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Abstract

A Class of Petrov—Galerkin Finite Element Methods
for the Numerical Solution of the
Stationary Convection—-Diffusion Equation.
Andrew James Perella

A thesis submitted in partial fulfilment
of the requirements for the degree of Doctor of Philosophy.

September, 1996.

A class of Petrov—Galerkin finite element methods is proposed for the numer-
ical solution of the n dimensional stationary convection-diffusion equation.
After an initial review of the literature we describe this class of methods and
present both asymptotic and nonasymptotic error analyses. Links are made
with the classical Galerkin finite element method and the cell vertex finite
volume method. We then present numerical results obtained for a selection
of these methods applied to some standard test problems. We also describe
extensions of these methods which enable us to solve accurately for derivative

values of the solution.
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1.1 Introduction

Many physical processes, in particular those arising from fluid flow problems,
can be modelled as systems of partial differential equations. Consequently
there is a great deal of interest in producing numerical methods which can

approximate the solutions of these equations.

However it has been well-known for some time that if there is a dominant
convective term in the partial differential equation then standard numerical
methods often fail to work well. The rapidly changing solutions which are
common features in problems of this type cause standard classical numerical
schemes (such as centred finite difference methods and Galerkin finite element
methods) to yield solutions which suffer from very large, unrealistic, oscil-
lations. Thus, many numerical methods have been devised to tackle these
problems. Of these, the streamline diffusion method [23] and the cell vertex
finite volume method [27] have been particularly successful. Although all of
the specially designed methods have their strengths none are ideally suited to
a large range of problems; indeed they are often designed with view to solving

only a small class of problems.

1.2 Convection—Diffusion Equation

The incompressible Navier-Stokes equations [38]:

%—l:’—i-u-VP—aV?u:f,

V-u=0,
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where u is a velocity field, P is the pressure and 1/a is the Reynolds/Péclet
number, in conjunction with suitable boundary conditions (such as prescribed
boundary velocities or normal derivatives of boundary velocities) model many
important fluid-like flow problems (such as transonic airflow around an air-
craft). Unfortunately the numerical solution of these equations has proved ex-
tremely difficult especially in problems where the Péclet number is very large

(typically this can be as large as 10° or greater in transonic airflow problems.).

While it is clearly desirable to be able to solve these equations we can have
little hope of success over a whole range of problems unless we can adequately
solve a simpler linear model. One such linear model is the convection—diffusion
equation, an equation interesting in its own right. Like the Navier-Stokes
equations the convection-diffusion equation is nonself-adjoint (there is a di-
rectionality introduced by the presence of an odd order derivative) and as a

result it inherits many of the important properties and difficulties of the more

general nonlinear problem.

In this thesis we shall consider new methods for the numerical solution of
the stationary n-dimensional convection—diffusion equation. For the purpose
of describing and analysing our methods we present the equation only with
constant coefficients, although the methods are trivially applicable to the more

general case.

The convection-diffusion equation is:
—V.(aVu)+V.(bu)=f in QCR" (1.1)

where a(-) is a constant n x n diffusion matrix and b(-) is a constant n x 1

convection vector, with, for ease, homogeneous Dirichlet boundary conditions.

To gain insight into the mechanisms involved in the convection-diffusion
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equation we consider the following one dimensional example [44]:

—av’(z) +u'(z) =1 for0 <z <1,

with «(0) = u(l) = 0. In particular we are interested in the case when
0 < a << 1 as it is in this case that standard numerical methods fail to model

the solution accurately.
This equation yields the analytical solution

e——l/a = e—(l—a:)/n,
1 — 6—1/(1.
- - 6—(1——$)/a + O(e—l/a).

u(z) = z+

0.9 7

0.5

0.4

0.3fF

0.2

O | [l 1 I ! 1 1 ] 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 1.1: Solution plot for u(z) when a = 1/100
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The first term is the solution of the initial value problem
u'(z) =1 on (0,1) with u(0) = 0.

The second term is negligible for small @ unless @ is near 1. This term enables

the second boundary condition to be satisfied. The third term is small.

So we see that for small a the solution essentially satisfies a pure convection
problem except in a region close to 1 and we say the solution exhibits an

exzponential boundary layer at v = 1.

In higher dimensions, more complicated situations can occur. In particular
internal shear layers can be present, often due to discontinuous boundary data
or to changes in sign of a [23]. These shear layers are characterized by a jump
in the solution across the convective flow lines. Parabolic layers can also be
present at boundaries where he flow is parallel to the boundary. These layers

are called ‘parabolic’ due to the parabolic nature of the differential equation

in such regions.

The following subsections explore the existence of solutions to the convection-

diffusion equation and also their uniqueness.

1.2.1 Weak Form

We shall introduce the concept of weak forms in the following abstract setting

as described in [41].

Given a open and bounded region § in R™ with polygonal boundary I' =

I'; UT, such that T’y and I'y are nonoverlapping, then if L is a second order
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is C™ continuous. The advantage of using weak solutions if they are unique is
that it is easier to prove the existence of weak solutions than the existence of
classical solutions. Moreover, since all strong solutions are also weak solutions,

if we have a unique weak solution then there must be no more than one strong

solution.

1.2.2 Existence and Uniqueness

Theorem 1 The Generalised Laz-Milgram Theorem [29]

Suppose that B(-, ) is continuous, coercive, bilinear form on Hy X Hj, where
H; and H; are real Hilbert spaces. That is there exists two positive constants

Cq and Cy such that

IB(v,w)} < CIHUHHHHw”Hz Vv € Hy,Vw € Ha,

S 59 T e ]

> C

and

sup |B(v,w)| > 0 Yw # 0.
vEeH:

Then Vf € H} (the dual space of H,, that is the space of continuous linear

functionals on H;), there exists a unique ug € H; such that
B(’U,(),'UJ) = (f,w) Yw € H2

and
1

ol lry < 1111
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Note that
[(1, ) |
Ml = sup (0l
weHy w0 ||U]|m,

Theorem 2 FEzistence and Uniqueness of the Convection-Diffusion Equation
[29]
Suppose that for problem (1.2) with

Lu = —V.(aVu—bu)

witha >0,f € H"',be (H')",n.b > 0on I'; and V-b = 0 (divergence free

flow), then a unique weak solution v exists and satisfies

B(u,v) = (f,v) Vv € Hj.

Proof The proof follows from application of the Lax-Milgram theorem

above with Hy = H, = Hj.

1.3 Motivation Behind Numerical Schemes

“Many different schemes exist for the numerical solution of the convection—

diffusion equation. These are described in the next chapter.

It is apparent that while many of these schemes are very similar, the moti-
vation behind their construction can be very different. Many of these methods
can be split into two groups; one in which methods designed to work well for
pure diffusion problems are modified (e.g. Galerkin finite element methods /

cell-centred finite volume methods / central finite differences) and the other
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where methods designed for pure convection problems are modified (Cell-
vertex finite volume methods/ upwind differences). A further motivation for
most of these methods is the creation of a scheme which is nodally exact for
a certain one-dimensional model problem (often where the source function f
is zero.). In many cases however these methods are then used for problems
bearing little or no resemblance to that original model problem rendering the
motivation dubious or fallacious. Other methods have been designed with
view to ensuring that they converge in a similar way for all problems ranging
from pure diffusion to pure convection problems. These are known as globally

uniform convergent schemes.

In this thesis the motivation for the methods described in chapter three
is that we aim to produce highly accurate solutions on subregions of one di-
mension less than the original region. More explicitly, for one dimensional
problems we aim to produce accurate solutions at a collection of nodes; in two
dimensions we aim to produce accurate solutions on the element boundaries.
This is a more realistic aim in n dimensions than producing nodally accurate
solutions, as the concept of a nodal value has no meaning for functions in H*
when n > 1. Boundary values, however, are well defined for all » for functions
in H' via the trace theorem [5]. A byproduct of this paradigm is that the

quality of the approximation is insensitive to the mesh; a highly sought after

quality.



Chapter 2

A Review of Numerical

Methods

29
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2.1 Introduction

In this section we give a brief review of other work in this area. For clarity we
have grouped methods into various classes. Firstly we describe finite difference
and finite volume methods. Then we describe both conforming and noncon-
forming finite element methods. Many of these methods have been compared
in [31]. An entertaining survey paper can be found in [26] which vigorously
attacks ‘upwind’ methods (We shall classify as ‘upwind’, any method whose
difference scheme weights nodes in the upwind direction more than the down-
wind direction where the direction of the ‘wind’ is defined by the convective
term.). These attacks, although not without some justification, are proved

unfounded by the many successes of modern methods (see for example [21]).

2.2 Finite Difference Methods

The method of finite differences aims to generate an approximation U to the

solution of the strong form of the equation:
—~V.(aVu)+V.(bu)=f in QCR", (2.1)

at a set of points z; € Q called nodes. An equation for U; (U; is the approx-
imation to u(z;)) is found by replacing each of the derivatives of u by some
approximation involving values of U;. Usually the nodes are arranged in a
regular grid pattern for both ease of use and higher accuracy. An equation

like this is generated for every node and then the solution is found by solving

these equations together simultaneously.

For the purposes of this subsection we consider the following constant co-
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efficient one dimensional problem:
—au” + b = f, (2.2)

posed on [0, 1] and discretized by the nodes z; = ih,

i =0,...,n where h = 1/n is the constant mesh spacing.

2.2.1 Classical Finite Difference Method

The classical central difference approach is to replace

Uiyr —2U; + Ui
h? ’
Ug1 — Ui
2h '

u’(z) by and

u'(z) by

A standard Taylor expansion argument shows that both of these approxima-
tions are O(h?) accurate. From an M-matrix analysis [36], [44] we find that for
stability of this scheme it is necessary to have h < 2a/b. When h < 2a/b this
scheme does indeed produce reasonable results, however when A >> 2a/b as
is almost always the case (for computational reasons), the scheme usually pro-
duces wildly inaccurate oscillations. Stability can be regained for the method

by the use of specially defined meshes (see section 2.2.6.)

2.2.2 Upwind Methods

A common technique employed to overcome the stability problems inherent
in classical techniques is that of numerical upwinding, so called due to the

fact stability can be achieved by taking a one-sided approximation of the first
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derivative in the upstream/upwind direction. That is we replace (for the one

dimensional case with node z; downstream from z;_1)

Uig1 = 2U; + Ui
72

Ui—Ui1

—

as before, and

Analysis shows that the resulting scheme is stable [44] independent of the mesh

spacing. However, by introducing this stability we lose an order of accuracy.

Often a Hybrid Upwind Difference scheme is used where central differences

are used for mesh Péclet numbers bh/a less than two, and upwind differencing

otherwise.

2.2.3 Exponentially Fitted Schemes

One remedy for the lower accuracy of the upwind method is to still use up-
wind one-sided differences for the first order term, but to modify the diffusion
term by an exponentially fitted parameter which is chosen so that the method
yields exact nodal solutions for one dimensional problems without any source
functions on the right hand side of the equation. This method suffers in higher
dimensions due to increased diffusion perpendicular to the flow direction. This
is known as the Allen and Southwell scheme [2]. We also mention here, fitted
methods [22] on arbitrary meshes (in one dimension) where the coefficients of
all the terms in the difference scheme are chosen to ensure uniform convergence

in some appropriate norm with respect to the diffusion parameter.
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2.2.4 Interpolation/Extrapolation Techniques

Many techniques exist, where the convective term is obtained by interpolation
of a given function through a number of upwind and downwind nodes. The
diffusion term is usually treated by standard central differences. Examples of
such schemes are the QUICK scheme [42] and the LUE/LLUE schemes [42].
The quadratic upwind interpolations (QUICK) scheme employs a quadratic
variation fitted to the nodal values of the two closest upwind nodes and the
closest downwind node. In the linear upwind extrapolation (LUE) scheme,
nodal solution values are found from the linear function fitted to the two

upwind nodes. Note that the standard upwind scheme also falls into this

category.

