

Durham E-Theses

Large scale structure in the Durham/UKST galaxy Redshift survey

Ratcliffe, Andrew

How to cite:

Ratcliffe, Andrew (1996) Large scale structure in the Durham/UKST galaxy Redshift survey, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5345/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.

Large Scale Structure in the Durham/UKS'T Galaxy Redshift Survey

Andrew Ratcliffe

> A thesis submitted to the University of Durham in accordance with the regulations for admittance to the Degree of Doctor of Philosophy.

The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged.

Department of Physics
University of Durham
March 1996

31 OCT 1996

Abstract

The initial results from the Durham/UKST Galaxy Redshift Survey are presented here. Using this redshift survey the luminosity, clustering and dynamical properties of galaxies in the Universe are investigated.

The 3-D distribution of galaxies in the Durham/UKST survey appears "cellular" on $50-100 h^{-1} \mathrm{Mpc}$ scales (where h is Hubble's constant in units of $100 \mathrm{kms}^{-1} \mathrm{Mpc}^{-1}$) and is clearly more complex than a simple 1-D periodic pattern.

The optical galaxy luminosity function of the Durham/UKST survey is estimated and can be fit by a Schechter function. Comparison with other determinations of the luminosity function shows good agreement, favouring a flat faint end slope to $M_{b_{J}} \sim-14$.

The redshift space 2-point correlation function clustering statistic is estimated from the Durham/UKST survey. Comparison with previous estimates from other redshift surveys again shows good agreement and the Durham/UKST survey gives a detection of large scale power above and beyond that of the standard cold dark matter cosmological model on $10-40 h^{-1} \mathrm{Mpc}$ scales. The projected correlation function is also estimated from the Durham/UKST survey and is compared with models for the real space 2-point correlation function. To estimate this real space correlation function directly, a new application of the Richardson-Lucy inversion technique is developed, tested and then applied to the Durham/UKST survey.

The effects of redshift space distortions on the 2-point correlation function are investigated and modelled in the non-linear and linear regimes. The 1-D pairwise velocity dispersion of galaxies is measured to be $416 \pm 36 \mathrm{kms}^{-1}$ which, while being consistent with the canonical value of $\sim 350 \mathrm{kms}^{-1}$, is slightly smaller than recently measured values. However, this value is inconsistent with the $\sim 1000 \mathrm{kms}^{-1}$ value as measured in the standard cold dark matter cosmological model at a high level of significance. The ratio of the mean mass density of the Universe, Ω, and the linear bias factor, b (relating the galaxy and light distributions), is then calculated to be $\Omega^{0.6} / b=0.45 \pm 0.38$. This favours either an open $(\Omega<1)$ and unbiased $(b=1)$ Universe or a flat ($\Omega=1$) and biased ($b \sim 2$) Universe.

Preface

The work described in this thesis was undertaken between 1992 and 1995 whilst the author was a research student under the supervision of Dr. T. Shanks in the Department of Physics at the University of Durham. This work has not been submitted for any other degree at the University of Durham or at any other University.

All of the observations presented in chapter 2 and appendix A were undertaken in collaboration with Dr. A. Broadbent, Dr. T.Shanks, (Durham University), Dr. Q.A. Parker (AAO) and Dr. C.A. Collins (Liverpool-John-Moores University). Other collaborators in this project were Dr. R. Fong (Durham University), Dr. F.G. Watson (AAO) and Dr. A.P. Oates (RGO). However, the vast majority of the analysis presented in chapters $3,4,5$ and 6 was the author's own work.

A number of the results presented here have appeared in the following papers:
Ratcliffe, A., Shanks, T., Broadbent, A., Parker, Q.A., Watson, F.G., Oates, A.P. \& Collins, C.A., (1996), submitted to Mon. Not. R. astr. Soc.

This thesis is dedicated to the memory of my Mother.

It's always tougher to win when everyone expects you to.
Dave Johnson

You can remember me any way you want to. I don't really care, to be honest.

Contents

Abstract
Preface
1 Introduction 6
1.1 The Standard Cosmology 6
1.2 Motivation 6
1.3 Scientific Aims 9
2 The Durham/UKST Galaxy Redshift Survey - Construction of the Data Set 10
2.1 Introduction 10
2.2 The Parent 2-D Galaxy Sample 10
2.3 The Zero-Point Photometry Correction 11
2.4 The Observational Procedures 15
2.5 The Redshift Data Reduction Techniques 15
2.6 The Redshift Data 19
2.6.1 The Durham/UKST Galaxy Redshift Catalogue 19
2.6.2 Accuracy of the Measured Redshifts 19
2.7 Field Completeness 21
2.8 Pictures of the Survey 21
2.9 The Number-Distance Histogram 22
2.10 Conclusions 28
3 The Optical Galaxy Luminosity Function 29
3.1 Introduction 29
3.2 Estimating the Luminosity Function 30
3.2.1 Review of the Methods 30
3.2.2 Review of the Error Analysis 33
3.2.3 Review of the Normalisation 35
3.3 Results from the Durham/UKST Galaxy Redshift Survey 36
3.3.1 The $\left\langle\frac{\mathbf{v}}{\mathbf{v}_{\text {max }}}\right\rangle$ Test 36
3.3.2 The Parametric Shape 37
3.3.3 The Non-parametric Shape 39
3.3.4 The Normalisation 42
3.4 Determining the Radial Density 43
3.4.1 Review of the Methods and Error Analysis 43
3.4.2 Results from the Durham/UKST Galaxy Redshift Survey 44
3.5 Comparison with Other Surveys and Discussion 47
3.6 Conclusions 50
4 Optimal Estimation of the 2-Point Correlation Function from a Magnitude Limited Survey 51
4.1 Introduction 51
4.2 Review of the Methods of Estimating the 2 -Point Correlation Function 52
4.3 The N-Body Simulations 54
4.3.1 Technical Details of the Simulations 54
4.3.2 Pictures of the Simulations 54
4.4 The Mock Catalogues 55
4.4.1 Construction of the Mock Catalogues 55
4.4.2 Pictures of the Mock Catalogues 61
4.5 The 2-Point Correlation Function 66
4.5.1 The N-Body 2-Point Correlation Functions 66
4.5.2 The Mock Catalogue 2-Point Correlation Functions 67
4.5.3 The Theoretical Error on the 2-Point Correlation Function 87
4.5.4 The Integral Constraint on the 2-Point Correlation Function 88
4.5.5 The Optimal Estimate of the 2-Point Correlation Function and General Discussion of the Estimates 90
4.6 Conclusions 92
5 Galaxy Clustering via the 2-Point Correlation Function 93
5.1 Introduction 93
5.2 The Redshift Space Correlation Function 93
5.2.1 Method of Calculation 94
5.2.2 Results from the Durham/UKST Galaxy Redshift Survey 94
5.2.3 Comparison with other Redshift Surveys 97
5.2.4 Comparison with the Simulations 101
5.2.5 Checking for Systematic Errors 101
5.3 The Projected Correlation Function 104
5.3.1 Modelling the Projected Correlation Function 105
5.3.2 Method of Calculation 105
5.3.3 Tests of the Method 105
5.3.4 Results from the Durham/UKST Galaxy Redshift Survey 107
5.3.5 Comparison with other Redshift Surveys 111
5.4 Inversion to find the Real Space Correlation function 113
5.4.1 Direct Abel Inversion of the Integral Equation 113
5.4.2 Inversion by Richardson-Lucy Iteration 114
5.4.3 Testing the Methods of Inversion - Fake Data 115
5.4.4 Testing the Methods of Inversion - SCDM Mock Catalogues 121
5.4.5 Applying the Methods of Inversion to the Durham/UKST Survey 121
5.5 Discussion 128
5.6 Conclusions 130
6 Redshift Space Distortions via the 2-Point Correlation Function 131
6.1 Introduction 131
6.2 Method of Calculation 132
6.3 Results from the Durham/UKST Galaxy Redshift Survey 132
6.4 Comparison with the CDM Simulations 136
6.4.1 The N-Body Simulations 136
6.4.2 The Mock Catalogues 139
6.5 Non-linear Effects - Small Scales 139
6.5.1 Modelling the Pairwise Velocity Dispersion 139
6.5.2 Testing the Method with the CDM Simulations 145
6.5.3 Results from the Durham/UKST Galaxy Redshift Survey 156
6.5.4 Comparison with other Data Sets and the Simulations 163
6.6 Linear Effects - Large Scales 164
6.6.1 Modelling the Redshift Space Correlation Function with Lin- ear Theory 164
6.6.2 Testing the Method with the CDM Simulations 166
6.6.3 Results from the Durham/UKST Galaxy Redshift Survey 171
6.6.4 Comparison with other Optical Estimates of β 177
6.7 Conclusions 178
7 Conclusions 179
7.1 The Future of Galaxy Redshift Surveys 179
7.1.1 The Durham/UKST Survey and FLAIR 179
7.1.2 The Next Generation of Surveys 180
7.2 Summary of Results 181
Bibliography 184
A The Durham/UKST Galaxy Redshift Catalogue 188
B Completeness of the Durham/UKST Galaxy Redshift Catalogue 218
Acknowledgements

Chapter 1

Introduction

1.1 The Standard Cosmology

The standard cosmological model ("The Hot Big Bang") assumes that the observable Universe and its properties are spatially homogeneous and isotropic on sufficiently large scales. Such a spatially homogeneous and isotropic Universe is described by the Friedmann-Robertson-Walker metric. The Universe itself is seen to be expanding (Hubble, 1929) and according to General Relativity this is interpreted as a property of the metric which describes the space-time around us. Also, the Universe is observed in all directions to be full of a very uniform background radiation which has a spectral distribution consistent with that of a nearly perfect black body at a temperature of a few K (Penzias \& Wilson, 1965). The uniformity of this so-called Cosmic Microwave Background Radiation (of order 1 part in 10^{5}, see Smoot et al. 1992) implies that the early Universe, at the time of baryonic matter-radiation decoupling, was also homogeneous and isotropic. Running the clock backwards from the boundary conditions observed today (namely that of expansion and temperature of a few K) implies that the Universe was hotter and denser in the past, eventually becoming an infinitely small, infinitely dense point (a mathematical singularity) at an infinite temperature, this is what is meant by the "Hot Big Bang"! However, the laws of physics probably break down as the Universe reaches these extreme conditions.

1.2 Motivation

While the Cosmic Microwave Background Radiation (and hence the early Universe) is very uniform, the Universe today is not and, among other things, consists of stars, galaxies and galaxy clusters. One of the questions which should be asked is, "How did the Universe become so clumpy from such a uniform beginning ?" In the past two decades cosmologists believe they have begun to answer this ques-
tion. Basically, it is thought that small primordial imhomogeneities in the density field have grown via gravitational instability, ie. some initial form of perturbations in the Friedmann-Robertson-Walker metric have been amplified by gravity. The "Inflationary paradigm" of Guth (1981) gives a possible explanation of the origin of these initial perturbations and, during the inflationary phase, quantum fluctuations in the energy-density field are responsible for producing a specific spectrum of primordial perturbations (Hawking, 1982). Microphysical processes then alter this initial form depending on the amount and character of the mass density. Perhaps the most successful cosmological model of structure formation is the cold dark matter (CDM) model (eg. Blumenthal et al. 1984, Davis et al. 1985) where the mass of the Universe is dominated by slowly moving non-baryonic dark matter. Therefore, the major problem in cosmology today is to observe the form of the density fluctuations and compare with various theoretical predictions. In doing this one can hopefully determine both the initial perturbation spectrum and the contents of the mass density, hence specifying a complete cosmological model. Of course, one must remember that the perturbations observed at the present day are not exactly the same as those after the microphysical processes have occured because they have been evolving and growing with time. In order for a correct comparison to be made the fluctuations predicted by these theoretical models must also be similarly evolved with time. This can be done by the use of numerical N-body simulations.

In the statistical analysis of the density field the fundamental object of interest is the power spectrum of the density fluctuations, $P(k)$. (Assuming that the density field is a Gaussian Random Field.) Essentially this gives the relative amount of structure, or "power", at a given length scale and is defined as follows. Consider the density contrast

$$
\begin{equation*}
\delta(\mathbf{x})=\frac{\rho(\mathbf{x})-\bar{\rho}}{\bar{\rho}} \tag{1.1}
\end{equation*}
$$

where $\rho(\mathbf{x})$ is the density field as a function of position, \mathbf{x}, and $\bar{\rho}$ is the mean density. One can Fourier expand this field

$$
\begin{equation*}
\delta(\mathbf{x})=\frac{1}{(2 \pi)^{3}} \int \delta_{k} \exp [-i \mathbf{k} \cdot \mathbf{x}] d^{3} k \tag{1.2}
\end{equation*}
$$

such that its Fourier transform is

$$
\begin{equation*}
\delta_{k}=\int \delta(\mathbf{x}) \exp [i \mathbf{k} \cdot \mathbf{x}] d^{3} x \tag{1.3}
\end{equation*}
$$

The power spectrum of the density fluctuations is simply the mean square modulus of these Fourier coefficients

$$
\begin{equation*}
\left.P(k)=\left.\langle | \delta_{k}\right|^{2}\right\rangle \tag{1.4}
\end{equation*}
$$

where the angular brackets denote averaging over different regions of space which by the Spatial Ergodic Hypothesis is equivalent to ensemble averaging over different Universes.

It can be shown (eg. Kolb \& Turner, 1990, or Strauss \& Willick, 1995) that the power spectrum of the density fluctuations can be related to other cosmologically interesting quantities. These include the variance of the density fluctuations, $(\delta \rho / \rho)^{2}$, the mean square peculiar velocity field (the "bulk" peculiar velocity flow), the large angle gravitationally induced temperature fluctuations in the Cosmic Microwave Background Radiation (the Sachs-Wolfe effect) and the 2 -point correlation function (the Fourier transform of the power spectrum). Therefore, one can extract information about the fluctuation spectrum by measuring one or more of these quantities. At this point in time, the research in the fields involving these quantities is probably more limited by the observations and the biases inherent in them and not the physics behind them. Hence, the observational datasets only give information, of varying reliability, on different scales. For example, when this Ph.D. was started in 1992, the local peculiar velocity field had just been measured out to $\sim 50 h^{-1} \mathrm{Mpc}$ (Bertschinger et al. 1990), the largest redshift survey in existence consisted of a few thousand galaxies mapping out to $\sim 100 h^{-1} \mathrm{Mpc}$ (Saunders et al. 1991) and fluctuations in the cosmic microwave background radiation had just been detected (Smoot et al. 1992). Reliable information about the fluctuations on small scales ($<10-20 h^{-1} \mathrm{Mpc}$) mainly came from the redshift and velocity surveys while the cosmic microwave background radiation gave information on much larger scales ($\sim 1000 h^{-1} \mathrm{Mpc}$). On the scales in between these there was little concrete observational information about the form of the fluctuations.

In the 1980's a great deal of time and effort went into probing the fluctuations by constructing galaxy redshift surveys with well defined selection criterion (for a recent review see Strauss \& Willick, 1995). The overall picture that developed from these redshift surveys was one of spectacular structures in the galaxy distribution. Indeed, the Universe appeared not to be a bland homogeneous and isotropic place but was full of "filaments" and "sheets" of galaxies on $\sim 50 h^{-1} \mathrm{Mpc}$ scales which surrounded large empty regions almost devoid of galaxies. . This was most prominently seen in the CfAl survey (Geller et al. 1987) where the Coma cluster and "Great Wall" dominated the observed distribution. Unfortunately, the surveys were limited by the total number of galaxies that could be observed on a realistic timescale. However, rapid improvements in instrumentation were also made during this time, most noticeably the advent of wide-field multi-object spectroscopy which enabled simultaneous measurement of many galaxy redshifts. This allowed the limiting number of redshifts to increase dramatically from a couple of hundred to a couple of thousand. There existed a number of observational strategies designed to maximise the information one could get out of a survey ; one could go for quite large angles with a full sampling rate but not very deep (eg. the CfA1 survey of Geller et al. 1987), or very deep and fully sampled but only cover a very small angle (eg. the pencil-beam survey of Broadhurst et al. 1990), or moderately deep, covering a very large angle but only with a sparse sampling (eg. the APM-Stromlo survey of Loveday et al. 1992b, or the IRAS surveys of Saunders et al. 1991 and Fisher et al. 1994). Indeed, even the largest survey in existence at the time of writing is limited by having a very narrow "slice" geometry of angular width 1.5° (Shectman et al. 1995). Therefore, when the Durham/UKST project was started in earnest in 1991 the aim was to maximise the information obtained from these different approaches,
namely to observe a moderately deep sample, covering a reasonably large area on the sky with a quite high sampling rate.

1.3 Scientific Aims

With the above observing strategy the aims (and hopes !) of the Durham/UKST Galaxy Redshift Survey were to enable a good measurement of clustering statistics on large scales up to $\sim 100 h^{-1} \mathrm{Mpc}$ (ie. the survey would be big enough such that individual structures would not dominate the survey) and also to measure a strong signal on small scales less than $\sim 10 h^{-1} \mathrm{Mpc}$ (ie. that the sampling rate would be high enough such that the signal would not be totally washed out). Since redshifts are measured and not direct distances, the intrinsic galaxy clustering pattern also has the imprint of the galaxy peculiar velocity field on top of it. Therefore, by measuring clusting statistics on the aforementioned scales, important dynamical information in both the non-linear and linear regimes can also be obtained.

The redshift survey itself was constructed by spectroscopically observing over 4000 galaxies sampled at a rate of 1 in 3 from the Edinburgh/Durham Southern Galaxy Catalogue of Collins et al. (1988) to $b_{J} \leq 17.5^{m}$. The resulting survey, complete to $b_{J} \simeq 17^{m}$, has ~ 2500 measured redshifts, covers a $\sim 20^{\circ} \times 75^{\circ}$ contiguous area of the sky at the South Galactic Pole and probes to a depth of $>300 h^{-1} \mathrm{Mpc}$ with a median depth of $\sim 150 h^{-1} \mathrm{Mpc}$. The total volume of space surveyed is $\sim 4 \times 10^{6} h^{-3} \mathrm{Mpc}^{3}$.

The Durham/UKST survey itself is described in more detail in chapter 2. As will be seen in chapters 5 and 6 this combination of depth, high sampling rate and large area on the sky does allow the accurate determination of clustering statistics which in turn give information on the structure and dynamics of the Universe on the above scales.

Chapter 2

The Durham/UKST Galaxy Redshift Survey Construction of the Data Set

2.1 Introduction

In this chapter the construction of the Durham/UKST Galaxy Redshift Survey is described. The format of the chapter is as follows. The parent 2-D catalogue is briefly described followed by a zero-point correction to the photometry used in the Durham/UKST survey. The observational and data reduction procedures are then outlined. The Durham/UKST redshift catalogue is described, the accuracy of the redshifts checked and then the completeness of the Durham/UKST survey is given for a few different magnitude limited samples. (The full redshift catalogue is presented in appendix A.) Redshift-cone plots are then shown and described, along with the number-distance histogram for this survey. The chapter ends with the main conclusions on the construction of this redshift catalogue.

2.2 The Parent 2-D Galaxy Sample

The Durham/UKST galaxy redshift survey uses the right ascension and declination positions (α, δ) and b_{J} photometry (with a small correction, see section 2.3) of galaxies selected from the Edinburgh/Durham Southern Galaxy Catalogue (EDSGC) of Collins et al. (1988), also see Collins et al. (1992). The EDSGC consists of a mosaic of 60 UKST b_{J} survey plates around the South Galactic Pole to a limiting apparent magnitude depth of $b_{J} \simeq 20$, containing $\sim 10^{6}$ galaxies. Each plate was scanned by the Edinburgh COSMOS measuring machine and covers a $5.3^{\circ} \times 5.3^{\circ}$ region on the sky with an overlap of 0.3° at the edges, therefore each UKST field measures $5.0^{\circ} \times 5.0^{\circ}$. Galaxies from each of the 60 fields were selected to $b_{J}=17.5$ using the

EDSGC 1 in 1 lists. This magnitude limit was almost 0.5^{m} fainter than the nominal limit of the survey, this was necessary to ensure that all of the fibres were used in the actual observations given the fluctuations seen in the number density on the sky. The objects in the 1 in 1 lists were then eyeballed by A. Broadbent using copies of the original UKST plates. Objects which were misidentified by the COSMOS machine as galaxies were then removed from the lists, these spurious objects were generally double stars or star/galaxy mergers and amounted to $<10 \%$ of the total number. The remaining objects were ordered into increasing apparent magnitude and objects selected at a rate of 1 in 3. These final lists form the observational target samples of the Durham/UKST galaxy redshift survey.

2.3 The Zero-Point Photometry Correction

Metcalfe et al. (1995a) have carried out a photometry comparison between the APM and COSMOS catalogues using CCD photometry in a few overlapping fields. Although dealing with small numbers of galaxies the indications were that the APM photometry was more accurate with respect to the CCD photometric zero-points. Therefore, in an effort to correct the photometry used in this thesis a small zeropoint correction is applied to each field. Table 2.1 shows the UKST field number, the right ascension and declination (α, δ) coordinates of the field center (1950), the field widths and the photometry zero-point correction used in each of the 60 UKST fields. The photometry correction is simply an offset in each field and is derived from a comparison between the APM catalogue of Maddox et al. (1990a) and the EDSGC of Collins et al. (1988). Dalton (1995) has kindly supplied the number of matched APM and COSMOS galaxies and the mean magnitude difference between these magnitudes (as measured by the respective machines) in each field as a function of b_{J}, see Dalton et al. (1995). The average cumulative magnitude offset to $b_{J}=19.5$ was calculated (in the sense APM - COSMOS) and is used to correct the COSMOS magnitudes to have the same zero-point as the APM magnitudes. These corrections are plotted in figure 2.1 as a function of the field center (α, δ) coordinates. These offsets do not appear to be random and there seems to be a difference of ~ 0.3 mags as a function of α across the sky. This will not be investigated any further here.

Table 2.1: Table showing the (α, δ) coordinates (1950), field widths and the photometry correction for each field.

Field \#	$\alpha(\mathrm{hms})$	$\delta\left({ }^{\circ}{ }^{\prime \prime \prime}\right)$	α width (m)	δ width (${ }^{\circ}$)	Δb_{J}
531	213800	-2500 00	22.0	5.00	+0.1633
532	220000	-2500 00	22.0	5.00	+0.1325
533	222200	-2500 00	22.0	5.00	+0.1888
534	224400	-2500 00	22.0	5.00	+0.0066
535	230600	-2500 00	22.0	5.00	-0.0088
536	232800	-2500 00	22.0	5.00	-0.0488
537	235000	-2500 00	22.0	5.00	-0.1810
472	000600	-2500 00	10.0	5.00	-0.0672
473	002200	-2500 00	22.0	5.00	-0.0676
474	004400	-2500 00	22.0	5.00	-0.0047
475	010600	-2500 00	22.0	5.00	-0.1542
476	012800	-2500 00	22.0	5.00	-0.1758
477	015000	-2500 00	22.0	5.00	-0.0983
478	021200	-2500 00	22.0	5.00	-0.0634
479	023400	-2500 00	22.0	5.00	-0.0593
480	025600	-2500 00	22.0	5.00	-0.1006
481	031800	-250000	22.0	5.00	-0.2179
466	21.5100	-300000	23.0	5.00	+0.1536
467	221400	-300000	23.0	5.00	-0.0039
468	223700	-300000	23.0	5.00	+0.0822
469	230000	-300000	23.0	5.00	+0.0953
470	232300	-300000	23.0	5.00	+0.0126
471	234600	-300000	23.0	5.00	-0.1004
409	000430	-300000	14.0	5.00	-0.1031
410	002300	-300000	23.0	5.00	-0.1708
411	004600	-30 0000	23.0	5.00	+0.0990
412	010900	-300000	23.0	5.00	-0.2165
413	013200	-300000	23.0	5.00	-0.1412
414	015500	-300000	23.0	5.00	-0.1705
415	021800	-300000	23.0	5.00	-0.0821
416	024100	-300000	23.0	5.00	-0.1348
-417	030400	-300000	23.0	5.00	-0.0922

Table 2.1: Table showing the (α, δ) coordinates (1950), field widths and the photometry correction for each field.

