
Durham E-Theses

Egg- and clutch-size variation, and chick growth in

lesser black-backed gulls larus fucus: adaptation

constraint?

Lawson, David Andrew

How to cite:

Lawson, David Andrew (1995) Egg- and clutch-size variation, and chick growth in lesser black-backed

gulls larus fucus: adaptation constraint?, Durham theses, Durham University. Available at Durham
E-Theses Online: http://etheses.dur.ac.uk/5370/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5370/
 http://etheses.dur.ac.uk/5370/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


E G G - AND CLUTCH-SIZE VARIATION, AND Cff lCK 

GROWTH IN L E S S E R BLACK-BACKED GULLS 

LARUS FUSCUS: ADAPTATION OR CONSTRAINT? 

BY 

DAVID ANDREW LAWSON. 

The copyright of this thesis rests with the author. 

No quotation from it should be pubHshed without 

his prior written consent and information derived 

from it should be acknowledged. 

September 1995. 
University of Durham. 

M.Sc. Advanced Course in Ecology. 

( i ) 

2 8 MAR 1996 



SUMMARY. 

(1). The first part of this study investigated separately the effects of both position in 
the nest (i.e. laying order) and clutch size upon egg volume, incubation period and 
hatching success of eggs from a total of 89 nests of the Lesser-black Backed Gull, 
Larus fuscus L., breeding on Walney Island, U.K. 

(2). Significant decreases in egg volume were found to occur from a- to b-, b- to c-, 
and a- to c-eggs in 3-egg clutches, but not between volumes of a-eggs from clutches 
containing 1,2 or 3 eggs. 

(3). Egg incubation periods, with respect to laying order, also differed significantly 
from each other in 3-egg clutches, such that the time between laying and hatching 
decreased from a-, through b-, to c-eggs. 

(4). A lower proportion of c-eggs hatched successfully, in relation to a- and b- eggs 
also from 3-egg clutches. Moreover, single a-eggs hatched successfully less often 
than those within 2- and 3-egg clutches. 

(5). Following hatching of eggs, the second part of the study investigated chick 
growth, in relation to position in the brood, brood size, and clutch size. 

(6). Within 3-chick broods, a-, b- and c-chicks showed the same pattern of growth. 

(7). Among 2-chick broods, no difference was found in growth parameters of broods 
from nests which had originally contained clutches of 2, and those which had 
originally contained clutches of 3 eggs. 

(8). Mean chick growth within a brood was no different among nests containing 1,2 
or 3 nestlings. 

(9). These results are discussed in terms of the current debate concerning whether 
egg-sizes and clutch sizes in birds are adaptive or constrained. 
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CHAPTER 1: INTRODUCTION. 

The Laridae is a cosmopolitan family containing approximately 90 species of 

small to large charadriiform seabirds worldwide, constituting between 11 and 17 

genera. This includes the 38-45 species of gulls (subfamily Larinae) and 32 species of 

terns (Steminae). Members of the family tend to possess coloration which is largely 

black and/or white, and are migratory. In terms of breeding, species are monomagous, 

and being gregarious, nest colonially either on the ground, in cliffs, or in trees. 

Natural food sources include a variety of aquatic animals (fish, crustaceans, molluscs, 

etc.) and carrion. 

For many larid species, it is typical for breeding females to lay a modal clutch 

size of three eggs. Furthermore, within such a clutch, eggs often display a general 

trend for decreasing mass and volume with laying order (e.g. Nisbet and Cohen 1975, 

Parsons 1975a, Hahn 1981). In particular, such decreases are most apparent with 

respect to the third-laid, or "c-egg" within the clutch. For example, in a study of 

Herring Gull {Larus argentatus) clutches, whilst the second-laid b-egg was rarely 

more than 2% smaller than the first laid a-egg, the last-to-arrive c-egg was on average 

11% smaller than the latter (Parsons 1972). For the Lesser-Black-backed Gull {Larus 

fuscus), which also lays a modal clutch size of three eggs (Bolton 1991), this 

difference has been recorded as 9.4% (Paludan 1951), for the Laughing Gull {Larus 

atricilla) as 7.0% (Preston & Preston 1953), and, for the Black-legged Kittiwake 

{Rissa tridactyla) as 7.3% (Coulson 1963). Similar size discrepencies with respect to 

the c-egg have also been recorded more recently in, for example, the Glaucous-

Winged Gull (Reid 1987), Western Gull Larus occidentalis (Pierotti & Bellrose 1986, 

Sydeman & Emslie 1992), and Common Terns Sterna hirundo (Bollinger 1994). 

However, it is not known whether these within-clutch differences are invariable 

attributes of each species, or are effected by other factors such as female nutrient 

status (the use of supplementary feeding experiments having yielded disparate results: 

see Bolton, Houston & Monaghan 1992). 

Some larid species also display marked variation between conspecifics in the 

number of eggs laid: whilst three-egg clutches may be the most common, and whilst 



nests with a greater complement than this tend to be rare, there can be nevertheless, 

frequent examples of completed clutches which contain only two, or even one single 

egg. With respect to the adaptive significance of this variation, it is possible that a 

female matches her clutch size to parental ability to provide food for the resulting 

chicks (see Lack 1968, Ricklefs 1973). Also, because, proximately, egg production is 

related to the level of female pre-breeding body protein reserves (Houston et al 1983, 

Bolton et al 1992), this suggests that the latter provides a good indication of later 

ability to provision for offspring (this indication could possibly take into account not 

only female, but also male ability at food provisioning, because his courtship feeding 

of the female will contribute to her level of reserves). 

The variability of clutch size may have important implications for studies 

examining the effects of position within the clutch. For example, taking a sample of 

nests, each of which contains either a 1-, 2- or 3-egg clutch, it is possible to obtain 

data for a-eggs from nests containing 1, 2, and 3 eggs, whilst for b-eggs the choice is 

limited to 2- and 3-egg clutches, and for c-eggs data can only be obtained from nests 

containing the full modal complement. However, in many studies where comparisons 

of egg size are made with respect to laying sequence, it is often not clearly stated 

whether the researchers limited themselves solely to three-egg clutches, or in fact 

used, for example, measurements from a-eggs in various clutch sizes combined. As 

previous work has found that, on average, females which lay smaller clutches also lay 

smaller eggs (Parsons 1976, Houston et al 1983), then clearly, such merging of data 

across different clutch sizes could potentially affect the integrity of the resuhs. 

