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"The artist is the creator of beautiful things. 
To reveal art and conceal the artist is art's aim. The critic is he who can translate 

into another manner or a new material his impression of beautiful things. 
The highest, as the lowest, fo rm of criticism is a mode of autobiography. 
Those who find ugly meanings in beautiful things are corrupt without being 

charming. This is a faul t . 
Those who find beautiful meanings in beautiful things are the cultivated. For 

these there is hope. They are the elect to whom beautiful things mean only Beauty. 
There is no such thing as a moral or an immoral book. Books are well writ ten, 

or badly wri t ten . That is al l . 
The nineteenth century dislike of Realism is the rage of Caliban seeing his own 

face in a glass. 
The nineteenth century dislike of Romanticism is the rage of Caliban not seeing 

his own face in a glass. 
The moral l ife of man forms part of the subject-matter of the artist, but the 

morali ty of art consists in the perfect use of an imperfect medium. 
No artist desires to prove anything. Even things that are true can be proved. 
No artist has ethical sympathies. A n ethical sympathy in an artist is an unpar­

donable mannerism of style. 
No artist is ever morbid. The artist can express everything. 
Thought and language are to the artist instruments of an art. 
Vice and vir tue are to the artist materials for an art. From the point of view of 

fo rm, the type of all the arts is the art of the musician. From the point of view of 
feeling, the actor's craft is the type. 

A l l art is at once surface and symbol. 
Those who go beneath the surface do so at their peril . 
Those who read the symbol do so at their peril . 
I t is the spectator, and not l ife, that art really mirrors. 
Diversity of opinion about a work of art shows that the work is now, complex, 

and v i ta l . 
When critics disagree the artist is in accord wi th himself. 
We can forgive a man for making a useful thing as long as he does not admire 

i t . The only excuse for making a useless thing is that one admires i t intensely. 
A l l art is quite useless." 

Oscar Wilde. 



To M u m , Dad and Heather. 



Contents 

1 Particle Physics - An Introduction 3 

1.1 Thesis Outline 5 

2 Towards Renormalization 6 

2.1 Gauge Theory 6 

2.2 Quantization and Perturbation Theory 9 

2.3 Calculating Observables • • • • 15 

2.4 Everything is Infinite!! 16 

2.5 Dimensional Transmutation 16 

2.6 Renormalization 19 

2.7 Extension to the Standard Model 23 

2.8 The MS and WS Subtraction Procedures 24 

3 Measuring A^g^ at L E P 26 

3.1 Introduction 26 

3.2 Definitions: The Observables 31 

3.2.1 Jet Fractions 31 

3.2.2 Thrust 34 

3.2.3 Energy-Energy Correlation 35 

3.2.4 Asymmetry In The Energy-Energy Correlation Function . . . . 36 

3.2.5 The Total Hadronic Cross-Section, Rz 36 

3.3 Review of the Scheme Dependence Problem 37 

1 



3.3.1 Parametrizing RS Dependence 37 

3.3.2 The RS dependence of R^^\T) 39 

3.3.3 RS dependence of r „ ( T , C 2 , . . . , c„) 43 

3.3.4 N L O extraction of as{Mz) 45 

3.4 The Effective Charge Formalism 54 

3.4.1 The Q dependence of R{Q) 54 

3.4.2 E C formalism in NLO - the Apo plot 60 

3.4.3 AyOo from NNLO calculations and Q-dependence 73 

4 Resumming Leading and Next-to-Leading Logarithms 79 

4.1 Introduction 79 

4.2 Exponentiation 79 

4.3 What Has Been Done To Date? 83 

4.4 The Effective Charge Scheme 83 

4.5 An Expression For 84 

4.6 The Double Leading Logarithm Approximation For Apo 86 

4.7 The 2-jet Fraction In The Durham Algorithm, R2{D) 88 

4.8 Thrust 96 

4.9 Energy-Energy Correlation 100 

4.10 The 3-jet Fraction In The Durham Algorithm, i?3(I>) 104 

4.11 The Breakdown of the Resummation 109 

5 The Renormalization Group Equation Estimates of Perturbative Coeffi­

cients 110 

5.1 Introduction 110 

5.2 The First Attempt I l l 

5.3 The Pole Approximation 116 

6 Summary and Conclusions 123 



Chapter 1 

Particle Physics - An Introduction 

High-energy physics deals basically with the study of the ultimate constituents of matter 

and the nature of the interactions between them. Experimental research in this field of 

science is carried out using giant particle accelerators which smash particles together 

at enormous energies. High energies are necessary for two reasons: First, in order 

to localise the investigations to the very small scales of distance associated with the 

elementary constituents, one requires radiation of the smallest possible wavelength 

and highest possible energy; second, many of the fundamental constituents have large 

masses and require correspondingly high energies for their creation and study. 

Only fifty years ago the only known 'elementary' particles were the proton, the 

neutron, the neutrino, and the photon. Since then the number of particles discovered has 

proliferated with the discovery of unstable particles in cosmic rays and the subsequent 

building of the accelerators. 

Out of this seemingly chaotic situation has emerged a rather simple picture 

i. All matter is composed of fundamental spin-| fermion constituents - the quarks, 

with fractional electric charges (+|e and - |e), and the leptons, like the electron and the 

neutrino, carrying integral electric charges. Neutrons and protons are both composed 

of three quarks. 

ii. These components of matter can interact by the exchange of various fundamental 



bosons (integral spin particles) which are the carriers or quanta of four distinct types 

of fundamental interactions or field. Gravity is familiar to everyone, yet on the scales 

of mass and distance involved in particle physics, it produces an insignificant effect 

compared to the other three forces. The electromagnetic interaction accounts for most 

phenomena outside the nucleus, since electromagnetic forces have the longest range, 

and lead to the bound states of atoms and molecules. Weak interactions are exemplified 

by the extremely slow process of /?-decay of nuclei. Strong interactions are postulated 

to hold quarks together in a proton, and their residual effects apparently account for the 

interactions between neutrons and protons, that is, for the nuclear binding force. Both 

weak and strong interactions are of short range (less than or of the order of one fermi 

or femtometre, lfm=10~^^ metres). 

There are many unusual aspects to this picture. The quarks have never been ob­

served as free particles and seem to be permanently confined within hadrons. Quarks 

come in a variety of types or flavours (six are believed to exist) as do leptons (three types 

of charged and neutral leptons). We neither understand the mechanism of confinement, 

nor the reason for the apparent symmetry between the quark and lepton flavours, when 

the universe, on the basis of what we see today, seems to be constructed predominantly 

from just two types of quark and one neutral and one charged lepton. 

The study of particle physics is considered to be intimately connected with the 

evolution of the universe. We believe the universe originated in a 'big bang' explosion 

of an energy bubble, from which all types of particles - quarks, leptons, and quanta -

were created. Today, we are left with the expanded, cooled remnant. So, our search 

towards high energies is also a look backward in time to the very earliest stages of 

creation, which determined the characteristics of the universe which we find ourselves 

in today. 

Obviously, this Ph.D. thesis will only be able to consider a very small section of 

this vast and fundamental area of physics. Hence, in it we shall concentrate on a very 

small area of Quantum Chromodynamics (QCD), the field theory that lies behind the 

strong interaction. We shall also touch upon the topic of Quantum Electrodynamics 



(QED) in Chapter 5. 

1.1 Thesis Outline 

Chapter 2 presents a brief review of the relevant aspects of the standard model. This 

review begins by investigating gauge theories, and then by using the path integral 

formalism will motivate perturbation theory. A discussion of renormalization and the 

fundamental parameter, A follows. This chapter concludes by demonstrating how such 

principles can be extended to QCD and QED. 

Initially chapter 3 investigates the so called renormalization scale problem, and 

whilst this is being done the notation which will be followed throughout this thesis is 

introduced. In the second half of this chapter we investigate a possible solution, namely 

the Effective Charge formalism, and from this an attempt is made to estimate a value 

of A Q C D using the L E P data that we have to hand. 

In chapter 4 we will try to extend this formalism so that we can determine the useful­

ness of attempts to resum the leading and next-to-leading logarithms in the perturbative 

expansion for various Q C D observables in e+e" annihilation. 

Chapter 5 discusses a method for estimating the higher order coefficients in the 

Q E D anomalous magnetic moment of the electron, and also demonstrates that the two 

loop calculation for the R-ratio can be estimated by developing an expansion around 

the non-trivial fixed point of QCD, Nc = ^ A ^ / . 

Finally, a few concluding remarks will be given. 



Chapter 2 

Towards Renormalization 

2.1 Gauge Theory 

All of the quantum field theories that have been successful in describing the fundamental 

interactions of nature are 'gauge theories', that is to say they are invariant under gauge 

transformations of the field potentials. This property has long been recognized in 

classical electromagnetism and so was built into Q E D from the start. It also turned out 

to be the key to the development of QCD for the strong colour interaction, and, albeit 

with symmetry breaking, to the formation of the unified electroweak theory, too. 

It has long been known that a Lagrangian density, commonly referred to simply as 

a Lagrangian, can be constructed to be invariant under a group of transformations. To 

see this consider a set of M Dirac four component spinor fields, which for convenience 

will be written in a column vector and denoted by •0. For the sake of simplicity we shall 

use the group SU(N), with the fields transforming under an M-dimensional irreducible 

representation of SU(N): 

^(x) (2.1) 

where U{aa), which is an M x M matrix, can be written 

t / K ) = exp(zaX) , (2.2) 



with a = I,..., N'^ — 1. The aa are arbitrary real constants, and the are trace-

less, hermitian matrices which form an M-dimensional irreducible representation of the 

generators of SU(N). The may be chosen such that 

TriTaTb) oc Sab. (2.3) 

The implied constant of proportionality fully specifies the structure constants, fabc, of 

the Lie algebra of the group that the Ta must obey: 

[Ta,Tk]=lfabcTc (2.4) 

The Lagrangian 

£ = z?(7,5")V' (2.5) 

is invariant under the above transformation. This is known as a global symmetry 

because each of the group parameters, a^, is the same at every space-time point. 

If we now make the group parameters functions of space-time, then the latter La­

grangian will not be invariant under such a transformation since the derivative will 

now act on U{aa{x)). In order to proceed we must define a new operator, namely the 

covariant derivative, to replace the ordinary derivative, so that the invariance of the 

Lagrangian is restored. This new operator must obey the following transformation for 

invariance to be preserved. 

D.rP -> U{aa{x))D,rp. (2.6) 

The only way to construct such a quantity is to introduce vector gauge fields - in 

fact one for each generator of the group. It turns out that if we write as 

D^ = d^ + igG^ (2.7) 



where = Ga^Ta. By requiring that this transformation holds we are requiring that 

the fields must transform as 

G,{x) ^ G'^ix) = U{a^{x)) (G,{X) - -d,] U-\aa{x)). (2.8) 
\ 9 J 

A kinetic term for the gauge fields can be constructed by first defining the tensor 

^ 

= d,G,-d,G^ + i9[G,,G,] (2.9) 

= {d^Gau — di^Gafi — 9fabcGbij,Gcfi)Ta 

which transforms as 

F'M = U{aa{x))FMU-\a,{x)). (2.10) 

The kinetic term. 

lF,,.Fr^Tr{F,,Fn, (2-11) 

is clearly invariant, due to the cyclic properties of a trace. The full Lagrangian which 

is invariant under SU(N) is then 

£ = ^i;rD,^l^-\F^,.Fr 

= £ ( ^ ) + £ ( G ^ ) (2.12) 

The non-Abelian nature of the gauge group leads to the self interaction of the gauge 

fields as their kinetic term contains such terms as 

9faUd,G,.)GtG: (2.13) 



and 
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^-fabcfae}Gb,G,uG^,G) (2.14) 

which give rise to three- and four-point interactions of the gauge fields. 

The case is much simpler if the gauge group is the Abelian group U(l ) , as there 

is only one generator and corresponding field. The above analysis is the same except 

that all the terms containing structure constants are dropped, as the single generator 

commutes with itself. Hence, F^^ becomes 

F,u = d^G,-d,G^, (2.15) 

and the kinetic term only contains terms quadratic in the field G, describing the free 

propagation of the gauge particle, and not allowing any self-interaction. Note that in 

both Abelian and non-Abelian cases gauge invariance prohibits a mass term for the 

gauge fields. 

If in the U ( l ) case the Dirac field is identified with the electron and the gauge field 

with the photon, then (2.13) is the Lagrangian of QED. Similarly, choosing the group 

to be SU(3) and associating the three Dirac fields with three quarks of different colours 

and the eight gauge fields with gluons, (2.13) is the QCD Lagrangian. 

2.2 Quantization and Perturbation Theory 

So far we have only been considering classical Lagrangians, and such Lagrangians can 

only yield classical theories. To quantize the theory we shall invoke the path integral 

formalism. This is an exceedingly complicated and lengthy procedure if done in full, 

and so only the main ideas will be sketched out here using a scalar field theory. The 

extension of this to the Standard Model will be discussed later. A more detailed review 

of the subject can be found in such books as Bailin and Love [1], Itzykson and Zuber 

[2], and Ryder [3]. 



Consider a Lagrangian which is no more than quadratic in the time derivatives of 

the field. If we suppose that the scalar field (?i>(a;) has a source J{x), then the transition 

amplitude from the vacuum att = -oo to the vacuum at i = -|-oo in the presence of a 

source term J{x)4){x), may be written as: 

W[J] = N J D(j)exp{iJ d^x{C{(l),d^(j)) + J(f>), (2.16) 

where D(f> denotes a path integral over all the functions (j), the normalization, N, is 

chosen so that VÎ [0] = 1 and h = c— 1. A more general Lagrangian can be created by 

defining a canonical momentum, ir, and then W[J] will be written in terms of a path 

integral over both (j) and TT and the action will be written in terms of the Hamiltonian. 

However, the integral over TT will not be exact, and whilst W[J] may be written in the 

form given above, the Lagrangian will be an effective Lagrangian. It will not be the 

exact one for the theory due to the approximations made when integrating over T T . 

The integrand of equation (2.16) is oscillatory and hence not obviously convergent. 

So conventionally a Wick rotation is made from Minkowski to Euclidean space, the 

integral evaluated there and then continued back, with the hope that this is a sensible 

procedure. In the following discussion it will be implicit that this has happened unless 

otherwise stated. 

We shall now consider the case of the free field. The corresponding Lagrangian, 

which we shall denote by the subscript 0, is 

Co = \d,<j>od^<f>o + \m'<t>l (2.17) 

where here m is the mass of the particle associated with the field. If we derive the 

Euler-Lagrange equation from this Lagrangian then we will obtain the classical field 

equation for a neutral free scalar field, known as the Klein-Gordon equation, 

{d^d^ + m')<f>o{x) = 0. (2.18) 

10 



In this case our equation for W[J] becomes 

Wo[J] = NoJ d(f>o exp (^t j dS{C^ + J<^o)) , (2.19) 

where Â o has been chosen so that W[Q] = 1. If we evaluate this exactly then we obtain 

WQ[J] = exp (-^ J d'*x' J d^xJ{x')AF{x' - x)J{x)^ , (2.20) 

where Ap is the Feynman propagator 

A^x' - x ) = j ^ e - ^ - ^ - ( - ' - ^ ) A ; . ( p ) , (2.21) 

and AF{P) is its Fourier transform, 

AF{P) = {P' -m^ + ie)-\ (2.22) 

In order to avoid the poles in po when jo^ = rm? we have introduced it in the Feynman 

propagator, with e —> 0+. The above set of equations (2.20) to (2.22) define the 

generating functional for the free-field theory, so called because from it the Green's 

functions may now be generated. 

If we now functionally differentiate (2.16) with respect to the source, J , then we 

will obtain 

6 J ( x , M J ( x „ ) = / ^<^<^(^i)-<?^(^") 0 / '^'"'^^ + "̂ "̂ O ' ^^-^^^ 

since differentiating brings down a factor of This latter expression is proportional to 

the vacuum to vacuum expectation value for a time ordered product of n field operators, 

also known as an n-particle Green's function 

^^(a;!...^^) = (0 T [^{x{)..4{x^)) 0) 

11 



^ ^ SJ{x,)...SJ{x^) 
(2.24) 

J{x)=0 

where T is the time ordering operator, and ^ denotes a quantum field operator. So 

equation (2.24) relates an expression involving a classical field, (f> to an expression 

containing a quantum operator, 4>-

From this, and using the fact that the Green's function is symmetric in its variables, 

W[J] can be written 

= E - / ^'^1 • • • / d'xr^G^^^x,... x„) J ( x i ) . . . J (x„) , (2.25) 

where the n = 0 term is 1. 

The scattering amplitudes are closely related to Green's functions, and hence to the 

generating functional. Unfortunately, we can only evaluate W[J] exactly in the free 

field case, and so we must derive a perturbative expansion for W[J]. If we write the 

Lagrangian as the free-field Lagrangian, Co, and a piece involving the interaction terms, 

£ i , proportional to some expansion parameter. A, then we can write the integrand of 

(2.16) as 

expii d'^x{C + J(j))] = d'^xi...(txnCi{(j){x-i)...Ci{4>{xi)) 
^ ^ n=0 

X exp [i J d'^x{Co + J<^)) , (2.26) 

where we have used the series expansion of the exponential of the interaction term, and 

defined the n = 1 term to be 1. 

Since functionally differentiating exp(i J d'^x{Co + J<j))) with respect to J pulls 

down a factor of i(f), it can be shown that 

j d'xCi{<f>)^ exp J d'yiCo + J<f>) 

12 



If we take the operator / d'^xCi ( - 2 ^ ) outside the functional integral (2.16), then, 

since it is independent of (/>, we can deduce from equation (2.19) that 

W[J] = Nexp (^i J d^xCy ( ^ ^ J J ^ j D(l>exj) (^i J cty{Co + J<̂ )̂  

= E ^ / ^ ' ^ i - - - ^ ' ^ - ^ i -'TTT^ ••• - ' T n - \ ^o[J](2.28) 

where we have chosen N so that W[0] = 1, and the n = 0 term is defined to be 1. 

Since Wo[J] is known, and £ i is proportional to the expansion parameter A, we can 

see that equation (2.28) represents a perturbative expansion of W[J] as a power series 

in A. We can now derive the Green's functions for the perturbative series by using 

equation (2.24) and substituting equations (2.20)-(2.22) for VKo[-̂ ]- For instance, we 

could do this for A^^ theory, where JCI is A '̂*, and Co and Wo[J] are given by (2.17) 

and (2.20) respectively. However, it is an extremely lengthy process to calculate any 

term in the series and so it would be fairly uninformative to calculate such terms here. 

Hence, we shall just quote the result for the 2-particle Green's function 

/ iX r \ 
G^^\xu X2) = lApixr -X2) 1 - V / d^xiiApix - x)f 

\ ^ J J 

~Y J ^"^^"^^(^1 ~ x)iAF{x - x)iAF{x - x)iAFix - X2) + 0{\'^) 

In a free-field theory, A = 0, the free-field Green's function G^o\x-i,x2), is just the 

first term, and represents the propagation of a scalar particle from x-i to xj . This may be 

represented diagrammatically by a line from xi to X2. When A 0, the additional terms 

are generated by interactions. Propagators whose argument is zero are represented by a 

loop at X. Since x is an arbitrary point, and the Green's function does not depend on it, 

it is integrated over. However, these loop integrals, as they are called, may give rise to 

infinities which must be removed by a process known as renormalization before a finite 

answer can be obtained. Such representations are known as Feynman diagrams and the 

13 



associated factors as Feynman rules. The power of these diagrams and the rules that 

are associated with them is that it is possible to construct all the Green's functions for 

the theory from them. 