Field \#	$\alpha(h m s)$	$\delta\left({ }^{\circ}{ }^{\prime \prime \prime}\right)$	α width (m)	δ width (${ }^{\circ}$)	Δb_{J}
404	220000	-350000	24.0	5.00	$+0.0929$
405	222400	-3500 00	24.0	5.00	-0.0286
406	224800	-3500 00	24.0	5.00	+0.0049
407	231200	-3500 00	24.0	5.00	-0.0234
408	233600	-350000	24.0	5.00	-0.0260
349	000000	-350000	24.0	5.00	-0.0990
350	002400	-3500 00	24.0	5.00	-0.1955
351	004800	-350000	24.0	5.00	-0.0471
352	011200	-3500 00	24.0	5.00	-0.2069
353	013600	-3500 00	24.0	5.00	-0.1934
354	020000	-3500 00	24.0	5.00	-0.1905
355	022400	-350000	24.0	5.00	-0.1724
356	024800	-3500 00	24.0	5.00	+0.1510
357	031200	-3500 00	24.0	5.00	-0.0957
344	220600	-40 0000	26.0	5.00	+0.2166
345	223200	-40 0000	26.0	5.00	+0.1016
346	225800	-40 0000	26.0	5.00	+0.1164
347	232400	-40 0000	26.0	5.00	+0.0449
348	235000	-400000	26.0	5.00	-0.0944
293	000800	-400000	10.0	5.00	-0.1940
294	002600	-400000	26.0	5.00	-0.0406
295	005200	-4000 00	26.0	5.00	-0.0271
296	011800	-4000 00	26.0	5.00	-0.0311
297	014400	-4000 00	26.0	5.00	-0.0805
298	021000	-4000 00	26.0	5.00	-0.1575
299	023600	-4000 00	26.0	5.00	-0.1145
300	030200	-400000	26.0	5.00	+0.0328
301	032800	-4000 00	26.0	5.00	-0.1834

$21^{\mathrm{h}} 30^{\mathrm{m}}$
Figure 2.1: The photometry corrections of each UKST field as a function of (α, δ) on the sky.

2.4 The Observational Procedures

The observations for the Durham/UKST survey were carried out in the 4 year period from early 1991 to late 1994 using the FLAIR multi-object spectroscopy system on the UK Schmidt Telescope (UKST) at Siding Spring, Australia. The FLAIR system and its improvements were recently described by Parker \& Watson (1995), an earlier description can be found in Watson et al. (1991) where the pilot redshift survey from FLAIR is presented (also see Hale-Sutton, 1990). This initial survey determined the feasibility of the larger Durham/UKST project. During this period generous allocations of telescope time (>60 nights in total) were given to this project. Also, the FLAIR instrument changed from a single plateholder system with 35 fibres and a $\sim 300 \times 400$ pixel CCD (FLAIR-I) to a two plateholder system with $92 \& 73$ fibres and a $\sim 600 \times 400$ pixel CCD (FLAIR-II). These (and other more subtle) changes in the hardware allowed the project to proceed ~ 8 times as fast in the last 2 years with respect to the first 2 years. The observational goal was simply to measure as many redshifts as possible with well defined selection criteria. Therefore as many fibres as possible were filled with galaxies as far down on each field's target list. To accomplish this only $5-10$ fibres in each field were allocated to observe the night sky, the so-called "sky" fibres. The observations themselves were carried out by A. Broadbent, Q. Parker, T. Shanks and myself. Each field was observed only once and for the FLAIR-II system an integration time of ~ 15000 s was required to produce $>75 \%$ completeness. Unfortunately, the readout noise of the CCD was large (~ 12 e/ADU), therefore the exposures had to be multiple and shorter in length (5×3000 s) and then combined during the data reduction procedure. For a typical night when two plateholders were available the observing strategy was as follows. At the start of the night $5-10$ bias frames were taken, then 3 frames each of the Hg -Cd arc lamp, the Ne arc lamp, the dome flat fields and the twilight flat fields. Of course, more of these calibration frames were taken if time allowed but experience showed that 3 of each type was the minimum necessary for multiple combining to get rid of cosmic rays, CCD readout glitches etc. The object field was then acquired and the 5 (or more) exposure frames were taken. A final Mercury-Cadmium arc lamp frame was taken to ensure that the fibre aperatures on the CCD had not moved during the observing. The plateholders were then changed and frames were taken in reverse order to the above, ie. starting with the Mercury-Cadmium arc lamp frame and finishing with the bias frames. This minimised the amount of time that was lost due to changing fields while ensuring that all the calibrations were in order. On a typical night the total time lost due to swapping plateholders and acquiring the new field was ~ 45 minutes.

2.5 The Redshift Data Reduction Techniques

The majority of the data reduction was done by myself using the IRAF data analysis package. However, Q. Parker reduced 8 fields in the center of the $\delta=-35^{\circ}$ strip with the same IRAF packages as part of a 1 in 1 survey to a similar magnitude limit
(Parker, 1995). Also, A. Broadbent reduced the first 12 fields observed (with the FLAIR-I system) in the $\delta=-30^{\circ}$ strip using the FIGARO data analysis package. The methods of reduction and measurement of redshifts are very similar for all cases and are outlined below using the IRAF package. The reduction procedures for the FLAIR system follow those described by Holman \& Drinkwater (1994) :
(i) The bias frames were first eyeballed using the display task and then had their mean and standard deviation measured with the imstat task. Any frames which appeared out of the ordinary were rejected and the remaining ones were combined using the zerocombine task in the imred.ccdred package with a \min / \max rejection algorithm.
(ii) The flat field frames were eyeballed and their mean and standard deviation measured. Any strange frames were rejected and the rest combined using the flatcombine task in the imred.ccdred package with an average sigma clipping rejection algorithm. This algorithm essentally estimates a standard deviation at each pixel using the input frames and rejects according to if each individual pixel is above or below the mean with a certain threshold, $\pm 4 \sigma$ was used. Dome flats and twilight-sky flats were kept separate.
(iii) The combined flat frames, the arc frames and the object frames were all "processed", namely de-biased, overscan corrected and trimmed using the ccdproc task in the imred.ccdred package. Flat fielding was done at a later stage.
(iv) The arc frames were eyeballed and blinked with one another to check that there was no shift in the arc lines before and after the object field was observed. In the vast majority of cases no shift was seen (at the <1 pixel level). However, if one was detected then the frames which gave the night sky lines at the correct wavelengths were used (see (vi) for wavelength calibrations). The $\mathrm{Hg}-\mathrm{Cd}$ and Ne frames were separately combined using the combine task in the imred.ccdred package with an average sigma clipping ($\pm 4 \sigma$) rejection algorithm. The resulting two frames were then added with the imarith task to produce a final arc frame containing ~ 20 emission lines of various strengths.
(v) The object frames were eyeballed and their mean and standard deviation measured. Any strange frames were rejected and the rest were combined using the combine task in the imred.ccdred package with a CCD clipping rejection algorithm. This algorithm uses the gain and readout noise of the CCD to reject pixels above or below the mean with a certain threshold, $\pm 5 \sigma$ was used. Obviously the object frames are very important and as few as possible are rejected. While cosmic rays are effectively removed by this process, glitches and other defects are not. The easiest way of removing these defects was to set the pixels in the region equal to a negative value (-1000 was used) and then combine as above. The CCD clipping rejection algorithm then rejects these negative pixels and scales up the remaining pixels to the correct mean.
(vi) Spectra were extracted from the combined object frame using the dohydra task in the imred.hydra package. This is a multi-task procedure which automatically finds the fibre aperatures on the CCD. It then extracts and flat

Figure 2.2: Schematic view of the ramp filter used in the cross-correlation of the power spectrum of the continuum subtracted spectra.
fields the spectra using these aperatures and the appropriate flat field frame. The arc frames were calibrated in a semi-automated way using input line lists of the wavelengths of the Hg, Cd and Ne emission lines with the user finding the first few points before a low order polynomial fit was done to ~ 15 of the strongest lines in the region $4000-7500 \AA$. The object spectra are then wavelength calibrated using this fit. The sky spectra are then combined and subtracted from the object spectra. All of the above procedures were carefully monitored at every stage by the user and any mistakes made by the automated process were corrected. The results of this task are a set of wavelength calibrated, sky subtracted', object spectra.
(vii) Any remaining sky lines were removed from the spectra by hand and then cross-correlated using the methods of Tonry \& Davis (1979) with the template spectra using the fxcor task in the rv package. The template spectra were of galaxies observed using the FLAIR system and reduced with the above procedures. These templates had their redshift measured by hand from emission \& absorption lines and also had known redshifts from the literature (see section 2.6 .2 for more details). The templates were good quality specta with high signal to noise and generally had many emission/absorption features (the emission lines were removed by hand before cross-correlation). As the templates came from the FLAIR spectra themselves their number increased as the data reduction proceeded and between $10-40$ templates were used for each field. The cross-correlation procedure starts by continuum subtracting the spectra and then Fourier transforming (and squaring) the results. This power spectrum is then filtered by a ramp function, schematically shown in figure 2.2. This process filters away small scale noise and any large scale features left behind by the continuum subtraction process. The resulting filtered power spectrum is then cross-correlated with the templates which have under-
gone the same procedure and an estimated object redshift (with respect to the template) is produced as well as the Tonry \& Davis (1979) r-factor.
(viii) These cross-correlated redshifts are then corrected to produce a radial velocity with respect to the local (observer) frame. Consider a template of known radial velocity with respect to the local frame, $v_{1 / 0}$, and a galaxy of estimated radial velocity with respect to the template frame, $v_{2 / 1}$, but unknown radial velocity with respect to the local frame, $\dot{v}_{2 / 0}$. Using the definition of redshift (eg. Peebles, 1993) and its relation to the radial recession velocity, $v=c z=$ $\left(\lambda_{o}-\lambda_{e}\right) / \lambda_{e}$, where c is the speed of light $\left(\sim 3 \times 10^{5} \mathrm{kms}^{-1}\right)$ and λ_{o}, λ_{e} are the observed and emitted wavelengths of the line, respectively, gives

$$
\begin{align*}
& \frac{v_{1 / 0}}{c}=\frac{\lambda_{1}-\lambda_{0}}{\lambda_{0}} \tag{2.1}\\
& \frac{v_{2 / 1}}{c}=\frac{\lambda_{2}-\lambda_{1}}{\lambda_{1}} \tag{2.2}\\
& \frac{v_{2 / 0}}{c}=\frac{\lambda_{2}-\lambda_{0}}{\lambda_{0}} \tag{2.3}
\end{align*}
$$

λ_{1} can be eliminated from equations 2.1 and 2.2 to give the radial velocity of the galaxy with respect to the local frame

$$
\begin{equation*}
\frac{v_{2 / 0}}{c}=\frac{v_{1 / 0}+v_{2 / 1}+\frac{v_{1 / 0} \cdot v_{2 / 1}}{c}}{c} \tag{2.4}
\end{equation*}
$$

A heliocentric correction is not carried out, analysis of the measured redshifts shows that this correction is not significant and therefore was not necessary, see section 2.6.2. All of the wavelength calibrated, sky subtracted, object spectra are then eyeballed and any emission lines measured. Also, any absorption features implied from the cross-correlation process were confirmed by eye. It was found that a Tonry \& Davis (1979) r-factor >4 had very believable redshifts, $r \sim 3-4$ produced reliable redshifts $\sim 50 \%$ of the time, while for $r<3$ the redshifts could not really be trusted. The poor efficiency of the FLAIR-II CCD in the blue region of the spectrum ($<5000 \AA$) means that it is difficult to get reliable redshifts using the Calcium H \& K ($3968 \AA$ \& $3934 \AA$) absorption lines, this is unfortunate given that these are probably the most commonly observed lines'in galaxies. Therefore the absorption lines that were mainly used were the Mg band ($5175 \AA$), $\mathrm{Na}(5893 \AA$) and occasionally the G band ($4304 \AA$). The most common emission lines seen were $\mathrm{H}_{\beta}(4861 \AA)$, OIII $(4959 \AA \& 5007 \AA), \mathrm{H}_{\alpha}(6563 \AA)$ and occasionally SII $(6724 \AA)$. The author had the final choice whether to believe the measured redshift or not and was quite stringent in his decisions.

2.6 The Redshift Data

2.6.1 The Durham/UKST Galaxy Redshift Catalogue

The Durham/UKST Galaxy Redshift Catalogue is formally presented in appendix A. In this appendix, table A. 1 gives the UKST field number, the (α, δ) coordinates (1950), the EDSGC b_{J} apparent magnitude (after the zero-point correction of section 2.3) and the measured radial velocity (from the FLAIR observations) of all of the galaxies in the Durham/UKST survey. Published redshifts were found in the literature (mainly from the Southern Sky Redshift Survey of da Costa et al. 1991 and the previous Durham surveys of Peterson et al. 1986 and Metcalfe et al. 1989) for ~ 200 galaxies in the Durham/UKST survey. Of these literature redshifts approximately three-quarters also had reliable redshifts measured from the FLAIR observations and comparisons are shown in section 2.6.2. That leaves a total of ~ 50 which are presented here which were not actually measured by FLAIR. When there were not enough galaxies to fill all the fibres (to $b_{J}=17.5$) other objects from the original 1 in 1 list were observed. These extra objects were reduced using the methods of section 2.5 and provided >100 new galaxy redshifts. These are not presented here because they were randomly observed and hence do not have the same well defined selection criteria as the magnitude limited sample.

2.6.2 Accuracy of the Measured Redshifts

The aims of this survey are to investigate the structure and dynamics of the Universe on a large range of scales from 1 to $100 h^{-1} \mathrm{Mpc}$. Therefore, to be successful in its goals, it is necessary to have accurate radial velocity estimates of the redshifts in this survey. It was shown by Watson et al. (1991), also see Hale-Sutton (1990), that the FLAIR-I system (using the observational procedures, integration times and reduction techniques of sections 2.4 and 2.5) could produce reliable redshifts which were accurate to $\pm 150 \mathrm{kms}^{-1}$ for $b_{J} \simeq 17$ galaxies. Using the ~ 150 radial velocities of galaxies which had reliable measurements from FLAIR (mainly the FLAIR-II system) and also published values in the literature, a mean offset of $\langle\Delta v\rangle=-10$ kms^{-1} and a standard deviation of $\sigma=136 \mathrm{kms}^{-1}$ was calculated. Figure 2.3 shows a plot of these differences as a function of apparent magnitude, b_{J}. The solid line is the mean radial velocity offset'and the dotted lines denote the 1σ spread about this value. There appears to be no systematic trend of increasing scatter with magnitude and the radial velocity zero-point is negligible compared to the scatter seen, hence no heliocentric correction is made.

Figure 2.3: A comparison of published galaxy radial velocities with those measured by the FLAIR system for the Durham/UKST survey.

Sample Name	n_{z}	Mean Completeness (\%)	s.d. (\%)	Mean $m_{\text {lim }}$	s.d.
16.75	1639	74.5	15.9	16.75	-
best	2055	75.0	11.1	16.86	0.25
all	2501	59.1	17.7	17.23	0.17

Table 2.2: Completeness and magnitude limit statistics for the three samples.

2.7 Field Completeness

The completeness of a given field is defined as follows. Let $n_{\text {tot }}$ be the total number of galaxies to a given magnitude limit, $m_{\text {lim }}$, from the original 1 in 3 target list (selected from the EDSGC). Let $n_{\text {unobs }}$ be the number of galaxies from this list which were not observed. Let $n_{\text {miss }}$ be the number of galaxies which were observed but did not produce a reliable redshift (for whatever reason). Therefore, the number of (reliable) measured redshifts is $n_{z}=n_{t o t}-\left(n_{\text {unobs }}+n_{\text {miss }}\right)$. The completeness of the field is simply the number of measured redshifts divided by the maximum number of redshifts it was possible to measure, namely

$$
\begin{equation*}
\text { completeness }=\frac{n_{\text {tot }}-\left(n_{\text {unobs }}+n_{\text {miss }}\right)}{n_{\text {tot }}} \tag{2.5}
\end{equation*}
$$

The completeness of each field is given in appendix B. Three magnitude limits are shown, a uniform limit of $b_{J}=16.75$ (table B.1), a "best" limit (table B.2) which was chosen by the author as a compromise between having a faint magnitude limit in each field and keeping the completeness levels quite high ($>60 \%$) and an "all" limit (table B.3) which simply included every measured redshift in the 1 in 3 catalogue. Table 2.2 gives a condensed version of these tables. It is seen that the "best" sample is $\sim 75 \%$ complete to $b_{J} \simeq 16.9$ and contains over 2000 redshifts. This sample will be almost exclusively used in the analysis of the Durham/UKST survey. It is worth noting that the previous Durham surveys mentioned in section 2.6.1 contain ~ 500 redshifts in total, scattered randomly over the sky. Therefore this new survey represents a significant 4-5 increase in the numbers available, with a similar increase seen in the volume sampled.

2.8 Pictures of the Survey

Figures 2.4, 2.5, 2.6 and 2.7 show the redshift-cone plots of all the galaxies in the Durham/UKST survey for four constant declination slices. In these figures each dot is supposed to represent a galaxy. The slices are centered on $\delta=-25^{\circ},-30^{\circ},-35^{\circ}$ and -40°, respectively and each slice spans 5° in the δ direction and $\sim 75^{\circ}$ in the α direction. The depth of this survey is similar to that of the APM-Stromlo survey of Loveday et al. (1992b), is twice that of the CFA2 survey of Huchra et al. (1995) and half that of the Las Campanas survey of Shectman et al. (1995).

These plots of the Durham/UKST survey show the wealth of structure in the galaxy distribution, from clusters to filaments and voids. In fact, this survey gives the striking impression that the galaxy distribution is "cellular" or "bubble-like" on $5000-10000 \mathrm{kms}^{-1}$ scales. The most noticeable structure in the survey is the low density region lying between 0 and $9000 \mathrm{kms}^{-1}$ surrounded by long "walls" of galaxies. This structure is present in the three most southerly slices and has previously been referred to as the Sculptor Void (Fairall \& Jones, 1988 and da Costa et al. 1991). In the most northerly slice $\left(\delta=-25^{\circ}\right)$ there is evidence for the top of this structure and that it is indeed a "cell".

2.9 The Number-Distance Histogram

Figure 2.8 shows the histogràm of galaxy number with comoving distance, $n(r)$, in the Durham/UKST survey' for the "best" sample of section 2.7. The comoving distances, r, have been calculated from the redshifts, z, assuming a $q_{0}=\frac{1}{2}, \Lambda=0$ cosmology and use the relation

$$
\begin{equation*}
r(z)=\left(\frac{2 c}{H_{0}}\right)\left[1-\frac{1}{\sqrt{1+z}}\right] \tag{2.6}
\end{equation*}
$$

where $H_{0}=100 \mathrm{~h} \mathrm{kms}^{-1} \mathrm{Mpc}^{-1}$ is the Hubble Constant. Equation 2.6 reduces to the familiar Hubble law in the case of small redshift $(z \ll 1)$

$$
\begin{equation*}
r \simeq \frac{c z}{H_{0}} \tag{2.7}
\end{equation*}
$$

In figure 2.8 the dashed curve shows how a random and homogeneous distribution would appear given the angular/radial selection functions and sampling rate of this "best" sample. The Durham/UKST survey $n(r)$ distribution has several large peaks. In particular there are two strong peaks at ~ 90 and $\sim 170 h^{-1} \mathrm{Mpc}$ signifying "walls" in the galaxy distribution. There is possible evidence for a third such feature at $\sim 270 h^{-1} \mathrm{Mpc}$. However, at least one of these peaks does not follow the $128 h^{-1} \mathrm{Mpc}$ periodic pattern previously clạimed by the Broadhurst et al. (1990) pencil-beam survey along the North-South Galactic Pole axis which intersects this survey at \sim $0^{h} 54^{m},-27.5^{\circ}$, crossing the nearer and further Sculptor superclusters. Also, recent analysis of the Las Campanas redshift survey by Landy et al. (1996) with the 2-D power spectrum has shown an excess of power in the $\sim 100 h^{-1} \mathrm{Mpc}$ region, although at a lower level of significance than Broadhurst et al. (1990). The arrows indicate where these $128 h^{-1} \mathrm{Mpc}$ periodic "spikes" in the galaxy distribution should appear. In this larger angle survey the galaxy distribution is clearly more complex than any simple periodic pattern. A χ^{2} test is applied to the binned $n(r)$ distribution to test the significance of these peaks above the random and homogeneous distribution given by the dashed curve in figure 2.8. A χ^{2} of ~ 382 is calculated for 78 degrees of freedom, this has a formal probability of $<1 \times 10^{-40}$! Therefore, even in such a deep and wide-angled survey as this one, it appears that a fair sample of the Universe has yet to be reached.

Figure 2.4: Radial velocity ($c z$) vs. RA (α) for the $\delta=-25^{\circ}$ slice.

Figure 2.5: Radial velocity $(c z)$ vs. RA (α) for the $\delta=-30^{\circ}$ slice.

Figure 2.6: Radial velocity ($c z$) vs. RA (α) for the $\delta=-35^{\circ}$ slice.

Figure 2.7: Radial velocity $(c z)$ vs. RA (α) for the $\delta=-40^{\circ}$ slice.

Figure 2.8: The Durham/UKST survey $n(r)$ distribution for the "best" sample.

2.10 Conclusions

The Durham/UKST Galaxy Redshift Survey was constructed from the 2-D parent EDSGC, it was observed using the FLAIR system on the UKST in a 4 year period. A small zero-point photometry correction is applied and the measured redshifts are shown to be accurate to $\pm 150 \mathrm{kms}^{-1}$. The "best" magnitude limited sample is $\sim 75 \%$ complete to $b_{J} \simeq 16.9$ and this will be used in the later analysis of the survey. The redshift-cone plots of the Durham/UKST survey itself give a visual impression that the galaxy distribution is "cellular" on scales of $50-100 h^{-1} \mathrm{Mpc}$ with the Sculptor cell being particularly prominent in this region of the sky. The galaxy number-distance histogram shows several large peaks some of which agree with the previously seen "spikes" in the galaxy distribution in this region of the sky. A χ^{2} test shows that this observed histogram is not consistent with a random and homogeneous distribution. Therefore, the Durham/UKST survey is probably not yet sampling a fair region of the Universe.

