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Abstract 

This thesis is concerned wi th the daily dynamics of price change and trading volume 

in a speculative market. The first part examines the news-driven model of Tauchen 

and Pit ts (1983), and develops this model to the point where i t is directly testable. 

In order to implement the test a new method for creating a price index f rom futures 

contracts is proposed. I t is found that news effects can explain some but not all of 

the structure of the daily price/volume relationship. A n alternative explanation is 

presented, in which the model of Tauchen and Pitts is generalized in a non-linear 

fashion. 

I n the second part of the thesis, the presence of a small amount of positive 

autocorrelation in daily returns is exploited through the development of a t iming 

rule. This t iming rule applies to investors who are committed to a purchase but 

flexible about the precise t iming. The computation of the t iming rule is discussed in 

detail. In practice i t is found that this t iming rule is unlikely to generate sufficiently 

large returns to be of interest to investors in a typical stock market, supporting the 

hypothesis of market efficiency. However, the incorporation of extra information 

regarding price/volume dynamics, as suggested by the analysis of Part I , might lead 

to a much improved rule. 
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Chapter 1 

Precursors 

1.1 Introduction 

This thesis is concerned wi th the day to day behaviour of a speculative asset trading 

in a secondary market. The primary concern is to develop our understanding of the 

price/volume relationship, and its implications. Traditionally, our understanding 

of the daily price/volume relationship has been summarized by two stylized facts: 

(i) the tendency of large price changes to follow each other, and to be accompanied 

by a large amount of trading volume; (ii) the tendency for daily price changes to 

display a small amount of positive autocorrelation. In the same way, this thesis 

, is divided into two parts. Part I considers 'news' explanations of price/volume 

dynamics without explicit consideration of the endogeneity of the mean daily return. 

Part I I considers the endogeneity of the mean daily return, but over a short time-

period in which other factors may be taken to be roughly constant. Linking the 

two parts is a model in which both stylized facts can occur simultaneously within 

a market-clearing framework; again, this reflects more recent work in which both 

stylized facts emerge f rom considerations of market structure. 

The benefit of increased understanding in this area is the more efficient pricing 

1 
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of speculative assets. This arises through a better understanding of the process 
underlying prices, giving rise to better (i.e. less biased, more efficient) estimators 
of the parameters governing the process. However, this thesis also contains a more 
immediate, pay-off. The second part of the thesis develops a new type of t iming 
rule which w i l l enable certain investors to exploit the positive autocorrelation in 
daily price changes, by making the t iming of their purchases depend upon the price 
history. ' . 

1.2 Outline of Chapters 

Following this outline; Section 1.3 clarifies the notion of a speculative asset in general 

and futures contracts in particular, the operation of the market in futures contracts, 

and investor rationality. Section 1.4 provides an overview of the price/volume liter­

ature.. Finally, Section 1.5 examines the General Equil ibrium picture for complete 

markets using the Arfow-Debreu model proposed by Varian (1985). 

Part I: Return Leptokursis and News Arrival 

The analysis of markets in Part I is f rom the bottom up. This requires both the static 

analysis of market-clearing and the dynamic analysis of the way in which investors' 

beliefs about the future are revised through time. Fundamental to a bottom-up 

approach is the notion that investors differ,, and hence can be satisfied wi th different 

positions in a speculative asset at the same price. Following a revision to beliefs an 

optimizing investor w i l l often want to adjust his^ portfolio, and this leads to trading 

volume and a possible chaiige in the market-clearing price. 

On this basis the daily price/volume relationship can be disaggregated into the 

'The phrase 'he or she' will be shortened to 'he' in this thesis, hkewise 'his or her' to 'his'; this 
reflects the fact that, at the time of writing, investors in speculative markets are predominantly 
male. . • 



CHAPTER 1. PRECURSORS 3 

price/volume relationship per item of news, and the distribution of the number of 
items of news per day. This disaggregation is found in the seminal price/volume 
model of Tauchen and Pit ts (1983), which plays an important part in the thesis and 
serves as a starting point for the analysis of Part I . 

Chapter 2 describes the background to the Tauchen and Pitts (1983) model, 

before going on to describe the model itself and its shortcomings, particularly in 

the light of subsequent time-series work on prices and trading volumes. This work 

has suggested that the amount of news per day is not independently and identically 

distributed, as was originally assumed, but appears to be positively autocorrelated 

f r o m day to day. This chapter also develops the theoretical properties of the model 

to derive: a new statistical test of the model which is unaffected by the properties of 

the news arrival process. 

Chapter 3 is a short chapter to clarify what we mean by news and related issues 

such as the quantity' of news per period. This chapter suggests that i t is important 

to consider the costs associated wi th the process of updating beliefs following the 

arrival of new information', and that the number of transactions may be a better 

indicator of the quantity o f news than the number of news stories, as is typically 

used. 

Chapters 4 and 5 test the Tauchen and Pitts model using the results developed 

in Chapter 2 and data f rom the London International Financial Futures Exchange 

( L I F F E ) , 1985-94. In order to use futures prices, which have several advantages in 

this context over spot prices,, i t is necessary to combine data f rom individual futures 

contracts into a single price index. Chapter 4 defines the notion of 'optimality ' 

in price indices for-futures'contracts, and shows how optimal price indices can be 

created. Using the data f rom L I F F E and from the London Stock Exchange, the 

ppt i inal price index is shown to outperform its alternatives, including the index 

used by Tauchen and Pit ts in their estimation. In Chapter 5 i t is found necessary 
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to transforrri the trading volume data to allow for the growth in the market over 
the period and also to remove the effects of contract rollovers, which introduce 
a coniplicated pattern of quarterly seasonality into the volume data. A method 
is proposed in which contract rollovers are proxied using the data on daily open 
interest. . . . 

Final ly in Part I , Chapter 6 is an analysis of market-clearing which retains the 

. linear demand functions of Taucheri and Pitts, but which generalizes their model for 

updating investors' forecasts of future prices. This leads to a relationship between 

the cross-sectional distribution of forecasts at the end of each day and the joint 

dis t r ibut ion of price change and trading volume over the- following days. Since the 

cross-sectional distr ibution o f forecasts is likely to change only slowly through time, 

this introduces a time-dependent element into price changes and trading volume 

even, in the absence of time-dependency in the news-arrival process. This model is 

significant in the context of the previous chapters, where the main conclusion is that 

news effects alone cannot completely explain price/volume dynamics. 

Part II : Return Autocorrelation 

The main purpose of the'second part of the thesis is to develop and analyse a t iming 

rule for investors which exploits the small amount of predictability inherent in the 

positive autocorrelation of daily returns. Chapter 7 explains why i t is that returns 

have this autocorrelation, w i th particular reference to the Martingale theorems of 

Samuelson (1965, 1973) which suggest that there should be no relationship between 

future and past returns. The rewards f rom trading strategies based upon return 

autocorrelation are also discussed, along w i t h the transactions costs which make 

them unprofitable i n operation. 

Chapters 8. and 9 develop and analyse a t iming rule based around the return 

autocorrelation. W i t h a t in i ing rule, the decision to purchase has already been taken. 
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and the only unresolved issue is when exactly to make the purchase. Consequently 
the transactions costs which ruin trading rules are effectively forgone. Chapter 8 
solves the problem of optimal t iming to give the 'optimal t iming rule', which bases 
the decision to purchase (as opposed to delay) upon the return of the previous day. 
The function describing the performance of this rule is solved as the fixed point of 
a non-linear operator in a Hilbert space, expressed as an infinite power series in an 
integral operator. Chapter 9 tackles the computation of this solution, and analyses 
the returns that might be generated by following the optimal t iming rule in practice 
in typical stock markets. 

Finally, Chapter 10 concludes the thesis w i th a summary of the main results and 

some conclusions pointing towards areas for future research. 

1.3 Some Clarifications 

Speculative, Assets 

This thesis is about the demand for speculative assets. The primary common feature 

of all speculative assets is uncertainty about the outcome for the holder, which is 

contingent upon the state of nature. Perhaps the simplest speculative asset of all 

would be an agreement to pay or receive a certain amount of money contingent 

on the result of a single toss of a fair coin to be made in the near future. This 

agreement could be bought or sold at a given price, depending upon the pay-off and 

the participants' attitudes to risk. 

The simplicity in this example arises f rom the head or ta i l dichotomy of the 

future , the known fixed probability of 0.5 for each of the two outcomes, and the 

absence of a time dimension in which the needs of the participants might change. 

In contrast, the speculative assets in financial markets tend to be categorized by 

complex pay-offs spanning a large number of states of nature, subjective and poorly 
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understood probabilities, and a significant time dimension in which the assessments 
and needs of the participants might change significantly. Of course, this is what 
makes these assets so interesting. 

This thesis w i l l concentrate on stock index futures contracts. This is a contract to 

pay or be paid the money-equivalent of the difference in price between the contract 

when i t is taken out and the underlying basket of stocks at a fixed time in the future. 

A n investor at t ime t taking a position of q contracts for expiry at time k {k > t), 

receives a pay-off at k of 

f{t,k) = qc{pk-ptk) (1-1) 

where ptk is the contract price at time t, pk the stock index price at expiry at time 

k, and c the conversion factor f rom index points to currency.^ A t any point in time 

prior to the expiry of the contract, the holder has the option of closing his position 

by an offsetting transaction (e.g. buying one contract to close out a short position 

of one contract). In this case his pay-off is simply the money-equivalent difference 

in the contract price over the period: 

f{t,s)=-qc{psk-Ptk), t<s<k. (1.2) 

These two formulas are equivalent at the time s = k since institutional arrangements 

ensure that a contract held to expiry closes at the value of the underlying index, i.e. 

Pkk=Pk-

The payout of a futures contract is uncertain at the point at which i t is bought. 

The only way in which the payout can be made certain ahead of k is i f the holder has 

an exactly offsetting position in the stock index. The application of the standard 

arbitrage framework then gives rise to the fair value relationship, in which the spot 

^For the FTSE-100 Futures contract, for example, the price c is £25 per index point. 
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and futures prices are linked via the risk-free interest rate, the dividend yield and 
the t ime to expiry. Imperfections in the two markets, particularly sizable round-trip 
transactions costs in the spot market,, mean that in practice the difference between 
the spot price and the futures price varies around its fair value.^ 

In relation to the discussion above, futures contracts have a simple pay-off in 

relation to the underlying stock price index, but this underlying index hcis a very 

complicated pay-off in relation to the various possible states of nature at time k. 

Therefore futures have a complicated pay-off over the states of nature. In the in­

terval {t, A;) the arrival of new information might cause investors to reassess their 

need for futures contracts (possibly by changing their attitude towards risk) and/or 

their subjective assessmeiit of the probability of various states of nature. Even an 

investor who is unaffected in these ways may st i l l be affected by the resulting change 

in the market-clearing price, and want to change his holding accordingly. The re­

lation between the desired position size and the market-clearing price is completely 

described by an investor's demand function. 

Demand Functions 

Each investor is presumed to have a demand function which relates his demand for 

stock index futures contracts to the contract price. This demand function arises 

as the result of some explicit or implici t optimization problem: in this thesis I 

w i l l be concerned wi th explicit problems, and the demand functions wi l l arise as 

a consequence of the problem. The presence of variables other than the price in 

the demand function depends on the type of investor. For example, an arbitrageur 

might have the current spot price, interest rate and dividend yield, and various 

transactions costs; a private investor using futures as a way of getting quick short-

^For more details of the theoretical properties of a futures contract's fair value, see Cox et al. 
(1981); see Yadav and Pope (1990, 1992, 1994) for empirical studies regarding the size and vari­
ability of the premium that futures prices tend to command over spot prices and the relationship 
of this premium to fair value. 
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term exposure to the stock market might have wealth and parameters describing his 
belief about the likely course of prices. 

For any differentiable demand function there will be some prices at which the 

investor wants to be neither short nor long of the market. If the investor's utility 

function is strictly concave, there will be exactly one price at which this is true 

(Samuelson, 1983, Mathematical Appendix C), and this is termed the reservation 

price. 

Definition 1.1 (Reservation Price) The reservation price of an investor for a 

speculative asset is that unique market price at which the investor desires to be 

neither short nor long of the asset. 

Samuelson showed that without any restrictions on the utility function beyond con­

cavity the demand function may change direction repeatedly (e.g., as determined by 

the investor's beliefs about the future) but it can cross the x-axis only once, and with 

negative gradient. This does not rule out the demand functions being sometimes 

increasing in market prices, as was suggested by Tobin (1958, 1969). 

Reservation prices play a crucial role in models of market-clearing. It is possi-
f 

ble to recast an investor's demand function in terms of the deviation between the 

market-clearing price and the reservation price. When these demand functions are 

combined into a market-clearing condition, which in the case of futures would say 

that the sum of all positions must be zero (short positions are negative), the result 

is that the market-clearing price is seen to be some function of the set of reservation 

prices. Consequently changes in the market-clearing price are in general a function 

of the two sets of reservation prices: those from before the change, and those from 

after. In exceptional circumstances it is possible to examine changes in the market-

clearing price entirely in terms of a symmetric function of the set of changes in the 

reservation prices. This thesis considers such a model in detail, that of Tauchen and 
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Pitts, (1983). But it also considers the general case.̂  

Rational Expectations 

Tied up with the form of the demand functions and market-clearing is the issue of 

rational expectations (RE) . Only certain types of demand function will satisfy the 

RE criterion:. " . . . a model that would generate price from the [distribution of 

reservation prices] and that would simultaneously characterize agents' [reservation 

prices] in a manner that is consistent with agents' expectations that price will be 

determined in a similar fashion when the next period arrives" (adapted from LeRoy, 

1989, p. 1604). A combination of demand functions and a model for updating 

reservation prices in the light of news gives rise to a stochastic process for prices. 

For RE to hold, this stochastic process should be part of the problem which gives 

rise to the demand functions. 

To talce a simple example, suppose that the demand functions are linear and 

that reservation prices follow a random walk with normally-distributed increments 

(this is in fact the model of Tauchen and Pitts, 1983). In this case the market-

clearing price is also a random walk with normally-distributed increments. Then the 

critical question for RE is "Can linear demand functions arise when investors expect 

prices to be a random walk with normally-distributed increments?" Interestingly, 

the answer is "Yes", as will be shown in Chapter 2. Unfortunately, this particular 

model also has some substantial weaknesses, and in eliminating these weaknesses 

the RE consistency is lost, as will be discussed in Chapter 6. 

^This analysis forms the basis of Chapter 6, 
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Figure 1.1: A Taxonomy of A-Iodels of Speculative Markets 

Descriptive Models No explicit optimizing behaviour by investors. 

Homogeneous Investors All investors solve an identical problem, and are 
• therefore indistinguishable. 

Pseudo-Homogeneous Investors All investors solve the same generic 
problem, although this problem may not be parametized in the same 
way for all investors. 

Heterogeneous Investors Investors solve different problems. 

1.4 An Overview of the Literature 

Before commencing this overview of the price/volume literature it is helpful to in­

troduce a taxonomy of models of speculative asset price determination. The models 

considered in this thesis may be distinguished by the assumptions they make about 

investor heterogeneity. The taxonomy is given in Figure 1.1. 

This taxonomy may be applied to the development of the theory of the distribu­

tion of daily prices, and, more recently, the joint distribution of daily price changes 

and trading volume. Parts of the following overview will be covered in much more 

detail in later chapters. More general surveys of the theoretical and empirical litera­

ture on speculative prices, and the price/volume relationships can be found in Fama 

(1970, 1991), Karpoff (1987), West (1988) and LeRoy (1989). 

1.4.1 Descriptive Models 

Initially the emphasis in stock market research was on modeling prices directly, 

rather than deriving from theory implications about prices that are testable. The 

earliest extant empirical suggestion for speculative price changes is that of Bachelier 

(1900). As Samuelson (1972) noted, Bachelier suggested that speculative prices 



CHAPTER !. PRECURSORS 11 

Pt, Pt+i, • • • followed a stochastic process satisfying 

Pv{pt+s <p\pt,Pt-i,---} = F{p~pt, s) s,t = l,2,... (1.3) 

In words, the distribution of the price change over some period is independent of 

the price history preceding the period, and independent of the length of the period 

excepting changes of scale. Bachelier asserted that eq. (1.3) implied that F(-) was 

the normal cumulative distribution function, in which case prices would conform to 

a random walk with normally distributed increments. 

It is not clear on what grounds Bacheher derived the relation eq. (1-3). His 

motivation was to state formally that investors should not be able to profit from 

the study of past prices, but eq. (1.3) goes much further by specifying the invari-

ance of the distribution of increments, which makes prices a random walk, and that 

these increments have a certain scaling property (which will be discussed further be­

low). However, the notion that prices followed a random walk subsequently received 

strong empirical support. Cowles (1933) showed that professional stockmarket an­

alysts were unable consistently to outperform the market, and this lead to studies 

confirming that price changes appeared to be similar to random walks (e.g., Working, 

1934; Kendall, 1953; Granger and Morgenstern, 1963; Godfrey et ai, 1964; Fama, 

1965). The consensus gradually shifted from a random walk in levels to a random 

walk in the logarithm of levels in order to respect the property of limited liability 

which prevents stock prices from going negative (Osborne, 1959). This idea was 

formalised by Samuelson (1965) who proposed the alternative stochastic process 

Pr{pt+s <p\pt, P t - i , . . . } = F , s, ^ = 1, 2,.. . (1.4) 

which has as a solution the lognormal distribution for prices, or equivalently the nor­

mal distribution for log-returns. Samuelson termed this process economic brownian 
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motion. 

Return Autocorrelation 

With the exception of Working (1934),̂  the above studies of random walks focused 

on the serial correlation in the returns r j , r j + i , . . . , i.e. the significance of p in the 

regression 

rt = n + p r t - r + U t , (1.5) 

f 

where r is the differencing period and Ut is a white-noise disturbance term. In 

general it was found for one period lags that there were fewer stocks with negative 

autocorrelations than with positive ones. For example, Fama (1965) reports 8 neg­

ative and 22 positive for the Dow Jones Industrial average portfolio over 5 years to 

1962. Nine of the 22 positive autocorrelations were significant, compared to only two 

of the negative ones.̂  Assessing this and other evidence for autocorrelation, Fama 

declared that it was " . . . probably insignificant from an economic point of view" 

(Fama, 1970, p. 394). The small positive autocorrelation is now an accepted fact in 

daily returns, with studies tending to confirm that, after allowing for trading costs, 

there is no risk-adjusted profit to be made from trading on its basis, above that of a 

buy-and-hold strategy (see, e.g., Conrad and Kaul, 1988; Lo and MacKinlay, 1988; 

Brock et ai, 1992; Corrado and Lee, 1992).'' Since the autocorrelation is so small, 

much of the theory of speculative prices proceeds on the basis that daily returns are 

effectively independent of the price history. 

^This prescient study showed that a random walk looked very much like the evolution of a 
speculative price. 

^As F a m a (1970) notes, however, the precise significance is hard to assess given the apparent 
leptokursis of the disturbance term, ut. . 

more detailed discussion of trading rules can be found in Section 7.4. 
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1.4.2 Homogeneous Investors 

The first true homogeneous investor model was that of Samuelson (1965, 1973). 

This was not just an empirical specification, but a direct implication of a model of 

optimizing behaviour by investors. In Samuelson's model all investors have identical 

opinions about the future distribution of speculative prices and are risk-neutral. In 

this case the expected return on every asset will be bid down to the return on the 

risk-free asset, and then the expected change in the price of any speculative asset 

will be zero.̂  Thus the model implies that prices have, the property 

S [pt+s \ Pt, Pt-i, • • •] = Pt, s,t = l,2,... (1.6) 

known as a martingale process. This implies that returns will have zero expectation, 

and so be a fair game (see, e.g., LeRoy, 1989). Samuelson's martingale model had 

an attractive basis in investor behaviour, but it also offered a palliative to the ran­

dom walk model. If daily prices were a random walk then it was generally presumed 

that the increments would have a normal distribution, by the Central Limit The­

orem. However, evidence of leptokursis in the return distribution (Osborne, 1959; 

Alexander, 1961) suggested otherwise. 

One response was to recast the random walk in the more general form of a stable 

non-normal distribution. Mandelbrot (1963a,b) noted that eq. (1.3) was necessary 

but not sufficient for F(-) to be the normal distribution. It actually defines a class 

of distributions of which the normal is a special, limiting, case. In general members 

of this class are leptokurtic. However, the evidence of Fama (1965), which showed 

that absolute returris seemed to clump into periods of large and small, supported 

an alternative explanation, that of a mixture of distributions. It had been noted by 

^Technically, the expected excess return should be zero, to allow for the risk-free rate. This 
makes prices a sub-martingale. The risk-free rate is therefore presumed to be zero for simplicity. 
Samuelson's model is examined in more detail in Section 7.1. 
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Osborne (1959) that a mixture of normal return distributions with similar means 
but dissimilar variances would also be leptokurtic. Mandelbrot's explanation lacked 
the time-dimension implicit in the clumping which could be attributed to time-series 
properties in the mixing process. 

The. notion of a mixture of distributions was formalized by Clark (1973) as a 

subordinated stochastic process. The price change on day t is determined by the 

amount of news arrival during the period {t — l,t], denoted n :̂ 

Pt^Pt-i + ^Ap„ (1.7) 

where Api is independently and identically distributed, with zero mean to preserve 

the martingale property. Clark suggested that each increment be a normal random 

variable, and the amount of news on day t be an independent lognormal random 

variable. This would give rise to a daily return distribution with zero mean, finite 

variance and leptokursis.^ There have also been empirical models in which the 

distribution is a mixture of normals (Kon, 1984), or a more complicated Poisson 

jump-diffusion process (Akgiray and Booth, 1986, 1987). These models are not 

random walks, but are martingales on the imposition of zero expected return. 

Up to this point the role of trading volume in the distribution of daily price 

changes was poorly defined. This is not surprising, since a voluntary transaction 

must indicate a difference of opinion or a difference in circumstances between the 

buyer and the seller. There can be no such differences when investors are homon-

geneous. The empirical analysis of Granger and Morgenstern (1963) found no rela­

tionship between price changes and trading volume, but they later found that there 

^Clark's model of is examined in detail in Section 2.1. An alternative suggestion to Clark's 
was that the amount of news had a stable non-normal distribution with infinite mean (Mandelbrot 
and -Taylor, 1967; Blattberg and Gonedes, 1974), which would give rise to a return distribution 
with infinite variance. In practice it is still hard to tell these two models apart (see, e.g.. Hall 
et a/., 1989) although the consensus, spurred by Occam's razor, favours finite variance—see also 
footnote 2 on page 30. 
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was a correlation between squared price change and trading volume (Granger and 
Morgenstern, 1970). This suggests that the relationship between price change and 
trading volume is symmetric with respect to price falls and rises.^° Clark (1973) had 
only moderate success in using volume as a proxy for news arrival; this rather ad hoc 
inclusion of trading volume prompted the sardonic rejoinder "[Clark's experiments] 
have shown that daily increments of local time are like daily volume to the power 
2.13. This empirical discovery seems very interesting and deserves careful thought" 
(Mandelbrot, 1973, p. 159, my ernphasis). 

1.4.3 Pseudo-Homogeneous Investors 

In a pseudo-homogeneous investor model all agents solve the same problem, although 

certain of the parameters in the problem might vary across investors. Consider, for 

example, the simple case of deciding how many futures contracts to hold to expiry. 

An investor determines the optimal number of contracts by maximizing the expected 

utility of his pay-off over the various states of nature. His pay-off includes the pay­

off from holding the contracts, as in eq. (1.1), but also the interest from the wealth 

he must make available to the exchange in order to trade. Denoting the investor's 

wealth as w and the risk-free interest rate as i, the optimization problem iŝ ^ 

max 
9 /

C O 

U{Q (Pk - Ptk) + i ; r]) f {pk, Ptk, 0) dpk, (1.8) 
oo 

where u{-; rj) is a strictly concave utility function parametized by rj (which might 

represent the investor's degree of risk-aversion), and / ( • ; pt^k, is a probability 

^"Karpoff (1987) surveys the empirical evidence on the price/volume relationship. He makes an 
interesting distinction between spot and futures markets regarding asymmetry of the costs of short 
and long positions, and suggests that only in futures markets, where the costs are symmetric, will 
there appear no relationship between price change and trading volume. This symmetry is discussed 
in more detail in Section 5.4. 

^^In practice the maximum size of the position q is constrained by the amount of wealth and the 
exchange's margin requirement. 

^^For simphcity, the price of the index, c from eq. (1.1), will be set to 1 in the rest of this thesis. 
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density function representing future states of nature, and parametized by the current 
futures price and 6 (which might reflect the investor's expectation of pjt at time t). 
In a pseudo-homogeneous investor model the investors are distinguished from each 
other by the value of the parameters 77, 6 and w; consequently they are likely to 
have different reservation prices. But all these investors are buying or selling futures 
contracts as their only speculative asset, and operating regardless of the behaviour 
of other investors, as described in eq. (1.8). 

One of the first pseudo-homogeneous investor models was that of Epps and Epps 

(1976).̂ ^ In this model investors' demands are derived from portfolio theory in 

such a way that the resulting demand functions are linear in price. Investors differ 

only in their expectation' of future speculative asset prices, so that they are all 

identically risk-averse and share a common belief about the covariance matrix of 

future asset prices. New information causes investors to modify the expectations 

they attach to different assets, which causes them to adjust their portfolios. This 

adjustment generates trading volume, as well as the potential for a change in the 

market-clearing price.Tauchen and Pitts (1983) introduce a stochastic process 

for reservation prices into a framework similar to that of Epps and Epps, but which 

avoided some of the latter's rather arbitrary assumptions.̂ ^ 

The attraction of these two models is that they unify price change and trading 

volume within a model of rational investor behaviour. Therefore they should in 

principle provide testable hypotheses for the bivariate distribution of price changes 

and trading volume. Unfortunately, an incomplete understanding of the daily dis­

tribution of news prevented these models from being fully exploited. At the same 

^^Another possible contender is the sequential information arrival model of Copeland (1976). In 
this model.effectively identical investors diff'er in the order in which they receive public information, 
and price changes and trading volurne are generated as this information disperses across the market. 
I n this thesis it is assumed that public information is revealed to all investors at the same time, as 
tends to be the case in financial markets. 

^''The Epps and Epps (1976) model is discussed in more detail in Section 2.2. 
^^The Tauchen and Pitts (1983) model is discussed in more detail in Sections 2.3, 2.4 and 2.5. 
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time evidence started to accumulate which suggested that the amount of news per 
day might be autocorrelated.^^ This possibility was in fact forseen by Tauchen and 
Pitts and suggested by them as a possible reason for the poor fit of their model. 
It is important to note that the Tauchen and Pitts model takes the news-arrival 
process as given. However, if the amount of news per day is not independently and 
identically distributed, the fitting of their model by maximum likelihood would be 
extremely hard given the high dimensionality of the resulting integral expression. 

1.4.4 Heterogeneous Investor Models 

In pseudo-homogeneous models trading volume is generated by news arrival. In­

vestors are essentially competitive, pitting their interpretation of commonly avail­

able information against each other. Economists questioned whether this could be 

entirely rational (Milgrom and Stokey, 1982; Tirole, 1982). Why should investors 

on both sides of a transaction believe that they have the advantage? Risk-averse in­

vestors avoid zero sum games, so the existence of a large amount of trading volume 

implies either that many investors are not risk-averse, or, even worse, that some 

investors are simply irrational. Either way, investors can be distingushed by more 

than just the paremeters of their utility functions and their subjective probability 

assessments. 

This heterogeneity now goes by the name of 'noise' (Black, 1986). In the simplest 

noise model, uninformed or.'noise' traders tend to chase price trends while informed 

'fundamental' traders tend to trade only when price has been pushed a long way 

from value. The consequence is that while much trading volume will be related 

^^This evidence is discussed in Section 2.6. 
^'^More generally, the designation 'noise trader' might be replaced by 'noninformational trader'— 

any investor buying or selling for reasons other than superior information. For example, Admati 
and Pfleiderer (1988,1989) discuss the possibility of 'liquidity traders' during the course of the day 
and around the weekend, and Rougier (1993) examines the impact of margin traders under the 
Account settlement system in the London Stock Exchange, which injects liquidity into the market 
on a fortnightly basis. 
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to news, some of it will not, being related instead to the strategic exploitation of 
noise traders by fundamental traders. Even if the news arrival process was indepen­
dently and identically distributed from day to day, the time series of trading volume 
might display bursts of high volume which may or may not be associated with large 
movements in price. 

The problem with heterogeneous investor models is that they are in some sense 

too good. It is almost as though any facet of the price/volume relationship can 

be 'explained' by an appropriately chosen noise trader; this is not surprising given 

that a feature ,of noise models is the presence of investors trading irrationally. For 

this reason recent empirical studies of the price/volume relationship have tended 

to be data-based. In their empirical analysis of the daily price/volume relationship 

over 60 years of New York Stock Exchange data. Gallant et al. observe: "Existing 

models, however, do not confront the data in its full complexity and have not evolved 

sufficiently to guide the specification of an empirical model of daily stock market 

data" (Gallant et al, 1992, p. 202). Ironically, then, we appear to have come full 

circle back to empirical models, but supported by recent theoretical developments. 

1.5 General Equilibrium 

The models of the following chapters are partial equilibrium models in which fi­

nancial markets are taken in isolation. This ignores the broader picture of rational 

agents allocating resources between current and future consumption by the use of 

financial markets. It also ignores the simultaneous determination of prices across 

fina-ncial markets. These might be termed the dynamic and the static general equi­

librium (GE) problems, respectively. The scale of these problems makes it very hard 

to incorporate any degree of investor heterogeneity. Thus dynamic GE with ratio-

^^Noise trading models are discussed in more detail in Section 7.3. 
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nal expectations operates at the level of homogeneous investors (see, e.g., Lucas, 
1978; Harrison and Kreps, 1979; Cox et ai, 1985).̂ ^ However, there is an analy­
sis of static GE which incorporates pseudo-homogeneous investors due to Varian 
(1985, 1992), based on the Arrow-Debreu model of complete markets (Arrow, 1964; 
Debreu, 1959). Varian considers how differences in opinion regarding probabilities 
might affect prices in GE. 

1.5.1 The Arrow-Debreu Model 

In the Arrow-Debreu model there are n investors and S states of nature. Each 

investor assigns a probability to each state of nature, and these probabilities are 

collected iri the n x S matrix H, such that TVis is investor i's subjective probability 

of state s. In what follows it will also be useful to use H^ to denote the i " ' row of 

n, and the s"* column. The market is complete in that there is a security that 

pays off for every possible state of nature; each pay-off is one consumption unit if 

that state occurs, and nothing otherwise. 

Investors each start with some endowment of securities, the nxS matrix C where 

is investor i's initial endowment of the security which pays off in state s; as with 

the probabilities, Ci denotes the i^^ row of C, and in addition the total number of 

each security will be denoted ĉ . Each investor acts as a price-taker in maximizing 

expected utility over the security bundle Ci = (c i , . . . ,cs), subject to the budget 

constraint imposed by his initial endowment Ci and given prices P — {pi,... ,ps). 

The Lagrangian function of investor i is 

C{Ci, A,; P, Hi, Ci) = max V T T , , Ui{cis) - Xi ^^ . ( c i s - c ,̂), (1.9) 
s=l i=l 

where Ui{-) is investor z's utility function, assumed to be strictly concave: «• > 0, 

^^An excellent and rigorous exposition of these models and many related issues can be found in 
Duffie (1996). ^ 
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u" < 0 . The first order conditions may be written 

Gi{Cu \; P, Ui, C,) = [0] ( 1 . 1 0 ) 

where 

GtiC,,\i-P,U„di) TTiXic^s) - XiPs s=l,...,S ( 1 . 1 1 ) 

GUQ, A,; P, Ui, Q) = - £ p . ( c , , - Q,). ( 1 . 1 2 ) 

s=l 

By the strict concavity of the utility function the Jacobian of G is non-singular, and 

eq. ( 1 - 1 0 ) can be solved for the demand functions and the Lagrangian function: 

4 = c „ ( P , n., a) 5 = 1 , . . . , 5 ( 1 . 1 3 ) 

A * = X,{P,U,,C^). ( 1 . 1 4 ) 

1.5.2 Varian's Analysis^^ 

Varian considers the identical satisfaction of the first-order condition for investor i 

in security s: 

7r.X(cL) - A : P . = 0 . ( 1 . 1 5 ) 

Since the utility function is: strictly concave, this can be inverted to give 

4 = / J ^ • ( 1 . 1 6 ) 

The function /,(•) must be strictly decreasing. Varian then applies the market-

^°I would like to thank Professor Hal Varian for several very helpful discussions regarding the 
nature and implications of his analysis. The presentation here is my own, to avoid some confusion 
which arises regarding his notation and exposition. 
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clearing condition for security s to endogenize the price, p^: 

i=l 1=1 

He considers two securities within a given equilibrium, s and t say. In a given 

equilibrium we may take Aj as fixed, in which case the righthand side of eq. (1.17) is 

decreasing in Ps (since each fi is decreasing in Ps), and the market-clearing condition 

may be expressed as, in general, 

Ps = F{n„c,\n,c) 5 = 1 , . . . , 5. (1.18) 

This says that a necessary condition for Ps ^ Pt is (H^, C j ) ^ (Hj, Q) . In other 

words, if every investor agrees that two states are equally likely (although they may 

disagree about how likely) and there is the same initial endowment of security in 

each state, then the price of the securities paying off in those two states must be the 

same. It is also clear from eq. (1.17) that 

Cs>< ct Us = nt , , 
Ps <> Pt accordmgly as <̂  (1-19) 

n, <> Ht Cs = ct 

Thus, all other things being equal, greater supply decrccises the equilibrium price, 

as does lower probability: the securities with the highest price are those where the 

aggregate initial endowment is small and the probability generally agreed to be large. 

On its own, this result might be considered a classic example of the use of 

complex abstract reasoning to reach a completely obvious conclusion. However, 

Varian goes on to relate the dispersion of probabilites to the equilibrium price, under 

the condition that all investors have identical utility functions. Varian shows that 

if investors are sufficiently risk-averse then fi{-) = /(•) (i = 1 , . . . , n) is a concave 



CHAPTER!. PRECURSORS 22 

, function of TTjs. In this case the sum of the n terms in eiq. (1-17) will be lower for 
security s than for security t if f l^ has the same mean as' Ilf, but a larger dispersion 
(this is, effectively, Jensen's inequality). Thus if the endowment of s and t is the 
same, then Ps < pt. In this way Varian establishes that diversity of opinion tends to 
depress a security's price within a GE framework. As Varian notes, this result has 
empirical support from Cragg and Malkiel (1982), who show that the relationship 
between ex post return and risk is clearest when risk is proxied by a measure of 
.diversity of opinion among investors about future prices. • 

1.5.3 An Asymptotic Generalization 

It .is possible that Varian's results may be extended by considering the market-

clearing condition eq. (1.17) when the number of investors (n) becomes large. Asymp­

totic limits are useful since they allow vectors such as IT̂  to be replaced by a consid­

eration of the distribution of the individual components, T T I S (s = 1, . . . , 5). State­

ments about the distribution parameters are much more general than the qualified 

inequalities of eq. (1.19),̂ ^ and an explicit relationship about the trade-ofl" between, 

say, mean probability in state s and the variance of the probabilities in state s, may 

be derived. 