By defining a new functional, X[J], by 

iX[J] = \nW[J], (2.30) 

a specialized class of Green's function's, called connected Green's functions, denoted 

can be defined 

^X[J] = E -T / ^'^1 • • • / d'xr,Gi"\x,... x„) J ( x i ) . . . J (x„) (2.31) 
n=l 

with 
6^X[J] 

z " G i " ' ( x i . . . x „ ) = z- (2.32) 
SJ{xi) . . . 6J{Xn) 

When represented diagrammatically, each diagram that contributes to a Green's 

function has no subunits that are not connected to the rest of the diagram by at least 

one line. 

A further refinement is to define one-particle-irreducible (OPI) Green's functions -

all of whose graphs can not be split into smaller graphs by cutting only one line. To 

define these functions, what is known as the classical field, (j)c, is introduced, 

M ^ ) = ^ (2.33) 

The effective action T{(f)c), defined by 

r(<^,) = W[J] - J d\j{x)(f>,{x), (2.34) 

can not usually be evaluated exactly in an interacting theory, and a functional expansion 

14 



is made 

where F^") is the OPI Green's function referred to above. A further difference between 

connected and OPI Green's functions is that while each external leg of a connected 

Green's function has a propagator factor associated with it, the OPI Green's function 

does not. 

Often it is more convenient to work in momentum space, and by taking the Fourier 

transform of the Green's functions, the Feynman rules can be written in momentum 

space. 

2.3 Calculating Observables 

In a physical process the incoming and outgoing particles are taken to be asymptotically 

free and hence are 'on-mass-shell', i.e. pf = rn? where m is the mass of the particle 

associated with the free scalar field, (j)o, andpi is the four momentum of the z*'̂  particle. 

The boundary conditions on W[J] are insufficient to ensure this, so W[J] contains 

terms involving particles which are not on-mass-shell. Hence, Green's functions are 

not physical observables. 

However, if we impose boundary conditions that ensure that incoming and outgoing 

particles are asymptotically free, it is possible to derive a functional, S[<j)o], which yields 

the physically observable scattering amplitudes of the theory. S[<t)Q\ is given in terms 

of W[J] by the following expression 

S[M = exp( [ d ' x M ^ W d , + m ' ) - ^ W[J] (2.36) 

15 



2.4 Everything is Infinite!! 

Unfortunately, when an attempt is made to evaluate the Feynman diagrams that con­

tribute to a physical process, it is found that diagrams that contain one or more loops 

may result in infinities. As the momentum of the loop is unrestricted, these infinities 

arise from terms such as 

where k is the momentum around the loop. For large values of k, this integral goes as 

\k\^ 
\k\ 

For / = 3 this integral is convergent, but for / = 2 a logarithmic divergence arises, and 

if / = 1 the divergence is quadratic. 

2.5 Dimensional Transmutation 

In order to investigate a theory we often try to measure the unpredicted fundamental 

constants. For the moment suppose that there is only one of these, a dimensionless 

coupling, A. Consider a dimensionless observable R. By dimensional analysis [4] we 

may anticipate that R will satisfy 

= -bp{R) (2.39) 

where Q is some external energy, and p i& a function given completely by the theory. 

If we integrate this latter equation then we can obtain 

In g + constant = - / —^ = f{RiQ)) (2.40) 
ôo p{x) 

16 



where / , like p, is a function given to us by the theory. Here we would like the constant 

to be measured by experiment since it is our unknown unpredicted by the theory. We 

could measure this by letting Q = h. where A is such that 

f{R{Q = A)) = 0. (2.41) 

Hence, we can deduce that 

R{Q) = r \ H Q / ^ ) ) - (2.42) 

and so we can now make predictions about R at other values of Q. Ideally, we would 

try to measure A using a closed form calculation of / . A is the only unknown parameter 

of the theory and so has replaced the coupling A as the fundamental constant of the 

theory. 

Suppose that instead we had introduced an energy Q = fi, called the renormalization 

scale, at which we had measured R. Then we would have 

R{f,) = f-\ln{f./A)). (2.43) 

However, we also can write that 

. RiQ) = r ' { f i R { f ^ ) ) + H Q / f , ) ) (2.44) 

and this cannot be dependent on /i since R{Q) is an observable and the introduction 

of an arbitrary parameter /j, cannot alter our value of R{Q). 

Because all of the equations above are dimensionless overall and the underlying 

theory could have been defined entirely in terms of massless quantities, it is perhaps 

surprising that the dimensionless parameter A has been replaced by A with the dimen­

sions of energy (or mass). In the process by which this happens, known as dimensional 

transmutation, the arbitrary scale (i plays a key role. 

17 



Limiting ourselves to one observable is a litde unrealistic. So we must now gener­

alize to any observable a{Q). We can deduce directly that 

a{Q) = a{Q/fi,R{fi)). (2.45) 

This latter equation must be independent of fi and so we can deduce that 

/ - ^ = 0. (2.46) 

Hence, we obtain that 

' a f i \ I 
= 0 (2.47) 

x=R{n) 

and this demonstrates the importance of p{x). 

Naturally physics is also independent of whichever observable R we choose to use 

as a reference and it is particularly easy to convert to another, say a, for which instead 

of (2.39) we now have 

= - p A ^ m - (2.48) 

Trivially 

However, to satisfy the equivalent of (2.41) for a will usually involve a different value 

of A, but numerically this can be compensated for by a change of units altering the 

particular value of p, we have in mind. Conversely, changes in p, keeping A constant, 

correspond to a change of reference quantity. Crucially, as is clear from dimensional 

analysis, changes in p can also be compensated for by changes in Q. Thus 

aizQ, Rip), p) = aiQ, Rip), pz''). (2.50) 

Using invariance under a change from p to p' = pz~^, the right hand side becomes 
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such that 

a{zQ, R{fi),fi) = a{Q, Rifiz), /x). (2.51) 

Setting Q = fi on the right hand side and renaming Qz = W, we can conclude that 

a(W,R{fi),fi) = a{fi,R(W),f,). (2.52) 

Hence, the energy dependence of a can be transferred from the function into one of its 

arguments. 

Therefore, it turns out that individual functions are expressible in a variety of differ­

ent, yet fundamentally equivalent, forms. However, in reality when we calculate such 

a function we invariably have to make an approximation and it is unclear that these 

different prescriptions will be treated in the same way. 

As is quite obvious from the above arguments we do in fact have a great deal of 

choice for which parameter we choose to expand our perturbative series in. We could 

either perform our expansion of a{Q/fi, -R(^)) in terms of -R(/i), which is analogous to 

as(fi) in QCD, or we could equally expand a{l,R{Q)) in terms of R{Q). Obviously 

our best choice of expansion parameter is dependent on the properties of the relevant 

perturbative series. 

2.6 Renormalization 

As has been stated earlier the problem in calculating with the bare lagrangian, Co is 

that the answer tends to be infinite and so is of little use to physicists. In order to 

overcome this difficulty it is first necessary to regularize and then to renormalize the 

theory. 

Regularization is a method of isolating the divergences in the Feynman integrals. 

It makes the task of renormalization much more explicit and easy to follow. There 

are several techniques of regularization. Perhaps the most intuitive one is to introduce 
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a cut-off K in the momentum integrals. In electrodynamics a particular example is to 

modify the free (photon) propagator 

1 ^ 1 1 .2 53) 
P P ^ 2 _ ^ 2 J^2(p _ ^ 2 ) - y • ) 

Similar to this is the Pauli-Villars regularization in which a fictitious field of mass 

M is introduced. In both these cases the limit /c ^ oo ( M —»• oo) is taken, and the 

renormalization quantities are independent of k ( M ) . However, these methods become 

problematic particularly when non-Abelian gauge theories are considered. A trouble 

free and elegant method is that of dimensional regularization, which has, therefore, 

become popular. The idea is to treat the loop-integrals (which cause the divergences) 

as integrals over c?-dimensional momenta, and then take the limit d 4. It turns out 

that the singularities of 1-loop graphs are simple poles in d — 4. It should be noted 

that when we regularize a theory it is necessary to introduce a parameter, p, with the 

dimensions of mass. 

Once we have regularized our theory we can then invoke renormalization. In terms 

of bare quantities the example Lagrangian that we shall consider will be 

CB = \{d,cl>B)idM - ^gB<l>'B (2.54) 

i.e. the Lagrangian of massless theory. Here gB is the bare coupling and is the 

bare wavefunction. These bare quantities are related to their physical counterparts via 

<f>B = zl<j>, gB^gZ,Z;\ (2.55) 

Now we can write our Lagrangian in the following way 

c = \idMd''<i>) - ^g<i>' + - \)idM^'<^) - (1 - z^)%i>'- (2.56) 

The terms to the right are referred to as counterterms and contain all the divergences. 
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Their real usefulness only becomes apparent in order-by-order renormalization using 

Feynman diagrams when diagrams arising from them will explicitly cancel the diver­

gences in the diagrams of the bare theory. For present purposes we need only assume 

that both the bare parameters and the renormalization constants can be made infinites­

imal leaving finite physical parameters and an algorithm for calculating observables 

which gives finite answers. 

A renormalizable theory is defined to be a theory where a finite number of renor­

malization constants are required to renormalize it. Hence, the theory just discussed is 

renormalizable because only two renormalization constants are required. 

As we saw earlier it is necessary to introduce a new parameter fx, when we regu­

larize. Hence, the renormalized OPI function T^") will depend on fi 

r W ( p , , ^ , ; . ) = Z;%fi^)T^^\pi,gB) (2.57) 

through the dependence of on fi. The unrenormalized function is independent 

of fi, and so is invariant under the group of transformations 

fi e^fi (2.58) 

These transformations form the renormalization group. Introducing the dimensionless 

differential operator fi{d/dfi) we have 

y . | -r i"^ = 0 (2.59) 

and so 

Z;''^\9fi'p-\p.,9,fi)]=0 (2.60) 

where g is independent of fi. Performing the differentiation leads to 

/ / | ^ + ^ ( ^ ) ^ - n 7 ( 5 ) r(")(9.,5,/^) = 0 (2.61) 
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where 

7(9) 

dg 
^d-p 

^ 1 y (2.62) 

This latter equation is known as the renormalization group equation (RG equation). 

It expresses the invariance of the renormalized F^") under a change of regularization 

parameter, p. 

Let us now write down a similar equation expressing the invariance of F^") under 

a change of scale. F^") has mass dimension D 

D = d + n i l - - ) (2.63) 

where d is the number of dimensions and n is the number of vertices. If we now let 

Pi pic^ then the renormalization group equation yields the inhomogenous Callan-

Symanzik equation 

T^^\pie\9,p) = 0. (2.64) 

The solution to this equation is 

r^^\pie\gip),p) = T(''\pi,gipe%p)exp \tD - n f dt'^igipe''))] . (2.65) 

The term 

exp -n f dt'^igipe'')) 
Jo 

(2.66) 

is known as the anomalous dimension and exp(^Z)) is known £is the canonical dimen­

sion. In the case of an observable aiQ'^/p^, Rip)) and because the theory is massless, 

changes in p and units could compensate transformations like Q e^Q in the external 

energies. 
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2.7 Extension to the Standard Model 

So far we have only been talking about 4>'^ theory. Unfortunately, such a theory only 

has similarities with the theories that appear to work in reality. However, a structure 

that is far more realistic is 

C = LiYd,L + mYd,R-9{qYTaq)Gl-\G%G>:' 

-\w;vW^'' - ^ 5 > 5 r (2-67) 

-LY{9'\r^W; + 9"^B,)L - RY9"^B,R 

M{^d,-9'\T^W;-9"^B,)<t>\'-V{<t>) 

— {G\L(j)R + G2L4>cR + hermitean conjugate) 

where 

Gl. = d.Gl-d^Gl-gfabcC.Gl (2.68) 

= d,W^-d.W^-9'f'abcK^: (2.69) 

B^, = d^B,-duB^ (2.70) 

The elementary fields correspond to three massive leptons (electron, muon, and tau) and 

their neutrino companions, six quarks (up, down, strange, charm, bottom, and top), the 

photon, the intermediate vector bosons (W^ and Z°), eight gluons and a Higgs boson. 

This is the so called Standard Model. It is no more than the SU(3)xSU(2)xU(l) 

non-Abelian gauge theory with its latter two symmetries spontaneously broken by a 

minimal Higgs mechanism. 

Quantizing this theory is far from trivial and is beyond the scope of this thesis, so 

again the reader is directed to the textbooks for a full account of how all this is done. 

For the remainder of this thesis our concern will be with circumstances where 

most of (2.67) will be irrelevant, and a good description of experiment is provided by 
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Quantum Chromodynamics (QCD) defined by 

£ = ̂ izYd, - m)^ - \ii^rX,^)Gl - \G,Mr (2.71) 

with the gauge group taken to be SU(3). Of the particles listed above only the quarks 

and the gluons possess the colour quantum number and so the other particles can be 

ignored. The gluons are assigned to the vector gauge particles G'^ (i = 1,8) and the 

quarks to the fermionic tp. 

Perturbative calculations of QCD ^-functions reveal one of the theories crucial prop­

erties, asymptotic freedom. Asymptotic freedom means that the coupling constant as 

decreases as the energy increases and perturbative theory becomes far more applicable. 

Conversely, at low energies QCD behaves in a more strongly interacting fashion and 

the perturbative approximation must break down. To one loop in perturbation theory 

it can be shown that 

This indicates that Q ^ A is the transition between the perturbative regime and the 

non-perturbative regime. 

2.8 The MS and M S Subtraction Procedures 

Throughout this thesis we will frequently refer to two commonly used renormalization 

schemes, namely MS and MS. Therefore, at this point it is wise to digress and introduce 

the two schemes. In order to do this, we shall consider the loop diagram 

v 
nnnnniinnnnr Qooooooodtlb 
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If we apply our Feynman rules to this and apply dimensional regularization with 

the number of dimensions d = 4 - 2e, then we will obtain the expression 

1 ln47rii^ 7 ^ , . 
- + Y - - 7£; + T + 0(e) 
£ 9 D 

(2.73) 

where g'^ is the coupling at each vertex. In the minimal subtraction (MS) scheme we 

subtract the 1/e term from the latter equation. Therefore, in the MS scheme we obtain 

,2 4 

167r2 3 

fi" 7 
ln47r— - -I- -

6 •liv. (2.74) 

In the modified minimal subtraction scheme we remove a factor (In 47r - 7^) along 

with - to obtain 
9' 4 

9' 
T (2.75) 

167r'̂  3 

These two procedures are just two of an infinity of possible subtractions. The 

parametrization of renormalization schemes will be discussed in detail in chapter 3. 
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Chapter 3 

Measuring at L E P 

3.1 Introduction 

The C E R N L E P collaborations now all have high-statistics data samples which enable 

them to make accurate measurements of a wide range of e+e~ QCD observables [5-

13], such as jet fractions, thrust distributions, the hadronic width of the energy-

energy correlations, etc. For most of these quantities non-perturbative effects such 

as hadronization corrections are expected to be reasonably small and next-to-leading 

order (NLO) calculations are available in renormalization group (RG) improved QCD 

perturbation theory [14, 15]. For the hadronic width of the Z° alone we have a next-

N L O (NNLO) calculation available [16, 17]. 

By comparing such calculations with the data one hopes to be able to extract h-qcD, 

the fundamental SU(3) standard model parameter, or equivalently cts, the scheme 

coupling constant. (See section 2.8 for a review of the MS and MS subtraction pro­

cedures.) This is done by comparing the relevant truncated perturbative expansion for 

the L E P observable, R, which is either 

R = aa, + ha] (3.1) 
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or 

R = aas + ba] + ca^, (3.2) 

with the experimental data points, and then solving for a^. 

Unfortunately, this intention is hampered by our rather limited current knowledge 

of what Q C D actually predicts for any of these quantities due to the dependence of 

perturbative calculations at N L O on the unphysical renormalization scale, p, and more 

generally on the renormalization scheme (RS) in higher-orders. In a complete all-orders 

calculation of any quantity the //-dependence would cancel and so, as was explained 

in the last chapter, it is an arbitrary parameter. Hence, when we rely on a truncated 

expansion in such cancellations no longer quite occur and so any prediction is 

rendered ambiguous. 

Since it was first clearly formulated in ref [18] this 'scheme dependence problem' 

has been the subject of much discussion but as yet has produced little consensus. The 

response of theorists to the dependence of NLO predictions on p has generally been to 

choose a particular scale which is considered to be the 'best' or the 'correct' choice. 

This is very much contrary to the fundamental principle that p is an arbitrary and 

unphysical quantity. Due to this ambiguity one particular choice has not been able 

to command universal support. Specific reservations about the way that this has been 

done at L E P will be expressed in section 3.3 of this chapter, but it is obvious that 

all is not well when the approach to the problem involves increasing the consistency 

amongst observables by expanding the error bars to include a 'theoretical uncertainty' 

(essentially obtained by averaging across camps of theorists). Such a procedure clouds 

the information which is obtained from the observable which is being measured, and, 

therefore, limits the extent to which QCD can be investigated in detail. 

In some sense all the previously proposed approaches have been an attempt to 

estimate the uncalculated higher-order terms in the perturbation series. This has been 

done by stating that some favoured choice of scale along with a NLO calculation will 

give a reliable prediction as if we knew the full series. On the other hand, the position 
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expressed in this thesis is essentially that the higher order terms are simply unknown 

and that we therefore should restrict our attention to the more modest aim of deciding 

what it is actually possible to learn about the uncalculated terms from the information 

at our disposal. 

A widespread belief already exists that the severity of the scale dependence for 

any particular observable is related to the size of its higher-order corrections. This 

overlooks the problem that the size of the unknown terms is itself a scheme dependent 

problem, since there is always a scheme in which there are no corrections whatsoever. 

Again such beliefs overlook the fact that the total uncalculated corrections to a //-

dependent NLO prediction must also depend on the scale so that their sum does not. 

However, this //-dependence would only be a fundamental problem if it were unknown, 

unpredictable, and uncontrollable, when in fact the higher-orders can be split into a 

predictable contribution incorporating all the awkward /i-dependence and a remaining 

piece containing the genuinely unknown aspects. This will all be demonstrated in 

section 3.4. 

All this is really just a consequence of the fact that the //-dependence in a NLO 

calculation has a universal form, and so in the proceeding sections we shall see that 

a convenient means of comparing theory and data, in which the scale dependence 

is trivial, can be written down. The formalism to be proposed has the advantages of 

being derived non-perturbatively and as far as possible entirely in terms of RS-invariant 

quantities. In particular, is avoided in favour of A^^ ,̂ the dimensional transmutation 

parameter of QCD, as the free parameter of the theory. This approach is taken because 

as is just a consequence of theory and has no direct experimental significance. Indeed 

its definition changes from order to order in perturbation theory. It remains true that 

A is RS-dependent, but with the difference that the values in different schemes are 

exactly related given NLO calculations of any observable in the two schemes. This A 

is to be as directly related as possible to R{Q), any generic LEP observable dependent 

on a single dimensionful scale Q such as y^, the e+e" centre of mass energy. Since 

this R{Q) will play a role analogous to a^, we shall refer to this approach as the 
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'Effective Charge formalism'. This formalism was originally introduced by Grunberg 

[19] and has also been discussed by Dhar and Gupta [20]. Unfortunately, there has 

been a widespread view that Grunberg's approach constitutes no more than a particular 

choice of RS. Indeed the insistence on using the RS-invariant R{Q) rather than the 

RS-dependent in the role of coupling means that this formalism has similarities with 

the fastest apparent convergence (FAC) criterion for choosing the scheme, by which 

the RS is chosen such that the higher corrections vanish. This perturbative property 

often simplifies calculations but in the proceeding discussion its main benefit is that 

by non-perturbatively identifying each observable as a coupling we have clarified our 

problem. It cannot be overemphasized that the effective charge (EC) formalism is both 

derived non-perturbatively and is more general than the adoption of a particular scheme, 

even if certain aspects of the formalism can be interpreted in terms of the FAC scheme. 

