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"~ Abstract

T his thesis is concerned with the daily dynamics of price change and trading volume
in a speculative market. The first part examines the news-driven model of Tauchen
‘and Pitts (19é3), and develops this model to the point where it is directly testable.
In order to imple‘ment the test a new method for creating a price index from futures
contracts is proposed. It is found that news effects can explain some but not all of
~ the strucfure of the daily price/volume reiationéhip. An alternative explanation is
presented, in which the model of Tauchen and Pitts is generalized in a non-linear
fashion.

In the second part of the thesis, the presence -of a small amount of positive
autocorrelation in daily returns is. exploited through the development of a timing
rﬁle. This timing rule applies to.inves'tors Who are committed to a purchase but
flexible about the precise timing. The comi)utation of the timing rule is discussed in
detail. In practice it is found that this tiiming rule is unlikely to generate sufficiently
large returns to be of 'intere-‘st to investors in a typical stock market, supporting the
hypothesis of market efficiency. However, the incorporation of extra information
regarding price/volume dynamics, as suggested by the analysis of Part I, might lead

- to a much improved rule.
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Chapter 1
"Precursors

" 1.1 Introduction

This thesis is concerned with the day to day behaviour of a speculative asset, trading
in a secoﬁdary market. The primary concern is to develop our understanding of the
pri:ce/volume r»elationship, and its implications. Traditionally, our understanding
of the daily price/volume relationship has been summarized by two stylized facts:
- (i) the tendér']cy'of large price changes to follow each othef, and to be accompanied
by a-large amount of trading volume; (ii) the tendency for daily price changes to
display a small amount of positive autocorrelation. In the same way, this thesis
.18 dividedAinﬁd two parts. “Part I considers ‘news’ explanations of price/volume
dynamics without explicit consideration of the endogeneity of the mean daily return.
Part 11 cénsid_ers the endogeneity of the mean daily return, but over a short time-
period in which other factoré may be taken to be roughly constant. Linking the
'two parts is a model in which both stylized facts can occur simultaneously within
a market-clearing frémexvork; again, thi-s~ reflects more recent work in which both
stylized facts emerge from considerations of market structure.

The benefit of increased understanding in this area is the more efficient pricing
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of speculative ‘a'ssets; This arises th'rough a better understanding of the process
underfyi'n'g prices, giving lrise to better (i.e. less biased, more efficient) estimators
:of the paramet-ers governfng the ‘process. However, this thesis also contains a more
immed'ia-te’ pay-off. The'Second partof the thesis develops a new type of timing
~rule Wthh wﬂl enable certaln investors to exploit the posmve autocorrelation in
R daily price changes by maklng the tunlng of thelr purchases depend upon the price

- history. -

1.2 Outline of Chapters -
K Following this outlvi'n'e‘ SectiOn 1.3 clarifies the notion of a speculative asset in general
and futures contracts in partlcular the operation of the market in futures contracts,
and investor ratronahty Sectlon 1.4 prov1des an overview of the price/volume liter-

ature., Flnally, Sectlon 1.5-examines the General Equlhbrrum picture for complete

markets using the Arr-ow-De‘breu -model, proposed by Varian (1985).

Part I: Return Leptokursis and News Arrival

'The analysis' of markets in Part Iis from the bottom up This requires both the static
analysis. of market clearlng and the dynamlc analysis of the way in which investors’
~ beliefs about the future are revrsed through time. Fundamental to a bottom-up
approach is the notion that investors dlffer,_ and hence can be satisﬁed with different
positions in a-specufative asset at 'the same price. Following a revision to beliefs an
. optrmlzrng lnvestor will often want to adJust his! portfolio, and this leads to trading
volume and a p0351ble change in the market- clearing price.

‘On this basrs the dally prlce/volume relatronshlp can be disaggregated into the

lThe phrase ‘he or she’ wrll be shortened to ‘he’ in this thesis, likewise ‘his or her’ to ‘his’; this
reflects the fact that, at the time of wrltmg, investors in speculative markets are predomlnantly
male.
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price’/{r(')l»u-mef,relétioﬂs‘hip per item of news, and the distribution of the number of
items Lof news per day. This disaggregation is found in the seminal price/volume
modelvof, Tauchen and Pitts (1983), which plays 'éin important part in the thesis and
.ser\'/,es' as a steirtiing point_'ifor the ahé,lysis of Part 1.

Chapter 2'-:desciribes the background to the Tauchen and Pitts (1983) model,
before going on fé describe the r_nodei itself and its shortcomings, particularly in
the light of sﬁbseduent ftifne}sefies W(>)‘I‘k on prices and trading volumes. This work
. has suggested tha.t the amount of ﬁews peﬂl~ day is not independently and identically
dist,ributed, as was originélly assum_ea', but appears to Be poéitively autocorrelated
from déy to day. This chapter also develops the theoreticai properties of the model
to defi_vé'a new statistical test of the model which is unaffected by the properties of
the news atrivaii bprocess.

Chapter 3 is a short chapter to clarify what we mean by news and related issues
‘such as the quantlty of news per perlod ThlS chapter suggests that it is important
to consider fﬁhe costs assomated with the process of updating beliefs following the
“‘-ar.riva‘l éf ‘new ihformatiori‘, and that the number of transactions may be a better
.indic‘at,or of th,e: quan_tity of news than the number of news stories, as is typically
\_iSed. |

: :Chapters' 4 and 5 test the Tauchen and Pitts model using the results developed
in Ghap'tér 2’and data from the London International Financial Futures Exchange
(‘LIFF E), _19'85—94. In Qrdér'to use futures prices, which have several advantages in
this context iover spot i)rice.ls,:_itA 1s necessary to combine déta. from individual futures
'contfacps i_ntov a single price index. Chapter 4 defines the notion of ‘optimality’
in price 4.indices fér-fﬁt-u'res{coptracts; and shows how optimal brice indices can be
created. Using the data from LIFFE and from the London Stock Bxchange, the
optimal price. index is shown to outperform its alternatives, including the index

used by Tauchen and Pitts in their estimation. In Chapter 5 it is found necessary
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to transfo?rﬁ the »'tr-ading:volume data to allow. for the growth in the market over
~the pégioa and also lto remove the effects of contract rollovers, which introduce
aiéémblicat“ed':pz‘i.ttern ofj‘ quarterly seasonality into the volume data. A method
is-propbsed in _whiéh éOnfract rollovers are proxied using the data on daily open
| Ainter-'eSt. - |

| Fihally in Pa,rb-I, Chapter 6 is an analysis of rharket—clearing which retains the
linear déman& fanctions of Tauchen and Pitts, but which generalizes their model for
'up‘da;tin’g ihvestors’ f(_)récasts of future prices. This leads to a relafionship between
the crOssiéectiohgi "dis'tributio_h-rof forecasts at the end of each day and the joint
distri’bution of price change and trading volume over the. following days. Since the
érOSSTSeptipﬁal 'distr_ibutioﬁ of forecasts is likely tov change only slowly tHrough time,
| thls iﬁtroduces a; time-d‘éi‘)end,ent element into price jcha.nges' and trading volume
eveﬂ in the absen{c'e’of time-dependency in the news-arrival process. This model is
'signi.ﬁ',;:ant i>n the cgntexﬁéf the previous chapters, where the main conclusion is that -

news effects alone cannot completely explain price/volume dynamics.

Part »IIia-Réturn Aut‘oéérfeiati‘on

The _rrilain‘rpur,prose of t"h’e‘ sécond‘ part of the thesis is to develop and analyse a timing
rule fof inizegtbrs' Whicil eﬁploi‘ts the sm._all amount -of predictability inherent in the
p(jsiti-vé'au;oc‘drrélativon bﬂdéily returns. -C_hépter 7 explains why it is that returns
have this autocdfrelation, with particular reference tov the Martingale theorems of
Samuelson (1965, 1973) WIéich suggest that there shpu‘ld be no relationship between
future aI_l‘di.pasAt.retugfn:s. The fe\va'rds from trading strategies based upon return
4 ‘au:tocorr‘e‘lation are also ;d'i‘__-sAcus;sed,» along with the transactions costs which make
.thém ﬁ‘nproﬁtable_wvin‘opér‘ation. |

- Chaptefs 8.and 9 develop and_analyse_a timing rule based around the return

autocorrelation.” Wivt}:l a tirﬁing rule, the decision to purchase has already been taken,
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and the only unresolved issue is when exactly to méke the purchase. Consequently
the transactions costs which ruin trading rules are effectively forgone. Chapter 8
solves the problem of optimal timing to give the ‘optimal timing rule’, which bases
the decision to purchase (as opposed to delay) upon the return of the previous day.
The function describing the pefforma.nce of this rule is solved as the fixed point of
‘a non—linear.cv)pera.tor in a Hilbert space, expressed as an infinite power series in an
integrdl operator. Chapter 9 tackles the computation of this solution, and analyses
the returns that might be geherated by following the optimal timing rule in practice
in typical stock markets. |

Finally, Chapter 10 concludes the thesis with a summary of the main results and

“some conclusions pointing towards areas for future research.

1.3 Some Clarifications

Speculative Asseté

This thesis is about‘the demand for speculative- assets. The primary common feature
of all s‘peculétive éssets 1s uncertainty about the outcome for the holder, which is
contingent upon the state of nature. Perhaps the simplest speculative asset of all
would be an Aagreement_'tvo pay or receive a certain amount of money contingent
on the result of a single toss of a fair coin to be made in the near future. This
agreement cduld be bough‘t or sold at a given price, depending upon the pay-off and
the pa,rticipabnts’ attitudes to riski.

The simplicity in this example arises from the head or tail dichotomy of the
future, the known fixed probability of 0.5 for each of the two outcomes, and the
absence of a time dimension in which the needs of the participants might change.
In contrast, the spe‘culat'i_&e assets in financial markets tend to be categorized by

complex pay—bffs spanning a large number of states of nature, subjective and poorly
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understood probabilities, and a significant .time dimension in which the assessments
.andA needs of Vthe participants might change significantly. Of course, this is what
makes these assets so interesting.

This thesis will concentrate on stock index futures confracts. This is a contract to
pay or be paid the money-equivalent of the difference in price between the contract
when it is taken out and the underlying basket of stocks at a fixed time in the future.
An investor at time ¢ taking a position of ¢ contracts for expiry at time k (k > t),

receives a pay-off at k of

f(t, k) = gc(pr — pu) (1.1)

where py; is the contract price at time ¢, px the stock index price at expiry at time
k, and c the conversion factor from index points to currency.? At any point in time
prior to the expiry of the contract, the holder has the option of closing his position
by an offsefting ‘transaction (e.g. buying one contract to close out a short position
of one contract). .In this case his pay-off is simply the money-equivalent difference

in the contract price over the period:

ft,s) =qc(psk — pu), t'<l s < k. _ (1.2)

Thesg two formulas are equivalent at the time s = k since institutional arrangements
ensure that a contract held to expiry closes at the value of the undeflying index, i.e.
Pkk = DPk- ‘

The paydut of a futures contract is uncertain at the point at which it is bought.
The only way in which the payout cah be made certain ahead of k is if the holder has
an exactly offsetting position in the stock index. The application of the standard

arbitragé framework then gives rise to the fair value relationship, in which the spot

" 2For the FTSE-100 Futures contract, for example, the price ¢ is £25 per index point.
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and futures prices are linked via the risk-free interest rate, the dividend yield and
the time to expiry. IIﬁperf_ections in the two markets, particularly sizable round-trip
transactioﬁs costs in the spot market,. mean that in practice the difference between
the spot price and the futures price varies around its fair value.?

In relation to the discussion above, futures contracts have a simple pay-off in
relation to the underlying‘stock price index, but this underlying index has a very
complicated pay—bff in relation to the various possible states of nature at time k.
Therefore futures have a clor.nplicated pay-off over the states of nature. In the in-
terval (¢, k) the arrival of new information might cause investors to reassess their
need for futures contracts (possib‘ly by chang‘ing their attitude towards risk) and/or
their subjective assessineht of the probability of various states of nature. Even an
investor who is unaffec_ted in these ways may still be affected by the resulting change
in the markelt—clearing pricé, and want to change his holding accordingly. The re-
lation between the.desired position size and the market-clearing price is completely

described by an in'vest‘or’s demand function.

. Demand Functions

Eéch ihvestor 1s presumed to have a demand function which relates his demand for
stock index futures: contracts to the contract price. This demand function arises
as the result of: some exp]iéit or implicit optimization problem: in this thesis I
will Be concerned With.vexblicit problems, and the demand functions will arise as
a consequence 6f the problem. The presence of variables other than the price in
the demand function depends on the type of investor. For example, an arbitrageur
might have the cufrent spot price, interest rate and dividend yield, and various

transact-iohs costs; a private investor using futures as a way of getting quick short-

3For more details of the theoretical properties of a futures contract’s fair value, see Cox et al.
(1981); see.Yadav and Pope (1990, 1992, 1994) for empirical studies regarding the size and vari-
ability of the premium that futures prices tend to command over spot prices and the relationship
of this premium to fair value.
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term exposure to the stock market might have wealth and parameters describing his
belief about the likely course of prices.

For any -differentiable demand function there will be some prices at which the
investor wants to be neither short nor long of the market. If the investor’s utility
function is strictly concavé, there will be exactly one price at which this is true
(Samuelson, 1983, Mathematical Appendix C), and this is termed the reservation

price.

Definition 1.1 (Reservation Price) The reservation price of an investor for a
speculative asset is that unique market price at which the investor desires to be

newther short nor long of the asset.

Samuelson showed that without any restrictions on the utility function beyond con-
cavity the demand function may change direction repeatedly (e.g., as determined by
the investor’s beliefs about the future) but it can cross the x-axis orily once, and with
negative gradient. This does not rule out the demand functions being sometimes
increasing in market pricés, as was suggested by Tobin (1958, 1969).

Reservation prices play a crucial role in models of market-clearing. It is possi-
ble- to recast an investor’s demand function in terms of’ the deviation between the
market-clearing price and the reservation price. When these demand functions are
combined into a market-clearing condition, which in the ‘cvase of futures would say
that the sum of all positions must be zero (short positions are negative), the result
is that the market-clearing price is seen to be some function of the set of reservation
prices. Consequently changes in the market-clearing price are in general a function
of the two sets of reservation prices: those from before the change, and those from
after. In exceptional circumstances it is possible to examine changes in the market-

clearing price entirely in terms of a symmetric function of the set of changes in the

reservation prices. This thesis considers such a model in detail, that of Tauchen and
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Pitts, (1983). But it. also considers the general case.!

Rational _Exp'ectati(_)ns;.

Tied up with the:_form of the demand functions and market-clearing is the issue of
rational .éxpectationsv (RE). Only cert@in types of demand function will satisfy the
‘ RE criterion:. “ ... a model that would generate price from the [distribution of
rés’ervétion prices] and "phlat' Woﬁld'simultaneously characterize agents’ [reservation
priées] in a manner th;t is consistent with agents’ expectations that price will be
‘determine‘d in a'similar faéhio'n. when the next period arrives” (adapted from LeRoy,
1989, p1604) A combination of demand functiohs and a model for updating
reéervat'ioﬁ prices-in— the light of news gives rise to a stochastic process for prices.
For RE to -Vho‘ld, this stochasvtic process should be part of the problem which gives
rise to the demaﬁa fuhcti(;)ns.

To tavke‘ a simple exa-fnple, suppose that the demand functions are linear and
that ‘réser{fatiof; ,’priées fé}llOw a random walk with normally;dis-tributed increments
(this is-in fact the modej-, of »TaucAhen and Pitts, 1983). In this case the market-
c'leiir—i'ng pricé is also a ran;iom walk with normally-distributed increments. Then the
critical questibn_fOr RE is “Can linear deméﬁd functions arise when investors expect
.~ prices' to be a random Wal.k’ with normally-distributed increments?” Interestingly,
the anis?wer. is “Yés”,,as will be shown in Chapter 2. Unfortunately, this particular
model also has some subétantial ‘weaknesses, 'and_ in eliminating these weaknesses

the RE consistency is lost, as will be discussed in Chapter 6.

‘ 4This analysis forms the basis of Chapter 6,
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Figure 1.1: A Taxonomy of Models of Speculative Markets
De-scriptive Mbdéls_ No explicit optimizing behaviour by investors.

Homdgeneous Investors All investors solve an identical problem, and are
- therefore indistinguishable.

Pseudo-Homogeneous Investors All investors solve the same generic
problem, although this problem may not be parametized in the same
way for all investors.

Heterbgeneous Investors Investors solve different problems.

1.4 An Overview of the Literature

Before commencing this ovefview of the price/volume literature it is helpful to in-
troduce a taxonomy of models of Specuiative asset, price determination. The models
considered in this thesis may be distinguished by the assumptions they make about
investor heterogeneity. The ﬁaxonomy is given in Figure 1.1.

Thig taxonomy ‘may be applied to the development of the theory of the distribu-
tion. of da,i'lypriées, and, more recently, the joint .distribution of daily price changes
and trading volume.. Parts of the following overview will be covered in much more
detail in .later chapters. Mére general surveys of the theorética.l and empirical litera-
ture on speculative prices and the price/volume relationships can be found in Fama
(1970, 1991), Karpoff (1987), West (1988) and LeRoy (1989).

1.4.1 Descriptive Models

Initially the emphasis in stock market research was on modeling prices directly,
“rather than deriving from theory implications about prices that are testable. The
earliest extant empirical suggestion for speculative price changes is that of Bachelier

(1900). As Samuelson (1972) noted, Bachelier suggested that speculative prices
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Dt, Dett, - . - followed a stochastic process satisfying
Pr{pt+s Sp |pt7pt—1)"-} :F(p_pta S) S)t: 1’2a"' (13)

In words, the distribution of the price change over sorneiperiod is independent of
the price history preceding the period, and independent of the length of the period
excepting changes of scale. Bachelier asserted that eq. (1.3) implied that F(-) was
the normal cumulative distribution function, in which case prices would conform to
a random walk with normally distributed increments.
It is nof clear on what grounds Bachelier derived the relation eq. (1.3). His
_ motivation waé to state fdrma.lly that investors should not be able to profit from
the study of past prices, buﬂlt eq. (1.3) goes much further by specifying the invari-
- ance of the distribution of increments, which makes prices a random walk, and that
these increments have a certé;in scaling property (which will be discussed further be-
low). However,'the notion that prices followed a random walk subsequent.ly received
strong empirical subport. Cowles (1933) showed fhat professional stockmarket an-
alysts were unable consistently to outperform the market, and this lead to studies
confirming that price'cha‘nges appeared to be similar to random walks (e.g., Working,
1934; Kendall, 1953; Crangér and Morgenstérn, 1963; Godfrey et al., 1964; Fama,
1965). The consensus gradually shifted from a random walk in levels to a random
walk in the logarithm of levels in order to respect the property of limited liability
>w'hich prevents stock prices from going negative (Osborﬂe, 1959). This idea was

formalised by Samuelson (1965) who proposed the alternative stochastic process

p
Pr{p.s <p|pt, pt_l,...}zF(;, s) , s,t=1,2,... (1.4)
t

which has as a solution the lognormal distribution for prices, or equivalently the nor-

mal distribution for log-returns. Samuelson termed this process economic brownian
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metion.

Return Autocorrelation

With the exception of Working (1934),5 the above studies of random walks focused

on the serial correlation in the returns Tty Tial, ..., le. the significance of p in the
regression 4
Ty =+ Py + U, (1.5)

¢

where T is the differ'enci.ng'period and u; is a white-noise disturbance term. In
general it was found for one period lags that there were fewer stocks with negative
autocorrelations than with positive ones. For example, Fama (1965) reports 8 neg-
ative e,nd 22 positive for the Dow Jones Industrial everage’portfolio over 5 years to
1962. Nine of the 22 positive autocorrelations were significant, compared to only two
of the negatlve ones.® Assessmg this and other evidence for autocorrelation, Fama
declared that it was “ ... probably insignificant from an economic point of view”

(Fama, 1970, p. 394). The small positive autocorrelatiori is now an accepted fact in
daily returns, With studies tending to confirm that, after allowing for trading costs,
there is no risk-adjusted profit to be made from trading on its basis, above that of a
buy-and-hold strategy (see, e.g., Conrad and Kaul, 1988; Lo and MacKinlay, 1988;
Brock et al., 1992; Corrado and Lee, 1992‘).7 Since the autocorrelation is so small,
much of the theory of speculative prices proceeds on the basis that daily returns are

effectively independent of the price history.

5This prescient study showed that a random walk looked very much like the evolution of a
speculative price. :

6As Fama (1970) notes, however the precise significance is hard to assess glven the apparent
leptokursis of the disturbance term, u,.

"A more detailed discussion of trading rules can be found in Section 7.4.
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1.4.2 Homogeneous Investors -

The first true homogeneous investor model was that of Samuelson (1965, 1973).
-This was not jusf an empirical specification, but a direct implication of a model of
optirhizing behaviour by investors. In Samuelson’s model all investors have identical
opinions about the future diétribution of speculative prices and are risk-neutral. In
this case the expected return on every asset will be bid down to the return on the
risk-free asset, and then the expécted change in the price of any speculative asset

will be zero.® Thus the model implies that prices have the property

£ [pt+s l Pty Pi—1, - - ] = D¢, S,t = 1,2, e (16)

known as a martingale process. This implies that returns will have zero expectation,
and so be a fair game (see, e.g., LéRoy, 1989). Samuelson’s martingale model had
an attractive basis in investor .behaviour, but it also offered a palliative to the ran-
dom walk model. If daily prices were a random walk then it was generally presumed
that the increments would have a normal diétribution, by the Central Limit The-
orem. HoWever, evidence of leptokursis in the return distribution (Osborne, 1959;
Alexander, 1961) suggested otherwise.

One response was to recast the random walk in the more general form of a stable
non-normal distribution. Mandelbrot (1963a,b) noted that eq. (1.3) was necessary
but not sufficient for F(-) to be the normal distribution. It actually defines a class
of distributions of which the normal is a special, limiting, éase. In general members
of this class are leptokurtic. However, the evidence of Fama (1965), which showed
that absolute returns seemed to clump into peﬁods of large and small, supported

an alternative explanation, that of a mixture of distributions. It had been noted by

8Technically, the expected. ezcess return should be zero, to allow for the risk-free rate. This
makes prices a sub-martingale. The risk-free rate is therefore presumed to be zero for simplicity.
Samuelson’s model is examined in more detail in Section 7.1.
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Osborné (1959) that a mixture of normal return distributions with similar means
but dissimilar variances Would also be leptokurtic. Mandelbrot’s explanation lacked
the time-dimension implicit in the clumping which could be attributed to time-series
properties in the rﬁixing process.

The notion of a mixture of distributions was formalized by Clark (1973) as a
Subordz'nated siochastz'c process. 'The price change on day t is determined by the

amount of news arrival during the period (¢ — 1, ¢], denoted n;:

. e
p=pa+y Ap, | | (1.7)

=1

where Ap; is independent_;ly and identically distributed, with zero mean to preserve
the martingdle property. Clark suggested that each increment be a normal random
variable, and the amount of news on day ¢ be an independent lognormal random
variable. This wouid give rise to a daily return diétribﬁtion with zero mean, finite
variance and leptokursis.® There have also been empirical models in which the
distribution is a mixture of normals (Kon, 1984), or a more complicated Poisson
jump—diffusidn process (Akgiray and Booth, 1986, 1987). These models are not
r#ndorﬁ walks, but are martingales on the imposition of zero expected return.

Up to this point the role of trading volume in the distribution of daily price
changes was poorly deﬁned.‘ This is not surprising, since a voluntary transaction
must indicate a difference of opinion or a difference in circumstances between the
buyer and the seller. There can be no such differences when investors are homon-
géneous. Therempirical analysis of Granger and Morgenstern (1963) found no rela-

tionship between price changes and trading Vblume, but they later found that there

9Clark’s model of is examined in detail in Section 2.1. An alternative suggestion to Clark’s
was that the amount of news had a stable non-normal distribution with infinite mean (Mandelbrot
and Taylor, 1967; Blattberg and Gonedes, 1974), which would give rise to a return distribution
with infinite variance. In practice it is still hard to tell these two models apart (see, e.g., Hall
et al., 1989) although the consensus, spurred by Occam’s razor, favours finite variance—see also
footnote 2 on page 30. . ‘
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~was a correlation between-squared price change and trading volume (Granger and

Morgenstern, 1970); This suggests that the relationship between price change and

trading volﬁme is symmetric with respect to price falls and rises.!® Clark (1973) had
“only moderate success in using volume as a proxy for news arrival; this rather ad hoc
inclusion of trading volume prompted the sardonic rejoinder “[Clark’s experiments]
have showﬁ that daily incré’ments of local time are like daily volume to the power
2.13. This empirical discove‘ry seé'ms very interesting and deserves careful thought”

(Mandelbrot, 1973, p. 159, my emphasis).

1.4.3 Pseudo-Homdgeneous Investors

Ina pseudo—homogeneous investor model all agents solve the same problem, although
certain of t_he parameters in _‘the problem might vary across investors. Consider, for
example, the simple case of deciding how many futures contracts to hold to expiry.
An investor determines the optimal number of contracts by maximizing the expected
utility of his pay-off over the various states of nature. His pay-off includes the pay-
off from holding the contracts, as in eq. (1.1), but also the interest from the wealth
he must make available to the exchange in order to trade.!! Denoting the investor’s

wealth as w and the risk-free interest rate as i, the optimization problem is!?

max'/ u(q (px — pux) + w5 1) f(Dx; Pk, 0) dpx, (1.8)

where u(-; 1) is a strictly concave utility function parametized by 7 (which might

represent the investor’s degree of risk-aversion), and f(-; pix, 0) is a probability

10K arpoff (1987) surveys the empirical evidence on the price/volume relationship. He makes an
interesting distinction between spot and futures markets regarding asymmetry of the costs of short
and long positions, and suggests that only in futures markets, where the costs are symmetric, will
there appear no relationship between price change and trading volume. This symmetry is discussed
in more detail in Section 5.4. -

11n practice the maximum size 6f the position g is constrained by the amount of wealth and the
exchange’s margin requirement.

12For simplicity, the price of the index, ¢ from eq. (1.1), will be set to 1 in the rest of this thesis.
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' den51ty functlon representing future states of nature, and parametized by the current
futures prlce and 6 (whlch might reﬂect the investor’s expectation of py at time t).
Ina pseudo-homogeneous investor model the investors are distinguished from each
other by the value of the parameters 1, § and w; consequently they are likely to
have different reservation prices. But all these investors are buying or selling futures
contracts as their only speculative asset, and operating regardless of the behaviour
of other investors, as described in eq. (1.8).

One of the first pseudo—hémogeneous investor models was that of Epps and Epps
(1976).* In this model investors’ demands are derived from portfolio theory in
such a way that the resulting démand functions are linear in price. Investors differ

- only in their expectation of fﬁture speculative asset.prices, so that they are all
identically risk-averse and share a common belief about the covariance matrix of
future asset prices. New information causes investors to modify the expectations
they aftach to ‘diffe,revnt assets, which causes them to adjust their portfolios. This
adjustment generates trading volume, as well as the potential for a change in the
market-clearing price.} Tauchen and Pitts (1983) introduce a stochastic process

;for reservation prices into a framework similar to that of Epps and Epps, but which

avoided some of the Iatter’s rather arbitrary assumptions.!®

The attraction of these two models is that they unify price change and trading
volume within a model of rational investor behaviour. Therefore they should in

principle provide testable hypotheses for the bivariate distribution of price changes
and trading volume. _Unfdrtunat’ely, an incomblete understanding of the daily dis-

tribution of news prevented these models from being fully exploited. At the same

13 Another p0351ble contender is the sequential information arrival model of Copeland (1976). In
this model effectively identical investors differ in the order in which they receive public information,
and price changes and trading volume are generated as this information disperses across the market.
In this thesis it is assumed that public information is revealed to all investors at the same time, as
tends to be the case in financial markets.

14The Epps.and Epps (1976) model is discussed in more detall in Section 2.2.

15The Tauchen and Pitts (1983) model is discussed in more detail in Sections 2.3, 2.4 and 2.5.
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time evidence started to accumulate which suggested that the amount of news per
day miglit be autocorrelated.'® This possibili'ty was in fact forseen by Tauchen and
Pitts and suggested by them as a possible reason for the poor fit of their model.
It is important to note ,ﬁhat the Tauchen and Pitts model takes the news-arrival
process as given. However; if the amount of news per day is not independently and
identically distributed, the fitting of their model by maximum likelihood would be

extremely hard givén the high dimensionality of the resulting integral expfession.

"1.4.4 Heterogen'ebuS"Investor Models

In 'pseudo-'h.omogenecius models trading volume is generated by news arrival. In-
vestors are essentially competitive, pitting their interpretation of commonly avail-
able information against each other. Economists questioned.whether this could be
entirely rational (Milgrofn and -Sto'key, 1982; Tirole, 1982). Why should investors
~ on both sides of a transaction believé that they have the advantage? Risk-averse in-
vestors avoid zero sum games, so the existence of a large amount of trading volume
implies either that many investors are not risk-averse, or, even worse, that some
investors are simply irrational. Either way, investors can be distingushed by more
than just the.parem,eters of their utility functions and their subjective probability
assessments. |

This heterogeneity now goes by the name of ‘noise’ (Black, 1986). In the simplest
noise model, uniﬁformed or ‘noise’ traders tend to chase price trends while informed
‘fundamental’ traders tend to trade only when price has been pushed a long way

from value.!” The chsequencg is that while much trading volume will be related

16This evidence is discussed in Section 2.6.

1"More generally, the designation ‘noise trader’ might be replaced by ‘noninformational trader’—
any investor buymg or selling for reasons other than superior information. For example, Admati
and Pfleiderer (1988, 1989) discuss the possibility of ‘liquidity traders’ during the course of the day
and around the weekend, and Rougier (1993) examines the impact of margin traders under the
Account settlement system in the London Stock Exchange, which injects liquidity into the market
on a fortnightly basis.
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to news, some -of it will ndt_, being related .ins‘tead'to--the .strategic exploitation of
vn.oii’se traders by fundamental traders. Even if the news arrival process was indepen-
: denil'y‘ and ident’icélly. .di'stri:bute‘d from day to day, the time series of trading volume
might display .bursts of hiéh volume whic’h may or may not be associated with large
. movements in price.'®

'The_. problem with hetef’ogeneou‘s’ investor models is that they are in some sense
too good. It ‘is -almost as though ény facet of the price/volume relationship can
be ‘explained’ ‘by an apprbpriately chosen noise ;c‘radef; this is not surprising given
that a featuré,of noise mod,éls is the presence of investors tradiAng irrationally. For
~this reasbn,\recent' ernp:irical studies of the price/volume relationship have tended
to be’ data-based. _In their ‘em'pirical analysis of the daily price/volume relationship
over. 60 years of New York Stock Exchange déta Gallant et al. observe: “Existing
models however ‘do not confront the data in its full complex1ty and have not evolved
‘sufﬁc1ently to gulde the spec1ﬁcat10n of an emplncal model of daily stock market
data” (Gallant gt al., 1992, P- 202). Iromcally, then we-appear to have come full

circle back to érﬁpi»rlcal. models, but ‘supported by recent theoretical developments.

1.5 = General Equilibrium
The modeis of the folldwiné cha;pters are partial equilibrium models in which fi-
nancial markets are taken m isolation. This ignores the broader picture of rational
agénts allocrai.;‘ing‘u resources: between current and futuré consumption by the use of
financial marketé. It also ignore_s the simultaneous determination of prices across
ﬁn@ncial marketé. These might be termed the dyna_rﬁic and the static general equi-
librium (GE) problems‘:,’respectively. The scale. of these problems makes it very hard

to incorporate any degree of investor heterogenéity. Thus dynamic GE with ratio-

. 13Noise trading models are discussed in more detail in Section 7.3.
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nal expecté,tions 'operates.at the level of homogeneous investors (see, e.g., Lucas,
1978; Hafrison and Kreps, 1979; Cox et al., 1985)."° However, there is an analy-
sis of static GE which incorporates pseudo-homogeneous investors due to Varian
(1985, 1992), based on the Arrow-Debreu model of complete markets (Arrow, 1964;
Debreu, 1959). Varian considers how differences in opinion regarding probabilities

might affect prices in GE.

1.5.1 The Arrow-Debreu Model

AInv the Arrow-Debreu model there are n investors and S states of nature. Each
investor assigns a probabilizﬁy to each state of nature, and these probabilities are
collected in the n x 'S mafrix II, such that m;, is investor ¢’s subjective probability
of state s. In what follows it will also be useful to use II; to denote the i** row of
II, and TI; the sth éolurﬁn. The market is complete in that there is a security that
pays off for every possible state of nature; each pay-off is one consumption unit if
that; state occurs, and nothing otherwise.

. Investors each start with some endowment of securities, the n x .S matrix C where
Cis 1S investor #’s initial endowment of the security which pays off in state s; as with
the probabiljties, 5,— denotes the it" row of @, and in addition the total number of
each security will be denoted ¢s. Bach invesfor acts as a price-taker in maximizing
expected utility over the security bundle C; = (cy, ... ,cs), subject to the budget
constraint imposed by his initial endowment C; and given prices P= (p1,---,Ds)-

The Lagrangian function of investor i is

s s
L(Cy, A P I, G) = max D misui(cis) = A ;ps(cis — &is), (1.9)

s=1

where wu;(+) is investor #’s utility function, assumed to be strictly concave: u} > 0,

19An excellent and rigorous exposition of these models and many related issues can be found in
Duffie (1996). _
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; < 0. The first order conditions may be \lyritten
Gi(Ci, \; P, 1L, Gy) = [0] (1.10)
where
Gf(Ci, ANy PTG G ¥ () — Aps s=1,....8 (1.11)
GG, Ni; P, TI;, 61.) dg — zsjps( (1.12)

By the strict concavity of the utility function the Jacobian of G is non-singular, and

eq. (1.10) can be solved for the demand functions and the Lagrangian function

(1.13)

(1.14)

1.5.2 Varian’s Analysis®

- Varian considers the identical satisfaction of the first-order condition for investor
in security s:

Tisup(€hy) — Aips = 0 (1.15)

Since the utility function is.strictly concave, this can be inverted to give

v Aips : .
%zﬂ(j&) (1.16)

The function fi(-) must be strictly decreasing. Varian then applies the market-

20T would like to thank Professor Hal Varian for several very helpful dlscussmns regarding the

nature and implications of his analysis. The presentation here is my own, to avoid some confusion
which arises regarding his notation and exposition.
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clearing condition for security s to endogenize the price, p,:

és = Z = Zfi <A£p3> . (1.17)
=1 s

=1

He considers two securities within a given equilibrium, s and ¢ say. In a given
equilibrium we may take ); as fixed, in which case the righthand side of eq. (1.17) is
decreasing in p; (since each f; is decreasing in p;), and the market-clearing condition

may be expressed as, in general,
pe=F(, & |I,C) s=1,...,5 (1.18)

This says that é_ necessary condition for p; # p; is (Il;, &) # (Il;, é). In other
wbrds, if every investor agrees that two étates are equally likely (although they may
disagree about how’ l-ikely) and there is the same initial'endowment of security in
each state, fhen the price of the securities paying off in those two states must be the
same. It is also clear from eq. (1.17) that
T 6 >< ¢ . I, =0, |
ps <> py accordingly as (1.19)
‘ o : I, <>1I; ¢ =4¢ :
Thus, ‘a,ll other things being equal, gfea,ter supply decreases the equilibrium price,
as does lower probability: t'he securities with the highest price are those where the
aggregate initial endowment is small and the probability generally agreed to be large.
Onlyits own, this result might be considered a claésic example of the use of
complex abstract reasoning to reach a completely obvious,‘conclusion. However,
Varian goes.oﬁ lto relate the dispersion of brobabilites to the equilibrium price, under
thé condition that all investoré have identical utility functions. Varian shows that

if investors aré sufficiently risk-averse then fi(-) = f(-) (: = 1,... ,n) is a concave
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. function of Tis- In this éasé' the sum of the n terms in eq. (1.17) will be lower for

‘ secur‘ity. s than for secﬁrity t if I1, has the samé mean as'1I;, but a larger dispersion
: (thls is, eﬁectlvely, Jensen’s 1nequahty) Thus if thé endowment of s and ¢ is the
| same, then p, < p;. In this' way \/arlan estabhshes that diversity of opinion tends to
depress a security’s price mthm a GEvframework. A§ Varian notes, this result has
.empiri.calusupport from Cragg and Malkiel (1982), who show that the relationship
, bétweeﬁex post r«eturﬁ_anél Tisk 1s clearest when risk is proxied by a measure of

diversity of opinion among investors about future prices. -

1.5.3 An ASymptofic Generalization
‘If s possible.that "Va,rian’s results may be extended by. co‘nsidering the market-
”clearmg condltlon eq. (1.17): when the number of i 1nvest0rs (n) becomes large. Asymp-
' t{Oth limits are usefulsm‘ce_tfhey allow vectors such as.II; to be replaced by a consid-
" eration of the Idis,trf14bution- of the individual componenté, mis (s=1,...,5). State-
‘nents about the'distfibution _paraméters are much rnofe general than the qualified
_i_néqualities "(‘)f eq. (1.19),2 And an eXpliéit -rélationship‘about the trade-off between,
say, mean probability in _state s and. the variance of the probabilities in state s, may
be derived. |

Qonsider the;.c,as'e where‘jéach investor has a probability vector II;-and an initial
‘eni'dowment, _6?-‘a110'c'a,t“edv _randomly from the same underlying distributions; each
- investor has the ‘same"utilify function. The result of the.indiv‘idual optimization
, _exerciée is a value for A7 which is aﬂso a ;andorn drawing for each investor from the
‘sﬁme ‘un_derl_ying ;di'stvrjibuti’qﬂn (this. would'notrr be the»-ca,se were utility functions to
vary across ihVés’cors) Dénote the mean probability in state s as 7 (s =1,...,5)

vand the mean of the resultmg multipliers as A—clearly these two means will be

" 21For example if the mean probablllty in state s is denoted 75 (s-= 1,...,S) then the set of
probablhtles for which II; > II; is a strict subset of that for whlch Ts > Ty
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| relatéd 1n some manner.

