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S I N G L E C R Y S T A L X - R A Y DIFFRACTION S T U D I E S ON S M A L L , MEDIUM & L A R G E M O L E C U L E S 

Susanna Butterworth 

Abstract 

Chapter 1. Production of crystals for diffraction analysis would be assisted by the devising of a set 

of rules which, given molecular formula, could predict crystal formation conditions. By studying 

trends in structural properties of a group of closely related simple molecules, deductions could be 

drawn which could then be applied more generally. Chalcone derivatives with minor substituent 

differences were recrystallised, X-ray diffraction data collected and the structures solved and 

refined. Additionally, NMR and UV studies were performed, investigating an observed dimerisation 

reaction. 

Chapter 2. Discovery of peptide hormones and neurotransmitters has stimulated the study of 

structure-activity relationships, although the structure of these molecules is often poorly defined. 

Proctolin, a linear pentapeptide, is a neurotransmitter in insects. Crystallisation was attempted, with 

the aim of deducing the active conformation structure, thereby assisting in design of small 

molecule analogues for use as non-cholinergic pesticides. No diffraction was observed from the 

crystals produced. 

Chapter 3. Glucosamine 6-phosphate synthase is an N-terminal nucleophile amidotransferase 

catalysing the first step in the hexosamine pathway, from which all amino-sugar containing 

macromolecules are derived. Structure determination of each of two subdomains was attempted. In 

one case, pseudo-symmetry appeared to obstruct stnjcture solution. The symmetry has 

subsequently been understood and the structure obtained. Crystals of the second domain are 

rotationally disordered. 

Chapters 4 and 5. Recent advances in macromolecular crystallographic techniques have facilitated 

the collection of an increasing number of high quality, atomic resolution data sets. Methods for 

refinement, previously limited to small moleculd structures, have increasing relevance for proteins. 

Atomic resolution refinements using these evolving protocols have been performed on two small 

proteins, rubredoxin from Desulfovibrio vulgaris and the protein G immunoglobulin-binding domain. 

Appropriate treatment of the solvent structure in a protein crystal and the benefit to be gained by 

using sharpened density maps during refinement were investigated. 



Acknowledgements 

I would like to thank everyone I have known in Durham and Hamburg for help, 

encouragement and laughs along the way. In particular I thank my supervisor, Judith 

Howard, for putting up with me and assisting me through all my changes of direction. I am 

very grateful to Keith Wilson for making it possible for me to come to Hamburg in the 

beginning and for his consistent support through my time there. This thesis is dedicated 

to Jon, who has shared my life through all the ups and downs of the last four years. 



Single Crystal X-ray Diffraction Studies 

on 

Small, Medium and Large Molecules 

S U S A N N A B U T T E R W O R T H 

DEPARTMENT O F CHEMISTRY, UNIVERSITY O F DURHAM 

submitted in partial fulfilmerit of the requirements for the degree of 

D O C T O R O F P H I L O S O P H Y 

September, 1996 

The copyright of this thesis rests 
with the author. No quotation 
from it should be published 
without the written consent of the 
author and information derived 
from it should be acknowledged. 

3 

MAY 199? 



Table of Contents 

S I N G L E C R Y S T A L X - R A Y D I F F R A C T I O N S T U D I E S O N S M A L L , MEDIUM & L A R G E 

M O L E C U L E S 1 

ABSTRACT 1 

T A B L E O F C O N T E N T S 4 

GENERAL INTRODUCTION 9 

ABBREVIATIONS USED IN THIS THESIS 1 4 

C H A P T E R 1 : Error! Bookmark not defined. 

A S Y S T E M A T I C S T U D Y O F T H E C R Y S T A L S T R U C T U R E S O F P H E N Y L A C E T 0 P H E N 0 N E S 1 6 

BACKGROUND 1 6 

INTRODUCTION 1 6 

MOLECULAR CONFORMATION 1 9 

PACKING CHARACTERISTICS - A SURVEY OF FOURTEEN CHALCONE CRYSTAL STRUCTURES 21 

Chalcones I. XVI & XXI 21 

Chalcones II, X & XI 23 

Chalcones XXIV and XXV. 25 

Chalcones XVII &XIX. 28 

Chalcone VI 29 

Chalcone XIV 31 

Conclusions to packing survey. 31 

DiMERISATION OF CHALCONE XXI I 32 

Summary. 32 

Synthesis of chalcone XXII 34 

Crystal Structure Determination 3 5 

Discussion of crystal structures 36 

monomer crystal 36 

dimer crystal 39 

' ^C NMR studies on chalcone XXII 40 

Conclusions from NMR experiments 43 

APPENDIX: DETAILS OF STRUCTURES AND THEIR DATA COLLECTION, STRUCTURE SOLUTION AND 

REFINEMENT 44 

REFERENCES 4 7 

C H A P T E R 2: 48 

C R Y S T A L L I S A T I O N O F P R O C T O L I N , A P E N T A P E P T I D E A R G - T Y R - L E U - P R O - T H R 48 

4 



INTRODUCTION 48 

Peptides as neurotransmitters 48 

X-ray crystallographic studies on oligopeptides 50 

About proctolin 5 3 

SEARCH FOR CRYSTALLISATION CONDITIONS FOR PROCTOLIN 54 

Aim 54 

Material 54 

Purification and analysis by HPLC 5 5 

Solid phase peptide synthesis 5 7 

Introduction 57 

Automated solid-phase peptide synthesis of proctolin 59 

Substitution detemnination 59 

Quantitative Ninhydrin monitoring for determination of coupling efficiencies 60 

Cleavage 61 

Yield 62 

Crystallisation 62 

introduction : finding crystallising conditions for peptides 62 

Solubility tests 66 

Crystallisation tests 67 

CONCLUSIONS 7 0 

REFERENCES 71 

C H A P T E R 3 73 

S T R U C T U R A L S T U D I E S O N G L U C O S A M I N E 6 - P H O S P H A T E S Y N T H A S E 73 

ABBREVIATIONS AND DEFINITIONS USED IN CHAPTER 3 73 

INTRODUCTION 7 4 

OVERVIEW 78 

EXPERIMENTAL, G A T DOMAIN 79 

Crystallisation and data collection 79 

Multiple isomorphous replacement 62 

Molecular replacement S3 

Alteration of crystal symmetry 84 

SYNTHASE DOMAIN 85 

Crystallisation and data collection 85 

Structure solution attempts 85 

Alteration of crystal symmetry 87 

APPENDIX: STRUCTURE OF THE G A T DOMAIN 89 

Solution and refinement 89 



An inhibitor complex 93 

Description of the structure 93 

Substrate binding site 95 

Comparison to PURF structure, the loop lid on the binding site 95 

{Mechanism forglutamine hydrolysis 96 

GLUTAMINASE / NTN REFERENCES 100 

CHAPTER 4: 102 

ANISOTROPIC REFINEMENT OF TWO SMALL PROTEIN STRUCTURES 102 

INTRODUCTION: LEAST-SQUARES REFINEMENT 102 

PROTOCOL USED FOR PROTEIN G AND RUBREDOXIN REFINEMENTS 1 1 2 

CHAPTER 4A: 115 

ANISOTROPIC REFINEMENT OF THE PROTEIN G IgG BINDING DOMAIN III 115 

INTRODUCTION 1 1 5 

What is an Immunoglobulin? 115 

What is Protein G? 117 

SUMMARY 122 

PREVIOUS EXPERIMENT: (DERRICK & WIGLEY, 1994) 122 

Protein and Crystallisation 122 

Data Collection and Processing 123 

Structure Solution and Refinement 123 

ANISOTROPIC REFINEMENT 124 

Data 124 

Model 125 

Refinement 125 

COMPARISON OF ANISOTROPIC MODEL WITH 11GD 128 

Protein 128 

Solvent 138 

IMMUNOGLOBULIN-BINDING PROTEINS, REFERENCES 144 

CHAPTER 4B: 146 

ANISOTROPIC REFINEMENT OF RUBREDOXIN FROM DESULFOVIBRIO VULGARIS 146 

BACKGROUND 146 

AIMS 148 

EXPERIMENTAL 148 

Crystallisation and Data Collection 149 

6 



Initial Model and Data 149 

Refinement strategy 150 

COMPARISON WITH AN ISOTROPIC MODEL OF THE RUBREDOXIN STRUCTURE 157 

Unit Cell ^ 5 7 

Protein 158 

Solvent 167 

General 170 

RUBREDOXIN REFERENCES , 172 

CHAPTER 5: 173 

ASPECTS OF THE REFINEMENT OF ATOMIC RESOLUTION PROTEIN STRUCTURES 173 

A: SHARPENING AS A TOOL IN PROTEIN CRYSTAL STRUCTURE REFINEMENT 173 

SUMMARY 173 

INTRODUCTION 174 

Structure Factors, F's& E's 174 

Electron Density Maps ^ 7 7 

EXPERIMENTAL 178 

Models 178 

Maps 178 

Nominal and Effective Resolution of the Data 179 

The Shape of Electron Density 181 

Electron Density Histograms 187 

Refinement using Sharpened Maps 191 

Refinement 191 

Results of Refinement 193 

CONCLUSIONS 199 

REFERENCES, CHAPTER 5 A 201 

CHAPTER SB 203 

TREATMENT OF SOLVENT IN PROTEIN CRYSTAL STRUCTURES 203 

LIST OF ABBREVIATIONS USED IN THE DESCRIPTION OF SOLVENT STRUCTURE, CHAPTER 5 B 2 0 3 

INTRODUCTION 204 

What is solvent structure? 204 

Treatment of diffuse solvent 206 

AIMS 207 

EXPERIMENTAL 207 



Application of a diffuse solvent correction 207 

Analysis of the nature of solvent in the crystal structures of two small proteins 210 

Model protein stmctures 211 
Application of a diffuse solvent correction during refinement 212 

Low resolution fit of the model 220 

Distributions of solvent properties 221 

SOLVENT STRUCTURE REFERENCES 229 

GENERAL REFERENCES; CHAPTERS 3, 4 , & 5 229 



General Introduction 

I began writing an account of my work during the last four years by drawing up a plan of 

the topics the thesis should cover. The unusually wide range of subject matter seemed to 

demand an introductory explanation of how the PhD had evolved, setting out my 

ambitions and goals at each stage, a summary of my achievements and experiences, 

and an explanation of why the direction of study changed and how my aims were 

modified over the course of time. 

The project, entitled "diffraction studies and NMR investigation of medium-sized 

molecules" was embarked upon in the framework of a C A S E award between Shell 

Research agrochemical division in Sittingbourne, Kent and the University of Durham 

Chemical Crystallography Department, commencing in October 1992. The goal of the 

Shell research program was the development of a new generation of non-cholinergic 

pesticides, the initial object being to obtain a structural model of the active conformation 

of an oligopeptide, proctolin, a substance with neuroregulatory activity in many species of 

insects and some other invertebrates as an input for modelling studies to suggest 

possible small molecular analogues. NMR studies on the material in progress at Shell had 

proved rather inconclusive, although I had little access to this information at that stage, so 

single crystal X-ray diffraction studies were required. Shell funded a supply of the material 

from Sigma Chemicals to the Chemical Crystallography Department in Durham. I 

attempted to obtain crystals. Realising that this was a different scale of problem from the 

recrystallisations of small molecules I had previously performed, I sought the advice of 

experts: Marek Brzozowski at York University and Steve Wood at Birkbeck College, 

London. 



Crystallisation attempts were undertaken without positive result until April 1993, when I 

accepted the generous offer of Steve Wood to spend some time under his supervision at 

Birkbeck learning about the practical techniques entailed in the crystallisation of peptides 

and larger molecules. In the following months at Birkbeck, some limited success was 

achieved, with the production of crystals from which no diffraction could be obsen/ed. 

In September 1993 the research project at Shell came to an end, with the take-over by a 

rival company and subsequent closure of the department In Sittlngbourne. Shell 

Research, while legally obliged to continue funding the C A S E award, had no further 

scientific Interest in the project. 

I returned to Durham and decided to continue work on a project which had originally been 

an Oxford Chemistry Part II project with David Watkin at the Chemical Crystallography 

Laboratory. This was a study of the properties of a set of closely related small organic 

compounds, chalcones, with the aim of deriving a relation behveen variation In formula 

and crystallisation behaviour and the nature of the crystal lattice. This work had been 

Initially successful but much remained to be done and I had regretted leaving It unfinished 

at the end of a year. At Durham, further recrystalllsatlon, data collection, structure 

solution, NMR and UV studies were performed on the chalcones, along with the re-

refinement of the previously obtained structures, In the light of my Increasing 

crystallographic knowledge. A body of results accumulated but I was still at loss to know 

how to Interpret them and derive relations between chemical formulae and lattice 

properties. Inspiration was required and it did not come. As the project stood. It did not 

constitute a PhD thesis. 
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In the spring of 1994 I attended the HERCULES School in Grenoble on the use of large 

facilities in solid state studies, for which I had applied while still working on proctolin. Here 

I learnt more about applications of synchrotron and neutron sources, especially in the 

field of biological macromolecular structures. The course provided new motivation and 

perspective and I realised I was getting stuck in a rut. 

Shortly aftenwards, I visited the EMBL synchrotron outstation at DESY, Hamburg. 

Discussions with Keith Wilson led to the suggestion that I might be able to spend a period 

working at the synchrotron, where there were projects available, given that I still had 18 

months funding. This proposal was agreed by Judith Howard in Durham and by the 

E P S R C and in June 1994 I arrived in Hamburg. 

At Hamburg I began working with Alex Teplyakov on the determination of the structure of 

two subdomains of an enzyme glucosamine 6-phosphate synthase. Crystals had already 

been obtained for both domains and initial data collection was underway. The project 

provided me with an introduction to the practical techniques of protein crystallography 

including crystallisation, synchrotron data collection, searching for heavy atom derivatives 

and molecular replacement. Unfortunately, progress soon became hindered by the 

appearance of crystal symmetry problems. The pseudo-symmetry of the crystals of one 

of the domains appeared to obstruct structure solution. My work on this domain was 

continued by Misha Usupov at Exeter University, who was eventually successful in 

gaining an understanding of the extremely subtle and complex nature of the crystal 

symmetry and so solving the structure. The crystals of the other domain were found to 

possess a kind of rotational disordered lattice. My attempts to somehow obtain crystals 
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with better symmetry were fruitless. No significant progress In tackling this problem has 

since been made. 

In January 1995 It was decided that, with only nine months remaining before the end of 

the third year of the PhD and no guarantee of imminent results, It would be advisable to 

do some work of a more analytical nature. For the next fifteen months I worked in 

collaboration with Victor Lamzin on the refinement of atomic resolution protein structures 

and the development of tools for the analysis and refinement of protein crystal structures. 

Thus, I Increased my knowledge of some more theoretical areas of crystallography and 

gained an Introduction to FORTRAN and C-Shell programming. And finally obtained 

some more tangible results. 

Looking at the overall thesis plan, It is possible to see a theme running through the series 

of projects covered. My initial experience In crystallisation concerned the essentially trivial 

solution and refinement of some small molecular structures with the far from trivial aim of 

developing a systematic method for the prediction of crystallisation conditions. I then went 

on to work on a larger molecule, a pentapeptide, thereby gaining first-hand experience of 

the problems and frustrations of the search for crystallisation conditions. In my next 

project, the molecules were considerably bigger, several hundred amino acids In length. 

In this case, crystallisation conditions had been found, the problem lay with the next step, 

structure solution, a different class of problem for a protein from that presented by 

running a default direct methods job on a twenty atom structure. My final objects of study 

were slightly smaller, with around sixty residues each. In the development of techniques 

for the treatment of atomic resolution protein data sets I was concerned with the progress 

of protein crystallography into the traditional territory of small molecular crystallographers 
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- almost (but not quite) completing the circle. Thus, the entire thesis could be seen as 

progress towards mapping out a continuum of structures, from molecules comprising a 

few atoms to those made up of hundreds of kilodaltons. 
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Abbreviations used In this thesis 

people & places 

DESY Deutsches Elektronen-SYnchrotron 

EMBL European Molecular Biology Laboratory 

EPSRC Engineering and Physical Sciences Research Council 

PDB Brookhaven Protein Data Bank (Bernstein et a/., 1 9 7 7 ) 

CSD Cambridge Structural Database (Allen et a/., 1 9 9 1 ) 

crystallographic terminology, especially conceming proteins 

A 1 Angstrom = 01 nm 

e diffraction angle 

X wavelength of radiation (commonly X-ray) (A) 

d resolution of diffracted intensity, Braggs law, d = X / 2sin 9 (A), 

s resolution expressed as 2sinG / X (A'̂ ) 

F structure factor 

Fo / F c structure factor amplitude; obsen/ed / calculated 

E normalised (sharpened) structure factor 

H half-sharpened structure factor, F'*E'* (defined for the purposes of this thesis) 

etc calculated phase of a reflection 

R reliability index, Z I IFol - IFcl I / 2 IFol 

Rfree R factor evaluated from a subset of data independent of refinement (Brunger, 1 9 9 3 ) 

B isotropic thermal parameter, 8T^<U>^ (A^), where <u>^, root mean square displacement of 

atom 

p electron density, commonly expressed in e A'^ 

Vn, crystal volume per unit molecular weight (Matthews, 1 9 6 8 ) (A^ D"'') 

ksoi contrast parameter for modelling diffuse solvent, Zpsoi(r) / 5;pproiein(r) (Tronrud, 1 9 9 6 ) 

Bsoi average B factor for diffuse solvent (A^) (Tronrud, 1 9 9 6 ) 

rms(d) root-mean square (distance/deviation, commonly in A) 

H-bond hydrogen bond, ^^^^^ donor and acceptor atoms commonly 0,N,S 

possibly C 
NCS non-crystallographic symmetry 
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naturally occurring amino-acids 

Ala (A) alanine Leu(L) leucine 
Arg (R) arginine Lys (K) lysine 

Asn (N) asparagine Met (M) methionine 

Asp (D) aspartate Pro (P) proline 

Cys (C) cysteine Phe (F) phenylalanine 
Gly(G) glycine Ser (S) serine 

Glu (E) glutamate Thr(T) threonine 
Gin (Q) glutamine Trp (W) tryptophan 

His (H) histidine Tyr(Y) tyrosine 

lie (1) isoleucine Val (V) valine 

substances concerned with crystallisation 

PEG polyethylene glycol (precipitant) DMSO dimethyl sulphoxide 

TFA trifluoroacetic acid DMF dimethyl formamide 

DTT dithiothreitol (antioxidant) MPD methyl-pentanediol (additive) 

HEPES 2-[4-(2-hydroxyethyl)-1-piperazino]-ethanesulphonic acid (buffer) 

TRIS a,a,a-tris-(hydroxymethyl)-methylamine (buffer) 

EMTS mercury thiosalicylate 

substances concerned with biochemical processes 

ATP/ADP/AMP 

GTP 

UDP 

NADP* 

NADPH 

ig / igG 

Pi / PPi 

adenosine triphosphate / diphosphate / monophosphate 

guanosine triphosphate 

uridine diphosphate 

nicotinamide adenine dinucleotide phosphate oxidised 

nicotinamide adenine dinucleotide phosphate reduced 

immunoglobulin / immunoglobulin G 

inorganic orthophosphate / pyrophosphate 

other techniques 

HPLC high performance liquid chromatography 

NMR nuclear magnetic resonance 

1 5 



Chapter 1 : 

A systematic study of the crystal structures of phenyl 

acetophenones 

Background 

References to phenyl acetophenones, or chalcones, have occurred in the literature of 

various fields. An investigation into the polymorphism displayed by these compounds was 

reported by Weygand (1929). A study of relationships between structure and solid state 

reactivity of conjugated organic molecules, including chalcones, was carried out at the 

Weizmann Institute of Science. The effect of crystal packing on photopolymerisation 

reactions was investigated (Rabinovlch & Schmidt, 1970) and stereospecific syntheses, 

enabled by the crystallisation of non-chiral molecules into chiral spacegroups, were 

studied (Rabinovlch & Shakked, 1974). The pharmacological activity of several chalcones 

has been investigated, for example, the use of kukulkanins, which can be extracted from 

the bark of Mimosa tennuefolia, by Mexican Indians to heal burns (Dominguez et a/., 

1989). A recently reported study of chalcones was concerned with the relationship 

between the crystal structure, which Is non-centrosymmetric and the non-linear optical 

properties displayed by the material (Zhiengdong etal., 1992). 

Introduction 

Single X-ray crystal diffraction is the choice method for molecular structure determination 

for molecules of all sizes. The first hurdle to be overcome in such an analysis is the 

production of crystals of suitable quality for diffraction studies. Despite almost a century 

of experience, little is known about how and why a substance crystallises in a particular 

way from a specific set of conditions. The formulation of a set of rules which, given the 
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molecular formula, could be applied to predict conditions for the crystal formation of a 

substance would be extremely useful (Van der Sluis, 1989). One direction of approaching 

this goal is to study the crystal properties of a group of simple small molecules with very 

closely related structures. Deductions drawn from systematic trends traced within the 

group could then be generalised and applied across a wider field. 

The opportunity for a systematic study of the relationships between the molecular 

structure of a compound and its crystalline properties was offered by the synthesis of a 

series of twenty-five organic compounds with only minor differences in substituents on a 

common backbone: chalcone derivatives with varying numbers of oxy-methyl and 

methylene-dioxy substituents on the two aromatic rings, Table 1. A number of these 

chalcones were recrystallised under varying conditions, most commonly by the 

evaporation of a toluene or an ethanol solution, and X-ray diffraction data were collected 

on a total of seventeen different types of crystal. Details of these experiments are 

summarised in the Appendix at the end of the chapter. 

A survey of crystallisation conditions and the determination of twelve structures were 

carried out before the start of this PhD (Bahar, 1992). During this PhD, eleven of the 

structures were re-refined and the details of these refinements are presented, along with 

the four structures determined since, at Durham, in the Appendix. The chaicone XII 

crystals were extensively disordered, preventing determination of the spacegroup. No 

final conclusions were reached about this structure. Similar, problems were experienced 

with chalcone XV, following data collection on these crystals at Durham. Crystals of the 

remaining ten chalcone molecules could not be grown under the conditions successful for 

the first fifteen. 

17 



Table 1. Methoxy-chalcones synthesised 

12 13 14 15 16 
2- * . * - . 
MeO - - * - -

-* 

3 
MeO * - • - -

* - * - * 
* * 

4- * . * . 

MeO * - * -
- - * _ 

* * * 

5-
MeO -

MeO 
/ 
O 

C H r 
O 

* * * 

IV 
V 

VI 
VII 
VIII 
IX 
X 
XI 

XII 
XIII 
XIV 
XV 
XVI 

XXI 
XXil 
XXill 
XXIV 

XXV 

structures 
determined 
1^ 

a 
1 
0 
0 
0 

d 
1 
0 
0 
0 

1 
0 

i 

1 
1̂  

c 
1 

XVII 1 ' 
XVIII 0 
XIX 1 ' 
XX 0 

1 
2 
0 

c 
2 

l ' 
structure determined at Oxford (Bahar, 92), re-refined at Durham 

" structure determined at Oxford (Bahar, 92), extensively disordered 

" structures of 2 polymorphs determined at Oxford (Bahar, 92), re-refined at Durham, 
d 

structure determined at Durham 

^ data collected at Durham, extensively disordered 

* monomer and dimer structures determined at Durham 
* methoxy group substituted at this position 
<-> methylene-dioxy group substituted at these 2 positions 
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Numbenng scheme for substitution positions on the chalcone molecule 

The first part of this chapter is a survey of the molecular conformations and packing 

motifs adopted in thirteen chalcone structures and the relationships between crystal 

properties and molecular formula. The final part comprises an account of the discovery 

and investigation of the dimerisation reaction of chalcone XXII. 

Molecular conformation 

The molecule possesses three approximately planar parts. The dihedral angle between 

ring 2 and plane 3 falls into one of two ranges: 0-35° and 85-90°, corresponding to the 

two conformational types, "cisoid" and "transoid", Figure 1. The dihedral angle ring 1 / 

plane 3 lies in the range 0-16°. These parts of the molecule are almost coplanar in all 

instances. 

The molecular conformation is determined by the balance of two sets of competing 

intramolecular forces: stabilisation due to n-n overlap across the three planar regions of 

the molecule and destabllisation due to steric repulsion between C(12) and C(16) 

substituents and 0(1) and H(8) and between C(2) and C(6) substituents and H(8) and 

H(7). 
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Figure 1, Molecular conformation 

a chalcone molecule has three planar moities 

cisoid conformation transoid conformation 

The stabilisation due to conjugation is maximised when the entire molecule is planar. 

However steric repulsion is also greatest in this conformation. Because of the position of 

the ketone oxygen, the repulsion experienced by ring 2 when coplanar with the central 

part is greater than that experienced by ring 1 and consequently the stabilising and 

repulsive forces between ring 2 and plane 3 are more closely balanced. When hydrogens 

are present at C(12) and C(16), ring 2 lies coplanar, but when methoxy groups are 

substituted, ring 2 becomes perpendicular to the rest of the molecule. Ring 1 remains 

coplanar with plane 3 even when methoxy groups are substituted at C(2) and C(6), the 

lowering in energy provided by the conjugation of ring 1 with the unsaturated ketone 

being the dominating stabilising force. 
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Packing characteristics - a survey of fourteen chalcone crystal structures 

Molecular conformation affects the nature of the packing within the crystal. Molecules in 

transoid conformation have a crossed shape, which limits their packing possibilities, 

preventing stacking in sheets or the interlocking herringbone pattern commonly seen in 

the structures of flat aromatic species. The flat cisoid conformation lacks these 

restrictions. Consequently the appearance of more unusual packing motifs and distinctive 

features, such as disorder and the incorporation of solvent, might be expected in the 

transoid molecule lattices. The crystal structures have been divided into small groups for 

description and comparison. 

Chalcones I, XVI & XXI (Table 9a) 

All three crystallise in space group Pbca and the unit cell dimensions for the three 

structures are roughly similar, viz., 7,14, 28A. 

In the chalcone I structure, sheets of molecules run perpendicular to the b axis. The ring 

1 phenyl groups of adjacent molecules form an interlocking herringbone pattern. Ring 2 

forms parallel stacks with approximately 40% overlap between adjacent rings, with an 

interplanar separation of 3.66 A. The division of the sheets into two regions, one of 

coplanar packed rings the other with adjacent rings aligned in a herringbone fashion, can 

be seen in the view down the a axis. Figure 2a. 

Chalcone XXI also forms rippled sheets with the plane perpendicular to the b axis. There 

are interactions between pairs of molecules, with the ketone of one molecule lying in 

proximity to the dioxy-methylene ring of its partner, Figure 2b. The sheet is divided into 

bands running parallel to the a axis, aromatic sectors occupied by phenyl groups and 

21 



Figure 2. Structures I, XVI and XXI 

a/ The packing diagram of the I structure, viewed down the a axis, shows the division of puckered 

sheets of molecules into n-n bonding and herringbone interlocking regions. 

b/ An illustration of the pairing of molecules in the XXI structure with close contacts formed 

between the methylene dioxy oxygens of one molecule with the ketonic oxygen of the other. 

c/ Packing diagram of the XVI structure, viewed down the b axis. There are no sheets in this 

structure. 
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polar sectors in which the oxygen atoms lie. The molecules are aligned in pairs within the 

sheet. According to Kitaigorodsky (1961), the packing of eight molecules in a unit cell in 

Pbca often implies that they are closely bound in pairs, as seen here. 

Chalcone XVI crystallises in the same space group as I and XXI, but the latter two 

structures have more features in common. In the I and XXI structures, molecules are 

arrayed in rippled sheets perpendicular to the short axis, Figure 2c. In the chalcone XVI 

structure the plane of the molecules is roughly parallel to the short axis of the unit cell, 

but the pattern of rippled sheets is absent and it is less easy to divide the lattice up into 

regions of different chemical environment. The aromatic rings lie parallel but do not 

overlap. 

Chalcones II, X & XI (Table 9b) 

Chalcones II and XI crystallise in non-centrosymmetric space groups, F2i2i2i and P2i 

respectively. The molecules are of similar shape, essentially planar with a twist about the 

long axis of the molecule, resulting in a chiral conformation. There are examples 

(Rabinovich & Shakked, 1974), in which the crystallisation of achiral chalcones in non-

centrosymmetric space groups in this fashion has allowed solid state asymmetric 

substitution on the olefinic bond. 

The modes of packing of chalcones II and XI are very similar, stacking parallel to the 

short a-axis. Figure 3a. There is no direct overlap between aromatic rings on adjacent 

molecules within the stacks. The planes of rings of molecules in neighbouring columns 

are tilted relative to one another. Chalcone X adopts an entirely different kind of lattice 

from the other two. Figure 3b. The molecules form planar sheets perpendicular to [1 1 0]. 
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Figure 3. Structures 11, X and XI 

a/ Packing diagram for the XI structure, viewed down the a axis, 

b/ Packing diagram for the X structure, viewed parallel to the molecular 

p lane, i l lustrat ing the associat ing of the molecules in pairs within sheets 

and the p lane-plane overlap of rings of molecules in neighbour ing sheets. 
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Within sheets the molecules are associated in pairs. Plane-plane overlap of one of the 

rings occurs between molecules in adjacent sheets with an interplanar distance of 3.5 A. 

An extra methoxy group added to the meta position on ring 1 of chalcone II produces 

chalcone XI, which has a crystal structure with a similar packing arrangement to that of 

chalcone II. Conversely, if the methoxy group is added to the meta position on ring 2, 

chalcone X is produced, which adopts a markedly different packing motif. The reason for 

this difference is not obvious. 

Chalcones XXIV and XXV (Table 9c) 

Comparison of the two polymorphs of chalcone XXIV demonstrates the effect of n-n 

interactions in the crystal lattice of a small organic molecule. Both XXIV(A) and XXIV(B) 

structures are in space group P I. However, there are two molecules in the asymmetric 

unit of XXIV(A) giving Z=4, while there is a single molecule in the asymmetric unit of 

XXIV(B). 

The two independent molecules in the XXIV(A) lattice adopt notably different 

conformations, as can be seen from the differences in dihedral angles, Table 2. The two 

molecules have different functions in the structure. The planar molecule 1 is aligned in 

stacks running along [1 0 1], the molecular plane lying perpendicular to the stacking 

direction. There is an inversion centre between each pair of molecules in the stack and 

plane-plane overlap between the rings at each end, with an interplanar separation of 3.5 

A. Molecule 2 lies with its molecular plane perpendicular to [1 2 0]. There is no interplanar 

overlap between aromatic rings. From the packing diagram viewed down [1 0 1], Figure 

4a, it can be seen that molecule 2 acts as a space-filler between the molecule 1 stacks. 
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molecule 1 

molecule 2 

molecule 2 

molecule 1 

Figure 4. Structures XXIVA, XXIVB and XXV 

a/ Packing diagram for the XXIVA structure, viewed down [1 0 1], illustrating the different 

environments ot the two molecules. 

b/ The packing diagram of the XXV structure looking in the [1 -1 0] direction shows that the two 

molecules in the unit cell have different functions in this example as well. 
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Table 2. Dihedral angles for chalcones XXIV and XXV 

Molecule dihedral angle (°) dihedral angle (°) dihedral angle (°) 

plane 1/plane 3* plane 2/plane 3* plane 1/ plane 2* 

XXIV(A), mol 1 8 0 8 

XXIV(A), mol 2 6 26 32 

XXIV(B) 5 6 7 

XXV, mol 1 13 86 76 

XXV, mol 2 16 88 78 

* using notation of Figure 1 

The driving force behind crystallisation of the compound in the XXIV(A) form is the 

lowering in lattice energy afforded by n-n interactions along the molecule 1 stacks, with a 

second molecule Incorporated to fill spaces between the stacks, its conformation 

distorted to fit the shape of the cavity. 

The second polymorph, XXIV(B), has a lattice characterised by planar layers of 

molecules, with no overlap between rings of molecules in adjacent layers. The stacks of 

overlapping aromatic molecules in the XXIV(A) crystal structure and their absence in the 

XXIV(B) lattice can be directly related to the marked difference in colour between the two 

types of crystal: XIV(A) being bright yellow, while XXIV(B) is colourless. This contrast can 

be ascribed to the stabilising n-n interactions in the XXIV(A) lattice, which cause a shift to 

longer wavelength of the UV- chromophore. 

The chalcone XXV molecule has substituents at both ortho positions on ring 2 and adopts 

the transoid molecular conformation, as discussed above, while all the molecules so far 

discussed have cisoid conformation. Despite the difference in molecular conformation, 

the chalcone XXV crystal structure has several features in common with XXIV(A). 
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Chalcone XXV crystallises in P \, with two molecules in the asymmetric unit. Although 

the two molecules adopt similar conformations, their environments are different. Figure 

4b. Molecule 1 forms paired layers, which lie perpendicular to the c axis. Ring 1 of each 

molecule projects into the space between the layers, overlapping with ring 1 extended 

from the parallel layer, to form n-ii interacting stacks, which run through the lattice down 

[1,-1,0] with an interplanar separation of 3.58 A between the overlapping rings. Molecule 

2 acts as a space-filler in the lattice. 

