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A B S T R A C T 

The Schrodinger Representation for (j)^ theory 
and the 0{N) cr-model 

Jiannis Pachos 

In this work we apply the field theoretical Schrodinger representation 
to the massive (f)^ theory and the 0{N) a model in 1 + 1 dimensions. 
The Schrodinger equation for the (f)'^ theory is reviewed and then solved 
classically and semiclassically, to obtain the vacuum functional as an ex­
pansion of local functionals. These results are compared with equivalent 
ones derived from the path integral formulation to prove their agreement 
with the conventional field theoretical methods. 

For the 0{N) a model we construct the functional Laplacian, which is 
the principal ingredient of the corresponding Schrodinger equation. This 
result is used to construct the generalised Virasoro operators for this 
model and study their algebra. 
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Chapter 1 

Introduction 

In this work we study the Schrodinger Representation in Quantum Field Theory [ l ] - [8] , ap­

plied to the (f)'^ interacting theory and the 0{N) a model. Our interest in the Schrodinger 

representation is due to its usefulness for working out non-perturbative features of the 

field theories. Whi le the high energy sector of quantum chromodynamics (QCD) is well 

set in terms of the path integrals and semiclassical expansion, the Schrodinger equation 

can provide a natural way to study low energy behaviour. Ult imately this may help us 

understand major problems in particle physics like confinement, chiral symmetry breaking 

and quantisation of gravity ([9], [10], [11]). 

For fields that vary slowly on the scale of the lightest mass i t was shown by Mansfield [12 

that the logari thm of the vacuum functional can be expanded as a sum of local functionals. 

However, this expansion does not satisfy the obvious form of the Schrodinger equation. 

We construct the appropriate equation for the theory, where the basic features of the 

local expansion are revealed. We are also interested in the 0{N) a model, which apart 

f r o m its usefulness as a simplified gravitational model, has many features in common wi th 

Yang-Mills theory. 

I n Chapter 2 we present the field theoretical Schrodinger representation as a generalisation 

of Quantum mechanics. The Schrodinger equation is constructed for the free massive 

scalar field and for the (f>'^ interactive case. 

I n Chapter 3 we study the renormalisation of the Schrodinger representation for the <f>'^ 



interactive theory in 3 + 1 and 1 -|- 1 dimensions. In 3 + 1 dimensions, apart f rom the 

usual renormalisation procedure needed for the infinitely extended space-time, we face 

the problem of the "boundary" singularities, connected wi th the quantisation surface. 

For the theory in 1 + 1 dimensions no similar singularities appear as this model is 

super-renormalisable [13 . 

In Chapter 4 we review the construction of the Schrodinger equation, which the local 

expansion of the vacuum functional has to satisfy, for the <j)'^ theory in 1 + 1 dimensions. 

Then we proceed in solving i t classically and semiclassically. 

I n Chapter 5 we construct and calculate the connected Feynman diagrams wi th propaga­

tors on the boundary, for which the logarithm of the vacuum functional can be viewed as 

their generating functional. This provides a test of comparison of the results we get by 

solving the Schrodinger equation wi th the ones we get by using path integrals. 

In Chapter 6 we study the 0{N) a model's Schrodinger equation, the principal ingredient 

of which is the regulated functional Laplacian. We construct the Laplacian to the leading 

and next to the leading order, acting on local functionals. I t is determined by imposing 

rotational invariance in the internal space together wi th closure of the Poincare algebra. 

I n Chapter 7 i t is shown that i t is not possible to construct a Laplacian for a general 

curved manifold w i t h the requirements set in the previous chapter. 

I n Chapter 8 is presented a way to construct the modified Virasoro algebra for the 0{N^) 

a model. As this model is not conformal invariant after its quantisation, the algebra is 

expected to have operator-like terms in place of the usual central charge. The functional 

formal ism provides a natural way to perform such a calculation. 

I n Chapter 9 we present the conclusions of the thesis and some directions for further work. 

Finally, i n one of the Appendices is presented a computer program performing certain 

funct ional calculations in Maple programming language. 



Chapter 2 

The Field Theoretical Schrodinger 

Representation 

2.1 Introduction 

Quantum Field Theory, is a generalisation of Quantum Mechanics to a theory wi th an 

inf ini te number of degrees of freedom. There are two ways to approach the problem of 

quantising of a field theory. The usual one is to calculate cross-sections using the path 

integral formalism. This has the advantage of a well established mathematical framework, 

which includes the perturbation expansion. Another way of quantising field theories is by 

the Hamil tonian formalism. Familiar in Quantum Mechanics, this method is not much 

studied in field theory. I t has the advantage of being able to describe operators and their 

eigenvalues without the need for perturbation. Hence, we can calculate physical quantities 

which would be diff icul t or impossible to consider under a perturbative approach. The 

main disadvantage is the diff icul ty in manipulating such a theory in some situations, which 

are more easily resolved by path integral formulation. 

We w i l l t r y to construct the Hamiltonian formalism for the Field Theory. At tempt ing 

to apply the Schrodinger representation f rom Quantum Mechanics, the basic idea is to 

have a "diagonalisation" of the field analogous to the diagonalisation of the position 

operator in Quantum Mechanics. Additionally, the canonical commutation relations wi th 

its conjugate momentum have to be satisfied. In the following we w i l l see how i t is possible 



to bui ld up such a consistent theory, w i th the above requirements. 

2.2 Quantum Mechanics and Quantum Field Theory 

Quantum Mechanics describes the small scale world w i th a particle-wave character. To 

study a particle of mass m in a. D + 1 space-time wi th a time independent potential V(x), 

one can find its Schrodinger wave function which contains all the information 

about the particle. Let us build up the equation $ satisfies. The non-relativistic energy 

conservation of the particle is 

fi=|l + KW. (2.1) 

The wave character can be given by replacing the variables x, p w i th operators x, p which 

satisfy the commutation relation 

[x,p] = in. (2.2) 

This gives the basic physical observation of the uncertainty principle. Moreover, the 

Schrodinger representation is declared by asking the position operator to be diagonalised; 

that is to act multipHcatively on the wave function 2 ^ ( x , t ) = x'^{x.,t). From (2.2) the 

momentum operator can be chosen to be 

d 
p^{x,t) = -ih—^{x,t). (2.3) 

^ can be found by solving the Schrodinger equation 

= + (2.4, 

which is a combination of the energy conservation (2.1) and the operator representation 

of X and p so that we get a wave equation. I t can be solved by separation of variables 

and finding the eigenstates and eigenvalues of the Hamiltonian. 

In Quantum Field Theory we describe the particle w i th a wave functional where the 

variables we are interested in are not the position and t ime of the particle but rather the 

configuration of the function-field (f>{x,t) through space-time. The wave functionals give 

rise to a Hilbert space H on which the field 4'{x,t) and its conjugate momentum Tr{x,t) 

act. We need to bear in mind the implications of the diagonahsation of the fields (j) given 

by 

(^(x,0)*[(/?] = (^(x)*[(/?] (2.5) 



where i = 0 is the quantisation surface on which the field has a specific configuration. We 

have conventionally chosen the t ime t = 0 for the diagonalisation. Commutation relations 

read 

^(a;,i),7r(a;',i ')]|^^^,^Q = ih6{x - x'), 

[7r(x, t), 7r{x', t')] l^^,^, = [<l>{x, t), <^(x', t')] \^^^,^, = 0 (2.6) 

From (2.5) and (2.6) we see that we can choose, as in (2.3), the momentum operator to 

be 

Tr(x,0)^[y:>] = -in—^'^[ip] (2.7) 
o(p[x) 

The Hamil tonian can be constructed using the relations (2.5) and (2.7), and the dynamics 

of the system is given by the Schrodinger equation 

H^t[cp] = ih-<l!t[<f] (2.8) 

We have chosen for the diagonalisation of the field operator (j){x,t) the time t = 0 so that 

the equal t ime commutation relations (2.6) is defined also on the surface t = 0. This leads 

the momentum operator, T T , as well as the Hamiltonian, H, to be defined on the same 

surface. 

I n addition to the operator formalism already discussed, we can use functional integrals. 

By using the basic definitions of path integrals in field theory, the Schrodinger wave 

funct ional can be interpreted as the generating functional of certain Feynman Diagrams 

on the half plane t > 0. This is due to the definition of the Schrodinger functional as 

the ma t r ix element of the Euclidean t ime evolution operator between the eigenkets of the 

field 

{'f'\e-'''\ip) = J D^e-^^[^] (2.9) 

where SE is the Euclidean action for the 1 + 1 dimensional volume bounded by space-like 

surfaces a t ime t apart and ^(a;,0) = ^{x), ^{x,t) = (p'{x). 

I n the l im i t i ng case oi t oo the above definition gives the vacuum functional for a field 

(j). This can be seen in the following way: f rom (2.9) we have 
oo oo 

{^'\e-'''\v) = E j:{v'\n){n\e-'''\m){m\^) (2.10) 
m = 0 n=0 

where \n) and \m) are elements of the orthonormal eigenstates of the energy, i.e. of the 

Hamil tonian H. Thus (2.10) becomes 
oo oo oo 

E ^{<p'\n){n\e-'^-\m){m\^) = Y,{v'\n)e-'^-{n\^) (2.11) 
m—On-0 n = 0 



The inner product is equal to the wave functional of the field (/? w i th energy 

En. We can extract the vacuum wave functional \I'o[v''] f rom (2.11) 

((/.'|e-*^|c^) ~ * o H * S M e ~ * ' ' ° (2.12) 

I f we normalise the vacuum energy to zero we are left wi th only the ground state \I'o[(/?' 

up to a normalisation factor. 

2.3 Scalar Field 

I f we study the case of a real scalar free field w i th mass m in 1 + 1 dimensions, the classical 

Hamil tonian w i l l read 

H = / ^ x { i 7 r ^ + ^ (Vc^)2 + ^ m V 

where V = d/dx. By using the relations (2.5) and (2.7) and setting ^ = 1, we get the 

quantised equation 

j y ^ o M = - l J ^ ^ ^ ^ ^ o t ' ^ ] + l J Mi^'fY + m V ' ) * o M = ^ o * o M (2.13) 

where ^'o[v'] is the vacuum functional. We can guess a fo rm for \&o[^, 

/ I f \ 
*o[</'] = exp I - - / dxcpTcpj (2.14) 

which when substituted into (2.13) gives 

H^ol^] =(^-j cix(-(^rV + (Vv^)^ + m V ) + ^ T r (F) ) (2.15) 

I n order for \I'o to be an eigenstate of the Hamiltonian, the right hand side of (2.15) has 

to be constant. This happens for V = ± A / — + m?. In order for the functional to be nor-

malisable we choose the positive sign, so that finally ^olv?] = exp ( — | / dxip\/—V^ + rn^ip^, 

which is an eigenstate of the Hamiltonian belonging to the eigenvalue, i?o, proportional 

to the functional trace of T. The latter is a divergent quantity and its renormahsation 

w i l l be given in the next Chapter, as the 5̂  = 0 l im i t of the interacting theory. 

Turning to the interacting theory, the Hamiltonian H for the (j)^ theory is given by 

H = jdx{\^^' + \{Vct>f + I m V ^ + l,94>'} . (2.16) 

10 



so that the Hamil tonian operator reads 

1 , / , r i , „ . 0 1 o o 1 
" = 2 A + J d x \ ̂ (Vvf + j m V ^ + i (2.17) 

where A stands for the two functional differentiations inserted f rom the conjugate mo­

mentum. A n interesting characteristic of the Hamiltonian is that i t depends only on the 

space coordinate, while the t ime one does not appear for a t ime independent potential. 

In other words the Hamiltonian exist on the = 0 surface where its eigen-value problem 

is solved. The Sclirodinger equation is 

d 

where H is given by (2.17). 

In Quantum Mechanics | \ I ' (x, i t )p is the probability of finding a particle at t ime t at the 

point x (i.e. x{t) is diagonal), while in Quantum Field Theory |\I'[(/?]P is the probabihty 

that the field (f>{x,t) takes the value f { x ) at t ime t = 0 (i.e. the field </> is diagonal). 

ip{x) has three interpretations. First, as the boundary value of the field 4>{x^t) for t — 0. 

Second, i t is the variable for the Hamiltonian in the Schrodinger equation. Thirdly, i t 

plays the role of the source in the Feynman diagram expansion of vp. We are going to study 

the last characteristic after considering the regularisation and renormalisation of the field 

theory Schrodinger Representation. Finally we see that the Schrodinger equation is the 

relation the wave functional has to satisfy when the boundary sources are varied, that is, 

i t describes the dynamics of the field in relation to the boundary. However, after finding 

its solution the boundary takes the fo rm of the quantisation surface t = 0 f rom where the 

solution can be uniquely defined on the whole plane wi th the use of the evolution operator 

11 



Chapter 3 

Renormalisation of the Schrodinger 

Representation 

3.1 Introduction 

I n this chapter we study the renormahsation of the Schrodinger representation through 

the path integral formulation where the Green functions are the constructing elements. 

I n this way another perception of the theory w i l l appear. 

The renormalisation of the theory is essential to prove its existence and finiteness. Symanzik 

studied the Schrodinger representation, [13], for the (f)"^ theory in 3 + 1 dimensions using 

perturbation theory. We w i l l outline the basic features of his arguments on renormalisa­

t ion based on [14], [15] and [16 . 

Apart f r o m the usual renormalisation involving the mass, coupling and field renormalisa­

t ion constants, the ^3^^ interacting theory needs additional counter-terms to renormalise 

new ultraviolet divergences. This is the basic point Symanzik made in order to prove the 

existence of the Schrodinger representation in renormalisable field theories. He showed 

that f ield operators which are diagonalisable in the sense of the Schrodinger representa­

t ion differ f r o m the usual renormalised field operators by (in perturbation theory, loga­

r i thmical ly) divergent factors, in a similar manner to the way renormalised field operators 

themselves differ by such factors f rom the "bare" ones, in the usual sense canonical, field 

12 



theory. For example in some renormalisation scheme the Green's functions w i l l appear 

to diverge as one of their arguments approach the boundary where the diagonalisation is 

defined. 

Also f r o m (2.13) we see two functional derivatives acting at the same point which even­

tual ly give a delta funct ion evaluated at zero when, for example, they act on local func-

tionals. Therefore, we need to split the two arguments of the functional derivatives, as 

is necessary also in the free case. Super-renormalisable theories, such as the Ŝi'* in 1 + 1 

dimensions, only need, in addition to the usual renormalisation, a procedure to regularise 

the Laplacian appearing in (2.13). 

In f ield theory the Lagrangian is constructed so that the corresponding generating func­

tional w i l l give the desirable dynamics of the system under consideration. In the Schrodinger 

Representation we are seeking to construct the wave functional which w i l l satisfy the 

Schrodinger equation. This quantity can be interpreted as the generating functional for 

Feynman Diagrams in space-time wi th boundaries. 

3.2 Free Field 

Let us consider the free scalar field in 3 -(- 1 dimensions. The Euclidean Lagrangian is 

given by 

L = \d,<j>d,<t>+\m'<l>\ (3.1) 

The diagonalisation of the field (j) given in relation (2.5), is effected by a boundary term 

added to L. We can define F to be the half space t > 0, so that its boundary is the 

plane i = 0, while its complement, F', is given by i < 0. Consider now the additional 

term in the Lagrangian (3.1): 

Lar^ - L = 6it)cf>dt(f> - 8{t)ipd4. (3.2) 

We can see the effect of LQY-ip — L on the Green functions, by taking the functional integral 

of the Lagrangian Ldv^p w i t h source J [13]. I t w i l l give 

J P<^exp - J Ldr + J J(f) 

const, exp 

13 



2 1-^^ T - - - ^ -t r I . (3-3) 

I n (3.3) GD are the Dirichlet Green functions, which are constrained in F, and they satisfy 

the relations 

(m^ - d^)GD{x, x') = 5{x - x'), X, x' E T, 

GD{X, X') = 0,X E dr, and x' e T (3.4) 

and GN are the Neumann ones in F', satisfying 

(m^ - d^)GN{x, x') = 6{x - x'), X, x' G F' 

dtGN{x, x') = 0, .T G 5F, and x' € F' (3.5) 

There does not appear any correlation between the two regions F and F', as any Green 

funct ion w i t h one argument in F and another in F' w i l l be zero. 

We see that relation (3.3) factorises into Dirichlet and Neumann parts. This is because 

the functional integration in (f) takes on average the specific value (/?(a;) on the t = 0 plane, 

as is required by the term (3.2) in the Lagrangian. This does not allow any fluctuations 

of the field for t = 0, by which a propagator could cross the boundary. This property also 

holds i n the interacting theory. 

3,3 Interacting Theory 

Adding the interaction term —^9(j>'^ in the Lagrangian produces unrenormalised Feynman 

diagrams. Adopting dimensional regularisation, we can work in 1 t ime and 3 — e space 

dimensions and give the appropriate counter-terms. 

Away f r o m the boundary the required counter-terms are the usual ones 

AL = ^ ( ^ 3 - l)d,<f>d,(f> + i ( Z 2 - l ) m ' f + 

for the coupling, mass and field regularisation. We choose for the constants Z i , Zi and 

Zj, the "min imal" fo rm 

Zig, e) = 1 + e - V . i ( ^ ) + ^{a) + - (3-6) 

14 



so that the Green's functions exist for e ^ 0. 

The boundary terms (3.2), added to the interacting Lagrangian, need additional regular-

isation as there are new divergences in the Green's functions when one or more legs are 

attached to the boundary. As seen in [14] the necessary counter-terms are 

AZar^ = - ( ^ 4 - l)6{t)cj)dt<j> + {Z, - l)8{t)<pdt<t>-

ciAS{t)(f>^ - C3AS{t)<f(f) - C5A6{t)ifi\ (3.7) 

A is a new cut-off as the terms wi th c-numbers cannot be wri t ten in dimensional regular-

isation. Z4 and Z5 can be expressed in the same way as in (3.6) and one finds 

Z s - l = -i32iT'e)-'g + 0{g') 

up to the first order in g. Using the Lagrangian wi th the inhomogeneous boundary con­

di t ion and the equivalent counter-terms we find the functional integral of its exponential 

to be (̂991 J ) = "^Diri^lJ) • '^Neu{\J)- The first factor depends only on J restricted to 

^ > 0 and the second only on J restricted to t < 0, as in the free case. We wi l l restrict 

our interest to '^otr, as /̂ve-u fails to retain the Neumann property after renormalisation 

even at the first order in g, because of the presence of the ci term in (3.7), as can been 

seen w i t h a variation of the action wi th the boundary and counter terms included. 

3.4 Green Functions Attached on the Boundary 

Under this renormahsation the inhomogeneous Dirichlet condition takes the modified 

form"^ 

Yim{a{g,fit,mt)(l){xt)\ip)} = \ f ) f { x ) 

where \cp) is the eigenstate of the renormahsed field (j){xt)\t=o w i th eigenvalue <f{x), 

a{g,fit,mt) = 1 — 3 ^ 1 n ( / i t ) +0{g^) and fi is the normahsed mass entering wi th the 

coupling constant g dimensionless in 1 - f 3 — e dimensions in the combination gfi". 

isee [13]. 

15 



J J(x) J(y) 
- X X 
2 

Figure 3.1: The free propagator between the sources J(x) and J{y). 

The renormalisation of dt(i){xt) as t approaches the boundary, makes i t necessary to use 

the (now normalised) functional derivative: 

\im{c{g,ixt,mt)d4{xt)\ip)] = (3.8) 

where 
g c{g, fxt, m t ) ^ l + ^ M f i t ) + 1] + 0{g') (3.9) 

Relations (3.8) and (3.9) reflect the way the Green functions approach the boundary. In 

the free theory the diagram (3.1) has an amplitude given by 

- ' - j J{x)G{x-y)J{y)d'xd'y 

where J{x) is a smooth source. The Green's function G{x — ?/) is a finite quantity. When 

we insert a boundary at i = 0, then an additional type of free theory diagram results, 

w i t h legs attached on the boundary. 

As seen f r o m (3.3) we may consider </?(x) to be a source on 5F, and dtG(x — y)|;_o to 

be a Green's funct ion wi th one leg on the boundary. In Symanzik's words "an external 

leg of G is upon normal differentiation bent to the boundary", which also holds for the 

noi'malised interacting theory [13]. A Green's function wi th both legs on the boundary 

has the fo rm dtdtiG{x — ?/)|j_j/_o- The amplitude for this diagram is 

dtdt' 

The relation 

ip{y)d xd y 
t=t'=o 

H ; ( W ) < ^ ( x ) ) = T^,cl>ix')p{x) - 6it' - t)8{x' - x) (3.10) 

shows this procedure, as the free two point function is (0 T(j)[x)(j>[x') 0), while the two 

point funct ion w i t h both legs on the boundary t = 0 is {Q\T dt(j){x)\^^Q ^t''f^{^')\ti=Q l^)-

However, the two point amplitude produced (first term on the r.h.s.) is accompanied by 

a divergence as the arguments are approaching the boundary i = = 0. 

In the interacting case viewing \n^{(p\J) as the generating functional for both kinds of 

connected diagrams mentioned, then 

16 



In '^D^rW) = E 7T E -T n / dzM^j) n / / dUJ{xiU) X 
; = o n = 0 j = l i = i - ^ •̂ o 

G(z i . . . 2 / | x i i i . . . x„ t „ ;^ ,5 f ,m) 

for e dV and we can extract them by functional differentiation 

G{z^...Zi\x,t,...xJn) = n r ^ r i c r / . J ^ ' ^ W ) 

where the connected Green functions G{zi...zi\xiti...Xntn) are non-zero only i f 7i -|- / is an 

even number as the sources J and (p come in pairs^. As 

* D t r ( ( ^ | J ) = {<f\TexpJ^ dt J dxJ{xt)(f>(xt)\0) 

we can calculate f r o m (3.8) and (3.9) that 

lim{a{t)G{zi...zi\xtxiti...Xntn)} = 8ii6no8{x - Zi) 

and 

l i m .Zl\xtXiti...Xntn) - 8noSnS{x - Zi)5tG(0|0t)] j = 

G{zi...Zix\xiti...Xntn) (3-11) 

Symanzik's statement can now be expressed wi th formulas (3.11), where the arguments 

standing on the left of the bar are on the boundary and the ones on the right are in the 

half plane t > 0. G{0\Ot) is the Fourier transform of the corresponding Green's function 

and its purpose is to subtract the divergences arising f rom dtG{zi...zi\xtxiti...Xntn) as 

t —>• 0. In the free case, G is substituted by the delta function of t ime as seen in (3.10). 

3.5 Renormalisation of (/>̂  in 1 + 1 Dimensions 

The (f)'^ theory in 1 -)- 1 dimensions is a super-renormalisable theory. This means that the 

divergent diagrams are finite in number. In particular, the only divergence comes f rom a 

self-contraction of the field at the same space-time point. Therefore renormahsation can 

be done, at least w i th in perturbation theory, via normal ordering, using Wick's theorem 

and subtracting the infini te terms appearing. This involves expanding powers of as a 

^See relation (5.7) in Chapter 5. 

= See [13]. 
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sum of normal-ordered terms wi th more and more self-contractions. In this way we can 

separate the convergent terms (wi th no contraction) f rom the divergent ones (wi th at 

least one contraction). Renormalisation then, is applied by subtracting the divergences 

by equal and opposite counter-terms. 

Since we want to use a momentum cut-off, 5, we are going to compare the normal-ordered 

Hamil tonian 

•.H:=Jdx: (^^mxf + ^'{xf - M^^{xf) + : (3.12) 

w i t h the operator Hg, constructed f rom momentum cut off fields 

where 

(ps{x) = J dyg,{x,y)(p{y), 7r,(x) = j dyg,{x,y)Tr{y) 

g.ix,x')=f^ g e - ( - ' ) (3.14) 

and the kernel 
dp 

p2<i/s 27r 

implements the momentum cut-off. The Hamiltonian H has been normal ordered wi th 

respect to oscillators w i t h finite mass Mr- The coupling constant is also finite. There 

are no divergences appearing due to the boundaries which would need further field renor­

malisation as our theory is super-renormalisable [14]. Our aim is to define the divergent 

quantities ^ ( 5 ) and S{s) so that l i m , _ , o ^ 5 * = We start wi th (3.13), t rying to 

express the various terms in a normal ordered form. Rewriting i t as 

we can normal-order the first bracket as we do for the free field in terms of the creation and 

annihilation operators as{k) — -~[u}k(ps{k) -\-iT^s{k)\ and a'^{k) = ^^[u;f;(ps{k) — ins{k) 

where 00^ = Vk^ -\- m"^. The commutation relation [as{k)^af(k')] = Qs{k — k'), gives for 

Hso, the free field Hamiltonian 

Hs = J dx Zo : +\l^^^^^ + liM'is) - MM + ^c^^ - £{3)^ (3.15) 

Now we can use Wick's theorem to normal order (pi and (p^ as their vacuum to vacuum 

amplitude is evaluated at the same space-time point and wi l l diverge. Labelling as the 

vacuum to vacuum amplitude {0\(ps{x)(ps{x)\0) we can write 

=•• •• +Ts 
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and 

( f t = : : + 6 r . : (p] : +3T, 

Expression (3.15) becomes 

%^ j d x [: : +11^^^^^ ^ u ; , + i ( M ^ ( . ) - M^){: : +T,) + 

^ ( : ĉ ^ : +6r. : ^ ] : +37,̂ ) - £{s) 

j dx f: % + i ( M ^ ( . ) - M^){: : +r.) + 

^{6Z : :+3T^) - £{s)^ (3.16) 

where : Hs : = : Hso : +5^/4! : (̂ ^ :. In order that all except the first term on the r.h.s. 

vanish we require 
r2 nj2/^\ 9r 

and 

- M'{s) = ^ r , (3.17) 

/p2<l/s 
T j f r o m its definition as the propagator wi th coinciding points has the analytic form 

2<i/s 27r A / p T m ^ ' 

so that (3.17) and (3.18) become 

M'{s) = M^-^-f ~ , (3.19) 
4 V < i / s 27r v y + m ^ 

and 

These divergences refer to the free space-time diagrams. They come f rom a loop expansion 

in the propagator, w i t h both ends coinciding. As we know, each loop is accompanied by 

a factor of h which in our case makes the mass correction in (3.19) proportional to h as 

well as in (3.20) the first term being of order % and the second of h?. 

3.6 Time and Energy 

When we want to interpret the creation of a non-charged particle, described by the real 

scalar field (j) at the point (a;,t), and its annihilation at the point ( . T ' , t ' ) , we can write the 
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corresponding amplitude as the "two point function" 

{0\9{t' -t)<f>{x',t')c{>{x,t)\0) (3.21) 

for t' > t. For t' < t it takes the fo rm 

{0\9{t-t')(f>{x,t)(f>{x',t')\0) (3.22) 

The sum of the two amplitudes is the Dyson's time ordered product 

{o\T(i){x',t')(i>{x,t)\o) = {o\e{t' - t)ci>{x',t')cj>{x,t) + e{t - t')<f>{x,t)(j>{x\t')\o). (3.23) 

The operators which occur under the T symbol are arranged f rom right to left wi th 

increasing times. This leads to the relation 

—Tcj^ix', t')<J^{x, t) = T ^ J { x \ t')<t>{x,t) - f 8{t' - t)S{x' - x) (3.24) 

where the delta funct ion w i t h respect to t ime comes f rom the derivative of the theta 

funct ion through the relation 

(3.24) is the relation we used to attach the two legs of the free propagator on the boundary 

i = 0 (see (3.10)). The sources are restricted on the t = 0 surface, generating propagators 

w i t h both legs on the boundary for which the delta function of (3.24) becomes infinite, 

whereas the conventional field theory spreads its sources over the whole plane without a 

similar divergent ambiguity appearing. Alternatively, as can been seen f rom (2.12), the 

vacuum functional is 

where TT so 7? is represented in the functional integral by 4> plus terms coming f rom 

d/dt acting on the T-ordering, because the functional integral interpretation of $ repre­

sents T-ordered products. This demands the use of the relation (3.24) which at the points 

i = f = 0 gives an infini ty. 