Chapter 3

The Optical Galaxy Luminosity Function

3.1 Introduction

In this chapter the optical galaxy luminosity function is estimated from the Durham/ UKST galaxy redshift survey. The luminosity function is one of the most basic and fundamentally important quantities in observational cosmology. Indeed, it is essential in the determination of the radial selection function (which is used in galaxy clustering statistics, eg. Efstathiou, 1988) and also for the proper interpretation of the observed galaxy number count data (in the comparison with number count models, eg. Metcalfe et al 1995b). In fact there is currently much debate (eg. Ellis et al. 1995, Lilly et al. 1995) regarding the evolution (or not) of the luminosity function at high redshifts and the resulting effect on the interpretation of the measured galaxy number-magnitude counts. While the Durham/UKST survey is not deep enough to begin to answer the question of evolution it can provide a determination of the local luminosity function and in particular the faint end slope which is needed when attempting to model these number counts to fainter apparent magnitudes.

The format of the chapter is as follows. The standard methods of luminosity function estimation, error analysis and normalisation are briefly reviewed. The parametric and non-parametric forms of the luminosity function (as calculated from the Durham/UKST survey) are then presented followed by their normalisation. Methods of radial density estimation are then briefly reviewed and the results from the Durham/UKST survey presented. This new estimate of the luminosity function is then compared with that from other galaxy redshift surveys. The chapter ends with the main conclusions obtained from this analysis of the Durham/UKST survey.

It is obvious that the luminosity function is a whole research topic in itself and it is important to state that this chapter is not intended to be a complete review or analysis of the luminosity function whatsoever.

3.2 Estimating the Luminosity Function

The galaxy luminosity function, $\phi(L)$, is the number of galaxies per unit volume with a given absolute luminosity L (or magnitude M)

$$
\begin{equation*}
d n(L)=\phi(L) d L \tag{3.1}
\end{equation*}
$$

where $d n(L)$ is the number density of galaxies in the range $[L, L+d L]$. It would be expected that a general luminosity function would be a much more complicated function than this, depending. on pass-band of selection, local environment, galaxy morphology etc. However, one might hope that on specification of a given pass-band (in this case the optical) equation 3.1 will become a reasonably good approximation.

3.2.1 Review of the Methods

One of the simplest estimators of $\phi(L)$ is the " $1 / V_{\max }$ " method (Schmidt, 1968)

$$
\begin{equation*}
\phi(L) d L=\sum_{i} \frac{1}{V_{\max }\left(L_{i}\right)}, \tag{3.2}
\end{equation*}
$$

where $V_{\max }\left(L_{i}\right)$ is the maximum volume (derived from the survey's physical limits) that the galaxy of luminosity L_{i} could still be seen in (given the apparent magnitude limits of the survey) and the sum extends over all galaxies in the luminosity interval $[L, L+d L]$. This equation will only give an unbiased estimate of $\phi(L)$ if the inhomogeneities of the galaxy distribution in the survey can be neglected. Unfortunately, this is not the case and galaxies are seen to be clustered. It is easy to imagine how a nearby excess of clustering will bias this estimator, in this case shallow samples will be over-represented with respect to distant ones, hence there will be an excess of intrinsically faint galaxies and $\phi(L)$ will be too steep at the faint end. For future reference this estimator will be called the VMAX method.

Other methods of determination have concentrated on maximum likelihood techniques. To overcome the above problems with clustering they have been constructed in a density independent way by decomposing the luminosity function into luminosity dependent and density dependent parts. These methods can in turn be split into two types, parametric and non-parametric.

The parametric estimators assume a given functional form of $\phi(L)$ for insertion into the likelihood formula, one such method is now described :
(i) Historically it has been common to use a "Schechter function" (Schechter, 1976) to describe $\phi(L)$. The Schechter function has three parameters, a normalisation ϕ^{*}, a faint end slope α, and a characteristic luminosity L^{*} (or equivalently absolute magnitude M^{*})

$$
\begin{equation*}
\phi_{S}(L) d L=\phi^{*}\left(\frac{L}{L^{*}}\right)^{\alpha} \exp \left(-\frac{L}{L^{*}}\right) d\left(\frac{L}{L^{*}}\right) . \tag{3.3}
\end{equation*}
$$

One then forms a likelihood, \mathcal{L}, based on the probability of seeing a galaxy of luminosity L_{i} at redshift z_{i} in the survey

$$
\begin{gather*}
p_{i} \propto \phi\left(L_{i}\right) / \int_{L_{\min \left(z_{i}\right)}^{\infty}}^{\infty} \phi(L) d L \tag{3.4}\\
: \quad \mathcal{L}=\prod_{i=1}^{N} p_{i} \tag{3.5}
\end{gather*}
$$

where the product extends over all of the N galaxies in the survey and $L_{\text {min }}\left(z_{i}\right)$ is the minimum absolute luminosity that a galaxy at redshift z_{i} could have and still be included in the survey. The best estimate of $\phi(L)$ is then given when \mathcal{L} (or equivalently $\ln \mathcal{L}$) is maximised with respect to the parameters of this asssumed functional form (Sandage et al. 1979). One could use standard differentiation techniques to determine this maximum but in practise it is easier to estimate the maximum by probing the (α, L^{*}) space of likelihoods through direct calculation of
$\ln \mathcal{L}=\alpha \sum_{i=1}^{N} \ln L_{i}-(\alpha+1) N \ln L^{*}-\sum_{i=1}^{N} \frac{L_{i}}{L^{*}}-\sum_{i=1}^{N} \ln \Gamma\left[\alpha+1, L_{\min \left(z_{i}\right)} / L^{*}\right]+$ const..
Obviously; one does not have to use a Schechter function and there is freedom to choose other parametric forms which may provide a better fit. Indeed, Efstathiou et al. (1988a) choose to do this by considering the effects of random scatter in the measured magnitudes. They approximate these errors by convolving the pure Schechter function, ϕ_{S}, with a gaussian distribution of zero mean and σ_{m} rms

$$
\begin{equation*}
\phi_{C}(M)=\frac{1}{\sqrt{2 \pi} \sigma_{m}} \int_{-\infty}^{\infty} \phi_{S}\left(M^{\prime}\right) \exp \left[-\frac{1}{2 \sigma_{m}^{2}}\left(M^{\prime}-M\right)^{2}\right] d M^{\prime} \tag{3.7}
\end{equation*}
$$

To evaluate the convolution one needs a value of σ_{m} and Metcalfe et al. (1995a) have made a best estimate of $\sigma_{m}=0.22$ for COSMOS vs CCD magnitudes.
For future reference this estimator will be called the STY method.

The non-parametric estimators assume that $\phi(L)$ can be written as a series of constant steps across given luminosity intervals, two such methods are now described :
(i) Bean (1983, based on a private communication with Peebles) and Choloniewski (1986) have independently proposed the following method. Consider the 2-D array of absolute magnitude, M, and distance modulus, μ. The expected number of galaxies in an absolute magnitude interval $\left[M_{i}-\frac{\Delta}{2}, M_{i}+\frac{\Delta}{2}\right]$ and a distance modulus interval $\left[\mu_{j}-\frac{\Delta}{2}, \mu_{j}+\frac{\Delta}{2}\right.$], where Δ is a constant bin size for both absolute magnitude and distance modulus, is given by

$$
\begin{equation*}
\left\langle n_{i j}\right\rangle=\phi_{i} \rho_{j}, \tag{3.8}
\end{equation*}
$$

where ϕ_{i} is the luminosity function and ρ_{j} the number density multiplied by the volume element across the $j^{\text {th }}$ bin and both ϕ_{i} and ρ_{j} are assumed to be constant in that bin. By binning the galaxies from the survey into this array the observed number, $n_{i j}$, is deduced. Assuming that Poisson statistics apply the probability that the observed number is seen is given by

$$
\begin{equation*}
p={\frac{\left\langle n_{i j}\right\rangle^{n_{i j}}}{n_{i j}!}}^{\exp \left(-\left\langle n_{i j}\right\rangle\right), ., ~} \tag{3.9}
\end{equation*}
$$

and the likelihood product is formed

$$
\begin{equation*}
\dot{\mathcal{L}}=\prod_{i}^{i+j \leq S} \prod_{j}{\frac{\left(\phi_{i} \rho_{j}\right)^{n_{i j}}}{n_{i j}!}}^{\exp \left(-\phi_{i} \rho_{j}\right), ~, ~} \tag{3.10}
\end{equation*}
$$

where $S=\left(m_{\text {lim }}-M_{0}-\mu_{0}\right) / \Delta\left(M_{0}\right.$ is the maximum absolute magnitude used and μ_{0} is the minumum distance modulus used) and its appearance in the product is due to the fact that galaxies do not populate the whole of the (M, μ) plane because of the apparent magnitude limit. The maximisation conditions ($\frac{\partial \ln \mathcal{L}}{\partial \phi_{k}}=0=\frac{\partial \ln \mathcal{L}}{\partial \rho_{k}}$) produce the following coupled equations

$$
\begin{align*}
& \phi_{k}=\sum_{j=1}^{S-k} n_{k j} / \sum_{j=1}^{S-k} \rho_{j}, \tag{3.11}\\
& \rho_{k}=\sum_{i=1}^{S-k} n_{i k} / \sum_{i=1}^{S-k} \phi_{i} . \tag{3.12}
\end{align*}
$$

A solution to these equations is found via iteration until the desired convergence is obtained by assuming an initial trial set of the ϕ_{i} 's. For future reference this estimator will be called the PBC method.
(ii) Efstathiou et al. (1988a) propose a stepwise maximum likelihood method devised on the principle of the STY method but with the luminosity function as a set of N_{p} constant steps instead of a Schechter function

$$
\begin{equation*}
\phi(L)=\phi_{k}, \quad L \in\left[L_{k}-\frac{\Delta L}{2}, L_{k}+\frac{\Delta L}{2}\right], \quad k=1, \ldots, N_{p} . \tag{3.13}
\end{equation*}
$$

Using this expression in equations 3.4 and 3.5 the likelihood becomes

$$
\begin{equation*}
\ln \mathcal{L}=\sum_{i=1}^{N} W\left(L_{i}-L_{k}\right) \ln \phi_{k}-\sum_{i=1}^{N} \ln \left[\sum_{j=1}^{N_{p}} \phi_{j} \Delta L H\left(L_{j}-L_{\min \left(z_{i}\right)}\right)\right]+\text { const. } \tag{3.14}
\end{equation*}
$$

where the number of galaxies in the survey is again N and

$$
W(x)= \begin{cases}1 & -\frac{\Delta L}{2} \leq x \leq \frac{\Delta L}{2} \tag{3.15}\\ 0 & \text { otherwise }\end{cases}
$$

and

$$
\dot{H}(x)= \begin{cases}0 & x \leq-\frac{\Delta L}{2} \tag{3.16}\\ \frac{1}{2}+\frac{x}{\Delta L} & -\frac{\Delta L}{2} \leq x \leq \frac{\Delta L}{2} \\ 1 & x \geq \frac{\Delta L}{2}\end{cases}
$$

In this case the maximisation condition $\left(\frac{\partial \ln \mathcal{L}}{\partial \phi_{k}}=0\right)$ produces the following equation

$$
\begin{equation*}
\phi_{k}=\frac{\sum_{i=1}^{N} W\left(L_{i}-L_{k}\right)}{\sum_{i=1}^{N}\left[\frac{\Delta L H\left(L_{k}-L_{\min \left(z_{i}\right)}\right)}{\left.\sum_{j=1}^{N_{p} \phi_{j} \Delta L H\left(L_{j}-L_{\min \left(z_{i}\right)}\right)}\right]},\right.} \tag{3.17}
\end{equation*}
$$

which can be solved via iteration by assuming an initial trial set of the ϕ_{k} 's. For future reference this estimator will be called the SWML method.

It should be noted that the PBC and SWML methods are very similar. However, as the PBC method stands it'does not use any bins bisected by the selection line $M+\mu=m_{\text {lim }}$. Choloniewski (1986) suggests a way around this problem by assuming that the galaxies populate each (M, μ) pixel in a homogeneous manner. In this case the likelihood in equation 3.10 should be multiplied by the following factor

$$
\begin{equation*}
\prod_{i}^{i+j=S+1} \prod_{j} \frac{\left(\phi_{i} \rho_{j} / 2\right)^{n_{i j}}}{n_{i j}!} \exp \left(-\phi_{i} \rho_{j} / 2\right) \tag{3.18}
\end{equation*}
$$

which alters the coupled equations 3.11 and 3.12 slightly. However, Choloniewski (1986) also notes that on making this assumption the method is no longer fully non-parametric.

It is also important to note that by their very method of construction these maximum likelihood techniques cannot provide the overall normalisation, this is dealt with in section 3.2.3.

3.2.2 Review of the Error Analysis

The four estimators discussed in section 3.2.1 all have well defined error properties which will now be described.

Firstly consider the VMAX method, the error in each luminosity interval $[L, L+$ $d L]$ is simply given by the rms

$$
\begin{equation*}
\Delta \phi=\left(\sum_{i} \frac{1}{V_{\max }^{2}\left(L_{i}\right)}\right)^{\frac{1}{2}} \tag{3.19}
\end{equation*}
$$

Secondly consider the STY method, for such a maximum likelihood method the deviation of \mathcal{L} from the maximum value can be used to estimate the asymptotic error properties thereby giving an ellipsoid of acceptable parameter values

$$
\begin{equation*}
\ln \mathcal{L}=\ln \mathcal{L}_{\text {max }}-\frac{1}{2} \chi_{\beta}^{2}(n) \tag{3.20}
\end{equation*}
$$

where $\mathcal{L}_{\text {max }}$ is the maximum likelihood, n is the number of free parameters (namely two, α and L^{*}) and β is the required confidence level for that number of free parameters (eg. Eadie et al. 1971). For example, the 68% and 96% confidence levels
for $n=2$ are 2.30 and 6.00 , respectively, so to determine the joint error ellipsoids one looks for the values of α and L^{*} which reduce the maximum likelihood solution by 1.15 and 3.00 .

Thirdly consider the PBC and SWML methods, one can use the covariance matrix to estimate the asymptotic error properties of the maximum likelihood ϕ_{k} 's (eg. Eadie et al. 1971)

$$
\begin{equation*}
\operatorname{Cov}\left(\phi_{k}\right)=-\left(\frac{\partial^{2} \ln \mathcal{L}}{\partial \phi_{l}^{2}}\right)_{\phi_{l}=\phi_{k}}^{-1} \tag{3.21}
\end{equation*}
$$

For the P.BC method this implies that the error estimates are

$$
\begin{align*}
& \operatorname{Var}\left(\phi_{k}\right)=\frac{\phi_{k}^{2}}{\sum_{j=1}^{S-k} n_{k j}}, \tag{3.22}\\
& \dot{\operatorname{Var}}\left(\rho_{k}\right)=\frac{\rho_{k}^{2}}{\sum_{i=1}^{S-k} n_{i k}}, \tag{3.23}
\end{align*}
$$

while for the SWML method they are

$$
\begin{equation*}
\operatorname{Var}\left(\phi_{k}\right)=\left(\sum_{i=1}^{N}\left[\frac{W\left(L_{i}-L_{k}\right)}{\phi_{k}^{2}}\right]-\sum_{i=1}^{N}\left[\frac{\Delta L H\left(L_{k}-L_{\min \left(z_{i}\right)}\right)}{\sum_{j=1}^{N_{p}} \phi_{j} \Delta L H\left(L_{j}-L_{\min \left(z_{i}\right)}\right)}\right]^{2}\right)^{-1} \tag{3.24}
\end{equation*}
$$

where, following Saunders et al. (1990), the assumption that one can neglect the off-diagonal elements (ie. the cross-derivatives) has been used.

Finally, one of the problems with the STY method is that it will always return a best fit solution regardless of the assumed parametric functional form and how good a representation of the actual luminosity function it is. Therefore, for this method it is necessary to test the goodness of fit. This can be done using the likelihood ratio test (eg. Eadie et al. 1971) if one assumes that the non-parametric form of the PBC or SWML methods provides a good estimate of the shape of the actual luminosity function. Specifically, let \mathcal{L}_{1} be the likelihood calculated using the maximum likelihood solution of the given functional form and let \mathcal{L}_{2} be the likelihood calculated from either equation 3.10 or 3.14 using the maximum likelihood solution of the ϕ_{k} 's. Then $-2 \ln \lambda$, where $\lambda=\frac{\mathcal{L}_{1}}{\mathcal{L}_{2}}$, behaves asymptotically as a χ^{2} statistic with $\left(N_{p}-1\right)$ degrees of freedom. However, to get an answer independent of bin size, ΔL, and number of bins, N_{p}, the likelihood \mathcal{L}_{1} should be calculated from either equation 3.10 or 3.14 using a set of ϕ_{k} 's calculated from equation 3.25 below rather than simply using the likelihood \mathcal{L}_{1} straight from the STY method

$$
\begin{equation*}
\phi_{k} \simeq \frac{\int \phi(L) d N(L)}{\int d N(L)} \simeq \frac{\int \phi(L) L^{\frac{3}{2}} d L}{\int L^{\frac{3}{2}} d L}, \tag{3.25}
\end{equation*}
$$

where the integrals in equation 3.25 are over the luminosity interval in question, [$L_{k}-\frac{\Delta L}{2}, L_{k}+\frac{\Delta L}{2}$] (Efstathiou ét al. 1988a).

3.2.3 Review of the Normalisation

The expected distribution of the number of galaxies as a function of redshift z (or equivalently distance r) is given by

$$
\begin{equation*}
n(r)=f \bar{n} \operatorname{Vol}(r) S(r) \tag{3.26}
\end{equation*}
$$

where f is the sampling rate of the survey, \bar{n} is the mean spatial density of the survey, $\operatorname{Vol}(r)$ is the volume element of the survey at a distance r and $S(r)$ is the selection function of the survey at that distance

$$
\begin{equation*}
S(r)=\frac{\int_{\text {max }}^{\infty} \phi(L) d L}{\int_{L_{\text {low }}}^{\infty} \phi(L) d L}=\frac{\Gamma\left(\alpha+1, \frac{\max }{L^{*}}\right)}{\Gamma\left(\alpha+1, \frac{L_{\text {low }}}{L^{*}}\right)}, \tag{3.27}
\end{equation*}
$$

where a Schechter luminosity function has been assumed, $\max =\max \left[L_{l o w}, L_{\min (r)}\right]$, $L_{\text {low }}$ is the minimum possible absolute luminosity of a galaxy in the survey and $\Gamma(\alpha+1, x)$ is the standard incomplete Gamma function. The mean spatial density of the survey is also related to the luminosity function by

$$
\begin{equation*}
\check{n}=\int_{L_{\text {low }}}^{\infty} \phi(L) d L=\phi^{*} \Gamma^{-}\left(\alpha+1, \frac{L_{\text {low }}}{L^{*}}\right) . \tag{3.28}
\end{equation*}
$$

Two methods of estimating \bar{n} and ϕ^{*} are now described :
(i) \bar{n} can be determined by a simple rearrangement of equation 3.26

$$
\begin{equation*}
\bar{n}=\frac{n(r) / f}{\operatorname{Vol}(r) S(r)}, \tag{3.29}
\end{equation*}
$$

and ϕ^{*} comes from elimination of \bar{n} from equations 3.26 and 3.28

$$
\begin{equation*}
\phi^{*}=\frac{n(r) / f}{\operatorname{Vol}(r) \Gamma\left(\alpha+1, \frac{\max }{L^{*}}\right)} . \tag{3.30}
\end{equation*}
$$

So, if the $n(r)$ data is binned, then an estimate of \bar{n} and ϕ^{*} is available in each bin. While it would be possible to take a mean or median of these estimates to give an overall normalisation, a better way using this method would be to take the survey as a whole giving

$$
\begin{equation*}
\bar{n}=\frac{\sum_{r} n(r) / f}{\sum_{r} \operatorname{Vol}(r) S(r)}, \tag{3.31}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi^{*}=\frac{\sum_{r} n(r) / f}{\sum_{r} \operatorname{Vol}(r) \Gamma\left(\alpha+1, \frac{m a x}{L^{*}}\right)} . \tag{3.32}
\end{equation*}
$$

(ii) \bar{n} can be determined using an iterative scheme (Loveday et al. 1992b) with the estimator and weighting, w, of Davis \& Huchra (1982)

$$
\begin{equation*}
\bar{n}=\frac{\sum_{i=1}^{N} w\left(r_{i}\right) / f}{\int_{r_{\min }}^{r_{\max }} S(r) w(r) d V} \tag{3.33}
\end{equation*}
$$

where

$$
\begin{equation*}
w(r)=\frac{1}{1+4 \pi f \bar{n} J_{3}\left(r_{c}\right) S(r)} \quad, \quad J_{3}\left(r_{c}\right)=\int_{0}^{\tau_{c}} x^{2} \xi(x) d x \tag{3.34}
\end{equation*}
$$

r_{c} is the scale on which J_{3} converges to a maximum value and $\xi(x)$ is the 2 -point correlation function of the galaxy distribution, for more information about ξ and J_{3} see chapters 4,5 and 6 . ϕ^{*} is then determined from equation 3.28. This scheme should produce the minimum variance estimate of \bar{n} if $J_{3}\left(r_{c}\right)$ converges on a scale r_{c} smaller than the survey (Davis \& Huchra, 1982).

For both methods the variance of \bar{n} is given by (Davis \& Huchra, 1982)

$$
\begin{equation*}
\operatorname{Var}(\bar{n})=\frac{\bar{n} \int w^{2} S d V+f \bar{n}^{2} \int w_{1} w_{2} S_{1} S_{2} \xi\left(x_{12}\right) d V_{1} d V_{2}}{f\left(\int w S d V\right)^{2}} \tag{3.35}
\end{equation*}
$$

where $w=1$ for the first simple estimator and $w=1 /\left(1+4 \pi f \bar{n} J_{3}\left(r_{c}\right) S(r)\right)$ for the second iterative estimator.

3.3 Results from the Durham/UKST Galaxy Redshift Survey

The brightest absolute magnitude of any galaxy seen in the survey is $M_{b,} \sim-23$. The minimum distance an object could have a reliable redshift distance estimate for (relatively unaffected by peculiar velocities) is $5 h^{-1} \mathrm{Mpc}$, ie. $z_{\text {low }}=1.67 \times 10^{-3}$. Using an average magnitude limit of $m_{\text {lim }} \sim 17$ these two facts imply that the faintest possible absolute magnitude that could be seen is $M_{b_{J}} \sim-12$ while the maximum apparent magnitude is $m \sim 6$. Note that the actual maximum apparent magnitude is probably fainter than this due to the limitations of the measuring machine itself.

3.3.1 The $\left\langle\frac{\mathrm{v}}{\mathrm{V}_{\text {max }}}\right\rangle$ Test

The volumes, V, are calculated using comoving distances, $d_{c o}(z)$ (ie. $r(z)$ of equation 2.6), and also use

$$
\begin{equation*}
V=\frac{d \Omega}{3} d_{c o}^{3}(z) \tag{3.36}
\end{equation*}
$$

Sample	$\left\langle V / V_{\max }\right\rangle$
best	0.501 ± 0.006
all	0.450 ± 0.006

Table 3.1: The $\left\langle\frac{V}{V_{\text {max }}}\right\rangle$ test for the Durham/UKST survey.

$$
\begin{gather*}
5 \lg d_{L}(z)=m-M-25-k_{c o r r}(z), \tag{3.37}\\
d_{L}(z)=(1+z) d_{c o}(z), \tag{3.38}
\end{gather*}
$$

where $d \Omega$ is the solid steradian angle of the survey, c the velocity of light in kms^{-1}, $H_{0}=100 h \mathrm{kms}^{-1} \mathrm{Mpc}^{-1}$. the Hubble constant, z the redshift, $d_{c o}$ the comoving distance in $h^{-1} \mathrm{Mpc}, d_{L}$ the luminosity distance in $h^{-1} \mathrm{Mpc}$ and $k_{\text {corr }}$ the k-correction. A simple k -correction is used

$$
\begin{equation*}
k_{\text {corr }}=k_{1} z+k_{2} z^{2}, \tag{3.39}
\end{equation*}
$$

where $k_{1}=+3.15$ and $k_{2}=-0.29$ (Broadbent, 1994).
The results of Schmidt's (1968) $\left\langle V / V_{\max }\right\rangle$ test for the completeness of a survey are given in table 3.1 for the "best" and "all" magnitude limited samples described in section 2.7. The error quoted is the expected standard deviation for a random variable in the range $[0,1]$ with a uniform probability distribution, $1 / \sqrt{12 N}$. Table 3.1 shows that the "best" sample does not suffer from incompleteness while the "all" sample is incomplete at a high level of significance. The "best" sample will therefore be used exclusively throughout the rest of this chapter.