2.2.5 Artificial Diffusion

The artificial diffusion approach is to solve a modified equation by the classical
finite difference approach. Here an extra diffusion term (4/2)u” is added onto
the convection-diffusion operator. For the one-dimensional problem, the re-
sulting matrix equation is identical to that of the upwind scheme. Due to this
order h perturbation this is limited only to first order accuracy. This approach
can be extended more easily than the upwind method to higher dimensions
where the extra diffusion can be added only in the direction of the streamlines.
This can be derived as a finite element method within whose framework it is

possible to prove greater than first order accuracy; See section 2.5.2.
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2.2.6 Specially Designed Meshes

It has been shown (see for example the references in [6]) that success can
be found in using standard finite difference techniques by applying them on
specially designed meshes. Notable success has been found in using piecewise
uniform meshes [12]. Also the methods of exponential fitting can be applied in
conjunction with specially designed meshes. All these methods are designed
with a view to producing uniform convergence in some norm (usually the
discrete L® norm, where |[f||r~ = ,22° | f(z)|) with respect to the diffusion

parameter.

2.3 Finite Volume Methods

Finite Volume methods [27] have been highly successful in the numerical solu-
tion of partial differential equations, particularly in the solution of conserva-
tion laws such as those that occur in fluid mechanics. These methods, broadly
speaking, can be divided into two types: cell-centred and cell-vertex methods.
These methods try to solve the equation in conservation form - that is they

approximate the solution of
/V.(aVu + bu) dQ = /f dQ.

To solve this, finite volume methods split the domain £ into subregions (),
(intervals in one dimension , quadrilaterals in two dimensions) where |J; = €.
The integral equation is then posed on each of these domains (often called
cells or finite volumes) individually and these equations are then solved by
using Gauss’ theorem to convert the integrals to surface integrals. It is in

the approximation of u on these surfaces that differences appear between cell-
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centred and cell-vertex methods.

2.3.1 Cell Centred Finite Volume Method

In the cell-centred finite volume method values for the approximate solution
uy are held at the centres of these cells. Values of wu, on the surfaces are
approximated by interpolation between these cell-centred values. Although
this method is highly suited to the solution of pure diffusion equations as there

is no directionality expressed, it has also been used successfully for convection—

diffusion problems.

2.3.2 Cell Vertex Finite Volume Method

Cell-vertex methods are particular useful for highly convective problems (such
as the convection—diffusion equation with low diffusion) and so are more rele-
vant to the content of this thesis. The cell-vertex finite volume method stores
unknowns at the cell-vertices. The surface integrals are then calculated numer-
ically by the trapezium rule for the approximation of u and by some suitable
difference scheme for the approximation of Vu. The cell vertex finite volume
method for a pure convective problem (so no approximation for Vu is neces-
sary) can be viewed as a Petrov—Galerkin finite element method [34]. Petrov

Galerkin methods are described later in this chapter.

Unlike cell-centred schemes the cell-vertex method suffers from ‘counting’
problems in that the number of unknowns will not, in general, match the
number of cells (there will be one equation per cell). To overcome this problem

either selected cells must be left out of the integration or some cells must be

split. See [7] for more details.
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2.4 Conforming Finite Element Methods

The standard weak form of the convection—diffusion equation is:

find u € H}(Q) :  a(y,v)+c(u,v) =(f,v) Vve H(Q), (2.3)

where a(u,v) = /aVu.Vv s,
Q

c(u,v) = /V.(bu)v aQ,
Q

(f0) = [ foan,

and Hy(f2) is the usual Sobolev space.

The Petrov-Galerkin method consists of choosing two finite dimensional

spaces V, W C Hj(9) such that dim())=dim(W), and solving

find U € V such that a(U,w) + ¢(U,w) = (f,w) Vw € W. (2.4)

The space V is known as the trial space and W is known as the test space.
The finite element Petrov-Galerkin method consists of producing V and W to

contain piecewise functions (usually continuous piecewise polynomials) defined

over a mesh.

These methods are referred to as ‘conforming’ finite elements as V, W C

Hy(9).

For a good review and a unifying approach to finite element methods for

convection-diffusion problems see [30].



Review of Numerical Methods 37

2.4.1 Galerkin Finite Element Method

The Petrov—Galerkin finite element method reduces to the Galerkin finite ele-
ment method when V = W. When a piecewise n-linear trial and test space is
used (in n dimensions), this creates a difference scheme which is qualitatively
similar to that of central differences (although more points in the stencil are

used) and so leads to oscillatory solutions in cases of low diffusion.

The scheme reduces to finding U € V such that
B(U,v) = (f,v) Vv eV,

where B(v,w) = a(v,w) + c(v, w).

Defining the norm

Y
2

Ivlls, = (a(v,v))?,

then for the case b = 0, the approximate solution satisfies
— = inf [|lu — :
||lw = Ulls, = inf [lu — vll5,

This optimal approximation property of the Galerkin method does not follow

however in the case of non zero convection. For this case the error bound

becomes

”u - UHBI = (1 +Cl/02)1i}1€1£”u_v||317

where Cy = a + ||b||(zeoy» and C; = aC(Q) (see [32]) are the constants in the
Lax-Milgram theorem. By making standard assumptions about the approx-
imation properties of the trial space, the constant of optimality (1 + C1/C3)
can be refined (see [32]) to

(1 -+ {Iblleymh/a),
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which depends on the size of the mesh Péclet number.

2.4.2 Liouville Transform

The one dimensional convection-diffusion equation can be symmetrized by the

transform [29]

w(z) = exp(~be/(24))u(c)

to remove the first order derivative term. The weak form can then be solved
efficiently by the Galerkin finite element method. The problem with this seem-
ingly powerful approach is that transforming back to the original variable is
ill-conditioned. Any errors will be amplified by e%s. Another problem of this
approach is that the method produces best approximations in a weighted H !
norm where the weighting is such that the approximate solution is more ac-
curate upstream (where the solution should be accurate anyway as it is here

that Dirichlet data is prescribed.) and less accurate downstream.

2.4.3 Exponential Trial/Test Space Methods

The exponential trial space method [29] is based on choosing a trial space in
a Petrov-Galerkin finite element method so that the solution is exact for a
model problem with nonzero Dirichlet data and no forcing function. Either
the same space as used for the trial space is used for the test space (in which
case we have a Galerkin method) or a standard piecewise linear test space can
be used [11], [14] and [28]. The exponential test space method [17] relies on
using a test space which contains the global Green’s functions associated with
each node. In one dimension these global functions can be split up into a sum

of local exponential basis functions. This one dimensional method yields the
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exact solution at the nodes.

An extension of these methods are the LAM (localised adjoint method) and
ELLAM ( Eulerian-Lagrangian localised adjoint method) [39] where the test
function associated with node 7 is chosen to satisfy the homogeneous adjoint
equation L*u = 0 locally over each element. Note that the Green’s function
associated with the point z; satisfies this equation globally except at the point
z;. The motivation for this comes directly form the one dimensional use of
Green’s functions but here the adjoint equation is allowed to be violated at
more points than just the nodes. More specifically the equation is violated on

all the element boundaries.

The methods that we describe in this thesis fall into this category although

the motivation is very different.

2.4.4 Artificial Diffusion

The method of artificial diffusion can be used in conjunction with the Galerkin
finite element method, where the diffusion parameter « is replaced by h when-
ever a < h. This has the obvious consequence of introducing extra diffusion
which ‘smears out’ any sharp fronts in the solution. This method is at best

first order accurate due to this order A perturbation to the original problem.

2.4.5 Polynomial Upwinding

Many Petrov-Galerkin methods have been produced which use as a basis for
the test space, functions which are polynomial perturbations of the standard

linear trial basis functions on each element. The size of perturbation can
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be chosen so that the resulting difference operator becomes the Allen and
Southwell difference operator [2] in one dimension. These are discussed in [3],
[4], [8], [15], [16] and [47]. It has recently, however, been shown that simply
extending these schemes to higher dimensions by using tensor products of the

one dimensional schemes does not necessarily work well, especially when the

convective field is variable [32].

As a one dimensional example we consider the following constant coefficient

one dimensional problem:

—au” + bu' = f, (2.5)

posed on [—1,1] and discretized by the nodes z; = th — 1,

: =0,...,n where h = 2/n is the constant mesh spacing.

In figures 2.1 and 2.2 we show the test basis function 4(z) as used in [15)

generated by a quadratic perturbation ao;(z) of the linear hat function ¢;(z).

_fle=zia)/h, -1 <2z <0
#ilz) = { (zig1 —x)/h,0 <2< 1.

=3z =i (@ — z)/h* , -1 <z <0.
oi(e) = { —3(zip1 —)(z —a;)/h? ,0<z < 1

a = coth(bh/2a) — (2a/bh).
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Figure 2.2: Quadratic test function on [-1,1] (¢ = 1,b =50,k = 1)
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2.5 Nonconforming Finite Element Methods

Nonconforming finite element methods are similar to the conforming methods
described above, except the trial and test spaces are not restricted to being
subspaces of Hj(Q). Because of this, certain terms on the weak form do not
mean anything in a strict mathematical sense. If we ignore such ‘nonconform-

ing’ terms however the resulting numerical scheme can converge.

2.5.1 Exponential Fitting On Triangles

Recently a Galerkin finite element method has been developed [9] for the two
dimensional convection—diffusion equation which uses a trial (and test) space
based on a triangularisation of the domain. The trial functions are designed
so that in each triangle they give the exact solution of the convection-diffusion
equation with suitable boundary conditions. Due to the boundary conditions
imposed, these functions are not continuous over element boundaries and so
the method is nonconforming. The scheme has been modified in [40] to a
nonconforming Petrov-Galerkin method by replacing the exponentially fitted

test functions by the usual linear functions.

2.5.2 Streamline Diffusion Method

This is essentially an extension of the artificial diffusion idea. Here, extra
diffusion is added only in the streamline direction, and so introduces much

less crosswind diffusion. However this is still an order h perturbation of the

original equation.
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It is possible to generate this extra term without introducing an order %
perturbation in the following way. We take piecewise n-linear trial space V, but
use a test space W consisting of test basis functions v + aob. Vv corresponding
to trial basis functions v € V. Then we have the following nonconforming

Petrov Galerkin finite element method:

Find U € V such that
—aa(V?U,b. V) +a(VU,Vv) + (b.VU,v4 ab.Vv) = (f,v+ab.Vv) Vv € V.

Often « is chosen so that = 0,&¢ > h and « = Ch,a < h, where h is the

mesh spacing and C is some sufficiently small constant to be chosen.

This is nonconforming as the test functions are not in H'. This adds a
term —aa(V2U,b.Vv) which has no meaning in a strict mathematical sense

and is ignored. (The order of this term is much less than O(h?) [24]).

As a one dimensional example we consider the following constant coefficient

one dimensional problem:

—au”+bu' = f, (2.6)

posed on [—1,1] and discretized by the nodes z; = i¢h — 1,

i =0,...,n where h = 2/n is the constant mesh spacing.