W i t h boundary conditions which are not sharp in space-time, but are spread wi th a 

probabil i ty funct ion, this inf in i ty gets a finite value (see [17]). This phenomenon comes 

directly f r o m the uncertainty principle for t ime and energy 

AtAE > h 

where for A t = 0 (for sharp t ime boundaries) the energy becomes infinite. 
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Chapter 4 

The Wave Functional for Slowly 

Varying Fields 

4.1 Introduction 

I n this chapter we study the behaviour of the vacuum functional. As the method used 

aims at the non-perturbative construction of this functional a different kind of expansion 

has to be used. We w i l l restrict our interest to slowly varying fields on the scale of the 

lightest mass. This enables the vacuum functional to be expanded in terms of the fields 

derivatives. I n particular, we are going to see that its logarithm can be expanded as a 

sum of local functionals and satisfies a modified form of the Schrodinger Equation [12 . 

This procedure which can be generalised to any kind of massive fields wi l l be performed 

here for the free and the (f)'^ theory. 

4.2 Expansion of the Wave Functional 

As we have seen, the vacuum wave functional "^[(p] can be derived f rom the Schrodinger 

wave functional 
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for large t ime t , which by the relation 

for ^{x,0) = Lp{x) and ^ ( x , t ) = </''(x), suggests ^ could be interpreted as a generating 

functional for certain Feynman Diagrams on the half plane t > 0. In particular, the 

expansion of its logarithm can be represented as a sum of connected Feynman diagrams. 

Addit ional ly, the existence of a non-zero mass generates an exponentially damped factor in 

the propagators at large distances. In two EucHdean dimensions ( x i , X2) , this is expressed 

by the asymptotic expansion of the Green function, G, of the operator 

dxl dxl 

which is for r = \x — y\ 

e"""" / 1 9 \ 

2V2wrnr \ 8mr 128(mr)2 J ' 

The mass does not let the field propagate very far. This enables as to conclude that these 

diagrams reduce to local functionals for slowly varying fields. The arguments hold for the 

free, as well as for the interacting, theory. 

I n order to treat the scaling of the distance in a uniform way we introduce a scale factor 

s. This allows us to perform scaling transformations on the field y:>{x) as 

For small s the argument of the right hand side is large, forcing the scaled field to take 

the value if at in f in i ty except for a; = 0 where </p̂ (a;) = ^{0). For large 5 the field varies 

slowly i n space as i t gets the value (p^ix) ^ (/?(0). This w i l l help us to study the behaviour 

of ^[(p"^] for small and large s and to find a connection between the two regions. 

For the free massive case we found that for W[ip] = ln^[(p] we have 

W[(p] = —^ J dxip\/—V^ + m'^(p. 

For a slowly varying field ip (i.e. w i th Fourier transform which vanishes for momentum, 

ko, greater than the mass, m ) , this can be expanded as 

H.M = - / . . ( ^ , ^ + i ^ ( V , f - j J ^ ( V V ) ^ + .. .) . (4,1) 
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W i t h the argument as (/P^ the functional becomes I/K[(/?''] = — | / d x i p \ / — V ^ + sm?(f^ hav­

ing the following expansion 

For 5 = 1 we get W[ip\ f rom iy[(/?*]. We wi l l demonstrate how f rom a series like (4.2) we 

can obtain the value of W^p] f rom large s. A truncated expansion of (4.2), is a better 

approximation to the f u l l functional when s is large. This generalised to the interacting 

theory w i l l enable us to calculate the wave functional up to a certain order in its local 

expansion (valid for large s) and hence to get the desirable small s behaviour. 

We w i l l t r y to establish this method by studying first the vacuum energy and then the 

vacuum functional itselL A regularisation of the Laplacian could be achieved w i t h a 

momentum cut-off like 

A . ' * 
V < i / s 27r S(p'{p)S(p{-p)' 

where ^p{p) — (1/2%) f dxi^{x) ex]i(—ipx). This wi l l be a regularisation of the eigenvalue 

of the energy, given as the trace of the F operator. That is the vacuum energy density 

£ = E/V is given by the cut-off dependent relation 

On the other hand, doing the same calculation by using the local expansion of W we get 

where = l / (47r)m2F(3/2) /(F(3/2 - n)T(n + 1)(1 + 2n)). As we can see this is a large 

s expansion of the original quantity — l / ( 2 y ) A s H ^ whereas to get its proper behaviour 

for the cut-off dependence we are interested in its small s expansion to let 5 0. There 

are ways to get the small s behaviour f rom the large s expansion. First we need to define 

the continuation of the vacuum energy^ to complex s plane by 

This is analytic throughout the complex 5-plane wi th the negative real axis removed (due 

to a cut of the square root) . 

^As we wil l see, this procedure can be appKed to several well behaved functions with physical interest. 
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Figure 4.1: The contour of integration 

For |5|77i^ > 1 this has the large s expansion of (4.4). Let C be the key-hole shaped 

contour of figure (4.1). The integral 

(4.5) 

which could be defined as the action of the re-summation operator R{s) = l/{27ri) 

f ds/s e'^" on £{s), may be evaluated using the expansion (4.4). We can find in the 

mathematical literature (e.g. [19]) that 

J . 
e^z^dz = —2ismmr n! 

for n non-negative-integer, where C is the contour of (4.1). I f n is negative, for n = —m, 

where m > 0, the integral takes the fo rm 

—dz = —2i s i n f — r n v r ) -mv. = 
c z' 

2i sin m-TT 
v r m 

smm-K m\ 

as 

m!(—m)! 
s m ?727r 

so that finally we have 

, 27ri 
dz = --r 

c z'^ (m - 1)! 2Tri Jc X™ ^ r ( m ) 

For m = n - f 1 + 1/2 as is needed to calculate (4.5) we evaluate 

dr. A n+1/2 

(4.6) 

The value of the integral w i l l not change i f we collapse the contour C to a small circle 

centered on 5 = 0 and a contour that just surrounds the real negative axis. By taking 

A to be positive and very large, the contribution f rom the negative real axis becomes 

exponentially suppressed away f r o m the neighbourhood of the origin and hence the integral 
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/ ( A ) 

large 

Figure 4.2: / (A) with the large and small s expansion for the energy density. 

is determined by £(s) for small s. We can see that f rom (4.5), where for negative real 5 

the exponential is suppressed for large A while the only point which survives is for s = 0. 

This is a way to get the small s behaviour out of a large s expansion. In the diagram 

(4.2) we see that the energy density, given by (4.5) where £{s) is taken f rom (4.3) and 

f r o m (4.4) respectively, has the same pattern in the sense that in the large-s expansion 

there is s t i l l the information of the small s. 

We can follow similar steps to extract the small s behaviour of W[(p] out of its local 

expansion (see [18]). Since we are interested for the value 5 = 1, let us make the expansion 

VI^[(/?''] around inf in i ty expressed in terms of s — 1. This w i l l have the form 

F(3/2) 
- ( 3 - 1 ) 1 / 2 - " ! dxip (l 

2 ^,V[n + l)V{?>l2-ny- ' J - \ 

Using the re-summation operator R{s), w i th the circle of the contour now centered at 

s = 1 as seen in Figure (4.3) we get 

ds 

m ^ F(3/2) 

F (n + l ) F ( 3 / 2 - ?i) 

2m Jc s — 1 

J d x ^ { l - - j ^ J ^ ^ ^ ^ Y y ^ d s 

m 

4V̂  V n\{n-l/2) 

a - l / 2 ^ / y 2 
(4.7) 
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Figure 4.3: The contour of integration with the circle centered at 1 

Because of the factor n! the sum converges for any value of A and of the integral which 

depends upon the momentum cut-off, ko-, of the field (p. I f we expand the exponentials in 

the expression 

- A ( l - V V m 2 ) ^ f'dX'^e-^'i^ 
Jo y / y 

ip = (4.8) 

72 \ 

1 -

V V ^ V , 1 ( -1)" . n . r ( , _ _ 
m^J ^ V A n ! ( n + l / 2 ) ^ 

2 \ 

1 - n 

n! \ 

1 A ( -1)" A" 1 - ^ 

n - 1 / 2 ^ 

- 1 / 2 
my n-1/2 

which is equal to (4.7), we can rewrite (4.8) as 

2^/^. 

_ - / f 1 e-Mi-vV™^) + f d A ' - ^ e - ^ ' t - ^ ^ / - ^ ) f l - ^ ) 
2 V ^ i V A / a JO ^ / y V / 

vA ' V "z^yy 

L_^-A'(l-VVm2) (4.9) 

since for a > 0 

f 
Jo 

' ' ' ^ = -Ja 

As A grows large, (4.9) approaches W[p\ w i th its fo rm easily read off and wi th an error 

in approximating W[(p\ w i t h the series (4.7) exponentially suppressed. As this series is 

alternating, truncating i t at some order A" w i l l result an error smaller than the first term 
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neglected. We see then, that we can have an acceptable knowledge of W[(f] f rom a local 

truncated series of the fo rm (4.7) or (4.2) wi th an error which depends on how large is n , 

the truncating order, and the size of A relative to n. 

The previous arguments apply to the case of a free field where we know the analytic 

f o r m of W. In the interacting case we want to calculate an expansion of the wave func­

tional as the f u l l solution seems to be a too difficult i f not impossible problem. As the 

funct ional dependence oi W on (p can be very well defined by the linear combination of 

local functionals of (/?, we are left w i th the task of evaluating the coefficients of these 

combinations. 

A local expansion for W for the interacting theory could be 

W[^] = J d x {ai^' + a2i<p'f + asip'iv'y + ...) 

or i n terms of cp^ 

M/[<p^] = J d x (ai<^^2 + a^i^p'T + a3<p'{<p"Y + ...) = 

/• / 1 1 \ 
dx ai^<p^ + a2^{^'y + ^asif^cp'Y + ... (4.10) 

Using (4.10) we can expand the wave functional '^[p"] = e t̂"^"' in inverse powers of 5 — 1, 

w i t h coefficients that depend on the original configuration ^'[v?*] ~ J2{s — l)~"-il>„[ip]. 

As i t w i l l be shown later i f analytically continued to the complex plane '^[<p^] w i l l have 

cuts and poles along the negative real axis. Now we can use the re-summation operator 

R{s) to get 

/ ( A ) = R{s)^[yp'] = 

1 / J i ^ , A ( . - l ) ^ [ ^ 3 J 
27rz Jc s — 1 

where the contour C is taken to be key-hole shaped as shown in the Figure (4.3). I f we 

take So to be large then we can compute the integral using the local expansion for W 

shown in (4.10) f r o m which we can compute the coefficients •ipni'P']- Finally we have 

We can also evaluate the integral / ( A ) by collapsing the contour C un t i l i t breaks into 

two disconnected pieces: a small circle centered on 5 = 1 and a contour that surrounds 

the negative real axis. The integral over the circle gives ^ ' [(^] . By taking A to be real, 
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positive and very large the contribution f rom the negative real axis wi l l be exponentially 

suppressed, (provided i t is not singular, as we check using perturbation theory in following 

sections), so that for large A, 

which provides a re-summation of the local expansion. As tpn depends only on terms of 

order up to in (4.10) we beheve that we can obtain an approximation by truncating 

(4.11) at some order in A. 

In order to understand the kind of poles and cuts of the functions we wi l l use have, we 

need to see in more detail their s dependence. Our main interest lies in the s behaviour 

of the action of the Laplacian on the wave functional ^^[v?]. As the representations 

7?(x) = —iS/6ip{x) and '^[f] = (y|0) hold (at t ime t = 0) we can use bra and ket formalism 

{^mx,t)7r{x',t')\0) (4.12) 

w i t h t = t' — 0 and then we integrate against Qs{x, x') in order to get A ^ ^ . Expressing this 

in terms of ^ under the formalism of functional integrals wi l l exhibit a linear divergence, 

the meaning and renormahsation of which we have seen in section (3.5). So (4.12) up to 

additional delta functions is equal to 

- J V^e-^^^^+I '^'"^^ if {x,t) ^ {x' ,t') (4.13) 

We now set t = t' = 0. In order to be able to treat this we rotate co-ordinates so that the 

distance of the points [x, 0) and [x', 0) lies along the t ime axis wi th difference r = |.7; — a;'|. 

The new f o r m that (4.13) takes is 

J Vifre^^rR+f''"'^'^ip[iO,T)^',{0,0) (4.14) 

where the variable of the functional integral (pr is defined on the rotated half plane x > 0. 

This can be interpreted as the time-ordered vacuum expectation value of fields that evolve 

in Euclidean t ime w i t h a Hamiltonian H defined on the half line a; > 0. Turning back to 

the bra-ket formalism we have 

Jij(0,|e/*'^(*'^'(°'*)(^'(0, r)(^'(0, 0)|0,) (4.15) 

which is wr i t t en i n terms of the vacuum \0r) corresponding to the rotated Hamiltonian. 

One way to study this is to look at the terms appearing in the expansion of the exponential. 

We have to take care of the time-ordering which puts the quantities wi th smaller time 
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variable on the right. As we have the freedom to break the t integration which goes f rom 

—oo to +00, into smaller intervals, we make sure that the terms in the expansion have 

the integration variable varying in such a way that the integrand is time ordered for the 

whole range of its corresponding t integration variable. Thus we get 

/ dtn / dtn-1... / dtp / C ? V i . . . / dt, / / dh<^{U)...<^{h) 

J T JT JT JO JO J-OO J-CO 

{Q,\(p'e-^^'--'--'^(p'...e-^^'^-'^(p'e-^^^-'^^^^ (4.16) 

where we have also ordered the integral variables dti. The vacuum state |0)r is time-

invariant. Note that the t ime interval (—00, 00) has been broken in three pieces (—cx), 0), 

( 0 , r ) and ( r , 00). This is due to the points where the (p' operators appearing in (4.15) 

are defined. The Fourier decomposition of the functions (/?(i,) is 

We can picture the result. By inserting a basis of eigenstates of H between each operator 

we do the t ime integrations. Af ter the performing the intermediate ti integrations we are 

left w i t h a last t integration which runs f rom minus inf ini ty to plus infinity, appearing only 

in the exponentials of the ki Fourier variable and as a result i t wi l l give a delta function 

for the conservation of the total momentum h- From the other integrations we have, 

for i > p, the insertions of {Ei — i J2 ̂ 0"^ whereas for i < q it gives {Ei + i ^ ki)~^. Here 

Y^ki includes only some of the AĴ 'S whereas Y h is the sum over all momentum. From 

the remaining ^-integrations we get a sum of products of energy denominators of the fo rm 

{Ej — iJ2 kj)^^ mult ipl ied by exponentials of r of the fo rm exp — {Ej — iY^kj)T, so that 

we have the r dependence explicit as a sum of integrals over the spectrum of H 

I dEdk,...dkr,i^{k,)...-^{kn)8(£h){p^ + /Jae '̂̂ " + P2e'^''^''^^ + ...)e"' '" 

To obtain A^^" we integrate these terms against Qs to get a sum of terms of the fo rm 

/ ^ / d E d k , . . J k ^ i ^ { k , ) . . . ^ { k ^ ) 8 { Y . h ) Y . ^ ^ ^ 

As our purpose is to see the s dependence of A^vf explicitly, we set p = q/y/s and 

substitute <y? w i t h ^^{x) = (p(x/y/s)^ or in momentum space (p{k) w i th Tp^{k^/s)y/s, and 

take '^^{k) to vanish outside < K. « 1. This enables us to scale the ki integrals to 

obtain 

/ ^ /dEdk,...dk^nh)...nkn)v~ssij:k)e ^ f ' , 
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The functions pj acquire a dependence on s via the energy denominators which can be 

wr i t ten as 1/{E — i{Y^k)/y/s) after scaling of ki. 

We can conclude that our in i t ia l expression, (As^)[(^*], originally a function of real posi­

tive 5, can be continued as an analytic function on the whole complex 5-plane, excluding 

the negative real axis because of the half integer power of s. This is a result which we 

proved order by order in powers of and this is the way we are going to work in the 

following. 

I n the following we w i l l need to find what kind of expansion in large s we get when we 

expand the coefficients of connected Feynman diagrams. These diagrams appear in W as 

a sum of certain local functionals of the fo rm / dx W - ai where a,- is if wi th i derivatives 

taken w i t h respect to x and raised to a power u,-, i.e. = Substituting = = 

i p [ x j ^ ) in W we get terms of the fo rm 

[ f / 1 1 /• 
dxl[a'^ = dx^/^H ^ a,= dxHa, 

As we are dealing w i t h the scalar (j)'^ theory we may assume that i t is invariant under 

pari ty transformations x ——x which reflects to the restriction on W to be buil t up f rom 

local functionals which have an even overall number of x derivatives. That is i ui — 1 

is odd. So finally Pl^ft^^] is constructed f rom terms which have a coefficient I / 5 in half 

odd integer power. By applying the Laplacian A^ to 1'1̂ [(/:'̂ ] only integer powers of I / 5 

w i l l mu l t ip ly I / A / S ^ ' * " ' " ^ because the half integer ones w i l l be cancelled by symmetry 

^. So the Feynman diagrams constructed this way wi l l include a large s series wi th terms 

of the f o r m l / ^ " / ^ where n is odd. This function of s is the one we need to treat wi th 

re-summation in order to extract its value at 5 = 0 to calculate the various quantum 

corrections. 

^The Kernel Q in the Laplacian is symmetric with respect to its two arguments z and x' and actually depends 

on their defFerence. An odd number of derivatives of the one argument acting on it will result an odd function. 

By the symmetry our expression has with respect to x and x' it wiU make the odd derivative terms to pair, so 

that they cancel each other. These are the ones which could contribute a half integer power of 1/s coming from 

the Kernel. 
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4.3 Re-summation Procedures 

I t w i l l be very important to be able to discover small s behaviour f rom the large wi th as 

much accuracy as possible. What we have is a function f ( s ) w i th cuts and poles on the 

negative real axis. Expanding i t for small s w i l l give'^ 

f{s) /(O) + a iv / J + a2S + a3^/i^ + a^s^ + ... (4.17) 

where a„ ' s are some numbers which can be calculated for specific f{s). The large s 

expansion of f [ s ) w i l l be'* 

/ W . 4 + i L + 4 L + ... (4.18) 

Relation (4.18) has, for certain 6„'s, finite l im i t for s —> oo. We can define the operator 

R{s) to be 

while the integral is taken after the integrand is mult ipl ied wi th a desired function of 5. 

R[s) applied to (4.17) gives /(O) up to the half integer powers of 5, which now becomes 

1/A, w i t h modified coefficients (the integer powers wi l l give zero). R{s) apphed to (4.18) 

w i l l give another series of half integer powers of A. I t wi l l have similar behaviour up to 

exponentially suppressed terms due to the integration contour around the negative real 

axis. Bu t s t i l l we need /(O) which we get f rom the small s series up to the terms added 

to /(O) (see (4.17)). To get around to this error of approximation we can use one of the 

following methods. 

First we can linearly combine terms of the fo rm 

A"i?(s)6"/(3) 

SO that we cancel out some of the additional terms appearing in (4.17) next to /(O). The 

action of R{s) on 5''" is 

1-., ^ k 1 [ k , 1 sin/sTT 

which is zero for integer k. 

^This is the general way the functions, we are going to use, expand as it will be seen in Chapter 5. 

^As shown at the end of the previous section. 
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We can then calculate, for example, the Hnear combination R{s)f{s) + 2XR{s)sf{s) to be 

/ ( 0 ) + 0 + 0 - f a 3 3 A _ J _ + ... 

as well as the combination R{s)f{s) + 4:\R{s)sf{s) + 4/3A^i2(s)s^/(s) gives 

/(O) +0 + 0 + 0 + 0 + « 5 - ^ 3 ^ + . . . 

I n this way we eliminate the most influential corrections to / (O). The disadvantage of 

this method is that the coefficient of the first non-zero term might get larger than its 

corresponding one in the R(s)f{s) series, increasing the error. 

Another way could be to substitute t'^ for s in f{s). This wi l l move the cuts of the complex 

5-plane f r o m the negative real axis to the imaginary axis of the i-plane. The expansion 

(4.18) w i l l become 

We can observe that put t ing instead of s moves the cuts on the imaginary t axis. To 

understand better the procedure let us take an example. The function 

which is well behaved for 5 0 and s ^ oo takes the fo rm 

Vt^ + l - t 

I f we want to make the small t expansion then we expand the square root. Expanding i t 

as 

Vt^ + 1 = ^{t + i)^{t-i) 

we observe that the cuts are for the first square root in the interval (—oo, —i) and for 

the second in the interval (—oo,i) as is seen in figure (4.4). Asking the behaviour of this 

funct ion under t —t transformations in the t plane we should calculate the argument 

the funct ion has for the two points A and A'. The first square root has an argument 

— (/)i/2 while the second (/>2/2 and their product ((^2 — </^i)/2. On the other hand, taking 

into account the position of the cuts, the argument of A' is (TT + 4)2)/2 and (TT — ̂ i ) / 2 

respectively for the two square roots. Eventually for vW+l we have 

(f>2- (f>i , . h - 1̂ 
arg A = and arg A = TT -\ 
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where the two arguments differ by TT. This reveals the odd character of A/^^ + 1 wi th the 

specific cuts we chose in Figure (4.4). In addition computing the arguments for the points 

B and B' we get that A/P + I can be continued in the region [—i, oo) leaving the cuts in 

the finite l imi ts interval 

Figure 4.4: The cuts are overlapping. 

To make the large t expansion then we can expand 

(4.21) 

in powers of t, which is odd in t. This function has cuts for t G (—^,0 ^ region which 

Figure 4.5: The cuts are defined in the interval ( -« , i ) . 

allows the large t expansion to be well defined (see Figure (4.5)). These characteristics 

are similar to the functions we are going to use. 

The result f r o m the action of R{t) upon a function f{t) can be represented in a general 

way. The expansion (4.20) is odd in t. This odd behaviour can be extended in the small t 

region as seen in the previous example. The contour C in (4.19) is a circle centered on the 

origin w i t h large radius. Because we are able to make a large t expansion, we can assume 

that our funct ion, in a fo rm similar to (4.21), has cuts and poles in a closed interval of 
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l a 

- l a 

Figure 4.6: The cuts are in the interval {-ia,ia). 

the imaginary axis, say t G {—ia,ia). The existence of such a finite a relies upon the 

fact that our theory is massive, which allows us to make a large s expansion and get well 

behaved series like (4.18). C can be collapsed around this interval as seen in Figure (4.6). 

The integral takes the fo rm 

dy 
e + ly 

f{e + iy)+ [ - ^ e ^ ( - + ' ^ ) / ( - e - f ^ y ) = 

I 
dy 

a 

a 

e + ly 
f{e + zy)- J -

-e + iy 

dy 

— w 
^ ) / ( - e - ^ y ) = 

J 
— sin(Ay)/(e + iy) 
y 

(4.22) 

The ratio sm{\y)/y eventually w i l l extract the value /(O) up to an error depending on 

how large we can make A. This error is equivalent to the exponentially suppressed term 

we get w i t h the previous method wi th the additional error f rom the sin function, which 

w i l l appear i n our diagrams as an undulation (oscillation) upon the value we want to 

determine^. 

In the interacting theory we are only able to compute a finite number of terms for the 

expansions (4.17) or (4.18). As they are alternating series we can take A up to certain 

value, above which the last term of the series becomes dominant causing the series to 

j u m p to inf ini ty . The more the terms we take the larger the value of A we can use and 

^Phenomenon [20], where the oscillations there, can be suppressed drastically by the use of Lanczos convergence 

factors. 

34 



the less the error of approximation of the original function wi th its truncated expansion. 

I n what follows we w i l l use the re-summation operator given by (4.19). 

I n Appendix A we see a straightforward way, in how the two series (4.17) and (4.18) are 

connected. 

4.4 (j)'^ Theory 

Here we study the re-summation techniques for the (j)"^ theory in 1 - f 1 dimensions (which 

is super-renormalisable). There are no extra divergences in the Schrodinger functional 

due to the boundaries. The only divergence comes f rom those Feynman diagrams which 

have both ends of the propagator contracted at the same point as in the usual treatment 

without boundaries. As we have seen, the Hamiltonian in terms of the momentum cut-off 

reads 

Hs = jdx ( i [^l + i f - + M^{s)^l) + - Sis)) 

where 

ifs{x) = J dygs{x,y)if{y), 7r,(a;) = J dy G,{x,y)T:{y) 

{Gs{x,y) given in (3.14)). We have shown previously that hms_^o-f^s^ = H'^ i f 

and 

M: = M'{S) + U ^ . ^ , (4.24) 
4 Jp2<i/s 27r ^p2 + 

so that the Schrodinger equation for the vacuum is just lims^o{^\Hs\0) = E{if\0) or 

l i m f - ^ A , + / dx {if'.ixy + M \ s ) i f . { x f ) + i^ip.ixr - e{s))) ^ 

= l i m ( - ^ A , + K)\P = l i m Hs^ = 
s^o ^ 2 

where 

Vs = j d x { ^ - [v',{xf + M \ s ) ^ s { x f ) + ^ i f s i x f - £{s)) . (4.25) 

I f we evaluate this expression for a if that has no Fourier modes wi th momentum greater 

than I j s we can replace ifs in this expression by if itself. 
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4.5 Solving the Schrodinger Equation 

We have seen that the action of the Laplacian on the vacuum functional, (AsVl')[(^^]j wi th 

regulator 5, can be continued as a function of 5 f rom real and positive to the whole complex 

5-plane excluding the negative real axis. In the same way the Schrodinger equation of the 

(f)'^ theory for the ground state wave functional, {{Hs — E)'^)[ifs], extends to an analytic 

funct ion of s w i t h singularities over the negative real axis. Eventually its value for s = 0 

can be obtained f r o m a contour integral w i th radius arbitrarily large (see Figure (4.1)). 

Using the operator R{s) we obtain 

l i m R{s){{Hs - £ ; ) * ) H = 0 ^ (4.26) 
A—>oo 

l i m I - e ' ^ m - Em^s] = 0 (4.27) A -K» Zirz Jc s 

where 

Vs is given by (4.25) and E is the energy eigenvalue. Taking ^' = e^', (4.27) becomes 

h m — / —e^^ A,W + / dxdygs{x,y)-^-— + - E H = 0 
A^oD 27rz Jc s \ 2 \ J d(p[x) d(f{y) J J 

where for K << 1 (see page 29) we can replace ^s(x ,y) by a delta function, so that 

l i m / - e ^ ^ ( - l ( A M + [dx ( ^ ^ ] ] + V S - E ] H = 0 (4.29) 
\^co2TnJc s y z y J \Oip[x)J J J 

Treating W as the generating functional for the connected Feynman diagrams we assume 

that an expansion in powers of (p is possible, that is 

dki dk2n_f 

n=l 

The functions r„ ( fc i , ...&2n) can be expanded in positive powers of A;,'s for small momenta, 

so W can be wr i t ten in terms of local functionals. In a similar way, i f we apply A j to 

W[ip\ we get 

^^^^^^ = / , < , S £ ' ^ ( " - i ) / $ - ^ ^ ( ^ 3 ) . . . ^ ( M ^ ( E ^ " 0 r . ( p , - P , f c 3 , . . . M 

Substituting = ( f s into W we can expand for large s in positive powers of p as well 

as i n the rest of the momenta ki^s. Again a local expansion is obtained which actually 

coincides w i t h the action of As on the local expansion of W followed by the substitution 
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if = i f s . Taking advantage of this we can take a linear combination of local functionals 

for W and reduce the eigenvalue problem of the Hamiltonian to the problem of solving 

an algebraic set of equations for the coefficients of the linear combinations. 

The most general ansatz for the local functionals of is / dx ip'"°[<f'y^ ... ((^("))''" where 

Vn and n are non-negative integers. Since integration by parts gives linear relations 

between terms in the local expansion, i t can be verified that one should take t»„ (the 

power of the highest derivative) to be greater than or equal to two (see Appendix C). 

