5) $\quad 10 \mathrm{mM}$
- NaCl

15 mM
\Rightarrow Proteinase K

- $20 \mathrm{mg} / 1 \mathrm{ml}$
\Rightarrow Ampicillin
- $0.25 \mathrm{gm} / 10 \mathrm{ml}$ of sterile water.
\Rightarrow TBS
- Tris. Cl pH $7.5 \quad 20 \mathrm{mM}$
- NaCl 500 mM
$\Rightarrow \lambda$ Hind III DNA marker
- Set up the following digestion in an eppendorf:
- $\mathrm{H}_{2} \mathrm{O}$
$780 \mu \mathrm{l}$
- Buffer $10 \quad 100 \mu \mathrm{l}$
- λ DNA
$100 \mu \mathrm{l}$
- Hind III
$20 \mu \mathrm{l}$
- Leave in the $37^{\circ} \mathrm{C}$ heat block overnight.
- Add 100μ of 6 X loading buffer, store at $-20^{\circ} \mathrm{C}$
\Rightarrow X Gal [DMFX Galactoside]
- $0.4 \mathrm{gm} / 10 \mathrm{ml}$ DMF.
\Rightarrow Agarose gel
- 0.8% gel $\quad 0.48 \mathrm{~g}$ Agarose $/ 60 \mathrm{ml} \mathrm{1X}$ TAE buffer
- 1.2% gel
- 1.5% gel
0.72 g Agarose $/ 60 \mathrm{ml}$ 1X TAE buffer
- 2.0% gel
0.9 g Agarose / 60 ml 1 X TAE buffer
1.2 g Agarose / 60 ml 1 X TAE buffer
\Rightarrow Nutrient Broth (LABM)
- 2.5 g of labM Nutrient / $100 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$
- Autoclave at 15 lb. in $^{-2}$ for 20 min .
- Add 200μ l of Ampicillin before use
\Rightarrow Nutrient Agar (LABM)
- $2.8 \mathrm{~g} / 100 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$
- Autoclave at 15 lb. in $^{-2}$ for 20 min .
- Add Ampicillin-Xgal before use.
\Rightarrow PBS / EDTA
- 5 PBS tablets (Dulbeccos phosphate w/o calcium or magnesium) +0.1 g EDTA in 500 ml of $\mathrm{H}_{2} \mathrm{O}$.
- Aliquot into 100 ml bottles and autoclave. Store at $4^{\circ} \mathrm{C}$.

Buffers:

\Rightarrow T.E. Buffer (pH 8.0).

- Per litre:
- Ttis.Cl (pH 7.5) $\quad 10 \mathrm{mM}$
- EDTA (pH 8.0) $\quad 1.0 \mathrm{mM}$
- Autoclave at $15 \mathrm{lb} . \mathrm{in}^{-2}$ for 20 min .
$\Rightarrow \quad 1 \mathrm{XTAE}$ buffer
- Per 5 litres:
- 50XTAE 100 ml .
\Rightarrow 6X Loading buffer
- Bromophenol blue $0.25 \%(w / v)$
- Xylene cyanol ff $0.25 \%(w / v)$
- Glycerol

30\% (w/v)
\Rightarrow 50X Tris-acetate electrophoresis buffer (TAE)

- Per litre:
- Tris $\quad 242.0 \mathrm{~g}$.
- Glacial acetic acid 57.1 ml .
- EDTA (0.5 M pH 8.0) 100 ml .
\Rightarrow Wash buffer
- NENT containing:
- PMSF
0.5 mM
- Leupeptin
$1 \mu \mathrm{~g} / \mathrm{ml}$
- Pepstatin $1 \mu \mathrm{~g} / \mathrm{ml}$
\Rightarrow Dissociation buffer
- Tris. $\mathrm{Cl} \mathrm{pH} 9.0 \quad 500 \mathrm{mM}$
- EDTA

20 mM

- NaCl

10 mM

- SDS
0.2%
\Rightarrow Extraction buffer
- Tris. $\mathrm{HCl}(\mathrm{pH} 8.0) \quad 10 \mathrm{mM}$
- EDTA (pH 8.0) 0.1 mM
- Pencreatic RNAase $20 \mu \mathrm{~g} / \mathrm{ml}$
- SDS
0.5%
\Rightarrow Buffer A
- 100 mM Hepes $\mathrm{pH} 7.9 \quad 10 \mathrm{ml}$ (fc 10 mM)
- $250 \mathrm{mM} \mathrm{KCl} \quad 4 \mathrm{ml}(\mathrm{fc} 10 \mathrm{mM})$
- 100 mM EDTA $\quad 20 \mu \mathrm{l}(\mathrm{fc} 0.1 \mathrm{mM})$
- 10 mM EGTA $\quad 1 \mathrm{ml}(\mathrm{fc} 0.1 \mathrm{mM}$)
- $100 \mathrm{mMDTT} \quad 1 \mathrm{ml}$ (fc 1 mM)
- Add to $\mathrm{H}_{2} \mathrm{O}$ final volume 100 ml
- Add PMSF to 0.5 mM before use.
\Rightarrow 10X CIP dephosphorylation buffer
- $\mathrm{ZnCl}_{2} \quad 10 \mathrm{mM}$
- $\mathrm{MgCl}_{2} \quad 10 \mathrm{mM}$
- Tris. $\mathrm{Cl}(\mathrm{pH} 8.3) \quad 100 \mathrm{mM}$
\Rightarrow Binding buffer
- Tris. $\mathrm{HCl} \mathrm{pH} 7.5 \quad 20 \mathrm{mM}$
- Glycerol 4\%
- DTT 1 mM
- $\mathrm{NaCl} \quad 50 \mathrm{mM}$
- EDTA 0.1 mM
- Spermidine $\quad 2.5 \mathrm{mM}$
- $\mathrm{MgCl}_{2} \quad 7.5 \mathrm{mM}$
- Leupeptin $\quad 1 \mu \mathrm{~g} / \mathrm{ml}$
- Pepstatin $\quad 1 \mu \mathrm{~g} / \mathrm{ml}$
- PMSF 0.5 mM
$\Rightarrow \mathrm{CA} / \mathrm{Mn}$ buffer (pH 5.5)
- $\mathrm{CaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$
100 mM
($0.735 \mathrm{~g} / 50 \mathrm{ml}$)
- $\mathrm{MnCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
70 mM
($0.69265 \mathrm{~g} / 50 \mathrm{ml}$)
- NAOAc(anhyd)
40 mM
($0.1641 \mathrm{~g} / 50 \mathrm{ml}$)

Prepare fresh and filter sterilize. Start with a solution of the NaOAc at pH 7.0 , add the Ca and Mn , this will bring the pH down to nearer 6.0. Finally adjust the pH down to 5.5 with acetic acid, never adjust the pH up with NaOH .
Make up to 42.5 ml filter sterilize and then add 7.5 ml of sterile glycerol for the buffer with 15% glycerol.

\Rightarrow Buffer C

- 100 mM Hepes pH 7.920 ml (fc 20 mM)
- $4 \mathrm{M} \mathrm{NaCl} \quad 10 \mathrm{ml}(\mathrm{fc} 0.4 \mathrm{M})$
- 100 mM EDTA $\quad 1 \mathrm{ml}(\mathrm{fc} 1 \mathrm{mM})$
- 10 mM EGTA $\quad 10 \mathrm{ml}(\mathrm{fc} 1 \mathrm{mM})$
- 100 mMDTT $\quad 1 \mathrm{ml}$ (fc 1 mM)
- Add to $\mathrm{H}_{2} \mathrm{O}$ final volume100ml
- Add PMSF to 1 mM before use.

2.1.2-Colony blots

- Preparation of solutions:
\Rightarrow SDS 10\%
\Rightarrow Denaturing solution
- $\mathrm{NaOH} \quad 0.5 \mathrm{~N}$
- $\mathrm{NaCl} \quad 1.5 \mathrm{M}$
\Rightarrow Neutralizing solution
- $\mathrm{NaCl} \quad 1.5 \mathrm{M}$
- Tris.Cl (pH 7.5) 0.5 M
\Rightarrow 20X SSC
- Per litre:
- $\mathrm{NaCl} \quad 175.3 \mathrm{~g}$
- Sodium citrate 88.2 g

Adjust to pH 7.0 with 10 N NaOH .

2.1.3- Filter hybridization

- Preparation of solutions:
\Rightarrow Pre-hybridization

Solution	Volume	Concentration
20 X SSPE	12.5 ml	5 X SSPE
100 X Denhardt's	2.5 ml	5 XDenhardt's
$10 \%[\mathrm{w} / \mathrm{v}]$ SDS	2.5 ml	$0.5 \%[\mathrm{w} / \mathrm{v}]$ SDS

- $+3.5 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}+100 \mu \mathrm{l}$ herring sperm [$\left.10 \mathrm{mg} / \mathrm{ml}\right]$.
\Rightarrow Hybridization
Solution Volume Concentration
- 20 XSSPE
12.5 ml

5 X SSPE

- 100 X Denhardt's
2.5 ml

5 X Denhardt's

- $10 \%[\mathrm{w} / \mathrm{v}]$ SDS
2.5 ml
0.5% [w/v] SDS
- $+3.5 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}+100 \mu \mathrm{l} 0.5 \mathrm{M}$ EDTA.

2.1.4- Protein Analysis

- Preparation of solutions:
\Rightarrow Protein stain
- Per litre:
- $\mathrm{H}_{2} \mathrm{O}$ 450 ml
- Methanol 450 ml
- Acetic acid

100 ml

- Coomassie brilliant blue R250 lg
\Rightarrow SDS page sample buffer
- $\mathrm{H}_{2} \mathrm{O}$
4 ml
- 0.5 M Tris. $\mathrm{Cl}(\mathrm{pH} 6.8) \quad 1.0 \mathrm{ml}$
- Glycerol 0.8 ml
- 10% SDS $\quad 1.6 \mathrm{ml}$
- β Mercaptoethanol 0.4 ml
- 0.1% Bromophenol blue 0.2 ml [of 1 mg in $1 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$]
- Store in $-20^{\circ} \mathrm{C}$
$\Rightarrow 45 \%$ Acrylamide solution
- 22.5 g in $50 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$
\Rightarrow 1.6\% Bisacrylamide
- 0.32 in $50 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$
\Rightarrow 1.5M Tris. $\mathrm{Cl}(\mathrm{pH} 8.8)$
$\Rightarrow 4 \% \mathrm{SDS}$
- 0.1 SDS
$2 \mathrm{gm} \mathrm{SDS}+50 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$
\Rightarrow SDS page electrophoresis buffer
- Per 3 litre:
- Tris 9.1g
- Glycine $\quad 43.2 \mathrm{~g}$
- SDS 3.0 g
\Rightarrow 12.5\% Resolving gel
- 45% Acrylamide $\quad 2.78 \mathrm{ml}$
- 1.6% Bisacrylamide 0.64 ml
- 1.5M Tris pH $8.8 \quad 2.5 \mathrm{ml}$
- 4% SDS 0.26 ml
- $\mathrm{H}_{2} \mathrm{O} \quad 3.82 \mathrm{ml}$
- TEMED $\quad 13.2 \mu \mathrm{l}$
- 0.56% APS 0.5 ml
\Rightarrow Protein stain
- Per litre:
- $\mathrm{H}_{2} \mathrm{O}$

450 ml
\Leftrightarrow Methanol
450 ml
今) Acetic acid 100 ml
$\Rightarrow \underline{0.65 \%}$ APS (ammonium persulphate)

- Prepare fresh when needed:
- 11.2 mg in $2 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$
$\Rightarrow 4 \%$ Stacking gel
- 45% Acrylamide $\quad 0.7 \mathrm{ml}$
- 1.6% Bisacrylamide 0.55 ml
- 0.5M Tris $\mathrm{pH} 6.8 \quad 2.0 \mathrm{ml}$
- 4% SDS 0.4 ml
- $\mathrm{H}_{2} \mathrm{O} \quad 4.6 \mathrm{ml}$
- TEMED $12 \mu \mathrm{l}$
- 0.56% APS 0.55 ml

2.2. Methods:

2.2.1. Tissue culture

2.2.1.1- Recovering SK-N-SH cells from liquid Nitrogen

Cells were removed from the freezer, thawed by gently swirling the tube in a beaker of water at $37^{\circ} \mathrm{C}$ and then transferring the contents to a sterile 25 ml universal. 5 ml of media (RPMI 1640 Medium with Glutamax-1, from GIBCO BRL) was then added slowly over a period of 2 minutes.
Cells were then pelleted at 1500 rpm for 2 minutes at room temperature, and resuspended in 1 ml of medium containing 10% FCS. The contents were then transferred to a $25 \mathrm{~cm}^{2}$ flask, a further 2 ml of medium was added and incubated at $37^{\circ} \mathrm{C}$ in a $5 \% \mathrm{CO}_{2}$ incubator overnight (until cells attach).
[Media was changed every 3-4 days]

2.2.1.2- Trypsinisation of cells for passaging

Medium was decanted from the cells, which were then washed twice with PBS/EDTA, ensuring all surfaces of the flask as well as the monolayer were covered.
2.5 ml of Trypsin was added to rinse the cells and then poured off leaving a thin film of trypsin covering the cell surface.
The sealed flask was then placed in $5 \% \mathrm{CO}_{2}$ incubator for one minute or until cells were rounded up and detached.