The formalism not only provides a clear framework for displaying data, but also 

provides a method for extracting A without any scale ambiguity whatsoever. This is a 

result of the way in which R{Q) runs as a renormalization group improved coupling 

with Q. This evolution is described by a function p{R) which is the main ingredient for a 

convenient RS-invariant measure of the importance of the higher-order corrections, and 

also forms the /̂ -function which corresponds to the FAC scheme. Thus, the effective 

charge /9-function p(R) can, at least in principle, be experimentally measured, so that 

by detailed investigations of the running of R{Q) with Q one can determine kjj^ even 

in the absence of NNLO perturbative calculations. Applied in this way the formalism 

gives a non-perturbative determination of which does not depend on the particular 

scheme that we have applied, and is only limited by the experimental uncertainty. 

Unfortunately, at present we do not have sufficiently precise information about the 

running with energy of these observables at LEP, and obtaining data at various energies 

requires combining results from different detectors and machines. In an ideal world LEP 

would take data at energies below y/s = Mz and study the running of the observables 

in detail. As shall be discussed, this would enable reasonably precise determinations of 

A-jfs, and more importantly would also indicate whether NNLO perturbative corrections 
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by themselves are sufficient to describe the data. This latter point would enable a theorist 

to make a decision on whether or not a calculation, which is likely to be extremely 

arduous, is worth doing [21]. 

Even without information on NNLO corrections and the detailed running of the 

observables with energy, there is still much to be learned from the effective charge 

formalism. It is possible to exhibit the relative size of-the uncalculated higher-order 

corrections for different quantities. In the effective charge language these are related to 

how the energy dependence of the quantity at the experimental energy differs from its 

asymptotic dependence a& Q ^ oo. If this difference cannot be neglected, then NNLO 

calculations or measurements of the running are necessary before A can be determined. 

This can be decided in the effective charge formalism given only a NLO calculation 

and data at one energy. 

The proposal outlined in this chapter is not a solution to the scheme dependence 

problem in the usual sense. However, the ideas that are proposed are such that the 

scheme dependence problem is avoided. This demonstrates that the whole scheme 

dependence problem is just an artifact of the way people conventionally approach a 

problem in perturbative QCD. A preliminary discussion of this latter point has appeared 

in references [22] and [26]. 

The plan of this chapter is as follows. In section 3.2 we shall firstly introduce some 

of the observables that will be used during the course of the rest of the thesis. Then 

in section 3.3 we shall review the RS dependence problem and outline the traditional 

approach to 0:5 extraction. In section 3.4 we shall introduce in detail the effective charge 

formalism sketched above and stress its advantages over the conventional approach. 

We shall attempt to determine Aj^^ using the rather limited information on NNLO 

corrections and energy dependence of observables currently available. 
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3.2 Definitions: The Observables 

In this thesis I shall have occasion to mention some of the QCD observables that are 

measured at LEP. The observables that will be mentioned here are all related to e+e~ 

annihilation. For the processes e+e~ qq and e+e~ —> qqg the QCD matrix elements 

are fully known to 0(Q:^) [14], and the necessary integrations over the relevant parts of 

phase space can be performed using the Monte Carlo package EVENT developed by 

Kunszt and Nason ^ [15], to yield next-to-leading perturbative coefficients in the MS 

sheme. 

3.2.1 Jet Fractions. 

When an electron beam is collided with a positron beam jets are observed. These jets 

result from the following processes which are depicted in Figures 3.1(a) and (b). 

e^e' qq (2 jets) 

e^e~ qqg (3 jets) 

As depicted in the figures it is not the quarks or the gluons that are observed but the 

hadron showers which are a result of the 'fragmentation' of the gluons and the quarks. 

For the jet fractions a range of definitions have been discussed, each of broadly 

the same experimental practicability, but with differing higher order and hadronisation 

corrections. Some of these are simple in conception, such as that hadrons must fall 

inside a cone of a specified size in order to constitute a jet, and others are more 

complicated and are often represented in the form of an algorithm with the energy-

momenta of the particles in an event as input parameters. 

By far the most significant subset is that of the JADE-type algorithms [23] in which 

the experimentalists assign a number to each pair (a, b) of particles. Then the two 

^ Paulo Nason is thanked for supplying the computer code for generating NLO corrections to the 
e+e~ matrix elements. 
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Madrons 

(1 

Figure 3.1: (a) The 2-jet Case (b) The 3-jet Case 

particles with the smallest value of yab, denoted as have their energy and momentum 

combined to form a 'pseudoparticle' provided that yij satisfies the condition 

Va < VcS (3.3) 

where yc is an arbitrary parameter. These two particles are eliminated from further 

consideration, and instead the pseudoparticle is included on an equal footing with the 

other particles. This procedure is repeated until all the particle pairs fail (3.3), and then 

the total number of remaining particles and pseudoparticles is the number of jets in the 

event. Both yij and the rule for forming a pseudoparticle from its parent remain to be 

defined and different choices give rise to the variety of JADE-type algorithms used as 

seen in Table 3.1. 
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Name Vij Recombination 

E (Pi + Pj)^ Pk = Pi + Pj 

Eo (Pi + Pj)^ Ek = E, + Ej 

Pk- (Pi + Pj) Pk-
Pi+Pj 

(Pi + Pj) 

JADE 2EiEj{l - cosBij) Pk = Pi + Pj 

DURHAM 2min{Ef,E]){l-coseij) Pk = Pi + Pj 

Table 3.1 

At first sight it may appear that the E algorithm is the most natural, but adding the 

4-vectors of massless particles does not produce a massless pseudoparticle, while most 

theoretical work concerns massless partons, so it is usually felt to be advantageous to 

ensure that all particles are massless throughout, a requirement responsible for much 

of the variation in Table 3.1 [24]. All the algorithms are infra-red safe but subject 

to hadronization corrections varying from small to fairly large. Most of the current 

interest, therefore, revolves around the two algorithms, EO and Durham (or kj), which 

both appear to have small (< 5%) corrections [25]. 

In the next chapter we will be concentrating on the Durham algorithm because this 

is the only algorithm for which the phase space can be factorized, and, consequently, 

exponentiation (see section 4.2) is possible [35] 

Having divided the observed events into two, three etc. jet events, the ratios 

RniVc) 
a{n- jet) (3.4) 

known as jet fractions are actual observables. These observables must obey the condi­

tion: 

f:Rn{yc) = l. (3.5) 
71 = 2 

These have perturbative expansions in the coupling a = a JTP of the form 
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R3 = K3ia + Ks2a'^ + K23a^ + • • • 

R4 = K42a'^ + K^sa^ + ... 

: : (3.6) 

Of the coefficients only the one-loop K21, the tree level K3-1, K42 and K53, [27], the 

two-loop K22 and the one-loop K32 are known fully for the common algorithms [28], 

[15], although approximations of predicted accuracy (~ 10%) are known for the higher 

tree-level ones [29]. Relatively simple examination of the formulae in Table 3.1 can 

reveal relationships between coefficients for different algorithms using kinematics only. 

Thus K31, is identical for both EO and JADE, while it is larger for E. 

3.2.2 Thrust 

An alternative to dividing an event up into jets is to classify its shape. For any event 

one can define the thrust 

T = maxi ^ P , (3.7) 
\ E a Pal J 

with the sums taken over all the particle 3-momenta in the centre of mass frame and the 

maximum is found by varying the unit vector n. For a large event sample, a distribution 

in T can be established. 

The weighted cross section ( setting //̂  = s) is given by 

(3-3) 

where CTQ is the leading order cross section of the reaction 

e'^e~ hadrons, (3-9) 

At and Bt are universal functions, which only depend upon the perturbative structure 

of the theory, and the thrust definition. The leading order contribution, At, is known in 
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analytic form [30], and Bt in the MS" renormalization scheme can be computed with 

the NLO e+e~ package of [15]. 

3.2.3 Energy-Energy Correlation 

The energy-energy correlation was proposed in Ref. [32], and several experimental 

groups have studied it. It can be defined in terms of the two particle inclusive cross 

section 

(3.10) 
dxj^dxgd^^i dfl2' 

which is the differential inclusive cross section for producing two hadrons A and B 

with a fraction and xg of the total initial energy, in the reaction e+e~ ^ A + B -(-

X. We define 
1 dE ^ l y f'^^^j^^ (3 11) 
a dflidili ^AB-^^ dxj^dxBdClidrt2 

An equivalent definition in terms of a calorimetric measurement is given by 

adflidn2 N ^^\s dill J \sdQ,2j 

where j refers to the specific event out of N events, and dE/dVl-i and dE/dO,2 is the 

energy flow per unit solid angle in the directions O i and Q,2- In practice, it is simpler 

to consider an average E E C , where one averages over all the orientations of the event, 

keeping fixed only the angle x between the directions fii and 0,2 

- 4 ^ = / d n i d ^ 2 - ^ ^ ^ S { 0 ^ . n 2 - cosx). (3.13) 
a dcosx J a dilidih 

As usual, we express the cross-section as 
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where again //̂  = s. Again the lowest order term A^EC is known explicitly [32], 

and BEEC in the MS' renormalization scheme can be computed with the NLO e+e~ 

package of [15]. 

3.2.4 Asymmetry In The Energy-Energy Correlation Function 

The asymmetry in the energy-energy correlation function (AEEC) is usually defined as 

It should be noted that this observable has smaller radiative corrections than the EEC 

itself. The original motivation for this observable [31] was the expectation of smaller 

non-perturbative effects than were associated with EEC. 

3.2.5 The Total Hadronic Cross-Section, Rz 

A fully inclusive and theoretically better understood, measure of purely hadronic events 

is the total hadronic cross-section, known as the R-ratio when normalised as 

In the MS scheme this has the very well-known expansion [17, 16] (//̂  = q^, Nj = 5) 

R = ^ ( 1 + a + 1.409a2 - 12.8a^-}-O(a^) 
o 

= jil+SqcD). (3.17) 

Close to the Z° peak there are substantial electroweak corrections to this QCD result, 

so the data to be used is that taken at Q = Si GeV where these can be neglected. On 
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the peak, SQCD can be checked using the ratio of hadronic and leptonic decay widths 

R, ^ 
^LEP 

= (19.97 ± 0.03)(1+ V D ) (3.18) 

where the numerical factor is electroweak [33]. These massless QCD results can be 

modified to include heavy quark masses [34], but the changes are small (K^ = 1.05, 

K^^ = 0.9) and insignificant in the present context. Unfortunately, because both R 

and Rz are 0(1) in ag, SQCD is small and its accurate measurement difficult, but they 

have the advantage that hadronization can be ignored. For the previous observables, 

while probably being fairly small at the kinematical values that will be used later, the 

size of the hadronization corrections varies across the distribution [15]. 

3.3 Review of the Scheme Dependence Problem 

3.3.1 Parametrizing RS Dependence 

Consider a generic dimensionless LEP observable R{Q), where Q denotes the single 

dimensionful scale on which it depends, typically the e+e~ centre of mass energy y/s. 

In RG improved perturbation theory we can write without loss of generality, 

R{Q) = a + ry-\-r2a^ + .... (3.19) 

where a denotes the RG improved coupling a = as/IT. Notice that by dividing any 

observable depending only on a single dimensionful scale by its possibly dimensionful 

tree-level perturbative coefficient (which will be RS invariant), and raising to a suitable 

power, we can always obtain a series of the form (3.19) representing a dimensionless 

RiQ). 

The coupling a and series coefficients TJ depend on the RS employed. Using the 
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compact notation and conventions introduced by Stevenson [18] a is specified by a 

/9-function equation 

^ = - a \ l +ca + €20? + ...) = -^(a) , (3.20) 
ar 

where r = ^In p with // the renormalisation scale and A the dimensional transmuta­

tion mass parameter of QCD, here differing from the traditional definition by a factor 

{2c/b)'"^''. b and c are RS invariants dependent only on the number of quark flavours 

Nf and the number of colours N^; for Â c = 3 we have b = (33 — 2Nf)/6 and 

c = (153 - 19A^/)/2(33 - 2A^/). In all our LEP determinations we take Nj = 5 and 

assume massless quarks. For massive quarks the scheme dependence discussion will 

also go through in any mass-independent RS, i.e. one in which the coefficients C2, C3 

. . . do not depend on the fermion masses [38]. 

The higher coefficients C2, C3, . . . are RS-dependent. Indeed Stevenson [18], extend­

ing the work of Stueckelberg and Petermann [39], has shown that one may consistently 

use the parameters r, C2, C 3 , . . . to label the renormalization scheme. In the conventional 

approach when retaining terms up to and including rnc""*"̂  in equation (3.19) one trun­

cates the ^-function of equation (3.20) retaining terms up to and including c„a"+^. On 

integrating up the truncated equation (3.20) one can define a (")(T, C 2 , . . . , c„) and corre­

spondingly one finds for consistency r i ( T ) , r 2 ( r , C2),r3(T, C2, C 3 ) , . . . ,r„(T, C2, C 3 , . . . , c„). 

In this way the n*'*-order truncated approximant is also labelled by the scheme vari­

ables, R^"'\T,C2, . . . , C „ ) . Of course when summed to all orders this dependence must 

cancel and a formally RS-independent sum be obtained. 

The formal consistency of perturbation theory further ensures that 

i?(")(r', 4 , . . . , c'J - it;W(r, C 2 , . . . , c„) = ka-+' -^ 0{a-+% (3.21) 

so that differences between results in two different RS's are formally effects one 

order higher in perturbation theory. Of course k depends on {r, C 2 , . . . , c„} and 
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{ r ' , 4 , . . . , c ^ } and may well not be a small coefficient. 

3.3.2 The RS dependence of R ^ ^ \ T ) . 

Before discussing the general situation further let us consider the simplest n = 1, NLO 

case. This is the accuracy to which all but one of the LEP observables have been 

calculated. 

To NLO we have 

RW(T) = G(I ' (T) + ri(r)(a(i)(T))2 (3.22) 

where a (^)(T) is obtained by integrating up the NLO truncation of equation (3.20) 

^ ^ - a \ l + ca). (3.23) 
dr 

With the boundary condition a(^)(0) = oo one obtains 

' + c l n f , ^ ^ U F ( a ( ^ ) ( r ) ) (3.24) 
' ~ a ( i ) ( r ) ' V l + c a a ) ( T ) 

where we define the function F for later use, so that a(^)(r) = F~'^(T). 

How does ri(r) depend on r explicitly? To see this, consider two different RS's, 

RS and RS'. The connection between the corresponding renormalised couplings a and 

a' will then be such that 

= ^ ^ V ) (3.25) 

and we can define 

a = a (1 + i^^a + V2G? + . . . ) . (3.26) 

Inserting (3.26) into the series for i?(a') and R{a) in the two RS's and equating 

coefficients one finds 

ri = i / i+r; . (3.27) 
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By integrating up I3{a) and ^'{a') as in (3.24) and taking the difference we find 

1 , / ca 
T-T' = - + c l n { - ^ +0{a) 

a \1 + ca) 

- i - ^ l n f - ^ ) + 0 ( a ' ) (3.28) 
a' \\-\-ca') 

where the 0(a) and 0{a') terms reflect contributions beyond NLO in the ;5-functions. 

Using equation (3.26) and equating coefficients of corresponding powers of a gives 

T — T' = V\. (3.29) 

Eliminating between equations (3.27) and (3.29) we finally arrive at 

- n = r ' - T. (3.30) 

This implies that 

r i ( T ) = T-Fra(0). (3.31) 

It is useful to identify the RS-invariant combination [18] 

Po = T - r i ( T ) . (3.32) 

Since R i f f ) is a function of a single dimensionful scale Q it follows that 

po(g) = T - r a ( T ) = M n | , (3.33) 

with PQ{Q) and A RS-invariants. A is dependent only on the particular QCD observable 

R. This strongly suggests that these quantities should have a physical significance as 

opposed to RS-dependent quantities such as r i ( T ) and a ( r ) which depend on unphysical 

parameters. As we shall show in section 3.4 this is indeed the case, po{Q) and A are 
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connected with the asymptotic {Q —> oo) dependence of R{Q) on Q with 

and so po{Q),or equivalently A could in principle be directly measured given unlimited 

experimental energies. 

This observable-dependent 'physical' quantity A is directly connected to A^s the 

universal dimensional transmutation parameter of QCD which we are attempting to 

determine. To see this, recall that 

T = h\nJ- (3.35) 
Afis 

is the variable which specifies the RS in NLO. Notice it is not sufficient to specify 

that one has chosen a given renormalisation scale /t in order to specify the RS even at 

NLO. The renormalisation scheme is specified by r which involves KRS as well. 

Since PQ{Q) is an invariant we see that for two different RS's, RS and RS' 

h\nJ-- r f (//) = Mn - r f ' ( / / ) , (3-36) 
ARS Afis' 

where r^^in) denotes the NLO correction evaluated in the renormalisation scheme RS 

and r^^ifJ.) ^ ri(r) with r = 61n/t/Afls- From equation (3.33) with /j, = Q we find 

directly that 

A = AH5exp(rf (// = g)/6) (3.37) 

and so given a NLO calculation in some RS the invariant A is exactly related to the 

dimensional transmutation parameter ARS. Notice that r^^{fi = Q) is a. Q-independent 

quantity. 

Rearranging equation (3.36) yields 

Kns' = ARS exp[(rf (//) - r f (//))/&] (3.38) 

41 



The exponent is a universal ;w-independent constant which exactly relates the A's in 

the two schemes, given NLO calculations in these two RS's. The implication of this 

important result [18, 40] is that it does not matter which ARS we choose to try to 

extract from the data. If the RS is mass-independent then ARS will be universal and 

can be exactly related to ARS' in any other scheme by a universal factor given exactly 

if we have a NLO calculation for any observable in both RS's. Thus there is no non-

trivial residual scheme dependence implied in our convenient choice of A^ as the 

fundamental parameter we wish to extract. 

As an illustration consider the minimal subtraction (MS) renormalisation procedure 

and the MS or modified minimal subtraction procedure where the ln(47r) - JE terms 

present in dimensional regularization are subtracted off (7^; = 0 .5772. . . is Euler's 

constant). For any observable, and independent of p [41], 

r ^ H p ) - r Y ^ { p ) = ^ - { \ n M - 7 E ) . (3-39) 

So using equation (3.37) we have 

AM5 = AM5 exp /^M4^)-7g^ ^ 2.66AMS. (3.40) 

V ^ / 

This relation is independent of Nj or Nc. For the MS and M S ' procedures the higher 

order RS-dependent ^-function coefficients are identical, c^^ = c^^ (k > 2). The only 

difference is in the subtraction procedure and hence in the definition of the renormali­

sation scale p. A choice of scale p using the MS procedure corresponds, therefore, to 

the same renormalization scheme as use of the MS procedure with scale 2.66/Li. 

We are finally in a position to exhibit the explicit dependence of R^^\T) on r. In 

fact it is easier to equivalently consider the dependence on a ( ^ ) ( T ) . Using equation 

(3.33) to write r i ( T ) in terms of po and r , and using (3.24) for a ( ^ ) ( T ) in terms of r 

we find 

Ri'\r) = a ( i ) ( r ) + (a^'\T))'Fia^'\T)) - po{Q){a^'\T))\ (3.41) 
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When plotted versus a ( T ) , R^^^ has the generic approximately inverted-parabolic shape 

shown in Figure 3.1, provided that po > 0. From (3.33) this condition will automati­

cally hold provided that Q > A. 