It is possible that chalcone XXV could crystallise in a second polymorph with Z=2 and 

without 7i-7t interactions, but no evidence of this form exists. 

Chalcones XVII & XIX (Table 9d) 

Chalcones XVII & XIX both adopt a transoid conformation, since both ortho-positions on 

ring 2 are substituted. Members of the set that have the planar, cisoid conformation are 

likely to adopt modes of packing commonly seen among aromatic small organic 

molecules. Alignment of the molecule in a transoid conformation, in which ring 2 lies 

perpendicular to the plane of the rest of the molecule, leads to the formation of more 

uncharacteristic types of lattice. 

The chalcone XVII structure is unique among those of the methoxy chalcones so far 

investigated in being the only one of the set to incorporate solvent molecules within the 

lattice. The structure is less dense than the others and the space group, P 2/a, is unique 

in the group and less common generally. The crystallisation in a lattice with this space 

group can be related to the presence of the water molecules around the two-fold rotation 

axes. The stability of this structure can be attributed to the formation of H-bonds with the 
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carbonyl oxygen 0(1) acting as an acceptor and hydrogen atoms of the water molecules 

as donors. The lattice is divided into hydrophilic and hydrophobic regions. H-bonds 

traverse the polar zone, linking pairs of ketonic oxygen atoms via a water molecule. 

Figure 5a. 

Ring 1 stacks running parallel to the a axis make up apolar regions in the lattice with n-n 

interactions between neighbouring rings in the stack. Two types of overlap alternate 

along the stack, one between molecules related by an inversion centre, with an 

interplanar separation of 3.46 A, the other between molecules related by a rotation axis, 

with an Interplanar separation of 3.49 A. Ring 2, which has a dihedral angle of 78° with 

ring 1, forms a border between polar and apolar regions in the lattice. Figure 5b. 

The packing motif in the chalcone XIX structure bears some resemblance to that of 

chalcone XVII. The cross shaped molecules are aligned in pairs in a similar fashion to 

that seen in the chalcone XVII lattice. However, in the XIX lattice, the stacks of ring 1 only 

form n-n interactions between discrete pairs of overlapping rings, with an interplanar 

separation of 3.37 A. There is no polar solvent layer between the aromatic bands. 

Chalcone VI (Table 9e) 

The chalcone VI molecule is essentially planar and is packed in herringbone fashion, a 

feature common to several of the other cisoid chalcone structures investigated and which 

is commonly seen in the crystal structures of flat, aromatic molecules. 
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Figure 5. Stmctures XXVII and XIX 

a/ 2-fold related molecules in the XVII structure, their ketonic oxygens linked via a water molecule 

on the axis. 

b/ The packing in the XVII structure, illustrated by the view down the b axis. The lattice is divided 

into apolar regions, containing stacks of overlapping aromatic rings, and polar, H-bonding regions. 
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Chalcone XIV (Tad/e 9e) 

The chalcone XIV molecule adopts a twisted conformation in the crystal lattice. The 

molecules are associated in pairs around an inversion centre. Stacks of molecules run 

parallel to the a axis. There is no direct overlap between the aromatic rings of adjacent 

molecules in a stack. It is not clear whether crystal field forces in the lattice of chalcone 

XIV cause the twisted molecular conformation, or if this is a low-energy solution 

conformation which crystallises to give this particular mode of packing. 

Conclusions to packing survey 

The crystal structures possess a range of notable features. These include: 

• Crystallisation of a compound in two polymorphs: one form containing two molecules 

in the asymmetric unit, the other, only one molecule. 

• Stacks of overlapping aromatic rings in several of the structures, suggesting the 

occurrence of extensive n-n bonding. 

• Inclusion of waters of crystallisation in one example, allowing the formation of H-

bonded chains through the lattice. 

• Crystallisation of two structures in asymmetric space groups, although the molecules 

are inherently achiral, thus producing two enanteomorphic forms of crystal, which 

could not be differentiated in this case. 

• Disorder in two of the structures studied. 

Relationships were traced between crystallographic and molecular properties, notably 

that between the position of the methoxy substituents and the molecular conformation 

adopted in the crystal structure. However, the reason behind the specific arrangement of 

a particular molecule in a crystal lattice is not obvious. A prediction of the molecular 

conformation of members of this set, for which structures were not obtained, can be 
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made based on the positions of methoxy groups on tlie molecule. However, other 

features of the crystal lattice cannot be predicted reliably. 

Dimerisation of chalcone XXII 

Summary 

The investigation of chalcone XXII initially yielded the crystal structure of a dimer. 

Subsequently, crystals of the monomer were also obtained. In the monomer structure the 

molecules are aligned in an orientation which would allow photocatalysed dimerisation 

13 

with the stereospecific production of the stereoisomer of the dimer crystal. C NMR 

spectra provide evidence that only one stereoisomer has been formed. The path by which 

the formation of the dimer occurred remains uncertain. However the existence of the 

monomer crystal structure described gives a strong indication that it is a solid-state 

reaction. 

The original sample, with formula reported as in Figure 6 (1), was recrystallised by vapour 

diffusion, using toluene as the solvent and petroleum ether as the precipitant. The 

crystals grew in the form of small, monoclinic, pale yellow blocks. X-ray diffraction studies 

on these crystals showed that they were only weakly diffracting. Data were collected on a 

Siemens rotating anode. The structure was solved and refined, proving to be that of the 

dimer Figure 6 (2). 
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Figure 6. Chalcone XXII monomer and dimer structures 

MeO 
OMe O 

OMe O 

(1) monomer (2) dimer 

^̂ C NMR spectroscopy was employed to probe the composition of the original sample, in 

the solid state and in acetone solution. This showed that the dimerisation reaction was 

stereospecific, resulting in formation of a single isomer of the dimer. 

Crystals grew in an acetonic solution of the original sample, at the bottom of an NMR 

tube. Unlike those previously obtained from toluene solution, the new crystals were large, 

bright yellow needles. X-ray diffraction data were collected on the second form of crystal 

using a Rigaku AF6S diffractometer. The structure was solved and refined, proving to be 

that of the monomer. 

Synthesis of fresh monomer was performed as described below. ^̂ C NMR spectroscopy 

demonstrated that the sole product of the synthesis was the monomer. 

Crystals of chalcone XXII monomer were photographed on a Weissenberg camera, 

irradiated with light of X^350 nm for 90 minutes and then photographed again, in an 
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attempt to detect a solid state dimerisation reaction. An acetone solution of the freshly 

synthesised chalcone XXII monomer was irradiated with light A^380 nm for 40 minutes. 

The ^̂ C NMR spectrum was then recorded to investigate whether dimerisation, or other 

reactions, are catalysed in the solution by ultra-violet light. No dimerisation or other 

chemical or structural change could be detected by these experiments, in either solution 

or crystalline state. 

Synthesis of chalcone XXII 

0.1 ml 2,4 dimethoxy acetophenone, Figure 7 (1) and 0.1 ml piperonal Figure 7 (2) were 

charged to a conical flask supported on a stirrer/hot plate. 200 ml of ethanol was added 

and the flask blanketed with nitrogen. After a few minutes stirring the reactants dissolved. 

Once the solution was clear, sodium hydroxide pellets (0.5 g) were added. The reaction 

mixture was then stirred under nitrogen until T.L.C. analysis indicated that the reaction 

has stopped. This took about six hours. After filtration, the crude product was 

recrystallised twice from ethanol. The pure product was then dried. 

Figure 7. Reactants in chalcone XXII synthesis 

OMe O 

Me 

(1) 

Me H 

(2) 
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Figure 8. Numbering scheme for XXII monomer and dimer 
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Crystal Structure Determination 

Crystals of the monomeric compound used in X-ray diffraction experiments grew from 

acetone solution in the form of large, bright yellow needles, Data were collected on a 

crystal of dimensions 0.9x0.5x0.4 mm. Crystals of the dimer, small, pale yellow, 

monoclinic blocks, were grown using vapour diffusion with toluene as the solvent and 

petroleum ether as the precipitant. 

For the monomer crystal, cell dimensions and intensity data were measured on a Rigaku 

AFC6S diffractometer. Data collection on the Rigaku proved the dimer crystal to be only 

weakly diffracting and larger crystals were not available, giving good reason to refine cell 
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parameters and collect intensity data using a Siemens rotating anode. Other details of 

the refinements are summarised in the Appendix and Table 9f. 

Discussion of crystal structures 

monomer crystal 

The unit cell has an extremely short, 3.91 A, a axis. Stacks of molecules, lying in the be 

plane, run along the short axis, Figure 9c. There is complete coplanar overlap between 

adjacent molecules in the stack. Figure 9d, thus double bonds of neighbouring molecules 

are in alignment for photo catalysed dimerisation, Figure 10, (Woodward & Hoffmann, 

1970), the distance between the planes formed by C(1), C(7), C(8), C(9) & 0(1) of 

neighbouring molecules being 3.74 A. Dimerisation from this configuration would result in 

stereospecific production of the isomer found in the dimer crystal structure. 

Photodimerisation often occurs in the solid state where double bonds on adjacent 

molecules are aligned in this manner, Figure 11. 

There is a number of short intermolecular C-H...0 distances, in the range 3.1-3.8 A, 

between molecules lying in a plane, Table 3. The presence of these links suggests that 

the lattice is held together by two principal types of intermolecular interaction, n-n bonding 

along stacks running parallel to (1, 0, 0) and C-H...0 bonding between neighbouring 

stacks. 
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Figure 9. The chalcone XXII monomer and dimer structures 
aJ The alignment of neighbouring molecules in the monomer lattice permits the occurrence of a 
solid-state dimerisation. 
b/ The dimer molecule does not possess mirror symmetry in the solid state. 
d The packing diagram for the monomer structure viewed down the c axis illustrates the close 
proximity of neighbouring molcuies in stacks along the a axis. 

61 The view of the XXII structure down the a axis depicts the anrangement of molecules in a sheet, 

and the short C-H --0 contacts within the sheet. 
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Table 3. Short C-H—0 intermolecular distances in the monomer crystal structure 

O(1)-C(140) 3.11 
0(3) - 0(120) 3.57 
0(4)-0(140) 3.76 
0(12)-0(120) 4.02 
0(14) - 0(43) 3.78 

Table 4. Interplanar angles in the monomer crystal structure 

angles between planes 
1 &3 8.4° 
2&3 37.9° 
1 &2 43.9° 

Figure 10. 
Intermolecular distances between C=C bonds in the XXII monomer structure 

ring 1 

ring 1 

- Jing 2 

* 3,93 A 
3.93 A '. ' ring 2 
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Figure 11. Dimerisation catalysed by UV radiation 

LUMO LUMO 
A. 

H' 

A 

H' 

A. 

A, 
H 

HOMO 
^ hv 

A - y 
H 

HOMO* 

dimer crystal 

The conformation and alignment of the molecules in the lattice bear no relation to those 

in the monomer structure, as illustrated in Figure 9a & b and by the values of dihedral 

angles. Table 5. This does not prove the reaction does not occur in the solid state. All 

that is certain is that the reaction occurred before the dimer was recrystallised from the 

acetone solution, in solution, or previously, in a solid phase. 

Planes in the XXII dimer 

MeO 

. 5 I 

OMe O 

OMe 

O 
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Table 5. Dihedral angles, XXII dimer 

angle between planes angle between planes 
1&2 93.4° 2&3 93.4° 
1&3 54.3° 2&4 49.1° 
1&4 44.3° 2&5 122.3° 
1&5 52.7° 3&4 65.3° 
4&5 84.3° 3&5 29.7° 

13 0 NMR studies on chalcone XXII 

Solution spectra were recorded on a Varian VXR 400-S spectrometer in De acetone 

solutions. Solid-state spectra were recorded on a Varian VXR 300 Solid-State 

spectrometer. Peak assignment for both monomer and dimer molecules were carried out 

using three solution spectra: 

1/ freshly synthesised monomer 

2/ original sample, composed of a mixture of monomer and dimer 

3/ original sample, following removal from solution of a proportion of the monomer by 

crystallisation. 

Peaks in the pure monomer spectrum were assigned with the aid of a predicted spectrum 

obtained from a ^̂ C chemical shift calculation by SPECINFO (Daresbury). 

The assignment of dimer peaks in the mixed spectra could then be carried out, using 

three approaches: 

1/ subtraction of peaks assigned to the monomer using the pure monomer spectrum 

2/ comparison of the two dimer spectra - in the second spectrum, the dimer peaks 

become relatively more intense than the monomer peaks 

3/ use of a spectrum predicted for the dimer molecule by SPECINFO. 

The results of this peak assignment are listed in Table 6 
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Table 6. Assignment of peaks in ^̂ C solution spectra 

m o n o m e r spectrum assignment prediction d i m e r spectrum assignment prediction 
(ppm) C(No.) (ppm) (ppm) C(No.) (ppm) 

189.82 9 190.0 198.01 9 191.6 

165.13,161.36 4 2* 164.4, 165.19,161.28 4. 2* 164.4,160.4 
162.8 

4. 2* 

150.36, 149.34 13, 14* 147.8, 148.13,146.31 14,13* 147.5,147.3 13, 14* 
147.5 

14,13* 

141.68 7 143.6 

133.09 6 132.3 136.14 11 131.9 
130.83 11 129.2 133.13 6 128.3 
126.37 16 122.8 121.97, 121.33 1, 16* 126.9, 121.9 
125.50 8 119.8 

1, 16* 

123.05 1 122.2 

109.25, 107.22, 5, 15, 12* 110.5, 109.33, 108.23, 12, 5,15* 111.2, 110.5, 109.1 
106.53 

5, 15, 12* 
108.3, 106.46 

12, 5,15* 

107.8 
102.57 43 101.1 101.51 43 101.1 

99.11 3 98.1 98.42 3 98.1 

56.18, 55.91 20, 40* 56.0, 55.4 55.84, 55.74 20, 40* 56.0, 55.4 

53.42,45.19 * 
8,7 

52.0, 44.9 

these assignments could not be made more specific and are interchangeable. 

Two solid-state spectra were obtained: one from the sample first received containing a 

mixture of monomer and dimer and one on a freshly synthesised pure monomer sample. 

Seventeen peaks were visible in the spectrum of the pure monomer which could be 

assigned by comparison to the solution spectrum of the pure monomer. 

The spectrum of the original sample is more complex. It contains monomer peaks, as 

seen in the spectrum of pure monomer, as well as dimer peaks, which are split due to the 

removal of the mirror-plane through the cyclo-butane ring in the solid-state and, in 

addition, a third carbonyl peak. All the other peaks in the spectrum can be assigned to 

either monomer or dimer. Assignments of solid-state spectra are set out in Tables 7 & 8. 
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Table 7. Assignments for Solid-State Spectrum of Pure Monomer 

Solution spectrum Assignment Solid-state spectrum 
(ppm) 0(no) (ppm) 
189.8 9 188.9(N) 
165.1, 161.4 4.2* 163.4(N), 157.4(N) 
150.4,149.3 13, 14* 149.6(N), 147.89(N) 
141.7 7 138.0(P) 
133.1 6 133.0(P) 
130.8 11 129.3(N) 
126.4 16 128.6(P) 
125.5 8 124.5(P) 
123.1 1 123.1 (N) 
109.3, 107.2, 106.5 5, 15, 12* 108.6(P), 103.2(P)" 
102.6 43 101.3(P) 
99.1 3 99.3(P) 
56.2, 55.9 20, 40* 57.0(P), 55.1 (P) 

(P) - Protonated carbon 

(N) - Non-Protonated carbon 

* these assignments could not be made more specific and are interchangeable. 

** only two out of three peaks visible 

Table 8. Assignment of Solid-State Spectrum of Mixed Monomer/Dimer Sample 

monomer peaks assignment dimer peaks assignment other peaks assignment 
(ppm) (monomer) (ppm) (dimer) (ppm) 
188.7 9 198(split) 9 190.7 carbonyl 

163.3,159.7 4,2* 165.0,159.7 4,2* 
149.4, 147.6 13, 14* 146.4 13, 14* 

137.8 7 
132.7 6 
129.1 11 
128.5 16 ** 

126.1 
1,6.11.16* 

124.4 8 
122.9 1 

108.5, 103.0** 5, 15, 12* 107.6, 5,15,12* 
105.9** 

101.2 43 
99.3 3 
57.0, 55.0 20, 40* 

49(split), 7.8* 
40(split) 

7.8* 

these assignments could not be made more specific and are interchangeable. 
* not all peaks visible 
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Conclusions from NMR experiments 

There are eighteen peaks in the spectrum of the freshly synthesised sample which can all 

be assigned to carbons in the monomer molecule. Therefore, this sample is pure 

monomer. The spectrum of material originally obtained contains thirty-six peaks, half of 

which are those assigned to the monomer. The other half can be assigned to the dimer 

molecule which crystallised from a solution of this material. There are no remaining 

peaks, therefore only one stereoisomer of the dimer is present. 

In the spectrum of the solution of monomer/dimer mixture, from which monomer had been 

removed via crystallisation, the relative intensity of the peaks attributed to the dimer is 

increased. This shows that monomer and dimer concentrations are not in equilibrium in 

solution. 

The spectrum of the monomer solution was unchanged after the solution was left for 

several months, showing that dimerisation does not occur in solution at room 

temperature. Irradiation with light, A^380 nm, for 90 minutes also failed to bring about a 

change in the spectrum. 

The solid-state spectrum of the freshly synthesised sample contains seventeen peaks, 

which can all be assigned to the monomer molecule with, the aid of solution spectra 

assignments. The spectrum of the originally obtained solid contains the monomer 

spectrum peaks. Other peaks can be assigned to the dimer, with the use of solution 

spectrum assignments, giving a ratio of roughly 50:50 for monomer:dimer concentration. 
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In solution, the dimer molecule possesses a mirror plane, which is broken in the solid, 

resulting in the splitting of the peaks. In addition, the mixed monomer/dimer spectrum 

contained a peak which can be assigned to a carbonyl carbon in a very similar 

environment to that of the monomer. There are no other peaks which cannot be assigned 

to either monomer or dimer. The most likely explanation for this third carbonyl peak is the 

presence of an additional polymorph, or pseudo-polymorph (containing solvent of 

crystallisation) of the monomer. It is likely that the shift of the carbonyl carbon would be 

the most sensitive to the difference in environment in the two crystal forms which would 

explain why the solid state spectrum contains no other additional peaks. 

Appendix: Details of structures and their data collection, structure solution and 

refinement 

Data were collected at Oxford on an Enraf-Nonius CAD4-F diffractometer, using Cu-Ka (k 

= 1.54180 A) radiation except for chalcones XII, XXI and XXV, which were collected using 

Mo-Ka {X = 0.7107 A) radiation. Data were collected at Durham on a Rigaku AFC6S 

diffractometer with a sealed tube source, except for the XXII dimer crystal, for which a 

Siemens rotating anode was employed, in all cases using Mo-Ka radiation. The data 

were corrected for Lorentz and polariation effects and absorption. 

Structure solution was acheived by direct methods using SHELX-86 (Sheldrick, 1985). 

The structures were refined at Oxford using the CRYSTALS package (Watkin et a/., 

1985). At Durham structures were refined or re-refined using SHELXTL-PLUS (Sheldrick, 

1985). Full matrix refinement against Fs was performed with all non-hydrogen atoms 

modelled anisotropically and hydrogen atom positions calculated using a riding model 

with C-H equal to 0.96 A and isotropic thermal parameter, u, to 0.08 A^. The final 
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refinements were performed using a weighting scheme implemented in SHELXTL, w 

1/(a2(F)+gF2), with g refined to values between 0.001 and 0.0001. 

Table 9. Data collection, refinement and structural parameters. 

a 1 XVI XXI 
Space group <- Pbca -> 
Z <- 8 -> 
Oell parameters(A) a= 11.705 a = 7.490 a = 11.172 

6 = 7.522 b= 16.782 /J = 7.806 
c= 32.222 c = 26.827 c= 28.586 

Unique data 2921 3445 1507 
Observed data 1775 1845 768 
Criterion for observed data 1 > 2a(l) 1 > 3a(l) 1 > 2a(l) 
R(Rw) (%) 4.44(5.82) 4.13(5.29) 3.99(3.90) 

b II X XI 
Space group P2i2i2i P 1 P21 
Z 4 2 2 
Oell parameters(A)), (°) a = 5.282 a = 8.798, a =107.64 a = 6.408 

b = 8.671 b = 8.911, p = 102.18 b= 10.498,.p = 90.34 
C = 30.670 c = 11.298,7=105.95 c= 11.472 

Unique data 2767 2927 1649 
Observed data 1829 2573 1429 
Oriterion for observed data <- 1 > 3a(l) 
R(Rw) {%) 5.11(6.09) 5.45(6.58) 3.24(4.09) 

c XXIV_A XXIV_B XXV 
Space group P 1 P 1 P 1 
Z 4 2 4 
Oell parameters(A), (°) a = 8.345, a = 64.39 a = 8.952, a = 69.25 a = 7.722, a = 85.82 

/7 =13.995, P = 83.46 t» = 9.696, p = 66.80 /? = 8.124, p = 85.06 
C= 14.692,7=85.10 C = 10.418,7= 68.82 c = 29.158,7 = : 66.26 

Unique data 5751 2927 3011 
Obsen/ed data 3478 2573 1811 
Oriterion for observed data <- 1 > 3a(l) 
R(Rw) (%) 4.09(5.38) 4.05(5.27) 4.41(5.43) 

d XVII XIX 
Space group P2/a P 1 
Z 4 2 
Oeil parameters(A). (°) a = 14.537 a = 8.037, a = 77.27 

6=9.400, p = 107.38 6 = 8.252, P = 88.14 
c= 14.894 c= 15.421,7 = : 66.40 

Unique data 3978 3567 
Observed data 3176 2531 
Oriterion for observed data 1 > 3a(l) 1 > 3a(l) 
R(Rw) (%) 5.27(6.42) 5.03(6.08) 

45 



e VI XIV 
Space group P2i/c P2i/n 
Z 4 4 
Cell parameters(A), (°) a = 13.546(4) a = 7.586(2) 

b = 8.052(4),p = 109.68(2) 6 =16.271 (2), p = 103.95(1) 
c= 15.097(4) c= 13.858(2) 

Unique data 2722 2919 
Observed data 1629 1746 
Criterion for observed data F > 4a(F) F > 4a(F) 
R(Rw) (%) 4.06(5.79) 4.37(5.72) 

f XXII(monomer) XXII(dimer) 
Structural formula ^18" l6°5 (^18^16°5)2 
M 312.31 624.62 
Crystal system Monoclinic Triclinic 
Space group F2i/c P 1 
z 4 2 
Cell parameters(A), (°) a = 3.927(1) a = 8.837(5), a = 89.90(1) 

6 = 15.790(3), p = 91.67(2) b= 12.729(8), p = 79.87(1) 

Cell volume(A )̂ 
c= 24.013(3) c= 14.452(8), y: = 70.34(2) 

Cell volume(A )̂ 1488.4(6) 1504.1(6) 
Unique data 4354 5306 
Observed data 1581 3875 
Criterion for observed data F > 4a(F) F > 4a(F) 
R(Rw) (%) 5.34(3.91) 5.12(6.87) 
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Chapter 2: 

Crystallisation of proctolin, a pentapeptide Arg-Tyr-Leu-

Pro-Thr 

Introduction 

Peptides as neurotransmitters 

Proctolin, a linear pentapeptide, Arg-Tyr-Leu-Pro-Thr, was the first insect neuropeptide to 

be chemically characterised. It was isolated and identified in the American cockroach, 

Periplanta americana (Brown, 1975) and since found to occur in species of six orders of 

insects and some other invertebrates such as lobsters. The peptide was found to act as a 

neurotransmitter in the cockroach and has been shown to play a neuromodulatory role in 

several species (Konopifiska etal., 1992). 

Nerve impulses are transmitted along chains of nerve cells, neurons. An Impulse is 

passed from one cell to the next across the intervening synapse by the agency of a 

chemical neurotransmitter. These chemicals are released from vesicles in the pre

synaptic membrane, diffuse across the synaptic cleft, which may be about 500 A in width, 

and couple with receptors in the post-synaptic membrane. Until the 1960's the amines 

acetylcholine, norepinephrine, and serotonin were the only well recognised transmitters. 

Then came the understanding that amino acids including y-amino butyric acid (GABA), 

glutamic acid, aspartic acid and glycine could also serve as neurotransmitters. Thus, it 

was thought that all neurotransmitters belonged to a group of small molecules with 

molecular weight around 200 Da. Peptide hormones, with chains comprising up to 40 
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amino acids, are now known to be involved in addition to these classical 

neurotransmitters (Snyder etal., 1980; Hokfelt etal., 1980). 

The functional significance of peptide neurotransmitters is not fully understood. In the 

mammalian central nervous system classical neurotransmitters were found to be present 

in only a small population of neurons. It appeared that cells lacking a classical 

neurotransmitter may produce a peptide. Peptide hormones have also been detected in 

neurons containing a small-molecule neurotransmitter, suggesting that the two species 

may have complementary roles. Some examples of pairs of classical and peptide 

neurotransmitters found in the mammalian central nervous system are listed in Table 1. 

This coexistence of two types of molecule may be a consequence of evolution. It is 

possible that peptides were important messengers in lower species, with more efficient, 

small molecule transmitters developing later (Hokfelt etal., 1987). 

The presence of peptides and classical neurotransmitters in the same neuron could have 

relevance to the understanding of certain disorders of the nervous system. The progress 

of Alzheimer's disease and senile dementia are accompanied by the degradation of 

cholinergic neurons responsible for higher brain functions, such as memory and learning. 

The peptide hormone galanin, coexisting with acetylcholine in these cells, may be 

implicated in this process (Hokfelt et a/., 1987). 

! f 

Investigation of insect neuropeptides shows that insects possess a hormone system 

similar to that of vertebrates, with parallels existing between families of neuropeptides 

with equivalent functions (Konopinska etal., 1992). Some examples are listed in Table 2. 
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Table 1. Mammalian classical and peptide neurotransmitter pairs. 

Classical transmitter Peptide Brain region Species 
dopamine neurotensin ventral mesencephalon rat 

acetylcholine enkephalin spinal cord ;rat 

acetylcholine galanin basal forebrain rat, monkey 

GABA somatostatin thalmus cat 

GABA somatostatin cortex, hippocampus rat, cat, monkey 

glycine neurotensin retina turtle 

Table 2. Vertebrate and invertebrate hormones with parallel functions. 

Invertebrate hormone Vertebrate hormone 

AKH^ family glucagon 
b 

myotropic hormones: proctolin, Lem-PK substance P 

leucosulfakinins gastrin, choiecystokinin 
c 

meianisation hormones: Bom-MRCH M S H " 

allatostatin somatostatin 

bombyxin-ll human insulin, adenocorticotropic mammal hormone 

^ AKH adipokinetic hormone 

" Lem-PK leukopyrokinin 

Bom-MRCH hormone from Bombyx mori (silkworm) 

MSH melanocyte-stimulating hormone 

X-ray crystallographic studies on oligopeptides 

The discovery of the significant roles played by small peptides as hormones and 

neurotransmitters has stimulated the study of the structure, activity and relationship 

between these properties for peptide hormones. Such investigations aim to learn about 

conformational changes as the molecule moves from solution to receptor and the effect 

of chemical modifications on structure and activity. In many cases the receptor site has 

not been located and the only source of information about the receptor is the study of 
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substrate structures and the conformational differences between active and inactive, 

agonistic and antagonistic analogues. 

Linear peptides of chain length 5 to 30 do not crystallise readily. As the chain length 

increases beyond 2 residues, the number of energetically favourable conformations a 

molecule may adopt in solution rapidly increases. However, these peptides are not long 

enough to fold into the stable secondary structure motifs seen in longer peptide chains. 

The difficulties encountered during X-ray crystallographic analysis of these materials are 

reflected by the small number of crystal structures for peptide molecules in the 1992 

release of the Cambridge Structural Database (Allen et al., 1991), Figure 1. Cyclisation 

reduces the conformational space accessible to a molecule, so, for a given chain length, 

the possibility of crystallisation is greater for a cyclic molecule than a linear one. 

Exceptions possessing some degree of secondary structure include artificial helical 

molecules, such as poly-leucines, natural helical molecules, such as glucagon (Sasaki et 

al., 1975) and species which are pseudo-cyclic due to disulphide linkages, such as 

deamino-oxytocin (Wood etal., 1986) and crambin (Teeter etal., 1993). 

Neither methods employed for the crystallisation of small molecules nor techniques used 

in protein crystallography are guaranteed to succeed in the production of crystals of oligo

peptides. This fact is mirrored by the extremely variable nature of the peptide structures 

which have been elucidated. Some resemble the closely packed crystals of small 

molecules, while others have more protein crystal character, consisting of aggregates or 

layers of molecules separated by wide solvent channels. This point is illustrated by a 

comparison of four crystal structures of leucine and methionine enkephalin. Table 3 

(Murray-Rust, 1991). Enkephalins are endogenous pentapeptides which bind to opiate 
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receptors and have potent analgesic activity. The twelve independent molecules in these 

four structures exhibit two conformations, one extended, the other comprising a p-bend 

centred on Gly-Gly. Side-chain orientations are different in each molecule. 

Table 3. Comparison of Leu and Met enkephalin crystal structures 

crystallisation solvent space 
group 

cell: a.b.c.(A) a, p, y(') asymmetric unit 

Leu-enkephalin Tyr-Gly-Gly-Phe-Leu 

Aqueous Methanol 
(Smith & Griffin, 1978; 
Blundeli etal., 1979) 

A2 a = 31.937 b = 17.084 c = 24.861 
p = 95.54 
Z = 1 6 

4 nearly identical 
conformers with a Gly-

Gly p-bend, several 
water molecules 

Aqueous DMF 
(Karle etal., 1983; 
Camerman etal., 1983) 

P2i a = 18.720 b = 24.732 c = 20.311 
p = 115.86 
Z = 8 

4 extended conformers 
forming an antiparallel p-

sheet, 8 water and 8 
DMF molecules plus 

some disordered solvent. 

Ethanol 
(Griffin etal., 1986) 

P2i a = 11.549 b = 15.587 c = 16.673 
p = 92.19 
Z = 4 

dimers of molecules in 
extended conformation, 
related by a pseudo 2-

fold axis, 1 water 
molecule per dimer 

Met-enkephalin Tyr-Gly-Gly-Phe-Met 

1% aqueous pyridine + 
0.05% acetic acid 
(Griffin etal., 1986) 

P2i a = 11.607 b = 17.987 c = 16.519 
P = 91.24 
Z = 4 

similar to Leu-enkephalin 
from ethanol, but with 

10.6 water molecules per 
dimer. 
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Figure 1. Polypeptides in tine CSD 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

• Linear • Cyclic number of amino acids 

About proctolin 

The long-term goal of this project was the development of a new generation of non-

cholinergic insecticides. The utilisation of peptide hormones as pesticides is unfeasible. 

The cost of industrial scale synthesis of these molecules would be prohibitive, but even if 

this were overcome, externally applied peptides would undergo degradation in the 

environment or the digestive tract of the target species. The development of small 

molecule analogues with chemistry tailored to allow their external application as well as 

an enhancement of agonistic activity is necessary. The aim of this project was to deduce 

the three-dimensional structure of the active conformation of proctolin to shed light on the 

nature of the interaction between proctolin and its receptor, providing input for molecular 

modelling calculations to assist in the design of small molecule proctolin analogues. 
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Structure-activity relationships for proctolin have been investigated. The activity of 

analogues in which one or more residues have been altered has been determined. The 

replacement of residues 3, 4 and 5 leads to inactivity. The analogues Lys-Tyr-Leu-Pro-

Thr and Arg-Arg-Leu-Pro-Thr do possess activity. Oxymethyl Tyr possesses enhanced 

activity and replacement of Tyr by a para-substituted phenylalanine does not lead to 

complete loss in activity. It has been concluded that a positively charged residue at (1) 

and a para-substituted aromatic ring at (2) play a crucial role. It has also been observed 

that the cyclic analogue displays enhanced agonistic activity. This could be because its 

rigidity makes it difficult to expel it from the receptor, although this does not necessarily 

imply that the structure of the cyclic form resembles the active conformation of the linear 

peptide (Temussi etal., 1989). 

Search for crystallisation conditions for proctolin 

undertaken at Birkbeck College Crystallography Department as part of this PhD 

Aim 

The physical and chemical nature of the material was explored, to provide indications of 

possible conditions for crystallisation. The intention was to develop and refine a 

crystallisation method, eventually producing crystals of X-ray diffraction quality. 

Repurification of old material and automated peptide synthesis were undertaken to 

supply sufficient peptide for this series of trials. 