3 ml of medium $+10 \%$ FCS was added to the cell suspension to inhibit trypsin and then decanted into a sterile 25 ml universal.
The flask was then rinsed with a further 5 ml of medium and decanted into the 25 ml universal. The cells were centrifuged at 1500 rpm at room temperature for 2 minutes, then, after pouring off the medium 1 ml of fresh media was added and aspirated to a single cell suspension. The contents were then transferred to a $25 \mathrm{~cm}^{2}$ flask and an appropriate volume of medium containing 10% FCS (2 ml) was added. The flask was then kept in a $5 \% \mathrm{CO}_{2}$ incubator at $37^{\circ} \mathrm{C}$ overnight (changing medium every 3-4 day).

2.2.1.3- Preservation of cells in liquid Nitrogen

Cells had to be trypsinized first (previous method) but re-suspended in 1 ml of 90% FCS / 10\% DMSO. 0.5 ml of cell suspension was added to NUNC Cryovials (screw tops finger tight), and placed at $-20^{\circ} \mathrm{C}$ for 30 minutes and then transferred to an insulated box at $-70^{\circ} \mathrm{C}$ overnight, then to a liquid Nitrogen storage container.

2.2.2. DNA Manipulation

To begin the research, a number of NTG clones are required (which may have N Myc target genes). These clones are generated from what is called the N-Myc binding library. In order to begin the library, a number of preparations are required, for example: Competent sure cells, Genomic DNA, Nuclear extraction, Competent DH5 \propto cells, pBluescript SK + .

2.2.2.1- Complete sure cells

5 ml of culture was grown overnight (E.Coli) and then using 1 ml (5 ml) to inoculate 100 ml of pre-warmed LB, left to grow at $37^{\circ} \mathrm{C}$ until $\mathrm{OD}_{600}=0.5$, the cells were then centrifuged in 50 ml aliquots in falcon tubes.
The pellets were re-suspended in $1 / 2$ the volume of ice-cold $\mathrm{Ca} / \mathrm{Mn}$ buffer and after 1 hour incubation on ice, centrifuged at 200 rpm for 5 minutes and re-suspended very gently in $1 / 20$ the volume of ice-cold $\mathrm{Ca} / \mathrm{Mn}$ buffer $+15 \%$ glycerol and finally dispensed in $200 \mu 1$ aliquots into cold eppendorfs, frozen in liquid Nitrogen and transferred to ice (stored at $-80^{\circ} \mathrm{C}$).

2.2.2.2- Competent DH5 \propto cells

5 ml of culture was grown overnight, and 1 ml was used to inoculate 100 ml of prewarmed LB , it was then left to grow at $37^{\circ} \mathrm{C}$ until OD_{600} reached $0.3-0.35$. The cells were then chilled on ice for 5 minutes and pelleted using the MSE mistral for 7 minutes at $3600 \mathrm{rpm}, 4^{\circ} \mathrm{C}$ and re-suspended in $2 / 5$ the volume using TFBI, left again on ice for 5 minutes, pelleted down, re-suspended in $1 / 25$ the volume using TFBII and finally dispensed in $200 \mu \mathrm{l}$ aliquots into pre-chilled eppendorfs and frozen in liquid Nitrogen (stored at $-80^{\circ} \mathrm{C}$).

2.2.2.3- Isolation of Genomic DNA

I- Preparation of cells
SK-N-SH cells growing in monolayer:
a- Cells were detached from the dishes by trypsinisation and recovered by centrifugation at 1500 rpm at $4^{\circ} \mathrm{C}$ for 10 minutes.
b- Cells were re-suspended in 5-10 volumes of ice-cold TBS and recovered again at 1500 rpm at $4^{\circ} \mathrm{C}$ for 10 minutes.
c- Re-suspended in 1 ml TE, 10 ml of extraction buffer was added and incubated for 1 hour at $37^{\circ} \mathrm{C}$.
II- DNA Extraction
a. After 1 hour of incubation proteinase K was added to a final concentration of $100 \mu \mathrm{~g} / \mathrm{ml}\left(50 \mu \mathrm{l}\right.$ of $20 \mathrm{ml} / \mathrm{ml}$ stock) and incubated at $50^{\circ} \mathrm{C}$ for 3 hours with periodic mixing.
b. After 3 hours of incubation the solution was left to cool down at room temperature and extracted with an equal volume of Phenol equilibrated with 0.5 M Tris -HCl pH 8.0 and was left to mix gently for 2 minutes on a rocking platform.
c. The solution was then centrifuged at 5000 g for 50 minutes at room temperature, then the aqueous layer was carefully transferred to a fresh tube.
d. Step b \& c was repeated twice more.
e. For isolating DNA in the size range $100-150 \mathrm{~Kb}$ a 0.2 volume of 10 M ammonium acetate and 2 volumes of ethanol was added at room temperature (swirled until thoroughly mixed), and the DNA precipitate was removed with a sterile needle or by centrifugation if (DNA fragments).
f. DNA pellet was washed twice with 70% of ethanol and re-dissolved in 1 ml of TE for each 5×10^{6} cells by gently rocking the solution for 12-24 hours.
g. $5 \mu \mathrm{l}$ of DNA Extraction was run on a 0.8% gel to check DNA presence and purification. (see figure 2.1)

Figure 2.1, $5 \mu \mathrm{I}$ of DNA extraction on 0.8% Agarose gel.

III- Sau3A Genomic DNA

The following were mixed:
a. $100 \mu 1$ of Genomic DNA.
b. $20 \mu \mathrm{~L}$ of buffer 2 .
c. $10 \mu \mathrm{l}$ of $\operatorname{San} 3 \mathrm{~A}$.
d. $70 \mu \mathrm{l}$ of $\mathrm{H}_{2} \mathrm{O}$.
and incubated for 5 hours at $37^{\circ} \mathrm{C}$, then precipitated with $20 \mu \mathrm{l}$ of Sodium Acetate and (Ethanol, 70% Ethanol at $-20^{\circ} \mathrm{C}$). The pellet was then re-suspended in $20 \mu \mathrm{l}$ of $\mathrm{H}_{2} \mathrm{O}$. (see figure 2.2)

Figure $2.2,2 \mu \mathrm{I}$ of $\operatorname{Sau} 3 A$ cut genomic DNA on 0.8% Agarose gel.

2.2.2.4- Nuclear Protein Extraction

a. Cells (SK-N-SH) were scraped from tissue culture flasks into TBS (5 ml), and the flasks were washed with a further 2 ml of TBS.
b. Cells were then pelleted at 6500 rpm in a refrigerated centrifuge for 2 minutes and re-suspended in 2 ml of TBS, then transferred to an eppendorf tube, pelleted in MSE mistral at 6500 rpm for 15 seconds.
c. TBS was then removed and the pellet re-suspended in $400 \mu \mathrm{l}$ of cold buffer A, swelled on ice for 15 minutes then 25 ml of 10% Nonidet NP- 40 was added.
d. After 10 seconds of vortexing the nuclei were pelleted at 6500 rpm in MSE microcentrifuge for 30 seconds and re-suspended in $50 \mu \mathrm{l}$ of ice cold buffer C , the nuclei were then left on ice for 15 minutes with occasional shaking.
e. Lysed nuclei and other debris were removed by centrifugation at 13000 rpm , $40^{\circ} \mathrm{C}$ for 50 minutes (store at $-70^{\circ} \mathrm{C}$).

$2.2 .2 .5-\mathrm{pB}$ luescript $\mathrm{SK}+$

I- Preparation of pBluescript
a. 3 ml of culture was grown overnight (pBluescript $\mathrm{SK}+$ cells) centrifuged for 3 minutes and re-suspended in 200μ l of ice cold solution.
b. $200 \mu \mathrm{l}$ of solution II was added and mixed by gentle inversion, then mixed with $200 \mu \mathrm{l}$ of ice cold solution III. The solution was then centrifuged at full speed in a microfuge for 5 minutes to pellet the precipitate. The supernatant was then transferred to a clean eppendorf (avoiding pipetting up any of the precipitate) and centrifuged once more for 1 minute.
c. The supernatant was transferred to a clean eppendorf tube and 2 volumes of absolute ethanol (at $-20^{\circ} \mathrm{C}$) was added then left on ice at least 15 minutes.
d. The solution was centrifuged at full speed for 15 minutes. The ethanol poured off and 1 ml of 70% ethanol (at $-20^{\circ} \mathrm{C}$) was added, centrifuged for 3 minutes and ethanol poured off.
e. The pellet was then re-suspended in $30 \mu \mathrm{l}$ of $\mathrm{H}_{2} \mathrm{O}$.
f. $2 \mu \mathrm{l}$ was run on a 0.8% gel to check the presence of pBluescript.

II- BamH1 pBluescript

The following were mixed:
a. $\quad 50 \mu \mathrm{l}$ pBluescript.
b. $10 \mu \mathrm{l}$ Buffer 4 .
c. $10 \mu \mathrm{BamH}$.
d. $30 \mu \mathrm{l} \mathrm{H}_{2} \mathrm{O}$.

Left for 3 hours at $37^{\circ} \mathrm{C}$, then precipitated with 2 volumes of Ethanol, centrifuged and the pellet washed with 70% Ethanol at $-20^{\circ} \mathrm{C}$. The pellet was then resuspended with $40 \mu \mathrm{l}$ of $\mathrm{H}_{2} \mathrm{O}$.
$10 \mu 1$ is kept as a non CIP (Calf Intestinal Alkaline Phosphates) BamHI pBluescript ($2 \mu \mathrm{l}$ was run on a $0.8 \% \mathrm{gel}$). (see figure 2.3)

Figure 2.3, 2μ l of BamHl pBluescript on 0.8% agarose gel.

The remaining $3 \mu \mathrm{l}$ was dephosphorylated with CIP. This was done by the following method. The following were mixed:
a. $30 \mu \mathrm{l}$ of BamHl pBluescript.
b. $10 \mu \mathrm{l}$ of (10 X CIP dephosphorylation buffer).
c. $60 \mu \mathrm{l}$ of $\mathrm{H}_{2} \mathrm{O}$.
d. $1 \mu \mathrm{l}$ of CIP.

After 30 minutes incubation at $37^{\circ} \mathrm{C}$ the following was added:
a. $50 \mu \mathrm{l}$ of 2% SDS
b. $10 \mu \mathrm{l}$ of 100 mM EDTA
c. $2 \mu \mathrm{l}$ of $10 \mathrm{mg} / \mathrm{ml}$ Proteinase K .
d. 38μ of $\mathrm{H}_{2} \mathrm{O}$

Incubate again at $-56^{\circ} \mathrm{C}$ for 30 minutes. The solution was then extracted with $200 \mu 1$ of Phenol : Chloroform, centrifuged for 3 minutes, transferring aqueous layer to a fresh tube, and a further $200 \mu \mathrm{l}$ of Phenol was added.
The solution was then precipitated with $20 \mu 1$ of Sodium acetate and 2 volume of Ethanol, 70% Ethanol, and finally the pellet was re-dissolved in $15 \mu \mathrm{l}$ of $\mathrm{H}_{2} \mathrm{O}$. ($2 \mu \mathrm{l}$ of CIP BamHl pBluescript was run on a 0.8% gel). (see figure 2.4)

Figure $2.4,2 \mu$ of CIP BamH1 pBluescript on 0.8% Agarose gel.

2.2.2.6- Preparation of $\mathrm{N}-m y c$ Binding library

Figure 2.5, Stage explanation of preparation of N -myc binding library.

1- First round of screening
a. The library was started by mixing the following:

1. $10 \mu \mathrm{~g}$ of $\operatorname{Sau} 3 A$ DNA
2. $50 \mu \mathrm{l}$ of Nuclear extract
3. In a total volume of $100 \mu \mathrm{l}$ of binding buffer and incubating at room temperature for 1 hour. Then, 2μ gof N -myc antibody was added.
b. After 1 hour of incubation at room temperature, protein A- sepharose $(7.5 \mathrm{mg}$ in $100 \mu \mathrm{l}$ NETN buffer) was added, then mixed and incubated for a further 30 minutes. The solution was then washed twice in washing buffer ($30 \mu \mathrm{l}$) and the DNA dissociated in $200 \mu \mathrm{l}$ of dissociation buffer at $55^{\circ} \mathrm{C}$ for 30 minutes.
c. $200 \mu \mathrm{l}$ of Phenol-Chloroform was used to extract the DNA (aqueous layer) which was then precipitated with $1 / 3$ Volume of ethanol for 16 hour at $-80^{\circ} \mathrm{C}$.
d. The DNA was recovered by 15 minutes centrifugation and re-dissolved in $10 \mu \mathrm{l}$ $\mathrm{H}_{2} \mathrm{O}$, then cloned into BamHl pBluescript (half treated with CIP), and then sure cells transformed with vector.

II- Ligation
a. CIP BamHl pBluescript

The following were mixed:

1. 5μ gof DNA.
2. $10 \mu \mathrm{l}$ of CIP pBluescript.
3. $4 \mu \mathrm{l}$ of ligase buffer (5X).
4. $1 \mu \mathrm{l}$ of ligase.
b. Non CIP BamHl pBluescript

The following were mixed:

1. $5 \mu \mathrm{~g}$ of DNA.
2. $8 \mu \mathrm{l}$ pBluescript.
3. $4 \mu \mathrm{l}$ of ligase buffer.
4. $1 \mu \mathrm{l}$ of ligase
5. $2 \mu \mathrm{l}$ of $\mathrm{H}_{2} \mathrm{O}$.