Similarly to volume, within-clutch incubation periods of eggs have also been 

noted as decreasing with laying sequence. Indeed, this is thought to be related to egg 

size, so that the c-egg in particular displays the greatest reduction in this parameter 

(Parsons 1972,1976), although a lesser decrease from a- to b-eggs has also been 

documented (Hebert & Barclay 1988). However, the possibility of clutch size also 

influencing incubation periods appears to have received little attention. 

In contrast, there is known to exist a significant negative relationship between 

clutch size and the hatching success of eggs within a nest (Paynter 1949, Brown 1967, 

Parsons 1975b, Hebert & Barclay 1988), whilst laying sequence apparently has no 

effect (Parsons 1970, Bolton, Houston & Monaghan 1992). 



This study, involving fieldwork conducted upon the Lesser Black-backed Gull 

{L. fuscus) on Walney Island, U.K, divides into two parts. The first of these 

investigates the effects of laying sequence and clutch size (in isolation from each 

other) upon various egg parameters: initially, within-clutch differences in egg size, 

incubation period and hatching success are examined with respect to laying order, 

whilst controlling for clutch size (so that, although a-, b-, and c-eggs from 3-egg 

clutches will be compared with each other, the effect of laying sequence upon eggs in 

2-egg clutches will be analysed separately). Next - and contrastingly - whenever 

possible, the study also investigates between-clutch differences in these parameters, 

controlling for laying sequence (so that, for example, lone a-eggs representing a 

complete clutch are compared with a-eggs from clutches containing 2 and 3 eggs in 

total). 

Following hatching of eggs, there is considerable debate concerning the nature 

of subsequent chick growth. Ricklefs (1973) asserted that the latter generally takes 

place at some physiological maximum rate, determined by for instance, the rate of cell 

division. In this scenario, chick growth is inflexible, and virtually unaffected by 

external factors such as the amount of food given to the young bird, except in cases of 

starvation. Therefore, variations between individuals should be small. 

In contrast, a second possibility is that chicks are in fact flexible (up to some 

maximum rate) and display large variations in growth. This is supported by empirical 

data concerning intraspecific variation in growth in several species (Klaassen et al 

1992, Kersten & Brenninkmeijer 1995), although few studies have examined the 

variation among members of individual broods. 

Therefore, whilst examining chick growth with respect separately to position 

in the clutch, brood-size, and clutch-size, the second part of this study hopes to make a 

contribution to the above debate. 



CHAPTER 2: MATERIALS AND METHODS. 

Section One: Study site description. 

Walney Island, Cumbria, U.K. is situated at the northwest comer of 

Morecambe Bay, and lies adjacent to the southwestern extremity of the mainland 

Fumess Peninsula. Upon this low lying island there exist two nature reserves, both 

owned and managed by the Cumbria Wildlife Trust, but occupying areas located at 

opposite ends of the landmass. 

The South Walney Nature Reserve is inhabited (in fact dominated) by a very 

large, easily accessible (and, indeed, much studied), mixed breeding colony of L. 

fuscus and L. argentatus, within which all fieldwork was conducted, between the 

dates of 9th. May and 21st. July 1995. 

Although some pairs of gulls could be seen nesting upon the east-facing 

shingle beaches, the current study focused upon nests ofL.fuscus within the main 

body of the colony. This was located fiirther back fi"om the immediate coastline, 

occupying land with topography similar to that of a dune system, and a surface cover 

consisting primarily of a patchwork containing bare sandy soil, short grassy turf, dense 

clvmips of Nettle {Urtica dioica L.) and stands of Bracken {Pteridium aquilinum L.), 

together with abundant examples of Ragwort {Senecio jacobea L.). Specifically, 

fieldwork was conducted within a relatively small area designated by the reserve 

warden (see overleaf: Figure!). 



Figure 1. Map of Walney Island (inset: South Walney Nature Reserve, with extent of 
study site marked approximately by red hatching). 
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Section Two: Fieldwork techniques & data acquisition. 

At the beginning of the study period, the first visit to the colony revealed that 

breeding pairs of L. fuscus were at various stages of nesting, and whilst nests with no 

eggs present could still be located, more commonly the adults were already in 

possession of 1-, 2-, and frequently 3-egg clutches. Combined with the fact that the 

number of nests available for study was limited by the extent of the designated area, it 

was, therefore, not possible to restrict the study only to following the fate of clutches 

which had yet to be laid, or which had only one egg already present (and with which 

the laying order of the subsequent eggs could be directly established). Therefore, 

nests already containing clutches of 2 and 3 eggs were also included in the research. 

With this in mind, overall a total of 89 nests, as selected for study, 

encompassed the above-mentioned range of clutch sizes. Each nest was marked using 

a numbered, 3-foot tall garden cane, painted white at the tip to increase visibility. 

This was pressed firmly into the sandy substrate, at a distance of approximately 

eighteen inches to the north of the nest. 

Following the marking of the nest itself, each egg already present was in turn 

removed from the nest, and with the aid of a pair of calipers, both its length (diameter 

from pole to pole on the long axis) and breadth (greatest diameter at right angles to 

the long axis) were measured and recorded to the nearest 0.1mm. Egg volume was 

later calculated from the following equation (Harris 1964): 

Egg volume (cm^) = 0.000476 x length (mm) x width^ (mm). 

Before replacement into the nest, using an indelible pen, the nest number was 

also written upon the egg itself (so that, i f eggs were removed, or even taken into 

neighbouring study clutches, this would have been apparent). More importantly, 

however, each egg was also given a letter to identify it within the clutch. For nests 

with only one egg present, this egg was given the letter A to signify it was the first to 

be laid. However, for eggs already in clutches of more than one at the first visit to the 

nest, laying order is unknown. Such eggs were therefore labelled X and Y (2 eggs 

present), or X, Y and Z (3 eggs present), which was intended to imply nothing about 



their respective positions within the laying order of the clutch, but simply allowed one 

to be distinguished from the other. (Many such eggs were nevertheless assigned an 

order within the laying sequence following hatching: where laying orders were 

unambiguous, results indicated that in no single clutch did a c-egg hatch before the b-

egg, nor the latter before the a-egg. Therefore, similarly to Bolton (1991), where eggs 

hatched asynchronously with respect to nest visits, laying order was implied for 

previously uncategorized eggs, using the assumption that the first to hatch was also 

the first to be laid, and so on). 