This ensures linear independence. Moreover, an even number of t̂ 's assures that ip —> —ip 

is an unbroken symmetry of the lagrangian, while parity invariance leads us to take only 

an even number of derivatives. Consequently, the local expansion for W), can be wri t ten 

as 

Wx= [dx (if\bo + Coif') + if'^W + C.if' + d^if") 
•' \ 
oo 

+ ^ (^(")2(6„ + Cr.if' + d^if" + e^ifif" + ..) 
n=2 

+ ^'ifo^' + fi^" + f 2 f " + ..) + (4.30) 
/ 

where the coefficients bi,Ci,.. are determined via the Schrodinger equation and, since \& is 

finite, they ought to be finite as A —> oo. 

Inserting (4.30) back into (4.29) we can show that 

r ( I A/A / ° ° \ \ 
/ dx 25 (A) +U + ^ 46o + A E A ^ ) A " 

VV \A" V n=l J J 

( 4- \ f \ I °° \ \ 
+if' - M \ \ ) + —=bl + — 12co + E P'i^) A " 

/ 9 I f i \ / A / 
+^' - — ^ g + —hoCo + — (mfo+Y.p'{n)UV 

, 9 / 2 16 , , \ / A / „ , , 4c2A 
+if'' j= + ^hoK + — 2cr+2d^\ + ^ + --

2 /2 / 32 , 96 , 
+ ( ^ V ^ K c i + -^bico + 12/ i + • 

/IT A / T T TT 

+̂  i 3V̂  + + 
+ • • • 
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,( M^2 ^^'m^^-^ ^A 2c 2(4-eOAl \\ 
^ 1 4 3 ^ ( ^ ^ + 1/2) ^ [nl ^ 3(n + l ) ! ^ 

+ • • • 

(4= E < « o " ' ~ " ( ' t - + 1) + — (2{k + l){2k + 1)4 + T p'{n) A"̂  
V V ^ n = 0 ^ V „=1 y 

- f - - - = 0. (4.31) 

where p{n) = 2l{T{n - f | ) ( 2 n + 1)), p\n) = 2l{V{n + l ) ( 2 n + 1)), M \ \ ) = ^ / X / ^ R { s ) 

1/y/siVP{s) and (̂A) = R(s)£(s). Also we have substituted (f for (fs for 5 = 1/A. The 

coefficient of ip-^^ik > 3) above is such that a^- is the coefficient of the subset 

/

oo 

Jx^ajt^^V^''' (4.32) 

of i.e., a'^ = bi , a} = Ci , a] = /,• , etc. Setting the coefficient of each element of the 

basis to vanish yields an infini te set of algebraic equations. 

4.6 Classical Equations 

I n order to study an expansion in U we are ini t ia l ly interested in the classical description 

of our model. This is given by the Hamilton-Jacobi classical equation of motion. In 1 -|-1 

dimensions the classical field theory has a Euclidean Action S'E given in terms of the 

Euclidean Lagrangian density by 

SR = I d^xCf 

where we assume that £ E is a funct ion of the scalar field, cf), and its first derivative wi th 

respect to t ime, (f). Its conjugate momentum is defined by 

""^""^ d(j>{x) 84>{x) 

The Hamilton-Jacobi equation for a time-independent potential is 

H{7rJ)^0^H{^-f^J) = 0 (4.33) 

For the (f)"^ theory the Lagrangian CE has the fo rm 
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so that the Hamiltonian is 

1 2 1 j/2 1^2/2 5' JL4 _ 1 2 

so that (4.33) becomes 

1 (SSEV I .,2 I 2,2 9 ,4 

2 [ - W ) " 2 ^ " 2 ^ " ^ - 4 ! ^ ^ ^ ^ ^ 

^ ^ ) ' - ^ ^ c ; a . . ( ^ ) = 0 (4.34) 

We can obtain the set of the classical equations f rom the f u l l set of algebraic equations, as 

the zeroth order approximation of equation (4.31) in H. I t is necessary to recover h factors 

in (4.26) and expand I ^ in *o = as = E n = o Also, Ex = E^i^ss + nEi + ---

so that the classical equation becomes 

In the equation above 

V f - = j d x \ [if',' + M^ifl) + ^ i f t + S^lass 

£ctass is zero because the Hamiltonian has been constructed to match the normal ordered 

Hamil tonian : H : w i t h zero eigenvalue. There are no contributions f rom the mass or the 

energy renormalisation as both counter-terms are of order % or higher*^. Comparing (4.34) 

and (4.35) we deduce that —Wdass/^ can be represented by SE- We see, that the on-shell 

Euclidean action, SE, is the classical approximation to W, the logarithm of the vacuum 

functional , satisfying the Minkowski Hamiltonian. R{s) leads to an equivalent equation 

and in this case redefines the field ifs accordion to its scaling properties. We can also 

arrive at the classical equations by setting A = 0 in (4.31). 

I t is possible to calculate the term / dx [^^^f^Y for the specific subset of local vectors 

of the f o r m / ^•^'"^'"'^^ quite easily. In this way we can evaluate the coefficients of their 

hnear combination in Wdass- This w i l l be done in the next section. 

^The mass and energy divergencies are quantum effects and they do not appear in the classical level. 
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4.6.1 Analytic Computation of the Classical Equations 

We can compute the classical equations of the coefficients a™ of / (^ '̂"(/if")'̂  in a general 

way. I n Appendix C we see that the classical equations produced by this set are complete 

to determine a™, without insertions of coefficients of other types of local functionals of 

W. I f we say that the term / <^2™,^(")^ comes f rom the product Mk,x,k^x, = / ^^^' ' '4^' ' ' ' ' 

^{'f''^'"^^'^^'^^ ) _ |.j^gj^ l-j^g number of <j)^s and the number of a derivatives should be the same. 

That is: 

2 m + 2 = 2A;i + 2 - 1 2A;2 + 2 - 1 ^ m = + ^2 (4.36) 

and 

2Ai + 2A2 = 2n ^ Ai -I - A2 = n (4.37) 

But we have ^ 

I 6 { f ^ £ ) ^ ^ 2A;<^2^-V<''' + ( -1 )^2 (^2^^'^) ' '^ (4.38) 
J ocp 

so that for M having the variables ki, A i , k2, A2 i t wi l l be 

MkiXik2X2 = 

ALk2cj>'"'-'(l>^''^'<l>^''^'+ 

^ ^ ( _ l ) A . < ^ 2 . , - l ^ ( A , ) 2 ^ /'-^^'j ( < ^ 2 / . . > ) ( ^ - ^ ) ^ ( A . + r ) ^ 

r=0 V ^ / 

r=0 V / 

r=0 V / w=0 \ ^ / 

Finally the classical equations w i l l be 

E Mk,X^im-k,nn-X,)4lal-_\\ - Vdass = 0 (4.39) 
MM 

as the relations (4.36) and (4.37) are imposed. Vdass is composed of functionals of the 

f o r m /<^2m^(n)2_ 

can calculate Mk.yXik2\2 by distinguishing the following cases: 

1. The first te rm is A;iA;2(/>2'"-2(^(^i'V*^'^^ and i t w i l l contribute only i f Ai = 0 or Ai = 

n =^ A2 = 0. Then, i t w i l l become 

^iA:2<^''"?^<"'' (4.40) 
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2. The second and th i rd terms are similar: 

r=0 \ / 

I f we take A2 7̂  0 the only contribution can come f rom A2 = n where (4.41) becomes 

A;2^""<?i("''. (4.42) 

On the other hand i f A2 = 0 then (4.41) becomes 

which i f r ^ n then 

r=0 y J 

n-1 

^ 2 ( - l ) " E ( - l ) ' -2A; i^^ - (^^(" ) ) ' 

while when r = n 

k^{-l)^f>'^+'fk^< 

The overall contributions f r o m (4.41) are going to be 

H - ^ T E f ' ')(-l) '"2^i<^^"^ [<f>^^^y + k2{2m + 1)^^ (<^("))' (4.44) 

for A2 = 0, and for A2 = n i t is 

fe2.^""<?^*"''. (4.45) 

3. The last term in (4.6.1) w i l l make contributions according to the various values of Ai 

as: 

a) for Ai = 0 i t is 

.. = 2 f c2 ( - l ) " E (< (̂'̂ ')' + {2m+ 1)^'^ (4.46) 
w=0 \ ^ / 

b) for Ai = n i t is 

.. = 2A; i ( - l ) " f")(-l)'"<?^"" (<i^*"')' + (2m + l)<f>''^ (^^t'^))' (4.47) 
r=0 VJ 

c) for 0 < Xi < n the only contribution is of the form (^2™(/)(")2 
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Because i t is hard to keep track of all these cases i t is useful to create a program which 

can generate the classical equations for the various values of m and n. This can be done 

easily i n Maple programing language (see also Appendix E) wi th the following program: 

c l s e r : = p r o c ( m , n ) 

l o c a l M,s,MN,k,NNN,kl,MM,l,ll,M,MMM,ss; 

i f m=0 and n=l then s s : = l e l s e ss:=0 f i ; 

i f n=l the n s:=0 e l s e s : = l f i ; 

i f n OO the n 

NN[0] :=0; 

NMN[0]:=0; 

k:=0; 

f o r k l from 0 to m do 

k:=k+l; 

MM[n-l] : = s * s u m ( a [ k l ] [ l l ] * a [ m - k l ] [ n - 1 1 ] , 1 1 = 1 - - n - l ) ; 

M [kl] : = a [ k l ] [ 0 ] * a C m - k l ] [ n ] * ( k l * ( m - k l ) + ( k l + l ) * ( 2 * k l + l ) + m - k l ) + 

a [ k l ] [ n ] * a [ m - k l ] [ 0 ] * ( k l * ( m - k l ) + ( m - k l + l ) * ( 2 * m + l - 2 * k l ) + k l ) ; 

NN[k] :=NN[k-l]+N[kl]+MM[n-l] ; 

MNM[k]:=MNN[k-l]+NN[k] - s s * l / 4 ; 

od; 

MMM[m,n]:=NULL; 

e l i f n=0 then 

i f m=0 the n 

MMM[m,n] :=-l+4*sum(a[kl] [ 0 ] * a [ i n - k l ] [0] *(kl*(m-kl)+m+l) ,kl=0. .m); 

e l i f m=l the n 

MMM[m,n] : =-l/12+4*sum(a [ k l ] [ 0 ] *a[m-kl] [0] * ( k l * (in-kl)+m+l) ,kl=0. .m); 

e l i f m=2 then 

MMMCm,n] :=4*sum(a[kl]CO]*a[m-kl][0]*(kl*(m-kl)+m+l),kl=0..m); 

e l s e 

MMM[m,n] := 4 * s u m ( a [ k l ] [ 0 ] * a [ m - k l ] [ 0 ] * ( k l * ( m - k l ) + m + l ) , k l = 0 . . m ) ; 

f i ; 

NNN[k]:=NULL; 

f i ; 
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RETURN(NNN[k],MMM[m,n] ) ; 

end; 

This program provides the defining classical equation for the coefficient a[m][7i] = a™ of 

the basis vector /<^2m^(n)2_ ^^^^^ "reading" the program in a Maple worksheet one can 

execute i t by the command clser(m,n); where m and n denote the corresponding indices 

m 
L2mAn]2 for which we want to find its coefficient equation. For computational ease we 

have set M, . = 1 and g = I. 

In Appendix D we see that a closed set of equations for the coefficients 6,-, Q, / i ^ , etc, can 

be determined owing to the symmetry properties of the subset W of W (see equation 

(4.32)): the equations which classically determine the coefficients in W are such that in 

order to calculate a™ we need to know only â - wi th i < m and j < n. I t can be shown® 

that 

bo = - 1 / 2 , br 
1 / l / 2 \ 

-1/4, 6„ = - - ' for 2,3, A, 
Z \ n I 

12 (—1)" 
Co = - 1 / 9 6 , Cn = boCo — -^^det for n = 1,2, 

where 
( br h2 

2bo bi 

0 2bo 

bn-i \ 

bn-2 bn-1 

bn-3 bn-2 (4.48) 

V 0 0 . . . 2bo 6 1 / 

Similar and more comphcated formulae for the other s can be computed. We can solve 

these equations by using the following computer program: 

cleqn:=proc(m,n) 

l o c a l inp 1 , i n p 2 , i n p 3 , i n p 4 , i n p 3 3 , i n p 4 4 , i n p 1 1 , i , i n p 5 , i n p 6 , j , i n p T ; 

inp5[-l]:=MULL; 

inp6C-l]:=NULL; 

f o r j from 0 to m do 

inplC-1]:=NULL; 

''The letters b, c and f stand for the first terms of a[i][j] for i equal to zero, one and two equivalently. 

*See Appendix D. 

43 



i n p l l [ - l ] : = N U L L ; 
inp44[-l]:=NULL; 
fo r i from 0 to n do 
i n p l [ i ] : = i n p l [ i - 1 ] , c l s e r ( j , i ) ; 

od; 
i n p 2 : = { i n p l [ n ] } ; 
f o r i from 0 to n do 
i n p l l L i ] : = i n p l l [ i - l ] , a [ j ] [ i ] ; 

od; 
i n p 5 [ j ] : = i n p 5 [ j - l ] , i n p l [ n ] ; 
i n p 6 [ j ] : = i n p 6 [ j - l ] , i n p l l [ n ] ; 

od; 
inp7:=solve({inp5[m]},{inp6[m]}); 
RETURM(op(2,[inp7])); 
end; 

Executing this program w i t h the command cleqn(m,n);, we get all the coefficients a'j wi th 

i < m and j < n. 

4.7 Semiclassical Calculations 

Now let us tu rn our attention to solving the equations (4.31) by the semi-classical proce­

dure, that is, up to order H in Minkowski space. In order (4.26) becomes 

n R{s) ^A^Wo + dx - T/M M = 0 (4.49) 

In the equation above 

where 

and 

« ' M = M ^ W - M - - f / ^ , ^ _ J - ^ ^ (4.50) 
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are of order fi ^. I f we write Wi — /(^o9^^ + CQC/)'^ + • • • ) ; iteratively compute correc­

tions to the classical coefficients bo, Co, etc. of WQ = J{bo(f>^ + C Q ^ ' * + ...) by substituting 

the leading order solutions into A5W0 and solving the 0{fi) equation for the corrections 

6 Q , C Q , - - - • These w i l l be given as functions of A . But f rom what we have said above, 

Wx as a solution of equation ( 4 . 3 1 ) approximates the exact vacuum state's logarithm. 

This approximation is refined when more terms of the Laplacian expansion are included, 

such that A can be taken to greater value. Of course an alternating series, such as the 

expansion of the Laplacian acting on W, which has been truncated at a certain order, w i l l 

have the same behaviour as the f u l l series up to a certain value of A . Beyond this value 

the last t e rm w i l l dominate causing the truncated series to jump to infinity. A clearer 

understanding of this is achieved by plot t ing the alternating series and reading f rom i t 

the value i t tends to, which should be a finite constant. 

From the Maple programs of the previous section we can construct the classical equations, 

solve them and then substitute the values in the Laplacian part of the equation. Let us 

see how the different re-summation techniques influence the outcome of the Laplacian. 

I n Chapter 5 we w i l l calculate the Feynman diagrams corresponding to the first order 

quantum corrections of the constants fe's, c's and so on. They can give us the exact values 

of the h corrections. For those few cases we can compare the results wi th what we get by 

applying the Laplacian on the truncated classical WQ. 

Some terms of the semiclassical equation are 

r ( I A / A / ° ° \ \ 

J \ \ V n= l / / 

/ A , / T / W 

- 8 M \ \ ) + -=606^ - f — 12co + V p'{n) c„ A " + 

[ - - f ^ g + -^{bocl + blco) + — 30/0 - f i : p'{n) U A" + 

^' ' ( - 4 - + + b'obi) + — + 2d,\ + ^ + . . .)U 

' T T A / T T TT \ i j ( ^ V " + ^oci) + ^ { ^ A + b\co) + — 1 2 / 1 + • • • ) + 
' T T \ / 7 r TT / 

'See Chapter 3. 
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16(606^ + 6^62)+ 1665̂ 61 , v ^ / rfiA e2A , 

• • • + 

. (n)^2 2 ( 6 ^ 6 t ^ + 6^6„_^) V A / 2 C 2 ( 4 - e „ ) A l U 
^ r ( n + l / 2 ) ^ TT i n! 3(n + l ) ! ' ' 7 P 

2 

• • • + 

— (2{k + l){2k + l )a^ + J2 P'i^) < ^"]] + 
^ V n=l / / 

••• = 0. (4.52) 

where k > 3, 6 M \ X ) = \ / A / 0 F i ? ( s ) l / / i 5 M 2 ( s ) , . f^(A) = i ? ( 5 ) ^ ^ ( 5 ) and the other 

symbols are the same as i n equation (4.31). For simplicity we w i l l refer to the Laplacian 

term w i t h 6„'s, as the 6-series, w i th c„ 's , as the c-series and wi th / „ ' s , as the /-series, 

which also apply to the truncated parts of them, up to a certain order. Since we know the 

value of the classical coefficients f rom the previous section, we can calculate one by one 

their first order corrections starting f rom the top of equation (4.52). The first equation 

^2^'^(A) + 2£^ + ^ (ibo + E p{n) 6„ A'^) ) = 0 

V n=l / / 

gives, after substituting^o 6„ = - 1 / ( 2 M 2 ' ^ - 1 ) ( ^ f ) and the expansion of £^{X) = l/2R{s) 

I,.^^/Jp/i27r)^p' + M^ given by 

^ ' ( ^ ) = ^ E M . ) A - + l / ^ (4.53) 
/ T T m=0 

where 

^^"' '^ '^ '"^ " (2m + iy{2m - l ) r ( m + l ) M 2 ™ - i ' 

that £^ is equal to zero. This holds for any power of A as the 6-series cancels order by 

order i n A the £^-series, reflecting the normal ordering condition of the Hamiltonian. This 

demonstrates a way to find the renormalisation subtractions; something also true for the 

mass counter-term as shown below. 

In graph"'̂ -'̂  (4.7) we have taken the expansion (4.53) wi th m = 11 and 21. We see that 

by taking more terms, the alternating series describes the exact function for larger values 

"See Appendix D. 

" I n the following diagrams we set, Mr = g = 1 for simplicity. 
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0.5 

n = 21 

Figure 4.7: The Energy graphs, for 11 and 21 terms. 

of A. We have seen at the beginning of this chapter that the energy is proportional to 

the inverse oi s. In the diagram we see that the energy tends to be proportional to the 

regulator A which agrees w i t h the previous result^'^ for A = I / 5 . 

The second equation reads 

4 / T / C O \ 

- 8 M \ \ ) + -^bob^, + - ^ 12co + ^ c„ A" = 0 
^ V n=l J 

(4.54) 

The expansion of SM (A), as given in (4.50), is 

47r \ M , 
m=0 

W here 
, , r (2m + 2)(-l)'"+i 

^{rn.Mr) 22-+i(2m -f- 3)r(m + l ) r ( m + 2)2^2^+2 

while its diagram is given in Figure (4.8) 

The c series diagram is given in (4.9) and their subtraction in (4.10), which has a finite 

value for A in an appropriate region. Diagrams (4.8) and (4.9) have been taken wi th 22 

"See Section (4.2). 
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Figure 4.8: The Mass graph for 22 terms. It is logarithmically divergent. 

0.06-h 

c-series 

0.04 

Figure 4.9: The c series graph for 22 terms. 
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0.02 + 

0 .01 

n=22 n=32 n=42 

Figure 4.10: The c minus the mass series graphs for 22, 32 and 42 terms. 

terms of the expansion while (4.10) has been taken wi th 22, 32 and 42 terms. From these 

we can read wi th in a margin of error the value of the Laplacian acting on the c series and 

calculate the first order correction, 63, f rom equation (4.54). 

To deduce this equation, as well as the other equations in (4.52), we have used the scaled 

field which contributes additional factors. W i t h the application of the operator 

R{s) the equations change f rom the fo rm wi th the unsealed field, but they lead to an 

equivalent equation which results in the same values for the quantum corrections. In the 

following we give values for the Laplacian term wi th the s terms f rom the scaled field, 

included, as well as the values f rom the Laplacian acting on the ansatz, W, constructed 

out of the unsealed field, (p The second kind of series are of the form (4.18) and 

the techniques of re-summation mentioned in section (4.3) are applied here. The error 

depends on where we truncate the series. The following diagrams show how this value 

changes as we include more terms, as well as using different re-summation procedures. 

For the /-series we have the diagram (4.14), constructed for 12, 22, 32 and 42 terms, 

^The two values are connected as can been checked from the small s expansion (4.17) 
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Figure 4.11: The c minus the mass series graphs w i t h R{s) + '2XR(s)s re-summation operator 

for 22, 32 and 42 terms. 

which eventually gives the value 0.001793. 

We can plot the result and read off the value to which the series tends. From the diagrams 

(4.10) and (4.14), we can get the suggested values for the "plateau" in each one. We wi l l 

distinguish the cases where there are even numbers of terms in the series, where the desired 

value is the max imum of the diagram, and an odd number of terms, where the value can 

be read of as its turning point (see Figure (4.13)). As we can see f rom the following tables 

the percentage error for the odd number of terms of the series approximating the actual 

value is smaller than the corresponding one for neighbouring even number of terms. This 

is because the series approaches the actual value f rom "below" and the turning point of a 

graph, like i n (4.13), has a larger value than the maximum of the neighboring series wi th 

even number of terms. 

For various number of terms we obtain the following Table for the Laplacian term as i t is 
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Figure 4.12: The c minus the mass series graphs w i t h the 5 —> re-summation technique for 2, 

4, 8, 14, 24 and 34 terms. 
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Figure 4.13: The c minus the mass series graphs for 11, 21 , 31 and 41 terms. 
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given in relation (4.54). 

Table 1 

# E v e n % # Odd % 

2 0.030629 31.7782 3 0.037381 16.7410 
4 0.036346 19.0455 5 0.038613 13.9962 
6 0.038993 13.1500 7 0.039999 10.9093 
8 0.040483 9.8302 9 0.040984 8.7143 
10 0.041413 7.7596 11 0.041677 7.1722 
12 0.042035 6.3737 13 0.042177 6.0588 
14 0.042475 5.3939 15 0.042549 5.2284 
16 0.042800 4.6700 17 0.042836 4.5900 
18 0.043049 4.1156 19 0.043062 4.0857 
20 0.043245 3.6781 21 0.043245 3.6783 
22 0.043404 3.3244 23 0.043396 3.3426 
24 0.043049 3.0326 25 0.043522 3.0616 
26 0.043645 2.7878 27 0.043629 2.8230 
28 0.043739 2.5794 29 0.043721 2.6180 
30 0.043819 2.3999 31 0.043801 2.4401 
32 0.043889 2.2438 33 0.043871 2.2844 

The first column denotes the number of terms of the series, the second the actual value 

of the Laplacian acting on the c terms of WQ and the th i rd is the percentage error of the 

truncated series w i t h respect to the correct value, l/(47r'^/'^) = 0.044897, read off f rom 

Chapter 5. The percentages have been given by the computer allowing more digits to be 

taken into account. From equation (4.54) and the above value which is inserted wi th a 

negative sign we get the first order correction 6Q = —l/8n. For the linear combination 

R{s) + 2XR{s)s of the re-summation operator acting on the c series we get Table 2. 

This combination has been taken to act on the Laplacian term constructed f rom the 

unsealed field tp. The scaled field, <fs^ provides -y/s terms combined in the expression, on 

which R(s) acts. From this procedure we get Tables 1, 2 and 3. Tables 2, 4 and 6 are 

produced f r o m the unsealed field expressions. In Table 2 the value we want to approach 

is l /(47r) = 0.079577; i t is connected wi th the one f rom the previous Table wi th the 

relation R{s)^/sA = A / ^ / T F . Here A represents the value we get f rom the combination 

R{s) + 2XR{s)s acting on an equivalent equation to (4.54) wi th the unsealed field, (p. This 
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differs f r o m the scaled field case, which contributes the factor -y/i as 

J d x i f K x ) = J dxip'^{x/^/s) = A / S J dx(p'^{x) 

Equivalent relations can be deduced for (^^, <p'^ etc. 

Table 2 

# E v e n % # Odd % 

2 0.059862 24.7747 3 0.073508 7.6275 
4 0.071004 10.7732 5 0.075483 5.1450 
6 0.075459 5.1757 7 0.077330 2.8245 
8 0.077509 2.5994 9 0.078371 1.5159 
10 0.078511 1.3396 11 0.078930 0.8131 
12 0.079019 0.7021 13 0.079230 0.4378 
14 0.079281 0.3725 15 0.079389 0.2369 
16 0.079418 0.1995 17 0.079475 0.1287 
18 0.079492 0.1076 19 0.079522 0.0702 
20 0.079531 0.0583 21 0.079547 0.0384 
22 0.079552 0.0318 23 0.079561 0.0211 
24 0.079564 0.0174 25 0.079568 0.0116 
26 0.079570 0.0095 27 0.079572 0.0064 
28 0.079573 0.0053 29 0.079575 0.0035 
30 0.079575 0.0029 31 0.079576 0.0020 
32 0.079576 0.0016 33 0.079566 0.0011 

Table 3 gives a similar result for the / series as we obtain f rom (4.52) wi th the value 

of convergence 0.001793. Taking account this value, equation (4.52) gives the quantum 

correction 4 = -0.020868. 
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Figure 4.14: The / series graphs for 12, 22, 32 and 42 terms. 
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Figure 4.15: The / series graphs for 8, 24 and 34 terms, by using the re-summation operator 

R{s) + 2XR{s)s. 
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Figure 4.16: The / series graphs for 2, 12, 16 and 26 terms w i t h the s ^ t"^ re-summation 

technique. 

Table 3 

# E v e n % # Odd % 

2 0.001224 31.7718 3 0.001488 17.0305 
4 0.001445 19.4046 5 0.001533 14.5415 
6 0.001551 13.5380 7 0.001589 11.3784 
8 0.001612 10.091 9 0.001632 9.0054 
10 0.001653 7.8492 11 0.001663 7.2688 
12 0.001680 6.2952 13 0.001686 5.9778 
14 0.001701 5.1692 15 0.001704 4.9975 
16 0.001716 4.3253 17 0.001717 4.2376 
18 0.001727 3.6754 19 0.001728 3.6375 
20 0.001737 3.1637 21 0.001737 3.1558 
22 0.001737 2.7533 23 0.001744 2.7635 
24 0.001750 2.4189 25 0.001750 2.4398 
26 0.001755 2.1426 27 0.001754 2.1697 
28 0.001759 1.9116 29 0.001758 1.9420 
30 0.001763 1.7164 31 0.001762 1.7483 
32 0.001765 1.5500 33 0.001765 1.5821 
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while the linear combination R{s) -\- 2XR(s)s gives 

Table 4 

# E v e n % # O d d % 

2 0.002391 24.7676 3 0.002930 7.8330 
4 0.002830 10.9659 5 0.003009 5.3387 
6 0.003015 5.1444 7 0.003094 2.6743 
8 0.003108 2.2148 9 0.003147 0.9856 
10 0.003159 0.6207 11 0.003180 -0.0385 
12 0.003187 -0.2824 13 0.003199 -0.6547 
14 0.003204 -0.8032 15 0.003211 -1.0217 
16 0.003214 -1.1031 17 0.003218 -1.2349 
18 0.003219 -1.2715 19 0.003221 -1.3519 
20 0.003222 -1.3606 21 0.003223 -1.4083 
22 0.003223 -1.4020 23 0.003224 -1.4264 
24 0.003224 -1.4166 25 0.003224 -1.4203 
26 0.003224 -1.4166 27 0.003223 -1.3994 
28 0.003224 -1.4166 29 0.003222 -1.3697 
30 0.003224 -1.4166 31 0.003222 -1.3357 
32 0.003224 -1.4166 33 0.003221 -1.3007 

Table 4 gives negative valued percentages corresponding to Figure (4.15). This is due to 

the fact that the re-summation operator R{s) + 2XR{s)s eliminates the next significant 

term to the actual value in the small s expansion, but changes the coefficients of the 

following terms. This causes the series to jump above the actual value. 