Both were stored in $4^{\circ} \mathrm{C}$ overnight to ligate.
a. The $20 \mu \mathrm{l}$ of CIP ligation was split into 2 eppendorts, each of them had the following:

1. $10 \mu \mathrm{l}$ of ligation.
2. $40 \mu \mathrm{l}$ of TE.
3. $100 \mu \mathrm{l}$ of Sure cells.

They were left on ice for 30 minutes, then heat shocked at $37^{\circ} \mathrm{C}$ for 5 minutes, diluted in to 1 ml of pre-warmed LB (each eppendorf), and finally left shaking for $1-2$ hours (100 minutes optimum) at $37^{\circ} \mathrm{C}$, then both tubes were centrifuged, the media decanted and re-suspended in $50 \mu 1$ of LB.
Both 150μ l were plated out on the same plate and incubated at $37^{\circ} \mathrm{C}$ overnight. (Plates had Ampicillin +X Gal)
[The same method was used for the non CIP BamH1 pBluescript ligation]
b. Transformants were scraped off into 1.5 ml LB and prepared plasmid DNA from $750 \mu \mathrm{l}$, for each CIP treated and non CIP, the other $750 \mu \mathrm{l}$ was stored as glycerol at $-80^{\circ} \mathrm{C}$.

IV- Preparation of plasmid DNA
a. The transformants were pelleted at full speed in a microfuge for 3 minutes and discarding the supernatant, $200 \mu \mathrm{l}$ of solution 1 was added to resuspend the cells plus 4μ l of RNAseA of (10 mg RNA/ 1 ml Tric. $\mathrm{Cl}+\mathrm{NaCl}$ buffer).
A further 200μ l of solution was added and mixed by gentle inversion, and finally $200 \mu \mathrm{l}$ of solution III was added and mixed by shaking.
b. The precipitate was pelleted at full speed in a microfuge for 5 minutes, and extracted with an equal volume of Phenol: Chloroform.
The aqueous layer was transferred to a clean eppendorf tube and Ethanol precipitated, finally, re-suspending the DNA pellet in $22 \mu \mathrm{l} \mathrm{H}_{2} \mathrm{O}$. This method was used for both CIP transformants and non CIP transformants.
(a $2 \mu \mathrm{l}$ of each was run on a $0.8 \% \mathrm{gel}$). (see figure 2.6)

Figure 2.6, $2 \mu \mathrm{l}$ of plasmid DNA for CIP transformants on 0.8% Agarose gel.

V- Second round of screening
The following were mixed:

1. $15 \mu \mathrm{l}$ of CIP (whole plasmid).
2. $50 \mu \mathrm{l}$ of Nuclear Extract.
3. $0.5 \mu \mathrm{l}$ of $1 \mu \mathrm{~g} / \mu \mathrm{l}$ poly (dIdC)-[to generate $\mathrm{NTG}+$ colonies or without competitor to generate NTG-colonies]
4. In total volume of $100 \mu \mathrm{l}$ of binding buffer.

Then the procedure from 6-1- to 6-3-a of the first round was repeated (large ampicillin -X Gal plates were used, 500 ml agar on each plate).

The plates had a large number of NTG clones (whites). A total of 400 clones were picked, restreaked on to new ampicillin plates and given a number (Exp NTG +1). For each NTG clone a 3 ml . overnight culture was grown in order to isolate the plasmid DNA. A $2 \mu \mathrm{l}$ aliquot of each plasmid was run on a 0.8% gel and then after digesting the insert DNA with SacI/EcoRI, run on a 1.2% gel and calculating the size of insert using a standard graph.
Different sizes of insert were chosen (larger than 300 bp), and pure plasmid DNA was prepared using a QIA prep plasmid kit (By QIAGEN).

The inserts were then sequenced by Julea Bartley using an AB1 373A automatic DNA sequencer using the reverse (RV) and universal (UP) primers, then the sequence was transmitted to SEQNET Daresbury and compared to DNA and protein databases using the FASTA and GAP algorithms. Candidate homology were selected based on high similarity over an extended length compared with the actual length of the inserts and an assessment of their potential significance to neuroblastoma.

2.2.2.7-Isolation of plasmid DNA

This method was used for each of the 400 clones, stored at $-20^{\circ} \mathrm{C}$ until needed.

Cells were pelleted from a 3 ml overnight culture at full speed in a microfuge for 3 minutes, and then re-suspended in $200 \mu \mathrm{l}$ of solution 1 pipetting.

A further 200μ l of solution II was added and mixed by gentle inversion, and finally $200 \mu \mathrm{l}$ of solution III is added and mixed by shaking. The solution was then centrifuged at full speed in a microfuge for 5 minutes to pellet the precipitate. The supernatant was transferred to a clean Eppendorf tube, and Ethanol precipitated with (Ethanol/ 70\% Ethanol). The DNA pellet then re-suspended in 30 $\mu \mathrm{l}$ of T.E. containing RNAase ($900 \mu \mathrm{l}$ of T.E. $+100 \mu \mathrm{l}$ of RNAase).
A small sample was then run on a 0.8% agarose gel ($2 \mu \mathrm{l}$ DNA, $8 \mu \mathrm{l}$ of sterile water, $2 \mu \mathrm{l}$ of loading buffer).

2.2.2.8-SacI / EcoRI double digest

The following were mixed:
a. $14 \mu \mathrm{l}$ of $\mathrm{H}_{2} \mathrm{O}$.
b. $2 \mu \mathrm{l}$ of DNA (NTG).
c. $2 \mu \mathrm{l}$ of buffer 2 .
d. $1 \mu \mathrm{l}$ of SacI.
e. $1 \mu \mathrm{l}$ of $E c o R I$.

Incubated at $37^{\circ} \mathrm{C}$ for $1-2$ hours, then $4 \mu \mathrm{l}$ of loading buffer were added and run on a 1.2% agarose gel using the λ Hind III DNA marker.

2.2.2.9- Insert size calculation

After digesting out the insert DNA with SacI/EcoRI, a standard curve was drawn using the standard sizes of the λ Hind III DNA marker and the distance in millimetres for each size.

114 NTG clones have been plasmid prepped, digested with SacI/EcoRI, and the size of insert calculated for each one. Out of the 114,5 NTG's were chosen (with different size of insert) partially or fully sequenced, each had been sequenced using RV-UP and sent for Homology search.
The procedure for each NTG clone is explained in details in later sections.

2.2.2.10- Colony Blots

Colony Blots were done in order to do check if any clones had been previously isolated
NTG clones were plated onto new ampicillin plates (100 on each plate) and incubated at $37^{\circ} \mathrm{C}$ overnight.
A nylon membrane was cut into pieces slightly smaller than the agar plates, and each membrane was labelled for identification purposes, then placed label side down on to the re-streaked plate, making sure no air bubbles were trapped. 3 asymmetrical marks were made by stabbing through the membrane and the agar (with a sterile needle) for later realignment, from this point the membrane was handled with blunt forceps.

The membranes were then transferred (bacteria side up) to a piece of whatman 3MM paper soaked in 10% SDS and left for 3 minutes (This will break the cell wall and release the DNA). After 3 minutes the excess SDS was wiped off and the membrane transferred to 3MM paper soaked in Denaturing solution, and left for 5 minutes. Denaturing solution converts the double strand DNA to single strands so it sticks to the membrane.
After the excess denaturing solution was wiped off and the membrane transferred to a piece of 3 MM paper soaked in neutralizing solution for 5 minutes and finally to a 3 MM paper soaked in 2 XSSC for 5 minutes.
The membranes were then transferred to a piece of dry 3 MM paper and allowing to air dry for 30 minutes, wrapped in cling film, and placed bacteria side down on the UV transilluminator for 5 minutes. To store at room temperature they were wrapped in tin foil.

2.2.2.11- Colony Hybridization

Colony Hybridization was done to check if any of the 400 NTG clones have picked the same insert as the one in clone NTG-21.

NTG-21 is thought to be a target gene for $\mathrm{N}-m y c$, and has been isolated from a NTG library using the cell line SK-N-Be2c (This cell line has 150 -fold N-myc oncogene amplification). NTG-21 contains an 803 bp insert and shows 65% identity over 415 bp to the 3^{\prime} end of intron 1 of the human aromatic L-amino acid decarboxylase gene (DOPA decarboxylase) gene, and as mentioned before, one of Neuroblastoma's distinguished molecular characteristics is the increased catecholamine metabolism and high expression of DOPA decarboxylase. This appears to be a link between N -Myc expression and catecholamine metabolism.

I-

Figure 2.7, NTG-21

NTG-21 was digested first with SacI/EcoRI as follows:
a. $\quad 17 \mu \mathrm{l}$ DNA.
b. $4 \mu \mathrm{l}$ SacI.
c. $4 \mu \mathrm{l}$ EcoRI.
d. $8 \mu \mathrm{l}$ buffer (2).
e. $47 \mathrm{H}_{2} \mathrm{O}$.

After 3 to 4 hours in $37^{\circ} \mathrm{C}, 16 \mu$ l of loading buffer was added, and run on a 0.8% agarose gel. The fragment was then isolated from the gel as follows.

II- Isolation of DNA from Agarose gels

After electrophoresis, the band of interest was cut using a clean razor blade, trimming off all excess gel. The slice of gel was then put into a labelled eppendorf and $800 \mu \mathrm{l}$ of sodium iodide added, then placed in a water bath at $70^{\circ} \mathrm{C}$ for 5 minutes, or until the agarose had completely melted.
After leaving it for 5 minutes at room temperature 5μ of silica fines was added (to re-suspend) and vortexed for 1 second, the tube was then inverted continuously for

After the SacI/EcoRI digest isolation it was then digested with Sau3A as follows:
a. $48 \mu \mathrm{l}$ DNA.
b. $4 \mu \mathrm{I} \operatorname{Sau} 3 A$.
c. $8 \mu \mathrm{l}$ buffer.
d. $40 \mu \mathrm{l} \mathrm{H}_{2} \mathrm{O}$.
e. 3 to 4 hours in $37^{\circ} \mathrm{C}$ heat block, run on 0.8% agarose gel and then isolating the 800 pb band using the previous method (isolation of DNA from agarose gels).
f. $5 \mu \mathrm{l}$ of the 800 NTG-21 was run on a 0.8% agarose gel. (see figure 2.9)

Figure $2.9,5 \mu \mathrm{I}$ of $\operatorname{Sau} 3 A$ cut NTG-21 on 0.8% Agarose gel.

Colony hybridization was then carried out using the multiprime DNA labelling reaction kit.

2.2.2.12- Glycerol stocks

Glycerol stocks were prepared in order to store all the 400 NTG clones until needed.

Method:

5 ml of broth was incubated in a 15 ml falcon tube, with bacteria (NTG clone) and grown overnight with shaking.

The cells were pelleted by centrifugation for 2 min , pouring off the medium and resuspending the pellet in 0.5 ml of fresh medium, and then transferred to sterile eppendorf tube and adding 0.5 ml of slightly warmed sterile glycerol, shaking well to mix thoroughly, and stored at $-70^{\circ} \mathrm{C}$ (Aseptic technique was used throughout and close to the bunsen flame as possible).

2.2.2.13- Protein analysis

This was done using protein extract from SK-N-SH cells and SK-N-Be2c to compare the protein levels in both cells.

I. Bradford protein assay

a- Prepared 100 ml of a $1: 5$ dilution of Bio-Rad protein assay Dye reagent concentrate (20 ml dye $+80 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$).
b- Dissolved 11 mg of Bovine serum albumin fraction V in 10 ml of $\mathrm{H}_{2} \mathrm{O}$.
c- Prepared the following dilutions in eppendorf tubes:

Tube No.	Volume of BSA $(1.1 \mathrm{mg} / \mathrm{ml})$ $(\mu \mathrm{l})$	Volume of Assay buffer $(\mu \mathrm{l})$	Protein $(\mu \mathrm{g})$
1	0	500	0
2	45.5	454.5	5
3	90.9	409.1	10
4	159.1	340.9	17.5
5	227.3	272.7	25
6	318.2	181.8	35
7	409.1	90.9	45
8	500	0	55

Table 2.1.
d- Prepared $50 \mu \mathrm{l}$ of each standard (above) in to duplicate test tubes, 2.5 ml of diluted dye was added and incubated for $10-15$ minutes at room temperature, read $\mathrm{OD}_{595 \mathrm{~nm} \text {, graph was produced }}$.
For sample between 5 and $50 \mu \mathrm{l}$ of protein extract was added to a 2.5 ml of diluted dye, incubated for 10-15 minutes at room temperature, and then read OD_{595}.
The value for protein $\mu \mathrm{g}$ was read from the standard curve and calculated the value for $\mu \mathrm{g}$ protein $/ \mu \mathrm{l}$ (explained in chapter three).

II. Protein analysis

Method:

The SDS-Polyacrylamide gel was performed using a resolving gel, on top the stacking gel overlaid with 0.1% SDS which is the poured off once gel sets.
The samples were prepared as follows:

SK-N-SH
$10 \mu \mathrm{l} / \mathrm{E}$
$+$
$10 \mu \mathrm{l}$ Dye (SDS buffer)

SK-N-Be2c
$6.25 \mu \mathrm{l} \mathrm{N} / \mathrm{E}$
+
$10 \mu \mathrm{l}$ Dye (SDS buffer)

Both samples were boiled for 5 minutes to allow the SDS to denature the N/E (Neuroblastoma protein extract).
A $16 \mu \mathrm{l}$ of each was loaded in to the SDS gel wells with $16 \mu \mathrm{l}$ of the standards (molecular size marker from Sigma). After 1-2 hours, the gel was stained by immersing the gel in a minimum of 5 volumes of staining solution, and placed on a slow rotating platform for at least 4 hours at room temperature, and then de-stained by soaking it in the destaining solution for $4-8$ hours on a rocking platform, changing the destaining solution three or four times. The result is in chapter III.