In figures 2.3 and 2.4 we show the test basis functions for this problem.

2.6 Transient Methods

Another, common approach to the solution of steady-state problems is to

integrate a spatially discretised transient equation (with a u, term) to steady
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state. As we are only concerned with the steady-state solution, the accuracy
of the time stepping is not too important as long as convergence to steady
state is achieved. Often methods which do not perform well on steady state

problems can still yield good results when treated in this manner.

2.7 Summary

Although finite difference methods are simple to implement, difficulties arise
in treatment of the boundary conditions. These difficulties are not present in
the finite element method where boundary conditions are treated in a natu-
ral manner. Although finite volume methods combine the advantages of both
finite difference methods and finite element methods, the ‘counting’ problems
can cause considerable difficulty. Clearly there is much greater cost in us-
ing a transient method for steady state problems. Many of these methods
(exponential trial and test space methods, polynomial upwinding, streamline
diffusion) are designed to reproduce the same difference operator for the one
dimensional convection—diffusion operator as the Allen and Southwell scheme
[2]. However, these methods do differ in how they treat the source function
f. It is clear that these differences are very important and that it is perhaps
naive to expect a method designed to perform well on a problem with f =0
will work well on problems with nonzero f. It is extremely important that the

source function f is sampled by the numerical scheme sufficiently well.



Chapter 3

A Class Of Petrov-Galerkin

Finite Element Methods
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3.1 Introduction

In this chapter we shall describe a class of Petrov-Galerkin Finite Element
methods for the convection-diffusion equation, as described in section 2.4,
posed on arbitrary polygonal domains. We shall note that this class contains
the standard Galerkin Finite Element method in the case of pure diffusion,
and the Cell Vertex Finite Volume method in the pure convective case so long
as the flow is not directed along a mesh boundary. We shall give example of

methods from this class and some classical theoretical results.

3.2 A Class Of Methods

3.2.1 Definition of the Test Space

Figure 3.1: Section of mesh
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Definition 3 With each node 7 we associate a function w; that has the prop-
erties

i) w; is continuous on 2,

i) w; = 1 at node 17,

iii) w; = 0 on all elements not meeting at node z.

iv) within each element having node 7 as a vertex, we have
—-V(aVw;) — b.Vw; =0,

(that is w; is a solution of the homogeneous adjoint equations inside each

element).

Remark 4 Functions w; exist since the adjoint equation has solutions if (1.1)
has a solution [10]. Note that the above definition does not uniquely define

w;, because we have not defined its values on all element boundaries.

Definition 5 Define I'; as the boundary of §);, where {; denotes element .

Define n; as the outward unit normal vector on I';.

Theorem 6 Given a finite element mesh define a continuous trial space V and

a test space W = span{w;} where the w; belong to the class defined above,

and with dim(V)=dim(W). Then

3 (u—U)Vwn; dl, =0V weW, (3.1)

elements N

where the integration, for example, is taken in a counter-clockwise direction.
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Remark 7 Theorem 6 says that the error on the boundaries projected (in the
L? inner product) onto the jumps in the derivatives of the test functions is zero.

Note, in particular that in one dimension the nodal solution is independent of

the (continuous) trial space V.

Proof of theorem 6 Setting v = w in equation (2.3) and subtracting

equation (2.4) gives

a(u ~U,w) +c(u—U,w)=0YweW.

We then break the integrals up into integrals over elements and write the

bilinear forms explicitly:

Z/ aV(u—U).Vw +
e
V.ib(u—U))wdfl; = O0VwecW,

and integrating by parts we obtain

> [ alu=U)Vwn; dr; +
: Iy )

Z/F(u ~ U)wb.n; dI'; —
Z/Q (u— U)(V.(aVew) + b.Vew) d = 0V we W,

7 %

Use of property (iv) of definition 3 and noting that (u — U)w is continuous

with w = 0 on the boundary of Q, completes the proof.
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Assuming uniqueness of the approximate solution we can make the follow-

ing statement:

Corollary 8 If the trial space contains a function v such that v = v on
the element boundaries, then we obtain the exact solution on the element
boundaries. This result also follows from the non-asymptotic error estimate

in chapter 4.

3.3 One Dimension

Theorem 6 contains the result that in one dimension we reproduce the exact
solution at the nodes. The proof is in some sense less elegant than the standard
Green’s function approach in one dimension but is, we believe, the natural
generalisation of that result. Using Green’s functions in higher dimensions (to
try to achieve nodal, rather than boundary accuracy) is not viable due to their
singular nature. For the Green’s function approach it is necessary to show that
the local Green’s functions are decompositions of the global Green’s functions.

In this method we need only to calculate the local adjoint solutions.

Remark 9 It is interesting to note that in one dimension the nodal solution
values are independent of the trial space and in n dimensions the quality of
the boundary solution depends more strongly on the test space than on the

trial space. Note that we always assume that the trial space is continuous.

The following subsections describe methods of this type and also consider

the effect of introducing a zeroth order term into the differential equation.
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3.3.1 Linear Trial Space/Exponential Test Space
We need to solve the constant coefficient convection diffusion equation
—au” +bu' = fin [0,1], (3.2)

with some boundary conditions.

Theorem 6 indicates that we should use test functions w that satisfy the

homogeneous adjoint equation,
—aw” — bw' =0, (3.3)

on each element. So for a regular mesh, for example, in the elements

[(z — 1)h,ih] and [¢h, (2 + 1)h] we impose
w((i — 1)h) = w((i + 1)h) = 0,w(ih) =1

and solve in each element. This gives unique w for this one-dimensional case,
a property that is not present in higher dimensions. Use of these functions as

a basis for W gives the exact solution at the nodes.

3.3.2 Quadratic Trial Space/Exponential Test Space

Theorem 6 also suggests that, if for example we use a piecewise quadratic
trial space, we might still use a piecewise linear test space (see fig. 3.2) for
Poisson’s equation. The standard quadratic Galerkin method in one dimension
will give exact solutions to Poisson’s equation on the element boundaries. This

Petrov-Galerkin method will, additionally, give exact solutions at the internal
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Figure 3.2: Quadratic trial space/linear test space

nodes. (Similarly for the convection-diffusion equation we can use a piecewise

exponential test space with higher order trial spaces).

Remarkably the matrix resulting from discretisation in this way is still
symmetric despite the trial and test spaces being different. This result can be

generalised to the following theorem.

Theorem 10 If we discretise the equation
—au’" +cu=f

by a Petrov-Galerkin finite element method where the basis functions of both
the test and the trial space are themselves symmetric then the matrix resulting

from the discretisation is symmetric.

Proof The contribution from the term cu is clearly symmetric, so it suflices

to consider the contribution from the au” term.

Let g(z) denote our test basis function centred at = h with compact
support of width 2h. Let v(z) denote our trial basis function centred at z = A

with compact support of width 2X.
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Let
gi(z) =9(2), g2(z) = g(2 + 1) = gi(h—z)

and

vi(z) = v(z), vaz) =v(z+ ) =v1(X—x).

For the matrix to be symmetric we need to show that A= B and C = D

where

h

A= [ (@) dot [ ghfe — bpi(e) de,
A=h

B = [ Mglm— (A — 2h))vj(z) do + / gz — (A = h))vj(x) da,
h

C = g; 17
0
A

b= [ hg{(x—u—h))v;(x) dz.

Proof that A = B and C = D follows immediately by the change of variable
y = A — 2 and using the relationships g1(z) = g2(h —2) and v1(z) = vo(A — ).

3.3.3 Effect of Introducing a Zero Order Term

It is sometimes necessary to solve a problem with a zero order term. If, for

example, we need to solve the constant coefficient equation,

—au" 4+ bu' + cu = fin [0,1], (3.4)
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with some boundary conditions then we can proceed, as before, by using test

functions w that satisfy the homogeneous adjoint equation,
—aw” —bw' + cw = 0, (3.5)

on each element. So for a regular mesh, for example, in the elements

[(¢ — 1)h,3h] and [¢h, (¢ 4+ 1)h] we impose
w((i — 1)k) =w((z 4+ 1)h) = 0,w(ih) =1

and solve in each element.

Use of these functions as a basis for W will give the exact solution at the

nodes.

In figures 3.3 to 3.14 we show the test functions with @ = 1,A = 1 on

[—1,1].

Figure 3.3: b=0,c =0
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Figure 3.4: b=0,c =10

Figure 3.5: b=0,c =100

Figure 3.6: b=0,c = 1000

95
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Figure 3.7: b=3,c=0

Figure 3.8: b=3,c=3

Figure 3.9: b=3,c =10

56
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Figure 3.10: b=3,c = 100

Figure 3.11: b =500,c =0

/

Figure 3.12: b= 500,c = 100
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Figure 3.13: b = 500, c = 1000

Figure 3.14: b = 500, ¢ = 10000
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3.4 Two Dimensions

Example 11

This example demonstrates that an exact solution can be obtained on the
mesh lines with piecewise linear approximation if the solution is piecewise

linear over the mesh lines. Take:

~V*u+V.bu) = finQ, (3.6)
u = 0onl, (3.7)

where f(z,y;b) is chosen to give an exact solution of
u = sin(7a) sin(my)

for arbitrary nonzero constant b and £ = [~1,1] x [—1,1]. Note that w is zero

on z = 0 and y = 0. We partition  into 4 elements as in figure 3.15.

We need to find our test functions as solutions of
— Viw - b.Vw =0 on (3.8)

with w(0,0) = 1 and w(z,y) = 0 a.e. for (z,y) on I'. There are infinitely
many solutions, but we can, for example, choose one of the family of separable

solutions as tensor products of the one-dimensional solutions. For example the

test function has the form w(z,y) = X(2)Y (y) over [—1,1] x [—1, 1], where
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Figure 3.15: Mesh for example in two dimensions

1— exp(b1)

exp(—b1z)— exp(—bi)
l—lexp(—bl) L 0<z< 1.

exp(—b1z)— exp(b1) —1<2<0
X(z) = { o<

1— exp(b2)
exp(—b1y)— exp(—bz) 0 < y <1.

1—exp(—b2)

exp(—bgy)—exp(brz)’ 1< y <0
Y(y) = {

Then we have,

(f,w) = /1 X (z)sin(rz) dz /1 Y (y) (7 sin(ry) + by cos(my)) dy +

-1 -1

/1 7Y (y)sin(ry) dy /1 X(z)(wsin(nz) + by cos(nz)) de.

-1 -1
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Let,
Cy = /ba(w sin(rz) + by cos(ra)) de
1
= [—=(7wcos(mz) — by sin(wz))]},
T
E} = /ba(w sin(rz) + by cos(wz))e ™ dz
= [ cos(mz)e "],
Hence

1
/ X(z)(wsin(rz) + by cos(rz)) dz = E° % + Eéi_l—b
— e — e

-1 1
by —by
o —€ . —€
+C’—1'1 —eh + 0'] — et
_ b
= (1—}—61).1_6!)1
1
—b
+(1 te 1) 1_6—1)1
g =
1 —eh
_eh
f)
+“'1 —eh
= 0.

A similar result clearly holds for the term involving Y (y). So we have that

(f’w) =0

and hence our approximation U = 0. This is the exact solution on the mesh
boundaries. A similar scheme (although considered as a difference scheme) has
been considered by Hegarty, O’Riordan and Stynes [14] using a discrete H !
norm. This method, motivated by the exponential nature of the solution, uses

an exponential trial rather than test space. They then suggest, from experience
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with one-dimensional problems, that one should use the scheme presented here.