In Figures (4.12), (4.16), (4.18) we adopted the second re-summation technique studied in 

section (4.3), based on the substitution s t^. In these figures the oscillation character 

we deduced theoretically is revealed (see relation (4.22)). 

For the next series, which is the Laplacian-part of the coefficient of the (/?'̂  term, the con-
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Figure 4.17: The ^'^ series graphs for 22, 32 and 42 terms. 
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Figure 4.18: The ^'^ series graphs for s ^ t"^ resummation technique for 2, 6, 12, 22 and 32 

terms. 
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Figure 4.19: The '̂-̂  series graphs with the R{s) + 2XR(s)s resummation technique for 12, 22 

and 32 terms. 

vergence value is 0.014956. This gives f rom (4.52) the quantum correction 6̂  = —0.47.3478. 

Table 5 

# E v e n % # Odd % 

2 0.013263 43.5810 3 0 015462 34.2279 
4 0.015168 35.4759 5 0 015655 33.4070 
6 0.016268 30.7977 7 0 016344 30.4723 
8 0.017074 27.3697 9 0 017002 27.6770 
10 0.017717 24.6321 11 0 017582 25.2093 
12 0.018254 22.3479 13 0 018090 23.0459 
14 0.018715 20.3895 15 0 018539 21.1385 
16 0.019117 18.6785 17 0 018937 19.4431 
18 0.019473 17.1625 19 0 019294 17.9238 
20 0.019793 15.8044 21 0 019617 16.5523 
22 0.020081 14.5767 23 0 019910 15.3057 
24 0.020344 13.4585 25 0 020178 14.1660 
26 0.020585 12.4337 27 0 020424 13.1184 
28 0.020807 11.4893 29 0 020651 12.1510 
30 0.021013 10.6148 31 0 020862 11.2538 
32 0.021204 9.8016 33 0 021059 10.4186 
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while the linear combination R{s) + XR(s)s gives Table 6. 

Table 6 

# E v e n % # Odd % 

2 0 018329 30.9011 3 0.022349 15.7477 
4 0 021707 18.1663 5 0.023049 13.1059 
6 0 023274 12.2574 7 0.023873 10.0026 
8 0 024165 8.9013 9 0.024466 7.7656 
10 0 024724 6,7934 11 0.024885 6.1839 
12 0 025099 5.3795 13 0.025188 5.0424 
14 0 025363 4.3839 15 0.025413 4.1967 
16 0 025556 3.6552 17 0.025583 3.5542 
18 0 025702 3.1049 19 0.025715 3.0550 
20 0 025815 2.6783 21 0.025820 2.6591 
22 0 025905 2.3401 23 0.025905 2.3397 
24 0 025978 2.0670 25 0.025975 2.0779 
26 0 026037 1.8427 27 0.026032 1.8605 
28 0 026087 1.6560 29 0.026081 1.6778 
30 0 026128 1.4986 31 0.026122 1.5225 
32 0 026164 1.3646 33 0.026157 1.3893 

In the same way we can find the first order correction for all the coefficients. We can see 

f r o m the diagrams that the classical value of the coefficients, as well as their first order 

quantum correction decreases as the number of derivatives or the number of ^'s increases. 

Practically, we need only to calculate the first terms of the expansion of the vacuum 

functional 's logarithm up to the point of sufficient approximation for our purpose. 

4.8 Conclusions 

In this Chapter we studied the different ways in which we can extract the small s behaviour 

f r o m the large one, by using different techniques in order to minimise the approximation 

error. 

In general we wish to extract the value that the series tends to, w i th the least number of 

terms. Here we were able to calculate as many classical values for the c's and find the first 
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order correction for bo w i t h as great a degree of accuracy as we determine. However, this 

w i l l not be generally possible. When we want to consider the equations as a set, without 

considering any sort of perturbation expansion in the Planck constant h or the coupling g, 

we need the fewest possible terms and combined equations to solve, since its complexity 

and dif f icul ty increases rapidly when more terms are incorporated. By studying the tables 

above we conclude that the operator R{s) + 2XR(s)s gives better values than the simple 

application of R{s) on the scaled fields. However, i f we have many terms in the series 

we can use the second re-summation technique, which apart f rom the strong oscillation 

for small A, gives the correct values to a higher degree of accuracy (see Figures (4.17), 

(4.18)). 

By using these results we can choose the appropriate resummation method when we want 

to solve the Schrodinger equation for various models and in various ways (semiclassically 

or non-perturbatively). 
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Chapter 5 

Feynman Diagrams 

5.1 Introduction 

Field theory has been studied through the path integral formalism, wi th which, one can 

construct the generating functional, the propagators, and then be able to treat inter­

actions w i t h the help of perturbation. In this way you can calculate the desired cross 

sections without the need of solving a dynamical equation. A great simplification to these 

steps has been achieved by the Feynman diagrams and rules. These provide a pictorial 

representation of the physical process wi th a symbolic calculational meaning. 

As we have calculated the first order corrections of the (j)'^ theory wi th the use of the 

Schrodinger representation, we proceed to verify these results w i th equivalent calculations 

of Feynman Diagrams. 

5.2 Feynman Rules on the Plane 

Let us take the case of a free scalar field (f){x) on the whole 2-dimensional plane x, wi th its 

source J{x). The vacuum to vacuum transition amplitude of the field ( f ) in the presence 

of the source J is 

Zo[J] = j V(j)ex^^j SX[-CE{4>) +J{x)(j){x)]^ o^< 0,ooiO, -oo 
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where CE is the Euclidean Klein-Gordon Lagrangian 

1 

CE = ^idMd,cf>) + ~ f 

After using functional integral techniques we f ind 

Zo[J] = iVexp J J{X)AF{X - y)J{y)dxdy (5.1) 

where A'' is a constant which w i l l be absorbed in the normahsation, Ai?(x — y) satisfies 

( • + m')A;.(a;) = -b\x) 

which is called the Feynman propagator. Its analytic fo rm is 

/ 
-ikx 

(27r)2 J P + ^ 2 

wr i t ten i n EucHdean space, where P =^ kj + We can expand expression (5.1) as 

- 1 
Zo[J] = TV | l -F — I J{X)AF{X - y)J{y)dxdy 

2 r -.2 

J J{X)AF{X - y)J{y)dxdy 

J J{X)AF{X - y)J{y)dxdy 

1 
2! 

1 f-l_^^ 
^ 3! V T 

+ ... (5.2) 

This expansion has a suggestive pictorial interpretation. The second term in the curly 

brackets can be illustrated by the diagram of a particle generated by the source J at the 

point X, then propagated f rom x to y and then absorbed by another source at the point y. 

The other terms in the expansion, which are the n-ih powers of the same integral, can be 

represented by n particles propagating between these sources as the one described. The 

factors in front of the integrals should be inserted as symmetry factors of the diagrams. 

From (5.2) a fur ther important characteristic arises. By asking for a normalised Z as 

^ [ J = 0] = 1, Zo[J] becomes 

1 
Zo[J] = exp - - j J{X)AF{X - y)J{y)dxdy 

and can be interpreted as the generating functional of the n point Green functions 

S^'ZoiJ] 
T{xi,...,Xn) = 

For example we get 

6J{xi)...SJ{xn) 

T{X) = 0 

J=0 
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T{x,y) = -Apix - y). 

r{x,y,z) = 0 

T{XI,X2,X3, X4) = [Apixi - X2)AF{X3 - X4) 

+ AF{XI - X3)AF{X2 - X4) + AF{XI - X4)AF{X2 - X3) 

By construction, Z is the vacuum-to-vacuum transition amplitude in the presence of a 

source J. That is 

{0\Ti<f>{xr).4{Xn)m = 

which suggests 

SJ{x^)...SJ{x^) 

T ( x i , . . . , a , g = {0\Ti(f>(xr)..4{xr,))\0) 

J=0 

Interactions can be included in a similar way. For example we can use the Lagrangian 

(5.3) 
1 
2'' 4! 

where the last term is the interaction. The generating functional for a general interacting 

Lagrangian is 

Z[J] = N j V4>ex-p { - j{Co+C^nt - J(j>)dx^ 

where A'̂  is a factor which normalises Z[0] to be one. After some algebra i t can take the 

more tractable fo rm 

Z[J] = A^exp / 8 
int ^8J{z) 

dz exp i y J { X ) A F { X - y)J{y)dxdy 

which by expanding the exponentials can give perturbations in g and in h. For example 

Cint is proportional to g, so by expanding the first exponential we get a perturbation 

series w i t h respect to the coupling. The expansion wi th respect to h w i l l be revealed as 

we act w i t h the interaction te rm upon the second exponential, and is equivalent to a loop 

expansion of the constructed diagrams [21]. For example the 2-point function for (5.3) is 

given by 

T{XI,X2) 
6^Z[J] 

SJ{xi)6J{x2) 

-AF{XI - X2) - | A f ( 0 ) j dzApiz - X^)AF{Z - X2) + 0{g' 

while the 4-point funct ion is 

6^Z[J' 
T{XI,X2,X3,X4) = 

SJ{XI)6J{X2)SJ{X3)SJ{X4) J=0 
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3 A F ( a ; i - X2)AF{X3 - X4) - 3gAF{0) J dzAF{z - XI)AF{Z - X2)AF{X3 - X4) 

-g J dzApixi - z)AFix2 - z)AFix3 - Z)AF{X4 - z) 

Here the Green's funct ion A ^ is given again by 

and i t represents the free propagator of the theory. 

5.3 Feynman Rules on the Half Plane 

I n this case the Feynman Diagrams can be separated into two categories. I f we call surface 

propagator the one which has at least one leg on the boundary we can distinguish the 

Feynmam Diagrams into the free space ones and the remainder, which involves the surface 

propagator at least once. Thus, the connected graphs are either free-space ones, i f they 

involve free-space propagators only, or surface ones. 

Normalising the generating functional of Feynman Diagrams, is equivalent to subtracting 

all the vacuum diagrams wi th no legs on the boundary. This is a true statement to 

all orders in perturbation theory, and is a general property of normalised generating 

functionals [22]. Hence, we have only to worry about the Feynman Diagrams wi th legs 

on the boundary, which we are going to study below. 

To construct the generating functional for the half plane i t w i l l be helpful to use the 

vector bra-ket formalism. We w i l l use the t > 0 region, which wi l l call F wi th boundary 

(9r, defined by ^ = 0. Let us define the state ((/?| so that the field (f) and its conjugate 

momentum TT have the following action on i t 

{^\${x,0) ^ {^\^{x) (5.4) 

and 

The bra {ip\ which satisfies these relations can be analytically given by 
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where (Z)| is a state which is annihilated by 4>, that is i t satisfies the homogeneous Dirichlet 

boundary condition {D\(f)[x,0) = 0. We w i l l be interested in the inner product 

((^|e-^^|(^') = ( i ) | e / ^<^e -^^e - /^^ ' | i ) ) (5.5) 

f r o m which we w i l l get the generating functional. Turning to the path integral picture, 

relation (5.5) can be wri t ten as 

for which the boundary conditions (l>{x,0) = ^ ( x , r ) = 0 hold, as the functional integral 

has been constructed w i t h respect to the {D\ states. Taking T to inf ini ty and assuming 

that if' vanishes there, we get the generating functional for the boundary diagrams 

dx4"p—SE 
((/?|0,oo) = JV(f> el 

where |0, oo) stands for the vacuum state at inf in i ty and SE is the Euclidean action 

SE= f dxdt(l-dJdJ+lm'cj>' + Cint) (5.6) 
Jt>o \2 Z J 

In (5.6) d^i4'd^(f) denotes d1^ + dl<f) and Cmt stands for the interacting term. In an equiva­

lent way to the treatment of the "whole plane" we can find that the generating functional, 

Z [ J , (/?], for the interacting theory on the half plane wi l l be [13 

.2 JT JT 2 Jar Jar JdvJv exp 

Z[J,(f \ = A''exp 

(5.7) 

where d t' means that the t ime derivative acts on the left , OtGo d t' is equal to dtGoix, x') 

d t' for a::(or . t ' )g OT and a;'(or x)-^ dV f r om F. The Dirichlet propagator Go is given by 

Goix.y) = AF{x,y) - AF{S,y) 

where x = (a;°, x^), y = (y°, y^) and x = (—a;°, x^), and AF{x,y) = G(a;, y) is the Feynman 

propagator we used in the previous section. Now the logarithm of Z[ J , (/?], is the generating 

funct ional of the connected Feynman Diagrams. Z[J,ip]\j_Q, as defined in (5.5), is also, 

the vacuum functional , which satisfies the Schrodinger equation. In equation (4.31), what 

we want to calculate, is the coefficients of the expansion of the logarithm of Z[J, <i^]|j=0' ''̂  

local functionals. They can be determined f rom the connected diagrams calculated f rom 

W[J, (p] = In Z [ J , Lp]. We can choose these diagrams f rom the general ones generated f rom 
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(5.7). Calculating their amphtude without setting (p = 0 w i l l provide us wi th terms of 

the functional W[0, (p . 

Some of the Feynman diagrams wi th legs on the boundary are presented in Figures (5.1), 

(5.2), (5.3). 

Figure 5.1: Boundary propagators with both legs on the boundary. 

Figure 5.2: Four legged boundary diagrams. 
3 r.-^r—^- w ^-vti-^x: 

Figure 5.3: Six legged boundary diagrams. 

We can calculate the energy density f rom the diagram (5.1). Its amplitude is 

/ <p{x2)f{y2)—5—^ (5.8) 

We can see that the Dirichlet Green function in (5.8) can be wri t ten in terms of the usual 

Green funct ion as i t has legs on the boundary. This gives 

dGpix.y) ^ d{G{B,y)-G{x,y)) ^ dG{x,y) ^ g ( ( x i , x ^ ) , ( - y i , ^2)) _ 
dxi dx-i dxi dxi 

dG(x,y) dG{{-xi,x2),{yuy2)) _ 
dxi dxi 
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dGjx, y) dG{{-xi,x2),iyi,y2)) 

- ^ - ^ 3 ( 3 ; ; o = 
dG{x,y) ^ (9G((xi,X2),(yi,y2)) ^ 

dxi dxi 

JGix.y) 
dxi 

Hence 

d-'G^y) _ f d'p ,,2„ , ^ 
p2 + 

(5.10) 

/ ^ix2My2)^-^r- = / 7^ ' / ' (^2) (^(y2)2 'po( -po) 
Jx2y2 OXiOyi Jx2y2 [Zny 

As both legs of the propagator are on the boundary it is Xi = yi = 0. Acting on i t wi th 

the Laplacian 

X' y' , 2 < 1 ^ ^ 

we get 
d'GD{B,y) 

As / (/?(x2)(^(2/2)- ^ o 

2 f ( + 772̂  \ ^ 
TT U ~ 2 I 2 I 2 ^ P l ^ ^ 
27r J g 2 < l / 5 \ - I - + 772̂  / 

The first t e rm in the brackets is going to give inf ini ty after the pi integration. We can 

cancel i t w i t h a counter-term in the Lagrangian of the form —<p'^6{0) (see section (3.6)). 

The second term, after pi integration gives 

/ dqJq^ + (5.13) 

which is the energy density-^ we got in relation (4.3). The expansion of (5.11) wi l l reveal 

the b series included in W. 

We can calculate also, the amphtude of the diagram (5.2). I t is 

. f /^x .^.dGD{w,u)dGD{x,u)dGD{y,u)dGD{z,u) 

'We see that from this diagram we get two different kinds of infinities. The one due to the boundary and the 

other due to the contraction of the two legs of the boundary propagator, which gives the divergent energy density, 

similarly to the theory without boundaries. 

67 



As all the propagators have one leg on the boundary we can substitute instead of the 

Dirichlet Green functions, the usual ones as (5.10) suggests. This is 

f / ^ x /-̂ x ,^.dG(w,u) dG(x,u) dG(y,u) dG(z,u) 
•iw2,x2,y2,z2,u OWi OXi o y i Ozi 

16^ / ^ip{w)ip{x)ip{y)<p{z) I piqiritiX 
•Jw2,X2,y2,^2:U Jp,q,T,t 

pi(w-u)-p pi(x-u)-q pi(y-u)-T ^i(z-u}-t 

(5.15) 
(p2 + m^) (g2 + m2) (r2 + m^) {t^ + m^) 

where Jp = f ji^- Because one leg of each propagator is on the boundary w-i = xi = 

y^ = zi = 0. The u integration goes for f rom —oo to 0 and for U2 f rom —oo to oo. 

But the integrations of the momentum have limits — oo and oo so that wi th a change of 

variables we can substitute in the above integral dui... = | J^^dui.... Now we can 

perform the Ui and U2 integrations which w i l l give us the delta functions ^(pi + gi + 7'i +ti) 

and S(p2 + <?2 + i''2 + ^2)- Put t ing these back in (5.15) we get 

9 / ^H'^) "pix) Hy) "fi^) L^A 
Jw2,X2,y2,Z2,U •^P,9i'' 

(-1) Piqiri{pi +qi + r^) e ' ' ( « ' 2 P 2 + x 2 ? 2 + j / 2 r 2 + ^ 2 ( - P 2 - 9 2 - r 2 ) ) 

[p^ + m2) (^2 + „ ,2) (^2 + ^ 2 ) ( ( ^ j ^ g ^ ^ r ^ y ^ (p2 - f 92 + ^2)^ + m^) ^ 

Now we can make pi, qi and r i integrations to get 

9 / ^'f^M'p{x2) (p{y2) f{^2) / { 

''W2,X2,y2,Z2,U •'P2,<l2,r2 

(̂  — \ ^ TT'^ ( ^ 2 P 2 + ^ 2 9 2 + 3 / 2 ' ' 2 + Z 2 ( - P 2 - 9 2 - ' ' 2 ) ) 

/ / , , =} (5.16) 

^PI + m^ + ^ql m2 + + w? ^ yj{p2 + q2 + r2f + w? 
Act ing on (5.16) w i t h the Laplacian given in (5.12) we get 

/
( [ [ Qi{x2-W2)q2 

y y ^{W2)^{x2) y _ ^ (5.17) 

From this amplitude we can calculate the coefficients of the terms c '̂" \ x ) . What we 

have to do is to expand the ^{x2) funct ion in (5.17), in its variable 2:2, so that i t gives 

.2n 
{2n ip^''^\w2) + ... X 

i(x2-W2)q2 

(5.18) 
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where the odd terms become a total deferential and vanish under the integral. The first 

te rm we get is the coefficient of (p'^{x). I t has the form 

dp 1 
J 2TT 

For 5 —> 0 the integral diverges, as i t needs the mass counter-term (see [12]). In short, 

the finite term is going to be 

dp f 1 1 \ [ ^ 
J 2TT 

p2<l m 

The general te rm includes derivatives of a delta function 

1 

1 

{X2 - W2f''e'^^'-'"'^^Hx2 = / —e'("^-"=''^da;2 

Also in (5.18) the fields term becomes 

J Cp{w2) ip^^''\w2)dw2 = ( - i r / <f^''^^dw2 

so finally by substituting back to (5.18) we get 

We can calculate all the coefficients of the corrections of the semiclassical approach for 

the terms ^ in the W[ip] local expansion. This is done by expanding (5.19) for each 

n i n the large 5 region. For example, for n = 0 we get f rom (5.19) 

Qg [ ^ \ x ) [ ^ - = i = . (5.20) 

Expanding the integrand for small p and performing the p integration we get a similar 

expression w i t h the one obtained f rom the action of the Laplacian on the Cn / ŷ v̂?̂ "̂  ^ 

terms by substituting the values of c„'s and collecting the coefficients of / t ^ ^ as in (5.20). 

As we have seen in section (4.7) this is divergent for 5 —> 0 and i t needs the mass counter-

te rm subtraction to give the desired finite result. The fo rm of the mass counter-term is 

given in (4.50) and combined w i t h (5.20) gives 

/ f dp f 1 1 \ 

Expression (5.21) gives us the possibility to calculate the exact value of the l imi t ing case 

5 ^ 0 . By expanding (5.21) for small p we can perform the p integration wi th integration 
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l imits —oo to oo, i.e. for 5 = 0. By fixing the appropriate factor in order the expansion of 

(5.21) is identical to the c-series minus the mass counter-term we find the value l / (47 r ) . 

Similar treatment for the coefficient of / t/j'^ results the value 0.014956. 

Let us tu rn our attention to the diagram of Figure (5.3). To calculate the Laplacian terms 

of the Schrodinger equation wi th four ( '̂s we need to calculate the sum of the amplitude 

of the second and th i rd topologically distinct diagrams presented in (5.3), which are 

produced f r o m the action of the Laplacian on the first, bearing in mind their symmetry 

factors. The amplitude of the first diagram in Figure (5.3) is 

dGoia, k) 

g- / ^^H>{o.2)'p{b2)v{c2)ip{d2)'p{e2)v{f2)^ 
'a2,b2,C2,d2,e2j2,k,l 

dai 

dGoib, k) 

a i=0 

dGoidJ) 

dbr 

dGD{c,k) 

6i=0 dci 
GD{k,l)x 

ddi 

dGnie, I) 

di=0 dei 

c i=0 

d G v i f J ) 

ei=0 

(5.22) 
/ i = 0 

The application of the Laplacian on (5.22) w i l l produce the other two diagrams and finally 

w i l l result for the term 

dp s / f T T + 4 2 / 4( . [ dp VP' + 1 + 4 
(5.23) 

whereas for / (p'^(f' i t reads 

r / 2f ^ ,21 ^ [ bp- + 2^ + -I'L^Jp^ + 1 + p V p ^ + 1 

- I 6 X ^ ( - ) ^ ( - ) X . ^ ^ / ^ ( V P - + 1 + 2)2(V-P-+ 1 + 1)3 (^-2^) 

I n both relations m is set equal to 1. After adjusting an appropriate factor in (5.23) to 

match the corresponding / series we obtain the value for the l imi t 6 —> 0 to be 0.003178. 

By developing these analytic expansions of the diagrams we achieve to show the validity 

of the results obtained f r o m the modified Schrodinger equation (4.31). Additionally we 

are able to see for these few cases the s dependence of the functions we have to re-sum. 

They are analytic for any complex valued s apart f rom the real negative axis. I t w i l l be 

interesting to study the s dependent term of expression (5.20). I t reads for m = 1 

dp-
1 1 

^„ - = 2 \ f s — \ / l — 5 + arcsin h —p 
p2<i/s V P ^ + 1 + 1 V 

w i t h the small s expansion 

- 2 + 21n2 + l n - + 2 V ^ - ^5 + -^^ 
s 2 16 48 

5^ + ... 
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From there we see the logarithmic divergence which is subtracted by the mass counter-

term. Also, i n this expansion apart f rom In 1/s and A / S terms the rest are integer powers 

of s, which w i l l be ehminated i f we act w i th the re-summation operator R{s). Acting wi th 

the operator R{s) + 2XR{s)s on the renormalised series (wi th the logarithmic divergence 

subtracted) we eliminate additionally the square root term and we are left wi th the con­

stant value —2. However, this w i l l not be true for the coefficients of / ^ wi th n > 1 

as the delta funct ion derivatives in (5.19) wi l l produce higher half integer powers of s. 
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Chapter 6 

The 0{N) a Model 

6.1 Introduction 

In the following chapters we are going to study the 1 + 1 dimensional 0{N) a model. 

Our interest i n the 0{N) a model relies upon the fact that apart f rom its usefulness 

as a simplified gravitational model, shares many features wi th Yang-Mills theory. They 

are both conformally invariant in the classical level, but they generate mass quantum 

mechanically which breaks their conformal invariance. Also, they are renormalisable 

23], asymptotically free, and have large-A'' expansions [24]. However, the a model is 

much simpler to work w i t h so that, features like the mass generation can be explicitly 

demonstrated wi th in the large-A^ expansion, as we wi l l see in the following. 

In [12], a new method is proposed for solving the eigenvalue problem for the Hamiltonian 

of massive quantum field theories that are classically massless. I t is based on the version 

of the Schrodinger equation we studied in Chapter 4. As we have seen, the equation 

acts directly on a local expansion of the vacuum functional. In the following we w i l l see 

the construction of the 0{N) a model Laplacian, which is the principal ingredient in the 

Schrodinger representation approach, acting on local functionals. 
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6.2 Geometrical View 

Through studying the Harmonic Maps of C. Misner [25] a better understanding of the 

geometrical concepts of the a model as well as other nonhnear theories can be obtained. 

The most important objects in these theories are the two manifolds where the mapping 

is taking place. Let us name them M and M'. The first structure we demand for them 

is that they be pseudo-Riemannian manifolds; that is, they admit a pseudo-Riemannian 

metric g that satisfies the following axioms at each point p of the manifold 

(z) gp{U,V) = gp{V,U) 

(ii) i f gj,{U, V) = 0 for every U € T^M then V = 0 

We can construct related coordinate systems for each one. I f x^ parametrises the manifold 

M and (f)"^ parametrises the manifold M' and we define M' to be generated f rom the set 

of all possible values of some field 4>, then the map is 

(f>:M-^M', x^ ^ <^^(x^) = (^^. 

We require the field to be smooth and infinitely differentiable. The metric of each manifold 

w i l l give rise to the invariant lengths 

ds^ = g^^{x)dx>'dx'' for M (6.1) 

dL^ = GAB{4>)d(t>^d(t>^ for M'. (6.2) 

Usually M is given the fiat Minkowski or Euclidean space wi th the metric g having the 

appropriate fo rm. However, i f we ask manifold M' to be curved then the metric G has a 

nontr ivial fo rm which corresponds to a nonlinearity for the field (f). In terms of relation 

(6.2) this is expressed through the fact that there is no reparametrised metric G for which 

the infinitesimal element dL"^ could be reduced in linear parts, for a linear combination 

of fields c i ^ i + C24>2 taking the place of the field^ in (6.2). These maps wi l l be called 

Harmonic Maps providing they satisfy the Euler-Lagrange equations of the variational 

principle 81 = ^ for the action 

/ is the action we are going to use wi th r̂, a 1 + 1 dimensional Minkowski metric. 
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In the following section we w i l l see how this framework wi l l help us to understand some 

physical consequences of the short and large wavelength cases. 

6.3 Short-Large Wavelength 

The model described above has a very interesting structure when i t is quantised. Because 

of its non-linearity i t gives characteristics similar to the ones we have in Yang-Mills or the 

Einstein cases. What we ask for, is that the quantum theory of a field cj) be defined on a 

two dimensional Minkowski space, w i th values on a compact Riemannian symmetric space 

of positive sectional curvature which for simplicity we w i l l choose to be an A'̂  dimensional 

sphere. 

To see how this model behaves for short and large wavelength let us make a lattice in the 

spatial Minkowski direction w i t h sites Xn, where its nearest neighbours wi l l be called Xn> 

and are set at distance A = Ax apart. We can write the action (6.3) in the form 

|2 

- |V<̂ 1|' dt 

where 

\mf = GAB{<f>)d<f>''d(l>^. 

When this action is approximated on a lattice this becomes 

1= dt 
ihc ^ ^ / 1 
2i7?^b dt 2A-

We have to give an interpretation for | | ^ i — <?!'2i|- An obvious one is the least geodesic 

distance between these points on the Riemannian space, i.e. 