3. Results

3.1- NTG clones and homology search

The aim of the research was to identify potential N -Myc target genes (NTGs) using the cell line SK-N-SH which has no $\mathrm{N}-m y c$ amplification. This was done by generating an NTG library /(see Materials and Methods)
The NTG library was prepared by isolating genomic DNA from SK-N-SH cells, digesting to completion with $\operatorname{Sau} 3 A$, and then mixing with nuclear extract from SK-N-SH cells, to allow N-Myc to bind to DNA with an E-box (either high, or low affinity).
N-myc antibody was added and DNA-protein complexes immunoprecipitated to isolate DNA with N-Myc bound. DNA fragments were then inserted into cloning vectors [BamHl cut pBluescript], then sure cells transformed with vector, see figure 2.5 .
This procedure was repeated four times using different amounts of material each time to generate the genomic library with 400 white clones. Plasmid DNA was then isolated from 114 white transformants, digested with EcoRI/SacI, and run on agarose gels to estimate the insert sizes, (figures 3.1.a \& b shows examples of these gels) using λ HindIII DNA marker.

Figure 3.1a,

Figure 3.1b, $2 \mu \mathrm{I}$ of a number of plasmid DNA digested with EcoRI/SacI on 0.8% Agarose gel.

The size of insert in 114 clones were calculated for the second time using the 100 bp ladder as a marker to give accurate reading (photos not included).

NTG clone	Approx. size	NTG clone	Approx. size
1	1700 bp	26	1220 bp
2	680 bp	27	$735+660+195+185$
3	$1400+720+320+180$	33	$1350+140 \mathrm{bp}$
5	$1450 \mathrm{bp}+390 \mathrm{bp}$	36	1550 bp
7	2250 bp	40	1550 bp
8	$1300+760+240 \mathrm{bp}$	45	$1450 \mathrm{bp}+370 \mathrm{bp}$
9	1490 bp	48	1600 bp
12	1450 bp	52	1500 bp
13	$740+660+200+190$	54	1600 bp
17	$1150 \mathrm{bp}+420 \mathrm{bp}$	56	1400 bp
19	1450 bp		

Table 3.1.
Out of the 114 NTG's, the following were chosen randomly: $\mathrm{NTG}+13$, $\mathrm{NTG}+5$, NTG +8 , NTG +33 . From each, pure plasmid was prepared and partially or fully sequenced.
(see figure 3.2.a, b, and c).

Figure 3.2a,

Figure 3.2b,

Figure 3.2c,
$1 \mu 1$ of pure plasmid $(+13,+5,+8,+33)$ on 1.2% Agarose gel.

Each insert was partially or fully sequenced using the reverse (RV) and universal (UP) primers then compared to DNA databases at SEQNET Daresbury.

Clone No.	Total insert size sequenced	Restriction map	Sequence	E.Box	Homology search
5	1137 bp	\checkmark	Partial	\checkmark	\checkmark
8	956 bp	\checkmark	Partial	$*$	\checkmark
13	1014 bp	\checkmark	Partial	$*$	\checkmark
33	1210 bp	\checkmark	RV.	$*$	$*$

Table 3.2.

NTG+5

- Insert size approximately 1137 bp .
- Sequenced initially using RV and UP shown in figure 3.5, (DNA sequence and predicted restriction map as in figure 3.4.I \& II).
- Homology search using the Daresbury databases shows the following:

```
Su
gb_pr:hummha3c7o
LOCUS HUMMHASC7B 8892 bp UNA PRI 31-HAR-1995
UEFINITION Homo sapiens MHC class, l alpha chain gene, leader exon, alpha l ana
    2 exOns (HLA A3, C7, B7., BfS, C4A3, (4B1, DR2, D\6).
ACCESSION L2y411
AEYWURUS cell surface antigen; cell surface glycoproteini class I gene:
    integral membrane protein; major histocompatibility complex. . . .
SCORES Init1: 481 Initn: 738 Opt: 592
    70.9% identity in 316 bp overlap
```

Figure 3.3.I,

Su /rev
gb_or:nulitifla

Figure 3.3.II,

Su/rev
gb_pr:n:smbnyn?
LOCUS HIMBAYH7 23438 bN DHA PRI $31-0 C T-1974$
DEFINITION Homo sapions (clunes lanbda aMHC 1. ? 3 and a) betamyosin neavy
chain (MYHi) 'ene. complete cds.

KEYuOROS Leta-nyosin neavy chaini cardiac myosin heavy chain。
SOUR Humian LeUkocyte UNA. . .

SCORES Initi: 296 Initn: 326 opt: 600
75.9% identity in 294 bf overlap

Figure 3.3.III,

```
gb_or:numatosyc
    LOCUS HUMAIPSYB 10186 on DNA PRI 31-0CT-1194
DEFINIIIOR Huna|, tP synthas星 l.eta suounit (ATPS&) gene, completecjs.
ACCESSION M2713?
KEYMORUS ATP syntnase beta suounit.
SOURCE
    URGANI SM
    Human fetal liver DNA, clone q-beta-lambaa 1.
    Hono sapiens . . .
SCURES Init1: 306 Initn: 724 Opt: 512
    69.1:% identity in 330 op overtap
```

Figure 3.3.IV,

```
5u/rev
gb_pr:hshw2
LOCUS HSHW2 22677 Op DNA PRI 12~MAY-1995
OEFINIIIUN Human DNA sequence from cosmid HW2, luritington's Disease Region
    chromosome 4,16.3.
    ACCESSIUN
    KE YUORDS
SOURCE
SCUPES Init1: 346 lnitn: 777 Opt: 645
    70.2: identity in 372 bo overlao
```

Figure 3.3.V,

```
5r
gb_pr:numtcro
```

LOCUS HUMTCRE C84.773 bD DNA PRI 14-JAN-199j
DEFIHITIOH Homo sadens (clones: K41A, K35, K23, K56, X218. G54, H137, H18,
H1B/GISgap. G15, X14, A2\%, A212, A14, H7.i. H12.18, H130, Alo,
C215, G1, C68, C21, X11, X6A, CBG1, CBG1/C29gap, and C29) germ(ine
T-cell receptor teta cnain, complote zene.
ACCESS ION
L36092...
SCORES
Initl: 136 Initn: 254 Opt: 306
70.6% identity in 137 bp overlap

Figure 3.3.VI,

```
Su/rev
gb_pr: numldtrac
LOCJS HUMLDLPAC 2382 bp LNA PRI UT-JAN-1995
DEFIivITION duman acety(ated low density lioverotein (acLDL) receptor (LiLi)
    gene, promoter and exon 1.
ACCESJION
KEYw,JROS LDL receptor: acetylated LuL recestor:
    low density tipoprotein recentor. . . .
SCURES
    G9. InitI: 231 Initn: 7この Opt: 736
    69.5:: identity in 469 bp overlap
```

Figure 3.3.VII,
$5 u$
gb_pr:numinsrd
LOCUs HUMINSKD 7240 DD DNA PRI 06-JAN-199S

DEFINITIUN Human insulin receptor (allele 2 , gene, exons 14,15 , 16 and 17.
ACCESSION
KEYWURUS
SOURCE
ORGANISM
M29930 M22986 M24639
Alu repeat; insulin receptor.
Human lymphodlastoid cell line or peripheral blood lymphocyte UNA.
tiomo sapiens . .

SCORES Init1: 549 Initn: 302 Opt:. 703
75.4\% identity in. 317 bp overlap

Figure 3.3.VIII,

$5 v$

gb＿pr：numesetece
LOClIS HUMOSELECT 4855 bp DMA PRI U3－JAV－1\％ン3
DEFINITION Homo safiens pasolectin CD5z（GRMP）gene，5＇ens and oromoter
region．
ACGESSION LO1574
KEYWORDS
SOURCE
p－selectin．
Hono sapietis（tissue library：EM3L3）colonic mucosa DNA。。o．

SCURES Initl： 264 Initn： 723 Opt： 676
70.0% identity in 400 up overtap

Figure 3．3．IX，

178 Alu I
116 Mae II 107 Xbal 94 StaN 90 BspMI 82 Accl 61 BceF I 58 Fnu4 HI 58 Bbv 1
$813 \mathrm{Bgl\mid}$
686 Tth111I 867 Hinc II
682 Taql 817 Ncol
$649 \mathrm{Mboll} \quad 807 \mathrm{NspCl}$ 637 Mme I 807 Nsp7524 I 628 Bsml 807 Nspl 1005 Dral $\begin{array}{llll}613 \text { Gdill } & 773 \text { Faul } & 960 \text { Msc I } & 1133\end{array}$
 Unique Sites

Figure 3．4．I，Restriction map of NTG＋5 sequenced region．
$110|20| 30 \mid 40$
1 gatcacgggc gitgggtgang gattggcccea agacggggig 81 cgtagacana cctgcatctg ttagittcta gatttacgit 161 CACCCCCAGG TATtGTCAGC TTAGGTTTTTT CTCCTCTGTT 241 TGAGGGAGGA GGCCTGTGAT ACAGTTCTCT CTGGAGTCTG 321 GGGCCGGGGA AGGGCCCCGG TGACTCCAGT GCAGGCCGGG 401 attatataga atatantata tantattata tagantatan 481 gantatanta tatantatti tatagantat antatatant 561 atatantata tagantatan tatatgatat t＊＊＊CAATAG 641 ACtagaggga agantantat anaacticcea atanttittit 721 AGTGGTGTGA tTGGCTCACT GCAACCTTCA CCTTCCAGGC 801 CTATGGGCAT GTGCCACCAT GGCTGGCTAA TTTTAGTATT 881 tCTCATGTTC ATAGGCTCAA GCAATTAACC CACTCCAGCC 961 gGCCAGGTTC tagtanttg antataggat ttgcttatge 1041 tTCTGTTTTA tTAGATGTAT TGAAAACAGT GATATGGTCA 1121 GCCAAGGCAA GTGGATC
gantctggan ccactutgct gccgtantac agggcccctg 80 tCCACGGAAA TTGCTCACCA TGTCAAGAAT CTGTTTTTATG 160 tTtATTCCAG AGTTCTCTCG GGCTCCCTCT GTCATGTTGC 240 GAACCTGAGC AAGGGTGGCA GTGGGAGGAA CCGCTITATA 320 gagcgangic tgggagangg cccagantat antatatant 400 tatatantat tttatagant atantatata atattttrata 480 attittataga atatantata tantattitta tagantatat 560 gatangitct gctggccgag tggagtggan tgcangicca 640 tTCGAGACGA GGTCTTATTC TGTCACTCAG GCTGGAGTGC 720 tCAAGCAATC CTCCCGCCTC AGCCTCCTGA GTATTTGGGA 800 tTTTTCCTAAA GATGGGGTTT TGCTATGTTG ACCAGGCTCG 880 tCCCAAAGTG CTGGGATtAT AGGCATGAGC CACCATGACT 960 ATTTTTTAAA AATGAGTGAT AGTGAGTAAC CAATTAAGTA 1040 GGCACGGTGG CTCACGCCTG TAACCCCAGC ACTTTGGGGAG 1120

| 1 | 10 | 20 | 1 | 30 | \mid |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Figure 3．4．II，DNA sequence of NTG＋5 RV＋UP（＊＊＊$=$ unsequenced region）．

Figure $3.5, \mathrm{NTG}+5$ sequenced regions.

- NTG +5 was digested using the Sacl/EcoRI double digest (see method 2.2.2.8), to check if it possesses SacI or EcoRI sites. (see figure 3.6)

Figure 3.6,2 μ l of NTG+5 SacI, EcoRI, SacI/EcoRI digest on 1.2\% Agarose gel.
Digest results:

$$
\begin{aligned}
& \text { SacI } \Rightarrow \quad 5.0 \mathrm{~Kb} \\
& \text { EcoRI } \Rightarrow \quad 5.0 \mathrm{~Kb} \\
& \text { SacI/EcoRI } \Rightarrow \quad 2.5 \mathrm{~Kb} \text { (vector) }+2.3 \mathrm{~Kb} \text { (insert) }
\end{aligned}
$$

Summary
The NTG5 insert does not contain Sacl or EcoRI sites, the only sites present in $\mathrm{NTG}+5$ are those in the polylinker.

Figure 3.7, Sacl/EcoRI digestion of NTG +5

- 10 different enzymes were used for digesting NTG +5 to identify the presence of restriction sites (see method 2.2.2.8).

Figure $3.8,2 \mu \mathrm{I}$ of each of the 10 different digests of NTG+5 on 1.2% Agarose gel.

PstI excises a fragment of 1.4 Kb , HindII (HincII) excises a fragment of 290 bp Looking at the restriction map, there is a HincII site at 867 , therefore the total length $1137-867 \Rightarrow 270 \mathrm{bp}$ corresponds well with the above digest.

Summary - HindII (HincI)

Figure 3.9, HindII digestion of NTG +5 .
Summary - PstI
\Rightarrow The $S a u 3 A$ fragment in $\mathrm{NTG}+5$ is approximately 2.2 Kb from the previous SacI/EcoRI digests.
\Rightarrow When $\mathrm{NTG}+5$ is cut with $P s t I$ it excises a 1.4 Kb fragment, therefore:

Figure 3.10, PstI digestion of NTG+5.