Subsequent visits to marked nests during the period of egg laying were 

conducted at intervals of between two and three days Because two new eggs were 

rarely laid into any one such nest between checks, this meant that, for unstarted and 

incomplete study clutches it was possible to determine the order of eggs laid after the 

initial marking of the nest. Therefore, on such repeat visits, a newly arrived egg - i f 

present - was subjected to exactly the same procedure as described above, except that 

its position in the clutch was beyond doubt, and it was therefore labelled simply either 

A, B, or C, according to whether it was the first, second or third to be laid. 

The exact time at which an egg was laid is of course unknown. However, for 

eggs not already present at the time when a nest was first marked, it was decided to 

estimate a laying date (to the nearest half-day) by taking it to be the mid point 

between the date of the first visit when the egg was present, and the date of the 

previous visit when it was not. 

Also, each time a clutch was visited, any previously marked egg that had now 

disappeared from the nest was recorded as having done so. Similarly, records were 

made of eggs that were still present, but which were broken or otherwise obviously 

damaged. 

Hatchlings began to appear in study nests from the 28th. May onwards. 

Simlarly to egg laying, in each case it is not known exactly when a chick hatched, but 

only which two visits it took place between. Therefore, hatch date was estimated 

(also to the nearest half day) in the same marmer as laying date. For example, i f a 

chick was present on day 34, and not on day 30, then hatch date would be day 32. 

However, upon previously visiting a nest, i f an egg was found to be pipping, this was 

entered into the record for that particular visit. It is therefore possible to refine the 



estimate for hatch date in the cases of such eggs, relative to those for whom signs of 

hatching were not observed. For instance, if, in the above example the egg was 

recorded as pipping on day 30, then the estimated hatch date would be brought 

forward from day 32 (which is what a still intact - and therefore less advanced - egg 

would be assigned) to day 31. At this point, for every egg where it proved possible to 

estimate both laying and hatching dates, an approximate incubation period could 

therefore be obtained. 

With respect to the chicks themselves, when an individual was encountered 

within a study nest for the first time, a number of standard measurements were taken. 

Initially, the young bird was placed into a draw-corded bag, and weighed (to the 

nearest 5 grams) using a Salter 1 Kg. sprung scale. It was desirable to take this 

measurement first, as some chicks often regurgitate considerable amounts of food 

after being handled for a period of time, and i f they did this before weighing, whilst 

others did it only afterwards (or not at all), then this would generate greater variability 

in the data. 

Secondly, using the same calipers employed previously for determining egg 

lengths and breadths, measurements (to the nearest mm) of bill and tarsus length 

were taken. Specifically, the bill was measured as the length of the upper mandible in 

a straight line (chord of the culmen) from its tip to the edge of the feathering at the 

base of the skull, whilst the tarsus was taken as the length from the angle (posterior) 

of the intertarsal joint to the base of the last complete scale (anterior) before the 

divergence of the toes (see Thomson 1964). 

Finally, before being replaced into the nest, the chick was tagged by placing a 

small piece of white electricians insulating tape around the right leg, above the ankle. 

The tape was cut so that it possessed two fold over "tabs". After placing it around the 

leg, the two ends of the tape had their sticky sides facing each other, and hence, when 

pressed together they bonded strongly. The two tabs then folded over this bond to 

further enhance security. After checking the tag was not too tightly fastened about the 

leg, it was labelled with indelible ink to give the chick an identifying code. As with 

eggs, this code consisted of the nest number, together with the appropriate letter to 

signify which egg the chick hatched from. 



However, in many instances, the entire complement of 2- and 3-egg clutches 

hatched within a single interval between nest visits, so that it was not possible to 

determine absolutely which chick hatched from which egg. Sometimes the newest 

arrival would still be sitting within the remains of its labelled egg, and could hence be 

identified. Furthermore, if, in such a situation, a total of only two chicks hatched 

between visits, this meant that the older one present could (by a process of 

elimination) also therefore be identified. Nevertheless, discovering hatchlings whilst 

still surrounded by their own eggshell proved uncommon, and in many other cases, an 

alternative approach to categorize chicks had to be adopted: Bolton, Houston and 

Monaghan (1992) found that larger eggs gave rise to nestlings which were on average 

both heavier and skeletally larger. Of these two parameters, it seems likely that chick 

weight would be the more variable, as at this early stage of development, the young 

birds are so small that the consumption of a meal brought back by a parent can cause 

a considerable relative increase in body weight. 

Therefore, using tarsus lengths as a measure of relative skeletal size, it was 

possible to imply that, in cases where egg volumes decreased with laying order, the 

largest chick in the nest came from the a-egg, the next largest from the b-egg, and so 

on, with the effect of egg size being compounded by that of hatch order. However, if, 

for example, the b-egg in the clutch was actually larger than the a-egg, then this would 

tend to counter any advantage that the a-chick would accrue from hatching first, so 

that the two chicks might be of similar size when the nest is visited. Therefore, in 

cases where egg volumes did not decrease with laying sequence, the associated chicks 

remained unclassified. As with eggs, every such unidentified chick was given a 

labelled tag that stated which nest it came from, and which allowed siblings to be 

distinguished from each other, but which did not make any inference about which egg 

a particular hatchling emerged from. 

Following tagging, visits were made to nests so that each chick was subjected 

to the measurement of weight, and of bill and tarsus length, at intervals of not greater 

than five days. During such a visit, any fatalities or disappearances of marked chicks 

were also entered into the record for that day. However, in many instances, after the 

initial couple of visits to the nest, subsequently the young birds could not be found, 

and indeed were never recovered either dead or alive even by the end of the study 



period. In other cases, chicks could be located on some visits, but not on others, so 

that only a patchy record of growth could be obtained. At the completion of 

fieldwork, it was therefore decided to base analyses of growth upon simply the final 

set of measurements taken for each chick within a nest, at a time when the complete 

brood was known still to be alive. 

10 



C H A P T E R 3: R E S U L T S . 

Section One; Egg-based data. 

(i). Egg volumes. 

Firstly, egg volume data, grouped into samples with respect to both clutch size 

and laying order, were checked for normality. Kolmogorov-Smimov one-sample tests 

indicated that all data conformed to the normal distribution (z-values ranged between 

a maximum of 0.14 and a minimum of 0.04; P>0.05 in all cases). 