- N(‘)w‘cqns'ide‘r e_xpanding each function in the summation of eq. (1.17) around

the means;. A and 7y To simplify the nbtation—, set,
(1.20)

'.,9(’\?”) « / (/\:S>

(once again, the ¢ subscript on f is no longer required since all utility functions are

the same). Using the approxi"ma'tionvto second order,

[

.'—_ )‘1_/_\ ax
9(As; i) ~ gAm)+ | - .
, Tis — Ts 9r | X7,
, _
1| A=A DA 9 oA
g ’ _ " ' (1.21)
Tis — Ts Gnx  Grm X;ﬁ; Mis — Ts
Using this approximation in eq. (1.17) gives
6 1
S . )
— = = )‘i) 7
-
= gAE) + (= X) g+ (7 - 7) g
20 g + 207 g,\,r} (1.22)

{0/2\(?1) g + 02

SR

: -
--where the superscript (n) indicates the n-term sample statistic, o denotes the vari-
~ance and covariance, and all expréssions in g are evaluated at (), 7,). The sample

means approximate the population'mean to order O(n~%9), while we can assume that

the sample variances and covariances approximate to O(n1). Therefore eq. (1.22)
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can be written (remembering that the lefthand side also tends to a limit)

Cs + O(n'0'5) Q-jg(_7 7_Ts) + O(TL_O'S) g/\‘ + O(n—o,s) 9
* %{ (02 +0(n™) gan + (062 + O0(n7™Y)) g (1.23)

+2(oxn + O(n™)) g,\ﬂ},

where ¢; is the mean endowment of security s for each investor. In the limitn — oo

this gives

_ _ 1
és ~ g(A\Ts)+ 5-{0/2\9,\,\ + 02 gur + 20)\,,9,\,,} ) (1.24)

n—00

This expression can’ be simplified further on the reaiization that oy, = 0. Since the
probabilities sum to 1, a larger-than-average probability in state s will be matched
by a smaller-than-average piroba,bility in some other state. Therefore each investor
will have a collection of probabilities with both positive and negative deviations and
the unconditional covariance between any probability and the multiplier A; will be
zZero.

From the definition of g(-), the partials can be found as

SN (AR (A
o= (B, = (2R) 27 (2R). (1.25)
e 7 _ m T |
Furthermore, from the sufficient condition,

(1.26)

(noted by Varian, 1985, p. 315). Making these substitutions and rearranging gives
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- the final expression

Aps\ 1 /Aps)°
ar(2)32)
n—00 e 2\ 7,

A@) (B35 ) e

What does eq. (1.27) say about equilibrium asset prices? The first term in the

éurly bracket is positive (presuming u” > 0) and the second negative. Thus the sign
of the second term in eq. (1.27) is, strictly spea.kiﬁg, indeterminate. This indetermi-
nance ma.y be invherent in the problem or it may be a consequence of the truncation
of the Taylor Series after the second term—there is no way to distinguish. Proceed-
ing on the basis fhat the approximation is a good one (i.e. the indeterminance is
inherent) we may use Varian’s results to ‘configure’ the sign of the second term.
Varian showed that II; < II; & p, < py, all other‘ﬁhings being equal (see
eq. (1.19)). This implies that the curly bracket probably has negative sign with its
second term dominating the first, and in Vthe first term the squared qoeﬁicient of
variation of \; dominating that of 7;,.22 In this way, a higher 7, raises the first term
i:n eq. (1.27), since f' < O,Aa.nd makes the second less negative. This can be offset
by a higher p;, which lowers the first térm and makes the second more negative.
T he negative sign on the curly bracket is also consistent with a higher variance
of probabilities, 0,2,3, lowering prices. The higher variance makes the curly bracket
more negative, and this is offset by a lower price which makes the curly bracket less

negative and also makes the first term more positive.?*

#2To expand a little on this, consider the case where there are just a few probable states, so
that we might take 7, ~ 0.3 and o,, ~ 0.1. In this case the term (o, /7)? ~ 0.1. The values of
the men and variance of A} are completely unknown except for their sign—positive. But it seems
plausible to assert that, in the absence of any other evidence, (¢x/X)? > 0.1, and hence the X term
dominates the 7 term. ‘

23] appreciate that this type of ‘backward induction’ is at best heuristic, and at worst illogical.
However, it seems a worthwhile exercise in ‘probabilistic’ reasoning, relative to the alternative of
leaving the implications of eq. (1.27) completely unresolved.
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' Therefqre eq. (1.27) isA capable of being consistent with Varian’s results, and,
possibly, transcending them in generality. It also provides a platform for considera-
tion of more explicit utility fuhctions, although this must take place jointly with an
analysis of the functional dependencies between the four distributional parameters
that arise from within their definitions and from the optimizatioh process.

As for the impact of these results on the partial equilibrium models of the fol-
lowing chapters, it must be born in mind that considerations of equilibrium pricing
are made here on a strictly cross-sectional basis, i.e. comparisons are between two
security prices in 'thé sarﬁe GE equlibrium. The concern of the following chapters
is the evolution of equilibrium prices through time. It is not an implication of the
GE analysis that a security in which the dispersion of reservation prices increases
between one equilibrium and the next will necessarily suffer a drop in price within
a GE framework. To'e)'camir_ie this case would r_equire a dynamic heterogeneous GE
model. HoWeve_r, insofar as the cross-sectional case has any relevence, the proba-
bility of finding such an effect in dynamic heterogeneoﬁs GE is increased. But this
effect will be ingored in the forthcoming chapters, where the rﬁarket for a financial

asset will be considered in isolation from that of other assets.
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Chapter 2
The Role of News

An overview of the literature on price/volume models has already been given in Sec-
tion 1.4. This chapter centres around the seminal price-volume model of Tauchen
and Pitts (1983). This model serves as a focal point for Part I of this thesis, with sub-
sequent chapters being concerned with the issues raised by the explicit assumptions
concerning investor behavieur and investor homogeneity,. the implicit assumptions
about the news arrival process, and the data requirements.

The outline of the chapter is as follows. The first two sections review the models
of Clark (1973) and Epps ahd Epps (1976), respectively. Section 2.3 presents the
model of Tauchen and Pitts (1983), a complete model of price/volume dynamics in
which the trading activities of pseudo-homogeneous investors are driven by the news-
arrival process. Section 2.4 is a digression in which the implications (particularly
statistical) of the Tauchen and Pitts model are developed much further than in the
original paper. Section 2.5 is a theoretical critique of the model, while Section 2.6
considers the more recent evidence on the news-arrival process, and its implica-

tions for price/volume dynamics within the Tauchen and Pitts model. Section 2.7

concludes.
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2.1 Leptokursis and Clark’s Model

As was discussed in Subsection 1.4.2, Clark (1973) generalized the mixture of dis-
tributions model proposed by Fama (1965) to a subordinated stochastic process. In
Clark’s model, prices evolve according to the amount of news arrival (or ‘market’
time), rather than according to the passing of calendar time. If the information on

day t is represented by ), then the amount of news is, crudely,

> d:ef number {Qt - Qt—l} (21)

(i.e. the number of bits by ‘which the information stock has increased). The daily
Apriée series is not reaAlly D1, D2, - .. but PO POy - - Price evolution in market time
is said to be subordinate to that in calendar time, and the information stock Q, is
'~ known as the directing process.

In Clark’s model the daily price change, Ap, o Pt~ Pi—1, 1s the sum of a random

number of independent random shocks:
CApe=) Apy, (2.2)
i=1

where Apy is i.i.n. (0, az)_for all i and ¢. The condition £ [Ap:] = 0 imposes the
martingale property. In market time, as measured by increments in the information
stock, prices are still a random walk since each shock is drawn from the same (nor-
mal) distribution. But in caléndar time, as measured by the passing of trading days,
prices are only a martingale since the expected price change is zero but the variance
depends upon the dmount of news. As it stands eq. (2.2) can describe a wide range
of diffel;ent processes, depending crucially upon whether .nt has time-varying prop-
erties. HoWever, initially it was supposed that n, was independently and identically

distributed through time.
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. The diét’ribution of daily price changes (Ap;) depends upon the distribution of
the individual shocks (Apy) and the nature of the directing process, ;. Inter-
estingly, .prior to Clark’s model, Mandelbrot and Taylor (1967) had considered a
subordinated stochastic process as one explanation of price changes having a stable
nbn-normal diétribution.l- In their model the increments were normal but the di-
recting procéss was a stable nbn—normal variable with infinite mean. Clark showed
that ény stochastié direbcting process would generate leptokursis in the return dis-
tr'ivbution, without fhe conceptual dificulties of infinite variance that were present in
tile Mandelbrot and Taylor model.?

The_ﬁnconditional"moments of Ap; can be found by conditioning on n,, which
is assumed to have finite mean and variance, p, and o2 respectively for all t. The

mean and the variance of Ap, are straightforward:

E[Ap] = 5[5'[Apt'|nt]]:5[n,£[Apit]]:0, (2.3)

V[Ap] = é[Aptz] =£[€[Ap? | n]] =€ [ o?] = pao?. (2.4)

The skewness of Ap; is clearly zero since Ap; is symmetric with zero mean. To
find the kurtosis, note that given n;, Ap, is normally distributed and so must have

kurtosis equal to 3, i.e.
Taking the unconditional expectation of Ap,* gives

Elapt] = €3 (T.Lt2 ap')]= 33" (Ui + pn%)- (2.6)

1See Subsection 1.4.2. _ .
2In defense of his model, Mandelbrot noted in another paper “An added virtue of the Gaussian
is that its moments are finite, but after all, moments are an aquired taste” (Mandelbrot, 1973,

p. 158).
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Dividing by the Squared uhconditional‘ variance gives the result

2 2
ﬂj§ﬁ>:3u+m%, (2.7)

Leptokursis = 3 <
where 7, d—i-_-f On / un; the coefficent of variation of n;.

From eq. (2.7) it is clear that the degree of leptokursis in the price differences
will be determinéd by -the ‘.coefﬁcient of variation of the news process. There will
 be substantial leptokursis if the standard deviation of news is high relative to its
meén. Using price differences from cotton futures, Clark finds values for kurtosis of
19.45 (1957—1950) and 20.49 (1951-1955). This suggests that if his model is correct
the coefﬁcjent of variation of news is about 2.4. A priori, this seems rather high for
a noﬁ-negé.tive random quantity such as news. Consider, for example, the poisson
distribution, »WhiC}‘l is ofteﬁ used to represent arrival processes. This has a coeflicient
-of variation of A7%% where A is the arrival rate (i.e. mean number of arrivals per
per'iod).. If the'ﬁgure of 2.4 were correct, this would imply that the arrival rate was
about 0.2, and the probability of a no-news day‘ was about 0.8. Were this to be
true, f_oﬁr day‘s in every five v;/ould have zerd price change—clearly not consistent
with the -evidence'. Therefore, this very high degree of leptokursis casts doubts on
the ‘cbnstancy of the parameters during these two periods, or more generally on the
model itself. | |

- Clark did not make this observation about the implied coefficient of variance,
but went on to test his model ‘using trading volume to proxy the amount of news

arriving in a day. Were trading volume (v;) and news (n;) to be perfectly correlated

" (i.e. v; = a+bn,), then £ [Apt2 I vt] would be linear in v since £ [Ap,? | n) = ain.

In fact, Clark finds that a highly convex relationship fits far better than a linear
one. This is not that surprising in the light of the comment above about the high

coefficient of variation: the volume data need to be ‘beefed up’ in order to fulfill the
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role of a proxy for news.

2.2 The Epps and Epps Model

The Clark (1973) model provided a very intuitive rationale for leptokursis in daily
stock price changes: the amount of news per day is not fixed. However, trading vol-
ume appeared only as a rather imperfect proxy for the amount of news arrival, rather
than an endogenous outcome of market clearing: in the taxonomy of Section 1.4 this
is a.descriptive model, or at ‘bes';t a homogeneous investor model. Epps and Epps
(1976), hereafter EE, incorporated volﬁme directly by considering the decisions of
individual investors: this is a pseudo-homogeneous mbdel, with a basis in optimizing
investor behaviour. In this way EE were able to model the influence of news on the
amount of stock demanded by any investor, and the subsequent volume generated
as each investor altered his position in the light of changes in the market-clearing
. price.

In the EE model, each investor- maximizes utility over the blend of assets in
his portfolio, subject. to arwéalth constraint. The end of period asset values are
unkbwn, but utility is a,ssu-‘med to be a function of a portfolio’s expected value and

its variance, and so the problem is

mag u(go o + Q' X, Q'S Q) subject to gopo + Q'P = w. (2.8)

q0,

In eq. (2.8), @ is the vector of quantitiés of risky assets, X their expected end-of-
. period values (including coupons, dividends, etc.), S the covariance matrix of these
valﬁes, P the current, prices, aﬁd w the investor’s current wealth; the riskless asset,
(asset 0) has been separated out. |

Itis interesﬁing to note the implicit as.sumption that the general portfolio problem

can be written as a problem involving the maximization of a function over portfolio
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mean and variance. This is only the case when the distribution of asset prices at the
end of the period is- jointly normal. In other cases the problem of the maximization of
expected utility does not collapse in this convenient fashion (see, e.g., Copeland and
: Westqn, 1988, pp. 96-9). This has a bearing on the issue of rational expectations,
discussed briefly in Section 1.3, which will be returned to in Subsection 2.3.2.

The Lagrangian for this problem is
L, g0, Q)= u(@z0+Q'X, QSQ) ~ Agopo + QP — w) (2.9)

from which the first order conditions are

:A = —(qo Do + Q'P - w) =0, (2.10)
Ly = wi(-)2o—Apo =0, (2.11)
Lo = w()X +u()(25Q) = AP={0}, ‘ (2.12)

where the subscripts on u(-) indicate partial derivatives. Substituting for A from

eq. (2.11) into éq. (2.12) and dividing through by u;(-) gives

Now EE a,ssuvrhe that the iﬁvestor has constant absolute risk aversion, e —us/u,.
This suggests that the investor trades off an increased expectation (u) against an
increased variance (02) in the linear fashion u = pu— o2, risk-aversion, i.e. 8 > 0, is
a sufficient condition for utility maximization (fof further details see Varian, 1992,
pp. 189-90). Denoting the riskless rate of interest 4 o zo/po — 1, this gives the

solution for @ from eq. (2.13) as

Q=(2689)" (X - (1+i) P). | (2.14)
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Concentrating on the investor’s demand for any one particular risky asset, say

k, eq. (2.14) can be written

B = 550 (8 Dy (- (1+i)p)

= c(p,’;—p,;) k=1,...,n (2.15)
where
det (S (1+1) |
. def Tk (S ( [ T
Pr = 1+’i+Z(S—1)kk 1+i D7) (217)

J#k
By arranging the demand functions in this fashion it is possible to interpret p; as
the reservation price of asset k, such that at prices greater than p; the investor is
a seller of asset 'k, and at prices less than P; a buyer (see Definition 1.1 regarding
reservation prices). This demand function will be crucial in the model of Tauchen
and Pitts (1983) to be examined below. The strength of the EE model is that the
demand functions of the form in eq. (2.15) have their basis in portfolio optimization,
an‘d‘ it is clear how the reSer&ation prices in these demand functions depend on a

number of factors including all other prices and all expected end of period values.

Assumptions in the EE model

Up to this point, the only major assumption of EE is that of constant absolute risk
aversion. Additionaliy, ‘théy will require that every investor has the same degree of
risk aversion and the same assessment of the covariance matrix, which is sufficient
to ensure that ¢ in eq.- (2.16) is equal across investors. From here they go on to
relate the change in the market clearing price to the changes in the reservation
* prices of investors, and they identify trading volume as arising from each investor’s

rebalénc‘ing of his portfolio in the light of a change in the difference between the
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reseryation- price and the market clearing price.

B Hovs‘/eyer', in the de'velopment of their model to the point at which it yields
A relationship. between -price -change ‘variance -and trading volume, EE require a
further succession of un.likely assumptions First, they require that at successive
market clearing prices there will always be an equal number of buyers and sellers
(p- 307). Second, A‘they require that the summation term in pj in eq. (2.17) be of
negligible size which .deniesv the realism of the portfolio- theory approach (p. 308).
Third, they impose a spemﬁc functronal form on the relatlonshlp between the size of
the change in mvestors reservation prrces and the extent to which investors disagree
' (p 3()9 eq 15) Consequently EE are able to show that the expected logarithm of
" the variance of prlce changes is a hnear function of the logarithm of volume.

The beneﬁt of thls very h1ghly structured model is that no specific distribution
need be assumed for' changes in the reservation prices. However' to estimate their
- model by maximum likelithood, EE -are requlred to spec1fy a distribution for the

change in market clearmg price, and S0 thls hard-won benefit is of llttle practical
use. The estlmated model gave a concave relat1onsh1p between Apt and v, rather
j‘than the. convex relatronshlp Wthh ‘was_ found by Clark (1973). However, it is
qulte possrble due to the large number of restrictions lmposed prlor to der1v1ng
a testable model, that EE’s results are misspecified. It is also possible that EE’s
results and Clark’s results are not. directly comparable since Clark’s sample covered
‘two four year periods whlle EE. use data from one month. The kurtosis in the
“EE data averages 3 48, compared Wlth Clark s measure of about 20. By the same
- calcul‘atrons usedg for.Clark s data, this equates to an arrival rate for news of 6.25,
and a.probabi‘lity of a 'no-news day of 0:002—much more reasonable

One explanatron for the. drfference in the two sets of results is that the number
-~ of mvestors actlve in- the market has an impact upon price/volume dynamics, and

' that Clark s sample perrod was, long enough to permit. substantlal variation in this
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quantity. The size of the market is an important part of the Tauchen and Pitts
(1983) model, to be examined in Section 2.3. Another explanation is that there is
somé low-frequency variation in the mean amount of news per day, which might
only show up over periods longer than a month. This was one of the conclusions of
Tauchen and Pitts (1983), and will be examined in more detail in Section 2.5.
Despite the assﬁmp'tions and the ambiguity of the empirical results, the EE model
is important because it piqneered the study of the price/volume relationship as the
aggregation of individual investors’ changing demands, and provided a rationale for

the ‘linear’ demand functions without which aggregation is extremely complicated.

2.3 The Tauchen and Pitts Model

To recapitulate on the two models described above, Clark (1973) developed the idea
“that variations in the amount of news arrival would cause variation in the variance
of daily price changes, .a.nd identified empirically that trading volume picked up
some of these effects. Ebps and Epps (1976) showed how linear demand functions
might be used to examine the price/volume relationship as arising from successive
portfolio rebalancings in a model of pseudo-homogeneous investors. Tauchen and
Pitts (1983), hereafter TP, combined these two models with a striking simplification
of the determination of réservation prices. From this they derive a specification
for the joint distribution éf daily price change variance and daily trading volume,

parametized by the size of the market as measured by the number of active investors.

2.3.1 Intra—Day Model

“The first stagé in the development of the TP model is a framework that describes
the evolution of the market clearing price and the generation of trading volume

between successive market equilibria, i.e. on a ‘per news-item’ basis. TP start with
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the demand function given in eq. (2.15). These demand functions are now expressed
for investor j with regard to some particular speculative asset at the 7 within-day

equilibrium:
Gi=cP;—pi) J=1,...,J ' (2.18)

where, as in the EE model, the parameter ¢ is assumed unchanging over time and
across investors. For the moment, consider J to be fixed.

Tovcle‘a'r the market req"’uires that ). ¢;; = 0, implying that the market-clearing
price at Vequilib‘rium i is _simply the mean of investors’ reservation pfices, and the
market-clearing price change between ¢ —1 and 7 the mean of the change in investors’

reservation prices is
J ' . -
Api=J7tY Ap (2.19)
j=1 ‘ :

The trading volume generated by investor j between ¢ — 1 and ¢ is simply |g;; — g; ;1]
(.positive»whether the investor increases or decreases his position), but since every
investor’s sale is another inve‘stor’s purchase, the total trading volume between ¢ —1

and z is half of the sum across investors,

J J
1 c « '
v = Y E lgj: — G| = ) E :lApji - Apil,. ‘ (2.20)

A by eq.. (2.1'8), where Ap; is itself a function of the reservation prices by eq. (2.19).
T herefore, .both Ap; and v; are functions of the change in investors’ reservation
prices. The speciﬁcation of the joiﬁt distribution of these changes across investors
leads directly to the spe(giﬁcation of the joint distribution of price changes and
trading vblume, pér rrlarket e(iuilibrium. This very general result has arisen from

the linear demand functions in eq. (2.18) and the invariance of the scaling coefficient
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¢ across investors at each point in time.
- TP propose a simple variance-components model for the change in investors’

reservation prices:
Ap;; = ¢i + 1 where ¢ ~iin. (O,o;), i ~ iin. (0, ai). (2.21)

Thus each investor’s reservation price changes as the sum of a common component
¢; and a unique component ;. The martingale condition is imposed on the model

by requiring the expectations of both terms to be zero.

Digression on Rational Expectations

It is interesfing to note that in'choosing the normal distribution for the shocks ¢ and
¥, TP satisfy rét-ional expectations in their model. The réasoning is straightforward.
If -reservation I;rices are a raﬁdom walk with normally-distributed increments, then
each market-clearing priée.will also be a random walk with normally-distributed
inérements, because the demand functions are linear. Conversely, linear demand
functions arise from the belief that the distribution of prices at the end of the
period is jointly normal. Investors’ expectations are consistent with the outcome of
the model, and therefore they are rational.

E The normally-distributed increments to reservation prices may be justified by
the Central Limit Theorem. From the reservation price expression eq. (2.17) the
reservation price is a linear combination of éxpected prices, with the weights being
détermined- by the covariance matrix. Therefore if a piece of news causes each
investor to alter each expectation by a random amount, the weighted sum of these
, adjusfmerits will be asymptotically normally distribﬁted, as long as the adjustments

are drawn at random from a distribution with finite second moment.

Returning to the model, the incorporation of the variance decomposition model,
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~ eq. (2.21), into the price change and volume expressions, eq. (2.19) and eq. (2.20),

gives

.' ' Ap, = ¢i+JﬂllZi _ (2.22)

1< _
vo= o) [~ il (2.23)
j=1

where ; < >, ¥, from eq. (2.19) and eq. (2.20). The absence of ¢; in eq. (2.23)
indicates that large price chang‘es‘can occur without generating large volume. This is
a consequeﬁce 6f the‘liAne'ar demand functions. Were all reservation prices to jump by
the same @mount following a piece of news, the market clearing price would also need
to jufnp by that amount, in- whch case no investor would want to change his position
and no volume woﬁld be generated. .Clearly, trading volume is generated in this
vmodlel asia consequence of disagreements between pseudo-homogeneous investors
_.regarding the interpretation of commonly-available news.

TP show that both distributions are asymptotically normal:

Pr.{Ap,- <z} = <I>(:E, 0, 02) _ (2.24)
Jlim Pr{v; <z} = ®(z; 1, 02) | S (2.25)

where ®(-) is the cumulative normal distribution, and

2 df 5, T4
Up = U¢+7 » (226)
der (COpY (2
hy & (_2 ) =EA | (2.27)
Lo def (COp\E L2 |
g2 4 ( : ) (1 7.r) J+0(J) (2.28)

Additionally they note that Ap; and v; are stochastically independent given J. Thus
' the ;iistrib_ution of price changes is determined for large J primarily by the variance

of the common component ¢;, while the distribution of volume is dependent upon
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the variance of the investér-speciﬁc components ;.

To summarize the‘ intra-day model, the market is initially in equilibrium and
then a pieée of news arrives which causes investors to reassess their reservation
prices. Follbwing this reassessment, investors move to a new equilibrium in which
f-;;radin'g volume is generated. This movement to a new equilibrium presupposes the
existence of a Walrasian auctioneer or some similar market-clearing device. If the
number bf investors is large and fixed, the distribution of the change in price and
the distribution bf fhe amount of trading volume generated are both normal, and

stochastically independent.

°2.3.2  Inter-Day Model
TP go on to incorporate this inter-equilibrium model within a model similar to that

“of Clark (1973), in which the number of distinct equilibria during a trading day is

itself a random variable.3 Hence
nt .
Ap, = Y Apa - A (2.29)
=1 ) .
v = Zvét : ' (2.30)
= :

where the t s’_ub'sc'ript» has been appended to Ap; and v; to indicate the day of the
intra-day eqmlibria. The expression for Ap; given in eq. (2.29) is as in Clark’s
model (given as eq. (2.2)). Additionally, however, the TP model also gives an
explicit outcome for volume, eq. v(2.30). The inter-day shocks Ap;; and v;; have

the distributions given in eq. (2.24) and eq. (2.525), respectively. The unconditional

moments of Ap; have been given previously in eq. (2.3)-eq. (2.7). Once again, by

3Hatris (1987) also derives a model of this kind for price changes, and he suggests using the
number of transactions per day as a proxy for news, rather than trading volume. However, this
modification is not appropriate when demand functions are strictly monotonic, since it is then
almost always the case that all investors transact every period, even if it is by a very small amount.
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- conditioning on ﬁt,it can also be shown that

£ [Ut] = Uy Hn, o (231)
Vv = p’0?+ 02, : (2.32)
Cl(Ap)*, v = o pyol. (2.33)

Therefore TP implies at the very least that there will be a positive relationship
between squared price changes and daily trading volume whenever the amount of
news per day is ﬁon—éonsta.nt.

However, TP do not solve eq. (2.29) and eq. (2.30) for any further implica-
tions of their model for the price/volume relationship. Instead, having estimated
the pémrarneteré on the assumption that news has a log-normal distribution, they
show by numerical integration that & [(Ap;)? | v;] has the following properties:
(i) € [(Apr)? | v = 0] > 0; (ii) € [(Ape)? | ve] is increasing in vy; (iii) £ [(Ap:)? | ve]
appears to asymptote to a ray through the origin (all inferred from Figure 1, p. 502).

The next.section generalizes and extends these results.

2.4 The Implied Price-Volume Relationship

Tauchen and Pitts fail to extract the structure of thé price-volume relationship from
their intgr-day model, beyond identifying that there will be a positive covariance
between squared price changes and volume and considering one special case, men-
tioned above. In this section the‘ inter-day model will be restated for generality and

convenience as

S = zi+ae+-+an (2.34)

T = yi+p+-+yn o ‘ (2.35)
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where z; i.i.d. (0, 0?) with support on the real line, g)i i.i.d. (1, 7%) with support on
the non-negative intégers; where in. particulaf Pr{y; =0} > 0, and N is a random
quantity with support on the non-negative integers. Thus it is not required that
" x; or y; be normal, m"erelvy that they have the appropriate means and finite second
moments, and the specification of NV is unstated (although it is likely to be of
Poisson-type). Two sets of results will be derived. The first concerns the behaviour
of £ [S% | T}, which corresponds to £ [(Ap,)? | v;] in the Tauchen and Pitts inter-day

model.4

Proposition 2.1 Given the relations eq. (2.84) and eq. (2.35)
E[S*|T] =0*¢[N|T], . (2.36)

and & [N | T] has the following properties:
1LEN|T=0]>0,
2. ClE[N|T], T] ;uV[N} >0, but
3. €[N |'T] is not neéessam'ly increasing in T.

. Proof: The first part may be shown by conditioning the expectation of S? on NV

and T

E[S?|T] = €[E[S?|N,T]|T]
= 5[N021T]

- SN |T]. | (2.37)

In other words, the properties of £ [S? | T are directly proportional to the properties
of E[N | T).

I would like to thank Dr. Matthew Penrose and Dr. Peter Craig for their suggestions regarding
the stochastic process described in.eq. (2.34) and eq. (2.35)..
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A heuristic explanation'will suffice for (1), although a more formal argument can
be found in Section 5.5. For T = 0 it is possible that N = 0, or that N > 0 and
each y; = 0. Therefore the probanility-weighted (i.e. expected) value of N given
that 7" = 0 must be greater than zero as long as Pr{y; = 0} > 0, which is assumed.

To prové part (2), consider the conditional covariance identity:
CIN,T)=£[C[N,T|N]]+C[E[N|N], [T | N]]. (2.38)

Hence by conditioning on N, C[N, T] = 0 + pV[N]. However, the same result
may be fonnd by conditioning on T, which gives C[N, T} = 0+C [ [N | T], T].
. Equating these two proves part (2), and the covariance must be positive since y;
has support on the non-negative integers, which implies p > 0 providing only that
Pr{y; >0} >0.

Part (3) may be proved by example. Consider the case where y; can take only
“two values, 1 and 10 with equal probability. This choice for y; violates the condition
| Pr{y; = 0} > 01in the interests of simplicity, but it should be clear that the result also
holds for the case where this-probability is positive but vanishingly small. Clearly,
& [N ] T = 9] = 9, since the only possible outcome giving T=9isyy =9y =--- =
yo = 1. But for T = 10 the expected value for N [ T is only a little greater than
1, since the outcome y; = 10 is far more likely than the alternative y; =y = --- =

Y10 = 1. This could be shown formally using Bayes Theorem. |

The interpretation of Proposition 2.1 is that & [(Apt)2 | vt] is generally increasing
in‘v; but not necessafily increasing everywhere. In particular, the example in the
proof of point, (3) suggests that when v, is very small, the fact that it is discrete can
cause ‘lumpiness’- in £ [(Ap)* | v:]. However, if v, tends to be large, this problem

does not arise. This asymptotic property is formalized in the following proposition.®

S Actually, this Proposition is technically a Conjecture, the conjecture appearing as eq. (2.40).
This statement may be true only for a certain class of compound processes, i.e. only for N and y;
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Pr0p031t10n 2.2 In the limit-as t — oo, (u 5%)/(oT) | T =t has a x? distribution.

Proof: The conditions under which the -:CentrallLimit Theorerﬁ may be applied
to th(; sum of ﬁhé terms z;,... ,zy are satisfied (notably z; (z =1,...,N) indepen-
dAent'lvy‘ and idéntically distributed. with'ﬁ’nit'e second momen‘t). The Central Limit
. Theoremvsta’teé that S l N =n wiH have.'a,n asymptoti'cally normél distribution
w1th mean 0"and. variance o’n. Hence in the limit as n — oo, (52)/(02]\7 )| N=n
has ax? d-1str1but1_on, by definition.

~ From eq. (2.35), note that .

lim { T/N | N —n} “, | | o (2:39)

n—)oo

by the strong law of large niumbers. From this I conjecture

hrnf |N—n<:>hme/u, )| T =t (2.40)

n—00
 where f is any continuous function. In particular, if f(N) % (52)/(s2N), then

S? uS?| ' .
nlLr&U—ZN N = nﬁ}i{&ﬁ T—t. (2.41)

Since the first of these h’as been shown to have a x? distribution, so the second must

also have a x? distribution, as was to be shown. |

The following two corollaries follow dire'ctly from Propositions 2.1 and 2.2.

taking: specnﬁc types of distribution. In the trivial case where Pr{y; =1} — 1 it is clearly true,
since then T = N. More work is required to estabhsh its generality. The SImpIest non-trivial case
* is probably the Poisson/Poisson..In this case it can be shown that £ [N|T =t} = pi,1/nl, where
1 is the moment of order ¢ about zero of a Poisson distribution with mean A e™*, wheré A = £ [N].
- The analysis of this ratio requires the derivation of a recursive expression for the moments about
zero of a Poisson distribution. Currently the only known recursion concerns the moments about
the mean (see, e.g., Johnson.and Kotz, 1969, p. 91)4.' :
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, l(jordla.ry'2,3 Asymptotically in T, .

£[s?| T] = %T. | | '_ | (2.42)
V[SQ_‘T]..z,':z'(%Q.)kT2.<’ - A_ o - (2.43)

Proof: This corollary follows drrectly from the property of the x? family of distri-
‘ butrons tha,t the expectatron is the number of degrees of freedom and the variance

twice the: number of degrees -of freedom. | : » |
' C‘Orollary“2.4 & .[SZ | T] 18 nonlinear in T . ‘

Proof: Provt-')osit‘i{on' 2.1 showed that £ {SQ I T] hes a positive intercept. How-
ever, Propoertion.'?.Q_irnpl_ies that £ [S? | T asyrnptotes along a ray through the
| origin: ,Thé 'sirnulit‘aneous;satisfaotion of these two conditions implies that £ [S 2 l T]
. 'ise nonli,near in. 'Ti; srt the very leas_t .i’t‘ is convex. |
' 'Tnerefore th‘e ﬁndings' of 'TP as surnrndrized »above and displayed in their Figure 1
are (wrth the exceptlon of the monotonic increasing property) perfectly general,
and do not depend upon thelr speaﬁc choice of the normal dlstrrbutlon for the
price change and trading volume increments and the log-normal distribution for
the Va,mount- OAfiv ne\}ve per dery, nor upon their chosen parameter values. In addition,
the gradient of the ray dlong whioh £ [(Ap:)? | ve] asymtotes is found as ¢2/u, and
Y 4[(Apt)2 | v,] is.shown to be asyrn-ptotiearly quadrati»c in v,.
‘ These reeults allow. the inter-day TP model to be Sta.tisticaily tested (asymptot-
. i'oelly), rather ffhan.lestimated in conjuction with further assumptions. When TP
'a’nternptr to. vestirnate tneir. rnodei by .maximum likelihood usrng the structural re-
lati'ons~eq. (229) and eq. (230) they must assume not only that the news-arrival
process is tirne;invariant but also a speciﬁe forrn for the distribntion of the e.rnount

of news per day. FOilowing their estimations, TP find misspecification in the form of
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- reeiéudl a-u»tocorx;elation in both prices and trading volume. They attribute this to
“noﬁée’termfniéﬁje low-freqﬁency noise in both the number of traders and the rate
at which vnew‘irr_vlf_ormation flows to the market” (p. 500). Section 2.5 critically ex-
B amines.' fhe»TP ‘model 1n the light of this rriisspeciﬁcationr, while Section 2.6 presents
.‘evidence ‘whieh Suggests that, as they conjectured, the news-arrival process is not

‘time-invariant.