IVIaterial 

Composition: 1 M proctolin + 3.5 M water + 0.5 M acetate 

Anhydrous molecular weight (free base): 648.8 

Molecular weight (with water and acetate): 746.3 

Appearance: white solids 

HPLC purity: 99% 
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Purification and analysis by HPLC 

The purification of peptides becomes simpler as the chain length decreases and the 

yields increase. The retrieval of material from old experiments for reuse is feasible for a 

five residue peptide. 

Rinsings of material from old experiments were pooled and the solvent removed using a 

vacuum centrifuge. An aqueous solution of the material, of concentration approximately 1 

mg/ml, was made up. Concentration was measured from the absorbance at 280 nm; 

absorption coefficient of 1 mg/ml solution at 280 nm = 1300 Niyr / Mmoiecuie (au"^) 

1 3 0 0 x 1 / 648 = 2 

Analysis of the material and separation of the peptide from the accumulated impurities 

was carried out by HPLC, Figure 2. Each HPLC run gave a large major peak, 

representing the elution of proctolin. The position of this peak varied between samples 

over a concentration range of 18.5 - 26.5 % B (as designated in Figure 2). Some samples 

also had minor peaks, eluted at higher B concentration. From this it can be concluded 

that the separation of proctolin from impurities may require more steps if it is to yield 

material of crystallisable quality. 

The 'proctolin' fractions were collected together, reduced to a volume of 1 ml on a rotary 

evaporator and then freeze-dried. This material differs from that supplied by Sigma, in 

that the counter-ion is tri-fluoro acetate, rather than acetate. The material showed 

significant differences in its behaviour in comparison to the original material. The change 

in counter-ion is one contributory factor, in addition to the generally high level of 

impurities. In conclusion, retrieval of material from old crystallisation experiments with a 

useful yield is probably not possible. 

55 



Figure 2, 

HPLC spectra of proctolin samples retrieved from old experiments, run on a Brownlee 018 300 A 

7.5 X 250 mm column, using a reversed phase program; solvent A: 0.1 % aqueous trifluoroacetic 

acid, solvent B: 0.1 % trifluoroacetic acid in 3:1 acetonitrileiwater, gradient: 0 -» 50 % 8 over 50 

minutes, flow rate: 2 ml/minute, detector: 280 nm absorbance. a: 1 division = 2 minutes, major 

peak at 21.25 % B, b: 1 division = 2 minutes, major peak at 15.5 % B, c: 1 division = 4 minutes, 

major peaks at 26.5 %, 37.5 % B - the second peak is due to the presence of a picrate complex. 

Jli a b s o r b a n c e , 

a r b i t a r y 

s c a l e 

4.0 nun 

10 30 mil-

LJ 
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Solid phase peptide synthesis 

Introduction 

The basis of this method is that the growing peptide chain remains attached to an 

insoluble support, consisting of beads of cross-linked polystyrene resin, from the first to 

the final step of the synthesis. Between each reactive step, the supporting resin and 

attached peptide are thoroughly washed, removing impurities and reaction by-products 

while keeping the loss of target peptide to a minimum. The dry beads have diameter 40 -

100 microns, swelling one-hundredfold on the addition of solvent, typically 

dichloromethane or dimethyl formamide. Macroscopically, the resin appears insoluble, 

while on a molecular level it is fully solvated, allowing reactants to approach the anchored 

peptide chain. 

The C-terminal amino-acid is attached to the resin by its a-carboxyl group and thus the 

peptide is assembled from C to N terminal, by consecutive coupling reactions in which 

amino-acids are added, one at a time, to the chain. Amino-acids are introduced into the 

reaction vessel with N terminal and side chains protected and C-terminal activated for the 

coupling reaction. Peptide bond formation is followed by the deprotection of the new N 

terminal. The activation, coupling and decoupling cycle is repeated for successive amino-

acid additions. Finally, the completed peptide chain is cleaved from the resin and the side 

chains are deprotected. The whole procedure is run by a program with parameters set 

before the commencement of the synthesis and it is completely automated. Thus, the 

time and skill required to synthesise a peptide in this manner are a small fraction of what 

is required for a solution phase synthesis. 
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In solid phase peptide synthesis, the N-terminal amine is typically protected by the 

carboxy-amide with either a Boc (t-butoxyloxycarbonyl) or F-moc (9-

fluorenylmethoxycarbonyl) group. The F-moc group is removed by base hydrolysis, using 

a weak base such as a secondary amine, commonly piperidine. Removal of Boc is 

accomplished by acid hydrolysis, using a weak acid, often tri-fluoro acetic acid. Side 

chain protecting groups must be stable under N-terminal deprotecting conditions, so 

complementary protection is required. If a synthesis employs F-moc protection for the N 

terminal, side chain protection should be acid labile and base stable. 

Activation of the attacking C terminal a-carboxyl group allows efficient peptide bond 

formation, without rearrangement. N,N'-dicyclohexylurea (DCC) is the activating agent 

commonly employed. The a-carboxyl of the amino acid attacks DCC, forming an O-

acylisourea. This derivative may be added directly to the reaction vessel. In excess of 

amino acid, the O-acylisourea is attacked again, giving the anhydride, an alternative 

activated species for introduction to the resin. In addition, HOBt is often added to the 

reaction vessel. HOBt attacks the O-acylisourea, forming an active ester, which 

undergoes highly efficient coupling with the free peptide N-terminal. 

Recently, activation using 2-(1 H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium 

hexafluorophosphate (HBTU) has been employed. HBTU is dissolved in a solution of 

HOBt in DMF and the amino acid added, giving the HOBt active ester. The speed of this 

activation step significantly reduces the total synthesis time. 
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Automated solid-phase peptide synthesis of proctolin 

The synthesis of proctolin presents one potential problem. The proline residue is prone to 

attack by the unprotected N-terminal of the succeeding residue, in this case leucine, 

particularly when it is near the C-terminal of the chain and therefore close to the resin 

support. This attack causes rearrangement and removal of the peptide from the resin. 

Reduction of the time taken for steps in which the leucine N-terminal is free should help 

minimise this effect 

The synthesis employed 'Fastmoc' chemistry, with p-

hydroxymethylphenoxymethylpolystyrene (HMP) resin, HBTU.HOBt activation and F-moc 

protected amino acids: F-moc-Arg(Mtr), F-moc-Tyr(tBu), F-moc-Leu, F-moc-Pro and F-

moc-Thr(tBu). 

The initial step was the substitution of the N-protected threonine on to the resin. A Thr-

resin sample was removed from the reaction vessel for determination of the substitution 

efficiency. Any unsubstituted sites on the resin were then capped by reaction with 

benzylic anhydride. Activation, coupling and deprotection steps followed as the four 

remaining amino acids were successively added. Two coupling cycles were performed for 

both arginine and tyrosine, since these are known to have poorer coupling efficiencies. 

Following each coupling cycle, a small sample of the resin was removed for analysis of 

the coupling efficiency. 

Substitution determination 

The substitution in mmol/gram of an F-moc protected amino-acid on to the resin may be 

determined by complexation of the F-moc removed from a preweighed sample of the 
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substituted resin with piperidine. The concentration of the F-moc-piperidine complex is 

assayed by measurement of the 301 nm absorbance. 

The resin sample was dried, then weighed. 0.5 ml 20% piperidine in DMF was added. 

The solution was shaken for 15 minutes, then made up to a volume of 10 ml. Absorbance 

was measured. 

Sample mass: 1.3 mg 

Absorbance: 0.674 

Substitution (mmol/gram) = A301 x V(ml) / 7800 m(g) = 0.67 mmol/gram 

Total mass of resin: 278 mg 

Amino-acid substituted on the resin: 278x0 .67 = 0.186 mmol 

Quantitative Ninhydrin monitoring for determination of coupling efficiencies 

Ninhydrin monitoring measures the concentration of free amine in the resin sample 

withdrawn from the reaction vessel following a coupling step. The most recently added 

amino acid remains F-moc protected at this stage, so the concentration of free amine 

represents the proportion of vacant sites at which coupling failed. 

Samples were removed from the reaction vessel into preweighed tubes, to which 2-3 ml 

of methanol and 2-3 drops of acetic acid had been added. After the conclusion of the 

synthesis, the methanol was pipetted off, the resin was rinsed, then dried and the weight 

determined. A reagent mixture was added to each tube, including a control empty tube, 

as follows: 75 \i\ phenol in ethanol + 100|xl KCN in pyridine + 75 ^ll ninhydrin in ethanol. 5 

minutes incubation at 100° followed, then the volume was immediately made up to 5 ml 
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with 60% ethanol. The tubes were shaken to ensure thorough mixing. Absorbance at 570 

nm was measured, against a 60 % ethanol blank: 

Free amine concentration (nmol/g): 10® (A570 x dilution(ml) ) / (extinction coefficient x 

fTlsample (mg) ) 

dilution: 

extinction coefficient: 

mass resin before synthesis; 

substitution of first residue on to resin: 

results 

5 ml 

15 000 M"W^ 

0.278 g 

0.67 mmol / gram 

Table 4 

Table 4. Coupling efficiency of each stage of the synthesis 

residue coupling efficiency (%) predicted amount of peptide 
on resin (mmol) 

Thr 99.79 0.185 
Pro 99.85 0.184 
Leu 99.57 0.182 
Tyr 99.68 0.181 
Arg 99.58 0.180 

total 98.48 0.180 

Cleavage 

Cleavage of the peptide from the resin and simultaneous side chain deprotection were 

accomplished by acid hydrolysis, using trifluoroacetic acid. Acid hydrolysis of 0-t-Bu 

protecting groups produces t-butyl cations and t-butyl trifluoroacetate, which may attack 

the deprotected peptide. Cooling reduces the rate of these reactions, but also the 

cleavage and deprotection rates. A better solution is the introduction of scavengers to 

remove the cations. 1,2-ethane dithiol is an efficient scavenger for t-butyl trifluoroacetate. 

Addition of a second scavenger, such as anisole, phenol, ethyl methyl sulphide, 

thioanisole, 2-mercaptoethanol, thiophenol, tryptophan or methionine, is necessary for 

the complete suppression of the alkylating reactions. 
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The following cleavage reagent was prepared: 0.75 g crystalline phenol + 0.25 ml ethanol 

+ 0.5 ml water + 10 ml TFA. This was cooled in ice, then added to the dry peptide-resin in 

Eppendorf tubes, which were then sealed. The mixture was allowed to warm to room 

temperature and shaken at regular intervals over a three hour period. The solution was 

filtered from the resin through glass wool. The peptide was precipitated in excess diethyl 

ether. The precipitant was washed, dried and weighed. 

Yield 

The total yield of dry product, before purification, was 106.6 mg. 

Crystallisation 

Introduction : finding crystallising conditions for peptides 

This account summarises discussions witfi f^arek Brzozowski at York and Steve Wood at 

Birkbeck. 

When it comes to crystallisation, polypeptides may be divided into three groups. Small 

peptides, with 1 to 4 amino acids, medium, with 5 to around 30 and large, the remainder. 

Small peptides behave as small organic molecules and methods of crystallisation 

developed for organic molecules are applicable. Crystallisation from an evaporating 

solution is possible. It is best to make up the peptide solution, then allow around three 

days equilibration in a sealed vessel before evaporation commences. The interactions in 

solution are complex and the attainment of a minimum energy conformation may take 

time. Ethanol is a useful solvent, other possibilities include methanol, DMSO, dioxane and 

toluene. A mixture of solvents may improve results, for instance 2:1 Ethanol:DMSO. A 

polar / non-polar solvent mixture, such as 2:1 ethanol: cyclohexane may increase 

chances of crystallisation. It is possible that inclusion of both types of solvent within the 
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crystal could help stabilise the polar and apolar environments around different parts of 

the peptide molecule. 

Medium peptides, with their increasing number of accessible conformations and 

complexity of chemical properties, represent more of a challenge. Methods successful in 

crystallising smaller chains may be attempted. More precision in the reproduction of 

conditions and stricter purity of solutions are often required. Crystals are likely to be 

stable in a narrow range of conditions only. Long periods of equilibration followed by slow 

changes in the environment are needed and, on the appearance of crystals, rapid 

mounting and data collection are advisable. 

The search for crystallisation conditions initially entails a determination of the solubility of 

the material in water and organic solvents. Ways of manipulating this solubility must be 

explored. This is equivalent to mapping out the border between solution and precipitation 

in a multidimensional phase space. It involves experimenting with solvent mixtures. The 

effect of changing pH should be investigated. The presence of additives and change in 

temperature are other parameters that need to be considered. This approach is 

summarised in the flowchart. Figure 3. 

Charged groups present particular problems. One approach could be the crystallisation of 

material from which protecting groups were not removed following synthesis. However 

the resulting crystal structure might bear only a poor resemblance to the native form. 

Addition of a counter ion resulting in precipitation of a complex is a less extreme 

possibility, for example, flavine was co-crystallised with oxytocin. The counter ion may 
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stabilise a crystal lattice by acting as a bridge between regions of like charge in the 

peptide molecules. 

The division between medium and large peptides Is determined by the point at which the 

peptide chain has sufficient length to fold into globular structures containing stable 

secondary structural units. In the presence of favourable intramolecular interactions, such 

as disulphide linkages, the chain length required for the existence of secondary or tertiary 

structure is reduced. 

In protein crystals, loosely packed molecules are interspersed with solvent channels. The 

solvent content is typically around 50 %, see Chapter 5B. The crystals are often fragile 

and stable only under a solvent atmosphere. The protein molecule is a complex chemical 

system, thus the growth of crystals is mediated by a complex and precise interplay of 

external factors. The amount of material available for experiment may be small, a few 

tens of mgs, or less. Systematic methods for the crystallisation of proteins have been 

developed, utilising comparatively tiny quantities of material (Ducruix & Giege, 1992). 

Crystal growth by vapour diffusion from hanging drops is the usual method employed. 

Figure 4. A widely used procedure is the performance of an initial screening for 

precipitation inducing conditions using a set of 50 precipitant, buffer and salt 

combinations suggested by a factorial analysis (Ducruix & Giege, 1992; Jancarick & Kim, 

1991). Because a comparatively small amount of material is required to set up such a 

screening experiment, it is justifiable for a medium length peptide, although the chances 

of finding appropriate conditions are reduced. 
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Figure 3. The search for crystallisation conditions for a peptide of medium length 
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Figure 4. hanging drop vapour diffusion method of crystallisation 
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Solubility tests 

Proctolin is extremely soluble in water, methanol, ethanol and iso-propanol, giving 40 

mg/ml or higher solution concentrations. Solubility across a range of pHs was tested, 

using a series of phosphate/citrate buffer solutions. The material was soluble at pHs 2.2 -

8.0 in water, 1:1 ethanohwater and ethanol. No precipitation occurred when the solutions 

were cooled to 4 °C. 

A 20 mg/ml aqueous solution was made up and drops of organic solvent; DMSO, DMF, 

dioxane, acetonltrile, butan-1-ol, acetone and ethyl acetate, were added. Precipitation 

was observed on addition of dioxane. The following organic solvents were added to 

alcoholic proctolin solutions; diethyl ether, dichloromethane, chloroform, toluene, hexane, 

cyclohexane and carbon tetrachloride. Precipitation from a 20 mg/ml ethanol solution was 

seen on addition of ether, chloroform, and dichloromethane, from a 20 mg/ml methanol 

solution on addition of ether and toluene. The greatest degree of precipitation was 

observed on addition of diethyl ether to an ethanol solution. 
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Complexation of the arginine residue could lead to precipitation. A saturated aqueous 

solution of picric acid was added to aqueous and alcoholic proctolin solutions buffered at 

pH 4. Precipitation was observed, to the greatest extent in a 1:1 ethanohwater solution. 

Evaporation of these solutions resulted in the growth of picrate crystals. Precipitation was 

also observed in a 10 mg/ml proctolin solution in 50% acetic acid. 

Crystallisation tests 

Concentrated solutions of proctolin were put into siliconised test tubes, sealed and left for 

several days. No encouraging results were obtained by this batch method. 

With indications of possible solvent/precipitant pairs from the solubility test results, vapour 

diffusion experiments were set up, using the apparatus shown in Figure 5. Ethanol and 

methanol solutions of proctolin were used, with diethyl ether, chloroform and 

dichloromethane as precipitants. Precipitation was observed after 1-2 days. The 

precipitate was mainly in the form of oily droplets. Tests using ether as precipitant 

contained some material which appeared more crystalline. 

Figure 5. Apparatus for crystallisation 
by 'batch' vapour diffusion 

precipitant 

sealed outer tube 

proctolin solution 
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The combination of an ethanol solution with ether as a precipitant was the most promising 

approach, from the trials up to this point. A recipe for crystallisation was developed as 

follows: 

Ether was added dropwise to a test tube containing a 40 mg/ml ethanolic solution of 

proctolin. Precipitation was observed to form and then redissolve. Addition of ether was 

continued until the point at which the precipitate remained. The tube was stoppered and 

placed in a water bath at 40° C for ten to fifteen minutes, after which time the precipitate 

had redissolved. The tube was allowed to cool slowly to room temperature, then placed in 

a cold room, at 4° C. 

Crystals grew in three to five days, forming clusters of extremely thin plates. It was 

possible to separate individual crystals from the clusters. The length and width of the 

largest were 0.35 mm x 0.10 mm but their thickness was too small to measure. A crystal 

was mounted in a capillary and X-ray photographs were taken. No diffraction was 

observed. 

Attempts were made to improve crystal quality by altering the concentrations of solvent 

and precipitant. The above recipe produced the best results. Ethanol and ethanol/ether 

solutions of proctolin were seeded with crystals obtained by the above method, but no 

improvement was observed. 

One crystallisation experiment was set up with essentially the conditions described 

above, but with increased size and greater control over the rate of change of 

temperature. 25 mgs of proctolin were dissolved in 0.625 ml of ethanol. The solution was 
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centrifuged to remove any solid contaminant, then pipetted into a large test tube. Ether 

was titrated into the solution until the point of stable precipitation was reached. The tube 

was sealed and heated in a water bath at 40° C for fifteen minutes, when the precipitate 

had redissolved. The tube was then placed inside a slow-cooling apparatus. Figure 6, 

which was sealed and left in the cold room, at 4° C, for three weeks. Crystals had grown 

of a very similar shape to those previously produced. The maximum length and width had 

increased considerably, to around 5 mm x 0.3 mm, but the crystals remained very thin. 

Figure 6. Slow cooling apparatus 

polystyrene box 

thread 

Insulation 

- sealed boiling tube 

water, initial temperature 40° C 

• proctolin solution 

vacuum flask 

Crystallisation was also attempted using the set of 50 conditions specified in the Hampton 

Research Crystal Screen (Jancarik & Kim, 1992) which are commonly used for initial trials 

in protein crystallography. A 20 mg/ml aqueous solution of proctolin was used. Two 

crystallisation methods were employed, sitting-drop vapour diffusion, using Linbro plates, 

and crystallisation under an oil film. Absolutely no precipitation was observed. 
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Conclusions 

The first problem encountered during the attempt to crystallise proctolin was its extreme 

solubility in aqueous and alcoholic solutions. Precipitation could only be induced from 

very concentrated solutions, therefore large amounts of material were required. Attempts 

to re-use old material and synthesise new did not succeed in producing material with the 

same properties as that supplied by Sigma. The newly synthesised proctolin requires ion 

exchange and further purification steps. Crystallisation was achieved, but the crystals 

were not suitable for diffraction studies. The extreme thinness made it difficult to harvest 

and mount the crystals from solution in the test tube in which they had grown. They were 

only stable under ethanol vapour and possibly the presence of ether is also required. No 

diffraction was observed, possibly due to mounting problems, or the meagre volume 

resulting from the small third dimension. 

A pentapeptide such as proctolin fluctuates in solution between many energetically 

similar conformations with low potential barriers between them. A unique bioactive 

conformation is adopted at the receptor site as a consequence of the peculiar 

environment. There is no obvious relationship between the bioactive and lowest energy 

solution conformations. Solution NMR studies provide information about conformations 

stabilised by an aqueous environment, while most active sites are known to be 

hydrophobic cavities. Crystallisation introduces yet another environment, the molecular 

conformation within a crystal being mediated largely by lattice forces. The presence of 

additives and counter ions in a crystal introduce further complexity. A single structure 

determination in solution or solid phase is thus of limited relevance when the goal is an 

understanding of the activity of the molecule. Putting together several pieces of structural 

information, coupled with modelling studies, may allow some speculations to be made. 
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Chapter 3 

Structural studies on glucosamine 6-phosphate synthase 

Abbreviations and definitions used in Chapter 3 

Rmerge S^Z^^ 1 <I (h)> - 1(h), 1 / Z^Z^^ 1(h), (%), 1(h),-. = Ah of N 
measurements of reflection h 

Rnative 1 <FpH (h) > - <Fp (h)> 1 / Z^ <Fp (h)> (%), Fp (h) = amplitude of 

reflection h in native, F P H (h) = amplitude of reflection h in 'derivative' 

Patterson synthesis P (x,y,z) = 1/V Z^Z^Z, IFhwl' COS2JC (hx + ky + Iz) 

isomorphous Patterson Patterson synthesis with coefficients (Ajso)^, Ajso = 1 FPH - Fp 1 

anomalous Patterson Patterson synthesis with coefficients (Aano)^. Aam = 1 FPH(+) - FPH(-) I 

kemp 2 V( < FpH - Fp >^ / < FPH(+) - FPH(-) >^) for acentric reflections 

G A T domain glutamine amide transfer domain of amidotransferase enzyme 

synthase / synthetase 
domain 

amidotransferase domain responsible for amination of a substrate. 
Synthetase, if a cofactor is involved, synthase othenwise 

Ntn amidotransferase amidotransferase subfamily defined by N terminal catalytic activity. 

Triad 
amidotransferase 

amidotransferase subfamily defined by catalytic triad in the G A T domain. 

G L M S glucosamine 6-phosphate synthase 

P U R F P R P P amidotransferase 

P R P P phosphoribosyl pyrophosphate 

D O N 6-diazo-5-oxonorleucine, an inhibitor of Ntn amidotransferases 

F M D P fumaroyi di-propionic acid methyl ester, inhibitor of Ntn 
amidotransferases 
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Introduction 

Glucosamine-6-phosphate is a member of the glutamine dependent amidotransferase 

class of enzymes. Glutamine constitutes a major source of nitrogen for biosynthetic 

processes. These enzymes are responsible for hydrolysis of glutamine and subsequent 

amination, as depicted in (1), of a range of substrates, including amino acids, 

nucleotides, sugars, coenzymes and antibiotics. The glutamine hydrolysis (2) and 

substrate amination (3) reactions occur at separate sites, on different domains known as 

glutamine amide transfer, GAT, and synthetase, if the reaction involves a cofactor, or 

synthase, where no cofactor is required. Although separated domains often exhibit limited 

activity, they function co-operatively, resulting in an efficient coupling of the two halves of 

the reaction. In some cases the two domains constitute distinct subunits, in others they 

are present on the same chain. The mechanism by which amide is passed between 

domains is unclear. There is evidence that the product of glutamine hydrolysis does not 

equilibrate with native ammonia. However, most amidotransferases can utilise free 

ammonia in the absence of glutamine. The glutaminase activity is dependent on an active 

site cysteine, since addition of an irreversibly binding glutamine analogue, such as 6-

diazo-5-oxonorleucine, DON, which complexes with the cysteine and mutation of the 

cysteine, both result in inactivity. 

Gin + R ^ R-NH3% Glu (1) 

Gin + OH" -> Glu" + 'NH3' (2) 

R + 'NH3' + H % R-NH3* (3) 

The enzymes can be divided into two subfamilies on the basis of conserved GAT 

domains, the synthase domains of each enzyme being generally unrelated. The members 

of one family are characterised by the possession of a Cys-His-Glu catalytic triad and are 

designated triad amidotransferases. The other type, distinguished by a catalytic N-
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terminal Cys, forms the N-terminal nucleophile, or Ntn subfamily. Examples of each are 

listed in Table 1. The Ntn subfamily are members of a wider group of Ntn 

amidohydrolases, including penicillin acylase (Brannigan et a/., 1995). Triad 

amidotransferases have a GAT domain of around 190 residues, which may or may not be 

a distinct subunit. The catalytic cysteine lies in the central conserved region of the chain, 

at around position 90. Ntn enzymes all have fused GAT and synthase domains, the GAT 

constituting the N-terminal domain and comprising 148-202 residues. The active cysteine 

is the N-terminal residue of the mature enzyme. 

Sixteen amidotransferases are known, four of which are members of the Ntn family, as 

listed in Table 1. The X-ray crystal structure of one of these, PRPP amidotransferase or 

PURF, has been determined (Smith et a/., 1994). The X-ray crystal structure of one 

member of the Triad amidotransferase family, GMP synthetase, has also been solved 

(Tesmer etal., 1996). 

Table 1. Examples of glutamine dependent amidotransferases 

enzyme pathway reaction catalysed class 

anthranilate Tryptophan Triad 

synthase chorismate + Gin anthranilate -i- pyruvate + Glu 

carbamoyl-P Arginine, UTP, HCO3 + 2ATP + Gin NHaCOzPOs^" + 2ADP + P/+ Glu Triad 

synthetase CTP 

CTP C T P Mg^* Triad 

synthetase UTP + ATP + Gin -> C T P + ADP + P/+ Glu 

GMP GMP XMP + ATP + H 2 O + Gin GMP + AMP + PPZ+Glu Triad 

synthetase 

asparagine Asparagine Mg^* Ntn 

synthetase Asp + ATP + Gin Asn + AMP + PP/Glu 

glucosamine 6-P Glucosamine 6-P fructose-6-P + Gin -> glucosamine 6-P + Glu Ntn 

synthase 

glutamate Giutamate a-ketoglutarate + NADPH + H* + Gin NADP* + 2Glu Ntn 

synthase 

glutamine PRPP AMP, GMP P R P P + H 2 O +Gin -» phosphribosylamine + P/+Glu Ntn 

amidotransferase 
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Glucosamine 6-phosphate synthase, GLMS, is an Ntn amidotransferase. It catalyses the 

first step in the hexosamine biosynthetic pathway (4). The product, glucosamine 6-

phosphate is the precursor of UDP-N-acetyl glucosamine from which all amino sugar 

containing macromolecules are derived in both prokaryotic and eukaryotic cells. The 

inhibition of this enzyme could consequently play a role in the treatment of bacterial and 

fungal infection, certain types of diabetes and some cancers. 

fructose-6-P + Gin -> glucosamine 6-P + Glu (4) 

Gin + H2O ^ Glu + 'NH3' 

GAT domain 

fructose-6-phosphate + 'NH3' -> glucosamine-6-phosphate 

synthase domain 

The mechanism of glutamine hydrolysis in Ntn amidotransferases has been subject to 

investigation. The importance of the terminal cysteine has been established. Nucleophilic 

attack by the thiol leads to formation of a covalent intermediate. Prior deprotonation of 

the cysteine by a base is necessary but the identity of this base was unclear. A sequence 

alignment between GAT domains of PURF, GLMS, asparagine synthetase and glutamate 

synthase, which have 45-50% identity, lead to the hypothesis of the existence of a 

catalytic Cys-Hls-Asp triad (Mel & Zaikin, 1989). In support of this theory, mutation of His 

101 in PURF resulted in loss of activity (Mei & Zaikin, 1989). However the crucial His was 

missing from the sequences of some active asparagine synthetases (Boehlein et a/., 

1994). Mutational analysis of the GAT domain of GLMS highlighted the necessity of the 

N-terminal cysteine but found that the mutation of each of the four histidine residues 

which are conserved in the Ntn family failed to decrease the hydrolysis rate (Badet-

Denisot & Badet, 1996). The structure of PURF at 3 A resolution (Smith et a/., 1994), 

showed neither histidine, nor any other suitable residue is in a position to abstract a 
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proton from the cysteine. It was proposed that the N terminal a-amino group could fulfil 

this role (Smith, 1995). 

Glucosamine 6-phosphate synthase is anomalous in its inability to utilise nascent 

ammonia in place of amide from glutamine for the amination of fructose-6-phosphate, 
•'i ••• 

which suggests that coupling between the domains of the substrate bound enzyme must 

be exceptionally tight, shielding the amide acceptor site on the synthase domain from the 

surroundings. 

Glutamine analogues, including DON, iodoacetamide and fumaroyl-di-propionic acid 

derivatives, notably the methyl ester, FMDP, alkylate the N-terminal cysteine resulting in 

loss of glutamine hydrolysis activity. In the presence of fructose-6-phosphate, addition of 

1 equivalent of DON is required for complete loss of activity, while, without fructose 6-

phosphate, 0.5 equivalents of DON are sufficient, indicating that there is negative co-

operativity between the two domains. These inhibitors have been found to possess 

antifungal/ antibacterial activity. 

The E. C O / / enzyme is a dimer of 67 kDa subunits. Each subunit comprises N-terminal 

GAT and C-terminal synthase domains, connected through a central hinge region which 

is uniquely cleaved by chymotrypsin at Tyr 240. A mixture of isolated GAT and synthase 

domains has no glucosamine-6-phosphate synthesising activity, however GAT domains 

bind glutamine and retain around 7% of their glutaminase activity. The isolated synthase 

domain binds 0.16 equivalents of fructose 6-phosphate, compared to 1 equivalent for the 

intact enzyme. 
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Figure 1. 

Inhibition of glucosamine 6-phosphate synthase by fumaroyi di-propionic acid derivatives 

temnlnal carboxyl 
& 

double bond 
necessary for inhibitory activity 

NH 
/ 

C O 2 " 

X = N H 2 F O D P 
X = OMe FMDP 

NH2 

Figure 2. Possible mechanisms proposed for formation of Cysl - FMDP complex 

Cys — s 
^NH-p-Ala 

nucleophilic attack: 
at a, of: less likely - thiols too unreactive 

at b, c. Michael addition - probable 

B : 
activates C y s 

for nucleophilic attack 

Overview 

Genes encoding the two separate domains of Glucosamine-6-phosphate synthase were 

cloned and the proteins were overexpressed and purified by Obmolova et a/. (1994). The 

determination of crystallisation conditions and initial collection of native data were also 

accomplished before the start of this PhD project, by Galya Obmolova and Alexei 

Teplyakov, although these steps are outlined below. The remainder of the work described 
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in the experimental sections which follow was performed as part of the PhD. The 

appendix on the structure of the GAT domain which concludes the chapter is the work of 

Michail Usupov and Alexei Teplyakov. It is added for general information, since the 

results are extremely interesting from both crystallographic and biological points of view 

and also as an indication of how far the work described in the experimental section was 

justified and where it was misguided. 

Experimental, GAT Domain 

Crystallisation and data collection 

Table 2. Native data collection and processing, GAT domain 

parameter value 
resolution (A) 1.8 

measured reflections 201 5 8 9 
In P 2 i 2 i 2 i : 

unique reflections 4 6 5 0 3 

Rmerge (%) 6.1 

completeness (%) 9 8 . 5 

In P 2 i : 
unique reflections 7 8 9 2 3 

Rmerge (%) 6 .2 

completeness (%) 8 6 . 6 

Crystals were obtained using hanging drop vapour diffusion. They were grown at 4 °C 

from a 1 M sodium acetate solution, with 20% PEG 4000 and 0.1 M cacodylate buffer at 

pH 6.5. 100 mM of the substrate, glutamine, was present in the crystallisation solution. 

Crystals grew in 2-4 weeks, reaching a size of 0.5 mm x 0.5 mm x 0.2 mm. Figure 3. The 

crystals diffracted to 1.8 A. The point group symmetry was determined as P222, with cell 

dimensions a= 70.4 k , b = 82.5 A and c = 86.1 A. This gives 2 molecules in the 

asymmetric unit with 48% solvent content. Systematic absences along all axes indicated 

the space group P2i2i2i. Data were collected on the X31 EMBL beamline, using a MAR 
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Research imaging plate detector. The data were processed using DENZO and 

SCALEPACK (Otwinowski & Minor, 1993). Statistics are listed in Table 2. 

Figure 3. GAT domain crystal shape 

The native Patterson map contained a strong peak, with height 35% of the origin peak, at 

(0.50,0.53,0). A self-rotation search found no significant peaks. This indicated that the 

two molecules in the asymmetric unit had essentially identical orientations and were 

related by a translation of approximately (0.5,0.5, 0). If this symmetry had been exact this 

would have been a C-centred lattice. The diffraction pattern contains a complex system 

of pseudo absences, as described and illustrated in Figure 4. This phenomenon is 

caused by the divergence from ideal symmetry along the b axis. 
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Figure 4. 

The sinusoidal pattern of mean intensity for h+k reflections with increasing k displayed by the 

form I data. 

<E> was plotted against k for h+k=2n (blue, continuous line) and h+k=2n+1 (red, dashed line) 

reflections. 