Our motivation for using this scheme is very different however.

3.4.1 Other Possible Schemes

Due to the infinity of possible test spaces (for n > 1), that fit into this frame-
work, a choice has to be made as to which one to use. So far we have only
described the scheme based on tensor products of the one dimensional test

space. However another obvious choice is one of the other separable solutions

of the adjoint equation.

So, for example in two dimensions, if our test functions are to satisfy
—aViw —b.Vw =0 on §, (3.9)

then we can choose w = X(z)Y (y) and obtain

—aX" - b X' = CX,

and

—aY" - bY' = -CY.

We refer to the arbitrary constant C' as the ‘splitting’ or ‘separation’ con-
stant. Note that if we choose C = 0 we have our standard scheme based on
tensor products of the one dimensional test functions. It is not obvious how
to ‘optimally’ choose C' but from experience from numerical experiments we
have been able to develop automatic choices of C' that seem to work well.
By making a choice of C' = |bs| — |b1] we have found it is possible to greatly

diminish or even remove any oscillations near parabolic boundary layers and
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shear layers.

3.4.2 The Limits of Pure Convection and Pure Diffu-

sion

This section describes the link between the methods described in this thesis
and both the cell vertex finite volume method and the Galerkin finite element
method. The link is made only for methods with zero splitting constant and for
problems with no zeroth-order term, discretised on Cartesian product meshes.
When links are made with the cell vertex finite volume method, we assume
that the trial space in the Cell Vertex Finite Volume Method (CVFVM) is
(n — 1)-linear on the element boundaries ( for an n dimensional problem).
When links are made with the Galerkin finite element method we assume we

are using an n-linear trial space.

For very high mesh Péclet numbers the test function resemble (see the
figures in the next section) the test function used in the nonconforming Petrov-
Galerkin formulation of the CVFVM (that is the characteristic function of the
upwind cell), except for the cases b = 0 and when the flow is along a mesh line.
Tt is in these last two cases that the CVFVM behaves poorly (or is undefined)
unless a different test function is used (usually by taking a weighted average of
adjacent cells [7]). In fact in the limit of no diffusion with nonzero convection

this method tends to the CVFVM:
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Consider the difference stencil for node 5 on a 2x2 mesh on [—1,1] x [—1,1]
with nodes numbered as shown below for both the CVFVM and the zero

splitting constant method with bilinear trial space applied to a problem with

no diffusion.

(-1,1) (1,1)
3 6 9

2 5/(0,0) 8

1 4 7
(-1,-1) (1,-1)

Figure 3.16: Section of mesh with numbered nodes

The difference scheme for the cell vertex finite volume method is

b by — b
by ety g by
5 5 5
Gt ba) U4 0.0 + 0.Us +0.Uy = / Fdo
2 [-1,0]x[—1,0]

4

This has been calculated from

/ by U, + byU, d2 = / £ da.
[-1,0}x[-1,0} [-1,0]x[-1,0]
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We are interested in the difference scheme for the zero splitting constant
method with a bilinear trial space in the limit as the diffusion parameter a
tends to 0. Firstly we note that terms of the form [aVUVw df) can be ignored
for we have with w = X(2)Y (y) defined in a similar way to example 11 but

with a general diffusion constant ‘a’

/ aVUVw dQ = / AU X (2).Y (y) + all, Y (y), X (z) dQ.

But,
! _ bl ! —biz/a .
/0 aX(2)s do = _(1 — e~bi/a) /0 ‘ de
bl —da —b]/a
- —m( by )(e - 1)

= —a.

Clearly as U, is independent of z and U, is independent of y (note that U is
bilinear in = and y) and X (z)and Y(y) are bounded above independent of a,

we have that

I/aVUVw d0| < Ca
where C is a constant independent of a.

We now need to calculate lim,_o [ VU.bw d2. This involves only integrals
of linear functions times exponentials. Hence we can take the limit inside the

integral. Note that for b and by both nonzero, w = X(z)Y (y) in the limit as

a — 0 takes the value 1 on [—1,0] x [—1,0] and is zero elsewhere. Hence for

non-mesh-aligned flow we have

/ VU b(limw) d0 = b, + byU, dO)

[1,0]%[~1,0]

Hence our scheme becomes identical to that of the CVFVM in these cases.
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Note that in limit as @ — 0 with the flow along a mesh line (that is one
of the components of b vanishes) we have a nonunique limit (depending on
the ratio of diffusion to convection along the mesh as a varying flow moves
towards alignment with the mesh). Figure 3.17 show various test functions on
[0,1)? for this method. In particular we note how figures 3.17(ii) and 3.17(iii)
differ greatly despite a very similar flow. In the limiting case we suggest the
symmetric limit (see figure 3.17 (iii)). This interpretation of our method in the
limit of no diffusion indicates that the CVFVM is ‘overwinded’ for problems
involving diffusion. In fact the averaging that is sometimes performed (see
[7]) could be viewed as ‘downwinding’ the ‘overwinded’ test functions. These
observations also hold for the Cell Centred Finite Volume Method formulated

as a Petrov-Galerkin method where the test space is based on a dual box mesh

[45].

We note for clarity that for both nonzero splitting constant and for a
nonzero zero-order term these test functions do not tend to the finite vol-
ume test functions in the limit of no diffusion. In the limiting case of pure

diffusion, the method becomes the standard Galerkin finite element method.
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A O ey
e NN
’W;‘,}?’;&Q’%§4§.§3§““€‘¢$‘.§\1\‘\“\w‘“.
R s S RRNSSS
0 e S S
0’,:::::‘::3:.::::‘«
Rotedetony

(i) a=1,h=1,b=(0,0)

(i) a=1,h=1,b=(50,3)

(ifi) a=1,h=1,b=(50,0.0001)

(iv) a=1,h=1,b=(50,50)

67

Figure 3.17: Example tensor product test functions in two dimensions for
various flows
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3.4.3 Test Functions In Two Dimensions

Presented here in figures 3.18 to 3.35 are test functions with support (0, 1]?
for varying b and splitting constant C. In each case ¢ = 1. When b; = b; we
show the test functions for C = 0,C = 10 and C = —10. When b; # b, we
show the test functions for C = 0,C = |bg| — [b1] and C = |by| — |b2|. Note,

from our experience, we recommend using C = |by| — |by].

Figure 3.19: Test function : b = (0,0),C =10
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Figure 3.22: Test function : b = (3,3),C =10

69
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¢ =-10

?

)

3

Y

3

(

Figure 3.23: Test function : b

=0

C

),

7.5

(

b=

Figure 3.24: Test function :

(7,5),C =

Figure 3.25: Test function : b
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(7,5),C = —2

Figure 3.26: Test function : b

(50,3),C =0

Figure 3.27: Test function : b

47

3),C =

(50,

Figure 3.28: Test function : b
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(50,3),C

Figure 3.29: Test function : b

=0

C

)

(50,0

Figure 3.30: Test function : b

Figure 3.31: Test function : b
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Figure 3.32: Test function : b

Figure 3.33: Test function : b

(500, 300), C

Figure 3.34: Test function : b
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(500,300), C = —200

Figure 3.35: Test function : b
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3.4.4 An Approximate Scheme For General Quadrilat-

eral Meshes

Despite the existence of test spaces that fit this formulation, it is not possible
to describe them in closed form for general quadrilaterals. One solution to this
problem would be to solve the adjoint equation with some suitable boundary
conditions on each element by some approximate method. This, however, is
time consuming on serial computers. This method would be suited to a par-
allel computer implementation as each of these problems is entirely local. We
have adopted a simpler solution for our numerical experiments. This consists
of using test functions which do not satisfy the homogeneous adjoint equation
exactly, but are ‘close’ enough for our purposes. For each quadrilateral con-
taining a particular node as a vertex, we construct a rectangular region which
is in some sense similar to that irregular quadrilateral. The test functions can
then be defined on these rectangles in the usual way by using a local coordinate
system defined by the sides of the rectangle. The functions are then mapped

back to the quadrilateral in the usual way [5].

To generate the rectangle (ABCD) from the quadrilateral (ABCD) we
initially construct the diagonals of the quadrilateral (AC, BD) (see fig. 3.36).
We then calculate

length of AC)+ (length of BD)

)\:( .
4

We then choose the points ABC and D at a distance A from O along the
line segments OA, OB,0C and OD, where O is the point of intersection of
the diagonals. Note that if the original quadrilateral is also a rectangle then

A=A B=B,C=Cand D=D.

It is clear that the standard Galerkin finite element method based on ir-
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regular quadrilateral grids is a method of this approximate type.

Figure 3.36: Rectangle construction from a general quadrilateral



Chapter 4

Error Analysis

7
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4.1 Introduction

In this chapter we present asymptotic (mesh spacing h — 0), nonasymptotic
and truncation error analyses. Initially however we discuss, at a non technical
level, various means at our disposal to produce error estimates. We present

three methods, valid under certain assumptions.

In the following discussion the notation ||.|| denotes some norm which may
be different in separate occurrences. However when necessary it is assumed
that two different ||.|| are equivalent. We assume also that the space V' consists

of piecewise n-linear functions defined over the mesh.

We are trying to obtain an estimate for the difference between the ex-
act solution u and the solution (assuming existence and uniqueness) to the

approximate problem defined in section 2.4: find U € V such that
B(U,w) = (f,w)Vw e W.

We assume that B(.,.) continuous, that is there is a positive constant § such

that
|B(v, w)| < Bl|v]|[|w]]

Note that the error v — U satisfies

Bu—U,w)=0VweW.
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4.1.1 Error bound assuming ellipticity of B(.,.) and a

bounded mapping from V to W

The existence of a bounded mapping from the trial to the test space is very

important in the error analysis of Petrov—Galerkin finite element methods.

This is discussed in some depth in [31].

Assume there exists a constant o > 0 and a mapping g : v — w, (v € V,w € W)

such that
|B(o,g(0))] > allol ™o € V

and
gl < Allvll,v € V.
Then by defining u, as the best approximation in V of u in the ||.|| norm,
we have
luz = U < (1/a)[B(uz = U, g(uz — U))]

< (1/a)|B(uz — u, g(us — U))|

< (vB/e)lluz — ulfl|luz — U]
Hence,

llu = Ull < (1 +78/)||uz — ul].
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4.1.2 Error bound assuming stability of the dual prob-

lem
We would like to be able to solve the problem: find v € W such that
B(v,u) = (f,v) Yv e V.

For this analysis we take the norm [|.|| to be the (L?)™ norm. Assume we have

stability of this dual problem. That is that there is a constant o > 0 such that

ull < (1/)[If1]- (4.1)
Then (assuming existence and uniqueness) we choose d € W such that
B(v,d) = (uz — U,v) Yv eV

where 1w, is the best approximation to u from V in the (L?)™ norm.
Then by choosing v = us — U in the above equation we obtain
|’LL2 — UH2 - B(UQ - U,d)

B(uz — u,d)
(8/a)fuz = ulllfuz = U],

IN

where we have used equation 4.1 to bound d above by (1/c)||u, — U||. Hence,

lu = Ull < (1+ B/a)lluz — ]|



Error Analysis 81

4.1.3 Truncation Error estimate assuming stability

The standard truncation error analysis approach is based on the observation
that given stability of the discrete problem, a small truncation error will yield
a small global error. Under reasonable stability conditions (see [28] for a
discussion of this) it can be shown that a local truncation error of order h*
yields an error bound of order h?. In section 4.5 we show that the local

truncation error is of this order for certain methods.