3.3.2 The Parametric Shape

The STY maximum likelihood solution has been calculated for a pure Schechter function (equation 3.3) and for a convolved Schechter function (equation 3.7 with $\sigma_{m}=0.22$). The maximum likelihood results of α and $M_{b_{J}}^{*}$ are shown in table 3.2 and assume $h=1$. Figure 3.1 shows these two solutions scaled to agree at $M_{b j}=$ -19.75 (the bin containing the most galaxies) although the absolute normalisation is arbitrary at this stage. The inset of figure 3.1 shows the joint 68% error ellipsoids for these two solutions as calculated from equation 3.20. The errors quoted in table 3.2 are the 1σ error on an individual parameter and are estimated from the inset of figure 3.1.

There is reasonably good agreement between the two solutions shown in figure 3.1. It appears that the main effect of the magnitude errors on a luminosity function of this shape is to pull $\phi(M)$ down at faint magnitudes while pushing it up slightly at bright magnitudes, essentially flattening it. In order to determine which of these solutions gives the best fit to the actual luminosity function the likelihood ratio test (see section 3.2.2) has been applied. It is assumed that the shape

Figure 3.1: The STY maximum likelihood solution for a pure Schechter function (solid curve) and a convolved Schechter function (dashed curve). The two solutions are scaled to agree at $M_{b_{j}}=-19.75$ but the overall normalisation is arbitrary at this stage. The inset shows these STY likelihood results in the ($M_{b_{J}}, \alpha$) plane, complete with the maximum likelihood solution and the joint 68% error ellipsoids on both parameters.

	ϕ_{S}	ϕ_{C}
α	-1.14 ± 0.08	-1.04 ± 0.08
$M_{b_{J}}^{*}$	-19.72 ± 0.09	-19.68 ± 0.10
χ^{2}	20.2	18.8
Prob.	0.16	0.22

Table 3.2: STY maximum likelihood results.
of the actual luminosity function can be approximated by the SWML estimate of section 3.3.3. The SWML data is scaled to agree at $M_{b_{J}}=-19.75$ and any bins in the SWML estimate containing one or fewer galaxies are ignored in the evaluation of the likelihood ratio (ie. the 2 bins at the very bright magnitudes) leaving 16 bins for the likelihood ratio test. The two χ^{2} 's and their associated probabilities are shown in table 3.2. It can be seen that the best fit is achieved using the convolved Schechter function, although this result is marginal. In fact neither of these fits appear to be a very good match to the actual luminosity function. For the sake of simplicity the pure Schechter function is preferred.

3.3.3 The Non-parametric Shape

The VMAX, PBC and SWML estimates of the luminosity function have been calculated and are shown in figure 3.2. No change was seen in the shape of the VMAX estimate when incompleteness was accounted for (only the normalisation was altered). The PBC and SWML methods converged (to 5 s.f.) at every point after ~ 20 iterations. The PBC estimator incorporates those galaxies on the $M+\mu=m_{\text {lim }}$ selection line using equation 3.18. At this stage the solutions have been scaled to agree at $M_{b_{J}}=-19.75$ but the overall normalisation is still arbitrary. The error bars have been calculated using equations $3.19,3.22$ and 3.24 . It is seen that the PBC and SWML estimates are in excellent agreement at all magnitudes, in fact they are almost identical. The VMAX estimate differs slightly at both the brightest and faintest magnitudes. The SWML and PBC estimates have a flat faint end slope, whereas the VMAX estimate produces a slightly increasing slope. This steeper VMAX faint end slope is probably due to an overdensity in the local galaxy distribution (see section 3.4.2). The best estimate of the non-parametric luminosity function comes from the PBC and SWML methods.

Figure 3.3 shows the two STY maximum likelihood curves from table 3.2 and figure 3.1 plotted against the SWML estimate from figure 3.2. They have been scaled to agree with the SWML estimate at $M_{b_{J}}=-19.75$ and again the absolute normalisation is arbitrary. The convolved Schechter function appears to give a good fit at the brightest and faintest magnitudes, whereas the pure Schechter function only fits within 1σ in this range. However, in the $-19.5 \leq M_{b_{J}} \leq-18.0$ region it is the pure Schechter function that gives the better fit although only within 3-4 σ. The visual impression is that neither the pure or convolved Schechter functions give a very good fit to the exact details of the non-parametric estimates of the luminos-

Figure 3.2: The VMAX (crosses), SWML (dots) and PBC (triangles) estimates of the non-parametric form of the galaxy luminosity function. All estimates are scaled to agree at $M_{b_{J}}=-19.75$ but the absolute normalisation is arbitrary:

Figure 3.3: The STY maximum likelihood results scaled to agree with the SWML estimator at $M_{b_{J}}=-19.75$. The absolute normalisation is arbitrary.

$\bar{n}\left(h^{3} \mathrm{Mpc}^{-3}\right)$	ϕ_{S}	ϕ_{C}
Simple	0.075	0.055
Iterative	0.081	0.053
$\phi^{*}\left(h^{3} \mathrm{Mpc}^{-3}\right)$	ϕ_{S}	ϕ_{C}
Simple	1.12×10^{-2}	1.84×10^{-2}
Iterative	1.21×10^{-2}	1.74×10^{-2}

Table 3.3: Estimates of \bar{n} and ϕ^{*} for pure and convolved Schechter functions.
ity function. Nevertheless, the general features and shape do agree well although figure 3.3 could be suggesting that something other than a Schechter function is needed to parametrically describe the true form of the galaxy luminosity function. These conclusions about the Schechter function agree with those of section 3.3.2.

3.3.4 The Normalisation

The results of the simple and iterative estimators for \bar{n} and ϕ^{*} are shown in table 3.3 for the pure and convolved Schechter functions of table 3.2 using the methods described in section 3.2.3. Incompleteness has been corrected for by dividing the sum in the numerators of equations $3.31,3.32$ and 3.33 by the appropriate completeness rate of the field in question. For the iterative estimates a value of $4 \pi J_{3}\left(r_{c}\right)=5000 h^{-3} \mathrm{Mpc}^{3}$ is used and 5 s.f. convergence is achieved after 5 iterations. The method is quite insensitive to the value of J_{3} used as doubling or halving it makes only a 4% difference to \bar{n}. Using equation 3.35 the variance of \bar{n} in the survey is 10% and 7% with $w=1$ and $1 /\left(1+4 \pi f \bar{n} J_{3}\left(r_{c}\right) S(r)\right)$, respectively. The uncertainty in ϕ^{*} produced from the errors in the Schechter parameters α and $M_{b_{j}}^{*}$ is of the order $\sim 15 \%$. Combining this with the variance in \bar{n} gives a total uncertainty in ϕ^{*} of $\sim 18 \%$ and 17%, respectively, for the above two weightings.

Table 3.3 shows that for a given parametric function there is little difference between the two methods of estimation. The main source of formal error in both ϕ^{*} and \bar{n} is the uncertainty in the luminosity function parameters α and $M_{b_{J}}^{*}$. However, it is slightly worrying that the choice of parametric form leads to a $\sim 40 \%$ difference in ϕ^{*} and \bar{n}, especially as both parametric forms gave a similar quality of fit to the actual luminosity function. In conclusion, the best estimates for a pure Schechter function are $\bar{n}=0.078 \pm 0.014 h^{3} \mathrm{Mpc}^{-3}$ and $\phi^{*}=1.17 \pm 0.21 \times 10^{-2} h^{3} \mathrm{Mpc}^{-3}$, while for a convolved Schechter function $\bar{n}=0.054 \pm 0.009 h^{3} \mathrm{Mpc}^{-3}$ and $\phi^{*}=$ $1.79 \pm 0.30 \times 10^{-2} h^{3} \mathrm{Mpc}^{-3}$.

3.4 Determining the Radial Density

3.4.1 Review of the Methods and Error Analysis

Non-parametric maximum likelihood methods for the determination of the radial density function are analogous to those proposed for the estimation of the luminosity function. Likelihoods are constructed (see section 3.2.1) which, when maximised, give the density field that best describes the observed radial galaxy distribution. Again, by construction, the normalisation is arbitrary. Two such methods are now briefly reviewed :
(i) The previously described PBC method for determining the luminosity function also gives the radial density function multiplied by the volume element as part of the iteration procedure. To evaluate the actual radial density fluctuations it is a simple matter of dividing the maximum likelihood ρ_{j} 's from equation 3.12 by the appropriate volume, ΔV_{j}, of the $j^{\text {th }}$ distance modulus bin (of constant width Δ). Asymptotic error estimates of the ρ_{j} 's are given in equation 3.23 and it is easy to propagate this error to $\rho_{j} / \Delta V_{j}$. This estimator is again referred to as the PBC method.
(ii) Similar to the SWML method, Saunders et al. (1990) have proposed maximising the following likelihood to determine the radial density

$$
\begin{equation*}
\mathcal{L}=\prod_{i=1}^{N} \frac{\rho\left(z_{i}\right)}{\int_{z_{(\min , i)}}^{z_{\max \left(L_{i}\right)}} \rho\left(z_{i}\right)\left(\frac{d V}{d z}\right) d z} \tag{3.40}
\end{equation*}
$$

where $z_{(\min , i)}=\max \left[z_{l o w}, z_{\min \left(L_{\mathrm{i}}\right)}\right]$ and $z_{\max \left(L_{i}\right)}$ are the minimum and maximum redshifts at which a galaxy of luminosity L_{i} could be seen and still be included in the survey. In this case

$$
\begin{equation*}
\ln \mathcal{L}=\sum_{i=1}^{N} W\left(z_{i}-z_{k}\right) \ln \rho_{k}-\sum_{i=1}^{N} \ln \left[\sum_{j=1}^{N_{p}} \rho_{j} \Delta V_{j} F\left(z_{(\min , i)}, z_{j}, z_{\max \left(L_{i}\right)}\right)\right], \tag{3.41}
\end{equation*}
$$

where $W(x)$ is defined as in equation 3.15 with Δz replacing $\Delta L, \Delta V_{j}$ is the volume of the $j^{\text {th }}$ redshift bin (of constant width Δz) and $F(a, x, b)$ is the fraction of the volume bin at redshift x within the integral limits $[a, b]$. When written out explicitly $F(a, x, b)$ is

$$
F(a, x, b)=\left\{\begin{array}{ll}
0 & x-a \leq-\frac{\Delta z}{2} \tag{3.42}\\
\frac{\Delta V_{x-a}}{\Delta V_{x}} & -\frac{\Delta z}{2} \leq x-a \leq \frac{\Delta z}{2} \\
1 & x-a \geq \frac{\Delta z}{2} \\
1 & b-x \geq \frac{\Delta z}{2} \\
\frac{\Delta V_{b}}{\Delta V_{x}} & -\frac{\Delta z}{2} \leq b-x \leq \frac{\Delta z}{2} \\
0 & b-x \leq-\frac{\Delta z}{2}
\end{array} .\right.
$$

The maximisation condition $\left(\frac{\partial \ln \mathcal{L}}{\partial \rho_{k}}=0\right)$ then produces the following equation

$$
\begin{equation*}
\rho_{k}=\frac{\sum_{i=1}^{N} W\left(z_{i}-z_{k}\right)}{\sum_{i=1}^{N}\left[\frac{\Delta V_{k} F\left(z_{\min , i)}, z_{k}, z_{\max }\left(L_{i}\right)\right.}{N}\left[\frac{\left.\sum_{j=1}^{N_{p} \rho_{j} \Delta V_{j} F\left(z_{(\min , i)}\right), z_{j}, z_{\max }\left(L_{i}\right)}\right)}{}\right]\right.}, \tag{3.43}
\end{equation*}
$$

which can be solved by iteration as before. The asymptotic error estimates are given by the covariance matrix of equation 3.21 and in this case they are
$\operatorname{Var}\left(\rho_{k}\right)=\left(\sum_{i=1}^{N}\left[\frac{W\left(z_{i}-z_{k}\right)}{\rho_{k}^{2}}\right]-\sum_{i=1}^{N}\left[\frac{\Delta V_{k} F\left(z_{(\min , i)}, z_{k}, z_{\max \left(L_{i}\right)}\right)}{\sum_{j=1}^{N_{p}} \rho_{j} \Delta V_{j} F\left(z_{(\min , i)}, z_{j}, z_{\max \left(L_{i}\right)}\right)}\right]^{2}\right)^{-1}(3$
This estimator is again referred to as the SWML method.

The PBC and SWML methods are quite similar. Once again the PBC method does not use any bins bisected by the selection line $M+\mu=m_{\text {lim }}$ unless the likelihood is multiplied by the factor in equation 3.18.

3.4.2 Results from the Durham/UKST Galaxy Redshift Survey

The SWML and PBC maximum likelihood estimates of the radial density function are shown in figures $3.4(\mathrm{a})$ and $3.4(\mathrm{~b})$. Incompleteness is not explicitly corrected for in either method. The SWML and PBC methods converged (to 5 s.f.) at every point after ~ 20 iterations. The PBC estimator incorporates those galaxies on the $M+\mu=m_{\text {lim }}$ selection line using equation 3.18. The error bars have been calculated using equations 3.23 and 3.44 . The solutions are normalised to unity in the region $[25,350] h^{-1} \mathrm{Mpc}$ with an inverse error weighting. Figure 3.5 shows both estimates plotted on the same graph and the agreement between the methods is impressive out to $r \simeq 250 h^{-1} \mathrm{Mpc}$ (although no formal statistical test has been attempted). For larger radial distances it becomes harder to compare the two estimates (because the PBC distance modulus bins increase in size for increasing radial distance).

These figures show that fluctuations in the observed galaxy density (of order $\sim 40-70 \%$) occur on $\sim 50 h^{-1} \mathrm{Mpc}$ scales. The radial size of the fluctuations are similar to those seen in the APM-Stromlo survey of Loveday et al. (1992b) but at almost twice the amplitude. Also; apart from the large local overdensity at $r<$ $20 h^{-1} \mathrm{Mpc}$ (which could also be a combination of small volume and poor statistics) the dominant features in the radial distribution are the three peaks at $\sim 90,170$ and (possibly) $310 h^{-1} \mathrm{Mpc}$ and the two troughs between them. The radial distances of these peaks and troughs agree well with those in the observed $N(r)$ histogram (section 2.9) and again there is some correspondance with the Broadhurst et al. (1990) pencil-beam redshift survey SGP "spikes" (section 2.9).

Figure 3.4: The maximum likelihood estimate of the radial density function estimated from the (a) SWML and (b) PBC methods.

Figure 3.5: The SWML (dots) and PBC (crosses) maximum likelihood estimates of the radial density function (same as figure 3.4).

3.5 Comparison with Other Surveys and Discussion

Table 3.4 shows a comparison between the maximum likelihood convolved Schechter function parameters for the Durham/UKST and other galaxy redshift surveys. The convolved values are used here for consistency (and not the pure Schechter function parameters preferred in section 3.3.2) because, in general, they are the published fits. These luminosity functions are plotted in figure 3.6 assuming the offset between the galaxies as measured in the b_{J} and Zwicky systems is -0.7 magnitudes and the b_{J} and Gunn $-r$ is +1.1 magnitudes (eg. Lin et al. 1995b). The zero-point offset between b_{J} and Gunn-r comes from the mean rest-frame colour of Las Campanas galaxies, namely $\left\langle b_{J}-r\right\rangle_{0}=+1.1$ (Tucker et al. 1995), but the zero-point offset between b_{J} and Zwicky magnitudes remains unexplained (Marzke et al. 1994).

Figure 3.6 shows that the convolved Schechter function Durham/UKST estimate agrees very well with that of the APM-Stromlo survey (Loveday et al. 1992b). (Note that the pure Schechter function estimate also agrees very well.) This may have been expected given that both surveys come from the same set of UKST plates, albeit scanned by different measuring machines. After the zero-point offset between Zwicky and b_{J} magnitudes has been applied, the CfA2 luminosity function (Marzke et al. 1994) has a similar shape to the Durham/UKST estimate although the CfA2 normalisation appears biased high, probably due to local inhomogeneities in the galaxy distribution (eg. structures such as the "Great Wall"). Similarly, after applying the zero-point offset between Las Campanas Gunn-r galaxies and b_{J} galaxies, the shape of the Las Campanas luminosity function (Lin et al. 1995b) agrees well with the Durham/UKST estimate at bright magnitudes, $M_{b_{J}}<-17$, although their normalisation is a little low (or alternatively our normalisation is a little high). However, at fainter magnitudes, $M_{b_{J}}>-16$, their best Schechter function fit does not agree well with the Durham/UKST estimate. This is not thought to be a problem with the Durham/UKST survey as the Las Campanas survey is slightly biased against intrinsically faint galaxies because of their central surface brightness selection cutoff. Overall, the general features of these convolved Schechter luminosity functions are in good agreement with a value of $M_{b_{J}}^{*} \sim-19.5$ and a flat faint end slope, $\alpha \sim-1.0$.

The normalisations of these luminosity functions are also given in table 3.4. Note that ϕ^{*} and \bar{n} are not independent and are related via the integral over the shape of the luminosity function (equation 3.28). All of the values of ϕ^{*} are roughly consistent within 3σ, with the Las Campanas value providing the estimate with the smallest errors and the CfA2 value appearing to be biased high, albeit with much larger errors. The values of \bar{n} are again pretty much consistent within 3σ, apart from the Las Campanas value which if one believes the quoted errors on these estimates is $\sim 9 \sigma$ lower than the APM-Stromlo value. This large discrepency is not apparent in figure 3.6 and can probably be attributed to the falling faint end of the Las Campanas luminosity function with respect to the APM-Stromlo one.

Survey	Durham/UKST	APM-Stromlo	CfA2	Las Campanas
Volume $\left(h^{3} \mathrm{Mpc}^{-3}\right)$	4×10^{6}	1×10^{7}	2×10^{6}	1×10^{7}
Mag. System	b_{J}	b_{J}	Zwicky	Gunn- r
σ_{m}	0.22	0.30	0.35	0.10
M^{*}	-19.68 ± 0.08	-19.50 ± 0.13	-18.8 ± 0.3	-20.29 ± 0.02
α	-1.04 ± 0.08	-0.97 ± 0.15	-1.0 ± 0.2	-0.70 ± 0.05
$\phi^{*} \times 10^{2}\left(h^{3} \mathrm{Mpc}^{-3}\right)$	1.79 ± 0.30	1.40 ± 0.17	4.0 ± 1.0	1.90 ± 0.10
$\bar{n}\left(h^{3} \mathrm{Mpc}^{-3}\right)$	0.054 ± 0.009	0.047 ± 0.002	0.07 ± 0.02	0.029 ± 0.002

Table 3.4: Comparison of convolved Schechter luminosity function fits of different surveys

Figure 3.6: Comparison of the Durham/UKST luminosity function with that calculated from other galaxy redshift surveys. The CfA2 Zwicky magnitudes are transformed to the b_{J} system by the relation $M_{b_{J}}=M_{Z}-0.7$ and the Las Campanas Gunn-r magnitudes by $M_{b_{J}}=M_{r}+1.1$.

Finally, regarding the radial density profile, it is possible that a very large local void, on scales $r \sim 100 h^{-1} \mathrm{Mpc}$, could explain the low normalisation and steep slope seen in the bright galaxy number-magnitude counts ($b_{J} \sim 15-18$) without the need for evolution (eg. Shanks, 1990 or Metcalfe et al. 1995b). The radial density profiles of other surveys are not shown here but there is no compelling evidence for any such systematic local underdensity in either the Durham/UKST survey or the APM-Stromlo survey (Loveday et al. 1992b). However, a $\sim 30 \%$ underdensity out to $\sim 150 h^{-1} \mathrm{Mpc}$ is seen in the combined North and South Las Campanas survey regions (Lin et al. 1995b), although it should be noted that their selection function is increasing very steeply in this region and hence small changes in it would cause large differences in the estimated radial density. More tentative evidence for a large local void also comes from the Las Campanas survey which has the faintest magnitude limit (ie. probes to the furthest depth) but the highest estimated ϕ^{*} (ignoring the CfA2 survey). This could indicate that one may have to go to fainter magnitudes to achieve convergence of the normalisation. This interpretation is possibly confirmed by the K-band redshift survey of Glazebrook et al. (1995) which measured $\phi^{*}=2.6 \pm 0.3 \times 10^{-2} h^{3} \mathrm{Mpc}^{3}$ in a sample of 124 galaxies to $K \simeq 17.3$. The issue of a large local void still remains unanswered.

3.6 Conclusions

The "best" magnitude limited sample from the Durham/UKST survey is found not to suffer from incompleteness problems. Through the use of maximum likelihood methods the parametric and non-parametric optical galaxy luminosity functions have been estimated from the Durham/UKST survey. Although a Schechter function does not provide a good formal fit to the actual (non-parametric) luminosity function the agreement of the gross features of this function are good. Attempting to correct for the errors in the measured magnitudes makes little difference to the quality of this parametric fit. Therefore, in the interests of simplicity, a pure Schechter function is preferred with best fit parameters $M_{b_{J}}^{*}=-19.72 \pm 0.09$, $\alpha=-1.14 \pm 0.08$ and a normalisation of $\phi^{*}=1.17 \pm 0.21 \times 10^{-2} h^{3} \mathrm{Mpc}^{-3}$. This function (and the magnitude error corrected one) is entirely consistent with previous determinations of the optical luminosity function and favours a flat faint end slope down to $M_{b_{J}} \sim-14$ in this redshift range ($z<0.1$). Also, the galaxy radial density profile shows $\sim 50 \%$ fluctuations on $50 h^{-1} \mathrm{Mpc}$ scales and good agreement with the peaks in the observed $N(r)$ histogram of section 2.9.

Chapter 4

Optimal Estimation of the 2-Point Correlation Function from a Magnitude Limited Survey

4.1 Introduction

There are many measures of clustering but one of the most fundamental (along with the power spectrum) is the 2-point correlation function, $\xi(x)$, (eg. Peebles, 1980). The 2-point correlation function is a measure of the excess probability (above a random distribution) of finding two objects in volume elements δV_{i} and δV_{j} separated by a distance x

$$
\begin{equation*}
\delta P_{i j}(x)=\bar{n}^{2} \delta V_{i} \delta V_{j}[1+\xi(x)], \tag{4.1}
\end{equation*}
$$

where \bar{n} is the average number density of objects. In our case the objects of interest are galaxies and equation 4.1 is equivalent to saying that

$$
\begin{equation*}
\delta P_{i j}(x)=\bar{n} \delta V_{i j}[1+\xi(x)], \tag{4.2}
\end{equation*}
$$

is the probability of finding another galaxy j at a distance x from a given galaxy i. Therefore, if $\xi>0$ then the distribution is clustered, if $\xi<0$ then the distribution is anti-clustered and $\xi=0$ then the distribution is random.