This pattern corresponds to pseudo-absence of h+k=2n+1 reflections for low k(0-4), h+k=2n for 

medium k(20-24) and h+k=2n+1 again for high k(40-44). The wavelength of this pattern is related 

to the difference between the pseudo-translation and the translation giving an exact, C-centred cell. 
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Multiple isomorphous replacement 

An extensive search for isomorphous heavy atom derivatives was performed. Data 

collections on prospective derivative crystals are summarised in Table 3. These crystals 

were reasonably robust, remaining intact under a variety of soaking conditions and often 

diffracting well, to 2.7 A resolution or better. In some cases, merging statistics with native 

data appeared promising. However, the only significant feature which could be seen on 

the isomorphous and anomalous Patterson maps was the peak at (0.5, 0.53, 0) resulting 

from the translation between the two molecules in the asymmetric unit. Thus, it proved 

impossible to locate any heavy atom sites and it remained unclear whether any of the 

crystals tested were actually derivatives. 

Table 3. The search for derivatives of GAT domain crystals 

compound concentration soak time resoiution Rmergg /higti resolution ̂ native 
(Mm) (days) (A) (%) (%) 

mercury 
HgAc2 0.1 1 2.3 18.3 
HgAc2 0.5 3 2.25 5.9/16.8 15.1 
DTT/HgAc2 6/0.5 3hrs/1day 2.7 5.1 21.9 
DTT/HgAC2 6 / 0.45 3hrs/1day 2.6 9.3/20.0 20.8 
EMTS 0.5 1 2.25 7.0/18.7 10.4 
EMTS 2 2 2.15 3.2 / 7.0 9.9 
EMTS 2 1 2.7 3.3/10.2 21.3 
EMTS 1 1 2.4 **inonoclinic, P2i** 

transition metal 
K2PtCl4 2 2 2.35 27.3 
K2PtCN4 3 7 2.2 8.5 
Pt(NH3)2(N03)2 3 3 2.3 6.2/18.7 13.4 
Pt(NH3)4Cl2 1 21 2.6 6,3/15.8 16.7 
Pt(NH3)4Cl2 5 7 2.6 7.2/13.0 26.4 
K2PtBr6 1.5 3 2.7 8.8 / 40.0 36.5 
KalrCle 4 3 2.7 5.0/13.3 13.9 

lanthanide/ actinide 
Sm(N03)3 7 7 2.2 9.0 
SmCb 7 3 2.7 6.5 29.6 
UO2AC 2 3 2.25 10.0 
U02(02CH2)2 4 3 2.7 8.0/26.0 19.6 
EuCI 4.8 7 2.6 6.3/18.4 40.0 
La(N03)3 6 3 2.7 6.1 14.5 
ThAc 1.6 3 3 61./14.2 35.0 
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Molecular replacement 

PURF from Bacillus subtilis has a GAT domain which has 27% sequence identity with 

that of the E. coll GLMS GAT domain. Structure solution by molecular replacement was 

attempted, using the GAT domain from the structure of PURF at 3 A resolution (Smith et 

a/., 1994), PDB code 1GPH, as a search model. The model included all atoms of the first 

224 amino acids with unaltered B factors. The cross-rotation function with an integration 

radius of 18 A and the translation function were calculated in the resolution range 10-3 A 

using AMORE (Navaza, 1994). A clear rotation solution was found, with an peak height of 

18.6 a, compared to the next, 14.6 o. However the translation function gave many peaks, 

with similar peak heights. 

At this stage, the choice of space group was reconsidered. It was suggested that the 

correct space group could be P22^2^. The systematic absences along the a axis can be 

explained by the fact that the translation component of the intermolecular vector is almost 

exactly half the unit cell width. Molecular replacement, in this new space group yielded a 

unique translation solution, with correlation 21% and R factor 62.9%, other solutions 

having correlations not higher than 18.2%. This solution was fixed and the search for the 

second molecule followed. Two solutions were obtained with equal figures of merit, 

correlation 42.7%, R 56.1%. Both solutions were acceptable with respect to packing and 

close contacts within the unit cell. The two solutions were related by the vector (0, 0.053, 

0), the translation between the two peaks in the native Patterson map which arises from 

pseudo centring. Least-squares refinement with PROLSQ (Kpnnert & Hendrickson, 1980) 

was carried out using both solutions as starting models and data In the resolution range 

10 -1.95 A. The R factor dropped from 62.4% to 38.7% and Rfree from 62.3% to 53.1% in 
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both c a s e s , so the solutions were still indistinguishable. The density maps remained 

uninterpretable and no further progress in refinement was possible. 

Alteration of crystal symmetry 

The presence of a pseudo-symmetric translation in the unit cell with the consequent 

weakness of the pseudo-absent data and the large peak in the Patterson map resulted in 

a loss of information which hindered progress towards structure solution. Attempts were 

made to grow crystals with a different lattice, lacking the pseudo-symmetric translation. 

Alterations were made to the 'normal' crystallisation conditions, which were 0.8 - 1.2 M 

NaAc, 2 0 % P E G 4000, 0.1 M cacodylate buffer, pH 6.5. Options considered included 

changing the cation, the anion, the type of P E G or the pH and the addition of organic 

additives to the crystallisation solution. Crystals were grown under new conditions and 

their symmetry determined, with the results listed in Table 4. 

Table 4. The search for a new symmetry for G A T domain crystals 

crystallisation conditions (changes) lattice: a,b,c (A) comments 

P E G 8000 normal 

P E G 8000, 3% MPD primitive monoclinic: 53, 87, 56, p = 99° disordered 

P E G 8000, 3% MPD primitive monoclinic: 87, 71,168, p = 92° 
or centred monoclinic: 255, 63, 98, p = 95° 

disordered 

P E G 8000, 3% ethanol primitive monoclinic: 53, 87, 56, p = 
or centred orthorhombic: 69, 83, 87 

101° disordered 

P E G 8000, 3% ethanol primitive monoclinic: 53, 87, 56, p = 
or centred orthorhombic: 71, 83, 87 

99° disordered 

P E G 8000,1% cyclo-hexane normal 

P E G 6000 normal 
or primitive orthorhomic: 83, 87, 42 

disordered 

P E G 6000 3-octvl glyceride normal 
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The presence of ethanol and MPD during crystallisation evidently affected the lattice, but 

the crystals produced were disordered. Alteration of the crystal lattice by soaking crystals 

grown under normal conditions in concentrated salt solution (3.9 M NaAc), 5% ethanol, 

55% P E G 4000 and 60% MPD was also tried. Crystals were found to diffract following 

this treatment, although to a lower resolution limit, but no lattice changes were observed. 

Synthase Domain 

Crystallisation and data collection 

Crystals were grown by hanging-drop vapour diffusion, at 4 °C, from a solution containing 

27-31% sodium formate buffered by 0.1 M imidazole at pH7. 5 mM fructose-6-phosphate, 

the substrate, was present In the solution. Crystal growth in the absence of substrate is 

also possible. Hexagonal bipyramidal crystals grew in 2-8 weeks with dimensions 0.6 mm 

X 0.3 mm x 0.3 mm. These crystals diffracted to a limit of 2.2 A. The data indexed in 

space group P 6 i , or its enantiomer, P 6 5 , with a = b = 63.5 A and c = 334.5 A. Two 

molecules in the asymmetric unit give a solvent content of 49%. Data were collected on 

the X I I EMBL beamline to 2.6 A resolution and processed using DENZO and 

SCALEPACK. 108 620 measured reflections gave 23 992 unique data, with Rmerge 5.4%. 

The native data are summarised in Table 5. 

Structure solution attempts 

Structure solution by multiple isomorphous replacement was attempted and data were 

collected on potential derivative crystals as listed in Table 6 . Rmerge was high for all 

derivative datasets and the scaling of native and prospective derivative data proved 

impossible. The merging statistics for each pair of datasets are listed in Table 7. 
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The self rotation function for each dataset was calculated. Table 8. The equatorial angle, 

(]), which is equivalent to the angle of rotation about the 61 axis between the two 

molecules in the asymmetric unit, appears to vary widely between datasets. For a single 

dataset, Pt2 as defined in Table 6, the images were reprocessed in three sets of 20°, 

chronologically grouped. Rmerge for these subsets was lower than for the whole dataset 

and the self rotation function gave a different value for in each case. Table 9. From this 

variation in the rotation function, it appears that the alignment of the lattice varies 

between crystals and either with orientation or time or both, for a single crystal during 

data collection. The most obvious interpretation is that there is some type of rotational 

disorder in the lattice. 

If (|) = 0, the space group would be P6i22. The symmetry of these crystals may therefore 

be considered to be disordered P6i22. Progress in structure determination may be 

possible if this disorder could be removed, either by an induced lattice transformation, for 

instance by soaking or freezing of the crystals, or by a change in crystallisation 

conditions. The crystals are hexagonal bipyramidal, but some are symmetrical about a 

central mirror plane, while others are not. Figure 5. It was suggested that crystals with this 

symmetry may possess a P6i22 lattice, while the asymmetric ones were in P 6 1 . 
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Figure 5. Synthase domain crystal shapes 

symmetric - P6i22 ? asymmetric - P6^7 

Alteration of crystal symmetry 

New crystallisation conditions, resulting in crystals of altered symmetry, were sought. 

Crystals were found to grow in a range of conditions, including: 28% sodium formate 

precipitant, buffered by imidazole at a range of pHs, 7.0 - 8.0, and concentrations 0.1 -

0.15 M, or 0.1 M H E P E S at pH 7.0 - 8.0; 1 M sodium acetate, with 0.1 M TRIS buffer, at 

pH 8.5 and 10% P E G 4000, 35-40% ammonium sulphate, at pH 7.0; 38% ammonium 

sulphate with 0.1 M Imidazole at pH7.0; 35% sodium citrate with 0.1 M HEPES at pH7.0; 

35-40% lithium sulphate with 0.1 M H E P E S at pH 7.5. Generally, the crystals appeared to 

have the same form, and those tested possessed the old unit cell. The use of sodium 

citrate as precipitant resulted in hexagonal prisms. However the diffraction from these 

was too poor for the unit cell to be ascertained. 

Table 5. Native datasets collected, synthase domain 

dataset resolution (A) P6i a,c(A) N unique 

GS7 10-2.5 63.7 335.4 15 373 

GS8 18-2.6 63.6 335.0 22 619 

GS9_h 15-2.6 63.5 334.3 23 992 

GS9_/ 29 - 3.3 64.0 336.5 11 960 

GS10 25 - 2.6 64.2 337.8 22 644 

GS11 35 - 5.6 63.7 335.6 2 279 
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Table 6. 'Derivative' datasets collected, synthase domain 

dataset heavy atom 
compound 

cone 
(mM) 

soak 
time 

resolution 
(A) 

symmetry, cell 
/=6i a, c(A) 

Rmerge 
(high res) 

(%) 

complete 
(high res) 

(%) 

Nunique 

Pti RPy4Cl2 
.2H2O 

1.15 4 hrs 20 - 2.6 64.7 340.2 12.7 
(42) 

99.3 
(99.2) 

24 431 

Pt2 KaPtCU 1 1 day 20 - 2.6 64.2 340.7 10.0 
- (35) 

98.4 
(100) 

24 084 

Pt3 RPy4Cl2 
.2H2O 

1 4 hrs 35 - 5.6 63.6 334.1 6.6 
(10.5) 

89.0 
(84.1) 

2 089 

Hql ETMS 0.39 1 hr 20 - 2.6 cracked - - -

Table 7. Rmerge for pairs of synthase datasets 

GS7 GS8 GS9_ / GS9_h GS10 GS11 Pti Pt2 Pt3 

GS11 30.0 23.6 29.5 34.6 30.4 - 25.5 26.2 52.7 
G S I I a * 54.0 40.6 50.1 41.6 42.8 - 30.0 30.0 32.3 
Pti 40.0 29.6 41.1 34.7 36.4 - 11.9 37.8 
Pti a* 42.2 31.1 42.1 35.0 37.5 - 12.3 36.1 
Pt2 41.2 28.9 40.9 337 36.8 37.9 
Pt2a* 42.8 30.6 42.5 34.3 37.9 35.9 
Pt3 49.3 37.7 46.8 30.9 36.9 -
Pt3a* 17.6 20.0 42.1 20.2 13.5 -

* G s a = enantiomer of G S 

Table 8. Peaks in the self-rotation function for synthase data sets 

dataset peak height (b (°)* Q ( ° ) - K ( ° ) 
(% origin) 

Q ( ° ) - K ( ° ) 

GS7 1 83.8 -6.2 90 180 
2 33.9 0.0 90 180 

GS8 1 81.4 -14.1 90 180 
2 71.6 -3.0 90 180 

G S 9 J 1 71.7 -5.3 90 180 
2 69.2 0.0 90 180 

GS9_h 1 96.0 -0.7 90 180 

GS10 1 76.1 12.5 90 180 

GS11 1 84.8 -9.1 90 180 
2 79.0 0.0 90 180 

Pt1 1 97.2 -0.7 90 180 

Pt2 1 95.7 +0.5 90 180 

P t3 1 89.0 +5.9 90 180 
2 80.3 0.0 90 180 
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Rotation angles: 
n polar (90°) 

K around 2-fold rotation axis (180°) 
(p equatorial - around 61 axis 

* P 6 1 is a polar space group, so re-

indexing with the 61 axis in the opposite 

direction will cause (|) to change sign. 

The rotation function was calculated, as 

well as could be determined, for all data 

indexed the same way round, i.e. for the 

sets of data which gave the best 

merging statistics. 

Table 9. Results of processing dataset Pt2 in three subsets 

images 4'spindle axis Rnneroe (%) rotation function peak height <Kotation function 
range (°) (high resolution.) (% origin) n 

1-59 60 10.0 (35) 95.7 +0.5 
1-13 20 6.8 (18.6) 92.6 +5.2 
13-45 20 7.0 (28) 87.5 -4.5 
47-59 20 5.8 (27) 83.4 -10.9 

Appendix: Structure of the GAT domain 

(Summary of work by Usupov & Teplyakov) 

Solution and refinement 

During the screening for derivatives, data were collected on a single crystal which 

indexed in the monoclinic space group, P2i, with a = 53.5 k,b = 87.3 A, c = 56.6 A, p = 

98.9 °. In the monoclinic cell, form II, two molecules are related by a non-crystallographic 

2-fold axis. This new form has a similar packing motif to the orthorhombic cell, form I, but 

without the pseudo symmetric operators. Figure 6. 
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Figure 6. Relationship between GAT domain crystal forms I and II 
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53 x87x56 A, |3 = 99° 

The monoclinic cell is a variant of 
the orthorhombic form, but without 
the pseudo-centric transformations 

Structure solution by molecular replacement was tried unsuccessfully, using the form II 

data with the PURF GAT domain as a search model, as described above for form I. An 

attempt was then made using the preliminarily refined molecular replacement solution in 

F22i2i as a search model. This yielded a solution for two molecules with correlation 

57.8% and R 46.5%. The solution was subjected to refinement at 23 - 2.4 A resolution 

using a maximum likelihood approach, REFMAC (Murshudov et a/., 1996), with the 

application of strict NCS restraints. 3% of the data were separated from the working data 

and used to evaluate Riree- Phase improvement, using the CCP4 program DM, resulted in 

a density map in which the deviations of the chain from the search model could be 
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traced, allowing manual corrections to be applied, using O (Jones at a/., 1991). This 

model refined to R 20.2% and Rfree 27.1%. 

The extension of the model to higher resolution and the investigation of complexes 

necessitated a solution of crystal form I. The data collection of form II was serendipitous 

and numerous crystallisation attempts had failed to procure another such crystal. 

Molecular replacement in P22•^2^ using the refined P2^ model as a search model resulted 

in two solutions which could not be refined, as had occurred previously. A solution was 

then searched for in all other primitive orthorhombic space groups, to no avail. The 

possibility of a lower symmetry was then considered. 

A unique solution was finally obtained in P2i, with the 2i axis along the 82 A cell edge. 

The solution had correlation 83% and R 34.3%, four crystallographically independent 

molecules; A, B, C, & D, with two pairs of molecules, A&C, B&D, related by the former 
•t 

pseudo-centring vector, and two pairs; A&B, C&D, related by the former orthorhombic 2-

fold along the c axis, Figure 7. The crystal lattice can be described as a superposition of 

two orthorhombic sublattices, shifted by 0.027£> along a common monoclinic 2, axis. 

Data were reprocessed in P2i, with statistics listed in Table 2. Due to the 

misapprehension that the symmetry was orthorhombic, only 90° of data had been 

collected and the completeness in the new monoclinic symmetry, was only 86%. 

PROLSQ refinement was performed at 10-1.8 A resolution without NCS restraints. 1% of 

the data were used for Rfree calculation. Water sites were added where peaks of height 

greater than 3.5 o in the difference map came within bonding distance, 3.5 A, of potential 

H-bonding partners. Their occupancies were set to 100% and not refined. 
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Figure 7. Relationship between monoclinic and orthorhombic symmetries of fonm I, 
and between the 4 independent molecules in the monoclinic cell 
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The final model had R 17.9%, Rfree 25.4% and 770 solvent sites, 238 residues modelled 

for A & C and 239 for B & D , out of 240 expected. A metal ion site was detected in the 

density. It is co-ordinated by five oxy-ligands, with distances in the range 2.2-2.6 A. The 

metal was modelled as Na"̂ , since this cation was present in high concentration in the 

crystallisation medium. The substrate glutamine was also present in the solution and 

difference density for this molecule was observed and modelled. Substrate binding is 

discussed below. 
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An Inhibitor complex 

Data were collected on a crystal which had been soaked in a 50 mM solution of L-Glu-

hydroxamate. Figure 8, a competitive inhibitor of Gin binding and hydrolysis. The inhibitor 

binding was Identified in the difference map and the structure refined, using the model of 

the substrate complex. 

Figure 8. L-Glu hydroxamate, 
an inhibitor of Gin hydrolysis 

HO 

Description of the structure 

The four layer structure consists of a pair of p-sheets sandwiched between a-helical 

zones, Figure 9. The central strands of the p-sheet assembly are planar, but the end 

strands twist, so that opposite ends of the sheet lie perpendicular to one another. The C-

terminal strands, pi 4 and pi 5, can be considered as a single strand forming the closing 

link between the p-sheets. The secondary structural units are joined by short loop 

regions, 13 out of 18 of which contain Gly residues in conformations forbidden to other 

residues. These Gly residues are highly conserved in the Ntn family of 

amidotransferases. The region between the sheets is packed with hydrophobic residues. 

The majority of a-a and a-p interactions are also hydrophobic. The Na* binding site is 

formed from loops connecting a5 to p7 and P8 to P9. 
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P8 

B9 

Figure 9. 

Ribbon representation of the GAT domain of GLMS produced using MOLSGRIPT (Kraulis, 1991) 

Alpha-helices are depicted in green, beta-strands in red. A ball and stick representation of the 

product, Glu, lies in the active site. 
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Substrate binding site 

The catalytic residue, Cys1, is situated at the bottom of a deep pocket in the centre of the 

sheet structure. The substrate lies within this pocket. The binding pocket is comprised 

principally of the loop sections connecting P4 to P5 and P6 to a3. Numerous H bonds are 

formed between ligand and protein. The binding pocket is enclosed by the loop residues 

73-79, which interact with the a-COa" and a-NHa* of the molecule, the other end of which 

points towards the catalytic site at the bottom of the pocket. H-bonds are formed between 

the y-carboxyl group and Cys l N, Trp74 N and Gly99 N, which are all proton donors. This 

provides evidence that the ligand bound is the product, Glu, rather than Gin. In addition, 

the refinement of both y-carboxyl atoms as oxygens gives equal B values for the pair, 

while, if one is modelled as nitrogen, the nitrogen B factor drops by 5 A^. It is predicted 

that the amide group of Gin would lie less deep within the pocket, forming an H-bond to 

Trp74 O. The amide of the inhibitor L-Glu hydroxamate is indeed observed to interact in 

this manner. 

Comparison to PURF structure, the loop lid on the binding site 

The structures of the GAT domains of PURF (Smith et a/, 1994) and GLMS are very 

similar, the main structural difference being that the former lacks the C-terminal pair of p-

sheets. However, superposition of the 219 common CA atoms gives an rmsd of 2.15 A, 

due to the considerable deviation of almost all the loop regions between the two 

structures. Superposition of 70 CA atoms from p-sheet regions gives an rmsd of only 0.93 

A. 

The maximum deviation of up to 10 A occurs for the CA atoms of residues 74-83, the 

loop region joining p4 and P5, which forms a lid over the Gin binding site. In the PURF 

95 



structure, the binding site is empty and the lid loop in open conformation, with rather high 

B factors indicating considerable motion. In the GLMS structure, the occupied site is 

closed by the lid, which Is fixed in a much more rigid conformation. The open lid appears 

to provide the only access to the binding site. A gate mechanism, mediated by interaction 

with the synthase domain, is proposed for lid opening. In the PURF structure, the Gin 

binding site is shielded from the bulk solvent by the synthase domain and relative 

movement of the two domains is necessary for the opening of the site. In the structure of 

PURF complexed with the glutaminase inhibitor DON (Kim et a/., 1996), the loop also 

adopts the closed conformation. 

Mechanism for glutamine hydrolysis 

From the structure of the enzyme bound to the reaction product, a mechanism for 

glutamine hydrolysis can be deduced. Figure 10. 

1/ Deprotonation of the Cysl thiol is accomplished with the N-terminal a-amino group 

acting as a base catalyst, via a bridging water molecule. 

2/ Nucleophilic attack of the activated thiol on the amide carbon of Gin forms a 

tetrahedral intermediate, stabilised by H-bonding with Asn 98 ND and Gly 99 N. 

3/ The intermediate collapses, releasing ammonia and forming a y-glutamylthioester. 

4/ Deacylation results from the attack of a water molecule, activated by the N-terminal a-

amino group, in the same manner as in step 1, to form a second tetrahedral 

intermediate, stabilised as in step 2, followed by the collapse of this intermediate, 

releasing glutamate. 
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Figure 10. 
Proposed catalytic meclTanism of Gin hydrolysis by amidotransferases. 
Residue numb)ers are those of GLMS. 

Cys 1 

The thiol is activated for nucleophilic attack by the N-terminal a amino group. There are 

no other suitable basic groups neighbouring the active site, in either PURF or GLMS 

structures. There is no evidence for the involvement of a catalytic Cys His Asp triad of 

residues, as previously postulated. The evidence suggests that a mechanism of 

glutamine hydrolysis entailing single amino acid catalysis could be a common feature for 

the Ntn amidotransferase family of enzymes. 
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The mechanism assumes the prior repositioning of two key residues. The sidechain of 

Asn 98, which is hydrogen-bonded to Cys1 N in the GLMS structure should rotate 100° to 

form, with Gly 99, the oxyanion hole which stabilises tetrahedral reaction intermediates. 

The thiol of Cysl points outside the binding pocket in the GLMS structure. A rotation of 

180° around the CA - C bond and 120° around CA - CB moves It into the active position, 

ready for nucleophilic attack. This Is the conformation adopted In the PURF structure. 

This switch is Impossible with the lid loop In closed position, therefore, glutamine 

hydrolysis Is dependent on Cys1 adopting the active conformation prior to Gin binding 

and closure of the pocket. 

It has been shown that, for the Ntn family, Gin hydrolysis Is inhibited by the reaction 

product, Glu, in both the Isolated GAT domain and the complete enzyme In absence of 

the N acceptor substrate. This suggests that binding of the N acceptor to the synthase 

domain results In the co-operative activation of the GAT domain, with rotation of Cysl 

Into the attacking position. 

The unusual inhibition of the GLMS GAT domain by the product, Glu, can now be 

rationalised. In the Isolated domain, Cys1 Is free to adopt either active or Inactive 

conformation, at random. Gin In the crystallisation solution Is converted Into Glu by 

enzyme molecules In active conformation. Due to the unfavourable Interaction with the 

thiol in the active conformation, Glu complexes preferentially with enzyme In the Inactive 

conformation, trapping molecules In this alignment, since there is no release mechanism. 

The existance of a family of Ntn hydrolases has recently been recognised, members of 

which include penicillin acylase(PA), the proteasome(PROT) and aspartyl 
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glycosylaminase(AGA) (Brannigan et al., 1995). These enzymes are characterised by a 

common mechanism for hydrolysis, the intial step of which is the nucleophilic attack on 

the substrate carbonyl carbon by the side chain of the N-terminal residue, Cys for GAT, 

Ser for PA, Thr for PROT and AGA. This N-terminal side chain is activated by its own a-

amino group, via a bridging water molecule. 

The Ntn fold is a 4-layer a+p structure incorporating two antiparallel p-sheets, one flat the 

other twisted. Residues from the twisted sheet are incorporated in cavities in the flat 

sheet, thus the two sheets are packed very closely. The structural alignment of active 

sites of different Ntn hydrolases shows that elements of the catalytic centres are 

equivalent. Ser B1 OG, Ser B1 N, Ala B69 N and Asn B241 ND2 of PA may be 

superemposed on Cys1 SG, Cysl N, Gly103 N and Asn102 N of the PRPP GAT domain, 

with an rmsd 0.7 A. This common framework suggests that a common mechanism exists, 

involving intermediates with the same chirality. 
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Chapter 4: 

Anisotropic refinement of two small protein structures 

Introduction: Least-squares refinement 

The relationship of the parameters of an atomic model to the crystallographic diffraction 

pattern Is well understood. This allows a model to be refined to match experimental 

diffraction data with high fidelity, using the method of least-squares minimisation. 

Given a set of independent observations, yi , . . .ym, from which a set of parameters, Xi,...Xn. 

are to be determined, if the observations are linearly related to the parameters, equations 

(1) can be written. 

a i i X i + ....+ amXn = yi 

(1) 
amiXi + ....+ amnXn = y^ 

If m=n, there Is an exact solution, but no estimate of the errors on the parameters. If m > 

n, the equations are overdetermined and a best fit solution can be found by minimisation 

of the residual, dj for each observation, where 

di = l y i - a i i X i + ....+ ainXnl (2) 

This can be achieved by the minimisation of the sum of the squares of the residuals, (3) 

but only If all the observations are equally reliable, otherwise the residuals must be 

weighted, (4). 

m M = Z.^, di-̂  (3) 

M = 2:.^^Widj^ Wi = 1/o ,̂ o = standard nucertalnty of y (4) 
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M is minimum when the differential with respect to Xj Is zero (5). This gives the normal 

equation for each Xj , (6). 

S.̂ , WiaiiaijX, Wiaij Xj +...+ E.̂ ^ WiainayXn = S.̂ ^ w, aijy (6) 

Least-squares refinement is relatively insensitive to gross errors and computationally 

economical. If the residuals obey a normal distribution and the ratio of observations to 

parameters Is large, the reliability of error estimation is good. 

A crystallographic least-squares refinement Involves minimisation of structure factor or 

Intensity residuals (7). In this case, the observations are not linearly dependent on the 

parameters that are to be fitted. As a result, iterative refinement steps are required. The 

solution of the normal equations Ignores higher than first order derivatives. Consequently, 

errors In the trial function must be small, othenwise the refinement will oscillate or diverge 

rapidly rather than converging. 

M = 2:j/ah'(IFh°''^l-IF.-"=l)^ (7) 

The solution of the normal equation Is achieved by expressing the problem In terms of 

matrices. A set of m observations, Y can be expressed as a function of a set of n 

parameters, x, with m > n. 

F(x) = Y (8) 

A trial model Is found, Yc. To get better estimates of Yc, Taylor expansion gives: 

Yc + (5F/5X) 5x= Yo (9) 

which can be rearranged: - • 

A6x = A Y (10) 

A^A5x = A^AY 
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N 5x = A^AY = r 

6x = N-̂ r (11) 

where A(m,n) is a matrix, Aij = 5 F / d X j i , r is the residual vector n = S (5Ym/5Xi). (Yo - Yc)m, 

N(n,n) is the normal matrix A^A and 6x is the set of parameter shifts. The chief 

computational demands are for sufficient memory for storage of the V2n(n+1) terms of the 

symmetric normal matrix and time for y2nm(n+1) operations on this matrix. 

Data collected on small molecule crystals to atomic resolution (~1 A) give a large data to 

parameter ratio. There are a comparatively small number of atoms in the structure. Direct 

methods commonly provide an excellent starting model with co-ordinate errors not greater 

than 0.1 A. The relatively small number of parameters also means that y2n(n+1) is not a 

prohibitively large number for computational memory. Thus, full least-squares refinement 

of atomic co-ordinates and anisotropic thermal parameters is the routine procedure. 

As the number of model parameters, n, increases, the demand for computer time and 

memory for least-squares refinement increases by more than n .̂ Thus, for 

macromolecules the supply of sufficient computational facilities is non-trivial. However, 

even if advances in computer technology were to render this factor insignificant some 

fundamental differences would remain. 

In a typical protein crystal, loosely packed molecules are interspersed with channels of 

solvent. The solvent regions contain diffuse density, the overall B factor of the structure is 

large and, especially at the protein solvent interface, atoms exhibit a high degree of 

thermal motion and disorder. Consequently, the high resolution data are weak and 

limited, leading to a low data to parameter ratio, with the refinement tending to become 
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under-determined. A further difficulty relates to the character of the starting models. 

Structure solution techniques for macromolecules often yield trial models with large 

errors, of around 0.5 A In co-ordinates, and the nature of the errors Inherent In a solution 

differs with the method by which it was derived. 

Although there Is a lack of high resolution information In the diffraction pattern, there 

exists a store of structural knowledge to help compensate. A library of stereochemical 

Information has been built up from sources Including amino acid and oligopeptide 

structures and spectroscopic measurements. This Information can be introduced Into a 

refinement by the application of restraints or constraints. 

A restraint restricts a model property to a realistic range of possibilities, weighted by the 

reciprocal variance of the property, whereas a constraint confines it to a specific value. If 

the weight on a restraint Is infinite, it becomes a constraint. In their application, both 

Increase the effective data to parameter ratio. In different ways. A constraint Is an exact 

mathematical condition leading to the elimination of one or more least-squares parameter 

because they can be expressed exactly In terms of other parameters. A restraint Is 

applied in the form of an additional weighted observation, with the discrepancy between 

model and ideal values to be minimised In the same way as the structure factor residuals 

(11). All observational terms contribute to a grand minimisation function (12). 

cp(x) = L1 /a^; (gJ ' ^ - ' -g^ ; °^^ f (11) 

0 = S9(x) (12) 

The storage space and time required for a refinement can be greatly restricted by 

considering only the diagonal terms of the normal matrix. This Is a very rough 

approximation since it ignores all correlation between parameters. Block diagonal 
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refinement involves the division of parameters into subsets, and contruction of a sparse 

matrix, with correlations within a subset accounted for, while those outside are ignored. 

This is a good compromise, especially if the blocks are different for each cycle of 

refinement. 

Modified matrix least squares 

full matrix refinement 
n=7 

diagonal matrix refinement blocked matrix refinement 
parameters split into blocks 

of 2, 2 and 3 

I J ™ , 
^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^ 

\ 

correlations between all no correlations between 
parameters accounted for. parameters accounted for. 

correlations between 
parameters (1,2), (3,4), 
(5,6,7) accounted for, 

but no others 

Conjugate gradient refinement is an approach which is often adopted as an acceptable 

compromise for macromolecular refinement. The method involves the storage of the 

parameter shifts between cycles. During each cycle, the direction vector of parameter 

shifts is modified by a factor derived from the direction vector for the previous cycle. The 

factor is larger when a parameter appears to creep in the same direction in successive 

cycles. This can be thought of as a method of approximating the second derivative of the 

function. It helps prevent the refinement becoming trapped in a false minimum and 

accelerates convergence while limiting time and memory consumed since the structure 

factor derivatives are computed only once, although the geometric information is updated 
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on every cycle. Convergence properties are less good than for full matrix least-squares 

refinement. An additional disadvantage of the conjugate gradient method Is that a reliable 

estimate of errors Is not obtained. 

PROLSQ (Hendrlckson, 1985, Konnert & Hendrlckson, 1980) Is a least-squares 

refinement package developed to deal with the problems posed by the refinement of 

protein crystal structures outlined above. Minimisation of structure factor residuals Is 

performed (7) using a conjugate gradient algorithm. Co-ordinates and individual Isotropic 

thermal parameters may be refined for each atom, although, for lower resolution data and 

In early stages of refinement, one overall B factor derived from the Wilson plot (Wilson, 

1942; Chapter 5A) can be fitted. A system of restraints Is Imposed during the refinement. 

The relative weight of observed data and restraints can be adjusted. The weight given to 

the restraints should be reduced at later stages in the refinement to allow maximum 

exploitation of the information In the diffraction data. 

The system of stereochemical restraints Implemented In PROLSQ is based on values In 

the Engh & Huber (1991) set. Restraints are applied to bonding distances and angles, to 

Impose the planarlty of groups and chlrallty at asymmetric centres. Non-bonding contacts 

shorter than given minimum values have a repulsive restraint Imposed. Selected torsion 

angles, sidechain rotamers and peptide bond torsions are restrained to the Ideal values to 

which model values correspond most closely. 

Restraints on atomic thermal parameters follow the rigid bond principle. The root mean 

square displacements of atoms within a protein structure are an order of magnitude larger 

107 



than the distortions observed in chemical bonds. This implies highly correlated atomic 

motion. B factors of bonded atoms are thus restrained to similar magnitudes. 