25 A Crifi-cal' Evaluation of the TP Model

The equivocable results from estimation suggest that the TP model has some short-
comings as a speciﬁcatioh for the relationship between price change and trading

volume over time. These will be examined in this section.

- Parameter Constancy

In the TP i'ntAra,—.day‘moael p's-eudo—hormogeneous investors are permitted to disagree
about their res'ervat'i_(')'n.‘priees' but ‘not about the coefficient ¢ in eq. (2.15). This
permits dis’agr‘eement- fbetween investdfs ebout expected pricee but not about the
terr‘ns in the eOVarienc‘e matrix. |

T he term c- comprlses three parts:. the appropnate diagonal entry of the inverse
of the covariance matrix, (‘S “ex; the rlsk—free interest rate, 7; and the coefficient
of risk-aversion, ﬁ. .Whlle none of these is strictly constant through time, it can
be argued that both ¢ and 5 are at least statlonary nelther the interest rate nor
;I‘lSk aversion are hkely to be moving systematically in one direction. Therefore
comparisons spann_ir_lg a long period of time will probably be over different values of
Jé) and z'_,»b‘ut not 'wi‘de_ly differ_ent. Parameter constancy is thefefore a valid first-order
approxnnatlon

For (S~ ), however the situation is dlfferent While it may be true that on
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‘a day-_to—day basis the_'-mean of 'th'e'price» chanée distribution is not distinguishable
.‘ from zero, over long periods itlisor_iite clear .that.speculative prices trend upwards,
and this‘would:.be expecte’d for a risky asset in a market of risk-averse investors.
Utrlrty is deﬁned on the value of the portfolro and w1th a positive trend in prices
this value must be expected to rise over long perrods of time. Therefore both the
k vector of expected prrces X and the covariance matrix S erl have a time dimension.
'Comparrsons spanmng a long perrod of time will be over systematrcally different
values for X and S, and S0 constancy in these parameters is not valid even as a
’ ﬁrst-order approxrmatlon. Furthermor_e-, since the weights on the expected prices in
the reservatron prrce expressron eq. (2.1'7) are derived from the covariance matrix,
there mlght also be a time element in the drsturbances 1 and ¢.

Therefore even if the TP 1ntra-day model is taken to be an excellent description
of the behav1our of the market at a pornt in time, it will not function as part of a
| trme-serres»delscrrptlon of thema’rket because it does not account for these systematic

changes in c. -

The Variance Decomposition Model =~

The- second problem ’r'ela'tes to the choice of joint distribution for the change in
reservation prices. If ’revslerva'tion prices are not set with some reference to the market
clearing price, ithen the ’dispersion of reservation prices aronnd the market-clearing
prrce tends to increase. w1thout l1m1t for a non- tr1v1al Jjoint distribution of reservation

prrce changes Thrs is exactly what happens in the TP model given in eq. (2.21).

' Proposrtlon 2. 5 If znvestors reservation przces evolve accordmg to the PTOCESs in
eq (2. 21) then the e:cpected second moment of the distribution of reservation prices

around the market-clearqng Pprice.increases linearly in the number of items of news.
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Proof: Consider a situation in which all reservation prices are the same—say
unity for simplicity. The market-clearing price will also be unity, since the TP
model implies that thex market-clearing price is the mean of the reservation prices.
After 7 pieces of news, the dispersion of reservation prices about the market-clearing

price can be measured by the expected second moment:

£ lVJ—l Zj:l (p;,t~}_-7’ - PHT)‘Z Py ={1}

€ [J—l 2:7']=1p;,t+72 —Per” | P = {1}}, (2.44)

 where p},,, is the reservation price of investor j at the 7** equilibrium after ¢ (the
k subscript denoting the asset now being taken as given), and p;,, is the market-
clearing price at the same-time, which is equal to the mean reservation price at that

time. Taking the first term in eq. (2.44),

= J! Z{,’ [p;',th Fr = {1}}

j=1

JTlE I:Z;ZIP;,t+72 b= {1}}
= & [p;,t+'r2 I Pie = 1]
= £ [(1 + (i + wji))Q]

= (147 (02 + 02)) (2.45)
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where the distributions of ¢; and 1);; were given in eq. (2.21). Taking the second
term in eq. (2.44),

Efpu? | P =11 = 7% | (S 0+ S+ ) |

A [CACED VATARD vl 3 '%ﬂ

= J¢ fﬁ (1457 6)°]
+J72E l:(ijl > i1 ¢ii) 2}

= 14705+ J7 0] (2.46)

Substituting eq. (2.45) and eq. (2.46) into eq. (2.44) gives the result

J-1

E|J Zj:l(p;,t+r - Pt+r)2 7'03,, (2.47)

Pt* = {1}} =

which is linear in 7, the number of days forward from ¢. |

The implication of Proposition 2.5 is that over time investors will become more
and more extreme in their views, and they will hold bigger and bigger positions, both
positive and negative, without limit. This effect does not show up in the variance
of price changes precisely because the market-clearing price is the mean. Were the
market-clearing price to be some measure on the reservation prices other than the
mean this time-increasing dispersion would be reflected in a time-increasing price
change variance.

For these two reasons, the intra-day TP model does not seem at all satisfactory as
a time-series description of the way in which market-clearing prices respond to news.
The role of the intra-day model is to establish functional dependencies between the
moments of price change and volume, in relatioﬁ to the number of active investors,
J. Therefore this parameterization must be suspect. However, the failure of the

intra-day model does not rule out the inter-day model as a description of the joint
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distribution of price change and volume. It simply relieves the inter-day model of a

certain amount of parameter inter-dependency.

2.6 The News Arrival Process

‘Suppose then that we join the TP model halfway through,:at the stage where they
propose the inter-day model given in eq. (2.29) and eq. (2.30). In other words
we simply a,sserﬁ that this is an empirical speciﬁcation which may explain aspects
of the price/volume» relationship, but without the functional inter-dependency of
the mom_eﬁté of the individual shock terms (Ap; and v;) caused by the explicit
consideration of the number of traders, as was described in eq. v(2.26)—eq. (2.28).
The crucial determinant of the time-series properties of price change and trading
volume is now the news arrival process (70).

In the early work on news arrival, the amount of news per day was taken to be
independently and identically distributed (Osborne, 1959; Mandelbrot and Taylor,
1967; Clark, 1973), and this was the model adopted by TP. They considered two
distributions for the amount of news per day: the Poisson and the lognormal (where,
notionally, the lognormal was used to approximate a discrete distribution). The
Poisson has the superior claim on theoretical grounds, being the outcome of events
that happen independently in time.® However, the lognormal fitted much better and
was preferred by TP for this reason and for consistency with Clark (1973). In fact
the lognormal is almost certain to fit better, since it has an extra parameter which
permits fhe Qariance to be determined independently of the expectation. The size

of the improvement could be explained as misspecification, perhaps in presuming

parameter constancy over the period.

81f arrivals follow a Poisson distribution, the time between arrivals is exponentially distributed
(and wvice versa). The exponential has the ‘memoryless’ property that the probability distribution
is independent of how much waiting time has already elapsed (see, e.g., Ross, 1988, pp. 174-5).
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ARCH Models .

The TP model was derived just prior to‘ the publication of Engle (1982), who de-
scribed a new type of stochastic process for univariate time-series, that of Auto-
Regressive Conditional Heteroskedasticity (ARCH). In a univariate ARCH process
the variance of the price change distribution at time ¢ is determined by lagged values
of the squared price changes. Consequently, ARCH models display volatility persis-
tance since one large price change can feed into the variance equation and generate a
‘larger variance for the next few periods. This mixing of distributions with differing
variances generates leptokursis in exactly the manner described by Clark (1973) and
derived in eq. (2.7). Various generalization‘s' of ARCH prbcesses (particularly the
GARCH process of Bollérslev, 1986, 1987) are now ubiquitous in finance (see, e.g.,
BO‘llerslev et al., 1992; Bera and Higgins, 1993; Kim and Kon, 1994).

One interpretation of ARCH effects in speculative prices is that the distribution
of the quantity of .news is not independently and identically distributed, but posi-
tively autocorrelated (Diebold, 1986; Stock, 1988). This interpretation harks back to
the clustering of volatilities observed by Fama (1965). There are, however, other ex-
planations which afe not news-related. Bera and Higgins (1993) suggest (i) random
coefficients and/or (ii) non-linear autocorrelation, in the return process. Alterna-
tively, heterogeneous investors models might generate ARCH effects: for example,

noise traders are only sporadically exploited by informed traders.

Heat Waves and Meteor Showers

The news interpretation of ARCH effects in speculative pfices has been investigated
- by Engle, Ito and Lin (Engle et al., 1990; Ito ¢t al., 1992). Engle et al. (1990) catego-
rize vélati‘lity persistance as béing either cbuntry—speciﬁc (the so-called ‘heat wave’
model) or time-specific’(the ‘meteor shower’). Since news is a global phenomenon,

volatility generated by news should follow the meteor-shower model and transmit
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from one trading centre to another. But if volatility persistance is a consequence of
iﬁtra—market dynamics sucf; as noise trading then volatility will not transmit across
‘,market boundaries. Engle et al. also note an alternative cause of meteor-shower
effects: stochastic policy coordination. For example, a change in US domestic mon-
+ etary. policy might affect the US market directly, but might also increase uncertainty
about monetary policy in Japan. Engle_ et al. find that the data rejects the heat-
wave model, but since their sarﬁple covered the period OctoBer 1985 to September
1986, a time of inter‘nationai monetary policy coordination, they were unable to
distinguish between the news and policy .coordination. interpretations.

Ito et al. (1992) investigate the policy coordination interpretation directly, by
using foreign exchange data from three different periods. The first is priér to the
lifting of capital ¢ontrols by Japan on 1 December 1980. The second and third are
either side of the Plaza Accord on 22 September 1985, which heralded the period
of closer moﬁetary policy coordination. They find that the heat-wave model is best
in the first period; and the meteor-shower in the second and third. This rejects
the policy coordination interpretation, since the lack of policy coordination prior
to the Plaza agreemént should have ruled out the meteor-shower.” The lifting of
capital controls in' Japan had the effect of iﬁtegra’cing the Japanese markets into the
world market, and its att_endant news-process. However, Ito et al. also find that a
certain amount. of the volatility persistance is geographic, and does not transmit.
Hence although their results support the news interpretation, they do nof rule out

market-microstructure effects.

Volume and Return Variance

Further evidence for-positive autocorrelation in the quantity of news comes from

Lamoureux and Lastrapes (1990). Lamoureux and Lastrapes model volatility per-

"Note, however, the.observation of Professor O’Brien that this interpretation is conditional upon
the Plaza Agreement being perceived by investors at the time as substantive, which is questionable.
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sistence in stock returns as a simplé GARCH process, and then investigate the effect
of introducing- trading volume iinearly as an independent variable in the variance
equation. Without volume there is strong evidence of ARCH effects. With volume
included the ARCH effects are much weaker. However, there is a problem with this
analysis, as the authors acknowledge. If both price change and volume are driven
by the same stochastic process (e.g. news arrival) then their simultaneous inclusion
will cause bias in the estimators (the problem of ‘errors in variables’). The usual
approach to this problem is to find a proxy for one of the variables. However, they

find the use of v;_; as a proxy for v, is not successful.

Volume and News

Mitchell and Mulherin (1994) study the cross-sectional relationship between a proxy
for news and trading voluine and absolute price change. Their proxy was the number
of items per day appearing on the Dow Jones newswire service and in the Wall Street
Journal, following the earlier work of Thompson et al. (1987). Not surprisingly, they
find QUarterly seasonality relating to ﬁnancial reporting, and intra-weekly seasonality
with a build up of 'nev'vsA through the week to Thursday, and then a fall-off on Friday.
The correlation between news and trading volume is strong (0.37), but that between
news and absolute returns much less éo (0.06 for the index, and 0.11 for summed
absolute refurns of individual stocks). Mitchell and Mulherin also examine the
-importance of news, by counting the number of category codes assigned to each
story (importance here being measured by width of impact). They find little change
in their results, and note that the correlation between the quantity of news and the
importance of news is high (0.88). In a separate but related study, Berry and Howe
(1994) find evidence of intra-day relétion between trading volume and information.
Unfortunately, none of these papers documents the time—series properties of their

news proxies. Recently, however, Moschetti (1996) has performed a Vector Autore-
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gression” (VAR) analysis'of the relation between information and trading volume
on a daily basis. Moschetti’s ‘ﬁrst finding is that “informational aggregates have
quite a long influence on the‘m,arket” (Moschetti, 1996, p. 17). The lag lengths for
the different types of information vary between two and four days, demonstrating a
time-series element in information .which is reflected in trading volumes.

Moschetti finds a symmetric causal (in the sense of Granger, 1969) relation be-
tween information and volume, i.e. there is evidence of trading volume ‘causing’
information. The main ekplanation for this is feedback from reports of the perfor-
mance of thé market t};e previous day. Considering the long lag length and causality
together, Moéchetti (1996) concludes “ ... the market does not entirely process all
public information immediately This could provide evidence for theories ac-
cording to which it takes a certain period to traders [sic] to elaborate strategies
based on public infofniation” (Moschetti, 1996, p. 19). This interesting and slightly
heterodox conclusion (see, e.g. Patel and Wolfson, 1984) is in accordance with the

model of news assimilation proposed in Chapter 3.

Implications for the TP Model

The "tentative conclusion from-these different strands is that the amount of news
per day is not independently and identically distributed, but rather shows positive
autocorrelation. However, there are alternative explanations which mean that it is
unlikely that allowing for news will completely remove the volatility clustering in
~ daily returns.

Bearing this point in mind, it is interesting to note that the properties of the TP
model deriyed in Section 2.4 are quité general of the news-arrival process providing
only that the quantity of news per day be independently and identically distributed,
and the asymbto.tic r'esults do not require even this. Pfoposition 2.2 in particular

may be used to formulate a statistical test of the joint hypothesis that the TP inter-
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day model is appropriate and its parameters constant, despite the possibility of a
\ .
time-varying news arrival rate. This test will be performed as part of the empirical

analysis of Chapter 5.

2.7 'Summary' and Conclusion

This C'hapter‘ has examined in detail the Tauchen and Pitts (1983) model, which
relates price change and trading volurhe via the news arrival process. In its com-
plete formulation this model can also incorporate the size of the market to introduce
functional dependencies between the moments of the price change and trading vol-
ume distributions. However, problems with the requirement for parameter constancy
and with the implicétions of the model for updating beliefs (reservation prices) make
this complete formulation untenable. This leaves the pair of relations eq. (2.29) and
eq. (2.30) as a possible déscrip’cive model of the price/volume relationship.

o To_estimate this pair of relations requires the specification of a process for news
arrival. There is strong but not conclusive evidence (e.g. ARCH effects in returns)
that this process is not indépendently and identically distributed through time but
displays positive autocorrelation, at least when mirroredin the time-series behaviour
of price changesand trading volume. This makes the descriptive model extremely
hard to estiméfe. However, Proposition 2.2 shows that the descriptive model can
be tested without being éstimated, even in the presence of an autocorrelated news
arrival process. This test will be performed in Chapter 5. A clear failure to reject
the mo.del>would suggest that the news process is indeed the dominant influence on
the price/volume relationship. A more equivocable result would indicate that other
factors, including noise trading and other aspects of market-microstructure, might

have an important role to play.



Chapter 3
What Is News?

This chapter essays a short formal definition of news and its related concepts. The
need for this definition is an imprecise understanding of exactly what news is. The
objectivé 1s to tie in, so far as it is possible, our operational understanding of news
with a formal treatment of beliefs about the prevailing state of nature. The result
is a model of a decision-making in financial markets (characterized by non-trivial
information-processing costs) in which the quantity of news per day should be prox-

ied by the number of transactions, rather than the number of news ‘bits’.

Beliefs-

Suppose that it is p.ossible to conceive of the present and future as an exclusive and
‘exhaustive collection -of states of nature, S in total, indexed by s = 1,. ,S. For
simplicity suppose also that all investors agree on what these states are, but that
they may disagree on how likely they are. The source of disagreement is assumed to
be the information stock available to each investor (although it could equally well
be each Vin‘véstor’s ability to analyse a'common information stock). Denoting the
information stock of investor 1 at ‘tiine t as {2, the probability attached by investor

i at time t to state s is Pr{s | Q::}. Finally suppose that all investors are rational,

96
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in the sense fhat their beliefs, as described by these ﬁrobabilities, are coherent (i.e.
they satisfy the étandard properties of probabilities and rhay be updated according
to Ba.yés Theorem, see, e.g., Lindley, 1985).

According to this framework, an investor’s beliefs at any time are entirely en-
capsulated by his vector of probabilities. This statement is not uncontentious, since
many people would assert that probabilities themselves can be held with various
degrees of belief: i.e. there exists a well-defined notion of beliefs about beliefs. So,
for exémple, Fellner hotes “A good many reasonable decision makers—though by no
means all—seem to act, differently depending on whether they act under the influ-
ence of shaky degrees of belief, i.e., of probabilities the numerical values of which are
highly unstable in their mindé, or act under the guidance of firm and stable degrees
of belief.” (Fellner, 1965, p. 4).

Bayesians assert that the notion of ‘beliefs about beliefs’ is misguided in the con-
text of a single-decision problem. This may be illustrated by an example. Suppose
I think that the probability of being run over as I cross the road is either 0.01 or
0.10, and in the former case I would éross the road, but in the latter I would regard
* this as too risky. ’I_fhe questioﬁ 1s, under what conditions would it be correct for
me to believe thaf I can distinguish these two cases, and that this distinction was
-mea,nihgful in my attempt to cross the road.

The obvious answer to the first part is that the distiﬁction is the result of some
brocess which T only partially understand. So, for examble, there might be a set of
traffic lighté further up the road which are controlling the flow of traffic, and thus
thé prdbability_ of me being knocked over. I cannot see the traffic lights, hence both

:outcomes‘a‘re bossible: I need to attach probabilities to each outcome, red or green.
Say the probabilities are 0.5 each for red and green. But then I find directly that the
| brobability of being run over is not either 0.01 or 0.10, but is in fact 0.055. Therefore

Aalthough I can distinguish between the two cases in this context, the distinction is
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not meaningful in my decision to cross fhe road, except insofar as it assists me in
determining the probability of being run over.

This is clearly a rejection of the separation of risk and uncertainty (Knight, 1920).
According to Knight ‘risk’ is a probability‘vector, while ‘uncertainty’ is the degree
of belief attached to the probability vector. Bayesians reject this distinction, using
probability to represent, subjective unéertainty, however it arises (see, e.g., Cyert and
DeGroot, 1987). There is a case, however, when the coniplete structure of ‘beliefs
about beliefs’ should be preserved rather than be collapsed into a single probability
vector: learning. Each probabjlity vector represents an alternative scenario, and by
repeated experig;lce I can improve my understanding of the probability attached to
each scenario. Thus if I Wé,s' only ever to cross the road once, I would not need
anything more than-the ‘collapsed’ probability vector in order to make my decision.
However, if I am to cross the road repeatedly I can usé my experience, up until the
moment that I am 'termin'ally run over,»i to adapt the probabilities attached to the
traffic lights being red or green, which represent alternative scena;ios. Consequently
the complete belief structure is’hecessafy for learning, but at any decision point only

the collapsed probability vector is required.

A Definition of News

Having clarified the sufficiency of a single probability vector for representing be-
liefs, I turn now to the definition of news: in particular, under what conditions is

information bit w ‘news’ to investor 7 at time £, presuming that w ¢ ;,?
Definition 3.1 Information bit w is news. to investor i at time t if and only if
Pr{s | w, i} # Pr{s I Qit} for some s.

To take the negation of this .,de_ﬁnition, w 1s not news to investor ¢ at time ¢ if it

fails to aIter his beliefs. The following propesition is a direct consequence of the

coherence of each investor’s beliefs.
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Propbsition 3.1 Information bit w is not news to investor i at time t if and only

if it has an equal probability of occuring in all states of nature.

Proof: The proposition follows directly from Bayes Theorem, which in this context

states that

Pr{w | s, Qi } Pr{s I Qi }

Pr{w ' Qi } (3:1)

Pr{s ' w, Q) =
- For Pr{s | w, Qu} = Pr{s | Q} to hold across all s, it is necessary and sufficient
that Pr{w | s, Q;} = Pr{w | Q) for all s, i.e. w has an equal probability of occuring

_in any state of nature. : ]

This proposition gives a simple way of determining whether or not any informa-
tion bif is news: we simply ask “Was this information equally likely to have arisen
in any state of ﬁature?” If the answer is ‘Yes’, then the information bit is not news
and as such is ir_rélevant to the decision process since it will not cause an optimal
plan to be altered. Nvote that the arrival of a piece of news is a necessary but not
éufﬁcieht for the alteration of such a plan.

It is interesti_ng to digress for a moment on.tHe relationship between the number
of states of nature on the one hand and the definition of news on the other. In a world
of unlimited infbrmation processing resources, in which it is possible to envisage a
huge number of subtly-differentiated states of nature, almost all information bits
will be news. Somewhere in the range of possible states of nature there will be
found one (or more than one) which impinges upon the information bit we observe.
Another way of expressing this is to say that, were we capable of the analysis, we
~would be abie‘ to inter-relate everything.

There are two ways of escaping from this conundrum. One is to assert that such

a level of sophistication will always be beyond us. In this case, the limited number of

states of nature that we can envisage force us to make a distinction between relevant
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and irrelevant information, and this engenders a distinction between information and
‘news. The other, which I favour, is to switch attention away from news per se, to

consider the magnitude of news.

‘Magnitude of ,News'

Having deﬁned news in such a way that we can say whether or not a bit of infor-
mation is news to an a,gént at a certain time, I turn now to the question of how
: ‘bié’ isvthe ﬁews? It is irﬁpbrtant at this point to distinguish between the news and
ité ifnpaét. The magnitude of news per se is not the same thing as the impact the
news might have 6n an optimal plan, althoﬁgh the two might be closely related. In
fact, it is apparént from soﬁe, simple examples that we tend td consider ‘big’ news
not from our own needs but according to some other criterion. So, for example, the
sinking of the Titanic was a big piece of news, but its impact on many people, in
terms of the alterations they made in their optimai plans, was negligible. Likewise
the Moon Landing, and perhaps the fall of the Berlin Wall. In these cases it is clear
that the probabilities on various states of nature have changed dré.ma.tically, but
that our optimal pian remains unchanged. This must be because the pay-offs in the
states of nature in which the probabilities have changed are roughly the same.
Therefore, it is in keeping with the popular use of the term ‘big’ as applied
to news to relate the_ magnitude of news to the amount by which the vector of
probabilitieé which describe beliefs has altered. The metric I favour is the sum of

the number of states of nature in which the probabilities change.

Definition.3.2 (Magnitude of News) The magnitude of the news generated by

information bit w for investor 1 at time t 1s

..mit(w) q—e_f’ numbngr {'s : Pr{s; I w, ta} # Pr{s I Qit}} o ' (3.2)
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_As in Proposition 3.1, this may be interpréted, using Bayes Theorem, as the number

of 'stdtes of nature in which the probability of observing w is different from the
uncqnditional probability of observing w. By this metric, the magnitude of a piece
of news is equated with its breadth—news of large magnitude impacts upon the
probabilities of a large number of states of nature.

Alternative definitions of magnitﬁde might use the sum of the absolute values
of the probability differences or the log-ratios. They are not directly related to
breadth. Furthermore, these alternatives result in an ordinal measure with little
intuitive appeal. A magnitude such as m(w) = 3 has a clear interpretation if the
number of states of nature, S, is known. Were the same number to represent the
sum of the absolute differences, or the sum of the absolute log-ratios, the meaning
is far from clear unless in comparison with another. But the conclusive reason for
favouring m;,(w) is that it does not require explicit updating of the probabilities.
Using the Bayesian formulation, it is necessary oﬁly to know whether or not each
state has an impact upon the p‘robability of the news bit—the size of the impact (i.e.
the updating of the pro‘bability of the state) is not needed to determine magnitude.
This will be an imp-ortant consideration below, in the discussion of the quantity of
news per period. |

In the caSe discussed.in the previous subsection, where S is very large and almost
all information bits coﬁétitute news, the magnitude of news by this definition can be
used to establish a hiérarchy of information s',o‘urces. In this way our failure to dis-
tinguish news from information is unimportant, because we can instead distinguish

large-magnitude news from small-magnitude news.

Quantity of News

So far, I have formalized two familiar concepts—the notion of news itself and its

magnitude. I now turn to a more difficult concept: the quantity of news that arrives
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during a given period.A As seen in the previous (;hapter, this is an important quantity
“in the formulation of price/volurﬁe models ih speculative markets.
In one seénse the quantity of ne‘ws is a simple concept. Consider, for example,
a typical day in a speculative market, where stories are posted as they break, on
.a Reuﬁers tefminal‘. It should be simple enough to distinguish those information
bits which are news (e.g., ignore the cricket scores, usually), and then add them up
over the day to find the quantity of news in that day. This is in fact the standard
procedure for empirical étudies regarding news (see Section 2.6). Unfortunately,
however, this method tends to double-count small news bits whenever there is a
cost associated with analysing the news for its implications for the probabilities, or
in impleﬁenting the updated probabilities in determining the optimal plan. |
Consider an investor who has Just received some information. He must choose
between the costly process of updatirig his_beliefs and his optimal plan, or saving
the information until the arrival of the next piece of information and then making
the same choice again. This is an optimal stopping broblem, and these are, in gen-
eral, quite hard to solve.! To make the analysis simpler, cbnsider the case where
institutional requirements will force the probabilivties to be ﬁpdated after two pieces
of informatgion have arrived, but the investor has the option of updating the proba-
bilities after the first piéce as well, shduld he so choose. In this case he has a straight
trade-off between the cost of updating, which is known, and the sub-optim@lity of
the plan up until the time at which the second piece of iﬁformatioﬁ arrives, which
is uncertain. The expected sub-optimality given his current information set will be
incrégsing in the magnifude, of the information which has just arrived (which, for the
purposes of this example can be ascertained at zero cost), in which case his decision
willlbe determined accdrding to some critical magnitude.

Generalizing this argument to the optimal stopping problem, the investor will

1A similar type of problem is the concern of Chapters 8 and 9.
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update his probabilities when the magnitude of the set of information which he
has saved (but not analysed beyond magnitude) since his last update exceeds some
‘critical value. This critical value will, in general, depend upon his information set
at his last update. The time at which the investor updates his probabilities will be
referred to as an ‘update point’. A simple tally of the number of information arrivals
between update points cannot account for the way in which earlier information can
be competely or partially negated by later infoﬁnation—hence the possibility of
double-counting. For this reason a much better measure of the quantity of news
when several information bits are considered together is the joint magnitude. This

gives rise to the following definition.

Definition 3.3 (Quantity of News per Investor) The quantity of news between
update points t — 1 and t, during which period the k information bits wy, ... ,wy are

made known to investor 1 18

k
Git(wi, .-, wk) = mi,t—l(U wj). ~ (3.3)
. j=1

The effect of this definition is to highlight the importance of the update points
in determining the quantity of news. The reason that these points do not occur
. concurrently with the arrival of news is the cost of the updating process, and the
availability of magnitude as a cheap indicator of the impact of news on probabilities

and the optimal plan.

News in Speculative Markets

Up to this point the dicussion has been entirely subjective. Different investors will
treat the same information in different ways, depending upon their current informa-
tion stock, the costs they face in updating their probabilites and their optimal plans,

and the trade-off they perceive between these costs and the loss of expected utility
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from operating with a sub-optimal plan. There are obvious problems in aggregating
over these subjective and unobservable issues to derive a quantity of news which is
applicable to the ‘whol'e'r'narket. There is, howeVer, one measure which is observable
and which fulfill s pr_ecisely the requirements of models such as that of Tauchen and

Pitts (1983).

Definition 3.4 (Quantity of news per day) The quantity of news per day in a
speculative market is the number of investors’ update points which occur during the

day.

The first advantage of this definition is that it related to a process which is at
least partly measurable. For example, in a speculative markét the number of calls
to stockbrokers would provide a useful lower bound on updﬁtes, since an update is
a necessary (but not sufficient) condition for considering the purchase or sale of an
asset. Second,. in the extreme case where there are no costs in updating probabilities
it collapses to the number of news bits, which is the traditional definition. Third,
and most- important, it genéralizes to the case where there are updating costs, and
éxplains the way in which these costs can affect the appearance of news in financial
aggregates like priée changes and trading volume—a rise in costs would cause a fall
in the a.m;ount of news. Fourth, it relates the quantity of news per day to both the
flow of information to tile market and the magnitude of that information. Taking
the critical magnitude ét which investors updéte as fixed, this threshold will tend to
be breached sooner if either the rate of information flow rises or the mean magnitude
of an information bit rises. . This will lead to more frequent updates and a higher_
density of update points within a givenfperiod, i.e. a.greater quantity of news.

There is one implication of this definition that needs further co_'nsideration, which
" is that it relates the amount of news to the number of investors in the market.

In some respects this is a good thing, since increases in trading volume in newly
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established financial markets are often related to the entry of new investors. The
empirical analysis of Chapter 5 gives a good example of this, since the data covers a
market from inception. The trading volume shows an initial period of strong growth,
which then flattens out gfadually. This would be an implication of the Tauchen and
Pitts (1983) model for trading volume, eq. (2.30), with Definition 3.4. However,
the variance of price changgs is stable over the same period, which contradicts the
model for price change, eq. (2.29), if the same definition of news is used. Therefore
the appropriate measure in markets where the number of investors is changing is

more likely to be.the mean amount of news per investor, with separate consideration

given to the way in which market size can affect the price/volume relationship.?

Summary

I have attempted here to prov-ide formal definitions of ‘news’, ‘news magnitude’
and ‘n‘_ews quantity’. Using these definitions I have provided a descriptive model
of decision-making, in which it is quite rational to accumulate information and re-
optimize sporadically in the presence of information-processing costs. This model
has been used to suggest that a measure such as the number of transactions per day
is a better proxy for the qﬁantity of news than the more typical proxy—the number
of stories per day. In the special case of zero costs these two will be the same. But in
the general casewhjere it 1s expensive to update beliefs, re-optimize and implement
a new‘plan, the accumulation of information causes a proxy related to the number
of stories to over-estimate the propensity for investors to re-optimize, since during

accumulation later news bits can negate earlier ones.

2As discussed in Chapter 2, Tauchen and Pitts explicitly consider the case where the number
of investors can vary, but their model has some uncomfortable assuptions (Section 2.5).




Chapter 4
An Optimal Price Index

This chapter defines the hotion of ‘optimality’ for creating price indices out of fu-
tures contract prices. As will be di’scuséed below, futures price data have several
advantages over spot price data, and one glaring disadvantage—every futures con-
tract expires. Both Clark (1973) and Tauchen and Pitts (1983) used futures data to
fit their models, using the method proposed by Clark to join the individual contract
prices together. The optirnai index proposed here is shown to be superior to that
of Clark both in theory and in praétice. This chapter has appeared in a slightly

different form as Rougier (1996).!

4.1 Introduction

One of the features of the Tauchen and Pitts (1983) model analysed in Chapter 2
is the symmetry of costs with respect to short and long positions; in fact, traders
in this model have no transactions costs at all. In practice, it is more expensive

to. go short than to go-long in spot markets, since to go short often involves either

T would like to thank the Editor of the Journal of Futures Markets, Professor Mark Powers,
and the two anonymous referees for their very helpful comments on an earlier version of this paper.
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havi‘ng to borrow stock or .ha\rtng t‘o-purche,se the right"to borrow stock.? In futures
markets costs are symmetrrc with’ respect to short-and long pos1t10ns
Karpoff (1987) notes that the price-volume relationship appears to be affected by
the asymmetry of co_s_ts between short and long positions. In spot markets the price-
vo.lumefrelationshipA:fOr negative price changes is not reflectionally symmetric with
that of p_ositi{/e 'changes,'v{'rhile in futures ma;rkets-the relationship is reflectionally
symmetric. Consequently,jspot-_ markets displ'ay a signiﬁcant correlation between
price chenge_ _a.nd.v-i\/'olume- while futures markets do not. Both markets display a
correlat-ion biet"we'e’n absolute price change .-ztn_d volume. Therefore empirical work on
i price—_vOlu‘me models without transactions costs should use futures rather than spot
data. |
e ‘Unfort,uneittely,- hoWever, every financial futures contract expires. Therefore time
series a.nalysis,b of futures markets will often be limited by the short period in which
R 'any partlcular contract exists. For stock index futures this is a period of about half
a year. 3 An obvrous alternatlve to usrng a single contract is to use a price index
‘ constructed from‘one or-more of the outstandmg contracts at each point in time.
o There are a number of ways in which such an index may be constructed
Thrs chapter makes a theoretical case for a new type of index, known as an

Optrmal 1ndex and demonstrates that such an index outperforms the two currently-
-accepted_1nd1ces. Section 4.2 defines optimality, and shows how optimal indices may
be derivect for different nnmoers of Iavailable futures COntrztcts. Interestingly, ,where
‘ there_ arfe'mor‘e(than two: COntracts available at any one time, there is more than
-one optimal inde)e. 'Sectjon 4.2 also contrasts the optimal index with the widely-

practised ‘method of simply taking the near contract and ignoring the others, here

2For the situation in the UK, See Stock Borrowing and Lending, available from the London Stock
Exchange, and ‘Some Old Pecuhar Practices in the City of London’ (The Economist, February 18,
1995).
" 3Sometimes even this- period. w1ll be mappropnately long, given the finding of Yadav and Pope
(1990) that mrspncmg in-stock 1ndex futures tends to increase with time to expiry.
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referred to as ‘splicing’.

Section 4.3.discusses the other alternative, the ‘Clark index’ first described in
Clark (1973) and used subsequently by Tauchen and Pitts (1983). This was origi-
nally proposed as an 1mprovement on splicing, and it is shown in this section that
the Clark index represents a compromise in performance between splicing and op-
timalit};. Section 4.4.examines the practical differencés between the three indices
using data on the FTSE 100 stock index futures contract traded on the London
International Financial Futures Exchange (LIFF E) To anticipate the conclusion,
the optimal index as proposed in this chapter should be unambiguously preferred to
either the spliced rindex or Clark’s index. The fo;mer'is demonstrably sub-optimal,

while the latter is much harder to calculate and potentially unreliable.

4.2 ‘Optimality’ in Futures Price Indices

The objective is to create an optimal price index from the prices of the available

futures contracts. This begs the question “What do we mean by optimal?”