Table 1 displays the mean values obtained for egg volumes. Samples are 

again grouped according to clutch size, and also position of each egg within the 

clutch, to allow both between- and within-clutch comparisons, respectively. 

Table 1. Mean egg volumes (± S.E.), calculated with respect to clutch size, and 
laying order within each clutch. 

Clutch size. Egg order. Sample size (n). Mean volume (cm'). 

1 egg A (12) 68.18 ± 1.50 

2 eggs A (20) 71.65 ± 1.46 
B (20) 65.94 ± 1.36 

3 eggs A (37) 70.97 ±0.95 
B (36) 68.24 ± 1.14 
C (42) 64.25 ±0.88 

Initially, data were analysed using a 2-way ANOVA, examining the effects of 

laying order and clutch size upon egg volume. However, it was not possible to 

examine higher order interactions: for example, it was impossible to have a c-egg 

from a 2-egg clutch, or a b-egg from a 1-egg clutch. 

11 



Nevertheless, the analysis indicated that there were significant differences in 

mean egg volumes with respect to laying order (F= 15.8; n = 167; P<0.001). For 3-

egg clutches, to identify exactly where, differences lay, this analysis was followed by a 

range test: using Tukey s H.S.D., significant differences were found to occur between 

a- and b-, b- and c-, and a- and c-eggs (in each pair-wise comparison, the latter being 

smaller by 3.84 %, 5.85 % and 9.47 % respectively), hence confirming the existence 

of an overall trend in 3-egg clutches for decreasing egg volume with position in the 

clutch (i.e. from a- through b- to c-). 

Contrastingly, the 2- way ANOVA also indicated that no significant 

differences existed in mean egg volimies with respect to clutch size (F = 1.44; « = 

167; P = 0.2). This was confirmed by investigating the effects of clutch size solely 

upon the volume of a-eggs (because only a-eggs - by definition - can be present in 

each of the 1-, 2-, and 3-egg clutches): the analysis indicated that there existed no 

significant differences in a-egg volumes between 1-, 2- and 3-egg clutches (1-way 

ANOVA; F = 1.38; n = 69; P = 0.26). 

(ii). Incubation periods. 

These were analysed using the data fi-om 3-egg clutches, hence controUing for 

clutch size. To begin with, egg incubation data, grouped into samples with respect to 

laying order, were checked for normality. Kolmogorov-Smimov one-sample tests 

indicated that all data again conformed to the normal distribution (z-values ranged 

between a maximum of 0.26 and a minimum of 0.09; all were P>0.05). 

Table 2 displays the mean values obtained for egg incubation periods. 

Samples are grouped according to the position of each egg within the clutch. Mean 

egg incubation period decreased with respect to laying order, the difference between 

the c-egg, and the other two (a- and b-) which preceed its arrival in the nest, being 

particularly marked (1-way ANOVA; F= 30.5; n = 52; P<0.001). As previously, a 

range test was subsequently conducted, to identify exactly where these differences lay: 

Tukey's H.S.D. indicated that significant differences occurred between a- and b-, b-

and C - , and a- and c-eggs, hence confirming an overall trend for decreasing egg 

incubation period with position in the clutch. 

12 



Table 2. Mean incubation periods (± S.E.), with respect to laying order, for 3-egg 
clutches only. 

Egg order. Sample size Mean incubation period 
(«). (days). 

A (11) 28.82 ±0.30 

B (26) 27.27 ±0.22 

C (15) 25.43 ± 0.29 

(iii). Fate of eggs. 

Failure of an egg to hatch can be allocated to one of a variety of categories, 

according to the underlying reason. In the present study, there were three such 

categories, which are included in Table 3. Samples are again grouped according to 

clutch size and position of each egg within the clutch. Values in the table relate to the 

proportion of eggs from a particular sample, which either hatched, went missing, were 

broken between visits, or were "addled" (the result of infertility or embryo death). 

Table 3. Hatching success and causes of failure, each expressed as a proportion of 
the total sample size («), with respect to clutch size and laying order within each 

clutch. 

Clutch 
size. 

Egg 
order. 

Sample 
size (n). 

Hatched. Missing. Broken. Addled. 

1 egg A (12) 0.42 0.42 0.08 0.08 

2 eggs A (20) 0.70 0.20 0 0.10 
B (20) 0.70 0.10 0 0.20 

3 eggs A (43) 0.81 0.14 0.05 0 
B (42) 0.88 0.10 0.02 0 
C (42) 0.57 0.14 0.07 0.22 

13 



Looking firstly at hatching success, the only significant difference with respect 

to laying order within a clutch is that for c-eggs, the proportion of eggs successfully 

giving rise to a chick is smaller than the clearly similar values obtained for both a- and 

b-eggs from a 3-egg clutch (Pearson chi-squared = 12.1; n = 127; P<0.01). 

Next, comparing eggs of the same laying order within different clutch sizes, 

the only noteworthy difference is that the success of lone a-eggs was considerably less 

than that of the same order egg in a clutch of two, and was approximately half that 

calculated for a nest containing three eggs. Again using chi-squared, this difference 

between the single egg and a-eggs from larger clutches was also confirmed as being 

significant (Pearson chi-squared = 0.034; n = 75; P<0.05). 

Section Two: Chick growth data. 

(i) Effect of position in the clutch. 

Firstly, looking solely at broods containing 3 chicks, an index of body size was 

calculated for every chick which had been assigned a position within the clutch. This 

index combined both beak and tarsus lengths to obtain an overall measure of chick 

size. However, to make the relative contribution from these two measurements equal 

(tarsus lengths being much greater in absolute terms than those for beaks), it was 

neccessary first to standardize these two variables (Norusis 1991), so that within a 

sample, each variable had a mean value of zero, with a standard deviation of one. 

Such standardized measurements are known as z-scores, with the size index being 

calculated for each chick by summing the scores obtained for beak and tarsus. 

Body weight was then regressed upon the index representing body size (after 

Hamer et al 1993), with the residuals obtained in turn being expressed as a proportion 

of the predicted weight. For each chick, the resulting figure was then used as a 

measure of body condition (i.e. how well the chick was growing), and will be referred 

to in this and following sections as the "growth index" (within these following 
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sections, new indices of size and growth have to be calculated each time, due to the 

different combinations of chicks contributing to the sample data sets). 