The aim of this chapter is to determine which weighting/estimator combination most accurately estimates the 2-point correlation function of a magnitude limited catalogue without introducing any systematic biases into the answer: This will be done by analysing specially constructed mock catalogues which have been produced from N-body simulations to mimic the Durham/UKST galaxy redshift survey. Both the bias and minimum variance of the estimates will be considered.

The format of the chapter is as follows. The different methods of estimating the 2point correlation function are first reviewed. The Cold Dark Matter (CDM) N-body
simulations and their parameters are then described. The method of constructing the mock catalogues from these N -body simulations is also described. The 2-point correlation function is then estimated from the N -body simulations and the mock catalogues using different weighting/estimator combinations. A comparison and discussion of these estimates, their errors and the problems in obtaining them is then given. The chapter ends with the main conclusions obtained from this analysis of the simulations.

4.2 Review of the Methods of Estimating the 2-Point Correlation Function

For a volume limited, fair sample galaxy survey of the Universe an unbiased method of calculating the 2 -point correlation function is as follows. Imagine a random and homogeneous distribution of galaxies, with mean density \bar{n}_{R}, by definition $\xi=0$ for this catalogue and the summation over all the individual $i, j^{\text {th }}$ volume elements lying within this catalogue at separations x gives the total pair count of this random galaxy distribution, $R R(x)$, at a separation x

$$
\begin{align*}
R R(x) & =\sum_{i} \sum_{j} \bar{n}_{R}^{2} \delta V_{i} \delta V_{j} \tag{4.3}\\
& =\bar{n}_{R}^{2} \sum_{i} \sum_{j} \delta V_{i} \delta V_{j} \tag{4.4}
\end{align*}
$$

as \bar{n}_{R} is a constant. Now imagine a similarly constructed catalogue but this time consisting of a non-random galaxy distribution, $\xi \neq 0$, with mean density \bar{n}_{D}. Again summing over all the individual $i, j^{\text {th }}$ volume elements lying within this catalogue at separations x gives the total pair count of this non-random galaxy distribution, $D D(x)$, at a separation x

$$
\begin{align*}
D D(x) & =\sum_{i} \sum_{j} \bar{n}_{D}^{2} \delta V_{i} \delta V_{j}[1+\xi(x)] \tag{4.5}\\
& =\bar{n}_{D}^{2}[1+\xi(x)] \sum_{i} \sum_{j} \delta V_{i} \delta V_{j}, \tag{4.6}
\end{align*}
$$

as \bar{n}_{D} and $\xi(x)$ are constant at pair separation x. Dividing equation 4.6 by equation 4.4 and rearranging for $\xi(x)$ gives

$$
\begin{equation*}
\xi(x)=\frac{D D(x)}{R R(x)}\left(\frac{\bar{n}_{R}}{\bar{n}_{D}}\right)^{2}-1 . \tag{4.7}
\end{equation*}
$$

However, for an apparent magnitude limited survey which is small enough that the fair sample hypothesis is only an approximation (which may or may not be true) then things are not quite as simple. Not only is the observed galaxy density a function of radial distance (due to the magnitude limit of the survey) but edge effects must be taken into account and the mean galaxy density must be estimated from the sample itself (which could be biased high or low by inhomogeneities in the sample).

In terms of trying to estimate the 2-point correlation function from this sample these two problems manifest themselves as the optimal weighting to use when calculating the relevant pair count and the optimal estimator which is least biased by the mean density and the error in it. If a random and homogeneous catalogue is produced with the same radial and angular selection functions of the magnitude limited survey one can still define the appropriate pair counts. Analogous to equations 4.4 and 4.6 $D D(x), D R(x)$ and $R R(x)$ are the data-data, data-random and random-random pair counts, respectively, namely the cross correlation of the data catalogue with itself, the data catalogue with the random catalogue and the random catalogue with itself. The mean densities estimated from the data and random catalogues again are \bar{n}_{D} and \bar{n}_{R}, respectively. When calculating the 2 -point correlation function two weighting schemes of each data/random point are considered. Firstly, a simple unit weighting that is independent of radial distance (eg. Peebles, 1980)

$$
\begin{equation*}
w\left(r_{i}\right)=1 \tag{4.8}
\end{equation*}
$$

and secondly, the so-called minimum variance weighting (Efstathiou, 1988, also see Peebles, 1973 and Loveday et al. 1995b)

$$
\begin{equation*}
w\left(r_{i}\right)=\frac{1}{1+4 \pi n\left(r_{i}\right) J_{3}(x)}, \tag{4.9}
\end{equation*}
$$

where r_{i} is the radial distance of the data/random point, $J_{3}(x)=\int_{0}^{x} \xi(y) y^{2} d y$ is the volume integral over the 2 -point correlation function out to a separation x, $n\left(r_{i}\right)=\bar{n} S\left(r_{i}\right)$ is the density of the data/random catalogue at a radial distance r_{i} and $S\left(r_{i}\right)$ is the radial selection function, ie. the probability that a data/random point is included in the catalogue at a distance r_{i} (see section 4.4.1). Also, three methods of estimating the 2-point correlation are considered. Firstly, the standard estimator (eg. Peebles, 1980)

$$
\begin{equation*}
\xi_{e s t}(x)=\frac{D D(x)}{D R(x)} \frac{\bar{n}_{R}}{\bar{n}_{D}}-1 \tag{4.10}
\end{equation*}
$$

secondly, the estimator of Hamilton (1993)

$$
\begin{equation*}
\xi_{e s t}(x)=\frac{D D(x) R R(x)}{D R(x)^{2}}-1 \tag{4.11}
\end{equation*}
$$

and thirdly, the estimator of Landy \& Szalay (1993)

$$
\begin{equation*}
\xi_{e s t}(x)=\frac{D D(x)-2 D R(x)+R R(x)}{R R(x)} \tag{4.12}
\end{equation*}
$$

The immediate aim is to determine which of the above combinations of weighting and estimator will produce the most accurate and unbiased estimate of ξ.

4.3 The N-Body Simulations

4.3.1 Technical Details of the Simulations

Cole et al. (1994b) have kindly provided me with the results from 10 N -body simulations and Baugh \& Gaztañaga (1995) have kindly provided me with the results from 5 N -body simulations. The parameters of these simulations are now described and are also shown in table 4.1.

The 10 simulations of Cole et al. (1994b) (also see Eke et al. 1995) are cosmological simulations of CDM dominated universes with scale invariant initial conditions and assume the Bardeen et al. (1986) CDM transfer function with $\Omega_{B}=0$ and $\Gamma=\Omega_{C D M} h=0.5$. Each simulation consists of $(128)^{3}$ particles each of mass $2.24 \times 10^{12} h^{-1} \mathrm{M}_{\odot}$ in a cube of comoving side length $256 h^{-1} \mathrm{Mpc}$. They are evolved to have a bias factor, $b=1.58$, namely $\sigma_{8 C D M}=0.63$, at the present day $(z=0)$. "Galaxies" are then selected from the final particle positions with a probability given by the high peaks bias prescription of Bardeen et al. (1986). These parameters describe the "standard" CDM model (SCDM). The first 2 simulations were run using the $P^{3} M$ code of Efstathiou et al. (1985) whereas the final 8 used the $A P^{3} M$ code of Couchman $(1991,1994)$. It is worth noting that beyond random fluctuations there is no difference in the results found using these different N -body codes. The number of biased galaxies selected from each simulation, ~ 170000, was chosen such that the mean density in the cube would be $\sim 0.01 h^{3} \mathrm{Mpc}^{-3}$. This was deemed a reasonable number given the constraints of disk space and CPU time available to the author.

The 5 simulations of Baugh \& Gaztañaga (1995) (also see Gaztañaga \& Baugh, 1995) are cosmological simulations of CDM dominated universes with scale invariant initial conditions and assume the Bond \& Efstathiou (1984) CDM transfer function with $\Omega_{B}=0.03$ and $\Gamma=\Omega_{C D M} h=0.2$, also included was a non-zero cosmological constant $(\Lambda \neq 0)$ to ensure a spatially flat cosmological model. At the end of the simulation $\Omega_{C D M}=0.2$, hence $\Omega_{\Lambda}=0.8$. Each simulation consists of $(126)^{3}$ particles each of mass $1.52 \times 10^{12} h^{-1} \mathrm{M}_{\odot}$ in a cube of comoving side length $378 h^{-1} \mathrm{Mpc}$ at the final output time, namely when $\Omega_{C D M}=0.2$. They are evolved to have a bias factor, $b=1.00$, ie. unbiased, namely $\sigma_{8 C D M}=1.0$, at the present day $(z=0)$. "Galaxies" are then selected at random from the final particle positions in an unbiased fashion. These parameters describe a low density/ Λ CDM model (LCDM). The 5 simulations were all run using the $P^{3} M$ code of Efstathiou et al. (1985). The number of unbiased galaxies selected from each simulation, ~ 540000, was chosen for the above reasons.

4.3.2 Pictures of the Simulations

An example of the typical visual picture given by the simulations is shown in figures 4.1 and 4.2. They show six $256 \times 256 h^{-1} \mathrm{Mpc}$ slices through the first of the SCDM and LCDM simulations, respectively. Each slice is $42.67 h^{-1} \mathrm{Mpc}$ thick and is

	SCDM	LCDM
$l\left(h^{-1} \mathrm{Mpc}\right)$	256	378
No. of Particles	$(128)^{3}$	$(126)^{3}$
Mass of Particle	$2.24 \times 10^{12} h^{-1} \mathrm{M}_{\odot}$	$1.52 \times 10^{12} h^{-1} \mathrm{M}_{\odot}$
b	1.58	1.00
$\Omega_{C D M} h$	0.5	0.2
Λ	0.0	0.8
$\sigma_{8} C D M$	0.63	1.00
Mean no. of Galaxies	169965	538058

Table 4.1: Parameters of two sets of N -body simulations.
projected along the z axis. Clusters of galaxies are seen in the slices for both CDM models. The LCDM model arguably shows more filaments and voids per slice than the SCDM model on $\sim 50 h^{-1} \mathrm{Mpc}$ scales.

4.4 The Mock Catalogues

4.4.1 Construction of the Mock Catalogues

The simulations of section 4.3 were used to construct mock catalogues which model the angular and radial selection functions of the Durham/UKST galaxy redshift survey. For the SCDM simulations 20 mock catalogues were made (2 per simulation), while for the LCDM simulations 15 mock catalogues were made (3 per simulation). An outline of each step in the construction is given below :

1. The origin of the simulation was transformed to a random point in the cube and all particle positions altered with respect to this new coordinate system. The random point was choosen to be different for each simulation so as to average over any local voids or overdensities.
2. A periodic representation was added to the positive x, y and z directions such that a larger cube was. built from $8(2 \times 2 \times 2)$ of the smaller cubes (see figure 4.3). This was necessary only for the SCDM simulations because they were not quite large enough to include the full spatial dimensions of the Durham/UKST survey.
3. Mock catalogues could be produced in both real and redshift space. For the redshift space catalogues the coordinates of the particles needed to be transformed to redshift space. This was done by adding the x, y and z components of the particle's velocity along the line of sight, in $h^{-1} \mathrm{Mpc}$ units, to the x, y and z position of the particle. Specifically,

$$
\begin{equation*}
a \rightarrow a+\Delta a_{v e l}, \tag{4.13}
\end{equation*}
$$

Simulation-a

Figure 4.1: Projection along the z-axis of a SCDM simulation.

Figure 4.2: Projection along the z-axis of a LCDM simulation.

Figure 4.3: Schematic view of the selection/rejection process of the mock catalogues.

$$
\begin{equation*}
\Delta a_{v e l}=\frac{a}{r^{2}}(\mathbf{r} . \mathbf{v}) \tag{4.14}
\end{equation*}
$$

where a can be either x, y or $z, \Delta a_{v e l}$ is the velocity component along the $a^{\text {th }}$ axis and \mathbf{r}, \mathbf{v} are the position, velocity vectors of the particle with respect to the origin.
4. These new (x, y, z) coordinates were transformed to (r, α, δ) using

$$
\begin{align*}
r & =\sqrt{x^{2}+y^{2}+z^{2}}, \tag{4.15}\\
\alpha & =\arctan \left(\frac{x}{y}\right), \tag{4.16}\\
\delta & =-\arcsin \left(\frac{z}{r}\right) . \tag{4.17}
\end{align*}
$$

5. Particles outside the Durham/UKST α and δ ranges are rejected (see figure 4.4). The geometry of the cube implies that α can only span a $\left[0^{\circ}, 90^{\circ}\right]$ range. However, the actual slices from the Durham/UKST survey at $\delta=-25^{\circ}$ and -40° extend slightly more than 90° in α. Therefore the final $0.5^{\circ} \& 3.5^{\circ}$ of the $\delta=-25^{\circ} \&-40^{\circ}$ strips, respectively, have been cut off and no particles are selected in these regions. Future analysis of these mock catalogues is not adversely affected by this limitation.
6. Particles with radial distance outside $[5,400] h^{-1} \mathrm{Mpc}$ were rejected.
7. The radial selection function, $S(r)$, is the probability that a galaxy at a distance r will be included in the survey and is given by a ratio of integrals over the galaxy luminosity function (see section 3.2.3)

$$
\begin{equation*}
S(r)=\frac{\int_{L_{\max }}^{\infty} \phi(L) d L}{\int_{L_{\text {low }}}^{\infty} \phi(L) d L}=\frac{\Gamma\left(\alpha+1, \frac{L_{\max }}{L^{*}}\right)}{\Gamma\left(\alpha+1, \frac{L_{\text {low }}}{L^{*}}\right)} \tag{4.18}
\end{equation*}
$$

where $L_{\max }=\max \left[L_{\text {low }}, L_{\min (r)}\right], L_{\text {low }}$ is the minimum possible absolute luminosity of a galaxy in the survey and $L_{\min (r)}$ is the minimum absolute luminosity of a galaxy that can be seen at a distance r and still be included in the survey. The RHS of equation 4.18 assumes a Schechter luminosity function (Schechter, 1976) and $\Gamma(\alpha+1, x)$ is the standard incomplete Gamma function. The parameters of the Schechter function are taken from chapter 3 where it was found that $\alpha=-1.14$ and $M_{b_{J}}^{*}=-19.72$ for the Durham/UKST survey.
This radial selection function has to be evaluated for each field because of the variable magnitude limits and is then multiplied by the sampling rate of this field. This produces a 2-D look-up table of probabilities which depends on field number and radial distance only. Particles remaining after steps 5 and 6 are then selected at random to be galaxies in the catalogue according to this 2-D probability table. The normalisation of these probabilities is chosen such that ~ 400 galaxies are selected in every scan of the simulation. Hence, 5 or 6 scans are necessary before stopping at ~ 2000 galaxies and the mean density of each mock catalogue is therefore slightly different.

Figure 4.4: A projection of the angular mask used to reject particles.

Name	No. of Galaxies Selected	
	Real Space	Redshift Space
SCDM uniform	2080 ± 139	2077 ± 130
SCDM non-uniform	2092 ± 116	2141 ± 161
LCDM non-uniform	2063 ± 113	2073 ± 147

Table 4.2: The mean number of galaxies selected in each set of mock catalogues.

Two probability tables were considered. Firstly, each field was given both a constant magnitude limit ($b_{J}=16.75$) and uniform sampling rate (1.0). Secondly, each field was given the magnitude limits and sampling rates from the "best" Durham/UKST survey sample. More details about these two samples are given in section 2.7. Table 4.2 shows the mean number of galaxies, in real and redshift space, selected using these two different probability tables on the two sets of simulations. The reason for using both a constant and variable magnitude limit/sampling rate in each field is to see if it was possible to correct for the observational constraints. Therefore, there was no need to use the uniform magnitude and sampling rate for the LCDM simulations.
8. The origin is then transformed before repeating steps 2-7. The transformation relocates the origin one half (third) of the way up the z-axis and on the other side of the cube for the SCDM (LCDM) simulations. This makes the mock catalogues sample as independent a volume as is possible. Specifically, for the SCDM simulations

$$
\begin{align*}
& x \rightarrow 256-x, \tag{4.19}\\
& y \rightarrow 256-y, \tag{4.20}\\
& z \rightarrow z-128, \tag{4.21}
\end{align*}
$$

and for the LCDM simulations

$$
\begin{align*}
& x \rightarrow 378-x, \tag{4.22}\\
& y \rightarrow 378-y, \tag{4.23}\\
& z \rightarrow z-126 . \tag{4.24}
\end{align*}
$$

4.4.2 Pictures of the Mock Catalogues

The mock catalogues can be split into four declination slices centered on $\delta=-25^{\circ}$, $-30^{\circ},-35^{\circ}$ and -40°, spanning 5° in the δ direction. Figures $4.5,4.6,4.7$ and 4.8 show examples of the SCDM/LCDM real and redshift space catalogues selected from table 4.2 using the non-uniform probabilities which model the Durham/UKST survey. "Fingers of God" are visible in the redshift catalogues of figures 4.7 and 4.8.

Figure 4.5: The first real space mock catalogue selected from the SCDM simulations.

Figure 4.6: The first redshift space mock catalogue selected from the SCDM simulations.

Figure 4.7: The first real space mock catalogue selected from the LCDM simulations.

Figure 4.8: The first redshift space mock catalogue selected from the LCDM simulations.

4.5 The 2-Point Correlation Function

4.5.1 The N-Body 2-Point Correlation Functions

The 2-point correlation function (in real and redshift space) was evaluated from each SCDM/LCDM simulation cube using the method described below.
(i) Real Space :

To save CPU time a random fraction of $\sim 15 \% / 5 \%$ of the galaxies were chosen from each SCDM/LCDM cube. The cube is then cross correlated with itself summing the $D D$ pair count in 0.1 dex bins in pair separation starting at $0.1 h^{-1} \mathrm{Mpc}$. Since the mean density is known exactly the $R R$ pair count can be calculated using

$$
\begin{equation*}
R R=\frac{4 \pi}{3}\left(r_{\text {outer }}^{3}-r_{\text {inner }}^{3}\right) \bar{n} N \tag{4.25}
\end{equation*}
$$

where $\left[r_{\text {inner }}, r_{\text {outer }}\right]$ defines the inner and outer radial distance of each bin and $\bar{n} \& \mathrm{~N}$ are the mean density and total number of galaxies in the cube used in the cross correlation. The periodic boundary conditions of the simulations are implemented when counting the $D D$ pairs. Basically, if any $\left|x_{i}-x_{j}\right|$, $\left|y_{i}-y_{j}\right|$ or $\left|z_{i}-z_{j}\right|$ exceeds half the cube size then because of the periodicity of the boundary conditions the shortest distance between the points is when the point is "wrapped around" to the other side of the cube

$$
\begin{equation*}
\left|a_{i}-a_{j}\right| \rightarrow l-\left|a_{i}-a_{j}\right|, \tag{4.26}
\end{equation*}
$$

where a can be x, y or z and l is the side length of the cube. The 2 -point correlation function is then calculated from equation 4.7 with $\bar{n}_{R}=\bar{n}_{D}$.
(ii) Redshift Space :

The pair counts and 2-point correlation function are calculated as above. However, before cross correlation the coordinates are transformed from real to redshift space using the distant observer approximation. Basically, it is assumed that the cube is a large distance away from the observer, such that the line of sight direction can be thought to be the same for all objects in the cube. This direction is arbitrary and, for simplicity, is choosen to be the x direction. To transform from real to redshift space one simply adds the x velocity component (in appropriate $h^{-1} \mathrm{Mpc}$ units) to the x component of distance.

The following figures show the mean and 1σ error on ξ under the assumption that each simulation is a statistically independent estimate of ξ. Three phenomenological power law models of ξ are also plotted on each figure, they take the basic form

$$
\begin{equation*}
\xi(r)=\left(\frac{r_{0}}{r}\right)^{\gamma} \tag{4.27}
\end{equation*}
$$

with different values of the amplitude (or correlation length), r_{0}, and slope, γ. The canonical value of these parameters in the actual Universe is $r_{0}=4.5 h^{-1} \mathrm{Mpc}$ and $\gamma=1.8$ (eg. Peebles, 1980). For the SCDM simulations one simulation was found to have an excess $D D$ pair count significantly above that expected in a bin near $2 h^{-1} \mathrm{Mpc}$. This occured in both the real and redshift space estimates of ξ. The reason for this excess was not discovered but was thought to be due to a corrupted bias file used in producing the "galaxies". This simulation was left out of all subsequent analysis. There were no such problems with any of the LCDM simulations.

SCDM: Figures 4.9 and 4.10 show the real and redshift space ξ 's for SCDM on log\log and \log-linear plots to emphasise the small $\left(<10 h^{-1} \mathrm{Mpc}\right)$ and large ($>$ $10 h^{-1} \mathrm{Mpc}$) scale features of ξ, respectively.
Real space ; On small scales, the slope of ξ is quite steep, $\gamma \simeq 2.2$, with a typical amplitude of $r_{0} \simeq 5.0 h^{-1} \mathrm{Mpc}$. On large scales, there is no evidence of significant large scale power above $20 h^{-1} \mathrm{Mpc}$.
Redshift space ; On small scales, the slope of ξ is quite flat, $\gamma \simeq 1.3$, with a higher amplitude of $r_{0} \simeq 6.0 h^{-1} \mathrm{Mpc}$. On large scales, there is no evidence of significant large scale power above $20 h^{-1} \mathrm{Mpc}$.

LCDM: Figures 4.11 and 4.12 show the corresponding plots to figures 4.9 and 4.10 but for LCDM.

Real space ; On small scales, the slope of ξ is again quite steep, $\gamma \simeq 2.2$, but with a higher amplitude of $r_{0} \simeq 6.0 h^{-1} \mathrm{Mpc}$. On large scales, there is evidence for significant large scale power up to $\sim 30 h^{-1} \mathrm{Mpc}$.

Redshift space ; On small scales, the slope of ξ is again quite flat, $\gamma \simeq 1.3$, but with an even higher amplitude of $r_{0} \simeq 7.0 h^{-1} \mathrm{Mpc}$. On large scales, there is evidence for significant large scale power up to $\sim 30 h^{-1} \mathrm{Mpc}$.

It is important to note the differences between the shape of the real and redshift space 2-point correlation functions. For both the SCDM and LCDM simulations the effects of peculiar velocities are substantial. In transforming from real to redshift space, ξ appears systematically flattened on small scales, while being extended on large scales. In chapters 5 and 6 these effects will be considered in more detail.

4.5.2 The Mock Catalogue 2-Point Correlation Functions

The 2-point correlation function was evaluated from each of the mock catalogues in table 4.2 using the estimators described in section 4.2. Once again comoving distances and volumes are used. The method of evaluating the $D D, D R$ and $R R$ pair counts is the same in real and redshift space :

Figure 4.9: The real and redshift space estimates of ξ for the SCDM N-body simulations on a $\log -\log$ plot.

Figure 4.10: The real and redshift space estimates of ξ for the SCDM N-body simulations on a log-linear plot.

Figure 4.11: The real and redshift space estimates of ξ for the LCDM.N-body simulations on a $\log -\log$ plot.