Restraints vary in strength of application. Bond distance restraints are strong, since the 

ideal bond distances are known to high accuracy for naturally occurring amino acids and 

the observed variances are small. The distributions of torsion angles are wider, so torsion 

angle restraints are softer. 

Non-crystallographic symmetry (NCS) can be exploited in the imposition of two types of 

restraints. NCS related objects are superimposed, allowing an average structure to be 

defined. Positional restraints on deviations from this average structure can then be 

applied, also restraints imposing similarity of equivalent temperature factors. These NCS 

restraints can confer stability at early stages in a refinement before being relaxed to allow 

genuine differences between the NCS related species to emerge. 

PROLSQ also imposes limits resisting excessive shifts in parameters in a single cycle. 

This can be a problem in badly defined parts of the structure and can cause instability in 

a refinement. 

Technological progress in X-ray crystallography in recent years includes the construction 

of high intensity X-ray sources such as dedicated and purpose built synchrotrons, the 

development of area detectors with rapid scanning and readout properties and cryogenic 

cooling techniques which allow crystals to be preserved at liquid nitrogen temperature 

during and between data collections. These achievements have facilitated the collection 

of an increasing number of high quality, atomic resolution data sets on protein crystals. 
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An atomic resolution data set has been defined by Sheldrick (1990) as one in which data 

extend to at least 1.2 A resolution, at least 50 % of the data in the outer shell possessing 

Intensities > 2a. There have also been vast expansions In the storage and operational 

capacity of computers. As a result of these advances, methods for both solution and 

refinement of crystal structures which were previously limited in application to small 

molecules have Increasing relevance in the field of high resolution protein 

crystallography. 

The SHELXL refinement package (Sheldrick & Schneider, 1996) was initially developed 

for small molecular refinement but Is now evolving to meet the demands of refinement of 

molecules of Increasing size. SHELXL refinement allows greater flexibility In the treatment 

of higher resolution protein structures where data quality makes this justifiable. 

SHELXL can be used for refinement with a choice of minimisation algorithms: conjugate 

gradient, blocked and full matrix refinement. At the end of the refinement, an error 

assessment can be made by running some final cycles using the full matrix. 

SHELXL refines against Intensity data rather than amplitudes. This Is especially 

advantageous for macromolecular data, particularly those with pseudosymmetry, since 

they include many weak reflections. During data collection, some weak reflections may be 

recorded with negative intensities. If the intensity data are then converted to structure 

factors, these weak reflections will be ascribed zero amplitudes. It is optimal to use all 

observations In refinement, with suitable weighting, rather than employ an Intensity cutoff. 

This Is achievable with the employment of F̂  refinement. 
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In SHELXL atoms can be modelled with either individual isotropic thermal parameters or, 

if the data quality permits, with anisotropic thermal tensors. This more accurate modelling 

of static and dynamic displacements within a structure reduces the rms electron density in 

the ( F o - F c O c ) synthesis, allowing features such as solvent sites and alternate side chain 

conformations to become apparent above the background noise. The modelling of 

alternate conformations and partially occupied atoms, with the refinement of 

occupancies, is also facilitated within SHELXL. 

A large and flexible range of restraints are available which can be tightened when 

modelling diffuse regions of the structure and relaxed where they are not necessary. 

Geometrical restraints can be applied to interatomic distances, molecular planes and 

chiral centres. Chemically but not crystallographically equivalent distances can be 

restrained to be equal, which is useful where reliable dictionary values are not available. 

Two types of restraint are applied to anisotropic thermal parameters, a rigid bond restraint 

similar to that employed in PROLSQ can be applied to the component of the ellipsoid 

along the bond, while a weaker similarity restraint can be applied to transverse 

components. 

Anisotropically refined solvent atoms can be restrained so that the axes of the thermal 

ellipsoid remain approximately equal. This "isotropic" restraint helps prevent the atoms 

from becoming non-positive definite, the volume of the thermal ellipsoid refining to a 

negative value. This can easily happen because an ellipsoid is an inadequate model for 

the density of a typical solvent site. Besides smearing of the density due to thermal 

motion in a similar fashion to the libration of atoms at the ends of long side chains, such 

as Lys and Glu, the density at a 'solvent site' may result from the overlap of several 
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closely situated, partially occupied sites, these formations often having the appearance of 

a chain of beads. 

As the model becomes Increasingly sophisticated, it is Important to differentiate between 

modifications justified by observation and overfltting of the model. The Rfree test (Briinger, 

1 9 9 3 ) can be applied as an Indicator. A small percentage of reflections Is removed at 

random from the working data before any changes are made to the model. The 

refinement is therefore not biased by this subset of data. Rfree Is defined as the R factor 

( 1 4 ) evaluated using the omitted data. If the drop in Rfree on the introduction of a change, 

such as movement from isotropic to anisotropic modelling of thermal parameters. Is of the 

same magnitude as that in the R factor derived from the working data set, this is an 

independent verification of the protocol. However, the Rfree test Is Insensitive to 

adjustments made in the final stages of the refinement of an atomic resolution structure, 

such as the modelling of alternate solvent networks and no validation tool can 

compensate for lack of chemical knowledge and experience. Another problem with the 

evaluation of Rfree is that the absence of a percentage of data from the refinement is not 

optimal, since the electron density we are attempting to model Is a Fourier transform of 

the entire diffraction pattern. Missing reflections result in ripples In density maps, which 

can be misleadingly localised and lead to modelling errors. 

R = Z I I F o l - I F c l l / Z l F o l ( 1 4 ) 

A further fundamental difference between small molecule crystals and those of 

macromolecules requiring serious consideration during refinement lies In the solvent 

structure. The treatment of solvent is discussed in detail in Chapter 5 B . 
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Protocol used for protein G and rubredoxin refinements 

This chapter is concerned with the refinement of atomic resolution data sets for two small 

proteins, using essentially the same protocol. 

In both cases the initial model for the refinement was derived from an already existing 

isotropic model of the structure. 5% of the reflections were separated from the working 

data set prior to refinement for the evaluation of Rfree- The co-ordinates were randomised 

by rms 0.3 A and a number of cycles of isotropic refinement were performed in an 

attempt to remove the memory of these reflections from the model. Isotropic refinement 

using PROLSQ was followed by anisotropic refinement using SHELXL-93 (Sheldrick, 

1993). As already mentioned, the validity of the anisotropic model can be assessed by 

observing the change in Rfree following Its introduction. However, at atomic resolution the 

use of an anisotropic model is always justified (Dauter et a/., 1995). Hydrogen atom 

positions were not refined, but calculated using a riding model. During the course of 

refinement an Automated Refinement Procedure (ARP, Lamzin & Wilson, 1993) was 

employed, as explained below, for the construction and modification of the solvent 

network only, a procedure designated 'restrained ARP'. Thus, the solvent structure 

undenwent modification in real space in between rounds of least-squares refinement. 

Fourier maps were calculated using the CCP4 suite of programs including FFT (Ten 

Eyck, 1973). 

Stereochemical restraints applied during both PROLSQ and SHELXL-93 stages of the 

refinement were based on values from the Engh & Huber (1991) set. The restraints 

applied are listed in Table 1. 
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Table 1. Stereochemical Restraints applied during refinement 

restraints applied to: 
bonding distances 
1-2, 1-3, 1-4, H-bond/metal 
co-ordination 

PROLSQa 

0.02, 0.04", 0.05, 0.05 A 

SHELXL-93a 

0.03 (0.01 f , 0.03 (0.01 f , -, - A 

thermal parameters 
similarity main chain 1-2.1-3,side 
chain 1-2,1-3 
rigid bond restraint - component, 
along bond direction 

4, 5, 6,8A? 4A^ (0.05A^f 

0.8 A^ (0.01 A'^f 

planarity, chlral volume 0.02 A\ 0.15 A^ 0.2 A^, 0.2 A^ 

non-bonding contacts 
single torsion 
multiple torsion 
H-bondX..Y 
H-bondX-H..Y 

0.3 A, Dinc.= -0.3 
0.3 A, Dinc.= 0 
0.3 A, Dinc.= -0.2 
0.3 A, Dinc.= -0.9 

-

torsion angles 
planar (eg peptide il) 
staggered (eg aliphatic %) 
transverse (eg aromatic %) 

3° 
15° 
20° 

0.3 A'' 

solvent 
isotropic restraint: similarity thermal 
ellipsoid axes 

- 8 A' (0.1 A'f 

a of ideal distribution (not exactly for SHELX) 
b , 

0.03 A for protein G 

restraints applied to bond distances involving multiple conformations 

in terms of rms atomic displacement, <u>^ = B / 8JI^ 

distance of deviation from plane 

allowed separation = sum of Van der Waal's radii + Dine 

^ chiral volume restraint on peptide bond carbonyl carbon 

Real space refinement matches the expected and actual shape of density around an 

atom on the (3Fo-2Fc,ac) map and moves the atom to Improve its sphericity. This corrects 

the positioning of diffuse, possibly partially occupied, atoms which othenvise tend to drift 

towards the edges of the density. 
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Calculated structure factors were scaled prior to map calculation using a procedure which 

applies a correction accounting for the diffuse solvent scattering contribution, which is 

crucial for the fitting of data at 5 A and lower resolution. The modelling of diffuse solvent 

is considered in Chapter 5B. Another possible Improvement in this real space refinement, 

the use of sharpened density maps, is discussed in chapter 5A. 

Estimates of errors in bond distances, angles and refined occupancies were obtained by 

running a final cycle of SHELXL-93 least-squares refinement with a matrix of overlapping 

blocks of parameters, using the final model and the entire set of data. All restraints were 

removed and the refinement was prevented from crashing by setting the allowed shift on 

all parameters except the overall scale factor to zero. The accuracy of these estimates is 

limited, since correlations between parameters not refined in the same block remain 

unaccounted for. Ideally, the full least-squares matrix should be constructed. 
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Chapter 4A: 

Anisotropic refinement of the protein G IgG binding domain III 

introduction 

What is an Immunogiobulin? 

Immunoglobulins, or antibodies, are soluble proteins produced by plasma cells 

constituting the recognition element of the humoral immune response system. They are 

synthesised in response to the presence of a foreign substance, an antigen, which may 

be a protein, polysaccharide, nucleic acid, synthetic peptide or small molecule 

synthetically attached to a protein (hapten). Each antibody-producing cell has the 

capability of producing one sort of antibody only. 

Polyclonal antibodies to a specific molecule may be obtained by injecting the substance 

into an animal such as a rabbit. The rabbit will develop antibodies, which may be 

extracted in antiserum. The antibodies obtained will be heterogeneous, varying in affinity 

and specificity for the antigen, since they were produced by many populations of cells. 

The investigation of the structure and function of immunoglobulins was greatly advanced 

by the development of a method for production of homogenous monoclonal antibodies. A 

single antibody producing cell is fused with a myeloma tumour cell. This then divides 

rapidly, producing hybridoma cells, which all possess the ability to produce the same 

specific antibody. 

Immunoglobulin G is the principle class of antibody present in the blood plasma. The 

structure of IgG is schematically depicted in Figure 1. It has a moelcular mass of around 

150 kDa. When cleaved with papain, three 50 kDa domains are obtained. Two are 
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identical antigen-binding domains, Fab. The other, known as Fc, is responsible for 

effector functions, the processes by which the antigen-antibody complex is dismembered. 

The three domains fit together in a Y shape, with the Fc constituting the stem. Ig is made 

up of four polypeptide chains, two identical 25 kDa "lighf chains and two identical 50 kDa 

"heavy" chains. The C-terminal ends of the heavy chains constitute the Fc domain. Each 

Fab domain consists of a light chain and the N-terminal part of a heavy chain. The chains 

are held together by disulphide linkages. The antigen-binding site is a cleft located at the 

N-terminal end of the Fab domain, at the top of the T * . The link between the domains is 

flexible, allowing hinge-like movement of the two Fab segments, thus the distance 

between the antigen binding sites can be varied to optimise binding to antigens with 

multiple recognition sites, for example, viruses. 

Both heavy and light chains consist of a variable N-terminal region and a constant region. 

Within the variable regions are hypervariable segments which form the antigen-binding 

site. The Fab and Fc fragments both contain four globular subdomains arranged in a 

tetrahedral manner; Fab: VL, CL, VH & C H I and Fc: 2CH2 & 2CH3. Each subdomain adopts 

the structural motif known as the Immunoglobulin fold, consisting of a pair of p-sheets; 

three-stranded and four-stranded, back-to back, bridged by a.disulphide bond. 

Two types of light chain exist, K and X, with around 40% sequence identity in the CL 

subdomains. The heavy chain varies with the class of antibody. Some classes have 

larger Fc domains and exist as larger structures, with multiple copies of the (Fc 2Fab) 

unit. Membrane-bound immunoglobulins are also produced, which are embedded in the 

membrane via a hydrophobic extension to the Fc domain. 
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The specificity of the antibody for the antigen results from the fact that the binding site is 

composed of chain segments with sequences unique to each antibody. It is not caused 

by conformational changes following the invasion of antigens into the environment and 

novel antibodies are not synthesised in response to the presence of an antigen. The 

capacity to synthesise each type of antibody is inherent in the system. 

^HaN 

Figure 1. Schematic illustration of the structure of IgG 

^ h e a v y c h i 

region 

l i g h t c h a i n 

J C H 3 CH3 1 

C02 C02" 

l i g h t c h a i n 

disulphide bonds 

What is Protein G? 

Protein G is a large multi-domain cell surface protein of group G Streptococcus which 

binds to Immunoglobulin G. Many pathogens possess such proteins, which assist in the 

evasion of the host's immune response by binding to host antibodies, mimicking self 

markers commonly displayed by host cells (Boyle, 1990). Other examples are protein A 

from Staphylococcus aureus and protein L from Peptostreptococcus magnus. Ig binding 

proteins typically possess two or more Ig-binding domains, each comprising 50-60 

residues with close to 100% identity between them. These subdomains retain activity 

when individually expressed. 
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Figure 2 . Overall fold of protein G IgG binding domain. 

Beta strands are shown in green and the alpha helix in red. 

Drawn with Q U A N T A . 
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The role of these Ig-binding proteins in enhancing microbial virulence makes them a 

target for the understanding and combating of infection. The common clinical symptom 

caused by group G Streptococcus is pharyngitis, but it can be responsible for more 

serious infections, such as septicaemia. The Ig-binding affinity of these proteins is high, 

comparable in strength to antibody-antigen binding and their specificity is low. Typically 

Igs of several species and classes are bound by the same protein. The nature of the 

protein-protein interactions is of interest. Affinity for Ig is unlikely to be affected by the 

binding of antigens, which has led to these molecules becoming crucial tools in the 

screening and purification of antibodies, proteins generally and other biomolecules in 

immunology and molecular biology. 

Protein G contains three IgG-binding domains. There is a high degree of sequence 

similarity between published sequences of protein G IgG-binding domains, suggesting 

that strict sequence conservation is necessary for the retention of binding ability. The 

secondary structure of protein G Ig-binding domains comprises a central a-heiix, packed 

against a four-stranded antiparallel p-sheet: - 1 , +3x, -1 topology, after the notation of 

Richardson (1981), Figure 2. The domains possess exceptional chemical and physical 

stability (Achari et a!., 1992). The B1 domain has a melting temperature of 87° C and is 

not denatured in 8 M urea. One factor contributing to this stability is that around 95% of 

the residues are incorporated in secondary structure, ensuring a large number of 

stabilising hydrogen bonds. A typical value for a domain of this size is 75% (Gronenborn 

eta!., 1991). The overall fold of the molecule enhances its stability, with the two ends of 

the chain making up the central strands of the p-sheet and a tightly packed, hydrophobic 
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core, coupled with a very hydrophilic exterior. This results in a large negative solvation-

free energy of folding, -55 ± 2 kcal mol'^ for 8 1 . 

Protein G binds to a wide range of mammalian IgGs, but not to other classes of Ig (Guss 

et a!., 1986). The binding domain utilises two almost completely non-overlapping sets of 

residues on its surface to recognise two separate sites on the Ig (Lian et a/., 1994), one 

on the Fc fragment, one on the Fab domain. The affinity of Protein G for IgG binding sites 

varies between IgG species. For human IgGs, interaction occurs preferentially to the Fc 

domain, while for mouse Igi, binding is with the Fab domain. 

Complex formation with the Fab domain of the antibody occurs through the antiparallel 

interaction of the second p-strand of the protein G domain with the last p-strand of the 

C H I subdomain, to form an extended p-sheet across the two domains. A minor binding 

site, comprising residues from the C-terminus of the a-helix and the first p-strand from 

C H I , packs against the p-p contact region, forming a hydrophobic interior to the 

interaction site. The crystal structure of Protein G domain III, complexed with a Fab 

fragment from mouse lgGi (Derrick & Wigley, 1994), gives insight into the manner in 

which high affinity, low specificity binding to Ig is achieved. NMR studies on a complex of 

domain II with a Fab fragment from mouse IgGi (Lian et a/., 1994) support the fact that 

this interaction persists in solution and is not an artefact of crystallisation. Protein G binds 

to the least variable part of the Fab domain. Out of a total of twelve hydrogen bonds, 

eight connect main chain atoms in CH1 , including the five involved in the p-p contact. In 

addition, the C H I residues with side chains involved in the interaction are highly 

conserved between different subclasses and species. 
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Binding to the Ig Fc domain occurs in a cleft between CH2 and CH3 subdomains. The 

binding site incorporates residues on the a-helix and the third p-strand of the protein G 

domain (Gronenborn & Clore, 1993). 

Protein A binds to mammalian IgG Fc fragments in a complementary fashion to Protein G 

(Guss etal., 1986). The two proteins exhibit competitive binding to Fc domains, indicating 

that the binding sites are close or overlapping (Lian et al., 1991). However, no significant 

homology has been found between protein A and G IgG-binding domains and the 

secondary structures are not alike. The protein A solution structure consists of three 

helices (Torigoe etal., 1990; Gouda etal., 1992), one of which is disrupted in the crystal 

structure of the protein A/ Fc complex (Deisenhofer, 1981). There is evidence that the 

protein G recognition of Fc principally involves the helix, in a similar fashion to the protein 

A - Fc interaction. It is possible to superimpose one of the two Fc interacting helices of 

protein A on to the G helix. This results in the alignment, with respect to Fc, of the third (3-

sheet of protein G in a similar position to that of the second interacting helix of protein A 

(Gronenborn & Clore, 1993). The manner in which these two different structures from 

bacterial proteins recognise the same site on a host Ig is a good example of convergent 

evolution. 

The protein L IgG binding domains adopt the same fold as the protein G chains. However 

no significant homology could be found (Kastern et al., 1992). Protein L binds to the Fab 

domains of all IgG classes. It interacts with the framework of the variable domain of K light 

chains and has low affinity for X chains. A hybrid molecule, protein LG, containing Ig-

binding domains from L and G, has been found to bind to a very wide range of Igs. 

(Kihiberg et al., 1992). Thus, proteins A and G possess similar functions but different 
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structures. Conversely, proteins L and G adopt similar structures while performing 

different functions. 

Summary 

Derrick & Wigley (1994) grew crystals of the third IgG binding domain (domain III) of 

protein G, collected X-ray diffraction data to a resolution of 1.1 A, obtained a structure 

solution, performed refinement and deposited the resulting co-ordinates in the PDB, code 

11GD. An outline of this study, which preceded the work performed as a part of this PhD, 

follows. In the present study, the data have been reprocessed and anisotropic refinement 

has been carried out, with the aim of assessing the additional information available from 

the anisotropic model. 

Previous experiment: (Derrick & Wigley, 1994) 

Protein and Crystallisation 

Expression and purification of domain III was carried out as described by Lian et a/. 

(1992). Crystals were grown by hanging-drop vapour diffusion, with a reservoir solution 

containing 10 mM sodium acetate buffer (pH 4.8), 0 .01% sodium azide and the 

precipitant, 24-26% PEG 4000. Crystals of dimensions up to 0.75 x 0.50 x 0.50 mm grew 

in one week. The crystal properties are summarised in Table 1. 

Table 1. Crystal properties, data processing statistics 

Crystal symmetry: Orthorhombic, P2^2^2^ Molecules per asymmetric unit; 1 

Cell dimensions (A) 
Vm(A 'da-^) 
Resolution (A) 
Rmerge (%) 
Nunique 
Completeness (%) 

Previous Refinement 

a= 34.9, b=40.4, c=42.2 
2.29 
25-1.1 
5.8 
23 530 
95.0 

New Refinement 

a= 34.78, b=40.28, c=42.19 
2.23 
10-1.1 
3.7 
24145 
97.9 
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Data Collection and Processing 

Data were collected at room temperature on the X31 beamline at the EMBL outstation 

using monochromatic radiation of 0.72 A wavelength and a Hendrix-Lentfer Image plate 

detector, the prototype MAR scanner. For the most effective solution and refinement of 

atomic resolution structures, data must be as complete as possible. The very low 

resolution data play a crucial role in refinement, e.g. (Dodson et al., 1996). In order to 

collect data over a wide range of resolutions on a MAR imaging plate at a synchrotron 

source, it is necessary to collect several data sets. 

To maximise the resolution which can be collected, crystal to detector distance must be 

short, a minimum of 80 mm is possible on beamlines at EMBL Hamburg. Due to the limits 

of its dynamic range, strong, low resolution reflections overload the detector when 

exposure time is sufficiently long to allow reliable measurement of weak, high resolution 

intensities. Therefore, data are collected in several runs with the crystal to detector 

distance increased and exposure time successively reduced between each one. Four 

data sets were collected (at distances 140, 190, 290 & 450 mm) with resolution ranges, 

1.8 -1 .1 A, 4.0 -1 .4 A, 10 - 2 A, 25.0 - 4.0 A, the low resolution limit for an image being 

determined by the radius of shadow cast by the beam stop at the centre of the image 

plate. The data were processed using the CCP4 (1979) suite of programs, giving 

statistics shown in Table 1. 

Structure Solution and Refinement 

Structure solution by molecular replacement, using structures obtained by NMR 

spectroscopy as search models, proved unsuccessful, so heavy-atom isomorphous 

replacement was required. Structure solution was achieved using data from a single lead 
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acetate derivative. An initial model was built using the interactive graphics program 

FRODO (Jones, 1978), comprising residues 2-13, 16-50 & 55-61, with numbering from 

the N-terminal Met, using the sequence described by Lian et a/. (1992). Following a few 

cycles of restrained least-squares refinement (Hendrickson & Konnert, 1980), 

construction of the remaining loops was possible, using a (2Fo-Fc) map. Alternate cycles 

of model rebuilding and least-squares refinement with phase extension followed. There 

was also a simulated annealing step using X-PLOR (Brunger efa/., 1990). Characteristics 

of the final (new) model are summarised in Table 2 in comparison with the 1IGD (old) 

model. 

Table 2. Comparison of new and previously refined models 

ojd new 
R ( % ) 19.3 9.4 
total water 120 130 
B protein, mean (A^) 11.9 12.6 
B water, mean (A^) 40.2 41.2 
rmsd, C A atoms(A) 0.054 
rmsd, all protein atoms (A) 0.423 

Anisotropic Refinement 

The work undertaken as part of this PhD commenced at this point. 

Data 

The data, collected as described above, were reprocessed using DENZO (Otwinowski & 

Minor, 1993). This was deemed to be necessary following initial test refinement runs, 

which suffered from problems including inexplicable program crashes, fluctuations in R 

factor and a high level of noise in density maps. Problems in scaling of the low resolution 

data were traced to merging errors in the medium resolution data set, (10-2 A) resulting 

from the fact that the beam-stop shadow was too large in this set of images and also off-

centred. This caused a select set of data to be unobserved. Once this problem was 

accounted for, the merging of the low resolution data improved. Reprocessing of the data 
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gave slightly different cell parameters (Table 1) with new data processing statistics. Errors 

in the very low resolution intensities remained large, so a resolution cutoff of 10 A was 

applied. Refinement was performed using a working set of 22944 data - 95% of the total. 

The remaining 5%, removed at random, were utilised in the calculation of Rfree, a cross-

validation method of assessing the progress of the refinement (Brunger, 1993). 

Model 

The starting point for the refinement was the previously determined isotropic model, PDB 

code 1IGD. Cell parameters were changed to the values obtained during the 

reprocessing of the data. All solvent atoms were removed. A random positional error with 

rms 0.3 A was introduced into the model to assist in the eradication of the memory of 

individual reflections from the model. 

Refinement 

Restrained least-squares refinement of atomic positions and thermal parameters was 

performed, in the initial stages using PROLSQ and then using SHELXL-93 (Sheldrick, 

1993). Stereochemical restraints to parameters taken from the Engh & Huber (1991) set 

were applied during both stages of the refinement, as explained in the introduction to this 

chapter. Hydrogen atom positions were not refined, but calculated using a riding model. 

ARP was employed for modification of the solvent structure in real space. Visualisation 

and manual rebuilding of the model were performed using FRODO. 

The course of the refinement is summarised in Table 3. The first stage consisted of 

PROLSQ refinement alone. This was a precaution to help remove memory in the model 

of the reflections in the Rfree data. Further isotropic refinement followed, during which 
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building of the solvent network was commenced. A cycle of ARP was run after each 

PROLSQ cycle, with ARP set to modify solvent atoms only. At first, the limits for addition 

and removal of solvent atoms were set to 20 per cycle, allowing the solvent network to be 

constructed. The numbers of atoms added and removed per cycle were then reduced to 

5, allowing more stable refinement of the existing solvent positions. When this refinement 

had converged and no more solvent was being added, it was judged time to start 

anisotropic refinement. 

Table 3. The course of refinement 

Cycles Stage R ( % ) ^R(%) Rfree-(%) ARfree(%) water sites n 
»» 

p ^R(%) 
•̂ rms, F 

- randomisation of 35.9 - 37.3 - 0 
co-ordinates from 

previous 
refinement 

1-15 1 isotropic 
refinement, 

P R O L S Q 

26.6 -9.3 28.3 -9.0 0 0.557 0.093 

16-30 2 P R O L S Q + real 
space refinement 
& construction of 
solvent network, 

A R P 

17.5 -9.1 19.4 -8.9 118 0.562 0.090 

31-40 3 anisotropic 
refinement, 

S H E L X L - 9 3 , A R P 

10.1 -7.4 12.9 -6.5 119 0.500 0.049 

41-50 4a introduction of 4 
double 

conformations, 
occupancies of 3 

other residues 
refined 

9.5 -0.6 12.8 -0.1 121 0.493 0.047 

51-60 4b 8 double 
conformations & 

Lys 15 occupancy 
refined 

9.5 0 13.0 +0.2 123 0.495 0.047 

61-70 5 sharpened (3Fo-
2Fc) maps input to 

A R P ; (F^^E"-^) 

9.4 -0.1 12.5 -0.5 130 0.491 0.046 

71-80 6 100% data used 
(unsharpened 

maps) 

9.4 0 (9.5)* (-3.0r 131 0.504 0.047 

* the Rfree data set is no longer independent of the refinement at this stage 

* Prms F ~ °^ (3Fo-2Fc) map density 

## p^^ = rms of (Fo - Fc) map density 

126 



Before anisotropic refinement commenced, five cycles of SHELXL-93 were run on the 

isotropic model. The resulting model had R and Rfree 17.9% and 20.2%. This difference in 

R factors from the PROLSQ model principally results from the fact that SHELXL-93 

refines against F^ as opposed to F. Isotropic atoms remained isotropic for 1 cycle of 

refinement and were then refined anisotropically for 4 cycles. Atoms already anisotropic 

remain so throughout. After each round of SHELXL-93 refinement, ARP was run, adding 

and removing up to 5 atoms per cycle. R and Rfree dropped to 10.9% and 15.0% in two 

rounds of refinement, demonstrating the validity of the anisotropic model and the protocol 

in general. 

A prominent feature of a difference map, generated from a model with isotropic thermal 

parameters, is the presence of peaks close to atoms, especially in the more mobile parts 

of the structure, such as loop regions and at the ends of long side chains. Modelling of 

the anisotropy of the atoms reduces this difference density, lowering the rms density of 

the whole map and enabling parts of the structure which have been incorrectly or 

insufficiently modelled to become apparent from the remaining difference peaks. For this 

reason, manual fitting of the model to the density and the building of alternate 

conformations for disordered regions was left until several cycles of anisotropic 

refinement had been performed, to reduce the possibility of making incorrect alterations. 

The fit of the model to the (3Fo-2Fc, Oc) and (Fo-Fc, Oc) density syntheses was inspected 

using FRODO. The side chain of Lys 24 was adjusted. The pattern of water sites around 

Asn 13 suggested that ND2 and 0D1 should be interchanged. For four residues: Val 5, 

Glu 12, Val 26 & Glu 32, difference density clearly showed the presence of alternate 

conformations. Two alternative conformations of each side chain were modelled, with the 
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combined occupancy of each pair constrained to 1.0. For three residues: Met 1, Lys 15 

and Asp 40, difference density indicated some disorder and the correct side chain 

conformation was unclear. These residues were each modelled with a single side chain 

conformation and its occupancy was refined. Following further refinement, positions for 

second conformations of Met 1, Glu 20, Asn 40 and Asp 51 were modelled. 

When manual adjustments to the model were deemed complete, a further refinement 

was carried out with the same protocol except that the (3Fo-2Fe,ac) maps input to ARP 

were calculated using sharpened structure factors of the form (E°®F°^). This was an 

attempt to see if real space refinement using sharpened maps could improve the 

modelling of the solvent network, as explained in Chapter 5a. The working and Rfree data 

sets were then combined and refinement was performed using 100% of the data, now 

without sharpening of the maps input to ARP. Lastly, a cycle of blocked least-squares 

refinement was run to provide estimates of errors in the final model, as described in the 

introduction. The estimated co-ordinate errors for each atom type were strongly 

correlated to the B factors. The mean values for main-chain CA, N and O were 0.0183 A, 

0.0143 A and 0.0147 A respectively. 

Compar ison of anisotropic model with 1IGD 

Protein 

A comparison of overall geometry of new and 11GD models. Table 4, shows that mean 

bond distances are longer for 11GD, with a mean difference in main chain bond lengths of 

+0.7%. The former refinement was performed using a pre-Engh & Huber dictionary. A 

second possible cause for the difference in bond lengths is the exclusion of hydrogen 

atoms throughout the 1IGD refinement. In the absence of hydrogen atoms, the 
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unaccounted for electron density produces a tendency for bonds in the model to 

elongate. 

Figure 3 
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Table 4. Comparison of the geometry of the new and 11GD models 

New model target (A) 1IGD 
mean interatomic a interatomic mean interatomic a interatomic 
distance (A) distance (A) distance (A) distance (A) 

N-CA 1.448 0.015 1.458 1.468 0.011 
CA-C 1.515 0.014 1.525 1.527 0.011 
C - 0 1.226 0.010 1.231 1.244 0.009 
C-N 1.318 0.012 1.329 1.318 0.009 
N-C 2.430 0.025 2.462 2.440 0.039 
CA-0 2.383 0.021 2.401 2.400 0.021 
O-N 2.232 0.016 2.250 2.262 0.015 
C-CA 2.424 0.022 2.435 2.429 0.015 
CA-N 2.414 0.020 2.425 2.417 0.026 

mean £2 (°) a[Q] (°) target (°) mean Q (°) a[n] (°) 
177.3 5.8 180.0 178.9 2.9 

The distributions of distances for 1IGD are sharper than for the new refinement, Table 4. 

The distribution of the peptide torsion angle, Q., Figure 3, is narrower, more peaked and 

centred closer to 180° in the former. This is a sign that, during the old refinement, too 

much weight was placed on geometric restraints. This forced the adoption of idealised 

stereochemistry, overriding information present in the X-ray data, thereby leading to loss 

of information in the model. 

The furthest outliers to the new model Q distribution are the angles before and after Trp 

48, 195° and 162°. Figure 4 is an illustration of the possible consequences of the 

application of an over strong planarity restraint to this section of chain. Trp 48 is in the 

centre of the P3 strand, the surrounding chain Interacting with P2 of the neighbouring 

molecule, 048 and N20 are H-bonded, and with p4 of the same molecule, via H-bonds 

N49-058 and O47-N60. The bulky side-chain sits in a hydrophobic cleft between the p-

sheet and the C-terminal end of the a-helix. Val 59 CB points towards the Trp ring and is 

separated from it by around 3.8 A. A difference peak 2.5 o in height lies between the Val 

CB and the Trp ring, at around 1.7 A from the ring, in an othenwise very clean area of 
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Trp 48 O 

Tro 48 N 

Figure 4: 

The peptide torsions before and after Trp 48 were distorted from 165 and 192 
to the 'ideal' value of 180 degrees. The geometry around these bonds was then 
re-regularised. 
The green ball-and-stick model shows the original atomic positions. The distorted 
model is shown in red. 
The fit of both models to the 3Fo - 2Fc density map is shown. 



density.This suggests that there may be an alternate conformation of Trp 48, in which the 

ring is rotated by 180°,allowing one C G of an alternate conformation of Val 59 to lie in the 

density observed between the two residues. 