Table 4. Mean growth indices ( ± S.E.) of chicks from 3-chick broods, with respect 
to position in the nest. 

Chick position. Sample size («). Mean growth index 
(± S.E.). 

A (11) -0.101 ±0.041 

B (11) 0.103 ±0.120 

C (15) 0.285 ±0.140 

The mean values obtained for this growth index, with respect to position of the 

chick within the nest, can be seen in Table 4. There was no significant difference 

among groups (1-way ANOVA; F = 2.73; « = 37; P = 0.08). This result agrees with 

what one would expect, based upon Figure 2 (overleaf): here, a plot of chick weight 

against body size index illustrates that the points for each category of chick almost all 

fall close to the overall regression line, such that no clearly visible difference exists 

between categories, in terms of their chicks positions with respect to which side of the 

line they lie upon. 
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Figure 2. Body weight plotted against body size index for a-, b-
and c-chicks from 3-chick broods only. 
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(ii) Effect of clutch size. 

To examine the effect of clutch size upon chick growth, perhaps the most 

obvious approach would be to compare broods containing only a single chick, with 

respect to whether the nest had an original comphment of either 1,2, or 3 eggs. 

However, the fact that most adult females laid three, or at least two eggs, and that 

generally more than one of these hatched successfully, in turn created insufficient 

data on single-chick broods to allow analysis. 

Therefore, instead it was decided to investigate the growth of two-chick 

broods, with respect to whether they arose from a clutch of two or three eggs (as there 

is now known to be no significant difference in growth with repect to position in the 

nest for 3-chick broods, combined with the fact that the same is also likely to be true 

for nests containing two nestlings, such division of chicks within broods shall be 

dispensed with. Therefore, in this, and the following analysis, data from nests in 

which laying or hatching order could not be determined, can still be utilized, hence 

increasing sample sizes to a point where more satisfactory statistical analyses may be 

conducted). 

Table 5. Means of within-brood mean chick growth indices (± S.E.), with respect to 
clutch size, and for two-chick broods only. 

Clutch size. Sample size («). Mean of within-brood 
mean chick growth 

indices (± S.E.). 

2-eggs (10) 0.011 ±0.105 

3-eggs (13) -0.062 ± 0.052 

Following calculation of size and growth indices for each individual nestling 

in the marmer previously detailed, these values were next averaged across chicks 

within each nest, to produce a mean chick growth index for each brood. In turn. 
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means of these values were calculated with respect to clutch size (see Table 5). 

Statistical analysis found there to be no differences between groups (t-test for equal 

variances; t-value = 0.68; /7 = 23; P = 0.30). Hence, nestlings in a 2-chick brood 

from a 2-egg clutch display similar growth to those in a 2-chick brood which came 

from a clutch originally containing 3 eggs. 

(iii) Effect of brood size. 

As position in the nest and clutch size had no effects upon growth, it was 

possible to conduct a single analysis of the influence of brood size, which did not 

control for these variables, and hence utilized the vast majority of chick data 

collected. To begin with, new size and growth indices were therefore calculated for 

each young bird, with the latter again being used to create a mean chick growth index 

for each brood. Also similarly to above, in turn means of these values are calculated, 

but this time with respect to brood size (Table 6). Statistical analysis found there to 

be no significant difference between any two groups (1-way ANOVA; F = 1.26; n = 

50; P = 0.29). Put simply, mean chick growth within a brood was similar regardless 

of whether the nest contained 1,2 or indeed 3 offspring. 

Table 6. Means of within brood mean chick growth indices (± S.E.), with respect to 
brood size. 

Brood size. Sample size («). Mean of within-brood 
mean chick growth 

indices (± S.E.). 

1. chick (13) -0.024 ± 0.035 

2 chicks (24) -0.0005 ± 0.058 

3 chicks (13) 0.122 ±0.083 
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C H A P T E R 4: DISCUSSION. 

Section One; Egg parameters. 

(i) Egg Volume. 

Considering the wealth of documented cases which describe the occurrence of 

a decrease in egg volume with laying sequence, particularly with respect to the c-egg 

(Paludan 1951, Preston & Preston 1953, Coulson 1953, Parsons 1972,1975a, Nisbet 

& Cohen 1975, Hahn 1981, Pierotti & Bellrosel986, Reid 1987b, Bolton 1991, 

Sydeman & Emslie 1992, Bollinger 1994), the discovery of a similar trend during the 

present study was perhaps only to be expected. It is interesting to note, however, that 

the current results are very similar to those obtained by Paludan (1951), also studying 

L. fuscus: looking specifically at the size difference between a- and c-eggs, the 

previously cited figure of 9.4 % obtained by this researcher compares with the 9.5 % 

of the present study. However, it would appear that such an exact size disparity is not 

intrinsic to the species: whilst Royle obtained a lower, but relatively similar value of 

8.3 %, Bolton et al (1992) found control c-eggs to be on average 13.3 % smaller in 

volume than control a-eggs. 

Although not a subject addressed by the results of the current study, there is 

some debate as to the mechanism responsible for the egg size asymmetry observed 

within a clutch, particularly with respect to the much smaller c-egg. The reduced size 

of this third-laid egg has been attributed to the effect of a limited nutrient (food) 

supply during the pre-laying period (Pierotti & Bellrose 1986), as, according to Bolton 

et al (1992) this egg in particular may be expected to be the most sensitive to variation 

in food availability or quality (presumably because the adult female will by this stage 

have fewer reserves upon which to draw in order to make up for any shortfalls in 

nutrient availability from the environment). Similarly, Reid (1987b) concluded that 

the small size of c-eggs was a non-adaptive effect of food supply, as courtship feeding 

of the female by the male declines with initiation of the clutch (i.e. laying of the first 

egg). 
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Indeed, food supplementation experiments have shown that an increased 

supply of nutrients allows females to lay larger eggs. For example, Bolton et al 

(1992) found that birds provided with supplementary egg-protein produced eggs 

which were on average 10 % bigger than controls. However, the latter study, together 

with others such as that by Hiom etal(l991) also found that, whilst the extra food 

produced a somewhat greater increase in the size of the c-egg relative to that induced 

for the a- and b-eggs, nevertheless, the size differential between members of a clutch, 

although reduced, was still maintained. This suggests that food availability or quality 

represents only part of the explanation. 