Definition 4.1 (Optimal Futures Price Index) An optimal futures price index
preserves a constant proportionality between the change in the price indez and the

change n the underlying spot price,”in the absence of market imperfections.

In the absence of market imperfections, each futures contract trades at a ‘fair value’
relative to the spot price. This fair value is maintained by arbitrage. In the case of

-stock index futures,
Fe=P(+(r—y)(k—1), (4.1)

where Fy is the price at ¢ of the futures contract expiring at time k (where t < k),

P the spot price at t, r the interest rate and y the dividend yield. All periods are
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measured in years, and cébitals are used ﬁo denote price variables assumed to be
time-varying.4

The simplest index of futures contract prices would be the price of the near
contract, Fy. This is the generally-accepted method of creating a contiguous series.®
Notionally, fhe price series of the near contracts are spliced together so that the daily
return of the resulting price index is equal to the daily return of the near contract.
The problem. with the spliced index is that the change in the index depends upon

both the change in the spot price and in the time to expiry of the near contract:
dFy, = 1+ (r—y)(k—t)dP=P(r—y)dt. ' (4.2)

This expression shows that the ratio dFy/dP is seasonal, regardless of whether dP
is seasonal. This seasonality is introduced by the declining interval between t, the
current time, and k, the fixed point in the future at which the contract expires. It is
this problem of seasonality which motivates the .deﬁnition of optimality given above.
An optimal futureé price index should have no seasonal variations other than those
in the spot price. |

The optimal futures price index, denoted F*, will be restricted to convex com-

binations of the prices of the currently available futures contracts:

n—1

F* - Z /\,(t) Fk-{-ivy 3 (43)

. 1=0

where there are n contracts available and the time between contract maturities is

v (i.e. Kk —wv <t <'k). The weights in eq. (4.3) are written explicitly as functions

41t is assumed that the ‘cost of carry’ r —y is constant over the period for which there are futures
contracts available. For most of the time this is a good approximation. Occasionally, however,
there will be some marked seasonality (e.g. the interest rate will jump upwards at the end of each
quarter if the yields curve is upward sloping). The empirical results of Section 4.4 demonstrate
that the impact of this factor, and likewise the impact of transactions costs, is small.

5See, e.g., Buckle et al. (1994).
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of time, since without time-variation in the weights there will always be seasonality

similar to that of the spliced index. The weights satisfy the usual conditions

MO e, 1] i=0,...,n-1 | (4.4)
nz—:-/\,-(t) —1 (4.5)
1=0 )

Saw=0 | ws)

for all ¢, where A;(t) denotes the derivative (the third of these conditions is actually
a direct consequence of the second). The spliced index is the simple case Ao(t) = 1,
and X;(t) =0fore=1,... ,n~ 1

An optimal index by Definition 4.1 will have weights which satisfy the following

Proposition.

Proposition 4.1 For F* in eq. (4.8) to be an optimal futures price indez by Def-
inition 4.1 it is sufficient that the weights satisfy eq. ({.4), eq. (4.5) and eq. (4.6)

and the additional co_n(ﬁtion

vYuxm=1, @)
for all t.

Proof: The definition of optimality reqﬁires that

dF* .
- | | 48
ap € : (48)
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for allut, Where‘_c is some constant yet to be determined.® Condition eq. (4.8) holds

‘if and only if

A (dFT o

From eq. (4.1) and eq. (4'.3),' .

o = Z O+ (=) lhtiv 1)

‘:"'”(r%y)_(k—t)ww— DY o

. 1=0
~ rémembering that the Wéights sum to one, eq. (4.5). Differentiating with respect to

¢t and sétting the result to zero gives

. . - o T on-1
i ~(r — y)+v(7”— )Zm'() 0
: . 1=0
. ‘ n—1 . ) ;
=0y i) =1 , | (4.11)
i ":0 - . . ’ . .
iwhich is. é:_ondiﬁ‘o_n ~eq; (4.7).. " | R

It can easily be éonﬁrmed‘: that the spliced index is not optimal, since eq. (4.7)
: cénndt be satisfied when A/(t) = 0 fori.= 1,... ,n—1. Trivially, no index comprising
~ just one futures price can be optimal. Proposition 4.1 can now be used to derive

~ the optimal weights fo_‘r,'different’ numbers of contracts.

$This conditiqr‘l may also be written
. dF* 4P
L oodt T “a
In other WOrdS the rate of change of the futures price index and the spot price should be in

- ‘constant proportion no matter what the relation between the current date and the expiry pattern
of the futures contracts
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Corollary 4.2 For the case éf only two futureé contracts, the optimal weights are

M) ==t === | (4.12)

() v

Proof: Since n =2, eq. (4.7) implies that \|(t) = 1/v, from which eq. (4.6) implies

Ao(t) = —1/v. Integrating these two expressions with respect to ¢ gives
-t N ¢ _ :

Each weight is constrained to lie in the range [0, 1] over the admissible values of t
which are ¢ € [k — v, k]. Therefore the constants must satisfy certain inequalities.
Taking Cy at the two extreme values of ¢,

—(k—-wv

——'—( - ) =+ C() S 1

t=k : —+Cy>0 v
v

t=k—v

To ensure that Ag(t) + A;(t) = 1 for all ¢, the constants must sum to one, and this

gives
. k . '

Substituting these two values into eq. (4.13) completes the proof. |

These two weights when substituted into eq. (4.3) give
F*=P(1+(r—y)v). | : - (4.16)

The optimal price index behaves like a notional forward contract which has v years

until expiry. There is only one optimal price index using just two contracts.
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More Than Two Contracts

. For stock index futures there are often only two contracts available, and so optimal
indices with n > 2 are nbt required. However, there are other futures markets
where there afe many more than two contracts available (e.g. the market for cotton
futures examined by Clark (1973), in which there were generally eight contracts
available): ‘Therefore the optimal indices for three contracts will be derived, in order
to demonstrate the approach and illustrate the properties of the reéulting indices.

Generally, solutions can be found by using the sufficient condition for eq. (4.7),

1
X{t)=———=fori=1,...,n—1, (4.17)

iv(n—1)

finding Aj(¢) by eq. (4.6), and then working back to the weights in exactly the
manner demonstrated in the proof to Corollary 4.2. For n = 3, there are three sets

of weights found by this method:

/\O:v+3(k—t) ,\1_:2”_2(k_t) /\2:1)—(k_—t)
3(k—Y) 3y 2k — 1) v— (F— 1)
3 (k= 1) 2% — 2 (k — t) % — (k — 1)
A():————— /\1:—' /\2:——.
: 4u 4y 4y

These correspond to notional forward contracts which have v, (5/4)v and (3/2)v
years to expiry, 'respe.ctivel‘y. Interestingly, the first set of weights can be generalized

further since none of the individual weights ever fall to zero.” The generalisation is

v+3(k—t—a) ) 20—-2(k—t—a) ) v—(k—t—a)

4y 4y 4

Mo
(4.19)

where 0 < a < v/3. The notional time tolexpiry of this contract is v + a. In other

~ "Tam grateful to an anonymous referee of the Journal of Futures Markets for pointing this out
to me.
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words, the inveétigator can choose any notional time to expiry between v and (4/3) v.
This includes (5/4) v, the second of the indices in eq. (4.18), which would require
a = v/4. Therefore two different sets of weights can give the same notional time to
expiry. Investigators should be aware of this possibility when creating indices with
three or more contracts.

When there is more than one optimal index available, a general rule would be to
choose that set of weights which gives a notional time to expiry closest to the mean

time to expiry of all contracts in the market over the period in question.

4.3 Clark’s Price Index

The deficiency of the splicing method, which takes ju.st the near contract, has already
been highlighted. Clark (1973) noted this, and proposed an alternative solution
which shares many of the properties of the optimal price indices described above.
Clark’s method is asymptotically optimal in the number of available contacts, but
not so a.ﬁtractive where there are only a small number of contracts available. As has
been mentioned above, this is the case with stock index futures where two contracts
is usual. In Clark’s défence, however, his method was applied to cotton futures,
whe.re the number of contracts available at any time was eight.

L Clark’s index is a convex combination of futures contract prices, as in eq. (4.3)
and eq. (4.4). However, the weights are not derived from the theoretical properties
of futures contracts. Rather, they are derived from the empirical distribution of
the time until expiry across all contracts in the sample period. This distribution is
denoted W (), such that.W(~d)'show‘s the proportion of all contracts in the sample

period which have d time in years until expiry. Clark’s index is

it : .
e Z wi(t) Fryan, ' : (4.20)
. = :
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where

wil(2) def  W(k—1t+1w)

Wk i) 20

Thus each contract is weighted according to the popularity (i.e. frequency of oc-
curence) of its particular time to expiry. Clearly the weights in eq. (4.20) do change
with time and sum to 1. However, the}‘f‘ do not necessarily satisfy eq. (4.7).

If Clark’s index is not optimal, it will contain some seasondlity in addition to
that in the underlying spot price. The source of this seasonality is variation in the
de facto time to expiry. This ié & [W] on average, but varies on a cycle of v years
‘because the-contracts ava_ilable at any given time provide just a small subset of the
total range of possible times to expiry. In fact, the de facto time to expiry of the

Clark index at time ¢t is

n—1

= k—t+v) iwt) | (4.22)

=0

and the Clark index might be written

F¢ =P+ (r—y)w). (4.23)

From eq. (4.21) and eq. (4.22) it can be seen that w0, tends to £ [W], a constant, as n
becomes large and v — At (which also implies £ — At), where At is the resolution
of W, typicall‘y 1 day. This confirms the point made above that Clark’s index is less

sub-optimal where there are a large number of different times to expiry available.?

8The process by which the de facto time to expiry at t tends to the expectation of W as the
number of available contracts (n) becomes large is exactly the same as that in which a numerical
-integration approaches the true valué in the limit as the number of points over which the integrand
is evaluated becomes large. The smoothness of W is a crucial factor in deciding how quickly
the limit is approached. As will be seen below, for FTSE futures W is very smooth and so the
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. However, even where there are a ia.rge number of contracts available Clark’s
index still has disadvantages over the ‘optimal. index. First, it is much harder to
calculaté, requiring an extra dataset (the daily open interest on each contract) and
the estimation of the distribution W. Second, it is sample-dependent since W will
depend upon the périod of calculation. This sample-dependence would probably not
be a problem in a méture market since W would be stable. In a new or evolving
market, the ‘éeaséning’ of the contract could make W vary, in which case the Clark

index calculated over a period might be substantially different from its values in a

sub-period.

4.4 Practical differences

The notion of optimality depehds upon there being no market imperfections, since
the fair value relationship between spot and futures prices, eq. (4.1), is maintained by
~ arbitrage. Since f}iere are imperfections in actual markets, most notably transactions
costs, but also sources of delay which prevent the concurrent execution of spot and
futures transact‘iOns, it is i‘mportant'to examine whether there are empirical as well
as theoretical differences between the three indices. Ther;e is also the issue of ease
of use to be considered. This section examines these ‘questions using the FTSE 100
contracts traded on LIFFE over the period 1985-1994.

The optimal index is the two-contract specification eq. (4.12), since there are
sometimes no. movre than two futures coﬁtracts available.® The Clark index requires
the estimation of the »tim'e to expiry distribution, W(-), prior to calcuating the index

values. This is shown in Figure 4.1. The sharp fall-off in W (¢) just before t=0.25

convergence is fast, and few contracts are required in order for the Clark index to behave as if it
has a fixed amount of time until exipry.

Indeed, sometimes at the start of a new quarter there is only one contract available. In this
case the weights are set to Ag(t) = 1 and A;(¢) = 0; these are close to the theoretical values since

(k—t)=v.
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Figure 4.1: The Distribution of FTSE Contracts by Time to Expiry
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indicates that most of the interest in FTSE 100 futures is in the near contract. The
de facto times to expiry for the three indices are shown in Figure 4.2. The mean
time to expiry for the Clark index is 0.169 yearé (about 43 days), but the availability
of just »tWo cohtrdcts causes the de facto time to expiry to vary from 0.253 years (64
" days) to 0.123 years (31days) over the course of one quarter.

From the properties of the three indices

dFy dP

e L4 3 (R T (4.24)
dF : dP

dt ‘*{1 +(r—v) U}', 7 ' (4.25)
dF° dP

(4.26)

= (r—y)P%—F{}%—(r—Q)wt}

dt dt
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Figure 4.2: The Notional Time to Expiry- During a Quarter
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This suggests a bivariate regression of the form
AF=a+BAP +u;, (4.27)

where the daily changeT in each of the indices, denoted by A, is used to approximate
the time derivatives, and %, is some disturbance term.!® Regression eq. (4.27) should
only be correctly speciﬁéd for the optimal index F™, in which case & = 0 and § > 1,
and the disturbance should be white noise. In the cése of the spliced index significant
time-variation in § should cause the regression to be mis-specified. It is hard to say,
a priori, whether the variation in 0 over the course of a quarter is sufficient to have
a significant impact on the specification of the Clark index regression.

"~ On running the regressions, it was immediately apparent that all three models

10The change in the spot price, AP, is calculated from close to close of trading in the futures
contracts at LIFFE (4.10 p.m.) rather than close to close in the spot market, since the two are
not synchronous.
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Table 4.1: Regression results, 1985-1994

Dependent variable

AF, AF* AF¢

& —0.307° T —004r ~0.039
(0.112) (0.131) (0.131)

B 0.762 1.072+ 1.069*
(0.006) (0.008) (0.008)

b —0.285* ~0.379* ~0.375*
. (0.019) - (0.018) (0.018)

R 0.839 0.867 0.866
DW 2.102 | 2.174 2.172

The regression-is AF = « + AP + e;, where e, = pe;_1 + u;, and u; is a white noise
disturbance term:. ’

* significantly less than 0.0 -at 5 percent;* significantly greater than 1.0 at 5 percent.
The critical values for the Durbin-Watson (DW) statistic are about 1.77, 2.23 at 5%. The
hypothesis that the three parameters are the same in the optimal and Clark regressions
has a test statistic of 1.30, which is comfortably below the critical value (x?3 at 5 percent)
of 7.82. . ‘

were characterised by strong ﬁegative first order autocorrelation in the residuals.
This may be presumed to haye arisen as a consequence of the arbitrage process. If
a futures gfont'ract'price was sufficiently in excess of its fair value, then arbitrage
would cause AF, < 0 é.nd AP > 0 in the absence of news, and the disturbance in
eq. (4.27) wégld be negative. If arbitrage next occured in the other direction the dis-
turbance would be positive. Therefore, negative autocorrelation in the disturbances
of eq. (4.27) suggests some form of ‘overshooting’ by arbitrageurs.

The regressions were fe—estimated allowing for first-order autocorrelation in the
d‘isturbances. The results of these regressions are given in Table 4.1. These show
4t}.1at the spliced index performs very differently from the optimal index and the
- Clark index. The optimal regression has precisely the properties predicted by the

theory: a zero intercept and a gradient slighly but significantly in excess of 1.0.

These properties are shared by the Clark index where, additionally, the B is slightly
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less ‘than’that of the. optinial' regression in accordance with the shorter mean time
to explry This contrasts w1th the spliced index tegression, where the gradient is
not s1gn1ficantly greater than 1.0, contradlctlng the theory. This suggests that the
' sphced 1ndex regressmn is. mls—spe01ﬁed.

The high R? \}al-ués for’-the optimal and Clark regressions indicate that nearly
" 90 percent of the variation-,in the futures price can be explained by the fair value
relationship. This leaveé just over 10 pérceht to be explairied by the sporadic actions
Qf arb.iAtrag;eu‘rs, and slack introduced by gfahsactions costs and variation in the

_interest rate and the d»i‘vi_dend» yield.

4.5 Coniclu»sion -

The need for a cdntiguoug p;ice index for futures contra_cts is well-established. This
, vchapte'r has co-nsidered threév such indices. The spliced index is the standard and
consists simply of th‘é teturns of each near contfacp in turn, notionally joined together
~into a pricé'éeriés. The Clark, index is a convex combiﬁation of futures contract

prices, Wﬂheré 4the. _weighté. are: dér.iv_ed from the empirical distribution of time to
gexpiry. By the de‘ﬁnitio‘n‘,provided in this ‘V‘chrap'per neither of these two indices is
B optimal; since they both introduce Seasonality in the futures price index in addition
; ﬁo t'hét pAreSen‘_t'in the spot. price.

The third index is optimal by the same criterion. The optimal index preserves a
constant’~prop0rtiona;1ity 4between spot price change and futures price index change.
Tt is .'shown matihemat‘i(:all‘y fhat there are several optimal indices. The investigator
should choose that}r‘indéx Withv the rnést appropriate notional time to expiry, since
‘it is in this réspect that the indices differ from one another.

'”ljhe_éih.piricdl :evidence':svuggeéts that the spliced index should be avoided, but

that Cll.ark’s index and the optimal index perform almost identically. This suggests
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that r_narket.irhp'erfecfions are sufficient to clbak’ the Clark index’s sub-optimality.
HdweVer, g'iven the‘ r_nuc_h greater cost of calculétihg the Clark index and the un-
certainty éngéndered by its sample-dependence, the optimal index should be unam-
biguouSly pr_efefred when creating a .‘pr‘ice' index for stock index futures contracts.

Similar optimal indices can also be calculated for other futures markets.



Chapter 5
A Short Empirical Study

5.1 Introduction

This Chapter ihvest_igates the price/volume rela.tidnship using 10 years of daily data
| from the FTSE-100 futures contracts vtraded on the London International Financial
Futures Exchange’ (LIFFE). Section 5.2 describes the price data, and Section 5.3
the trading volume.dafa, which needs some adjustment to account for the growth
of the market and fér non-news-related trading. The following sections examine
" two aspects of the price/volume relationship: symmetry following Karpoff (1987)
(Section 5.4), and the x? test for the Tauchen and Pitts (1983) inter-day model
developed in Sectioh 2.5 (Section 5.5). Section 5.6 concludes.

The orig\inal data used in this study were kindly supblied by LIFFE, and con-
siSted'vof date, contract code, delivery month, index settlement price, index opening
range (tWo,valués), daily high, daily low, volume and open interest, for each contract
for each trading day from the middle of 1984, when the F'TSE-100 future was first
traded. I‘The period under study covers the ten years 1985-1994. The original format
of the data is shown in Figure 5.1.

- The attraction of futures data for empirical work has been briefly discussed

82 -
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“Figure 5.1: Sample of Original Data from LIFFE

1229.

2 JAN 1985 X MAR 85 1216.0 1229.5 1227.0 5 1215.0 194 744
2 JAN 1985 X JUN 85 1218.0 0 0 0 0 0 48
3 JAN 1985 X MAR 85 1204.5 1201.0 1202.5 1208.0 1199.5 231 748
3 JAN 1985 X JUN 85 1206.5 1204.0 1204.0 1204.0 1204.0 2 46
4 JAN 1985 X MAR 85 1213.0 1206.0 1207.5 1217.5 1206.0 155 741
4 JAN 1985 X JUN 85 1214.0 0 0 0 0 0 46
7 JAN 1985 X MAR 85 1228.5- 1211.0 1213.0 1229.0 1211.0 236 763
7 JAN 1985 X JUN 85 1229.5 0 0 0 0 0 46
8 JAN 1985 X MAR 85 1238.0 .1237.5 .1237.0 1242.0 1230.5 276 776
8 JAN 1985 X JUN 85 1239.0 0 0 0 0 0 46
8 JAN 1985 X SEP 85 1240.0 1240.0 1240.0 1240.0 1240.0 5 5

Thus, there are two contracts available on 2 Jan 1985, one expiring in March 1985 and
the other in June 1985 (both at the end of the month). The settlement (i.e. closing) price
of the first of these was 1216.0, the opening range 1229.5-1227.0, the high 1229.5, the low
1215.0, the volume 194 and the open interest 744; the data for the second contract is not
updated since there was no trading on the day. When trading is very light, the data can
be ‘stale’—this must be taken into account when creating price indices.

in the introduction to Chapter 4. In addition to the érguments advanced there,
which centred on the low and symmetric transactions costs, an index is preferable
“to individual stock prices since the diversification in the index lowers the standard
deviation of returns and makes it easier to perceive the time series structure of the
mean returns (Lo and MacKinlay, 1988; Conrad and Kaul, 1988).

One potential problem with an index is asynchronous trading bias (Fisher, 1966;
Cohen ét al.; 1980). The presence of less-traded stocks in an index means that at
the close of fhe-tradin‘g day some of the prices will be ‘stale’, i.e. not updated with
the latest news. These prices adjust on the following day (at the next trade) and
so introduce positive autocorrelation into the return series. This is unlikely to be a
problem with an index of highly traded stocks such as the FTSE-100.

Another problem with spot price indices is that they are never directly traded. In

this case - many of the psychological effects linked to the impact of technical analysis

(e.g. support and resistance levels) are not present in the index in the same way as
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in underlying stocks. Howevér, a futures contract on the index is traded, and so it

does not suffer from this problem.

5.2 Prices

The price series was constructed from the prices of the existing contracts on each
trading day using the two-contract Optimal Price Index described in Chapter 4.
The resulting index is displayed in Figure 5.2. The daily return series was created

using log price differences: ‘
re & logp, —logp,_,, t=1,...,252. (5.1)

“This series is shown in Figure 5.3. It is clear from these two Figures that the
behaviour of prices -during the year of the stock market ‘crash’, 1987, was atypical
but not exceptionally s0. 'It is a pleasing coincidence that the bounds of the year
élso define very closely the bounds of the ‘bubble’, the crash and the recovery. But it
is easy to identify other. bne-year periods in ivhich the behaviour of prices is equally
atypical: 1988 was strikingly flat, 1989q3-1990q2 with its ‘triple top’, or 1993q3-
1994q2 with its interesting ‘single top’. There are certainly no grounds for excluding
-1987 frorh the sample at this stage,.aAlthough there might be a case in subsequent
empirical work for masking fhe one day fall of 16.6% which occured on October 19,
1987. o
‘DeéCripti’ve statistics_ for the return series are given in Table 5.1. Although the
trend in prices is clearly upwards, the mean daily return is less than one twentieth
of 1%, compared fo a standard deviation of over 1%.
. Six‘ oﬁt of the tén years show negative skewness but only two of these are signif-
iéantly riegative compared to‘a: normal distribution; there are also two significantly

positively-ske_wed years. From the quartiles it is clear that if there is negative skew-
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Figure 5.2: Optimal Price Index (p,)

FTSE-100 Futures, 1985-94
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Figure 5.3: Daily Returns (7;)

FTSE-100 Futures, 1985-94
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Table 5.1: Distribution of Daily Returns (r;, %)

FTSE-100 Futures, 1985-94

Mean Std. - Skew. Kurt. Q1 Med. Q3 Min. Max.

1985-94 0.0 1.1 -L7f 250f -0.6 00 07 -166 8.1

1985 00 08 -0.1 02 -05 01 07 -24 23
1986 01 09 02 -02 -05 01 07  -24 23
1987 0.0 20 ~-2.8f 215t -0.7 02 11 -166 8.1
1988 0.0 0.9 02 ~ 16t 05 0.0 06 -25 35
1989 01 1.0 -1.1t ~ 65t 04 02 08 -65 3.1
1990 -01 1.1 -02 - 05 -08 0.0 0.7 -36 33
1991 0.0 09 0.3t 1.4t -06 0.0 07 -38 38
"1992 00 1.1 0.4t 25t -0.7 00 08 45 50
1993 0.0 0.7 0.2 08t -04 00 05 -22 ° 238
1994 00 10 -01 -06f 09 00 07 28 24

1 Significantly different from the normal distribution at a Type I error of 5%. The stan-
dard error for skewness from a normal parent is V67, for kurtosis, v/24n, where n is the
sample size (see, e.g., Kendall and Stuart, 1969, p. 243). .
ness in daily returns it occurs primarily in the tails, since the first and third quartiles
are roughly syfnmetric around the median. But the minimum and maximum values
also appear to be symmetric about the median. The conclusion is that there is no
strong evidéncerthat the return distribution is not symmetric. -

‘The leptoklirsis is much more unambiguous: eight out of the ten years show
‘leptoku.rsis, six of them significant, against one significant platykurtic year. Not
surprisingly, the leptokursis of the complete dataset is much more pronounced than

that of the individual years, since the period 1985-94 spans years with marked

differences in the standard deviations.

Autocorrelation

The first-order autocorrelation characteristics of returns are shown in the lefthand

panel of ‘Table 5.2. While nore of the coefficients is more than two standard errors
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Figure 5.4: Trading Volume (v;)

FTSE-100 Futures, 1985-94
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from zero, there are six positive values versus four negative ones. The Durbin h
statistics for 'r;asidual autocorrelation, useci here as a broad indicator of misspecifi-
cation iﬁ the AR1 modei, are generally insignificant; the ARCH statistics show that
', ARCH effects appear to be sporadic. The very large value for the ARCH statistic
for the full sample, when compared with the statistics for the individual years, sug-
gests that the frequency of the variance process be quite low. This agrees with the
findings of Tabie, 5.1.

Overall the suggestibn from the data of Tables 5.1 and 5.2 is that the deter-
minants- of the'stochastic process of r, are quité unstable. This is shown by the
instability ‘of the statistics for iﬁdividhal years, and the substantial difference, par-
ticularly with respect to disp.e‘rsion, between the full-sample statistics and those of

the sub-periods.
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Table 5.2: Autocorrelation and ARCH in Returns and Volume

FTSE-100 Futures, 1985-94

Returns, 7, : Volume, 9;

p Durbinh ARCH p Durbinh ARCH

1985-94 0.013 1438 29.858 0.441* =7.701 . 47.599

1985 -0.076 -2.391  0.059 0.544** -3.305 0.130

1986  0.040 0.128 4.018 0.206** -1.177 1.362
1987 0.055 0.431 24747  0.430* -2.091*  16.987*

1988  0.048" 4.552* 10.254*  0.360* -2.538™  0.178

1989 - 0.022 1.244 0.001 0.519* -1.360 0.568

1990 -0.033 1.991*  3.519 . 0.532* -3.694*  0.087

1991 -0.064 -1.244 0.362 0.365* -1.960 0.016

- 1992 - 0.042 -0.057  10.590™  0.491** -2.008*  3.589

1993  0.054 0.602 0.685 0:307* - 0.102 0.911

- 1994 -0.109 0.070 ~ 1.387 0.429** -3.433"  1.042

* Significant at a Type I error of 5% (** 1%). The standard errors for the autocorrelation
coefficient are (n — 1)~Y2 where n is the sample size (see, e.g., Kendall and Stuart, 1969,
p. 396); by this criterion none of the correlation coefficients on returns is significant at 5%.
* ‘Durbin h’ is Durbin’s test for first order autocorrelation in the residuals; ‘ARCH’ is from
a regression of squared residuals on a constant and one period lagged squared residuals.
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Figure 5.5: Detrended Trading Volume (%)

FTSE-100 Futures, 1985-94
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5.3 Trading Volume

The trading'vdlume for each day was calculated by adding the volume on each of the
_ contracts available. It is shown in Figure 5.4. Cleérly there has been a huge increase
- in trading volume over the period which probably reflects the gradual acceptance
of futures contracts by professioﬁal investors. Interestingly, the growth now shows
some sign of flattening out. Models such as Tauchen and Pitts (1983) can account
for the increase‘ in traders on the amount of trading volume generated per news bit,.
However, in the light of the criticism of this‘ model advanced in Section 2.5, the
‘simpler' éxpedient of detrending the volume data is used. The trend was fitted as
a 63 day rr1’0\}ing average over log-volume. This period, which is the mean number
of trading days between contract expiries, was chosen since any seasonality is likely
to be related to contract expiry. Detrending by this moving average will tend to
remove cycles of an order greater than one quarter but preserve higher-order cycles
(including such things as day-of-the-week éffects, although these are not allowed for
here). The usual alternative, the fitting of an exponential trend (as in Gallant et al.,
1992), would clearly intrqdhce ldw-order cyclicality since volume v, does not follow
suéh a trend (Figure 5.4); it seems better to use the more conservative technique.
Détrended volume, v;, is scaled to be of the same magnitude as the first obser-

vation of 1985:
o L x exp(logw, — m.a. {logv,, 63}) t=1,...,2529. (5.2)

This series is. displayed in F igure 5.5. At this point it is quite clear that volume
displays some further seasonality relating to contract expiry, which shows up as a

repeating quarterly pattern.
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Contract Rollovers

The cause of 'this seaéonality is éontract rollovers (see, e.g., Yadav and Pope, 1990;
Holmes, 1993), and this also provides for a rémedy. As a contract nears expiry an
investor Wanting to maintain a position will close the near contract and simulta-
neously open an iden‘pical position in- th;er far contract. This activity generates two
lots bf trading volume.which are entirely un-news-related (i.e. systematic). Were it
possible fo estimate the number of contracts rélled over each day, then twice this
number could be subtracted from the trading volumé figure for the day to leave
news-felated Qolume*oniy.

It is not possible to estimate the number of rollovers from the data supplied by
LIFFE. However, it is bpossible to proxy the number using the data on open interest.}
If T roll-over n contracts then.the open interest in the near contract will fall by n,
and the 6pen interest in_the.far contract will rise by n. Thefefore a sign of rolling
over is a fall in'near open interest and a corresponding rise in far open intérest. The
amount rof rolling over is taken to be the smaller of these two numbers, since this
ensures that for every rolled over contract thefe is both a closure and an opening.

This gives rise to the proxy for rolled over contracts, Iy,
1, % min {max {0, ~(0} — 0}_,)} , max {0,(cf —0}_1)}}, (5.3)

where o, is the open interest on day ¢ and a single prime denotes the near contract
and a double prime the far contract. The maximizations in eq. (5.3) are to ensure
that only a fall in the near contract and a rise in the far contract open interests
will count, while-the minimization is to ensure that there is matched closing and
opening.

If the reasoning is correct, then I, should show marked seasonality, being near

T am grateful to Phil Holmes for this insight on the use of open interest data.
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Figure 56 :antract Rollover Proxy (1;)
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Figure 5.7: Detrended Trading Volume adjusted for Rollover, (v;)

FTSE-100 Futures, 1985-94

1,000 -

800 *"‘;'f;‘;'i'%";": ----- f ----- jn-----i---:-fl ----- 3 ------ L -----
600 H- -} -[-pr-E--F -z - -‘-‘:--‘--,--1'--’----:----4 - -.:---- -..— -----
1IN

x ".i !

R NI

| fl g

0 ; 1 . ' ! ; '

1985
1986
1987
1988
1989
1990 -
1991
1992
1993
1994
1995



CHAPTER 5. A SHORT EMPIRICAL STUDY 95

zero early in the quarter, and only large in the final few days. The graph of I, is
given in Figure 5.6, and happily it has approximately this form. The detrended

rollover-adjusted volume series is denoted vy, where
v} o x exp(log(v; — 21;) — m.a. {log(v; — 21;), 63}). (5.4)

This is shown in Figure 5.7. The graph is much less ‘spiky’, but there is still some
quarterly seasonality in v;. This is to be expected since the series l; is only a proxy
for rollovers. It is quite possible, for exarﬁple, for both amounts of open interest
" to fall and for there still to be some rolling over of contracts. This might occur
if there just happened to be a large number of closing-positiens taken in the far
' contraet. In this case the correct value for rollovers should be positive, but [, would
give zero. Hence the adjustment for rollovers using [, is not perfect (it is probably
biased downwe,rds) but it is simple and intuitive.

Descriptive statistics for the volume series v} are given in Table 5.3. As they
stand these figures show that the distribution of trading volume is clearly not normal.
Both the positive skewness and the leptokursis are significant in all cases (and highly
significant in almost all). However, these statistics are biased estimators of their
population equivalents because of the high degree of dependence between successive
observations apparent from Figure 5.7.

The most notable feature of these descriptive statistics is the non-normality of the
volume data. This non-normality is consistent with the ‘mixture of distributions’
model of Tauchen and Pitts (1983) discussed in Section 2.3, since in this model
volume is normal conditional upon the number of bieces of news per day. As the
amount of news varies from day to day so do both the mean and the variance of

volume.
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. Table 5.3: Distribution of Trading Volume (v;)

FTSE-100 Futures, 1985-94

Mean Std. Skew. Kurt. Q1 Med. Q3 Min. Max.

1985-94 225 103 - .1.6f 5.1 157 204 271 10 941

1985 234 135 1.0t 1.0 139 219 311 10 715
1986 226 108 1.7 7.0 156 211 275 53 922
1987 . 260 127 1.31 3.7t 170 238 325 20 873
1988 218 - 99 1.2 1.51 143 198 264 62 584
1989 230 109 . 2.5f 11.7f 158 208 278 33 941
1990 213 93 1.0f 1.17 145 197 260 38 096
1991 226 89 1.2F 2.0t 160 213 267 74 621
1992 - 204 78 2.1% 8.1f 160 191 232 27 658
1993 222 85 1.7% 4.9t 168 207 267 38 628
1994 207 73 0.61 0.6t 157 195 255 28 461

1 Signiﬁcantly'different from the normal distribution at a Type I error of 5%. See note
to Table 5.1. o ' :

Autocorrelation

The ﬁrst—order time series .proberties of the volume data are given in the righthand
panel of Table 5.2. Tt is cleér that there is highly siginificant positive autocorrelation
in trading volume. The Durb_in h statistics show evidence of misspecification from
a simpie'AR(l) process, but thére is little evidence of ARCH effects. In general,
a comparison of thé return data and the volume data in this Table suggests that
the stochastic process govel;ning volume is considerably more complicated than that

governing returns.

5.4 Symmetry

I now turn to the bivariate properties of the data. It was argued by Karpoff (1987)
that the retﬁrn/volume relationship in futures should be symmetric with respect to

price falls and rises because of the symmetry of the cost of short and long positions.
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Figure 5.8: Squared Returns and Trading Volume (2, v})

FTSE-100 Futures, 1985-94
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Figure 5.8 shows the relation between squared returns, 7,2 and trading volume, 7;,
separated according to whether the return is positive or negative. Visually there is
nothing to ‘di.ffer.e'ntiate the positive returns from the negative returns, supporting
Karpoff’s proposition.? . |

It would be helpful to support this visual evidence with fitted lines. The analysis
of Section 2.4 provides some guidance for the functional form and the specification
of the disturbance term,’ori the assumption that the Tauchen and Pitts (1983) inter-

day model is broadly correct. The simple exponential relationship (writing v; for

trading volume on day ¢ for simplicity)

(Ap)? = exp{a + Bui}u, _ : (5.5)

2In fact, Figure 5.8 is rather reminiscent of the folded inkblot butterflies I made as a child.
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where u; has support on the non-negative real line with £ [u;] = 1, V [ut | vt] = v°0?,

has the following appropriate properties:
1. (Ap)? > 0 (required by definition);
2. £ [(Ap)? | vi = 0] > 0 (Proposition 2.1);

3. & [(Apg)2 | vt] increasing in v, providing 8 > 0 (in sympathy with Proposi-
tion 2.1, although note the discussion that in theory &£ [(Apt)2 | vt] does not

have to be increasing for all v, > 0);
4. £ [(Ap)? | vt],non-linedr in v; (Corollary 2.4);

5.V [(Ap)? | v:] asymptotically quadratic in v, (Corollary 2.3).