- In order to make sub-clones of NTG +5 for sequencing the following was done

Figure 3.11 , Sequencing strategy for $\mathrm{NTG}+5$ sub-clones.
$\Rightarrow \quad$ The 800 bp and 1.4 Kb bands were isolated from agarose gels using method 2.2.2.11 (see figure $3.12 \& 3.13$)

Figure $3.12,100 \mu \mathrm{l}$ of $\mathrm{NTG}+5$ Sacl/Pstl digest on 1.2% gel.

Figure 3.13, $100 \mu \mathrm{I}$ of NTG +5 PstI digest
$100 \mu \mathrm{~L}$ of SacI/PstI cut pBluescript on $1.2 \% \mathrm{gel}$.
\Rightarrow The 800 bp fragment was ligated into $S a c I / P s t I$ cut pBluescript (see figure 3.14):

Figure 3.14, SacI/PstI cut pBluescript.
\Rightarrow Sequenced using the UP and homology search using the Daresbury database showed the following (see figure 3.16.I \& II for predicted restriction map and sequence:

```
5sc/rev
gb_pr:numcolrepu
LOCUS HUMCULREPU 801 DO ONA PRI 01-N0V-1994
DEFINITION Human variable number tandem repeat (VNTR) region, allele 17N1 3.
    to collagen type II (COLZA1) gene.
ACCESSION LIU171
KEYNUROS VNTR; collagen: collagen tyoe II;
    variable number tandem repeat allele. .
SCuPES Init1: 334 Initn: 343 0pt: d80
    70.5:% identity in 661 bp overlap
```

Figure 3.15.I,

```
5sc
gb_or:numtcro
LOCUS HUMTCRG 584973 DO UNA PRI 14-JAN-1495
UEFINITION HOmo sapiens (clones: K41A, K35, K26, K50, X21B, G54, H137, H18,
    M18/G15gap,G15, X1A, A27, A212, A14, H7.1, H12.18, H130, Al6.
    C215,G1, C68, C21, X11, X6A, CBG1, CBG1/C29gap, and C29) germlint
    I-cell receptor beta chain, complete gene.
ACCESSION
    L36092
SCORES
        Initl: 161 Initn: 388 0pt: 585
        63.7% identity in 630 bp overlap
```

Figure 3.15.II,

```
jsc/rev
yb_pr:humifno2a
```



```
    URGANISM Homo sapiens...
SCORES Init1: 212 Initn: 342 0pt: 744
    72.6:% identity in 493 op overlap
```

Figure 3.15.1II,

Figure 3.15.IV,

Figure 3.16.1, Kestriction map for 800 bp SacI/PstI sub-clone of NTG +5

1 GAAAGTATCC $n G G C A C C C C C$ GAGGGTGCAC ACACCCAGGG CTAGGAGACC TCAGGTTTAT ACGTCTCTTT CTTTTCTCTT 80 81 TCTITGGGGAC TGGTTCTACC GAAACATATA TACATATATG ATATATACAC ACACGTGTAT ATATCTCATA TATATATATA 160
161 TATATATATA CACGTGTATA TATATATATA TAACAGATAA CGTATAATTA TAATTATATT ATCTGTAATA TATAATTATA 240
241 TATATTTTGT ATTCTATATA TTATATACTA TGTATTCTAT ATAATATATA TTATGTATTC TATATAATAT TATATATTAT 320
321 АगTCTATATT СТАTATTATA TTCTATATTC TATAGAATAT TCTATATTAT ATTCTATATT CTATAGAATA TTCTATATTA 400
401. TATVCTATAT TCTATAGAAT ATTCTATATY ATAITTCTATA I"TATATTCTA TATATTCTAT ATAATATTAT ATATTATATT 480

481 СГАТАТААТА TTATATATTA TATTCTATAT ATTATATATT ATATTCTATA TATTATATAT TATATTCTAT ATATTATATA 560
561 TTATATTCTA TATATTATAT ATTAATATTC TATATATTAT ATATTATATT CCTATATATT ATATATTATA TTCCTATATA 640
641 TTATATATTA TATTCTATAT ATTATATATT ATATNCTATA TATTATATAT TATATTCTAA TAAAATATTA TATATTAATA 720
721 TCCCATAAAA TATVATATA

Figure 3.16.II, DNA sequence for 800 bp SacI/PsII sub-clone of NTG+5.

- The 1.4 Kb PstI fragment was ligated into PstI cut pBluescript:

Figure 3.17, PstI cut pBluescript.

- To determine the orientation of the fragment, $1 \mu \mathrm{l}$ of 1.4 Kb PstI was digested with HindII, as the Pstl fragment can ligate into the vector in either orientation to give 2 possible recombinants, see figure 3.18:

Figure 3.18. Possible recombinants.

Figure $3.19,2 \mu \mathrm{I}$ of 1.4 Kb PstI sub-clone on 0.8% Agarose gel.

3 sub-clones of 1.4 Kb Pstl were tested

- I had 4Kb + 290bp
? had $111 \mathrm{~Kb}+3.2 \mathrm{~Kb}$

The first sub-clone ($4 \mathrm{~Kb}+290 \mathrm{bp}$) was sequenced using RV. The homology search shows the following (see figure 3.20 I \& II for predicted restriction map and sequence):

```
5sc3/rev
go_or:hsro20130
LOCUS HSKB2P13U 3244 OP HNA PRI 14-MAR-1Y?4
UEFI:NITION H.sapiens mRNA for FoZ/pl30 protein.
ACCESSION X74544
NIO g347147
KErWuPUS EIA binding protein: retinoblastoma-associated protein.
SOUPCE
SCURES Init1: 68 Initn: 111 Opt: 112
    S5.7:% identity in 219 bp overlap
```

Figure 3.20.I,

5 sc 3

gb_or: numcu3oa

SCURES

$$
\begin{aligned}
& \text { lnit!: } 69 \text { lnitn: } 112 \text { out: } 69 \\
& 94.7 \% \text { identity in l? bp overtap }
\end{aligned}
$$

Figure 3.20.11,

```
5sc3/rov
gb_or:s6717!
LOCUS S67171 3448 bp arNA ORI O4-FtS-1%74
DEFINIIION Rbr-2=retingtlastoma susceptibility gene [human, Hela Su suspension
    cells,mR\A, 344% nt\.
ACCESSION S67:71
NID g453131
KEYWURDS &..
SCulres Init1: 63 Initn: 111 0pt: 11z
    55.7:% identity in 219 bp overlap
```

Figure 3.20.III,
gb_pr:ns:acgiv

Locus	HSHCGII	3642	$b p$	RNA	PRI	
DEFINITION	H.sapiens	HCG 11 m	RNA.			
ACCESSION	$\times 81001$					
NID	c531:07					
KEYWORDS	HCG II gen					
SOURCE	human. -					
SCURES	Init 1	: $\quad 57$	Initn:	131 upt:	78	
	53.7\% isen	tity in	$23 i \mathrm{bp}$	overlap		

Figure 3.20.IV,

5 sc 3
gb_pr:ns 25312

DEFINITION Human ONi scquence from cosmij LくSula, Huntington's Disoase Rejion,
ACCESSION 254336
NID 910154.98
KEYWOROS $46 L 6.3 . .$.

SCURES Initl: 11j Initn: 115 0pt: 124
62.5\% identity in 120 bp overlap

Figure 3.20.V,

Figure 3.21 II, Restriction map of 1.4 Kb PstI sub-clone of NTG +5 .

Figure 3.21 .11 , DNA sequence for 1.4 Kb PsiI sub-clone of $\mathrm{NTG}+5$.

NTG+8

- Insert size approximately 956bp.
- Sequenced initially using RV-UP figure 3.24, (see figure 3.23.I \& II for predicted restriction map and sequence).
- Homology search using the Daresbury database shows the following:

```
8r
jo_pr:hsmhcapg
```



```
ACCESSION X66401 S57528
KEYHURDS DOU gene, LAPZ gene; LMP7 gene;
    major histocompatibility complex class lli tapl gene; tapl genee
SOURCE humano.o.
SCORES Init1: 72 Inifn: 1S4 0pt: 74
79.3% fdentity in 29 bp overlap
```

Figure 3.22.I,

```
gb_pr:hstcrbv
    LOCUS HSTCRBV P7773 bp DNA PRI 20=APR=1994
    UEFINITION Human V beta T-cell receptor (TCRBV) gene locus.
    ACCESSION UO3115
    KEYMORDS
    jOURCE
        ORGANISM Homo sapiens . . .
    SCORES Init1: 71 Initn: 206 0pt: 144
    57.3% identity in 239 op overlap
```

Figure 3.22.II,

```
8
gb_pr:humvcama
LOCUS HUMVCAMA 2396 bp DNA PRI 14-JAN-1995
DEFINITION Human vascularicell adhesion molecule-1 (VCAM1) genee exon le
KEYWORDS
SOURCE
        ORGANISM
    SCORES
                                InitI: 62 Initn: 138 Opt:
        61.5% identity in 117 bp overlap
```

Figure 3.22.III,

```
gb_or:nsrecom3;
```


Figure 3.22.IV,
gb_Dr:hsu04636

Figure 3.22.V,

```
gb_or:humvitdbp
LOCUS HUMVITDBP S5136 DP DNA PRI 27=JAN-199S
OEFINITION Human vitamin U-Dinding protein (GC) gene, complete cds.
ACCESSION LIO641 L10642
KEYWORDS group-specitic component; vitamin D-dinding protein.
SOURCE Homo sapiens DNA.
    ORGANISH
    Momo sapiens . . .
SCORES Init1: 71 Initn: 1430pt: 94
61.9% identity in 105 op overlap
```

Figure 3.22.VI,
© r
gb_pr:humretolas

SCORES Init1: 76 Initn: 161 Opt: 117
52.6% identity in 441 bp overlap

Figure 3.22.VII,

```
gb_or:humptgs2
LOCUS HUMPTGS2 10997 bp ONA PRI 21-JUL-1994
UEFINITION Humar PTGS2 gene for prostaglandin endoperoxide synthasem2.
ACCESSION D28235
KEYHORDS prostaglandin endoperoxide synthase-2.
SOURCE Homo sapiens (library: EMBL3) Japanese peripheral olood DNA.
    ORGANISM Homo sapiens . . .
SCORES Init1: 88 Initn: 146 Opt: 120
    54.1% identity in 442 bp overlap
```

Figure 3.22.VIII,

Figure 3.22.IX,

Figure 3.23.1, Restriction map of NTG+8.
$\begin{array}{lllllllllllllll}10 & 1 & 20 & \mid & 30 & \mid & 40 & \mid & 50 & \mid & 60 & \mid & 70 & \mid & 80\end{array}$
1 gatcattttg anatctttga cctttatatt ttantganta anatattagt agttattagt atanantant ttatgtcttt bo 81 TGGACTTAGC ATCCAGTATT TCTTTTTTAA TAANGAAAAT AATTATTCTC TTGCAATATA CTGTGTTTAC CTGGGTTTTGG 160 161 AAAAGTGATG TTTCCTAMTA TGAGAAAGCC ATTTACATTT 241 atatantant gTttagatgg tggcccttat nacattcttr 321 AtttctgGga gctantcctt tagcttgatg antganacan 401 TGGGCCTGTC TTTTAATTCA ATGGATATGG AGCATAATGA $481 \star * * * * * * * *$ A TGTCCCCTAG TAAAGGCCAT GAACTCATCC 561 CCCTGACCCG GGAAAGGCCG AGATTAACTA AGCCTGTTTG 641 gancanttat gcatttacct ttgggcatan tacantgcan 721 AACAACTGTG GACCAAAATT GTCAGAAMAA ACAATACAAT 801 actatttaca tagcattitac atcgtattan ttgttattan 881 tagGttatat gcanatacta cactatttta taccagtanc ttanatctac anaggcanat ggantggtac tanattattit 240 ctatacticc tacagagttg gGgatatgca atcctggant 320 gactitttana tananttana ctttcanatt atccaggtan 400 attatcccct gttcattgg tantangitc tcatt***** 480 atttttatge ctgcatagta ctcccctggit gtatantgan 560 ccatggacag cantggggtt gctagancat tagctgigtg 640 ttgactetcc atattcatg gttctgcatc caccgattca 720 gatancanat gatacaanta ananacanca tggtatacca 800 gtantctaga gatgattrtan agtatatagg aggatgtgtg 880 ttgagcatcc atggattuttg gtatacangg gggatc 956

Figure 3.23.II, DNA sequence of NTG +8 .

Figure 3.24, Sequenced region of NTG +8 .

- NTG+8 was digested using the SacI/EcoRI double digest (see method 2.2.2.8), to check if it possesses SacI or EcoRI sites.

Sacl $\Rightarrow \quad 5.0 \mathrm{~Kb}$
$E c o R I \Rightarrow \quad 5.0 \mathrm{~Kb}$
SacI/EcoRI $\Rightarrow 2.9 \mathrm{~Kb}$ (vector) +2.8 Kb (insert)

Summary

The NTG8 insert does not contain SacI or EcoRI sites, the only sites present in NTG +8 are those in the polylinker.

Figure 3.25, EcoRI/SacI digestion of NTG +8 .

- 10 different enzymes were used for digesting NTG+8 to identify presence of restriction sites (see method 2.2.2.8), (see figure 3.26).

Figure $3.26,2 \mu \mathrm{l}$ of each of the 10 different digest of NTG+8 on 1.2\% Agarose gel.

HindII excises a fragment of 1.4 Kb .

Figure 3.27, Fragments of NTG+8.