Evidence that females may indeed to some extent control egg size regardless 

of nutrient availabilify, can be obtained from egg-removal experiments, such as those 

of Parsons (1971, 1976) conducted uponZ. argentatus: following the removal of the 

a-egg from a nest soon after it was laid, the subsequent difference between a- and c-

eggs was significantly less marked, so that the latter approximated to the size of the b-

egg. Such evidence suggests that c-egg size in unmanipulated clutches is actually 

adaptive. Furthermore, the lower volume of the c-egg is known to be the result of a 

reduced albumen rather than yolk content, the latter being indispensable to the life 

and growth of the embryo (Parsons 1976). This has led to the conclusion that the 

proximal cause of the smaller c-egg is the onset of incubation before the full clutch 

has been laid (due to the a-egg stimulating brooding behaviour), hence reducing the 

level of albumin secretion during the formation of the c-egg (see Parsons 1972; for an 

in depth description of the pre-laying mechanism of egg development, see Parsons 

1976). 

Overall, therefore, it seems probable that both food availability and (more 

importantly) the onset of incubation, together contribute to within-clutch egg size 

asymmetry, particularly with respect to the c-egg. 

Turning to the effects of clutch size upon egg volumes, the lack of a 

significant difference between eggs occupying the same position within clutches of 

different sizes in this study (Table 1) tends to contradict the findings of Parsons 

(1976) for L argentatus and Houston etal (1983) foiLfuscus, where females laying 

smaller clutches also laid smaller eggs. 
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Clutch size is primarily determined by the level of pre-breeding body protein 

reserves (Houston et al 1983, Bolton et al 1992). Also, it is known that egg size 

positively correlates with chick size, growth and probability of fledging (Schiferli 

1973, Nisbet 1978, Bolton 1991), and that there exists a minimum size, below which 

the resulting chick has little chance of surviving to independence (Parsons 1976). As 

such, whilst potential reproductive success of the adult female can increase via 

production of a greater number of eggs (which is likely to lead to more offspring), 

success can also increase by laying larger eggs (so that each offspring has a greater 

probability of survival). 

Indeed, above a minimum viable egg size, there is some debate as to whether 

egg or clutch size should take priority: according to Ricklefs (1973), when clutch size 

is greater than one, it is the number of eggs which should be adjusted before egg size, 

whilst Bolton (1991) has argued the opposite: that because a decrease in clutch size 

represents a quantum reduction in reproductive potential, then egg size should be 

adjusted first. Overall, this implies that, across the full range of reserves available to 

females, an individual with fewer reserves than average should produce smaller, not 

fewer eggs (i.e. change egg size first), whilst one with greater reserves should lay 

more, rather than larger eggs (i.e. change clutch size first). 

In fact, regardless of the exact nature of the balance in priorities between 

changing egg and clutch size, there should nevertheless exist approximate threshold 

levels of female body protein reserves, which determine the number of viable eggs 

laid. Between two adjacent thresholds, there will then exist females with a range of 

protein reserves, but which all lay the same number of eggs: females at the higher end 

of the range (having more reserves) would be expected to produce larger eggs than 

those lower down. 

Also, assuming that, within a population, the overall frequency distribution of 

female body protein reserves follows a normal distribution, then the result of an 

investigation concerning how clutch size influences egg size, will depend upon where 

the above thresholds (which are static) intersect this distribution (whose absolute 

position along an axis of protein reserves varies according to the supply of resources 

to females). Therefore, alternative findings from other studies are not neccessarily 
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contradictory, but might instead reflect differences in food availability during the pre-

laying period. 

From the above mechanism, the current finding of no cortelation between egg 

and clutch sizes has two possible explanations: firstly, food supplies (and hence, body 

protein reserves) were so low that the thresholds for laying 1,2 and 3 eggs all fell 

beyond the peak of the normal distribution, and so there were more females laying 

smaller then larger eggs in each of the clutch sizes. Alternatively, food supplies 

(probably similar to those described later with respect to the post-hatching period) 

may have been so good that the same thresholds all fell the other side of the peak, 

with more females laying larger than smaller eggs in each clutch size. 

(ii) Incubation period. 

The reduction in mean incubation period with respect to laying sequence 

(from a- through to c-egg) agrees with the trend noted by previous studies upon L. 

fuscus, such as Hebert & Barclay (1988), and more recently Royle (1995), who 

recorded that, on average b-eggs took 1.66 days less to incubate than a-eggs, whilst 

the difference between the former, and c-eggs was a fiuther 1.14 days. (These 

compare to respective values of 1.55 and 1.84 days obtained during the curtent study). 

Such a trend is perhaps to be expected, as incubation period is itself related in 

part to egg size. Specifically, the energy requirement for embryonic development is 

related to the surface area and weight of an egg, with the result that larger eggs require 

longer incubation periods. However, a further contributing factor to the overall trend 

may be related to behavioural changes in the parent bird, as Parsons (1972) has shown 

that incubation during the laying period is only partly effective. This would tend to 

result in cooling of embryos within earlier laid eggs, thus delaying their development. 

(iii) Hatching success. 

Previous studies such as those of Parsons (1970) and Bolton et al (1992) found 

there to be no difference in hatching success of eggs with respect to laying order. 

Although the present study also obtained similar results for a- and b-eggs, hatching 
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success of c-eggs was however significantly lower. For all three eggs, a similar 

proportion of individuals went missing, most probably as a result of intra-specific 

predation (see later). In contrast, only c-eggs were ever noted as failing to hatch, and 

indeed over 20 % of them were addled. Similar results were obtained by Royle 

(1995). 

It seems possible that there exists a minimum size below which an egg will not 

be viable, even to hatching (as opposed to hatching successfully, but subsequently 

having little chance of producing a viable chick), and it may be that in the present 

study, some c-eggs were below this threshold. Also, whilst fiirther c-eggs may have 

failed to hatch because they remained unfertilized, yet another proportion might have 

done so because of a disruption or cessation of incubation behaviour. For instance, 

Beer (1966) reported that, for Black-headed Gulls Larus ridibundus, the presence of 

chicks in the nest curtails adult incubation. Similarly, L. argentatus parents typically 

neglect their last-to-hatch (c-) egg during the period before the chick emerges, 

allowing its mean temperature to drop by about 4 degrees-C, to near 33 degrees-C 

(Lee et al 1993, Evans et al 1995). I f the temperature falls further, a reduction in (or 

indeed suspension of) development may occur, often leading to the death of the late-

stage embryo. Indeed, neglect during even the pipped egg stage has been interpreted 

as a cause of mortality in a significant proportion (up to 11 %) of Herring Gull 

terminal eggs on a study site in Newfoundland (Haycock & Threlfall 1975). Hence, 

parental neglect may well account for a number of the instances of egg failure 

recorded in the curtent study (assuming that similar behaviour is exhibited by the 

closely related L. fuscus). 