" The only major problem with this functional form is that it does not asymptote
to a ray through the origin. This is partly addressed by estimating the regfes—
sion using Weighted Least Squares (WLS), which is necessary to accomodate the

A heteroskedasticity in ut Taking the logarithm of both sides of eq. (5.5) gives

In{(Ap)*} =+ Bv, +wy, (5.6)

where w; 4 1n u;. To a first order approximation, £ [w,] = 0, V [w; | vt] = p,%0%3

In order.to offset the heteroskedasticity, the regression must be estimated using the
| weights v;~1. This has the effect of ddwn-weighting the l;irge volume observations,
and so mitigating the Failure of the functional form to asymptote to a ray.*

There is also a minor problem with eq. (5.5), which is that asymptotically the

distribution of the disturbance term is not X3, as suggested by Proposition 2.2.

- 3If g(z) is some function of z, then to a first order approximation, £ [g(z)] = ¢(€[z]) and
Vig(z)] = (¢'(€ [z]))* V[z] (see, e.g., Kendall and Stuart, 1969, pp. 231-2). Hence if £ [u] = 1,
V[u|v] =v%? andw ' nu, then £ [w] ~ 0 and V [w]v] ~ (%)211202 =v2o2.

41t also down-weights the period. surrounding the stock market Crash, 1987q4-1988ql, since
this was a period of high trading volume—see Figure 5.7. This period is discussed further in
Section 5.5.



CHAPTER 5. A SHORT EMPIRICAL STUDY 99

Table 5.4: WLS Regression for Symmetry’

FTSE-100 Futures, 1985-94

n & B - R DW SSR
Allr, 2524  -12.2691™  0.0078* 0.0943  1.8597 11,1484
(0.0700)  (0.0005)
r>0 1,344 -12.5514"  0.0095™ 0.1372  1.3782 5,684.8
- (0.0885)  (0.0006)
ro<0 1,180  -11.6695*  0.0045** 0.0312  1.3718 5,369.1

(0.1157)  (0.0007)

** Significantly different from zero at a Type I error of 1%. The critical value for the
Durbin Waston (DW) statistic is 1.778, indicating that there may be some misspecification.
Proceeding on the basis that this is not serious, a Chow test for stability across positive
- and negative returns using the sum of squared residuals (SSR) has a test statistic of 10.77,
well in excess of the critical value at a Type I error level of 1% (5.57).

However, if a normal distribution is assumed for w; in eq. (5.6), then u, has a log-
normal distribution \vhi(;h shares many of the characteristics of the x? distribution,
notably having support on the non-negative real line, a similar mean and positive
skewness. .

The results of estimating eq. (5.6) over the sample are given in Table 5.4. The co-
efficient 3 has the correct sign and both parameters are highly significant. However,
there is some evidence of ‘misspecification from the Durbin-Watson (DW) statistics,
which is to.be expe(_:ted s-ince the_functional form eq. (5.5) satisfies only certain nec-
essary conditions for representing (Ap;)? | v, within the Tauchen and Pitts model.
Proceeding with the Chow test for symmetry with respect to positive and negative
retﬁrns, fhe null hypothesis is strongly rejected. This contradicts the findings of
the review of i)ricé/ volume studies conducted by Karpoff (1987), where a symmetric
- relationship is inferred from the absence of any correlation between Ap; and v in

futures markets. It also contradicts the Tauchen and Pitts (1983) inter-day model

. in which there» is no differentiation between good and bad news.
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Oh the -Basis bf Table 5-4 ﬁegafivé pl;icé éhanges'seem to have an initially higher
'but ﬂatter 5 [(Apt 2 I vt] than posmve ones. The critical amount of volume at
Wthh the two lines lntersect 1s vt ~ 177. This gorresponds to a daily return of
+0.4%, implying that‘ about 30% of all days have a higher negative than positive
relationship. _Rec’ent ’.s-"tudies'l héve_,emp}ias"ised the aéymmetr.y of price variability
with réspeét to good and ba‘dnex}v.é (see, e.g., Englé and Ng, 1993). It is generally
found that Ead ne;vs in(‘:reases‘subb'sequent p_rice variability. If it is preéumed that
the fesﬁdnSe of-_’»cradjn'g \'rol_ume‘to nevx;é-is ’uvnaffected‘ by whether the news be good
of bad,‘ then this would be thé _(;ase‘ in the é,bbve data only for days in which there
" were a smzﬂ_l amount of peWs; | |

This inconsisten’(:);, the parameter instability and the evidence of misspecification
frorﬁ the DW test s'tatistics:,.suggest that an interpretation of the price and volume
_ data within the Taﬁchen and Pitts inter-day framework is incomplete, i.e. there is

vmore'goivrvlg on in ,t_he» ‘price/’volume.relationShip than simple news-dynamics. The
" next section considers anl.éiltemative‘ test: bf_ this framewo.rk, using the asymptotic

results of Proposition 2.2,

5.5 'Tes‘tirig the Tauchen and Pitts Model

' :Raﬁhe; than using the findings of Section 2.4 indirectly in gnb attempt at line-fitting,
Proposition ,2.-'2.>‘may‘ be i;sed direcﬁly in a test of the model. If the Tauchen and
Pitts (1983) inter-day model is ~cofreet, then the équaréd return values adjusted by
| volume shoiild havé' épproxiinately a scale‘d‘ X3 distribution for large volumes.
Flgure 5.9 shows the tlme-serles of ‘volume-adjusted squared returns, 7,2/v;,
rescaled’ to ha.ve a mean of 1 in order to match the x? dlStI’lbuthH This ﬁgure
4 ’shows the unusual nature of the stock market Crash’ and its repercussions in a way

that neither squa,redA price -change nor trading volume can do on -their own. The
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" Figure-5.9: Volume-adjusted Returns (r;2/%}, rescaled)

FTSE-100 Futures, 1985-94
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mosf unusual aspect of the Crash period was the very high ratio of price volatility
to trading volume. As well as the very strong time-dependency around this period,
there also appeairs to bé a lesser degrée of time-depende.ncyv throughout the sample
périod, in the way that the daga tends to ciuster. This time-dependency is quite
consistent with the ‘Tauchen and Pitts model, except in the asymptotic case where
the amount of trading volume (equivalently, the amount of news) becomes large.
For an example of how. this time-dependency might arise, consider the case of
positive autocorrelation in thie mean of the news-arrival process, as might be inferred
from the success of ARCH models in. modeling returns (see Section 2.6). This
will affect the value of £ [N | T] in the notation of Sectlon 2.4, which denotes the
expectatlon of the amount of news which has arrived given an observation on the
amount of trading volume. As a simple example of this, consider the expectation of
the amount of news given that no volume has been observed, on the presumption
that the amount of news per day is Poisson with arrival rate A. By Bayes Theorem

o < P{T=0|N=n}Pr{N =n
EN|T=0]=>n { Lr{T:}O}{ . (5.7)

n=0

Writing Pr{y; = 0} = ¢ it follows that Pr{T =0| N = n} = ¢". By the Poisson

distribution, Pr{N = n} = e™*(A\"/n!). Making these substitutions,

an e M A" /n))
eV |T=0] -
Zq"e (A" /n!) v
=0 | | (5.8)
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Table 5.5: x? Test on Volume-adjusted Squared Returns

FTSE-100 Futures, 1985-94

Quartiles
Q1. Q2 Q3 Q4
Full Sample 19.201  16.241 9.753 32.312
[0.024] [0.062] [0.371] [0.000]
Less 87q4-88q1 12.706 13.200 12.871 8.779
[0.176] [0.153]  [0.169] [0.458)

The values in brackets represent the area of the x? distribution (9 degrees of freedom)
lying above the value of the test statistic.

Consequently, dyhamic behaviour in A leads to dynamic behaviour in £ [N | T= 0],
and, by extension, £ [N | T= t] (t > 0). As was shown in Section 2.4, this in turn
leads to dynamic behaviour in the expected price change squared conditional upon
the amount of trading ;folume, ie. & [(Apt)2 I 'ut].

Proposition 2.2 shows that the distribution of squared price changes scaled by
volume should become more and more like a scaled x? distribution as volume in-
creases. To investigate this, the complete sample is divided into its four quartiles
by tradihg volume (as given in Table 5.3, p. 96), both with and without the unusual
CrashAper‘iod, 1987q4—1988q1,, if the Tauchen and Pitts model is correct, the fit
~ between the volume-adjusted squared returns and the x? should be at least as good
for samples from high"volume days as from low volume days. The observed and
expected distributions for the four quartiles are given in Figure 5.10, and the results

of the x? tests in Table 5.5. Tt can be seen that the full sample does not fit the x?2
| distribution in thg largest quartile by volume‘at all well (although the fit in quartile
3'is quite good). The exclusibn of the Crash period, however, substantially improves

the fit to the point where it is entirely consistent with the Tauchen and Pitts model.

5In fact, it is easy to see that N | T = 0 is Poisson with arrival rate g\, from which this
expectation follows.
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Figure 510 Observed and Actual Distributions of 72/v; by Quartile
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Figure 5.10: Observed and Actual Distributions of rZ/v; by Quartile (cont)
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5.6 ~Summary and Conclusion

This chéptef has examined the Tauchen and Pitts (1983) inter-day model of price
change and trading volume_; using the analysis of that model presented in Section 2.4
and data from the London International Financial Futures Exchange. Prior to per-
forming the analyéis 1t was necessary to create a price index for futures contracts
using the ‘optimal’ viI.ldeX presented in Chapter 4, and to adjust the trading volume
for an upward trend, reflecting the gradﬁal acceptance of the benefits of futures con-
tracts by investors, and for the seasoné.l effects of contract roll-overs, as discussed
in Section 5.3.

In the Tauchen and Pitts model both price change and trading volume are driven
by the amount of news arriving in the day, with the result that the variance of price
change and the e)l(p'ecta'tion and variance of trading volume are all linear in the
amount of news pef day. One of the problems with this model is the difficulty of
estimatioﬁ unless is it assumed that the amount of news pér day is independently
and identically distributed. Unfortunately, there is a substantial amount of evidence
to suggéét thét the amount of news per day displays some positive autocorrelation,
as was discussed in Section 2.6 and as can be inferréd from the autocorrelation
‘ofr tradiﬁg vdlume shown in Table 5.2 and the time-series properties of volume-
adjusted squa_red price changes displayed in Figure 5.9. However, Section 2.4 derived
testable impliéations of the Tauchen and Pitts model; some of which are robust to
the behavioﬁr of thg news-arrival process.

Propbsition 2.1 proposed some necessary conditions which should be satisfied by
any Tauchen and Pitts-like model. In Section 5.4 of this chapter these conditions are
used to select a functiéna_l form for the relationship between squared price change and
trz'zding volume, which is estimated over the full sample period of 1985-94. Although

the model performs fairly well, the parameters are shown to be unstable with respect
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to price rises and falls. This contradicts the suggestion of Karpoff (1987), which is
that the price/volume relationship should‘ be symmetric with respect to rises and
falls in markets where the transa,ctions costs are symmetric (such as futures markets).
It also contradicts the Tauchen and Pitts model, in which therg is no differentiation
between good and bad news. More recent empirical analysis has suggested that the
price response to good and bad news is not symmetric, which s consistent with this
type of instability of the parameters.

Proposition 2.2 provided an asymptotic distribution for volume-adjusted squared
price changes, which 1s indepe‘ndent bf the news arrival prdcess (since it matters only
that the amount of news, and similarly the amount of volume, be large). Section 5.5
used this as a basis of a goodness of fit test. This test suggested, once due allowance
had been made for thé very unusual events of the stock market Crash in 1987q4 and
1988q1, that the data was consistént with the Tauchen and Pitts model.
| Taking the evidence of Sécfions 5.4 and 5.5 together, the conclusion of this
chapter is }that the Tauche# and Pitts model is at least partly correct, although due
allowance must be méde for a time-varying news arrival rate. However, the counter
side to this conclusion is that news effects cannot expldin all of the price/volume
relationship. In other words, even were thg amount of news per day to be cbmpletely
fixed, there would still be priée dynamics and volume dynamics. Exactly how this

might be the case is the subject of Chapter 6.



Chapter 6 "

A Market-Clearing Model

6.1 Intl;_odu_ct'ion‘

This chapter considers the price/volume dynamics that arise from market-clearing
pseudo-homogeneous investor models, under é general (non-linear) model of the way
in which reservatién prices are updated. The analysis highlights the way in which
price/volume dynamics are‘sensiti»ve to. the manner in which reservation prices are
updated from period to period. This sensitivity is demonstrated in Monte Carlo
simulations. |

The evidence of Chapter_s 2 and 5 suggests that while news effects, in particular
positive autocorrelation in the amount of news per day, can explain rﬁuch of the
price/volurrie relationship. they caﬁnot explain it all. Or to put this another way,
the Tauchen and Pitt’s (1983) interday model énalysed in, Section 2.4 could explain
the'piice/volume r:elailzionship. but only under the condition that the parameters
(;f the modgl themselves varied in some fashion through time. This explanation is
simply a reductio ad absurdum, since it transfers our interest from the non-constancy
of the news process to the non—consténcy of the parameters describing the impact

of the news process, which is not very satisfactory.

108
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The alternative explanations have been mentioned in Section 2.6. Bera and
Higgins (1993) consider that the ARCH effects observed in daily price changes may
also be caused by ra.nd‘om coefficients (i.e. non-constant parameters again), or by
a non-linear autocorrelation structure. The difficulty with these explanations is
that there is, as yet, little understanding of how they might come about within a
model of the behaviour of optimizing agents. They therefore fall within the purview
of ‘descriptive models’ in the taxonomy of Section 1.4 (Figure 1.1, page 10). In
contrast, the ‘heterogeneous investors’ models of the same taxonomy can too easily
explain price/volume dynamics as the interaction of different types of agent, some
possibly irrational. The problem is that in their generality these models provide
little structure within which the price/volume relationship may be estimated, a
point made by Gallant et al. (1992) in their data-based (i.e. descriptive) analysis.

This chapter provides an explanation of aspects of the price/volume relation-
shi'p based around the ‘péeudo—homogeneou‘s investor’ model of Tauchen and Pitts
(1983),‘ but which is not news-related. In the Tauchen and Pitts model optimizing
investors differ in the way in which they interpfet the stock of public information,
and dynamics éfise as a result of the dynamics of the news-arrival process. In the
model of this chapter, the amount of news per period can be constant, and yet
- the result {vill be that there is the possibility éf autocorrelation in price changes,
absolute price changes and trading volume. It is also the case that the strength of
these effects will vary, so it will appear as though the price/vblume relationship has
random coefficients and /or non-linear autocorrelation.

The outline of the chapter is as follows. Section 6.2 describes the general frame-
work for considering market-clearing models, and Section 6.3 considers the Tauchen
and Pitts (1983) model within this framework. Section 6.4 considers the cross-
sectional reservation price distribution and how it might be important, and proposes

a model for updating reservation prices which incorporates the model of Tauchen
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and Pitts as a special case. Section 6.5 performs a Monte Carlo analysis using the
~ general model, and Section 6.6 examines the implications for autocorrelation in price

changes in particular. Section 6.7 concludes.

6.2 Market M_icrostructure

In this Chapter all investors are assumed to solve the same problem, first given in

eq. (1.8)

’ max [®~u<q (P& - Pe) +wi; 77) f(pk;, 0, pt,k) dpx, | (6.1)

subject to constraints on the largest position that can be held. The utility function
u() is parametized by 7, and the probability distribution f(-) by the current futures
price p;x and the parameter(s) 6; px is the undeflying spot price at k.

The first order condition for this problem, ignoring the constraints, is

/_00 U’(q (px — bt,k) +wi; n) (pk - pt,k')f(pk§ 9, pt,k) dpe = 0. (6.2)

o0 .

',Fol'lowing- the work of Tobvin (1958, 1969), Samuelson (1983) considered the impact
on demand functions arising from ecii (6.2) of changes in the expectation of py.
Samuelson found that there was a unique value for the expectation at which demand
was zero (S’a‘mﬁelson, 1983, Mathematical Appendix C). Analagously, there will be
a unique value for‘tl-le futures price at which demand will be zero, and this is termed

' the reservation price. For values below the reservation price, the investor desires to
be loﬁg of contracts (i.e. ¢ > 0), and for values above, short. The reservation price,

denoted Di 18 thus a function of the parameters w, 1, 7 and 0.
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Reservation Prices and -Market-Clearing

The demand function for any investor can be expanded around the reservation price

using a Taylor Series (for convenience the & subscript denoting the time of contract
expiry is suppressed)

* - * * 1 * * 1 * *
a(ps p1) = (o= p))d'(P) + 5 (e = #0)° 4" () + 55 (P — P7)* " (P}) + -

(6.3)

where the first term in thf‘eA series is identicaliy zero and has been dropped. In
this way the demand function of any investor is simply a relationship between the
reservation price p; and the 'markét-clearing price p;. This is very convenient for
models of market-clearing price and volume dynamics. Once the process by which
reservation prices are updated hés been specified, .'the full dynamics drop out from

the market—clearing condition
J o . .
: qu (o pj ) =0 = p.=p(F), (6.4)
= , ,

where there are J investors in total, indexed by j, and P} is the vector of reservation
prices at time t. So, for example, if ipvéstors are pseudo-homogeneous and assumed
to differ only in their reservation prices, and the coefficients in eq. (6.3) are known,
then knowledgé of the set of reservation prices at ¢ and at ¢ + 1 will be sufficient to

determine the price change and the trading volume over the period (¢, ¢ + 1].!

1Strictly, as-in Tauchen and Pitts (1983), ¢ should index. trading rather than calendar time.
However, since this chapter will concentrate entirely on trading time it is convenient to envisage
a day as consisting of a starting equilibrium, the revelation of a fixed amount, of new information,
and a tatonnement process in which equilibrium is restored at the day’s close.
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6.3 Tauchen and Pitts Again

The Tauchen and Pitts (1983) model slots neatly into this general framework. Their
~demand functions will be re-derived here, since the futures framework in eq. (6.1) is
differ.en't from the general portfolio prpblern approach discussed in Sections 2.2 and
2.3. First, Tauchen and Pi&s assume? that Dk 1s normally distributed with a mean
Pr and a .vari'ance 2. In this case the expected utility expression can be rewritten
as a utility function expressed on the mean éhd variance (sée, e.g., Copeland and

Weston, 1988, pp. 96-99):

maxu(q (P — pe) + wi, q2a2). | (6.5)
q v . :

The first order condition for this problem is
u1(-) (Be — pr) +u2(") 2g0° = 0. (6.6)

Second, Tauchen and Pitts assume that all investors trade-off expectation linearly
égaihst variance at a rate 0 (i;ef —Us '/ulv > 0, which is the same at all inputs for the
utility function. Dividing the first order condition through by w;, substituting £

and rearranging gives the demand function !

1 .
= ——=(Pkx — Dt)- 6.7
a(p) = 555k = P1) | | (6.7)
From this demand function it is clear that the reservation price in the Tauchen and
Pitts model represents the expectation, py. Since the demand function is already

linear, all terms in eq. (6.3), bar the second, are zero, and the relation between

2]t should be noted that the assumptions ascribed to Tauchen and Pitts are implicit, since in
the paper they start with the linear demand functions given in eq. (2.18), rather than derive them
within an optimizing framework. - '
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market-clearing price and reservation price is simply

q(pe; P;) = c(pe = p}), o | (6.8)

where ¢ © —1/2802. The absence of constraints in this demand function would
only be the case if there were no margin requirement.?
Finally, Tauchen and Pitts assume that investors are identical in all respects bar

the reservation price. From the market-clearing condition this gives

o |
Zc pjt =0, ' (6.9)

g=1

which implies that the market-clearing price is the mean of investors’ reservation
prices, and the change in the market-clearing price is. the mean of the change in
iﬁvestors’ resérvétion prices. This latter resulf implies that we do not need to know
the ciistribution of reservatioﬁ prices at the beginning and the end of a period in order
to infer the change in mar’ket—clearing price over the period. In fact, the distribution
of reservation prices is entirely immaterial: the process by which reservation prices
are updated is the only\relevent information. The same is true of trading volumes:
the trading volume on day ¢ is determined entirely by the way in which reservation

prices change over the period (¢ — 1, ] (see eq. (2.20)).

Updating Reservation Prices

Tauchen and Pitts propose a variance decomposition model in which all investors

update their»l'eserifation prices independently of the current level of their reserva-

31t is worth noting that everything that follows holds a fortiori with the addition of margin
requirements. The margin requirements appear as horizontal extremes to the demand functions,
and the resulting non-linearity of these functions means that the market-clearing price is no longer
the arithmetic mean of reservation prices. Consequently the change in the market-clearing price
cannot be expressed as a function of the changes in the reservatlon prices, but must be a function
of the reservation prices themselves, before and after.
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tion price, and independently of the prevailing market-clearing price. This model
has already been criticised 1n Section 2.5. One property of the model is that the
dispersion of reservation prices increases linearly in time (strictly, trading time—see
footnote 1), resulting in a greater and greater disagreement among investors, and
coﬁsequently largér and larger positions. It seems far more natural that the dis-
persion of investors’ expectations and the mean size of their positions be stationary
over time. | |

The cause of this non—sfationarity is the egoism of Tauchen and Pitts’s investors,
| who, in completely disregarding the market-clearing price when updating their reser-
vation prices, are each asserting that there is no extra information to be gained by
considering the reservation prices of other investors. So, for example, an investor
with a reservation price well above the market—clearihg price is as happy to revise
his reservation price. up as he is to revise it down, and by the same amount. This
behavidur is fundamentally at odds with the implications of heterogeneous investors
models (Grossman, 1976; Grossman and Stiglitz, 1976). To précis models of this
type, uncertainty -amoné investors about, the quality of their information and their
andlysis should make them unwilling to stray too far from the consensus, as reflected

in the market-clearing price.

One Possible Generalization

Interestingly, a generalizatién of Tauchen and Pitts’s updating process, in which
investors are aware of the market-clearing price when determining their reservation
prices, preserves the irrelevance of the reservation price distribution. Consider the

case where the updating rule is linear:

Pia1 = Pe+ (1 = ) (P} — P1) + Uit a € [0, 1], ~ (6.10)
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~where ;11 is identically and independently distributed with zero expectation. In
other words the updated reservation price will drift towards the old market-clearing

price by a proportion a: In the Tauchen and Pitts model, o = 0.

Proposition 6.1 .If investors’ reservation prices update according to eq. (6.10),
then the expected. change 1n market-clearing price between t and t + 1 is zero, i.e.

entirely independent of the distribution of reservation prices at t.

Proof: The proof is straightforward. From the m_arket-cleating condition
. N A "
Apppr = J7! Z Ap; - i ' (6.11)
g=1
Substituting from eq. (6.10) and taking expectations,

el = IY {pt (- 0) G- ) = p}
7j=1
= p+{(1-0)(p.—p) — e

=. 0, ' (6.12)

“where the market-clearing condition is again used to equate p; wih the mean reser-
vation price at t. ' o |

Perhaps the most interesting point about this proposition is that the result will
clearly not hold for any expectations model which is non-linear in pj, — p;. For
example, were the drift to be a non-linear expression in the deviation of reservation
price from market price, or were the variance to fall with the abso‘lute size of this

deviation, then we would have, in general,’

Apy = f(phy - - )pflt’pi,t+1"" ’p},t+1)

. # f(ApI,t—H’ _, ;‘APS,HA) _ ' (6.13)
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and similarly for trading volume. At time ¢ the probability distribution for Ap,y,

and for volume vy, will be conditional on the reservation price vector at time ¢,

Pt = {pIt’ e ’p}t}'

6.4 The Vector of Reservation Prices

Why is the potential presence of the vector of current reservation prices in Apyyy
important? The reason is that since each reservation price updates locally (i.e. 2
is generally quite close to p;-’t) the reservation price distribution shows a certain
amount of inertia: it tends to change slowly over time. If there is a relationship
between aspects of ‘the distribution of reservation prices and the price change and
trading volufne distributions, then the inertia of the reservation price distribution
will introduce a time-éeries pattern into these two variables, quite independently of
any pattern which may be caused by news, or, indeed, of any pattern which may
arise from heterogeneou.s investor models. This would be the simplest explanation
of the time-series properties in Ap, and v; and is worth further investigation.

Consider the following example. The reservation price distribution P, is initially
sym‘rrllet_ric.v But in the updating of individual reservation prices suppose there is,
purely by chance, a tendency for negative changes to be large while positive ones
are small. Consequently the distribution P} ; displays pronounced negative skew-
ness. After another round of updating, this time far more typical, the severity of
the skewness has been blunted by a layer of noise, but the skewness itself is unlikely
to have been corﬁpletély eradicated. Therefore P o, P 5, ... will have diminishing
traces of that single large fluctuation. In the meantime, of course, another wild fluc-
tuation ‘Couldkhave introduced an alternative feature, say unusual kurtosis. Again,
the presence of this will die away only slowly.

To give a physical analogy, the reservation price distribution is like the arrange-
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ment of gas molecules in a box. Each molecule pursueé its own brownian motion,
and the conéequence is that the density of molecules at any point in the box is
not constant but is always smoothly changing. In the gas analogy, the number of
molecules is very large, and the fluctuations in density small. But in financial mar-
kets. the numbér of active investors, although sizable, is relatively small. Moreover,
this number may vary through time. In the case of a new market, the ‘season-
. ing’ period may involve substantial changes 'in the behaviour of prices changes and
trading volumes as the number. of active investors grows and the magnitude of the

fluctuations in the reservation price distribution shrinks.

A Model for Updating

In the light of the preceding discussion, an acceptable model for updating reservation

prices should have the following features.

1. Symmetry with respect to reservation prices above and below the market-

clearing price.

2. A drift towards the market-clearing price in which strength increases non-
linearly with the deviation between market-clearing price and reservation price.
Reservation prices are a symmetric random walk only when the reservation

price-and the market-clearing price are the same.

3. .A mechanism for preventing the distribution of reservation prices from becom-
ing more and more dispersed over time (i.e. for imposing stationarity around

the market-clearing price).

The Tauchen and Pitts model satifies the first requirement but not the other two.
The requirement of non-linearity is to make the model ‘interesting’, since, as has
been shown in Proposition 6.1, a linear drift makes price a martingale. An interesting

model should have the potential (which méy not be realized in practice) for prices
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to be a random walk /martingale for some of the time only, depending upon the
distribution of reservation prices. The requirement for stationarity prevents the
increasing discord implied by the Tauchen and Pitts model.

The following model is a simple implementation of these three features:
p;',t+1 =pt+ f(p;',t — D) + 0 2, _ (6.14)
where
() % sign 2} x L ~alal
f(z) = sign {z} x = (1—e®), a>0 (6.15)

and z;j; is inde‘péndéntly and identically distributed as a unit normal for all 5 and
t. The function pt + (1) repreéents the expectation at ¢t of the updated reservation
price at t+1; f(z) has been constructed so that it is concave in |z| with gradient 1 at
the origin, and bounded by +1/a. For reservation prices very near to p;, f'(0) =1
ensures that the expectafiqn of the updéted reservation price is close to the current
res_ervétion price.. For reservation prices further from p,, the concavity of f(-) ensures
that the ekpectaf,ion of the ﬁpdated reservation price is nearer tb py than the current
reservation pfice. -

"'The parameter ¢ in eq. (6.15) determines the bounds of the expectation of the
ﬁpdated reservation price, and also the degree of concavity of f, i.e. the strength
of the drift. The model has the attractive property that in the limit as & — 0 it

becomes the random walk of Tauchen and Pitts:

1 N —alz|
lim — (1 - e~") = lim zfe®™ = |z, _ (6.16)

a—0 v a—0 1

using L’Hopital’s rule. . The parameter « is therefore an index of ‘non-Tauchen and

Pitts—-ness’; the larger it gets, the tighter the bounds for reservation prices around
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Figure 6.1: The Function f(z; ), forz >0
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the market-cléaring price and the stronger the drift back towards the market-clearing

price. The function f (:r;' ai) is illustrated for positive z in Figure 6.1.

The Role of Skewness

Using this model for reservation price updating it is now shown how the reservation
price distribution enters into the expectation (and, a fortiori, the higher moments)
of the price change distribution. The following result relates the range of possible

values for the expected price change to the ratio of bullish to bearish investors.

Proposition 6.2 Using the model for reservation price updating given in eq. (6.14),

the expected price change overthe period (t, t + 1] lies in the range

, R AN
———< Ale | Pt] < E‘J—, : _ _ (617)
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where J; and Jt represent, respectively, the number of investors with reservation
prices at time't below and above the market clearing price at t (i.e. the bearish and

bullish investors, respectively).

Proof: The expected price change conditional upon the prevailing reservation
prices is, from eq. (6.14)

J
£ [Apin l Pl = J! ZE [Ap;‘,m | Py]

= J! Z {pt + f(P;t —pi) - p;,t}
=1
- J
= Y ). (6.18)
1=1

Writing z; & P}, — b1, and using eq. (6.15),

J
aJE [Ap | P = Zsign{xj} (1 - eel=l)

= > ( —e%) - > (1 -e)

jeJt _ jeJo

= SF-5; o (6.19)

where S;" and S; are defined as the first and second terms in eq. (6.19), respectively,
and J;" and J;” double as the sets of bullish and bearing investors.

From the definition of S;” and S, we have the inequalities

0<SF<Jr and 0< S <J;. (6.20)
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Multiplying the second inequality through by —1 and adding the two inequalities

together gives .

i< SE-ST 0 < Jf

& —J7 < Jaf[Ap | P < JF : (6.21)
1J; . 1J;
which completes the proof. . i

The interpfetatidn of Proposition 6.2 is presented as the following corollary re-

‘garding the skewness of the reservation pric.es.

Corollary 6.3 The covariance between the ezpected price change and the skewness
of the reservation prices is positive, where skewness is defined to be proportional to

the difference.in the numbers of bullish and bearish investors.

Proof: Skewness is measuréd in terms of the difference in the number of bullish and
bearish investors, e.g. (Ji* —J;)/J. In the absence of further information regarding
the reservation prices, the expected price change may be taken to lie at the centre
of the range defined in Pfoposition 6.2. This centre point will be zero if and only if
the skewness is zero. Positive skewness will raise the lower bound towards zero and
the uppér‘"bound away from from zero, i.e. raise the centre point above zero; likewise
‘ negati_ver skewness will decrease the centre point below zero. Therefore, for random
drawings of reservation price vectors, ske\wness and the expected price change are

positively related.. - - |

This corollary is deliberately stated in terms of covariances, rather than mak-
ing the stronger assertion that positive skewness implies a positive expected price
change. This is a consequence of expressing the expected price change as a range,

rather than as an explicit function of the reservation prices. While the stronger
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stétement may'be true, it is not necessary in order to justify one of the main con-
tentions of thvis éhapter, which is that knowledge of the reservation prices is an asset
in making forecasts of price changes. In this case it has been shown that a simple
‘count of bullish and bearish investors is informative. Further, as the local nature
of the reservation price updating prbcess implies a positive covariance between J;
and J;' | thé, two positive covariances together suggest that the expected price change

might display sign-dependence.

6.5 'Monte _Ca’rlo .Simulations

The previous section has shown how the vector of reservation prices might determine
aspects of the price/volume relationship, and preéented .a model for updating reser-
vation prices which gAeneralizeAs the random walk specification of Tauchen and Pitts.
Proposition 6.2 and Corollary 6.3 show how this model will cause asymmetries in
t.he reservation prices to affect the e%pected price change. In this section, the more
general properties of this model are demonétrated by simulation.

The two parameters which need to be determined prior to any simulations are
J, tﬁe number of active i.n,v.estors, and o, the standard de\(iation of the disturbance
term for updatihg feseriratioﬁ prices. I will set J to 103 and o to i.‘* Simulations
will be performed over values éf a € {0.0, 0.1, 0.5, 1.0, 2.0}, remembering that o
is a coefficient of the deviation of eq. (6.14) from the simple Tauchen and Pitts
speciﬁcaﬁion. This combiAnatio.n of ¢ and o covers a rangé of models from linear
with high -inertia (oo = 0) to non-linear-with low inertia (@ = 2). In the latter case
the bounds on the expected reservation prices at time t + 1 are are p; - 0.5, and the
low inertia comeés about because o is large relative to the dispersion of reservation

prices. If reservation prices were gas molecules in a box, a = 0.1 represents a weak

4There is also the scale parémeter ¢ which appears in the trading volume expression, which is
set to 1; the choice of J = 103 is justified below eq. (6.23).
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shake between successive periods, and « = 2.0 a strong one.
In order to describe the distribution of reservation prices at any time I will use
the interquartile range (IQR) as a measure of dispersion and Bowley’s coefficient of

skewness:

2(Q3+ Q1 — 2M)

o (6.23)

Bowley’s coefficient =

(see, e.g., Hoyle and Ingram, 1991, pp. 209-10), where Q1 and Q3 are the first and
third quartiles, and M the median; the choice of J = 103 (as opposed, for example,
to 100) is simply to make these fall on the observations rather than between them.
There are clearly many other ways in which the reservation prices could be described,
including the simpler definition of skewness given in the proof of Corollary 6.3.
However, since the conclusions of the previous sections should be general with respect
to descriptions of the reservation prices, these two robust and familiar measures will
be used.

The objective of the simulation is two-fold. First, to examine the cross-sectional
relationship between dispersion and skewness on the one hand and price change
and trading volume on the other. Second, to examine the time-series relationship

between the variables in the light of the cross-sectional evidence.

6.5.1 The Cross-Sectional Relationship

The important part about generating data on the cross-sectional relationship is to
ensure that each observation is independently drawn. This rules out using a single
time-series since it is expected that there will be features of the reservation price
distribution which change only slowly through time, compromising independence.
Therefore the following experimental design was chosen for each c: (i) run through

100 periods in order to ‘season’ the reservation price distribution; (ii) from the re-
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sulting distribution generate 1,000 sets of reservation prices, each advanced another
20 periods; (iii) -for each of these 1,000 sets, generate the next period’s reservation
prices; (iv) for each pair of consecutive periods, find the change in the market-
clearing price, the trading' volume, the first period dispersion and the first period
skewness. The 20 period édvance from the common base is to ensure that the re-
sulting reservation price distribut.ions are more-or-less independent. This gives a
total of 1,000 observations on four variables, augmented to five by also including the
absolute price change.

To analyse the resulting data, the standard and the partial correlation matrices
of the various market quantities and descriptive statistics are calculated. The par-
tial correlation coefficient identifies the unique relationship between two variables,
as opposed to ’the staﬁdafd correlaﬁion matrix which only shows the gross relation-
ship (see, e.g., Mérdia et al., 1979; Whittaker, 1990). If S is the covarince matrix,
t.he .partial‘correlation maﬁrix is found by scaling —S~' to have 1’s in the leading
diagonal.> The standard and partial correlations are shown in Tables 6.1 and 6.2
for the differe-nt values of a. Only those valﬁes at léast one standard error from 0
are shown, to give a visual key to the structure of the covaria.nce matrix.

The first noticable feature of the two tables is that there is little difference be-
tween the standard and the partial correlation coefficients. This indicates a very
Simple covariance structure consisting of separate bivariate relationships. The sec-
ond hoticable feature is that increasing the non-linearity of the model (i.e. a larger
«) causes the emergence of structure in the covariance matrix. This was anticipated
in the }:;reviou‘s discussion. Compare the first panel in Table 6.1 with the following
ones. The first panel is the Tauchen and Pitts linear model. There is little or no
relationship between any of the variables. In the next panel, a small increase in o

from 0.0 to 0.1, corresponding to a small amount of non-linearity, causes a strong

SThe application of partial correlation analysis in a portfolio framework similar to that of Epps
and Epps (1976) [see Section 2.2], is discussed in Rougier (1995).
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Table 6.1: Standard. Correlations for Price Change and Volume

“Ap

- |Ap|

v disp.

~|Ap)

Disp. 4
Skew.