4.2 Asymptotic Error Analysis (h — 0)

Presented here is an asymptotic error analysis for a tensor product (with zero
splitting constant) Petrov—Galerkin finite element method. It is presented in
two dimensions on a unit square mesh [0, 1]? although the technique is clearly
applicable in higher dimensions. We write the convection vector b = (b1, by)T

and for simplicity take ¢ = 1.

Let Q" = {(z:,y;) : 1,5 = 0,1,..., N} be the set of mesh points, and let A

be the mesh spacing which for simplicity we assume to be constant.

The functions ¢;(z) and v;(z) defined by the following expressions are the

definitions of the equivalent trial and test space (respectively) basis functions.

Let,

$1(2) satisfy ¢1,, = 0 on (0,h) with ¢;1(0) = 0 and ¢1(k) = 1. That is
$1(z) = x/h on [0,h].

$o(x) satisfy ¢o,, = 0 on (0,h) with ¢(0) = 1 and ¢2(h) = 0. That is
¢2(z) = (h—x)/h on [0,h].
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$'(y) satisfy ¢ =0 on (0,h) with $'(0) = 0 and ¢*(h) = 1
$2(y) satisfy ¢2, = 0 on (0,h) with ¢*(0) = 1 and ¢*(h) = 0.
bz, by) € HL(0, k) satisfy ¢1(0) = 0 and ¢ (h) = 1
ol by) € HL(0, k) satisfy ¢2(0) =1 and ga(h) = 0.
@1 (y, by) € HL(0, 1) satisfy ¢'(0) = 0 and ¢'(h) =
$2(y, by) € H1(0, h) satisfy ¢2(0) = 1 and ¢2(h) =

Given v € V, let © € W be such that v = v at the nodes. Then, with

obvious abuse of notation,

B(v,5) = 3 9;B(v,%'%;)
= Y0 [ (e ¥ihs + bav;) + (0, B0, + b)) A0

Theorem 12 If we have two constants v1(h,b) > 0 and v2(h,b) > 0 such
that

|B(v,0)| > 12lv]} Vv € V,5 € W:v =1 at the nodes,

and,

|B(v,0)| < nlvh|w| Yve V,weW

where w € V 15 defined suchthat w = w at the nodes.
Then we have,

inf
u—Uh<(1+2) "
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Proof Define u* such that |u —u*|; < |u—v|; Yo € V. We choose w € W

such that w = u* — U at the nodes. Then we have,

Ylu' = Ul < |B(w —U,)
= |B(u* — u, )|

= m|ut —ufy|u” = Ul,

The result follows from the triangle inequality.

To apply this theorem we need to show the existence of these two constants.

The existence of a 7, is trivial, but the existence of 7, is more complicated.

To calculate 7 it is helpful to make the following definitions:

Definition 13 Let wq,w", wy, w?, 21, 2!, 22, 2* be defined from the following 8

relations.

apra(z) + bigpr(z) = $ra(2)wi (b1, 2)
whra(z) + brtpa(z) = aa(w)w2(b1, 2)
ap™¥(y) + b (y) = ¢, (¥)w' (b2, )
ap™(y) + by’ (y) = ¢y (y)w’ (b2, y)

hi(z) = d1(x)z1(by, )

ha(z) = ¢a(z)22(by, )

¥Hy) = &' (y)2' (b, )

P (y) = ¢"(y)2*(ba, )

The motivation for the above definitions is that we would like B(v,?) to

be similar to the square of the H' seminorm.
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Notation We will use the following notation for the standard L? inner

product : (f,9) = [y f(z)g(x) da.

Then,

|B(v, )]

where,

v2 (Wy + Wy)

2J

2 1M
M=

Ll

(]
M= &

i jUit1,;( A1 + Ag)

@
1l
o
Il

=]

z o
|

vi,iVi+1(B1 + Ba)

= 11
z
{ [w]

v;,3Vit1,5+1(C1 + C)

20
_ o
.
Il
o

M=

i jVit1,5-1(D1 + D2)

-
1l
=)

LY
Il
A
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(¢117¢11w1)( ¢1 1)
+ (¢1CL‘7 (blz'wl)((éz, ¢2Z2) +
Wy = W, =
(¢2I7¢2xw9)(¢1,¢121) +
+ (¢2$7 ¢2xw2)(¢2 ¢2 2) +
(¢2x7 ¢1$w1)(¢1 (bl 1)
+ (¢2w7 ¢1zw1)( 2) +
A = A, =
+ (¢1z7 ¢2zw2)(¢ 1) +
+ (¢1x7 ¢2mw2)(¢2 ¢2 2)
(¢1xa élxwl)((ﬁz ¢1 1)
(¢1z7 ¢1xw1)(¢l ¢2 2) +
Bl = B2 -
(¢2x7 ¢2xu}2)(¢ 1) =+
+ (¢2x7 ¢2xw2)(¢1 ¢2 2) +
(¢2x7 ¢1zw1)(¢2 431 1)
Cl == 0-2 =
+ (¢117 ¢2xw2)(¢1 ¢2 2) +
(¢2ac> ¢1xw1)( )
Dy = D, =
+ (1, Pacw2) (97, qSlzl) +

85

(¢1y ¢1yw )(¢1> 121)
(¢1y ¢1yw )(¢2>¢229)
(‘15 ¢*w? V{1, d121)
(¢2y P*Uw? V@2, d222)
(¢1y ¢1yw )(¢2>¢’121)
(¢1y ¢1yw1)(¢51,¢222)
(¢2y ¢2yw2)(¢2, ¢12’1)
(¢, ¢*¥w?)(h1, haz2)
(9%, ¢ )(¢1, $121)
(6%, ¢V )($2, p222)
(6", $*w?) (41, ¢121)
(91, %1% ) (2, $az2)
(6%, ¢! )(d2, pr21)
(¢1y ¢*w? V(¢1, P222)
(¢2y ¢1yw )(¢1,¢222)
(¢1y,¢2yu) )(¢27¢121)

Theorem 14 The following conditions are sufficient for the existence of a

positive constant vy satisfying the first condition of theorem 12.

1 2 1 2
Wi, Wy, 21,22, W ,W ,2 , 2 >O7

A1+A2<0

and

B1+B2<0.

Proof of theorem 14.

We can rewrite |B(v,?)| in a more useful manner:
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=
L

_ N A+ A
|B(v, )| = > (v + vig1,) (- —5—)
1=0 j=0 =
N N-1
B, + B,
+ S (03 — Vi) (—— 5
1=0 y=0
N-1N-1
Ci+C
+ (vij — Vig1,541)°(— - 5 2)
=0 ;=0
N-1 N D +D
+ 3 Y (i = vign o) (== 5 %)
=0 j=1
N-1N-1
+ vij(vvl+A1+B1+Cl+D1+VI/2+A2+B2+CZ+D2)
=1 j=1
= A +A Ci+C, D, +D
+ (v, + vi;) (Wi + W, + + B+ By + 12 2+ 1; 2)
=1 2
Nl Bi+B, Ci+Cy Di+D
+ 2 (it vin) (Wit Wot Ar + As o+ 1; )
=1 L 2
A+ A B+ B D D
+ (Wb + o)W+ We b ==+ = 2+ 1; %)
A A B+ B C C
(koo (Wa b W BTS2 AT S
Firstly we note that,

Wi+ Ai+Bi+Ci+D1 = (¢10, przw01)((¢' ¢1zl) + (8%, ¢%2%) + (6%, 4'2") + (', 9%2%))
(o, Paow2) (41, 8'2Y) + (67, 8°2%) + (87, 072") + (¢, 6°2%))
+( 20, drow1) (8, 8'2Y) + (47, ¢>2 )+ (9% ¢1 ) + (¢', 6°2%))
F (1, 2ews) (81, 812") + (8%, 8°2%) + (8%, ¢'2") + (¢, 9%2%))

= (¢ br0w1) (" + ¢%, "2 + ¢2 2)
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{2z, 2ew) (9" + 67, 912" + ¢°2%)
+(Paw, Browr )(¢' + 4%, 9" 21 + ¢°27)
(P10, aw)(9' + 67, 912" + ¢°27)
= ($1o + b20; P11 + Prow02)(1, @12 + ¢72%)
= 0.

(We have used, in the above expressions, the fact that #'+¢* = 1 and also
that ¢1a: + ¢2$ = 0)

Similarly, W, + Ay + By + Cy + Dy = 0.
Also since @1y + ¢gr = 0, we have Wy = — Ay and Wy = —B;.
Combining these give By + Cy + Dy = Ay + C2 + D, = 0.

Use of these expressions yields,

N-1 N
A+ A
|B(v, )| = Z Z('Uz‘,j + Uz’+1,j)2(— : 5 2)
1=0 yj=0
N N-1
B+ B
+ 3 (Wi — vige) (- — 5 %)
1=0 j7=0
—1N-1 C +C
+ (viyj — vip1,j+1) (= . 5 2)
=0 5=0
N-1 N D +D
+ 3 S (i — vipr o) (- )
=0 7=1 2
N-1
W, + B
+ (vo; + ”12\7,3')’1—9—1
=1 =

Z
L

Wy + Ay

(vio + vin) 5

Wwy—-C W,-C
N vh) 12 L 22 2

+
]

o
Il
—

+
—~
i~
(=3 S}
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Wy—-D, Wy;-D
R R e

L

As wq,ws, 21, 22, wH,w?, 24, 2% > 0 by assumption and by the definition of
¢;(z) the product ¢1,¢2, < 0 we have that Cy, Cy, Dy and D, are negative and
Wy, W,, By and A, are positive.

Hence,

C1+C3 <0,
Dy + Dy <0,
Wy + By > 0,
W+ Az >0,
W, —-C, >0,
Wy —Cy >0,
Wi - Dy >0,
Wy — Dy > 0.

As all the individual terms in the equation for |B(v, )| are positive we can

bound |B(v,v)| below by
|B(v,9)] > Caluli.

Example 15 The tensor product methods (with splitting constant C = 0 and
a = 1) described in the last chapter employ the following definitions:

1 (z, by) satisfies
—tpy,, — by, = 0 on (0,h) with ¢1(0) = 0 and ¢1(h) = 1.
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oz, by) satisfies
.. — bitpy, = 0 on (0, h) with ¢(0) = 1 and ¢y(h) = 0.

Yi(y, by) satisfies
2 — byt =0 on (0,h) with $'(0) = 0 and ¢'(h) = 1.

~Vyy

Y2(y, by) satisfies
_¢2y - 521/)5 =0 on (0,h) with ¢*(0) =1 and ¢*(h) = 0.

If we now choose by = by = b then we can obtain,

b
U g2
bhe=th
e T—
h et —1
2= )
h e—bx _ e—bh
2 = h—:u( 1 —ebh )

The above expressions are the products of positive factors and so satisfy the

conditions of theorem 14

Using ¢p15 = — e and similar expressions we have that:

B+ B, = A+ A,
Ar+ Ay = ((Bras $1ow1) + (S22, b20w2)) (2, B121) + (b1, $222) — (b1, br21) — (@2, $222))
= ((¢1z, <f>1mw1) + (¢2m, ¢2zwz))(¢121 — P22, 2 — ¢1)-

Writing p = bh, we can show that

Tf (pe P -p e
pg(l—e"’)(pe +2eP+p—2)

(121 — baza, P2 — b1)
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Limitofp p=0 p— o0

Ai+ Ay F -2
B, + B, -72 -2
Cl + 02 :32 2 — P
Dy+D, 3 0
I/Vl + B1 2 Y
W2 + B2 2 p
W1 - Cl % P
W, - C, % p
Wy-Dy 2 142
I/Vz e _D2 g 14+ 122

Table 4.1: Constant bounds above and below

=2 p(1 + exp(—p)

~ 2 (1= eap(-p)) ~2)

_ 22 (/2 tanh(p/2))
p? tanh(p/2) v/ P

< 0.