While the mean B factor for solvent atoms in the new model is almost identical to the old 

value (see Figure 10), that for protein atoms increased by an average of +0.8 A^ per 

residue. Figure 5. This can be explained by the fact that refinement without application of 

a diffuse solvent correction, as in the case of 1IGD, results in a global underestimation of 

B factors, see Chapter 5B. There are nine residues for which the new refinement 

produced a lower mean B factor: Val 5, lie 12, Lys 15, Glu 29, Glu 32, Lys 33, Glu 37, 

Asn 40 and Asp 45. 

The change in map correlation (1) by residue, shown in Figure 6, exhibits the same trend 

as the change in B factors, with residues 5,12,15, 29, 32, 37, 40 and 45 all experiencing 

an improvement of over 10 % in their real space fit. 

Correlation correlation coefficient, k= (<xy> - <xxy>) / (V(<xV-<x>^)V(<y^>-<y>^)) (1) 

All these residues fitted poorly into the density in the initial stages of the refinement. Two 

alternate conformations were modelled for the side chains of Val 5, lie 12, Glu 32 and 

Asn 40. The density for Lys 15 CD, C E and NZ was weak and the occupancy of a single 

conformation was refined to a value of 60%. The density for Glu 29 and Lys 33 was also 

weak, but density for all atoms could be seen after refinement. Modelling of alternate side 

chains was attempted for Glu 37 and Asp 45, but was unsuccessful. Continued 

refinement greatly improved their fit and difference density around them was removed. It 

is likely that several of these residues were the victims of the noisy solvent interface, 

which resulted from incomplete modelling of the solvent in the early stages of refinement. 
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Figure 5. 

Comparison of the new and 11GD models by residue. 

The dashed line shows the change in equivalent isotropic B factor: 

<B(new)> - <B(1IGD)> 

The continuous line depicts the rmsd between the CA atoms of the two models: 

100 (rmsd (CA)) 
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Figure 6. 

Map correlation of the (3Fo-2Fc) map to the Fc map for the new and 11GD models 

a/ for main chain atoms 

b/ for side chain atoms (excludes Gly) 

k(new)(continuous line)and k(old) (dashed line) are plotted against residue number, 

where k is the correlation to the map per residue. 
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In the crystal structure of the protein G-Fab complex (Derrick & Wigley, 1994) an 

antiparallel alignment of the second p-strand from protein G domain III, residues 15-22, 

with the 7th and last p-strand of the CH1 domain, extends the 4-stranded p-sheet from 

domain III into CH1. The end of the domain III a-helix and the 1st p-strand of CH I come 

together to form a secondary binding zone, which lies on top of the join between the two 

p-sheets, creating a hydrophobic binding region. NMR studies on a protein G domain II -

Fab complex (Lian etal., 1994) show that the regions of the protein G domain involved in 

IgG binding in solution correspond to the binding residues in the crystal, so this alignment 

of the molecules is not merely an artefact of crystallisation. When protein G IgG binding 

domains are crystallised in the absence of IgG, a similar p-p interaction is commonly 

observed (Derrick & Wigley, 1994; Gallagher et al., 1994): the antiparallel alignment of 

the second p-strand of one molecule with the third strand of the next, resulting in 

continuous ribbons of p-sheet extending through the structure. 

Intermolecular contacts in the crystal have been examined, with particular attention to the 

p-p interaction region. Figure 7. Four main-chain hydrogen-bonding interactions were 

observed between P2 and P3, as listed in Table 5. In the new model, the placing of the 

Thr 16 side chain in a different rotamer, coupled with the modelling of two conformations 

for Asp 51 has lead to a new contact being established between OG 16 and 0D1 51. The 

B factors of the main chain atoms involved in H bonding increased slightly, while those of 

the side chain atoms decreased. The lengths of already established contacts decreased 

by an average of 3.5% of the new mean distance, 2.83 A. Other intermolecular hydrogen 

bonds were formed by very exposed residues, the N and C tennini, N Z of Lys 9 and Lys 

24 and the side chains of Glu 20, Asp 27, Gin 37 and Asp 41. The new refinement has 
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resulted in Improved modelling of these residues in diffuse density, as described above, 

allowing these contacts to be more clearly revealed. 

Table 5. Comparison of intermolecular H-bonding in new and 11GD models 

(1) (1) (2) (2) 
dnew (A) doid (A) 

(1) 
Bnew - Bold (A ) 

(2) 
Bnew • Bold ( A ) dnew (A) doid (A) 

B-6 H-bonding contacts - main chain atoms 
0 16 -0.3 N52 +1.4 2.95(1) 3.02 
N 18 +1.6 O 5 0 +1.5 2.94(1) 3.01 
0 1 8 +1.2 N50 +1.5 2.88(1) 2.95 
N20 +1.0 0 48 +1.0 2.86(1) 2.92 

new side chain p-p H-bonding contact 
OG 16 -10.2 GDI 51 -4.2 3.16(3) >4.5 
other intenvolecular H-bonds 
N 1 -0.9 0G1 60 +1.5 2.94(1) 3.00 
N 1 -0.9 0 22 +1.8 2.94(1) 3.02 

NZ9 +5.3 OD1*27 +1.5 2.84(2) 2.74 
NZ9 +5.3 0 E 2 29 +4.0 2.70(4) 2.89 

NZ24 -1.5 NE2 37 -3.5 3.27(4) 4.45 
NZ 24 -1.5 OD2 41 .0.8 2.82(4) 3.21 
NE2 37 -3.5 OD2 41 -0.8 2.82(3) 3.00 

0 E 2 a 2 0 " +2.2 OD1*27 +1.5 2.96(1) 2.56 
0E2b 20** 0 OD1*27 +1.5 2.51(7) 2.56 

* 0D2 27 in 11GD ** 0 E 2 20 single site in 11GD 

WHATCHECK highlights the fact that the Asn 13 side chain in 11GD should be rotated, as 

in the new model. Five unsatisfied potential hydrogen bonding atoms buried in the protein 

are listed for each model. Three of these listed only for the old model are Lys9 NZ, 

Lys15N and Glu 61 OE2. Asn13 ND2 features in both lists, although its position has 

changed. This residue is in an unusual environment, at the start of the intermolecular p-p 

binding region. Asp 27 N, also in both lists and Thr 30 N, in the list for the new model 

only, face each other in the tight loop at the start of the a helix. The other atoms in the list 

for the new model are Ala 53 N, which lies in the centre of the p-turn linking p strands 3 

and 4 and Tyr 38 OH, which has one nearby water site. 
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Figure 7. Intermolecular H-bonding. 

a/ The five beta-beta H-bonds are shown as dashed lines. 

b/ 3Fo - 2Fc electron density for this region. 
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Solvent 

The improvement in solvent modelling can be seen from a comparison of the distributions 

of map correlation(1) for 1IGD and new solvent sites. Figure 8. In the new model, 50% of 

the solvent sites have a correlation of 0.9 -1.0, with 18 % better than 0.95. In 1IGD, only 

16 % have a correlation of over 0.9 and none greater than 0.95. Conversely, the old 

model contains 28 % sites with worse than 0.75 correlation, with 8 worse than 0.5, while 

the new model has 15 % sites with values less than 0.75, two of these below 0.5. 65 % of 

the solvent sites in the new model are within 1 A of one in the 11GD model. Figure 9. All 

new model sites with low B factors, < 36 A^, are within 0.5 A of a site in the 1IGD model, 

the range of separation increasing with B factor, as illustrated by Figure 10. 

From the distribution of solvent B factors. Figure 11, it can be seen that the number of 

sites with low B factors, 5-30 A^, is slightly reduced. More sites were added with B in the 

range 30-60 A^, while the number with very high B factors, over 60 A^, was reduced. The 

distribution of [(distance of solvent from protein)*B], Figure 12, shows a similar increase in 

sites in the intermediate range, 75-225 A^, while the number with extreme values 

declines. There are 2, possibly 3 peaks in the mid-range of the distribution, at 90 A^, 140 

A^ and 220 A^. These peaks are more pronounced in the distribution for the new model. 

This suggests that during refinement the solvent in the model becomes arranged in a 

series of shells around the protein. The removal of peaks with low B factors close to the 

protein is a consequence of improved modelling of the diffuse regions of the protein and 

the general reduction in noise at the protein-solvent interface following the introduction of 

a diffuse solvent correction. The removal of peaks with very high B factors remote from 

the protein could be due to the reduction in noise and also to more discriminating 

modelling of the solvent. 
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Figure 8. Map correlation of solvent sites 

Histogram of correlation, k, of (3Fo-2Fc) map to Fc map for solvent sites in the 

anisotropic model (continuous line) and 1IGD (dashed line). 
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Figure 9. Separation of solvent sites 

The histogram of the separation of solvent sites In the new model from those in 11GD. 

The distance from each new solvent site to the closest site in 11GD was evaluated and 

the distances were sorted into bins of width 0.5 Angstrom 
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Figure 10. Separat ion distance between solvent sites in the 2 models against sqrt. B. 

The separation of each new water position from the closest 11GD solvent site was plotted 

againstthe square root of the new site B factor. Only equivalent water sites, defined as 

those with separat ion less than 1 Angstrom, are shown. 
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Figure 11. 

New and 11GD solvent structure are compared. Distributions of solvent site B factor are plotted 

for the new model (continuous line) and 1IGD (dashed line). 
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Figure 12. 

Distributions of d(sp) * B(s) for the new model(continuous line) and 11GD(dashed line) illustrate 

the arrangement of the solvent structure, where d(sp) is the separation of a solvent site from its 

closest protein atom and B(s), the solvent site B factor. The existence of a series of solvent shells, 

each possessing a characteristic B factor range, will result in a series of peaks in the distribution. 
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Chapter 4B: 

Anisotropic refinement of rubredoxin from Desulfovlbrlo vulgaris 

Background 

Rubredoxin is a small bacterial non-haem iron-containing protein, around 50 amino acids 

in length. Figure 1. The iron atom is complexed to four cysteine sulphur atoms in an 

approximately tetrahedral geometry. The protein has been isolated from sulphate-

reducing and some aerobic bacteria, however the aerobic rubredoxin is a larger molecule 

of around 80 residues. Its precise function is not known, but it is thought to participate in 

a redox chain. Electron transfer interactions with cytochrome Ca have been reported (Bell 

et a/., 1978). Extensive structural studies have been carried out on rubredoxins from 

several species. Table 1 lists crystal structures which have been determined. 

Table 1. Rubredoxin crystal structures 

source best 
resol. (A) 

bestR 
(%) 

residues H2O symmetry/cell references 

Clostridium 1.1 9.0 54 110 R3: Watenpaugh etal., 1973 
pasteurianum 64.0, 64.0, 32.5 A Watenpaugh et a/., 1979 

ox, F e Dauter etal., 1996 
Clostridium 1.2 10.7 54 87 R3 Dauter etal., 1996 
pasteurianum 64.1,64.1,33.1 A 
ox, Zn 
Desulfovibrio 1.0 14.7 52 102 P2, Pierrot etal., 1976 
vulgaris (1.5) (9.8) 19.9, 41.4, 24.4 A Adman etal., 1991 vulgaris (1.5) 

108.3° Dauter a/., 1992 108.3° 
Sheldrickefa/., 1993 

Desulfovibrio 1.4 14.0 53 117 P2i Pierrot etal., 1976 
gigas 19.7, 41.7, 24.4 A Frey etal., 1987 gigas 

109.4° 
Desulfovibrio 1.5 9.3 45 121 PI Sieker etal., 1986 
desulfuricans 24.9, 17.8, 19.7 A 

101,83.3, 104.5° 
Stenkamp etal., 1990 

Pyrococcus 1.8 17.8 53 61 P2i2i2i Day etal., 1992 
furiousus ox 34.6, 35.5, 44.4 A 
Pyrococcus 1.8 19.3 53 37 P2i2i2, Day etal., 1992 
furiousus red 34.6, 35.5,.44.4 A 
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su lphate binding site 

Figure 1. Overall fold of rubredoxin , showing the Fe (Cys)4 cluster 

and the sulphate binding site. Depicted using QUANTA. 
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The redox potential of rubredoxin varies from -60 to +6 mV between species (Moura et 

a!., 1979). Structural studies have attempted to correlate changes in sequence and 

activity and explain how structure is conserved with changes in sequence. Rubredoxin 

forms crystals which are often of exceptional quality. This has resulted in the protein 

becoming the subject of much work aiming towards the development of methods in 

protein crystallography, including pioneering work on refinement of protein structures by 

least-squares minimisation (Watenpaugh et a/., 1973) and the application of small 

molecule structure solution methods to protein data (Sheldrick etal., 1993). 

Aims 

Rubredoxin from Desulfovibrio vulgaris is a member of a set of proteins, for all of which 

X-ray diffraction data had been collected at EMBL Hamburg, which were being used as 

test structures during the ongoing development of refinement and evaluation techniques 

in protein crystallography. The refinement of the structure relied heavily on the automated 

methods under development. A comparison was made between the anisotropic model at 

0.92 A and the completely independent, 1.0 A resolution, isotropic model published by 

Dauter et a/., (1992). This allowed the assessment of advantages to be gained by the 

adoption of new refinement protocols and the identification of areas for future 

development of techniques. 

Experimental 

The refinement of Rubredoxin was undertaken as part of this PhD. The crystallisation, 

data collection and refinement to give the starting model in the present study were 

performed previously. 
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Crystailisation and Data Collection 

Dark red prismatic crystals were grown as described by Adman et a/., (1977) from a 0.5 -

1.0% protein solution, buffered by 0.1 M sodium citrate at pH 4, with 2 M ammonium 

sulphate precipitant. Crystal properties are listed in Table 2. Data were collected as 

outlined by Sheldrick et a/., (1993) on the X31 beamline, with a wavelength of 0.70 A. 

The detector was a MAR research imaging plate scanner. Data processing statistics are 

summarised in Table 2. 

Table 2. Crystal properties and data processing statistics 

Crystal symmetry; h/lonoclinic, P2i 
Molecules per asymmetric unit 1 
Cell dimensions (A) a= 19.99, b=41.51, 0=24.40 

|J = 107.60° 

V,n(A'da-V 1.74 
Resolution (A) 20 - 0.92 
Rmerqe (%) 3.7 
Nuniqve (Frcidels separate) 48 291 
Nunique (Frcidcls merged) 26 108 
Completeness (%) 98.9 

Initial Model and Data 

The starting model for this refinement was derived from an unpublished, intermediate 

model obtained by George Sheidrick. This model had been refined anisotropically using 

SHELXL-93 (Sheldrick, 1993) to an R factor of 7.44 %. The model comprised 52 

residues, one Fe atom, a sulphate ion and 117 water sites. The sulphate ion, with an 

associated water, had 68% occupancy, while another water, with 32 % occupancy, also 

lies at the sulphur atom position. The remaining water sites numbered 63 fully occupied, 

13 pairs with 50:50 occupancy and 26 single sites with half occupancy, making a total of 

90 water molecules in the asymmetric unit. 6 residues: Lys 2, Glu 12, Pro 15, Asp 2 1 , Lys 

25 and Ser 29 had two alternate side chain conformations, with all hydrogen atoms 

included. 
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To obtain the starting model for the new refinement, the sulphate ion and all water 

molecules were removed, as well as the minor conformations of disordered residues, the 

major conformation occupancy being reset to 100 %. Co-ordinates of the remaining 

atoms were randomised by rms 0.3 A to reduce model bias from reflections now to be 

used for the evaluation of Rfree- The data consisted of a total of 48291 unique reflections, 

26108 with Freidel pairs merged, in the resolution range 20-0.92 A. Freidel pairs were 

held separately in the reflection file, but merged before refinement and map calculation. 

5% of the reflections, 1327, were removed from the working dataset and used for the 

calculation of Rfree, the refinement being independent of these data. The commencing 

stages of the refinement were against Fs, while in following stages intensities were used. 

Refinement strategy 

Restrained least-squares refinement of atomic positions and thermal parameters was 

performed. The initial stages consisted of isotropic refinement, against Fs, using 

PROLSQ. When the isotropic model had converged satisfactorily, anisotropic refinement 

against intensities using SHELXL-93 followed. Stereochemical restraints using ideal 

values taken from the Engh & Huber (1991) set were applied during both the PROLSQ 

and SHELXL-93 stages of the refinement, as explained in the introduction to this chapter. 

Hydrogen atom positions were not refined, but calculated using a riding model. The 

Automated Refinement Procedure (ARP, Lamzin & Wilson, 1993) was used continuously 

during the refinement for construction and improvement of the solvent network. 

The scheme of refinement is summarised in Table 3. Initially, ten cycles of PROLSQ were 

run on the randomised model, partly as a further precaution to remove any remaining 
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memory of the Rfree data. The density for the sulphate ion was then clearly apparent in the 

(3Fo-2Fc) and difference maps, so it was built into the model to be refined without 

restraints. Following five more cycles of PROLSQ, the construction of the solvent network 

commenced. A cycle of ARP was run after each PROLSQ cycle, with ARP set to modify 

solvent only, adding and removing up to ten atoms per cycle, within a range of 2.2-3.3 A 

from existing atoms. Solvent atoms which came closer than 0.5 A to one another were 

merged. The refinement converged with R 14.9 %, Rfree 18.3 % and 99 water sites. 

Table 3. Scheme of refinement 

Cycle R (%) AR Rfree (%) A R/ree water 
sites 

0 
•^rms, F 

m 
0 
r rms, AF 

randomisation of co-ordinates 
from previous refinement 

33.7 - 34.6 - 0 

1-10 isotropic refinement, PROLSQ 21.1 -12.6 21.8 -12.8 0 0.823 0.163 

11-15 introduction of sulphate ion 20.3 -0.8 21.7 -0.1 0 0.818 0.157 

16-30 PROLSQ & construction of 
solvent network with ARP 

14.9 -5.4 18.3 -3.4 99 0.745 0.097 

isotropic refinement, SHELXL-
93 

15.9 +1.0 99 

31-40 anisotropic refinement, 
SHELXL-93, ARP 

8.5 -7.4 11.5 -6.8 91 0.695 0.076 

41 -50 6 double conformation side 
chains and 2 conformations for 
45-48, with occupancy 70:30 % 

8.1 -0.4 10.7 -0.8 83 0.682 0.072 

51-60 sulphate/glycol modelled in the 
sulphate site, sulphate and 

major split chain conformation 
refined together 

7.9 -0.2 11.0 +0.3 85.7* 0.683 0.071 

61-70 refinement against 100 % data 7.9 0 (8.4)** (-2.6)" 85.7* 0.699 0.071 

* Prms F = rms of (3Fo-2Fc) map density * the 0.7 is a water bound to the sulphate 

## p ^ = rms of (Fo - Fc) map density ** these data are no longer independent 
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Before anisotropic refinement, five cycles of SHELXL-93 were run on the isotropic model. 

The R factor rose to 15.9 %, due to the application of a different set of restraints, as 

explained in the introduction to this chapter. This rise in R factor is a commonly observed 

phenomenon. Anisotropic refinement proceeded with ten rounds, each consisting of five 

cycles of SHELX-93 refinement followed by a cycle of ARP. The R factor dropped to 

8.5% and Rfree to 11.5%. Following these ten rounds of anisotropic refinement, the fit of 

the model into the (3Fo-2Fc) and difference maps was examined using FRODO (Jones, 

1978). Difference density showed the positions for second conformations of 6 residues: 

Met 1, Glu 12 , Pro 15, Asp 21, Lys 25 and Ser 29. Two alternative conformations for 

each side chain were modelled. H atoms bound to partially occupied C, N and O atoms 

were not included in the model. Geometric restraints on the residues with multiple 

conformations were tightened. The occupancies of the alternate conformations were 

refined, with the sum of occupancies for each residue set to 100 %. Following further 

refinement, a third position for Ser 29 OG became apparent. Three conformations were 

then modelled, with the occupancies set to 75%, 2 0 % and 5%. 

At this stage, most of the difference density was clustered in one region of the map, the 

cavity containing the sulphate ion, and the surrounding section of chain, residues 45-48. 

Inspection of the difference density around these residues clearly indicated the position 

of a second main chain conformation. The largest difference peak, X I , was situated 1.58 

A from 01 of the sulphate. The sulphate itself, which had been refined from the 

beginning with no restraints, was evidently imperfectly modelled. Although the geometry 

was tetrahedral, the bond lengths were abnormally short for sulphate and the density for 

0 2 and 0 4 was very weak, see Figure 2a. The search for an appropriate way to treat this 

problem comprised several steps. 
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First, alternative main chain and side chain conformations for residues Pro 45, Lys 46, 

Ser 47 and Glu 48 were modelled. Restraints were set allowing independent movement 

of the two alternate chain conformations, with distance restraints between the two 

conformations completely removed, since stronger restraints were found to pull the minor 

conformation back on to the major. The occupancies of the two parts were fixed at 70% 

and 30%. These changes were introduced to the model following the first ten rounds of 

anisotropic refinement, after cycle 40. Ten rounds of refinement were run on the model 

with the alternate chain conformation, then a further ten, with the occupancies of the 

alternate chain conformations and the sulphate now refined, but independently of each 

other. The major chain occupancy refined to 73% and the sulphate to 66%. Ten further 

rounds of refinement followed, in which the occupancy of an oxygen at X I was also 

refined. The occupancies of chain, sulphate and X I were then 75%, 62% and 25%. 

From cycle 50, the occupancies were refined separately for the chain, X I , the sulphate S, 

sulphate 0 1 and 0 3 , sulphate 0 2 and 0 4 and two nearby water sites OWO 1 and OWO 

2. The resulting occupancies are shown in Figure 2b. Next, four atoms, modelled as 

oxygen, were placed in the sulphate site, in the absence of sulphate. OWO 2 is clearly 

bound to the sulphate 0 1 , so it was assigned the same occupancy as the sulphate and 

renamed 0 5 . The relative occupancies of the four-atom fragment and sulphate were then 

refined. The result of this step is shown in Figure 2c. 

The geometry of the four-atom fragment was consistent with that of glycol, although the 

crystal had not been exposed to glycol at any stage. It was suggested that the four atoms 

visible were part of a citrate ion, the remainder of which was completely disordered. The 

153 



four atoms were modelled as glycol, with appropriate restraints applied. The sulphate 

bond lengths were restrained to be equal and the geometry, tetrahedral. The 

occupancies of the split chain and sulphate/glycol were refined independently to 70% / 

30%. Finally, the occupancies of the split chain and sulphate/glycol were refined as one 

variable, from cycle 50. After ten rounds of refinement, the sulphate and major chain 

conformation occupancy was 67(1)%. The final sulphate and glycol conformations are 

shown in Figure 2d. 

Figure 2, stages in modelling of the disordered sulphate ion 
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The ambiguity has not been completely removed, but much more information has 

become apparent. In the final model, the mean separation of pairs of main-chain atoms in 

the split section were 0.46 A, 0.59 A, 0.53 A and 0.31 A fon residues 45, 46, 47, and 48 

respectively. The sulphate ion is present for 67 % of the time. When the sulphate is 

absent, the protein chain around the site shifts by around 0.5 A to adopt an alternative 

conformation, thus complexing more effectively with the species now occupying the 
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cavity, with Ser 47 OG, N46 and N47 positioned to interact and also Lys 46 NZ, although 

the second conformation of the lysine side chain is not certain. 

•I •' 

The largest difference peaks which remained, following the alterations described above, 

were all in the solvent region. This reveals the inadequacy in the solvent model, 

consisting of 85 fully occupied water sites. If the relative volumes of the protein and the 

unit cell it occupies are considered, it can be estimated that there is sufficient space for 

approximately 94 waters. Observation of the density in the solvent region reveals 'dumb 

beir and 'chain-of-beads' type features, with distances between neighbouring peaks in 

the 1.0 - 2.4 A range. The solvent structure evidently consists of alternate networks of 

partially occupied sites. Therefore, although the number of waters modelled is 

appropriate, a model with more sites, some with partial occupancies, would be better. 

Preliminary attempts were made to assign half occupancies to pairs of sites, with 

difference peaks greater than 4a, separated by less than H-bonding distance, but no 

change in R or Rfree was observed and the atoms tended to drift out of the density during 

subsequent refinement. More stringent modelling criteria are evidently required. 

The working and Rfree datasets were combined and ten rounds of refinement were run 

against all the reflections. This precaution was taken because random absences in a 

dataset cause ripples in density maps and such spurious density may result in incorrect 

modelling of the structure. In this case, refinement with the extra 5% of data made no 

significant difference. Errors in the final model were estimated by running a cycle of 

overlapping blocked refinement, as explained in the introduction. As for protein G, these 

errors had a strong correlation with the atomic B factors. Mean co-ordinate errors 

estimated were 0.0152 A, 0.0121 A and 0.0129 A for main-chain atoms, CA, N and O. 

156 



Comparison with an isotropic modei of the rubredoxin structure 

The 1.0 A resolution structure of rubredoxin from Desulfovibrio vulgaris (Dauter et al, 

1992), PDB code 8RXN, obtained by an independent refinement of a different data set, 

provides an instructive comparison to the new model. The resolution range of the present 

dataset is greater, with more high and low resolution reflections included. However, the 

principle difference is that the present structure is modelled with anisotropic thermal 

parameters for all non-hydrogen atoms, while the 8RXN structure is an isotropic model. 

Differences between the models are summarised in Table 4. 

Table 4. Comparison between 1.0 A isotropic (8RXN) and 0.92 A anisotropic models 

8RXN New Refinement 

Cell dimensions (A) 

Nunique 
Completeness (%) 
Rmerqe (%) 
Resolution (A) 
R(%) 

a= 19.97, b=41.45, 0=24.41 
p = 108.3° 

18 532 
90.5 
5.8 

12.8-1.0 
14.7 

a= 19.99, b=41.51,0=24.20 
p = 107.6° 

26 108 
98.9 
3.7 

20.0 - 0.92 
7.9 

total water sites 102 85.7 

B protein, mean (A )̂ 
B residue, mean (A ) 
B SO4, mean (A )̂ 
B Fe (A )̂ 
B H2O, mean (A )̂ 

10.0 
10.7 
16.3 
5.1 

38.8 

9.1 
9.6 
14.5 
4.9 

32.1 

rmsd, CA (A) 
rmsd, protein (A) 
mean H2O sep. (A) 

0.058 
0.149 
0.523 

Unit Ceil 

The 8RXN model was refined using a cell derived from the indexing of synchrotron data. 

These measurements possess an inherent uncertainty resulting from the uncertainty in 

the measurement of the X-ray wavelength. For data measured at Hamburg in the era of 

the collection of the rubredoxin and protein G data sets which this chapter is concerned 

with (pre mid-1995) there may be an error of up to 0.5% in cell dimensions. Since this 
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time, more stringent procedures have been introduced, entailing regular calibration of the 

X-ray wavelength and crystal to detector distance by measurement of silicon powder 

diffraction rings. This has reduced the inherent error in cell dimensions from synchrotron 

measurements to around 0.1 %, which is sufficiently small to have no significant effect on 

the accuracy of bond distances in a structure. The present structure was refined using 

the cell obtained from diffractometer measurements (Adman et al., 1977). This is not an 

infallible practice, since there are examples of significant variation in crystal cell 

dimensions, even between crystals grown in a single drop. 

A systematic deviation in the 8RXN model bond lengths was noted. Overestimation of cell 

dimensions was one suggested explanation, it could also be related to the use of a 

different (pre Engh & Huber) dictionary for the application for geometric restraints. Exactly 

the same phenomenon was observed in the comparison of isotropic and anisotropic 

refinements of protein G (Chapter 4a). 

Protein 

A comparison of the overall geometry of new and 8RXN models. Table 5, shows that 

average bond distances in the 8RXN model are longer, as mentioned above. The width 

of the distributions of bond lengths was also greater for 8RXN, indicating that different 

restraints were applied during the refinement. The distribution of the peptide bond torsion 

angle, is much more sharply peaked for 8RXN and centred at 180°, while the new 

model has a much wider range of f2 values and a slightly lower mean value. Figure 3. 

The deviation from planarity for peptide bonds is a phenomenon observed in high 

resolution protein structures, in the absence of over-strong planarity restraints. 
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Table 5. A comparison of overall geometry of new and 8RXN models 

New model target (A) 8RXN 
mean interatomic a interatomic mean interatomic a interatomic 

distance (A) distance (A) distance (A) distance (A) 
N-CA 1.455 0.014 1.458 1.464 0.027 
CA-C 1.516 0.016 1.525 1.520 0.035 
C-0 1.228 0.012 1.231 1.231 0.034 
C-N 1.324 0.013 1.329 1.325 0.030 
N-C 2.458 0.034 2.462 2.458 0.039 
CA-0 2.387 0.018 2.401 2.391 0.034 
0-N 2.233 0.016 2.250 2.244 0.021 
C-CA 2.429 0.015 2.435 2.429 0.030 
CA-N 2.427 0.022 2.425 2.421 0.027 

mean Q (°) aim n target (°) mean Q (°) a[Q] (°) 
179.7 5.1 180.0 179.9 3.1 

Figure 3 

10 

s 
6 

4 

2 

Omega angle distribution 

166 168 170 172 174 176 176 180 182 184 186 188 190 192 

8RXN Omega (o) 

10 

8 

6 

Omega angle distribution 

166 168 170 172 174 176 178 180 182 184 186 188 190 192 

new model Omega (o) 

159 



The rmsd between the models is 0.149 A for all protein atoms and 0 . 0 5 8 A for CA atoms. 

The rmsd was calculated with the nomenclature of atoms adjusted to be identical for the 

two structures, vyith changes to Tyr 4, Asp 2 1 , Phe 3 0 and Asp 3 1 . The largest rmsd's are 

seen for residues in regions of diffuse density. Met 1, Glu 1 2 , Glu 17 , Asp 2 1 , Asp 3 1 , 

Glu 5 0 and Ala 5 2 all have rmsd greater than 0 .2 A, Lys 3 and Pro 15 , greater than 0.1 A, 

Figure 4. The B factors of protein atoms in the new model are, on average, 1 A^ smaller, 

while much larger differences exist for residues in regions of diffuse density. Figure 4a. 

The residues with the largest reductions in B factor between old and new models, in 

descending order, are Lys 2 , Ala 5 2 , Glu 1 7 , Glu 1 2 , Asp 3 1 , Met 1, Asp 21 and Pro 15 . 

The N-terminus in the new model has an additional formate group. There is density in the 

(3Fo-2Fc) map for this group, however there is some residual negative density in the (Fo-

Fc) map. During the 8 R X N refinement, broad, low atomic peaks were seen, indicating 

disorder, but this was not modelled. Two conformations for the side chain have been 

modelled in this refinement, the major conformation being very similar to that in the old 

model. The B factors are around 2 A smaller. Lys 2 and Lys 3 were also noted to be 

disordered in the previous study and CD, CE and NZ of Lys 2 were assigned zero 

occupancies. All atoms were included in the new model, however the density for the Lys 

2 side chain remains extremely weak and there is negative difference density at the Lys 3 

side chain position. 

The side chains of Glu 1 2 , Pro 15 and Asp 21 were all modelled with two alternate 

conformations in both cases. In the 1 A structure, the occupancies were set to 50 :50 , 

while for the new model, the major conformation occupancy refined to 6 0 ( 2 ) % , 6 7 ( 3 ) % 

1 6 0 



and 58(2)%. The conformations of residues 15 and 21 are very similar, witli tlie 

refinement of occupancy and anisotropic modelling of atoms resulting in reduction in B 

factors. Neither of the Glu 12 side chain conformations is conserved between the models. 

The new conformations appear to fit into the density better and the atoms have B factors 

on average 3 lower. 

During the 8RXN refinement, peaks in the difference synthesis suggested the existence 

of more than one conformation for several other residues, but the density was not 

sufficiently well defined to allow their modelling. Some of this difference density could 

result from the uncompensated-for anisotropy of the atoms and possibly some from the 

insufficient treatment of diffuse solvent, see below. The new refinement includes two 

conformations for Lys 25 and three for Ser 29 which were not previously modelled, 

although the second conformation of Ser 29 was present as a water site. 
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Figure 4. Comparison of tiie final model with 8RXN. 