Consider thcvcase where'each investor has a probability vector 11̂  and an initial 

endowment Ci allocated randomly from the same underlying distributions; each 

investor has the same utility function. The result of the individual optimization 

exercise is a value for A* which is also a random drawing for each investor from the 

same underlying distribution (this would not be the case were utility functions to 

vary across investors). Denote the mean probability in state s as T T ^ ( S = 1, . . . ,5) 

and the mean of the resulting multipliers as A—clearly these two means will be 

' ^^.For example; i f the mean probability in state s is denoted TT^ ( S = 1 , . . . ,S) then the set of 
pi-obabilities for which l is > is a strict subset of that for which Ttg > T^t-
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related .in sorrie manner. 

Now consider expanding each function in the summation of eq. (1.17) around 

the means, A and # 5 : To simplify the notation, set 

f \ N def r I Xps (1.20) 

(once again, the i subscript on / is no longer required since all utility functions are 

the same).. Using the approximation to second order. 

^(A,;7r„) ^g{X,irs) + 
A , - A 

1 

9\ 

- -

1 . A, - A Ai - A 
2 

- 7f, 

Using this approximation in eq. (1.17) gives 

n 

1 " 

i=l 

=, ^(A, Tf,) + (A("),^ A) g, + (7f(") - Tf,) g, 

• + ^ { ^ r P A A + a^(")^.. + 2atW} 

(1.21) 

(1.22) 

where the superscript (n) indicates the n-term sample statistic, a denotes the vari­

ance and cOvariance, and all expressions in g are evaluated at (A,7fs). The sample 

means approximate the population mean to order 0(n~°-^), while we can assume that 

the sample variances and covariances approximate to 0{n'~^). Therefore eq. (1.22) 
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can be written (remembering that the lefthand side also tends to a limit) 

c, + 0(n-°-^) ^9CX,7r,) + 0{n-'')g, + 0{n''')g, 

+ \{{^l + 0{n-')) g,,+ {al + Oin-')) g^^ (1.23) 

+ 2{a^, + 0{n-'))g,,], 

where is the mean endowment of security s for each investor. In the limit n ->• oo 

this gives 

Gs^~^'7(A,7r,) + ^ {algxx + (^Ig^n + 2axn9xn} • (1-24) 

This expression can be simplified further on the realization that oxn = 0. Since the 

probabilities sum to 1, a larger-than-average probability in state s will be matched 

by a smaller-than-average probability in some other state. Therefore each investor 

will have a collection of probabilities with both positive and negative deviations and 

the unconditional covariance between any probability and the multiplier Aj will be 

zero. 

From the definition of g{-), the partials can be found as 

. « = / " ( ^ ) ^ , = 2 / ' ( ^ ) . (1.25) 

Furthermore, frorn the sufficient condition, 

(noted by Varian, 1985, p. 315). Making these substitutions and rearranging gives 
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the final expression 

What does eq. (1.27) say about equilibrium asset prices? The first term in the 

curly bracket is positive (presuming u'" > 0) and the second negative. Thus the sign 

of the second term in eq. (1.27) is, strictly speaking, indeterminate. This indetermi-

nance may be inherent in the problem or i t may be a consequence of the truncation 

of the Taylor Series after the second term—rthere is no way to distinguish. Proceed­

ing on the basis that the approximation is a good one (i.e. the indeterminance is 

inherent) we may use Varian's results to 'configure' the sign of the second term. 

Varian showed that I l j < Jlj <^ < Pf, all other things being equal (see 

eq. (1.19)). This implies that the curly bracket probably has negative sign with its 

second term dominating the first, and in the first term the squared coefficient of 

variation of dominating that of TTj.,.̂ ^ In this way, a higher TTJ raises the first term 

in eq. (1.27), since / ' < 0, and makes the second less negative. This can be offset 

by a higher Ps, which lowers the first term and makes the second more negative. 

The negative sign on the curly bracket is also consistent with a higher variance 

of probabilities, cr̂ ,̂ lowering prices. The higher variance makes the curly bracket 

more negative, and this is offset by a lower price which makes the curly bracket less 

negative and also makes the first term more positive.•^^ 

2̂ To expand a little on this, consider the case where there are just a few probable states, so 
that we might take TTS 0.3 and <T,r, « 0.1. In this case the term [cr-^JitsY ~ 0.1. The values of 
the men and variance of A* are completely unknown except for their sign—positive. But it seems 
plausible to assert that, in the absence of any other evidence, (CTA/A)^ > 0.1, and hence the A term 
dominates the TT term. 

^^I appreciate that this type of 'backward induction' is at best heuristic, and at worst illogical. 
However, it seems a worthwhile exercise in 'probabilistic' reasoning, relative to the alternative of 
leaving the implications of eq. (1 .27) completely unresolved. 
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Therefore eq. (1.27) is capable of being consistent with Varian's results, and, 

possibly, transcending them in generality. It also provides a platform for considera­

tion of more explicit utility functions, although this must take place jointly with an 

analysis of the functional dependencies between the four distributional parameters 

that arise from within their definitions and from the optimization process. 

As for the impact of these results on the partial equilibrium models of the fol­

lowing chapters, it must be born in mind that considerations of equilibrium pricing 

are made here on a strictly cross-sectional basis, i.e. comparisons are between two 

security prices in the same GE equlibrium. The concern of the following chapters 

is the evolution of equilibrium prices through time. I t is not an implication of the 

GE analysis that a security in which the dispersion of reservation prices increases 

between one equilibrium and the next will necessarily suffer a drop in price within 

a GE framework. To examine this case would require a dynamic heterogeneous GE 

model. However, insofar as the cross-sectional case has any relevence, the proba­

bility of finding such an effect in dynamic heterogeneous GE is increased. But this 

effect will be ingored in the forthcoming chapters, where the market for a financial 

asset will be considered in isolation from that of other assets. 



Part I 

Return Leptokursis and News 

Arrival 
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Chapter 2 

The Role of News 

An overview of the literature on price/volume models has already been given in Sec­

tion 1.4. This chapter centres around the seminal price-volume model of Tauchen 

and Pitts (1983). This model serves as a focal point for Part I of this thesis, with sub­

sequent chapters being concerned with the issues raised by the explicit assumptions 

concerning investor behaviour and investor homogeneity, the implicit assumptions 

about the news arrival process, and the data requirements. 

The outline of the chapter is as follows. The first two sections review the models 

of Clark (1973) and Epps and Epps (1976), respectively. Section 2.3 presents the 

model of Tauchen and Pitts (1983), a complete model of price/volume dynamics in 

which the trading activities of pseudo-homogeneous investors are driven by the news-

arrival process. Section 2.4 is a digression in which the implications (particularly 

statistical) of the Tauchen and Pitts model are developed much further than in the 

original paper. Section 2.5 is a theoretical critique of the model, while Section 2.6 

considers the more recent evidence on the news-arrival process, and its implica­

tions for price/volume dynamics within the Tauchen and Pitts model. Section 2.7 

concludes. 

28 
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2.1 Leptokursis and Clark's Model 

As was discussed in Subsection 1.4.2, Clark (1973) generalized the mixture of dis­

tributions model proposed by Fama (1965) to a subordinated stochastic process. In 

Clark's model, prices evolve according to the amount of news arrival (or 'market' 

time), rather than according to the passing of calendar time. I f the information on 

day t is represented by Qt, then the amount of news is, crudely, 

nt = nnmhev {Qt - ^t-i] (2.1) 

(i.e. the number of bits by'which the information stock has increased). The daily 

price series is not really Pi,P2, • • • but PQ^^,PQ^^, • • • Price evolution in market time 

is said to be subordinate to that in calendar time, and the information stock fij is 

known as the directing process. 

In Clark's model the daily price change, Apt = pt — pt-i, is the sum of a random 

number of independent random shocks: 

Ap, = Y.Apu, (2.2) 
i=l 

where Apu is i.i.n. (0, crp) .for all i and t. The condition S[/\pit\ = 0 imposes the 

martingale property. In market time, as measured by increments in the information 

stock, prices are still a random walk since each shock is drawn from the same (nor­

mal) distribution. But in calendar time, as measured by the passing of trading days, 

prices are only a martingale since the expected price change is zero but the variance 

depends upon the amount of news. As it stands eq. (2.2) can describe a wide range 

of different processes, depending crucially upon whether rit has time-varying prop­

erties. However, initially it was supposed that rit was independently and identically 

distributed through time. 
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The distribution of daily price changes (Apt) depends upon the distribution of 
the individual shocks {^Pu) and the nature of the directing process, fif. Inter­
estingly, prior to Clark's model, Mandelbrot and Taylor (1967) had considered a 
subordinated stochastic process as one explanation of price changes having a stable 
non-normal distribution.^ In their model the increments were normal but the di­
recting process was a stable non-normal variable with infinite mean. Clark showed 
that any stochastic directing process would generate leptokursis in the return dis­
tribution, without the conceptual dificulties of infinite variance that were present in 
the Mandelbrot and Taylor model.^ 

The uriconditional moments of Apt can be found by conditioning on Ut, which 

is assumed to have finite mean and variance, fj,n and cr̂  respectively for all t. The 

mean and the variance of Apt are straightforward: 

£ [Apt] = 5 [5 [Api I n j ] = 5 [rit £ [Apu]] = 0, (2.3) 

V[Apt] = £ [Apt'] = £ [£ [Apt'\nt]]^£[ntal]= final (2.4) 

The skewness of Apt is clearly zero since Apu is symmetric with zero mean. To 

find the kurtosis, note that given rit, Apt is normally distributed and so must have 

kurtosis equal to 3, i.e. 

'£[iAptY7{nt'aj,')\nt]=3. (2.5) 

Taking the unconditional expectation of Apt'^ gives 

£[Apt'] = £[3{nt'a/)] = 3aj,'{al + iin'). (2.6) 

iSee Subsection 1.4.2. 
^In defense of his model, Mandelbrot noted in another paper "An added virtue of the Gaussian 

is that its moments are finite, but after all, moments are an aquired taste" (Mandelbrot, 1973, 
p. 158). 
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Dividing by the squared unconditional variance gives the result 

Leptokursis = 3 ( ^" ) = 3 (1 + r„ ' ) , (2.7) 

where r„ CTn/î n, the coefficent of variation of rit. 

From eq. (2.7) it is clear that the degree of leptokursis in the price differences 

will be determined by the coefficient of variation of the news process. There will 

be substantial leptokursis if the standard deviation of news is high relative to its 

mean. Using price differences from cotton futures, Clark finds values for kurtosis of 

19.45 (1957-1950) and 20.49 (1951-1955). This suggests that if his model is correct 

the coefficient of vaHation of news is about 2.4. A priori, this seems rather high for 

a non-negative random quantity such as news. Consider, for example, the poisson 

distribution, which is often used to represent arrival processes. This has a coefficient 

of variation of A""'^, where A is the arrival rate (i.e. mean number of arrivals per 

period). I f the figure of 2.4 were correct, this would imply that the arrival rate was 

about 0.2, and the probability of a no-news day was about 0.8. Were this to be 

true, four days in every five would have zero price change—clearly not consistent 

with the evidence. Therefore, this very high degree of leptokursis casts doubts on 

the constancy of the parameters during these two periods, or more generally on the 

model itself. 

Clark did not make this observation about the implied coefficient of variance, 

but went on to test his model using trading volume to proxy the amount of news 

arriving in a day. Were trading volume {vt) and news (nj) to be perfectly correlated 

(i.e. vt— a+but), then S Apt^ Vt would be finear in since Apt^ n j = o'^Ui. 

In fact, Clark finds that a highly convex relationship fits far better than a linear 

one. This is not that surprising in the light of the comment above about the high 

coefficient of variation: the volume data need to be 'beefed up' in order to fulfill the 
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role of a proxy for news. . 

2.2 The Epps and Epps Model 

The Clark (1973) model provided a very intuitive rationale for leptokursis in daily 

stock price changes: the amount of news per day is not fixed. However, trading vol­

ume appeared only as a rather imperfect proxy for the amount of news arrival, rather 

than an endogenous outcome of market clearing: in the taxonomy of Section 1.4 this 

is a descriptive model, or at best a homogeneous investor model. Epps and Epps 

(1976), hereafter EE, incorporated volume directly by considering the decisions of 

individual investors: this is a pseudo-homogeneous model, with a basis in optimizing 

investor behaviour. In this way EE were able to model the influence of news on the 

amount of stock demanded by any investor, and the subsequent volume generated 

as each investor altered his position in the light of changes in the market-clearing 

price. 

In the EE model, each investor maximizes utility over the blend of assets in 

his portfolio, subject to a wealth constraint. The end of period asset values are 

unkown, but utility is assumed to be a function of a portfolio's expected value and 

its variance, and so the problem is 

max u{qo XQ + Q'X, Q'S Q) subject to 9o Po + Q'P = w. (2.8) 
10,Q 

In eq. (2.8), Q is the vector of quantities of risky assets, X their expected end-of-

period values (including coupons, dividends, etc.), S the covariance matrix of these 

values, P the current prices, and w the investor's current wealth; the riskless asset, 

(asset 0) has been separated out. 

I t is interesting to note the implicit assumption that the general portfolio problem 

can be written as a problem involving the maximization of a function over portfolio 
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mean and variance. This is only the case when the distribution of asset prices at the 
end of the period is jointly normal. In other cases the problem of the maximization of 
expected utility does not collapse in this convenient fashion (see, e.g., Copeland and 
Weston, 1988, pp. 96-9). This has a bearing on the issue of rational expectations, 
discussed briefly in Section 1.3, which will be returned to in Subsection 2.3.2. 

The Lagrangian for this problem is 

>C(A, go, Q) = uiQoXo + Q'X, Q'SQ) - A {QOPO + Q'P - w) (2.9) 

from which the first order conditions are 

Cx = -{qoPo + Q'P-w) = 0, (2.10) 

C,, = ur{-)xo-Xpo = 0, (2.11) 

CQ = ur{-)X + U2{-){2SQ) - XP = {0}, (2.12) 

where the subscripts on u(-) indicate partial derivatives. Substituting for A from 

eq. (2.11) into eq. (2.12) and dividing through by Ui{-) gives 

X + 2{u2/u,)SQ-{xo/po)P = {0}. (2.13) 

Now EE assume that the investor has constant absolute risk aversion, P ^= —u^/ui. 

This suggests that the investor trades off an increased expectation (/x) against an 

increased variance (a^) in the linear fashion u = fj, — f3 a'^; risk-aversion, i.e. /3 > 0, is 

a sufficient condition for utility maximization (for further details see Varian, 1992, 

pp. 189-90). Denoting the riskless rate of interest i =^ XQ/PQ - 1, this gives the 

solution for Q from eq. (2.13) as 

Q = i2f3Sy' {X -{l+i)P). (2.14) 
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Concentrating on the investor's demand for any one particular risky asset, say 
k, eq. (2.14) can be written 

1 " 

= c{pl-p,) A; = l , . . . , n (2.15) 

where 

^ d̂ f ( 5 - % ( 1 + 2) 
(2.16) 

2p 

. ^ - i ^ ^ E i i d f , - . ) - • (-) 
By arranging the demand functions in this fashion it is possible to interpret pi as 

the reservation price of asset k, such that at prices greater than pi the investor is 

a seller of asset A;, and at prices less than pl a buyer (see Definition 1.1 regarding 

reservation prices). This demand function will be crucial in the model of Tauchen 

and Pitts (1983) to be examined below. The strength of the EE model is that the 

demand functions of the form in eq. (2T5) have their basis in portfolio optimization, 

and it is clear how the reservation prices in these demand functions depend on a 

number of factors including all other prices and all expected end of period values. 

Assumptions in the E E iriodel 

Up to this point, the only major assumption of EE is that of constant absolute risk 

aversion. Additionally, they will require that every investor has the same degree of 

risk aversion and the same assessment of the covariance matrix, which is sufficient 

to ensure that c in eq. (2.16) is equal across investors. From here they go on to 

relate the change in the market clearing price to the changes in the reservation 

prices of investors, and they identify trading volume as arising from each investor's 

rebalancing of his portfolio in the light of a change in the difference between the 
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reservation price and the market clearing price. 

However, in the development of their niodel to the point at which it yields 

a relationship between -price change variance and trading volume, EE require a 

further succession of unlikely assumptions. First, they require that at successive 

market clearing prices there will always be an equal number of buyers and sellers 

(p. 307). Second, they require that the summation term in pj in eq. (2.17) be of 

negligible size, which denies the realism of the portfolio theory approach (p. 308). 

Third, they impose; a specific functional form on the relationship between the size of 

the change in investors' reservation prices anid the extent to which investors disagree 

(p. 309; eq.-15). Consequently EE are able to show that the expected logarithm of 

the variance of price changes is a linear function of the logarithm of volume. 

The benefit of this very highly-structured model is that no specific distribution 

need be assumed for changes in the reservation prices. However, to estimate their 

model by maximum likelihood, EE "are required to specify a distribution for the 

change in market clearing price, and so this hard-won benefit is of little practical 

use. The estima:ted rhodel gave a concave relationship between Apt^ and Vt, rather 

than the convex relationship which was found by Clark (1973). However, it is 

quite possible, due to the large number of restrictions imposed prior to deriving 

a testable model, that EE's results are misspecified. It is also possible that EE's 

results and Clark's results are not directly comparable, since Clark's sample covered 

two four year periods while EE use data from one month. The kurtosis in the 

EE data aiverages 3.48, compared with Clark's measure of about 20. By the same 

calculations used for Clark's data, this equates to an arrival rate for news of 6.25, 

and a probability of a no-news day of 0.002—much more reasonable. 

One explanation for the' difference in the two sets of results is that the number 

of investors active in- the market has an impact upon price/volume dynamics, and 

that Clark's sample period was long enough to permit substantial variation in this 
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quantity. The size of the market is an important part of the Tauchen and Pitts 
(1983) model, to be examined in Section 2.3. Another explanation is that there is 
some low-frequency variation in the mean amount of news per day, which might 
only show up over periods longer than a month. This was one of the conclusions of 
Tauchen and Pitts (1983), and will be examined in more detail in Section 2.5. 

Despite the assumptions and the ambiguity of the empirical results, the EE model 

is important because i t pioneered the study of the price/volume relationship as the 

aggregation of individual investors' changing demands, and provided a rationale for 

the 'linear' demand functions without which aggregation is extremely complicated. 

2.3 The Tauchen and Pitts Model 

To recapitulate on the two models described above, Clark (1973) developed the idea 

that variations in the amount of news arrival would cause variation in the variance 

of daily price changes, and identified empirically that trading volume picked up 

some of these effects. Epps and Epps (1976) showed how linear demand functions 

might be used to examine the price/volume relationship as arising from successive 

portfolio rebalancings in a model of pseudo-homogeneous investors. Tauchen and 

Pitts (1983), hereafter TP, combined these two models with a striking simplification 

of the determination of reservation prices. From this they derive a specification 

for the joint distribution of daily price change variance and daily trading volume, 

parametized by the size of the market as measured by the number of active investors. 

2.3.1 Intra-Day Model 

The first stage in the development of the TP model is a framework that describes 

the evolution of the market clearing price and the generation of trading volume 

between successive market equilibria, i.e. on a 'per news-item' basis. TP start with 
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the demand function given in eq. (2.15). These demand functions are now expressed 
for investor j with regard to some particular speculative asset at the i''^ within-day 
equilibrium: 

qji = c(p],-pi), j = l,...,J (2.18) 

where, as in the EE model, the parameter c is assumed unchanging over time and 

across investors. For the moment, consider J to be fixed. 

To clear the market requires that q^i = 0, implying that the market-clearing 

price at equilibrium i is simply the mean of investors' reservation prices, and the 

market-clearing price change between i — 1 and i the mean of the change in investors' 

reservation prices is 

J 
Ap, = J-'J2^Ph- - (219) 

j=i 

The trading volume-generated by investor j between i—1 and z is simply j ^ j i —gj_t - i | 

(positive whether the investor increases or decreases his position), but since every 

investor's sale is another investor's purchase, the total trading volume between z — 1 

and i is half of the sum across investors, 

^̂  = 2 S " " ^ 2] I^Pii - ^P ' l ' (2.20) 

by eq., (2.18), where Api is itself a function of the reservation prices by eq. (2.19). 

Therefore, both Api and Vi are functions of the change in investors' reservation 

prices. The specification of the joint distribution of these changes across investors 

leads directly to the specification of the joint distribution of price changes and 

trading volume, per market equilibrium. This very general result has arisen from 

the linear demand functions in eq. (2.18) and the invariance of the scaling coefficient 
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c across investors at each point in time. 

TP propose a simple variance-components model for the change in investors' 

reservation prices: 

Ap*i = (/>i + Tpji where (|)̂  ~ i.i.n. (0, a j ) , tp^j - i.i.n. (0, a j ) . (2.21) 

Thus each investor's reservation price changes as the sum of a common component 

4>i and a unique component t p j i . The martingale condition is imposed on the model 

by requiring the expectations of both terms to be zero. 

Digression on Rational Expectations 

I t is interesting to note that in choosing the normal distribution for the shocks </> and 

-0, TP satisfy rational expectations in their model. The reasoning is straightforward. 

I f reservation prices are a random walk with normally-distributed increments, then 

each market-clearing price will also be a random walk with normally-distributed 

increments, because the demand functions are linear. Conversely, linear demand 

functions arise from the belief that the distribution of prices at the end of the 

period is jointly normal. Investors' expectations are consistent with the outcome of 

the model, and therefore they are rational. 

The normally-distributed increments to reservation prices may be justified by 

the Central Limit Theorem. From the reservation price expression eq. (2.17) the 

reservation price is a linear combination of expected prices, with the weights being 

determined by the covariance matrix. Therefore i f a piece of news causes each 

investor to alter each expectation by a random amount, the weighted sum of these 

adjustments will be asymptotically normally distributed, as long as the adjustments 

are drawn at random from a distribution with finite second moment. 

Returning to the model, the incorporation of the variance decomposition model, 
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eq. (2.21), into the price change and volume expressions, eq. (2.19) and eq. (2.20), 
gives 

Ap^ = +J-^'-iPi (2.22) 

1 ^ 

where 'i/'i =^ Ylji^ji, from eq. (2.19) and eq. (2.20). The absence of (pi in eq. (2.23) 

indicates that large price changes can occur without generating large volume. This is 

a consequence of the linear demand functions. Were all reservation prices to jump by 

the same amount following a piece of news, the market clearing price would also need 

to jump by that amount, inwhch case no investor would want to change his position 

and no volume would be generated. Clearly, trading volume is generated in this 

model as a consequence of disagreements between pseudo-homogeneous investors 

regarding the interpretation of commonly-available news. 

TP show that both distributions are asymptotically normal: 

Pr.{Ap, <• x} = $(x; 0, a^) (2.24) 

lim PT{v^ <x} = ^x; fly, al) (2.25) 
J - > C X 5 

where $(•) is the cumulative normal distribution, and 

= ^l+^-f (2.26) 

/2 
- - (^)\/^^ 

Additionally they note that Api and Vi are stochastically independent given J. Thus 

the distribution of price changes is determined for large J primarily by the variance 

of the common component 4>i, while the distribution of volume is dependent upon 
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the variance of the investor-specific components ipji. 

To summarize the intra-day model, the market is ini t ia l ly in equilibrium and 

then a piece of news arrives which causes investors to reassess their reservation 

prices. Following this reassessment, investors move to a new equilibrium in which 

trading volume is generated. This movement to a new equilibrium presupposes the 

existence of a Walrasian auctioneer or some similar market-clearing device. I f the 

number of investors is large and fixed, the distr ibution of the change in price and 

the distribution of the amount of trading volume generated are both normal, and 

stochastically independent. 

2.3.2 Inter-Day Model 

T P go on to incorporate this inter-equilibrium model wi th in a model similar to that 

of Clark (1973), i n which the number of distinct equilibria during a trading day is 

itself a random variable.^ Hence 

Ap^ = f^Aprt (2.29) 
1=1 

vt = J^Vit (2.30) 

where the t subscript has been appended to Api and Vi to indicate the day of the 

intra-day equilibria. The expression for Api given in eq. (2.29) is ais in Clark's 

model (given as eq. (2.2)). Additionally, however, the T P model also gives an 

explicit outcome for volume, eq. (2.30). The inter-day shocks Apit and vu have 

the distributions given in eq. (2.24) and eq. (2.25), respectively. The unconditional 

moments of Apt have been given previously in eq. (2.3)-eq. (2.7). Once again, by 

^Harris (1987) also derives a model of this kind for price changes, and he suggests using the 
number of transactions per day as a proxy for news, rather than trading volume. However, this 
modification is not appropriate when demand functions are strictly monotonic, since it is then 
almost always the case that all investors transact every period, even if it is by a very small amount. 
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conditioning on ritit can also be shown that 

£ [Vt] = /^y fXn, (2.31) 

V[vt] = iiy^al + alun, (2.32) 

C[{Aptf,Vti = alfi^al (2.33) 

Therefore T P implies at the very least that there wi l l be a positive relationship 

between squared price changes and daily trading volume whenever the amount of 

news per day is non-constant. 

However, T P do not solve eq. (2.29) and eq. (2.30) for any further implica­

tions of their model for the price/volume relationship. Instead, having estimated 

the parameters on the assumption that news has a log-normal distribution, they 

show by numerical integration that £ [l^Ptf Vt has the following properties: 

(i) £ [(Apt)2 I Vt = O] > 0; (ii) £ [{/^ptf \ Vt] is increasing in vf, ( i i i) £ [{AptY | Vt 

appears to asymptote to a ray through the origin (all inferred from Figure 1, p. 502). 

The next section generalizes and extends these results. 

2.4 The Implied Price-Volume Relationship 

Tauchen and Pit ts fa i l to extract the structure of the price-volume relationship from 

their inter-day model, beyond identifying that there w i l l be a positive covariance 

between squared price changes and volume and considering one special case, men­

tioned above. In this section the inter-day model wi l l be restated for generality and 

convenience as 

S = xi+X2 + --- + xr^ (2.34) 

T = 2/1 + y2 + • • • + yN (2.35) 
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where Xj i . i .d . (0, a^) wi th support on the real line, yi i . i .d . (/x, r^ ) wi th support on 
the non-negative integers, where in. particular P r f y , = 0} > 0, and N is a random 
quantity wi th support on the non-negative integers. Thus i t is not required that 
Xi or Hi be normal, merely that they have the appropriate means and finite second 
moments, and the. specification of is unstated (although i t is likely to be of 
Poisson-type). Two sets of results w i l l be derived. The first concerns the behaviour 
of £ [S'^ T , which corresponds to £ [ (Apj )^ Vt in the Tauchen and Pitts inter-day 
model.^ 

Propos i t ion 2.1 Given the relations eq. (2.34) o,nd eq. (2.35) 

£[S^\T]^a^£[N \T], (2.36) 

and £ \N T ] has the following properties: 

1. 5 I T = O] > 0, 

2. C [£ [N I T],T]= y,V[N]> 0, hut 

3. £ N T ] is not necessarily increasing in T. 

P r o o f : The first part may be shown by conditioning the expectation of 5^ on N 

and T\ 

£ I T ] = £[£ [52 I A ,̂ T ] I T" 

= £[Na'^\T 

= a'^£[N\T]. (2.37) 

In other words, the properties of ̂  5^ T are directly proportional to the properties 

of ^ [ N I T . 

H would like to thank Dr. Matthew Penrose and Dr. Peter Craig for their suggestions regarding 
the stochastic process described in.eq. (2.34) and eq. (2.35). 
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A heuristic explanation wi l l suffice for (1), although a more formal argument can 
be found in Section 5.5. For T = 0 i t is possible that = 0, or that N > 0 and 
each yi = 0. Therefore the probability-weighted (i.e. expected) value of A'̂  given 
that T = 0 must be greater than zero as long as Pr{yi = 0} > 0, which is assumed. 

To prove part (2), consider the conditional covariance identity: 

C [N, T]=£[C [N, T \ N]] + C [£ [N \ N ] , 8 [T \ N ] ] . (2.38) 

Hence by conditioning on N , C[N,T] = 0 -|- nV[N]. However, the same result 

may be found by conditioning on T , which gives C [N, T] = 0 + C [£ [N \ T], T . 

Equating these two proves part (2), and the covariance must be positive since yi 

has support on the non-negative integers, which implies jj, > 0 providing only that 

P r { y , > 0} > 0. 

Part (3) may be proved by example. Consider the case where yi can take only 

two values;, 1 and 10 wi th equal probability. This choice for y^ violates the condition 

P r { y i = 0} > 0 in the interests of simplicity, but i t should be clear that the result also 

holds for the case where this probability is positive but vanishingly small. Clearly, 

£ N T = 9 = 9 , since the only possible outcome giving T = 9 is yi = y2 = • • • — 

yg = 1. Bu t for T = 10 the expected value for N T is only a l i t t le greater than 

1, since the outcome yi = 10 is far more likely than the alternative yi = y2 — • • • = 

j / i o = 1. This could be shown formally using Bayes Theorem. I 

The interpretation of Proposition 2.1 is that ^ {AptY Vt is generally increasing 

in Vt but not necessarily increasing everywhere. In particular, the example in the 

proof of point (3) suggests that when Vt is very small, the fact that i t is discrete can 

cause 'lumpiness' in E [Apt)^ Vt . However, i f Vt tends to be large, this problem 

does not arise. This asymptotic property is formalized in the following proposition.^ 

^Actually, this Proposition is technically a Conjecture, the conjecture appearing as eq. (2.40). 
This statement may be true only for a certain class of compound processes, i.e. only for N and yi 
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Proposit iori 2.2 In the limit-as t oo, (// S'^)/(a^T) T = t has a distribution. 

P r o o f : The conditions under which the Central L imi t Theorem may be applied 

to the sum of the terms Xi, ... , x^ are satisfied (notably Xi (z = 1 , . . . , A'̂ ) indepen­

dently and identically distributed wi th finite second moment). The Central L imi t 

Theorem states that S N = n w i l l have an asymptotically normal distribution 

w i t h mean 0 and variance a'^n. Hence in the l imi t as n —)• oo, {S'^)/{a'^N) N = n 

has a Xi distr ibution, by definition. 

Frorn eq. (2.35), note that . 

\im UT/N) -N = n] = n, (2.39) 
n ^ o o 

by the strong law of large numbers. From this I conjecture. 

lim f{N) N = n ^ \imf{T/n) T = t, (2.40) 
n-^oo t—>oo 

where / is any continuous function. In particular, i f f{N) (5^)/(cr^iV), then 

T = t. (2.41) N = n <^=^ hm 
t->oo a'^T 

Since the first of these has been shown to have a xl distribution, so the second must 

also have a xl distr ibution, as was to be shown. I 

The following two corollaries follow directly from Propositions 2.1 and 2.2. 

taking specific types of distribution. In the trivial case where Pr{j/j = 1} —> 1 it is clearly true, 
since then T = N. More work is required to establish its generality. The simplest non-trivial case 
is probably the Poisson/Poisson. In this case it can be shown that £ [N \ T = t] = fi't+i/n'i, where 
/ij is the moment of order t about zero of a Foisson distribution with mean A e"*", where X = S[N]. 
The analysis of this ratio requires the derivation of a recursive expression for the moments about 
zero of a Poisson distribution. Currently the only known recursion concerns the moments about 
the mean (see, e.g., Johnson.and Kotz, 1969, p. 91). 



CHAPTER 2. THE ROLE OF NEWS 45 

C o r o l l a r y 2.3 Asymptotically in T, 

a2 
r r S 2 T l . = ~T ' (2.42) 

V I T ] , = 2 — . , T ^ • (2.43) 

P r o o f : This corollary follows directly f rom the property of the family of distri­

butions, that the expectation is the number of degrees of freedom, and the variance 

twice the nurnber of degrees of freedom. I 

CoTollairy 2A £ [S'^- \T\is nonlinear in T. 

P r o o f : Proposition 2.1 showed that £ S"^ T has a positive intercept. How­

ever, Proposition 2.2.implies that £ [5^ T ] asymptotes along a ray through the 

origin. The simultaneous satisfaction of these two conditions implies that £ T 

is nonlinear i n T] at the very least i t is convex. I 

Therefore the findings of T P as summarized above and displayed in their Figure 1 

are (wi th the exception, of the mohotonic increasing property) perfectly general, 

and do not depend upon their specific choice of the normal distribution for the 

price change and trading volume increments and the log-normal distribution for 

the amount of news per day, nor upon their chosen parameter values. In addition, 

the gradient of the ray along which £ [AptY Vt asymtotes is found as a^/n, and 

V (Api )^ Vt is shown to be asymptotically quadratic iii Vt-

These results allow, the inter-day T P model to be statistically tested (asymptot­

ical ly) , rather than estimated in conjuction wi th further assumptions. When TP 

at tempt to. estimate their model by .maximum likelihood using the structural re­

lations eq. (2.29) and eq. (2.30) they must assume not only that the news-arrival 

process is tinae-invariant but also a specific form for the distribution of the amount 

of news per day. Following their estimations, T P find misspecification in the form of 



CHAPTERS. THE ROLE OF NEWS . 46 

residual autocorrelation in both prices and trading volume. They attribute this to 
"nondeterministic low-frequency noise in both the number of traders and the rate 
at which new information flows to the market" (p. 500). Section 2.5 critically ex­
amines the T P model in the light of this misspecification, while Section 2.6 presents 
evidence'which suggests that, as they conjectured, the news-arrival process is not 
time-invariant. 

2.5 A Gritieal Evaluation of the TP Model 

The equivocable results f rom estimation suggest that the T P model has some short­

comings as a specification for the relationship between price change and trading 

volume over time. These w i l l be examined in this section. 

P a r a m e t e r Cons tancy 

In the T P intra-day model pseudo-homogeneous investors are permitted to disagree 

about their reservation prices but not about the coeflficient c in eq. (2.15). This 

permits disagreement between investors about expected prices but not about the 

terms in the covariance matrix. 

The terrn ,c comprises three parts: the appropriate diagonal entry of the inverse 

of the covariance matrix, {S~^)kk', the risk-free interest rate, i; and the coefficient 

of risk-aversion, /3. . While none of these is strictly constant through time, i t can 

be argued that both i and P are at least stationary: neither the interest rate nor 

risk-aversion are likely to be moving systematically in one direction. Therefore 

comparisons spanning a long period of time wi l l probably be over different values of 

P and i, but not widely different. Parameter constancy is therefore a valid first-order 

approximation. 