Wh - 9!>2|| = d{(j)^,(f)2) 

However, we have to have in mind that the target manifold is a compact one, so that i t 

has a finite volume or finite diameter. This makes the lattice interpretation of the spatial 

derivative of the field ( j ) finite as can be seen in figure (6.1). The maximum distance that 

the field ( f ) can map to the lattice distance A is the diameter of the target manifold, let 

us name i t d. As the mapping is continuous, taking smaller distances on the lattice w i l l 
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Figure 6.1: The mapping from the lattice to the sphere. 

result i n mapping fractions of the distance d. Hence 

- <^2i| < d (6.4) 

But the uncertainty principle transforms (6.4) to a lower bound for the conjugate mo­

mentum of the field (/>, which is defined by 

- 1 ^ 

where C is the Lagrangian of the action / , and satisfies the commutation relation [(fin, Pm = 

i^nm- The Hamiltonian corresponding to (6.3) is 

2 \ 2 

H 
he /" L^ V 2 1 

\ ^ / ^ n' 

Approximat ing even further, by considering the nearest neighbours interactions significant 

(as the others behave like free field modes) i t becomes 

H^2 = I ^ A 

Uc 

V 

' T 2 \ 
^ 2 . , , ||2 
— 1 p + 0 - ( ^ o | | 

where is fixed (close neighbours in the Minkowski space does not mean necessarily 

close mappings in the Riemannian space). Since ||(/' — ̂ /-olP is bounded, the behaviour of 

the quantum system (i.e. the pattern of the eigenvalues) depends upon the dimensionless 

number = A'^jl?. Two l imi t ing cases have great interest. The J 2 > > 1 and J"^ « \ 

or equivalently A 2 / L ^ > > 1 and A 2 / L ^ < < 1. For all modes wi th A 2 / L ^ < < 1 the 

interaction te rm can be neglected, since the space derivative terms in the action are 

negligible and our system has strong quantum effects. But for A ^ / L ^ > > 1 the free field 

behaviour results (large momentum). The case A'^/\? < < 1 can be interpreted as a slowly 

moving field due to its large wavelength. This makes, as mentioned, the spatial derivatives 

small or negligible and our theory behaves as an ultralocal in first approximation (that 

is the eigenstates are only functions of the co-ordinate x and the field ^ ) ; no spatial 
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derivatives appear, only time derivatives. In a better approximation one can construct a 

local theory which takes into account eigenstates which are a local expansion of spatial 

derivatives of the field </> up to a certain order. The following chapters are involved with 

local expansions of the field <j). 

6.4 Mass Generation 

The 0(A'') a model is conformal invariant at the classical level (see Chapter 8). However, 

i t generates mass when it is quantised. This shared feature between 0(N) a model and 

Yang-Mills theory is one of their similarities. We are going to construct this procedure 

for the simple case of the two dimensional nonlinear 0{N) a model. 

The action of this model is 

S = - ^ j dadr g^, ( i ^ i ' ^ - z'^z"") (6.5) 

2: is a field with A'̂  components, which depends on a and r , the space and time coordinates 

respectively. It is constrained hy z- z = a"^ which retains the 0{N) symmetry in the target 

manifold. The summation convention z • z — z^^z^, where jj, runs from 1 to A'̂ , is used also 

in the following. The generating functional Z can be written as 

Z = f Dz{x) (llS{z{xy - a')) exp ( - ^ f d?xd.z^d'z^ (6.6) 

where the constraint has been inserted as a delta function, which with the application of 

the Lagrange multiplier A, introduced as: 

n KA^f - «') = n f j ' ^ exp{X{z{xf - a^)} = J v X e x p ^ SxX{z{xf - a')\ 
X X 

(6.7) 
makes Z to be 

Z = VX Vz{x)exp ( -— / d\ d.z^d'z^ + X{z[xf - a") ] (6.8) 

where A is a function of space and time coordinates. This is the elementary scalar field 

which will break our symmetry, that is the conformal symmetry of the a model, by 

acquiring a non-zero expectation value. 
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We can perform the z functional integration, which is a standard Gaussian integral, and 

will result 

Z=\ VXexA-— \ d^x\a} --logdtt\\-d''^Xa'l) (6.9) 
Jc-ioo I 2a J 2 J 

The logarithm of the determinant can be represented by the Feynman graphs of Figure 

(6.2) where the dashed lines correspond to the A field (hke interaction) and the z field is 

o • o • d • d •• 

Figure 6.2: Diagrammatical expansion of logdet\\ - 5̂  + Aa^||. 

represented by the solid line. The propagator ai z isl / . While the infrared divergence 

appearing in, is taken care by the theory itself, we have to insert a cut off for the ultraviolet 

one. 

Passing to the momentum representation we expand the A field around zero momentum 

or in other words, we approximate the above integral around the saddle point of the A 

field. At this point we will demand our theory to be well behaved for large A'̂ . This 

reflects, as we will see, in making the A field to have a finite expectation value. 

From the graph (6.2) it is obvious that the derivative of the logarithm of the determinant 

with respect to A is the Green function 

^G{x,x-\) = ^^^logdet\\ - + Aa^ll = ^ (6.10) 

where the second equation defines the saddle point of relation (6.9). As can be seen by 

the mathematical identity ^ 

8logdetA = 6TilogA = TrA-^8A (6.11) 

the Green function evaluated at two different points x and x' is 

G[x, x'- A) = {x\{-d'' + Aa^)-^\x') (6.12) 

and in momentum space 

^or f r om Figure (6.2) 
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so that equation (6.13) becomes for x — x' 

Na^, Na f d^p 1 , , 
_ G ( , , , ; A ) = _ / ^ - ^ (6.14) 

which after the insertion of a cut off A we finally have 

\ N a J 

where A is the saddle point value of the field A(a;). The square root of A can be interpreted 

as the mass which is generated via the A field. The 1 / a factor in front of the action is the 

coupling and a is the radius. They are connected as a ratio (i.e. for large radius -small 

coupling and via-versa) a connection which can be also read from the action (6.5). But 

the product a times N is constant as N goes to infinity so that expression (6.9) is totally 

proportional to N. That is, the saddle point equation demands the part of the action 

proportional to N to be zero so that we have a good behaviour of the expansion for large 

A .̂ 

6.5 0{N) a Model and Schrodinger Representation 

We can construct the Schrodinger representation for the 0{N) a model as a generalisation 

of its quantum mechanical analog (see [26]). Consider a non-relativistic particle of mass, 

m, moving on the A^-dimensional sphere with co-ordinates z{t) at time r. For g^^ the met­

ric of the sphere with radius a we can define the particle's action as 5 = m/2 / drg^^z^'-z'' 

which is invariant under the rotation transformations on the sphere. The correspond­

ing Hamiltonian in the Schrodinger representation is H = —l/(27n)A, where A is the 

Laplacian on the sphere with eigenfunctions the spherical harmonics. 

Considering the generalisation of this quantum mechanical case in field theory, we insert 

another spatial dimension a, which can be thought as parametrising a curve on the sphere. 

This curve takes the place of the particle in quantum mechanics. The 0{N) a model is 

then defined as the infinite dimensional theory of a particle on an N dimensional sphere 

parametrised by the function z'^(a^ T) as the variable r varies. We ask the {a, r ) space to 

be Minkowskian. The action of the theory has to be a scalar with respect to the Lorentz 

transformations and also to the reparametrisations on the sphere. So we can choose it to 
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S = ^ J dadrg.^ii^i'- - z^z'') (6.16) 

where ' and • denote differentiations with respect a and r respectively, and a is a coupling 

constant. 

Turning to the Schrodinger Representation we take z((j, r ) to be diagonalised at r = 0 

satisfying the relation 

z^{a,Q)'^[z] = z''{a)^ 

for ^ the Schrodinger wave functional and its conjugate momentum 7r(a, r ) to be at r = 0 

TT^{a)m = iaD^{a)^! (6.17) 

so that the equal time commutation relation 

[z^{a), 7r,(a')] = ia8^^8{a, a') (6.18) 

is satisfied. In (6.17) the differential operator is defined with respect to a covariant 

differentiation whose meaning and structure will be given later on. Though, as z'^ is a 

scalar T)^{a) takes the usual functional derivative form, S/Sz''(a). From (6.16) we can 

read the Hamiltonian 

+ dag.J'^z^ (6.19) 

where A is now the Laplacian constructed from an inner product on variations of the 

co-ordinates 

{6z,6z) = J dag^1^6z^6z" 

The type of tensor we deal with are the ones with indices the finite valued fj,, v and the 

infinite valued cr. Because of the different a variables appearing in our expression, as in 

(6.18), we need to make the distinction between the infinite component tensors (denoted 

in the following as bold-faced), which are used for the description of the a model, and 

the ordinary tensors on . Then g ^ i ^ 2 ( ^ i > ^ 2 ) = 9f^iii2{^{^i))K^i - ^^2) where we can 

treat the pair (/ii,(Ti) as a single index, as well as {112,o'2)- Hence, g can be considered 

as a two-indexed tensor. Its inverse is g^^^^^cri,0-2) = g''^'^'^{z{ai))S{ai - (72) so their 

contraction gives 
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where I ^ ^ (^CTI, ( J 2 ) is the infinite dimensional Kronecker delta and it is also equal to the 

functional derivative of z^^{a2) with respect to z'^'^{ai) 

[z^{a),TT,{a')]=taV^{a,a') (6.20) 

A total Riemannian geometrical interpretation of this infinite dimensional model would 

ask for a covariant transformation of g and I under the general co-ordinate transformations 

z^ z'^{(j) where i is a functional of z, i.e. it depends on the entire curve z = z{a). 

However, the utility of this for quantum field theory is not clear. But we can restrict 

ourselves to the rotation transformations in the internal space. Invariance of the theory 

with respect to them underpins its renormalisability [23]. These are rigid co-ordinate 

transformations, for which the shape of the curve is not important. So we can take 2'^{cr) 

to be a function of z''{a) i.e. depending on a specific point of a on the curve. Under 

this restricted class of transformations a finite dimensional vector V^{z) on may be 

thought of as an infinite dimensional vector V ' ' ( ( j ) = V'^{z[a)). 

6.6 Operators on 

The momentum operator we used in the commutation relation (6.20) has to be covariant. 

It is also needed for the Laplacian appearing in (6.19). Given the infinite dimensional 

metric we can follow the usual construction of the Levi-Civita connection, D , which will 

transform covariantly under general co-ordinate transformations and therefore under their 

restricted class of rotations. Thus, if i t acts on a scalar will reduce to the usual functional 

derivative. For an infinite dimensional vector V ^ I ( ( T I ) we get 

D , , ( a 2 ) V - ^ ( c T 0 = + / dasT>;,lJa,,a2,as)V^^{as) (6.21) 

where the infinite dimensional Christoffel symbol is related to that on 5"̂  by 

mja,,a2,as) = 6{a^~a2)6{a2 - as) T^^.M^'^)) (6.22) 

If we apply this to a vector that depends on a and z[a) but not on its derivatives (i.e. it 

is ultra local), then it is straightforward to compute 

D , , ( c 7 2 ) V « ( a O = (D,,V^^)U^,,)S{a,-a2), (6.23) 
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where D is the covariant derivative on S^. Similarly we can compute the covariant 

derivative of z''^ as 

D,,(a,)z'"^(<Ti) = S-^l 5'{a, - a,) + ( F - ^ / " ) | .( . , , 6ia, - a,) (6.24) 

with F the finite dimensional Christoffel symbol. We can define a finite dimensional 

intrinsic derivative 7) = d/da - j - z'^D^ which maps finite dimensional vectors to finite 

dimensional vectors. Hence we can use it to define new infinite component vectors as 

V^Y^ia) = {VVrU^^ (6-25) 

The tensor I [ ^ ^ ( ( T I , ( T 2 ) is an element of the product of the tangent space at z[ai) and the 

co-tangent space at 2 ( 0 - 2 ) . The intrinsic derivative with respect to CTI acts only on the 

( ;Wi , ( J i ) index, so it gives 

P U , I « ( a i , a - 2 ) = 8^1 8\ar - a,) + (F^^z'"] |,(.,) 8{a^ - a,) = Yy,,{a,)z''\a{). (6.26) 

Similarly the intrinsic derivative with respect to (72 acts only on the (/42, (T2) index to give 

T^UKM^^-^) = - D , , ( a 2 ) z " ' ^ ( < 7 i ) (6.27) 

Since z'^ — T)z'^(a) this implies that [D,D]2^ = 0, so that this commutator also annihi­

lates any ultra-local scalar. For the following it will be useful to evaluate this commutator 

when it acts on vectors. If is ultra-local then the commutator [D^j(cri), X l̂o-J V'^^((r2) 

becomes 

D , , ( ^ V - ( a 2 ) + z'^D,Y,,ia2)^ - ^ ( D , , V - ^ ( . T 2 ) ) - z"^D, {B,,Y'-{a2)) = 

D / ^ i ^ ^ ' ' ( ^ 2 ) + ^ ' ( ^ 2 - <T0iP«V-^(<72) + z'^B,,D,Y^^{a2) - D , , ^ ^ ^ ^ ( ^ 2 ) -

8'icr2 - a^)D,,Y^\a2) - z'^^ D ,,Y^^ {02) = 

z'^ {T>,,{a,)D,Y^\a2) - D,B,,{a,)Y--{a2)) = 

z'" {D,,D,V^^ - D,D,,V'^^)l^^^^ 8{a, - ^ 2 ) = 

z'n[D,,,D,]V-^)l^^^^8{a,-a2) = z'^ ' ^^V '^ ) ^ 1 - - 2 ) ^ 

[D,,(aO, I^I .J V - ^ ( a 2 ) = z'^{a^) { R . ^ . ^ V ^ ) ^ ( ^ 1 " ^ 2 ) (6.28) 

where R is the finite dimensional Riemann tensor given by [Dfj_,Dx] — Rxfj^fV''. On 

the sphere it takes the form Rap-yS = {ga-ygps - Qp-ygas)!"? while the Ricci tensor is 
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Rps = g^^Rap-yS = ^^^9/36 = kgps- For the vector = z'^ the previous expression 

becomes 

[D,,(aO,I>U]z'^^(<T2) = ^ ' > i ) z ' \ ( 7 i ) i 2 , , ; , 1 . ( . , ) % i - < ^ 2 ) . (6.29) 

The Laplacian given in (6.19) as 

A = J da,da2g''''''{a^,a2)'D^^{ar)B^,{a2) = J dag^^'^'BM^M (6-30) 

is not well defined because the two functional derivatives act at the same point a. Also 

the determinant of the infinite dimensional metric g is ill-defined as the integral on its 

diagonal (Ji = a2 gives infinity. We can get around this problem by defining the Laplacian 

to have the regulated expression 

A , = 1 da^da2G>'''''{a^,a2)B^,{a,)-D^,{a2). (6.31) 

The Kernel, G, can be determined by a number of physical requirements. We will see 

that this is possible at least to leading and next to leading order, when the Laplacian acts 

on local functionals. Firstly we require that it is a regularisation of the inverse metric, so 

we will assume that it depends on a cut-off parameter, 5, with the dimensions of squared 

length, and takes the form 

G>^^^^{a^,a2) = gs{cri-a2) K''^'^{a^,a2;s) (6.32) 

where ^s(cr i — ( J 2 ) —> S{ai — a2) as s 0, and K is expandable as a power series in positive 

integer powers of s so that it has a finite hmit as s goes to zero. Thus K = Yl'^=o KnS'^ 

and IW''^{a,a) = ( / ^ " ^ ( ^ ( ( T ) ) so that 

limG^^^^ ((71,(72) = g ^ ^ ^ ^ ( ( 7 i ) % l - ( 7 2 ) . 

5— 

To preserve the invariance of the theory under internal rotational symmetry the kernel, 

G, must be a second rank tensor under the restricted class of co-ordinate transforma­

tions. Finally, since we work in the Hamiltonian formalism, Poincare invariance must be 

imposed, by demanding that the generators of these transformations satisfy the Poincare 

algebra. 

6.6.1 Poincare Algebra 

Let us study the Poincare algebra by ignoring the problem of regularisation for the time 

being. The Poincare generators are the Hamiltonian, given in (6.19) which generates time, 
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T, translations, the momentum P = f daz''^'D\[a) which generates space, a, translation 

and the Lorentz generator L = —M + N, where 

daag^^^^ D , , (a)D, ,(a) , = ^ / da ag,,,,z'^^ z'^^ (6.33) 

which generates Lorentz transformations in the (cr, r ) Minkowski space-time. Formally, 

operators L, H and P satisfy the Poincare algebra 

P, H] = 0, [L, P] = H, [L, H] = P. (6.34) 

We require that this algebra holds for the regularised operators. The momentum operator 

does not need to be regulated. From the regularised Laplacian (6.31) the Hamiltonian 

acquires a cut-off dependence, Hg. We have seen in Chapter 4 that for the scalar <f'^ 

theory (see also Symanzik [13]) the Schrodinger representation wave-functionals have a 

finite l imit as the regulator is removed, and since the Hamiltonian generates displacements 

in T it has a finite action on these wave-functionals. Thus the limit as s ^ 0 of i / ^ ^ exists 

and is what we mean by the Hamiltonian applied to ^ . We assume that this property 

of the Hamiltonian also holds for the 0{N) a model once we have made the radius, a, 

depend appropriately on the cut-off, s. Similarly the cut-off dependent Lorentz operator, 

Ls, should have a finite limit when applied to the physical states. The commutator 

L,P] = H implies that L should be regulated with the same kernel as so we replace 

in (6.33) the operator M by 

/ da,da2^^^^G^^^'{a^,a2)Ty,,{Gr)Ti,,{a2) = Ms (6.35) 

The regularised versions of the relations (6.34) impose conditions on the Kernel when 

acting on local functionals i ^ . For example the regularised version of {[L^H] — P)F = 0 

is 

^ [ - a M , , + a-^A^, -aA,^ + a-^v] F = PF 

as 51 ,^2 —»• 0. We demand that this equation holds order by order in 1/s up to order zero. 

These are the terms that, in the absence of a regulator, involve two functional derivatives 

at the same point on a single local functional. The terms with positive powers of s will 

disappear at the limit 5 ^ 0 . They are equivalent to the 0{s'^) terms with ?̂  > 0 in 

expansion (4.17), which we treated with the various re-summation procedures in order to 

extract the desired zeroth order term. Thus, by requiring [Ms, A ^ ] ^ = 0, as a restriction 

for the Kernel, and by ignoring the positive powers of s in the intermediate steps of the 

calculation we obtain a better approximation for the first term of the expansion (4.17). 

Also we demand M^V = ^ and A^A' = 0 
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6.6.2 Local Expansion 

As we have seen in Chapter 4 we are interested in constructing the Schrodinger equation for 

slowly varying fields. This allows us to expand the vacuum functional in local functionals. 

For the 0(N) a model they are integrals of functions of a, z{a) and a finite number of 

its derivatives at the point a. In order to construct the kernel G, we will consider the 

conditions that arise from applying the regularised form of (6.34) to such test functionals. 

It will be convenient to order them according to the powers of V. If we consider the result 

of the action of the two functional derivatives from A (or M) on a local test functional as 

a differential operator of a acting on a delta function, then the order of the operator, that 

is the biggest number of covariant a derivatives acting on the delta function, depends on 

the highest number of differentiations on the r̂'s used to construct the local functional. 

This operator acting on one of the a arguments of the Kernel, via integration by parts and 

setting its two arguments equal to each other, with the application of the delta function, 

will demand the use of more terms of the Kernel expansion with respect to 5, depending 

on the order of the operator^. 

In section (4.2) we showed that for a scalar field theory a special form of the Schrodinger 

equation is required to be applied to the expansion of the vacuum functional, in terms 

of local functionals, as the local expansion does not have the proper cut-off dependence 

for the subtraction of the appearing singularities. However, by studying the analyticity 

properties of the Laplacian it was shown how to re-sum the cut-off dependence of Aŝ P so 

as to be able to get the correct small-5 behaviour. We assume that such a re-summation 

may be performed here. 

6.6.3 First Order Calculations 

The first kind of local functionals we are going to use are of the form Fn = J da 

f{z{a),a)^^,„^^ z'^K..z'^"- where / is ultra-local. When A^ is acted upon Fn its two 

functional derivatives will act on the z''^\..z'^" to generate a second order differential op­

erator acting on 6{ai - (72). We can express then A^Fn, in terms of the second derivatives 

^and in conclusion on the order of the test functional. 
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of the Kernel evaluated at co-inciding points. We treat F„ as a scalar so that 

° > ) ^ " = ^ = 

Jda{DJ,„„,^z'^\..z"'-8i^-a) + 

n/p....p„ V\~I^^^ia-a)z"'\..z"'-}^ 

{D,f,,...,J^K..z'-- - nV{f,,,...,J^\..z'^-))l 

which is an infinite component co-vector. Using the commutator (6.28) we get 

A , F „ = jda {G^^[a,a){D,DJ,„.,,^-nR^^^, ' / A P , . . . P J ^ ' " ^ + 

n I da {{VI + Vl,)G'^^{a,a'))l^^, D,U,...,J'>\..z'^-+ 

n{n-l) J da {VlVl,g^\a,a'))l^^, f,^,,...,^z'^\..z'^-^ (6.36) 

Having in mind the transformation properties (rotation invariance) of G and its dimension 

(inverse length) we can set 

G^'^{a,a) = ^ h y (6.37) 

so that 

m . + Vl.)G-^{a,a'))l^^, = V i ^ h y ] = 0 (6-38) 

UY> to zeroth order in s and 

{VI V I , Q"'{ay))l^^, = -^{h^'' + sh\g,,z"z"'g^'' + sb\z"^z"^) (6.39) 

where 6°, h\, ••• are dimensionless constants, and h\ are determined by our choice 

of regularisation of the delta-function, Qs 

hl = VsQs{Q), 6j = y ^ V ( 0 ) 

What we want is to relate them to the remaining coefficients by imposing the closure of 

the Poincare algebra. Using these expressions we can write AsF„ as 

A.F„ = j dag^'^f,^,,...,J^K..z'^- + ~ J da{JJ),,...,„z"'K..z"'" (6.40) 

where 

( J n f ) Pi •••Pn 

= by^{D,DJ,,...,„+nh^,,...,^R 
•pX)p.V 

n{n - l){b\g^''fi,^(p,...p„gp,p^) + blfp,.,.pj 
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The bracket means symmetrisation of the enclosed indices. 

In a similar way we can calculate MgFn, in which instead of G we have ^'^^^ G, so that 

there is an additional piece coming from the second integral on the r.h.s. of (6.36). That 

is 

M,Fn = / daag>^''f,.,,...,J'\..z'^- + ^ / da a {JJ),,...,J^K..z'^-+ 

+ ^ / daD^f,,,...,J^\..z'^-. (6.41) 

As we have already seen, by imposing the closure of the Poincare algebra relations 

'Ms,,As^]Fn = 0, M,^V = 0 and A^^N = 0 have to hold. We can use the results 

above repeatedly to compute 

[ M . , , A , J F „ = { s - " \ f " - s-2"\l"')2n{n - l ) 6 jx 

{kbl + {N-l)h\ + {An-%){h\ + h\))~ 

2n(n - lK{s,S2)-"' j da \\h\ + D(,,(tr /)p3...p„) + 

h \ - ^ ] D ^ f , , , . . , \ (6.42) 

V A - 1 y y 
where (tr f)p^...p„ = 9^"fi^up3...p„- Relation (6.42) will vanish, as demanded, for any n by 

taking 

Also from (6.40) and (6.41) the conditions MsV = 0 and A^A^ = 0 take the form 

MsV = AsN = ^ da a- —=(A;?)° + Nb] + b]) / da a g^.z'^z'" = 0 

which give identical relations as in (6.43), while the ill-defined integral / daa vanishes as 

the integrand is odd. 

Having these information we can built G up to first order. Substituting (6.43) into (6.37) 

and (6.39) we get 

G'"'ia,a) = g,{0)g''^ 

and 

( v i V I , G '^ ' ^ ( (7 , (7 ' ) ) i_ , = -Qm9"'+Qsm\\^"^" 

To this we can add the condition {V\^ G^''{a,a'))\^^^, = 0, which follows from dimen­

sional anal}'sis and rotational invariance. 

86 



6.6.4 Second Order Calculations 

In the same way we may assume that for the next order the constraint equations resulting 

from the closure of the Poincare algebra, will be independent of the general form of 

the test functional, as soon as the differential operator is of order four. We can apply 

the Laplacian on / da f{z{a),a)^^Vz'^Vz"^ = F, where / is ultra-local. Then, the two 

functional derivatives in the Laplacian will generate a fourth order differential operator 

acting on 8{ai — a2). Integrating by parts allows this operator to act on one of the 

a arguments of the kernel, whilst the delta-function sets both arguments equal. The 

consequence of this is that A^F now depends on the fourth derivative of the Kernel 

evaluated at co-incident points. Demanding the closure of the Poincare algebra acting 

on F wil l constrain this quantity. F is the lowest order functional of the general form 

/dafp^,„p^Vz'''^...Vz'''" that gives a constraint to this order. 

To simplify the calculations we notice that the part of the result of the operation of 

the Lorentz operator on a general functional, which will contribute to the commutation 

relations of the Poincare algebra, is the non-homogenous one in cr. To prove it let us 

consider a test functional h and the action of A^ and Ms on i t . They can be generally 

written as 

Ash J daAJi (6.44) 

and 

Msh = J daaAgh + J dah (6.45) 

where h is a new functional not linearly dependent on a and A^ is the density of the 

operator A^ with respect to the variable a. Thus 

MsAsh = JdaaAs{Ash) + j da Ash (6.46) 

and 

AsMsh = j daaAs{Ash) -f j da Ash (6.47) 

so that 

{AsMs - MsAs)h = j da Ash - J da Ash (6.48) 

which means that in our calculations, only the inhomogeneous terms of (6.46) and (6.47) 

will be needed. 
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We treat F as a scalar so that 

8F 
D,(<T)i^ = = D, UVz'^Vz" + 2V'{UVz") + 2Uz"z'^R^^;Vz" (6.49) 

which is an infinite component co-vector. Using again the commutators of D and V 

worked out above we can show that 

MsF = J daaG^'^{a,a) {{D,DJ,,,,+2RJ^J,,,)VZ"'^VZ">^ 

2fp,p,R^,XR,nl'''''''''''''''' + ^D,fp,p,RjJ^z'^^z'^-Vz'^^) + 

iJdaaVl G>^-'{a,a')l^^, {DJ,p,Vz'^^ + fp,RU,z'^z'=)+ 

2 I daaVtG^''{a,a') J,,+ 

4 J da G'^^ia, a)fp,p,Rl\^z'^Vz"'^ (6.50) 

Using relations (6.37), (6.38), (6.39) and the additional 

ivlG'^'^ia^a')) , = -}-[hlg-'' + sblg^pz"z'^g^''^s}>: 

Wbl {g,pz"z'^f g-^ + s%\ g,pz"z'^ z'^z'^ 

+sHl Vz'^Vz" + s'blgxpVz'^Vz" g^' 

Wblz'^^Vz""^+ sXg\p^'^^T^''^"'^9'"' ) 

^z"'z'' 

(6.51) 

we can write MsF in terms of the constants 6* . Because of the property 

V%G'^''{a,a\^^^ = -V%G^''{a,a')\^^^^ + 0{^s) (6.52) 

for k an odd integer, and the symmetry of A j and Ms in (7, a' there will not be any odd 

number of intrinsic derivatives acting on G in our final expressions so we will not need 

their expansions in terms of the Vs. 

After substituting into (6.50) we have 

Msj daf,,Vz'^Vz'^ ^ jdaa ( ^ ^ o / ; + 

^{^hlD''U,Vz'^^ + '^blf.^^R^ ''z'^z'^ + 2hlf:g,,z'^z'^ + 2blf,vz'^z'^) + 

^-^{{J2f),.Vz'-z'" + W),u.xz"'z"^z"'z'' + {Jzf),uz'^'V'z'^^)\ + 
/s J 



fda^b',^-^Uz'-Vz'^ 
J y/S a'^ 

where 

(J2 / ) , . = 6 °A/ , . + 26°i?f^/.), + 2blf,^ + 2blf:g,^ 

( J4/ ) , .KA = 2{bl - ^)/;^(^,^,,) + 2{bl + ^ ) / ( , . ^ K A ) 

( J 3 / ) . . = 26?/ , . -F26to .^ 

We can easily read of the action of As from above (terms proportional to a). In order to 

compute the commutator of Ms and A^ on / f^^t^Vz'^Vz'^^ we need the following relations: 

Ms j f^Vz"' = .. + ! da2^b',R^fpz"' (6.53) 

Ms J Upz'-z"Vz'^ = .. - f I da{-~^blflz") (6.54) 

Ms J f.xz'^'V'z"^ = . . + j da^^blD'^Uz'^ (6.55) 

Ms J f , . z V = .. + ! da^b',D^f,pz"> (6.56) 

A , / f^xz'^Vz" = [da (^2blD^Uz'^ + ^ 6 ° ( A / , , + 2 ^ ^ f , , ) z " ^ V z A (6.57) 

where .., represents the homogenous part of the action of Ms on the specific functional. 