Therefore Ay + Az < 0 and similarly By + By < 0.

The expressions in table 4.1 were calculated in the computer package MAPLE

and their limits in the mesh Péclet number p = bh calculated. They are all

monotonic n p.
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4.3 Nonasymptotic Error Analysis

Asymptotic results are of limited value as often a method will not demon-
strate the asymptotic rate of convergence until the mesh spacing A becomes
very small. In fact asymptotic bounds are available for the standard Galerkin
method, but are of little use as the method works poorly for reasonable mesh
sizes. Of more practical use is an error estimate which gives the error in any

given problem as a multiple of the smallest possible error for that problem.

We present an error analysis for the two dimensional case, although the

technique is trivially extendible to higher dimensions.

4.3.1 A Mesh Dependent Inner Product and Norm
Definition 16 Setting,
I'= UFi?

we define the following mesh dependent inner product and its associated dis-

crete L2 norm,

(u,v)p = h/ wv dl,
r

[o]|? = h/Fv? dr. (4.2)

If v € H! then |jv| is well defined which is not the case for the usual

discrete [? norm.
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4.3.2 Analysis

Definition 17 Let D be the space of functions defined on the mesh boundaries
by taking the jump in the normal derivative across I' of functions w € W. Note

that D 1s not continuous at the nodal points.

For graphical examples of basis functions for various spaces D see section

4.4,

Definition 18 Let C be the space of continuous piecewise linear functions

defined on T’ such that ¢ € C vanishes on the boundary of the domain €.

The projection given in theorem 6 now becomes,

/(u—U)ddP:OVdG’D.
r

Given ¢ € C we define d* € D to be its projection in (-, ), into D, that is
(d*,d)n = (¢c,d)r, Vd € D.

Note that [|d*|| < ||¢||. Also we can define [11]

s flc—d]
E -
so that Vc € C we have
e —d*|| < kflc]|. (4.3)

We have 0 < k£ < 1. From now on we assume k < 1.
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Given the restriction of (v — U) to the element boundaries (which we will refer
to, by abuse of notation, as (u — U), we define ¢* to be its projection in (-, )
into C, that is

(¢*,¢)n = (u—U,c), VeeC.

Note that
lle*]l < flw = U1 (4.4)
Now,
lu— U2 = h/r(u—U)(u—U—d) dL Vde D
< JJu=Ull|lu—-U-d||VdeD.
Hence,

lu-Ul| < |lu—-U—-4dl|¥YdeD

so we have that

lu—Ull < llu=U =<+l = d".
Therefore using equations 4.3 and 4.4

lu = Ul < |lu—U = || + kllu = U,

which implies that,

1

o~ Ul <

lu — | Vv eC.

Note that as k < 1 this implies that we get the exact solution on the mesh
boundaries if it is possible to attain it. For any given problem, we are able to

calculate this constant.
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4.3.3 Evaluation of the Optimal Constants

From the definition of d* we have (setting d = d*),

/cd* I = / &2 dr.
I I

Hence we may write

_ l* 2 — 2 d* 2_2 l* dl-\
le=d'IP = Jel®+ ") ~2 [ e
= |le|*+ d*||* = 2 [ d*d* dT
el + 1712 = 2 [
= el = |

This allows us to calculate &% in the following way [11].

Let {¢;} and {¥:} be a basis for C and D respectively. We define three

matrices

A =h [ by d,
Biy = h [ :; I,

Cis = h/FqSiqS]- dT.

Then we obtain,

sup vT(BTA'B)v

.2 __ _
k —"UEC( vICov )

Since C is symmetric and positive definite we can compute the smallest



Error Analysis 95

n b =0,b,=0 by =10,b, =10 b = 1000,b, =1

3 1.0 3.0 3.5
4 1.7 7.5 5.0
5 1.9 12.5 8.5
6 2.1 18.2 12.9
7 2.2 24.1 17.7

Table 4.2: Values of ﬁ for various problems

eigenvalue \ satisfying the generalised eigenvalue problem BTA~'Bv = ACwv

(see for example [46]) and hence find k% = 1 — \.

The constant ﬁ measures how far the approximation error is from the

best possible error in our mesh dependent L,-like norm.

The following table shows the value of this constant for grids of n by n

points on [~1,1] x [~1,1]. In all cases @ = 1, and the tensor product test

space was used.

Remark 19 For Laplace’s equation with n = 3 we see that we obtain the

best possible L% solution on the mesh. This is due to the fact that D = C in

this case.

4.4 On The Nature of D

Insight can be gained into the working of the these methods by examining the
problem as an L? projection as we have done in the preceding analysis. It is
interesting to examine more closely the form that the space D takes. Figures
4.1 to 4.13 depict single basis functions (corresponding to the usual bilinear

‘hat’ basis functions) for various spaces D with flow direction b and splitting
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constant C. In all examples, the diffusion coefficient « = 1 and the mesh

spacing parameter b = 1.

17

Figure 4.2: Test function boundary jumps: b = (0,0),C =10
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-1

Figure 4.3: Test function boundary jumps : b = (0,0),C = —10

-1 4

Figure 4.5: Test function boundary jumps: b = (7,5),C = 2
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-1

Figure 4.8: Test function boundary jumps : b = (50,0),C =0

98
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-1

Figure 4.10: Test function boundary jumps : b = (50,0),C = =50

500

17

Figure 4.11: Test function boundary jumps : b = (500, 300),C =0
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-1

Figure 4.12: Test function boundary jumps : b = (500,300),C = 200

-1,

Figure 4.13: Test function boundary jumps : b = (500,300),C = —200
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4.5 Truncation Error Analysis

In [28] a truncation error analysis is presented on a more general problem
involving non constant coefficients. Presented here is a simpler estimate of the

local truncation error for the problem in 2 dimensions.

This local truncation error
TIh,k = B((Ih — I)U, wk)

where I}, is the bilinear interpolation operator and wjy is the local test basis

function centred at node k.

In evaluating this, for simplicity of exposition we consider this integral over

the 4 elements shown in figure 4.14 and calculate the bilinear form from the

boundary value formulation. ie
B(u,w;) = / ud dI'
r

where T' is the mesh shown in figure 4.14 and d is the function obtained by

taking the jumps in the normal derivative of w; across I' as defined in section

4.3.2.

For simplicity we now refer to the interpolation error (I — I)u as e. We

calculate 7y, x as the sum of four components 7',7%, 7% and 7°.

ll

P [ e(=hyy)d(=h,y) + e(0,9)d(0,9) + elh, )k, ) dy

/Oh e( ~h,y) +€(0,y)d(0,y) + e(h,y)d(h, y) dy
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(-h,h) (0,h) (h,h)
-h,0) ©.0) (h,0)
(-h,-h) (0,-h) (h,-h)

Figure 4.14: Integration region for truncation error analysis
h

= / e(z, —h)d(z, —h) + e(z,0)d(z,0) + e(z, h)d(z, k) dz
0

0
= / . e(z, —h)d(z,—h) + e(z,0)d(z,0) + e(z, h)d(z, k) dz
As 714 = 1,2,3,4 are all of a similar form it suffices to calculate only T!
for general flow directions.

Firstly we note that e(.,.) is zero at the mesh nodes. Hence we can define

a function

9(my) = y(y —h)

Assume that e is such that g,(z,y) and gz-(z,y) for y € [0,h],z = —h,0,h

can be bounded above by a constant independent of h.

Then,

A= Ah y(y — W)[g(=h,y)d(—=h,y) + g(0,9)d(0,y) + g(h,y)d(h, y)] dy.
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But, \
g(—h>y) = g(oay) - hgl‘(oay) + ?grﬂx(alay)a —h < o1 < 0,
and
h?
g(h7y) = g(oay) + hgz((),y) + ?gm(az,y), 0 <oy <h.
So,

= [Tl k) + d0,) + dlb)g(0,0)
(d(h,y) — d(—h,y))hg=(0,9)

2

+
b () + (1) (1,9) + gun(o0))]

If we consider the standard tensor product method with zero splitting

constant we can easily calculate that

d(h,y) = W(y;bz)(—Th);

where 1?(y, b2) is defined in section 4.2.

Consequently it is easy to show that,
(d(—h,y) +d(0,y) +d(h,y)) =0,

|d(kyy) — d(=h,y)| = $*(y, b2) |/
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and

|d(R,y) + d(=h,y)| < $*(y,b2)(2/h + [Br]/a)

Then it is immediately clear that
rt < ChY,

where C(a,b) is a generic constant independent of A.
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5.1 Introduction

We begin this chapter with a discussion of implementing the methods described
so far on modern computer systems. Although so far we have considered only
constant convection parameters, in practice the convective flow may vary. We
carefully consider how to treat the convection term, especially in cases where
the flow varies rapidly over the space of a few elements or even where the flow
(the direction of the convective field) is discontinuous. We show how correct
treatment of this term can give us a method of producing exact nodal solutions
to the pure diffusion equation in one dimension even when the convection term
is a piecewise constant function. We then present numerical results for some
standard test problems. Results are given for a variety of both zero and non-

zero splitting constant methods.

5.2 Computer Implementation

It has long been thought impractical to employ the exponential test functions
in one dimension due to the high order quadrature formulae that have to be
used to calculate the large gradients involved with high mesh Péclet numbers.

We have tried three different methods of coping with this.

Firstly, integrals corresponding to terms in the bilinear form can be calcu-
lated explicitly and ‘hard coded’ into the program, thus leaving the relatively
inexpensive and easier task of evaluating them. We have successfully em-
ployed this method for both one and two dimensional problems. Alternatively
the terms in the bilinear form can be calculated as boundary integrals{18] by
explicitly calculating the jumps of the test functions across element bound-

aries and then performing standard numerical integration techniques. A third
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method which I have found to be the simplest (though still accurate) is to cal-
culate the terms in the bilinear form via standard numerical integration using

many integration points.

We note that due to the widespread availability of parallel computers, we
are now prepared to spend a long time generating the finite element matrices
accurately in order to obtain a good solution on a relatively small mesh. The
matrix assembly process is entirely parallelisable and needs no communication

between the different processors/computers.

Solution of the final matrix equation is found either directly by Gaussian
elimination or iteratively by Gauss-Seidel [43]. We note here that in our expe-
rience the Gauss-Seidel method converges in surprisingly few iterations when
applied to the matrix equations produced by these methods which suggests
that the method is well conditioned. This is in stark contrast to the matrix
systems produced by classical methods for the convection—diffusion equation

which invariably are very ill-conditioned.