0.03 

0.025 

0.02 

0.015 L 

0.01 

0.005 

0.01 0.02 0.03 0.04 0.05 0.06 0.07 

Figure 3.2: The generic approximately inverted-parabolic behaviour of the NLO ap-
proximant R'-^^ir) versus a{T). The figure is plotted for po = 25 and Nj = 5. The 
dashed line represents measured data (see text). 

3.3.3 RS dependence of r„(r, C2, . . , c„) 

Before we discuss this NLO scheme dependence in more detail let us complete the 

picture by discussing the explicit scheme dependence of the higher coefficients r2 (T , C2), 

r3{T,C2,cs), . . . as well. Integrating up the y -̂function truncated at n*'^ order with 

an infinite constant of integration (related to the definition of A, see 3.4) we obtain. 
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analogous to equation (3.24) , 

1 , / cat") \ r^"^ 
T = 

, , cat") \ f 
+ cin ;r-- + / dx 

' 1 + ca(") J Jo + a;25W(a;) x^{l + cx) 

5(")(x) = (1 + cx + csx^ + cgx^ + . . . + c^x"). (3.42) 

This transcendental equation can then be solved explicitly for a(")(T, C 2 , . . . , c„). 

To obtain the explicit RS dependence of the it is convenient to identify a special 

RS, the effective charge (EC) scheme [19, 20], in which r i = r2 = ra = . . . = r„ = 0. 

Then i?t") = at") in this scheme, and the coupling constant is the physical observable. 

This choice of RS will correspond to particular values of the scheme parameters, TEC = 

The fact that TEC = Po follows directly from equation (3.33) , ri(T) = T - po then 

ri{TEc) = TEC - PO = 0 TEC = Po- From equation (3.25) we have that for two 

RS's, barred and unbarred, 

m = f / ^ ( « ( « ) ) - (3-43) 

If the barred RS is chosen to be the E C scheme then 

'^{a) = p{a) = a\l + ca + p^a^ + ... + pkci^ + . . . ) , (3.44) 

with a = R. Then (3.43) gives 

p{R) = (3.45) 

where a{R) is the inverted perturbation series. By expanding out the right-hand side 

as a power series in R and equating coefficients we obtain [42] 

p2 = C2 + r2 - r ic - rl 

ps = C3 + 2r3 - 4rir2 - 2ri/92 - r^c + 2r^ (3.46) 
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These objects are Q-independent RS invariants constructed from the r, and Q in any 

RS. For instance given N L O and NNLO calculations of r^^{Q),r^^{Q) and since 

c^^ is known [43, 44], one can construct 

P2 = + r p - r p c - ( r p ) l (3.47) 

As we shall see in the next section just like the NLO invariant po, the NNLO and 

higher p2,pz,... invariants have a physical significance, whereas quantities such as 

r]^ '^(Q), c^'^ are intermediate RS-dependent quantities which should be eventually 

eliminated in favour of RS invariants. 

Having obtained p2, pz from NNLO, and higher order calculations in any convenient 

RS, we can exhibit the explicit r, C2, C 3 , . . . dependence of the perturbative coefficients 

by rearranging equation (3.46) . We have that 

r i { T ) = { T - P O ) , 

r2(T,C2) = {r - poY + C{T - Po) + {p2 - C2), (3.48) 
5 1 

R3(T, C2, C3) = ( r - poT + -C{T - pof + (3/92 - 2C2)(T - ^0) + 7;{P^ - C3) 

The result for r „ ( r , C 2 , . . . , c„) is a polynomial in ( r - po) of degree n with coefficients 

involving pn, pn-i,..., c and C2, C 3 , . . . , c„, such that r^ipo,p2, • • • ,pn) = 0-

3.3.4 NLO extraction of a^iMz). 

Let us now return to Figure 3.2 and discuss how one might attempt to use it to extract 

AjYs or as{Mz) in the MS' scheme. 

Notice first that the curve R ^ ^ \ T ) of equation (3.41) is a universal function of r and 

Po (for given fixed N f ) , where the value of the invariant po depends on the particular 

observable R. po is of course directly related to given a NLO calculation of 
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r f ^(g), with 

Po = h\r.S--r^'{Q). (3.49) 
his 

R ^ ^ \ T ) has a maximum at 0 ( 7 ) ~ I j po (r ~ po) where R^^\po) ~ l / /9o. The full-width 

at half-maximum in a ( T ) is approximately \/2//9o- ^̂ ^̂  vanishes at a = 0 (r = 00) 

and at a ( T ) ~ 2//9o (r ~ /9o/2). For comparison Figure 3.2 is drawn with po = 25 and 

N j = b. 

Let us suppose that the horizontal dashed line in Figure 3.2 represents the measured 

experimental data. If po is sufficiently small that the maximum i?t^) ~ Ijp^ lies above 

the data then the curve will cut the data at two scales T I , T2 (as illustrated). Conversely, 

if pQ is made larger the curve will be below the data line. Thus an infinite set of T, PQ 

pairs fit the data perfectly. If we wish to measure po (and hence K j ^ ) we must specify 

T. This is the N L O scheme dependence problem. At NNLO one would have a surface 

R^'^\T,C2) and to extract po one would need to specify r and C2, and so on with one 

extra unphysical parameter for each order in perturbation theory. At least in NLO for 

a given value of po ( A ^ ) there is a maximum possible i?ti). 

In NNLO and higher one can show [45] that for a given value of po (^MS) there 

exists a choice of r, C2, . . . , c„ such that i?tn) has any desired positive value. Thus, for 

any Aj^s we can choose a sequence of schemes such that î t̂ ) = i?t3) = . . . = = 

î esp, the experimentally measured value. 

Various "solutions" of the scheme dependence problem, i.e. motivations for partic­

ular choices of r, C 2 , . . . , c„ have been proposed. 

(1) Principle of Minimal Sensitivity (PMS) [18] 

The idea here is that since the exact (all-orders) result is independent of r , c2 ,C3 , . . . c„ 

one should choose the n*''-order approximation i?t")(r, C 2 , . . . , Cc) to mimic this property 

and be as insensitive as possible to the chosen value of the unphysical parameters. That 
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is one arranges that 

dco 
C2-C2 

dc 

and the PMS scheme is specified by r , C 2 , . . . , c„. At NLO one has to solve 

di 
= 0, 

and this corresponds to solving the transcendental equation 

+ cln 

The solution a{T) — a then gives 

ca 
1 + ca 

1 
+ 77 21 + ca 

= Po-

(1) _ «(1 + 
(1 + ca) PMS 

(3.50) 

(3.51) 

(3.52) 

(3.53) 

The stationary PMS point of R ^ ^ \ T ) is the maximum at r = r ~ /OQ - c/2 (this is a 

somewhat better approximation than the cruder r ~ given previously for the position 

of the maximum), po is adjusted so that R^PMS = ^exp-

(2) Effective Charge (EC) Scheme [19, 20] 

This corresponds to a choice of scheme such that n = r2 = . . . = r„ = 0, hence 

a(") = is an effective charge. As we have seen the scheme parameters are then 

{po, p2, p3, • • •, Pn}, where the pi are the RS-invariants in equation (3.46) . Once 

these have been computed up to pn from higher-order calculations in any technically-

convenient RS (e.g. MS) they can be inserted in the integrated /9-function equation 

(3.42) which can then be solved with ot̂ ") = for given po. po can then be obtained 

by requiring R = R^xp-
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This particular approach is sometimes also referred to as the fastest apparent conver­

gence criterion. In this language it appears rather artificial, but as we shall emphasise 

in section 3.4 its advantage is that the all-orders coupling constant and ^-function are 

experimentally observable physical quantities, allowing a non-perturbative approach to 

supplement Kj^ measurement, and a physical definition of the uncertainty. 

It should be emphasised that E C and PMS predictions in NLO are very similar 

since, as we have seen, TEC = Po, TPMS C± /JQ — C/2 . It is also true that in NNLO E C 

and PMS remain close to each other [46, 47]. For the PMS approach, however, the 

coupling constant and ^-function are unphysical quantities, and it is not clear even that 

their all-orders versions are defined, given the complex nature of the coupled equations 

which must be solved. 

(3) Physical Scale [48] 

According to this viewpoint the renormalization scale should be chosen to be close 

to the physical scale in the problem, p, = Q. If predictions in the vicinity of p = Q 

are strongly //-dependent then this is supposedly an indication that the perturbation 

series is intrinsically badly behaved. This viewpoint is usually justified by noting that 

perturbative coefficients in higher orders will be polynomials in \np/Q, 

rn = j:Kni{bln^y. (3.54) 

To avoid unnecessarily large logarithms one should therefore set p Q. Whilst this is 

true as far as it goes, it tacitly assumes that the NLO RS dependence is completely given 

by the dependence on the renormalisation scale. In fact as we have seen r „ ( r , C 2 , . . . , c„) 

where r = Mn/x /A/ j s so the coefficients Kni in (3.54) will depend on ARS- The 

meaning of p of course depends for instance on whether it is p{MS) or p{MS). In 
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contrast we have from (3.48) that 

r„(T, C2, . . . , C„) = ^ knl{T - po)' 
1=0 

(3.55) 

So to avoid unnecessarily large terms we should clearly choose T c:^ po, the effective 

charge scheme! To make contact with (3.54) notice that 

- po) = 

So we can write (3.55) as 

M n | + r n g ) 6 In 
Q 

(3.56) 

^n{r, C2, 
1=0 

6 In 
. Q , 

-.1 
(3.57) 

In (3.55) and (3.57) the coefficients Kni do not depend on the NLO RS choice, 

only on C2,C3,. . . and the RS invariants p2,p3,..., whereas in (3.54) the Kni will 

depend on r^^(Q) and so have a hidden dependence on the N L O RS choice which is 

customarily ignored in the usual 'physical scale' argument. Applying the argument to 

(3.57) instead one would infer that one should set p ~ Qe~''i^^'^^/^ = QARS/A, which 

of course corresponds to the effective charge scheme, T = po. For particular cases the 

extra factor may be large. 

Recall that A is an RS-invariant characterising how the observable runs with Q 

asymptotically. Different observables will have different A' s . If it happens that A H S — 

A (Ti^iQ) — 0) then predictions will be stable and large logarithms avoided for // ~ Q , 

but no special physical significance should be accorded to this fact. It is always possible 

to modify the subtraction procedure so that ARS = A , since A ' s in different RS's are 

related according to (3.38) . 

We conclude that a modified 'avoidance of unnecessarily large logarithms' physical 

scale argument which correctly labels the NLO RS dependence actually leads to the 

effective charge scheme, T = po. 
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(4) Fitting p and A to the data 

For most of the L E P observables we have a differential distribution in a kinematical 

variable rather than a single experimental data value as in Figure 3.2. For instance a 

thrust distribution in the thrust variable T, or a multijet rate in the jet resolution cut 

Pc- Denoting such a generic kinematical variable by A, we should really add an extra 

perpendicular axis to Figure 3 .2 and consider the A dependence as well, R ^ ^ \ T , A ) . The 

N L O coefficient will also depend on A and so for a given choice of A ^ we will have 

po{X) from ( 3 . 4 9 ) . If A ^ is sufficiently large then the experimental data Rexp{X) 

will intersect R ^ ^ \ T , A) for at least one r value for any A and so the data can be fitted 

perfectly with a suitable A-dependent RS parameter choice r ( A ) . In general there will 

be two intersection points as in Figure 3.2 and so two functions T I ( A ) , T2(A) will fit the 

data perfectly. Since this can be done for any suitably large Ajgj there is no unique 

best fit. 

The O P A L analysis [5, 6 ] uses a mixture of approaches ( 3 ) and (4) . The data for 

each observable over a range of the corresponding kinematical variable is compared 

with the N L O prediction with the MS scale chosen as p, = Mz, and a best fit for Aj^ 

performed. The resulting as{Mz) values are shown in Figure 3.3(a), reproduced from 

reference [12] . There is evidently a considerable scatter in the as values obtained. 

One then performs a simultaneous best fit for p and A^^^ for each observable over a 

range of the kinematical variables. This provides a second as{Mz) value. The quoted 

central value of as{Mz) is then taken to lie mid-way between these extremes (perhaps 

modified by hadronization) and the difference between them is taken as indicative of the 

size of the uncalculated higher-order corrections. By enlarging the 'scheme dependence 

error' in this way one obtains greater apparent consistency between different observables 

as shown in Figure 3.3(b). 

In our view one learns nothing useful from an analysis of this kind. Consider Figure 

3.3(a) and the considerable scatter of as values obtained from different observables 
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Figure 3.3: (a) as{Mz) obtained by fitting NLO perturbative calculations with p = Mz 
to O P A L data, (b) As (a) but with enlarged 'theoretical errors' using p = Mz and fits 
to data, as described in the text. Reproduced from reference [11]. 
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fitted with p = Mz- Choosing p = Mz means that from (3.57) the higher-order 

coefficients are given by 

rnip^Mz) = j:Kn,{rriMz)y 
1=0 

(3.58) 

where the Kni depend on the invariants p2,p3,...,Pn and on the NNLO and higher 

RS parameters C2, C 3 , . . . , c„. We have tabulated in Table 3.2 the r^^{Mz) values for 

some of the observables introduced in section 3.2 at particular values of the kinematical 

parameters using the N L O package of reference [15],and in the case of Rz the NLO 

calculationsof [41]. One sees that they are large and rather scattered, e.g for the jet 

rates r^^{Mz) ~ 10 which results in rather small E C (or PMS) scales, psc ~ 0.07M^. 

As emphasized earlier no physical significance attaches to these small scales, since the 

scale itself is just an artifact of the unphysical subtraction procedure employed. Thus 

from (3.58) one may expect large and rather scattered higher order corrections for 

the different observables with p = Mz, which translates itself into the expectation of 

scattered values of as{Mz), which indeed are observed. 

Observable r p ( M z ) 

T T=0.9 13.41 

R2{Eo) Vent = 0.08 10.22 

RsiEo) Vcut = 0.08 10.09 

R2{D) Vcut = 0.08 7.23 

RsiD) Vent = 0.08 7.15 

E E C X = 60° 11.30 

A E E C X = 60° 5.13 

Rz 1.41 

Table 3.2: N L O coefficients r^^{Mz) from [15] for various L E P observables at the 

particular values of the kinematical variables noted. 
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If we instead choose p = Mze ^f^(^z)/i> = fi^^ (the effective charge scale) for 

each observable then the higher order coefficients are given by 

vnip = PEC) = KnO (3.59) 

where Kno does not depend on the NLO RS choice (T), only on the NNLO and 

higher RS parameters and the RS-invariants p2,p3,.... Any scatter now observed in 

the extracted Aj^g or cxs{Mz) for different observables will be attributable to these 

NNLO and higher RS invariants being large, and not to the scatter due to the NLO 

scheme dependence logarithms involving r^^{Mz), which are avoided by the choice 

P- = fJ'EC- As we shall discuss in section 3.4 there is still scatter when this is done but 

it is somewhat reduced. 

With the choice p = Mz predictable scatter due to avoidable already known NLO 

scheme dependence logarithms is superimposed on top of the interesting scatter due 

to the size of the NNLO and higher invariants which is telling us about NNLO and 

higher order uncalculated corrections. The choice p = PEC removes the predictable 

scatter and provides genuine information on the interesting NNLO and higher-order 

uncalculated corrections. 

The MS scales obtained by fitting to the data for an observable over some range 

of the associated kinematical parameters tend to be considerably smaller than Mz, as 

for the E C or PMS scale. Typically for values of the kinematical variable A well 

away from the 2-jet region where large logarithms will be important, po{\) and ri(A) 

do not vary strongly with A. This means that one cannot obtain best fits over such 

a range of A. It is only by including the 2-jet region that one can obtain stable best 

fits, but then fitting for a A-independent scale over a range where po{X) and ri(A) (and 

presumably uncalculated higher order corrections) are strongly A-dependent represents 

a rather severe compromise, and it is not obvious what one learns. 

In conclusion, we believe that the standard NLO analyses used to extract as from 

L E P data do not serve to disentangle the genuinely new and interesting NNLO and 
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higher order uncalculated corrections from predictable higher order corrections con­

nected with the choice of RS at NLO. The resulting quoted values of as{Mz) (or 

AjYs) with attendant scheme dependence uncertainties therefore reflect the ad hoc way 

in which they were extracted, rather than the actual values of these parameters. In 

contrast, by choosing the effective charge scale for each observable one exposes the 

relative importance of uncalculated NNLO and higher corrections. An effective charge 

formalism which can be supplemented with non-perturbative information is described 

in the next section. 

3.4 The Effective Charge Formalism 

3.4.1 The Q dependence of R{Q) 

For the dimensionless Q C D observable R{Q) we can define 

dR 
dlnQ 

= m - (3-60) 

dR/dlnQ and hence ^{R{Q)) are, at least in principle, experimentally observable 

quantities, although collider experiments are usually designed to make high-statistics 

observations at a fixed energy Q rather than examining the detailed running of ob­

servables with energy. To make contact with the standard perturbative approach we 

note that (3.60) is the /^-function equation in the effective charge scheme where the 

couphng a = R{Q) and the ^-function is p{R) as defined in equation (3.44) . So we 

have 

= C{R{Q)) = -hp{R) « -hR\l+cR+p2R^ + .. .)+e-^^^R\Ko+KiR+...). 
a m g 

(3.61) 

The effective charge /^-function p{R) may be regarded as a physical observable. As 

measured from data it will include a resummed version of the (perhaps asymptotic) 
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formal perturbative series exhibited in (3.61) together with the non-perturbative terms 

involving e~^/^ which are invisible in perturbation theory. (Here S,^,/<'o,/i'i,... are 

observable-dependent constants which we shall not specify further [51].) Hence by 

comparing with data one can test how well the first few terms of the perturbative 

series serve to represent the observed running of R{Q). That is, from measurements 

of RexpiQ) and dRexp{Q)ld\nQ, one can test the extent to which 

^ « -hRlxpi^ + cR..v) (3.62) 

describes the data. A marked discrepancy would either indicate the importance of the 

NNLO invariant p2 and higher terms, or the relative importance of the non-perturbative 

contributions, or both. 

Given a collider program dedicated to the investigation of the Q-dependence of 

observables the above tests would indeed be powerful and useful. The focus of present 

studies, however, is the accurate measurement of R at fixed Q, i.e. Q = Mz, and the 

comparison of these results with N L O matrix element calculations in order to extract 

A ^ . To obtain R{Q) we clearly need to integrate equation (3.60) . The boundary 

condition will be the assumption of asymptotic freedom, that is R{Q) —» 0 as Q oo, 

which corresponds to the requirement that i{R{Q)) < 0 for Q > Qo, with QQ some 

suitably low energy. (Equivalently, p{R{Q)) > 0 for Q > Qo, assuming b > 0 

or Nf < 33/2 for Nc ^ 3 QCD.) Any zero of ({R{Q)), ^{R*) = 0, say, would 

correspond to R{Q) R* as Q oo and ultraviolet fixed point behaviour. 