Figure 4.12: The real and redshift space estimates of ξ for the LCDM N-body simulations on a log-linear plot.
(i) The number of randoms, $N\left(r_{b i n}, n_{f}\right)$, at each radial bin, $r_{b i n}$, in each field, n_{f}, was evaluated using

$$
\begin{align*}
N\left(r_{b i n}, n_{f}\right) & =f \delta V\left(r_{b i n}\right) C\left(n_{f}\right) n\left(r_{b i n}, n_{f}\right) \tag{4.28}\\
& =f \delta V\left(r_{b i n}\right) C\left(n_{f}\right) \dot{\phi}^{*} \int_{a}^{\infty} x^{\alpha} \exp (-x) d x \tag{4.29}
\end{align*}
$$

where

$$
\begin{aligned}
\delta V\left(r_{b i n}\right) & =\frac{\delta \Omega}{3}\left[\left(r_{b i n}+\frac{\Delta r_{b i n}}{2}\right)^{3}-\left(r_{b i n}-\frac{\Delta r_{b i n}}{2}\right)^{3}\right] \\
C\left(n_{f}\right) & =\text { Completeness rate of field } n_{f}, \\
\lg a & =0.4\left[M_{b_{J}}^{*}-\left(m_{\text {lim }}\left(n_{f}\right)-\left(5 \lg d_{L}\left(z_{b i n}\right)+25+k_{c o r r}\left(z_{b i n}\right)\right)\right)\right],
\end{aligned}
$$

and f is now the ratio of random to data points, $r_{b i n} \& z_{b i n}$ are the centers of the radial bin in units of $h^{-1} \mathrm{Mpc} \&$ redshift respectively ($\Delta r_{b i n}=5 h^{-1} \mathrm{Mpc}$), $n\left(r_{b i n}, n_{f}\right)$ is the observed mean density at a given radial bin and field, $\delta \Omega$ is the solid angle of the field (in steradians), $C\left(n_{f}\right)$ is the completeness rate of the field (see equation 2.5) and $\dot{m}_{l i m}\left(n_{f}\right)$ is the magnitude limit of the field. The integral on the RHS of equation 4.29 assumes a Schechter luminosity function and ϕ^{*}, α and $M_{b_{J}}^{*}$ are the parameters as described in chapter 3.
(ii) These random galaxies are then distributed uniformly across the field given the above numbers at each radial bin accordingly. In this case $f=25$ as a compromise between use of CPU time and reducing the noise in the random counts.
(iii) The $D D, D R$ and $R R$ pair counts are then evaluated by the appropriate cross correlation of the data and random catalogues. The pair counts are evaluated using the two weighting schemes of section 4.2 and the counts are stored in 0.1 dex bins in distance starting at $0.1 h^{-1} \mathrm{Mpc}$.

It should be noted that for the minimum variance weighting of Efstathiou (1988) the values of \bar{n} and $S(r)$ are evaluated separately for each mock catalogue using the methods and luminosity function of chapter 3 . J_{3} is evaluated for each mock catalogue using the simple power law of equation 4.27 with $r_{0}=5.0 h^{-1} \mathrm{Mpc}, \gamma=1.8$ and a maximum possible value of $4 \pi J_{3}\left(r_{c}\right)=$ $5000 h^{-3} \mathrm{Mpc}^{3}$ (see section 3.3.4). However, the estimates from this weighting scheme are relatively insensitive to the exact values of these parameters used.

The following figures show the mean and 1σ error on ξ assuming that each mock catalogue is a statistically independent estimate of ξ, the error on a single mock catalogue would have to be multiplied by a \sqrt{n} factor (where n is the number of mock catalogues averaged over). For consistency, the mock catalogues from one of the SCDM simulations was left out of this analysis (see section 4.5.1).

For reasons of brevity, only the redshift space catalogues are presented here, very similar results were found for the real space catalogues. Therefore, the conclusions of this analysis are independent of any real/redshift space effects.

Also, only the results from the non-uniformly selected mock catalogues are shown. Again, very similar results were found for the uniformly selected mock catalogues. Therefore, constructing the random catalogue according to sampling rate and magnitude limit does account for these observational constraints. This will not be discussed further and the uniformly selected mock catalogues are no longer considered.

Redshift Space : SCDM Mock Catalogues

The solid line on each of the following plots of ξ shows the actual SCDM redshift space correlation function from figures 4.9 and 4.10. Also, for reasons of graphical clarity the error bars shown are alternately those from the $D D / D R, D D \cdot R R / D R^{2}$ and $(D D-2 D R+R R) / R R$ estimators.

1. Figures 4.13 and 4.14 show the unweighted $(w=1) \xi$'s calculated using the 3 different estimators on small ($<10 h^{-1} \mathrm{Mpc}$) and large ($>10 h^{-1} \mathrm{Mpc}$) scales, respectively.
On small scales, there are no significant differences between the estimates although they are all higher than the actual correlation function by $\sim 1 \sigma$. This does not appear to be a significant bias. On large scales, there are no significant differences between the estimates but they are all lower than the actual correlation function by $\sim 2 \sigma$. This is tentative evidence for a bias in the unweighted estimates.
2. Figures 4.15 and 4.16 show the weighted $\left(w=1 /\left(1+4 \pi n J_{3}\right)\right) \xi$'s calculated using the 3 different estimators on small and large scales, respectively.
On small scales, there are no significant differences between the estimates and the agreement with the actual correlation function is impressive. On large scales, all the estimates, bar the $D D / D R$ one, agree well with themselves and the actual correlation function. The $D D / D R$ estimate appears biased lower by $\sim 2 \sigma$ at every point on large scales.
3. Figures 4.17 and 4.18 show the standard deviation in $\xi(\Delta \xi)$ vs s from the 3 unweighted and weighted estimators, respectively. Note that these errors are the standard deviation on an individual mock catalogue (ie. $\sqrt{18}$ larger than figures 4.13-4.16).
These error plots show that the weighted $D D \cdot R R / D R^{2}$ and $(D D-2 D R+$ $R R) / R R$ estimates have the minimum variance associated with them on large scales. However, on the very large scales, $\sim 100 h^{-1} \mathrm{Mpc}$, the unweighted $D D . R R / D R^{2}$ and $(D D-2 D R+R R) / R R$ estimates also have similar errors. It is interesting to note that the $D D / D R$ estimator gives the largest measured variance, with the weighted estimate being worse than the unweighted one on scales larger than $\sim 30 h^{-1} \mathrm{Mpc}$.

Figure 4.13: The unweighted redshift space $\xi(s)$ evaluated from the SCDM mock catalogues using 3 estimators on a log-log plot.

Figure 4.14: The unweighted redshift space $\xi(s)$ evaluated from the SCDM mock catalogues using 3 estimators on a log-linear plot.

Figure 4.15: The weighted $r e d s h i f t$ space $\xi(s)$ evaluated from the SCDM mock catalogues using 3 estimators on a log-log plot.

Figure 4.16: The weighted redshift space $\xi(s)$ evaluated from the SCDM mock catalogues using 3 estimators on a log-linear plot.

Figure 4.17: The unweighted redshift space error estimates, $\Delta \xi(s)$, evaluated from the SCDM mock catalogues using 3 estimators.

Figure 4.18: The weighted redshift space error estimates, $\Delta \xi(s)$, evaluated from the SCDM mock catalogues using 3 estimators.

Redshift Space : LCDM Mock Catalogues

The solid line on each of the following plots of ξ shows the actual LCDM redshift space correlation function from figures 4.11 and 4.12. Again, for reasons of graphical clarity the error bars shown are alternately those from the $D D / D R, D D . R R / D R^{2}$ and $(D D-2 D R+R R) / R R$ estimators.

1. Figures 4.19 and 4.20 show the unweighted $(w=1) \xi$'s calculated using the 3 different estimators on small ($<10 h^{-1} \mathrm{Mpc}$) and large ($>10 h^{-1} \mathrm{Mpc}$) scales, respectively.

On small scales, there are no significant differences between the estimates although they are all lower than the actual correlation function by $\sim 1 \sigma$. Again, this does not appear to be a significant bias. On large scales, there are no significant differences between the estimates but they are all biased low by $3-4 \sigma$. This is stronger evidence for a bias in the unweighted estimates.
2. Figures 4.21 and 4.22 show the weighted $\left(w=1 /\left(1+4 \pi n J_{3}\right)\right) \xi$'s calculated using the 3 different estimators on small and large scales, respectively.
On small scales, there are no significant differences between the estimates and the agreement with the actual correlation function is again impressive. On large scales, the $D D / D R$ and $(D D-2 D R+R R) / R R$ estimates are $\sim 1 \sigma$ lower and higher, respectively, than the actual correlation function. However, the $D D \cdot R R / D R^{2}$ estimate is particularly.impressive in its agreement with the actual correlation function.
3. Figures 4.23 and 4.24 show the standard deviation in $\xi(\Delta \xi)$ vs s from the 3 unweighted and weighted estimators, respectively. Again, these errors are on an individual mock catalogue (ie. $\sqrt{15}$ larger than figures 4.19-4.22).
These error plots show that the weighted $D D \cdot R R / D R^{2}$ and ($D D-2 D R+$ $R R) / R R$ estimates have the minimum variance associated with them on large scales. These are closely followed by the corresponding unweighted estimates. In fact, on the very large scales, $\sim 100 h^{-1} \mathrm{Mpc}$, these 2 unweighted estimates have comparable errors to the weighted ones. Overall, the weighted $D D . R R / D R^{2}$ estimate gives marginally smaller errors than the other weighting/estimator combinations. Also, it is interesting to note that the $D D / D R$ estimator gives the largest measured variance, with the weighted estimate being far worse than the unweighted one.

Figure 4.19: The unweighted redshift space $\xi(s)$ evaluated from the LCDM mock catalogues using 3 estimators on a $\log -\log$ plot.

Figure 4.20: The unweighted redshift space $\xi(s)$ evaluated from the LCDM mock catalogues using 3 estimators on a log-linear plot.

Figure 4.21: The weighted redshift space $\xi(s)$ evaluated from the LCDM mock catalogues using 3 estimators on a $\log -\log$ plot.

Figure 4.22: The weighted redshift space $\xi(s)$ evaluated from the LCDM mock catalogues using 3 estimators on a log-linear plot.

Figure 4.23: The unweighted redshift space error estimates, $\Delta \xi(s)$, evaluated from the LCDM mock catalogues using 3 estimators.

Figure 4.24: The weighted redshift space error estimates, $\Delta \xi(s)$, evaluated from the LCDM mock catalogues using 3 estimators.

4.5.3 The Theoretical Error on the 2-Point Correlation Function

The theoretical limit on the errors in the 2-point correlation function was estimated by Peebles (1973) (also see Kaiser, 1986) and is now quoted here. Let the total galaxy number in the survey be $n_{g a l}$ and the volume integral of the 2 -point correlation function be $J_{3}(s)$. Now consider a single radial shell with observed galaxy number density $n(r)$, the error in $\xi(s)$ in a wide bin containing N_{p} galaxy pairs is given by (Peebles, 1973)

$$
\begin{equation*}
\Delta \xi(s)=\frac{1+4 \pi n(r) J_{3}(s)}{\sqrt{N_{p}}} \tag{4.30}
\end{equation*}
$$

assuming that ξ is small ($\ll 1$). This is essentially a \sqrt{N} poisson error taking into account the clustering in the sample. Clustering reduces the amount of independent information available which in turn increases the estimated error. This can be illustrated using the "cluster model" of Peebles (1980) where galaxies are distributed in tight clusters, with n_{c} members in each cluster, and these clusters are then distributed at random in the survey. In this case, when J_{3} reaches its maximum, the $\left(1+4 \pi n(r) J_{3}(s)\right)$ factor is simply the number of galaxies in a cluster (eg. Peebles, 1980) and so the assumption is that, for a large bin, each cluster contributes an independent signal and not each galaxy.

The maximum values of $4 \pi J_{3}$ seen in the SCDM and LCDM simulations are ~ 7000 and $17000 h^{-3} \mathrm{Mpc}^{3}$, respectively (see chapter 6). Given that there are $n_{g a l} \simeq$ 2000 galaxies in each mock catalogue one can estimate the minimum theoretical error to be $\Delta \xi \simeq 0.002$ and 0.007 for the SCDM and LCDM mock catalogues, respectively. These errors assume that $N_{p} \simeq n_{g a l}^{2}$, namely that the bin is of order the size of the survey, ie. very large indeed! Experience with the SCDM/LCDM mock catalogues shows that the pair count in the $(0.1 \mathrm{lg})$ bins at large scales is at least a factor of 5 fewer than $n_{g a l}^{2}$ and more likely to be a factor of 10 in most bins. This implies that a more realistic minimum error is $\Delta \xi \simeq 0.005$ and 0.015 for the SCDM and LCDM mock catalogues, respectively. However, in studies of QSO clustering Shanks and Boyle (1994) have empirically shown that the above approximate \sqrt{N} error works well on scales where $N_{p}<n_{\text {gal }}$. However, when $N_{p}>n_{\text {gal }}$ a more realistic estimate of the error is given by a $\sqrt{n_{\text {gal }}}$ type error. In this case both the SCDM and LCDM mock catalogues are limited by $n_{g a l}$ and the estimated minimum error is $\Delta \xi \simeq 0.02$. The scale on which N_{p} reaches $n_{g a l}$ is seen to be $5-10 h^{-1} \mathrm{Mpc}$ for both sets of mock catalogues and therefore this error should be the limit for scales larger than this.

4.5.4 The Integral Constraint on the 2-Point Correlation Function

The integral constraint (eg. Peebles, 1980) is a systematic error in ξ which is due to the fact that one estimates both the mean density and the pair counts from the same survey. Imagine that one normalises the random catalogue to the have the mean density of the survey, ξ is then constrained to be zero over the whole survey if the weighting scheme used in the pair counting preserves the total pair count in the survey. This would occur when one uses the single pair weighting, $w=1$, but not necessarily with the "minimum variance" weighting, $w=1 /\left(1+4 \pi n(r) J_{3}\right)$.

The size of this constraint can be demonstrated with the "cluster model" of Peebles (1980). Consider ξ on separations larger than the size of a cluster but smaller than the size of the survey. Let ΔV be the volume of the spherical shell in question and $\bar{n}\left(=n_{\text {gal }} / V\right)$ be the mean galaxy density, where V is the volume of the survey. The observed number of $D D$ pairs is then given by

$$
\begin{align*}
D D & =n_{g a l} \Delta V\left(\frac{n_{g a l}-n_{c}}{V}\right) \tag{4.31}\\
& =n_{g a l} \Delta V\left(\bar{n}-\frac{n_{c}}{V}\right) \tag{4.32}
\end{align*}
$$

Basically, starting from a galaxy (and hence a cluster) center has biased this pair count low because the galaxies in this starting cluster cannot be included in the pair count. The $R R$ pair count (or similarly $D R$) will be

$$
\begin{equation*}
R R=n_{g a l} \Delta V \bar{n} \tag{4.33}
\end{equation*}
$$

where the random and data catalogues are assumed to have the same mean densities. Therefore, $\xi=D D / R R-1$ will be biased low by a constant amount of

$$
\begin{equation*}
I_{c}=n_{c} / n_{g a l} . \tag{4.34}
\end{equation*}
$$

One can derive a more general relation for I_{c} from the following arguments. Assume that one has an ensemble of surveys to choose from. First consider the relation between the total number of pairs in any one survey and the volume integral over the estimated ξ from that survey. This is simply the total pair constraint on the estimated ξ. Then derive another relation by considering the ensemble variance in the total number of galaxies in each survey and its relation to the true ξ of the ensemble. One can then find the difference between the ensemble average of the ξ 's and the true ξ of the ensemble. This is the integral constraint (eg. Peebles, 1980 or Hale-Sutton, 1990)

$$
\begin{equation*}
I_{c} \simeq \frac{\left(1+4 \pi n(r) J_{3}^{\max }\right)}{n_{g a l}} \tag{4.35}
\end{equation*}
$$

and should be added to ξ from an ensemble of surveys.

One can further simplify this formula and its interpretation. Consider the approximation

$$
\begin{equation*}
n(r) \simeq n_{g a l} / V_{e f f} \tag{4.36}
\end{equation*}
$$

where $V_{\text {eff }}$ is the effective volume of the survey

$$
\begin{equation*}
V_{e f f}=\int_{V} f(r) d V \tag{4.37}
\end{equation*}
$$

and $f(r)$ is a function which depends on how the galaxies are weighted. For example, single pair weighting, $w=1$, will have $f(r)=S(r)$, whereas volume weighting, $w=1 / S(r)$, will have $f(r)=1$. Equation 4.35 then becomes

$$
\begin{align*}
I_{c} & \simeq \frac{1+4 \pi\left(n_{g a l} / V_{e f f}\right) J_{3}^{\max }}{n_{g a l}} \tag{4.38}\\
& \simeq \frac{4 \pi J_{3}^{\max }}{V_{e f f}} \tag{4.39}
\end{align*}
$$

where the second approximation assumes that $4 \pi n(r) J_{3}^{\max } \gg 1$. For a typical mock catalogue one calculates $V_{\text {eff }} \sim 2 \times 10^{5} h^{-3} \mathrm{Mpc}^{3}$ for $w=1$ and $4 \times 10^{6} h^{-3} \mathrm{Mpc}^{3}$ for $w=1 / S(r)$. Recalling the maximum values of $4 \pi J_{3}$ quoted in section 4.5.3 one finds that for volume weighting of galaxies $I_{c} \simeq 0.002$ and 0.004 for the SCDM and LCDM mock catalogues, respectively. However, for single pair weighting of galaxies $I_{c} \simeq 0.035$ and 0.085 for the SCDM and LCDM mock catalogues, respectively. Therefore, the integral constraint is not thought to be a problem (for surveys of similar size and clustering characteristics to the SCDM/LCDM mock catalogues) on scales much larger than those where J_{3} converges or reaches a maximum if one weights volumes equally. However, a significant bias could occur on these scales if a single pair weighting is used. This is dicussed further in section 4.5.5.

4.5.5 The Optimal Estimate of the 2-Point Correlation Function and General Discussion of the Estimates

Section 4.5.3 showed that, from a theoretical point of view, due to the relative amounts of clustering, the SCDM mock catalogues should have smaller errors than the LCDM mock catalogues at large scales, $>10 h^{-1} \mathrm{Mpc}$. Also, it was seen that this minimum theoretical error was more than likely to be an underestimate of the minimum observed error. These two features can be tested by comparing figures 4.17 and $4: 18$ (SCDM errors) with figures 4.23 and 4.24 (LCDM errors). For the unweighted estimates $\Delta \xi_{L C D M} \simeq \Delta \xi_{S C D M}$, contrary to the above statement. However, for the weighted estimates this prediction is correct and $\Delta \xi_{L C D M}>\Delta \xi_{S C D M}$ until very large scales, $>100 h^{-1} \mathrm{Mpc}$. In general these figures also show that all the errors asymptote towards $\Delta \xi \simeq 0.02$ on large scales, in good agreement with the $\sqrt{n_{g a l}}$ error.

Similarly, section 4.5.4 described how the relative amounts of clustering and effective volume of space surveyed (which depends on the weighting scheme in the calculation of ξ) all affect the magnitude of the estimated integral constraint. It was shown that while I_{c} can be neglected for a weighting scheme which treats volumes equally it could cause a significant bias in a weighting scheme which weights galaxies equally. This bias was also shown to be larger for the LCDM mock catalogues than for the SCDM mock catalogues because the $J_{3}^{\max }$ value is higher for LCDM than for SCDM. The first of these predictions can be tested by looking at figures 4.16 (weighted SCDM) and 4.22 (weighted LCDM). One immediately sees that these weighted estimates are not significantly biased on large scales (bar the DD/DR one, see below) and hence the first prediction is correct. To check the second prediction one can compare figures 4.14 (unweighted SCDM) and 4.20 (unweighted LCDM). On large scales, $>10 h^{-1} \mathrm{Mpc}$, the SCDM mock catalogues lie 0.02-0.03 below the actual ξ for this model. Similarly, the LCDM mock catalogues are $0.05-0.10$ below the model ξ. These numbers are in very good agreement with the predictions of ~ 0.035 and 0.085 for the SCDM and LCDM mock catalogues, respectively, from section 4.5.4. Therefore, the second prediction is also correct and the integral constraint does appear to be a problem for the unweighted estimates. Finally, these figures do show that the LCDM mock catalogues have a larger bias than the SCDM mock catalogues.

The question one would like to answer is, "What is the weighting and estimator that produces the minumum variance and bias in ξ ?" First consider the small scales, $<10 h^{-1}$ Mpc. All 3 estimators, regardless of weighting, can reproduce the actual correlation function within 1σ (using the corresponding estimator's error). The errors seen in the weighted estimates are all of a similar magnitude but are smaller than the unweighted ones by a factor of $2-3$ in this region. Second consider the large scales, $>10 h^{-1} \mathrm{Mpc}$. The results are split between the unweighted and weighted estimates. For the SCDM mock catalogues the unweighted estimates show slight evidence for a systematic lowering of ξ by $0.02-0.03$, at the 2σ level, on scales $\sim 10-50 h^{-1} \mathrm{Mpc}$. As discussed above, this is thought to be due to the integral constraint. This bias appears larger ($3-4 \sigma$) in the LCDM mock catalogues, which have
more large scale power (and consequently a larger $J_{3}^{m a \dot{x}}$), and ξ is measured low by $0.05-0.10$. Again, this is thought to be due to the integral constraint. Considering the weighted estimates from the SCDM mock catalogues one sees that they all accurately trace the actual correlation function within 1σ, bar the $D D / D R$ estimate (see next paragraph). This is confirmed with the LCDM mock catalogues where even the $D D / D R$ estimate is within 1σ, albeit using substantially larger error bars. Finally, the errors in the weighted estimates are smaller than the corresponding ones in the unweighted estimates until very large scales, $>100 h^{-1} \mathrm{Mpc}$, where they all asymptote towards $1 / \sqrt{n_{\text {gal }}}$. Note that the weighted $D D \cdot R R / D R^{2}$ estimate gives the smallest error of all and also most accurately reproduces the actual correlation function for both the SCDM and LCDM mock catalogues. Therefore, the conclusion must be that the weighted $D D . R R / D R^{2}$ estimate produces the best results (minimum variance and least bias) on both small and large scales.