We remark here on another method we have successfully employed to re-
duce oscillations in the solution to some problems. Problems involving both
very high convective parameters and discontinuous boundary conditions give
rise to large oscillations in the finite volume solution (and hence in our zero
splitting constant methods). Although, as discussed earlier, employing a test
space with a nonzero splitting constant can vastly reduce these problems, it
is also possible to smooth out the solution by using a test space with zero
splitting constant but which satisfies the homogeneous adjoint equation but
with a larger diffusion term. This is in some way similar (but perhaps more
natural) to adding ‘artificial’ diffusion into the original equation. Results are

not presented here for this method.
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5.3 Numerical Treatment of the Convection

Term

As a reminder, we state the problem we are solving,

—V.(aVu)+ V. (bu)=f in QCR" (5.1)

Most finite element methods take a piecewise constant approximation to
the function b (or some other simple approximation) when solving this equa-
tion. This is acceptable if b does not vary too rapidly. If however b is truly
a piecewise constant function then great care must be taken to evaluate this

term. In the weak form, this term becomes (V.(bU),w).

This term should be integrated by parts to give —(b.Vw,U) so that ap-

proximation of b does not lose vital information about its gradient.

In fact if this integration by parts is not performed, and if we position
element boundaries along the discontinuity, we will instead obtain the solution

of the vastly different equation

—V.(aVu)+b.Vu=f in QCR" (5.2)

To stress the important differences between these two forms we state and
plot the exact solutions to a one dimensional test problem in both cases. The
problem is posed on [0,1] with boundary conditions «(0) = 0 and u(1) = 1.

We chose a diffusion coefficient « = 1 and let the convection parameter take
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the discontinuous form

0 for 0<az<(l-d)/2,
for (1-d)/2<a<(1+d)/2,
0 for (1+4d)/2<e<1

b(z) =

Q=

The solution in both cases takes the form

Mz for 0<z<(1-4d)/2,

_ Bex 2d))— A exp((d+1)/(2d))+(A—B) exp(z/d)
u(z) = o e)>{1(>(( )/(22)) ex)p/((d+1)/(2d)) * for (1=d)f2ses<(+d)/2,

20-1=d=2Bet3B  for (14d)/2 <z <1

where A and B are constants which differ in the two forms.

Case 1
u" + (bu)' = 0.

(d = 1) exp((L - d)/(2d))
Sdexp (1~ 4)](2) — exp((L — D)/ (2d)) — dexp((d + 1)/ (2d)) — exp((d + 1)/24))’
b (~dexp((d+1)/(2d)) + 2dexp((L — d)/(2d)) — exp((d+1)/(24)))
3dexpl(L ~ /(28] = expl(1 = /120 = dexp({d + 7)o@+ /AT
= 1-—A.

Case 2
—u" 4+ b(u)' = 0.

—(d—1)exp((1 = d)/(24))
Jexp(([d 7 ] (2d) + exp((d + 1/(2d)) — 3dexp((1 — d)/(2d)) + exp((1 - D)/ ()’
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Figure 5.1: Case 1 d =10.5

(—3dexp((L — d)/(2d)) + 2dexp((d +1)/(2d)) + exp((1 — d)/(2d)))
dexp((d+1)/(2d)) + exp((d +1)/(2d)) — 3dexp((1 — d)/(2d)) + exp((1 — d)/(2d))

B

In figures 5.1 to 5.8 plot the solution for d = 0.5,d = 0.2,d = 0.1,d = 0.01

and for both forms of the equation.

It is enlightening to investigate exactly how a numerical scheme will differ
when solving these two different forms of the equation. For simplicity we pose

the problem on [—1,1] with b = ; when z < 0 and b = 8, when z > 0.

When discretised by the standard Galerkin finite element method with
two elements the term (bu)w becomes (writing the approximation to u(z) at

z; =th—1as U;)
—%Uo + —_('Bl ; B U + %Uz-
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Figure 5.2: Case 2d =0.5
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Figure 5.3: Case 1 d =0.2
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Figure 5.4: Case 2 d = 0.2
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Figure 5.5: Case 1 d = 0.1
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Figure 5.6: Case 2 d = 0.1
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Figure 5.7: Case 1 d = 0.01
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Figure 5.8: Case 2 d = 0.01

However —buw’ becomes

—éon-l- (52—ﬂ1)U1+ By,

2 9 Ehd

Of course if B; = B, these two forms are identical, but otherwise they differ

greatly. Similar differences appear in other discretisations.

5.4 The limit of no diffusion with discontin-

uous convection parameters

If we calculate the difference equations resulting from discretising the con-
vection diffusion equation in one dimension by the method described in this

thesis, we can generate a scheme for the pure convection equation by letting
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the diffusion parameter tend to zero.

As in the last section we shall consider a problem over two elements where
the convection term b is piecewise constant over each element. Discretisation

of (bu)'w yields the standard cell vertex finite volume approximation
BoUs — Bolo.
However, discretisation of —buw’ yields the subtly different

ﬂlUl - IBOU0~

Let us consider the equation
(bu) =1, u(0)=0.

where b = 8; when z € (3,7 + 1). We shall solve for U; our approximation to

u(z;) where z; = 1. The exact solution is discontinuous.

The finite volume method would produce

Up=0, Ui=1/fo, Uz=1/Bo+1/B, Us=1/Bo+1/B:1+1/B

However our method would produce
U():O, Ulzl/,Bl, U2:2/ﬁ2, U3:3/ﬂ3

This solution is nodally exact in that it produces the right-sided limit of the

solution at x;. The exact left-sided limit can be found from these values by
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using the finite volume discretisation inside each of the unit intervals.
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5.5 Semiconductor Test Problems

Presented here are two test problems similar to the one dimensional example
described in the last section involving discontinuous convective fields. Both
problems involve two regions of pure diffusion separated by a region of high

convection with a little diffusion. They are:

5.5.1 Test Problem One

We have
D={(z,y)l0<z<1,0<y <1} (5.3)

with a convective field of

b(z,y) = (c(2),0)", (5.4)
where 14
0 for 0< o< 35,
c(z) = 5 for %S'cSI—Q—d,

The boundary conditions imposed are u(0,y) = 0,u(l,y) = 1 with ho-

mogenous Neumann conditions on the other two edges.

In figures 5.9 to 5.17 we present results for both forms of the equation
(with the convection parameter inside and outside the derivative) when a = 1,
d=0.2,d=0.05d=0.01 with a mesh spacing of hy = 1/3,h; =1/20. In all
cases we choose a splitting constant of zero. We shall refer to the two different

forms of the problem as Case 1 and Case 2 as in the last section.
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Figure 5.9: Solution to semiconductor test problem one (Case 1) with d =
0.2,a=1

We also present the solution of Case 1 for these values of d, k; and h, but

with ¢ = 0.001.

We note upon the high accuracy of these solutions even though the layer

of convection is not even resolved by the mesh in some cases.
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Case 1) with d

(

Figure 5.10: Solution to semiconductor test problem one

0.05,a

=1

(Case 1) with d

1

Figure 5.11: Solution to semiconductor test problem one

0.01,a
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Figure 5.12: Solution to s

0.2,a

Figure 5.13: Solution to semiconductor

=1

0.05,a
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Nume

Case 2) with d

(

iconductor test problem one

Figure 5.14: Solution to sem
1

0.01,a

with d

(Case 1)

Figure 5.15: Solution to semiconductor test problem one
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Case 1) with d

(

Figure 5.16: Solution to semiconductor test problem one

= 0.001

0.05,a

with d =

Case 1)

(

Figure 5.17: Solution to semiconductor test problem one

= 0.001

0.01,a
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5.5.2 Test Problem Two

We have
Q={(z,y) | 0<z<l,0<y<l1} (5.5)

with a convective field of

b(z,y) = (c(r)e/r, c(r)y/r)", (5.6)

2

where r? = 2% + y%, and

0 for U§7“<1‘4—2d,
ory=121 for 122 g < 12

0 for 12—”<x§1.

The boundary conditions imposed are of homogenous Neumann type ev-
erywhere except for Dirichlet data of u(z,y) = 1 for z < 0.25,y = 0 and
x =0,y <0.25.

In figures 5.18 to 5.23 we present results for d = 0.2,d = 0.05,d = 0.01 with
a mesh spacing of hy = 1/20,hy = 1/20 and for both a = 1 and « = 0.00001.

We note that this problem is not radially symmetric. The Dirichlet condi-
tions are imposed where the convection term is nonzero leading to a (small)
parabolic layer. We also note that due to the Neumann condition we cannot
hope to calculate the solution on the outflow boundary accurately unless we
capture the region of nonzero convection accurately with the mesh. The re-
sults we show here do not attempt to resolve this region accurately but serve

to give qualitative information about the form of the solution.
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Figure 5.18: Solution to semiconductor test problem two with d = 0.2,¢ =1

Figure 5.19: Solution to semiconductor test problem two with d = 0.05,a =1



125

Numerical Results

Figure 5.20: Solution to semiconductor test problem two with d = 0.01,a =1

Figure 5.21: Solution to semiconductor test problem two with d = 0.2,

0.00001
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Figure 5.22: Solution to semiconductor test problem two with d = 0.05,a

0.00001

Figure 5.23: Solution to semiconductor test problem two with d=0.01,a

0.00001
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5.6 IAHR/CEGB Test Problems

Presented here are the numerical results for the standard test problems devised
by the Third Meeting of the International Association for Hydraulic Research
Working Group on Refined Modelling of Flow[42].

For these test problems we have
Q={(z,y)]-1<z<1,0<y <1} (5.7)

with convective field
b(z,y) = (2y(1 - 2%), —2z(1 —y*))", (5.8)

and with ¢ = 1 x 107,11 x 1072,2 x 1073,1 x 107°. All solutions are obtained

with the zero splitting constant test space.

For the results obtained by other methods for these problems see [42] and
[27]. There is little to say about our results presented in figures 5.25 to 5.30
other than to remark on their exceptional accuracy - even on a 10 by 5 mesh.
We draw attention to the high quality of the solution even away from the
outflow boundary. We draw attention to the accuracy of the method over the
whole range of mesh Péclet numbers. We remark here that the oscillations
that occur at the internal layer in the first test problem can be very much

reduced by using a test space generated with a splitting constant.

5.6.1 Test Problem One

For this problem the inlet boundary condition along
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Figure 5.24: Streamlines for the IAHR/CEGB test problems
—1 <2 <0, y=0Iis given by
U(z,0) =1 + tanh[20z + 10]. (5.9)

The boundary condition on the tangential boundaries,

= -1,y =1and x = 1 is given by U = 1 — tanh 10 = 0(8d.p.), and a

homogeneous Neumann boundary condition is placed on the outflow boundary.
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Figure 5.25: Inflow profile for IAHR/CEGB test problem 1

5.6.2 Test Problem Two

In this second test problem the boundary conditions are U = 0 on all bound-

aries except for the outflow which is left as before, and on = = 1, where

U = 100.
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Figure 5.26: Outflow profiles for IAHR/CEGB test problem 1
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Figure 5.27: CEGB test problem 1 with ¢ = 0.01,h = 0.1

5.7 Parabolic Layer Problems

We present here in example to show how the use of a ‘splitting’ constant can
dramatically help in resolving parabolic boundary layers. Parabolic boundary
layers can form when we have a flow which is parallel to a Dirichlet boundary.
The test problem presented is taken from [13] where the solution is found with

central differencing based on a specially grades mesh near the boundaries.

The test problem is posed on a domain £ = [0, 1] x [0, 1] with flow field
b = (—1 —z? - y270)T>

a diffusion parameter a = 0.0001 and with f = 0. The boundary conditions
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Figure 5.28: CEGB test problem 1 with « = 0.000001, 4 = 0.1

are
u(z,0) = a:a;u(:v, 1) = :1:2;u(0,y) =0;u(l,y) = 1.