Integrating equation (3.60) we obtain 

In = = / ——-dx -\- (infinite constant) (3.63) 
A Jo t,{x) 

where A is a finite constant which depends on the way the infinite constant is chosen. 
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The infinite constant can be chosen to be 

(Infinite constant) = — 
Jo 

°o dx 
Tj{x)' 

(3.64) 

where T]{X) is any function which has the same a; ^ 0 behaviour as ({x). We know 

from equation (3.61) that ({x) has the universal a; —> 0 behaviour ^(x) = -bp{x) « 

-bx^{l + cx) so we choose r]{x) — -bx^{l - j - cx). Inserting this choice for ri{x) and 

rearranging equation (3.63) we find 

bin 
A Jf 

dx 
A JR(Q) a;2(l + cx) 

•R(Q) 
+ I dx /; + p{x) x'^{l + cx) 

(3.65) 

The first integral on the right-hand side is just F{R) where F is the function defined 

in equation (3.24), 

(3.66) F(x) = - -1-cln 
X 

cx 
1 + cxl 

We define for later convenience 

ApoiQ) = / 
Jo 

R{Q) 
dx + p{x) x'^{l + cx) 

(3.67) 

Notice that despite appearances the integrand of Apo is regular at x 

have 

F{R{Q)) = b\n^-Apo{Q). 

As Q oo, R{Q) ^ 0 so that Apo 0 and thus asymptotically 

= 0. Then we 

(3.68) 

F{R{Q))^b\n^ (3.69) 

with the constant of integration given by 

A = lim Qexp{-F{R{Q))/b). 
Q-^oo 

(3.70) 
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Notice that in arriving at (3.68) we did not need to refer to perturbation theory, except 

to assume the asymptotic x ^ 0 (Q oo) behaviour ^{R{Q)) —6i?^(l -|- cR). 

Despite this, the constant A obtained with the particular choice TI{X) = —6x^(1 -|- cx) 

is precisely the A introduced in equation (3.33) . That is 

A = Aj^eMr?^{P = Q)/b). (3.71) 

We can see this immediately since if a denotes the coupling in the RS with p = Q using 

the MS subtraction procedure in NLO, and with higher order ^S-function coefficients 

zero [52] we have 

h \ n ^ = F{a) (3.72) 

giving a well-defined all-orders coupling. Further 

R = a + rY^{Q)a' + .... (3.73) 

a ^ 0 as Q ^ oo, so asymptotically as Q ^ oo we have 

F{R) ^ F{a) - r p ( g ) + . . . (3.74) 

where the ellipsis denotes terms which vanish asQ ^ oo. Inserting (3.74) into (3.70) 

and using (3.72) we find (3.71) as Q ^ oo. 

So finally we have 

F{RiQ)) = bln^-ApoiQ) 

= bln^-rY^{Q)-Apo{Q) (3.75) 

= PoiQ) - ApoiQ). 

We could, of course, have written down the result of equation (3.75) perturbatively 

in the E C scheme at once by simply using the integrated beta-function equation of 

57 



equation (3.42) with r = po, ^t") = /̂ t") = i^cx +p2x'^ +... +p^x"", and at") = i?t"). 

However, our purpose here has been to stress that equation (3.75) holds beyond 

perturbation theory for the measured observable R{Q) and Apo{Q) constructed from 

the measured running of R{Q), dR{Q)/dlnQ = -bp{R{Q)). That is, we can write 

a non-perturbative closed expression exactly relating the universal constant A^^^ to 

observable quantites. 

Since Apo{Qo) involves an integral in R{Q) between R{Qo) and 0, to actually 

measure it would require knowlege of R{Q) (equivalendy dR/dln Q) on the full range 

QOTOO]. We of course only know R{Q) on some finite energy range, so if we want 

to obtain Ajjg from equation (3.75) and measurements of R{Q) there will always be 

an uncertainty related to our lack of knowledge about the behaviour of R{Q) beyond 

the highest energy reached, or correspondingly related to our lack of knowledge about 

p{R) for R < R{Qo), with Qo the highest energy reached. As we shall discuss in 

sub-section 3.4.3 we can use measurements of the running of R{Q) to determine p{R) 

in the vicinity of R = R{Qo), and perturbative QCD calculations to determine p{R) in 

the vicinity of i? = 0. Putting these two pieces of information together we can make 

unambiguous statements about the validity of perturbation theory and the nature of the 

function p{R), which can assist our attempts to determine Aj^s-

Notice the fundamental significance of the NLO perturbative coefficient r^^{Q) in 

all of this. Knowledge of the full behaviour of R{Q) at large Q would allow one to 

extract A from equation (3.70) , but this by itself is observable-dependent and so one 

would not test QCD. A test is only possible if one also knows r^^{Q) (from Feynman 

diagram calculations) and can then obtain the universal Aj^g from equation (3.71) . 

The universal Ajg^ of course depends on the number of active quark flavours, A^^^; 

the RS invariants b and c occurring in equation (3.75) also involve N j . Since Aj^^ 

in equation (3.75) involves the Q ^ oo behaviour of R{Q), one might wonder what 

value for Nf should be taken. With three generations of quarks, Nj = 6 presumably 

represents the asymptotic number of active flavours and so, introducing the notation 
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b{Nf), c{Nf), the function r]{x) in equation (3.64) should be chosen as r]{x) -

-biQ)x\l + c{6)x). 

So finally (3.75) with the explicit Nj dependence exhibited becomes 

cmiQ) 
+<'^'^[i+cmiQ)\ 

A ( 

\R{Q) 

6 ( 6 ) l n ^ - r r ( g , i V / = 6 ) - y ^ dx 

(3.76) 

M S 

H6) 1 
^(a:) ^ a;2(l + c(6)x) " 

Obviously the strict asymptotic Q ^ oo behaviour of R{Q) and dR/d\nQ = ({R{Q)) 

is an idealized concept since we could never actually measure it. For instance, it 

presumably makes no sense to consider QCD in isolation beyond the GUT energy 

scale. Rather than using (3.76) for L E P observables where we have Nj - 5 active 

flavours, it makes more sense to consider the equation for R{Q) in a world with Nf = 5 

active flavours, replacing 6(6), c(6), and Aj^ in (3.76) by 6(5), c(5), and A ^ . The 

decoupling theorem [53] means that we can consider an Nf = 5 version of QCD for 

energies below top threshold. As we shall discuss we shall be interested in how the 

observed Q-evolution of R{Q) at L E P energies compares with its asymptotic Q ^ oo 

evolution in a hypothetical world with A^/ = 5 flavours. This will decide how accurately 

we can determine the universal constant Aj^. To have any chance of determining Aj^ 

we would require measurements around the top threshold and at higher energies, which 

we do not currently possess. 

A further subtlety connected with the effective charge formalism concerns the fact 

that one can always define effective charges other than a = R. More generally one 

could define / ( a ) = R where / ( a ) = a + / 2 a ^ + f^a^ + . . . is any analytic function of 

a. Chyla has suggested that this arbitrariness is just the scheme dependence problem in 

disguise [49]. In our view this is incorrect (see also Grunberg's response [50]). In fact 

the arbitrariness in defining the effective charge is completely equivalent to redefining 

the observable to be ^ = f~^{R), maintaining the standard definition of effective 

charge a = R. One can of course always consider R as the measured observable rather 
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than R, and then N L O truncation of the perturbation series for R using some RS wi l l 

give different results f rom those obtained with R. Such a redefinition of the observable 

would only be useful i f some information on the uncalculated higher order corrections, 

i.e. knowledge of the function p{R), were available to inform the choice. 

3.4.2 E C formalism in NLO - the Apo plot. 

Let us suppose that we have measurements for a number of LEP observables at a fixed 

energy {Q = Mz), and knowledge of their N L O QCD perturbative corrections r^^{Q). 

What can we learn? 

Recall f rom equation (3.75) that 

F{R{Q)) = M n ^ - r p ( Q ) - A p o ( Q ) 

= />o(Q) - A/>o(g), (3.77) 

where h, c and r^^{Q) are evaluated with Nj = 5. As Q ^ oo, Apo{Q) —^ 0 and 

F{R{Q)) « poiQ). (3.78) 

A t sufficiently large Q, Apo <C po and (3.78) may be used to obtain A ^ . We have 

that 

A g ^ = Qexp[-{F{RiQ)) + r p ( Q ) + A ^ o ( g ) ) / 6 ] . (3.79) 

Given only a N L O perturbative calculation we have no information on Apo{Q). 

From the measured observable i?ea7p and the N L O perturbative coefficient we can then 

extract 

exp{Apo{Q)/b)A% = Qexp[-{F{R^,,{Q)) + r p ( Q ) ) / 6 ] . (3.80) 

To relate this to the discussions of section 3.3, the quantity on the left of equation 

(3.80) is just the value of Aj^g which would be extracted f rom the data at NLO 

choosing p, = M ^ e x p ( - r ] ^ ' ^ / 6 ) = pEC, the effective charge scale. I f Apo{Q) < 1, 
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then this N L O estimate w i l l be accurate. Indeed the fractional error in A^^^ wi l l be 

8A 

A 
A M Q ) . (3.81) 

The size o f APQ{MZ) w i l l depend on the QCD observable. I f the values ob­

tained f rom equation (3.80) exhibit significant scatter, then this indicates that Apo{Q) 

is not negligible for at least some of the observables. Recall that Apo{Q) is de­

fined non-perturbatively in terms of the running of R{Q) by equation (3.67) where 

dR/dlnQ = ((R{Q)) = -bp{R{Q)). I f Q is sufficiently large that dR/dlnQ has its 

asymptotic (Q -> oo) Q-dependence, that is i f p{R) ft; i?^( l -|- cR), then Apo{Q) « 0. 

Thus significant scatter in the A ^ extracted at NLO with the effective charge scale 

unambiguously indicates that the current experimental Q is not yet large enough for 

all observables to be evolving with Q asymptotically. I f we want to reliably determine 

additional information on the 'sub-asymptotic' effects is required. 

The presence of these effects is a physical fact which can be directly observed 

f rom the (^-dependence of data, and cannot be remedied by changing the unphysical 

renormalization scheme. We stress once again how different this is f rom the scatter 

obtained with p = Mz which w i l l be partly due to different values of r^^{Mz) and 

hence which can be modified by changing the unphysical subtraction procedure. 

To make this distinction more precise, let us define A{NLO,ri) to be the A j ^ 

value extracted at N L O using an RS with r^^{p-) ~ ri. The NLO coefficient r i may 

be taken to label the RS at NLO. Using a to denote the coupling constant in this RS 

we have 

R = a + ria\ (3.82) 

and 

61n^ ^ = F(a). (3.83) 
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Then using equations (3.79),(3.82), and (3.83) it is straightforward to show that 

l{NLO,r,) = exp[(AF(ra , i?) + A p o ) / & ] A g ^ 

= e x p ( A F ( r i , i ? ) / 6 ) A ( A ^ L O , 0 ) , (3.84) 

where 

A F ( r . , J i ) ^ f ( j i ) - f - ' + f ™ + n , (3.85) 

A F ( 0 , i ? ) - 0 . 

A{NLO,0) is just the A ^ extracted choosing p = pEc (ri = 0), given by equation 

(3.80). 

From equation (3.84) we see that the N L O scatter in A ^ is factorized into two com­

ponents. The first is an already known ri-dependent contribution involving AF{ri,R) 

which may be obtained exactly f rom (3.85) with R = R^xp, and does not involve the 

unknown N N L O and higher RS invariants. The second component, Ap^ pjR, does 

not depend on r i but does involve the unknown higher invariants, and represents the 

irreducible uncertainty in determining Aj^s at NLO. The uninformative ri-dependent 

part o f the scatter can therefore be completely removed by choosing p = psc, which 

sets A i ^ = 0. The scatter is then completely given by Apo. 

Rather than focusing on the scatter in Aj^s, we prefer for presentational reasons to 

concentrate on the relative size of Apo. We can define for each observable 

Apl^'iQ) ^ b \ n ^ - r p ( g ) - FiR^^riQ))- (3-86) 

Given a N L O perturbative calculation of r^^{Q) and experimental measurements of 

Rexp we can then measure Apo f rom the data up to 6 In A j ^ which should be a universal 

constant. Changing A ^ ^ ^ merely translates the Apo obtained up or down by the same 

amount for each observable, so we can choose an arbitrary reference value for A j ^ . 

For two different observables A and B, the difference Apo^^P^ - Apo^'^^s can then be 
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measured absolutely and so the relative size of Apo may be investigated. I f Apo ~ 0 for 

each observable, corresponding to small sub-asymptotic effects, then the Ap^'"'' points 

should lie on a horizontal straight line with some small scatter. Substantial deviations 

f rom a horizontal straight line therefore unambiguously indicate the presence of sizeable 

sub-asymptotic effects. The scatter in Apl^^ is of course entirely equivalent to the 

scatter in the extracted at N L O with p = psc, these correspond to the reference 

values for which Apl''^ = 0. We shall return to these A j ^ values later. 

I f one has a N N L O perturbative calculation or measurement of R^^p at more than 

one energy then, as we shall discuss in the next subsection, one can attempt to estimate 

Apo directly. One can then see i f for all observables a single value of A ^ brings 

APQ""^ into agreement with the directly estimated ApQ. 

We now turn to extracting Apl^^ f rom LEP data. The observables we shall use are 

the ones appearing in Table 3.2 and in section 3.2. The EO and D labels denote different 

recombination algorithms used to cluster hadrons together. Details of these algorithms 

and results for the N L O perturbative coefficients rf^^{Q) can be found in reference 

[15] for the EO algorithm, and for the D (Durham or kx) algorithm in reference [25]. 

T denotes the thrust variable, and x the energy-energy correlation (EEC) angle. We 

used recent OPAL data on the differential distributions in these quantities [6, 54]. The 

asymmetry in the energy-energy correlation (AEEC) obtained by subtracting the EEC 

measured at x and (180° - x ) was also considered. Details of the definitions of these 

quantities and their N L O perturbative coefficients are contained in section 3.2. 

From the measured hadronic width of the Z ° (Thad) and the Z° leptonic decay 

width (T/ep) one can obtain Rz = Thadf^iep = (19.97 ± 0.03)(1 + SQCD), where SQCD 

has a perturbation series of the form (2.1) with r^^{Mz) = 1.41. The electroweak 

contribution (19.97 ± 0.03) is f rom reference [33]. This coefficient is for massless 

quarks, i f one includes heavy quark masses [34], one finds 6QCD = (l-05a -|- 0.9a^) 

instead in the MS" scheme with p = Mz. Within the errors the values of Apl^^ obtained 

are consistent, so we shall use massless QCD. For the experimental value we take the 

1993 LEP average Rz = 20.763 ± 0.049 [13]. 
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As noted earlier the reference value of A ^ assumed for AP^Q'^ is irrelevant since 

we are concentrating here on the scatter of Ap^^'^ values. We shall choose A ^ =110 

M e V which corresponds to the central value obtained f rom a non-perturbative lattice 

analysis of the IP-IS splitting in the charmonium system [55]. Whilst at present limited 

by the use of a quenched approximation, such calculations could in future provide 

reliable estimates of A . In Figure 3.4 we show the Apo^'' values obtained for the LEP 

observables discussed above. We have taken for each observable the particular values 

of the kinematical variables given in Table 3.2. Of course for each observable we 

actually have a Ap^^''' distribution in the associated kinematical variable. In Figures 

3.5-3.8 we give the Apl^'^ distributions for the jet rates i?2(-Eo), RZ{EQ), RiiD), R^{D) 

as functions of the jet resolution cut y^. We see that for yc ^ 0.04, Apo is constant 

within the errors. For smaller yc there is a much stronger dependence. In this small 

yc region we may expect sizeable corrections involving ln?/c«t- An attempt to resum 

leading and next-to-leading logarithms to all-orders for Apo for R2{D) w i l l be discussed 

in Chapter 4. In Figures 3.5-3.8 we used published OPAL data [6] without correcting 

for hadronization effects. These are expected to be totally negligible for yc ^ 0.04, but 

w i l l be important in the small yc region. For thrust and EEC the Ap^^''' distributions 

are flat away f rom T 1 and x ~ 180" where large corrections involving l n ( l - T) 

and ln(cos^ | ) respectively wi l l be important. The plots of Ap^^''' against T and x are 

shown in Figures 3.9 and 3.10 respectively. 

Returning to Figure 3.4 we see that there is significant scatter, in particular between 

the jet rates with EO and D recombination algorithms. To proceed further then we need 

either N N L O calculations or information on the Q-dependence of these observables. 

The only N N L O calculation completed so far is that for Rz [16]. For Rz{EQ) and EEC 

there are published data f rom the JADE collaboration at the PETRA e+e~ machine with 

^/s in the range 22-44 GeV [23, 56], using a comparable analysis. In the next sub­

section we shall attempt to use this data together with the LEP data for these quantities 

to obtain absolute estimates of ApQ f rom the (^-dependence. 
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o 

Rj(EO) R3(E0) Rj(D) 

Figure 3.4: Ap^'"'' of equation (3.86) for various LEP observables (see text for details). 
A reference value of A j ^ = 110 MeV is chosen. 
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1.2 

R,(EO) OPAL 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.15 

Figure 3.5: The Vcut dependence of Apl""^ for i ? 2 ( E 0 ) . OPAL data of reference [6] is 
used uncorrected for hadronization. A reference value of A j ^ = 1 1 0 MeV is chosen. 
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Ycu. 

Figure 3.6: The ycut dependence of Apl""^ for R2{D). OPAL data of reference [6] is 
used uncorrected for hadronization. A reference value of A j ^ = 1 1 0 MeV is chosen. 
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Figure 3.7: The y^ut dependence of Apl""^ for R^^E^i). OPAL data of reference [6] is 
used uncorrected for hadronization. A reference value of A j ^ = 1 1 0 MeV is chosen. 
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-10 

RJCD) OPAL 

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 

Figure 3.8: The ycut dependence of Apl''^ for RsiD). OPAL data of reference [6] is 
used uncorrected for hadronization. A reference value of A ^ = 110 MeV is chosen. 
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f i r ? 

0.95 0.75 0.65 

Figure 3.9: The dependence of Ap^Q^ on the observable Thrust, T. OPAL data of 
reference [6] is used uncorrected for hadronization. A reference value of A j ^ = 1 1 0 
M e V is chosen. 
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180 

Figure 3.10: The x dependence of Apl^^ for the energy-energy correlation function. 
OPAL data of reference [6] is used uncorrected for hadronization. A reference value 
of Ai|L = no MeV is chosen. 
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Observable LEP 

A ^ ^ 
MS 

P = Mz 

LEP 

A ^ 

MS 

P = PEC 

Apo ^ 0 

A g ^ = 200 MeV 

p = Mz 

Apo « 0 

A £ ) = 200 MeV 
MS 

P = PEC 

T 

R2{Eo) 

RsiEo) 

R2{D) 

RsiD) 

EEC 

AEEC 

Rz 

883.0 

335.7 

326.8 

420.3 

425.6 

839.1 

89.23 

254.4 

197.9 

140.4 

139.5 

252.1 

257.4 

268.2 

63.79 

245.7 

894.4 

498.5 

488.3 

328.3 

325.2 

597.4 

294.2 

206.9 

200 

200 

200 

200 

200 

200 

200 

200 

Table 3.3: The first two columns show the central values of (in MeV) extracted 

by comparing N L O perturbative QCD predictions for the observables of Table 3.2, 

taking p = Mz and p = PEC, with OPAL data [6]. The third and fourth columns give 

the N L O A g ^ values extracted with p = Mz and p = PEC, assuming ApQ = 0 for 

each observable, and an actual value of A ^ ^ = 200 MeV. 

We conclude by tabulating in Table 3.3 the A j ^ values obtained by fitting to LEP 

data at N L O for these same observables at the same values of the kinematical parameters 

as in Table 3.2 using p = Mz and p - PEC- The p - PEC values correspond to the 

A g ^ values for which A/JQ = 0, and so the scatter is directly related to points in the Apo 

plot of Figure 3.4. The p = Mz values show much greater scatter, since as discussed 

in section 3.3 the scatter in r^^(Mz) is superimposed on top of the physically-relevant 

scatter in Apo. 