Using relations (6.53) to (6.57) we can derive the action of the operators As and AsMs 

on U^uVz'^Vz"'. They are given by 

MsAsj f,,Vz'^Vz'^ = 

.. + Jda Q ( 4 6 ° i ^ 6 ° A / , . + 2b',R;U + 26^/,. + 2blf:g,^)z"^Vz'-'+ 

4b',D^{2{bl - ^ ) / ; ^ ( , . ^ « A ) + 2{bl + ^ ) / ( , , ^ « , ) ) . - . - . ' ^ + Ms{hfUz'^'D'z"^)) 

^ {UX2^-^D^UP + ib'.blDpf: + KblD-f.P+ 

Qby.D^f.p + QblblDpf: + 4 |P(2D,/: - 2D^f.p))z'^] 

and 

AsMs J U,Vz"'Vz"'= 

..+ [da f i 5 ° ^ ^ ^ ( A / , . + 2^-^Uz"^Vz 
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l 4 6 ° i ^ ^ -

A^s is the density of Ms with respect to a integration. The 0{l/s^) order does not 

contribute to the commutator. The 0(1/s'^) order can be factorised with coefficients the 

various z combinations. The resulting equations for the 6's are 

bl = - b l ^ ^ and bl = bl = b', = bl = 0 (6.58) 

The 0 ( 1 / 5 ) order contributes the following relations 

-4bX^ + 2bX + 3by, = 0 

4bX-^+2blb\ + Zblbl = Q 

Which with the use of (6.43) they become 

-2bl\ + bl = Q (6.59) 

2 ^ 0 ^ + ^1 = 0 (6-60) 

We can see that from these relations the 6's needed up to this order in the Kernel are 

completely determined. We can assume that if the theory is consistent these 6's are the 

same for every test functional we use with the same number of a derivatives, acting on z, 

in F. 
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Chapter 7 

The Laplacian on a General Curved 

Manifold 

7.1 Introduction 

We have seen how the Laplacian can be constructed on an A^-dimensional sphere up to 

the second order. However, when we attempt to construct the Laplacian for a general 

manifold with metric gf_,„{X{a)), difficulties arise. We will see that such a construction is 

not possible because we used a Kernel to split the functional derivatives of the Laplacian. 

A Kernel is able to approximate the physical object we constructed within a small region 

around a definite point a. Trying to describe a general manifold with a tool like this will 

fail. Though, it is possible to approximate a positive curvature manifold in a small region 

to first order by a sphere for which we have already constructed the Laplacian. In the 

following section we see how we can construct an ansatz for the Laplacian on a general 

manifold by using geometrical means and thereafter proceed to how this object fails to 

satisfy the Poincare algebra by using a first order test functional. 

7.2 Construction of the Kernel 

In Chapter 6 we saw that for a curved manifold (sphere), the Kernel G'^''{a,a'), which 

we used to split the action of the two functional derivatives, can be defined by deter-
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mining its various derivatives at the point a' = a. We can discover a general ansatz for 

them, f r o m dimensional demands and symmetry properties. The Kernel has dimensions 

of inverse length of a and zero in length of ^, and i t is a second rank covariant tensor. 

On the manifold, the only "intrinsic" geometrical objects we have are the metric ^f^^, the 

Riemannian Curvature R^^kh ' ^ i ^ ^ contractions, and the vector z''^{a) w i th its higher 

derivatives. Using these properties we have for 

G'^'{a,a') = g,ia-a')K''''{a,a';s) (7.1) 

the following decomposition 

G''''{a,a) = ^ 4 g , , (7.2) 

V'G^^ia,a) = -^{clg,, + s{clR z'^z"" + clR^''g^.z'^z'^ + c\R g,, g.xz"'z"+ 

R„\Z Z + C^K « ^ + Ci-rt \^\Z >Z )) {1.6} 

where Cq and are determined by our choice of regularisation of the delta function, Qs, 

as 

d = ^ ^ , ( 0 ) , cl = ^ / ; ' a" (0) (7.4) 

and the constants c* are functions of s. We see that for the curvature of a sphere the 

Kernel reduces to the same expansion we used in (6.37), (6.38) and (6.39). 

7.3 Poincare Algebra 

We can proceed, as before, to calculate the action of the Laplacian and the Lorentz 

operator on a first order test functional / dafn^,„^^z'^K.z''^". This is a generaUsation of 

the formulae we had for the sphere 

A4sJ daf,,...,J''K.z"'- = 

J daa{Cr^D,DJ,,..,„ z'^\.z'''^ + nG^^z'^R^^^ 'fpp...p.z"'-z""-

n{n-l)V'G^^f,.,,..,^z'^^..z'^-} + 

J danG^^D,f,,,..,J''^-^- (7.5) 

and substituting (7.3) and (7.2) in (7.5) we have 

M , / daL,..,z"'\.z"'- = 
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J \/47rs 

where 

iJnf){pi..pn) = Co^fpi-Pn + ^Coi?('pj/|p|p2..p„)-

- n ( n - l){clRfp^„p„ + R'"'f„^(ps..pn9piP2) + 

(^0^9^ fp.l'(p3..p„9p\P2) '^9^ flf^{p3--Pn-^PlP2)'^ 

+ 4R{pjMp2:Pn)) 

Now we can calculate the inhomogeneous part, arising f rom the action of the successive 

applications of Ms and or and Ms on the test functional. This w i l l give 

A . M . / = .. + / d a ^ / , { ~ " ^ ^ c g i ) - / . lp,..pj'' 

{Jn-\D fl/p2..pn){p2-Pn)^''^--^'' } 

and 

M s ^ s j daf,,..,J^K.z'^- = .. + ! ^ < ^ £ ; ^ o { ^ ^ ^ ^ c S ( n - 2 ) D V ^ . p , . , „ ^ " ' ^ . ^ " " ' + 

so that 

( A . M . - M , A , ) J daU...,^z"'K.z"'" = 

In order to s implify the calculations we w i l l take n = 2. The results derived f rom this 

special case w i l l enforce the same restrictions as for a general n. So we have 

( A . M . - M , A , ) J daf,,,,z"'^z"'' = 

c^R^D'^hp - 2c",D^{R^/U,)) + 2cl{RUy + 2c^(i2 ' 'V. . ) ;p .+ 

2 c ^ ( ^ / : ) ; p . + 2 c ^ ( ^ . P . / : ) ; " + 
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We can use the Bianchi identity which the Riemannian Curvature R^^^p satisfies 

which for the A = cr contraction gives 

By contracting further the ji and p indices, we get 

W i t h the help of these identities we can simplify expression (7.6) by grouping terms, like 

( A , M , - M , A , ) j dafp,p,z"'^z"'^ = 

U p . R - { K + \cl)-

KR'^\J.x;p + KRrp,,. + HR'"f.^;pA 

^clRf%p, + 24R%J%^ + 2clR^^%J,^,, + cliR^^Upr,. + R\J,.n)'"' 

We can decompose the Riemannian Curvature i n terms of trace-free parts 

where C'^^^is the Weyl tensor. Finally the commutator becomes 

( A , M , - M , A , ) j dafp.p.z'^^z"'' = 

I ^ ^ i ^ ^ ^ ' ^ ' f ^ " ' " + + 2c^)^ ' ' ;p . + (2^0 + cDg'^'R.p, + (c^ - 2cl)R>^J] + 

uR-:[2ci^\ci]+ 

U A i ^ ^ ^ + 24)g^'R'p. + ( - 2 ^ ^ + 4)9''R^p,]+ 
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/ . A ; p J ( 2 - | ^ + 2cl)R-' + ^ - \ n - 1 ) { N - 2 ) + 2^o)i?^^1}-"'^ = 0 (7.7) 

I n order for this to be zero for general / and R, each set of c combinations has to be zero. 

For the t h i r d term of the r.h.s. we have two options. Either C^^p^ ~ ^ + CQ = 0. 

I f we chose CQ = CQ then we have the following set of equations 

(c° + 2cl)R^\^p^ + {24 + 4)g^'R,p2 + {cl - 24)R%J = 0 (7.8) 

2cl + \4 = 0 (7.9) 

4R^^ + 2cJ%^^ = 0 (7.10) 

24g'''R'',^+4g'^R%,=0 (7.11) 

24R''^ + 2clRg^'^ = 0 (7.12) 

W i t h (7.9), equation (7.10) becomes 

R(^^ ^ (7.13) 
LI 

Substituting (7.13) into (7.8) we obtain 

[ i ( c ° + 2ci) + [24 + ct)\R.,p2 + {4 - K)K^\2 = 0 

For 7̂  /?2 we get g'^^R.p^ = 0 => R-^p^ = 0 for general fi and A. This implies only the 

metric of a sphere w i t h a positive or negative sign. We have studied this case above. So 

we are left w i t h the option of the coefficients being zero: 

^(4 + 24) + i24 + 4) = 0 (7.14) 

- 2c° = 0 (7.15) 

Now substituting (7.13) into (7.11) we have 

24g^'6f'^^ + 4g'f'6^^^ = 0 (7.16) 

which means for (3 ^ p2 ^ g^^S'^p^ = 0 or equivalently, = 0, for K = p2 and for any 

choice of A and /3 (for any value of /9). This of course is not an option at all , so we have 

to consider the case of having their coefEcients equal to zero. That is 4 = 0- But this 

again is in contrast w i t h (7.15), where 4 is different f rom zero as demanded f rom relation 

(7.4). We can conclude that the set of equations (7.8)-(7.12) does not allow any manifold 

other than the sphere. 

95 



The second case, C^^^ p^ — 0 , makes expression (7.7) produce the following equations 

k 
N-2 

+ 2c^ = 0 (7.17) 

^ = 0 (7.18) 
N-2 
k 

{N -1){N -2) 
+ 24 = 0 (7.19) 

24 + ^-4 = 0 (7.21) 

( - 4 + 24 + 4)R'^;p2 + (2co + 4)9'^R;P2 + {4 - ^c^R^p^, ' = 0 (7.22) 

where k = 2 ( — C Q + C Q ) ^ 0 . The first two equations follow f rom a parallel argument to 

equation (7.16). Now f r o m (7.18), (7.19) and (7.21) we get 

( A ^ - l ) ( i V - 2 ) 2 T V - 2 

This fixes the dimension of the manifold to three. From equation (7.20), assuming that 

j ^ + 24 7̂  0, we can get a simplified expression i?^^ = KRg^^ where A = ( - ( 7 v r T ^ ] v ^ + 

2co)/(]v~:2 + 2*̂ 0) is assumed not to be zero. Substituting into (7.22) we get 

{-4 + 24 + 4)^9^'R;P2 + {H + 4)9''R;P2 + {4 - 2c^ )A^^3^ ; ' = 0 

which implies 4 ~ '^4 = 0 - This together w i th (7.18) gives 

- ( - 2 c ° + 2c^) + 2c^ = 0 = » c ° = 0 

which is contrary to w i t h the normaUsation of the Kernel (see relation (7.4)). 

7.4 Conclusions 

From this treatment we see that for the proposed Kernel we cannot construct a Lapla-

cian for a general manifold other than the sphere. This could be a product of the strong 

constraint of demanding the vanishing of the commutator when acting on a general test 

funct ion. What we really need is that the commutator vanishes when i t acts on eigen-

states of the Hamiltonian as the cut-off is removed. However, we cannot construct the 

Hamil tonian w i t h this method without calculating the Kernel first. This weakens the 

theory. St i l l , as has been mentioned in the introduction that the Kernel for the sphere 

can be used as a local approximation for a general manifold wi th positive curvature. 
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C h a p t e r 8 

Virasoro Algebra and O ( A ^ ) O- Model 

8.1 Introduction 

During the last twenty years a great deal of work has been done on conformally sym­

metric theories. Importantly, they can be exactly solved to give critical exponents of 

two dimensional theories, aiding their classification. Moreover, their conformal symmetry 

enables the association of strongly interacting fields w i th weakly coupled ones, which are 

easy to elaborate. To make physically interesting theories out of them i t is necessary to 

incorporate interactions (e.g. curvature) in the free case. The cases of interacting fields 

which preserve the conformal symmetry in a stronger or a weaker sense have been studied 

in the l i terature [27], as well as theories where their interactions destroy this symmetry. 

One of the latter is the non-linear 0{N) a modeP. 

A considerable amount of interest is concentrated on the cylindrical space-time R-̂  x 5^, 

which shares many features w i t h string theory [28]. We wi l l face one of them, the Virasoro 

algebra, which has been previously studied through different quantisation procedures, by 

using the functional formalism. 

Our aim is to set up a general formalism for the study of a modified fo rm of the Vira­

soro algebra for the 0{N) a model. Instead of the usual central charge term we expect 

operator-like terms as a quantum anomaly extension of this algebra. 

^In Chapter 6 we have seen how the 0(N) symmetry generates a mass term in the quantum level, which 

destroys the classical conformal symmetry of the model. 
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8.2 Conformal Symmetry 

Firstly, a brief review of the conformal transformations. They are defined on an N di­

mensional Riemannian manifold wi th coordinates x'^, = 1, . . , A'' and metric g w i th 

ds^ = gn^{x)dx'^dx''. 

For general coordinate transformations 

which change the metric 

g\p{,x) = g^^{x{x)y 
dx^ dxp 

and for Weyl transformations 

g^u (x) = e^'^^'^'g^,^ .x\ 

that is, a scaling of the metric w i t h the coordinates unchanged, we can find in some 

theories coordinate transformations which compensate a Weyl transformation. In other 

words 
dx'^ dx" ~ 

gxp{x) = 9^.v{x{x))^-^^ = gxp{x) = e'^(^)t/^,(5) 

holds for an appropriate ^{x). The conformal transformations are the ones which are a 

combination of these coordinate transformations followed by a compensating Weyl trans­

format ion. Their basic characteristic is that they lead to a representation of coordinates 

and metric for which to the point x is attached a metric similar to the one existing in x 

coordinates 

9nu{x) -> g^,^{x). 

Usually we construct theories which are classically general coordinate invariant. So to 

guaranty that they are conformally invariant we only need to check their Weyl invariance. 

For example we can consider the two dimensional a model action 

S = \ j d\^)g^''{x)d,X{x)d.X{x) ( 8 . 1 ; 

for X{x) being a scalar field. Clearly S is conformal invariant. Though, these transfor­

mations change X{x) to X{x). Infinitesimally we have 

X{x) ^ X{x) = X{x - e (x) ) = X{x) - ^ \ x f - ^ 
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X{x) - X{x) = - e \ x ) ^ ^ = KX 

For a flat target space of X , the quantisation leads to an action which sti l l preserves 

conformal invariance. The generators of the conformal transformations are 

L{t\ = l J d a e{a) : {P + X'f : (8.2) 

which are called Virasoro operators. They give infinitesimally 

6,X = ~edX =[iL[e],X 

However, quantisation of ( 8 . 1 ) w i th g^ a non-flat metric, generates a mass term which 

destroys the Weyl invariance. This is shown in section (6.4), where for the 0{N) a model 

a mass has been generated quantum mechanically. So even i f conformal symmetry exists 

at the classical level, i t is broken by the quantisation procedure. 

8.3 Virasoro Algebra 

We can have a string on a manifold parametrised by X^ while the string spans a 1 -|- 1 

dimensional Minkowski world sheet w i th coordinates a and r . The position of the string 

on the manifold is given by the functions X'^{a,T). The string can be open or closed. In 

the second case we demand X{a, r ) to be periodic in a, which we assume runs around 

the string in the interval [—vr, T T ] . The action of the string can be wri t ten 

S = [ dadT rj'^'^daX • dpX (8.3) 
27r J 

which is the action for a a model, now chosen to be in a flat background manifold. From 

i t we get the wave equation 

= , (S.4) 

The solutions of (8.4) for the closed string are 

and 

2~ ' ' 2 - n 
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while for the open string we have the standing waves 

= x" + p^T + I cos na 

where a and a are arbitrary constants. 

A t the quantum level the action (8.3) is accompanied by the commutation relations 

[X^(a),P,{a')] = i6i:6{a-a') (8.5) 

where P = X {• stands for a derivative wi th respect to t ime). 

For the case of the closed string there are two oscillating modes going "left" and "right". 

These modes can be generated by the Virasoro operators 

L^ = l J d a : { P ' ^ - X ' n { P , - X l ) : 

1 } 

Lm = - j da:{P^ + X'^){P, - f X ; ) : e' 

for m and n integers different in general, that is the two modes are independent f rom each 

other. The operators 

< = I dae-^-'^ (P^ia) - X'-{a)) 

and 

5 : : ^ - ^ / c ^ o r e ' - ( P ' ^ ( < T ) + A--(<7)) 

play the role of the creation operators for n < 0 and the annihilation ones for n > 0 wi th 

respect to the vacuum state |0). a and a satisfy the commutation relations 

following f r o m (8.5). We can re-write the Virasoro operators as 

and 
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where now the meaning of the normal ordering symbol :: is clearly defined wi th respect 

to the operators a and 5. I t is actually needed only for the case n = 0, as + -̂ o + 2 

represents the Hamiltonian of the closed string and needs renormalisation of the vacuum 

energy (performed here by normal ordering). We can check that the renormalised Virasoro 

operators satisfy the well-known Virasoro algebra 

iV 

Lm\ = (n - m)Ln+m + —8n-min^ - n). (8.8) 

The same algebra is also satisfied by the L operators. 

8.4 The Vacuum State of the String 

We can construct the wave functional ( ^ | 0 ) , that represents the vacuum state |0), explic­

i t l y by using the annihilation relations 

< | 0 ) = 0 

for n > 0. The equation i t has to satisfy is 

an^{X\0) = 0 

/ dae-^-^ f - ^ T Y ^ " ^ ^ ^ m ] m = 0 (8.9) J \ SX'^ia) J 

From (8.9) we see that the vacuum state w i l l have a Gaussian localised form. Let us take 

{X\0) = exp dada'X^{a)H{a,a')X^{a')^ 

where i7((J, cr') is a symmetric funct ion of a and a', to be calculated. As all the points on 

the closed string are equivalent, H should be a function of the difference a — a'. So its 

decomposition in modes w i l l be 

oo 

H{a,a') = H{a-a')= ^ Hm^im{a-a') 
m——oo 

where if™ are the Fourier components of H{a, a'). After substituting into (8.9) we obtain 



for m > 0. As H{a,a') is symmetric in its arguments we finally have 

ffm^_M^ for every ?72. 

So the vacuum functional has the fo rm 

{X\0) = exp (^J dada'X''{a)H{a, (7')X^{a')^ (8.10) 

w i t h 
oo 

77 l= — C O 

8.5 Virasoro Algebra 

To calculate the central charge term of the Virasoro algebra, as is given in (8.8), we can 

apply the algebra to the vacuum state. Let us assume i t has the fo rm 

X„ , Lm] = (n - m)Ln+m + A{n)6m+n,0 

that is, being the classical algebra, extended by the term A{n) existing only when m + n = 

0, as only then the operator LQ appears on the r.h.s. w i th a quantum ambiguity. Taking 

m = —n we get 

LnL_r,{X\0) = A{n){X\0) 

as L-nLn{X\0) = 0 and Lo{X\0) = 0 (the operators have been normal ordered). Succes­

sive application of the operators and L„ on the vacuum state wi l l give us the value 

of ^ ( w ) , i.e. 

L-n{X\0) = \J(P'ia) - X"^{a)){P,ia) - X'^ia))e^-''da{X\0) = 

i JiP-{a) - X'-{a)){P,{a') - Xl(a'))e^-'^^e^"^^'^-'''Uada'{X\0) 

But 

JiP^(a') - Xl{a'))e-''^'''da'{X\0) - -2i7n J X^(a ' )e -™' ' ' (A: |0 ) for m < 0 

= 0 for m > 0 (8.11) 

as i t can be easily verified, so that 

X _ . ( X | 0 ) - ^ E / ( P M - Xl{a))e^'^'^+'"^^da{-2zm) [X^{a')e~'"'^'da'{X\0) = 
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m ( m + n) / X^iay-'"^"'da' j X''{a)e-'^-^-"'^''da{X\Q) (8.12) 
27r m=-i -I •' 

I f we apply X„ on (8.12) and take into account relation (8.11) we get zero for its action 

on the vacuum functional, while when the two functional derivatives act on the other 

mult ipl icat ive terms they give 

Lr.L^n{X\0) = E - = - ^ — ^ { X \ 0 ) (8.13) 
^ m=l " 

which is the central charge term for the open or closed string. 

I n [8] we can see a way to extract the central charge term wi th the use of the commutation 

relations of the creation and annihilation operators a „ for n > 0 or n < 0 respectively. 

We have proceeded through the functional calculus in order to get an insight into the 

structure of the algebra, aiming to calculate the commutator of the Virasoro operators 

w i t h the use of another renormalisation procedure. 

In Appendix F we see how the Virasoro algebra constructed wi th the Virasoro operators 

of the f o r m 

L[u] = dada'u{a,a')K^^{a,a'){P,{a) - X'^{a)){P.{a') - Xl{a')) (8.14) 

holds applied on the vacuum state. In (8.14) K^^ia, a') is a Kernel to point spHt the dou­

ble action of the functional differentiations, satisfying the condition lims^o Ks'^{cr,a') = 

rj'^'^S^a^a'), u{a,a') is the component of a vector field on the circle, 5"̂ , on which X{a) 

is defined and is symmetric i n a and a'. For u{a,a') = 1 we get the divergent quantity 

L[l], which is equivalent to the divergency present in the unrenormalised Hamiltonian of 

the string. 

The Virasoro algebra has the fo rm 

where 

" 2 4 ^ ^ / ^"a^"^"' - 24^ y (^-^^^ 

The first t e rm in C is linearly divergent as 5 0, i f the antisymmetrisation of the term 

/ da-^u(cr, a)v[a, a) w i t h respect to u and v is not zero. When we regularise the Virasoro 
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operators by the use of the Kernel in (F.5) we face a problem only for the L[l], as we 

have already said. The divergence appearing there (see relation (F.3)) is the same as in 

relation (8.15). That is, the renormalisation of the operator L[l] makes automatically the 

Virasoro algebra renormalised. The linear divergence coming f rom L[l], is connected wi th 

the vacuum energy divergence, which is equivalent to the linear divergence we faced in 

relation (4.3) for the scalar field. 

8.6 Applications to the 0{N) a Model 

A similar treatment can be applied to the 0{N) a model, where we expect the corre­

sponding algebra to differ f rom the Virasoro algebra, because the P function is nonzero. 

We w i l l use the fo rm (8.14) for our generalised Virasoro operators, where here the co­

ordinates A'(cr) = z(cr) represent a manifold wi th 0{N) symmetry. We can work wi th 

operators which have similar fo rm to the Hamiltonian, Lorentz and momentum operator. 

By studying their algebra we can connect them wi th the generalised Virasoro operators 

and deduce the algebra the latter satisfy. Instead of a general vector u{a), we can use 

powers of the a variable (i.e. a'', k > 0). Let us make the following definitions 

P = - ^ y " dada'K^''{a,a')g,,z"'^^-- =-i j daV{a) 

H = - j dada'K'"'{a,a') 
D D 

Dz^{a)Dz''{a') 
daH 

— j dada' 

'a + a' 

2 

. it 

K^'ia, a' 
D D 

j dada' ( ^ 2 ^ J 9^^l^{c^)z'^z"' 

Dzi'{a)Dz''{a') 

B = j dag^,{a)z'^z"' and B = J daa^g^,{a)z'^z"' 

where B could be described wi th two a integrations connected by the Kernel K instead 

of the metric g and the term a^ wri t ten as [a -\- a')^ j2. However, this wi l l only differ f rom 

the given expression by terms of order 0 ( 5 " ) w i th n > 0, which wi l l vanish when the l imi t 

s ^ 0 is taken. Now i f we take the commutator of H and L'' we have 

daa^n $ = 
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- J daA{a) + J daa'^Aia) + B 

- J da A, - J daa'^A * + B,- J daa^A * - f j daA,B (8.16) 

The second term becomes 

I B, I daa'-^A 

-k{k - 1)^=N f daa'-' - 2 N \ j daa'-

I dada' 
'a + a'' 

2K'^^{a,a') {-g,,2Vz"^)l 
Dz^{a') 

while the th i rd 

- j da A ,B 

J da {AB)<S + 2K>"' 
DB D'^ 

Dzi' Dz" 

0 - j dada'2K^''{a,a') [-2g,M~'^"' ' ^g^.a'Vz"') 

The second and th i rd terms together give 

2N hi M ^ ^ i | 7 V j daa'-'^ - ^ / daa'^a + J daka'-'V{a)^ = (8.17) 
4 

daka''-^V{a)^ 

as the first and second terms of (8.17) vanish under the antisymmetry of the commutator 

between ( ^ ) ' = and 1. The previous results are independent of the choice of the func­

tional However, the first te rm depends on the specific form of ^ . We can take ^ , as 

in the previous section, to be the wave vacuum functional. Working in the lowest order 

of approximation for slowly varying fields the vacuum functional becomes ^ = U''^'^^'' 

where /^^ is an ultra-local function, which can be determined f rom the Schrodinger equa­

tion. The following calculations w i l l be done up to two derivatives wi th respect to a. For 

example, the action of the two functional derivatives on ^ gives 

Jf...'^."^ ^ I f,.z'^z'\f Sff,^z'^z"^6Jf,.z"^z"^j,^_^^.,,. 

6z{a)6z{a') Sz{a)6z{a') 8z{a) 6z{a') 

f r o m which we only consider the first term, as the second involves four derivatives wi th 

respect to a. So we only need to consider the j fixuz''^z"' functional in the expansion of 

the exponential For this case we have 

j f,.z"^z"'^ 
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/ daa'^ [{J,f),.z'-z'^ + ^^Sr.} + / daka'-'2hlD''f^.z"^ + j da^^^^a'^X^fl 

also 

AL'J f,^z"^z'^ ^ 

I daka'-'2hl{J,D'^f^),z"^ + j da^^^^^a'-XW.) 

and 

z'^z"" 

. . + J daka'-'2blD''{J2f).^z"' + j dak{k - \)a''-^h2{J2f)\ 

Taking the identities 

(tr Jnf)p,..pn - (^n-2tr f)p,..pn = 0 

{ D - J J ) - J ^ ^ , i D - f ) ) p , . . p „ = 0 

f r o m the previous, when we asked for the Poincare algebra to be satisfied (k = 1), we get 

A i ^ - L'^A] j f^,z"'z" = 0 

So altogether for the vaciuim functional = e /ZM^^' '^'" i^jjg commutator becomes 

J daH.j daa^H ^ = J daka'^'^V^ (8.18) 
1 

4 L, 

No additional term results. This could be derived, more easily, by substituting /^^ = ag^^y 

which is the most general f o r m the first term could have, in the expansion of the logarithm 

of the vacuum functional, for an appropriate constant a. From (8.18) we deduce that in 

addition to the vacuum state, all the exited states wi l l not contribute in the commutator 

(8.16) at the first order. But this w i l l not be the case for higher order terms. The way an 

additional te rm in (8.18) would adjust in the algebra of the generalised Virasoro operators 

is shown in the next section. 

8.7 IVIodification of the Central Charge Term 

Let us define the generalised Virasoro operators as 

L[u] = - 1 u{a){P^P, + X'^X'^ ~ X'^P, - P^X^da 
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L[u\ = - J u{~a){P^P, + X"'X'^ + X'^'Pp, + P'^XDda 
— TT 

where the operator L is the same w i t h L but a replaced wi th —a. The fields X{a) satisfy 

the 0{N) symmetry. Using these definitions we can express f f , LQ and P in terms of L 

and L as 

^[1] + ^[1] = \ j {P'^Pf^ + x'^'K) = H 

L[l] - L[l] {X'^P, - \X'-P,) = -P 

L[a] + L[a] = - j aX'^P,, = - / 

L[a] - L[a] = ^ J a{P''P, + X'^^X'^} = Lo 

Using these identifications we can see how an extension to the algebra (8.18), produced 

f r o m another functional than / ffj_^z''^z"', w i l l be placed in the modified Virasoro algebra. 