0.036

0.034

0.037

| |Ap]

- Disp.
Skew.

70,036

|Ap|

- Disp.
- Skew.

. 0.033

0.033
-0.065¢

0.057 0.038

v

. Disp.

IAp|

0.049-

-0.045

0.046 0.044

" Skew.

|Ap|

v

Disp.
Skew.

~0.095¢

~0.153t

o .0.044

-0.036
—0.057

0254t

T At least 2 standard errbrsfrom_zero (only correlations at least 1 standard error from zero

are shown). The standard error is (n— 1)

0.5

| - is zero (see, e:g. Kendall and Stuart, 1969, p. 396).

under the null hypothesis that the correlation
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Table 6.2: Pa,rt'ial-vCorrelatio'r'ls for Price Change and Volume

Ap |Ap|. v | disp.

1ap - 0.036

Disp. - - o _
‘Skew. 0.035 S 0.037

Apl - 0.036

v o | 0.031° ;

Disp. S A - 0.272t
Skew. ' '

|Ap| 0.032 .

v - T - 0.049
Disp. - S . -0.075t 0.240t
Skew. =~ ' _ 0.048

|Ap|- - '
v ‘ co 10.061 :
Disp: - -0.057 - 0.229%
Skew.” - - —0.094% : —0.040 0.031

claplo oo |
v SR i - 0054 -
Disp. . . -0.048 - 0.256F
Skew. . . -0.152¢ - -0.054

See note to Table 6.1.



'CHAPTER 6. A MARKET-CLEARING MODEL 127

po‘sitiv'e rélationship b'etkweeni diepersion and volume. For o = 0.5 there is addi-
ti_onally a negative relationship bethveen dispersion and absolute price change, while
at Vla:rger values of o there 1s additionally a strong negative relationship between
skewness and pfice- ch.ange 6 L
Overall, the two most stnklng features which arise from non- hnearlty are the
- positive relatlonshlp between dlspersmn and trading volume and, with greater non-
" linearity, the negative. relation,ship,between skewness and price change. These two
correlations are of a differen_tirnagnitude to the others. This pair of bivariate rela-
, tionships,' dispersion ':-;'z,expected trading volume and skewness = expected price
change, accounte for the similarity of the standard .an_dvpartial:correlations.
| At this- pointi,-;,we can conjectnre about the results from the time-series analy-
sis that follows.. 1nerti_a in the distribution of reservation prices implies that the
measures of dispersionl-and‘skew_ne’ss' will show some perisﬁence. In this case, both
trading'.vo’lume and price c_hanéé will have a srnall amount of positive autocorrela-
ti'on which will he. relate_d to dispersion and skewness, resbecﬁively. ‘The amount of

autocorrelation will depend on the degree of non-linearity, as governed by a.

6.5.2 The Time-Series Relationship

The experirnenta'lidesig‘n- for this simulation is very straightforward: generate a single
time-series of 'l,OOO;period’s of data after 100 periods of seasoning, recording price
- .change,l vo‘lu'me; disoersion and skewness for each period. .

‘The resnlt’ing :data can be analysed. using a Vector Autoregression (VAR). The

VAR approach was proposed by Simms (1980) as an alternative to structural time-

6Thxs negatlve correlatlon between skewness and price change is clearly contrary to the positive
skewness suggésted in Corollary 6.3.. The explanation is that Bowley’s coefficient of skewness
' incorporates data on the reservation price vector beyond a simple count of bearish and bullish
* investors, giving particular weight to reservation prices that are closer to the median (and, therefore,
typically closer to the mean). The general conclusion is that the relationship between skewness
and price change isa complex one, and therefore sensitive to the prec1se way in which skewness is
measured
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series modeling of _tbe type bromoted by the Cowles Comnlission. A VAR is ef-
‘feotively a-reduoed forrn»-estimated‘by ordinary least squares (OLS) in which the
righthand side variables are contemporaneously uncorrelated. with the disturbance.
Typically these vanables are e*cogenous varlables and lags up to some order of the
endogenous varlables " In the VAR “Ap, IAptl vt, dlsperswn and skewness are all in-
cluded asendogenous Va_rlables; ‘The lag length was chosen according to the Schwartz
‘ Information Criterion-.: In all cases the result was a one-period VAR, with 30 coeffi-
cients (5 eq‘uations X a constant plus 5 laggedvariables). This is not surprising given
that tbe updating model 1s a Markov process. The results are shown in Table 6.3.8

The ﬁrst point to note is ‘tlla_t'when a = 00 the VAR is misspecified. This
is clear frorn the own-lag coeﬂlcients of dispersion and skewness, which are close
to 1, and ’entirely unlike the coefﬁcients in the other VARs, including o = 0.1.
This is not sur.orislng,' gi_v,e'n that a =0.0 represents the Tauchen ‘and Pitts model,
and this model has already been shown to have a non- statlonary reservation price
| dlstrlbutlon around the market clearmg price. In the non-linear model (i.e. @ > 0.0)
the ‘bounds on the expectatlons ensure that the reservation pnce distribution is
statlonary around the market- clearlng prlce

The sahent features of the non-linear models in Table 6.3 are (i) a negative rela-
tionsh_lp between prlce change -and lagged skewness, which becomes stronger as the
non linearity increases; (ii) a pos1t1ve relationship between absolute price change
and lagged dlsperswn at all levels of non- l1near1ty, (iii) posmve autocorrelatlon in
~ volume at hlgher levels of non- hnearlty and a strong posmve relatlonshlp between
:volume and lagged dlspersmn at all levels of non-linearity; (1v) posxtlve autocorrela-
tion in botl_l d_1sperSIQn and. skewness at’ high levels of non—hnearity; (v) exogeneity

of dispersion ‘and ss‘kewness '

"For a. dlscuss1on of some of the methodologlcal issues raised in VAR modeling, see Darnell and
Evans (1990). - )

8t should be noted that tests for p0551ble non-stationarity among the vanables as would usually
accompany a VAR analys1s are not necessary smce by construction the data are stationary.
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Table 6.3: VAR Results for Price 'Change and Volume
Const. Ap.t_l '_lApt_ll v Disp;—;  Skew,_,; Exog.
a=0.0
Apy 0.0861 -0.002 1.467
|Apy| -0.036  0.002f  0.000 4.194**
vy 41114 1.358 . 5.924% ~0.010 3.990*
Disp, 0.715  0.473 -0.014 0.9961 1.284
Skew;, 0.074 0.001 0.8541f 1421
a=0.1
Ap,  0.144% -0.002% 2.706*
|Ap| ~ 0.060% -0.032 0.035% 2.070
vy 43.212¢ 3.356 7.858%1 23.541*
Disp, 1.381f 0.060 0.219f -0.002 0.052 2.534*
Skew, . -0.2511  0.192 2.855*
a=05
Ap,  0.128% -0.002¢t 2.292
|Ap:] ~0.034 0.044% 3.896™
vy 42.078% 4.505Ff 4.655t -0.573 12.408**
Disp, 1.413f 0.153 -0.002 0.075¢ 1.318
Skew, 0.188 ' : -0.068 0.706
a=1.0
Ap, . 0.102% -0.0027 -0.0331  3.556**
|Ap,| . -0.026 ’ 0.041% 4.639**
v, 39.386¢% -0.227f  4.830f  0.033 4.028F 12.540**
Disp, 1.429f 0.090 0.146 0.093% 1.186
Skew, 0.243 ' -0.003 - -0.046 0.037  1.088
a=2.0
Ap,  0.081 -0.002¢% -0.0721 11.070**
|Ap;| -0.025 0.028t 3.145*
v, 35.874¢ 3.700f  0.0757 - 4.430 17.629**
Disp, 1.577t 0.091 0.138¢ 1.990
Skew, 0.210f -0.164 0.0697 0.548

t At least 2 standard deviations from 0 (only coefficients at least 1 standard deviation

from zero are shown).

* Significant at a Type I error of 5% (**1%). The test statistic is F(4,994) under the
null hypothesis that the variable is exogenous (i.e. not determined by lagged values of the
other variables). :
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Finding (iv) confirms the conjecture that the local way in which reservation
prices update cailses inertia in the feser;/ation price distribution, demonstrated here
by persistence in both dispersion and skewness. Finding (iii) was conjectured in the
previous subsection: inertia in dispersion causing autocorrelation in trading volume.
Finding (i) has the negative relationship between skewness and price change, but not
the autocorrelation that was a poésible consequence of inertia in skewness. Finding
(ii) was not anticipated, although there is some evidence from the cross-sectional
analysis.® One possibility is-that although the correlation between dispersion and
absolute price change is weak it is also robust, and so shows over time as forcefully as
other relationships which are stronger but less robust. Finally, finding (v) identifies
- that the causality runs from the reservation price distribution to the price/volume
relationship, as would be expected in a model of this type.

The main feature‘ missing from Table 6.3 is the autocorrelation in price change
and absolute price change implied by the autocorrelation in skewness and dispersion,
respectively. In the light of Proposition 6.2, one explanation for this, as suggested
above, is thaﬁ the relationship between price change and skewness, although strong,
is not robust. In'o‘ther words the correlation can vary widely depending upon the
reservation price distribution, and a value of 0.153 (frdm o =2.0)isonly a midpoint
of a range which might stretch down into negative values at certain times. This is

investigated further in the next section.

6.6 Autocorrelation in Price Changes

The possibility is that the autocorrelation coeflicient on price changes is not robust,

le. it changes over time- according to the reservation prices. As an initial check

°It is also interesting to note that there is both empirical evidence (Frankel and Froot, 1990)
and theoretical evidence (Shalen, 1993) supporting the positive relationship between the dispersion
of reservation prices and price volatility and trading volume, just as is illustrated here in points
(ii) and (iii). ’
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Figure 6.2: Price Changes from the First 250 Periods, & = 1.0
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on. this*pc’)ssibility, Figure 6. 2 'shows the first. 250'periods from the simulation with
= 1. O Wthh represents a mldpomt in the trade off between non-linearity and
inertia, while Flgure 6.3 glves the joined-up XY plot of the same data.!® These two
'Flgures suggest that there is deﬁmtely somethlng odd going on: the price change
series- seems to dlsplay condltlonal srgn dependence which appears as a swirling
pattern in the ;XY plot.“,
) _Qne‘ ,freqnently—nsed test for sign—dependence is'the*rnns test, which compares
‘the ac:tna]_nurnher of runs '.(‘i‘.ei sign changes, also hnown as ‘reversals’) with the
_e}rpected numberfn'nder the n_ult hypothesis that at any peint in time either a positive
- or 5, negatiye. c‘henge‘ is: equaljy likely. Typically speculati\/e prices display a higher
~. than expected nnmher of runs; one explanation attributes this to the behaviour of
market r’nakers (Ntederhoﬁer and Osborne, 1966). The problem with runs tests in
‘thi's’contex't is that they do-not capture the -time—varying-element. To a runs test,
a perrod cons1st1ng of, say, a run of length 15 and then six runs of length 1 (i.e.
seven runs in 21 perlods) is the same as seven runs of length 3. Yet it appears that
it ‘might. be ‘the former pattern Wthh is the more typical of the simulation data.
Therefore 1 w1ll use a test Wthh lS sensmve to this difference, by considering the
: dlstrlbutlon of run length ' |

S,uppose the proba’blhty of a non-reversal is s,

Pr{Sign'.{APt} : Sign ‘{-Apt—'l}} =5 S5 € [0, 1)’_. o | (6.24)

10The XY plot 1s smoothed to be easier on the eye.
. "My thanks to Denis O Brien for. pointing out to me that this pattern appears to be chaotic
about an attractor. Stnctly, chaos is a feature of deterministic systems, and its presence in a
Stochastlc system such as the model presented here would be hard to identify empirically (although
see Brock, 1986).. However, the two necessary conditions for chaotic behaviour, non-linearity and
feedback, are both present in the model. In this respect it is reminiscent of the exchange rate
__models of De Grauwe and Vansanten (1990) and De Grauwe and Dewachter (1990), although in
“these models the authors make an explicit attempt to introduce the necessary CODdlthnS for chaos,
rather than notmg chaotlc behav1our as a possible implication.
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and consider the geometric random variable r which represents the length of a run,
C Prfr=i)=s"1(1=5), i=12,... (6.25)

The expected length of a run can then be found as 1/(1 — s).}2 Since the uncon-
ditional expectation of Ap, is zero (i.é. in the absence of information regarding the
reservation price distribution at t — 1), so s = 0.5 and we would expect the mean
length of a run to be close to 20 |

The observed and expected diétribution of run lengths is shown in Figure 6.4a,
for the complete sample of 1,000 periods using « = 1.0. There are 489 runs in total
giving a mean run lengﬁh is 2.045. The expected distribution is under the condition
s = 0.5. From the graph the 'obéerved distribution appears slightly leptokurtic
relative to the Lexpected: there are relatively more runs of length 1 and length 6 or
more.

What about for runs which start wifh a large price change? To investigate this,
the sample is divided into two halves around the quartiles, so that large changes are
those which fall into the first or fourth quartiles. The two observed and expected
distributions for the run lengths are shown in Figures 6.4b and 6.4c. The most
striking feature of these two graphs is the excess number of short run lengths for
the large price changes, and symmetrically the excess number of long run lengths
| for the small price‘changes. This suggests that there might be small amounts of
'_ negative autocorrelation following large price changes and positive autocorrelation

following small ones.-

12proof:

£[r]:2i$i‘l(l—s):(l_s)zdﬁs(si) :(l_s)d% <1is) - 113'
. =1 ’ i=1 :
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Figure 6.4: The Distribution of Run Lengths
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F{gure 6.4: The Distribution of Run Lengths (cont)
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Table 6.4: x? Tests of Run Length

All Data Large ~ Small Independence

Simulation Data (1,000 observations)

No. Runs 489 243 246

Mean Length 2.045. 2.012 1.988 |
X* 7667 - 6.193 12.130 10.575
~ p-value ~ [0.264] [0.402] [0.059] [0.102]
FTSE-100, 1985-94 (2,528 observations)
No. Runs 1,275 631 644
Mean Length © 1.983 2.021 " 1.946
x? o 2.139 5.155 4.406 ' 7.672
p-value © [0.906] [0.524] 0.622] [0.263]

For the three tests labeled ‘All Data’, ‘Large’ and ‘Small’, the null hypothesis. is that the
probability of reversal (s) is 0.5 (giving a mean run length of 2.0). For the independence
test, the null hypothesis is that the run length distributions for initial small and large
price changes are drawn from the same population. The p-values show the area to the
right of the test statistic under the null hypothesis.
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‘Table 6.4 gives the x? statistics of the h&pothesis s = 0.5, i.e. the reservation price
distribution h‘as little effect on the‘probability of reversal, and also the x? test of
independence‘Abetween the distribution of run length and the size of the initial price
change. None of the x? tests quite breaches the classical threshold of significance
at a Type I error of 5%.yHowever, given the cost of a Type II error in this test, i.e.
of asserting erroneously th_at there is effectively no time-variation in the probability
of a revérsal, a more generous Type I error might be appropriate, in which case the
‘evidence does not rule out the possibility of some time variation.

Out of interest, Table 6.4 also reports the results of the same tests using the
FTSE’—lOO: data described in Chapter 5. The results from the FTSE-100 are in all
cases more supportive of the null hypothesis than those of the simulation (i.e. the
values of the test statistics are lower), but this is to be expected given that the
futﬁres market is likely to have several hundred active participants. As with the
box of gas rﬁolecule's, larger numbers lowers the magnitude of random fluctuations
in density. |

Finally it should be stresséd that the simulations were performed completely
- without revision of any kind, and that the model chosen for updating reservation
pri‘ées was simply the a straightforward. generalization of the existing linear model.
It is quite possible, 4th<-erefore, that other specifications might generate much more
extreme results. The purpose of the simulations is to demonstrate that such effects
are possible, not to quantify the effects or to match them in any way to particular

properties of speculative price data.

6.7 Summary and Conclusion

This chapter took as its starting point the inappropriate property of the Tauchen and

Pitts model for updating reservation prices, the linearity of which caused the distri-
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" bution of reservation prices around the market—cleéring price to be non-stationary.
-One implication of this model is that investors would disagree more and more
through time, and hold larger and larger positions as a consequence.

The Tauchen and Pitté’ model was replaced by a generalized non-linear specifica-
tion which included the linear expression as a limiting case. This general model has
the property of being. a random walk only when the investor’s reservation price is
equal to the mafkét—clea-ring price. 'In‘ ‘other cases there is a tendency for reservation
-prices to be revised towards the market-clearing price. Further, in the generalized
model the deviaﬁion of the expected reservation price in the next period from the
current market-clearing price is bounded, ensuring that the distribution of reserva-
tion prices around the market-clearing price is stationary. The generalized model
implieé’, through the mechanism of market-clearing, that the cross-sectional distribu-
tion of reservation'prices at time ¢ will enter into the distribution of market-clearing
price change and trading volume over the period (¢, t + 1). It is shown, for example,
that the expected price change is defermined by the skewness of reservation prices.
It was suggésted that inertia in this distribution might introduce a time-series el-
ement i.nto. fhe price change and trading volume distributions, in accordance with
observation. |

In order to examine this conjecture Monte Carlo simulations were used at dif-
ferent degrees of non-linearity. In general, there was unambiguous evidence of a
rel_ationshAip between the skewness of the reservation price distribution and price
change, and betwéen the dispersion of the reservation price distribution and trading
volume. Skewness and disber‘sioﬁ were also shown to have time-series properties,
'butr the simulations did not show that these properties fed through to generate
time—serieé properties in price changes. Trading volume, on the other hand, showed

| strohg.positi,ve autocorrelation. A further investigation of one set of price change

data suggested graphically and statistically that the hypothesis that the probability
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of a sign reversal was equal to:0.5 irrespective of time or the size of the change
(and, by extension, irrespecive of the distribution of reservation prices) was not
unambigﬁously accepted. |
The conclusion of this analysis may be stated as a syllogisrn: (1) if reservation
prices update linearly, they have no impact on the price change and trading volume
time-series; (2) reservation prices are unlikely go update linearly; (3) simple simula-
- tions with non-linear updating generéte complex price/volume dynamics; (4) there-
fore a possible cause of complex price/volume dynamics is non-linear updating of
reseryat_ion prices. V |
R Finally it should be stressed that the model as it stands, even if augmented
by a dynamic news-arrival process, cannot be a completely satisfactory description
of the price/volume relationship for the reasons discussed in Subsection 1.4.4: it
is irrational for risk-adverse investors to participate in zero-sum games, and yet
this is the nature of investing if all investors work from a public information stock.
The model is an explanation of the way in which the rich dynamic behaviour of
.the price/volume relationship can be generated within a simple optimizing model.'?
Insofar as the model encompasses the explanaﬁions of ARCH effects advanced by
Bera and Higgins (1993) it rescues ARCH from being purely descriptive, but it does
not provide the kind of structural framewo.rk desired by Gallant et al. (1992). Rather
the model shows that, with the constantly shifting reservation price distribution, we
should not exﬁect to be able to pin down the price/volume relationship to a process

with fixed coefficents.

13As an interesting aside, this model has much in common with rational expectations real busi-
_ness cycle models. In such models the optimizing behaviour of heterogeneous agents transforms
a white-noise input into a non-white-noise output (see, e.g., Hillier and Rougier, 1996). A much
earlier business cycle model of a similar nature was Schumpeter’s celebrated ‘ticking clock on a
wobbly table’.
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Return Autocorrelation
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Chapter 7

The Role of Market
Microstfu‘ctufe

This chapter explains how market. microstructure is the likely cause of one of the
main stylized facts about the daily return distribution. Market microstructure
means seeing the market not as an organic whole, but rather as a forum within

13

which a large number of not—neces‘s‘arily-identical agents interact: market mi-
crostructﬂre‘ treats the interplay between market participants, trading mechanisms,
and the dynamic behaviour of security prices in a regfme where friction impedes the
trading process” (Cohen et al.;, 1980, p. 249).

The styliéed fact is mean reversion in prices. Mean reversion shows up as positive
low-order autocorrelation and ne‘gative‘high-oi"der autocorrelation in returns (see,
e.g., Poterba and Summers, 1988). Positive first-order autocorrelation in returns has
beeen known to be a feature of daily returns since at least Fama (1965), and recent
evidence has been summarized in Fama (1991). Corrado and Lee (1992) calculate the

~mean daily autocorrelation coeflicient over 120 large stocks, each calculated over the

period 1963-1989, to be 0.059, with a t-statistic of 4.63. Similar magnitudes for large

stocks are found 'i‘n French and Roll (1986); Brock et al. (1992), larger magnitudes

140
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are fouﬁd' by Campbell et al. (1993), who also note that the autocorrelation may
not be independent of the day of the week.

The evidence for high-order negative autocorrelation in returns is much weaker,
unsurprisingly given that most financial time series only go back, at best, to the first
part of the century. Fama and French (1988) find some evidence for values of about
.—0.25 for three year lags, but these estimates are particularly dependent upon the
pre-second world war period. The evidence from Poterba and Summers (1988) is
similarly ambiguous. An alternative approach is to examine the relative performance
of winner and loser poftfolios. deBondt and Thaler (1985, 1987) find that stocks
| identified as losers over a three year period subsequently outperform the market,
while Winners subsequently underperform. However, this result could be explained
by a rise in the risk:premium demanded by investors holding underperforming stocks
(Zarowin, 1989).

Therefore although. we may treat mean-reversion as a stylised fact, it is the

positive first-order autocorrelation in returns which is the more pervasive aspect.

7.1 The .Mar'ting'ale Theorem

One of the interesting things about the poéitive_ first order autocorrelation in daily
returns is ﬁhét pnder two simple conditions it should not exist. This is the implica-
tion of the Martingaie Theorem of Samuelson (1965, 1973). These two conditions
are: |

1. All iﬁvestors are identical (i.e. share a common information set which they

_ each interpret in the same way, and have a common rate of time-preference);

2. All investors are risk-neutral.

Under these two conditions the price of each asset will be bid to the point at which

the expected return on the asset is the same as the risk-free interest rate. This
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interest rate will be the same as the (common) rate of time preference, hence every

asset satisfies the propérty that
& [Tt+1 l Qt} = 5; o (7.1)

" where ¢ is the rate of time preference, €, is the information set at time t, and the

returnis defined

e d , IR
et - (7.2)
Pt

where p, is the price at time t and d; is the dividend for period ¢, which is received
at the end of the period. Samuelson shows that eq. (7.1) and eq. (7.2) imply that
price at time t is the discounted value of the expectation of price plus dividend at

time ¢t + 1:
pe=(1+06)"€ [p1 +dur | Q). | (7.3)

The appellation ‘Martingalé Theorem’ arose from the 1965 paper, in which Samuel-
son considered .the special case of eq. (7.3) where 6 =0and dyy; = 0. In this case,
& [pe+1 | Pt pe-1, - .. | = pi, making prices a Martingale process, and returns a ‘fair
game’. |

By forward substitution for p,.1, eq. (7.3) is shown to be equivalent to the

discounted cash flow expression

P = Z(l +5)—i5 [dt—H | ], | | o (7.4)

provided that lim,_,.(1 4+ 6)7" & [dt+n l Qt] ='0. A sufficient condition for this

convergence is that dividends are expected to grow in the long term at a rate less
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‘than 4.1

One feature of Samuelson’s model is that it would be very easy to test eq. (7.1)
using ANOVA across the ex poste returns of different asset claéses. In fact we know
that this test would show systematic différences in the ex post returns of the assets
both across asset classés (e.g. equities return more than the risk-free rate) and within
asset classes (e.g. small company stocks return more than large company stocks, see
Banz, 1981). Therefore since this implication of the Martingale Theorem does not

hold, at least one of Samuelson’s assumptions must be wrong.

7.2 Risk Aversion

Samuelson (1965) mistakenly believed that the risk-neutrality assumption was not
critical, and couid be accorhodated by a risk premium. However, the possibility
that this premium might be time-varying destroys the Martingale property (LeRoy,
1989). Consider the case where the variance of returns is positively autocorrelated
over time, so that a large absolute return in one périod makes it more likely that
the return in the next period will also be large. In this case risk-averse investors will
bid down asset prices following a large absolute return, so that in future periods the
. expected return is high'er.. The obposite pattern occurs following a small absolute

.return. These effects lead to a pattern- in returns which looks a bit like positive first

order autocorrelation with spikes.? This example is relevant because of the strong

!The practice of valuing stock using a discounted cash flow method such as eq. (7.4) is one of
" the tenets of fundamental analysis (see, e.g., Williams, 1938). The number of inputs to the model
is usually much reduced by presuming a constant growth rate for dividends, often related to the
dividend yield and the payout ratio (Gordon and Shapiro, 1956; Gordon, 1962). Therefore in a
sense the discovery of Samuelson’s pricing model ‘legitimized’ the existing valuation model.
2These spikes, representing the one-off adjustment to the new regime, are sometimes known as
the discount rate effect. Since they operate in the opposite direction to the change in the required
return, it can be hard to pin down the time-varying properties of the ex ante mean return. This
_ may be one explanation for the lack of success of time series techniques such as GARCH-M (see,
e.g., Bera and Higgins, 1993}, where the volatility appears as a variable in the mean daily return.
Fama (1991) advances a similar argument about our inability to distinguish irrational bubbles from
time-varying expected returns.
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evidence sugéesting that variances are positively autocorrelated over time, dating
from Fama (1965) and previously discussed in Chapter 2, particularly Section 2.6.
One enduring model that explains systematic differences in returns across and
within asset classes is the Capital Asset Pricing Model (CAPM) originating with
Sharpe (1964). This model takes as axiomatic that investors are risk-averse. Al-
though the testability of the CAPM has been extensively questioned (see, e.g., Roll,
1977), its widespread use in portfolio management suggests at least tacit acceptance
of the axiom of risk aversilon. ém'ong practitioners. There is also direct evidence of
risk-aversion from attempts to fit utility functions consistent with investors’ choices
(see, e.g., Friend and Blume, 1975; Blake, 1996).2 Theréfore the CAPM may be

used to tie in the failure of prices to be a Martingale with the fact of investors’ risk

aversion.

General Equilibrium

A more direct route ¢an b’e found in the general equilibrium analysis of Lucas (1978).
In Lucas’s model the .equilibrium asset price turns out to be the same as that of
- the Martingale model, eq. (7.3), only in thé case of risk-neutrality (Lucas, 1978,
p. 1434, eq. 6).  LeRoy (1989) noﬁes as an implication of Lucas’s model that in
pfqduction econgmies (as opposed to exchange economies) the possibility of corner
solutions will affect the simple relation between risk-neutrality and the Martingale
property. Therefore the conclusion from general equilibrium analysis is that, even
Qith identical investors, risk-neutrality is probably necessary (but not sufficient) for
asset pfices .to have the Martingale property.

Therefore it seems that if we rule out risk-neutrality we also rule out the Mar-

tingale property of asset prices. This raises an interesting question: What is being

3There are also, of course, the various paradoxes of human behaviour that are usually solved
by positing risk-aversion. For a fascinating discussion of perhaps the most famous of these, the
St. Petersburg Game of Nicolas Bernoulli, see Fellner (1965), particularly the Appendix to Chapter
3.
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tested in a regression of ‘on 74?7 in other words, what is our eonclusion when
we find, as we do,wa significant autocorrelation demonstrating a violation of the
Martingale property? Fama (1991) calls this the Joint Hypothesis Problem. Any
hypothesis- test .is a joint'test of a valuation model and the assumption that the
behaviour und’erlyirig the valuation model can be implemented at zero cost by the
marginal market participanfs. Even were the Martingale assumptions to hold, the
Alagged return might be significant on account of transaction and information costs.
But since investors are unli_kely to be risk-neutral and risk-neutrality is necessary
(but not sufficient) for the Martingale property, we should be completely unsurprised

by the existence of significant autocorrelation.

7.3 Heterogeneous Investors

To summarize the previous section, we do not expect prices to be a Martingale
because of the existence of tranSactioq and information cbsts, and even in the absence
of these. costs we would not expect prices to be a Martingale because investors are
typically risk-averse. This non-Martingale conclusion is true even when all investors
are supposed to be ideﬁtical. In this section, this heterogeneity condition is relaxed

as well:

Noiee

The starting point is Black’s observation “Noise‘makes'ﬁnancial markets possible,
but it also mz;kes them imperfect.” (Black, 1986, p. 530). Black contrasts ‘noise’
with information', and classifies market perticipants at any time as ‘noise traders’
and ‘inforrﬁation traders’. Over time most investors will have traded on both in-
formation and noise; sometimes they will have traded on noise in the belief that

it is information, at other times they will have traded simply because they enjoy



CHAPTER 7. THE ROLE OF MARKET MICROSTRUCTURE 146

_ trading.? Without noise speculative markets would not function, because the desire
to trade would then be a product of superior information only and there would be
no one to take the other side of any trade (see, e.g., Milgrom and Stokey, 1982;
Tirole, 1982). However, with noise the price of an asset may differ from its value,
since trades motivated by noise will still affect prices. It is this difference between
price and value that rhotiyates investors to seek out costly information, which they
can then use to ‘put one over’ the noise trader at the other end of the trade.

When noise is seen as an integral part of a financial market, the notion of market
efficiency must be reconsidered. Black chooses to define an efficient market as one
in which price is within a factor 2 of value; he asserts that this would mean that
fnarkets are efficient in practice about 90% of the time. In Black’s model the relation
between price and value is like a piece of elastic of a certain length (this is my analogy,
not Black’s). When price and value are close the elastic is slack, and there is no
tendency for the two to move any closer: “All estimates of value are noisy” (Black,
1986, p. 533). Hence within the slack region there will be noise traders on both sides
of each trade and no net effect on price relative to value, so price will be a simple
diffusion procéss. FIf prié(;, and value are further apart there is a pressure for price
to move towards value which is crudely proportional to their separation. As pricel
movesv into the elastic region the more aggressive information traders start to join
in but all on the same side. Whether they initially prevail against the noise traders
depends upon the price’s momentum as it enters the elastic region, and this in turn
depends upon the precise way in whch the noise traders form their demands. To
complicate the issue further, value itself is not constant in time, and so any reversion
‘that takes place is toWards a continually shifting target.

Black alsb makes the point, alluded to aboffe, that few investors can know for

sure that they are tradihg on information rather than on noise (the exception might

4To expand slightly on this latter reason, fundmanagers may be obliged to trade by the
perquisites that they consume, supplied by stockbrokers.
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-be an insider with excluéive information, although he or she would ultimately be
spotted). To use the standard portfolio management cliché, the good investors
probably trade on information 55% of the time.® Formal models of noise trading
tend to dichotomizeiinivéstors as either noise-based or information-based. These
models may be interpreted as modeling states of behaviour rather than investors,

i.e. a good investor has a 55% chance of behaving in an information-based manner.®

Mimetic Contagion

One recent model. of heterogenous investors which is able to explain the stylized
facts described in the introdu;:tion is that of Lux (1995), which is based upon the
notion of mzmetzc contagzon among noise traders. In ﬁhis model a noise trader
becomes more w1111ng to buy (respectlvely, sell) if he sees other traders buying
(selling). Thls'behavmur is not necessarlly ;rratlonal, although this is certainly
one expldn‘aﬁion. First, a tradér without information may be under the impression
(correct or erroneous) that the market is generally slow to assimilate fully new
information.” Second, even traders with superior information may choose to follow
the majority since in doing this their reputation cannot suffer.® Lux also introduces
a class of information traders with demand proportional to the difference between
-price and value an& a marketmaker who causes prices to move in the same direction

as net excess demand.

>This means that their identity will be very hard to infer from the performance of their portfolios.
It also means. that the bad investors will take a very long time to go bust and withdraw from the
‘market. Therefore evolutionary explanations of market behaviour are not approprlate within the
timescale of institutional stability:

For examples of models of this type see, e.g., Shiller (1984); Grossman and Miller (1988);
deLong et al. (1989, 1990); Campbell and Kyle (1993).

"This is sometimes known, for obvious reasons, as the ‘greater fool’ theory /fallacy.

8This is certainly the case in the highly competitive world of fund management, with its quar-
terly appraisals and its independently assessed quartile rankings. In the absence of any information
portfolios are typically adjusted to a benchmark representative of the median fund, this being the
position of least risk to the managers’ reputations.
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Lux shows that this model gives rise to a rich variety of dynamic behaviour.
One possibility is two stable equilibria in which the positive (respectively, negative)
impact of builish noise traders is exactly offset by the negative (positive) impact
‘of information tradefs. Another is cyclicality where all initial trajectories converge
on a periodic orbit in which the net sentiment of the noise traders alternates be-
tween bullish and bearish. When Lux goes on AtQ introduce an endogenous sentiment
factor based on actual returns compared with expected returns (assumed to be con-
stant) he finds that his model also generates crashes: “Once infection has reached
the overwhelming ma,jority of speculative traders, a change in basic sentiment oc-
curs because the exhausiion of the pool of potential bbyers causes price increases to
diminish” (Lux, 1995, p. 893, original emphasis).

This model explains-mean reversion as speculative overshooting. A small devia-
tion from value can become amplified by the mimetic contagion of noise traders. The
correction induced by a change in sentiment tends to push prices too far in the oppo-
site direction.® Lux stresses that the process of mimetic contagion is widespread in
the social and natural sciences; in other words he is importing into finance a general
paradigm which happens to explain stylized facts in financial markets, rather than
proposing a model Which is sufficient for the same.

In conclusion of this section, the heterogeneity of investors appears to be an
important part of the functioning of a financial market. Moreover, models with
heterogeneous investofs, such as that of Lux, are capable of generating many of the
price dynamics which we observe (which is, of course, only a necessary condition
for validity). This then is a second blow to the Martingale model: not only are
investors risk-averse, but they are also heterogenébus. Consequently, non-Martingale

behaviour in prices should be established from theory, a fact which is confirmed by

empirical studies.

9Tikewise ezcess volatility, another stylized fact (although not one dlscussed in this thesis),
arises because of the cyclicality of price around value.
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7.4 Trading Rules

‘In the two previous sections it hé,s been shown that, since investors are neither
risk-neutral nor homogeneous, there is no reason to suppose that speculative asset
pficesfoilow a Martingale process, as proposed in Samuelson’s original Martingale
Theorem. On the contrary, there is a great deal of evidence that returns may
be in part predictable from the prevailing information set. One instance of this
has already been presented.as a stylised fact: the mean reversion of prices which
appears as positive 16& order autocorrelation in daily returns. There is also a large
and developing literaﬁure on ‘anomalies’, which are instances where elements in
the information setbappear to have significant predictive power. Popular contenders
include calendar events, dividend ’yields and price earnings ratios, and money supply
growth (see, e.g., Fama, 1991).

In the iﬁicrostructure approach, returns are in part predictable because at the
véry’least there is no reason why they should not be. There is no class of investor in
a position to ‘arbitrage away’ the predictive power of, say, past returns. One reason
for this lack is that in practice such trading would not be arbitrage (i.e. riskless)
since the predictive power of these anomalies is typically small, and investors are not
risk—ne;utralv. A second is thé presence of transactions costs, both direct and indirect.
Direct costs_fcomprise the stockbroker’s commission, the bid-ask spread (the ‘touch’)
and in some countries the purchase tax (Stamp Duty in the UK). The indirect costs
(sométimes known as ';implicit'costé’) are the opportunity cost of funds and the

- market impact, which for large tiansactions pushes the price at which assets can be
bought or sbld. in the non-profitable direction. Hibbert (1995) puts thé total cost of
a round trip. iﬁ the UK at around 1.5% plus opportunity cost, for large institutions
in highly liquid stocks (i.e. FTSE—IOO). For smaller but s.till.liquid stocks (i.e. FTSE

mid 250) this figure would be more like 10% plus opportunity cost since the touch
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alone can be 5% or more.