To further emphasise this, suppose that we lived in an 'asymptotic world' where Q = 
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Mz was sufficiently large that Apo ^ 0 for all observables. Thus for all observables 

F{RcxpiMz)) = M n ̂  - r p . (3.87) 

Supposing that A j ^ = 200 MeV, then (3.87) may be used to generate data ' i ? e x p ( M z ) ' 

in such an 'asymptotic world ' . By construction the A ^ obtained by fitting at NLO with 

IJ- = fJ-Ec w i l l be 200 MeV for all observables, but that obtained with p = Mz wi l l still 

exhibit significant, but completely predictable,scatter. These 'asymptotic world' results 

are also tabulated in Table 3.3. 

3.4.3 Apo from NNLO calculations and Q-dependence. 

I f we have available a N N L O perturbative calculation then the RS invariant p2 defined 

in equation (3.46) can be obtained. For Rz, p2 = - 15 .1 ( N j = 5) using the N N L O 

calculation of reference [16]. For all the other observables N N L O corrections have yet 

to be calculated and so p2 is unknown. I f we insert the perturbative expansion of p{x) 

(equation (3.44)) into (3.67) we obtain 

rR 
Apo = / 

Jo 

{P2 + P3X + . . . ) 

(1 + CX ) (1 + ex + P2X'^ + . . .) 

/^2i? + ( f - cp2)R' + 0{W) ^ A ^ o ™ ^ + 0{R'). (3.88) 

Using the 1993 LEP average data we have Rz = (19.97 ± 0.03)(1 + <5QCD) with 

SQCD = 0.040 ± 0.004 [13]. Thus with p2 = - 15 .1 we have Ap^^^° ~ P2SQCD ^ 

[ ( 5 L 
M S 

-0.60 i 0.06. Adjusting the reference value of A g L so that Apl""^ for Rz corresponds 

with this Ap^^^° results in A j ^ = 288 ± 200 MeV. This is of course just the A ^ ; ^ 

obtained at N N L O using the EC scheme with T = po and C2 = p2-

To obtain estimates of Apo for the other observables one can try to use their Q-

dependence. Suppose that we have measurements of R at two energies Q = Q\ and 

Q = Q2 {Qi > Q2), then we can construct AP^Q''^{QT) and AP^Q'^{Q2) of equation 
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(3.86) f rom the data (with the same reference value of A g ^ ) . Then 

A ^ r ( Q i ) - A / > r ( Q 2 ) = b\n^ - FiR{Q,)) + F{R{Q2)) 

= r ' ^ ' \ { x ) d x = {R{Q,) - R{Q2))I(R), (3.89) 
jRiQ2) 

where 
1 

+ (3.90) 
p{x) ' x^{l + cx) 

is the integrand of A^o and R{Q\) < R < R{Q2)- Thus the integrand of Apo may be 

measured f rom the Q-dependence of the data, 

Obviously by measuring dR/dlnQ at Q = Qo with sufficient accuracy one can in 

principle determine I{R{Qo)) and so by suitably detailed measurement over the energy 

range [Qi,Q2] one can determine I{x) on the interval [R{Qi),R{Q2) . 

The situation for measurements at Qi and Q2 is shown in Figure 3.11 for I{x) versus 

X. The uncertainty in R is represented by the horizontal error bar between R{Qi) and 

R{Q2) and the measurement errors in R{Qi) and R{Q2) themselves contribute a vertical 

error bar. 

We have f rom equation (3.88) that 

I{x) = p2 + {P3 - 2cp2)x + 0{x^). (3.92) 

So 7(0) = p2. Thus f rom a N N L O perturbative calculation we can obtain the integrand 

at the origin. Notice that, like A, the RS invariant p2 is connected with the asymptotic 

(^-dependence of R{Q). A next-NNLO calculation would provide ps and tell us the 

slope of I{x) at the origin, p3 - 2cp2. 

I f N N L O perturbation theory is adequate to determine Apo, then Apo « Ap^^^^ = 
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I ( x ) 

N N L O 

N N L O 

Expt . 

0 R 

Figure 3.11: Learning about the integrand of ApQ, I{x) of equation (3.90). NNLO 
perturbative calculations can provide /(O) = p2, and measurements at energies Qi and 
Q2 can provide a point away f rom the origin. 

P2R{Q), corresponding to I{x) p2 = constant, on the range [ 0 , i ? ( ( 5 ) ] . Thus, i f 

N N L O perturbation theory is adequate, then we expect I{R) « p2 and so from the 

measurements of R{Qi) and R{Q2) we can estimate A/9Q**((5I) = I{R)R{Qi) f rom 

(3.91), 
_ (Ap-^iQ,) - Ap-^{Q2)) 

I f N N L O calculations eventually become available for the observables one can 

then check explicitly whether Ap^^^^ ?s A p " * . A marked discrepancy would indi­

cate the importance of next-NNLO and higher perturbative effects and/or large 'non-

perturbative' e~^/^ effects. Given p2 one can then estimate /03 f rom the slope of the 

straight line joining 7(0) and I{R) and obtain an improved estimate of APQ\QX) from 
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the area under the trapezium (see Figure 3.11). 

In this way perturbative calculations and experimental Q-dependence measurements 

serve as complementary pieces of information. The NNLO and higher perturbative 

calculations effectively provide details of the Q —> oo running of R{Q) which could 

never be obtained experimentally. Together they can help to constrain the behaviour 

of the function ^{R) = —bp{R), and hence to refine the estimates of 

The running of the observables with energy has been used before as a test of QCD. 

For instance R3{E0,yc = 0.08) has been studied as a function of Q over the PETRA-

LEP energy range [ II ] . The apparent running has been compared with the NLO QCD 

expectations for various choices of renormalization scale fi, and A. It has even been 

suggested [57] that the LEP measurements may indicate slightly less running than is 

expected from QCD, and that light gluinos, which would modify the QCD /̂ -function, 

cannot be excluded. Such a claim seems ludicrously premature given our lack of 

knowledge of NNLO and higher QCD effects. 

If we take data for RaiEO, = 0.08) at Q2 = 34 GeV from JADE [23], and at 

= 91 GeV from OPAL [6], then we obtain from (3.93), Apl'\91) = -5.5 ± 3, 

which corresponds to I{R) — -110 ± 60. So if NNLO perturbation theory is adequate 

for this observable we estimate p2 = -110 ± 60, for the as yet uncalculated NNLO 

RS invariant. For the E E C with x = 60° measured by JADE at Q2 = 34 GeV [56], 

and by OPAL at Qi = 91 GeV [54] we similarly find A/9̂ *̂(91) = -1.5 ± 1.5, which 

corresponds to I{R) = -21 ± 21, and an estimate of p2 = -21 ± 21. Since Apl^^ is 

very insensitive to yc and x, comparable results are obtained for other choices of these 

variables. 

In Figure 3.12 we plot Apo for Rz, RsiEO^yc = 0.08) and REEC{X = 60°) 

with Q = Mz- The diamonds correspond to absolute predictions. For Rz we take 

/^pNNLo ^ _o.60±0.06, and RaiEO, y, = 0.08) and for REEC{X = 60°) the Apl''{91) 

values noted above obtained from Q-dependence. The crosses correspond to the A/Sg^'' 

for these observables with the reference A j ^ chosen as 288 MeV so that ApQ^^ for Rz 

agrees with ApQ^^^. There is then agreement, within the considerable errors, between 
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A/iJo''̂  and for R3 and REEC- Demanding consistency between A^o and Ap^o'\ 

Ap^^^o then requires ~A% = 288 ± 100 MeV. 

2 u 

-2 

1 — I 1 r -
Estimate using Energy Dependence 

Experimental Data witli A=288 MeV 

EEC R,(EO) 

Figure 3.12: Absolute estimates of A^o for LEP observables at Q = 91 GeV are 
compared with the observed Apl''^ with AgL = 288 MeV. For EEC(x = 60'') and 
R3{E0,yc = 0.08) the absolute estimates are A/)"* of equation (3.34) obtained from 
Q-dependence using JADE data. For Rz Ap^^^° from the NNLO calculation of 
reference [16] is used. 

Although only performed for a limited number of observables, we regard this con­

sistency between Apl''^ and the absolute Apo obtained from NNLO calculations and 

Q-dependence measurements as very encouraging. Ideally one would like to see addi­

tional LEP measurements for all observables off the Z peak at a lower value of Q to 

avoid the uncertainties due to combining measurements from different machines and 

detectors. One could then perform an exhaustive analysis of the kind described here and 

obtain a reliable determination of A^. Scatter in the values obtained by adjust-
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ing AP^Q''' to agree with App*' (obtained from Q-dependence using (3.93)) would then 

unambiguously indicate the importance of next-NNLO corrections or non-perturbative 

g-i /« effects for some of the observables. 

It is interesting that the above Q-dependence estimates of p2, and the exact NNLO 

calculation of p2 for Rz, suggest p2 large (0(10)) and negative. This has implications 

for the infra-red behaviour of R{Q) since it is consistent with fixed-point behaviour, 

that is p{R*) = 0 implying R^ R* SLSQ^O [47, 58]. 
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Chapter 4 

Resumming Leading and 

Next-to-Leading Logarithms 

4.1 Introduction 

When trying to make predictions using perturbative QCD we are up against a very major 

problem, namely that at present the full perturbative calculation of observables is only 

complete up to the second order in a (= ajn). For some hard jet observables one can 

identify predictable large logarithms of the kinematical parameters, and in favourable 

cases these contributions can be resummed to all-orders of perturbation theory. 

As will be seen later the observables that we shall be considering exhibit the property 

of exponentiation. In fact this property is crucial to the arguments that will be followed 

in this chapter. Hence, a short review of exponentiation is appropiate at this point. 

4.2 Exponentiation 

The appearance of large double logarithms is a common feature of any hard process in 

the 2-jet limit (i.e. the semi-inclusive or Sudakov region), where the emission of the 

radiation is inhibited by the kinematics. For instance, in the case of jet cross-sections at 
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yc « I, the jet invariant mass is constrained to be so small as to allow only emission 

of gluons that are soft and collinear with respect to the parton generating the jet. The 

double logarithmic terms a\n^{l/yc) are due to such soft and collinear gluons. 

It is possible to resum the leading and the next-to-leading logarithms in the pertur­

bative coefficients 

rk = AkL"' + BkL"'-' + ... (4.1) 

where L = \nl/X. Hence, in the region where A —> 0 the resummed coefficients will 

become large, and the uncalculable part of the expression will become relatively small. 

That is, in the limit A ̂  0 we have that the perturbative series for our observable R{X) 

will become 
oo 

R{X) = J^iA^L'" + B,L''-')a''+\ (4.2) 
k=i 

It is important to realise that when we do such a resummation the Ak are completely 

RS-independent, whereas the Bk (i.e. the next-to-leading logarithm contribution) are 

dependent upon the NLO RS choice r = P,/ARS. This resummation is only possible if 

the large logarithmic corrections to the relevant quantity exponentiate. 

Consider the normalized event cross-section, R{y), defined by 

Riy)= r ^ y - ^ , (4.3) 
Jo a ay 

where R{y) is the 2-jet cross-section i?2( -C)(? /c ) , or the integral of the thrust cross-

section 

or for the energy-energy correlation function it is 

By exponentiation we mean that at small A the logarithm of the shape cross-section 
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takes the form 

\nR{y)^Lg,{aL) (4.6) 

where the function has a power series expansion in aL. More precisely, the fac­

torization of QCD matrix elements in the 2-jet region implies that, provided the phase 

space by which R{y) is defined also has factorization properties that are specified, then 

R{y) = C{a)^y,a) + D{y,a), (4.7) 

where 

C{a) = l + ^Cna- (4.8) 
n=l 

oo n+1 

lnS(t/,a) = ^ ^ GnTOâ L™ 
n=l m=l 

= Lgi{aL) + g^iaL) + ag3iaL) + ..., (4.9) 

and D{y,a) vanishes as y ^ 0 order-by-order in perturbation theory. The word ex­

ponentiation refers to the fact that the terms a"L™ with m > n + 1 are absent from 

\nR{y), whereas they do appear in R[y) itself. The function gi resums all the leading 

contributions a^Ln + 1, while g2 contains the next-to-leading logarithmic terms a"L", 

and g3 etc. represent the remaining subdominant logarithmic corrections a^L^ with 

0 < m < n. All the functions gi vanish at L = 0 since they resum terms with m > 0. 

Consider the simpler case of Quantum Electrodynamics (QED). In QED photons 

are not charged and this impies that multiple soft photon emission is an independent 

process. Thus, the probability du{\,..., n) for n-soft photon emission factorizes in the 

product of single photon factors du{i) 

d^{\,...,n) = -f[duj{i). (4.10) 

Starting from this factorized result we can obtain the corresponding cross-sections 
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contribution by integration over the relevant phase-space 0(1, . . . ,n; A). Therefore, if 

the phase space factorizes in the soft limit 

e ( l , . . . , n ; A ) ^ n 0 ( e , A ) , (4.11) 

then the factorization of multiphoton amplitudes leads to an exponentiation of the cross-

section 

oo . 

1 + ^ / ( i a ; ( l , . . . , n ) 0 ( l , . . . , n ; A ) 
n=l •' 

oo T n . 

- n - E ^ n / M O 0 ( ^ ; A ) (4.12) 

j du{i)e(i; A) . 

n=l "•• j=l 
exp 

The property (4.10) comes from QED dynamics whilst (4.12) depends on the kinematic 

definition of the cross-section. The cross-section exponentiates in the Sudakov region 

if and only if its definition does not induce kinematic correlations among soft photons. 

The main difference between the case of QCD and that of QED is due to the 

fact that the gluons have colour charge. Therefore, they can radiate in cascade and 

soft gluon emission is no longer an independent process. Strong gluon correlations are 

enforced by the dynamics, multiple gluon emission is not factorized into single emission 

contributions and we can only expect some kind of generalized exponentiation. 

Nevertheless, a simple exponentiation structure is still valid for highly inclusive 

cross-sections like a large class of 2-jet dominated quantities. 

It can be shown that thrust, energy-energy correlation, and the jet-fractions defined 

in the Durham algorithm exponentiate. It should be noted that the jet-fractions in the 

E and EO scheme do not exponentiate and so such an analysis is impossible with these 

algorithms. For thrust A = 1 - T, for energy-energy correlation A = cos^x/2, and for 

the jet-fractions A = yc. 
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4.3 What Has Been Done To Date? 

There has been much recent interest, both theoretical and experimental in the possi­

bility of resumming leading and next-to-leading logarithms (NLL) in the kinematical 

variables, described above, to all-orders for LEP observables. 

The procedure that seems to be favoured by experimentalists is that of Catani et. 

al.. In order to compare the predictions of such an analysis with data the result of 

the resummation and the 0{al) calculation have to be combined by employing one of 

four types of matching procedure, namely 'ln(R)-matching', 'R-matching', 'modified 

R-matching' and 'modified ln(R) matching'. The various matching schemes all embody 

the full 0{al) result, together with the resummation and next-to-leading logarithms, 

but they differ in higher orders. 

Once this has been done and all the relevant boundary conditions have been applied 

there still remains the problem of scheme dependence. 

4.4 The Effective Charge Scheme 

The advantage of the E C formalism here is that from the leading and next-to-leading 

logarithms in one can obtain the leading and next-to-leading logarithms in the RS 

invariants pk = Af.L'^^ + BkL'^^~^ -\- 0{L'^''~'^). One can then unambiguously construct 

p^^\x) = :r^(l + cx + ^ f ^ V + . . . - h / 9 f ^ ^ + . . . ) , 

/ j f " = AkL''+ BkL''-\ (4.13) 

p^^^(x) is constructed from RS-invariants and so does not involve the renormalization 

scale, or the NLO perturbative coefficient. There is, therefore, no analogue of the 

matching prescription ambiguity and one can obtain an expression for Ap^^^. This 

will be done in the next couple of sections. 

This may be directly compared with Ap^^'^. If the observed A-dependence of Ap^ 
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in the small-A region disagrees with that predicted from Ap^^^ then one has unam­

biguous evidence that the D L L approximation is inadequate, that is that the neglected 

sub-leading logarithms and constants are important. 

4.5 An Expression For p^^^ 

As demonstrated earlier in this chapter we have expressions of the form 

it:^^^(a) = /(a)+^(a) (4.14) 

where R^^^(a) is the sum of the leading logarithm contribution and the next-to-leading 

logarithm contribution to the perturbative expansion of the observable. For convenience 

the leading logarithm contribution will be denoted by /(a) and the next-to-leading 

logarithm contribution by g{a). Notice that we strictly resum only leading and next-to-

leading logarithms in each order, since only these contributions are actually known to 

all-orders. We therefore have an improvable approximation to which could be added 

next-to-next-to-leading logarithms if these become available. For many of the LEP 

observables we know R^^^ explicitly and so in order to obtain the ultimate goal of 

knowing the double leading logarithm approximation for Apo we need to find the 

leading logarithm and next-to-leading logarithm contributions for our RS invariants pi. 

In order to obtain p{R) we require a{R), which will be obtained from equation 

(4.14). Therefore, we can deduce that the double leading logarithm approximation will 

be of the form 

a'^^^{R) = F{R) + G{R) (4.15) 

where F{R) is the leading logarithm and G{R) is the next-to leading logarithm contri­

bution to a(i?). 

It is useful to keep track separately of the next-to-leading logarithm contribution by 
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attaching a parameter A to it, which will eventually be set equal to 1. So we write 

^^^^(a;A) = f{a) + Xgia) (4.16) 

R'^^^ia) = ^ ^ " ( a ; l ) . (4.17) 

If we now reverse RP^^{a\ A), then we will find that 

~a{R; A) = F{R) + \G{R) + O(A'). (4.18) 

The A-independent term will come from reversing /(a) so 

F{R) = f - \ R ) . (4.19) 

To obtain G{R) we can write using a Taylor expansion for R^^^, 

R = R^^^{a;\) = f{F{R) + XG{R)) + Xg{F{R) + XG{R)) 

= f{FiR)) + XG{R)f'{F{R)) + Xg{FiR)) + O(A^) 

= R+X[G(R)f'{F(R)) + giFiR))] + OiX'). (4.20) 

Clearly, the coefficient of A must vanish for consistency so that we find 

As we have seen before in equation (3.45) we have the following expression for p{R) 

p{R) = {a{R)Y{l + caiR))^ (4.22) 

Since the contribution due to the constant c is always subleading (i.e neither leads to a 

NLL or a L L contribution) we can simply set c = 0. Hence, using our expression for 
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a{R) we can deduce that 

dR 

= (F^ + 2\FG){F' + AG')-' + 0{X') 

= (4.23, 

, / Z F G f 2 G ' \ 

Since the coefficient A labels the next-to-leading logarithm term we can deduce that 

p-^^iR) = (4.24) 

4.6 The Double Leading Logarithm Approximation For 

To double leading logarithm accuracy we require the following 

Ap^"^"^ = Ap^"^ + Ap^"-"^ (4.25) 

where ApQ^ contains only the leading logarithm contributions and ApQ^^ contains 

only the next-to-leading logarithm contributions. 

As demonstrated above we can derive p^'^^ where 

P DLL ^ pLL ^ pNLL (4 26) 

for the observables being considered. As stated earlier the contribution due to the 

constant c is always subleading and so we can simply set c = 0. Hence we now write 
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simply 
fRe.p r 1 1 • 

Jo I p{x) 

Now, as before, we can write that 

(4.27) 

Apo = A/9^^ + XAp^ ^NLL (4.28) 

and that 
LL I \ ^NLL /5 = /̂ ^̂  + Xp (4.29) 

Now, we can easily deduce that the following is true 

(4.30) 
A=0 

Therefore, if we now substitute in the latter two equations for Apo and p, then we 

obtain that 

DLL 

+ 

Jo \ 
d f^^^' 

dX [Jo 
j-Rexp I 

Jo I 

1 
p^^ + Xp NLL \=0 

1 , 
+ —dx 

1 
,LL + Xp^I^^ A=0 

pNLL 

(7¥ dx (4.31) 

Thus, we have now derived a means of calculating the double leading logarithm ap­

proximation for Apo given the observable in terms of its leading and next-to-leading 

logarithm components of its perturbative expansion. 