(a) The differences between the 2 models are plotted against residue number; 

[B(residue,o!d)-B(residue,new)] (continuous line), 100[rmsd CA atoms] (dashes) 

30 40 50 

residue number 

(b) The rms distances between equivalent atoms in the 2 models are plotted against residue 

number; 100[rmsd(CA)] (continuous line), 100[rmsd(all atoms)] (dashes) 

40 50 
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Table 6. Comparison of [Fe(Cys)4] cluster geometry 

bond lengths (A) 8RXN new model bond angles (°) 8RXN new model 
Fe-Se 2.30 2.295 (3) Se-Fe-Sg 115 114.5 (1) 
Fe-Sgg 2.30 2.295 (3) S3g-Fe-S42 112 111.7 (1) 
Fe-Sg 2.27 2.258 (2) S6-Fe-S39 111 110.8 (1) 
Fe-S42 2.27 2.254 (2) S9-Fe-S42 109 110.1 (1) 

S6-Fe-S42 106 105.5 (1) 
Sg-Fe-Sag 105 104.4 (1) 

torsion angles (°) 
Fe-Se-CB-CA 180 -173.1 (3) Fe-Se-CB 101 102.2(2) 
Fe-S39-CB-CA 180 -175.3(4) Fe-Sag-CB 99 100.3(2) 
Fe-Sg-CB-CA 270 -88.9 (5) Fe-Sg-CB 110 109.8(2) 
Fe-S42-CB-CA 270 -94.7 (5) Fe-S42-CB 110 108.7(2) 

bond lengths (A) 8RXN new model 8RXN new model 
Fe-Ne 5.13 5.15(1) Se-Na 3.54 3.56 (1) 
Fe-Ng 3.77 3.80 (1) Se-Ng 3.55 3.57 (1) 
Fe-Nii 4.69 4.77 (1) Sg-Nii 3.42 3.47(1) 
Fe-N4i 5.10 5.10(1) S3g-N4i 3.57 3.57 (1) 
Fe-N42 3.87 3.89 (1) S3g-N42 3.62 3.64 (1) 
Fe-N44 4.84 4.83 (1) S42-N44 3.50 3.49 (1) 
bond angles (°) 
Se-Ns-CA 98.8 98.6 (3) CB-Se-Ne 106.1 106.5 (2) 
Se-Ng-CA 122.0 121.9(3) CB-Se-Ng 101.7 100.5 (2) 
Sg-Nii-CA 111.1 109.5(4) CB-S9-N11 113.8 114.8 (2) 
S3g-N4i-CA 104.7 103.8(4) CB-S3g-N4i 106.4 106.3 (2) 
S3g-N42-CA 120.7 118.2(4) CB-S39-N42 95.4 95.0 (2) 
S42-N44-CA 105.6 105.5(4) CB-S42-N44 114.2 115.5 (3) 

Fe (C^s)4 cluster conformation 

CA °9 . 

\ / 
S42 CA 

Fe 

CB 
CA 

CB 
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Figure 6. The sulphate binding site. The major chain conformation 

and sulphate are shown in red, the minor chain conformation, in 

green. The (3Fo - 2Fc) electron density is plotted. Using QUANTA. 
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Glu 17 and Asp 31 have diffuse side chain density in old and new structures, however 

anisotropic modelling has improved the fit to the density for both residues. Residues Asp 

32 and 33, as well as the C-terminal Ala 52, are also shifted from their positions in the old 

model, resulting in a better fit to the density. 

The [Fe(Cys)4 ] cluster. Figure 5, adopts close to perfect Ca symmetry, with pairs of 

sulphur atoms: Se & 839, Sg & S42 related by the local 2-fold axis. The symmetry extends 

to include two sets of three nitrogen atoms; N8, N9, N i l and N41, N42 & N44, which 

surround the cluster, forming N-H--S bonds. A comparison of the two models. Table 6, 

shows no significant differences and the rmsd of FeS4 between the two structures is 0.03 

A. 

The major chain conformation for residues 45-48 in the new model was similar to that of 

the 1 A model. The B factors per residue are also similar. However, the old and new 

position and geometry of the sulphate ion. Figure 6, are different. Table 7. 

Table 7. Comparison of SO4 ̂ ' geometry 

bond lengths (A) 8RXN new model bond angles (°) 8RXN new model 
S-O1 (S-O3)* 1.55 1.44(2) O1-S-O3 113 111 (1) 
S-O3 (S-O1) * 1.46 1.40(2) O2-S-O4 111 107 (2) 
S-O2 1.51 1.43(2) O1-S-O2 (O3-S-O2)* 109 107(1) 
S-O4 1.54 1.44(2) O 3 - S - O 4 {Oi-S-04)* 109 111 (1) 
B factors (A )̂ O1-S-O4 (O3-S-O4)* 104 105(1) 
S 12 11 O2-S-O3 (O2-S-O1)* 108 114(1) 
O1 (O3 ) * 13 11 
O3 (O1) * 11 11 
O2 22 19 * O 3 (8RXN) = O1 (new) 
O 4 23 20 

The rms deviations between old and new models are 0.087 A, 0.098 A, 0.137 A, 0.173 A, 

0.284 A, for 8, 0 1 , 0 3 , 0 2 & 0 4 respectively. In the old model, the 8 -0 bond lengths 

averaged 1.52 A, in the new, only 1.43 A, a lower than expected value for sulphate. In 
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the new model, the S-01 bond was the longest, prior to application of restraints and 

modelling of a partially occupied glycol molecule, while in the old model it was the bond 

equivalent to S-03. A puzzling difference in B factors between ( 0 1 , 0 3 , S) and (02, 04) 

exists in both models and the peak seen in the difference map at 1.6 A from 0 1 , prior to 

the modelling of glycol in the new refinement. Figure 2a, is also observed in the other 

model. On balance, the evidence suggests that different treatment of the sulphate during 

the two refinements, rather than differences in the environment of the molecule in the 

crystal, has given rise to the differences in the models. 

The structure validation program WHATCHECK (Vriend & Sander, 1993) searches for 

potential hydrogen bonding atoms buried inside the protein, which are not participating in 

hydrogen bonds. Virtually all protein atoms in the structure were classed as buried, due to 

the close packing of the crystal. The list of unsatisfied hydrogen bond donors and 

acceptors was the same for both models, with the exception of Lys 2 NZ, which is not 

present in 8RXN. The density around the Lys 2 side chain remains too diffuse for the 

modelling to be completed. The other atoms listed are Lys 46 N and Lys 25 NZ, which are 

both disordered and pointing, from opposite directions, into the sulphate binding site. 

Solvent 

The 8RXN model contains 102 water sites, compared to 85 in the new model, all fully 

occupied. The mean separation of a site in the new model from one in the old is 0.52 A 

and over 90 % of new sites are within 1.0 A of an old site. Figure 7a. Solvent B factors 

are, on average, 4 A^ lower in the new model. Dauter et al. (1992) noted a surprising 

deficiency of water sites with low B factors, only 12 with B < 20 A^. The new model 

contains 13 such sites. The distribution of solvent B factors. Figure 7b, is more sharply 
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peaked for the new model, with 32 % of sites with mid-range B factors, 30-40 A ,̂ 

compared to 23.5 %. Overall, the number of sites with medium and low B factors is 

similar for both models, while the number with high values, > 40 A^, is larger in the old 

model, which has 45 such sites compared to 29. 

By considering the relative molecular and asymmetric unit volumes, it can be estimated 

that there is space for approximately 94 water molecules in the asymmetric unit. There 

are actually more than 94 water sites, since many are partially occupied. The 8RXN 

model contains more of these disordered water sites, with full occupancies assigned. An 

attempt was made during that refinement to model solvent with partial occupancies, 

assigned on the basis of their B factors, but this achieved no reduction in R factor, so it 

was abandoned. In this refinement, the disordered solvent network was not modelled and 

this resulted in most of the remaining difference density peaks being located in the 

solvent region, as described above. 

During this refinement, density maps were calculated using data which had been scaled 

to account for the contribution of diffuse solvent to the low resolution scattering, below 

about 4 A. This effect is not as large for rubredoxin as for most protein structures, since 

the tight crystal packing leaves little room for a diffuse solvent region. This is reflected by 

the Vm for the structure, 1.74 A^Da"^ (Matthews,1968). For protein crystals Vm values lie in 

the range 1.65 to 3.35 A^Da'\ most frequently between 2.1 and 2.4 A^Da V Thus, 

rubredoxin lies at the lower limit of the distribution. The effect of application of a diffuse 

solvent correction to data prior to map construction is to reduce the noise in the density at 

the protein-solvent interface. This is one factor contributing to the reduction in number of 

solvent sites found during the new refinement compared to the old. 
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Figure 7. Comparison of the solvent structure of the final model with 8RXN 

(a) distributions of solvent B factors for the new model (white) and 8RXN (grey). 
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(b) The distance of each solvent site in the new model from the closest solvent site in 8RXN was 

evaluated. The distribution of these separations is plotted, with frequencies given as percentages 

of the total solvent in the new model. 



General 

WHATCHECK tabulates pairs of atoms separated by an unusually short distance. 38 of 

these 'bumps' were listed for 8RXN, 25 between water sites, 13 between solvent and 

protein atoms. The new model had 6 water/water bumps, 6 water/protein and 1 

protein/protein. The large number of bumps for 8RXN results from the large number of 

water sites, with 100% occupancy assigned, added to weak density. The bumps in the 

new model were inspected using FRODO. The closely separated water sites included a 

chain of three and three pairs of sites which would be better modelled with partial 

occupancies. The solvent sites approaching protein too closely were in regions of diffuse 

density around the Lys 3, Glu 12 and Glu 17 side chains. The pair of protein atoms listed 

is Pro 26 C and Lys 25 O, separated by 2.77 A. This appears to be a genuinely short 

distance, brought about by a tight bend in the chain centred around Pro 26. 

Anisotropic refinement made improvements in the modelling possible. During the 8RXN 

refinement, residual peaks caused by anisotropic thermal motion were observed in the 

difference map. This was most clearly illustrated by the doughnut-shaped features lying 

round the atoms of the [Fe(Cys)4] cluster. The modelling of this anisotropy in the present 

refinement greatly reduced the noise in the difference map, increasing the visibility of 

features in weak density regions. The effect of this was seen in the improved positioning 

of several weakly scattering residues such as Asp 3 1 , Asp 32 and Asp 33 and, most 

notably, by the appearance of difference peaks on the main chain for residues 45-48, 

which indicated the position of a minor chain conformation. The modelling of atoms 

anisotropically, coupled with the ability to refine occupancy, allowed multiple 

conformations to be modelled more effectively, thus more multiple conformations could 

be built into the model, for example, two conformations for Met 1, and they refined to give 
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a better fit to the density, as can be seen by a comparison of old and new models for Asp 

2 1 . 

Other questions which need to be addressed include whether the increased resolution 

range of the data in the new refinement has lead to any obvious improvement. The 

contribution of the extra data is not obvious, since the 13 - 1 A range was sufficient for a 

high resolution refinement. The effect of introducing anisotropy to the model is much 

larger and probably masks any changes caused by the presence of extra data. However, 

if the 1 A model were to be modelled anisotropically, the effect of the additional data 

would probably become more noticeable and the R factor would be higher for the 1 A 

than the 0.92 A resolution structure. 

Another question is whether it is possible to distinguish between divergence in the 

models arising from the distinct refinement protocols and differences actually present in 

the crystal structures. This was mentioned in relation to the modelling of the sulphate site. 

Genuine differences are small and therefore masked by the much larger effects resulting 

from the specific treatment of the models. To be certain of this point, it would be 

necessary to refine the two structures with an identical approach, but in isolation from one 

another, so the features observed for one model do not give clues about how to model 

the other. 
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Chapter 5: 

Aspects of the refinement of atomic resolution protein structures 

A: Sharpening as a tool in protein crystal structure refinement 

Summary 

Due to the fall-off of scattering intensity with increasing e, high resolution data are 

generally weak. Structure factors can be normalised to remove their resolution 

dependence, so the high resolution terms make a more significant contribution to electron 

density maps, resulting in sharper atomic peaks. Since the high resolution intensities are 

inherently weak measurements, they have relatively large associated errors, thus their 

upweighting leads to a concurrent magnification of the associated errors and the 

appearance of spurious peaks in the density map. An optimal degree of sharpening of 

the data leads to maps in which atomic peaks are sharp and well defined, while the noise 

contribution is minimal. The desirable degree of sharpening varies with characteristics of 

the structure including the resolution of the data, overall B factor and associated errors. 

This study involved an estimation of the most informative level of sharpening for maps of 

varying resolution and quality through an evaluation of the properties of the electron 

density distributions. Refinement runs were performed to test these deductions. It was 

concluded that a degree of sharpening applied to maps during refinement was indeed 

beneficial at all resolutions at which atoms can be distinguished in the density. The 

optimal amount of sharpening was found to vary between 100% for the preliminary 

stages of a refinement at atomic resolution to around 50% in'the later stages. 
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Introduction 

Structure Factors, F 's & E ' s 

A structure factor is the result of the diffraction, in a specific direction which satisfies the 

Bragg conditions, from all parts of the electron density within the unit cell of a crystal 

structure. For the calculation of model structure factors this is approximated by the sum of 

the scattering from all the atoms within the unit cell, as expressed in equation (1). The 

structure factor possesses phase and amplitude. For calculated structure factors, the 

phase relates to the atomic position relative to the cell origin and the amplitude to the 

nature of the electron distribution around the atom. 

F(h)=2:^,Jjexp[27i/(hXj)] (1) 

The atomic scattering factor is resolution dependent. Due to the finite size of the electron 

charge cloud around an atom, the path difference between waves diffracted from 

different parts increases with the diffraction angle, resulting in destructive interference. 

Figure 1. 

Figure 1. 
Schematic illustration explaining the cause of fall-off in diffraction intensity with 
increasing resolution for spherical atoms of a finite size. 

SPHERICAL 
ATOM 

For a small diffraction angle, Oi, For a large diffraction angle, 0,, 
there is a small path difference, there is a large path difference, 
di between diffracted waves d2 between diffracted waves 

The scattering factor of an atom in a real crystal (2) declines even more rapidly with 

increasing scattering angle, due to the spreading of the atomic electron density by static 
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and dynamic effects. The scattering factor for a point atom (3) is without resolution 

dependent terms. 

fj = fojexp[-Bs2] (2) 

where s = smQ/X and B = 8K^U^, U^ = mean squared amplitude of atomic vibration, 

at the limit of (2), when 6 = 0, fj = fo,j(e =0) = Zj, Z = atomic number 

f point atom = Zj (3) 

For a cell containing equal atoms, (1) becomes F = f ZX, with X = exp[ 27t/(hx)] and the 

relation between the structure factors for a real and a point atom can be obtained by 

combining (2) and (3) to give (4). For structures containing j different atoms, the 

approximation (5) can then be made. The normalised structure factor, E(h) obtained from 

F(h), (6) (Karle & Hauptmann, 1956), has all the resolution dependent terms cancelled 

out, so can be thought of as the scattering factor for a point atom. 

Fpoin./Freai = Z/ foexp[-Bs ' ] (4) 

Fpoint = Freal ( IZ i ) / (exp [ -Bs ' ] (E fo , j ) ) (5) 

E{h) = f{h)/{<F'>y" (6) 

A normalisation factor may be determined, assuming randomly distributed atoms, from 

the gradient of the Wilson plot (Wilson, 1942). The ideal intensity of a reflection is given 

by (7), where ff and fj are atomic scattering factors. If reflections are divided into small 

ranges of resolution and the mean intensity is calculated, the exponential terms will tend 

to zero, leaving a simple relation (8). The ideal intensity differs from the real intensity by 

two factors, a scaling factor independent of resolution, k, and a thermal factor. Thus, the 

ratio of ideal to real intensity is a function of these two factors. With the resolution 

dependent temperature factor expressed as exp [-2Bs^] this leads to (9). The plot 

ln[<lhki>/2ifi^ ] versus s^ has gradient -2B and intercept In k. 
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Ihw = L . fi fj exp[ 271/ ( h(Xi - Xj) + k(yi - yj) + l(Zi - Zj)) ] (7) 

rearranged Ihw = X fi^ + £ . ̂  .Efi fj exp[ 27t/ ( h(Xi - Xj) + k(yi - yj) + l(Zi - Zj)) ] 

<lhki>=Xfi^ (8) 

ln[<lhki>/Z,f i^] = l n k - 2 B s ^ (9) 

This derivation a s s u m e s that the structure is composed of a collection of uniformly 

distributed atoms whose thermal motion may be described by an overall B factor. The first 

assumption is very approximate for a protein crystal (Blessing & Langs, 1988, 1996). At 

low resolution, the structure is divided into higher density protein regions, interspersed 

with lower density solvent regions, with solvent occupying between 2 5 % and 65% of the 

volume (Matthews, 1968). At medium resolution the regular secondary structural features, 

typically adopted by around 75% of the molecule, are observed. Bonding and non-

bonding distances fall into a narrow range. The result is that the Wilson plot will possess 

a ser ies of characteristic fluctuations. Realistic estimates of B and k may be obtained 

from the plot for data excluding the lower resolution range at which these fluctuations are 

particularly significant. 

The description of thermal motion by an overall B factor is improved if anisotropy is 

accounted for using a matrix, Uij. Use of the mean B factor for scaling would be 

appropriate if the B factor distribution for a structure were Gauss ian , the mean and mode 

values for a Gauss ian distribution both being equivalent. In fact the distribution is skewed, 

with a sharp cutoff for low values and a long tail for high values. A s a result, the mean B 

value is larger than the peak value and it may be better to use the latter (Blessing & 

Langs, 1996). 
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The K-curve method of estimating E values (Karle & Hauptmann, 1953; Blessing & 

Langs, 1988) entails the division of the data into resolution bins. A scale factor, K is 

calculated for each bin (10). The values of K are plotted against s and smoothing is 

applied. The function K = / ( s ) so obtained gives the scaling factors. This method 

accounts for the deviation of the structure from a uniform distribution of atoms. 

K(s) = < 5 : f j ^ ( s ) / I F l S s (10) 

Ehki = KFhk, (11) 

Electron Density Maps 

The electron density map in real space and the diffraction data in reciprocal space are 

related by a Fourier transform (12). To generate an electron density map, both magnitude 

and phase of the structure factors are required. Phases are calculated by the inverse 

Fourier transform from the atomic model. Observed and/or calculated amplitudes are 

input. During a crystal structure refinement, fitting of calculated to observed data in 

reciprocal space is typically alternated with fitting of the model structure into electron 

density maps in real space, by either automated analysis of the density or manual 

inspection using computer graphics. The quality of these maps is therefore crucial to the 

success of the refinement. 

p(x,y,z) = ( 1 / V) St IFhkil exp[-27r/(hx + ky + Iz - a'^w)] (12) 

where a' = aJ2n, the phase angle in cycles 

The contribution of high resolution data to the Fo synthesis is decreased by the reduction 

in magnitude of structure factors as the diffraction angle increases. E values are not 

resolution dependent, so E maps are more strongly influenced by the high resolution 

terms. Comparison of E and F maps shows that the former have sharper, better defined 

atomic peaks. Thus E-values are 'sharpened' structure factors. Since weak reflections 
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have large errors associated with their measurement, upweighting of low intensity high 

angle data also magnifies errors, resulting in a higher noise level in the sharpened map. 

However combining E and F, giving 'semi-sharpened' structure factors, allows the 

advantages of sharpening to be exploited while the drawbacks are minimised. 

Experimental 

Models 

This study involved four crystal structures, Table 1. The data were collected using 

synchrotron radiation at EMBL. The models were refined using similar protocols with 

details described elsewhere. The resolution of the data covers the range over which the 

sharpening of maps might be expected to be beneficial, from atomic to around 2 A. 

Table 1 . Crystal Structures 

Structure Spacegroup Resolution (A) Wilson Plot B factor (A^) Reference 

Rubredoxin P2i 20.0 - 0.92 15 Dauter etal., 1992 

Protein G P2i2 i2 i 1 0 . 0 - 1 . 1 0 20 Derrick & Wigley, 1994 

Eglin c P43 1 0 . 0 - 2 . 0 0 37 Betze! etal.. 1993 

Transthyretin P2 i2 i2 1 0 . 0 - 1 . 9 0 44 Damas etal., 1996 

Maps 

(Xo-XcOc) and (3Xo-2Xc,o(c) maps, where X = (F ' E'^"'^) and X < 1 , with varying sharpness 

and resolution limits, were computed, using FFT (Ten Eyck, 1 9 7 3 ) , ECALC and other 

programs from the C C P 4 ( 1 9 9 4 ) suite. Following the application of resolution cuts to the 

data, 2 0 cycles of restrained least-squares refinement were run using the C C P 4 version 

of PROLSQ (Konnert & Hendrickson, 1 9 8 0 ) to help remove the memory of the high 

resolution data from the model. 
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Both observed and calculated structure factors were then independently normalised to 

give E-values. Calculation of E-values necessitates the division of the data into a 

sufficient number of bins with an adequate number of reflections in each bin, so care is 

required in setting bin widths for data sets to which successively large high resolution 

cutoffs have been applied. This is particularly important for structures with a small 

asymmetric unit, such as rubredoxin, protein G and eglin c, due to the relatively small 

number of low resolution reflections. Prior to the calculation of semi-sharpened maps, a 

scale factor of (ZF^/ZE^)^'^ was applied to the E-values, so that maps calculated with 

different degrees of sharpness would be comparable. Such scaling gives rise to a 

comparable rms density for maps of varying sharpness at a given resolution. 

A further problem with the scaling of low resolution data, especially those originating from 

a synchrotron, can arise due to strong reflections overloading the detector and thus being 

wrongly measured. The only solution is to be observant during data collection and to 

collect a high resolution data set in three or four runs, as explained in Chapter 4B. 

Nominal and Effective Resolution of the Data 

An electron density map of a protein crystal structure consists of a collection of blurred 

peaks, corresponding to the electron density around atoms. The amount of detail which 

can be visualised in a density map is determined by the resolution of the data. However, 

the nominal resolution is not the only deciding factor. The peaks are broadened by 

thermal motion and static disorder. Thus, the quality of a map generated from data 

artificially cut to a certain resolution will be different to that of one from data collected 

from crystals which only diffracted to that resolution. 
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The first ideas about atom resolvability in electron density maps obtained from X-ray 

diffraction were formulated for the theoretical case of a point atom. The Rayleigh criterion 

states that for a simple lens with axial illumination a pair of two-dimensional images may 

be resolved when the maximum of one image is superimposed upon the first minimum of 

the other, a separation of 0.61 X (James, 1948). For the case of three-dimensional point 

atoms, this corresponds to the superposition of the maximum of one image peak on to 

the first zero of the other, which occurs at an interpeak distance of 0.715 dmin (James, 

1948). Stenkamp & Jensen (1984) proposed that the distance should be that at which the 

maximum of the first peak is superimposed with the first minimum of the second, which is 

equal to 0.917 dmin. They added that for atoms with B > 0 the image peaks would be 

broadened, and the local minimum between two peaks at a given separation would 

therefore become shallower. 

Swanson (1988) considered the case for real atoms, with B > 0. The effective resolution, 

Deff is determined, at low resolution, by the high resolution limit and at atomic resolution, 

1.2 - 0.8 A there is a limiting constant value of Den, reflecting the nature of the atomic 

peaks. At intermediate resolution, both factors play a part. The intermediate range, 1 - 2 

A, corresponds to that of high resolution protein crystallography. The changing visibility of 

atoms across this resolution range is a key issue in high resolution protein 

crystallography. In this range lies the point at which anisotropic refinement of a structure 

becomes beneficial (Dauter et al., 1995) and the resolution at which structure solution by 

direct methods may be possible (Sheldrick etal., 1993). At ultra-high resolution, a further 

level of detail becomes apparent in the density map, corresponding to the deformation 

density from the spherical atom approximation, but charge density studies on 

macromolecules will not be feasible in the near future. 
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Swanson proposed that Deff be defined by a separation distance related to the distance 

between the maximum of an average image peak and its first inflection point. This was 

justified because, as B increases, the peak shape changes and the first minimum 

becomes shallower and moves further from the central maximum at a faster rate than the 

first inflection point. The average image peak was generated from the Fourier transform 

of the resolution dependent average structure factor, calculated by averaging data in 

resolution bins. The first inflection point occurs at the first zero of the second derivative of 

the density function. For the example structures given, the effective resolution is found to 

be in the range 1.1 -1 .2 dmin. 

The Shape of Electron Density 

The resolvability of atoms was assessed by direct inspection of density maps. This is 

justified since it is the resolvability of atoms in the actual density map which affects the 

course of refinement. While it is true that thermal motion results in the broadening and 

merging of peaks, this effect can be at least partially compensated for, as described 

above, by using sharpened maps. 

The visibility of atoms in the density for maps at different resolutions and with different 

degrees of sharpening was investigated by examining the shape of the density between 

neighbouring atomic centres. All pairs of fully occupied atoms, not including solvent, 

separated by distances of 1.9 A or less were selected. The electron density at the two 

atomic centres, and at nine equally spaced points along the line connecting them, was 

calculated. The symmetrically placed pairs of points which were equidistant from the 

midpoint were averaged. The resulting values for the density between each pair of atoms 
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Fractional interatomic distance 

Figure 2. Average shape of the density between neighbouring atoms. 

Maps of rubredoxin using data of different sharpness and resolution were investigated. 

The normalised density values are plotted against fractional distance from the atomic 

centre, for E-maps (dashed line) and F-maps (continuous line) for maps with 

0.92, 1.5 and 2.0 Angstrom high resolution data cutoffs applied. 
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Figure 3. 

A comparison of the resolvability of atoms on E maps and F maps at different resolutions for 

rubredoxin. 

If Pgjj,^ = averaged, normalised density at the atom centre and 

p^.^pg.^^=density at the midpoint, calculated as explained for Figure 2, then 

^difference " P atom P midpoint 

difference 
is plotted against resolution cutoff, for E maps(small dashes), F maps(large dashes) and 

Pdifferenci^ "^^P) " Pdifference^^^^^^P) (continuous line). 



were normalised to give unity at the atomic centre. These values give a representation of 

the average shape of the density between neighbouring atoms, Figure 2. 

If patom is the averaged, normalised density at the atom centre, pmidpoim is the density at 

the midpoint between two atoms and pditference is the difference between patom and pmidpoim . 

then the atoms can be said to be 100% resolved if 

patom = 1 and Pmidpoint = 0 therefore Pditference = 1 • 

The plot of pdifference against resolution cutoff. Figure 3, shows that the atoms on the E-

map are around 40% better defined at atomic resolution, i.e 

Pdifference (E-map) = 1 and Pdifference (E-map) - Pdlfference(F-map) = 0.4 

The resolvability of atoms in maps of all degrees of sharpness declines as the high angle 

data are cut. However, the extra interpretability of E-maps over F-maps increases. At 2.0 

A the resolvability of atoms is 8% in E-maps, 4% in F-maps, which is a 100% advantage 

for the E-maps. An advantage is retained until around 2.25 A to 2.5 A. 

The shape of the electron density between atoms is principally determined by the 

resolution of the data. At atomic resolution, there is a pronounced minimum at the 

midpoint, Figure 2. This minimum is lower in the E-map. The depth of the minimum 

decreases, for all maps, as the resolution is cut. At around 2.5 A the shape of the density 

is completely altered and there is a maximum at the midpoint, Figure 4. Between 2 A and 

2.5 A it may be possible to resolve atoms on the E-map, as the minimum is still present, 

although it is not in the F-map. 

The shape of the density on the F-map is influenced by the thermal parameters of the 

structure. For a structure with higher B factors, the atoms are less resolved. A map in 
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Figure 5a. The resolvability of solvent atoms. 

E-map (dashed line) and F-map (continuous line) density between solvent 

sites is plotted for rubredoxin at 0.92 and with data cut to 2.5 Angstrom. 
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which resolution had been artificially cut can be distinguished from one for which data are 

present up to the diffraction limit. Thus there is a substantial difference between the 

shape of the density in the F-map for protein G at 2.0 A, and that for eglin at 2.0 A, Figure 

4, due to the difference in average B factors for the structures. Table 1. Since, ideally, 

thermal effects should be removed during the calculation of E-values, there is a greater 

similarity between the shape of the density in the E-maps. Errors are not compensated 

for so the shape of the E-map densities will not be identical. 

The density around solvent atoms was also analysed. Figure 5. The separation between 

solvent sites is greater than that between adjacent atoms in the protein, so solvent 

molecules are still distinct at a lower resolution. The change in shape of the density with 

resolution cutoff was much more gradual for solvent. This demonstrates that the high 

resolution data contain little information about the solvent. 

Electron Density Histograms 

If a grid is drawn over the map and a histogram of the (FQ, etc) electron density at the 

gridpoints is plotted, this distribution will contain information about the nature of the 

structure and the correctness of the phases (Cochran, 1952; Podjarny & Yonath, 1977; 

Main, 1990; Lunin, 1993). The map consists of atomic electron density, which at high 

resolution is seen as a collection of approximately Gaussian peaks, overlying a random 

noise contribution. Noise arises from errors in the model, the presence of high and low 

resolution cutoffs in the data as well as errors in the data. The density histogram of the 

noise is a Gaussian, centred at zero. The atomic electron density histogram has the 

shape of a Gaussian rotated through 90°. The range of this function is 0 < p < pmax- The 

overall density histogram adopts a characteristic, skewed shape, resulting from the 
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convolution of two component distributions, with a short tail in the negative density region 

and a long one for positive density (Main, 1990). 

It has been postulated that the best set of phases will result in the most skewed density 

histogram (Cochran, 1952). This relates to the fact that improving the phases causes a 

reduction in noise, removing small and negative values of p and shortening the p < 0 tail 

of the histogram. The skewness of the density histogram reflects the level of noise in the 

map. If maps are generated using the same phases, but from structure factors with 

different degrees of sharpening, this discriminator should still apply and the most 

interpretable map should therefore be that for which the density histogram possesses 

maximum skewness. 

The variation of skewness of the density distribution with map sharpness, for maps of 

type ( F o ' Eo '^'*^,ac), was evaluated. Figure 6. The value of x at which skewness is a 

maximum is defined as x^ax , thus the ( F o * ^ ^ ^^(i-xmax; ^^^p possesses the density 

distribution of maximum skewness. The plot of Xmax against resolution cutoff is shown in 

Figure 7, for all four data sets. According to this plot, at 1 A resolution, the highly 

sharpened (F°^ E ° ° ) synthesis would be expected to contain the most interpretable 

features. As the resolution is decreased, the optimal degree of sharpening is reduced. 

This can be explained by the fact that as more of the high resolution data are removed 

termination errors increase the noise. Thus a greater 'P contribution to the structure 

factors is necessary to dampen the noise, and the F /E balance swings towards F. 
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Figure 6. 

Skewness of the density distribution was calculated for maps of the form (Fo ^ Eo ^^''^') with 

X 0->1, for rubredoxin. Plots of skewness against x for maps with a specific high resolution 

cutoff are shown, for cutoffs at 0.92,1.0, 1.1, 1.2, 1.6, and 2.0 Angstrom. The value of x at which 

skewness is maximum, defined as x ^ ^ , is marked b y X for each plot. 
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Figure 7. 

The plot of Xj^g^against resolution cutoff is shown for rubredoxin(large dashes), protein G 

(continuous line), transthyretin(medium dashes), and eglin C(small dashes). 

x^g^ is the value of x at which the skewness of (Fo '̂ Eo ) maps is maximum. 

In other words, the (Fo^"^^o map possesses the density distribution of maximum 

skewness 
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Refinement using Sharpened Maps 

Use of maps of varying degrees of sharpness during real-space improvement steps of 

refinement has been investigated. A structure obtained from the anisotropic refinement of 

rubredoxin from Desulfovibrio vulgaris at 0.9 A and five other models derived from this 

first model were subject to refinement. 

Refinement 

Restrained least-squares refinement of atomic positions and thermal parameters was 

performed. The two models referred below to as I and II were refined using SHELXL-93 

(Sheldrick, 1993), the remaining examples using PROLSQ. The Automated Refinement 

Procedure (ARP, Lamzin & Wilson, 1993) was employed for modification of the structures 

in real space. The refinements were repeated with variation in the sharpness of the 

(3Fo-2Fc,cxc) map input to ARP: unsharpened (F), fully sharpened (E) and half-sharpened 

^po.sgo.s ^ structure factors were used in turn. An account of general refinement 

protocol is given in the introduction to Chapter 4. 

The following models were refined; 

/: An anisotropic model, comprising residues 1-52, with 82 water molecules and R and 

Rfree values of 8.3% and 11.2%. The SHELXL-93 diffuse solvent correction, based on 

Babinet's principle (Langridge et a/., 1960), had been applied during the previous 

cycles of refinement. The resolution range of the data was 20 A to 0.92 A. 5% of the 

reflections had been removed from the working dataset for calculation of Rfree-

//: Solvent atoms with B factor > 30 Â  were removed from /, leaving 32 waters. R and 

Rfree values were 10.4% and 12.2% respectively. 

191 



///: A random positional error with rms 0.3 A was introduced into model / and, in 

addition, the co-ordinates were shifted by 0.5 A along the a axis. This mimics 

inaccuracies which could be present in a model obtained by molecular replacement. 

R and Rfree were 44.8% and 45.9%. 

IV: Molecular replacement was carried out using AMORE (Navaza, 1994). The search 

model used was the 1.4 A structure of rubredoxin from Desulfovibrio gigas (Frey et 

a/., 1987), which has an rms displacement of 0.65 A from /, for CA atoms. There are 

14 sequence differences between the two structures. Side chain shortening 

mutations only were carried out, where this was appropriate. 7 residues in the 

molecular replacement model were mutated to Ala and 2 to Ser, leaving 9 sequence 

differences between the starting model and /. R and Rfree were 39.2% and 41.0%. 