For (5""^)^*:, however,, the situation is different. While i t may be true that on 
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. a day-to-day basis the mean of the price change distribution is not distinguishable 
f r o m zero, over long periods i t is. quite clear that speculative prices trend upwards, 
and this would- be expected for a risky asset in a market of risk-averse investors. 
U t i l i t y is defined on the value of the portfolio, and wi th a positive trend in prices 
this value miist be expected to rise over long periods of time. Therefore both the 
vector of expected prices A^ and the covariance matr ix S w i l l have a time dimension. 
Coniparisons spanning a long period of time w i l l be over systematically different 
values for ,X and S, and so- constancy in these parameters is not valid even as a 
first-order approximatioh.' Furthermore-, since the weights on the expected prices in 
the reservation price expression eq. (2.17) are derived f rom the covariance matrix, 
there might also be a time element in the disturbances •0 and (f). 

Therefore, even i f the T P intra-day model is taken to be an excellent description 

of the behaviour of the market at a point in time, i t w i l l not function as part of a 

time-series description of the market because i t does not account for these systematic 

changes in c. 

T h e Var iance Deeomposit ion Model 

The second problem relates to the choice of jo in t distribution for the change in 

reservation prices. I f reservation prices are not set w i th some reference to the market 

clejaring price, then the dispersion of reservation prices around the market-clearing 

price tends to increase-without l imi t for a non-trivial jo in t distribution of reservation 

price changes. This is exactly what happens in the T P model given in eq. (2.21). 

Propos i t ion 2.5- 7/mwestors' reservation prices evolve according to the process in 

e.q. (2.21), then the expected-second moment of the distribution of reservation prices 

around the market-clearing price, increases linearly in the number of items of news. 
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P r o o f : Consider a situation in which all reservation prices are the same—say 

unity for simplicity. The market-clearing price wi l l also be unity, since the T P 

model implies that the market-clearing price is the mean of the reservation prices. 

Af te r r pieces of news, the dispersion of reservation prices about the market-clearing 

price can be measured by the expected second moment: 

P: = { 1 } 

£ P: = { 1 } (2.44) 

where p^^t+r the reservation price of investor j at the r*'' equilibrium after t (the 

k subscript denoting the asset now being taken as given), and pt+r is the market-

clearing price at the same time, which is equal to the mean reservation price at that 

t ime. Taking the first term in eq. (2.44), 

J-'£ i,t+T P: = { 1 } P: = { 1 } 

^ [Pli^r' I Pit = 1] 

(i + E[=i(<A. + V ' , . ) f 

(1 + r ( a j + (2.45) 



CHAPTER 2. THE ROLE OF NEWS 49 

where the distributions of (f)i and ipji were given in eq. (2.21). Taking the second 

term in eq. (2.44), 

£ [pt+r'\ p; = {I}] = r^£ 

= J-'£ 

= J-'E 

(^(i + ELi0O + E;=iEI=i^.i)'' 

+ r'£ 
l + ral + J ' r a j . (2.46) 

Substituting eq. (2.45) and eq. (2.46) into eq. (2.44) gives the result 

£ P: = { 1 } 
j - i 

J T a. 

which is linear in r , the number of days forward f rom t. 

(2.47) 

I 

The implication of Proposition 2.5 is that over time investors wi l l become more 

and more extreme in their views, and they wi l l hold bigger and bigger positions, both 

positive and negative, without l imi t . This effect does not show up in the variance 

of price changes precisely because the market-clearing price is the mean. Were the 

market-clearing price to be some measure on the reservation prices other than the 

mean this time-increasing dispersion would be reflected in a time-increasing price 

change variance. 

For these two reasons, the intra-day T P model does not seem at all satisfactory as 

a time-series description of the way in which market-clearing prices respond to news. 

The role of the intra-day model is to establish functional dependencies between the 

moments of price change and volume, in relation to the number of active investors, 

J. Therefore this parameterization must be suspect. However, the failure of the 

intra-day model does not rule out the inter-day model as a description of the joint 
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distr ibution of price change and volume. I t simply relieves the inter-day model of a 
certain amount of parameter inter-dependency. 

2.6 The News Arrival Process 

Suppose then that we jo in the T P model halfway through, at the stage where they 

propose the inter-day model given in eq. (2.29) and eq. (2.30). In other words 

we simply assert that this is an empirical specification which may explain aspects 

of the price/volume relationship, but without the functional inter-dependency of 

the moments of the individual shock terms {Apu and vu) caused by the explicit 

consideration of the number of traders, as was described in eq. (2.26)-eq. (2.28). 

The crucial determinant of the time-series properties of price change and trading 

volume is now the news arrival process (n^). 

I n the early work on news arrival, the amount of news per day was taken to be 

independently and identically distributed (Osborne, 1959; Mandelbrot and Taylor, 

1967; Clark, 1973), and this was the model adopted by TP. They considered two 

distributions for the amount of news per day: the Poisson and the lognormal (where, 

notionally, the lognormal was used to approximate a discrete distribution). The 

Poisson has the superior claim on theoretical grounds, being the outcome of events 

that happen independently in time.^ However, the lognormal fitted much better and 

was preferred by T P for this reason and for consistency wi th Clark (1973). In fact 

the lognormal is almost certain to fit better, since i t has an extra parameter which 

permits the variance to be determined independently of the expectation. The size 

of the improvement could be explained as misspecification, perhaps in presuming 

parameter constancy over the period. 

®If arrivals follow a Poisson distribution, the time between arrivals is exponentially distributed 
(and vice versa). The exponential has the 'memoryless' property that the probability distribution 
is independent of how much waiting time has already elapsed (see, e.g., Ross, 1988, pp. 174-5). 
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A R C H Models 

The T P model was derived just prior to the publication of Engle (1982), who de­

scribed a new type of stochastic process for univariate time-series, that of Auto-

Regressive Conditional Heteroskedasticity (ARCH). In a univariate ARCH process 

the variance of the price change distribution at time t is determined by lagged values 

of the squared price changes. Consequently, A R C H models display volatili ty persis-

tance since one large price change can feed into the variance equation and generate a 

larger variance for the next few periods. This mixing of distributions wi th differing 

variances generates leptokursis in exactly the manner described by Clark (1973) and 

derived in eq. (2.7). Various generalizations of A R C H processes (particularly the 

G A R C H process of Bollerslev, 1986, 1987) are now ubiquitous in finance (see, e.g., 

Bollerslev et a/., 1992; Bera and Higgins, 1993; K i m and Kon, 1994). 

One interpretation of A R C H effects in speculative prices is that the distribution 

of the quantity of news is not independently and identically distributed, but posi­

tively autocorrelated (Diebold, 1986; Stock, 1988). This interpretation harks back to 

the clustering of volatilities observed by Fama (1965). There are, however, other ex­

planations which are not news-related. Bera and Higgins (1993) suggest (i) random 

coefficients and/or (i i) non-linear autocorrelation, in the return process. Alterna­

tively, heterogeneous investors models might generate A R C H effects: for example, 

noise traders are only sporadically exploited by informed traders. 

Heat Waves and Meteor Showers 

The news interpretation of A R C H effects in speculative prices has been investigated 

by Engle, I to and L i n (Engle et ai, 1990; I to et al, 1992). Engle et al. (1990) catego­

rize volat i l i ty persistance as being either country-specific (the so-called 'heat wave' 

model) or time-specific (the 'meteor shower'). Since news is a global phenomenon, 

volat i l i ty generated by news should follow the meteor-shower model and transmit 
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f rom one trading centre to another. But i f volat i l i ty persistance is a consequence of 
intra-market dynamics such as noise trading then volati l i ty w i l l not transmit across 
market boundaries. Engle et al. also note an alternative cause of meteor-shower 
effects: stochastic policy coordination. For example, a change in US domestic mon­
etary policy might affect the US market directly, but might also increase uncertainty 
about monetary policy in Japan. Engle et al. find that the data rejects the heat­
wave model, but since their sample covered the period October 1985 to September 
1986, a time of international monetary policy coordination, they were unable to 
distinguish between the news and policy coordination interpretations. 

I to et al, (1992) investigate the policy coordination interpretation directly, by 

using foreign exchange data f rom three different periods. The first is prior to the 

l i f t i n g of capital controls by Japan on 1 December 1980. The second and th i rd are 

either side of the Plaza Accord on 22 September 1985, which heralded the period 

of closer monetary policy coordination. They find that the heat-wave model is best 

in the first period, and the meteor-shower in the second and thi rd . This rejects 

the policy coordination interpretation, since the lack of policy coordination prior 

to the Plaza agreement should have ruled out the meteor-shower.'' The l i f t ing of 

capital controls in Japan had the eflFect of integrating the Japanese markets into the 

world market, and its attendant news-process. However, I to et al. also find that a 

certain amount of the volat i l i ty persistance is geographic, and does not transmit. 

Hence although their results support the news interpretation, they do not rule out 

market-microstructure effects. 

Volume and R e t u r n Var iance 

Further evidence for positive autocorrelation in the quantity of news comes from 

Lamoureux and Lastrapes (1990). Lamoureux and Lastrapes model volati l i ty per-

^Note, however, the observation of Professor O'Brien that this interpretation is conditional upon 
the Plaza Agreement being perceived by investors at the time as substantive, which is questionable. 
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sistence in stock returns as a simple GARCH process, and then investigate the effect 
of introducing trading volume linearly as an independent variable in the variance 
equation. Wi thou t volume there is strong evidence of A R C H effects. W i t h volume 
included the A R C H effects are much weaker. However, there is a problem wi th this 
analysis, as the authors acknowledge. I f both price change and volume are driven 
by the same stochastic process (e.g. news arrival) then their simultaneous inclusion 
w i l l cause bias in the estimators (the problem of 'errors in variables'). The usual 
approach to this problem is to find a proxy for one of the variables. However, they 
find the use of Vt-i as a proxy for Vt is not successful. 

V o l u m e and News 

Mitchel l and Mulheriri (1994) study the cross-sectional relationship between a proxy 

for news and trading volume and absolute price change. Their proxy was the number 

of items per day appearing on the Dow Jones newswire service and in the Wall Street 

Journal, following the earlier work of Thompson et al. (1987). Not surprisingly, they 

find quarterly seasonality relating to financial reporting, and intra-weekly seasonality 

w i t h a build up of news through the week to Thursday, and then a fall-off on Friday. 

The correlation between news and trading volume is strong (0.37), but that between 

news and absolute returns much less so (0.06 for the index, and 0.11 for summed 

absolute returns of individual stocks). Mitchell and Mulherin also examine the 

importance of news, by counting the number of category codes assigned to each 

story (irnportance here being measured by width of impact). They find l i t t le change 

in their results, and note that the correlation between the quantity of news and the 

importance of news is high (0.88). In a separate but related study, Berry and Howe 

(1994) find evidence of intra-day relation between trading volume and information. 

Unfortunately, none of these papers documents the time-series properties of their 

news proxies. Recently, however, Moschetti (1996) has performed a Vector Autore-
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gression (VAR) analysis of the relation between information and trading volume 
on a daily basis. Moschetti's first finding is that "informational aggregates have 
quite a long influence on the market" (Moschetti, 1996, p. 17). The lag lengths for 
the different types of information vary between two and four days, demonstrating a 
time-series element in information which is reflected in trading volumes. 

Moschetti finds a symmetric causal (in the sense of Granger, 1969) relation be­

tween information and volume, i.e. there is evidence of trading volume 'causing' 

information. The main explanation for this is feedback f rom reports of the perfor­

mance of the market the previous day. Considering the long lag length and causality 

together, Moschetti (1996) concludes " . . . the market does not entirely process all 

public information immediately . . . This could provide evidence for theories ac­

cording to which i t takes a certain period to traders [sic] to elaborate strategies 

based on public information" (Moschetti, 1996, p. 19). This interesting and slightly 

heterodox conclusion (see, e.g. Patel and Wolfson, 1984) is in accordance wi th the 

model of news assimilation proposed in Chapter 3. 

Impl icat ions for the T P Model 

The tentative conclusion f rom these different strands is that the amount of news 

per day is not itidependently and identically distributed, but rather shows positive 

autocorrelation. However, there are alternative explanations which mean that i t is 

unlikely that allowing for news wi l l completely remove the volat i l i ty clustering in 

daily returns. 

Bearing this point in mind, i t is interesting to note that the properties of the TP 

model derived in Section 2.4 are quite general of the news^arrival process providing 

only that the. quantity of news per day be independently and identically distributed, 

and the asymptotic results do not require even this. Proposition 2.2 in particular 

may be used to formulate a statistical test of the joint hypothesis that the T P inter-
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day model is appropriate and its parameters constant, despite the possibility of a 
\ 

time-varying news arrival rate. This test w i l l be performed as part of the empirical 

analysis of Chapter 5. 

2.7 Summary and Conclusion 

This Chapter has examined in detail the Tauchen and Pitts (1983) model, which 

relates price change and trading volume via the news arrival process. In its com­

plete formulation this model can also incorporate the size of the market to introduce 

functional dependencies between the moments of the price change and trading vol­

ume distributions. However, problems wi th the requirement for parameter constancy 

and w i t h the implications of the model for updating beliefs (reservation prices) make 

this cornplete formulation untenable. This leaves the pair of relations eq. (2.29) and 

eq. (2.30) as a possible descriptive model of the price/volume relationship. 

To estimate this pair of relations requires the specification of a process for news 

arrival. There is. strong but not conclusive evidence (e.g. A R C H effects in returns) 

that this process is not independently and identically distributed through time but 

displays positive autocorrelation, at least when mirrored in the time-series behaviour 

of price changes and trading volume. This rnakes the descriptive model extremely 

hard to estimate. However, Proposition 2.2 shows that the descriptive model can 

be tested .without being estimated, even in the presence of an autocorrelated news 

arrival process. This test wi l l be performed in Chapter 5. A clear failure to reject 

the model would suggest that the news process is indeed the dominant influence on 

the price/volume relationship. A more equivocable result would indicate that other 

factors, including noise trading and other aspects of market-microstructure, might 

have an important role to play. 



Chapter 3 

What Is News? 

This chapter essays a short formal definition of news and its related concepts. The 

need for this definition is an imprecise understanding of exactly what news is. The 

objective is to tie in , so far as i t is possible, our operational understanding of news 

w i t h a formal treatment of beliefs about the prevailing state of nature. The result 

is a model of a decision-making in financial markets (characterized by non-trivial 

information-processing costs) in which the quantity of news per day should be prox-

ied by the number of transactions, rather than the number of news 'bits'. 

Beliefs 

Suppose that i t is possible to conceive of the present and future as an exclusive and 

exhaustive collection of states of nature, S in total , indexed by s = 1 , . . . ,S. For 

simplicity suppose also that all investors agree on what these states are, but that 

they may disagree on how likely they are. The source of disagreement is assumed to 

be the information stock available to each investor (although i t could equally well 

be each investor's abiUty to analyse a common information stock). Denoting the 

information stock of investor i at t ime t as Qu, the probability attached by investor 

i at time t to state s is Pr{s ^u}- Finally suppose that all investors are rational. 

56 
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in the sense that their beliefs, as described by these probabilities, are coherent (i.e. 
they satisfy the standard properties of probabilities and may be updated according 
to Bayes Theorem, see, e.g., Lindley, 1985). 

According to this framework, an investor's beliefs at any time are entirely en­

capsulated by his vector of probabilities. This statement is not uncontentious, since 

many people would assert that probabilities themselves can be held wi th various 

degrees of belief: i.e. there exists a well-defined notion of beliefs about beliefs. So, 

for example, Fellner notes "A good many reasonable decision makers—though by no 

means all—seem to act differently depending on whether they act under the influ­

ence of shaky degrees of belief, i.e., of probabilities the numerical values of which are 

highly unstable in their minds, or act under the guidance of f i rm and stable degrees 

of belief." (Fellner, 1965, p. 4). 

Bayesians assert that the notion of 'beliefs about beliefs' is misguided in the con­

text of a single-decision problem. This may be illustrated by an example. Suppose 

I . th ink that the probability of being run over as I cross the road is either 0.01 or 

0.10, and in the former case I would cross the road, but in the latter I would regard 

this as too risky. The question is, under what conditions would i t be correct for 

me to believe that I can distinguish these two cases, and that this distinction was 

meaningful in my attempt to cross the road. 

The obvious answer to the first part is that the distinction is the result of some 

process which I only partially understand. So, for example, there might be a set of 

traffic lights further up the road which are controlling the flow of traflSc, and thus 

the probabili ty of me being knocked over. I cannot see the traffic lights, hence both 

outcomes are possible: I need to attach probabilities to each outcome, red or green. 

Say the probabilities are 0.5 each for red and green. But then I find directly that the 

probabili ty of being run over is not either 0.01 or 0.10, but is in fact 0.055. Therefore 

although I can distinguish between the two cases in this context, the distinction is 
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not meaningful in my decision to cross the road, except insofar as i t assists me in 
determining the probabili ty of being run over. 

This is clearly a rejection of the separation of risk and uncertainty (Knight, 1920). 

According to Knight 'risk' is a probability vector, while 'uncertainty' is the degree 

of belief attached to the probability vector. Bayesians reject this distinction, using 

probabili ty to represent subjective uncertainty, however i t arises (see, e.g., Cyert and 

DeGroot, 1987). There is a case, however, when the complete structure of 'beliefs 

about beliefs' should be preserved rather than be collapsed into a single probability 

vector: learning. Each probabili ty vector represents an alternative scenario, and by 

repeated experience I can improve my understanding of the probability attached to 

each scenario. Thus i f I was only ever to cross the road once, I would not need 

anything more than the 'collapsed' probability vector in order to make my decision. 

However, i f I am to cross the road repeatedly I can use my experience, up unt i l the 

moment that I am terminally run over, to adapt the probabilities attached to the 

traffic lights being red or green, which represent alternative scenarios. Consequently 

the complete belief structure is necessary for learning, but at any decision point only 

the collapsed probabili ty vector is required. 

A Definit ion of News 

Having clarified the sufficiency of a single probability vector for representing be­

liefs, I turn now to the definition of news: in particular, under what conditions is 

information bit u 'news' to investor i at time t, presuming that w ^ O^j? 

Defini t ion 3.1 Information bit u is news to investor i at time t if and only if 

Pr{s u, Qit} 7̂  P r { s ^u} for some s. 

To take the negation of this definition, u is not news to investor i at time t i f i t 

fails to alter his beliefs. The following proposition is a direct consequence of the 

coherence of each investor's beliefs. 
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Propos i t ion 3.1 Information bit UJ is not news to investor i at time t if and only 
if it has an equal probability of occuring in all states of nature. 

P r o o f : The proposition follows directly f rom Bayes Theorem, which in this context 

states that 

p , o x Pr{a>|s, » i . } P r { s | " i . } , , , , 

For P r{s u), Q^} = P r{ s Qu} to hold across all s, i t is necessary and sufficient 

that Pr{a; s, Qu} = Pr{a; fiji} for all s, i.e. u) has an equal probability of occuring 

in any state of nature. I 

This proposition gives a simple way of determining whether or not any informa­

tion bi t is news: we simply ask "Was this information equally likely to have arisen 

in any state of nature?" I f the answer is 'Yes', then the information b i t is not news 

and as such is irrelevant to the decision process since i t wi l l not cause an optimal 

plan to be altered. Note that the arrival of a piece of news is a necessary but not 

sufficient for the alteration of such a plan. 

I t is interesting to digress for a moment on the relationship between the number 

of states of nature on the one hand and the definition of news on the other. I n a world 

of unlimited information processing resources, in which i t is possible to envisage a 

huge number of subtly-differentiated states of nature, almost all information bits 

wi l l be news. Somewhere in the range of possible states of nature there wi l l be 

found one (or more than one) which impinges upon the information bit we observe. 

Another way of expressing this is to say that, were we capable of the analysis, we 

would be able to inter-relate everything. 

There are two ways of escaping f rom this conundrum. One is to assert that such 

a level of sophistication w i l l always be beyond us. In this case, the l imited number of 

states of nature that we can envisage force us to make a distinction between relevant 
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and irrelevant information, and this engenders a distinction between information and 
news. The other, which I favour, is to switch attention away from news per se, to 
consider the magnitude of news. 

Magnitude of News 

Having defined news in such a way that we can say whether or not a bit of infor­

mation is news to an agent at a certain time, I turn now to the question of how 

'big ' is the news? I t is important at this point to distinguish between the news and 

its impact. The magnitude of news per se is not the same thing as the impact the 

news might have on an optimal plan, although the two might be closely related. In 

fact, i t is apparent f rom some simple examples that we tend to consider 'big ' news 

not f rom our own needs but according to some other criterion. So, for example, the 

sinking of the Ti tanic was a big piece of news, but its impact on many people, in 

terms of the alterations they made in their optimal plans, was negligible. Likewise 

the Moon Landing, and perhaps the fal l of the Berlin Wall . In these cases i t is clear 

that the probabilities on various states of nature have changed dramatically, but 

that our optimal plan remains unchanged. This must be because the pay-oflfs in the 

states of nature in which the probabilities have changed are roughly the same. 

Therefore, i t is in keeping wi th the popular use of the term 'big ' as applied 

to news to relate the magnitude of news to the amount by which the vector of 

probabilities which describe beliefs has altered. The metric I favour is the sum of 

the number of states of nature in which the probabilities change. 

Definit ion 3.2 (Magnitude of News) The magnitude of the news generated by 

information bit LO for investor i at time t is 

mit{uj)numher { s : P r{s w, fijj} / P r{s ^u}} • (3.2) 
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As in Proposition 3.1, this may be interpreted, using Bayes Theorem, as the number 
of states of nature i n which the probability of observing UJ is different f rom the 
unconditional probabili ty of observing UJ. By this metric, the magnitude of a piece 
of news is equated wi th its breadth—news of large magnitude impacts upon the 
probabilities of a large number of states of nature. 

Alternative definitions of magnitude might use the sum of the absolute values 

of the probabili ty differences or the log-ratios. They are not directly related to 

breadth. Furthermore, these alternatives result i n an ordinal measure wi th l i t t le 

intui t ive appeal. A magnitude such as mit{uj) — 3 has a clear interpretation i f the 

number of states of nature, 5, is known. Were the same number to represent the 

sum of the absolute differences, or the sum of the absolute log-ratios, the meaning 

is far f rom clear unless in comparison wi th another. But the conclusive reason for 

favouring mniuj) is that i t does not require explicit updating of the probabilities. 

Using the Bayesian formulation, i t is necessary only to know whether or not each 

state has an impact upon the probability of the news bit—the size of the impact (i.e. 

the updating of the probability of the state) is not needed to determine magnitude. 

This w i l l be an important consideration below, in the discussion of the quantity of 

news per period. 

I n the case discussed in the previous subsection, where S is very large and almost 

all information bits constitute news, the magnitude of news by this definition can be 

used to establish a hierarchy of information sources. In this way our failure to dis­

tinguish news f rom information is unimportant, because we can instead distinguish 

large-magnitude news f rom small-magnitude news. 

Q u a n t i t y of New^s 

So far, I have formalized two familiar concepts—the notion of news itself and its 

magnitude. I now turn to a more difficult concept: the quantity of news that arrives 
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during a given period. As seen in the previous chapter, this is an important quantity 
in the formulation of price/volume models in speculative markets. 

In one sense the quantity of news is a simple concept. Consider, for example, 

a typical day in a speculative market, where stories are posted as they break, on 

a Reuters terminal. I t should be simple enough to distinguish those information 

bits which are news (e.g., ignore the cricket scores, usually), and then add them up 

over the day to find the quantity of news in that day. This is in fact the standard 

procedure for empirical studies regarding news (see Section 2.6). Unfortunately, 

however, this method tends to double-count small news bits whenever there is a 

cost associated wi th analysing the news for its implications for the probabilities, or 

in implementing the updated probabilities in determining the optimal plan. 

Consider an investor who has just received some information. He must choose 

between the costly process of updating his beliefs and his optimal plan, or saving 

the information unt i l the arrival of the next piece of information and then making 

the same choice again. This is an optimal stopping problem, and these are, in gen­

eral, quite hard to solve: ̂  To make the analysis simpler, consider the case where 

inst i tut ional requirements wi l l force the probabilities to be updated after two pieces 

of information have arrived, but the investor has the option of updating the proba­

bilities after the first piece as well, should he so choose. In this case he has a straight 

trade-off between the cost of updating, which is known, and the sub-optimality of 

the plan up unt i l the time at which the second piece of information arrives, which 

is uncertain. The expected sub-optimality given his current information set wi l l be 

increasing in the magnitude of the information which has just arrived (which, for the 

purposes of this example can be ascertained at zero cost), in which case his decision 

w i l l be determined according to some critical magnitude. 

Generalizing this argument to the optimal stopping problem, the investor wi l l 

^ A similar type of problem is the concern of Chapters 8 and 9. 
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update his probabilities when the magnitude of the set of information which he 
has saved (but not analysed beyond magnitude) since his last update exceeds some 
crit ical value. This critical value wi l l , in general, depend upon his information set 
at his last update. The time at which the investor updates his probabilities wi l l be 
referred to as an 'update point' . A simple tally of the number of information arrivals 
between update points cannot account for the way in which earlier information can 
be competely or partially negated by later information—hence the possibility of 
double-counting. For this reason a much better measure of the quantity of news 
when several information bits are considered together is the joint magnitude. This 
gives rise to the following definition. 

Defini t ion 3.3 (Quant i ty of News per Investor) The quantity of news between 

update points t — -l and t, during which period the k information bits W i , . . . , are 

made known to investor i is 

k 

qit{uJi,... ,ujk) = m,^t-\{\j^j)- (3.3) 

The effect of this definition is to highlight the importance of the update points 

in determining the quantity of news. The reason that these points do not occur 

concurrently wi th the arrival of news is the cost of the updating process, and the 

availability of magnitude as a cheap indicator of the impact of news on probabilities 

and the optimal plan. 

N e w s in Speculative Markets 

Up to this point the dicussion has been entirely subjective. Different investors wi l l 

treat the same information in different ways, depending upon their current informa­

t ion stock, the costs they face in updating their probabilites and their optimal plans, 

and the trade-off they perceive between these costs and the loss of expected ut i l i ty 
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f rom operating w i t h a sub-optimal plan. There are obvious problems in aggregating 
over these subjective and unobservable issues to derive a quantity of news which is 
applicable to the whole market. There is, however, one measure which is observable 
and which fulf i l ls precisely the requirements of models such as that of Tauchen and 
Pi t t s (1983). 

Def in i t ion 3.4 (Quant i ty of news per day) The quantity of news per day in a 

speculative market is the number of investors' update points which occur during the 

day. 

The first advantage of this definition is that i t related to a process which is at 

least part ly measurable. For example, in a speculative market the number of calls 

to stockbrokers would provide a useful lower bound on updates, since an update is 

a necessary (but not sufficient) condition for considering the purchase or sale of an 

asset. Second, in the extreme case where there are no costs in updating probabilities 

i t collapses to the number of news bits, which is the traditional definition. Thi rd , 

and most important, i t generalizes to the case where there are updating costs, and 

explains the way in which these costs can aff"ect the appearance of news in financial 

aggregates like price changes and trading volume—a rise in costs would cause a fall 

in the amount of news. Fourth, i t relates the quantity of news per day to both the 

flow of information to the market and the magnitude of that information. Taking 

the crit ical magnitude at which investors update as fixed, this threshold wi l l tend to 

be breached sooner i f either the rate of information flow rises or the mean magnitude 

of an information bit rises. This wi l l lead to more frequent updates and a higher 

density of update points wi th in a given, period, i.e. a ̂ greater quantity of news. 

There is one implication of this definition that needs further consideration, which 

is that i t irelates the amount of news to the number of investors in the market. 

I n some respects this is a good thing, since increases in trading volume in newly 
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established financial markets are often related to the entry of new investors. The 
empirical analysis of Chapter 5 gives a good example of this, since the data covers a 
market f rom inception. The trading volume shows an ini t ia l period of strong growth, 
which then flattens out gradually. This would be an implication of the Tauchen and 
Pi t ts (1983) model for trading volume, eq. (2.30), wi th Definition 3.4. However, 
the variance of price changes is stable over the same period, which contradicts the 
model for price change, eq. (2.29), i f the same definition of news is used. Therefore 
the appropriate measure in markets where the number of investors is changing is 
more likely to be the mean amount of news per investor, wi th separate consideration 
given to the way in which market size can affect the price/volume relationship.^ 

S u m m a r y 

I have attempted here to provide formal definitions of 'news', 'news magnitude' 

and 'news quantity' . Using these definitions I have provided a descriptive model 

of decision-making, in which i t is quite rational to accumulate information and re-

optimize sporadically in the presence of information-processing costs. This model 

has been used to suggest that a measure such as the number of transactions per day 

is a better proxy for the quantity of news than the more typical proxy—the number 

of stories per day. In the special case of zero costs these two wi l l be the same. But in 

the general case where i t is expensive to update beliefs, re-optimize and implement 

a new plan, the accumulation of information causes a proxy related to the number 

of stories to over-estimate the propensity for investors to re-optimize, since during 

accumulation later news bits can negate earlier ones. 

•̂ As discussed in Chapter 2, Tauchen and Pitts explicitly consider the case where the number 
of investors can vary, but their model has some uncomfortable assuptions (Section 2.5). 



Chapter 4 

A n Optimal Price Index 

This chapter defines the notion of 'opt imali ty ' for creating price indices out of fu ­

tures contract prices. As w i l l be discussed below, futures price data have several 

advantages over spot price data, and one glaring disadvantage—every futures con­

tract expires. Both Clark (1973) and Tauchen and Pitts (1983) used futures data to 

fit their models, using the method proposed by Clark to jo in the individual contract 

prices together. The optimal index proposed here is shown to be superior to that 

of Clark both in theory and in practice. This chapter has appeared in a slightly 

different form as Rougier (1996).^ 

4.1 Introduction 

One of the features of the Tauchen and Pitts (1983) model analysed in Chapter 2 

is the symmetry of costs wi th respect to short and long positions; in fact, traders 

in this model have no transactions costs at all . In practice, i t is more expensive 

to. go short than to go long in spot markets, since to go short often involves either 

' I would Uke to thank the Editor of the Journal of Futures Markets, Professor Mark Powers, 
and the two anonymous referees for their very helpful comments on an earlier version of this paper. 
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having to borrow stock or having to purchase the right to borrow stock.^ In futures 
markets costs are symmetric w i th respect to short and long positions. 

Karpoff (1987) notes that the price-volume relationship appears to be affected by 

the asymmetry of costs between short and long positions. In spot markets the price-

volume relationship for negative price changes is not reflectionally symmetric w i th 

that of positive changes, while in futures markets the relationship is reflectionally 

symmetric. Consequently, spot markets display a significant correlation between 

. price change and volume while futures markets do not. Both markets display a 

correlation between absolute price change and volume. Therefore empirical work on 

price-volume models without transactions costs should use futures rather than spot 

data.. 

Unfortunately, however, every financial futures contract expires. Therefore time 

series analysis, of futures markets w i l l often be l imited by the short period in which 

. any particular contract exists. For stock index futures this is a period of about half 

a year.^ An obvious alternative to using: a single contract is to use a price index 

constructed f rom one or more of the outstanding contracts at each point in time. 

There are a number of ways in which such an index may be constructed. 

• This chapter makes a theoretical case for a new type of index, known as an 

'optimal index', and demonstrates that such an index outperforms the two currently-

accepted.indices. Section 4.2 defines optimafity, and shows how optimal indices may 

be derived for different numbers of available futures contracts. Interestingly, where 

there are more than two contracts available at any one tirne, there is more than 

one optimal index-. Section 4.2 also contrasts the optimal index with the widely-

practised method of simply taking the near contract and ignoring the others, here 

^For the situation in the UK, see Stock Borrowing and Lending, available from the London Stock 
Exchange, and 'Some Old Peculiar-Practices in the City of London' {The Economist, February 18, 
19'95). • • • 

?Sometinies even this period, will be inappropriately long, given the finding of Yadav and Pope 
(1990) that mispricing in stock index futures tends to increase with time to expiry. 
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referred to as 'spliciiig' . 

Section 4.3.discusses the other alternative, the 'Clark index' first described in 

Clark (1973) and used subsequently by Tauchen and Pitts (1983). This was origi­

nally proposed as an improvement on splicing, and i t is shown in this section that 

the Clark index represents a compromise in performance between splicing and op­

t imali ty. Section 4.4 examines the practical differences between the three indices 

using data on the FTSE 100 stock index futures contract traded on the London 

International Financial Futures Exchange (LIFFE) . To anticipate the conclusion, 

the opt imal index as proposed in this chapter should be unambiguously preferred to 

either the spliced index or Clark's index. The former is demonstrably sub-optimal, 

while the latter is much harder to calculate and potentially unreliable. 

4.2 'Optimality' in Futures Price Indices 

The objective is to create an optimal price index f rom the prices of the available 

futures contracts. This begs the question "What do we mean by optimal?" 

Definit ion 4.1 ( O p t i m a l Futures P r i c e Index) An optimal futures price index 

preserves a constant proportionality between the change in the price index and the 

change in the underlying spot price^in the absence of market imperfections. 

In the absence of market imperfections, each futures contract trades at a 'fair value' 

relative to the spot price. This fair value is maintained by arbitrage. In the case of 

stock index futures, 

F, = P{l + { r - y ) { k - t ) ) , (4.1) 

where is the price at t of the futures contract expiring at time k (where t < k), 

P the spot price at t, r the interest rate and y the dividend yield. A l l periods are 
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measured in years, and capitals are used to denote price variables assumed to be 
time-varying.^ 

The simplest index of futures contract prices would be the price of the near 

contract, F^. This is the generally-accepted method of creating a contiguous series.^ 

Notionally, the price series of the near contracts are spliced together so that the daily 

return of the resulting price index is equal to the daily return of the near contract. 

The problem w i t h the spliced index is that the change in the index depends upon 

both the change in the spot price and in the time to expiry of the near contract: 

dFk = {l + { r - y ) { k - t ) ) d P - P { r - y ) d t . (4.2) 

This expression shows that the ratio dFk/dP is seasonal, regardless of whether dP 

is seasonal. This seasonality is introduced by the declining interval between t, the 

current time, and k, the fixed point in the future at which the contract expires. I t is 

this problem of seasonality which motivates the definition of optimali ty given above. 

A n optimal futures price index should have no seasonal variations other than those 

in the spot price. 

The optimal futures price index, denoted F*, w i l l be restricted to convex com­

binations of the prices of the currently available futures contracts: 

n - l 

F* = 5^A,(0F,+,„; (4.3) 

where there are n contracts available and the time between contract maturities is 

V (i.e. k — V < t < k). The weights in eq. (4.3) are wri t ten explicitly as functions 

''It is assumed that the 'cost of carry' r - y is constant over the period for which there are futures 
contracts available. For most of the time this is a good approximation. Occasionally, however, 
there will be some marked seasonality (e.g. the interest rate will jump upwards at the end of each 
quarter if the yields curve is upward sloping). The empirical results of Section 4.4 demonstrate 
that the impact of this factor, and likewise the impact of transactions costs, is small. 

^See, e.g., Buckle et al. (1994). 
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of t ime, since wi thout time-variation in the weights there wi l l always be seasonality 
similar to that of the spliced index. The weights satisfy the usual conditions 

A,(t) e [0, 1] z = 0 , . . . , n - l (4.4) 

J2Mt) = l (4.5) 
1=0 

J2K{t) = 0 (4.6) 
1=0 

for all t, where X'^{t) denotes the derivative (the th i rd of these conditions is actually 

a direct consequence of the second). The spliced index is the simple case Xo{t) = 1, 

and Xi{t) = 0 ioT i — 1,... ,n - 1. 