Let us extend the algebra wi th the additional term A, as 

L[l ] ,L[ ( j^ ]J = -L [[l,a'=]J +A 

where 

u, v] = uv' — u'v [ 1 , cr'̂ ] = ka^~^ 

and 

'Z[l],Z[o-'=]] = -i [[I, a'']] - f A 

We separate two cases: for k — 21 and for A; = 2/ + 1. Then 

L[a''\ = l j a'\P^ + X" - X'P - PX') 

l[a^i] = - - I a^\P^ + X" + X'P + PX') 

so that 

and similarly 

so that 

L[a"] + L[a''] = \ j a"{P' + X") = J a^H 

L[a"+'] = ^ J a^^+\P' + X" - X'P - PX') 

L[a"+'] = - ^ - j a^^+\P' + X" + X'P + PX') 

L[a"+'] - L[a''+'] = \ j a'^+\P' + X") = J a"+'n 
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For the first case we have 

y j a^'TA = [L[1\ + Z[l], L[a^'] + l[a^'] = 

-L [[1,(72']] 

2/ J a^'-^X^P^ + A + A 

while for tlie second 

-L [[1, a"+']\ +A + L [[1, a"+']] - A = 

{21 + 1) y a^'X'^P^ + A-A 

If we compare the outcome of the commutator JH,J a^H acting on a general functional, 

then we can identify the quantities A and A. For the functional \1/ = g/-'̂ *"'̂ '''̂ "' it gives 

A = A = 0. 

Finally, we note that the central charge we arrived at in section (8.5) was a result of the 

non locality of the vacuum state. This is described by the function H{a,a'), which in 

contrast to the usual delta function (appearing when we use local functionals), brings in 

the non-local character of the vacuum. As we have seen in (8.13), the function H[a,a') 

is the one which gives the specific form to the central charge term. However, we expect 

to get operator-like terms for the central charge of the algebra on . 
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Chapter 9 

Conclusions 

In this thesis we developed techniques for applying the Schrodinger representation to the 

(f)"^ theory and the 0{N) a model. Having set this framework one can proceed in applying 

our techniques to more realistic theories hke QCD as it shares many features with these 

models. Solving the Schrodinger equation in the low energy region (local expansion) 

provides a natural way for approaching problems of QCD like confinement and chiral 

symmetry breaking. The Schrodinger representation has the advantage of giving analytic 

results compared with the numerical ones from the lattice formulation, which in addition 

has an ambiguity in the transition from the discrete to the continous limit. 

For the 4>'^ theory we constructed the Schrodinger equation, which a local expansion of 

the logarithm of the vacuum functional has to satisfy, and then compared its semiclassical 

solution with similar results, derived from the standard path integral approach. As we 

have seen in Chapter 5, these two results are in complete agreement with each other, 

showing the correctness of the local expansion method. Also, the different resummation 

methods proposed in Section 4.7 provide a choice in the way we can extract the ultraviolet 

behaviour out of the infrared one, enabling us to select the best possible resummation 

method for the various ways with which we can solve the Schrodinger equation (e.g. 

non-perturbatively). 

For the 0{N) a model we constructed the functional Laplacian, which is the principal 

ingredient of the corresponding Schrodinger equation. The Poincare algebra proposed to 

hold when acting on local functionals enabled us to determine the Laplacian up to the 
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second order. Though, for a general manifold rather than the sphere it is not possible 

to find a Kernel for the Laplacian satisfying this demand. The form of the Laplacian 

for the 0{N) a model can be used to solve the equation, as a further work. Also, we 

took advantage of the functional calculus already used to study the modified form of the 

Virasoro algebra for the non-conformal 0{N) a model. 

Finally, a computer program is presented in the appendices, which helps in the construc­

tion of the vacuum functional for the (̂ ^ theory, in the Schrodinger representation. It has 

been used extensively for checking the validity of our results, as it provides an easy way 

to get the solution of the Schrodinger equation semiclassically, once the determining the 

order of truncation of the local expansion has been determined. 
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Appendix A 

Re-summation procedure 

Let us look at the problem of re-summation from a more mathematical point of view. We 

have a function f{s) which can be expanded for small and large s like 

oo 

n=0 

and 
CO 1 

/ ( - ) = E b^-;;^ (A-2) 
m = 0 ^ 

for certain cin and bm- What we want is to find a way to express a^'s in terms of 6„'s. Also, 

let us assume that the limits 5 ^ 0 and 5 ^ oo exist and that there is a path connecting 

these two points (e.g. the positive real axis) where the function / has no divergences or 

cuts. We will try with repetitive expansions and re-summations to go from (A.2) to (A . l ) . 

The point of expansion of (A.2) can be changed in a hmiting process, from infinity to a 

large number TV, which at the end is meant to be sent to infinity. Defining y and w as 

N - z , 1 y 
and w 

so that 

TV N l - y 

1 _ 1 ]_ 1 N - z 1/N 

1 : ~ ~ Z ~ ' N ^ N ~ N l + { z - N ) I N ^ N ~ 

— w -\-
N l - y N N 

and substituting into (A.2) we get 

oo -j^ oo . -j^ 

N 
m = 0 ^ m=0 ^ 
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m = 0 k=0 V ^ / 

°° ™ (rnX , / 1 1 \ 

^ 0 t o \ ^ ) \^ ^-yJ 
if |?/| < 1 and k ^ 0 then 

m = 0 / t=0 V / 9=0 \ / 

which by changing the variables of the sums becomes 

771=0 \ g = 0 n=q \H/ \H 

which has the form of ( A . l ) . So we can read the coefficients a^, which eventually will be 

independent of A'̂ . But if we have only a finite number of 6„'s then we get an approximated 

value for the a^'s which will be read for large iV. N is similar to A we got in the re-

summation procedures already mentioned in the main text. 
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Appendix B 

The "Tadpole" Diagram 

Figure B . l : Tadpole and counter-term diagrams. 

Here we are going to calculate the value of 6q (i.e. the order h correction) in another way 

than the one we used in the main text. Rather than using the structure of the Schrodinger 

equation with the application of the Laplacian, we try to find the renormalised value of 

60 as it can be given by the two diagrams in figure (B. l ) . The value of the counter-

term diagram is given by the demand that it cancels exactly the divergences appearing 

in the "tadpole" diagram. The mass counter-term is the only one needed in the 1 -|- 1-

dimensional theory to make it renormalised. This is the natural way to calculate the 

quantum corrections from Feynman diagrams. The disadvantage of this method with the 

one we use in Chapter 5 is that here we cannot reduce the Dirichlet Green functions to 

ordinary ones, which makes the calculations more complicated. 

Using the Dirichlet propagator we calculate the amplitude of the "mass correction" 

J da2 J db2 J c?c ^(a2)<^(62) 
dGD{a,c) 

dai 

dGD{b,d) 

dbr 
G D ( C , C ) (B. l ) 

61=0 

where Gc(a,c) = G{a,c) - G{%,d), % = (-aa,a2), G(S,c) = e^'C-^/{p' + m') and 

/ = j cPpl{2'Kf. After evaluating the integrals in (B. l) and subtracting the infinity 
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appearing in (mass counter-term), we find, for g = 1, the value l/(87r), which is the first 

order quantum correction to bo and consists the 7.96% of its classical value. This result is 

in agreement with the one we find by solving the Schrodinger equation, or by calculating 

the equivalent correction diagrams in Chapter 5. 
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Appendix C 

The Space of Local Functionals 

C . l Definition of the Functional Space 

We can define the space of local functionals as the one with elements linear combinations 

of 

A= U a f l U ^ Y ' ( C . l ) 

where (j) is an analytic function of a which is zero at the limits of integration, Ui is a 

non-negative integer and [i) means differentiating i times with respect to a. We also 

impose that the total number of ^'s and the number of derivatives are even, that is 

Ui and ^ m, are even numbers. (C2) 

i i 

In this space we have as the main 'procedure' the integration by parts. With it we can 

define a set of basis vectors (b.v.'s) for our space as the vectors of the form above for 

which Un is greater than or equal to 2. That is we will prove that any vector of the form 

A can be reduced, using integrations by parts, to a linear combination of basis vectors, 

and no basis vector can be written as a linear combination of other b.v.'s 
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C.2 Reduction to Basis Vectors 

A general vector like A will be a non b.v. if the last power u„ is equal to one. Then it 

will have the form 

A = j dar" {<f>T • • • {&~'^y"" -^'"^ 

To reduce yl to a basis vector we can use the following procedure which holds for iLn-i 

greater or equal to zero 

(n) 

V 
Un-1 + 1 

(C.3) 

so that after integration by parts the overall derivative will produce a vector with the 

last term to the power 4- 1 > 1. If Un-i is not zero then we have a basis vector. 

Otherwise, if it is equal to zero we continue this procedure until we get a term previous 

to the last one with a non-zero power. This is the only way to decompose a vector. 

If you try to integrate by parts derivatives different than the ones from the last (j) then 

terms with higher derivatives will be produced, which will lead to the necessity to integrate 

them by parts in order to produce a b.v., that is a vector with the final term in power 

two or higher. For a j with j < n, and u„ > 2, we have 

Jdar{<i>ri---){<i>'Ti---) = 

-/c/-((---) '(^^^T"(---)(^'"T" 

+(---)(^^^T" (•••)'(^^"T" 

where (• • •) stands for whatever is on the left or on the right of ^ ^ i ' ^ - ' ' ^ respectively. Now 

we either can continue partial integrations of derivatives from terms like j , which will lead 

even further from the construction of a b.v., or we can take care of the last term of the 

equation, which is the only non-b.v., using the method described above. It will generate 

terms which cancel exactly the right hand side of (C.4) plus the vector we started with. 

This means that we cannot generate other b.v.'s from b.v.'s or reduce vectors to b.v. from 

using a middle term labeled by j. We can conclude then, that the b.v.'s we defined are 
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linearly independent under the procedure of partial integration, because of the previous 

argument for u„ > 2. Also, any vector can be reduced to a linear combination of b.v.'s 

using the methods described in the beginning. So our space of local functionals with its 

basis is well defined. 

C.3 A Subspace of Functionals 

Let us represent a functional vector with A. Then it could be A = / HiLo where a' is 

<!>, i times differentiated with respect to a, to some power. If A is not a b.v. then you 

can decompose it to basis vectors by integrating by parts the (f> with the highest number 

of derivatives and only that. This in general will produce vectors constructed by a"s 

with none or more derivatives higher than the ones in the original vector A. Clearly you 

cannot construct a b.v. out of A, say A' (after a total decomposition) with an element 

a'* (0 < ^ < n) with less number of derivatives on it than a\ In this sense if you want 

to determine from the classical equations a specific coefficient of a vector A, then you 

can choose the ones whose their product, after they have been functionally differentiated, 

have the same or greater number of (/>'s without derivative (a°), as well as the next term, 

and so on. For example you cannot get rid of the derivatives on (f)4>" • •• or ^'^ • •• in order 

to get a basis vector with the first term of the form (fp' • ••. 

An interesting subspace of the fu l l local functional space is the one which is produced by 

B'!^ = / (j)^'^ (j)^"^^^ b.v.'s. Let us claim and prove that in the classical definition equations 

of their coefficients, the only vectors which contribute are the ones of the same form B^. 

That is we can construct the classical equations out of b.v.'s of this form without need to 

use all the b.v.'s that could contribute as long as the numbers of </)'s and "s are preserved. 

If is a linear combination of all b.v.'s then the classical equations are defined to be 

(see Hamilton-Jacobi Equation (4.35)): 

8W 
C.E. = [ d a ( 7 ^ - V''''' = 0 

J \c 

Let us name W the linear combination of vectors of the form B"!^ in W. Then our claim 

can be expressed in the following way: if we take the difference 

6W V 
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/ (SiW-W)\ (6(W+W)\ 

then (C.5) cannot be reduced to b.v. of the form B^^. W — W can be written in terms of 

b.v.'s not of type i?™, while W -\-W contains all b.v.'s. For this let us take two general 

vectors in W — W and -|- and see the product of their functional derivatives if it can 

be reduced to i?™ b.v.'s. We only need to check Ri and R2 

:0 

k2 
R2 

where at least one of them is not of the form 5^ . Their functional derivative (f.d.) is 

going to be 

where the a dependence as a variable has been omitted. The overall number of and 

the overall number of a derivatives of the product ( ^ ) ( ^ ) have to be the same as in 

i?^. So we deduce the relations 

E ^ ^ ' + E^'^J-= 2'^ (C.7) 
i j 

+ =2?z-f 4 (C.8) 
i j 

The various terms produced in relation (C.5) could be candidates for the form of 5^ . We 

can distinguish four types. Writing ji and j2 for the two vectors Ri and R2 in analogy to 

j in (C.6) for i?, we have that the overall number of '̂s with no derivatives on them, let 

us call it fe, is going to be the most^ equal to 

vo + uo~2 for j i = 0 and is = 0 (C.9) 

uo + u o - 1 for j i 7^0 a n d j 2 - 0 (C.IO) 

Vo + uo-1 for i i = 0 and j2 + 0 (C.U) 

+ UQ for j i 0 and j2 ^ 0 (C.12) 

We consider three cases, (a) k < 2n. Then it is impossible to reduce it to 5^ , as we 

did before. ^ (b) k = 2n. Then there are four ^'s left to carry derivatives. If they are 

^After reduction to b.v. in (C.5) the number of (f>'s without derivatives on them will be actually smaller, but 

this is a subcase which falls in the cases we are going to study. 

Ŝee beginning of this chapter. 
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separated between the two vectors Ri and R2 like 2 - j - 2 then each two for the same vector 

should have the same number of derivatives on them, i.e. / (/>"° (̂''̂ ,̂ so both are going to 

be of the form of i?™, and it is not the case we want to consider. If the iji's are separated 

like 3-1-1, then clearly one of them is not a b.v.. Finally the case 0 -f 4 cannot be reduced 

to a b.v. after taking the f.d. and then their product, as we have too many (j)'s with 

derivatives to get a vector with two only cr-differentiated ̂ 's. (c) k > 2n then because 

of (C.8) we can only have the following cases of the relations (C.9)-(C.12). If (C.9) then 

there are two possibilities, VQ + UQ = 2n + 3 ox VQ + UQ = 2n + 4. If VQ + UQ — 2n + 3 then 

one of them has only one (j) with derivatives and this is not a b.v.. If VQ + UQ = 2n + 4 

it means that there are no (f)^s with derivatives at all and this gives again vectors of the 

form -B™. If (C.IO) or ( C . l l ) we can have VQ + UQ = 2n + 2 or VQ + UQ = 2n -|- 3 or 

VQ-\-UO = 2n + 4, which do not contribute as we have seen. If (C.12) then VQ + UQ = 2n + 2 

or VQ + UQ = 2n -\- 1. The second (the only one which could contribute) suggests the two 

following b.v.'s 

i?i = y f° and R2 = j ^' 'V^'^'V^^'^' (C.13) 

This is the only case we have to consider. In it VQ -{- UQ = 2n -\- 1 and kl is even. After 

going through the f.d. and taking their product we get only one interesting part of the 

result 

• • • + Jvor^-^-' {<t>'''f'^ + 2 ( - l ) (<^(^^)^(^^))''") (C.14) 

We can use Leibnitz rule 
" fn\ 

D'^iuv) = J2 D'^-'uD'v (C.15) r-=0 \ ' / 

where here D stands for a differentiation. If we take u — ^^^"^^^ v = (?i>'''̂ ' and n = kl then 

^h^\ M 2 ^h^\ ^ / ^ M ^ ( m H - . ) ^ ( / = 2 + r ) ^ ^ ( f c 2 + f ) 2 ^ r M ( - l ) ^ - (C.16) 
r=0 V / r=0 V ^ / 

whereas if u = (f)^^'^\ v = (/>*''̂ ^ and n = k2 then 

^2 /i.o\ 2 / i .o\ 

But E.^io = 0 "̂ ^̂ ^ ^rlo = 0- So we conclude that there 

are no contributions to the classical equations of from b.v.'s with form different from 

5™. 
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Appendix D 

The c and / Coefficients 

The equations for the 6's read: 
m 

E bnb^-n = 0 
n = 0 

for m > 2 as well as bo = —112 and bi = —1/4 (for the mass m = 1). We can solve this 

equation to find the value for a general 6„ in the following way. These equations can be 

written in a power series form like 

/ C O \ 2 

\ n = 0 / 

for z a real variable. Solving with respect to 6„ we have 

/ 1/9 \ (2b,y 
bn = bo ''^ —^ f o r n = 2,3,4,.. 

V " / V "0 / 

or in other words 
1 / 1/9 \ 

hn = - - : f o r n = 2,3,4,.. 
2V n 

Some 6's are 62 = 1/16, 63 = -1/32, 64 = 5/256, ... 

For the c series we have the following equations (for g = I) 

260C1 +661C0 = 0 

260C2 + bici + 6b2Co = 0 

260C3 - f biC2 + 62C1 + 663C0 = 0 
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We can rename 60 and CQ as bo |6o and CQ —> |co so that the equations can be written 

as 

boCi -I- 61 Co = 0 

boC2 + biCi + 62C0 = 0 

boC3 + bxC2 -\- 62C1 + 63C0 = 0 

or 

Y ^ h z ' ^ C j Z ^ = b o C o ^ 

i = o / u = 0 

boco 

bi b2 . bn 

bo bi . bn-1 
0 bo . bn-2 

0 0 bo bi 

Y^c.z 
\3=0 

C „ — OQCO 

for n = 1,2,3,.. where || means determinant. Substituting back the original 60 and CQ we 

have 

12 ( -1 ) " 

Some of the first c's are Ci = 1/64, C2 = -1/128, C3 = 5/1024. 

In a similar way we can find the / series. The equations read 

2cl + 3/060 = 0 

I6C0C1 + 6feo/i + 3O61/0 = 0 

I6C0C2 + 4 + 660/2 + 61/1 + 3O62/0 = 0 

I6C0C3 + 2ciC2 + 660/3 + 261/2 + 262/1 + 3O63/0 = 0 

61 62 . bn 

26o 61 . bn-1 
0 26o . bn-2 

0 0 2bo 61 
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We can write these equations, but the first one, in terms of a power series after substituting 

60 —> l/36o, Co —l/8co and /o —> l/15/o. Then 

E Q ^ M +2(Y,b,z'](Y:fiz']=cl + 2bofo 
\i=0 ) \k=0 / \/=o / 

where fo = —2cl/{3bo). From this equation we deduce 

[to J HET^ohz') 

= ^ +260/0 (Eib-')kz'] - \ [Y.{^'h~^)A 
^ \k=0 / \i=0 J 

f n = l {4 + 260/0) ib-\ - \{c'b-% for n = 1,2,3,.. 

and hy substituting back the original 60, CQ and /o we have 

/„ = ^ (64c^ + 9O60/0) (6-^)„ - ]^{^b'% for n = 1, 2,3,.. 

where b~^ and c^6~^ can be found easily using the formulas for the inverse and the product 

of power series (see e.g. [29]). Finally we can derive the first few /'s: / Q = 1/6912, 

/ i = -17/13824, / 2 = 269/331776. 

Similar treatment can give the other classical coefficients of the functional / ip^'^ (<^^™^) • 
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Appendix E 

Maple Programming 

Maple is a powerful tool which can be used by everybody who deals with mathemati­

cal calculations [30]. It is esjDecially useful for symbolic computations as that was the 

purpose of its construction at the University of Waterloo in Ontario, Canada [31]. Its 

basic features as elementary data structures, input/output, arithmetic with numbers and 

elementary simplification are coded in a systems programming language for describing 

algebraic algorithms. They consist of a relatively small core program, programed in C 

32], and it is accompanied by a large number of libraries and routines which are mainly 

developed using Maple's own language. With this language the user can build additional 

libraries and routines to match his/hers calculational needs. 

The main advantage of programing in Maple is that a large number of functions like the 

permutation function and "natural" simplifications like factorisation are already present 

in the main library. This makes the programing, which is in a high level programing 

language, much easier and faster. At the same time there are the basic disadvantages 

of memory inefficiency and lack of speed at some stages in comparison with ordinary 

programing languages. In addition Maple gives in a few cases "strange" results, that 

is, wrong answers in algebraic or other computations, which should prevent us from a 

"blind" trust in Maple. For our purpose we will see that Maple can be proved useful up 

to a certain point. 

Let us have a look at some basic input/output operations [33]. Maple procedures, sessions 
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or variables can be read into Maple using the read command: 

read 
Definition : read 'filename[.ms]' 
Usage : read variables, procedures or whole sessions. 
Example : read 'MyFile.ms'; 

This is used to read codes wri t ten in a text editor and executed in the Maple worksheet. 

These codes can be named w i t h an extension *.ms. These procedures can also been saved 

into the main l ibrary w i t h the use of the command save in place of read. 

Another useful procedure is simplify: 

simplify 
Definition : s implify expression, (identity) 
Usage : simplification using standard or defined identities 
Example : simplify(sin^ x + cos^ x)\ simplify(a -|- 6 + 2c, {a + 6 + c = 0}) ; 

W i t h i t you can do mathematical simplifications or to impose defined identities in certain 

expressions. 

Two very important functions i n Maple are the op and nops, which make i t possible to 

pick out certain sub-terms or sub-expressions f rom structured expressions or indices of an 

indexed type variable: 

op, nops 
Definition : op(integer,expression); nops(expression); 
Usage : pick out and determine the number of subexpressions 

in expression 
Example : op(l ,a-hb)=a nops(a-|-b)=2 

To see i n what elements of an expression A and in which order the op function puts them 

we can evaluate op(A) which w i l l return us ordered the primary components of A. Then 

we can extract them by using op in the in i t ia l way or we can decompose further composed 

components. 

The command subs has the following properties: 

subs 
Definition : subs(variablel=expressionl,expression2); 
Usage : substitude expression! for every occurance 

of variable! in expression2 
Example : subs(a—c*d,a+b)=c*d+b 

and proves to be very useful tool. Maple attributes on each object (expressions and 

variables) w i t h a type. The function type offers the possibility to check i f an expression 
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is of a specific type: 

type 
Definition : type(expression,expression-type) 
Usage : returns true or false i f the type of expression 

is given by expression-type or not 
Example : type(A[d],indexed)=true 

These are a few examples of the functions in Maple library. We can define new procedures 

or executable programs by using the following format: 

ProcedureName:=proc(Variablel,Variable2,...) 
local LVariablel , LVariable2,...; 

< commands > 
RETURN(RVariable); 
end; 

A more extended discussion of procedures in Maple can be found in [34]. 

One of the procedures we are going to use is the functional differentiation of an expression. 

Some basic features of i t are the following 

6 

S f { y ) 

6 

f{x) = 8{x-y) 

f i x ) = S'{x - y] 

^ f { y ) = V{y)S{x-y) 
Sf{y) 

^ - r \ x ) = - 2 f { x ) 8 \ x - y ) 
SfiyY 

These procedures can be done by Maple by using the modified operator D: 

D 
Definition : functional differentiation 
Usage : gives the functionally differentiation of an expression 

w i t h respect to a given function / wi th variable x 
Example : D i f j x ) ) = Diracjx - y), D { d i f f { f { x ) , x)) = Diracjl, x - y) 

The funct ion Dirac{n,x-y) represents the n-th x-derivative of the delta function S{x-y). 

To define the symbol D we have to use the code 

f d i f f : = p r o c ( F , X , n ) 

l o c a l i ; 

D(X)=0; 
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D(F(X)):=Dirac(X-y); 
f o r i f r o m 1 t o n do 

D (d i f f(F(X),X$i)):=Dirac(i,X-y); 
D ( z [ i ] ) :=0; 

od; 

RETURN(FDifferentiation.def ined) ; 

end; 

This code w i l l define D to be able to act upon given functions F w i th variable X giving 

the expected functional differentiation while acting upon X or z[i] w i l l give zero. We must 

be careful, though, because in i t ia l ly D has a specific structure of a differential operator 

in Maple libraries, obeying the relations 

D{f + g) = D { f ) + D{g) 

D{f*g) = D{f)*g + f*D{g) 

D{f@g) = D{f)@g * D{g) 

and so fo r th , where @ is the composition of functions symbol. What we did is to extend 

its i n i t i a l definit ion suitably for our purpose. 

Another useful example is the production of the b series (see section (4.6)). I f we set 

g = 1 and M = 1 in the classical equations of the 5's then the following program gives 

the Laplacian part of the field independent term in equation (4.31). 

bees :=p roc (n ) 

l o c a l i n p l,inp2,inp3 , e q n,vars , s o l s , b , l , i , j , h , t , s e r ; 

1: = 1; 

h[l]:=MULL; 
inp2[l]:=MULL; 

f o r i f r o m 2 t o n do 

1:=1+1; 
i n p l E i ] : = s u m ( b [ j ] * b [ i - j ] ,j=0- - i ) i 

inp2[1]:=inp2[1-1] , i n p l [ i ] ; 

h [ l ] : = h [ l - l ] , b [ i ] ; 
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od; 
eqns:=inp2Cn],b[0]"2-l/4, 2*b[O]*b[l]-1/4; 
vars:=h[n] ,b[0] , b [ l ] ; 
sols:=[solve(eqns,vars)]; 
for t from 0 to n do 
inp3[t] :=subs(sols[2] , b [ t ] ) ; 

od; 
ser:=2*sum(x"(l/2)*inp3[r]*x~r/(GAMMA(r+l)*(2*r+l)*(Pi)),r=0. .n) ; 
RETURN(ser); 
end; 

The number n gives the order where the series is truncated. Af ter executing this program 

we can obtain the behaviour of the divergence of the energy, which is renormalised wi th 

the use of the term ^ ( A ) , as seen in section (4.7). 

A general way to produce the classical equations of basic vectors through Maple pro­

graming has been shown in section (4.6). Another code has been presented there which 

solves the equations so that finally we get the classical value of the coefficients of the basic 

vectors. The basic elements of these programs is to find, after a theoretical study,the 

general equations i n way accepted by Maple taking care of all the subcases. Then using 

the command solve Maple is able to solve our system of equations for any number of them. 

I n the previous we used Maple to reproduce formulas we already know their general 

fo rm, and then solve them. We can ask for something more ambitious. We can make a 

program which for given local functionals i t can reproduce the corresponding terms in the 

Schrodinger equation. Then, by taking a big and "complete" set of local functionals we 

can have a closed set of algebraic equations to solve generated as in (4.31). 

I n general, what we are asking for is a program which ini t ia l ly generates this "complete" 

set of basic vectors. Then we want these vectors to be functionally differentiated to 

produce the Laplacian term and the squared term shown in the Schrodinger equation. 

These terms, to be used for the algebraic equations, should be decomposed to basic 

vectors (see Appendix C). We can do that, also, w i th another program, as we can see 

in the following. 
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Let us have a look at the code which gives the action of the Laplacian upon a given basis 

vector, reduced also to a basis vector. The main difficulty lies on how can we make the 

program recognise b.v.'s. For this purpose we use a way to translate the conventionally 

wri t ten vectors as 

(E.l) 

to a more approachable way for the program, like 

[O,«o],[l , t<i], . .- ,[n,u„]] (E.2) 

where i n each square bracket appears the number of derivatives and the power for each 

The following program is a composition of small programs, each one serving a specific 

purpose. A t first we define the functional differentiation wi th the appropriate variables. 

Then, the Laplacian is acted upon the test f unc t i ona l and we get a linear combination 

of b.v.'s and non-basis vectors wi th coefficients depending on s. Each one of them is 

translated in the fo rm (E.2). Then, the non-b.v.'s are picked and reduced to b.v.'s and 

the overall result is presented. Let us see the program wi th a few explanations inserted 

for the various steps. 