V: A loop region in /, comprising residues Pro 20 to Val 24, was removed. R and Rfree 

were 20.9% and 24.3%. 

For / & //, five cycles of SHELXL-93 anisotropic refinement were run, followed by a cycle 

of ARP. This was iterated ten times. ARP was used for modification of solvent only. The 

distance limits for addition of new atoms were set to 2.2-3.3 A and the merging distance 

to 0.6 A, Refinement was run with and without application of the SHELXL-93 diffuse 

solvent correction and with and without real space refinement. The number of atoms to 

be added and removed in each cycle was set to 0 or 5 for / and 10 or 15, for //. 

For ///, IV &. V, PROLSQ refinement was performed until further cycles gave no further 

drop in R factor. Following each cycle, ARP was run. Real space refinement was carried 

out on all atoms, but only those designated as solvent were cut and added. Atoms were 

added at distances of 1.0-3.3 A from existing ones, and merged if they came within 0.6 
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A. These limits were set to allow for the fact that some of the 'solvent' may represent 

protein atoms. The change in R factor was useful in determining the convergence point 

of a refinement, while the refinement parameters were being tuned. However, a 

comparison of R factor does not give a good assessment of how well the refinement 

process corrects the deliberate errors introduced, since R factors refer to the whole 

model. 

Results of Refinement 

In the final stages of refinement, the well defined part of the model remains virtually 

unchanged, while improvements are made in the fitting in the disordered regions and 

solvent. Such was the case for the refinements of / and //. Since scattering from the 

regions which were modified by these refinements does not contribute greatly to the high 

resolution data, the effect of sharpening was not dramatic. 

Final R and Rfree values. Figures 8a and b are almost uniformly lowest for refinements 

performed using H maps. Use of H maps is advantageous, although the effect is small. 

Use of fully sharpened maps was ineffective, causing the maximum number of atoms to 

be removed and added on each cycle, arguing that the noise level in these maps was too 

high, while semi-sharpened maps were more useful than plain F-maps. Real space 

refinement assisted in the equilibration of the solvent building during the reconstruction of 

the solvent network of model //. This can be explained by the observation that diffuse 

atoms tend to drift towards the edges of the density, a problem corrected for by real 

space fitting. 
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Figure 8a. Results of test refinements of rubredoxin. 

Final R and Rfree from the refinement of model I is plotted against 

sharpness of maps used in the refinement; E, H, and F maps. 

R factor (%) 
8.8 

Rfree (%) 

H F 
type of maps used during refinement 

H F 

type of maps used during refinement 

Refinement conditions: 

RS(continuous line), R{large dashes), S(small dashes) and neither(dash-dot). 

R = real space refinement performed, S = diffuse solvent correction applied. 

194 



Figure 8b. Results of test refinements of rubredoxin. 

Final R and Rfree from the refinement of model II is plotted against 

sharpness of maps used in the refinement; E, H, and F maps. 

R factor (%) 
9 

Rfree (%) 

H F 
type of maps used during refinement 

12.25 

11.75 

11.25 

10.75 

H F 

type of maps used during refinement 

Refinement conditions: 

RS(continuous line), R(large dashes), S(small dashes) and neither(dash-dot). 

R = real space refinement performed, S = diffuse solvent correction applied. 

195 



Figure Sc. Final R, Rfree and rmsd of CA atoms from those in the target model, I 

are plotted for refinement of models III, IV, and V using E, H, and F maps, 

model lll(continuous line), model IV(large dashes) and model V(small dashes) 

R factor (%) 
17.5 

Rfree (%) 

H F 
type of maps used during refinement 

18.5 

^^•^E H F 
type of maps used during refinement 

rmsd of CA atoms from Target model 
9( 

H F 
type of maps used during refinement 
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The effect of the application of the SHELXL-93 diffuse solvent correction was much more 

noticeable, since this correction is specific to the low resolution data. When the solvent 

correction was implemented during the building of a very incomplete solvent network, the 

addition of solvent was slowed down. When the virtually complete model / was refined, 

with the solvent correction operative, the resulting model had fewer solvent molecules 

and a lower value of Rfree, Figure 8b. This can be ascribed to the removal of peaks which 

were present due to incorrect scaling of low resolution terms. 

Models ///, IV and V roughly approximate to structures at earlier stages in refinement, 

with significant errors in the well defined part of the density. The degree to which 

refinement has corrected the inaccuracies which were introduced can be assessed by 

observing change in the rms displacement of the main chain atoms from those of model 

/, Figure 8c. IV, the molecular replacement model, possesses 3 regions in which the 

position of the chain is seriously in error and requires interactive graphical rebuilding. 

When these regions are not used in the calculation of rms displacement of CA atoms 

from those /, the values obtained closely mirror those found for model ///. Rfree values 

reflect the success in correcting the mistake in the main chain, while R values are 

insensitive. In all three cases, refinement using E-maps produced the best final model. 

The results from using H-maps were similar to those obtained with E-maps, while the F-

map based models were considerably worse. 
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Conclusions 

This investigation was concerned with the resolvability of atoms in maps of different 

sharpness. Plots of the mean density between adjacent atoms show that fully 

sharpened maps contain the best resolved peaks in well resolved parts of the structure, 

due to the removal of peak broadening thermal effects. Concurrent with the increasing 

sharpness of peaks in the protein region, there is an increase in the background noise 

level, and a consequent reduction in peak size in less well defined regions, as is 

illustrated by the density maps of rubredoxin in Figure 9. 

The interplay of these factors is resolution dependent. If maximum skewness in the 

density histogram corresponds to minimum noise in the map, the optimal level of 

sharpness increases with resolution: around (E°^F°'̂ ) at atomic resolution and between 

(E° V®) and (E° V * ) at 2 A resolution. 

The results of refinements performed on rubredoxin demonstrate the effectiveness of 

sharpening in the early stages, while showing that this approach is less advantageous 

towards the end of a refinement. For the atomic resolution rubredoxin structure, the 

optimal degree of sharpening appears to lie between fully (E) and half-sharpened 

^go.spo.sj priaps. For an almost fully refined model, the use of half-sharpened maps is 

most effective, while the worse the model, the sharper the maps should be. These 

results agree with the trend shown in minimum map noise levels by the density 

histogram study, Figure 7. 

Use of sharpening during automated improvement of the model in real space directly 

enhances the accuracy with which atoms can be placed within well resolved density. 
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This can be seen as the primary effect of sharpening. Where significant errors are 

present in well-defined regions, improvement in the model is accelerated and enhanced. 

A secondary effect of sharpening stems from the reduction in noise in the density map 

which results from this improvement in the model. Weaker peaks emerge above the 

background noise level, allowing effective modelling of more peripheral parts of the 

model, such as mobile side chains and the solvent network. In the closing stages of 

refinement, as most of the atoms are already well positioned, potential improvements 

due to map sharpening are small. 

The level of sharpness which produces the most informative map is strongly resolution 

dependent. While sharpening is most effective for atomic resolution data, it should be 

advantageous for any refinement at a resolution higher than 2.5 A, a range which 

encompasses more than half the structures at present in the Protein Databank (Lamzin 

etal., 1995). 
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Chapter 5B 

Treatment of solvent in protein crystal structures 

List of abbreviations used in the description of solvent structure, Chapter SB 

~\/^ crystal volume per unit molecular weight (Matthews, 1968) ( D ' ^ ) 

VASSY volume of asymmetric unit ( ) 

pAssY average density of asymmetric unit (g cm"^) 

Vprot. Vf,prot volume of protein in asymmetric unit (A^), fractional volume of protein 

Mprot mass of protein in asymmetric unit 

Pp,o, average density of protein (g cm'^) 

Vsc % volume of solvent by relative cell and protein volumes, from equation (3). 

Psoivent average density of solvent (g cm'^) 

Nsoi.modeiied number of solvent sites modelled in asymmetric unit 

Nsoi.totai total number of solvent sites, calculated from Vsc, with the approximation psoivent = 1 

Vsoi.ordered % volume of Ordered solvent, from proportion totahmodelled solvent, equation (9) 

Vsoi,diffuse % volume of diffuse solvent, from proportion totahmodelled solvent, equation (9) 

Vss % volume of ordered solvent, from analysis of gridpoint-atom separation, Figure 5 

Vra % volume remote from protein, from analysis of gridpoint-atom separation, Figure 5 

Vds % volume of diffuse solvent, from analysis of gridpoint-atom separation, Figure 5 

ksoi contrast parameter for the modelling of diffuse solvent, defined as Spsoi(r) / SppmieinCr). 

Bsoi average B factor for diffuse solvent (Â ) 

d resolution (A) 

s resolution expressed as sin9 / X, (A'̂ ) 
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Introduction 

What is solvent structure? 

The essential difference between small molecule crystals and those of macromolecules 

(although a sharp boundary does not exist, a continuum of examples exists between 

large and small) is that a large part of the volume of the latter is taken up by solvent. 

Realistic modelling of this solvent is a matter of concern because of the fundamental 

nature of a crystallographic model. Model phases are generated by combining the 

scattering contributions from all the constituents of the unit cell. Consequently, the quality 

of the whole model affects the detail which can be seen in each part and careful 

modelling of the solvent is necessary to achieve the most informative model of, for 

example, the active site. 

A measure of packing density is given by Vm, the crystal volume per unit molecular weight 

(1) (Matthews, 1 9 6 8 ) . 

Vn,= VASSY/Mpro, (1) 

For protein crystals Vni values lie in the range 1 .65 to 3 . 3 5 A^Da'\ most frequently 

between 2.1 and 2 . 4 k^Da\ The distribution has a sharp cutoff at the lower end, 

reflecting the fact that the limits of close packing have been reached, while at the upper 

end there is a long tail, since there is no definite limit to how loosely packed a structure 

could feasibly be. Vm is related to the fractional solvent content of the crystal (2) . 

Vf.prot = Vprot / V ^ g s Y = (Mprot / pprot) (PASSY ^ ^ASSY) = (VASSY PASSY) (Vm Pprot M^SY) 

Vf,p,ot=1 /Vmpprot (2) 

If Vm is expressed in A^Da'̂  and pprot approximated to 1 .35 g cm'^, then the solvent 

content of the crystal can be expressed by (3) (Matthews, 1 9 6 8 ) . 

Vsc = 1 0 0 ( 1 - ( 1 . 2 3 / V m ) ) % (3) 
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The fraction of volume occupied by solvent for a typical protein crystal is between 25% 

and 65%, with an average of 43%. Although the volume occupied by solvent in a protein 

crystal varies greatly, the structure adopted by the solvent does not. This justifies the 

development of a general model for the solvent network and a protocol for solvent 

treatment which should be valid in most cases. 

Ideas about the solvent structure around a protein have been developed from 

complementary viewpoints; X-ray diffraction crystallography, NMR spectroscopy and 

theoretical modelling (Karplus & Faerman, 1994; Levitt & Park, 1993). In crystal structures 

discrete solvent sites are visible, mainly in the boundary region, between protein and 

diffuse solvent. The number of such sites which are conserved between different 

crystallographic forms, with the exception of waters buried within the protein, is a subject 

of contention between NMR spectrocopists and crystallographers. 

NMR studies show that, in solution, all except the buried waters are in rapid motion, with 

exchange rates > 1x1 o'° s''. Theoretical calculations support this view and suggest that 

the same is true within the crystal. It may be constructive to consider the solvent sites 

observed in a crystal structure as the positions of minima in the free energy potential for 

solvent molecules, influenced as much by crystal field forces as chemical interactions 

with neighbouring side chains. 

The H-bonding network around the surface of the protein incorporates a shell of solvent, 

which can be modelled as a set of discrete atoms on fully occupied sites. If the resolution 

of the data permits, partially occupied sites, linked to disordered systems of side chains, 

may also be included in the model. The remaining solvent is not attached to specific 
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minima. This diffuse solvent contributes to the scattering at low resolution, due to the 

contrast in electron density between diffuse and ordered regions of the unit cell. There is 

no sharp boundary between these regions, the density varying smoothly between the 

centre of the protein molecule and the diffuse solvent zone. Thus, the occupancies of 

some of molecules in the first solvent shell appear to be less than unity and some 

discrete solvent peaks may be located further from the molecule, in the essentially diffuse 

solvent region. 

Treatment of diffuse solvent 

If the region of a model crystal structure actually filled with diffuse solvent is considered to 

be a vacuum, there will be systematic errors in the calculated intensities at low resolution, 

because the contrast in density between protein and diffuse solvent is much smaller than 

that between protein and an empty void. The scattering of water exhibits periodicity at 

around 3 A, but little above 4 A (Blessing & Langs, 1988). Therefore, at low resolution, its 

scattering can be considered to be that of a gas of uniform electron density. The volume 

occupied by the water is equal to the unit cell volume minus the sum of partial atomic 

volumes of all atoms in the protein model. The partial atomic volume of an atom is similar 

whether it is surrounded by water or buried in the protein. Babinet's principle states that 

the scattering, due to water in the space around the molecule, has the same amplitude 

but opposite phase to the scattering from the molecular volume if it were filled with water 

(4). If neither scattering pattern has much detail, which is the case at low resolution, and 

the contrast between the density of water and protein is small, the assumption (5) can be 

made. 

Fso,(s) = " ^sol in protein volume (s) (4) 

^sol in protein volume(s) = Fprotein(S), SO F3rotein(s) = - Fsol(s) (5) 
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The contrast between protein and water requires the introduction of a scaling factor, ksoi, 

defined as <psoi(r)> / <pprotein(r)>. A resolution dependent factor, exp{-Bso\ s^), is required to 

restrict the relation to low angle data. The total scattering from the crystal may be 

expressed as ( 6 ) , which leads to the approximation ( 7 ) . Thus, the introduction of a scaling 

factor (1-ksoi exp(-Bsoi s^)) for Fc ' s corrects for the diffuse solvent scattering. Bsoi and ksoi 

may be determined during the scaling of Fc ' s to Fo 's by the minimisation of function ( 8 ) 

(Langridge etal., 1 9 6 0 ; Driessen etal., 1 9 8 9 ; Tronrud, 1 9 9 6 ) . 

Fc(s) = Fprotein(s) + Fsoi(s) ( 6 ) 

Fc(s) = (1 - ksoi eXpi-Bsoi S )̂) Fproteln(s) ( 7 ) 

/ = Z (Fo(s) - k exp(-Bs')( 1 - ksoi e x p ( - B s o i s')) Fp^,ein(s))' ( 8 ) 

Aims 

The nature of a diffuse solvent correction of the type described above and the effects of 

its application during the refinement of a small protein structure have been investigated. 

For a good assessment to be made of whether the solvent treatment is effective and 

justified, it is first necessary to have an understanding about the nature of the solvent 

structure in the crystal. 

Experimental 

Application of a diffuse solvent correction 

Plotting resolution dependence of the diffuse solvent scaling factor, (1 - ksoiexp(Bsoi s^)), 

Figure 1 , shows that the presence of diffuse solvent should be accounted for during the 

refinement of any structure for which there are data at a resolution lower than 5 A. An 

alternative is the complete removal of these low resolution data, but this sacrifices 

structural information and results in extremely noisy density maps, due to truncation 

errors. 
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Figure 1. 

The diffuse solvent scaling factor (1 - ksoiexp(Bsoi s^)) is plotted against resolution, 1/d (A'̂ ) This 

scaling does not effect data of resolution higher than 2.5 A (l/d > 0.4 A ) , while strongly influencing 

low resolution terms, below 5 A (1/d < 0.2 A), 
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Figure 1 . 

The di f fuse solvent scal ing factor Y=(1-kgQ^xp(Bg^|S % is plotted against resolut ion, 1/d. 

Th is scal ing does not effect data of resolut ion > 2.5 Angst rom (1/d > 0.4), whi le strongly 

inf luencing low resolut ion terms, below 5 Angst rom (1/d < 0.2). 



Values for ksoi and Bsoi must be estimated during refinement, as described above, ksoi is 

the contrast parameter; using an incorrect value is equivalent to setting the wrong 

average density of diffuse solvent, which results In under or over-scaling of Fc's. Bsoi 

determines the manner in which solvent Is modelled at the solvent protein interface. 

Figure 2a illustrates the protein/solvent Interface schematically. The effects of setting Bsoi 

to reasonable, small and large values are shown. The correct value gives a smoothly 

changing density across the boundary. If Bsoi is too small, there will be a 'hole' in the 

density, If it Is too large, there will be a high density 'ridge' at the protein/solvent interface. 

The resulting ripples in the density may make it impossible to distinguish real features of 

the model from artificial peaks. In reciprocal space, a badly estimated value of Bsoi gives 

rise to an inadequate fit between calculated and observed structure factors at low 

resolution. 

If discrete solvent sites are not modelled, the estimated value of Bsoi will be small. As 

solvent is added, Bsoi increases. When no discrete solvent has been modelled, there is a 

sharp boundary between protein and diffuse solvent regions. Solvent sites are added at 

the interface. Increasing the width of the threshold region. Thus, a more gradually varying 

function is necessary to model smooth change in density and the value of Bsoi increases, 

as Illustrated schematically In Figure 2b. 
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Figure 2a. Schematic representation of the protein/solvent interface, 
illustrating both well and poorly nrodelled electron density 
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Figure 2b. 
Schematic Representation of changes in boundary region during construction of a solvent network 
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Analysis of the nature of solvent in the crystal structures of two small proteins 

The data-to-parameter ratio for a protein crystal structure necessitates the application of 

numerous restraints on main chain and side chain geometry. This is not required for 

solvent atoms. Distance constraints may be applied, restricting them to a range of 

distances from the next atom, so they neither become isolated, nor approach closer than 
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a feasible H-bondIng distance, this latter condition being unjustified for overlapping 

solvent networks. During anisotropic refinement with SHELXL-93 (Sheldrick, 1993) 

solvent may be restrained to be approximately isotropic, to prevent the volume of the 

thermal ellipsoid refining to a negative value, which can easily occur, since an ellipsoid is 

an Inadequate model for the density of a typical solvent site. Solvent is otherwise refined 

without restraints and, as a consequence, the solvent co-ordinate error distribution is an 

unbiased Gaussian. Thus, analysis of the solvent can give an independent assessment 

of model quality. 

Model protein structures 

Two structures were used as examples in this Investigation of solvent character; protein 

G from Streptococcus (Derrick & Wigley, 1994, Chapter 4A) and rubredoxin from 

Desulfovibrio vulgaris {Dauter etal., 1992, Chapter 4B), Table 1. Both these models have 

been subject to anisotropic refinement using SHELXL-93. The models used in this 

analysis were subsequently refined using all of the data, but at this stage, 5% of the 

reflections had been kept separate, for the calculation of Rfree- The occupancy of all 

solvent sites was 100%. 

Table 1. Structural details 

rubredoxln protein G 

Space group P2i P 2 i 2 i 2 i 

Resolution (A) 20 - 0.92 10 .0 -1 .1 

B factor from Wilson plot (A )̂ 15 20 

mean B factor, protein (A )̂ 9.1 12.5 

mean B factor, solvent (A )̂ 32.1 35.3 

Vm (A'Da^) 1.74 2.23 

Vsc (%) 29 45 

R(%) 8.3 9.8 

Rfree (%) 11.2 12.7 

Nsol.modelled 82 119 

Nsol.total 94 222 
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Application of a diffuse solvent correction during refinement 

A suitable approach to the treatment of diffuse solvent during the refinement of protein G 

was required. Several schemes were tested and their results compared. The refinement 

process is summarised in Table 2. Poor scaling caused by data collection problems 

(Chapter 4A) resulted in large errors in the low resolution data. Consequently, a low 

resolution cutoff of 10 A was applied. The lack of the lowest angle reflections is not ideal 

for the modelling of solvent and may result in inaccuracies in calculation and refinement 

of the diffuse solvent parameters. Large errors and absences in low resolution data are 

also a source of noise, making the modelling of solvent and disordered side chains in 

diffuse density more difficult. 

Table 2. Refinement of protein G 

Stage 

1 isotropic refinement, PROLSQ(Konnert & Hendrickson, 1980) 

+ real space refinement, construction of solvent network, ARP 

2 anisotropic refinement, SHELXL-93, ARP 

3 introduction of 7 double conformations, occupancies of 8 sidechains refined 

4 sharpened (3Fo-2Fc) maps input to ARP; F°-^E° ^ 

diffuse solvent scaling no diffuse solvent scaling 

after Stage model R.(%) Rfree.(%) total water model R.(%) Rfree.(%) total water 

2 2A 10.1 12.9 119 2R 10.1 12.9 120 

3 3A 9.6 12.5 125 3R 9.8 12.6 120 

4 4A 9.5 12.5 132 4R 9.7 12.8 120 

Anisotropic refinement was performed, using SHELXL-93,' with the application of the 

diffuse solvent correction. The diffuse solvent correction in SHELXL-93 refines the value 

of ksoi, but Bsoi must be assigned a value which is not refined. In SHELXL-96 (Sheldrick & 

Schneider, 1996) both ksoi, and Bsoi are refined, but this was a development subsequent 

to this study, ksoi refined to a physically meaningless value, possibly due to truncation 
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errors. The solvent correction was retained, since it appeared to help compensate for 

these errors, giving the refinement more stability. 

During the refinement, the Fo 's and Fc 's output from SHELXL-93 were scaled, before 

being used for density map synthesis, providing the Input for ARP (Lamzin & Wilson, 

1993), which was employed for modification of the structures In real space. Two parallel 

refinements were performed, the first using the CCP4 program, RSTATS. The second 

refinement utilised an alternative scaling program, Implemented In ARP. This calculates a 

diffuse solvent correction, as described above, refining values of ksoi and Bsoi (Tronrud, 

1996). The refinements were, In all other ways. Identical. 

The solvent structures of four models, listed in Table 3, were compared. The separation 

of solvent sites was calculated between pairs of models: 3A & 3R, 4R & 3R, 4A & 3A, 

Figures 3a & b. Sites more than 0.5 A distant from the nearest site in the other model 

were considered to be different. The positions of these sites in the density were 

inspected, using FRODO (Jones,1978), with the results shown In Table 4. 

Table 3. Models used for comparison of solvent structure treatment 

model result of refinement with result of refinement with more careful 
sharpened maps input to ARP diffuse solvent correction applied 

3A no no 
3R no yes 
4A yes no 
4R yes yes 

Table 4. An assessment of the new solvent sites 

comparison of / to new sites average B (A )̂ well positioned badly positioned 
3A/3R 20 65.5 7 10 
4A/3A 14 79.3 " " 5 6 
4R/3R 6 63.5 0 4 
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Figure 3. 

H is tograms of the separat ion of solvent sites for pairs of protein G models, 

wi th nomenc la ture as def ined in Table 3. 

(a) Separat ion of solvent in 3A f rom 3R, the effect of ref inement with dif fuse 

solvent correct ion app l ied. 
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Figure 3. 

H is tograms of the separat ion of solvent sites for pairs of protein G models, 

w i th nomenc la tu re as de f ined in Table 3. 

(b) Separat ion of solvent in 4R f rom 3R(grey) and 4A f rom 3A(white) ; the effect of 

ref inement wi th and wi thout the appl icat ion of a dif fuse solvent correct ion. 
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Fo/Fc 

Figure 4. 

A n assessment of the match of calculated and observed structure factors. Fo and Fc for protein G 

mode ls at sequent ia l s tages in ref inement, with nomenclature as def ined in Table 5, were sorted into 

resolut ion b ins. The fit of Fo and Fc at dif ferent stages in ref inement was compared . 

2 2 
(a) Fo/Fc against sin Q/X 

mode l l ( iarge dashes) , model l l (small dashes) , model l l l (dash-dot) , model IV(cont inuous line). 
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R (%) 

Figure 4. 

A n assessmen t of the match of calculated and observed structure factors. Fo and Fc for protein G 

models at sequent ia l s tages in ref inement, with nomenclature as def ined in Table 5, were sorted into 

resolut ion b ins. The fit of Fo and Fc at dif ferent stages in ref inement was compared , 

(b) R aga ins t s in ^ 9 / A, ^ 

mode l l ( large dashes) , model l l (small dashes) , model l l l (dash-dot) , model IV(continuous line). 
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Application of the diffuse solvent correction lead to a decrease in the R factor of 0.19% 

and in Rfree, 0.35%. The use of this correction allowed weakly diffracting solvent to be 

modelled, with some success. Once the diffuse solvent correction had been applied, use 

of sharpened maps expedited the placing of further solvent sites in weak density. Without 

this correction, use of sharpened maps did not contribute to improvement of the model. 

Low resolution fit of the model 

Omission or incorrect modelling of solvent results in bad agreement between model 

structure factors and observed data at low resolution. The match of calculated and 

observed structure factors was assessed at sequential stages in the refinement of protein 

G, as listed in Table 5, as the treatment of solvent became progressively more 

sophisticated. Figures 4 a, £», c & cfplot the fit of Fc to Fo for these models. 

Table 5. Models used in assessment of fitting of the low resolution data 

model description 

I 'unrefined' model from isotropic model 1 igd (Derrick & Wigley, 1994) all solvent 
removed, random positional error of rms 0.3 A applied to co-ordinates. 

II isotropic model refined from I using PROLSQ. Solvent network modelled using ARP. 

III anisotropic model refined without diffuse solvent correction, using SHELXL-93 and 
ARP. 

IV anisotropic model refined with the SHELXL-93 diffuse solvent correction applied, ksoi 
refined, Bsoi, fixed. 

V anisotropic model refined with the ARP diffuse solvent correction applied; ksoi and Bsoi 
both refined. 

The plot of resolution dependence of (Fo/Fc) , Figure 4a, shows an improvement of the fit 

at low resolution for // when compared with /, due to the addition of discrete solvent 

during the Isotropic refinement. Fc is much reduced, but still too large, after the isotropic 

refinement. The anisotropic model, without diffuse solvent correction, shows no 
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improvement at low resolution, with respect to //. However the models which have been 

refined with a diffuse solvent correction appear to be over-corrected, with Fc < F o , in the 

low resolution range, for both IV& V. 

The R factor, Figure 4b, of the lowest resolution data is the same for the three refined 

models, //, /// & IV although, obviously, there is a progressive reduction of R at high 

resolution. The plot of NA^, Figures 4c & d, is most sensitive to differences in the quality 

of the models at low resolution. An improvement Is seen for each level of sophistication in 

the solvent modelling, although the relative size of the improvements gets progressively 

smaller. 

From the plot of (Fo/Fc) against resolution. It appears that both types of diffuse solvent 

correction are over enthusiastic. Changes in the solvent modelling do not strongly 

Influence the low resolution R factor and NA^ Is a much more sensitive indicator of 

improvements. 

Distributions of solvent properties 

The ordering of solvent In the rubredoxin and protein G structures described In Table 1 

was compared. The rubredoxin model Investigated contained 82 water molecules. If the 

volume unoccupied by protein were filled with pure water, the total solvent content of the 

unit cell would be 94 molecules. Therefore, virtually the entire solvent network may be 

modelled as a system of discrete sites and the amount of diffuse solvent must be 

minimal. The protein G solvent structure Is more typical for a protein crystal. 119 water 

molecules were present in the model used in this comparison, while there Is space for 

222. Thus, almost half of the solvent Is diffuse. This difference Is reflected by the Vm 
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values for the structures. Vm for protein G , 2 . 2 3 A^Da \ lies in the middle of the range of 

the Vm distribution for protein structures, which is discussed above, while the rubredoxin 

value, 1 .74 A^Da \ is at its lower limit. 

The manner in which the crystal volume is divided into protein, ordered and diffuse 

solvent regions can be investigated by placing a grid inside the unit cell and ascertaining 

the distance of each grid point from the protein and from modelled solvent sites. 

Distributions of these distances were compared. Figures 5a, b & c. The histograms 

demonstrate the way in which the unit cell volume is apportioned between protein, 

hydrogen bonding shell around the protein and intermolecular space remote from the 

protein. 

All the histograms. Figures 5a, b& c, have maxima in the 1.5 - 2 .0 A range, relating to a 

separation of 3 -4 A between atoms, which is the range of the van der Waal's radii for C, 

O and N atoms, while the area under the tail of the distribution, with d > 2 k, gives 

information about characteristics of the solvent. 
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Figure 5. 

An assessment of the division of tfie cell volume into protein, ordered and diffuse solvent regions, for 

rubredoxin and protein G models, Table 1. A grid was constructed inside the unit cell with divisions 

of around 0.5 Angstrom along each cell axis. A set of 128000 points was used. The rms separation 

between atom and closest gridpoint was around 0.25 Angstrom. Separations were computed for; 

gridpoint to closest atom 

gridpoint to closest protein atom 

histograms were plotted of these lists of separations. The area under the histogram 

for separations d1 ->d2 = unit cell volume separated by d1 ->d2 from all/protein atoms. 

volume remote from the protein = volume of diffuse solvent region V(ds) 

volume remote from all atoms = V(ra) 

volume of the ordered solvent region, V(ss) = V(ds) - V(ra) 

(a) Separation of gridpoints from closest atom, for rubredoxin (continuous line) and protein G (dashes). 

Area under the plot with d > 2.5 Angstrom = V(ra) 
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Figure 5b. 

Separation of gridpoints from closest atom(continuous line) and protein atom(dashes), 

for rubredoxin. Area under continuous line plot with d > 2.5 Angstrom = V(ra), 

area between curves = V(ss) 
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Figure 5c. 

Separation of gridpoints from closest atom(continuous line) and protein atom(dashes), 

for protein G. Area under continuous line plot with d > 2.5 Angstrom = V(ra), 

area between curves = V(ss) 
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The results of this analysis of the solvent structure are summarised in Table 6. From the 

gridpoint analysis, the percentage of the cell volume occupied by the shell of ordered 

solvent, V s s , is very similar for the two structures, 19.6% and 20.3%, for rubredoxin and 

protein G respectively. The percentage of ordered water in the cell can also be evaluated 

from V s c and the total solvent content calculated from relative cell and protein volumes 

(9). Vsoi, ordered Is 25 % and 24 % for rubredoxin and protein G. This gives a strong 

indication that the solvent shell around a protein has a standard conformation which is 

not greatly influenced by the nature of the protein or the packing density in the crystal, 

although the shell volume is obviously a function of the molecular surface area, which is 

relatively larger for a smaller protein. 

Vsol , ordered — V s c Nsol.modelled / Nsol.total (%) (9) 

From the gridpoint analysis, the percentage of the cell volume lying remote from the 

protein, V d s , is 16.1% for rubredoxin and 31.4% for protein G, or, if Vds is evaluated using 

gridpoint separation > 3 A, 0.6% and 11.2% respectively. Using the alternative method 

(9), Vsol, diffuse is 4% for rubredoxin and 21% for protein G. Thus, the protein G structure 

contains a large volume filled by diffuse solvent, while the rubredoxin structure has 

essentially no diffuse solvent region. 

Table 6. Results of the analysis of solvent structure 

rubredoxin protein G 
from relative protein and cell volumes (Table 1): 
Vsc (%) 29 45 
Nsol.modelled 82 119 
NsoMotal 94 222 

from gridpoint analysis (Figure 5) 
Vss (%) 19.6 20.3 

Vds with d > 2.5 A (%) 16.1 31.4 

Vds with d > 3 A (%) 0.6 11.2 

from Vsc , Nsol,modelled & Nsol.total 
Vsol, ordered (%) 25 24 
Vsol. diffuse (%) 4 21 
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A layered solvent structure, with solvent sites clustered at specific separation ranges from 

the protein, each cluster possessing a characteristic B factor range, will give rise to a 

series of peaks in the distribution of the function [B * (separation from protein)], Figure 6. 

For protein G, this distribution has two major peaks, at 100 and 150 A^, while the 

rubredoxin distribution has only one peak, at 100 A^. This suggests that a first solvent 

shell Is present in both cases. Giving rise to the 100 A^ peak, it is situated in the hydrogen 

bonding region, at around 2.2 - 3.3 A from the protein surface, with a characteristic B 

factor range, 25 - 35 A^. The second peak, present only in the protein G structure, could 

be caused by a second shell of water 3.3-4.0 A from the protein surface with B factors in 

the region 35-50 k?. 

The separation distance 3.3-4.0 A is rather small for a second solvent shell and a value 

of 4.5 A would be better. However solvent does indeed adopt a shell structure around the 

protein molecule in both crystals and rubredoxin is exceptional in having insufficient 

space between the molecules to incorporate more than a single shell. 

227 



(%) 

25 
20 
15 
10 
5 
0 

rubredoxin ,,\ protein G 

200 250 300 

(Angstrom)' 

Figure 6. 

The distribution of d(sp) * B(s) for rubredoxin(continuous line) and protein G(dashes), where d(sp) 

is the separation of a solvent site from its closest protein atom and B(s), the solvent site B factor. 

The existence of consecutive solvent shells, each possessing a characteristic B factor range, 

will give rise to a series of peaks in this distribution. Peaks are observed at separations 

s.| and s 2for the protein G distribution, and s only for rubredoxin. 
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