The solution to this problem is approximately 1 everywhere except ‘close’ to

the boundaries at z = 0,y = 0 and y = 1. At the latter two boundaries a

parabolic layer forms.

We solve the problem on 6 x 6 and 10 x 10 regular meshes. The problem
is solved twice on each mesh - with a zero and nonzero splitting constant and
are presented in figures 5.31 to 5.34. The value of b used is calculated as an
average of the four nodal values for each element. Note that in each figure,
the labels on the ‘2’ and ‘y’ axes are values for ¢ + 1 and j + 1 rather than
z; and y;. We note that the nodal errors are effectively zero when we use
an appropriate splitting constant but when we have a zero splitting constant,

overshoots appear in the vicinity of the parabolic layers.
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Figure 5.29: Outflow profiles for IAHR/CEGB test problem 2
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Figure 5.30: CEGB test problem 2 with ¢ = 0.1,2 = 0.1
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Figure 5.31: Parabolic layer test problem with splitting constant C' = 0 and
h=1/6

Figure 5.32: Parabolic layer test problem with splitting constant C' = |bs|—[b1]
and h =1/6
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Figure 5.33: Parabolic layer test problem with splitting constant C' = 0 and

1/10

h =

|

|ba]

Figure 5.34: Parabolic layer test problem with splitting constant C

and h = 1/10
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5.8 Three Dimensional Problems

In this section we present three dimensional results for a simple extension
of the first CEGB test problem. Due to the difficulty in representing three
dimensional solutions on paper we take two dimensional slices through the
problem regions and display contour plots of the solution on those slices. We

also give a contour plot of inflow data and outflow solution.

5.8.1 Extension of the CEGB Test Problem One

We present the following example to show how well the method copes with

face—aligned flow. (The method copes equally well with non-face-aligned flow.)

For this test problem we have
Q={(z,y,2)| - 1<z<1,0<y<l,-1<z<1} (5.10)
with convective field (see figure 5.35)
b(z,y,2) = (2y(1 — z%), —2z(1 — v*),0)7, (5.11)

and with ¢ =1 x1071,1 x 1072,2 x 1073, 1 x 1075,

The inflow profile (z < 0) is given by

u(z) = (1 + tanh(20z + 10))(1 + tanh(—20|z| 4 10)).

Due to the high quality of the solution at very modest mesh spacing we
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Figure 5.35: Convective field for three dimensional CEGB1 problem

present results (see figures 5.36 to 5.43) only for cubic elements of width 0.25
giving a mesh of 8 x 4 x 8 elements. Contours are plotted at intervals of
0.25. Due to the symmetry about z = 0 (which is preserved by the numerical
method) we show only slices through z = —1,0.75,-0.5,-0.25,0. We also

present inflow/outflow contour plots. In each figure the labels on the ‘z’,'y

and ‘z’ axes are for values of 7,7 and k rather than for z;,y; and z.
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Figure 5.41: Inflow/Outflow with a = 0.01,2; = hy = hy = 0.25
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6.1 Introduction

In this chapter we describe a new method for producing difference schemes
for boundary value problems that yield exact values for the solution and all
of its derivatives (up to the order of the equation) at a set of nodes. We
first define the method and then prove the exact accuracy by the principle of

mathematical induction.

We then describe an alternative derivation of this method and explore it

in the context of the Poisson equation.

We then briefly discuss extensions to higher dimensional problems.

6.2 An exact difference scheme

Given an nth order linear differential operator Lu = " a;u(? and the bound-

ary value problem

Lu(z) = f(z) in Q =[0,1],
with appropriate boundary conditions we have the weak form by multiplying
both sides of the equation by a test function w from some test space W.

We can now write
A

Z ai(u(i), w) = (f,w).

1=0

We partition  in to m elements by the nodes z;, j = 0,...m. If we restrict

W by making all w € W satisfy the homogeneous adjoint equation on each
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element. That is,

Z(—l)iaiw(i) =0 for z € (z;,2j41) ,J =0,...,m—1 (6.1)

1=0

then we can state the following theorem.

Theorem 20 Given a w as defined above, the problem Lu(z) = f(z) in Q =

[0,1] can be written as

m=1 n i—1
Z J; (Z o u(i—1—k)w(k)> = (f,w),
0

j=1 =1 k=

where

Ji(9) = 9(zj+) — g9(z;-)

The proof of the above theorem is a trivial use of integration by parts and the

application of equation 6.1.

If we chose a finite dimensional trial space V of the same dimension as W
in such a way that all the integrals make sense (i.e. U € V is smooth enough at
the element boundaries) we have the following Petrov-Galerkin finite element
method. Find U € V such that

i

-1 n 1
J; (Z o U“-l—’“)w“f)) = (f,w), Yw e W.
k=0

=1 =

J=1

We split the test space W into n subspaces W; ¢ = (0,...,n — 1) and chose

W by choosing each W; in the manner described in the following theorem.

Theorem 21 Choose W, so that for all w; € W;, wl(n_l—i) 15 discontinuous
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at element boundaries and lower derivatives are continuous at element bound-

aries.

If we assume that the Petrov-Galerkin problem defined above has a unique
solution then the approzimate solution U and all of its dertvatives up ton —1

will be exact at the element boundaries.

Proof

Let e = U — u be the difference between the exact and approximate solu-

tions.

Assume that €@ = 0 at the element boundaries for 7 = 0,...,k — 1. Then

applying the conditions of Wy, immediately yields

m—1

Ji(e(k)w,(cn_l_k)) = 0.

=1

Hence by the assumed uniqueness of the linear system obtained by varying

wg we have that e*?) = 0 at the element boundaries.

However if we apply the conditions of Wy yields,

m=1
S Ji(ew(" ™) =0
=1

Hence e = 0 at the element boundaries.
Proof follows immediately by the principle of mathematical induction.

We remark here how it is possible to generate these exact difference schemes
without explicitly generating the test space [25]. This can be performed even

if the equation is nonlinear.
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6.3 An alternative derivation

Presented here is an alternative derivation of these methods designed to give
exact derivative information. The motivation for this work comes from the
observation that the exact solution u(z) can be written in terms of the Greens

function associated with the operator and the region of integration.

u(e) = [ Gla,y)(w) dy.

where Gi(z,y) is the Greens function associated with the operator L and the

region ).

If we now differentiate both sides of the equation with respect to . n — 1

times we obtain,

du(z) 1 d'Glz,y) .
o —/Q T fly)dy, +=0,..,n—1.

Hence if we construct a Petrov-Galerkin method based on a set of nodes
z; (i = 0,...,m) using a trial space V which is C7 (0 < j < n) continuous
at the nodes z; and a test space W = span{ﬁlf%g‘;yl, i=1,....,m—1} then
the method will yield a solution which has exact jth derivatives at the nodes
x;. This will be a Petrov-Galerkin finite element method if both the trial and
test spaces can be constructed from a set of local basis functions defined over
r elements. At first glance it is not clear that the test space can be written

as a sum of local basis functions and while this is not necessary it is highly

. . . . . d1G(zi,
desirable for computational reasons. It is clear now that we can obtain —Cf}:j—yl,
PG(ziy) -
—d(;——, 1=1,....m—1,3 =

j=0,...,n—1 by using a test space W = span{

0,...,n—1} and can recover values for 4"6z9) Jirectly from the equation itself

dwn

using the values for %ﬂ, 7=0,..,n—1
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6.4 Exact derivative solution for the Poisson

- equation

For simplicity we first present the method in the context of the Poisson equa-

tion:.

on [0, 1] with zero Dirichlet data.

We have,

Gly,z) = y(1 —y)d(y),

where ¢(y) is the standard hat function which takes the value 0 at z =0,z =1
and the value 1 at z = y (see figure 6.1).

In order to generate exact derivative values at = = y we need to use the test
function é% = 1p(z) where P(z) = —2,0 <z <yand ¥(z) =1 -2,y <
z < 1 (see figure 6.2).

Choosing a set of internal nodes z; (i = 1,2, ...,m—1) we define 1;(z) = —z

for 0 < z < z; and ¥;(z) = 1 —x for z; < ¢ < 1. We shall refer to the standard

hat functions centred at node z; as ¢;(z).

Unfortunately it is not possible to find a local basis for the space H =
span{t;(z)} (although it is possible to arrange for all but one of the test
functions to be local) so the problem of finding the derivative solution at the

nodes is not computationally very efficient.

However if we solve for exact function values in addition to exact derivative

values then we can produce a local basis. This is because we can use linear
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Figure 6.1: Plot of G(y,z) for y = 0.2,0.4,0.6 and 0.8

combinations of both ¢; and ; to produce a new basis. We generate a new
local set of basis functions Ai(z) = ¥i(z) + Y7t a;éi(z). The coefficients a;
are chosen to make A\;(x) zero everywhere apart from [z;_1,2i41] (see figure

6.3).

We can make a further simplification by using the basis functions v;(z) =
bidi(x) + ci¢i(z) where b; and ¢; are chosen so that the left and right limits of
vi(z) at z = z; are 1 and —1 (see figure 6.4).
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Figure 6.2: Plot of 2% for y = 0.2,0.4,0.6 and 0.8
6.5 Extensions to higher dimensional prob-

lems

We can extend this method into higher dimensions in exactly the same way
that the methods in the previous chapters are extensions of the one dimensional
nodally exact methods. In a similar way, we obtain an error equation posed
on the element boundaries. In particular we note that if the trial space is
capable of reproducing the exact solution and its derivatives on the element

boundaries, then there will be zero error on the element boundaries.

What is more exciting is that as long as the numerical problem is reasonably

stable and we can reproduce the solution values on the element boundaries



Accurate Derivative Solutions 155

-05 -0.5
-1 -1
0 0.5 1 0 0.5 1
1r 1 (
0.5 0.5

0 0.5 1 0 0.5 1
Figure 6.3: Plot of \;(z) for «; = 0.2,0.4,0.6 and 0.8
to a reasonable accuracy then we can also obtain good derivative values of

the solution just in small critical areas by adding in just the ’derivative’ test

functions at those areas.
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7.1 Summary

In this thesis we have described the problems associated with the numerical
solution of the convection-diffusion equation and described the various tech-

niques used to overcome these problems.

It became clear that none of these methods was ideally suited for a wide
range of problems. The need for a more generally applicable method prompted
the creation of a class of Petrov-Galerkin finite element schemes designed to
control the errors in the numerical solution on the element boundaries of the
finite element mesh. We saw how a particular case of this class, the ten-
sor product case, produced highly accurate solutions to various standard test
problems. We also saw that two limiting cases of the method produced the
standard Galerkin finite element method and also the cell vertex finite vol-
ume method. Asymptotic, nonasymptotic and truncation error analyses were

performed on the method.

We then presented a class of schemes designed to produce exact n-th deriva-

tive values for the solution of the one dimensional boundary value problems.

7.2 Suggestions for Further Work

So far only a basic preliminary error analysis of the class of methods we have
developed has been performed. It will be useful for the practical application
of these methods to have a tight a posteriori estimate of the error. There is
also much scope for extensions of the exact derivative methods to be extended
to higher dimensional problems. This would be extremely useful for problems

such as accurately calculating the stresses in structures. An exciting prop-
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erty of the one dimensional method is that extra local basis functions can be
placed where accurate derivative type information is required without globally
adding basis functions where they are not needed. Extensions of this to higher
dimensions with the aid of an a posteriori estimate of the error, could lead
to an adaptive mesh refinement strategy resulting in a highly efficient widely

applicable numerical solver.
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