A n optimal index by Definition 4.1 wi l l have weights which satisfy the following 

Proposition. 

Propos i t ion 4.1 For F* in eq. (4-3) to be an optimal futures price index by Def­

inition 4-1 it is sufficient that the weights satisfy eq. (4-4), ^Q- (4-5) and eq. (4-6) 

and the additional condition 

vY,iX\{t) = \, (4.7) 

for allt. 

P r o o f : The definit ion of optimali ty requires that 

c (4.8) 
dP 
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for al l t, where c is some constant yet to be determined.^ Condition eq. (4.8) holds 
i f and only i f 

4 fdF* \ 

From eq. (4.1) and eq. (4.3), 

dF* 

1=0 
n - l 

'•l^{r-y){k-t)+v{r-y)Y,t\{t) (4.10) 
. i=0 

remembering that the weights sum to one, eq. (4.5). Differentiating wi th respect to 

t and setting the- result to zero gives 

- ( r - y ) + . u ( r ^ y ) E ^ A : ( t ) = 0 

n - r 

=,vY,^m^l (4.11) 

1=0 

which is condition eq. (4.7)., I 

• I t can easily be confirmed that the spliced index is not optimal, since eq. (4.7) 

cannot be satisfied when X[{t) = 0 for i = 1 , . . . , n - l . Trivially, no index comprising 

just one futures price can be optimal. Proposition 4.1 can now be used to derive 

the opt imal weights for different nurribers of contracts. 

^This condition may also be written 

dF* _ dP ' 
^~dt^^'dt' 

In other words, the. rate of 'change of the futures price index and the spot price should be in 
constant proportion no matter what the relation between the current date cind the expiry pattern 
of the futures contracts. 
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C o r o l l a r y 4.2 For the case of only two futures contracts, the optimal weights are 

^ , . k — t ^ , . V — (k — t) , ^ 
A o ( t ) = Ai ( t ) = - ^ (4.12) 

V V 

P r o o f : Since n = 2, eq. (4.7) implies that X[{t) — l/v, f rom which eq. (4.6) imphes 

Ao(i) = —Ijv. Integrating these two expressions wi th respect to t gives 

Xo[t) = — + C^ X,{t) = i + C,. (4.13) 
V • V 

Each weight is constrained to lie in the range [0, 1] over the admissible values of t, 

which are t E [k — y, k]. Therefore the constants must satisfy certain inequalities. 

Taking Co at the two extreme values of 

t = k - v : d^^~^ + Co<l ] k 
\ =^Co = - . (4.14) 

t = k : — + C o > 0 ^ 
V ) 

To ensure that Ao(t) + \\{t) —. \ for all i , the constants must sum to one, and this 

gives 

C i = l - - . (4.15) 

Substi tuting these two values into eq. (4.13) completes the proof. I 

These two weights when substituted into eq. (4.3) give 

F* = P{\^[r - y ) v ) . (4.16) 

The optimal price index behaves like a notional forward contract which has v years 

unt i l expiry. There is only one optimal price index using just two contracts. 
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M o r e T h a n T w o Contracts 

For stock index futures there are often only two contracts available, and so optimal 

indices w i t h n > 2 are not required. However, there are other futures markets 

where there are many more than two contracts available (e.g. the market for cotton 

futures examined by Clark (1973), in which there were generally eight contracts 

available). Therefore the opt imal indices for three contracts w i l l be derived, in order 

to demonstrate the approach and illustrate the properties of the resulting indices. 

Generally, solutions can be found by using the sufficient condition for eq. (4.7), 

Kit) = — 7 - ^ — T for i = 1 , . . . , n - 1, (4.17) 
IV [n — I ) 

finding Ao(i) by eq. (4.6), and then working back to the weights in exactly the 

manner demonstrated in the proof to Corollary 4.2. For n = 3, there are three sets 

of weights found by this method: 

_v + 3 { k - t ) 

3 j ^ - ;̂  - - V - "J = ^ '"^^'^ (4.18) 

3 { k - t ) 
= 

These correspond to notional forward contracts which have v, (5/4)?; and {3/2)v 

years to expiry, respectively. Interestingly, the first set of weights can be generalized 

further since none of the individual weights ever fa l l to zero.^ The generalisation is 

v + 3 { k - t - a ) _2v - 2 { k - t - a) _ v - {k - t - a) 
AQ — Ai — A2 — 

Av 4v 4v 

(4.19) 

where 0 < a < u/3. The notional time to expiry of this contract is v + a. In other 

Ai = 
2?; - 2{k 

4.V 
2{k 
4'y 

A2 = 
V — {k-

A 01 
t) 

Ai = 
3?; -

2{k 
4.V 
2{k 
4'y 

- t ) 
A2 = 

V — ( k - t) 

Ai = 
2v- 2{k 

4v 
A2 = 

2v-

4v 
-t) 

am grateful to an anonymous referee of the Journal of Futures Markets for pointing this out 
to me. 
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words, the investigator can choose any notional time to expiry between v and (4/3) v. 
This includes (5/4)?;, the second of the indices in eq. (4.18), which would require 
a = vfA. Therefore two different sets of weights can give the same notional time to 
expiry. Investigators should be aware of this possibility when creating indices wi th 
three or more contracts. 

When there is more than one optimal index available, a general rule would be to 

choose that set of weights which gives a notional time to expiry closest to the mean 

time to expiry of all contracts in the market over the period in question. 

4.3 Clark's Price Index 

The deficiency of the splicing method, which takes just the near contract, has already 

been highlighted. Clark (1973) noted this, and proposed an alternative solution 

which shares many of the properties of the optimal price indices described above. 

Clark's method is asymptotically optimal in the number of available contacts, but 

not so attractive where there are only a small number of contracts available. As has 

been mentioned above, this is the case wi th stock index futures where two contracts 

is usual. In Clark's defence, however, his method was applied to cotton futures, 

where the number of contracts available at any time was eight. 

, Clark's index is a convex combination of futures contract prices, as in eq. (4.3) 

and eq. (4.4). However, the weights are not derived f rom the theoretical properties 

of futures contracts. Rather, they are derived f rom the empirical distribution of 

the time unt i l expiry across all contracts in the sample period. This distribution is 

denoted W{-), such that VF(c?)'shows the proportion of all contracts in the sample 

period which have d time in years unt i l expiry. Clark's index is 

n - l 

F^''^Y.'',{t)F,^,,, (4.20) 
i=0 
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where 

Ei^o W{k-t + zv) 

Thus each contract is weighted according to the popularity (i.e. frequency of oc­

curence) of its particular t ime to expiry. Clearly the weights in eq. (4.20) do change 

wi th time and sum to 1. However, they do not necessarily satisfy eq. (4.7). 

I f Clark's index is not optimal, i t w i l l contain some seasonality in addition to 

that in the underlying spot price. The source of this seasonality is variation in the 

de facto time to expiry. This is £ [W] on average, but varies on a cycle of v years 

because the contracts available at any given time provide just a small subset of the 

total range of possible times to expiry. In fact, the de facto time to expiry of the 

Clark index at time t is 

n - l 
def. 

Wt ^ Wi{t) {k ~ t + w ) ' 

i=0 . 
n - l 

= k~t + v^iWi{t) (4.22) 

and the Clark index might be wri t ten 

F'^P{l + {r-y)wt). (4.23) 

From eq. (4.21) and eq. (4.22) i t can be seen that idt tends to £ [W], a constant, as n 

becomes large and v At (which also implies k —)• At), where At is the resolution 

of W, typically 1 day. This confirms the point made above that Clark's index is less 

sub-optimal where there are a large nurnber of different times to expiry available.^ 

^The process by which the de facto time to expiry at t tends to the expectation of W as the 
number of available contracts (n) becomes large is exactly the same as that in which a numerical 
integration approaches the true value in the limit as the number of points over which the integrand 
is evaluated becomes large. The smoothness of is a crucial factor in deciding how quickly 
the limit is approached. As will be seen below, for F T S E futures W is very smooth and so the 
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. However, even where there are a large number of contracts available Clark's 
index st i l l has disadvantages over the optimal index. First, i t is much harder to 
calculate, requiring an extra dataset (the daily open interest on each contract) and 
the estimation of the distribution W. Second, i t is sample-dependent since W wi l l 
depend upon the period of calculation. This sample-dependence would probably not 
be a problem in a mature market since W would be stable. In a new or evolving 
market, the 'seasoning' of the contract could make W vary, in which case the Clark 
index calculated over a period might be substantially different f rom its values in a 
sub-period. 

4.4 Practical differences 

The notion of optimali ty depends upon there being no market imperfections, since 

the fair value relationship between spot and futures prices, eq. (4.1), is maintained by 

arbitrage. Since there are imperfections in actual markets, most notably transactions 

costs, but also sources of delay which prevent the concurrent execution of spot and 

futures transactions, i t is important to examine whether there are empirical as well 

as theoretical differences between the three indices. There is also the issue of ease 

of use to be considered. This section examines these questions using the FTSE 100 

contracts traded on L I F F E over the period 1985-1994. 

The optimal index is the two-contract specification eq. (4.12), since there are 

sometimes no. more than two futures contracts available.^ The Clark index requires 

the estimation of the time to expiry distribution, W{-), prior to calcuating the index 

values. This is shown in Figure 4.1. The sharp fall-off in W{t) just before t=0.25 

convergence is fast, and few contracts are required in order for the Clark index to behave as if it 
has a fixed amount of time until exipry. 

^Indeed, sometimes at the start of a new quarter there is only one contract available. In this 
case the weights are set to Xo(t) = 1 and Xiit) = 0; these are close to the theoretical values since 
[ k - t ) K v . 
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Figure 4.1: The Distr ibution of FTSE Contracts by Time to Expiry 
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indicates that most of the interest in FTSE 100 futures is in the near contract. The 

de facto times to expiry for the three indices are shown in Figure 4.2. The mean 

time to expiry for the Clark index is 0.169 years (about 43 days), but the availability 

of just two contracts causes the de facto time to expiry to vary f rom 0.253 years (64 

days) to 0.123 years (31 days) over the course of one quarter. 

From the properties of the three indices 

•dt 
dF* 
IF 
dF^ 

<r-y)P+{l + { r - y ) ( k - t ) } ^ , 

= -{l + {r-y)v}. 
dP_ 

, , „ dwi , , \ ^ dP 
( r - y ) P - + { l + ( r - , ) . J - . 

(4.24) 

(4.25) 

(4.26) 
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Figure 4.2: The Notional Time to Expiry During a Quarter 
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This suggests a bivariate regression of the form 

AF = a + pAP + ut (4.27) 

where the daily change in each of the indices, denoted by A , is used to approximate 

the t ime derivatives, and ut is some disturbance term.^° Regression eq. (4.27) should 

only be correctly specified for the optimal index F*, in which case a = 0 and /? > 1, 

and the disturbance should be white noise. In the case of the spliced index significant 

time-variation in p should cause the regression to be mis-specified. I t is hard to say, 

a pr ior i , whether the variation in Wt over the course of a quarter is sufficient to have 

a significant impact on the specification of the Clark index regression. 

On running the regressions, i t was immediately apparent that all three models 

^°The change in the spot price, A P , is calculated from close to close of trading in the futures 
contracts at L I F F E (4.10 p.m.) rather than close to close in the spot market, since the two are 
not synchronous. 
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Table 4.1: Regression results, 1985-1994 

Dependent variable 

AFk A F * AF'^ 

-0.307* -0 .041 -0.039 
(0.112) (0.131) (0.131) 

P 0.762 1.072+ 1.069+ 
(0.006) (0.008) (0.008) 

P -0.285* -0.379* . -0.375* 
(0.019) (0.018) (0.018) 

R 2 0.839 0.867 0.866 
D W 2.102 2.174 2.172 

The regression is AF = a + P AP + et, where et = pet-i + ut, and ut is a white noise 
disturbance term. 
* significantly less than 0.0 at 5 percent; + significantly greater than 1.0 at 5 percent. 
The critical values for the Durbin-Watson (DW) statistic are about 1.77, 2.23 at 5%. The 
hypothesis that the three parameters are the same in the optimal and Clark regressions 
has a test statistic of 1.30, which is comfortably below the critical value (x'̂ 3 at 5 percent) 
of 7.82. 

were characterised by strong negative first order autocorrelation in the residuals. 

This may be presumed to have arisen as a consequence of the arbitrage process. I f 

a futures contract price was sufficiently in excess of its fair value, then arbitrage 

would cause AFk < 0 and A P > 0 in the absence of news, and the disturbance in 

eq. (4.27) would be negative. I f arbitrage next occured in the other direction the dis­

turbance would be positive. Therefore, negative autocorrelation in the disturbances 

of eq. (4.27) suggests some form of 'overshooting' by arbitrageurs. 

The regressions were re-estimated allowing for first-order autocorrelation in the 

disturbances. The results of these regressions are given in Table 4.1. These show 

that the spliced index performs very diff"erently f rom the optimal index and the 

Clark index. The optimal regression has precisely the properties predicted by the 

theory: a zero intercept and a gradient slighly but significantly in excess of 1.0. 

These properties are shared by the Clark index where, additionally, the P is slightly 
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less than that of the. optimal regression in accordance wi th the shorter mean time 
to expiry. This contrasts wi th the spliced index regression, where the gradient is 
not significantly greater than 1.0, contradicting the theory. This suggests that the 
spliced index regression is: mis-specified. 

The high R^ values for the optimal and Clark regressions indicate that nearly 

90 percent of the variation ,in the futures price can be explained by the fair value 

relationship. This leaves just over 10 percent to be explained by the sporadic actions 

of arbitrageurs, and slack introduced by transactions costs and variation in the 

, interest rate and the dividend yield. 

4.5 Conclusion 

The need for a contiguous price index for futures contracts is well-established. This 

chapter has considered three such indices. The spliced index is the standard and 

consists simply of the returns of each near contract in turn, notionally joined together 

into a price series. The Clark, index is a convex combination of futures contract 

prices, where the weights are. derived f rom the empirical distribution of time to 

expiry. By the definition provided in this chapter neither of these two indices is 

opt imal , since they both introduce seasonality in the futures price index in addition 

to that present in the spot price. 

The th i rd index is optimal by the same criterion. The optimal index preserves a 

constant proportionality between spot price change and futures price index change. 

I t is shown mathematically that there are several optimal indices. The investigator 

should choose that index wi th the most appropriate notional t ime to expiry, since 

i t is in this respect that the indices differ f rom one another. 

The empirical evidence suggests that the spliced index should be avoided, but 

that Clark's index and the optimal index perform almost identically. This suggests 
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that market irnperfections are sufficient to cloak the Clark index's sub-optimality. 
However, given the much greater cost of calculating the Clark index and the un­
certainty engendered by its sarnple-dependence, the optimal index should be unam­
biguously preferred when creating a price index for stock index futures contracts. 
Similar optimal iridices can also be calculated for other futures markets. 



Chapter 5 

A Short Empirical Study 

5.1 Introduction 

This Chapter investigates the price/volume relationship using 10 years of daily data 

f rom the FTSE-100 futures contracts traded on the London International Financial 

Futures Exchange'(LIFFE). Section 5.2 describes the price data, and Section 5.3 

the trading volume data, which needs some adjustment to account for the growth 

of the market and for non-news-related trading. The following sections examine 

two aspects of the price/volume relationship: symmetry following Karpoff (1987) 

(Section 5.4), and the xl test for the Tauchen and Pitts (1983) inter-day model 

developed in Section 2.5 (Section 5.5). Section 5.6 concludes. 

The original data used in this study were kindly supplied by LIFFE, and con-

sisted of date, contract code, delivery month, index settlement price, index opening 

range (two values), daily high, daily low, volume and open interest, for each contract 

for each trading day f rom the middle of 1984, when the FTSE-100 future was first 

traded. The period under study covers the ten years 1985-1994. The original format 

of the data is shown in Figure 5.1. 

- The attraction of futures data for empirical work has been briefly discussed 

82 
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Figure 5.1: Sample of Original Data f rom L I F F E 

2 JAN 1985 X MAR 85 1216 .0 1229 .5 1227 .0 1229 .5 1215 .0 194 744 
2 JAN 1985. X JUN •85 1218 .0 0 0 0 0 0 48 
3 JAN 1985 X MAR 85 1204 .5 1201 .0 1202 .5 1208 .0 1199 5 231 748 
3 JAN 1985 X JUN 85 1206 5 1204 .0 1204 .0 1204 0 1204 0 2 46 
4 JAN 1985 X MAR 85 1213 0 1206 0 1207 5 1217 5 1206 0 155 741 
4 JAN 1985 X JUN 85 1214 0 0 0 0 0 0 46 
7 JAN 1985 X MAR 85 1228 5 1211 0 1213 0 1229 0 1211 0 236 763 
7 JAN 1985 X JUN 85 1229 5 0 0 0 0 0 46 
8 JAN 1985 X MAR 85 1238 0 .1237 5 . 1237 0 1242 0 1230 5 276 776 
8 JAN 1985 X JUN 85 1239. 0 0 0 0 0 0 46 
8 JAN 1985 X SEP 85 1240. 0 1240. 0 1240 0 1240. 0 1240. 0 5 5 

Thus, there are two contracts available on 2 Jan 1985, one expiring in March 1985 and 
the other in June 1985 (both at the end of the month). The settlement (i.e. closing) price 
of the first of these was 1216.0, the opening range 1229.5-1227.0, the high 1229.5, the low 
1215.0, the volume 194 and the open interest 744; the data for the second contract is not 
updated since there was no trading on the day. When trading is very light, the data can 
be 'stale'—this must be taken into account when creating price indices. 

in the introduction to Chapter 4. In addition to the arguments advanced there, 

which centred on the low and symmetric transactions costs, an index is preferable 

to individual stock prices since the diversification in the index lowers the standard 

deviation of returns and makes i t easier to perceive the time series structure of the 

mean returns (Lo and MacKinlay, 1988; Conrad and Kaul , 1988). 

One potential problem w i t h an index is asynchronous trading bias (Fisher, 1966; 

Cohen et ai, 1980). The presence of less-traded stocks in an index means that at 

the close of the trading day some of the prices w i l l be 'stale', i.e. not updated with 

the latest news. These prices adjust on the following day (at the next trade) and 

so introduce positive autocorrelation into the return series. This is unhkely to be a 

problem wi th an index of highly traded stocks such as the FTSE-100. 

Another problem wi th spot price indices is that they are never directly traded. In 

this case many of the psychological effects linked to the impact of technical analysis 

(e.g. support and resistance levels) are not present in the index in the same way as 
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in underlying stocks. However, a futures contract on the index is traded, and so i t 
does not suffer f rom this problem. 

5.2 Prices 

The price series was constructed f rom the prices of the existing contracts on each 

trading day using the two-contract Optimal Price Index described in Chapter 4. 

The resulting index is displayed in Figure 5.2. The daily return series was created 

using log price differences: 

rt = logpt - logp t_ i , t ^ l , . . . , 2529. (5.1) 

This series is shown in Figure 5.3. I t is clear f rom these two Figures that the 

behaviour of prices during the year of the stock market 'crash', 1987, was atypical 

but not exceptionally so. I t is a pleasing coincidence that the bounds of the year 

also define very closely the bounds of the 'bubble', the crash and the recovery. But i t 

is easy to identify other one-year periods in which the behaviour of prices is equally 

atypical: 1988 was str ikingly flat, 1989q3-1990q2 wi th its ' triple top', or 1993q3-

1994q2 wi th its interesting 'single top' . There are certainly no grounds for excluding 

1987 f rom the sample this stage, although there might be a case in subsequent 

empirical work for masking the one day fal l of 16.6% which occured on October 19, 

1987. 

Descriptive statistics for the return series are given in Table 5.1. Although the 

trend in prices is clearly upwards, the mean daily return is less than one twentieth 

of 1%, compared to a standard deviation of over 1%. 

Six out of the ten years show negative skewness but only two of these are signif­

icantly negative compared to a normal distribution; there are also two significantly 

positively-skewed years. From the quartiles i t is clear that i f there is negative skew-
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Figure 5.3: Daily Returns ( r j ) 
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Table 5.1: Distribution of Daily Returns ( r j , %) 
FTSE-100 Futures, 1985-94 

Mean Std. Skew. Kur t . Q l Med. Q3 Min . Max. 

1985-94 0,0 1.1 -1.7t 25.0t -0.6 0.0 0.7 -16.6 8.1 

1985 0.0 0.8 -0.1 0.2 -0.5 0.1 0.7 -2.4 2.3 
1986 0.1 0.9 -0.2 -0.2 -0.5 0.1 0.7 -2.4 2.3 
1987 0.0 2.0 -2.8t 21.5t -0.7 0.2 1.1 -16.6 8.1 
1988 0.0 0:9 0.2 1.6t -0.5 0.0 0.6 -2.5 3.5 
1989 0.1 1.0 - l . l t 6.5t -0.4 0.2 0.8 -6.5 3.1 
.1990 -0.1 1.1 -0.2 0.5 -0.8 0.0 0.7 -3.6 3.3 
1991 0.0 0.9 0.3t 1.4t -0.6 0.0 0.7 -3.8 3.8 

' 1992 0.0 1.1 0.4t 2.5t -0.7 0.0 0.8 -4.5 5.0 
1993 0.0 0.7 0.2 0.8t -0.4 0.0 0.5 -2.2 2.8 
1994 0.0 1.0 -0.1 -0.6t -0.9 0.0 0.7 -2.8 2.4 

t S ignif icant ly different from the normal distr ibution at a T y p e I error of 5%. T h e stan­

d a r d error for skewness from a normal parent is \ / 6 n , for kurtosis , \ / 2 4 n , where n is the 

sample size (see, e.g., K e n d a l l and Stuart , 1969, p. 243). 

ness in daily returns i t occurs primarily in the tails, since the first and third quartiles 

are roughly symmetric around the median. But the minimum and maximum values 

also appear to be symmetric about the median. The conclusion is that there is no 

stroiig evidence that the return distribution is not symmetric. 

The leptokursis is much more unambiguous: eight out of the ten years show 

leptokursis, six of them significant, against one significant platykurtic year. Not 

surprisingly, the leptokursis of the complete dataset is much more pronounced than 

that of the individual years, since the period 1985-94 spans years wi th marked 

differences in the standard deviations. 

AutocGrre la t ion 

The first-order autocorrelation characteristics of returns are shown in the lefthand 

panel of Table 5.2. While none of the coefficients is more than two standard errors 
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Figure 5.4: Trading Volume (vt) 
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from zero, there are six positive values versus four negative ones. The Durbin h 

statistics for residual autocorrelation, used here as a broad indicator of misspecifi-

cation in the A R l model, are generally insignificant; the ARCH statistics show that 

ARCH effects appear to be sporadic. The very large value for the ARCH statistic 

for the ful l sample, when compared with the statistics for the individual years, sug­

gests that the frequency of the variance process be quite low. This agrees with the 

findings of Table, 5.1. 

Overa,ll the suggestion from the data of Tables 5.1 and 5.2 is that the deter­

minants of the stochastic process of are quite unstable. This is shown by the 

instability of the statistics for individual years, and the substantial difference, par­

ticularly with respect to dispersion, between the full-sample statistics and those of 

the sub-periods. 
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Table 5,2: Autocorrelation and ARCH in Returns and Volume 

FTSE-100 Futures, 1985-94 

Returns, Volume, 

P Durbin h ARCH P Durbin h ARCH 

1985-94 0.013 1.438 29.858 0.441** -7.701 . 47.599 

1985 -0.076 -2.391** 0.059 0.544** -3.305 0.130 
1986 0.040 0.128 4.018 0.206** -1.177 1.362 
1987 0.055 0.431 24.747** 0.430** -2.091* 16.987** 
1988 0.048 4.552** 10.254** 0.360** -2.538** 0.178 
1989 0.022 1.244 0.001 0.519** -1.360 0.568 
1990 -0.033 1.991* 3.519 0.532** -3.694** 0.087 
1991 -0.064 -1.244 0.362 0.365** -1.960 0.016 
1992 0.042 -0.057 .10.590** 0.491** -2.008* 3.589 
1993 0.054 0.602 0.685 0.307** 0.102 0.911 
1994 -0.109 0.070 1.387 0.429** -3.433** 1.042 

* Significant at a Type I error of 5% (** 1%). The standard errors for the autocorrelation 
coefficient are (n - 1)"^/^ where n is the sample size (see, e.g., Kendall and Stuart, 1969, 
p. 396); by this criterion none of the correlation coefficients on returns is significant at 5%. 
'Durbin h' is Durbin's test for first order autocorrelation in the residuals; ' A R C H ' is from 
a regression of squared residuals on a constant and one period lagged squared residuals. 
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Figure 5.5: Detrended Trading Volume (vt) 

FTSE-100 Futures, 1985-94 
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5.3 Trading Volume 

The trading volume for each day was calculated by adding the volume on each of the 

contracts available. I t is shown in Figure 5.4. Clearly there has been a huge increase 

in trading volume over the period which probably reflects the gradual acceptance 

of futures contracts by professional investors. Interestingly, the growth now shows 

some sign of flattening out. Models such as Tauchen and Pitts (1983) can account 

for the increase in traders on the amount of trading volume generated per news bit. 

However, in the light of the criticism of this model advanced in Section 2.5, the 

siiiipler expedient of detrending the volume data is used. The trend was fitted as 

a. 63 day moving average over log-volume. This period, which is the mean number 

of trading days between contract expiries, was chosen since any seasonality is likely 

to be related to contract expiry. Detrending by this moving average will tend to 

remove cycles of an order greater than one quarter but preserve higher-order cycles 

(including such things as day-of-the-week effects, although these are not allowed for 

here). The usual alternative, the fitting of an exponential trend (as in Gallant et ai, 

1992), would clearly introduce low-order cyclicality since volume Vt does not follow 

such a trend (Figure 5.4); it seems better to use the more conservative technique. 

Detrended volume, v[, is scaled to be of the same magnitude as the first obser­

vation of 1985; 

v't =^ X exp(log?;t - m.a. {logvt, 63}) t = l,... , 2529. (5.2) 

This series is displayed in Figure 5.5. At this point i t is quite clear that volume 

displays some further seasonality relating to contract expiry, which shows up as a 

repeating quarterly pattern. 
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Contract Rollovers 

The cause of this seasonality is contract rollovers (see, e.g., Yadav and Pope, 1990; 

Holmes, 1993), and this also provides for a remedy. As a contract nears expiry an 

investor wanting to maintain a position will close the near contract and simulta­

neously open ah identical position in the far contract. This activity generates two 

lots of trading volume .which are entirely un-news-related (i.e. systematic). Were it 

possible to estimate the number of contracts rolled over each day, then twice this 

number could be subtracted from the trading volume figure for the day to leave 

news-related volume only. 

I t is not possible to estimate the number of rollovers from the data supplied by 

LIFFE. However, i t is possible to proxy the number using the data on open interest.' 

If I roll-over n contracts then the open interest in the near contract will fall by n, 

and the open interest in the far contract will rise by n. Therefore a sign of rolling 

over is a fall in near open interest and a corresponding rise in far open interest. The 

amount of rolling over is taken to be the smaller of these two numbers, since this 

ensures that for every rolled over contract there is both a closure and an opening. 

This gives rise to the proxy for rolled over contracts, / j , 

11' min {max j O , - { o [ - o[_,)} , max {O, (o'/ - o ' / . J }} , (5.3) 

where Ot is the open interest on day t and a single prime denotes the near contract 

and a double prime the far contract. The maximizations in eq. (5.3) are to ensure 

that only a fall in the near contract and a rise in the far contract open interests 

will count, while the minimization is to ensure that there is matched closing and 

opening. 

I f the reasoning is correct, then It should show marked seasonality, being near 

am grateful to Phil Holmes for this insight on the use of open interest data. 
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Figure 5.6: Contract Rollover Proxy {It) 

- FTSE-100 Futures, 1985-94 

to.ooo 

8,000 + 

6,000 

4,000 -f 

2,000 4-

CO 
02 

CD 00 02. .CO. 02 
CO 00. 02 

02 CO 02 
O 02 02 



CHAPTER 5. A SHORT EMPIRICAL STUDY 94 

Figure 5.7: Detrended Trading Volume adjusted for Rollover, {vD 
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zero early in the quarter, and only large in the final few days. The graph of k is 
given in Figure 5.6, and happily it has approximately this form. The detrended 
rollover-adjusted volume series is denoted v^, where 

v; = vi X exp{\og{vt - 2 l t ) - m.a. {\og{vt -2lt), 63}). (5.4) 

This is shown in Figure 5.7. The graph is much less 'spiky', but there is still some 

quarterly seasonality in v^. This is to be expected since the series It is only a proxy 

for rollovers. I t is quite possible, for example, for both amounts of open interest 

to fall and for there still to be some rolling over of contracts. This might occur 

if there just happened to be a large number of closing positions taken in the far 

contract. In this case the correct value for rollovers should be positive, but It would 

give zero. Hence the adjustment for rollovers using It is not perfect (it is probably 

biased downwards) but i t is simple and intuitive. 

Descriptive statistics for the volume series are given in Table 5.3. As they 

stand these figures show that the distribution of trading volume is clearly not normal. 

Both the positive skewness and the leptokursis are significant in all cases (and highly 

significant in almost all). However, these statistics are biased estimators of their 

population equivalents because of the high degree of dependence between successive 

observations apparent from Figure 5.7. 

The most notable feature of these descriptive statistics is the non-normality of the 

volume data. This non-normality is consistent with the 'mixture of distributions' 

model of Tauchen and Pitts (1983) discussed in Section 2.3, since in this model 

volume is norrrial conditional upon the number of pieces of news per day. As the 

amount of news varies from day to day so do both the mean and the variance of 

volume. 
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, Table 5.3: Distribution of Trading Volume (v^) 
FTSE-100 Futures, 1985-94 

Mean Std. Skew. Kurt. Q l Med. Q3 Min. Max. 

1985-94 225 103 .1.61 5.1t 157 204 271 10 941 

1985 234 135 i.ot I.ot 139 219 311 10 715 
1986 226 108 1.7t 7.0t 156 211 275 53 922 
1987 260 127 1.3t 3.7t 170 238 325 20 873 
1988 218 99 1.2t 1.5t 143 198 264 62 584 
1989 230 109 , 2.5t 11.7t 158 208 278 33 941 

. 1990 213 93 i.ot L i t 145 197 260 38 596 
1991 226 89 1.2t 2.0t 160 213 267 74 621 
1992 ; 204 78 2.1] 8.1t 160 191 232 27 658 
1993 222 85 1.7t 4.9t 168 207 267 38 628 
1994 207 73 0.6t 0.6t 157 195 255 28 461 

t Significantly different from the normal distribution at a Type I error of 5%. See note 
to Table 5.1. 

Autocorrelation 

The first-order time series properties of the volume data are given in the righthand 

panel of Table 5.2. I t is clear that there is highly siginificant positive autocorrelation 

in trading volume. The Durbin h statistics show evidence of misspecification from 

a simple AR(1) process, but there is little evidence of ARCH effects. In general, 

a comparison of the return data and the volume data in this Table suggests that 

the stochastic process governing volume is considerably more complicated than that 

governing returns. 

5.4 Symmetry 

I now turn to the bivariate properties of the data. I t was argued by Karpoff (1987) 

that the return/volume relationship in futures should be symmetric with respect to 

price falls and rises because of the symmetry of the cost of short and long positions. 
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Figure 5.8: Squared Returns and Trading Volume (rj^, v^) 
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Figure 5.8 shows the relation between squared returns, r j ^ and trading volume, •Of, 

separated according to whether the return is positive or negative. Visually there is 

nothing to differentiate the positive returns from the negative returns, supporting 

KarpofFs proposition.^ 

I t would be helpful to support this visual evidence with fitted lines. The analysis 

of Section 2.4 provides some guidance for the functional form and the specification 

of the disturbance term, on the assumption that the Tauchen and Pitts (1983) inter-

day model is broadly, correct. The simple exponential relationship (writing Vt for 

trading volume on day t for simplicity) 

(Apt)^ = exp{a + P vt}ut, (5.5) 

^In fact. Figure 5.8 is rather reminiscent of the folded inkblot butterflies I made as a child. 
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where Ut has support on the non-negative real line with £ [ut] = 1,V [ut vt] = vt^a'^, 
has the following appropriate properties: 

1. (Apt)^ > 0 (required by definition); . 

2. £ [(Apf)2 I Vt = 0] > 0 (Proposition 2.1); 

3. £ (Apt)^ Vt increasing in vt providing /? > 0 (in sympathy with Proposi­

tion 2.1, although note the discussion that in theory £ [(Apt)^ Vt] does not 

have to be increasing for all f t > 0); 

4. £ (Apt)^ non-linear in (Corollary 2.4); 

5. V [(Apt)^ I Vt] asymptotically quadratic in Vt (Corollary 2.3). 

The only major problem with this functional form is that it does not asymptote 

to a ray through the origin. This is partly addressed by estimating the regres­

sion using Weighted Least Squares (WLS), which is necessary to accomodate the 

heteroskedasticity in W f . Taking the logarithm of both sides of eq. (5.5) gives 

ln{{Aptf}=a + Pvt + Wt, . (5.6) 

where wt *= Inut- To a first order approximation, £[wt] = 0, V Wt f t = Vt'o'^? 

In order to offset the heteroskedasticity, the regression must be estimated using the 

weights Vt"^. This has the effect of down-weighting the large volume observations, 

and so mitigating the failure of the functional form to asymptote to a ray.'* 

There is also a minor problem with eq. (5.5), which is that asymptotically the 

distribution of the disturbance term is not X i , as suggested by Proposition 2.2. 

^If g{x) is some function of x, then to a first order approximation, E \g{x)\ = g{£ [x]) and 
V[5(a;)] = ig'{£[x])fV[x] {see, e.g., Kendall and Stuart, 1969, pp. 231-2). Hence if ^[u] = 1, 

V u V — v'^a'^ a.nd w \ n u , then S [w] ^ 0 and V w v\ ^ [\)^ v'^a'^ = a"^. 
'*It also down-weights the period surrounding the stock market Crash, 1987q4-1988ql, since 

this was a period of high trading volume—see Figure 5.7. This period is discussed further in 
Section 5.5. 



CHAPTERS. A SHORT EMPIRICAL STUDY 99 

Table 5.4: WLS Regression for Symmetry 
FTSE-100 Futures, 1985-94 

n a i?2 DW SSR 

Al l n 2,524 -12.2691** 0.0078** 0.0943 1.8597 11,148.4 
(0.0700) (0.0005) 

f t > 0 1,344 -12.5514** 0.0095** 0.1372 1.3782 5,684.8 
(0.0885) (0.0006) 

rt<0 1,180 -11.6695** 0.0045** 0.0312 1.3718 5,369.1 
(0.1157) (0.0007) 

** Significantly different from zero at a Type I error of 1%. The critical value for the 
Durbin Waston (DW) statistic is 1.778, indicating that there may be some misspecification. 
Proceeding on the basis that this is not serious, a Chow test for stabifity across positive 
and negative returns using the sum of squared residuals (SSR) has a test statistic of 10.77, 
well in excess of the critical value at a Type I error level of 1% (5.57). 