Summary - HindII

Figure 3.28, Products of HindII digestion of NTG+8.

- In order to make sub-clones of NTG +8 for sequencing the following was done:

Figure 3.29 , Sub-cloning strategy for $\mathrm{NTG}+8$.
\Rightarrow The 1.4 Kb fragment and 700 bp fragment were isolated from agarose gels using method 2.2.2.11. (see figure 3.30)

Figure $3.30,150 \mu \mathrm{l}$ of NTG+8 SacI/HindII digest on 2% agarose gel.
\Rightarrow The 700 bp fragment was ligated into SacI/HindII cut pBluescript:

Figure 3.31, SacI/HindII cut pBluescript.
\Rightarrow Sequenced using the UP. Homology search using the Daresbury database showed the following (see figure 3.33.I \& II for predicted restriction map and sequence):

```
gb_pr:humretblas
LOCUS HUMRETBLAS 180388 bp DNA PRI 23-NOV=1994
UEFINITION Human retinoblastoma susceptibility gene exons 1-27, complete cdse
ACCESSION L11910
KEYNUROS nuclear protein: recessive oncogene; retinoblastoma gene;
    retinoblastoma proteini retinoblastoma susceptibitity;
    tumor supressor gene....
SCORES Init1: 118 Initn: 192 Opt: 174
    86.4% identity in 66 op overlap
```

Figure 3.32.I,

```
gb_or:numtcradcv
LOCUS HUMTCRADCV 97634 DD UNA PRI 13-JAN-1995
UEFINITION Human Tcr-Codelta gene, exons 1-4; Tcr-v-delta gene, exons 1-2;
    T-cell receptor alpha (Tcrmalona) gene, Jl-J61 segments; and
    icr-c-alpha gene, exons 1-4.
ACCESSION
KEYHORDS
SCORES Init1: 110 Initn: 148 Opt: 138
84.9% identity in 53 bp overtap
```

```
gb_or:hsp53g
LOCUS HSPS3G 20303 bD DNA PRI 23mAPR=1992
UEFINITION Human pS3 gene for transformation relatea protein pS3 lalso calle
    transformationoassociated protein p53. cellular tumor antigen pS:
    and nonaviral tumour antigen pS3).
    x54156
ACCESSIOI
    anti-oncogene; cell cycle control; grouth suppressor: o. o
jCURES Init1: 111 Initn: 148 0pt: 232
66.0% identity in 203 no overlap
```

Figure 3.32.III,

```
gb_pr:hs\times11g
LOCUS HSXI1G 2864 bp DNA
Op PRI O8-0CT=1994
x11 gene, promoter region.
ACCESSION
KEYWURDS x11 gene: x11 protein.
OOURCE
    URGANISM Homo sapiens...
SCURES Initl: 204 Initn: 332 Opt: 419
74.7%: identity in 221 op overlap
```

Figure 3.32.IV,

```
gb_pr:humtpa
```


Figure 3.32.V,
gb_pr:humafp

LOCUS	HUMAFP		27553	bp D	DNA		PR I	26-MAY-1995
UEFINITION	Human	alphao	fetoprot	otein	gene.	complete	$c d s$ 。	
ACCESSION	M16110							
KEYHOROS	alpha=	fetopr	otein。					
SOURCE	humano							
ORGANISM	Homo s	sapiens	- -					
SCORES		Init1:	101	Initn:	138	Opt:	184	
	55.5\%	identi	ty in	483 bp	over!			

Figure 3.32.VI,

```
jb_pr:humtcrb-2
Continuation of HUMTCRB from base 350001 (L36042 Homo sapiens (ctones: K41A,
    K3S, K26, K56, X21B, G54, H137, H18, H18/G15gap, G15, X1A, A27, A212, Al4,
    H7.1, H12.18, H130, A16, C215, G1, C68, C21, X11, X6A, CBG1, CBG1/C29gap, and
    (29) germinine T-fel
3CORES Init1: 292 Initn: 472 Opt: 509
    71.1: identity in 284 bp overlap
```

Figure 3.32:VII,

Figure 3.33.1, Restriction map for 700bp SacI/Hind/I sub-clone (NTG+8).

Figure 3.33.II, DNA sequence for 700 bp Sacl/Hindll sub-clone (NTG+8).

- The 1.4 Kb fragment was ligated into HindII cut into pBluescript:

Figure 3.34, HindII cut pBluescript.

And sequenced using RV (see figure 3.27).

The same procedure was used for the following NTGs:
$\underline{\mathrm{NTG}+13}$

Figure 3.35, NTG+13 sequenced region.
\Rightarrow Homology search shows the following (see figure 3.37.I \& II for predicted restriction map and sequence):

```
13r/rev
go_pr:humragl
LOCUS HUMPAG1 65:45 UD mR:IA HRI 09-JAN-1795
DEFINITION HUman recombination activating protein (RAG-1) gene, complete cos.
ACCESSION M27474
KEy*uzuS recombination activating protein.
SJURCE Human pre-B cell, line NALMS, cDNA to mRNA, clone H30.
    ORGANISM momo sablens . . .
Scules
    Init!: 64 Inita: lob jot: 75
```

Figure 3.36.1,
gb_pr:humds
LOCUS HUMOS 22573 bp DNA PRI 22-MAR-179j
DEFIVITION Human gene for dihyarolipoamide succinyltransterase complete cas (exorn 1-15).
ACCESSIUN D26535
KEYWORUS
ainyorollooarife succinyltransterase.
SOUREE
mono sopiens (ligrary: lamoda EM=L3) Deripneral oloou cetls UAA,

SCORES Ini:1: $373 \ln 1 t n: 514$ Opt: 514
68. 5% identity in 352 tp over!af

Figure 3.36.II,
gb_pr:nscsflpo

Figure 3.36.III,

Locus
Definition
ACCESSION
KEYHOROS

HUMCU4 13133 OD ONA
Human r M30525
glycooroteini immunglobulin suoer gene fanity; recognition antigen; surtace antigen.
sumacé

SCURES
Initl: 340 Initn: 491 opt: 532
75.3% identity in 247 bp overtap

Figure 3.36.IV,

```
9b_or:humgpo3a21
    LOCUS HUMGPP3AC1 6829 bP ONA PRI 26-MAY-1995
    UEFINITION Human olatelet glycoprotein llla, exon 15a
    ACCESSION M32686 J054?7
    KEYNORDS Alu repeat; integrin; platelet fibrinogen receptor;
    platetet glycourotein.
SEGMENT
SCURES Init1: 310 Initn: 494 Opt: 485
    71.8% identity in 255 bp overlap
```

Figure 3.36.V,
cb_pr:hum24Jçとz

LOCUS
DEFINITION
ACCESSICIN
KErwURUS
SOURCE
jCORES

HUH24DC992 3678 bf DNA Pन
Homo sapiens (subctone 9_a8 from PI H?) DNA sequence. L43410
Interleukingrowth hormone cluster on chromosome 5 (5q31). Homo sapiens (tissue liorary: Subciones in ojta from Pl clone hz4 UNA. - .

$$
\text { Init1: } \quad 338 \text { Initn: } \quad 478 \text { opt: } \quad 570
$$

$$
66.9 \% \text { identity in } 402 \text { bp overlap }
$$

Figure 3.36.VI,

```
30_or:humbtxiii
LOCJS HUNGFXIII 33230 DO UNA PCI 3100CT-199L
DEFINITION Human factor XIII 0 sumunit jener complete cas.
ACCESSIOH:M64554 JO5294
KEYAORDS blood coagulation tactor: factor XIIf; factor XIIIb; zymogen.
SOURCE Human ONA.
    URGANISM HomO sapiens:.
SCORES Initi: 76 Inifn: 114 0pt: 86
    55.9% identity in 145 op overlap
```

Figure 3.36.VII,

```
gb_pr:humretolas
LOCUS HUMRETBLAS 180388 bp UNA PRI 23-NOV-1994
JEFINITION Human retinoblastoma susceptioility gene exons 1-27, complete cds
ACCESSION L11910
KEYHORDS nuclear protein; recessive oncogene; retinoblastoma gene;
    retinoblastoma protein; retinoblastoma susceptibility;
    tumor supressor gene....
SCORES InitI: 76 Initn: 161 Opt: 117
    52.6% identity in 441.bp overlap
```

Figure 3.36.VIII,
'gb_pr:nstcrbv

LOCUS	HSTCRBV	77743 bp	ONA		PR1		20-APR-1994
UEFINITION	Human V beta	T-cell	receptor	(TCRBV)	gene	locus.	
ACCESSION	U03115						
KEYWORDS	.		:				
SOURCE	human.						
ORGANISM	Homo sapiens	- -					
SCORES	Init 1 :	71 In	itn: 20	6 Opt:	144		
	57.3\% identi	ty in 23	9 bp over	lap			

Figure 3.36.IX,

```
LOCUS HUMMHCC6A 3453 OP TRNA PRI OTOJAN-1995
UEFIidITION Human MHC class III complement component C6 mRNA, complete cuso
^CCESSION JO5024
NEYHORDS class III gene: complement component Ca; complement component C6;
;OURCE complement system protein: major histocompatidility comoleao
jCURES Init1: 32 Initn: 13צ 0;~t: \delta1
    63.9% identity in 6l bp overtap
```

Figure 3.36.X,

```
yb_pr:humafp
LOCUS HUMAFP 27553 bp UNA PRI 26-MAY-1995
DEFINITION Human alpha-fetoprotein gene, completecas.
ACCESSION M16110
KEYWURUS alpha-tetoprotein.
>OURCE human.
    URGANISM Homo sapiens.o.
SCURES Initi: 101 Initn: 138 Opt: 184
55.5%: identity in 483 op overlap
```

Figure 3.36.XI,
30_or: ns at 3

Figure 3.36.XII,

```
gb_pr:nscuznso
LOCUS HSCUZNSO 4093 bF DNA PRI 12-AUG-1994
DEFINITION
    Mosawiens gene for Cu/Znasuperoxide cismutasea
    2?4356
    Cu/Zn-superoxide dismutase.
KE YWORD
SOURCE
    ORGANI SEA
    human.
nomo sapiens 。. .
SOUPES
Init:: 352 Initn: 545 0;t: 515
75.9% identity irr 232 bp overlap
```

Figure 3.36.XIII,

```
gb_Dr:humfmris
LOCUS HUPFMRIS 1S23S1 OD DNA PRI 1R-JAN-1995
UEFIVITIOA NOmo sadiens fragilg x mental retardation protein (FNRal) gene (o
    alternative solices), conplete cus.
ACCESSICN L29074 L38501
KErWORUS tragilex mental retaraation synurome protein;
    fragile x syndrome: repeat region. = .
SOURES
    Init: 69 lnוtn: }106\mathrm{ Gpt: 71
    55.3% identity in 114 bp overlav
```

Figure 3.36.XIV,

Figure 3.37.1, Restriction map of NTG+13.

Figure 3.37.II, DNA sequence of NTG+13.
$\underline{\mathrm{NTG}+33}$

Figure 3.38 , NTG +33 sequenced regions.

Figure 3.39.I, Restriction map of NTG+33.
 81 CAGTGGCAAA TACATTCTCA GTACCACTAC ACTGAAGTAG AATTCTGAAT TCCTATTTTTT TCAAAGCTTT TTTTGTTTAA 160 161 attagtcant atgtantaga agtatttcan ggttâtanca tgcantgcta gtttatatat tgattgacat tgtctantan 240 241 GATAAAACTT TTGTTTCTTA AAGACTAGAC TGTYTAATCT TATTTTTCTA CTGGATAAAT TATTTCAGAA TTTCTAATTA 320 321 tancatggta atantattat tanantccca cctttcanan agtgaggtga tanttcgcat cttttgtctt tcanttgtgc 400 401 TGGGTCCCAG tTtGTGACTG CCTAAAAGAA AACCCGTTGA CGTTTAGAAT AACTTTTTTAA AAACTCCCTC TCTCGAAGTT 480 481 CaAATTATTTT CCCTTGTGTT TA

Figure 3.39.II, DNA sequence of NTG+33.

3-2- Protein analysis

- Standard curve results:

Protein conc for std. $(\mu \mathrm{g})$	OD $_{595}$	OD $_{595}$ duplicate	Mean
0	0	0	0
5	0.153	0.159	0.156
10	0.307	0.295	0.301
17.5	0.448	0.480	0.464
25	0.602	0.594	0.598
35	0.751	0.757	0.574
45	0.940	0.934	0.937
55	1.17	1.20	1.185

Table 3.3.

- From each cell line, [SK-N-SH] and [SK-N-Be2c], $10 \mu \mathrm{l}$ of nuclear extract was added to 2.5 ml of diluted dye and read OD_{595} (see chapter 2, protein analysis).
- The value of protein $(\mu \mathrm{g})$ was read from the standard curve and calculated the value of μ g protein/ml.

Cell line	OD $_{595}$	Protein $\mu \mathrm{g} / \mu \mathrm{l}$
SK-N-SH	0.19	0.9
SK-N-Be2c	0.40	1.6

Table 3.4.

- Protein extracts from SK-N-SH and SK-N-Be2c were separated by SDS-PAGE, to compare their composition. As shown in figure 3.40, few significant differences were noted.

Figure 3.40, SDS PAGE of protein extracts from SK-N-SH and SK-N-Be2c.

To ascertain whether any of the clones isolated had previously been identified as NTG clones from SK-N-Be2c, the clone NTG-21 from that cell line was used as a probe against colony blots of the NTG library from SK-N-SH cells. As shown in figure 3.41 it would appear that no significant hybridization to NTG-21 was shown by any of the SK-N-SH NTG clones.