THIS IS A PROCEDURE T O E V A L U A T E T H E A C T I O N OF T H E L A P L A C I A N UPON 

T H E A N S A T Z W. T H E FIRST STEP IS T O D E F I N E A F U N C T I O N A L DIFFEREN­

T I A T I O N PROCEDURE U P O N f F((f>{a),<f>'{a), ...)da. 

diffy:= proc(F,X,Z) 
local i ; 
D(X):=0; 
D(F(X)):= Dirac(X-Z) ; 
for i from 1 to 20 do 
D(diff(F(X),X$i)):= Dirac(i,X-Z); 
D ( z l [ i ] ) 
D(z2[i]) 
D(z3[i]) 
D(z4[i]) 

=0; 
=0; 
=0; 
=0; 
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D(z5[i]):=0; 
od; 

RETURN(FDifferent i a t ion.def ined) ; 

end; 

GE IS T H E I N P U T F U N C T I O N A L . LAPL I N I T I A T E S T H E PROCEDURE OF T H E 

D I F F E R E N T I A T I O N S . G IS ITS FIRST F U N C T I O N A L D E R I V A T I V E A N D D{G) 

T H E SECOND. PI IS T H E REGULARISED A C T I O N OF T H E L A P L A C I A N ON T H E 

F U N C T I O N A L W I T H A M O M E N T U M C U T O F F 1/s. FWTINI IS A SUBROUTINE 

W H I C H T A K E S PI T H R O U G H T H E NECESSARY ROUTINES OF DECOMPOSING 

T H E O U T C O M I N G F U N C T I O N A L S I N BASIC V E C T O R ONES C O M B I N E D W I T H 

COEFFICIENTS D E P E N D I N G ON T H E C U T O F F s OR RE-SUMMED, TO DEPEND 

ON A. 

lapl:= proc(GE) 
l o c a l j,auxl,dfxim,result,final,k,PI,RPI>in2, 
rrr,in3,rrrr,G,inp2,r,inp3,rr,FWT; 
f d i f f y C f , a , y ) ; 
in2[15]:=D(GE); 
f o r r r r from 15 by -1 to 1 do 
i n 2 [ r r r - l ] : = s u b s ( d i f f ( f ( a ) , a r r r ) = g g [ r r r ] ( a ) , i n 2 [ r r r ] ) ; 

od; 
in3[0] : = i n t ( i n 2 [ 0 ] , a = - i n f i n i t y . . i n f i n i t y ) ; 
f o r r r r r from 1 to 15 do 

in3[rrrr]:=subs(gg [ r r r r ] ( y ) = d i f f ( f ( y ) , y r r r r ) , i n 3 [ r r r r - l ] ) ; 

od; 

f d i f f y C f , y , x ) ; 
G:=in3[15]; 
inp2[35]:=expand(D(G)*exp(I*p*(x-y))); 

for r from 35 by -1 to 1 do 

i n p 2 [ r - 1 ] : = s u b s ( d i f f ( f ( y ) , y r ) = g [ r ] ( y ) , i n p 2 [ r ] ) ; 

od; 
inp3[0]:=int(inp2[0],y=-infinity..infinity); 
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for r r from 1 to 35 do 
inp3[rr]:=subs(g[rr](x)=diff(f(x),xrr),inp3[rr-l] ) ; 

od; 
PI:=expand(int(inp3[35] ,p=-s" (-1/2). s-~ (-1/2))); 
FWT:=fwtini(PI); 
RETURN(FWT); 
end; 

***** A U X I L I A R Y ROUTINES ***** 

M A S T E R 

MASTER IS A R O U T I N E T O T R A N S L A T E A VECTORS F R O M T H E F O R M (E . l ) 

T O T H E F O R M (E.2). FAFF READS T H E N U M B E R OF DERIVATIVES ON EACH 

I N D I V I D U A L <j) W H I L E POW READS ITS POWER. 

master:=proc(inpl,n) 
local i n p 2 , i l ; 
inp2:=NULL; 
i f type(inpl,'+') then 
for i l to nops(inpl) do 
inp2:=inp2, [pow(op(il,inpl),n)]; 

od; 
e l i f t y p e ( i n p l / * ' ) then inp2 : = [pow(inpl ,n)] ; 
e l i f type(inpl,'**') then 
inp2: = [faff(op(l,inpl),n),op(2,inpl)] ; 

e l i f type(inpl,'numeric') then inp2:=[[inpl,'number']]; 
e l i f type(inpl,'function') then inp2: = [faff(inpl,n),1] ; 
else ERRORCWrong format for us!'); 
f i ; 

RETURN([inp2]); 
end; 

faff:=proc(q,n) 

130 



local inpl,inp2,inp3,1,i; 
1:=0; 
inp2[0]:=NULL; 
for i from 1 to n do 
1:=1+1; 
i f q = d i f f ( f ( t ) , t i ) then 
i n p l [ i ] : = i ; 

else inpl[i]:=NULL; 
f i ; 

inp2[1]:=inp2[1-1],inpl[i]; 
od; 
i f inp2[n]=NULL and q=f(t) then 
inp3:=0 e l i f inp2[n]=NULL and type(q,indexed then 
inp3:=q; 

else inp3:=inp2[n] 
f i ; 
RETURN(inp3); 
end; 

pow:=proc(q,n) 
local inpl,inp2,inp3,ind2,i,j,l,k; 
1:=0; 
k:=0; 
inp2[0]:=NULL; 
i f type(op(l,q),numeric) and nops(q)<>l then 
i f nops(q)=2 and type(op(2,q),'** ' ) then 
inp2[nops(q)-l]: = [faff(op(l,op(2,q)),n),op(2,op(2,q))] 

e l i f type((q/(op(l,q))),'*') then 
for i from 2 to nops(q) do 
1:=1+1; 
i f type(op(i,q),'**') then 
inpl[i]:=(faff(op(l,op(i,q)),n),op(2,op(i,q))); 

else i n p l [ i ] : = (faff(op(i,q),n),1); 
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f i ; 
np2[l] :=inp2[l-l] , [ i n p l [ i ] ] ; 
od; 

else inp2[nops(q)-l]:=[faff(op(2,q),n),1]; 
f i ; 
inp3: = ([op(l,q),'number'],inp2[nops(q)-l]); 

e l i f nops(q)=l and type(q,numeric) then 
inp3:=([q,'number']); else i f type(q,'~') then 
inp2[nops(q)]:=[faff(op(1,q),n),op(2,q)] 

e l i f type(q,'*') then 
for j from 1 to nops(q) do 
k:=k+l; 

i f 
type(op(j,q),'**') then 
inpl[j]:=(faff(op(l,op(j,q)),n),op(2,op(j,q))); 

else i n p l [ j ] : = ( f a f f ( o p ( j , q ) , n ) , 1 ) ; 
f i ; 

inp2[k] :=inp2[k-l] , [ i n p l [ j ] ] ; 
od; 

else inp2[nops(q)]:=[faff(q,n),1]; 
f i ; 
inp3:=inp2[nops(q)] 
f i ; 
RETURN(inp3); 
end; 

C O M P A R E 

COMPARE SEPARATES T H E BASIS VECTORS F R O M T H E N O N B.V.'S I N A 

G I V E N EXPRESSION. 

compare:=proc(inpl) 
local varO,var1,var2,var3,var4,var5,var11,i1,1> sas, 11,kl, 
varl3,varl4,varl2,ill,varl5,varl6,varl7; 
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1:=0; 
var3[0]:=NULL; 
varll[0]:=NULL; 

i f nops(inpl)=l and nops(op(l,inpl))=1 and 
nops(op(l,op(l,inpl)))=2 
and op(2,op(l,op(l,inpl)))=number then 
var4:='Number'; 
var5:=op(l,op(l,op(l,inpl))); 

e l i f nops(inpl)=l then 
i f nops(op(l,inpl))=1 and 
type(op(2,op(1,op(l,inpl))),'numeric') then 

i f op(2,op(l,op(l,inpl)))=l and 
type(op(l,op(l,op(l,inpl))),'numeric') then 
var4:='It is 1'; var5:=op(l,inpl); 

else var4:='It is not 1'; 
var5:=op(l,inpl); 

f i ; 
e l i f nops(op(l,inpl))>1 and 
op(2,op(nops(op(l,inpl)),op(l,inpl)))=l and 
type(op(l,op(nops(op(l,inpl)),op(l,inpl))),'numeric') 

then var4:='It is 1'; 
var5:=op(l,inpl); 

else var4:='It is not 1'; 
var5:=op(l,inpl); 

f i ; 
e l i f nops(inpl)>1 then 
for i l from 1 to 
nops(inpl) do 
1:=1+1; 
i f nops(op(il,inpl))=l and nops(op(l,op(il,inpl)))=2 

and op(2,op(l,op(il,inpl)))=number then 
var2[il]:='Number'; 
v a r l [ i l ] : = o p ( i l , i n p l ) ; 
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e l i f nops(op(il,inpl))=l and nops(op(1,op(il,inpl)))=2 
and type(op(2,op(l,op(il,inpl))),'numeric') then 

i f op(2,op(l,op(il,inpl)))=l and 
type(op(l,op(l,op(il,inpl))),'numeric') then 

v a r 2 [ i l ] : = ' I t is 1'; 
v a r l [ i l ] : = o p ( i l , i n p l ) ; 

else v a r 2 [ i l ] : = ' I t is not 1'; 
v a r l [ i l ] : = o p ( i l , i n p l ) ; 

f i ; 
e l i f op(2,op(nops(op(il,inpl)),op(il,inpl)))=l and 

type(op(l,op(nops(op(il,inpl)),op(il,inpl))),'numeric') then 
v a r 2 [ i l ] : = ' I t i s 1'; v a r l [ i l ] : = o p ( i l , i n p l ) ; 

else v a r 2 [ i l ] : = ' I t is not 1'; 
v a r l [ i l ] : = o p ( i l , i n p l ) 

f i ; 
v ar3[l] :=var3[l-l] ,var2[il] ; 
v a r l l [ l ] : = v a r l l [ l - l ] , v a r l [ i l ] ; 

od; 
var4:=var3[1]; 
var5:=varll[1]; 

f i ; 
sas: = [[var4],[var5] ] ; 
11:=0; 
kl:=0; 
varl3[0]:=NULL; 
varl4[0]:=NULL; 
varll:=op(l,sas) ; 
varl2:=op(2,sas); 
for i l l from 1 to nops(varll) do 

i f o p ( i l l , v a r l l ) = ' I t is 1' then 
11:=11+1; 
v a r l 3 [ l l ] : = v a r l 3 [ l l - l ] , o p ( i l l , v a r l 2 ) ; 

e l i f o p ( i l l , v a r l l ) = ' I t is not 1' then 
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k l : = k l + l ; 
v a r l 4 [ k l ] : = v a r l 4 [ k l - l ] , o p ( i l l , v a r l 2 ) ; 

f i ; 
od; 

varl5:=varl3[ll] ; 
varl6:=varl4[kl] ; 
varl7: = [ [ v a r l 5 ] , [ v a r l 6 ] ] ; 
RETURN(varl7); 
end; 

MASA 

MAS A RE-EXPRESSES VECTORS OF T H E F O R M (E.2) T O T H E F O R M (E . l ) 

masal:=proc(inpl) 
local varO,varl,iO,l; 
1:=0; 
varl[0]:=0; 

i f nops(inpl)<>l then 
for iO from 1 to nops(inpl) do 
1:=1+1; 
varl[l]:=varl[1-1]+masa(op(iO,inpl)); 

od; 
varO:=NULL; 

e l i f nops(inpl)=l then 
varO:=masa(op(l,inpl)); 
varl[0]:=NULL; 

f i ; 
RETURN(varO,varl[l]); 
end; 

dif:=proc(inpl,n) 
local v a r l ; 

i f n=0 then 
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varl:=inpl; 
e l i f nOO and type(n,numeric) then 
va r l : = d i f f ( i n p l , t $ n ) ; 

e l i f type(n,indexed) then 
varl:=n; 

f i ; 
RETURN(varl); 
end; 

masa:=proc(inpl) 
local varl,1,varO,i; 
1:=0; 
v a r l [ l ] : = 1 ; 

i f nops(inpl)=l then 
i f op(2,op(l,inpl))=number then 
varO:=op(1,0(1,inpl)) ; 

else varO:=dif(f(t),op(l,op(l,inpl)))~op(2,op(l,inpl)); 
f i ; 
varlLl]:=NULL; 

e l i f nops (inpl) 0 1 and 
op(2,op(l,inpl))=number then 
for i from 2 to nops(inpl) do 
1:=1+1; 

v a r l [ l ] : = o p ( l , o p ( l , i n p l ) ) ; 
v a r l [ l + l ] : = v a r l [ l ] * d i f ( f ( t ) , o p ( l , o p ( i , i n p l ) ) ) ^ o p ( 2 , o p ( i , i n p l ) ) ; 

od; 
varO:=NULL; 

e l i f nops (inpl) 0 1 and 
type(op(2,op(l,inpl)),numeric) then 
for i from 1 to nops(inpl) do 
1:=1+1; 

v a r l [ 1 + 1 ] : = v a r l [ l ] * d i f ( f ( t ) , o p ( l , o p ( i , i n p l ) ) ) ' o p ( 2 , o p ( i , i n p l ) ) ; 
od; 
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varO:=NULL; 
f i ; 

RETURN(varO,varl[l+l]) ; 
end; 

M E G A 

MEGA REDUCES THE NON-B.V.'S TO B.V.'S FROM A GIVEN EXPRESSION. 

mega:=proc(A) 

local q,p,up,uq,varl,var2,ll,var3,var00,T2,l,varll,T3,T,B,TM,T4,T5; 
B:=A; 
with(student); 
11:=0; 
var3[0]:=0; 
while BOO do 

i f type(B,'+') then 
T:=op(l,B); 

else T:=B; 
f i ; 

TM:=op(l,master(T,20)) ; 
1:=0; 
var2[0]:=NULL; 
q:=TM[nops(TM)][l]; 
p:=TM[nops(TM)-l][1] ; 
uq:=TM[nops(TM)][2] ; 
up:=TM[nops(TM)-l][2] ; 

i f q=p+l then 
var00:=-diff(product('op(j,T)','j'=1..(nops(T)-2)),t)* 

d i f f ( f ( t ) , t p ) } ~ ( u p + l ) / ( u p + l ) ; 
varll:=sorte(expand(varOO),15); 
11:=11+1; 
v a r 3 [ l l ] : = v a r 3 [ l l - l ] + v a r l l ; 
B:=B-T; 
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else 
T2:=intparts(Int(T,t),product(op(j,T),j = l..(nops(T)-1) ) ) 
-op(l,intparts(Int(T,t),product(op(j,T),j = l..(nops(T)-1)) ) ) ; 
T3:=-sorte(expand(sorte(op(l,-T2),15)),15) ; 
T4:=compare(master(T3,20)); 

i f op(2,T4)<>NULL then 
11:=11+1; 
var3[ll]:=var3[ll-l]+masal(op(2,T4)); 

f i ; 
T5:=masal(op(l,T4)) ; 
B:=B-T+T5; 

f i ; 
od; 
RETURN(var3[ll]) ; 
end; 

S O R T E 

SORTE IS A USEFUL R O U T I N E W H I C H PUTS T H E ^ I N INCREASING ORDER 

OF T H E I R D E R I V A T I V E S . 

sorte:=proc(inpl,n) 
loca l i , v a r 2 , v a r l ; 
var2[0]:=f(t) ; 
for i from 1 to n do 
v a r 2 [ i ] : = v a r 2 [ i - l ] , d i f f ( f ( t ) , t $ i ) ; 
od; 

varl:=sort(inpl,[var2[n]] ) ; 
RETURN(varl); 
end; 

*****END OF A U X I L I A R Y ROUTINES***** 

E L E 
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ELE CONNECTS T H E PREVIOUS SUBROUTINES T O G E T H E R SO T H A T W E GET 

T H E DESIRED RESULT. 

ele:=proc(QQ) 
local Qqi,EE,RR,WW,AA,FINAL; 
WW:=master(expand(Qq),15); 
EE:=compare(WW); 
RR:=masal((op(1,EE))) ; 
AA:=mega(RR); 
FINAL:=AA+masal(op(2,EE)); 
RETURN(FINAL); 
RETURN(WW); 
end; 

F W T I N I 

FWTINI IS A R O U T I N E T O P E R F O R M T H E R E - S U M M A T I O N PROCEDURE A N D 

I N T R O D U C E S T H E C U T O F F P A R A M E T E R A. 

fwtini:=proc(inpl) 
local 1, v a r l , var2,var3,var4,var5,var6,var7,var8,i,inp11,var22; 
1:=0; 
var7[0]:=0; 
elen(O):=0; 
inpll:=sorte(inpl,15); 
varl :=subs(s=l/LL'"2,inpl) ; 
var2:=subs(l/sqrt(Pi) = l,varl) ; 
var22:=simplify(subs(x=t,var2)); 
var3 : =subs(csgn(conjugate(LL)) = 1,sorte(collect(var22,LL),15)); 
for i from 0 to nops(inpll)-1 do 
1:=1+1; 
var4[i] 
var5[i] 
var6[i] 

=coeff(var3,LL"(2*i+l)); 
=elen(sorte(var4[i],15)); 
=var5[i]*l/s"((2*i+l)/2); 
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v a r 7 [ l ] :=var7[l-l]+var6[i] ; 
v a r 8 [ l ] :=var8[l-l] ,var5[i] ; 

od; 

RETURN(var7[1]); 

end; 

This program generates the Laplacian term of equation (4.31). After reading the program 

in a Maple worksheet we can produce the outcome of the laplacian acting on an expression 

G, by using the command ele(G);. The {8WI8'{>Y term is generated by a similar procedure, 

which uses the same basic elements of the previous one. 
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Appendix F 

Functional Method for the Central 

Charge Term 

We can define the regularised Virasoro operators as 

L[u] = y dada'u{a,a')K''^{a,a'){P,{a) - Xl{a)){P^{a') - Xl{a')) = 

- f dadcr'u{a, a')R^{a)R^,[a') 

where K^^{a,cr') is a Kernel to point split the double action of the functional differentia­

tions, satisfying the condition l im.^o K^''{a,a') = T]^''6{a,a'), R^{a) = (P^(CT) - X^a)), 

u{cr, a') is the component of a vector field on the circle, S^, on which X{a) is defined and 

is symmetric i n a and a'. 

We w i l l calculate the commutator [L[u],!/[?;]] acting on the vacuum state {X\0) given in 

(8.10). We have 

[L[u],L[v]]{X\0) = 

— I dada'dada'u{a,a')v{(7,a')K^''{a,a')K^\a,a')x 

[R,{a)R,{a'),R4a)R,{a')] {X\0) = 

J dada'dada'u{a,a')via,a')K''''{a,a')K''\a,a')x 

iV.J'i'J, a) {R,ia')R,{a') + Rx{a')R,{a')} {X\0). ( F . l ) 

( F . l ) results after applying the relation [i?^(cr), i?«(a-)] = - 2 i ^ ' ( ( j , a-)r/^« and re-arranging 

the cr variables as well as the indices. By commuting Rx{a') and R^{a') and integrating 
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by parts, we get 

[L[u],L[v]]{X\0) = 

d 
2 J OCT 

^u{a, a')v{a, a)K^\a, K{a')Rx{a){X\Q) (F.2) 

where the rest of the terms give zero, as they are symmetric in u and v or include the 

quantity '"'(a, a') _̂ which is zero^. Applying the combination i?^((j')i?A(f") on the 

vacuum state (-^|0), the only term wi th singularity coming out w i l l be f rom the two 

functional derivatives. That is 

' ' :(A10) = 
8X''{a') 8X'^{a) 

4 j H{a\a")X,{cT")da" j H{a,a")X,{a")da" + 2H{a,<j')7),}^ {X\{}) (F.3) 

As the Kernel acts on (F.3) the only divergency wi l l come f rom the last term in the curly 

brackets. The other terms w i l l be combined as in the normal ordered case to give the 

normalised Virasoro operator sitt ing on the r.h.s. of the algebra. Let us study the term 

T = - i J dada' l^u{a,a')v{a,a)^K^''{a,a') + 

-^u{a, a')v{a, a)K'^''{a, a ' ) | Vx>^H{a, a'). (F.4) 

We can take the Kernel to be of the fo rm 

K^\a, a') = rj^^g,{a, a') = i^^'^ ^ . (F.5) 

where 

h m -;=— = 8{a — a'). 
V27VS 

Expression (F.4) can be symmetrised wi th respect to a and a' so that the summation in 

H can be re-written as 

47r ^ ± 
me 

im{a—a') 

•m=—co 

^See Chapter 6. 
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Substituting this into (F.4) we get 

T = -iN j dada' ^-u{a,a')v{a,a)^gs{a,a')-

(F.6) 

By expanding 

the first te rm of (F.6) gives 

-iN j <lad<7'u{<7,a')v{a,^)-^g.(a,t^') — : ^ — ^ r ^ = 

^ u ( a y M a . . ) l s . M ± . ( - ^ - i-, + . . . ) ) . (F.T) 

We can set x = cr — a'. As the exponential damps all contributions for large x we can 

extend the integration of x f r o m —oo to -|-oo. Hence (F.T) becomes 

-^N j dadx { , > ( , , - ) ( - J ^ ) ^ + ^ - + 

-•u(cr, o-)'y((j, ( T ) ( - - — p ) — — ( - I -h . . . j > = 

/• f (9 ( - l )e~^^/ ' '* i 1 x^ 
-iN / cfcrJx <̂  — t / ( c r , ( T ) ' y ( ( J , ( 7 ) Y - ^ — — 1 = + — p ^ ; - i_ + . . . ) - l -

. ( . , . ) . ( . , . ) - ^ ^ — ( - - - z x - l - . . . ) | 

We can use the relations 

/ t f x ^ ^ = ^ / dx- , / dx- = 0, dx e-^ = 2 ^ ^ ^ / ^ 
J-oo X^ 2 J-oo S J-co X J-oo 

r dx xe-^"l^' = 0, / " dx x^e-^"^"' = 2 T dx st-^"l^\ ... 
J—CO J—oo J—oo 

to get 

where the second term in the curly brackets in (F.8) is zero because of its symmetry in u 

and V. Up to zeroth order in 5 we obtain 

/ d c r d x — U (T, (Tjulcr, c r ) — 7 = — 
47r 7 da ^ ' ' ^ ' ' s^fh^s 
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/ dadx—u[a,a)v(a,a) -1^=— 

— ^ J d a d x - u i a , a H a , a ) ^ - — J dadx-u{a,aHa,a)-^ 

iN r . , d , . . ,e-"'/4^ iN f , d 
dadx—u{a,a)v{a,a) ^ —— / da-—u{a,a)v{a,a) (F.9) 

Oa Sy/s z47r J oa 47rV2 

for s 0. 

Treating in the same way the second term in T , we get altogether 

T = — / dadx—u(a)v(a)—7=— 

- ^ I ^ - ^ " ( ' ) " ( - ) - ^ / - ' - ^ " W - W (F.IO) 

We can see that the rest of the terms of (F.2), apart f rom T, construct the renormalised 

part of 

I dada'^u{a,a')v{a,a)K^''ia,(7')R,{a')Rx{a){X\0) 
2 J OCT 

and as we can antisymmetrise in u and v we have 

K''''{a,a')R,{a')Ry^{a){X\{)) = 

~iL[[u,v]]{X\Q) 

for [u^u] = uv' — u'v. This is the desired result as i t is calculated in [36] wi th another 

method. For u = e~"̂ '̂  and v = e"""*̂  i t gives the result we obtained in (8.8). 

144 



Bibliography 

1] D . M . M c A v i t y and H . Osborn, NucL Phys. B394 (1993) 728 

2] M . Liischer, R. Narayanan, P. Weisz and U . Wolff, Nucl. Phys. B384 (1992) 168 

3] R. Jackiw, Analysis on infini te dimensional manifolds: Schrodinger representation for 

quantized fields, Brazil Summer School 1989 

4] C. Kiefer, Phys. Rev. D 45 (1992) 2044 

5] C. Kiefer and Andreas Wipf , Ann. Phys. 236 (1994) 241 

6] P. Mansfield, Nucl. Phys. B418 (1994) 113 

7] T . Horiguchi, KIFR-94-01, KIFR-94-02, KIFR-94-03, KIFR-95-01, KIFR-95-02 

T.Horiguchi , K . Maeda, M . Sakamoto, Phys.Lett. B344 (1994) 105 

8] C. G. Bolhni , M . C. Rocca, hep-th/960723 

9] J. Kowalski-GHkman, K . Meissner, hep-th/9601062 

10] I . I . Kogan and A. Kovner, Phys. Rev. D52 (1995) 3719-3734 

11] J .N. Islam, Found. Phys. 24 (1994) 593-630. 

12] P. Mansfield, "The Vacuum Functional at Large Distances", Phys. Lett. B 358 (1995) 

287. 

13] K . Symanzik, Nucl. Phys. B190[FS3] (1983) 1 

14] K . Symanzik "Schrodinger Representation in Renormalizable Quantum Field The­

ory", Les Houches, Session XXXIX,1982 , Elsevier Science PubHshers B.V. (1984) 

15] K . Symanzik "Structural Elements in Particle Physics and Statistical mechanics", 

eds., J. Honerkamp et al. Plenum Press, New York, 1982. 

145 



[16] M . Liischer, Nucl . Phys. B254 (1985) 52. 

17] E. C. G. Stueckelberg, Relativistic Quantum Theory for Finite Time Intervals, Phys. 

Rev. Vol. 81, No. 1, p. l30. (1951) 

18] P. Mansfield, "Reconstuction of the Vacuum Functional of Yang-Mills f rom its Large 

Distance Behaviour", hep-th/9510188 

19] G. Arfl<en, Mathematical Methods for Physicists, Academic Press Inc. 1970, p. 455 

20] G. Arfken , Mathematical Methods for Physicists, Academic Press Inc. 1970, p. 662 

21] C. Itzykson and J.-B. Zuber, "Quantum Field Theory", McGraw-Hil l , 1980, p.287 

22] L . W . Ryder, "Quantum Field Theory" Cambridge University Press 1985, p.208. 

23] E. Brezin, J. C. Le Guillou and J. Zinn-Justin, Phys. Rev. D 14 (1976) 2615, 4976. 

24] A . M . Polyakov, "Gauge Fields and Strings, Contemporary Concepts in Physics", vol. 

3, Harwood Academic PubHshers 

25] C. W . Mishner, "Harmonic maps as models for physical theories", Phys. Rev. Vol. 

18, No. 12, 4510. 

26] P.Mansfield, J.Pachos, Phys. Lett . B365 (1996) 169 

27] M . B . Green, J. H . Schwarz, E. Wi t t en , Superstring Theory, Cambridge University 

Press 1987. 

28] E. Benedict, R. Jackiw, H.-J. Lee, "Functional Schrodinger and BRST Quantisation 

of (1 - f l)-Dimensional Gravity" hep-th/9607062 

29] P. Henrici, "Applied and Computational Complex Analysis", J. Wiley and Sons, Inc. 

1974, Vol .1 , p.10 and 17 

30] D . Harper, "Introduction to Maple", University of Sussex Computing Centre. 

31] B . W . Char, K . 0 . Geddes, G. H . Gonnet, B . L. Leong, M . B. Monagan, S. M . Watt 

"Maple V Language Reference Manual", Spinger-Verlag editions, 1991 

[32] B . W . Kernighan, D . M . Ritchie, "The C Programming Language", Prentice Hall 

Inc. 1990 

146 



33] "Comparison of String Theories wi th Theories of Gravity", B. SendhofF, PhD thesis 

at the University of Sussex, 1993. 

[34] B . Sendhoff, "Using Maple", Booklet for a Maple introductory Seminar, 1993. 

35] P. Mansfield, Reports on Progress in Physics, Vol. 53, No. 9, (1990) 1183 

[36] P. Mansfield, Annals of Physics, Vol . 180, No. 2, (1987) 330 

147 