However, if a, normal distribution is assumed for Wt in eq. (5.6), then Ut has a log-

normal distribution which shares many of the characteristics of the Xi distribution, 

notably having support on the non-negative real line, a similar mean and positive 

skewness. 

The results of estimating eq. (5.6) over the sample are given in Table 5.4. The co­

efficient y5 has the correct sign and both parameters are highly significant. However, 

there is some evidence of misspecification from the Durbin-Watson (DW) statistics, 

which is to.be expected since the functional form eq. (5.5) satisfies only certain nec­

essary conditions for representing (Ap^)^ t>t within the Tauchen and Pitts model. 

Proceeding with the Chow test for symmetry with respect to positive and negative 

returns, the null hypothesis is strongly rejected. This contradicts the findings of 

the review of price/volume studies conducted by Karpoff (1987), where a symmetric 

relationship is inferred from the absence of any correlation between Apt and Vt in 

futures markets. I t also contradicts the Tauchen and Pitts (1983) inter-day model 

in which there is no differentiation between good and bad news. 
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On the basis of Table 5.4, negative price changes seem to have an initially higher 
but flatter £̂  (Apt)^ Wt than positive ones. The critical amount of volume at 
which the two lines intersect is v^ 177. This corresponds to a daily return of 
±0.4%, implying that about 30% of all days have a higher negative than positive 
relationship. Recent studies-have, emphasised the asyriimetry of price variability 
with respect to good and bad news (see, e.g., Engle and Ng, 1993). I t is generally 
found that bad news increases subsequent price variability. If it is presumed that 
the response of trading volume to news is unaffected by whether the news be good 
or bad, then this would :_be the case in the above data only for days in which there 
were a small amount of news. 

This inconsistency, the parameter instability and the evidence of misspecification 

from the DW test statistics suggest that an interpretation of the price and volume 

data within the Tauchen and Pitts inter-day framework is incomplete, i.e. there is 

more going oh in the price/volume relationship than simple news-dynamics. The 

riext section considers an- eilternative test of this framework, using the asymptotic 

results of Proposition 2.2. 

5.5 Testing the Tauchen and Pitts Model 

Rather than using the findings of Section 2.4 indirectly in an attempt at line-fitting, 

Proposition 2.2 may be used directly in a test of the model. If the Tauchen and 

Pitts (1983) inter-day model is correct, then the squared return values adjusted by 

volume should haye approxihiately a scaled xl distribution for large volumes. 

Figure 5.9 shows the time-series'of volume-adjusted squared returns, Tt^/vl, 

rescaled to have a mean'of 1 in order to match the Xi distribution. This figure 

shows the unusual nature of the 'stock rnarket Crash' and its repercussions in a way 

that neither squared- price Change nor trading volume can do on their own. The 
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Figure-5.9: Volume-adjusted Returns [rt^/vl, rescaled) 
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most unusual aspect of the Crash period was the very high ratio of price volatility 
to trading volume. As well as the very strong time-dependency around this period, 
there also appears to be a lesser degree of time-dependency throughout the sample 
period, in the way that the data tends to cluster. This time-dependency is quite 
consistent with the Tauchen and Pitts model, except in the asymptotic case where 
the amount of trading volume (equivalently, the amount of news) becomes large. 

For an example of how. this time-dependency might arise, consider the case of 

positive autocorrelation in the mean of the news-arrival process, as might be inferred 

from the success of ARCH models in. modeling returns (see Section 2.6). This 

will affect the value of S N T in the notation of Section 2.4, which denotes the 

expectation of the amount of news which has arrived given an observation on the 

amount of trading volume. As a simple example of this, consider the expectation of 

the amount of news given that no volume has been observed, on the presumption 

that the amount of news per day is Poisson with arrival rate A. By Bayes Theorem 

r 1 Pr{r = 0 N = n}PT{N = n} , , 
£\N T ^0] = y^n~^ ^ \ ^ -. 5.7 

L J Pr{r = 0} ^ ^ 

Writing Pr{yi = 0} = q it follows that Pr{r = 0 | = n} = g". By the Poisson 

distribution, P r { N = n} = e~'^(A"/n!). Making these substitutions. 

£[N\T = 0" = 

J ]n9"e -^ (A7n! ) 
n=0 

X;g"e-^(AVn!) 
n=0 

e q X ^ 
(5.8) 

-A 
oo 

E 
{q\r e qX 

n=0 
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Table 5.5: Test on Volume-adjusted Squared Returns 
FTSE-100 Futures, 1985-94 

Quartiles 

Q l Q2 Q3 Q4 

Full Sample 19.201 16.241 9.753 32.312 
[0.024] [0.062] [0.371] [0.000] 

Less 87q4-88ql 12.706 13.209 12.871 8.779 
[0.176] [0.153] [0.169] [0.458] 

The values in brackets represent the area of the distribution (9 degrees of freedom) 
lying above the value of the test statistic. 

Consequently, dynamic behaviour in A leads to dynamic behaviour m£ N T = 0 , 

and, by extension, £ [N \ T = t] (t > 0). As was shown in Section 2.4, this in turn 

leads to dynamic behaviour in the expected price change squared conditional upon 

the amount of trading volume, i.e. £ (Apt)^ f t . 

Proposition 2.2 shows that the distribution of squared price changes scaled by 

volume should become more and more like a scaled Xi distribution as volume in­

creases. To investigate this, the complete sample is divided into its four quartiles 

by trading volume (as given in Table 5.3, p. 96), both with and without the unusual 

Crash period, 1987q4-1988ql. I f the Tauchen and Pitts model is correct, the fit 

between the volume-adjusted squared returns and the Xi should be at least as good 

for samples from high volurhe days as from low volume days. The observed and 

expected distributions for the four quartiles are given in Figure 5.10, and the results 

of the x^ tests in Table 5.5. I t can be seen that the full sample does not fit the xl 

distribution in the largest quartile by volume at all well (although the fit in quartile 

3 is quite good). The exclusion of the Crash period, however, substantially improves 

the fit to the point where it is entirely consistent with the Tauchen and Pitts model. 

^In fact, it is easy to see that iV | T = 0 is Poisson with arrival rate qX, from which this 
expectation follows. 
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Figure 5.10: Observed and Actual Distributions of r^/vl by Quartile 
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Figure 5.10: Observed and Actual Distributions of r^/v^ by Quartile (cont) 
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5.6 Summary and Conclusion 

This chapter has examined the Tauchen and Pit ts (1983) inter-day model of price 

change and trading volume, using the analysis of that model presented in Section 2.4 

and data f rom the London International Financial Futures Exchange. Prior to per­

forming the analysis i t was necessary to create a price index for futures contracts 

using the 'opt imal ' index presented in Chapter 4, and to adjust the trading volume 

for an upward trend, reflecting the gradual acceptance of the benefits of futures con­

tracts by investors, and for the seasonal effects of contract roll-overs, as discussed 

in Section 5.3. 

In the Tauchen and Pitts model both price change and trading volume are driven 

by the amount of news arriving in the day, w i th the result that the variance of price 

change and the expecta,tion and variance of trading volume are all linear in the 

amount of news per day. One of the problems wi th this model is the difficulty of 

estimation unless is i t assumed that the amount of news per day is independently 

and identically distributed. Unfortunately,, there is a substantial amount of evidence 

to suggest that the amount of news per day displays some positive autocorrelation, 

as was discussed in Section 2.6 and as can be inferred f rom the autocorrelation 

of trading volume shown in Table 5.2 and the time-series properties of volume-

adjusted squared price changes displayed in Figure 5.9. However, Section 2.4 derived 

testable implications of the Tauchen and Pit ts model, some of which are robust to 

the behaviour of the news-arrival process. 

Proposition 2.1 proposed some necessary conditions which should be satisfied by 

any Tauchen and Pitts-like model. In Section 5.4 of this chapter these conditions are 

used to select a functional form for the relationship between squared price change and 

trading volume, which is estimated over the f u l l sample period of 1985-94. Although 

the model performs fair ly well, the parameters are shown to be unstable wi th respect 
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to price rises and falls. This contradicts the suggestion of Karpoff (1987), which is 
that the price/volume relationship should be symmetric wi th respect to rises and 
falls in markets where the transactions costs are symmetric (such as futures markets). 
I t also contradicts the Tauchen and Pitts model, in which there is no differentiation 
between good and bad news. More recent empirical analysis has suggested that the 
price response to good and bad news is not symmetric, which is consistent wi th this 
type of instability of the parameters. 

Proposition 2.2 provided an asymptotic distribution for volume-adjusted squared 

price changes, which is independent of the news arrival process (since i t matters only 

that the amount of news, and similarly the amount of volume, be large). Section 5.5 

used this as a basis of a goodness of f i t test. This test suggested, once due allowance 

had been made for the very unusual events of the stock market Crash in 1987q4 and 

1988ql, that the data was consistent wi th the Tauchen and Pitts model. 

Taking the evidence of Sections 5.4 and 5.5 together, the conclusion of this 

chapter is that the Tauchen and Pitts model is at least partly correct, although due 

allowance must be made for a time-varying news arrival rate. However, the counter 

side to this conclusion is that news effects cannot explain all of the price/volume 

relationship. I n other words, even were the amount of news per day to be completely 

fixed, there would st i l l be price dynamics and volume dynamics. Exactly how this 

might be the case is the subject of Chapter 6. 



Chapter 6 

A Market-Clearing Model 

6.1 Introduction 

This chapter considers the price/volume dynamics that arise from market-clearing 

pseudo-homogeneous investor models, under a general (non-linear) model of the way 

in which reservation prices are updated. The analysis highlights the way in which 

price/volume dynamics are sensitive to the manner in which reservation prices are 

updated f rom period to period. This sensitivity is demonstrated in Monte Carlo 

simulations. 

The evidence of Chapters 2 and 5 suggests that while news effects, in particular 

positive autocorrelation in the amount of news per day, can explain much of the 

price/volume relationship, they cannot explain i t all . Or to put this another way, 

the Tauchen and Pit ts (1983) interday model analysed in. Section 2.4 could explain 

the price/volume relationship but only under the condition that the parameters 

of the model themselves varied in some fashion through time. This explanation is 

simply a reductio ad absurdum, since i t transfers our interest f rom the non-constancy 

of the news process to the non-constancy of the parameters describing the impact 

of the news process, which is not very satisfactory. 

108 
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The alternative explanations have been mentioned in Section 2.6. Bera and 
Higgins (1993) consider that the A R C H effects observed in daily price changes may 
also be caused by random coefficients (i.e. non-constant parameters again), or by 
a non-linear autocorrelation structure. The difficulty wi th these explanations is 
that there is, as yet, l i t t le understanding of how they might come about wi th in a 
model of the behaviour of optimizing agents. They therefore fall wi thin the purview 
of 'descriptive models' in the taxonomy of Section 1.4 (Figure 1.1, page 10). In 
contrast, the 'heterogeneous investors' models of the same taxonomy can too easily 
explain price/volume dynamics â  the interaction of different types of agent, some 
possibly irrational. The problem is that in their generality these models provide 
l i t t l e structure wi th in which the price/volume relationship may be estimated, a 
point made by Gallant et al. (1992) in their data-based (i.e. descriptive) analysis. 

This chapter provides an explanation of aspects of the price/volume relation­

ship based around the 'pseudo-homogeneous investor' model of Tauchen and Pitts 

(1983), but which is not news-related. In the Tauchen and Pitts model optimizing 

investors differ in the way in which they interpret the stock of public information, 

and dynamics arise as a result of the dynamics of the news-arrival process. I n the 

model of this chapter, the amount of news per period can be constant, and yet 

the result w i l l be that there is the possibility of autocorrelation in price changes, 

absolute price changes and trading volume. I t is also the case that the strength of 

these effects w i l l vary, so i t w i l l appear as though the price/volume relationship has 

random coefficients and/or non-linear autocorrelation. 

The outline of the chapter is as follows. Section 6.2 describes the general frame­

work for considering market-clearing models, and Section 6.3 considers the Tauchen 

and Pit ts (1983) model wi th in this framework. Section 6.4 considers the cross-

sectional reservation price distribution and how i t might be important, and proposes 

a model for updating reservation prices which incorporates the model of Tauchen 
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and Pit ts as a special case. Section 6.5 performs a Monte Carlo analysis using the 
general model, and Section 6.6 examines the implications for autocorrelation in price 
changes in particular. Section 6.7 concludes. 

6.2 Market Microstructure 

In this Chapter ail investors are assumed to solve the same problem, first given in 

eq. (1.8) 

max 
Q 

f u(Q{Pk - Pt,k)+wi; Tj) f(pk; 9,pt,k)dpk, (6.1) 
J - 0 0 ^ ^ ' 

subject to constraints on the largest position that can be held. The ut i l i ty function 

u{-) is parametized by 77, and the probability distribution / ( • ) by the current futures 

price pt^k and the parameter(s) 9; pk is the underlying spot price at k. 

The first order condition for this problem, ignoring the constraints, is 

j u' [Q ipk - Pt,k) + WZ- 7?) (pk - Pt,Jt) / {pk, 9, pt^kj dpk = 0. (6.2) 

Following the work of Tobin (1958, 1969), Samuelson (1983) considered the impact 

on demand functions arising f rom eq. (6.2) of changes in the expectation of Pk-

Samuelson found that there was a unique value for the expectation at which demand 

was zero (Sa:muelson, 1983, Mathematical Appendix C). Analagously, there wi l l be 

a unique value for the futures price at which demand wi l l be zero, and this is termed 

the reservation price. For values below the reservation price, the investor desires to 

be long of contracts (i.e. q > 0), and for values above, short. The reservation price, 

denoted p*tk,^s thus a function of the parameters w, i, rj and 9. 
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Reservat ion Pr i ce s and Market -Clear ing 

The demand function for any investor can be expanded around the reservation price 

using a Taylor Series (for convenience the k subscript denoting the time of contract 

expiry is suppressed) 

giPf, K ) = (Pt - Pl) Q'iPl) + l{Pt- f t ? q"{pl) + Plf q"\p*i) + 

(6.3) 

where the first term in the series is identically zero and has been dropped. In 

this way the demand function of any investor is simply a relationship between the 

reservation price pi and the market-clearing price pt- This is very convenient for 

models of market-clearing price and volume dynamics. Once the process by which 

reservation prices are updated has been specified, the fu l l dynamics drop out from 

the market-clearing condition 

J • 

Y,qjiPt;plt) = Q ^ Pt=p{Pn, (6.4) 

where there are J investors in total , indexed by j, and P^ is the vector of reservation 

prices at t ime t. So, for example, i f investors are pseudo-homogeneous and assumed 

to differ only in their reservation prices, and the coefficients in eq. (6.3) are known, 

then knowledge of the set of reservation prices at t and at t + 1 w i l l be sufficient to 

determine the price change and the trading volume over the period [t, t + 1].^ 

^Strictly, as-in Tauchen and Pitts (1983), t should index trading rather than calendar time. 
However, since this chapter will concentrate entirely on trading time i t is convenient to envisage 
a day as consisting of a starting equilibrium, the revelation of a fixed amount of new information, 
and a tdtonnement process in which equilibrium is restored at the day's close. 
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6.3 Tauchen and Pitts Again 

The Tauchen and Pit ts (1983) model slots neatly into this general framework. Their 

demand functions w i l l be re-derived here, since the futures framework in eq. (6.1) is 

different f rom the general portfolio problem approach discussed in Sections 2.2 and 

2.3. First, Tauchen and Pitts assume^ that p^ is normally distributed with a mean 

Pk and a variance cr .̂ In this case the expected u t i l i ty expression can be rewritten 

as a u t ih ty funct ion expressed on the mean and variance (see, e.g., Copeland and 

Weston, 1988, pp. 96-99): 

max M i 
1 

'-{q{pk-Pt) + wi, q^a^y (6.5) 

The first order condition for this problem is 

M-){Pk-Pt) + U2{-)2qa^=^0. (6.6) 

Second, Tauchen and Pit ts assume that all investors trade-off expectation linearly 

against variance at a rate P = —U2/U1 > 0, which is the same at all inputs for the 

u t i l i t y funct ion. Divid ing the first order condition through by Ui, substituting j3 

and rearranging gives the demand function \ 

QiPt) = ^ { P k - P t ) - (6.7) 

From this demand function i t is clear that the reservation price in the Tauchen and 

Pit ts model represents the expectation, p^. Since the demand function is already 

linear, all terms in eq. (6.3), bar the second, are zero, and the relation between 

^I t should be noted that the assumptions ascribed to Tauchen and Pitts are implicit, since in 
the paper they start with the linear demand functions given in eq. (2.18), rather than derive them 
within an optimizing framework. 
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rnarket-clearing price and reservation price is simply 

qiPf, P*t) = c{pt-p*t), (6.8) 

where c — l/2/3cr^. The absence of constraints in this demand function would 

only be the case i f there were no margin requirement.^ 

Finally, Tauchen and Pitts assume that investors are identical in all respects bar 

the reservation price. From the market-clearing condition this gives 

J 

J2'{pt-Ph) = ^' (6-9) 
.j=i 

which irriplies that the market-clearing price is the mean of investors' reservation 

prices, and the change in the market-clearing price is the mean of the change in 

investors' reservation prices. This latter result implies that we do not need to know 

the distr ibution of reservation prices at the beginning and the end of a period in order 

to infer the change in market-clearing price, over the period. In fact, the distribution 

of reservation prices is entirely immaterial: the process by which reservation prices 

are updated is the only relevent information. The same is true of trading volumes: 

the trading volume on day t is determined entirely by the way in which reservation 

prices change over the period {t - 1, t] (see eq. (2.20)). 

U p d a t i n g Reservat ion Prices 

Tauchen and Pitts propose a variance decomposition model in which all investors 

update their reservation prices independently of the current level of their reserva-

^I t is worth noting that everything that follows holds a fortiori with the addition of margin 
requirements. The margin requirements appear as horizontal extremes to the demand functions, 
and the resulting non-linearity of these functions means that the market-clearing price is no longer 
the arithmetic mean of reservation prices. Consequently the change in the market-clearing price 
cannot be expressed as a function of the changes in the reservation prices, but must be a function 
of the reservation prices themselves, before arid after. 
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t ion price, and independently of the prevailing market-clearing price. This model 
has already been criticised in Section 2.5. One property of the model is that the 
dispersion of reservation prices increases linearly in time (strictly, trading time—see 
footnote 1), resulting in a greater and greater disagreement among investors, and 
consequently larger and larger positions. I t seems far more natural that the dis­
persion of investors' expectations and the mean size of their positions be stationary 
over time. 

The cause of this non-stationarity is the egoism of Tauchen and Pitts's investors, 

who, in completely disregarding the market-clearing price when updating their reser­

vation prices, are each asserting that there is no extra information to be gained by 

considering the reservation prices of other investors. So, for example, an investor 

w i t h a reservation price well above the market-clearing price is as happy to revise 

his reservation price up as he is to revise i t down, and by the same amount. This 

behaviour is fundamentally at odds wi th the implications of heterogeneous investors 

models (Grossman, 1976; Grossman and Stiglitz, 1976). To precis models of this 

type, uncertainty among investors about the quality of their information and their 

analysis should make them unwilling to stray too far f rom the consensus, as reflected 

in the market-clearing price. 

O n e Possible General izat ion 

Interestingly, a generalization of Tauchen and Pitts's updating process, in which 

investors are aware of the market-clearing price when determining their reservation 

prices, preserves the irrelevance of the reservation price distribution. Consider the 

case where the updating rule is linear: 

Plt+i = Pt + (1 - a) {p*t - pt) + Uj^t+u ot e [0, 1], (6.10) 
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where Uj^t+i is identically and independently distributed wi th zero expectation. In 
other words the updated reservation price w i l l d r i f t towards the old market-clearing 
price by a proportion a: In the Tauchen and Pit ts model, a = 0. 

Propos i t ion 6.1 / / investors' reservation prices update according to eq. (6.10), 

then the expected, change in market-clearing price between t and t + 1 is zero, i.e. 

entirely independent of the distribution of reservation prices at t. 

P r o o f : The proof is straightforward. From the market-clearing condition 

Ap,^, = J-'Y^Apl^,. (6.11) 

Substituting f rom eq. (6.10) and taking expectations, 

J 

£[Apt^,\ = J-'Y.{pt + { l - a ) { p l - p t ) - p l t } 

= Pt + { l - a ) { p t - p t ) - p i 

. = . 0, (6.12) 

where the market-clearing condition is again used to equate pt wih the mean reser­

vation price at t. I 

Perhaps the most interesting point about this proposition is that the result wi l l 

clearly not hold for any expectations model which is non-linear in p^j — pt. For 

example, were the d r i f t to be a non-linear expression in the deviation of reservation 

price f rom market price, or were the variance to fal l wi th the absolute size of this 

deviation, then we would have, in general, 

. • Apt+i = HpIO---,PjuPl,t+i^---,Pj,t+i) 

+ / ( A p U i , . . . , A p } , ^ 0 (6.13) 
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and similarly for trading volume. A t time t the probability distribution for Apt+i 
and for volume Vt+i w i l l be conditional on the reservation price vector at time t, 

p ; = K , . . . , p } j . 

6.4 The Vector of Reservation Prices 

Why is the potential presence of the vector of current reservation prices in Apt+i 

important? The reason is that since each reservation price updates locally (i.e. Pj 

is generally quite close to p*,.) the reservation price distribution shows a certain 

amount of inertia: i t tends to change slowly over time. I f there is a relationship 

between aspects of the distribution of reservation prices and the price change and 

trading volume distributions, then the inertia of the reservation price distribution 

w i l l introduce a time-series pattern into these two variables, quite independently of 

any pattern which may be caused by news, or, indeed, of any pattern which may 

arise f rom heterogeneous investor models. This would be the simplest explanation 

of the time-series properties in Apt and Vt and is worth further investigation. 

Consider the following example. The reservation price distribution P^ is init ial ly 

symmetric. But in the updating of individual reservation prices suppose there is, 

purely by chance, a tendency for negative changes to be large while positive ones 

are small. Consequently the distribution P^^-^ displays pronounced negative skew-

ness. Af te r another round of updating, this time far more typical, the severity of 

the skewness has been blunted by a layer of noise, but the skewness itself is unlikely 

to have been completely eradicated. Therefore Pt_^.2, Pt+s^ • • • w i l l have diminishing 

traces of that single large fluctuation. In the meantime, of course, another wild fluc­

tuation could have introduced an alternative feature, say unusual kurtosis. Again, 

the presence of this w i l l die away only slowly. 

To give a physical analogy, the reservation price distribution is like the. arrange-
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ment of gas molecules in a box. Each molecule pursues its own brownian motion, 
and the consequence is that the density of molecules at any point in the box is 
not constant but is always smoothly changing. In the gas analogy, the number of 
molecules is very large, and the fluctuations in density small. But in financial mar­
kets, the number of active investors, although sizable, is relatively small. Moreover, 
this number may vary through time. In the case of a new market, the 'season­
ing' period may involve substantial changes in the behaviour of prices changes and 
trading volumes as. the number of active investors grows and the magnitude of the 
fluctuations in the reservation price distribution shrinks. 

A M o d e l for U p d a t i n g 

In the light of the preceding discussion, an acceptable model for updating reservation 

prices should have the following features. 

1. Symmetry w i t h respect to reservation prices above and below the market-

clearing price. 

2. A d r i f t towards the market-clearing price in which strength increases non-

linearly w i t h the deviation between market-clearing price and reservation price. 

Reservation prices are a symmetric random walk only when the reservation 

price and the market-clearing price are the same. 

3. A mechanism for preventing the distribution of reservation prices from becom­

ing more and more dispersed over time (i.e. for imposing stationarity around 

the market-clearing price). 

The Tauchen and Pitts model satifies the first requirement but not the other two. 

The requirement of non-linearity is to make the model 'interesting', since, as has 

been shown in Proposition 6.1, a linear d r i f t makes price a martingale. An interesting 

model should have the potential (which may not be realized in practice) for prices 
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to be a random walk/martingale for some of the time only, depending upon the 
distr ibution of reservation prices. The requirement for stationarity prevents the 
increasing discord implied by the Tauchen and Pitts model. 

The following model is a simple implementation of these three features: 

P*j,t+i =Pt + fiPlt -Pt) + cr Zj,t+u (6.14) 

where 

/ ( x ) = sign {a;} X ^ ( l - e - " l ^ l ) , a > 0 (6.15) 

and Zj^t is independently and identically distributed as a unit normal for all j and 

t. The function pt ^- / ( • ) represents the expectation at t of the updated reservation 

price at i-1-1; f { x ) has been constructed so that i t is concave in wi th gradient 1 at 

the origin, and bounded by ± l / a . For reservation prices very near to pt, / '(O) = 1 

ensures that the expectation of the updated reservation price is close to the current 

reservation price. For reservation prices further f rompt , the concavity of / ( • ) ensures 

that the expectation of the updated reservation price is nearer to pt than the current 

reservation price. 

The parameter a in eq. (6.15) determines the bounds of the expectation of the 

updated reservation price, and also the degree of concavity of / , i.e. the strength 

of the d r i f t . The model has the attractive property that in the l imi t as o: —> 0 i t 

becornes the random walk of Tauchen and Pitts: 

l i m - ( l - e - " l ^ l ) = lim-^^^-^^ = 1 x 1 , (6.16) 

using L'Hopital 's rule. The parameter a is therefore an index of 'non-Tauchen and 

Pitts-ness': the larger i t gets, the tighter the bounds for reservation prices around 
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Figure 6.1: The Function f{x; a ) , for x > 0 
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the market-clearing price and the stronger the d r i f t back towards the market-clearing 

price. The function / ( x ; a) is illustrated for positive x in Figure 6.1. 

T h e Ro le of Skewness 

Using this model for reservation price updating i t is now shown how the reservation 

price distr ibution enters into the expectation (and, a for t ior i , the higher moments) 

of the price change distribution. The following result relates the range of possible 

values for the expected price change to the ratio of bullish to bearish investors. 

Propos i t ion 6.2 Using the model for reservation price updating given in eq. (6.14), 

the expected price change over the period {t, t -f-1] lies in the range 

a J 
< £ [Apt+i I P;' < 

a J ' 
(6.17) 
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where Jf and represent, respectively, the number of investors with reservation 
prices at timet below and above the market clearing price at t (i.e. the bearish and 
bullish investors, respectively). 

P r o o f : The expected price change conditional upon the prevaihng reservation 

prices is, f rom eq. (6.14) 

j=l 

J 

J 

. = J-'T.f(Ph-Pt)- (6-18) 

W r i t i n g Xj p't - Pt, and using eq. (6.15), 

aJS[Apt+i\P;] = 5 ] s i g n { x , } ( l - e - ' ^ l ^ ^ l ) 

= Sr-Sr (6.19) 

where and are defined as the first and second terms in eq. (6.19), respectively, 

and and double as the sets of bullish and bearing investors. 

From the definition of and S[' we have the inequalities 

0 < 5+ < J+ and 0 < 5 " < J'. (6.20) 
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Mul t i p ly ing the second inequality through by —1 and adding the two inequalities 
together gives 

- j r < 5+ -sr < J, 

^ -J^ < J a£ [Apt \ P;] <J^ (6.21) 

^ - - 4 - < <? [Api+i I P ; ] < (6.22) 

which completes the jproof. I 

The interpretation of Proposition 6.2 is presented as the following corollary re­

garding the skewness of the reservation prices. 

C o r o l l a r y 6.3 The coiiariance between the expected price change and the skewness 

of the reservation prices is positive, where skewness is defined to be proportional to 

the difference.in the numbers of bullish and bearish investors. 

P r o o f : Skewness is measured in terms of the difference in the number of bullish and 

bearish investors, e.g. {J^ — J t ) / J . In the absence of further information regarding 

the reservation prices, the expected price change may be taken to lie at the centre 

of the range defined in Proposition 6.2. This centre point w i l l be zero i f and only i f 

the skewness is zero. Positive skewness w i l l raise the lower bound towards zero and 

the upper bound away from from zero, i.e. raise the centre point above zero; likewise 

negative skewness w i l l decrease the centre point below zero. Therefore, for random 

drawings of reservation price vectors, skewness and the expected price change are 

positively related.. I 

This corollary is deliberately stated in terms of covariances, rather than mak­

ing the stronger assertion that positive skewness implies a positive expected price 

change. This is a consequence of expressing the expected price change as a range, 

rather than as an explicit function of the reservation prices. While the stronger 
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statement may be true, i t is not necessary in order to jus t i fy one of the main con­
tentions of this chapter, which is that knowledge of the reservation prices is an asset 
in making forecasts of price changes. In this case i t has been shown that a simple 
count of bullish and bearish investors is informative. Further, as the local nature 
of the reservation price updating process implies a positive covariance between J^tj 
and J^, the two positive covariances together suggest that the expected price change 
might display sign-dependence. 

6.5 Monte Carlo Simulations 

The previous section has shown how the vector of reservation prices might determine 

aspects of the price/volume relationship, and presented a model for updating reser­

vation prices which generalizes the random walk specification of Tauchen and Pitts. 

Proposition 6.2 and Corollary 6.3 show how this model w i l l cause asymmetries in 

the reservation prices to affect the expected price change. I n this section, the more 

genera^l properties of this model are demonstrated by simulation. 

The two parameters which need to be determined prior to any simulations are 

J , the number of activie investors, and a, the standard deviation of the disturbance 

term for updating reservation prices. I wi l l set J to 103 and cr to 1.'' Simulations 

w i l l be performed over values of a G {0.0, 0.1, 0.5, 1.0, 2.0}, remembering that a 

is a coeflRcient of the deviation of eq. (6.14) f rom the simple Tauchen and Pitts 

specification. This combination of a and a covers a range of models from linear 

w i t h high inertia {a = 0) to non-linear wi th low inertia {a — 2). In the latter case 

the bounds on the expected reservation prices at t ime i -I-1 are are pt ± 0.5, and the 

low inertia comes about because a is large relative to the dispersion of reservation 

prices. I f reservation prices were gas molecules in a box, a — O.l represents a weak 

There is also the scale parameter c which appears in the trading volume expression, which is 
set to 1; the choice of J = 103 is justified below eq. (6.23). 
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shake between successive periods, and a = 2.0 a strong one. 

In order to describe the distribution of reservation prices at any time I wi l l use 

the interquartile range (IQR) as a measure of dispersion and Bowley's coefficient of 

skewness: 

Bowley-s coefficient = i« i±«if l^ i ) , (6.23) 

(see, e.g., Hoyle and Ingram, 1991, pp. 209-10), where Ql and Q3 are the first and 

th i rd quartiles, and M the median; the choice of J = 103 (as opposed, for example, 

to 100) is simply to make these fal l on the observations rather than between them. 

There are clearly many other ways in which the reservation prices could be described, 

including the simpler definition of skewness given in the proof of Corollary 6.3. 

However, since the conclusions of the previous sections should be general wi th respect 

to descriptions of the reservation prices, these two robust and familiar measures wi l l 

be used. 

The objective of the simulation is two-fold. First, to examine the cross-sectional 

relationship between dispersion and skewness on the one hand and price change 

and trading volume on the other. Second, to examine the time-series relationship 

between the variables in the light of the cross-sectional evidence. 

6.5.1 The Cross-Sectional Relationship 

The important part about generating data on the cross-sectional relationship is to 

ensure that each observation is independently drawn. This rules out using a single 

time-series since i t is expected that there wi l l be features of the reservation price 

distr ibution which change only slowly through time, compromising independence. 

Therefore the following experimental design was chosen for each a: (i) run through 

100 periods in order to 'season' the reservation price distribution; (ii) from the re-
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suiting distribution generate 1,000 sets of reservation prices, each advanced another 
20 periods; (i i i) for each of these 1,000 sets, generate the next period's reservation 
prices; (iv) for each pair of consecutive periods, find the change in the market-
clearing price, the trading volume, the first period dispersion and the first period 
skewness. The 20 period advance from the common base is to ensure that the re­
sulting reservation price distributions are more-or-less independent. This gives a 
tota l of 1,000 observations on four variables, augmented to five by also including the 
absolute price change. 

To analyse the resulting da;ta, the standard and the partial correlation matrices 

of the various market quantities and descriptive statistics are calculated. The par­

t i a l correlation coefficient identifies the unique relationship between two variables, 

as opposed to the standard correlation matrix which only shows the gross relation­

ship (see, e.g., Mardia et ai, 1979; Whittaker, 1990). I f S is the covarince matrix, 

the partial correlation matrix is found by scaling —S~^ to have I's in the leading 

diagonal.^ The standard and partial correlations are shown in Tables 6.1 and 6.2 

for the different values of a. Only those values at least one standard error from 0 

are shown, to give a visual key to the structure of the covariance matrix. 

The first noticable feature of the two tables is that there is l i t t le difference be­

tween the standard and the partial correlation coefficients. This indicates a very 

simple covariance structure consisting of separate bivariate relationships. The sec­

ond noticable feature is that increasing the non-linearity of the model (i.e. a larger 

a) causes the emergence of structure in the covariance matrix. This was anticipated 

in the previous discussion. Compare the first panel in Table 6.1 wi th the following 

ones. The first panel is the Tauchen and Pitts linear model. There is l i t t le or no 

relationship between any of the variables. In the next panel, a srtiall increase in a 

f rom 0.0 to 0.1, corresponding to a small amount of non-linearity, causes a strong 

^The application of partial correlation analysis in a portfolio framework similar to that of Epps 
and Epps (1976) [see Section 2.2], is discussed in Rougier (1995). 
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Table 6.1: Standard, Correlations for Price Change and Volume 

Aj9 . \Ap\ V disp. 

q ; = 0.0 

Ap\ 0.036 

Disp. 
Skew. •• -0.034 0.037 

I A p | • 0.036 

a = 0.1 

V 

Disp. 0.271t 
Skew. 

a = 0.5 

| A p | 0.033 
'v 0.033 

Disp. , -0.065t 0.239t 
Skew' 0.057 0.038 

a =1.0 

\Ap\ 
V 

Disp. 
Skew. -0.095t 0.046 0.044 

V 0.049 
Disp. -0.045 0.227t 

a = 2.0. 

\Ap\ . -
V 0.044 

Disp. , -0.036 0.254t 
Skew. -0.153t -0.057 

t At least 2 standard errors from zero (only correlations at least 1 standard error from zero 
are shown). The standard:error is (h — \)^-^ under the null hypothesis that the correlation 
is zero (see, e:g. Kendall and Stuart, 1969, p. 396). 
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Table 6.2: Partial Correlations for Price Change and Volume 

Ap \Ap disp. 

\Ap\ 
•V 

Disp. 
Skew. 

a = 0.0 

0.036 

-0.035 0.037 

\Ap\ 
V 

Disp. 
Skew. 