So we now need to apply this method to obtain Ap^^^ expressions for the three 

observables for which we have resummed leading and next-to-leading logarithm ex­

pressions, namely the 2-jet and 3-jet cross-section (in the Durham algorithm), thrust, 

and the energy-energy correlation function. 
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4.7 The 2-jet Fraction In The Durham Algorithm, R2{D) 

For the 2-jet fraction R2{D) we have that 

R2{D) = 1 + roR{a) (4.32) 

where R has a perturbative expansion series of the form (3.19). In order to proceed 

the leading logarithm and the next-to-leading logarithm resummation for i?2(-C). 

Catani et. al. [35] has demonstrated that the leading logarithm and the next-to-

leading logarithm resummation for R2{D) is given by 

R^^^ = exp ( j _ C E f ^ , ^ a _ M ( j Q ] _ A ] (4.33) 
V TT JQO q \ \<ij 4yy 

where Qo = Q^/y^. However, we have the following identity 

IQO TT q 
1, / abL' 

where a = OS/TT, 6 = (33 - 2A^/)/6, and L = \n 1/yc. Also we know that 

das ^ 
dq IT q 

(4.34) 

(4.35) 

and 
(4.36) 

If we integrate the expression for and then employ the latter three identities, then 

we can deduce that 

R^^^{D) = exp - 4 C f 
L 1 /3 

1 - a 
26 ha V4 

IN / haV 
- m l — 
h) \ 2 . 

(4.37) 

where a is now equal to as{Q)/Tr. However, upon expansion this latter expression 

produces more than the desired leading and next-to-leading logarithm contributions 
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in each order of a. The reason for this apparent discrepancy is that Catani [36] are 

resumming the terms in the exponent and not the contributions for R2. It can easily 

be seen that the leading and next-to-leading logarithm contributions to R2{D) in each 

order of a are given by the expression 

i ? f ^ ^ ( I } ) = exp 3CFL L\ bCpL^ 2 (4.38) 

where again a = a{ii = Q) and L - In 1/?/<;• The b dependent term in the exponent 

may be absorbed into a by a change of scale Q —> y^^Q. Since the RS invariants pk 

are independent of the renormalization scale to construct them we can equally use 

"(Z)) = exp (1 - I ) a] (4.39) 

Hence, in the above notation we can now write that leading and next-to-leading loga­

rithms summed to all-orders are given by the expression 

ro 

We now need to isolate the leading logarithm contribution /(a) and the next-to-

leading logarithm contribution g(a) to proceed. So if we expand this latter equation and 

then resum the leading and the next-to-leading logarithms separately, then we obtain 

/ (« ) = - ; ^ ( e - ^ ^ ^ ^ " ^ ^ - l ) (4.41) 

and 

gia) = -^e -^^-^» /^ - ^(e'^^^^"/^ - 1). (4.42) 

From this we can deduce that the resummed leading logarithm contribution to a{R) is 
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since F{R) = f~'^{R). We can use this expression to determine the resummed next-

to-leading logarithm contribution to a{R) 

G{R) 9{F{R)) 

CpL^ 
In 1 L^CFR' R 

L{1 L'^CFR 
2 ) 

(4.44) 

Using equations (4.24), (4.43) and (4.44) we can see that the resummed leading and 

next-to-leading logarithm contribution for our RS invariants p are given by 

p^\R) = El 
F> 

I n M l 
L^CFR" 1 - L^CFR^ (4.45) 

and 

^NLL (R) = 
2FG F^G' 

,.(,-££-)(, 
X -

CFL^ 
In 1 - L'^CFR'^ 

£CFR\ 

2 J 

3 R 

6R 
CFL^ 

InM 1 -

2 

L'^CFR' 

Li- i^^^ 

(4.46) 

Hence, in conclusion we can write that the resummed leading and next-to-leading 

logarithms for p are 

9^"(i?) = 
( l + ! ) ( l - ^-^R) In- (1 - ^ ) 

CFL^ 

ClL^li 

2 In i\ - L'CFR\ ^ ^^2 L _ L'CFR' 

^1 
(4.47) 
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Now we are in a position to calculate an expression for Ap^^^, using equation 

(4.31). To do this we shall firstly calculate Ap^^ analytically and then add the result 

for Apo^^ which was calculated numerically. The leading logarithm contribution to 

Apo is given by 

where p^^{x) is given in equation(4.45). We can rewrite the latter equation in the 

following form 

Ap,"(fl) = l t o ( f - ^ r f x + f I r f x ) . (4.49) 

If we now make a change of variables by letting u = ln ( l - PCFX/2), then we can 

write 

Jt p^^(x) Jt X 2 2 7 l n ( l -pL^{x) 

L'GF 

L'Cf 

l^Cp fH^-L^CpRl2) du 1 1 

ln(l-L2Cjr£/2) R t 

•^M-L^CFRI2) i I 

u\\n{\-L'^CFtl2) 

1 

R^e 

L^CF 1 1 
+ -

2 l n ( l - L^CFR/2) 2 ln( l - L^CFe/2) R e 

L^CF 1 L^CF 1 

2 ln{l - L^CFR/2) 2 ^(1 + 

]_ 1 

- i + ^ + 0(e). 
2 In( l - L 2 C F i ? / 2 ) R 4 

(4.50) 

Setting e ^ 0 allows us to deduce that 

Ap^^iR) 
L'C, 1 

2 ~ l n ( l - L^CFR/2) R^ 4 
( 4 . 5 1 ) 

Taking R = Rexp from the OPAL data of reference [5], uncorrected for hadronization 

effects, we obtain the plot shown in Figure 4.1. As can be seen the curve becomes 

more negative as y c ̂  0. 
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-0 .5 L 

-1 .5 L 

-2 .5 

Figure 4.1: The graph to show the leading logarithm contribution Ap^^ as a function 
ofy^ for i ? 2 p ) 
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We now need to integrate numerically to obtain Ap^'^^{R) 

(4.52) 

A plot of this is given in Figure 4.2. As can be seen it has the opposite behaviour to 

APQ^{R) which is rather disquieting. If we add these latter two graphs together, then 

we obtain the graph shown in Figure 4.3. In Figure 4.4 we have also plotted Apl'^^ 

with Aj^ set equal to 184.3 MeV so that the two graphs intercept for r/c = 0.04. 

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.02 0.04 0.06 0.08 

Figure 4.2: The graph to show the next-to-leading logarithm contribution ApQ^^ as a 
function of pc for R2{D) 

The main message that should be learnt from these three graphs is that the next-

to-leading logarithm contribution dominates the leading logarithm contribution. This 

implies that the next-to-next-to-leading logarithm contribution could at least be as large 
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0 0.02 0.04 0.06 O.OS 0.1 0.12 0.14 0.16 0.18 0.2 0.22 

Figure 4.3: The graph to show the resummed double leading logarithm approximation 
Apo'^^ as a function of yc for R2{D) 
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Uncorrected Data 

_ i 1 L . 
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 

Figure 4.4: For the observable R2{D) the DLL approximation A/?^^^ of equation 
(4.31) versus yc is compared with Â o""̂  with adjusted. OPAL data of reference 
[6] uncorrected for hadronization effects is used. 
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as the next-to-leading logarithm contribution and so could completely change the results 

obtained above. Hence, there appears to be little benefit from resumming the next-to-

leading logarithms, and that the bits that we are neglecting are apparently very important 

in the region where the experimental data lie. 

The simplicity of the exponentiation for R2{D) means that we can almost solve 

the entire problem analytically. However, for thrust, the energy-energy correlation 

function, and RsiD) the exponentiation is not quite as simple and so any analytical 

approach is hopeless. Therefore, for these three observables the results obtained will 

just be outlined. 

4.8 Thrust 

For thrust it can be shown using the results of Catani et. al. [36], that the leading 

logarithm contribution is 

/ ( « ) = «e-^'^^" (4.53) 

and the next-to-leading logarithm contribution is 

gia) = ^Cpa^Le-^-'^'r (4.54) 

Thus, the leading logarithm contribution to a(i2) is given by 

R = F(i?)e-^'^^^(^). (4.55) 

As can be seen from the latter equation F{R) is in fact double valued. Therefore, the 

value for F{R) in the range [0,1/L^CF] was taken, where the maximum in R occurs 

at F{R) = IjL'^Cp. This is the correct choice because it leads to the perturbative 

solution, whereas the alternative possibility would lead to a contradiction. 

If we follow the procedure outlined above, then we will obtain the plots ApQ^^{R) 

and Ap^^^{R) as shown in Figures 4.5 and 4.6 respectively. As can be seen both 
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these plots have similar shapes to those obtained for i?2- That is, for small \ = 1 — T 

the leading logarithm component, Ap^^, becomes more negative, whereas the double 

logarithm contribution, Ap^^^, becomes more positive. By comparison between the 

two graphs, it would again appear that the next-to-leading logarithms are dominating 

the picture. 

The data have been plotted with Ajj^ - 90.0 MeV in Figure 4.7 so that a direct 

comparison with ApQ^^{R), which is also plotted on the same axes, can be made. 

This particular choice of Aj^ means that the two graphs intercept at T = 0.795. As 

can easily be seen the resummed double leading logarithm approximation is not a very 

good prediction of the data. 

- 0 . 5 

-1 .5 

-2 .5 

-3 

-3 .5 

- 1 1 r - | 1 T" 

§ 5 5 5 5 

0.68 0.7 0.72 0.74 0.76 0.78 O.S 
T 

0.82 0.84 0.86 

Figure 4.5: The graph to show the leading logarithm contribution Ap^^ as a function 
of T. 
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3 U 

0.76 0.78 0.74 0.68 0.72 0.82 0.84 

Figure 4.6: The graph to show the resummed double leading logarithm approximation 
of Ap^^^ as a function of T for thrust. 
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Figure 4.7: For the observable thrust the D L L approximation Ap^^^ of equation (3.31) 
versus T is compared with Apl"'"' with A g L adjusted. OPAL data of refervence [6] 
uncorrected for hadronization effects is used. 
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4.9 Energy-Energy Correlation 

For the energy-energy correlation function it can be shown using the results of Tumock 

[59], that the leading logarithm contribution is given by 

/(a) = aexp(-CFi^V2) (4.56) 

and that the next-to-leading logarithm contribution is 

g{a) = lcFLa^exp{-CFL'^a/2). (4.57) 
LI 

Therefore, we can write that 

R^F{R)exp{-CFL^F{R)/2) (4.58) 

Again F{R) is double valued and so, in order to preserve the perturbative nature of 

our analysis, we must restrict F{R) to fall within the range [0,2/CFL'^[ • 

The results for Ap^^^{R) and Ap^^^{R) are plotted in Figures 4.8 and 4.9 re­

spectively. Both graphs are much the same as the corresponding figures for thrust and 

R2{D). Thst is, for x ^ 180° (i.e. the back to back region) Ap^^{R) becomes more 

positive. Comparison between these two graphs, again, allows us to conclude that the 

next-to-leading logarithms are controlling our approximation. 

The data (i.e Ap^Q^{Rexp)) have been plotted with A^^^ = 201 MeV in Figure 4.10 

so that a comparison with ApQ^^{R), which is also plotted on the same axes, can be 

made. This particular choice of Ajg^ means that the two graphs intercept at x = 100°. 

Again we can see that the resummed double logarithm approximation is not modelling 

the data at all well. 
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160 

Figure 4.8: The graph to show the leading logarithm contribution Ap^^ as a function 
of X for the energy-energy correlation function. 

101 



1.4 

0 I oooooooooobooooooooooboooooooooiiU»<"»w) 100 120 140 160 

Figure 4.9: The graph to show the resummed double logarithm approximation 
as a function of x for the energy-energy correlation function. 
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Figure 4.10: For the observable energy-energy correlation the DLL approximation 
Ap^^^ of equation (3.31) versus x is compared with Apl''^ with A j ^ adjusted. OPAL 
data of refervence [6] uncorrected for hadronization effects is used. 
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4.10 The 3-jet Fraction In The Durham Algorithm, Rs (D) 

For the 3-jet fraction, R^, Lovett-Turner [60] has obtained the resummed double leading 

logarithm contribution. He found that 

/ (« ) = 
CpaL 

exp V 2 
CAaL'' 

An 
erf 

4 \ 
- 1 1 ( - - r ) 

aLJ 

CAaL'' 

2 L 2 

ICAaL^ 

(4.59) 

and 

CpaL I CpaL^ 
exp 

2 V CAaL'' 

X [3 + aL'h 

^ " - 3 — 3 - ' ^ ^ ] - c ; 
CAO'L 

(4.60) 

where erf(x) is known as the error function and is defined in the following way 

dt. (4.61) 

Compared to the previous observables, / (a) is a relatively complicated function. Hence, 

so that we can understand the behaviour of this function /(a) has been plotted as a 

function of a in Figure 4.11. As can be seen from this plot the function is double 

valued and so when we solve the equation f{F{R)) = R to obtain F{R), we must 

again take the smaller solution since this is our perturbatively correct solution. 

Again, following the above procedure allows us to obtain the plots for the resummed 

leading logarithm contribution, Ap^^, as shown in Figure 4.12. The resummed dou­

ble leading logarithm contribution, A/9^^^(i?), is shown in Figure 4.13. As can be 

seen form these two graphs, it appears, once again, that the next-to-leading logarithm 

contribution is dominating our picture. 
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Figure 4.11: This Figure shows how f(a) of equation (4.59) behaves as a function of a 
for = 0.04 
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If we plot the double leading logarithm contribution on the same axes as Ap^^''' with 

^ M s set equal to 85.6 MeV, as shown in Figure 4.14, then we again find that there is 

no similarity between the data and the double logarithm prediction. 

Therefore, we again have to conclude that it is unwise to believe that the leading 

and next-to-leading logarithms are the dominant contributions for the range of data that 

we are considering. 

5 = 

0.5 

- 0 . 5 L 

-1 .5 L 

-2 .5 
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0.04 0.06 0.0 0.2 0.22 

Figure 4.12: The graph to show the resummed leading logarithm approximation Ap^^ 
as a function of j /c for R^iD) 
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Figure 4.13: The graph to show the double leading logarithm contribution Ap^^^ as a 
function of j /c for RsiD) 
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Figure 4.14: For the observable RsiD) the D L L approximation Ap^^^ of equation 
(4.31) versus yc is compared with Apl""^ with adjusted. OPAL data of reference 
[6] uncorrected for hadronization effects is used. 
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4.11 The Breakdown of the Resummation 

I t was found, for very small A, that the resummation broke down. This manifested 

itself in the fact that for certain A the equation 

Re.p = / ( a ) (4.62) 

has no solution. For R^iD) this equation only has a solution for Rexp < 2/{L'^Cp), 

and this condition is only satisfied for Pc ^ 0.005. For the energy-energy correlation 

function the same condition must be satisfied and this only occurs for x ^ 140°. 

For thrust the condition R^xp < 1/{{L'^Cf) must be satisfied for the convergence of 

our resummation and this only occurs for T ^ 0.835. For the 3-jet fraction, R3{D), 

the condition is far more complicated but again the resummation only converges for 

Vc ^ 0.05. 

Hence, it appears that this resummation procedure breaks down, in general, for small 

A. This is a little unfortunate since this is exactly the region where the leading and next-

to-leading logarithm contributions are supposed to dominate our picture. We conclude 

that whilst we can resum leading logarithm and next-to-leading logarithm contributions 

to Apo to all-orders, these terms are not sufficient to represent the actual behaviour of 

Apo. We note that the measured effective charges Rg^p and the corresponding Ap^^^ are 

smooth and essentially A-independent right down to smaller A than the region where the 

resummation breaks down. Therefore, the behaviour of the resummation, as shown in 

this chapter, is not due to the data we have to hand, but, instead, reflects the inadequacy 

of the limited resummation that has been performed. 
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Chapter 5 

The Renormalization Group Equation 

Estimates of Perturbative Coefficients 

5.1 Introduction 

The calculation of perturbation theory coefficients in renormalizable field theories in­

volves much labour intensive effort. For instance to complete the eighth order QED 

calculation of the anomalous magnetic moment of the electron has necessitated the 

evaluation of 891 Feynman diagrams and has so far taken some ten years of intensive 

numerical calculation using high powered electronic computers, to achieve a result for 

the 0(q:'') coefficient still only accurate to 10% [61]. Similarly, to calculate the QCD 

coefficient of the total hadronic e+e~ cross section to Oiag) [62] has necessitated at 

least five years of effort and the original published results [63] were incorrect due to a 

computer programming error. 

Clearly what is required is a way of plausibly estimating the next perturbative 

coefficient in the series given more or less exact calculations of the first few [64]. 

In the past several attempts to do this for QED [65] and QCD [66] have appeared 

based on Fade approximants and other methods of 'improving' power series. A major 

disadvantage of such approaches is that the particular form of the series one chooses to 
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improve depends on which renormalization scheme is used to perform the calculation, 

and in any case the reliable application of such improvement methods needs some 

knowledge of the large-order behaviour of the series coefficients, which is lacking for 

the physical quantities of interest. 

In Section 5.2 we shall demonstrate that the renormalization group is capable of 

providing such estimates of uncalculated coefficients when supplemented with certain 

extra assumptions. We suggest that these assumptions are probably satisfied for the 

anomalous magnetic moment of the electron, enabling us to give an estimate for the, as 

yet, uncalculated tenth order coefficient, and to reproduce the calculated eighth order 

coefficient at the 20% level, based on the known sixth and lower order coefficients. 

Unfortunately, for the QCD calculations of the total hadronic cross section we find that 

the extra assumptions are not satisfied and we cannot reliably make similar estimates. 

However, we can estimate the O(a^) for the total hadronic cross section i f we 

examine the behaviour around the Nf = 33/2 pole in the QCD Beta-function. This 

w i l l be demonstrated in section 5.3. 

5.2 The First Attempt 

The basic idea is very simple. Again we consider the generic physical quantity R 

calculated as a power series in the renormalization improved coupling a = a^/Tr 

i i : = a-t-r ia^ + r 2 a ^ + . . . (5.1) 

The importance of the RS invariants pk defined in Chapter 3 is that on rearranging 

equations (3.46) we can obtain 

^" = / ^ ,x{pn - Cn) + r„ (n > 1) (5.2) 
( n - 1) 

111 



where 

f2 = ric + rl 
1 

r3 2nr2 + rip2 + -rlc - (5.3) 

Equation (5.2) tells us that r „ calculated in an RS labelled by C2, C3,... ,c„ and ri, can 

be split into two terms. The first involving (pn - c„) requires an n-loop calculation for 

its determination whereas the second, r„ , involves only r„_i ,c„_i and lower coefficients 

and so is specified by an ( n - l)- loop calculation. Thus r„ is partitioned into a genuinely 

new piece o f n-loop information, and a term involving old information assembled by 

the renormalization group f rom (n - l )- loop and lower orders. The hope is that for some 

quantities calculated in particular RS's, over a limited range of n, the first term may be 

much less important than the second so that r„ ~ f „ serves as an adequate estimate. 