What of an investor attempting to profit from exploiting the non-Martingale
behaviour of returns? Consider the case of using historic return data alone as the
basis for a prading rule. -;This is analagous to the practice of ‘technical analysis’,
which r(;,mai.ns. much in vogue among professi.onal investors. An investor using such
‘a rule is clearly a noise trader, since he has no informational advantage over other
traders. Therefore we would expect that in the long run he will lose his money since
he will, sporadically but inevitably, come up against information traders. The prob-
lem faced by the investor is thaf he does not know in what relation price currently
stands to value. Therefore He must implement his strategy both in the slack and
in the elastic regions discussed above. In the slack region he neither gains nor loses
money (on avera.ée) on his buying and selling price, since he trades only with other
noise traders: When transactions costs are incorporated he loses at least 1.5% per
- round trip, according to the figures given abbye.

Suppose fhe investor is. l-ucky enough to be long when. one of Lux’s positive
mimetic contagions catches on and pulls him into the elastic region in which infor-
mation traders.are _th.e. sellers. He will have a long run of small positive gains but
ultimately he-will be wiped out by the crash which according to Lux’s model will
-_ take prices through 'th_e slack region and into the elastic region on the other side of
value. If he is still trading by the same rule he will now stay short for another run of
small positive gains (with information tfaders being the buyers) but then be wiped
out again, and éo on:. Since these crashes are relatively rare, the median return from
the ‘ttaéling- rule may well be positive, even allowing for transactions costs, but the
' me’a"ﬁ returﬁ will be negative. Unfortunately for the investor, his long run perfor-
rﬁance is determi’nedf'by the mean return, not the median. When transactions cos£s

are incorporated, the long run performance will be more negative.
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The Filter Rule

This negative skewness which can arise in the returns (i.e. the discrepancy between
the mean and the median) must be b-ofne in mind when analysing the performance of
vtrading rules based on noise. The classic trading 'strategy is the filter rule (Alexan-
der, 196i, 1964). In this rule the trader who is in the market stays in until the price
has fallen by a proportion z frqm its high since he has been in, and a trader who is
out of the market (either short or invested in the risk-free asset) stays out until the
price has risen é, proportion z from its low since he has been out. The usual way to
implement‘ this rule would be to determine the amount z historically as the value
which maximizes trading pfoﬁt.

. In the absence of transactions costs, filters of size 0.0025 < z < 0.0050 appear to
be able to generate profits through a very large amount of trading. Sweeney (1988)
found that at theif typical level of transactions costs, floor traders in DOW Jones
industrials might profit from such rules.!® Generally, however, the incorporation of
transactions costs tdtally swanips the excess return that might be achieved through
high levels of trading. Cor‘r‘adb and Lee (1992) find that transactions costs of as
little as 12 basis points (0.12%) éliminate the difference between a filter rule and
the performahce. of a buy—alnd'—hold portfolio.~ Costs of the order 1.5%, as mentioned
above, would make this filter rule ruinous in operation.

A final problem with the assessment of filter rules in pracfice is that the samples
over which the ﬁltgrs aré tested are often too small to have a representative from
each of the tails of the return- distribution. Hen_ce the mean of the performance
of the rule over a sample has more in common with the population median than
the population mean. As mentioned above, the population‘has a large amount of

negative skewness so that the median, and consequently the sample, will tend to

10Sweeney (1986) presents similar evidence from the foreign exchange market.
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overstate the. profitability of the rule.l!

7.5 Sumfnary

In Chapter 6 it was suggested that a pseudofhomogéneous investor model could gen-
erate intere:sting price/volume dynamics. This chapter has adopted a more classical
approach in showing that the éonditi_ons under which we would expect prices to be
a Martingale are not fulfilled.

These findings égfee with the empirical evidence of generally positive first-order
autocorrelation in daily returns. But the smallness of the autocorrelation coefficient
(i.e. thé small propoftion‘ of return variance explained by past returns) led Fama to
brand this effect “insignificant from an economic viewpoint” (Fama, 1970, p. 394).
Subsequent work has confirmed that it is very hard to make a trading profit on the
basis of filter rﬁles, Just as it is very hard to make a profit exploiting other types of
'anomaly. Often, where a t'rading profit does appear it can be explained by a change
in riskiness or an insuﬁicienﬁ’ly large safnple.

‘However, this does not mean that fhe autocorrelation can have no useful role to
play in investors’ behaviour. In the next chapter it will be shown how autocorre-
lation.can be used as t'he basis of av timing rule for investors already committed to
buying an asset and holding it for a substantial period. Usually, the final (generally
insﬁrmounta_ble) hurdle to profiting from the daily return autocorrelation are the
transactions costs. Buﬁ, in the case where the only issue undecided is the timing
of a purchase to which the investor is already committed, transactions costs are

immaterial. It is likely that the rewards from a timing strategy are small on a

11T might also mention an acknowledged problem in the literature concerning trading rules and
financial markets—the preference of journal editors for studies refuting the hypothesis of market
efficiency. This has the unfortunate effect of burying a large number of studies, such as those that
show trading rules producing insignificant or negative returns in out of sample periods. My own
experience and the ‘experience of students that I have supervised suggests that this is at least as
likely as finding a positive return.
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per-transaction basis. But like gravity they will accrue cumulatively and so could
make a substantial contribution to portfolio performance over the course of a year.
" Following Chaptef 8, which develops the theory of optimal timing to a successful
conclusion, Chapter 9 considers the magnitude of the reward from following such a
rule, in order to determine whether in this context the non-Martingale property of

prices i$ still economically insignificant.



Chapter 8

The Theory of Optimal Timing

8.1 Introduction

- The starting point of this chapter is the presence in daily speculative asset returns
of a small but significant amount of generally positive, first order autocorrelation.
This autocorrelation has persisted since being_widely-publicised in Fama’s influential
paper on efficient capital markets (Fama, 1970); in his follow-up twenty-one years
later, Fama notes © ... research is able to show confidently that that daily and
weekly returns are predictable from past returns” (Fama, 1991, p. 1580).

In Chapter 6 it was shown that this autocbrr_elation might arise naturally within
pseudo-homogeneous investor models, as a result of the way in which beliefs were
updated with'referen'ée to the prevailing market-clearing price. The alternative ex-
planation was ex_amined' in Chapter 7: heterogeneous investors and ‘noise trading’.
Crudely, ‘noise’ tradefs chase prices away from value, to the point at which it be-
comes profitable for ‘fundamental’ traders to step in. Therefore daily returns tend
to move in an autocorrelated manner while prices remain within a range determined
by the tranéactions costs of the lowest cost fundamental trader. As prices move

 beyond this point the pressure to reverse increases as more.and more fundamental

154
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traders step in. The situation can be complicated by the fundamental traders having
different notions of value.

An often-ésked question is whether a third group of traders can profit by de-
signing a étrategy around this pattern of autocorrelation. Generally, empirical tests
of such strategies confirm their profitability (relative to a buy-and-hold strategy),
but also show that the presence of transactions costs usually more than offsets the
benefits from frading. In Fama’s phrase, the autocorrelation is insignificant from
an economic point of view.

This chapter and the following one challenge this view.by considering the needs
of investors with stock-holding horizons of a year or more. Because of this long
horizon,_}these' investors are ﬂexible, to a degree, about the precise purchase date
once the decision has been taken to commit a certain amount of capital to a certain
stock. They can use the autocorrelation to squeeze an extra few shares 6ut of their
allocated capital by sometimes waiting to see if prices fall. The transactions costs
that stymie attempts to trade directly on the autocorrelation are not a factor in this
case, since the decision to tfade has already been taken; the only issue remaining is
‘when?’ |

This is the problem of ‘optimal timing’. The general optimal timing problem
is described in Section 8.2,‘, and for the case of AR(1) returns in Section 8.3. Sec-
tion 8.4 derives sufficient conditions for a solution to the optimal timing problem,
and Section 8.5 uses these to solve the prbblem for a function describing the rewards
from following the optimal timing strategy. This function turns out to be extremely

complicated and its computatibn' is discussed in Chapter 9.
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8.2 The Timing Problem

An inves’.cor has made the decision to buy a stock and has been assigned a given
amoﬁnt of capitél» for the purpose. In other words, everything has been done except
actually purchase the-stock, including the assessrhent of beliefs and the portfolio
optimization. In fact, it 1s appropriate to think of the investor in this scenario as a
'speqialist trader, as indeed there are such specia]ists in the large fund management
firms. Their job is to take the needs of the individual portfolio managers, satisfy
them internally if possible (i.e. by the simple transfer of stock from one portfolio to
another) and then make the net purchases and sales through the stockbroker that

provides the most cost-effective service.!

Optimal Stopping

The investor’s simplest option is to make the purchase at the first opportunity, and
this may be explicit in his -role. Suppose, however, that he has some flexibility
about the precise timing of the purchase. As well as an immediate purchase, he has
the alternative of waiting to try and get a better (i.e. lower) price at a later date,
while picking up some iﬁteres,t on the capital in the meantime. This is an optimal
- stob‘bz'ng problem because the investor is constantly hav:ing to reaffirm his decision to
wait, right up until the moment that he purchasés thé stock. Therefore in choosing
. whether or not to purchase today, he is comparing the known reward of immediate
action with the value of the opportunity to take the same decision tomorrow.
Optimal stoﬁping problems have a wide, if fairly recent, provenence in Eco-
‘nomics. For example, one way of analysing volﬁntary unerﬁployment is by jdb—search

models, in which the agent compares a known.and immediately available job with

'As an interesting aside, the task of these specialists is to assign deals across stockbrokers
not just by.cost but also to reflect the institution’s consumption of each stockbroker’s reseach
services (and, inevitably, each stockbroker’s provision of perquisites). Unless the trading of stocks
is centralized (i.e. taken away from the fundmanagers), monitoring these activities is extremely
hard and the system is open to abuse. »
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his éxpectation of the re\&ard frofn waiting for a period to see what comes up. In
this way the agent is constantly reaffirming his decision to remain unemployed up
until the point ét which taking the offered job seems the most attractive option (see,
e.g., Sargeant, 1987, for séme simple models of this type).

Another éxample is the analysis of investment opportunities under uncertainty.
S'ince investmen‘ts are often irreversible, a mis—timed‘investment can be very expen-
sive. The agent here is cohstantly reaffirming the decision to delay the investment
up until the point at which the cost of delaying (lost profits and the danger of a
competitor entering the market first) exceeds the benefit of waiting (mainly extra in-
formation leading to reduced ﬁncertainty). This type of analysis is used extensively
by Dixit and Pindyck (1994), who consider an investment opportunity to have an
option value which is killed at.the pvointat which the investment goes ahead. Conse-
quently Net Pre.sent Value (NPV) calculatioﬁs should include this loss of option value
among the outgoings of the first yéar of the project. If this ‘option.value is ignored
it app.ears>as if businesses are using too high a discount rate in project appraisal,
which is in fact a commonly-held view (among economists). Dixit and Pindyck also
su_ggeét this as a reason for many businesses choosing the payback period method

of project appraisal rather than the theoretially superiof NPV approach.

The Reward From Optimal Timing

Since the future is uncertain, the reward from following a timing rule based on opti-
mal stopping analysis, known here as an Optimal Timing Rule (OTR), is uncertain
at the point of implementation. Therefore the reward is a random variable, defined

as follows.

Definition 8.1 (Rewafd From Optimal Timing) The reward from implement-
ing an Optimal Timing -Rule (OTR) is the random variable Te R, ,, where Ry,

denotes the positive real line, representing the factor by which the number of shares
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purchased is increased over the alternative of immediate purchase. The function

f: Qt — Ry, where
F(0) Z €[] 2 - (8.1)

and §Y s the information stock at time t, will be known as the reward function, and

it represents the expected reward from implementing the OTR at time t.

To illustrate Deﬁnitioh’&l, suppose the invesfor has K capital and the price of the
target stock is currently p;. If the investor purchases immediately, he receives K/p,
shares. If he decides to implement the OTR he receives (K/p;) x 7 shares at some
point in the future; the expected reward at time ¢ is (K/p;) x f(£%).2 In general,
i.e. without reference to a particular point in time, the unconditional expectation of
the reward from the optimél timing rule can be found, in principle, by integrating

the reward function over the distrib‘ution of ‘Qt, by the relation
Elr) =& €[] Q)] = E1F (). - (8.2)

The Benefit.of Delaying

Consider initially that the investor has the options of either purchasing immediately,
at the end of period t, or delaying and making the purchase at the end of period
t+1. This is not an optimal stopping problem since there is only one decision point,
at the end of time t. By purchasing right away, the investor assures himself a reward
of 1. If the investor delays fbr a day he benefits by one day of interest, denoted 3,

tempered by his impatience, denoted ¢, where both 7 and ¢ are unitless continuously

21t will be assumed in this Chapter that p, € , that the investor is a price-taker (i-e. can
" purchase at the price p;), and that. the OTR is reviewed once a day, at the close of trading. These
assumptions are made for simplicity and are not crucial to the analysis.
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’ é_om-pounded daily,p"r(i)-p.or:tions.3 While § could be set to zero and ignored, it will
be seen below that imf)atiencé ‘18 a'érucial_ factor in the realism of the OTR, since
bt_hérwzivsé the OTR can ifnpiy that the invéstorwill often wait for very long periods
of fime ;even years. In optlmal stopplng problems generally, impatience tends to
take the place of utility. With 1mpat1ence built in, the alternatwes can be compared
4 by !;he_ir expec’tatipns: Those alternatives which imply stopping a long way into the
. future_; are ,pena}ized by the ‘impatience term, in much the same manner as a concave

utility furi_ctioﬁ' would 'penali,ze them accdrdiﬁg to their larger dispgrsion.v
- if the iﬁvestor choosesr to defay, he is a"léo'exposed to a change in the price of the

stock. As in Chapter 5, define the daily logarithmic return r; as
def ‘ . L . ’ A
re = In (p/pr-1). . : o o (8.3)

If at ¢ ,’the':_inv'ésfor waits until ¢ + 1, he takes a chance on the return 74, being
positive (resp. neg‘ative)r,"and so his capital buys less (resp. more) stock than before.
Putting thése togéther,. the investor is faced_With a straightforward comparison of

rewards, denoted 7, for the single decision point:

1 v Buy at ¢ 7

Ty = { Lo ’ 3 : . : ‘ (8.4)
- e~% e+ Wait until ¢ + 1
In opdér to compare these two alternatives he takes-expectations conditional upon his

‘information at time t, and chooses which ever-alternative has-the larger expectation,

31t might be-suggested that in not purchasing the stock the investor misses out on its dividends,
and so s should be-defined as interest less dividends. However, thé investor is compensated for the
missed dividend by the ex-d1v1dend fall in the stock price. Therefore if in the market the investor
gets the dividend, while: if out he gets the benefit of the ex-dividend fall in price. In the absence
of tax complications, these two effects offset- and the role of dividends can be ignored. However,
if there are different marginal tax rates on dividend income and capital gains, these should be
incorporated. initd an operational analysis (see, e.g., E\Iton and Gruber, 1970).
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) ’g"i‘v,_ih“g‘ the reward function in this simple case-as
A®) =max {1, 0 [e | Q]), 4 (8.5)

~ where, ence'afgain 'the 1 subscrfpt indicates the éingle decision point.

Con31der now the shghtly more general case, Wthh s an optimal stopping prob-
' lem Where the 1nvestor is permltted to delay at most 2 days, i.e. he must be invested
by t+ 2. Ther_e are now two decision pomts. at ¢ and, conditional upon not pur-
_chasing at time t, at't + 1. Having not Beught’ at t, the probiem at t 41 is identical

in.structare to the problem at time ¢, giving'the rewards

1 » 'Buy,att'
Tp =4 eideTen . Wait until £+ 1 (8.6)

¢20-8) g=(resrtres) Wit until ¢+ 2
and the resulting rewa,r_d,l“unct’io’n is
D f() =max {1, €70 E [e7 f1(Qup) | 4]} (8.7)

In -gen’eralw the n d’eeisien' "probleﬁi' (i.e. permitting a delay of up to n days) has
‘__ fn on the lefthand S1de of the rewa.rd expressmn and f,-; on the right. In the limit
as n — 00 the 1nvestor is perrmtted to delay for as long as he sees fit, and the two
;functlons fn and fn_vl converge. This gives the followmg recursive expression for the
reward functlon of the OTR known as 1ts Bellman equation (see, e.g., Dixit, 1990;

D1x1t and Pmdyck 1994)

Deﬁn.i.tion 82 (Bellman Equation).'The reward function of the Optimal Timing



CHAPTER 8. THE THEORY OF OPTIMAL TIMING 161

Rule satisfies the Bellman equation

(&) = Iﬁax {1, &% [e7m f(QH‘l) | )} . (8.8)

The reward function satisfying eq. (8.8) partitions the information space § into

‘buy’ regions where f(%) =1, and ‘wait’ regions where f($2) > 1.

Expreségd in words, eq. (8.8) states that at the end of period ¢ the investor
chooses either to purchase, in which case there is no more waiting, no more interest,
and no more price fluctations (and so thé relative reward is 1), or he chooses to wait
until the end of period t + 1- and then take the decision again in the light of the
information he has gained by waiﬁing. At t he cannot know what information he will
gain by waiting or.the return ry,;: his best guéss is the expéctation conditional on
ﬁis current information. The benefit of waiting includes interest on his capital but
is tempered by his ifnpa’ciehce, represented in the discount factor exp(i — d). Having
found f the investor considers his pafticular information set, Q,. If f(£2,) > 1
the optimal deéision is to waif, otherwise (i.e. when f (£2) — 1) it is to purchase

immediately.

8.3 Optimal Timing When Returns are AR(1)

In this chapter it will be assumed that returns follow the positive AR(1) process
Teg1 = U+ pTe + 0 21, p € (0, 1), _ (8.9)

where 2; is a gaussian white noise disturbance process. In this case daily returns
are Markov, and the information set ‘Qt boils down to the return over the previous
period, ;. From eq. (8.9), the conditional distribution 7,4, l 74 is normal with mean

1+ pr, and variance o2 The unconditional distribution of 'rt+1 is also normal with
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‘mean p, and variance o2, where
def © 9 def :
p = p/(L=p), o2 Z /(1= 0% (8.10)

(see, e.g., Johnson, 1984, pp. 289-90). From Chapter 5, typical values are . = 0.0003
[7% annualized], o = 0.0095 [15% annualized] and p = 0.05. The srﬁall value for the
autocorrelation coefficient causes there to be little difference between the conditional
and unconditionél moments: the unconditional mean is 7.4% annualized and the
unconditional standard dé\;iation is 15.04% annualized.

Incorporating eq. (8.9) into the Bellman equation eq. (8.8) gives the complete

problem, whose domain is the mathematical field of functional analysis and operator

theory.

Definition 8.3 (AR(1) Optimal Timing Problem) The optimal timing prob-
lem 1s to solve, if possible, for the fized point f* = Af*, where A(f(r), r) is the

operator
A(f(r), 7")‘d:ef rnak_{l, ei_é/ e~ f(r') o(r'; p+ pr, 02) dr’} : (8.11)
R

The Optimal Timing Rule is then to buy z'mmediatély if f*(r)) = 1, otherwise to

delay and take the decision again on the basis of Ty,.

The integral in eq. (8.11) is the expectation, with 7' ~playing the role of ., since
‘there is no need for an explicit time-dimension. The expression f* = Af* is then
the Bellman equétion of éq. ,(8‘8)’ where f* might be thought of as the root of
f—Af=0.

In general it is not possible to say whether the Optimal Timing Problem in

» “For an excellent exposition of this field see Hutson and Pym (1980), upon which much of the
following notation is based. An applied introduction in economics can be found in Stokey et al.
(1989). : '
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Definition 8.3 has a solution, let alone how that solution might be found. However,
if f is located within a class of functions with certain ‘spatial’ properties, then a
solution is guaranteed and sometimes can be found, conditional upon operator A

also having certain basic properties when used on functions from the class.

Banach Spaces

The necessary spacial properties of f are en_capéulated in a Banach Space. A Banach
space is a complete normed vector space. In a vector space the operations of addition
énd écalar multiplication are defined; a normed vector space is a vector space in
which a distance metric is defined; a complete normed vector space is a normed
vector space in which all Ca.uchy sequences in the space converge within the space.

The simplest Banéch spaces are the Euclidean spaces, R". Addition is defined for
X,YeRasZ = X+ Y where z; dg z;+vy; (1=1,...,n); similarly multiplication
by the scalé,r cas Z = cX where 2, & ¢z (¢ =1,...,n). There are many distance

metrics, of which the most familiar is the Euclidean distance:

XN = &2+ + 2,2, ' : . (8.12)
where || - || denotes the norm of the space. A sequence Xi, X,,... is Cauchy if
lim || X, — X, = 0. ' (8.13)
m,n—o0

In R” all Cauchy sequences are convergent to a point in R”, and so R" is a Banach
space when equiped with the Euclidean norm or, indeed, with many other norms
(Hutson and Pym, 1980, pp. 17-19).

More generally, consider the space.of bounded continuous functions on R, de-

def

noted C, w_here addition is defined for f,g € C as (f + g)(z) = f(z) + g(z) and

multiplicatidn by the scalar c as (¢ f)(z) e f(z). The usual norm in this space is
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the sup norm

Ifll = sup | £ (z)]. - (8.14)

TER

The space C is a Banach s.pace when equiped with the sup norm (Hutson and Pym,
11980, pp. 21-22).

Unfortunately the simple Banach space C with the sup norm is not appropriate
for the problem in Definition 8.3. The reason is that the requirement that f* be
bounded is over—restrictive. By the definition of the problem, a hugely negative
return will cause f* to be hugely positive due to the exp(—7r’) term, and this gives
rise to ﬁhe conjecture lim, ,_o, f*(r) = co. The use of the Banach space C would
t}.lerkefore impose inappropriate structure.

The right Banach Space for this problem turns out to be a more specialized space
known as a Hilbert space. A Hilbert space is a Banach space equiped with an inner
product, which is a fuﬁction defined on any two members of the space satisfying
certaiﬁ properties, which can A-give rise to generalized notions of orthogonality. To
give my own completely heuristic comparison of Banach spaces and Hilbert spaces, a
Banach space (with the sup norm) is flat, while a Hilbert space with the appropriate
inner product (which can act as a norm) is a ‘curved’ space in which the curvature
can reflect the domain of the underlying problem. In the case of the problem in
Definition 8.3, the Banach space C with the sup norm is flat along the domain of
r € R, end 50 the problem in this space would fail to distinguish between those
values of 7 Which werelike]y and those values which were highly unlikely. But a
Hllbert space can be made to ‘curve’ in R to reﬂect the fact that the unconditional
dlstrlbutlon of r implies that certain values of 7 € R are highly unlikely and should
not be accorded much welght

Therefore the inner product of the approprate Hilbert space is deﬁned over the
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unconditional distribution of 7:
(19% [ 16)90) 60 Dt | (8.15)
: n |

where (-, -)v"denotes the inner product, and the Hilbert space of squared summable
continuous funétions on R with this inner product is denoted L*(R, ¢). The norm

of this space is derived directly from the inner product:

W= 0% felRg). (8.16)

The chdice of L?(R, ¢) also has an extremely useful algebraic side-effect, without
which the bsubse‘quent analysis would be far more complicated. This is described in

the following lemma.5
Lemma 8.1 For any constant k € R, any function f € L*(R, ¢) and any parame-

tersm€ R, s2c R, ,

b - b :
T L 2
_ / e B(r; m, s?) dr = ¢mk+05s kz/ o(r; ks®+m, s?)dr.
.a. a .

Proof: The proof is straightforward. _Combinihg the term exp(kr) with the ex-
ponential expression in the normal distribution gives an exponential term in the

integrand of

(r —m)®
exp | kr - ——~2
p (k- o
2krs? — r? + 9rm — m?
= X
p T 282 o
: r —(ks* +m))?
.= exp (0.5(/{:8)2%- km — (r =1 52 ) ) (8.17)
: 5%,
SWhen @ = —oco and b = 0o, this lemma will be familiar to mathematicians as the derivation

of the moment generating function of an arbitrary normal distribution, i.e. £ [e"x ] where X is
normal with mean m and variance s2. :
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after completing the square in 7. The first term in eq. (8.17) can then go outside
the integral, while the second term represents the exponential expression from the
normal distribution not with mean m but with mean ks? + m; everything else,

including the variance and the limits, remains unchanged. ]

»8.4 Sufﬁcient Conditions

Identifying L?(R, ¢) as an appropriate space for f in the Optimal Timing Problem
-is only half the battle for solving for ;;ile fixed point f* of A. The other half is
ensuring thatﬂ the parameters of the probleni, W, o, p, © and 4, are such that the
operator A‘_ has appropriate properties for functions such as fin L*(R, ¢). There
are several fixed poinf theorems applicable to operators on Banach spaces, but one
of them stands but'as being not only sufficient for the existence of a unique fixed
point, but also providing an algorithm by which this point can be found. This is

the Contraction Mapping Principle (CMP).®

Theorem 8.1 (Contraction Mapping Principle) Suppose that the operator A
maps the closed subset D of the Banach-space B into D and is a contraction. Then
A hds ezactly one fized pownt, f* say, in D. Further, for~any witial guess fy € D,
the successive dpp%oa:imations fo=Afa1 (n > 0) converge to f*. (Hutson and

Pym, 1980, p. 116)

In order to employ the CMP on the optimal timing problem, two points must
be established. First, there must be a closed subset D C L*(R, ¢) in which the
operator A maps members back into D. Second, A must be a contraction on D.

The first of these points is easy to establish.

5The condition for operator A to be a contraction is given in eq. (8.20). Crudely, an operator
is a contraction on some set if it shrinks the distance between any two members of that set.
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Proposition 8.1 Define D C L*(R, ¢) ds those members of L*(R, ¢) which are

non-increasing and nowhere less than 1; then D is closed and f € D wmplies Af € D.

Proof: It is clear that D is a closed subset of L?(R, ) (crudely, D contains its
own endpoints). No_w consider f € D and f' 4 f; it must be shown that f' € D

where
f'(r) = max {1, ei_J/ e f(r) o(r'; p+pr, 0°) dr’} : (8.18)
JRr

To. prove that f' is non-increasing in 7, rémember that p > 0. As r increases,
the p.d.f. ¢ in the second term of eq. (8.18) shifts upwards, i.e. higher weight in the
expectation is attached to larger values of r'. Since the first term in the expectation,
e™", is decreasing in 7’ and positive, and the second, f(r), is non-increasing and
positive by construction, their product must be decreasing in 7', and thus the value of
the expectation must fall as 7 increases. Therefore f' is non-increasing. Furthermore,

since the product falls to zero in the limit r’ — 00, S0 at some finite point the function

f" will take the value 1 and becpme horizontal. - I
The second point, that A is a contraction on D, is harder to establish, and

requires a condition on the parameters.

Proposition 8.2 The ope}“ator A 15 a contraction on D providing that the following

condition holds:

. : (14 p? 1 ' '
2 — —_—
2‘—(5—*-0.50 (1—p2> u( )<O. (8.19)

Proof: For A to be a contraction on D it must be shown that

C Af-Agl<lf—dll  (f9€D). (8.20)
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Consider some function f, and g def f + k for some positive constant k. It is easy to

see that
| : 0.5
17 = oll={ [ (=42 0055 mur By} = (8.21)
: R S

Now consider using the operator on f and g, using y & exp(:—0) for convenience.

For A f,
A f = max {1, fy/ e f(r) ¢(r'; p+ pr, 0?) dr'}. (8.22)
R -
~For Ag,
Ag = max{l, fy/ e~ + k] ¢(r'; p + pr, 02)_dr’}
R .
= max{l,fy/e o(r'; p+ pr, o) dr’
R
+ 'yk/ e ¢(7”; u+ pr, 02)dr'}. (8.23)
R

The absolute differenice between Af and Ag is always less than or equal to the second

integral term in eq. (8.23). Using Lemma 8.1, this term can be written

vk / e ¢(r's u+ pr; o%) dr’
- Jr
= ~k é'('°‘5”2+“+’”)/ d(r'; —o® +p+pr, o) dr’
‘ . X

= yketBo e, | (8.24)
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Hence,
) - . 0.5
JAf - gl = { / (AF = Ag) 6(r; pa; 02) dr} |
R

’— 2 2 .
< {/ [vkeo'” "“‘*’”’] o(r; i, 2) dr}
R

A ' 0.5
= 7k {6”2‘2“/ e (15 pu, 02) dr}

0.5

0.5

_ 7keo.saz—u {e—zp(o.5(~2p)aﬁ+gu)}

= kexp(i—6+050%— p+ P20l — ppy), (8.25)

using Lemma 8.1 once again in the penultimate line.

- For the contraction to hold, it is sufficient that eq. (8.25) be less than eq. (8.21),
i.e. less than k. This requires that the exponent in eq. (8.25) be less than 0. Ex-
pressing p,, and o2 according to their definitions in eq. (8.10) and rearranging gives

the contraction condition of the proposition. |

Before going any further, it is worth asking whether the contraction condition
frbm Proposition 8.2 is likely to hold for typical values of the five parameters. The
first p'oint to note is that there is always a value for § which will ensure that any valid
combiﬁa-tion of the other parametefs will satisfy the inequality. Typical (stylized)
values of the return parameters were given after eq. (8.10) (p. 162). Taking i =
0.0002 [6% annualized] and setting § = 0 gives a just-admissable value for the
contraction condition, 'eq.'_ (8.19), of —0.0001. Therefore since ¢ > 0, the contraction

condition is likely to hold for typical parameter values.

8.5 The Solution

By Propositions 8.1 and 8.2 the optimal timing problem defined in Definition 8.3

satisfies the CMP, and so there is a unique solution which may be found by iteration.
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This solution is now found in two stages. First, a general expression for f, € D can
be derived from the definition of the operator A. Second, the facts of uniqueness and
convergence can be-used to solve for the reward function f* in the limit as n — oo.

The general expression for f, is given in the following proposition.

Proposition 8.3 -Let the n'* iteration of f, f,, be written as

: ’ = (n)
falry =< ) rer , (8.26)
: 1. r > rin

where 7™ denotes the ‘elbow’ in f,, i.e. the root of f.(r) ~1=0. Then, for any

initial choice fo € D,

n’ n—2 n—(j+1) ‘
I T) .:HBn—ij +Z H Bn lg] +gn 1( ) (827)
j=1 1=
where
: ()
def i—6 ! ’ ; 9 ,
Ba(f(r),7) et [ ) ol ok pry o) (8.28)

() = e [ 0 ok o, o) i (8.29)
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def

Proof: Consider the iteration from f,_; to f,, and write ¢(r’ | ) = o(r'; p+
pr, 0?) for simplicity.
falr) = Afaalr)
= max {'1, ei"s/ e foo1(r) o' I T) dr}
R
' . 1) :
= max {1, e’_‘s/ e_rlf,'l_l(r') o(r' | T)dr
+ ei*‘s/ e P(r b T) dr}
- r(n-l)
= max {1, By fr_i(T) + gn_l(r)} . (8.30)

by the definition of the operator B,, and the function g, in eq. (8.28) and eq. (8.29)

respectively. This shows the iterative relationship between f, and f._;:
£ulr) = Bt a0 + gaa ). | (8:3)
By back;substitqtion of f,_,(r), ignoring the functional argument fgr simplicity
. f,'l = Bp_1 (Ba_2 frg+ gn-2) + 9;1—1- - (8.32)
Since B‘nv is a linear operator it is distributive across the parenthesis, hence

f'rlz = Bn—l Bn—2 fn—? + Bn—l gn-2 + Gn-1

= ) Bn—l Bn—2'Bn—-3 fn—3 + Bn—,I,Bn—Q gn-3 + Bn—l In—2 + gn—1

Continuing to make these back-substitutions leads directly to the expression in the

proposition.” o |

"Proposition 8.3 may also be proved by induction, but I prefer this proof because it is construc-
tive. ’ '
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For the second step in finding the solution, the expression for f;(r) is found as

the limit n — oo.

Proposition 8.4 The solution to the optimal timing problem given in Definition 8.3

18
| £(r) :'m {1 iB:’.g(r)} , | | (8.33)
3=0 .
where
B(h(r), r) % et /_ Oo e h(r') $(r'; i+ pr, 0%) dr” (8.34)
Cg(r) ¥ e /roo e qﬁ(r'; p+ pr, o®)dr' | (8.35)

and r = 1* solves Z;’.io Big(r) =1.

Proof : It has already been established by the CMP (given as Theorem 8.1) that
there is a unique fixed point which represents the solution f*, and that successive
iterations will converge upon that ﬁxéd boint, i.e. lim, o fn = f*. At convergence
fn = f'nﬂv = ='f*,. and this implies that 7 = rt"“) =---=71" B, =B, =
. = B (defined in eq. (8.34)) and g, = gny1 = -~ = g (defined in eq. (8.35)).
Presuming n is alfeady arbitrarily large (i.e. we are already arbitrarily close to

convergence),

n—)oo n—00

lim {B" fi(r) ZB’ } (8.36)

. - f ( ) = lim {ano +ZB”‘(J+1) + g(r )}

i

The infinite series must bé convergent, which in turn implies that lim,_,o, B® f(r) =

0, and the result follows directly. ]
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Finally, it should be noted that the solution of the Optimal Timing Problem
given in Proposition 8.4 appears decebtively simple. Expanding the infinite power

series in the operator B for the first few terms gives:

g(r)
4+ ¢ /00 QTT'g(r') o(r' | r)dr’

»

+ oo { [ et ¢(r"!r')dr”}¢(r’ ) dr

-0

where g(r) is itself an integral expression. The calculation of this function to the
point of convergence is a major endeavour, and is therefore the subject of the next

chapter.

8.6 .Summary

The main reéult of this phapter is a function, the ‘Reward Function’ given in Defini-
tion 8.1, and solved in Proposition 8.4. This function shows the expected benefit for
ah invesfcoi‘ implementing an optimal timing rule for a speculative asset for which
the daily return shows positive first order autocorrelation. The OTR in this case is
to buy the asset ir‘ﬁmediately should its return over the period just ending be greater
than or equal to sorﬁe threshold value, denoted 7*, otherwise hold on for one period
and take the same de}cisionAagain' at the end of the next period. The attraction of
this rule is its extreme simplicity in implementétion. "This is in stark contrast to
both the solution of the Optimal Timing Problem for the reward function expres-
sion, and the calculation of this 'exp-ression for a given set of parameter values. It is

to this latter problem that I turn in the next chapter.



ChapteriQ |
Computing the Reward Function

The last chépter posed and solved the problem of purchase timing in a market with
positive autocorrelation in daily returns. Briefly, an investor intends to purchase a
given stock with a giVen amount of capital. Since his investment horizon is quite
long'(say, a year) he is relaxed about the pregise timing of the purchase. He can
sometimes take adva.ntage of the sm.all amounts of positive autocorrelation in daily
returns by delaying his purchase. When daily returns follow an AR(1) process,
the decision about whether or not to puchase 1s made by a; comparison between
“the return over the pei*ioci just ending, r;, and a threshold value, denoted r*. The
Optimal Timing Rule (OTR) is to purchase. immediately (i.e. at the end of period
t) whenever r, > 7*; otherwise to wait until the end of .period t + 1 and then apply
the-same rule again."