The significantly lower proportion of single eggs found to give rise to chicks in 

the present study, compared to a-eggs from 2- and 3-egg clutches (Table 3), was 

mainly a result of a far greater proportion of single eggs going missing. The main 

cause of this, and indeed egg loss in general for L. fuscus upon Walney, tended to be 

predation-by conspecifics, and also by L. argentatus. This has been documented by 

Brown (1967), and Henley (1979), the former noting that, apart from gulls, the 

number of potential predators of eggs or chicks upon the island is small. Therefore, 

the lower hatching success of single egg clutches can be most satisfactorily explained 

in terms of why they suffer greater predation. 
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As predation did not always involve the loss of the entire clutch, and assuming 

that the predator does not differentiate between a-, b- and c-eggs, then the above result 

may have been influenced by an increasing "dilution of predation pressure" within 

ever larger clutches. For example, if, in a particular situation a predator is (for 

whatever reason) limited to taking perhaps only one egg, then in a clutch of three, the 

a-egg has a 33.3 % chance of being taken, in a clutch of two, this rises to 50 %, but in 

a single-egg clutch it increases dramatically to 100 %. 

However, Brouwer & Spaans (1994) studying/., argentatus found that, whilst 

controlling for clutch size, egg predation was nevertheless strongly correlated to 

clutch volume. Having also excluded the possibility of a predator-linked selection 

mechanism, they concluded that lower quality birds not only lay smaller eggs, but also 

exhibit less efficient parental care during the incubation period. As lower quality 

individuals also lay fewer eggs, it seems likely that the greater predation of lone a-

eggs in the current study is likewise primarily due to less efficient parents putting their 

clutches at greater risk of predation: a similar suggesfion to that of Parsons (1975) 

who stated that birds laying smaller clutches may have a lower incubative drive. 

Such an explanation predicts that hatching success of a-eggs should also 

decrease from 3- to 2-egg clutches, mainly as a result of the poorer protection of eggs 

afforded by parents of the latter. Whilst the curtent results do follow such a trend, the 

differences are not great enough to be significant. Although the chances of an a-egg 

being the subject of a predatory attack might increase less from 3- to 2-egg, than from 

2- to 1-egg clutches (as in the earlier example), the apparently secondary nature of any 

such effect means that the current result could be interpreted more readily as 

suggesting that the difference in parental efficiency between adults laying two, and 

those laying three eggs, is less than that between birds laying two, and those laying 

only one egg. 
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Section Two; Chick growth. 

(i) Effect of position in the clutch. 

In the present study, the lack of any significant differences between the growth 

of a-, b- and c-chicks agreed with results obtained by Royle (1995). In particular, the 

similarity of c-chick growth to that of its two siblings is, however, confradictory to 

numerous instances in the literature which refer to a condition seen in many gull (and 

other species), called the "third chick disadvantage." Put simply, it is known that 

smaller eggs give rise to chicks which are not only skeletally smaller but also lighter 

for their size than those from larger eggs (Fumess 1983, Bohon 1991). Furthermore, 

because L. fuscus displays asynchronous hatching (Griffiths 1992), the c-chick is also 

the last to enter the brood, so that the elder chicks present will not only have 

frequently been larger at hatching, but have now also experienced a "head start" in 

subsequent growth. Hence, the considerably smaller c-chick often has difficulty in 

competing successfully with older brood members for food brought back by the adults 

(Graves, Whiten & Henzi 1991). 

As such, in many gull studies, it is a common observation that the last hatched 

chick displays reduced growth, compared with that of its siblings (e.g. Lundberg & 

Vaisanen 1979, Viksne & Janaus 1980, Fumess 1983, Hebert & Barclay 1986, 

Pierotti & Bellrose 1986, Reid 1987b). Associated with reduced growth, these studies 

also found an increased level of mortality amongst c-chicks. However, chick 

mortality (with respect to position in the nest, clutch or brood size) was not formally 

investigated during the present study, and it would be difficult to draw conclusions 

from the data obtained, as the fate of many chicks remained unclear. The problem, 

similar to that noted by Brown (1967), was that on Walney the thick vegetative cover 

and mobility of chicks made it often difficult to find marked youngsters (a problem 

compounded in the current study by the prevalence of nearby rabbit burrows, into 

which young birds often retreated at the advance of the researcher). Whether such 

individuals died, or survived to fledging therefore remains unclear. 

Returning to c-chick growth, the result of the current study could be 

interpreted as supporting the proposal of Ricklefs (1973): that, except in cases of 
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starvation, chick growth is inflexible, and generally takes place at some physiological 

maximum rate, determined by factors such as the rate of cell division. However, there 

exist a variefy of alternative explanations, which predict similarity of growth between 

all brood members, even though chick growth is taken as being flexible below some 

upper limit. 

One such explanation could be that there were abundant supplies of food 

available to the parent birds, so that it was possible to feed all three chicks without 

them needing to compete for this resource. Indeed, the local area is known to possess 

a rich variefy of food resources, such that gulls from Walney may have a diet 

containing earthworms and tertestrial vertebrates taken from the surrounding land, 

together with domestic waste from refuse tips (one of which is situated just north of 

the colony), and a variety of marine shellfish and other organisms taken from 

Morecambe Bay and the Irish Sea. Other food sources can include discarded fish 

offal (which, together with refuse, was cited by Spaans (1971) as creating an 

abundance of food, leading to a rapid increase in populations of L. argentatus during 

the beginning of the 1970s), eggs and chicks of neighbouring gulls, sheep and cattle 

feed taken from fields, and waste scraps taken from litter bins, sfreets and gardens 

(Sibfy & McCreery 1983). 