The $D D / D R$ estimator deserves a discussion on its own because of its use by many workers for over a decade. Theoretically it has been claimed that the $w=1 /\left(1+4 \pi n J_{3}\right)$ weighting produces the minimum variance in ξ (Efstathiou, 1988, Peebles, 1973 and Loveday et al. 1995b) and is therefore used by the majority of workers in the field (eg. Saunders et al. 1991, Loveday et al. 1992a and Fisher et al. 1994). However, Fong et al. (1991) carried out an empirical study of the effects of different weightings on pencil beam galaxy redshift surveys and came to the conclusion that the unweighted estimate produced the minimum variance in ξ. Of course, since the $D D . R R / D R^{2}$ and $(D D-2 D R+R R) / R R$ estimators were not published until 1993, the Fong et al. (1991) study used the simple $D D / D R$ estimator. It is interesting to see that figures $4.17,4.18,4.23$ and 4.24 confirm this result, namely that, for the $D D / D R$ estimator, the unweighted estimate produces the minimum variance in ξ and arguably the least bias as well. A possible explanation for why the weighted $D D / D R$ errors are larger than the unweighted ones is now suggested. The $w=1 /\left(1+4 \pi n J_{3}\right)$ weighting produced the minimum variance in ξ for the $D D \cdot R R / D R^{2}$ and $(D D-2 D R+R R) / R R$ estimators but not the $D D / D R$ estimator. Hamilton (1993) has "shown that the $D D / D R$ estimator is sensitive to the error in the mean density whereas the $D D . R R / D R^{2}$ and $(D D-2 D R+R R) / R R$ estimators are sensitive to the square of the error in the mean density. All of the unweighted estimates suffer from the fact that they are constrainted to be zero over the whole survey (because of the normalisation and conservation of pair counts) and therefore must lose some variance due to this fact. This need not happen for the weighted estimates. A possible explanation for the above effect with the $D D / D R$ estimator is that the error in the mean density dominates these $D D / D R$ estimates, with the unweighted one missing some variance compared to the weighted one due to this normalisation technique. Therefore, this would not be seen in the other 2 estimators, which are less sensitive to the error in the mean density, and the $w=1 /\left(1+4 \pi n J_{3}\right)$ weighting does indeed produce the minimum variance. Unfortunately, this argument cannot explain why the weighted $D D / D R$ estimate appears biased low on large scales, particularly for the SCDM mock catalogues.

4.6 Conclusions

This chapter has attempted to address some of the problems that occur in trying to estimate the 2 -point correlation function, ξ, from a magnitude limited survey. Two sets of mock catalogues, drawn from SCDM and LCDM N-body simulations, have been analysed using 6 different weighting/estimator combinations for estimating ξ. The conclusions (which were independent of real/redshift space) are given below :
(a) The non-uniform magnitude limits and sampling rates (due to observational constraints) are effectively corrected for using the method of evaluation of the pair counts described in section 4.5.2.
(b) The minimum theoretical error on ξ is estimated to be smaller than a realistic minimum error which comes from an empirical relation found by Shanks \& Boyle (1994). This realistic minimum error is confirmed by almost all of the mock catalogues where $\Delta \xi \rightarrow 1 / \sqrt{n_{\text {gal }}}$.
(c) The integral constraint is introduced and is then estimated for the mock catalogues. For surveys similar to these mock catalogues the integral constraint should not be a problem if one volume weights the survey. However, single pair weighting of galaxies reduces the effective volume of the survey and is thought to cause the systematic offset seen in the unweighted estimators on scales $\sim 10-50 h^{-1} \mathrm{Mpc}$.
(d) On small scales, $<10 h^{-1} \mathrm{Mpc}$, all the estimators can reproduce the actual correlation function within $1-2 \sigma$. However, the weighted, $w=1 /\left(1+4 \pi n J_{3}\right)$, estimates (Efstathiou, 1988), especially the estimators of Hamilton (1993) and Landy \& Szalay (1993), have smaller errors than the corresponding unweighted, $w=1$, estimates (by a factor of 2-3).
(e) On large scales, $>10 h^{-1} \mathrm{Mpc}$, the unweighted estimates are biased low because of the integral constraint. This effect is larger for models with larger values of $J_{3}^{\max }$. Therefore, this will be important if one is trying to detect power in the 2 -point correlation function on large scales using unweighted estimates. However, the weighted estimates do not suffer from any such problems, bar the standard estimator, and the $D D . R R / D R^{2}$ estimator proposed by Hamilton (1993) is the most reliable and also has the least scatter associated with it. Contrary to what might have been expected, the standard estimator shows more scatter with a weighting than without, this could be due to a combination of errors in the mean density and the normalisation used.

Chapter 5

Galaxy Clustering via the 2-Point Correlation Function

5.1 Introduction

The 2-point correlation function, $\xi(x)$, was introduced in chapter 4 as a statistical measure of clustering. The optimal method of estimating ξ was empirically determined for a magnitude limited survey using mock catalogues of the Durham/UKST galaxy redshift survey constructed from N-body simulations. These methods are now applied to the Durham/UKST galaxy redshift survey.

The format of the chapter is as follows. The redshift space correlation function is presented and compared with that from other data sets as well as two theoretical models of structure formation. Various checks of possible systematic errors in this estimate are also shown. The projected correlation function is then presented, modelled and inverted to obtain the real space correlation function using a new application of the Richardson-Lucy algorithm. The forms of the real and redshift space correlation function are then briefly discussed. The chapter ends with the main conclusions obtained from this analysis of the Durham/UKST survey.

5.2 The Redshift Space Correlation Function

Any catalogue which uses redshifts to estimate distances will suffer from the effects of galaxy peculiar velocities. The real space correlation function of the galaxy distribution, $\xi(r)$, is the object that is directly predicted from theories of structure formation. However, only the redshift space correlation function, $\xi(s)$, is directly observable from a redshift survey. It is known that the distortions produced in redshift space can be used to determine certain important cosmological parameters; this will be expanded on in chapter 6 . In calculating the redshift space correlation
function, $\xi(s)$, the redshift space separation, s, between two galaxies is used. This is defined by the redshift distances s_{i} and s_{j} and angular separation on the sky, θ, namely

$$
\begin{equation*}
s=\sqrt{s_{i}^{2}+s_{j}^{2}-2 s_{i} s_{j} \cos \theta} \tag{5.1}
\end{equation*}
$$

This therefore assumes a spatially flat $(k=0)$ cosmological model with Euclidean geometry ($\Lambda=0$), consistent with sections 2.9 and 3.3.

5.2.1 Method of Calculation

In this chapter all correlation functions were estimated using the techniques described in chapter 4, ie. the radial and angular selection functions were used to produce a random catalogue which was then used for cross correlation with the data catalogue. Also, the estimator which produced the most accurate and consistent results, namely that of Hamilton (1993), was used to determine ξ but the estimates with both weighted ($w=1 /\left(1+4 \pi \bar{n} S(x) J_{3}(s)\right)$) and unweighted ($w=1$) pair counts are shown for absolute clarity.

5.2.2 Results from the Durham/UKST Galaxy Redshift Survey

Figures 5.1 and 5.2 show the results of the Hamilton (1993) estimator for ξ (with and without a weighting) on small and large scales, respectively. The error bars come from splitting the survey into 4 roughly equal quadrants and assume that each quadrant provides an independent estimate of the correlation function. This assumption should be valid on all but the largest scales where the wavelength of the perturbation becomes comparable to the size of the quadrant itself.

On small scales, $<10 h^{-1} \mathrm{Mpc}$, figure 5.1 shows that the unweighted estimate is systematically $\sim 30 \%$ below the weighted estimate. As will be discussed in section 5.2.5 this inconsistency could not be traced to a systematic problem in the survey, quite simply it is due to the different weighting used. Therefore, the cause of this effect remains unknown but statistical fluctuations could be partially responsible. On large scales, $>10 h^{-1} \mathrm{Mpc}$, figure 5.2 shows that the unweighted estimate is consistent with zero by scales of $\sim 20 h^{-1} \mathrm{Mpc}$ while the weighted estimate continues its approximate power law form out to $\sim 40 h^{-1} \mathrm{Mpc}$. The unweighted estimate is again systematically low, this time by $0.1-0.3$ in ξ until $\sim 40 h^{-1} \mathrm{Mpc}$. Again, this is could not be traced to any systematic problem in the survey. It is more than likely that this effect is a combination of the integral constraint and statistical fluctuations. It was shown in chapter 4 that the integral constraint could cause a systematic lowering of ξ. Using equation 4.39 and the estimate of $J_{3}^{\max }$ from chapter 6 one finds that the integral constraint could be as large as ~ 0.2 for the Durham/UKST survey when using a unweighted estimate. Such a number could explain almost all of the

Figure 5.1: The redshift space $\xi(s)$ evaluated directly from the Durham/UKST survey using the estimator of Hamilton (1993) on a log-log plot.

Figure 5.2: The redshift space $\xi(s)$ evaluated directly from the Durham/UKST survey using the estimator of Hamilton (1993) on a log-linear plot.

N	χ^{2}	Prob.	$s_{0}\left(h^{-1} \mathrm{Mpc}\right)$	γ
16	23.1	0.11	$6.8 \pm 0.3 h^{-1} \mathrm{Mpc}$	1.18 ± 0.04

Table 5.1: Minimum χ^{2} fit to a single power law model for the Durham/UKST survey $\xi(s)$.
observed difference between the weightings on large scales. On the very large scales, $>50 h^{-1} \mathrm{Mpc}$, both estimates are consistent with zero.

The weighted estimate is relatively insensitive to the absolute value of the weighting used as halving or doubling the value of the mean density (\bar{n}) used in the $w=1 /\left(1+4 \pi \bar{n} S(x) J_{3}(s)\right)$ weighting makes little difference to the estimate itself. This may have been expected given that Fong et al. (1991) found that only small values of $m(\leq 10)$, where $w=1 /(1+m S(x))$, produced any significant effect on ξ or its variance. The $w=1 /\left(1+4 \pi \bar{n} S(x) J_{3}(s)\right)$ weighting has an effective value of $m \sim 500$ on large scales, when J_{3} has reached a maximum $\left(\sim 5000 h^{-3} \mathrm{Mpc}^{3}\right)$, and therefore halving or doubling this number makes little difference.

To aid a comparison with other surveys a power law fit has been calculated for the weighted estimate of ξ where

$$
\begin{equation*}
\xi(s)=\left(\frac{s_{0}}{s}\right)^{\gamma} \tag{5.2}
\end{equation*}
$$

A minimum χ^{2} fit is attempted in the region $[0.7,30.0] h^{-1} \mathrm{Mpc}$ and the results of this fit are relatively insensitive to the scales one fits over. One should sound a word of caution about the significance of these fits due to the non-independent nature of the $\xi(s)$ points. A principal component analysis (eg. Kendall, 1975) was considered but not deemed necessary for such a simple first analysis as this.

Table 5.1 shows the best fit values for s_{0} and γ along with the individual 1σ error estimates in each parameter. These errors come from the $\Delta \chi^{2}=1.0$ contour in the individual confidence regions of each parameters. As can be seen in table 5.1 and figure 5.1 a single power law does not give a particularly good fit to the finer details of ξ (see section 5.5). However, $\xi(s)$ does appear to be an approximate power law in this regime. Also shown in figure 5.1 is a power law with the canonical values of $r_{0}=4.5 h^{-1} \mathrm{Mpc}$ and $\gamma=1.8$ (eg. Peebles, 1980). It is quite obvious that this is a very poor fit to the observed redshift space $\xi(s)$.

It is worth stating again that the weighting of Efstathiou (1988) and estimator of Hamilton (1993) gave the minimum variance and least bias in the estimate of $\xi(s)$ from chapter 4 and is therefore prefered here as well.

5.2.3 Comparison with other Redshift Surveys

The results of the weighted Durham/UKST $\xi(s)$ from section 5.2.2 are compared with the APM-Stromlo redshift survey of Loveday et al. (1992a) (also see Loveday

Survey	Durham/UKST	APM-Stromlo	Las Campanas	DARS/SAAO
$s_{0}\left(h^{-1} \mathrm{Mpc}\right)$	6.8 ± 0.3	5.9 ± 0.3	6.8 ± 1.1	6.5 ± 0.5
γ	1.18 ± 0.04	1.47 ± 0.12	1.70 ± 0.11	(1.8)

Table 5.2: Comparison of redshift space $\xi(s)$ single power law fits for different surveys.
et al. 1995b), the Las Campanas redshift survey of Tucker et al. (1995) (also see Lin et al. 1995a), and the previous Durham redshift surveys of Shanks et al. (1983) and Shanks et al. (1989) (DARS/SAAO).

Figures 5.3 and 5.4 show the comparison on small and large scales, respectively. The error bars on the Durham/UKST ξ again come from splitting the survey into 4 roughly equal quadrants as before. On small scales, $<10 h^{-1} \mathrm{Mpc}$, the weighted Durham/UKST ξ agrees very well with the other estimates (given the errors involved). On large scales, $>10 h^{-1} \mathrm{Mpc}$, the weighted Durham/UKST ξ is also consistent with the previously claimed detections of large scale structure out to $\sim 40 h^{-1} \mathrm{Mpc}$, albeit $\sim 1 \sigma$ higher in the $10-20 h^{-1} \mathrm{Mpc}$ range.

This detection of power on scales $10-40 h^{-1} \mathrm{Mpc}$ is in disagreement with the previous Durham redshift survey results (DARS/SAAO). This inconsistency is probably partly statistical but also partly due to the weighting and estimator the DARS/SAAO surveys used. The DARS/SAAO $\xi(s)$ used the $w=1$ weighting and the standard $D D / D R$ estimator. (Note that the relatively new estimators of Hamilton (1993) and Landy \& Szalay (1993) did not exist at the time the DARS/SAAO results were published.) It was shown in chapter 4 (see also Fong et al. 1991) that the $w=1$ unweighted $D D / D R$ estimator gave a smaller variance than the corresponding $w=1 /\left(1+4 \pi \bar{n} S(x) J_{3}(s)\right)$ weighted one. Therefore, at that time it was logical to use the unweighted estimates. However, the integral constraint appears to systematically bias the unweighted $D D / D R$ estimate low on scales $10-50 h^{-1} \mathrm{Mpc}$ by $0.1-0.2$ in ξ for a survey like the Durham/UKST one. For 1-D pencil beam surveys like DARS/SAAO (with a smaller volume and number of galaxies) the integral constraint would be larger and could explain the observed differences.

The best fit power law parameters from the above surveys are compared in table 5.2. It can be seen that the amplitudes, s_{0}, agree quite well to a value in the range $[6.0,7.0] h^{-1} \mathrm{Mpc}$. However, the slopes, γ, all differ significantly given the quoted errors. (Note that the Durham/UKST errors are likely to be an underestimate due to the simplistic χ^{2} fitting procedure and also that the DARS/SAAO slope was fixed to be 1.8 before fitting for s_{0}.) Therefore, while $\xi(s)$ can be approximated by a single power law, there is considerable scatter in the best fit parameters obtained from the currently available data sets.

Overall, figures $5.3,5.4$ and table 5.2 show that the agreement between the different surveys is good. However, it appears that a simple one power law model does not give a good fit to the data sets.

Figure 5.3: Comparison of the Durham/UKST survey $\xi(s)$ with those from other redshift surveys on a $\log -\log$ plot.

Figure 5.4: Comparison of the Durham/UKST survey $\xi(s)$ with those from other redshift surveys on a log-linear plot.

5.2.4 Comparison with the Simulations

Figures 5.5 and 5.6 show the comparison between the Durham/UKST survey and the SCDM \& LCDM mock catalogues on small and large scales, respectively. The mean and standard deviation of the ξ 's estimated from each set of mock catalogues can be used to denote a region in ξ. The shaded areas in figures 5.5 and 5.6 denote the 68% confidence regions on an individual mock catalogue. The test is to see if the model is consistent with the data and one can ask the question, "How often can the SCDM/LCDM mock catalogues produce the ξ seen in the Durham/UKST survey ?" Therefore, there is no need to plot the Durham/UKST error bars because the interest lies in the scatter seen in the mock catalogues and the difference between them and the data. For consistency, these confidence regions were calculated using the same weighting/estimator combination as the data, namely the estimator of Hamilton (1993) and weighting of Efstathiou (1988) (see figures 4.15, 4.16, 4.21 and 4.22).

On small scales, $<10 h^{-1} \mathrm{Mpc}$, both models of CDM give good agreement with the Durham/UKST correlation "function (within the errors). On large scales, $>$ $10 h^{-1} \mathrm{Mpc}$, the SCDM model shows no significant power above $\sim 20 h^{-1} \mathrm{Mpc}$ whereas the LCDM model shows significant power out to $\sim 30 h^{-1} \mathrm{Mpc}$. The Durham/UKST correlation function shows power above and beyond that of SCDM up to \sim $40 h^{-1} \mathrm{Mpc}$ at the $>3 \sigma$ level but is more consistent with the LCDM, although even this model produces too little power at the $1-2 \sigma$ level.

5.2.5 Checking for Systematic Errors

Obviously, any observational result is only as good as the accompanying error analysis. A method such as splitting the survey into quadrants will give a measure of the combined variance from the sample itself and the fluctuations inherent in the Universe (the so-called "Cosmic" variance). However, this does not take into account the possibility of systematic errors occuring. The three systematic errors tested here, when trying to estimate $\xi(s)$, are errors in the photometry zero-points, random errors in the measured redshifts and the variable completeness rates in the survey. Due to lack of space the results of these tests are not shown in graphical form and are simply described.
(i) The photometry for the Durham/UKST survey comes from the Collins et al. (1988) EDSGC which is derived from COSMOS scans of UKST plates (see section 2.2). A relatively crude correction in each field is applied, scaling the photometry zero-points to agree with those of the Maddox et al. (1990a) APM survey (see section 2.3). Systematic effects are tested for by estimating $\xi(s)$ without any correction and also with twice the correction. On small scales, $<10 h^{-1} \mathrm{Mpc}$, the photometry correction makes virtually no difference ($\pm 0.5 \sigma$) to either estimate, weighted or unweighted. On large scales, $>10 h^{-1} \mathrm{Mpc}$, the photometry correction makes no difference to the unweighted estimate.

Figure 5.5: Comparison of the Durham/UKST survey $\xi(s)$ with those from the CDM mock catalogues on a log-log plot.

Figure 5.6: Comparison of the Durham/UKST survey $\xi(s)$ with those from the CDM mock catalogues on a log-linear plot.

However, the weighted estimates with the "wrong" correction (either when not applied or applied twice) are systematically higher than the weighted estimate with the "right" correction by $\sim 1 \sigma$ at all scales.
(ii) Section 2.6 .2 showed that the measured redshifts from the Durham/UKST survey should be correct to $\sim \pm 150 \mathrm{kms}^{-1}$ with a negligible offset. Systematic effects are tested for by adding a random velocity (from a Gaussian with $\bar{x}=0 \mathrm{kms}^{-1}$ and $\sigma_{x}=300 \mathrm{kms}^{-1}$) to each galaxy and ξ is re-evaluated. These rändom velocities should overestimate any real effects due to measurement errors. On very small scales, $<1 h^{-1} \mathrm{Mpc}$, any power law form is completely smoothed out by the random velocities. On scales $1-6 h^{-1} \mathrm{Mpc}$ the power law is flattened slightly ($\gamma \simeq 1: 2 \rightarrow 1.1$). On larger scales, $>6 h^{-1} \mathrm{Mpc}$, the random velocities have virtually no effect on ξ.
(iii) The completeness rate of the Durham/UKST survey varies as a function of field number and apparent magnitude. Therefore, when calculating the pair counts for estimating ξ, one should ideally weight by the inverse of the completeness rate in each field and apparent magnitude interval. As this is not explicitly accounted for in previously estimates of ξ it is a possible source of systematic error., On small scales, $<10 h^{-1} \mathrm{Mpc}$, this correction to the estimation technique makes almost no difference to either estimate, weighted or unweighted. On large scales, $>10 h^{-1} \mathrm{Mpc}$, this correction again makes almost no difference to either estimate.

Therefore, the three possible systematic errors considered here appear small and may only affect the results at the 1σ level (at worst). Also, none of these systematic errors were at a level where they can account for the systematic difference seen between the weighted and unweighted estimates.

5.3 The Projected Correlation Function

In section 5.2 the 2 -point correlation function was evaluated as a function of one variable - the separation between two galaxies, s. However, one could evaluate ξ as a function of two variables - the separations perpendicular and parallel to the line of sight, σ and π, respectively. Such an object, $\xi(\sigma, \pi)$, will be very useful when studying the distortions which come from using redshifts as distances.

Following Peebles (1980), for example, define a projected correlation function, $w_{v}(\sigma)$, as follows

$$
\begin{align*}
w_{v}(\sigma) & =\int_{-\infty}^{\infty} \xi(\sigma, \pi) d \pi \tag{5.3}\\
& =2 \int_{0}^{\infty} \xi(\sigma, \pi) d \pi \tag{5.4}
\end{align*}
$$

As will be shown in section 5.4, this projected correlation function can be used to estimate the real space correlation function.

5.3.1 Modelling the Projected Correlation Function

Due to the projection/integration in equation 5.4 it is possible to write

$$
\begin{equation*}
w_{v}(\sigma)=2 \int_{0}^{\infty} \xi\left(\sqrt{\sigma^{2}+\pi^{2}}\right) d \pi \tag{5.5}
\end{equation*}
$$

where $\xi\left(\sqrt{\sigma^{2}+\pi^{2}}\right)$ is the real space correlation function. Assuming a power law form of $\dot{\xi}(r)=\left(r_{0} / r\right)^{\gamma}$ with $r^{2}=\sigma^{2}+\pi^{2}$ the integral in equation 5.5 becomes

$$
\begin{equation*}
w_{v}(\sigma)=r_{0}^{\gamma}\left[\frac{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{\gamma-1}{2}\right)}{\Gamma\left(\frac{\gamma}{2}\right)}\right] \sigma^{(1-\gamma)}, \tag{5.6}
\end{equation*}
$$

where $\Gamma(x)$ is the usual Gamma function and $\gamma>1$ is assumed.

5.3.2 Method of Calculation

Our method of estimating $\xi(\sigma, \pi)$ is the same as the method of section 5.2 but here binning is done as a function of two variables instead of just one. This is described in more detail in chapter 6 which concentrates specificaily on redshift space distortions. Figure 5.7 shows a schematic diagram of how σ and π are defined. The mathematical definitions of these variables are given in section 6.2 but the results are fairly insensitive to their exact nature and even the small angle approximation gives quite consistent results."

The estimate of $\xi(\sigma, \pi)$ will become noisy at large scales, therefore for the purpose of evaluating equation 5.4 the integral is truncated at some upper limit, $\pi_{c u t}$

$$
\begin{equation*}
w_{v}(\sigma)=2 \int_{0}^{\pi_{c u t}} \xi_{v}(\sigma, \pi) d \pi \tag{5.7}
\end{equation*}
$$

In practice $\pi_{\text {cut }}$'s of 20,30 and $40 h^{-1} \mathrm{Mpc}$ are used. The results are relatively insensitive to the value of $\pi_{c u t}$ chosen. This is not too surprising given that the integral in equation 5.7 weights all separations equally and is therefore sensitive to ξ on small scales where it is very large with respect to its value on other scales. The integral in equation 5.7 is carried out using a simple midpoint integration scheme which is quite adequate given the uncertainties present in $\xi(\sigma, \pi)$.

5.3.3 Tests of the Method

The SCDM mock catalogues are used to test this method. This set of mock catalogues have less large scale power than the LCDM ones, therefore they should provide a more stringent test of the method because on large scales the relative level of signal to noise is lower than that of the LCDM case. In chapter 4 it was seen that the real space correlation function for the SCDM simulations could be approximated

Figure 5.7: Schematic diagram to show the definitions of σ and π.
by a power law with slope $\gamma \simeq 2.2$ and amplitude $r_{0} \simeq 5.0 h^{-1} \mathrm{Mpc}$. This was a very good approximation up to $\sim 10 h^{-1} \mathrm{Mpc}$ and in equation 5.6 it predicts

$$
\begin{equation*}
w_{v}(\sigma) \simeq 95.7 \sigma^{-1.2} \tag{5.8}
\end{equation*}
$$

Figure 5.8 shows the mean and 1σ error on $w_{v}(\sigma)$ assuming that each mock catalogue is statistically independent. These were evaluated using equation 5.7 with a $\pi_{c u t}$ of $20 h^{-1} \mathrm{Mpc}$ and unweighted \& weighted estimators for the determination of $\xi(\sigma, \pi)$. The solid line is the result from equation 5.7 (again $\pi_{c u t}=20 h^{-1} \mathrm{Mpc}$) using the average of the $\xi(\sigma, \pi)$'s from the full N -body SCDM simulations. The dotted line is the model prediction from equation 5.8. Given that the SCDM simulations have little or no power in ξ above $10-20 h^{-1} \mathrm{Mpc}$ raising $\pi_{\text {cut }}$ makes very little difference to $w_{v}(\sigma)$ other than to increase the noise.