Figure 3.41, Colony blots probed with NTG-21 (see method 2.2.2.10 \& 2.2.2.11).

4. Discussion

The project was carried out in order to identify potential target genes for N -myc using the cell line SK-N-SH.

The method used to generate genomic library has led to approximately 400 clones being isolated, some sequenced, and sent to be compared with known DNA sequenced using "Daresbury" data bases. This procedure can potentially identify genes present in the NTG library.
Out of the 400 clones, 114 NTGs had their insert size calculated, four partially sequenced, one had a low affinity N-Myc binding site "CAT GTG", plus C-Myc binding sites CAC GTG, and TCT CTTA (see table 3.2. page 44). However the final resolution of which clones are true in vivo targets for regulation by N -myc will await the cloning these putative regulatory sequences into reporter plasmids and monitoring activity in N -myc expressing neuroblastoma cells.

Colony hybridization was done for the 400 clones to check if any had the NTG-21 insert which was isolated previously in the same lab from the cell line SK-N-Be2c. The result was negative.
The study of the outcome of the homology search was based on high similarity over potential extended length, compared with the actual length of the sequenced part, and if the homologue is of interest by looking at the known neuroblastoma literature (if the gene plays a role in Neuroblastoma cells)

From the obtained sequence, the comparison data and considering the role of every gene; a substantial amount of information was gathered, some, in a way or another, play a role in neuroblastoma cells and a lot of homology had no role at all, and most were intron genes. Some of the genes picked out by sequence comparison include:

- Human pre-B cell, cDNA to mRNA. Human recombination activating protein (RAG-1) gene [66.0\% identity in 203bp overlap to NTG+8].
- B-cell, also called B lymphocytes give rise to plasma cells, which produce antibodies. This defence system by B-cells is called antibody-mediated immunity or humoral immunity because these antibodies present in the blood stream.
During development, antibody genes are re-arranged and N -myc expression is switched off, and some studies have revealed that down-regulation of N -myc expression in the later stages of B-cell development is mediated primarily at the level of transcriptional initiation and that dominant, trans-acting factors present in more mature B -lineage cell lines act to down-regulate the transcription of $\mathrm{N}-m y c$.
- Human DNA sequence from cosmid HW2, Huntington's disease region [62.5\% identity in 120 overlap to NTG+5].
- Huntington's disease formerly Huntington's chorea, is a hereditary disease of the central nervous system caused by a mutated gene on chromosome 4. (Neuroblastoma tumour arise from neural crest cells which form part of the sympathetic nervous system).
- Human retinoblastoma susceptibility gene [52.6\% identity in 441 overlap to NTG+8].
- Retinoblastoma is a hereditary malignant tumour of the retina (delicate, multilayered, light-sensitive membrane lining the inner eyeball and connected by the optic nerve to the brain), transmitted as a dominant trait and occurring chiefly among infants.
Subsequent studies revealed amplification of $\mathrm{N}-m y c$ in retinoblastoma and indirect evidence has indicated that the product of the retinoblastoma gene (pRb) may be necessary for the beta type transforming growth factor (TGF-beta) suppression of N -myc expression and not for TGF-betal inhibition of branching morphogenesis. Therefore suppression of $\mathrm{N}-m y c$ is not necessary for inhibition of branching morphogenesis by TGF-betal, (TGFbetas are potent inhibitors of epithelial cell proliferation). [Hannon G, Demntrick G, Beach D ; Isolation of the Rb -related p130 through its interaction with CDK2 and cyclins: Genes Dev. 1993, 7 (12A), 2378-2391] \& [Friend S. H, Bernards R , et al. ; A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma: Nature 1986, 323 (6089), 643-646.].
- Human vascular cell adhesion molecule-1 (VCAM1) gene [61.5\% identity in 117 overlap to NTG+8], [70.5\% identity in 661 overlap to NTG+5].
- Vascular cell adhesion molecule-1 was first identified as a protein that appears on the surface of endothelial cells after exposure to inflammatory cytokines.
Through interaction with it's integrin counter receptor VLA-4, VCAM-1 mediates cell-cell interactions important for immune function. The recruitment of immune cells to the endothelium is a complex process involving the interaction of ligands or counter receptors on the surface of endothelial cells with receptors on immune cells, and in addition to endothelial cells, VCAM-1 is also expressed on lymphoid dendritic cells, and stromal fibroblasts in bone marrow, and on some tissue macrophages.
Endothelial cell surface ligands may be involved in metastasis of tumour cells, as it has been proposed that the interaction of tumour cells with activated endotheliun is a mechanism that facilitates the migration of circulating tumour cells into tissues. Also small cell lung cancers (where $\mathrm{N}-m y c$ is amplified) express LFA-1 and MAC-1 integrin which binds to ICAM-1 (a member of the endothelial cell ligands). [Iademarco M. F, McQuillan J. J, et al.; Characterization of the promoter for vasculear cell adhesion molecule-1 (VCAM-1): J. Biol. Chem. 1992, 267 (23), 16323-16329]
- Human p53 gene - associated protein p53, cellular tumour antigen p53 [66.0\% identity in 203 overlap to NTG+8].
- It was thought in several reports on p53 that this genotype is found to have virtually exclusive wild-type status in primary neuroblastoma, and that p53 plays no role in the development of neuroblastoma, but recently it was reported that the vast majority of undifferentiated neuroblastoma's exhibit abnormal cytoplasmic sequestration of wild-type p 53 . This inability of p53 to translocate to the nucleus presumably prevents the protein from functioning as a suppressor.
The loss of p 53 function in neuroblastoma seems to play a major role in the tumorigenesis of undifferentiated neuroblastoma (neuroblastoma might abrogate the transactivating function of p53 inhibiting it's access to the nucleus, rather than by gene mutation). [Zauberman A, Barak Y, et al.; Sequence-specific DNA binding by p53: identification of target sites and lack of binding to p53-MDM2 complexes: EMBO 1993, vol. 12 no. 7 pp. 2799-2808].
- H . sapiens genes TAP1, TAP2, DOB, DOB gene, LMP2 gene, LMP7 gene, Major histocompatibility complex class II [79.3\% identity in 29 overlap to NTG+8].
- Some studies are being carried out to determine whether a antitumour immune response would be generated by introducing Xenogeneic class II MHC genes into tumour cells, thus some approaches have been made to use retroviral-mediated transduction of class to MHC genes into human tumour cells for an effective alternative to current cancer treatment. [Glynne R, Kerr L. A, et al.; The major histocompatibility complex-encoded proteasome component LMP7, alternative first exons and post-translational processing: Euro. J. Immunol 1993, 23 (4), 860-866]
- H. sapiens genes TAP1, TAP2, DOB, DOB gene, LMP2 gene, LMP7 gene.
- The LMP7 gene maps to human MHC class II region within 15 Kb of LMP2 and between TAP1 and TAP2.
TAP1 and TAP2 have homology to the ATP binding cassette (ABC) superfamily of transporters and have been shown to play a role in the processing and presentation of endogenous antigens through MHC class1 (neuroblastoma has a decreased expression of the MHC class 1 antigen which correlates with high level of expression of the $\mathrm{N}-m y c$ gene, thus expression of MHC class 1 antigens may result in neuroblastoma cells being more resistant to T-cell mediated immune surveillance). [Beck S, Kelly A, et al.; DNA Sequence analysis of 66 kb of the human MHC Class II region encoding a cluster of genes for antigen processing: J. Mol. Biol. (1992) 228, 433-441].
- H . sapiens mRNA for Rb2/p130 protein [55.7\% identity in 219 overlap to NTG+5].
- Rbr-2 = retinoblastoma susceptibility gene.
- $\mathrm{Rb} 2 / \mathrm{p} 130$ is a member of the Rb family (Retinoblastoma).
pRb and $\mathrm{Rb} 2 / \mathrm{p} 130$ share considerable homology in their pocket domains, they share two additional regions of significant identity near their amino termini, they not only share primary sequence homology but also functional similarity, each of these proteins combine specifically to the viral oncoproteins, SV40 antigen and adenvirous EIA.
The structural and functional similarities between Rb and $\mathrm{Rb} 2 / \mathrm{p} 130$ gives two possibilities for the role of $\mathrm{Rb} 2 / \mathrm{p} 130$ either it may act as a inhibitor of cellular proliferation or as a tumour suppressor gene (Rb is the retinoblastoma susceptibility tumour suppressor gene, pRb is the product of this gene which has been shown to play a key role in the regulation of cell division. [Mayol X, Grana X, et al.; Cloning of a new member of the retinoblastoma gene family (pRb 2) which binds to the E1A transforming domain: Oncogene (1993) 8, 2561-2566].

Other genes picked out by sequence comparison include:

- Human gene for dihydrolipoamide succiny 1 transferase.
- Human thymidine Kinase gene.
- Human recognition surface antigen (CD4) gene glycoprotein, immunoglobulin super gene family. [Edwards M. C, Gibbs R. A; Human dinorphism resulting from loss of an Alu: Genomics 1992, 14 (3), 590-597]
- H . Sapiens 3'flanking region for estrogene receptor gene. [Keaveney M, Parker M. G, et al.; Identification of a functional role of the 3 ' region of the human oestrogene receptor gene: J. Mol. Endocrinol 1993, 10 (2) 143-152]
- Human c-fms proto-oncogene for csf-1 receptor.
- Human alpha-fetoprotein gene. [Stocker N. G, Cheah K. S, et al.; A highly polymorphic region 3' to the human type II collagen gene: Nucleic Acids Res 1985, 13 (13) 4613-4622]
- Human mRNA for second protein of Inter-alpha-trypsin inhibitor complex.
- Human ATP synthase beta subunit (ATPSB) gene.
- Human acetylated low density lipoprotein (ACLDL).
- Homo Sapiens p-selection CD62 (GRMP) gene, 5' end and promoter region. [Pan J, McEver R. P; Characterization of the promoter for the human P-selectin gene: J. Biol. Chem. (1993) 268 (30), 22600-22608].
- Human antigen CD36 (Alu repeat).
- Human breakpoint cluster region (BCR) gene. [Gu Y, Alder H, et al.; Sequence analysis of the breakpoint cluster region in the ALL-1 gene involved in acute leukemia: Cancer Res. (1994) 54, 2327-2330].
- Human fragile X mental retardation gene. [Nicola N. A, Metcalf D; Subunit promiscuity among hemopoietic growth factor receptors: Cell (1991) 67 (1) 1-4].
- Human insulin receptor gene. [Elbein S. C; Molecular and clinical characterization of an insertional polymorphism of the insulin-receptor gene: Diabetes (1989) 38 (6), 737743].
- Human T-cell receptor beta-chain. [Slightom J. L, Siemieniak D. R, et al.; Nucletide sequence analysis of 77.7 Kb of the human V beta T -cell receptor gene locus, direct primer-walking using cosmid template DNAs: Genomics (1994) 20, 149-168].
- Human vitamin D binding protein gene.
- Human interferon-beta-2 gene.
- Human interleukin-6 receptor (ILb) gene. [Bowcock A. M, Kidd J. R, et al.; The human 'interferon-beta 2/hepatocyte stimulating factor/ interleukin-6' gene, DNA polymorphism studies and localization to chromosome 7p21: Genomics (1988) 3 (1) 816].

However the most intriguing and exciting of these potential N -myc targets was found by my lab. Colleague Dr. D. Pearson in clone NTG-21 using her cell line SK-NBe 2 c (same procedure was used).
NTG-21 contains a sequence conserved with one found in intron one of the human DOPA decarboxylase gene. The degree of sequence identity suggests that they are not one and the same, but represent similar genes.m DOPA decarboxylase is involved in the diosynthesis of dopamine, epinephrine, norepinephrine and serotonine neuronal tissue, it shows high activity in both neuroblastoma and small cell lung carcinomas, another tissue with N-myc amplification. As N -myc and catecholamine levels both decline after retinoic acid induction, it was speculated that NTG-21 is part of a gene closely related to DOPA decarboxylase possible encoding an isoenzyme, further analysis of NTG-21 is bing carried out by Dr. Pearson to isolate the gene, obtain it's true identity, and find out whither or not it is under the control of N -myc.
Other research work is being carried out at Newcastle University to try to identify genes that are coamplified with N-myc, and determine how they affect prognosis by looking for genes which map close to N -myc such as DEAD box (DDXI) which may have some role in prognosis and response, ornithine decarboxylase (ODC), ribonucleotide reductase (RDR).

4.1. Conclusion:

Although no final conclusion was obtained with respect to the effect of $\mathrm{N}-m y c$ upon other genes in neuroblastoma cells, the result of my findings would play a conducive part towards future work in that field, as more time is needed and more work needs to be carried out on the rest of the 400 clones, for example completing the sequencing, computer analysis to identify sequence homologies and binding sites. Once any gene of interest has been identified a Northern blot will be done to determine whether or not it is under control of $\mathrm{N}-m y c$, using three different cells as the levels of gene expression may depend on the concentration of N -Myc relative to other b-HLH-Z proteins:
\Rightarrow SK-N-Be2c Neuroblastoma cell with amplified N-myc.
\Rightarrow SK-N-SH Neuroblastoma cell with a single copy of $\mathrm{N}-m y c$.
\Rightarrow Normal cell.

Experiments would be performed under normal culture conditions and after cells have been induced to differentiate with retinoic acid, as it has been shown to be one of the most potent chemical inducers of differentiation in human neuroblastoma. Until then the question whether $\mathrm{N}-m y c$ has a control upon other genes remains unproven.