This w i l l be true provided that for the particular RS and quanfity in question (/)„ - c„) 

remains ^ Kn where K is of order unity. Let us now apply these considerations to 

the anomalous magnetic moment of the electron. 

ae = = ^ ( 1 + r,a + r,a' + . . . ) (5.4) 

A l l of the perturbative calculations of this quantity have been carried out in the 

'on-sheir RS in which a = a /s, the QED fine structure constant, so that the on-shell 

c^^ are just the invariants p{.^ for the fine structure constant. We shall assume in what 

follows that r, and are always evaluated in the 'on-shell' scheme unless otherwise 

stated. The (on-shell) coefficients r, and c, up to four-loops are all known with varying 

degrees of accuracy: 

r i = -0.6569579311. . . 

r2 = 2.35222 ± 0.00084 
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rs = -2.868 ± 0.276 (5.5) 

c = 7 = 0.75 
4 

C2 = - ^ = -1 .2604 . . . 
96 

C3 = 0.3397 

The quoted errors in the above are the numerical errors f rom the loop integrations which 

cannot be performed analytically, is known analytically and can hence be expressed 

to an arbitrary number o f significant figures. 

Using equations (3.46) and (5.3) one finds from the above coefficients r2 = -0 .061, 

fa = -3 .40, fi = 7.62 ± 0.81, p2 = 1.154, ^3 = 1.408 ± 0.56. Clearly r2 is dominated 

by the {p2 - C2) term and so r2 cannot be used as an estimate. For ra, however, we 

see that fs is within 20% of the exact result. The conditions necessary for and r4 to 

be well estimated by f3,f4 are (̂ 03 - C3) <C 7, {p4 - C4) < 25, so provided that the p^ 

and C4 remain quantities of order 1, as for the lower pr's and Cr ' s , we may anticipate 

that r4 ~ f4 = 7.62 ± 0.81, should be within 10% of the exact tenth order coefficient. 

Another way of looking at this dominance of f „ is to see how dependent r4, r5,r6 

are on the as yet unknown p4,P5,p6,C4,C5,C6. 

To this end we w i l l assume that the Cr continue to alternate in sign with positive pk, 

as suggested by the known coefficients up to four loops. We then randomly generate 

sets of P4,P5,p6,c4,C5,C6 on a computer so that the |/5A;Mc;t| are uniform on the interval 

[0,A], and we allow the parameter A to vary f rom 0 - 10. For each set of randomly 

generated beta-function coefficients we evaluate r4,r5, re using the known exact r,,c, 

i < 3 and equations (5.2) and (5.3) (we take the central value for the ignoring 

the additional numerical error). For each value of A we then extract the maximum 

and minimum r4,rs,re obtained over a large number ( ~ 10^) of trials. The results are 

tabulated in Table 5.1. 
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A r4 re 

0 7.62 -10.46 14.14 

1 8.24 -10.47 19.81 

7.64 -12.17 13.96 

2 8.93 -10.24 26.61 

7.65 -14.42 13.66 

3 9.59 -10.13 32.84 

7.67 -16.10 13.41 

5 10.91 -9.91 45.30 

7.70 -19.86 12.93 

10 14.20 -9.37 76.47 

7.79 -29.26 11.72 

Table 5.1 

The key feature illustrated by the table is the insensitivity of the coefficients to the 

details of the unknown beta function coefficients, that is changes in the parameter A. 

This stability is most evident in the lowest coefficient r4, with increasing sensitivity for 

rs and re which, of course, depend on more unknown parameters. 

The pattern of signs and magnitudes would seem to be well-established, however. 

Notice that just the assumptions of positive pk and alternating Ck ensures that ( p k - C k ) > 

0 and hence gives a bound on the tenth order coefficient r4 > 7.62 ± 0.81. 

The coefficients Ck w i l l be polynomials in N , the number of fermions, of degree 

k - 1 , 

Ck 
.[0] (5.6) 

For the anomalous magnetic moment of the electron = 1 is appropriate and these 

are the values for 02,03 given in equation (5.5). It is possible to calculate c f "^^ to all 
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orders [71] and study the growth of at least this part of the beta function coefficients. 

This was first attempted in [72] using an approximation where photon propagators are 

set to their asymptotic form. In this approximation there was rapid growth of the cf^"^'. 

More recently an exact calculation [71] has been performed indicating that there are 

substantial corrections to the approximation, and a much slower rate of growth. These 

4̂"̂̂  are given in Table 5.2. They remain small quantities of order 1 right up to = 9 

where more rapid growth seems to set it. This provides some evidence that the fu l l Ck 

w i l l not exhibit rapid growth, and the hope is that this is also true of the pk for Ug. The 

Cfc are of course just the pk for aj^. 

k 

2 -1.17 

3 -0.37 

4 -0.29 

5 -0.35 

6 -0.55 

7 -1.05 

8 -2.39 

9 -6.45 

Table 5.2 

We should mention that the approach discussed here is closely connected with the 

discussions of optimized perturbation theory in QED of [73]. In this work the PMS 

[18] and fastest apparent convergence (FAC,equivalent to EC) criteria were used to fix 

the RS. The discrepancy between the 'optimized' sixth order and the on-shell result 
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was then expressed as a multiple of a'*. The relevant coefficient given by equation (5.4) 

of [73] for the FAC criterion is just our f^. A t the time of the publication of [73] only 

a very preliminary value for r3 was available, rs = -1 .6 ± 5 [74] but the reasonable 

agreement between this coefficient and ra = - 3 . 4 was noted. 

Unfortunately, our estimate of the tenth order coefficient is probably not of too 

much phenomenological relevance since the discrepancy [61] between the eighth order 

theoretical prediction using the best measured value of the fine structure constant and 

the measured is of the order of the eighth order correction. To account for the 1 Ja 

difference would require r4 ~ 10^. The estimated coefficient does at least have the 

positive sign required by the data. 

We finally turn to the e+e" total hadronic cross section and ask whether similar 

estimates of higher coefficients are possible. We have 

tr(e+e- ^ hadrons) _ ^ ^ ^ 2 ^ , a (rn^ 

where 

^QCD = a + r^a? -\- r2a^ + 

In the scheme (with p, - Q the e+e" cm energy) with five flavours of massless 

quark we have [62, 75, 43] n = 1.41, r2 = -12.8;c - 1.26,C2 = 1.48 and using 

equations (3.46) and (5.3) we have r2 = 3.77, h = - 58 .91 , p2 = -15.08. Evidently, 

r2 is dominated by {p2 - C2) and cannot be estimated f rom f2. 

5.3 The Pole Approximation 

As discussed in Chapter 3 a next-to-next-to-leading order calculation of the total 

hadronic cross-section is now available [70], 

Re+e-{s) = Y [1 + « (V^) + na{\rsf + r2a{^sf + . . . ] (5.8) 
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where, and r2, are given by the two expressions 

r i = 1.9857 - 0.1153A^y = 1.4092 for Nj = 5 

r2 = -6.6368 - 1.200iyV/ - 0.0052A^^^ = -12.77 for iV/ = 5 (5.9) 

From equation (3.46) we have that 

P2 = r2-\-C2 - r-ic - rl (5.10) 

and so i f we can estimate p2, then we implicitly have also made an estimate of r2. 

In a scheme such as MS' which can be operationally implemented with actual 

Feynman diagram calculations the r„ coefficients w i l l be polynomials in Nj of degree 

n. The coefficients of different powers of Nj reflecting diagrams with different numbers 

of quark loops. For the beta-function coefficients, however, the Ci can be written 

_ 5 1 19 
" T " ^ 12 V 3 3 - 2 i V y 

1 ( 9« .7 ^ ^^^^ N NA ^ (51 n 

and have single poles at iV/ = y . Al lowing a general number of colours, N , we can 

expand all our coefficients as a series in N and 8 where 

The non-trivial fixed point of QCD where 6 = 0 corresponds io 6 = 0, and a pure gauge 

theory {Nj = 0) corresponds to 6 = 1. We want to expand around the non-trivial fixed 

point of QCD, ^ = 0, and in ^ , N large. 
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We w i l l have 

MS 

75 N 3 13iV _ 3 

7 0 1 . 3 11 53 2 

64(5 64 704 6 
3 121 

128iV2 
77 2 55_ 

3 8 4 ^ 7 2 ^ 384 J 

(5.13) 

(5.14) 

and 

P2 = Ao^[{l + ^ + ^ + ...) + HBo + ^ + ...) + ^'{Co + ^ + ...) + ...] (5.15) 

The pole term in p2 comes only f rom C2 and r jC, where the asterix denotes the 

6 = 0 fixed point. It is hence known exactly without requiring knowledge of r2. I f 

^ < < 1 then this term w i l l dominate and p2 should be well estimated by just this term. 

Similarly, for p3 the term only involves the term in cs and r^. In general, the 

Pk only have single poles in 6. Of course for Nj = 5, N = 3 6 - 0.697 which is not 

particularly small. 

By substituting the known values of c, C2, r2 and r i , where r 2 and r-i are expressed 

in terms of Rieman zeta functions [70], we obtain that p2 is given by 

P2 = 

+ 
+ 
+ 

1377 153 1408 1 
V i^riA 1 01-71-7 ATS! / 1408 S L'^ 704 1377 iV2 

1408 13 , 11 . ^ , 
1377' '768 • 8 ''^^ • ' 8 384'iV2 
1408 407 55 3421 55 

6 T ^ ( ( — C s - —Cs - T 7 ^ ) + ( — C 5 

2 5 7 ^ i L ^ l 

1377 ' ' 72 1152' 9 
1408 121 2 , 1 2 1 . . ^ - . ^ 

^ 1377^432" + - IT'^' 

847 

256 iV4' 
187 11 1 

6 - ^ ^ ^ " 9 6 ^ i V ^ ^ ^^-^^^ 
14399, 
5184 

I f we evaluate these zeta functions, then we are left with the following expression for 

P2 

P2 = 
1377 
1408 6 

9 1 1 517 1 
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+ ^ '(-2.56798 + .0251140-^) + 0.5713386 6^ (5.17) 

I f we now vary 6 between one and zero (i.e. vary Nj between zero and llN/2), then 

we should be able to see a general pattern in the behaviour of this latter function. We 

can also vary N between zero and any number that we feel is suitable. When this is 

done we obtain the graph shown in Figure 5.1. 

-500 

-1000 

Figure 5.1: A graph to show how p2, as calculated using equation (5.16), varies with 
N and 6 

Now when we evaluate the coefficient - f f ^ i ^ we find that it is equal to -12.63 

for Nf - 5 and N = 3. This is very surprising since there is only a 20% discrepancy 

between this value, which we shall call the pole term, and the exact value of p2. 

Hence, i f we plot 

" " ^ ^ (5.18) „Po/e _ 
P2 - 1408 8 
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as a function o f both A'̂  and 8, as shown in Figure 5.2, then we find that the pole term 

is a good approximation to the exact value of p2- Infact overall there is no more than 

a 30% discrepancy between the two. This is more easily seen in Table 5.3 in which 

we have tabulated the values of p2, calculated using equation (5.16), and the values of 

p2°'^, as calculated in equation (5.18), for various values of N and 8. Thus, we are able 

to conclude that it is possible to estimate r2 using the pole term for the total hadronic 

cross section. 

-500 

-1000 L 

Figure 5.2: A graph to show how /of"'", as calculated using equation (5.18), varies with 

N and 8 

120 



N 

6 

0.5 1.0 1.5 2.0 3.0 4.0 5.0 

0.1 -2.35 

(-2.44) 

-10.20 

(-9.78) 

-24.10 

(-22.00) 

-43.67 

(-39.12) 

-99.67 

(-88.02) 

-178.09 

(-156.48) 

-278.92 

(-244.50) 

0.2 -2 .16 

(-1.22) 

-6 .17 

(-4.89) 

-13.66 

(-11.00) 

-24.27 

(-19.56) 

-54.64 

(-44.01) 

-97.19 

(-78.24) 

-151.90 

(-122.25) 

0.3 -2 .06 

( - .81) 

-4 .68 

(-3.26) 

-9 .86 

(-7.33) 

-17.22 

(-13.04) 

-38.33 

(-29.34) 

-67.90 

(-52.16) 

-105.94 

(-81.50) 

0.4 -1.98 

( - .61) 

-3.83 

(-2.44) 

-7.73 

(-5.50) 

-13.29 

(-9.78) 

-29.27 

(-22.00) 

-51.65 

(-39.12) 

-80.45 

(-61.12) 

0.5 -1 .92 

( - .49) 

-3 .25 

(-1.96) 

-6 .29 

(-4.40) 

-10.65 

(-7.82) 

-23.17 

(-17.60) 

-40.73 

(-31.30) 

-63.31 

(-48.90) 

0.6 -1 .87 

( - .41) 

-2 .81 

(-1.63) 

-5 .20 

(-3.67) 

-8.66 

(-6.52) 

-18.60 

(-14.67) 

-32.55 

(-26.08) 

-50.49 

(-40.75) 

0.7 -1 .82 

( - .35) 

-2 .46 

(-1.40) 

-4.33 

(-3.14) 

-7.07 

(-5.59) 

-14.95 

(-12.57) 

-26.02 

(-22.35) 

-40.26 

(-34.93) 

0.8 -1 .78 

( - .31) 

-2 .16 

(-1.22) 

-3 .60 

(-2.75) 

-5 .74 

(-4.89) 

-11.92 

(-11.00) 

-20.59 

(-19.56) 

-31.76 

(-30.56) 

0.9 -1 .74 

( - .27) 

-1 .90 

(-1.09) 

-2.98 

(-2.44) 

-4.60 

(-4.35) 

-9.32 

(-9.78) 

-15.95 

(-17.39) 

-24.49 

(-27.17) 

1.0 -1 .70 

( - .24) 

-1 .67 

( - .98) 

-2 .44 

(-2.20) 

-3 .62 

(-3.91) 

-7.07 

(-8.80) 

-11.92 

(-15.65) 

-18.17 

(-24.45) 

Table 5.3:A Table to demonstrate quantitatively how p2, as calculated in equation 

, which is the number in brackets, vary as a function of N 

and 8. 

(5.16), and , r ' « = - f f i f 

Unfortunately, this appears to be an algebraic 'fluke' . It relies on the fact that 
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fortuitously the additional polynomial in 8 is rather small over the whole range 0 < 

8<1. 

It is interesting to note that the pole terms in c and c^^ are both negative and 

close to unity in magnitude. I f this is also true for the higher c„ ' s it might suggest 

that generally /Ofc ~ The uniform negative sign would result in an infra-red fixed 

point in the effective charge beta-function, p{R*) = 0, which in turn would lead to 

freezing of the effective charges for physical observables so that R{Q) R*, Q 0. 

This behaviour has been suggested by Mattingly and Stevenson, who have examined 

the low-Q experimental data for the e+e" QCD R-ratio [58]. 
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Chapter 6 

Summary and Conclusions 

Evidently i f one has a N L O perturbative QCD calculation available there wi l l be some 

uncertainty in the N L O perturbative prediction for a QCD observable due to the missing 

uncalculated higher-order terms in the perturbation series. This has the effect that when 

one compares the N L O calculation with experimental data one may anticipate that the 

value of Ajjg extracted w i l l not be universal but wi l l exhibit some scatter for different 

observables due to the differing sizes of the uncalculated contributions. The problem 

is compounded by the fact that the extracted depends also on the choice of 

RS at NLO, which may be labelled by r i the NLO coefficient (or equivalently the 

renormalisation scale p,), an unphysical parameter. It has been seen in eqution(3.84) 

that the relation between the extracted A(NLO,ri) and the actual which one is 

trying to measure is factorized into two contributions. One, AF{r-i,R), is ri-dependent 

and known exactly f rom equation (3.85), and the other, Apo, is unknown but r j -

independent. Apo depends only on the observable and NNLO and higher RS-invariants 

P2, p3,.... The predictable ri-dependence of A{NLO,ri) therefore has nothing to tell 

us about the importance of uncalculated corrections, the irreducible uncertainty resides 

in the unknown Apo. Some of the rj-dependent logarithms in the NNLO and higher 

corrections can be summed up into AF{ri,R) and the remainder can be absorbed into 

RS-invariant combinations contained in Apo-
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The unknown A/JQ can be isolated by choosing the particular RS where r j = 0, 

fj. = fiEc the effective charge scale, which sets AF = 0. From the scatter in A.{NLO, 0) 

for different observables one can then infer the scatter in Apo, in particular relative 

differences ApoA - ApoB for observables A,B can be absolutely measured. Figure 

3 indicates that these relative differences cannot be neglected for a range of LEP 

observables. For at least some of the observables Apo must be sizeable, and so Apo 

must be estimated before we can determine Aj^g with any reliability. 

In contrast, in the standard LEP determinations of as{Mz) one tries to estimate 

the importance of uncalculated higher-order corrections by using two different ad hoc 

scale choices and interpreting the spread in extracted as{Mz) as indicating a 'theoret­

ical error'. By artificially enlarging uncertainties in this way one obtains a spurious 

consistency between different observables, the real scale-independent uncertainty due 

to Apo being buried beneath the supposedly informative scale dependence of A F . The 

global as{Mz) determinations obtained with these sort of analyses should therefore be 

treated with some scepticism. 

Having determined that Apo is not negligible one must try to estimate it to make 

further progress. Within the effective charge formalism one can write Ajj^ in terms of 

the measured observable R{Q), and Apo constructed non-perturbatively from the 

measured running dR/dlnQ = -bp{R). Apo may also be obtained perturbatively by 

expanding the effective charge ^-function, so that given a NNLO calculation one can 

estimate Apo^^'^ = P2R. By combining NNLO calculations and Q-dependence mea­

surements one can refine ones knowledge of Apo and hence of Ajjg. The perturbative 

RS-invariants po{A), p2, ps, - • • are connected with Q 00 evolution of the observable 

R{Q), and hence provide information about the function p{R) in the vicinity of i? = 0. 

The present situation is that a NNLO calculation is available only for the hadronic 

width of the Z°. By estimating Ap^^^° for this observable, and combining PETRA 

data for jet rates and energy-energy correlations, with LEP data on these observables, 

to obtain an estimate of Apo from Q-dependence, we found consistency for = 

287 ± 100 MeV. 

124 



We can conclude that reliable measurements of Kj;js at e+e~ machines will require 

at least NNLO perturbative calculations and/or measurements of observables at more 

than one energy. Acquiring such information will entail considerable experimental and 

theoretical effort. The effective charge formalism allows one to efficiently harness this 

hard won information to refine one's knowledge of and the interplay between 

perturbative and non-perturbative effects. The insistance on formulating everything 

in terms of physical quantities allows one to quantify uncertainties in a way which 

is impossible in approaches which choose the unphysical RS-dependence parameters 

according to some plausiblity argument. 

An important remaining problem is to extend the approach to processes with initial 

state hadrons where there is an additional factorization ambiguity connected with the 

separation of structure functions from the hard cross-sections. 

We have also seen that for observables where leading and next-to-leading logarithms 

in kinematical variables can be resummed one can unambiguously estimate Ap^^^ by 

resumming leading and next-to-leading logarithms in the RS invariants pk- In the 

conventional approach one needs to use an ad hoc matching procedure to include the 

exact NLO perturbative coefficient, and the problem of scale dependence still remains. 

Performing this analysis for all our observables we found that there is no agreement 

between the A-dependence at low A of Ap^^^ and ApQ^''^ using uncorrected data. 

Additionally, we argued that it is possible to estimate the higher order coefficients 

in the QED magnetic moment of the electron. Unfortunately, the procedure could 

not be extended to QCD. We drew attention to the possibility of an expansion in jj 

and 6, where ^ = 0 corresponds to the non-trivial fixed point of QCD, b=0. Whilst 

inconclusive this expansion had various interesting features, and the "leading" term 

gave a good estimate of the invariant p2 for Re+e-
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