0.036 

a = 0.1 

0.031 
0.272t 

Ap 
V 

Disp. 
Skew. 

0.032 

a = 0.5 

0.049 
-0.075t 0.240t 

0.048 

| A p | • 
v 

Disp: 
Skew. -0.094t 

a = 1.0 

0.061 
0.057 0.229t 

-0.040 0.031 

Ap 
' V 

Disp. 
Skew. -0.152t 

a = 2.0 

0.054 
^0.048 0.256t 
-0.054 

See note to Table 6.1. 
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positive relationship between dispersion and volume. For a — 0.5 there is addi­
tionally a negative relationship between dispersion and absolute price change, while 
at larger values of a there is additionally a strong negative relationship between 
skewness and price change.^ 

Overall, the two most striking features which arise f rom non-linearity are the 

positive relationship between dispersion and trading volume and, wi th greater non-

linearity, the negative relationship between skewness and price change. These two 

correlations are of a different magnitude to the others. This pair of bivariate rela­

tionships, dispersion expected trading volume and skewness = ^ expected price 

change, accounts for the similarity of the standard and partial correlations. 

A t this point-we ca,n conjecture about the results f rom the time-series analy­

sis that fol lows. . Inertia in the distribution of reservation prices implies that the 

measures of dispersion and skewness w i l l show some peristence. In this case, both 

trading vdlunie and price change w i l l have a small amount of positive autocorrela­

t ion which w i l l be related tO'dispersion and skewness, respectively. The amount of 

autocorrelation w i l l depend on the degree of non-linearity, as governed by a. 

6.5.2 The Time-Series Relationship 

The experiniental design for this simulation is very straightforward: generate a single 

time-series of 1,000 periods of data after 100 periods of seasoning, recording price 

change, volufne, dispersion and skewness for each period. 

The resulting data can be analysed using a Vector Autoregression (VAR) . The 

V A R approach was proposed by Simms (1980) as an alternative to structural time-

^This negative correlation betweeri skewness and price change is clearly contrary to the positive 
skewness suggested in Corollary 6.3. The explanation is that Bowley's coefficient of skewness 
incorporates data on the reservation price vector beyond a simple count of bearish and bullish 
investors, giving particular weight to reservation prices that are closer to the median (and, therefore, 
typically closer to the mean). The general conclusion is that the relationship between skewness 
and price change is a complex one, and. therefore sensitive to the precise way in which skewness is 
measured. 
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series modeling of the type promoted by the Cowles Commission. A VAR is ef­
fectively a reduced form estinaated by ordinary least squares (OLS) in which the 
righthand side variables are contemporaneously uncorrelated wi th the disturbance. 
Typical ly these variables are exogenous variables and lags up to some order of the 
endogenous variables.'' In the VAR,"Ap, \Apt\, Vt, dispersion and skewness are all in­
cluded as endogenous variables. The lag length was chosen according to the Schwartz 
Informat ion Criterion. In all cases the result was a one-period VAR, wi th 30 coeffi­
cients (5 equations x a constant plus 5 lagged variables). This is not surprising given 
that the updating model is a Markov process. The results are shown in Table 6.3.^ 

The first point to note is tha,t when a = 0.0 the V A R is misspecified. This 
is clear f rom the own-lag coefficients of dispersion and skewness, which are close 
to 1 , and entirely unlike the coefficients in the other VARs, including a = 0.1. 
This is not surprising, given that a = 0.0 represents the Tauchen and Pitts model, 
and this model has already been shown to have a non-stationary reservation price 
distr ibution around the market-clearing price. In the non-linear model (i.e. a > 0.0) 
the bounds on the expectations ensure that the reservation price distribution is 
stationary around the market-clearing price. 

The salient features of the non-linear models in Table 6.3 are ( i) a negative rela­

tionship between price change and lagged skewness, which becomes stronger as the 

non-linearity increases; (ii) a positive relationship between absolute price change 

and lagged dispersion at all levels of non-linearity; (i i i) positive autocorrelation in 

volume at higher levels of non-linearity and a strong positive relationship between 

volume and lagged dispersion at all levels of non-linearity; (iv) positive autocorrela­

t ion in both dispersion and skewness at high levels of non-linearity; (v) exogeneity 

of dispersion and skewness. . 

''For a discussion of some of the methodological issues raised in VAR modeling, see Darnell and 
Evans (1990). ; 

should be noted that tests for possible non-stationarity among the variables, as would usually 
accompany a VAR analysis, are not necessary since by construction the data are stationary. 
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Table 6.3: V A R Results for Price Change and Volume 

Const. Apt-i Vt-l Disp f - i Skewj_i Exog. 

a = 0.0 

Apt 0.086t -0.002 1.467 
\Apt\ -0.036 0.002t 0.000 4.194** 

Vt 41.114 1.358 5.924t -0.010 3.990** 
Dispj 0.715 0.473 -0.014 0.996t 1.284 
Skewf 0.074 0.001 0.854t 1.421 

a = 0.1 

Apt 0.144t -0.002t 2.706* 
\Apt\ 0.060t -0.032 0.035t 2.070 

43.212t 3.356 7.858t 23.541** 
Dispt 1.381t 0.060 0.219t -0.002 0.052 2.534* 
Skewj -0.251t 0.192 2.855* 

a = 0.5 

Apt 0.128t -0.002t 2.292 
\Apt\ -0.034 0.044t 3.896** 

42.078t 4.505t 4.655t -0.573 12.408** 
Dispt 1.413t 0.153 -0.002 0.075t 1.318 
Skewj 0.188 -0.068 0.706 

a -= 1.0 

Apt . 0.102t -0.002t -0.033t 3.556** 
\Apt\ -0.026 0.041t 4.639** 

39.386t -0.227t 4.830t 0.033 4.028t 12.540** 
Dispi 1.429t 0.090 .0.146 0.093t 1.186 
Skew( 0.243 -0.003 -0.046 0.037 1.088 

a -= 2.0 

Apt 0.081 -0.002t -0.072t 11.070** 
\Apt\ -0.025 0.028t 3.145** 

Vt. 35.874t 3.700t 0.075t 4.430 17.629** 
Dispi 1.577t 0.091 0.138t 1.990 
Skewf 0.210t -0.164 0.069t 0.548 

t At least 2 standard deviations from 0 (only coefficients at least 1 standard deviation 
from zero are shown). 
* Significant at a Type I error of 5% (** 1%). The test statistic is F(4,994) under the 
null hypothesis that the variable is exogenous (i.e. not determined by lagged values of the 
other variables). 



CHAPTER 6. A MARKET-CLEARING MODEL 130 

Finding (iv) confirms the conjecture that the local way in which reservation 
prices update causes inertia in the reservation price distribution, demonstrated here 
by persistence in both dispersion and skewness. Finding ( i i i ) was conjectured in the 
previous subsection: inertia in dispersion causing autocorrelation in trading volume. 
Finding (i) has the negative relationship between skewness and price change, but not 
the autocorrelation that was a possible consequence of inertia in skewness. Finding 
(i i ) was not anticipated, although there is some evidence f rom the cross-sectional 
analysis.^ One possibility is that although the correlation between dispersion and 
absolute price change is weak i t is also robust, and so shows over time as forcefully as 
other relationships which are stronger but less robust. Finally, finding (v) identifies 
that the causality runs f rom the reservation price distribution to the price/volume 
relationship, as would be expected in a model of this type. 

The main feature missing f rom Table 6.3 is the autocorrelation in price change 

and absolute price change implied by the autocorrelation in skewness and dispersion, 

respectively. In the light of Proposition 6.2, one explanation for this, as suggested 

above, is that the relationship between price change and skewness, although strong, 

is not robust. In other words the correlation can vary widely depending upon the 

reservation price distribution, and a value of 0.153 (from a = 2.0) is only a midpoint 

of a range which might stretch down into negative vallies at certain times. This is 

investigated further in the next section. 

6.6 Autocorrelation in Price Changes 

The possibility is that the autocorrelation coeflBcient on price changes is not robust, 

i.e. i t changes over time according to the reservation prices. As an ini t ia l check 

^It is also interesting to note that there is both empirical evidence (Frankel and Froot, 1990) 
and theoretical evidence (Shalen, 1993) supporting the positive relationship between the dispersion 
of reservation prices and price volatility and trading volume, just as is illustrated here in points 
(ii) and (iii). 
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Figure 6.2: Price Changes from the First 250 Periods, a = 1.0 
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Figure 6.3: X Y Plot of Price Changes f rom the First 250 Periods, a = 1.0 
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on this pbssibility. Figure 6.2 shows the first.250 periods f rom the simulation with 
a = 1.0, which represents a midpoint in the trade-off between non-linearity and 
inertia, while Figure 6.3 gives the joined-up X Y plot of the same data.^° These two 
Figures suggest that there is definitely sorhething o.dd going on: the price change 
series seems to display conditiona,l sign dependence which appears as a swirling 
pattern in the X y plot. 

.One frequently-used test for sign-dependence is the runs test, which compares 

the actual number of runs (i.e. sign changes, also known as 'reversals') wi th the 

expected nuniber under the null hypothesis that at any point in time either a positive 

or a negative change' is-equally likely. Typically speculative prices display a higher 

than expected number of runs; one explanation attributes this to the behaviour of 

market makers (Niederhoffer and Osborne, 1966). The problem wi th runs tests in 

this context is that they do not capture the time-varying element. To a runs test, 

a, period consisting of, say, a run of length 15 and then six runs of length 1 (i.e. 

seven runs in 21 periods) is the same as seven runs of length 3. Yet i t appears that 

i t rnight be the former pattern which is the more typical of the simulation data. 

Therefore I w i l l use a test which is sensitive to this diflFerence, by considering the 

distr ibution of run length. 

Suppose the probability of a non-reversal is s, 

. Pr{sign { A p J = s i g n { A p i _ i } } = s, s G [0, 1), (6.24) 

^°The X Y plot is smoothed to be easier on the eye. 
^^My thanks to Denis .O'Brien for pointing out to me that this pattern appears to be chaotic 

about an attractor. Strictly, chaos is a feature of deterministic systems, and its presence in a 
stochastic system such as the model presented here would be hard to identify empirically (although 
see Brock, 1986). However, the two necessary conditions for chaotic behaviour, non-linearity and 
feedback, are both present in the model. In this respect it is reminiscent of the exchange rate 
models of De Grauwe.ahd Vansanten (1990) and De Grauwe and Dewachter (1990), although in 
these models the authors make an explicit attempt to introduce the necessary conditions for chaos, 
rather thaii noting chaotic behaviour as a possible implication. 
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and consider the geometric random variable r which represents the length of a run, 

P r { r = i } = 5 ^ - ^ ( 1 - s ) , 2 = 1,2, . . . (6.25) 

The expected length of a run can then be found as 1/(1 — s).^^ Since the uncon­

ditional expectation of Apt is zero (i.e. in the absence of information regarding the 

reservation price distribution at t — 1), so s = 0.5 and we would expect the mean 

length of a run to be close to 2.0. 

The observed and expected distribution of run lengths is shown in Figure 6.4a, 

for the complete sample of 1,000 periods using a: = 1.0. There are 489 runs in total 

giving a mean run length is 2.045. The expected distribution is under the condition 

s = 0.5. From the graph the observed distr ibution appears slightly leptokurtic 

relative to the expected: there are relatively more runs of length 1 and length 6 or 

more. 

What about for runs which start w i th a large price change? To investigate this, 

the sample is divided into two halves around the quartiles, so that large changes are 

those which fall into the first or four th quartiles. The two observed and expected 

distributions for the run lengths are shown in Figures 6.4b and 6.4c. The most 

striking feature of these two graphs is the excess number of short run lengths for 

the large price changes, and symmetrically the excess number of long run lengths 

for the small price changes. This suggests that there might be small amounts of 

negative autocorrelation following large price changes and positive autocorrelation 

following small ones. 

i2proof: 

1 = 1 1 = 1 \ / 
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Figure 6.4: The Distr ibution of Run Lengths 
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Figure 6.4: The Distr ibution of Run Lengths (cont) 

Small Price Changes 

100 4 

c 80 4 

2 60 -f 

• Observed 

• Expected 

3 4 5 

Length of Run 

>6 

Table 6.4: Tests of Run Length 

A l l Data Large Small Independence 

Simulation Data (1,000 observations) 

No. Runs 489 243 , 246 
Mean Length 2.045 2.012 1.988 

7.667 6.193 12.130 10.575 
p-value [0.264] [0.402] [0.059] [0.102] 

FTSE-100, 1985--94 (2,528 observations) 

No. Runs 1,275 631 644 
Mean "Length 1.983 2.021 1.946 

2.139 5.155 4.406 7.672 
p-value [0.906] [0.524] [0.622] [0.263] 

For the three tests labeled 'AH Data', 'Large' and 'Small', the null hypothesis, is that the 
probability of reversal (5) is 0.5 (giving a mean run length of 2.0). For the independence 
test,- the null hypothesis is that the run length distributions for initial small and large 
price changes are drawn from the same population. The p-values show the area to the 
right of the test statistic under the null hypothesis.. 
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Table 6.4 gives the statistics of the hypothesis s — 0.5, i.e. the reservation price 
distr ibution has l i t t le effect on the probability of reversal, and also the test of 
independence between the distribution of run length and the size of the in i t ia l price 
change. None of the x^ tests quite breaches the classical threshold of significance 
at a Type I error of 5%. However, given the cost of a Type I I error in this test, i.e. 
of asserting erroneously that there is effectively no time-variation in the probability 
of a reversal, a more generous Type I error might be appropriate, in which case the 
evidence does not rule out the possibility of some time variation. 

Out of interest. Table 6.4 also reports the results of the same tests using the 

FTSE-100 data described in Chapter 5. The results f rom the FTSE-100 are in all 

cases more supportive of the null hypothesis than those of the simulation (i.e. the 

values of the test statistics are lower), but this is to be expected given that the 

futures market is likely to have several hundred active participants. As wi th the 

box of gas molecules, larger numbers lowers the magnitude of random fluctuations 

in density. 

Finally i t should be stressed that the simulations were performed completely 

wi thout revision of any kind, and that the model chosen for updating reservation 

prices was simply the a straightforward generalization of the existing linear model. 

I t is quite possible, therefore, that other specifications might generate much more 

extreme results. The purpose of the simulations is to demonstrate that such effects 

are possible, not to quantify the effects or to match them in any way to particular 

properties of speciilative price data. 

6.7 Summary and Conclusion 

This chapter took as its starting point the inappropriate property of the Tauchen and 

Pit ts model for updating reservation prices, the linearity of which caused the distri-
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bution of reservation prices around the market-clearing price to be non-stationary. 
One implication of this model is that investors would disagree more and more 
through time, and hold larger and larger positions as a consequence. 

The Tauchen and Pit ts model was replaced by a generalized non-linear specifica­

t ion which included the linear expression as a l imi t ing case. This general model has 

the property of being, a random walk only when the investor's reservation price is 

equal to the market-clearing price. In other cases there is a tendency for reservation 

prices to be revised towards the market-clearing price. Further, in the generalized 

model the deviation of the expected reservation price in the next period f rom the 

current market-clearing price is bounded, ensuring that the distribution of reserva­

t ion prices around the market-clearing price is stationary. The generalized model 

implies, through the mechanism of market-clearing, that the cross-sectional distribu­

t ion of reservation prices at time t w i l l enter into the distribution of market-clearing 

price change and trading volume over the period {t, t-hl]. I t is shown, for example, 

that the expected price change is determined by the skewness of reservation prices. 

I t was suggested that inertia in this distribution might introduce a time-series el­

ement into the price change and trading volume distributions, in accordance wi th 

observation. 

I n order to examine this conjecture Monte Carlo simulations were used at dif­

ferent degrees of non-linearity. In general, there was unambiguous evidence of a 

relationship between the skewness of the reservation price distribution and price 

change, and between the dispersion of the reservation price distribution and trading 

volume. Skewness and dispersion were also shown to have time-series properties, 

but the siniiulations did not show that these properties fed through to generate 

time-series properties in price changes. Trading volume, on the other hand, showed 

strong.positive autocorrelation. A further investigation of one set of price change 

data suggested graphically and statistically that the hypothesis that the. probability 
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of a sign reversal was equal to .0.5 irrespective of time or the size of the change 
(and, by extension, irrespecive of the distribution of reservation prices) was not 
unambiguously accepted. 

The conclusion of this analysis may be stated as a syllogism: (1) i f reservation 

prices update linearly, they have no impact on the price change and trading volume 

time-series; (2) reservation prices are unlikely to update linearly; (3) simple simula­

tions w i t h non-linear updating generate complex price/volume dynamics; (4) there­

fore a possible cause of complex price/volume dynamics is non-linear updating of 

reservation prices. 

Final ly i t should be stressed that the model as i t stands, even i f augmented 

by a dynamic news-arrival process, cannot be a completely satisfactory description 

of the price/volume relationship for the reasons discussed in Subsection 1.4.4: i t 

is irrat ional for risk-adverse investors to participate in zero-sum games, and yet 

this is the nature of investing i f all investors work f rom a public information stock. 

The model is an explanation of the way in which the rich dynamic behaviour of 

the price/volume relationship can be generated wi th in a simple optimizing model.^"^ 

Insofar as the model encompasses the explanations of A R C H effects advanced by 

Bera and Higgins (1993) i t rescues A R C H from being purely descriptive, but i t does 

not provide the kind of structural framework desired by Gallant et al. (1992). Rather 

the model shows that, wi th the constantly shifting reservation price distribution, we 

should not expect to be able to pin down the price/volume relationship to a process 

w i t h fixed coefficents. 

^^As an interesting aside, this model has much in common with rational expectations real busi­
ness cycle models. In such models the optimizing behaviour of heterogeneous agents transforms 
a white-noise input into a non-white-noise output (see, e.g., Hillier and Rougier, 1996). .A much 
earlier business cycle model of a similar nature was Schumpeter's celebrated 'ticking clock on a 
wobbly table'. 
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Chapter 7 

The Role of Market 

Microstructure 

This chapter explains how market microstructure is the likely cause of one of the 

main stylized facts about the daily return distribution. Market microstructure 

means seeing the market not as an organic whole, but rather as a forum within 

which a large number of not-necessarily-identical agents interact: " . . . market mi­

crostructure treats the interplay between market participants, trading mechanisms, 

and the dynamic behaviour of security prices in a regime where fr ict ion impedes the 

t rading process" (Coheii et a/.,, 1980, p. 249). 

The stylized fact is mean reversion in prices. Mean reversion shows up as positive 

low-order autocorrelation and negative high-order autocorrelation in returns (see, 

e.g., Poterba and Summers, 1988). Positive first-order autocorrelation in returns has 

beeen known to be a feature of daily returns since at least Fama (1965), and recent 

evidence has been summarized in Fama (1991). Corrado and Lee (1992) calculate the 

mean daily autocorrelation coefficient over 120 large stocks, each calculated over the 

period 1963-1989, to be 0.059, wi th a t-statistic of 4.63. Similar magnitudes for large 

stocks are found in French and Roll (1986); Brock et al. (1992), larger magnitudes 
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are found by Campbell et al. (1993), who also note that the autocorrelation may 
not be independent of the day of the week. 

The evidence for high-order negative autocorrelation in returns is much weaker, 

unsurprisingly given that most financial time series only go back, at best, to the first 

part of the century. Fama and French (1988) find some evidence for values of about 

—0.25 for three year lags, but these estimates are particularly dependent upon the 

pre-second world war period. The evidence f rom Poterba and Summers (1988) is 

similarly ambiguous. A n alternative approach is to examine the relative performance 

of winner and loser portfoHos. deBondt and Thaler (1985, 1987) find that stocks 

identified as losers over a three year period subsequently outperform the market, 

while winners subsequently underperform. However, this result could be explained 

by a rise in the risk premium demanded by investors holding underperforming stocks 

(Zarowin, 1989). 

Therefore although, we may treat mean-reversion as a stylised fact, i t is the 

positive first-order autocorrelation in returns which is the more pervasive aspect. 

7.1 The Martingale Theorem 

One of the interesting things about the positive first order autocorrelation in daily 

returns is that under two simple conditions i t should not exist. This is the implica­

t ion of the Martingale Theorem of Samuelson (1965, 1973). These two conditions 

are: 

1. A l l investors are identical (i.e. share a common information set which they 

each interpret in the same way, and have a common rate of time-preference); 

2. A l l investors are risk-neutral. 

Under these two conditions the price of each asset w i l l be bid to the point at which 

the expected return on the asset is the same as the risk-free interest rate. This 



CHAPTER 7. THE ROLE OF MARKET MICROSTRUCTURE 142 

interest rate w i l l be the same as the (common) rate of time preference, hence every 
asset satisfies the property that 

£ [ r ,+ i I nt] =6, (7.1) 

where S is the rate of t ime preference, is the information set at time t, and the 

return is defined 

r . ^ = ^ ^ - l , " (7.2) 
Pt-i 

where pt is the price at. t ime t and dt is the dividend for period t, which is received 

at the end of the period. Samuelson shows that eq. (7.1) and eq. (7.2) imply that 

price at time t is the discounted value of the expectation of price plus dividend at 

time i - h i : 

Pt = (1 +. 5)-' £ [pt+r - f dt+i I fit].. (7.3) 

The appellation 'Martingale Theorem' arose f rom the 1965 paper, in which Samuel-

son considered the special case of eq. (7.3) where 6 = 0 and dt+i - 0. In this case, 

£ [pt+i I pt,Pt-i,- • •] = Pt,. making prices a Martingale process, and returns a 'fair 

game'. 

By forward substitution for pt+i, eq. (7.3) is shown to. be equivalent to the 

discounted cash flow expression 

Pt f^{l + 5)-'£[dt+,\nt], (7.4) 
1=1 

provided that l i m „ _ > o o ( l + 5) £ [dt+n \ fit] = 0. A sufficient condition for this 

convergence is that dividends are expected to grow in the long term at a rate less 



CHAPTER 7. THE ROLE OF MARKET MICROSTRUCTURE 143 

than S.^ 

One feature of Samuelson's model is that i t would be very easy to test eq. (7.1) 

using A N O V A across the ex poste returns of diflferent asset classes. In fact we know 

that this test would show systematic differences in the ex post returns of the assets 

both across asset classes (e.g. equities return more than the risk-free rate) and within 

asset classes (e.g. small company stocks return more than large company stocks, see 

Banz, 1981). Therefore since this implication of the Martingale Theorem does not 

hold, at least one of Samuelson's assumptions must be wrong. 

7.2 Risk Aversion 

Samuelson (1965) mistakenly believed that the risk-neutrality assumption was not 

critical, and could be accomodated by a risk premium. However, the possibility 

that this premium niight be time-varying destroys the Martingale property (LeRoy, 

1989). Consider the case where the variance of returns is positively autocorrelated 

over time, so that a large absolute return in one period makes i t more likely that 

the return in the next period wi l l also be large. In this case risk-averse investors wi l l 

bid down asset prices following a large absolute return, so that in future periods the 

expected return is higher. The opposite pattern occurs following a small absolute 

return. These effects lead to a pattern in returns which looks a bit like positive first 

order autocorrelation wi th spikes.^ This example is relevant because of the strong 

^The practice of valuing stock using a discounted cash flow method such as eq. (7.4) is one of 
the tenets of fundamental analysis (see, e.g., WiUiams, 1938). The number of inputs to the model 
is usually much reduced by presuming a constant growth rate for dividends, often related to the 
dividend yield and the payout ratio (Gordon and Shapiro, 1956; Gordon, 1962). Therefore in a 
sense the discovery of Samuelson's pricing model 'legitimized' the existing valuation model. 

^These spikes, representing the one-off adjustment to the new regime, are sometimes known as 
the discount rate effect. Since they operate in the opposite direction to the change in the required 
return, it can be hard to pin down the time-varying properties of the ex ante mean return. This 
may be one explanation for the lack of success of time series techniques such as GARCH-M (see, 
e.g., Bera and Higgins, 1993), where the volatility appears as a variable in the mean daily return. 
Fama (1991) advances a similar argument about our inability to distinguish irrational bubbles from 
time-varying expected returns. 
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evidence suggesting that variances are positively autocorrelated over time, dating 
f rom Fama (1965) and previously discussed in Chapter 2, particularly Section 2.6. 

One enduring model that explains systematic differences in returns across and 

wi th in asset classes is the Capital Asset Pricing Model (CAPM) originating wi th 

Sharpe (1964). This model takes as axiomatic that investors are risk-averse. A l ­

though the testability of the C A P M has been extensively questioned (see, e.g.. Roll , 

1977), its widespread use in portfolio management suggests at least tacit acceptance 

of the axiom of risk aversion among practitioners. There is also direct evidence of 

risk-aversion f rom attempts to fit u t i l i ty functions consistent wi th investors' choices 

(see, e.g.. Friend and Blume, 1975; Blake, 1996).^ Therefore the C A P M may be 

used to tie in the failure of prices to be a Martingale wi th the fact of investors' risk 

aversion. 

G e n e r a l E q u i l i b r i u m 

A more direct route can be found in the general equilibrium analysis of Lucas (1978). 

In Lucas's model the equilibrium asset price turns out to be the same as that of 

the Martingale model, eq. (7.3), only in the case of risk-neutrality (Lucas, 1978, 

p. 1434, eq. 6). LeRoy (1989) notes as an implication of Lucas's model that in 

production economies (as opposed to exchange economies) the possibility of corner 

solutions w i l l affect the simple relation between risk-neutrality and the Martingale 

property. Therefore the conclusion f rom general equilibrium analysis is that, even 

wi th identical investors, risk-neutrality is probably necessary (but not sufficient) for 

asset prices to have the Martingale property. 

Therefore i t seems that i f we rule out risk-neutrality we also rule out the Mar­

tingale property of asset prices. This raises an interesting question: What is being 

^There are also, of course, the various paradoxes of human behaviour that are usually solved 
by positing risk-aversion. For a fascinating discussion of perhaps the most famous of these, the 
St. Petersburg Game of Nicolas Bernoulli, see Fellner (1965), particularly the Appendix to Chapter 
3. 
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tested in a regression of rt-^i on r j ? In other words, what is our conclusion when 
we find, as we do, a significant autocorrelation demonstrating a violation of the 
Martingale property? Fama (1991) calls this the Joint Hypothesis Problem. Any 
hypothesis test is a jo in t test of a valuation model and the assumption that the 
behaviour underlying the valuation model can be implemented at zero cost by the 
marginal market participants. Even were the Martingale assumptions to hold, the 
lagged return might be significant on account of transaction and information costs. 
But since investors are unlikely to be risk-neutral and risk-neutrality is necessary 
(but not sufficient) for the Martingale property, we should be completely unsurprised 
by the existence of significant autocorrelation. 

7.3 Heterogeneous Investors 

To summarize the previous section, we do not expect prices to be a Martingale 

because of the existence of transaction and information costs, and even in the absence 

of these costs we would not expect prices to be a Martingale because investors are 

typically risk-averse. This non-Martingale conclusion is true even when all investors 

are supposed to be identical. In this section, this heterogeneity condition is relaxed 

as well. 
i 

Noise 

The starting point is Black's observation "Noise makes financial markets possible, 

but i t also ma;kes them imperfect." (Black, 1986, p. 530). Black contrasts 'noise' 

w i t h information, and classifies market participants at any time as 'noise traders' 

and ' information traders'. Over time most investors wi l l have traded on both in­

formation and noise; sometimes they wi l l have traded on noise in the belief that 

i t is information, at other tirnes they wi l l have traded simply because they enjoy 
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trading.^ W i t h o u t noise speculative markets would not function, because the desire 
to trade would then be a product of superior information only and there would be 
no one to take the other side of any trade (see, e.g., Milgrom and Stokey, 1982; 
Tirole , 1982). However, wi th noise the price of an asset may differ f rom its value, 
since trades motivated by noise w i l l s t i l l affect prices. I t is this difference between 
price and value that motivates investors to seek out costly information, which they 
can then use to 'put one over' the noise trader at the other end of the trade. 

When noise is seen as an integral part of a financial market, the notion of market 

efficiency must be reconsidered. Black chooses to define an efficient market as one 

in which price is wi th in a factor 2 of value; he asserts that this would mean that 

markets are efficient in practice about 90% of the time. In Black's model the relation 

between price and value is like a piece of elastic of a certain length (this is my analogy, 

not Black's). When price and value are close the elastic is slack, and there is no 

tendency for the two to move any closer: " A l l estimates of value are noisy" (Black, 

1986, p. 533). Hence wi th in the slack region there wi l l be noise traders on both sides 

of each trade and no net effect on price relative to value, so price w i l l be a simple 

diffusion process. I f price and value are further apart there is a pressure for price 

to move towards yalue which is crudely proportional to their separation. As price 

moves into the elastic region the more aggressive information traders start to jo in 

in but all on the same side. Whether they ini t ia l ly prevail against the noise traders 

depends upon the price's momentum as i t enters the elastic region, and this in turn 

depends upon the precise way in whch the noise traders form their demands. To 

complicate the issue further, value itself is not constant in time, and so any reversion 

that takes place is towards a continually shift ing target. 

Black also makes the point, alluded to above, that few investors can know for 

sure that they are trading on information rather than on noise (the exception might 

""To expand slightly on this latter reason, fundmanagers may be obliged to trade by the 
perquisites that they consume, supplied by stockbrokers. 



CHAPTER 7. THE ROLE OF MARKET MICROSTRUCTURE 147 

be an insider wi th exclusive information, although he or she would ultimately be 
spotted). To use the standard portfolio management cliche, the good investors 
probably trade on information 55% of the time.^ Formal models of noise trading 
tend to dichotomize investors as either noise-based or information-based. These 
models may be interpreted as modeling states of behaviour rather than investors, 
i.e. a good investor has a 55% chance of behaving in an information-based manner.^ 

M i m e t i c Gontagion 

One recent model of heterogenous investors which is able to explain the stylized 

facts described in the. introduction is that of Lux (1995), which is based upon the 

notion of mimetic contagion among noise traders. In this model a noise trader 

becomes more wil l ing to buy (respectively, sell) i f he sees other traders buying 

(selling). This behaviour is not necessarily irrational, although this is certainly 

one explanation. First, a trader without information may be under the impression 

(correct or erroneous) that the market is generally slow to assimilate fu l ly new 

inforrnation.^ Second, even traders wi th superior information may choose to follow 

the major i ty since in doing this their reputation cannot suffer.^ Lux also introduces 

a class of information traders wi th demand proportional to the difference between 

price and value and a marketmaker who causes prices to move in the same direction 

as net excess demand. 

^This means that their identity will be very hard to infer from the performance of their portfolios. 
It also means that the bad investors will take a very long time to go bust and withdraw from the 
market. Therefore evolutionary explanations of market behaviour are not appropriate within the 
timescale of institutional stability; 

^For examples of models of this type see, e.g., Shiller (1984); Grossman and Miller (1988); 
deLong et al. (1989, 1990); Campbell and Kyle (1993). 

^This is sometimes known, for obvious reasons, as the 'greater fool' theory/fallacy. 
*This is certainly the case in the highly competitive world of fund management, with its quar­

terly appraisals and its independently assessed quartile rankings. In the absence of any information 
portfohos are typically adjusted to a benchmark representative of the median fund, this being the 
position of least risk to the managers' reputations. 
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Lux shows that this model gives rise to a rich variety of dynamic behaviour. 
One possibility is two stable equilibria in which the positive (respectively, negative) 
impact of bullish noise traders is exactly offset by the negative (positive) impact 
of information traders. Another is cyclicality where all in i t ia l trajectories converge 
on a periodic orbit in which the net sentiment of the noise traders alternates be­
tween bullish and bearish. When Lux goes on to introduce an endogenous sentiment 
factor based on actual returns compared wi th expected returns (assumed to be con­
stant) he finds that his model also generates crashes: "Once infection has reached 
the overwhelming major i ty of speculative traders, a change in basic sentiment oc­
curs because the exhaustion of the pool of potential buyers causes price increases to 
diminish" (Lux, 1995, p. 893, original emphasis). 

This model explains mean reversion as speculative overshooting. A small devia­

t ion f rom value can become amplified by the mimetic contagion of noise traders. The 

correction induced by a change in sentiment tends to push prices too far in the oppo­

site direction.^ Lux stresses that the process of mimetic contagion is widespread in 

the social and natural sciences; in other words he is import ing into finance a general 

paradigm which happens to explain stylized facts in financial markets, rather than 

proposing a model which is sufficient for the same. 

In conclusion of this section, the heterogeneity of investors appears to be an 

important part of the functioning of a financial market. Moreover, models wi th 

heterogeneous investors, such as that of Lux, are capable of generating many of the 

price dynamics which we observe (which is, of course, only a necessary condition 

for val idi ty) . This then is a second blow to the Martingale model: not only are 

investors risk-averse, but they are also heterogeneous. Consequently, non-Martingale 

behaviour in prices should be established f rom theory, a fact which is confirmed by 

empirical studies. 

^Likewise excess volatility, another stylized fact (although not one discussed in this thesis), 
arises because of the cyclicality of price around value. 
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7.4 Trading Rules 

In the two previous sections i t has been shown that, since investors are neither 

risk-neutral nor homogeneous, there is no reason to suppose that speculative asset 

prices follow a Martingale process, as proposed in Samuelson's original Martingale 

Theorem. On the contrary, there is a great deal of evidence that returns may 

be in part predictable f rom the prevailing information set. One instance of this 

has already been presented, as a stylised fact: the mean reversion of prices which 

appears as positive low order autocorrelation in daily returns. There is also a large 

and developing literature on 'anomalies', which are instances where elements in 

the information set appear to have significant predictive power. Popular contenders 

include calendar events, dividend yields and price earnings ratios, and money supply 

growth (see, e.g., Fama, 1991). 

In the microstructure approach, returns are in part predictable because at the 

very least there is no reason why they should not be. There is no class of investor in 

a position to 'arbitrage away' the predictive power of, say, past returns. One reason 

for this lack is that in practice such trading would not be arbitrage (i.e. riskless) 

since the predictive power of these anomalies is typically small, and investors are not 

risk-neutral. A second is the presence of transactions costs, both direct and indirect. 

Direct costs comprise the stockbroker's commission, the bid-ask spread (the 'touch') 

and in some countries the purchase tax (Stamp Duty in the U K ) . The indirect costs 

(sometimes known as ' implici t costs') are the opportunity cost of funds and the 

market impact, which for large transactions pushes the price at which assets can be 

bought or sold in the non-profitable direction. Hibbert (1995) puts the total cost of 

a round t r ip in the U K at around 1.5% plus opportunity cost, for large institutions 

in highly l iquid stocks (i.e. FTSE-100). For smaller but st i l l l iquid stocks (i.e. FTSE 

mid 250) this figure would be more like 10% plus opportunity cost since the touch 
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alone can be 5% or more. 