5. References

1. Suzuki T, Yokota J, Mugishima H, et al.; Frequent loss of heterozygosity on chromosome 14q in neuroblastoma.
2. Sriratsan E.S., Ying K.L., Seeger; Deletion of chromosome 11 and of 14 q sequences in neuroblastoma: Genes chrom cancer 1993, 7, 32-37.
3. Glass D.J., Yancopoulos G.D.; The neurotrophins and their receptors: Trends cell Biol 1993, 3, 262-268.
4. Levi-Montalcini R; The nerve growth factor, thirty-five years later: Science 1987, 237,1154-1164.
5. Gibbs R.B., Pfaff D.W.; Insitu hybridization detection of trk A mRNA in brain, distribution, colocalization with p 75 NGFR and upregulation by nerve growth factor: J Comp neurol 1994, 341 (3), 324-339.
6. Hempstead B.L., et al.; High-affinity NGF binding requires coexpression of the trk proto-oncogene and the low-affinity NGF receptor: Nature 1991, 350, 678-683.
7. Nakagawara A, et al; Inverse relationship between trk expression and N-myc amplification in human neuroblastomas: Cancer Res. 1992, 52, 1364-1368.
8. Alitala K, Schwab M; Oncogene amplification in tumour cells: Adv cancer Res. 1986, 47, 235-281.
9. Bishop J.M.; The molecular genetics of cancer: Science 1987, 235, 305-311.
10. Brodeur G.M., et al.; Amplification of N -myc in untreated human neuroblastomas correlates with advanced disease stage: Science 1984 224, 1121-1124.
11. Kohl N.E., et al.; Transposition and amplification of oncogene related sequences in human neuroblastomas: Cell 1983, 35, 359-367.
12. Schwab M, et al.; Chromosome localization in normal human cells and neuroblastoma of gene related to C-myc: Nature 1984, 308, 288-291.
13. Cowell J.K.; Gene amplification in mammalian cells: Annu. Rev. Genet 1982, 16,2159.
14. Squire J. A, Thorner P. S, et al.; Co-amplification of $M Y C N$ and a DEAD box gene ($D D X 1$) in primary neuroblastoma: Oncogene 1995, 10, 1417-1422.
15. Corvi R, Savelyeva L, et al.; Cytogenetic evolution of MYCN and MDM2 amplification in the neuroblastoma LS tumour and its cell line: European J. of cancer 1995, (31A) 4, 520-523.
16. Jones N ; Transcriptional regulation by dimerization, two sides to an incestuous relationship: Cell 1990, 61, 9-11.
17. Kato G, et al.; An amino terminal C -Myc domain required for neoplastic transformation activates transcription: Cell Biol. 1990, 10, 5941-5920.
18. Blackwood E.M., et al; Max: a helix-loop- helix zipper protein that forms a sequence specific DNA biding comlex with myc: Science 1991, 251, 1211-1217.
19. Prendergast G.C., et al; Association of Myc, the murine homolog of Max which CMyc stimulate methylation sensitive DNA binding and Ras cotransformation: Cell 1991, 65, 395-407.
20. Blackwell T.K., et al; Sequence-specific DNA-binding of C-Myc protein: Science 1990, 250, 1149-1151.
21. Blackwood E.M., et al; Myc and Max associate in vivo: Genes 1992, 6, 71-81.
22. Anderson K, et al; DNA-bound fos proteins activate transcription in yeast: Cell, 1988, 52, 179-184.
23. Kato G.J., et al.; An amino-terminal C-myc domain required for neoplastic transformation activates transcription: Mol. Cell, 1990, 13 id, 10, 5914-5920.
24. Blackwood E.M., Eisenman R.N.; A helix-loop-helix zipper protein that forms a sequence-spacific DNA- binding complex with myc: Science, 1991, 251, 1211-1217.
25. Kretznev L, Blackwood E.M.; The Myc and Max proteins possess distinct transcriptional activities: Nature, 1992, 359, 426-429.
26. Freytag S.O., Dang C.V., Lee W.M.; Definition of the activities and properties of Cmyc required to inhibit cell differentiation: Cell growth differ, 1990, 1, 339.
27. Evan G.I, Amati B, et al.; The c-Myc protein induces cell cycle progression and apoptosis through dimerization with Max: EMBO J. 1993, 12, 5083-5087.
28. Zauberman A, Oren M, et al.; Sequence-specific DNA binding by p53, identification of target sites and lack of binding to p53-MDM2 compleexes: EMBO J. 1993, 7, 27992808.

5.2. Other bibliographic sources

29. Schwab M, et al.; Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell line and a neuroblastoma tumour: Nature, 1983, 305, 245-305.
30. Harold E, et al; Human N-myc gene contributes to neoplastic transformation of mammalian cell in culture: Nature, 1985, 316, 160-162.
31. Blackwell T.K., et al.; Sequence-Specific DNA binding by the c-Myc protein: Science, 1990, 1149-1151.
32. Fernandez C.B., et al; The ornithine decarboxylase gene is a transcriptional target of c Myc: Proc. Natl. Sci., 1993, 7804-7808.
33. Zauberman A, et al; Sequence-specific DNA binding by p53: identification of target sites and lack of binding to p53-MDM2 complexes: EMBO J, 1993, 12, 2799-2808.
34. Amati B, Littlewood T.D.; The c-Myc protein cell cycle progression and apoptosis through dimerization with Max: EMBO J, 1993, 12, 5083-5087.
35. Antonis S, et al.; Mxil- a protein that specifically interacts with Max to bind MycMax recognition sites: Cell, 1993, 72, 223-232.
36. Lewis C, et al; Oncogene and signal transduction: Cell, 1991, 64, 281-302.
37. Findeis M.A.; Genes to the rescue: Technology review, 1994, 97, 46-53.
38. National cancer institute; Questions and answers about gene therapy: CancerNet, 1995, Internet.
39. Christiansen H , et al.; Neuroblastoma-inverse relationship between expresion of N myc and NGF-r: Oncogene, 1990, 5, 437-440.
40. Le Van Thai A, Costa E; Identification of a neuron-specific promoter of human aromatic L-amino acid decarboxylase gene: Mol. Brain Res., 1993, 17, 227-238.

5.3. Books

41.Franks L.M., Teich N.M.; Introduction to the cellular and molecular biology of cancer, Oxford Univ. press, $2^{\text {nd }}$ ed., 1988.
42. Evans C.W.; The metastatic cell-Behaviour and Biochemistry: Chapman and Hall, $1^{\text {st }}$ ed., 1991.
43. Brown T.A.; Gene cloning - an introduction: Chapman and Hall, $3^{\text {rd }}$ ed., 1995.
44. Lewin B; Genes V: Oxford University press, 1994.

gb_pr:humretolas

$\mathrm{NTG}+8$

```
gb_pr:humretolas
LOCUS
ACCESSION
KEYNUROS
HUMRETBLAS 180388 bP DNA PRI 23-NOV-1994
Human retinoblastoma susceptibitity gene exons 1-27, complete cas.
L1191?
nuclear protein; recessive oncogene; retinoblastoma gene;
retinoblastoma protein; retinoblasroma susceptibitity;
tumor supressor gene. . . .
SCURES Init1: 118 Initn: 192 0pt: 174
86.4% identity in 66 bp overlap
34 \begin{tabular}{cccccc}
380 & 390 & 400 & 410 & 420 & 430
\end{tabular}
```



```
:!::::!:: !:! :!:!::!::!::!:!
numret tgatagactggattaagaaamtgtggcacatatacacca-tggaatacratgcagccata
    168180 168190 168200 168210 168220 168230
    440 450 460
3u aAAatgGatgagttcatggcctttactaggggacat
            i::: :i:i:!:!:!:! :!:!: :: :!:!:!:
numret aAAAATGATGAGTTCATGTCCTTT-GTA-GGGACATGGATGAAATIGGAAACCATCATHC
    108240 163250 168260 168270 163280 168290
numret tCAgTAAACTATCGCAAGAACAAAAAACCAAACACCGCATATtCTCACTCATAGGTGGGA
        168300 168310 168320 168330 168340 168350
        jb_or:humvcama
```



```
jCORES
```



```dr GATCATTTTGAAATCTTTGACCTTTATATTTTAATGAATAAA-ATA-m-TTAGTA
                            :i:i:; :!:!:!::: :!: : :! :
numvca CAAAAAGTTGATGTTTGTTGCTAAAAGAACTATTTTTATGAATAAATATAAAACTAAGAA
    1610 1620 1630 1640 160
3r GITAT-TAGT--ATAAAATAATTTATGTCTTTTGGACTTAGCATCCAGTATTTCTTTT-m
        :i:i: :i : i:: i: i; i i i: : i i i:i: i: :
numvca GTTATGGTGTCCCTYTTTTAAAAAATGACTCATCAA--AAGAAATAACTITTTCCTTTCT
                        1670 1680 1690 1700 1710
                        110 120 130 140 150
3r - TTAATAAAGAAAATAATTATTCTCTTGCAATATACTGTGTITACCTGGGTTTTGAAAAG
                :: i i:i:i: i:i:i :i:i:i
numvca CTTGTAAGAGAAAAAAATTAATCTCTTTTAGAATTGCAAACATATTTCCTTGATGGAGAA
        1720 1730 1740 1750 1760
```


$13 u$

10_or:numtikra

SCORES

10
20
30

13 G GATAGTTGAGGGCAGCAGTTCGAGACCAA
numtar TCCC̈AGCACTYIGGAAGGCCTAGGCGOGCGGATLACTIGAGGTCAGGAGTTTGAGACCAG

9380	9390	9400	9410	9420	9430	
	40	50	30	70	90	90

LSu CCIGGACAACITGCTGATACCCCATCTGTACTGAAGAATACAAAATTAAGTCAGGCGTGG

 $\begin{array}{llllll}9440 & 9450 & 9480 & 9470 & 9480 & 7490\end{array}$
$100 \quad 1!0 \quad 120 \quad 130$ 150

- 3u TGGTGCACGCCIGTAATCCCAGSTACTCGGGAGGCTGAGUCACAAGAATGACTTGAACCC i:i i:i i:i:i:i: i:i:i:i:i i:i:i: i:i:i:i:i:i: i:i:i:i:
nuintar TGjCACACACCTGIAATICCAGCTACTTGGGAGGCAGAGGCACAAGAATTGCTTGAACCT $9500 \quad 9510 \quad 9520 \quad 9532050$
$160 \quad 170 \quad 180 \quad 190 \quad 210$
L3u CAGAGGAAFAAGTTGCAGGGIGCCAACTTIGTACCACIGTACTICAGGCTGGGTGACAGA
 wuntar GGGAGGCAGAGUTTGCAGTGAGCCAAGATTAIGCChCTGCaCTCCAUCCTUGATGACAGA $9560 \quad$ YS7 $\quad Y 580 \quad 9590 \quad 9600 \quad$ Yか10
2202320250250

L3u acGacactatanathatantactatgatantataciagagagancganaiactgaüttan :!: :i: : : : : : $:$:
numtkr GCGAGACICTGTCICAAAAAAAAIAGACAAAGCLAGGCGCAGTGGCTCATGCCIGIAATC $9620 \quad 9650 \quad 9640 \quad 96$ こJ 9660

```
13u /rev
fo_or:hshw2
```



```
jculcs Initl: 506 Initn: 506 0pt: 547
    79.4% identity in 218 bp ovarlap
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{\(\vdots 3 u\)} & 239 & 229 & 219 & 209 & 179 & 189 \\
\hline & \multicolumn{6}{|l|}{CTGGTATATTATCATAGTATTATTATTIAIAGTGTCETTCTGTCACCCAGCCTGAAGTAC} \\
\hline & & & &  & i \(: 1:\) & : : \\
\hline \multirow[t]{3}{*}{-S \(5+2\)} & \multicolumn{6}{|l|}{GCTITTIITITTTITITITTTITGAGACGGAGTCTTGCTCTGTCGCCCAGGCTAGAGTGC} \\
\hline & 9570 & 9580 & 9590 & 9600 & 961 U & 9620 \\
\hline & 179 & 169 & 159 & 149 & 139 & 129 \\
\hline
\end{tabular}
L3u AGTGGTACAAHGTTGGCTCCCIGCAACTTETTCCTCTGGGGTTCAAGTCATICITGTGCE
```



```
        AGTGGCGIGATCTCGGCTCACTGCAAC CTCCACCTCCTGGGTTCAAACGATTETCCTGCE
            9630 9640 9650 9650 9630
                            119 109 99 89 79%
L3u TCAGCCTCCCGAGIAGCTCGGATIACAGGCGTGCACCACCACGCCIGACTTAATTITGTA
```



```
    TCAGCCTCCCGAGICGCIGGGATTACAGGCGCCCHCCACCGCGCCCGGCTAATITITGTA
                                    9690 9700 9710 9720 9740
                            59 49 39 29 19 9
13u TTCTTCAGTACAGATGGGGTATCACCATGTTGTCCAGGTIGGTCTCGAACTGCTGCCCTC
```



```
hsпय2 TITITIAGTAGAGAIGFGGITICACCAICTTGGCCAGGEIGGTCTGGAACTCCIGACCTC
            9750 9 9760 9770 9780 9800
13u AACTGATC
    i i:i:
nsam2 A--TGATCCCCCCCCCCLCCCCCCCCCGGCCTCCCAAAGIGCTGGGAITACAGGCATGAG
                    981U 982U 9830 9840 9850
```

 NTG +13