One question left unanswered in Chapter ‘8 was the magnitude of the reward
~ from- following the QTR in a stock ‘market.: In this chapter the reward function f* is
computed over a range. of likely values for the parameters to identify the threshold
value 7* and the unconditional éxpectatio‘n of the OTR. Section 9.1 describes the

usual approach to solving optimal stopping problems, and its failure in this case.

!The notation in this chapter is the same as that of Chapter 8.

174



CHAPTER 9. COMPUTING THE REWARD FUNCTION 175

Section 9.2 describes in overview and in detail the computation of the reward func-
tion, and Section 9.3 the results over ranges of typical parameter values. Section 9.4

discusses the results.

9.1 One Simple Approach

The threshold value r* can be thought of as the ‘elbow’ in the reward function f*, i.e.
the smallest value of r for which f*(r) = 1. Therefore knowledge of f* is sufficient
for knowledge of r*, and: any method which leads to f* will also yield 7*. In the
last chapter the optimal timing problem was solved explicitly, expressing the reward
function in terms of t_he parameters, u, o, p, ¢ and ¢, as given in Proposition 8.4.

In general, however, it is extremely difficult to find solutions to non-trivial op-
timal stopping pfoblerns, and so another method is used. This method makes use
of the Contraction Mapping Principle (CMP). ‘As long as it can be shown that the
problem satisfies the CMP cénditions (given in Theorem 8.1), then iterations of the
form f, = Af,_, from an appropriate starting-point f, are bound to converge on
the true reward function f*. (For a simple exposition, see Dixit and Pindyck, 1994,
- Appendix to Chapter 3:) To irﬁplement this method, it is necesséry to be able to
describe the functions fy, .f1,... in a consistent and flexible manner.

" In my first attempts to 'ﬁnd f*, made before ﬁnding the solution described in
Section. 8.5, 1 used: a cubic‘splin-e to describe the successive iterated functions.? I
found that convergehcé w'a'ms extremely slow and extremely unreliable (i.e. sensitive
to the parameter va'lues). However the fact of convergence, in whatever fashion, was
enough to suggest that the problem was well-defined and solvable, and so encouraged
further theoretical ihvestigation.,

! subsequently'tri_ed more parsimonious representations for the iterated functions

2For an introduction to the theory and application of splines, see Press et al. (1992).
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which were fitted by OLS following each iteration. It was clear from the cubic splines
that the function f* was roughly piecewise linear around r*, suggesting
et <

flr) = ‘ (9.1)

1 r>r*

where r* & —a/band b.< 0. However, these failed to improve in any meaningful way

over the.splines. Convergence was still slow and sensitive to the parameter values,
and ﬁhe notional errdrs about r* were much too large in relation to the standard
deviation of daily returns to make the implementation of a strategy based around

the estimate viable.

9.2 Computation of the Reward Function

The eicpiicit solution found in Proposition 8.4 replaces one set of problems with
another. Clearly the iterative method was not working very well, but attempting to
calculate an infinite power-series in operators was likely to be equally, if not more,
tricky. The problem is that there is no way of knowing, a priori, how quickly the
seriés will converge. Therefore the integration routines must be capable of going
Ato-an‘arbitr‘ary numbeér of dimensions, to the point in the series at which some
convergence criterion holds. This would be quite out of the question for standard
integration routines, where the nuﬁbef of function calls would increase by a factor

n for each extra dimension, where n is the number of points used in the integration.?

3.So,’ for example, the tenth term in the series would require about 3 x 108 function calls with
. just seven points in the integration. Each one of these function calls introduces round-off error,
not to mention the large amount of truncation error from using only seven points. A ‘quick and
dirty’ calculation using a recursive algorithm established the infeasibility of this approach. One
~ promising alternative for high dimensional integrals is that of lattice integration (see, e.g., Sloan,
- 1992), but unfortunately a generic technique for integrals of greater than two dimensions has yet
to be developed. For a general overview of the techniques of numerical integration, see Davis and
Rabinowitz (1984).
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. However, it is possible to ekploit the particular structure of the power series to find

the reward function f* to an accuracy close to machine accuracy.

Overview of the Method

Thé re;var,d' function has to be‘computed numerically, since it is not possible to
resolve the terms in the operator power series into elementary functions of the pa-
rameters. Consequently, each term in the séries will be evaluated not over the
whole of 7 € (=00, 7*], but over a finite collection of points, rq,... ,7, € R, where
o <71 < 7o < < T and Tp = —00 and rn = 7*. Initially, assume that r*
is known. For each of these points bar the first (which requires special handling,
as described below), the first term in the series, g(rx) (K = 1,...,n), can be cal-

culated directly using Lemma 8.1. After this term has been found the next term

in the series, Bg(ry), can be.approximated at each 7 (k =1,...,n) by numerical
integration over the points rp (k' =0,...,n): |
Bn) = ¢ [ 7o) | ) o (9.2)
~ ei__& Z w(k',n) e g (r) d(ri | i) AT (9.3)
k'=0

where w(k', n) is a weight fﬁnction.determined by the particular method of numerical
integration and Ar is the interval width. Since the integral has an infinite lower limit,
the wéights and the interval width both need to be chosen carefully, as discussed

further below..
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Progressing in this way, the matrix F may be built up row by row, where

glr)  glr2) - glm)
P 39_(7”1) Bg(ry) -+ Bg(ra) (9.4)
B?g(ry) B?g(rz) - _BQQ(Tn)

If F'(j, k) denotes the value of the term in row j column k, i.e. Big(r), the general

rule for constructing Fis

=e’ Z e W F(j — 1,k") ¢(r | rx) Ar (9.5)

where k =1,... ,nand j =1,2,... The matrix continues to be built up row by row
" until the column sums converge. At this point we know the values of f* at the points
T1,...,7Tn, and the géneral picture of f* for r € R can be found by interpolation
and extrapolation.

There is 5 slight ﬂa.w in this method in that it presupposes that we know 77,
~when in fact * can only b‘é known once f* has been found. However, the value of r*
can be founa iteratively by successive application of the .al.)ove method. An initial
value is chosen, say r}", and then F is ‘combuted until convergence. If r] is actually
the true value 7* then the sum of column n will be exactly 1, since f*(r*) = 1. If
fhe column sum is not 1, a new (hopefully better) value is selected, 73, and F is
recalculated, and so on. Therefore 7* can be found iferatively and simultaneously

with f* as the root of the equation f*(r*) — 1 =0, or in terms of F| as the root of
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What about the values of r,?

Numerical intégration routines fall, crudely, into two camps. First, there are those
which presume equally-spaced points and are robust across a wide range of smooth
functions (e.g. the st‘émdard methods such as Simpson’s rule); second, those in which
the spacing of the points can be optimized for particular types of function (‘quadra-
ture’). Since the nature of the functions Bkg(r).are not well-known, the first method
is applicable. However, it would take an infinite number of equally-spaced points
to fill the range (oo, r*]. Therefore the integral must be transformed by a change of
variable so that the range of integration is finite.

The transformation used is y = 1/z which gives rise to the new integral
c ' 7 ¢!
| t@d=- [ ey (96)
—oo 0 .

providing that ¢ < 0.4 In application it cannot be guaranteed that r* < 0 which
necessitates a split in the range of integration, and so the general form of the integral

becomes
Vdr = — o _éd , dz, 9.7
/_oof(x) $4 /0 Fly™)y” y+/c f(z) z (9.7)

where c is chosen as some value less than zero. The resulting values for r1,... ,7,

41t should be noted that several other transformations are available, in particular y = e®.
However, the transformation must be chosen to preserve, or enhance if possible, the smoothness
of the function (i.e. ensure a low rate of change in the gradient), in order that the numerical
approximation be as accurate as possible. The main determinant of this smoothness-in the operator
. B is the normal distribution, which has a well-defined domain on the real line representing the
return 7. It was found by experiment that y = e® compressed the middle part of this domain too
much, resulting in a rapid-change in gradient of the normal distribution and inaccuracy in the
numerical integrations. In contrast, y = 1/z tended to compress mainly the tails of the normal
distribution, where the gradient was almost zero, and so the smoothness was not compromised.
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and Ar in the two halves are then

cny . . 1
, def Lk Ard—e—f cny ) k:].,...,n[—l
FE L k) AT e
c+ k=mny,...,n+n,
Ny n,

(9.8)

where there are n; intervals in. the lefthand integral and n, in the righthand, n;+n, =

n.

The Weight Functions

The second integral, on the closed range [c, 7*], presents no problems and a standard

weight set such as that of Simpson’s rule can be used:

k=0,n

wk,n)=<{ 4 k=1,35,...,n~1 . (9.9)

WIN Wi W[

k=24,6...,n—2

(see, e.g.;-, Press et al’, 1992, p. 134), where the superscript ‘c’ on the weight function
_indicates that itv.appl'ies to ia"closed interval. The number of intervals, n, should be
even.

The first integral is on the serrii-opén interval (0,c|. For this a combination of

open-interval and closed interval weights can be used:

(0 k=0,2
g k=1
wkn)={ 3 k=3 (9.10)
cwi(k—1,n) k=4,...,n-1
| w(n, ) k=n
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(see, e.g., Press et al., 1992, pp. 134-136), where the superscript ‘so’ indicates a

semi-open interval. The number of intervals in this case should be odd.5

Accelerated Convergence

Finally in this section, I turn to the question of how many rows of F need to be
calculated before the sum of the excluded terms becomes negligible. To find this
out requires the sum of the series of terms for each column to be extrapolated from
the terms al_ready available. When these extrapolated sums converge across all 7
(k=1,...,n) then no more rows of F' are required.

| By observing the evoiution of the rows of F' it was clear that each column was
ultimately converging to its limit geometrically (sometimes known as linear conver-
| gence). This suggests that the column sums can be extrapolated using Aitken’s A2
method (see, e.g., Davis and Rabinowitz, 1984, pp. 43-44). By this method, the sum
of the series rﬁay be extrapolated as

2 .
|y —onint2 T it (9.11)
~ N . 3 - .
Sn+2 — 23n+1 + Sn

where s, is the sum up to and including the n** term of the sequence. Using s’,
to denote the extrapolated sum of the k* row at the n'* term, the convergence

criterion can be written

SUp  [Sppy k= S;kl <e : - (912)

k=1,...,n

‘where ¢ is determined externally, for example by machine accuracy.

>The point is not explicitly made in- Press et al. (1992), but it is clear that the weights in all
cases should sum to the number of intervals. Hence in the closed formula there must be an even
number of intervals (e.g. 1/3+4/3 +2/3+4/3 + 1/3 = 4). This determines that the number of
intervals in the semi-open weights be-odd (e.g. 0+27/12+0+13/12+4/3+2/3+4/3+1/3=17).
Hence the 4/3 factors fall on the odd terms in the closed weights (remembering the numbering
starts at zero) and the even terms in the semi-open weights.
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'9 3 Computatlon Results

‘The above methods rvere 1mp1emented in C++ Varlous numbers of intervals in the
two mtegratlons were trled and the results were found- to be stable with anything
at ,or ‘above. 13 1ntervals_ in the range (—00, —30y], and «10 intervals in the range
’ [‘—30,#, T, so.the'se were used. ‘Convergence down Athe rovrrs of F' was extremely
quick :.genera.H‘y taking not mor‘e than about five iteratiorls The simultaneous de-
termination of T* and f whlch 1nvolves ﬁndmg the root of f*(r*) =1 = 0, was
performed by bracketing and blsectlon (see, e.g., Press et al., 1992, Ch. - 9). The con-
vergence in both: the column sums, (€) arld the blsectron was to six decimal places.
Wlth these settrngs the tlme teken.to ‘ﬁnd the ‘reward furrctiorl f * and the threshold
T* was typica‘lly less than 1 s.econd, indicating that the optimal timing rule can be

updated in real time shou_ld there’be’changes in the parameters.®

Results

As expected from the results of the orrgrnal spline ﬁttmg, the reward functron is
roughly hnear to the left of T*, as. approximated by eq. (9.1). However, attempts to
solvv_e the Bellm‘an" equation,‘ eq. (8.8), on the presrrmption that the reward function
-was linear or logilinear were not'succeseﬁrl, _evnd_s'uggested strongly that there is
. some nOn—Iirxearity presenﬂ p’erhaps up in the le-ftha,nd".tail.7 |

The reward function was computed for drfferent sets of values of o, p and d:
o€ {0. 10 0.15, 0. 20} % annualized, p € {0.05,0.10,0.15} and 6 € {0,1,2:}. The

two. other parameters " and i were set to- 7 % annualized and 6 % annualized,

6Thls also mdrcates that the optrmal timing rule could be implemented for durations consider-
ably less than one day, perhaps to take advantage of the: intra-day return autocorrelation structure.

"It is’ worth mentioning here that .there is anotlier possible method of computation for the
infinite power series, which I was holding in reserve should the method described above not have
been effective. Asin a power series of scalars it is'sometimes possible to express an infinite power
series in operators in the form (crudely). (1 = B)~Yg(r). The-possible or near linearity of f* is
suggestive of a neat solution to this problem. However, this approach was not required since the
convergent rows of F method was so effective.
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Table 9.1: Values of r* at Different Parameter Settings

Values of ¢ (annualized)

o0=20.10 o =0.15 oc=10.20

Actual Values of r*

 p=005
. 0 - -0.0113 ~0.0169 -0.0225
5 i -0.0127 -0.0182 -0.0237
9% | ~0.0143 ~0.0196 -0.0251
p=0.10
: 0 -0.0095 -0.0143 -0.0190
) g ~ -0.0104 ~0.0151 ~0.0198
' % -0.0113 ~0.0160 ~0.0207
p=0.15
0 -0.0083 ~0.0126 —0.0167
5 ; ~0.0091 - ~0.0132 ~0.0174

2 . —0.0098 ' -0.0139 -0.0181

Normalized Values of r*

=005
0 o -1.84 ~1.81 -1.80
0 1 ~2.04 -1.95 ' -1.90
: 24 -2.30. -2.09 -2.00
' p=0.10
0o ~1.55 ~1.53 -1.52
h) g ‘ ~1.68 ~1.62 -1.58
24 -1.82 -1.71 -1.65
p=0.15
B 0 -1.36 -1.34 -1.33
) i - -l47 ~1.41 -1.39
: 2% -1.58 -1.49 -1.44

The two other parameters took constant values: pu = 7% annualized and i = 6% annu-
alized. The normalized values are found as (r* — p,)/0,, where p, is the unconditional
mean and o2 the unconditional variance of the AR(1) process for returns—see eq. (8.10).
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Table 9.2: Values of £ [7] at Different Parameter Settings

Values of o (annualized)

o =0.10 o =0.15 o =0.20
p=0.05
0 1.0%03 1.0%05 1.0407
5 i ' 1.0%02 1.0%04 1.0406
21 1.0%01 1.0%03 1.0%05
p=0.10
‘ 0 : 1.0413 1.0420 1.0%27
5 i ©1.0%10 1.0417 1.0%24
2 1.0%07 1.0%14 1.0%21
p=0.15
0 1.0%28 1.0%45 1.0%62
é i 1.0%23 1.039 - 1.0%55

2 1.0°18 1.033 1.0%49

See note to Table 9.1.
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Tespectively. Variation in the latter two parameters was captured through variation
in 6. The resultmg values for 7* are given in Table 9.1. Also given in Table 9.1
_are the the normalized values for each r*, ie. (r* — uu) /o.. Expressions for the
unconditional mean and variance (i, and oﬁ) for the'AR(l) process were given
in eq. (8.10). Likewise, the unconditional expectations of the reward, found using

eq. (8.2) as
= [ 1 0) 665 s ) | (0.13)

where ¢(-) is the: normal deﬁsity function, are given in Table 9.2. The marginal
effect on the réwérd-:functiou of changes in these three parameters is displayed in
Figure 9.1. The base case in each of the-three parts of this Figure is o = 0.10,
p=10.05 and § = 0. For each graph the range is from p, — 40, to p, + 20y, giving
some indication of natural scale. |

The, ﬁrst'poinf to note from Table"Q.l is that the threshold values, r*, are all
substantially negati-ve and as such lie in the lefthand tail of the unconditional distri-
bution‘of r.- At the point ((.).'10, 0.05, 27) [order o, p, 8], r* = —0.0143, which is -2.30
unconditional standard deviations from the unconditional mean. An investor imple-
| menting this strategy Awould find himself delaying on only 0.0107 of all purchases (i.e.
about 1in 100); where there was a delay it would almost always be for one day only.
At the opposite end of the table, at the point (0.2(‘),0.15,10) r* = —0.0167, which is
—1.33 standard deviations from the mean. In this case the investor delays on about
10 transactions in every. 100. In the ‘typical’ case (0 15,0.05,1), the investor delays
on about 3 in every 100.

The structure of the entries in Table 9. 1, and also in Table 9.2, is highly regular
and ,almost linear. This is confirmed in Figure 9.1. A rise in ¢ has the effect of

lowering 7* but at the same time raising the probability of delay, since the nor-
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Figure 9.1: Marginal Effects on the Reward Function f*(r)
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Figure 9.1: Marginal Effects on the Reward Function f*(r) (cont)

Figure 9.1c: Changes in 5
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mali{zed value rises. towards the mean; the gradient of f"‘_below r* remains a’lmost
unchanged. A rise in ¢ lowers both * and the probability of delay; again, the gra-
dient-below 7" remains almost unchanged. A rise in p has the effect of raising r*
and raising the probability of delay, but it also of raising the gradient of f* below
r*. Conseqﬁently the reward from operating the OTR is most sensitive to changes
in the autocofrélation coefficient. T his can be seen also in a comparison of the three
panefs in Table 9.2.

One conseduenc_e of this near-linearity is that it would take substantial changes
in the standard deviétion & and/or the autocorrelation p in order to drive r* up to
the point'at'whi-ch an i'nvesto,r follov;/ing the OTR is regularly delaying his purchases.
Changes of the necessary. magnitude would take the value of those two parameters
‘well outside their tyﬂpical ranges for stockmarkets. Figure 9.1 and Table 9.2 also show

that the expected benefit from following the OTR is not very large—not surprisingly
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given the_'infrequency Wifch which' purchases are likely to be delayed. The best
outcome, (0.20,0.15,0), génerates an éverage of about 6 thousandths of a percent
per pu;chase. In this case it would take about 160 purchases to achieve 1 percent
" outperformance of the OTR over the alternative of always buying immediately. In
the typical case ‘it takes about 2,500 purchases. Therefore it must be conceded that
the OTR is unlikely to make much difference to the performance of an investor in
a market similar in character to a typical stock market, at least if operated over a

period of one day.

9.4 Discussion

It is u'ndoubtedly dissé.ppoihting that, ‘after all the efforts directed at solving the
optimal timing problerﬁ and computing the solution, it transpires that at typical
parameter values there is very little incentive fof investors to adopt the OTR. The
rewards generated byi the rule are simply too small to be of interest to a busy investor
’(althoﬁ‘gh they might be delegated to a computer). In one sense this is the correct
result, since it indicates that the autécorrelation is indeed economically insignificant,
as Fama (1970) puts it.

It 1s irvlterestingv_to speculate on -what would have happened had the expected
reward been a little larger. In this case it might have been worthwhile for some
investors to implement the OTR. The result would be that after falls in the stock
price there would be a lower-than-usual demand for stock as investors delayed for
a day. On the other side of ther‘transaction, the symmetry of the problem suggests
that sellers of stock will sometimes delay when the price has risen by a large amount.
The consequence of‘ these two activities would be non-linear autocorrelation in the
daily stock returns: a‘large fall might trigger another fall the next day, a large rise

might trigger another rise, but a medium-sized change in either direction would not
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cause either buyers or sellers to delay.

This non-linear autocorrelation is ekactly the kind of process which would gen-
erate ARCH effects in the daily returns (Bera and Higgins, 1993). Therefore it is
tempting to speculate that some investors are actually bperating optimal timing rules
based on threshold values already. This might be because some investors believe that
daily returns are not exactly‘AR(l)_, leading to a different timing rule which may be
be more profitable. Alternatively, it might be that expanding the information set to
include other variables such as trading volume leads to. a more powerful rule which
is profitable. While there is no direct evidence for a better trading rule, it stands to
reason that the correlation between trading volume and absolute price change and
the t.ime-s'é'ries properties of trading volume will together combine to give a smaller

~ standard error on the one-period-ahead daily return forecast. This is something to

be investigated in the future.




Chapter 10
Summary_ and Conclusion

The tneme of this thesis has been daily price change and trading volume dynamics in
a speculative asset. In reviewing the'preceding chdpters it is clear that the material
presented has been relevent to this theme in three ways. First, there has been
the thedreti’cal analyéis of the price/{/olu.rne relationship, mainly but not exclusively
through the critical appraisal and extension of an existing model. Second, there
has been the development of tools to facilitate empirical analysis of this model

and of price dynamlcs more generally Third, the empirical analysis itself has been

conducted.

Theoretical Analyéis

" The starting point for the anelysis_of the price/volume relationship is the news-
driven model of Tauchen and Pitts (1983). In this model both price change and
tfading volurne per déy are driven by the amount of news arriving during the day.
Section 1.4 gives an overview of the locatidn of this model in the literature. This
overview is structured .around a new taxonomy which identifies a class of models

such as that of Tauchen and Pitts, known as pseudo-homogeneous investor models,
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which stand between descriptive ahd horhogeneous investor models on the one side
(e.g. the descriptive model of Bachelier (1900) and the homogeneous investor model
of Samuelson (1965)) and héterogeneous ‘noise’ models (e.g. the liquidity trader
models of Admati and Pfleiderer, 1988, 1989) on the other. |

Members of the class of pseudo-homogeneous models are sufficiently complicated

to permit the modeling of disagreement among optimizing investors, while at the

same time beihg sufficiently structured to provide -a framework within which to

analyse price/volume dynamics. This contrasts with descriptive or homogeneous

_investor ‘models; in these there may be behavioural optimization, but there can be
no disagreement between in;/estors. Heterogeneous investor models, however, are

not structured enough to provide much guidance concerning the daily price/volume

relationship (Gallant et al., 1992). While it is clear in practice that investors are

heterogéneous, it is an empiricai issue as to whether this heterogeneity is sufficiently

large i:o invalidate the ‘first-order’ pseudo-homogeneous épproximation: that in-

vestors are broadly similar in their aims and disagree only in their interpretation of

the public information stock.

Tauchen and Pitts

Chapter 2 considers the pseudo-homogen€ous model of Tauchen and Pitts (1983),
and its direct antecedents, in detail. Part of the Tauchen and Pi;cts model, the ‘intra-
day model’, conéerns the response of price change and trading volume to a single
item of news, in a way that also incorporates the size of the market. Section 2.5
suggests that there are major deficiencies in the intra-day model, some of which are
addressed in Chapter 6. Tauchen and Pitts also provide a model for the way in
Which both price change and trading volume are generated by news on a day-to-day
basis, the ‘inter-day’ modél. Their attempts to estimate this model were not very

successful, probably due, as they suggested, to the failure of their assumption that
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the amount of neWsApeAr day was independently and identically distributed. The
time-dependence of the _news—arfiVal prqcess“ has been conﬁrmea, at.least in part, by
studies made sﬁbsequently? »somé vof which are discussed in Secfion 2.6.

Section 2.4 develops the infer—day model to examine in more detail the relation-
ship between squared price change and trading volume. Tauchen and Pitts consider
the case where both price change and trading volume have normal distributions and
* the amount of news per day ié log-normal, dnd they present their results graphically
following numerical integration. Section'2.4 shows what can be inferred from general
sf)eciﬁcations for the random quantities concerned. In particular it is interesting to
note.that‘, the expected s‘quAared price change will tend to be increasing in trading
volume, Vbut not necessarily- 'S0, f)articularly at small volumes. An explicit func-
tional form can Bé found asymptotically in the amount of trading volume: expected
squared pfice change is shown to be linear in trading volume with a x? disturbance
term. This result, which' is independént of the news proceés, is used to test the

Tauchen and Pitts rﬁode‘l in Chapter 5.

News -

Chapter 3isan atterﬁpf to deﬁne news, and on the Basis of this definition to consider
what is. meant in ﬁnaqéial markets by ‘the quantity of news per day’, which is a
crucial variable in models such as that of Tauchen and Pitts. A definition of news is
proposed which implies that a piece of new information is not news to an investor
if and only if that. investor considers it equally likely have occured in every possible
~state of natufe. The notion bf news ‘magnitude’ is also discussed.

Chapter 3 goes on to consider a .model of information assimilation in which the
process of updating beliefs and re-optimizing plans is costly. These costs can cause
investors to aggrege‘mté information and only sporadically update, according to a

trade-off between the cost of updating and the loss of expected utility from having a
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sub-optimal plan. The result is that simply counting the amount of new information
bits which arrive will tend to over-represent news, since later information bits can
partially or totally negate earlier-:bits if information is aggregated. Consequently it
is proposed that_thevquantity of news per period should be measured by the number
- of investors who re-optimize their plans during the period. This has the advantage
that it is éasily proxied, and it simplifies to the number of news bits per period in

the case where the updating costs are Z€ro.

Market Microstructure

The final chapter centering on the theoretical analysis of the price/volume relation-
ship is Chapter 6. In this chapter the dynamics of price change and trading volume
are considered on a per—newé-item basis, i.e. at the level of the intra-day model of
Tauchen and Pitts (1983). A model for updating beliefs is proposed which general-
1zes the Talj;:hen and Pitts model in order to eliminate the deficiencies highlighted
in Section 2.5. This has the effect of libera£ing the Tauchen and Pitts intra-day
model from its very strict independeﬁce of price change and trading volume both
contemporaneously and from news item to news item.

Crucially, the distribution of investors’ beliefs about future prices is found to
‘play .an'important‘ role in determining both the price change and trading volume
subsequent to the arrival of new information. Since this belief distribution changes
only slowly through time (because each investor’s belief updates locally, i.e. an
investor is unlikely to go from Being strongly bullish to strongly bearish on the
receipt ‘of'a'single piece of news), the result is a contemporaneous correlation between
absolute price change and trading volume which also has time-series properties. A
combination of theoretical results ‘and Monte Carlo simulations suggests that the
skewness of investors’ beliefs impacts mainly on the price change, while dispersion

of beliefs impacts mainly on the absolute price change and the trading volume. This
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latter result already has some theoretical and empirical support.

New Tools

~ In the course of this thesis it has been necessary to devise and implement tools
for proceSsing- price and trading volume data, and for describing optimal investor

behaviour under certain circumstances.

Optimal Price Index -

A new index for futures prices is'described in Chapter 4. The need for a futures
price index, Which Joins together in some fashion the prices of individual contracts,
has long been recognized. The simple practice of merely joining together the return
series of the near contract (‘splicing’), while it is still in widespread use, has the
unfortunate side-effect of introducing seasonality into the futures price in addition to
that which was already in the spot price. Chapter 4 defines the notion of optimality
inlthé futures price index to be the complete absence of any seasonality unrelated
' to.tha.t‘ in the spot: price, in fri(;tionless markets. From .this definition a condition
for the nature of the index weights (as functions of time and expiry dates) follows.
This condition is solved in the special cases where there are two and three available
contracts, to find the precise expressions for the weights.

Chapter 4 also considers the alternative index proposed by Clark (1973). It
contrasts the three methods, using data from the London Stock Exchange and the
London International Fihancial Futures Exchangé. In theory Clark’s index is shown
to lie between the spliced index and the optimal index in its lack of seasonality.
In practice, the Clark index and the optimal index perform perfectly and almost
identically, with the sbliced index clearly showing signs of mis-specification. Other

aspects of the Clark index, however, such as its sample-dependence, its requirement
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of an extra data item for each contract in each period (the open interest), and its

difficulty of cal(;ulation, made the optimal index clearly superior.

Contract Rollovers

A second tool for pfocesSing the dataisa rnethod for removing some of the effects of
contract rollover froin-'trading volume in futures markets, described in Section 5.3.
An ihvestor’s desired Holding period will often extend beyond the expiry date of
the near contract in a-futures market, and yet he may prefer to hold only the near
contract because of its superior liquidity. To maintain his position past expiry,
the investor has to roll over his contracts by simultar;eous.ly closing in the near
contract and opening in the next-to-near contract. These contract rollovers, while
an integral part of the functioning of the market, are entirely unrelated to news
arrival. Therefore they should be removed, if possible, from the trading volume
series if that series is to be used in investigating the news arrival process. The
simple method of deseasonalization according to the quarterly expiry pattern is not
pvarticularly helpful, since rollovers can occur well in advance of the expiry date.
As a proxy for the number of contact rollovers, Section 5.3 proposes a measure
‘ calculéted from the ché.nge in the amount of open interest on the near and the
next-to-ﬁear coﬁtracts, given in eq. (5.3). In the absence of any other effects the
rollover of one contract will cause the open interest in the near contract to fall by
one, and the open interest in the far contract to rise by one. The proxy counts the
number of matched changés in open interest following this pattern. The resulting
measure has tHe' seasonal pattern expected, and diminishes appreciably the amount

of seasonéility in the trading volume series, although it does not eliminate it.
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Optimal Timing Rule . .

- The optimal timing rule of Chapters 8 and 9 is a tool which permits an investor to
exploit positiye'ﬁrst—brder a_uto.correlation in daily returns in a manner \.vhich maxi-
- mizes his expected reward. The first of these chapters describes the timing problem
and the so'lutiAon in the case where speculative returns follow an AR(1) process. In
Chapter 7 the evidence, both theoretical and empirical, for the persistence of this
process in returns is discussed. The optimal timing rule is appliqable to an investor
who is committed to vbuying a_speculative asset, but has not yet implemented the
decision. It consists of buying immédiately if the daily return of the period just
ending is greater than or equal to a certain threshold, otherwise delaying and tak-
ing the safne decision-in one period’s time. To find the threshold is a complicated
business, and much of Chapter 8 is taken up with the mathematics of the solution,
which is presented in Proposition 8.4.

Folléwing on from Chapter 8, Chapter 9 discusses the computation of the solution
to the optirrial timing problem and the magnitudes of rewards which would accrue
vto an investor following the optimal timing rule. Since the solution is an infinite
power-series in an integral operator, its computation is itself a major challenge.
Two sections of thé chaptéf are devoted to a discussion of the failure of traditional
methods and the complete descriptibn of the methods used in their place to find the
solution at close to machine accuracy.. The chapter then turns to calculating the
decision thresho.ld and the expected reward from following the optimal timing rule.
It is found that, for typical values of the parameters, the threshold was one or more
standardrdéviations below the m_ean' return, often two or more. This implies that
the rule in operation will cause very few delays, and this is confirmed by'expected
‘rewards very little in excess 6f ﬁhat from buying immediately. It was dissappointing
to find that, after all the effort of solution ahd computation, the rule as it stood had

little commerical value. On the other hand, this could be interpreted as evidence in



CHAPTER 10. SUMMARY AND CONCLUSION 197

support of efficient markets.

Empirical Analysis

The ‘empirical analysis iﬁ this thesis is concentrated in Chapter 5, although Chap-
ters 8 and 9 use descriptive sté,ﬁistics in order to assess the feasibility and perfor-
mance of the Optimal Timing Rule in practice.

| Chapter 5 examines the'uni,variate properties of price change and trading volume,
and also the bivariate properties of squared price change and trading volume. It uses
two of the tools discussed above, the optimal price index for futures contracts and the
method of proxying contract réllovers using changes in open interest. The analysis
of the Tauchen and Pitts inter-day model given in Section 2.4 is.used to specify the
structure of the bivariate relationship.

Overall, the empirical e'videtnce from FTSE-100 contracts traded on the London
International Financial Fuvt,ures Exchange over the period 1985-1994 gives qualified
vsu;.)port, for the Tauchen and Pitts inter;day model. In particular, the asymptotic
distribution for squared price change divided by trading volume does appear to be
X3, as suggested" by Proposition 2.2, altﬁough it 1s necessary to exclude the period of
the stoc.k.mar'ket Crash (1987g4-1988ql). The price/volume dynamics during this
period are clearly di‘fferént_ from those of the rest of the period, as is made clear in
Figure 5.9 (page 101): :

However, the relationship between squared price change and trading volume ap-
pears to be unstable with respect to price direction, which contradicts the symmetry
of the Tauchen and Pitts i'mod,el regarding good and bad news. This instability also
contradicts the survey of Karpoff (1987), who suggests that generally the relationship
is stable in futures markets, but not in spot markets (due to the latter’s asymme-

try of transactions costs for short and long positions). However, the instability in
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the price/volume relationship is consistent with recent findings using a,symmetrie
Avu'toregressive Conditional Heteroskedasticity models, where future price volatility
appears to be affected by the direction of the price change. In the light of these
conflicting findings, it is not possible to say whether the Tauchen and Pitts model
itself is misspecified,. or whether the problem lies instead in the precise functional

form chosen.

Conclusion

The conclusion of this thesis should be distinguished from its contribution. The
contribution has been summarized in the previous sections, and covers theoretical
developments, new analytical tools, and new empirical results. This conclusion sum-
marizes what I have learned about the price/volurne relationship while researching
and writing this thesis. |
-The primary’ conclusion of fhis thesis is that news alone cannot explain daily
price/volﬁme dynarﬁics. The main reason for this is that, while price change and
trading volume may v‘vell be related to the flow of news to the market, as in the
- model of Tauchen and Pitts (1983), the parameters which govern this relationship
are ‘inherently‘ unstable. Therefore to .explain the price/volume relationship also
requires an explanation of this parameter ‘instability.
Two'eXplahations of parameter instability are given. One represents the currently
prevailing orthodoxy—investors are heterogeneous. In this case the parameters fluc-
.tuate in response to the weight and inclinatione of the various different groups in the
market. The other explanation s preserited in Chapter 6. It has the advantage that
it does not require investors to be heterogeneous and is, in this sense, the simpler
explanation. | |

Chapter 6 suggests that investors update their beliefs about the future price
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of a speculative asset in a non-linear fashion, and with reference to the prevailing
market-clearing price. The implication is that the joint distribution of price change
and trading volume per item of news is parametized by the cross-sectional distribu-
‘tion of investors’ beliefs, as éummarized in their reservation prices. Hence, as the
distributién of reservation prices changes through time so does the price/volume
relationship.

One implication of this model is that there will be time-dependency in both price
change and trading volume. It is suggested that price change relates to the skewness
of the reservation price distribution, and absolute price change and trading volume
to the dispersion. 'Since' the reservation price distribution will change only slowly
through timé (i.e. a bullish investor will typically remain bullish in the next period),
so we should. expect to see positive autocorrelation in price changes, absolute price
changes and trading volume, irrespective of the characteristics of the news-arrival
process.

This has irri'plications for empirical work ih speéulative markets and, in conse-
quence, for the behaviour of investors. One important task is to separate out news
effects from micro-structure effects, and to do this we need a series proxying the
quantity of news per day. Chapter 3 provides a good reason for using the num-
ber of transactions recorded by stockbrokers, in preference to more direct measures
such as the number of ‘stories carried by information services. But we also need a
prior specification for the pfice/volume relationship which incorporates parameter
instability correlated across price change and trading volume.

Finally, it is possible that, following the developme‘nt'-of these more general mod-
els, the range of ;rariation of the parameters of the return process becomes clearer,
and we becomé bet‘ter able to identify, in advance, periods in which the autocorre-
“lation coefficient and the return mean and variance are all likely to be unusually

large. This would be, in terms of the reservation price model, at times when the
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distribution of investors’ reservation prices was substantially skewed and dispersed.
At these times the reward from following the optimal timing rule of Chapters 8 and
9 might be substantial, although this reward would accrue most, surely only to those
: Who implement first, since the gradual adoption of timing strategies will lead in time

to a change in the return dynamics.

THE END.
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