What of an investor attempting to profit f rom exploiting the non-Martingale 

behaviour of returns? Consider the case of using historic return data alone as the 

basis for a trading rule. This is analagous to the practice of 'technical analysis', 

which remains much in vogue among professional investors. An investor using such 

a rule is clearly a noise trader, since he has no informational advantage over other 

traders. Therefore we would expect that in the long run he wi l l lose his money since 

he w i l l , sporadically but inevitably, come up against information traders. The prob­

lem faced by the investor is that he does not know in what relation price currently 

stands to value. Therefore he must implement his strategy both in the slack and 

in the elastic regions discussed above. In the slack region he neither gains nor loses 

money (on average) on his buying and selling price, since he trades only wi th other 

noise traders: When transactions costs are incorporated he loses at least 1.5% per 

round t r ip , according to the figures given above. 

Suppose the investor is lucky enough to be long when, one of Lux's positive 

mimetic contagions catches on and pulls him into the elastic region in which infor­

mation traders are the sellers. He w i l l have a long run of small positive gains but 

ult imately he- w i l l be wiped out by the crash which according to Lux's model wi l l 

take prices through the slack region and into the elastic region on the other side of 

value. I f he is st i l l trading by the same rule he wi l l now stay short for another run of 

small positive gains (wi th information traders being the buyers) but then be wiped 

out again, and so on. Since these crashes are relatively rare, the median return from 

the trading rule may well be positive, even allowing for transactions costs, but the 

mean return wi l l be negative. Unfortunately for the investor, his long run perfor­

mance is determined by the mean return, not the median. When transactions costs 

are incorporated, the long run performance wi l l be more negative. 
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T h e F i l t e r R u l e 

This negative skewness which can arise in the returns (i.e. the discrepancy between 

the mean and the median) must be borne in mind when analysing the performance of 

trading rules based on noise. The classic trading strategy is the filter rule (Alexan­

der, 1961, 1964). In this rule the trader who is in the market stays in unti l the price 

has fallen by a proportion x f rom its high since he has been in, and a trader who is 

out of the market (either short or invested in the risk-free asset) stays out unt i l the 

price has risen a proportion x f rom its low since he has been out. The usual way to 

implement this rule would be to determine the amount x historically as the value 

which maximizes trading profit . 

In the absence of transactions costs, filters of size 0.0025 < x < 0.0050 appear to 

be able to generate profits through a very large amount of trading. Sweeney (1988) 

found that at their typical level of transactions costs, floor traders in D O W Jones 

industrials might profi t f rom such rules.^° Generally, however, the incorporation of 

transactions costs total ly swamps the excess return that might be achieved through 

high levels of trading. Corrado and Lee (1992) find that transactions costs of as 

l i t t l e as 12 basis points (0.12%) eliminate the difference between a filter rule and 

the performance of a buy-and-hold portfolio. Costs of the order 1.5%, as mentioned 

above, would make this filter rule ruinous in operation. 

A final problem wi th the assessment of filter rules in practice is that the samples 

over which the filters are tested are often too small to have a representative f rom 

each of the tails of the return distribution. Hence the mean of the performance 

of the rule over a sample has more in common wi th the population median than 

the population mean. As mentioned above, the population has a large amount of 

negative skewness so that the median, and consequently the sample, wi l l tend to 

10 Sweeney (1986) presents similax evidence from the foreign exchange market. 
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overstate the. profitability of the rule.^^ 

7.5 Summary 

In Chapter 6 i t was suggested that a pseudo-homogeneous investor model could gen­

erate interesting price/volume dynamics. This chapter has adopted a more classical 

approach in showing that the conditions under which we would expect prices to be 

a Martingale are not fulfilled. 

These findings agree with the empirical evidence of generally positive first-order 

autocorrelation in daily returns. But the smallness of the autocorrelation coefficient 

(i.e. the small proportion of return variance explained by past returns) led Fama to 

brand this effect "insignificant from an economic viewpoint" (Fama, 1970, p. 394). 

Subsequent work has confirmed that it is very hard to make a trading profit on the 

basis of filter rules, just as it is very hard to make a profit exploiting other types of 

anomaly. Often, where a trading profit does appear it can be explained by a change 

in riskiness or an insufficiently large sample. 

However, this does not mean that the autocorrelation can have no useful role to 

play in investors' behaviour. In the next chapter it will be shown how autocorre­

lation can be used as the basis of a timing rule for investors already committed to 

buying an asset and holding it for a substantial period. Usually, the final (generally 

insurmountable) hurdle to profiting from the daily return autocorrelation are the 

transactions costs. But in the case where the only issue undecided is the timing 

of a purchase to which the investor is already committed, transactions costs are 

immaterial. I t is likely that the rewards from a timing strategy are small on a 

^ ' I might also riiention an acknowledged problem in the literature concerning trading rules and 
financial markets—the preference of journal editors for studies refuting the hypothesis of market 
efficiency. This has the unfortunate effect of burying a large number of studies, such as those that 
show trading rules producing insignificant or negative returns in out of sample periods. My own 
experience and the experience of students that I have supervised suggests that this is at least as 
likely as finding a positive return. 
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per-transaction basis. But like gravity they will accrue cumulatively and so could 

make a substantial contribution to portfolio performance over the course of a year. 

Following Chapter 8, which develops the theory of optimal timing to a successful 

conclusion, Chapter 9 considers the magnitude of the reward from following such a 

rule, in order to determine whether in this context the non-Martingale property of 

prices is still economically insignificant. 



Chapter 8 

The Theory of Optimal Timing 

8.1 Introduction 

The starting point of this chapter is the presence in daily speculative asset returns 

of a small but significant amount of generally positive first order autocorrelation. 

This autocorrelation has persisted since being widely-publicised in Fama's influential 

paper on efficient capital markets (Fama, 1970); in his follow-up twenty-one years 

later, Fama notes " . . . research is able to show confidently that that daily and 

weekly returns are predictable frorn past returns" (Fama, 1991, p. 1580). 

In Chapter 6 i t was shown that this autocorrelation might arise naturally within 

pseudo-homogeneous investor models, as a result of the way in which beliefs were 

updated with reference to the prevailing market-clearing price. The alternative ex­

planation was examined in Chapter 7: heterogeneous investors and 'noise trading'. 

Crudely, 'noise' traders chase prices away from value, to the point at which it be­

comes profitable for 'fundamental' traders to step in. Therefore daily returns tend 

to move in an autocorrelated manner while prices remain within a range determined 

by the transactions costs of the lowest cost fundamental trader. As prices move 

beyond this point the pressure to reverse increases as more and more fundamental 

154 
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traders step in. The situation can be complicated by the fundamental traders having 
different notions of value. 

An often-asked question is whether a third group of traders can profit by de­

signing a strategy around this pattern of autocorrelation. Generally, empirical tests 

of such strategies confirm their profitability (relative to a buy-and-hold strategy), 

but also show that the presence of transactions costs usually more than offsets the 

benefits from trading. In Fama's phrase, the autocorrelation is insignificant from 

an economic point of view. 

This chapter and the following one challenge this view by considering the needs 

of investors with stock-holding horizons of a year or more. Because of this long 

horizon, these investors are flexible, to a degree, about the precise purchase date 

once the decision has been taken to commit a certain amount of capital to a certain 

stock. They can use the autocorrelation to squeeze an extra few shares out of their 

allocated capital by sometimes waiting to see if prices fall. The transactions costs 

that stymie attempts to trade directly on the autocorrelation are not a factor in this 

case, since the decision to trade has already been taken; the only issue remaining is 

'when?' 

This is the problem of 'optimal tiniing'. The general optimal timing problem 

is described in Section 8.2, and for the case of AR(1) returns in Section 8.3. Sec­

tion 8.4 derives sufficient conditions for a solution to the optimal timing problem, 

and Section 8.5 uses these to solve the problem for a function describing the rewards 

from following the optimal timing strategy. This function turns out to be extremely 

complicated and its computation is discussed in Chapter 9. 
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8.2 The Timing Problem 

An investor has made the decision to buy a stock and has been assigned a given 

amount of capital for the purpose. In other words, everything has been done except 

actually purcha:se the- stock, including the assessment of beliefs and the portfolio 

optimization. In fact, it is appropriate to think of the investor in this scenario as a 

specialist trader,, as indeed there are such specialists in the large fund management 

firms. Their job is to take the needs of the individual portfoHo managers, satisfy 

them internally i f possible (i.e. by the simple transfer of stock from one portfolio to 

another) and then make the net purchases and sales through the stockbroker that 

provides the most cost-effective service.^ 

Optimal Stopping 

The investor's simplest option is to make the purchase at the first opportunity, and 

this may be explicit in his role. Suppose, however, that he has some flexibility 

about the precise timing of the purchase. As well as an immediate purchase, he has 

the alternative of waiting to try and get a better (i.e. lower) price at a later date, 

while picking up some interest on the capital in the meantime. This is an optimal 

stopping problem because the investor is constantly having to reaffirm his decision to 

wait, right up uiitil the moment that he purchases the stock. Therefore in choosing 

whether or not to purchase today, , he is comparing the known reward of immediate 

action with the value of the opportunity to take the same decision tomorrow. 

Optimal stopping problems have a wide, i f fairly recent, provenence in Eco­

nomics. For example, one way of analysing voluntary unemployment is by job-search 

models, in which the agent compares a known and immediately available job with 

^As an interesting aside, the task of these specialists is to assign deals across stockbrokers 
not just by. cost but also to reflect the institution's consumption of each stockbroker's reseach 
services (and, inevitably, each stockbroker's provision of perquisites). Unless the trading of stocks 
is centralized (i.e. taken away from the fundmanagers), monitoring these activities is extremely 
hard and the system is open to abuse. 
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his expectation of the reward from waiting for a period to see what comes up. In 
this way the agent is constantly reaffirming his decision to remain unemployed up 
until the point at which taking the offered job seems the most attractive option (see, 
e.g., Sargeant, 1987, for some simple models of this type). 

Another example is the analysis of investment opportunities under uncertainty. 

Since investments are often irreversible, a mis-timed investment can be very expen­

sive. The agent here is constantly reaffirming the decision to delay the investment 

up until the point at which the cost of delaying (lost profits and the danger of a 

competitor entering the market first) exceeds the benefit of waiting (mainly extra in­

formation leading to reduced uncertainty). This type of analysis is used extensively 

by Dixit and Pindyck (1994), who consider an investment opportunity to have an 

option value which is killed at the point at which the investment goes ahead. Conse­

quently Net Present Value (NPV) calculations should include this loss of option value 

among the outgoings of the first year of the project. If this option value is ignored 

it appears as if businesses are using too high a discount rate in project appraisal, 

which is in fact a commonly-held view (among economists). Dixit and Pindyck also 

suggest this as a reason for many businesses choosing the payback period method 

of project appraisal rather than the theoretially superior NPV approach. 

The Reward From Optimal Timing 

Since the future is uncertain, the reward from following a timing rule based on opti­

mal stopping analysis, known here as an Optimal Timing Rule (OTR), is uncertain 

at the point of implementation. Therefore the reward is a random variable, defined 

as follows. •. 

Definition 8.1 (Rew^ard From Optimal Timing) The reward from implement­

ing an Optimal Timing -Rule (OTR) is the random variable r G R++, where 

denotes the positive real line, representing the factor by which the number of shares 



CHAPTER 8. THE THEORY OF OPTIMAL TIMING 158 

purchased is increased over the alternative of immediate purchase. The function 
/ : fit i -> where 

f { n t ) = £ [ r \ n t ] (8.1) 

and f2f is the information stock at time t, will be known as the reward function, and 

it represents the expected reward from implementing the OTR at time t. 

To illustrate Definition 8.1, suppose the investor has K capital and the price of the 

target stock is currently pt. If the investor purchases immediately, he receives K/pt 

shares. I f he decides to implement the OTR he receives (K/pt) x r shares at some 

point in the future; the expected reward at time t is (K/pi) x f{Qt)-^ In general, 

i.e. without reference to a particular point in time, the unconditional expectation of 

the reward from the optimal timing rule can be found, in principle, by integrating 

the reward function over the distribution of fit, by the relation 

£ [T] = £ [ £ [ T \ Q i \ ] = £ Ui^t)]- ' (8.2) 

The Benefit of Delaying 

Consider initially that the investor has the options of either purchasing immediately, 

at the end of period t, or delaying and making the purchase at the end of period 

t + l. This is riot an optimal stopping problem since there is only one decision point, 

at the end of time t. By purchasing right away, the investor assures himself a reward 

of 1. I f the investor delays for a day he benefits by one day of interest, denoted i, 

tempered by his impatience, denoted 6, where both i and 6 are unitless continuously 

^It will be assumed in this Chapter that pt & ^t, that the investor is a price-taker (i.e. can 
purchase at the price pt), and that the O T R is reviewed once a day, at the close of trading. These 
assumptions are made for simplicity and are not crucial to the analysis. 
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compounded daily proportions.^ While S could be set to zero and ignored, it will 
be seen below that impatience is a crucial factor in the realism of the OTR, since 
otherwise the OTR can imply that the investor will often wait for very long periods 
of time,'even years. In optimal stopping problems generally, impatience tends to 
take the place of utility. With impatience built in, the alternatives can be compared 
by their expectations. Those alternatives which imply stopping a long way into the 
future, are penalized by the impatience term, in much the same manner as a concave 
utility function would penalize theni according to their larger dispersion. 

If the investor chooses to delay, he is also exposed to a change in the price of the 

stock. As in Chapter 5, define the daily logarithmic return as 

rt = \n{pt/pt^i). (8.3) 

If at t the investor waits .until t + 1, he takes a chance on the return rt+\ being 

positive (resp. negative)', and so his capital buys less (resp. more) stock than before. 

Putting these together, the investor is faced with a straightforward comparison of 

rewards, denoted Tj for,the single decision point: 

1 , Buy at i . 
n=i :. (8.4) 

^t-s^-rt^. Wait until t + 1 

In order to compare these two alternatives he takes expectations conditional upon his 

information at time t, and chooses which ever-alternative has the larger expectation. 

^ I t might be suggested that in not purchasing the stock the investor misses out on its dividends, 
and so i should be defined as interest less dividends. However, the investor is compensated for the 
missed dividend by the ex-dividend fall in the stock price. Therefore if in the market the investor 
gets the dividend, while i f out he gets the benefit of the ex-dividend fall in price. In the absence 
of tax complications, these two effects offset and the role of dividends can be ignored. However, 
if there are different marginal tax rates on dividend income and capital gains, these should be 
incorporated into an operational analysis (see, e.g., Elton and Gruber, 1970). 
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giving the regard function in this simple case as 

/ i (fit) = max { 1 , e'-^ E [6"'''+' | J } , ' (8.5) 

where, once again, the 1 subscript indicates the single decision point. 

Consider now the slightly more general case, which is an optimal stopping prob­

lem, where the investor is pernaitted to delay at most 2 days, i.e. he must be invested 

by i -I- 2. There are now two decision points: at t and, conditional upon not pur­

chasing at time t, at i -h 1. Having not bought at i , the problem at t - f 1 is identical 

in structure to the problem at time giving the rewards 

r 2 = < 

1 Buy at t 

e'-*e-'"'+' . . Wait until f + 1 (8.6) 

g2(i-5) g-{re+i+n+2) Wait UUtiH + 2 

a,nd the resulting reward function is 

• ://2(a) = max { 1 , V - ^ f [e-'̂ '+> /i(Ot+i) | J } . (8.7) 

In general,: the n decision probleni (i.e. permitting a delay of Up to n days) has 

/„ on the lefthand side of the reward expression, and on the right. In the limit 

as Tt .00 the investor is permitted to delay for as long as he sees fit, and the two 

functions /„ and converge. This gives the following recursive expression for the 

reward .function of the OTR, known as its Bellman equation (see, e.g.. Dixit, 1990; 

Dixit and Pindyck, 1994). 

Definition 8,2 (Bellman Equation) The reward function of the Optimal Timing 
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Rule satisfies the Bellman equation 

fiQt) = max { 1 , e'-^8 [e-^'+^ /(O^+i) | fij } . (8.8) 

The reward function satisfying eq. (8.8) partitions the information space into 

'buy' regions where f{^t) = 1, o,nd 'wait' regions where / ( H j ) > 1. 

Expressed in words, eq. (8.8) states that at the end of period t the investor 

chooses either to purchase, in which case there is no more waiting, no more interest, 

and no more price fiuctations (and so the relative reward is 1), or he chooses to wait 

until the end of period t + 1 and then take the decision again in the light of the 

information he has gained by waiting. At t he cannot know what information he will 

gain by waiting or the return rt+i: his best guess is the expectation conditional on 

his current informatiori. The benefit of waiting includes interest on his capital but 

is tempered by his impatience, represented in the discount factor exp(z — 5). Having 

found / the investor considers his particular information set, fij. If / ( l^t) > 1 

the optimal decision is to wait, otherwise (i.e. when /(Ot) = 1) it is to purchase 

immediately. 

8.3 Optimal Timing When Returns are AR(1) 

In this chapter i t will be assumed that returns follow the positive AR(1) process 

n+i = / i + prt -\-azt+u p 6 (0, 1), (8.9) 

where Zt is a gaussian white noise disturbance process. In this case daily returns 

are Markov, and the information set Clt boils down to the return over the previous 

period, r j . From eq. (8.9), the conditional distribution rt+i | rt is normal with mean 

IX + prt and variance cr̂ . The unconditional distribution of rt+i is also normal with 
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mean /i„ and variance cr„, where 

/ ^ / = ^ ' W ( 1 - P ) , c^l = aV{l-p') (8.10) 

(see, e.g., Johnson, 1984, pp. 289-90). From Chapter 5, typical values are p. = 0.0003 

7% annualized], a = 0.0095 [15% annualized] and p = 0.05. The small value for the 

autocorrelation coefficient causes there to be little difference between the conditional 

and unconditional moments: the unconditional mean is 7.4% annualized and the 

unconditional standard deviation is 15.04% annualized. 

Incorporating eq. (8.9) into the Bellman equation eq. (8.8) gives the complete 

problem, whose domain is the mathematical field of functional analysis and operator 

theory.'' 

Definition 8.3 ( A R ( l ) Optimal Timing Problem) The optimal timing prob­

lem is to solve, if possible, for the fixed point f* = Af*, where A{f{r), r) is the 

operator 

Aif{r), r) I ^ V a x | l , e'-' J ^ e ' ^ ' f{r') cl>{r'-+ pr, a') dr'^ . (8.11) 

The Optimal Timing Rule is then to buy immediately if f*{rt) = 1, otherwise to 

delay and take the decision again on the basis of rt+i. 

The integral in eq. (8.11) is the expectation, with r' playing the role of r^+i, since 

there is no need for an expHcit time-dimension. The expression /* = Af* is then 

the Bellman equation of eq. (8.8), where /* might be thought of as the root of 

/ - ^ / = 0. 

In general i t is not possible to say whether the Optimal Timing Problem in 

''For an excellent exposition of this field see Hutson and Pym (1980), upon which much of the 
following notation is based. An applied introduction in economics can be found in Stokey et al. 
(1989). 
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Definition 8.3 has a solution, let alone how that solution might be found. However, 
if / is located within a class of functions with certain 'spatial' properties, then a 
solution is guaranteed and sometimes can be found, conditional upon operator A 
also having certain basic properties when used on functions from the class. 

Banach Spaces 

The necessary spacial properties of / are encapsulated in a Banach Space. A Banach 

space is a complete normed vector space. In a vector space the operations of addition 

and scalar multiplication are defined; a norrned vector space is a vector space in 

which a distance metric is defined; a complete normed vector space is a normed 

vector space in which all Cauchy sequences in the space converge within the space. 

The simplest Banach spaces are the Euclidean spaces, Addition is defined for 

X,Y e as Z = X + Y where Zi'^= Xi + Vi {i = 1,... , n); similarly multiplication 

by the scalar c as Z = cX where Zi'^= cXi {i = 1,... ,n) . There are many distance 

metrics, of which the most familiar is the Euclidean distance: 

\\XW = ^^x,^ + --- + x j , (8.12) 

where || • || denotes the norm of the space. A sequence Xi, X2,... is Cauchy if 

lim \\X^-Xn\\ = 0. (8.13) 

In i?" all Cauchy sequences are convergent to a point in i?", and so i?" is a Banach 

space when equiped with the Euclidean norm or, indeed, with many other norms 

(Hutson and Pym, 1980, pp. 17-19). 

More generally, consider the space of bounded continuous functions on R, de­

noted C, where addition is defined for f,g ^ C as {f + g){x) f{x) + g{x) and 

multiplication by the scalar c as (c / ) (x) =^ cf{x). The usual norm in this space is 
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the sup norm 

11/11= sup |/(a;)|. (8.14) 

The space C is a Banach space when equiped with the sup norm (Hutson and Pym, 

.1980, pp. 21-22). 

Unfortunately the simple Banach space C with the sup norm is not appropriate 

for the problem in Definition 8.3. The reason is that the requirement that /* be 

bounded is over-restrictive. By the definition of the problem, a hugely negative 

return will cause /* to be hugely positive due to the exp(—r') term, and this gives 

rise to the conjecture limr_>-oo/*('^) = oo. The use of the Banach space C would 

therefore impose inappropriate structure. 

The right Banach Space for this problem turns out to be a more specialized space 

known as a Hilbert space. A Hilbert space is a Banach space equiped with an inner 

product, which is. a function defined on any two members of the space satisfying 

certain properties, which can give rise to generalized notions of orthogonality. To 

give my own completely heuristic comparison of Banach spaces and Hilbert spaces, a 

Banach space (with the sup norm) is flat, while a Hilbert space with the appropriate 

inner product (which can act as a norm) is a 'curved' space in which the curvature 

can reflect the domain of the underlying problem. In the case of the problem in 

Definition 8.3, the Banach space C with the sup norm is flat along the domain of 

r e R, and so the problem in this space would fail to distinguish between those 

values of r which were likely and those values which were highly unlikely. But a 

Hilbert space can be made to 'curve' in R to reflect the fact that the unconditional 

distribution of r implies that certain values of r e R are highly unlikely and should 

not be accorded much weight. 

Therefore the inner product of the approprate Hilbert space is defined over the 
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unconditional distribution of r: 

{ f , 9 ) = [ f{r)g[r)<i>{r- n^^oDdr (8.15) 
JR 

where (•, •) denotes the inner product, and the Hilbert space of squared summable 

continuous functions on R with this inner product is denoted L'^{R, The norm 

of this space is derived directly from the inner product: 

( L f r , f^L\R,4>). (8.16) 

The choice of L'^{R, (f)) also has an extremely useful algebraic side-effect, without 

which the subsequent analysis would be far more complicated. This is described in 

the following lemma.^ 

Lemma 8.1 For any constant k ^ R, any function f £ L'^{R, (j)) and any parame­

ters m e R, s'^ e R. ++ 

J ' e'^ < (̂r; m, 5 )̂ dr = e^'^'-^'"'' <f>ir; k + m, s') dr. 

Proof:, The proof is straightforward. Combining the term exp(A;r) with the ex­

ponential expression in the normal distribution gives an exponential term in the 

integrand of 

/ ( r - m ) 2 \ 
exp kr —— 

V 2ŝ  J 
( 2krs'^ - r'^ + 2rm - rn^X 

= e x p ( ^ — 

exp (^0.5(fc5)^+fem-^"~^^^^^^ + ^ ^ ^ ' ) (8.17) 

5When a = -00 and 6 = oo, this lemma will be familiar to mathematicians as the derivation 
of the moment generating function of an arbitrary normal distribution, i.e. S [e*^] where X is 
normal with mean m and variance s^. 
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after completing the square in r. The first term in eq. (8.17) can then go outside 
the integral, while the second term represents the exponential expression from the 
normal distribution not with mean m but with mean ks'^ + m; everything else, 
including the variance and the limits, remains unchanged. I 

8.4 Sufficient Conditions 

Identifying L'^{R, (j)) as an appropriate space for / in the Optimal Timing Problem 

is only half the battle for solving for the fixed point /* of A. The other half is 

ensuring that the parameters of the problem, p,, a, p, i and 5, are such that the 

operator A has appropriate properties for functions such as / in L^(i?, (j)). There 

are several fixed point theorems applicable to operators on Banach spaces, but one 

of them stands out as being not only sufficient for the existence of a unique fixed 

point, but also providing an algorithm by which this point can be found. This is 

the Contraction Mapping Principle (CMP).^ 

Theorem 8.1 (Contraction Mapping Principle) Suppose that the operator A 

maps the closed subset T> of the Banach space B into T> and is a contraction. Then 

A has exactly one fixed point, f* say, in V. Further, for any initial guess fo G V, 

the successive approximations /„ = yl / „ _ ! (n > 0) converge to /*. (Hutson and 

Pym, 1980, p. 116) 

In order to employ the CMP on the optimal timing problem, two points must 

be established. First, there must be a closed subset V C L^{R, (/)) in which the 

operator A maps members back into V. Second, A must be a contraction on V. 

The first of these points is easy to establish. 

®The condition for operator^ to be a contraction is given in eq. (8.20). Crudely, an operator 
is a contraction on some set if it shrinks the distance between any two members of that set. 
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Proposition 8.1 Define V C L'^{R, 4>) as those members of L'^{R, 4>) which are 
non-increasing and nowhere less than 1; then V is closed and / € X> implies Af G V. 

Proof: It is clear that V is a closed subset of L'^{R,(j)) (crudely, V contains its 

own endpoints). Now consider f £ V and / ' Af ; it must be shown that / ' e I> 

where 

/ ' ( r ) = max | l , e''^ J e'^' f{r') (f){r'; /x + pr, a ' ) d r ' | . (8.18) 

To prove that / ' is non-increasing in r, remember that p > 0. As r increases, 

the p.d.f. 0 in the second term of eq. (8.18) shifts upwards, i.e. higher weight in the 

expectation is attached to larger values of r'. Since the first term in the expectation, 

e"*"', is decreasing in r' and positive, and the second, / ( r ' ) , is non-increasing and 

positive by construction, their product must be decrecising in r', and thus the value of 

the expectation must fall as r increases. Therefore / ' is non-increasing. Furthermore, 

since the product falls to zero in the limit r' —> oo, so at some finite point the function 

/ ' will take the value 1 and become horizontal. B 

The second point, that A is a contraction on V, is harder to establish, and 

requires a condition on the parameters. 

Proposition 8.2 The operator A is a contraction on V providing that the following 

condition holds: 

,_5 + ^ . b a ' [ \ ^ \ - l x f r ^ ) < 0 . (8.19) 

Proof : For A to be a contraction on V it must be shown that 

; \\Af-Ag\\<\\f-g\\ { f , 9 e V ) . (8.20) 
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def 
Consider some function / , and g = f + k ior some positive constant k. I t is easy to 

see that 

11/ - 9\\ = { _ ^ ( - ^ ) ' -^(^i ^l) dr^ = (8-21) 

Now consider using the operator on / and g, using 7 exp(z—5) for convenience. 

For A f , 

/ = max | l , 7 y e-'' f{r') <^(r'; /x + pr, a^) d r ' j . (8.22) 

For A 5, 

Ag = max 

= max 

1, 7 y e-""' [ /(r ' ) + A;] <^(r'; + pr, a^) dr ' j 

| l ,7ye -^7( r ' )< />(r ' ;A* + pr, a^) t^r' 

+ 7^ y e" '̂ (i>{r'- / i + pr, a") d r ' j . (8.23) 

The absolute difference between Af and Ag is always less than or equal to the second 

integral term in eq. (8.23). Using Lemma 8.1, this term can be written 

7/c / e"'"' ^{r'] n + pr, a^) dr' 
, JR 

= 7A;e-(-°'^'^'+''+'-) / <^(r'; -a'+ p, + pr, a^) dr' 
JR 

= 7A;e°-^'^'-('^+'"'). (8.24) 
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Hence, 

0.5 

\\Af - Ag\\ = I JJ,Af - AgY 4>{r- al) dr ' 

= ^jte^-S'^'-/'|e-2p(o.5(-2p)<72+/iu)|°'^ 

= A;exp(?-5 + 0.5(T^-/x + pV^-p/Xu) , (8.25) 

using Lemma 8.1 once again in the penultimate line. 

For the contraction to hold, it is sufficient that eq. (8.25) be less than eq. (8.21), 

i.e. less than k. This requires that the exponent in eq. (8.25) be less than 0. Ex­

pressing /iu and cr̂  according to their definitions in eq. (8.10) and rearranging gives 

the contraction condition of the proposition. I 

Before going any further, it is worth asking whether the contraction condition 

from Proposition 8.2 is likely to hold for typical values of the five parameters. The 

first point to note is that there is always a value for 8 which will ensure that any valid 

combination of the other parameters will satisfy the inequality. Typical (stylized) 

values of the return parameters were given after eq. (8.10) (p. 162). Taking i = 

0.0002 [6% annualized] and setting 5 = 0 gives a just-admissable value for the 

contraction condition, eq. (8.19), of -0.0001. Therefore since 5 > 0, the contraction 

condition is likely to hold for typical parameter values. 

8.5 The Solution 

By Propositions 8.1 and 8.2 the optimal timing problem defined in Definition 8.3 

satisfies the CMP, and so there is a unique solution which may be found by iteration. 
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This solution is now found in two stages. First, a general expression for /„ G P can 
be derived from the definition of the operator A. Second, the facts of uniqueness and 
convergence can be used to solve for the reward function /* in the limit as n —)• oo. 
The general expression .for /„ is given in the following proposition. 

Proposition 8.3 Let the n^'^ iteration of f , /„, be written as 

f'Jr) r < r ( " ) 
fn{r) = { , (8.26) 

1 , r > r(") 

where r̂ "̂  denotes the 'elbow' in /„, i.e. the root of f^{r) — 1 = 0. Then, for any 

initial choice fo E V, 

n n-2 n - ( i + l ) 

/ ; ( r ) - n ^ " - ^ / o M + E n Bn-^9Ar) + g^.,{r), (8.27) 
j=l j=0 i= l 

where 

B „ ( / ( r ) , r ) e - M e-^' f{r') <l>{r'; p + fyr, a') dr', (8.28) 
J-oo 

roo 
9n{r) e'-' e-U{r';p + pr,a')dr'. (8.29) 
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Proof: Consider the iteration from /„_i to / „ , and write 4>{r' r) =^ (?!>(r'; fj. + 

pr, cr̂ ) for simplicity. 

/ „ ( r ) = AU-r{r) 

= m a x | l , e'-* j^e- ' -7n-i(r ' )0(r ' | r ) d r | 

= max<!l,e^- ' / e-^'f:,_,{r') (t>{r'\ r) dr 

z'-^ [ ,e-'' (/)(r' \r)dr\ 

= m a x { l , 5 „ _ i / ; _ i ( r ) + 5„_i(r)} (8.30) 

by the definition of the operator 5 „ and the function ̂ „ in eq. (8.28) and eq. (8.29) 

respectively. This shows the iterative relationship between and fn-i-

/ ; ( r ) = B „ _ i / ; _ i ( r ) + 5„_i(r). (8.31) 

By back-substitution of / ,^_i(r) , ignoring the functional argument for simplicity 

. / ; = B „ _ i ( 5 „ _ 2 / ; _ 2 + ^ / n - 2 ) + f ? n - l - (8-32) 

Since B„ is a linear operator it is distributive across the parenthesis, hence 

fn = Bn-l Bn-2 fn-2 + Bn-1 Qn-l + 

= -S„_i -B„_2 B„_3 / „ _ 3 + Bn-\ Bn-2 Qn-i + + 

Continuing to make these back-substitutions leads directly to the expression in the 

proposition.^ I 

^Proposition 8.3 may also be proved by induction, but I prefer this proof because it is construc­
tive. 
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For the second step in finding the solution, the expression for /^( r ) is found as 
the l imit n —>̂  oo. 

Proposition 8.4 The solution to the optimal timing problem given in Definition 8.3 

is 

r ( r ) = max <( 1 , ^ 5 ^ 5 ( 0 } , (8.33) 
j=0 

where 

B{h{r), r) = e'-' f e'^' h{r') 4>{r'] p + pr, a^) dr' (8.34) 
J-oo 

/
cx> 

e-^'^{r';p + pr,a')dr' (8.35) 

and r = r* solves Yl%o ^^oi''^) — 1-

Proof : I t has already been estabhshed by the CMP (given as Theorem 8.1) that 

there is a unique fixed point which represents the solution /*, and that successive 

iterations will converge upon that fixed point, i.e. lim„_).oo/n = /*• At convergence 

fn = fn+v = •• • = f*, and:this impHes that r^") = r("+i) = • • • = r*, 5 „ = B„+i = 

• • • — B (defined in eq. (8.34)) and p„ = Qn+i = • • • = g (defined in eq. (8.35)). 

Presuming n is already arbitrarily large (i.e. we are already arbitrarily close to 

convergence), 

l i m / ; ( r ) = lim { 5 " / ^ ( r ) + J ] B " - ( ^ + i ) p ( r ) + p(r) 
n—)-oo 7i->oo ^—' I j=0 

= lim | 5 " / o ( 0 + E 5 ^ ^ w [ - (8.36) 
I j=0 ) 

The infinite series must be convergent, which in turn implies that lim„_ .̂oo 5" /o(r) = 

0, and the result follows directly. H 



CHAPTER 8. THE THEORY OF OPTIMAL TIMING 173 

Finally, it should be noted that the solution of the Optimal Timing Problem 
given in Proposition 8.4 appears deceptively simple. Expanding the infinite power 
series in the operator B for the first few terms gives: 

g{r) 

/

oo 
eT''g{r') (/.(r' | r) dr' 

+ e^^'-^^ J \ - ' \ S ^ J \ - ' ' ' g ( r ' ' ) ( j ) { r ' ' \r')dr''^cP{r'\r)d^ 

where ^(r) is itself an integral expression. The calculation of this function to the 

point of convergence is a major endeavour, and is therefore the subject of the next 

chapter. 

8.6 Summary 

The main result of this chapter is a function, the 'Reward Function' given in Defini­

tion 8.1, and solved in Proposition 8.4. This function shows the expected benefit for 

an investor implementing an optimal timing rule for a speculative asset for which 

the daily return shows positive first order autocorrelation. The OTR in this case is 

to buy the asset immediately should its return over the period just ending be greater 

than or equal to some threshold value, denoted r*, otherwise hold on for one period 

and take the same decision again at the end of the next period. The attraction of 

this rule is its extreme simplicity in implementation. This is in stark contrast to 

both the solution of the Optimal Timing Problem for the reward function expres­

sion, and the calculation of this expression for a given set of parameter values. It is 

to this latter problem that I turn in the next chapter. 



Chapter 9 

Computing the Reward Function 

The last chapter posed and solved the problem of purchase timing in a market with 

positive autocorrelation in daily returns. Briefly, an investor intends to purchase a 

given stock with a given amount of capital. Since his investment horizon is quite 

long (say, a year) he is relaxed about the precise timing of the purchase. He can 

sometimes take advantage of the small amounts of positive autocorrelation in daily 

returns by delaying his purchase. When daily returns follow an AR(1) process, 

the decision about whether or not to puchase is made by a comparison between 

the return over the period just ending, r^, and a threshold value, denoted r*. The 

Optimal Timing Rule (OTR) is to purchase immediately (i.e. at the end of period 

t) whenever rt > r*\ otherwise to wait until the end of period t + \ and then apply 

the same rule again.^ 

One question left unanswered in Chapter 8 was the magnitude of the reward 

from-following the OTR in a stock market. In this chapter the reward function /* is 

computed over a range, of likely values for the parameters to identify the threshold 

value r* and the unconditional expectation of the OTR. Section 9.1 describes the 

usual approach to solving optimal stopping problems, and its failure in this case. 