Furthermore, it has in the past been suggested (Lack 1954,1966) that the third 

egg is laid precisely to take advantage of situations where there is an abundance of 

food. Indeed, Bolton et al (1992) state that, as L. fuscus is an opportunist scavenger, 

at the time of egg laying, it is difficult for the parents to acquire a reliable indication 

of food availability later in the season. Therefore, this species may lay as many eggs 

as possible (within the upper limit set by incubation and/or brood rearing capacity), to 

take advantage of any abundance of food which may subsequently arise, and that, i f 

instead, food supplies fail, then the third chick, being the least able to compete, and 

representing the chick into which least investment has been placed, will be the first to 

die, hence causing "brood reduction". However, there are no data available to provide 

an indication of how abundant local food supplies were in 1995, with respect to the 

number of gulls dependent upon these resources. Therefore, the level of food 

availability remains speculative. 
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Another, somewhat similar explanation relates to the nature o f the data used to 

estimate chick growth in the present study. As many young birds could not be found 

after only the second or third visit to the brood, estimates of individual chick growth 

within a nest were often based upon measurements o f relatively young nestlings. 

Such small chicks would in turn have relatively low food requirements, easily met by 

the parents. Hence, at this stage all three chicks would in theory be able to acquire 

sufficient food to meet their needs, and would therefore grow at similar rates. 

However, even though it was rarer to successfully catch older chicks at a time 

when all three brood members were known still to be alive, the associated estimates 

of growth may still (perhaps somewhat surprisingly) have contributed to the finding 

that growth was similar for all three chicks. According to Hussell (1972) and Bryant 

(1978) this could occur from the effects o f asynchronous hatching, such that the 

staggered development o f siblings prevents the maximum food requirements of all 

members o f the brood from occuring at the same time ("peak load reduction"). This 

reduces any l imit ing effect o f food supply, so that even older a-, b- and c-chicks may 

display similar growth. 

Finally (and somewhat contradictory to the suggestion of peak load 

reduction), a yet further possibility relates to the fact that, although L. fuscus displays 

asynchronous hatching, the degree o f asynchrony w i l l to some extent be influenced by 

within-clutch differences in egg incubation periods. Whilst (as previously detailed) 

this difference between a- and b- eggs in the present study was similar to that found by 

Royle (1995), c-eggs took 1.84 days less to hatch than b-eggs, compared to only 1.14 

days in the latter study. Overall, therefore, it is possible that the degree o f hatching 

asynchrony may often have been relatively low during the current study. 

As such, at hatching there would be less difference in the competitive abilities 

o f brood members, with the opportunity for any one chick to dominate its siblings 

being reduced. Hence, all chicks would possess more equal feeding opportunities, 

and as a result would display less marked differences in growth, as found by Hebert & 

Barclay (1986), who manipulated hatch asynchrony within L. argentatus clutches. 

However, whilst, in many instances during the present study, all members of a 

three egg clutch did indeed hatch between consecutive nest visits, this represented an 

interval o f time in the order o f 2-3 days. Studies such as Royle (1995) found that. 
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although the c-egg hatched considerably later than the a- and b-egg, the total a- to c-

hatch interval was nevertheless only 1.45 days. Furthermore, Hebert & Barclay 

(1986) state that, for Z. argentatus, normal hatch asynchrony occurs with a- to c-

hatch intervals above as little as 24 hours. Therefore, whether normal hatch 

asynchrony was indeed reduced in some instances during the current study, cannot be 

directly verified. 

Overall, whilst potential explanations for the similarity o f c-chick growth to 

that o f its elder siblings include not only that of inflexible chick growth, but also a 

number o f alternatives which accommodate the contrary view, all remain somewhat 

speculative. 

(ii). Effect of brood size and clutch size. 

In the present study, the lack o f significant differences in mean chick growth 

within broods o f different sizes could also be viewed as favourable evidence for the 

inflexibil i ty o f chick growth. However, this result is at odds with the work of Bolton 

(1991), who found that brood size had a negative effect upon chick growth. 

Furthermore, Graves et al (1984) found that, for L. argentatus there was a significant 

difference in the proportional weight gain o f chicks between those broods where there 

were three chicks in the brood for 3 days or more, and those where either only two 

chicks were hatched, or there were three chicks for 2 days or less. 

I f chick growth is in fact flexible, one possible explanation for the resuh of the 

current study relates to parental quality. As previously cited, better quality adults lay 

larger clutches, on average. It follows that these in turn (excepting egg losses) lead to 

larger broods, relative to those o f poorer quality individuals. Therefore, although the 

overall food demand of a brood increases with the number of chicks present, the 

higher quality parents o f these larger broods also represent those members of the 

breeding population which are best able to meet such requirements ( i f quality is 

defined in terms o f ability to obtain resources). Hence, chick growth could well be 

similar across brood sizes. Also, such a mechanism would not contradict the above 

cited studies o f Bolton (1991), and Graves et al (1984), where initial clutch size was 

controlled for. They were studying how the loss o f a brood member allowed parental 
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effort to be divided amongst a smaller number o f remaining chicks, which could 

indeed lead to subsequently greater growth of the latter. 

From the above explanation, it seems reasonable to infer that, in cases where a 

high quality female which laid 3 eggs subsequently lost one such egg (to, for example, 

predation), then the ensuing brood could have a higher mean level o f growth than that 

o f a 2-chick brood produced by a lower quality female, who could only lay two eggs 

in the first place. However, in this study mean nestling growth in 2-chick broods from 

2-egg clutches did not differ significantly fi-om that o f 2-chick broods which came 

fi"om clutches originally containing three eggs. 

As other studies have found that effects o f adult quality and experience are 

apparent only during years with poor food supply (e.g. Hamer & Fumess 1991), the 

absence of a relationship between clutch size and chick growth in the current study 

provides support for the earlier suggestion (made when discussing the similarity of 

growth within broods) that there may have existed an abundance of food during the 

nestling period. 

In conclusion, o f the possible alternative explanations to that based upon 

Ricklefs (1973) for the similarity o f mean chick growth, this time within broods of 

different sizes, food abundance during the above period is a more appropriate 

suggestion than one involving parental quality. 
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CHAPTERS: APPENDIX. 

Meaningful summary tables would by necessity reiterate in an unchanged form 

many o f the measurements taken " in the field". Therefore, instead, the complete set 

o f original records are included in a separate binder. 
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