^The notation in this chapter is the same as that of Chapter 8. 

174 
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Section 9.2 describes in overview and in detail the computation of the reward func­
tion, and Section 9.3 the results over ranges of typical parameter values. Section 9.4 
discusses the results. 

9.1 One Simple Approach 

The threshold value r* can be thought of as the 'elbow' in the reward function /*, i.e. 

the smallest value of r for which /*( r ) = 1. Therefore knowledge of /* is sufficient 

for knowledge of r*, and any method which leads to /* will also yield r*. In the 

last chapter the optimal timing problem was solved explicitly, expressing the reward 

function in terms of the parameters, / i , a, p, i and 6, as given in Proposition 8.4. 

In general, however, it is extremely difficult to find solutions to non-trivial op­

timal stopping problems, and so another method is used. This method makes use 

of the Contraction Mapping Principle (CMP). As long as it can be shown that the 

problem satisfies the CMP conditions (given in Theorem 8.1), then iterations of the 

form fn = Afn-i from an appropriate starting-point /o are bound to converge on 

the true reward function /*. (For a simple exposition, see Dixit and Pindyck, 1994, 

Appendix to Chapter 3.) To implement this method, it is necessary to be able to 

describe the functions /o, / i , . . . . in a consistent and flexible manner. 

In my first attempts to find /*, made before finding the solution described in 

Section. 8.5, I used a cubic spline to describe the successive iterated functions.'^ I 

found that convergence was extremely slow and extremely unreliable (i.e. sensitive 

to the parameter values). However the fact of convergence, in whatever fashion, was 

enough to suggest that the problem was well-defined and solvable, and so encouraged 

further theoretical investigation.. 

I subsequently tried more parsimonious representations for the iterated functions 

^For an introduction to the theory and application of splines, see Press et al. (1992). 
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which were fitted by OLS following each iteration. It was clear from the cubic splines 
that the function /* was roughly piecewise linear around r*, suggesting 

(9.1) 
r > r* 

where r* =^ —a/b and b < 0. However, these failed to improve in any meaningful way 

over the-splines. Convergence was still slow and sensitive to the parameter values, 

and the notional errors about r* were much too large in relation to the standard 

deviation of daily returns to make the implementation of a strategy based around 

the estimate viable. 

9.2 Computation of the Reward Function 

The explicit solution found in Proposition 8;4. replaces one set of problems with 

another. Clearly the iterative method was not working very well, but attempting to 

calculate an infinite power-series in operators was likely to be equally, if not more, 

tricky. The problem is that there is no way of knowing, a priori, how quickly the 

series will converge. Therefore the integration routines must be capable of going 

to an arbitrary number of dimensions, to the point in the series at which some 

convergence criterion holds. This would be quite out of the question for standard 

integration routines, where the number of function calls would increase by a factor 

n for each extra dimension, where n is the number of points used in the integration.^ 

•'So, for example, the tenth term in the series would require about 3 x 10^ function calls with 
just seven points in the integration. E a c h one of these function calls introduces round-off error, 
not to mention the large amount of truncation error from using only seven points. A 'quick and 
dirty' calculation using a recursive algorithm established the infeasibility of this approach. One 
promising alternative for high dimensional integrals is that of lattice integration (see, e.g., Sloan, 
1992), but unfortunately a generic technique for integrals of greater than two dimensions has yet 
to be developed. For a general overview of the techniques of numerical integration, see Davis and 
Rabinowitz (1984). 
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However, i t is possible to exploit the particular structure of the power series to find 
the reward function /* to an accuracy close to machine accuracy. 

Overvievif of the Method 

The reward function has to be computed numerically, since it is not possible to 

resolve the terms in the operator power series into elementary functions of the pa­

rameters. Consequently, each term in the series will be evaluated not over the 

whole of r G (—oo,r*], but over a finite collection of points, ro , . . . , r„ e i?, where 

ro < r i < r2 < . . . < r„ and ro = —oo and r„ = r*. Initially, assume that r* 

is known. For each of these points bar the first (which requires special handling, 

as described below), the first term in the series, g{rk) {k = I,... ,n), can be cal­

culated directly using Lemma 8.1. After this term has been found the next term 

in the series, Bg{rk), can be approximated at each (A; = 1 , . . . , n) by numerical 

integration over the points r^i {k' = 0,,..., n): 

Bg{r,) = f e-^'g{r')(t>{r'\r,)dr' (9.2) 
J—oo 

n . ' 

^ e'-'Y,w{k\n)e-'>''g{rk')(i>{rk'\rk)/\r (9.3) 
fc'=0 

where wi^k', n) is a weight function determined by the particular method of numerical 

integration and A r is the interval width. Since the integral has an infinite lower limit, 

the weights and the interval width both need to be chosen carefully, as discussed 

further below. 
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Progressing in this way, the matrix F may be built up row by row, where 

gin) g(r2) ••• p(r„) 

Bgir,) Bg{r,) ••• Bg{r^) 

B'g{r,) B'g{r2) ••• B'g{r^) 
(9.4) 

I f F ( j , k) denotes the value of the term in row j column k, i.e. B^g{rk), the general 

rule for constructing F is 

F{j, k) = e'-' J2 ^ ( ^ ' ' ^ ' ^ ' ' ^ ( 3 -l,k') Hrk' | A r (9.5) 

where k — 1 , . . . , n and j — 1,2,... The matrix continues to be built up row by row 

until the column sums converge. At this point we know the values of /* at the points 

r i , . . . , r „ , and the general picture of /* ior r e R can be found by interpolation 

and extrapolation. 

There is a slight flaw in this method in that it presupposes that we know r*, 

when in fact r* can only be known once /* has been found. However, the value of r* 

can be found iteratively by successive appHcation of the above method. An initial 

value is chosen, say r*, and then F is computed until convergence. If r* is actually 

the true value r* then the sum of column n will be exactly 1, since f*{r*) = 1. If 

the column sum is not 1, a new (hopefully better) value is selected, and F is 

recalculated, and so on. Therefore r* can be found iteratively and simultaneously 

with / * as the root of the equation /*(r*) - 1 = 0, or in terms of F, as the root of 

Er=o^(j>")-i=o. 
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What about the values of r^? 

Numerical integration routines fall, crudely, into two camps. First, there are those 

which presume equally-spaced points and are robust across a wide range of smooth 

functions (e.g. the standard methods such as Simpson's rule); second, those in which 

the spacing of the points can be optimized for particular types of function ('quadra­

ture'). Since the nature of the functions B^g{r) are not well-known, the first method 

is applicable. However, it would take an infinite number of equally-spaced points 

to fill the range (oo,r*]. Therefore the integral must be transformed by a change of 

variable so that the range of integration is finite. 

The transformation used \sy = 1 jx which gives rise to the new integral 

r :!{x)dx = - r f{y-')y-'dy (9.6) 
J - o o J o 

providing that c < 0.'* In application it cannot be guaranteed that r* < 0 which 

necessitates a split in the range of integration, and so the general form of the integral 

becomes 

f f{x)dx = - r f{y-')y-'dy+ f f{x)dx, (9.7) 
J - o o Jo Jc 

where c is chosen as some value less than zero. The resulting values for r i , . . . , r„ 

''It should be noted that several other transformations are available, in particular y = e^. 
However, the transformation must be chosen to preserve, or enhance if possible, the smoothness 
of the function (i.e. ensure a low rate of change in the gradient), in order that the numerical 
approximation be as accurate as possible. The main determinant of this smoothness in the operator 
B is the normal distribution, which has a well-defined domain on the real line representing the 
return r. It was found by experiment that y = compressed the middle part of this domain too 
much, resulting in a rapid change in gradient of the normal distribution and inaccuracy in the 
numerical integrations. In contrast, y = 1/x tended to compress mainly the tails of the normal 
distribution, where the gradient was almost zero, and so the smoothness was not compromised. 
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and A r in the two halves are then 

CTli 
) ~k 

c + 
{r*-c){k-ni) '^^ 

def CUi 
r* - c ' 

k = 1,... ,ni -1 

k = ni,... ,ni + nr 

(9.8) 

where there are n; intervals in. the lefthand integral and in the righthand, ni+Ur 

n. 

The Weight Functions 

The second integral, on the closed range [c, r*], presents no problems and a standard 

weight set such as that of Simpson's rule can be used: 

w'{k,n)={ 

I A; = 0, n 

\ k = 1,3,5,... ,n~l (9.9) 

k = 2 ,4,6. . . , n - 2 

(see, e.g.. Press et al, 1992, p. 134), where the superscript 'c' on the weight function 

indicates that i t applies to a closed interval. The number of intervals, n, should be 

even. 

The first integral, is on the semi-open interval (0, c]. For this a combination of 

open^interval and closed interval weights can be used: 

0 

w"'{k,n) = { 

k = 0,2 

k = 1 

k = 3 

w'^{k-l,n) k = 4,...,n-l 

w''{n,n) k = n 

27 
12 

12 (9.10) 
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(see, e.g.. Press et al., 1992, pp. 134-136), where the superscript 'so' indicates a 
semi-open interval. The number of intervals in this case should be odd.^ 

Accelerated Convergence 

Finally in this section, I turn to the question of how many rows of F need to be 

calculated before the sum of the excluded terms becomes negligible. To find this 

out requires the sum of the series of terms for each column to be extrapolated from 

the terms already a,vailable. When these extrapolated sums converge across all rjt 

{k = 1,... ,n) then no more rows of F are required. 

By observing the evolution of the rows of F it was clear that each column was 

ultimately converging to its limit geometrically (sometimes known as linear conver­

gence). This suggests that the column sums can be extrapolated using Aitken's 

method (see, e.g., Davis and Rabinowitz, 1984, pp. 43-44). By this method, the sum 

of the series may be extrapolated as 

S'n^ W 2 - ^ ^ + l ^ (9.11) 
Sn+2 — 2s„+i + Sn 

where s„ is the sum up to and including the n"* term of the sequence. Using ŝ ;̂  

to denote the extrapolated sum of the A;*'' row at the n"* term, the convergence 

criterion can be written 

sup l d , f c - < . l < e (9.12) 
fc=l,...,n 

where e is determined externally, for example by machine accuracy. 

^The point is not explicitly made in Press et al. (1992), but it is clear that the weights in all 
cases should sum to the number of intervals. Hence in the closed formula there must be an even 
number of intervals (e.g. 1/3 + 4/3 + 2/3 + 4/3 + 1/3 = 4). This determines that the number of 
intervals in the semi-open weights be odd (e.g, 0 + 27/12 + 0 + 1 3 / 1 2 + 4/3 + 2/3 + 4/3 + 1 / 3 = 7). 
Hence the 4/3 factors fall on the odd terms in the closed weights (remembering the numbering 
starts at zero) and the even terms in the semi-open weights. 
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9.3 Computation Results 

The above methods were implemented in C + + . Various numbers of intervals in the 

two integrations were tried, and the results were found to be stable with anything 

at or above. 13 intervals in the'range (—oo, —3(7^], and .10 intervals in the range 

—3o'„,r*], so these were used. Convergence down the rows of F was extremely 

quick, generally taking not more than about five iterations. The simultaneous de­

termination of r* and /* , which involves finding the root of f *{r*) — 1 = 0, was 

performed by bracketing arid bisection (see, e.g.. Press et al, 1992, Ch. 9). The con­

vergence in both, the column sums, (e) and the bisection was to six decimal places. 

With these settings the time taken to find the reward function /* and the threshold 

r* was typically less than 1 second, indicating that the optimal timing rule can be 

updated in real time should there be changes in the parameters.^ 

Results 

As expected from the .results of the original spline fitting, the reward function is 

roughly linear to the left of r*, as, approximated by eq. (9.1). However, attempts to 

solve the Bellrnan equation, eq. (8.8), on the presumption that the reward function 

was linear or log-linear were not successful, and suggested strongly that there is 

some non-linearity present, perhaps up in the lefthand tail.'' 

The reward function was computed for different sets of values of cr, p and 5: 

a e {0.10,0.15,0.20} % annualized, p G {0.05, 0.10,0.15} and S e {0,z,2z}. The 

two. other parameters p and i were set to- 7 % annualized and 6 % annualized. 

^This also indicates that the optimal timing rule could be implemented for durations consider­
ably less than one day, perhaps to take advantage of the intra-day return autocorrelation structure. 

^It is worth mentioning here that there is another possible method of computation for the 
infinite power series, which I was holding in^ reserve should the method described above not have 
been effective. As in a power series of scalars it is sometimes possible to express an infinite power 
series in operators in the form (crudely) (1 - B]~^'g{r). The possible or near linearity of / * is 
suggestive of a neat- solution to this problem. However, this approach was not required since the 
convergent rows of F method was so effective. 
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Table 9.1: Values of r* at Different Parameter Settings 

Values of a (annualized) 

a = 0.10 a = 0.15 a = 0.20 

Actual Values of r* 

p = 0.05 

0 -0.0113 -0.0169 -0.0225 
5 ' i -0.0127 -0.0182 -0.0237 

2i -0.0143 -0.0196 -0.0251 

p = 0.10 

0 -0.0095 -0.0143 -0.0190 
6 i -0.0104 -0.0151 -0.0198 

2i -0.0113 -0.0160 -0.0207 

p = 0.15 

0 -0.0083 -0.0126 -0.0167 
5 i -0.0091 -0.0132 -0.0174 

2i -0.0098 -0.0139 -0.0181 

Normalized Values of r* 

p = 0.05 

0 -1.84 -1.81 -1.80 
5 i -2.04 -1.95 -1.90 

2i -2.30 -2.09 -2.00 

p = 0.10 

0 -1.55 -1.53 -1.52 
5 i -1.68 -1.62 -1.58 

2i -1.82 -1.71 -1.65 

p = 0.15 

0 -1.36 -1.34 -1.33 
6 i -1.47 -1.41 -1.39 

2i -1.58 -1.49 -1.44 

The two other parameters took constant values: p = 7% annualized and t = 6% annu­
alized. The normalized values are found as (r* — Pu)/(^u, where Pu is the unconditional 
meari and the unconditional variance of the AR(1) process for returns—see eq. (8.10). 



CHAPTER 9. COMPUTING THE REWARD FUNCTION 184 

Table 9.2: Values of S [r] at Different Parameter Settings 

Values of a (annualized) 

(7 = 0.10 c7 = 0.15 a = 0.20 

p = 0.05 

0 1.0^03 1.0^05 1.0^07 
i 1.0''02 1.0^04 LO-'oe 

2i l.C^'Ol 1.0^03 1.0^05 

p = 0.10 

0 LO^IS 1.0^20 1.0^27 
i 1.0''10 1.0^17 1.0''24 

2i 1.0^07 1.0''14 1.0^21 

p = 0.15 

0 1.0'*28 l.OMS 1.0^62 
i 1.0''23 l.O^SQ 1.0" 55 

2i 1.0^18 1.0^33 1.0M9 

See note to Table 9.1. 
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respectively. Variation in. the latter two parameters was captured through variation 
in 5. The resulting values for r* are given in Table 9.1. Also given in Table 9.1 
are the the normalized values for each r*, i.e. (r* — /iu)/a„. Expressions for the 
unconditional mean and variance and al) for the AR(1) process were given 
in eq. (8.10). Likewise, the unconditional expectations of the reward, found using 
eq. (8.2) as 

S[T]= / r(r)(/>(r; fi^, al) dr, (9.13) 
^—oo 

where (/)(•) is the normal density function, are given in Table 9.2. The marginal 

effect on the reward function of changes in these three parameters is displayed in 

Figure 9.1. The base case in each of the three parts of this Figure is a = 0.10, 

p = 0.05 and 6 = 0. For each graph the range is from p.^ - to /̂ ^ + 2(7„, giving 

some indication of natural scale. 

The first point to note from Table 9.1 is that the threshold values, r*, are all 

substantially negative and as such lie in the lefthand tail of the unconditional distri­

bution of r. At the point (0.10, 0.05, 2i) [order a, p, S], r* = -0.0143, which is -2.30 

unconditional standard deviations from the unconditional mean. An investor imple­

menting this strategy would find himself delaying on only 0.0107 of all purchases (i.e. 

about 1 in 100); where there was a delay it would almost always be for one day only. 

At the opposite end of the table, at the point (0.20,0.15,0) r* = -0.0167, which is 

-1.33 standard deviations from the mean. In this case the investor delays on about 

10 transactions in every 100. In the 'typical' case (0.15,0.05,z), the investor delays 

on about 3 in every 100. 

The structure of the entries in Table 9.1, and also in Table 9.2, is highly regular 

and almost linear. This is confirmed in Figure 9.1. A rise in a has the effect of 

lowering r* but at the sariie time raising the probability of delay, since the nor-
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Figure 9.1: Marginal Effects on the Reward Function f*{r) 

Figure 9.1a: Changes in a 
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Figure 9.1: Marginal Effects, on the Reward Function /*( r ) (cont) 

Figure 9.1c: Changes in 5 
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malized value rises towards the mean; the gradient of /* below r* remains almost 

unchanged, A rise in 5 lowers both r* and the probability of delay; again, the gra­

dient below r* remains almost unchanged. A rise in p has the effect of raising r* 

and raising the probability of delay, but it also of raising the gradient of / ' below 

r*. Consequently the reward from operating the OTR is most sensitive to changes 

in the autocorrelation coefficient. This can be seen also in a comparison of the three 

panels in Table 9.2. 

One consequence of this near-linearity is that it would take substantial changes 

in the standard deviation a and/or the autocorrelation p in order to drive r* up to 

the point at which an investor following the OTR is regularly delaying his purchases. 

Changes of the necessary magnitude would take the value of those two parameters 

well outside their typical ranges for stockmarkets. Figure 9.1 and Table 9.2 also show 

that the expected benefit from following the OTR is not very large—not surprisingly 
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given the infrequency with which' purchases are likely to be delayed. The best 
outcome, (0.20,0.15,0), generates an average of about 6 thousandths of a percent 
per purchase. In this case it would take about 160 purchases to achieve 1 percent 
outperformance of the OTR over the alternative of always buying immediately. In 
the typical case it takes about 2,500 purchases. Therefore i t must be conceded that 
the OTR is unlikely to make much diff"erence to the performance of an investor in 
a market similar in character to a typical stock market, at least if operated over a 
period of one day. 

9.4 Discussion 

I t is undoubtedly dissappointing that, after all the efforts directed at solving the 

optimal timing problem and computing the solution, it transpires that at typical 

parameter values there is very little incentive for investors to adopt the OTR. The 

rewards generated by the rule are simply too small to be of interest to a busy investor 

(although they might be delegated to a computer). In one sense this is the correct 

result, since it indicates that the autocorrelation is indeed economically insignificant, 

as Fama (1970) puts i t . . 

I t is interesting to speculate on what would have happened had the expected 

reward been a little larger. In this case it might have been worthwhile for some 

investors to implement the OTR. The result would be that after falls in the stock 

price there would be a lower-than-usual demand for stock as. investors delayed for 

a day. On the other side of the transaction, the symmetry of the problem suggests 

that sellers of stock will sometimes delay when the price has risen by a large amount. 

The consequence of these two activities would be non-linear autocorrelation in the 

daily stock returns: a large fall might trigger another fall the next day, a large rise 

might trigger another rise, but a medium-sized change in either direction would not 
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cause either buyers or sellers to delay. 

This non-linear autocorrelation is exactly the kind of process which would gen­

erate ARCH effects in the daily returns (Bera and Higgins, 1993). Therefore it is 

tempting to speculate that some investors are actually operating optimal timing rules 

based on threshold values already. This might be because some investors believe that 

daily returns are not exactly AR(1), leading to a different timing rule which may be 

be more profitable. Alternatively, it might be that expanding the information set to 

include other variables such as trading volume leads to a more powerful rule which 

is profitable. While there is no direct evidence for a better trading rule, it stands to 

reason that the correlation between trading volume and absolute price change and 

the time-series properties of trading volume will together combine to give a smaller 

standard error on the one-period-ahead daily return forecast. This is something to 

be investigated in the future. 



Chapter 10 

Summary and Conclusion 

The theme of this thesis has been daily price change and trading volume dynamics in 

a speculative asset. In reviewing the preceding chapters it is clear that the material 

presented has been relevent to this theme in three ways. First, there has been 

the theoretical analysis of the price/volume relationship, mainly but not exclusively 

through the critical appraisal and extension of an existing model. Second, there 

has been the development of tools to facilitate empirical analysis of this model 

and of price dynamics more generally. Third, the empirical analysis itself has been 

conducted. 

Theoretical Analysis 

The starting point for the analysis of the price/volume relationship is the news-

driven model of Tauchen and Pitts (1983). In this model both price change and 

trading voluirie per day are driven by the amount of news arriving during the day. 

Section 1.4 gives an overview of the location of this model in the literature. This 

overview is structured around a new taxonomy which identifies a class of models 

such as that of Tauchen and Pitts, known as pseudo-homogeneous investor models. 

190 
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which stand between descriptive and homogeneous investor models on the one side 
(e.g. the descriptive model of Bachelier (1900) and the homogeneous investor model 
of Samuelson (1965)) and heterogeneous 'noise' models (e.g. the liquidity trader 
models of Admati and Pfleiderer, 1988, 1989) on the other. 

Members of the class of pseudo-homogeneous models are sufficiently complicated 

to permit the modeling of disagreement among optimizing investors, while at the 

same time being sufficiently structured to provide a framework within which to 

analyse price/volume dynamics. This contrasts with descriptive or homogeneous 

. investor models; in these there may be behavioural optimization, but there can be 

no disagreement between investors. Heterogeneous investor models, however, are 

not structured eriough to provide much guidance concerning the daily price/volume 

relationship (Gallant et ai, 1992). While it is clear in practice that investors are 

heterogeneous, it is an empirical issue as to whether this heterogeneity is sufficiently 

large to invalidate the 'first-order' pseudo-homogeneous approximation: that in­

vestors are broadly similar in their aims and disagree only in their interpretation of 

the public information stock. 

Tauchen and Pitts 

Chapter 2 considers the pseudo-homogeneous model of Tauchen and Pitts (1983), 

and its direct antecedents, in detail. Part of the Tauchen and Pitts model, the 'intra-

day model', concerns the response of price change and trading volume to a single 

item of news, in a way that also incorporates the size of the market. Section 2.5 

suggests that there are major deficiencies in the intra-day model, some of which are 

addressed in Chapter 6. Tauchen and Pitts also provide a model for the way in 

which both price change and trading volume are generated by news on a day-to-day 

basis, the 'inter-day' model. Their attempts to estimate this model were not very 

successful, probably due, as they suggested, to the failure of their assumption that 
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the amount of news per day was independently and identically distributed. The 
time-dependence of the news-arrival process has been confirmed, at least in part, by 
studies made subsequently, some of which are discussed in Section 2.6. 

Section 2.4 develops the inter-day model to examine in more detail the relation­

ship between squared price change and trading volume. Tauchen and Pitts consider 

the case where both price change and trading volume have normal distributions and 

the amount of news per day is log-normal, and they present their results graphically 

following numerical integration. Section 2.4 shows what can be inferred from general 

specifications for the random quantities concerned. In particular it is interesting to 

note that the expected squared price change will tend to be increasing in trading 

volume, but not necessarily so, particularly at small volumes. An explicit func­

tional form can be found asymptotically in the amount of trading volume: expected 

squared price change is shown to be linear in trading volume with a Xi disturbance 

term. This result, which is independent of the news process, is used to test the 

Tauchen and Pitts model in Chapter 5. 

News 

Chapter 3 is an attempt to define news, and on the basis of this definition to consider 

what is meant in financial markets by 'the quantity of news per day', which is a 

crucial variable in models such as that of Tauchen and Pitts. A definition of news is 

proposed which implies that a piece of new information is not news to an investor 

if and only if that investor considers it equally likely have occured in every possible 

state of nature. The notion of news 'magnitude' is also discussed. 

Chapter 3 goes on to consider a model of information aissimilation in which the 

process of updating beliefs and re-optimizing plans is costly. These costs can cause 

investors to aggregate information and only sporadically update, according to a 

trade-off between the cost of updating and the loss of expected utility from having a 
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sub-optimal plan. The result is that simply counting the amount of new information 
bits which arrive will tend to over-represent news, since later information bits can 
partially or totally negate earlier bits i f information is aggregated. Consequently it 
is proposed that the quantity of news per period should be measured by the number 
of investors who re-optimize their plans during the period. This has the advantage 
that i t is easily proxied, and it simplifies to the number of news bits per period in 
the case where the updating costs are zero. 

Market Microstructure 

The final chapter centering on the theoretical analysis of the price/volume relation­

ship is Chapter 6. In this chapter the dynamics of price change and trading volume 

are considered on a per-news-item basis, i.e. at the level of the intra-day model of 

Tauchen and Pitts (1983). A model for updating beliefs is proposed which general­

izes the Tauchen and Pitts model in order to eliminate the deficiencies highlighted 

in Section 2.5. This has the effect of liberating the Tauchen and Pitts intra-day 

model from its very strict independence of price change and trading volume both 

contemporaneously and from news item to news item. 

Crucially, the distribution of investors' beliefs about future prices is found to 

play an important role in determining both the price change and trading volume 

subsequent to the arrival of new information. Since this belief distribution changes 

only slowly through time (because each investor's belief updates locally, i.e. an 

investor is unlikely to go from being strongly bullish to strongly bearish on the 

receipt of a single piece of news), the result is a contemporaneous correlation between 

absolute price change and trading volume which also has time-series properties. A 

combination of theoretical results and Monte Carlo simulations suggests that the 

skewness of investors' beliefs impacts mainly on the price change, while dispersion 

of beliefs impacts mainly on the absolute price change and the trading volume. This 
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latter result already has some theoretical and empirical support. 

New Tools 

In the course of this thesis it has been necessary to devise and implement tools 

for processing price and trading volume data, and for describing optimal investor 

behaviour under certain circumstances. 

Optimal Price Index 

A new index for futures prices is described in Chapter 4. The need for a futures 

price index, which joins together in some fashion the prices of individual contracts, 

has long been recognized. The simple practice of merely joining together the return 

series of the near contract ('splicing'), while it is still in widespread use, has the 

unfortunate side-effect of introducing seasonality into the futures price in addition to 

that which was already in the spot price. Chapter 4 defines the notion of optimality 

in the futures price index to be the complete absence of any seasonaHty unrelated 

to that in the spot price, in frictionless markets. From this definition a condition 

for the nature of the index weights (as functions of time and expiry dates) follows. 

This condition is solved in the special cases where there are two and three available 

contracts, to find the precise expressions for the weights. 

Chapter 4 also considers the alternative index proposed by Clark (1973). I t 

contrasts the three methods, using data from the London Stock Exchange and the 

London International Financial Futures Exchange. In theory Clark's index is shown 

to lie between the spliced index and the optimal index in its lack of seasonality. 

In practice, the Clark index and the optimal index perform perfectly and almost 

identically, with the spliced index clearly showing signs of mis-specification. Other 

aspects of the Clark index, however, such as its sample-dependence, its requirement 
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of an extra data item for each contract in each period (the open interest), and its 
difficulty of calculation, made the optimal index clearly superior. 

Contract Rollovers 

A second tool for processing the data is a method for removing some of the effects of 

contract rollover from trading volume in futures markets, described in Section 5.3. 

An investor's desired holding period will often extend beyond the expiry date of 

the near contract in a futures market, and yet he may prefer to hold only the near 

contract because of its superior liquidity. To maintain his position past expiry, 

the investor has to roll over his contracts by simultaneously closing in the near 

contract and opening in the next-to-near contract. These contract rollovers, while 

an integral part of the functioning of the market, are entirely unrelated to news 

arrival. Therefore they should be removed, if possible, from the trading volume 

series i f that series is to be used in investigating the news arrival process. The 

simple method of deseasonalization according to the quarterly expiry pattern is not 

particularly helpful, since rollovers can occur well in advance of the expiry date. 

As a proxy for the number of contact rollovers. Section 5.3 proposes a measure 

calculated from the change in the amount of open interest on the near and the 

next-to-near contracts, given in eq. (5.3). In the absence of any other effects the 

rollover of one contract will cause the open interest in the near contract to fall by 

one, and the open interest in the far contract to rise by one. The proxy counts the 

number of matched changes in open interest following this pattern. The resulting 

measure has the seasonal pattern expected, and diminishes appreciably the amount 

of seasonality in the trading volume series, although it does not eliminate it. 
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Optimal Timing Rule 

The optimal timing rule of Chapters 8 and 9 is a tool which permits an investor to 

exploit positive first-order autocorrelation in daily returns in a manner which maxi­

mizes his expected reward. The first of these chapters describes the timing problem 

and the solution in the case where speculative returns follow an AR(1) process. In 

Chapter 7 the evidence, both theoretical and empirical, for the persistence of this 

process in returns is discussed. The optimal timing rule is applicable to an investor 

who is committed to buying a speculative asset, but has not yet implemented the 

decision. I t consists of buying immediately if the daily return of the period just 

ending is greater than or equal to a certain threshold, otherwise delaying and tak­

ing the same decision in one period's time. To find the threshold is a complicated 

business, and much of Chapter 8 is taken up with the mathematics of the solution, 

which is presented in Proposition 8.4. 

Following on from Chapter 8, Chapter 9 discusses the computation of the solution 

to the optimal timing problem and the magnitudes of rewards which would accrue 

to an investor following the optimal timing rule. Since the solution is an infinite 

power-series in an integral operator, its computation is itself a major challenge. 

Two sections of the chapter are devoted to a discussion of the failure of traditional 

methods and the complete description of the methods used in their place to find the 

solution at close to machine accuracy. The chapter then turns to calculating the 

decision threshold and the expected reward from following the optimal timing rule. 

I t is found that, for typical values of the parameters, the threshold was one or more 

standard deviations below the mean return, often two or more. This implies that 

the rule in operation will cause very few delays, and this is confirmed by expected 

rewards very little in excess of that from buying immediately. I t was dissappointing 

to find that, after all the effort of solution and computation, the rule as it stood had 

little commerical value. On the other hand, this could be interpreted as evidence in 
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support of efficient markets. 

Empirical Analysis 

The empirical analysis in this thesis is concentrated in Chapter 5, although Chap­

ters 8 and 9 use descriptive statistics in order to assess the feasibility and perfor­

mance of the Optimal Timing Rule in practice. 

Chapter 5 examines the univariate properties of price change and trading volume, 

and also the bivariate properties of squared price change and trading volume. It uses 

two of the tools discussed above, the optimal price index for futures contracts and the 

method of proxying contract rollovers using changes in open interest. The analysis 

of the Tauchen and Pitts inter-day model given in Section 2.4 is used to specify the 

structure of the bivariate relationship. 

Overall, the empirical evidence from FTSE-100 contracts traded on the London 

International Financial Futures Exchange over the period 1985-1994 gives qualified 

support for the Tauchen and Pitts inter-day model. In particular, the asymptotic 

distribution for squared price change divided by trading volume does appear to be 

x f , as suggested by Proposition 2.2, although it is necessary to exclude the period of 

the stock market Crash (1987q4-1988ql). The price/volume dynamics during this 

period are clearly different from those of the rest of the period, as is made clear in 

Figure 5.9 (page 101). 

However, the relationship between squared price change and trading volume ap­

pears to be unstable with respect to price direction, which contradicts the symmetry 

of the Tauchen and Pitts model regarding good and bad news. This instability also 

contradicts the survey of Karpoff (1987), who suggests that generally the relationship 

is stable in futures markets, but not in spot markets (due to the latter's asymme­

try of transactions costs for short and long positions). However, the instability in 



CHAPTER 10. SUMMARY AND CONCLUSION 198 

the price/volume relationship is consistent with recent findings using asymmetric 
Autoregressive Conditional Heteroskedasticity models, where future price volatility 
appears to be affected by the direction of the price change. In the light of these 
conflicting findings, it is not possible to say whether the Tauchen and Pitts model 
itself is misspecified, or whether the problem lies instead in the precise functional 
form chosen. 

Conclusion 

The conclusion of this thesis should be distinguished from its contribution. The 

contribution has been summarized in the previous sections, and covers theoretical 

developments, new analytical tools, and new empirical results. This conclusion sum­

marizes what I have learned about the price/volume relationship while researching 

and writing this thesis. 

The primary conclusion of this thesis is that news alone cannot explain daily 

price/volume dynamics. The main reason for this is that, while price change and 

trading volume may well be related to the flow of news to the market, as in the 

model of Tauchen and Pitts (1983), the parameters which govern this relationship 

are inherently unstable. Therefore to explain the! price/volume relationship also 

requires an explanation of this parameter instability. 

Two explanations of parameter instability are given. One represents the currently 

prevailing orthodoxy—investors are heterogeneous. In this case the parameters fluc­

tuate in response to the weight and incHnations of the various different groups in the 

market. The other explanation is presented in Chapter 6. I t has the advantage that 

i t does not require investors tô  be heterogeneous and is, in this sense, the simpler 

explanation. 

Chapter 6 suggests that investors update their beliefs about the future price 
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of a speculative asset in a non-linear fashion, and with reference to the prevailing 
market-clearing price. The implication is that the joint distribution of price change 
and trading volume per item of news is parametized by the cross-sectional distribu­
tion of investors' beliefs, as summarized in their reservation prices. Hence, as the 
distribution of reservation prices changes through time so does the price/volume 
relationship. 

One implication of this model is that there will be time-dependency in both price 

change and trading volume. It is suggested that price change relates to the skewness 

of the reservation price distribution, and absolute price change and trading volume 

to the dispersion. Since the reservation price distribution will change only slowly 

through time (i.e. a bullish investor will typically remain bullish in the next period), 

so we should expect to see positive autocorrelation in price changes, absolute price 

changes and trading volume, irrespective of the characteristics of the news-arrival 

process. . 

This has implications for empirical work in speculative markets and, in conse­

quence, for the behaviour of investors. One important task is to separate out news 

effects from micro-structure effects, and to do this we need a series proxying the 

quantity of news per day. Chapter 3 provides a good reason for using the num­

ber of transactions recorded by stockbrokers, in preference to more direct measures 

such as the number of stories carried by information services. But we also need a 

prior specification for the price/volume relationship which incorporates parameter 

instability correlated across price change and trading volume. 

Finally, it is possible that, following the development of these more general mod­

els, the range of variation of the parameters of the return process becomes clearer, 

and we become better able to identify, in advance, periods in which the autocorre­

lation coefficient and the return mean and variance are all likely to be unusually 

large. This would be, in terms of the reservation price model, at times when the 
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distribution of investors' reservation prices was substantially skewed and dispersed. 

At these times the reward from following the optimal timing rule of Chapters 8 and 

9 might be substantial, although this reward would accrue most surely only to those 

who implement first, since the gradual adoption of timing strategies will lead in time 

to a change in the return dynamics. 

T H E E N D . 
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