The agreement between the solid SCDM line and the dotted model prediction line is good everywhere apart from on large scales ($>10 h^{-1} \mathrm{Mpc}$). This is where the SCDM model falls off steeper than a pure power law and the model prediction of equation 5.6 will be an overestimate of the $\operatorname{SCDM} w_{v}(\sigma)$. Looking at the results from the SCDM mock catalogues themselves figure 5.8 shows that both weighted and unweighted estimators can reproduce the SCDM prediction, easily consistent within 1σ. The slight systematic bias seen (on large scales) when using unweighted estimators (probably due to the integral constraint) is not apparent here. This is because this bias was small for the SCDM mock catalogues, ~ 0.03 in ξ, and therefore makes little difference in the integral of equation 5.7 .

In conclusion, this method can self-consistently reproduce the power law form of $\xi(r)$ from $\xi(\sigma, \pi)$ via $w_{v}(\sigma)$. Since the small scale redshift space distortions should be larger in the SCDM simulations than in the real Universe (the higher velocity dispersion dominates, see chapter 6) this gives confidence in applying this method to the Durham/UKST survey. However, one should sound a word of caution about the error bars in figure 5.8 because the errors on a individual mock catalogue would be $\sqrt{18}$ larger and hence become quite noisy on large scales, $>10 h^{-1} \mathrm{Mpc}$.

5.3.4 Results from the Durham/UKST Galaxy Redshift Survey

Figure 5.9 shows the $w_{v}(\sigma)$ estimates calculated from equation 5.7 for $\xi(\sigma, \pi)$ (with and without a weighting) and a $\pi_{c u t}$ of $20 h^{-1} \mathrm{Mpc}$. For comparison figure 5.10 shows the corresponding plot with $\pi_{\text {cut }}=30 h^{-1} \mathrm{Mpc}$. It can be seen that the unweighted estimate appears smoother than the weighted one although the weighted one has the smaller error bars. This is because the $\xi(\sigma, \pi)$ contour plot is noisier for the weighted estimator than for the unweighted one, see chapter 6 . The error bars come from the scatter between the 4 quadrants and assume that each quadrant provides an independent estimate of the correlation function. On small scales, $<10 h^{-1} \mathrm{Mpc}$, both estimates have an approximate power law form. On large scales, $>10 h^{-1} \mathrm{Mpc}$, the unweighted estimate loses its power law shape whereas the weighted estimate retains a power law form.

Figure 5.8: $w_{v}(\dot{\sigma})$ as evaluated from the SCDM mock catalogues using weighted and unweighted estimators.

Figure 5.9: $w_{v}(\sigma)$ as evaluated from the Durham/UKST survey using unweighted and weighted estimators with a $\pi_{c u t}$ of $20 h^{-1} \mathrm{Mpc}$.

Figure 5.10: $w_{v}(\sigma)$ as evaluated from the Durham/UKST survey using unweighted and weighted estimators with a $\pi_{c u t}$ of $30 h^{-1} \mathrm{Mpc}$.

Weighting	$\pi_{c u t}\left(h^{-1} \mathrm{Mpc}\right)$	N	χ^{2}	Prob.	$r_{0}\left(h^{-1} \mathrm{Mpc}\right)$	γ
N	20	14	1.58	1.000	3.4 ± 0.2	1.76 ± 0.10
	30	14	1.41	1.000	3.2 ± 0.2	1.84 ± 0.12
	40	14	3.96	0.995	3.3 ± 0.2	1.81 ± 0.08
Y	20	14	10.91	0.686	4.8 ± 0.3	1.59 ± 0.10
	30	14	8.39	0.867	5.1 ± 0.3	1.59 ± 0.09
	40	14	7.25	0.927	5.0 ± 0.3	1.61 ± 0.12

Table 5.3: Minimum χ^{2} fits to a power law model for $w_{v}(\sigma)$ from the Durham/UKST survey.

Survey	Durham/UKST	APM-Stromlo	Las Campanas	DARS/SAAO
$r_{0}\left(h^{-1} \mathrm{Mpc}\right)$	5.1 ± 0.3	5.1 ± 0.2	5.0 ± 0.14	4.7 ± 0.4
γ	1.59 ± 0.09	1.71 ± 0.05	1.79 ± 0.04	(1.8)

Table 5.4: Comparison of real space 2-point correlation function power law fits to the modelled projected correlation function for different surveys.

A minimum χ^{2} fit is calculated assuming the power law model of equation 5.6 in the region $[0.1,10.0] h^{-1} \mathrm{Mpc}$. Table 5.3 shows the results of this fit for $\pi_{\text {cut }}=20,30$ and $40 h^{-1} \mathrm{Mpc}$ along with the individual 1σ error bars in each parameter estimated from $\Delta \chi^{2}=1$. It can be seen that the value of $\pi_{c u t}$ does not significantly alter these minimum χ^{2} fits. Figure 5.11 shows an example of the $\Delta \chi^{2}$ contours (for $\pi_{c u t}=20 h^{-1} \mathrm{Mpc}$) which correspond to the 68% and 96% joint confidence regions in both parameters. Again, a word of caution is necessary as to the significance of the error bars quoted here due to the non-independent nature of these points.

Table 5.3 and figure 5.11 show that the results of the fits to the unweighted and weighted estimates are consistent in slope, γ, but differ at the $\sim 5 \sigma$ level in amplitude, r_{0} (although this significance level is not concrete due to the simplistic χ^{2} fit used). The difference seen between the weighted and unweighted power law amplitudes is a direct result of the difference seen between the weighted and unweighted redshift space ξ 's (see figure 5.1). Therefore, for the purpose of comparison with other redshift surveys the weighted estimate is preferred, with $\pi_{\text {cut }}=30 h^{-1} \mathrm{Mpc}$.

5.3.5 Comparison with other Redshift Surveys

Table 5.4 shows a comparison between the best fit parameters for $\xi(r)$ to the power law model of equation 5.6 for the optical redshift surveys mentioned in section 5.2.3. The weighted estimate from the Durham/UKST survey is used here. Once again the DARS/SAAO slope was fixed at 1.8 before fitting for r_{0}. It can be seen that all of the amplitudes agree well with the value $r_{0} \simeq 5.0 h^{-1} \mathrm{Mpc}$. It is also seen that all of the slopes agree well with the value $\gamma \simeq 1.75$, bar the Durham/UKST one ($1-2 \sigma$ low). Consistent results are found when comparing these values with the $r_{0}=4.5 h^{-1} \mathrm{Mpc}$

Figure 5.11: $\Delta \chi^{2}$ contours denoting the 68% and 96% joint confidence regions in model power law fits to the Durham/UKST $w_{v}(\sigma)$ with $\pi_{c u t}=20 h^{-1} \mathrm{Mpc}$.
and $\gamma=1.7$ obtained for $\xi(r)$ by Baugh (1996) from numerically inverting the APM angular correlation function, $\dot{w}(\theta)$. These estimates are discussed further in section 5.5. In conclusion, all of the real space parameters appear consistent with each other.

5.4 Inversion to find the Real Space Correlation function

In section 5.3 the projected correlation function, $w_{v}(\sigma)$, was studied by comparison with a model deduced from the real space correlation, $\xi(r)$. The model assumed a pure power law for $\xi(r)$ and a fit was done to the amplitude and slope of this power law. However, $\dot{\xi}(r)$ is unlikely to be a pure power law other than in a limited spatial region so the model will never be able to fully reproduce $\xi(r)$ and any features in it. There exists the possibility that one can mathematically or numerically invert equation 5.5 for $w_{v}(\sigma)$ to determine $\xi(r)$ directly. In sections 5.4.1 and 5.4.2 two methods of inversion are investigated ; (i) by direct Abel inversion of the integral equation, (ii) by Richardson-Lucy iteration. The immediate aim of this study is to see if it is possible to successfully invert equation 5.5 before considering the results from the Durham/UKST survey.

5.4.1 Direct Abel Inversion of the Integral Equation

Equation 5.5 can be mathematically inverted using the generalized Abel equation to give

$$
\begin{equation*}
\xi(r)=-\frac{1}{\pi} \frac{d}{d r}\left(\int_{r}^{\infty} \frac{w_{v}(\sigma)}{\sqrt{\sigma^{2}-r^{2}}} \frac{r}{\sigma} d \sigma\right) \tag{5.9}
\end{equation*}
$$

which can be written in a slightly more "user friendly" form as

$$
\begin{equation*}
\xi(r)=-\frac{1}{\pi} \int_{r}^{\infty} \frac{d\left[w_{v}(\sigma)\right]}{d \sigma} \frac{d \sigma}{\sqrt{\sigma^{2}-r^{2}}} \tag{5.10}
\end{equation*}
$$

Saunders et al. (1992) consider the case when the data is logarithmically binned. $w_{v}(\sigma)$ then takes the form of a series of step functions with logarithmic spacing, $w_{v}(\sigma)=w_{v}\left(\sigma_{i}\right)=w_{i}$ for σ in the logarithmic interval centered on σ_{i}. They then approximate $w_{v}(\sigma)$ by linearly interpolating between each w_{v} point to get around singularities in the integral. This simplifies the expression for $d\left[w_{v}(\sigma)\right] / d \sigma$ which becomes a constant value between each pair of σ spacings. The remaining part of the integral can be evaluated to give the real space correlation function at $r=\sigma_{i}$

$$
\begin{equation*}
\xi\left(\sigma_{i}\right)=-\frac{1}{\pi} \sum_{j \geq i}\left[\frac{w_{j+1}-w_{j}}{\sigma_{j+1}-\sigma_{j}}\right] \ln \left(\frac{\sigma_{j+1}+\sqrt{\sigma_{j+1}^{2}-\sigma_{i}^{2}}}{\sigma_{j}+\sqrt{\sigma_{j}^{2}-\sigma_{i}^{2}}}\right) \tag{5.11}
\end{equation*}
$$

5.4.2 Inversion by Richardson-Lucy Iteration

A simple technique for numerical inversion of Fredholm integral equations of the first kind was developed independently by Richardson (1972) and Lucy (1974). This method has recently become popular for inversion applications in the field of large scale structure, see Baugh \& Efstathiou (1993). In one dimension the general form is

$$
\begin{equation*}
\phi(x)=\int_{a}^{b} \psi(t) P(x \mid t) d t, n \tag{5.12}
\end{equation*}
$$

where $\phi(x)$ is the known (or observed) function, $\psi(t)$ is the unknown function and $P(x \mid t)$ is the kernel of the integral equation. Richardson-Lucy iteration (or deconvolution) uses Bayes' theorem for conditional probabilities which makes a "guess" to estimate the form of the unknown function, $\psi(t)$, and then generate an estimate of the known function, $\phi(x)$. From this new estimate of $\phi(x)$ a better estimate of $\psi(t)$ is then generated. This cycling between unknown and known functions continues and after n iterations gives

$$
\begin{equation*}
\phi^{n}(x)=\int_{a}^{b} \psi^{n}(t) P(x \mid t) d t \tag{5.13}
\end{equation*}
$$

and the next iterate of $\psi(t)$ is

$$
\begin{equation*}
\psi^{n+1}(t)=\psi^{n}(t) \frac{\int_{a \cdot \frac{\dot{\phi}}{\phi^{n}(x)}} P(x \mid t) d x}{\int_{a}^{b} P(x \mid t) d x} \tag{5.14}
\end{equation*}
$$

where $\tilde{\phi}(x)$ is the actual observed function.
Equation 5.4 can be re-written as

$$
\begin{equation*}
w_{v}(\sigma)=\int_{\sigma}^{\infty} \xi(r)\left(\frac{2 r}{\sqrt{r^{2}-\sigma^{2}}}\right) d r \tag{5.15}
\end{equation*}
$$

by changing the variable of integration from π to r. This is not quite in the form specified by equation 5.12 but by suitable extension of the kernel into the region $[0, \sigma]$ one can write

$$
\begin{equation*}
w_{v}(\sigma)=\int_{0}^{\infty} \xi(r) K(\sigma, r) d r \tag{5.16}
\end{equation*}
$$

where

$$
\begin{array}{rlr}
K(\sigma, r) & =0 \\
& =\frac{2 r}{\sqrt{r^{2}-\sigma^{2}}} \quad \text { for } 0<r<\sigma \tag{5.18}\\
\text { for } \sigma<r<\infty .
\end{array}
$$

To apply this method to the logarithmically binned $w_{v}(\sigma)$ data the integrals in equations 5.13 and 5.14 are approximated by the following summations

$$
\begin{align*}
w_{v}^{n}\left(\sigma_{j}\right) & =\sum_{i=1}^{N} \xi^{n}\left(r_{i}\right) K\left(\sigma_{j}, r_{i}\right) r_{i} \Delta \ln r \tag{5.19}\\
\xi^{n+1}\left(r_{i}\right) & =\xi^{n}\left(r_{i}\right) \frac{\sum_{j=1}^{M} \frac{\dot{w}_{v}\left(\sigma_{j}\right)}{w_{j}^{n}\left(\sigma_{j}\right)} K\left(\sigma_{j}, r_{i}\right) \sigma_{j} \Delta \ln \sigma}{\sum_{j=1}^{M} K\left(\sigma_{j}, r_{i}\right) \sigma_{j} \Delta \ln \sigma} \tag{5.20}
\end{align*}
$$

where M is the number of $w_{v}(\sigma)$ bins and $N=M / 2$ is the number of $\xi(r)$ bins. The spacing in σ is $\Delta \lg \sigma=0.1$ and hence the spacing in r is $\Delta \lg r=0.2$. Obviously one cannot get back more data points than are put in and $N \leq M$. In general, the choice of $N=M / 2$ should assure a fairly smooth answer.

There are two points worth noting about Richardson-Lucy algorithms. Firstly, there is no constraint on how many iterations are required for convergence to a stable answer. Therefore, there is no specific rule to know when to stop iterating. Experience with Richardson-Lucy techniques shows that ~ 10 iterations are generally required (eg. Lucy, 1994). Secondly, this method assumes that the function $\psi(t) \geq 0$. This is not always the case for our function $\xi(r)$. However, this is not too worrying as $\xi(r)$ is only likely to go negative on large scales when it is very near zero, this is where our inversion process will be least believable anyway (see section 5.4.3): Also, Baugh \& Efstathiou (1993) and Baugh (1996) have applied similar inversion techniques to the angular correlation function to estimate the power spectrum (always positive) and real space correlation function (negative tail) and find very consistent results.

5.4.3. Testing the Methods of Inversion - Fake Data

These two methods of inversion are tested by making a "fake" data set. Consider a pure power law of $\xi(r)=(6.0 / r)^{1.7}$ in the region $[0.1,100.0] h^{-1} \mathrm{Mpc}$ (adding noise later). $\xi(\sigma, \pi)$ is first produced using this power law, where $r=\sqrt{\sigma^{2}+\pi^{2}}$, and then the integral of equation 5.4 is carried out to give $w_{v}(\sigma)$. This $w_{v}(\sigma)$ is then inverted using the two techniques to give an estimate of the initial $\xi(r) . \Delta \lg =0.1$ bins are chosen for r, σ and π and therefore there are 30 bins of $w_{v}(\sigma)$ to invert in this case.

Figure 5.12 shows the results of equation 5.11 and equations $5.19 \& 5.20$ on this pure power law. The Richardson-Lucy method converges after only a few iterations (independent of the initial guess for $\xi(r)$) and is stable thereafter. It can be seen that both methods can reproduce the original $\xi(r)$ very well in the region $[1.0, \sim$ $40] h^{-1} \mathrm{Mpc}$. In this region the Abel equation method gives an answer which is systematically $\sim 6 \%$ too low and the Richardson-Lucy method is systematically $\sim 12 \%$ too low. These are probably due to the finite binning which is used. As will be seen in section 5.4.5 these systematics are acceptable compared to the other uncertainties present in the actual data set.

On the very small and the very large scales. both methods underestimate the actual power law (apart from the Richardson-Lucy method on large scales which overestimates the power law). This is simply due to the small and large scale cut-offs used in the power law and hence the summations of equations $5.11 ; 5.19$ and 5.20 . Although it is not actually shown, the region of the power law was increased by an order of magnitude in either direction to $[0.01,1000.0] h^{-1} \mathrm{Mpc}$ and a reliable inversion was then obtained in the $[0.1, \sim 400] h^{-1} \mathrm{Mpc}$ range.

Obviously the actual data has uncertainties in it and noise is now added to $\xi(\sigma, \pi)$

Figure 5.12: Testing the methods of inverting $w_{v}(\sigma)$ to give $\xi(r)$ using a pure power law model.
in an attempt to model this. The noise model is quite simple, $\xi(\sigma, \pi)$ is calculated using the power law for $\xi(r)$ as before, numbers from a gaussian distribution with zero mean and a standard deviation dependent on r are selected and then added to $\xi(\sigma, \pi)$. The results from the SCDM mock catalogues give indicative values of the dependence of these standard deviations with r, for example $r \in[1.0,3.5] h^{-1} \mathrm{Mpc}$ \Rightarrow s.d. $\simeq 1$.

Figure 5.13 shows the results of the inversions on this noisy power law. It can be seen that the method which best reproduces the original power law is the RichardsonLucy technique when stopped after 10 iterations. The direct inversion using Abel's equation is very noisy but does get the general form correct. A similar comment can be made if the Richardson-Lucy iterations are allowed to continue further. Therefore, 10 iterations are found to give a reasonable compromise between convergence to the large scale features and overfitting the small scale noise.

As a final test on "fake" data a two power law model is inverted. Figures 5.14 and 5.15 show the results from the inversions of $\xi(r)$ without and with noise, respectively. The model power laws are $(6.0 / r)^{1.7}$ for $r<10 h^{-1} \mathrm{Mpc}$ and $(7.62 / r)^{3.2}$ for $r>10 h^{-1} \mathrm{Mpc}$. The noise was generated exactly as above. It can be seen that both methods can easily deal with this input $\xi(r)$ in the case of no noise. When noise is added the general power law features are reproduced out to $\sim 10-20 h^{-1} \mathrm{Mpc}$. The Richardson-Lucy method after 10 iterations again gives the smoothest and most accurate answer, reliable to at least $20 h^{-1} \mathrm{Mpc}$.

Some general comments can be made about the results from these different inversion techniques. The finite binning scheme used here (for approximating integrals with summations) appears to lower the inverted answer by $5-10 \%$ from the real answer. This is not thought to be a major problem. As the direct Abel inversion process is a point by point method the noise in the original $w_{v}(\sigma)$ will also be inverted. This effect is clearly seen in figures 5.13 and 5.15 where the Abel method is arguably the most noisy inversion process. These figures also show that the Richardson-Lucy method produces the most accurate inversion after 10 iterations. Letting the iteration continue gives a worse answer as the inversion process converges to the noise in the data, eg. 20 iterations. Although not shown the Richardson-Lucy method was allowed to continue until ~ 100 iterations with the result that the inversion process does not appear to become unstable. This is interesting because after a large number of iterates Richardson-Lucy answers usually "flip" from one permitted solution to another because of the freedom allowed due to the noise. This does not appear to be the case here. This is probably due to the large bin size used in the summations (ie. the small number of bins) which restricts the number of permitted solutions. In conclusion, the Richardson-Lucy method produces the best inversion, generally taking ~ 10 iterations to converge. However, this method only produces estimates of $\xi(r)$ at half the number of original bins unless some sort of interpolation of $w_{v}(\sigma)$ is carried out.

Figure 5.13: Testing the methods of inverting $w_{v}(\sigma)$ to give $\xi(r)$ using a noisy power law model.

Figure 5.14: Testing the methods of inverting $w_{v}(\sigma)$ to give $\xi(r)$ using a pure two power law model.

Figure 5.15: Testing the methods of inverting $w_{v}(\sigma)$ to give $\xi(r)$ using a noisy two power law model.

5.4.4 Testing the Methods of Inversion - SCDM Mock Catalogues

These inversion techniques are also tested on the SCDM mock catalogues which should have similar uncertainties in them as the Durham/UKST survey. Figures 5.16 and 5.17 show the mean and 1σ error on the recovered $\xi(r)$ using equation 5.11 (direct Abel method) and equations $5.19 \& 5.20$ (Richardson-Lucy iteration), respectively, with a $\pi_{\text {cut }}$ of $20 h^{-1} \mathrm{Mpc}$. These results are insensitive to raising the value of $\pi_{\text {cut }}$ given that the SCDM model does not have any power above $\sim 20 h^{-1} \mathrm{Mpc}$. The error bars assume that each SCDM mock catalogue is statistically independent. Both unweighted and weighted estimators are shown. In figure 5.17 circles show the results after 10 iterations, triangles denote 20 iterations, although error bars are only given on the former. The solid line is the result of the average $\xi(r)$ from the full N -body SCDM simulations as estimated in section 4.5.1.

For the direct Abel method both unweighted and weighted estimates reproduce the original $\xi(r)$ out to $\sim 20 h^{-1} \mathrm{Mpc}$, with the weighted estimate being arguably the more noisier. However, both estimates become noisy and overestimate $\xi(r)$ on $>30 h^{-1} \mathrm{Mpc}$ scales and therefore the method cannot be trusted in this region.

For the Richardson-Lucy iteration both unweighted and weighted estimates reproduce the original $\xi(r)$ out to $\sim 30 h^{-1} \mathrm{Mpc}$ and this is the scale out to which the inversion process in believable. In general, the error bars are smaller for this method than for the direct Abel inversion. However, this is offset by only having an estimate at half the number of points. As mentioned previously one could interpolate or fit a specific functional form to $w_{v}(\sigma)$ and then invert this given that one could estimate it at many points. This is not attempted here given the size of the error bars in $w_{v}(\sigma)$ and the fact that this is a merely an initial attempt of this inversion technique.

Finally, one should note that the weighted and unweighted estimates agree within 1σ with no systematic bias seen. This agrees with what was previously found in section 5.3.3 and is because this bias (probably integral constraint) was small for the SCDM mock catalogues of chapter 4.

5.4.5 Applying the Methods of Inversion to the Durham/UKST Survey

The real space estimates of $\xi(r)$ for the Durham/UKST survey are now presented using these two methods of inversion. Figures 5.18 and 5.19 show $\xi(r)$ as evaluated from equation 5.11 (direct Abel method) and equation 5.20 (Richardson-Lucy iteration), respectively, with a $\dot{\pi}_{c u t}$ of $30 h^{-1} \mathrm{Mpc}$. The Richardson-Lucy process is stopped after 10 iterations although the answer does not change a great deal with further iteration. Figure 5.20 gives a comparison of the $w_{v}(\sigma)$ evaluated from equation 5.19 (Richardson-Lucy iteration) with the original $w_{v}(\sigma)$ in figure 5.10. The

Figure 5.16: $\xi(r)$ as evaluated via direct Abel inversion from the SCDM mock catalogues.

Figure 5.17: $\xi(r)$ as evaluated via Richardson-Lucy iteration from the SCDM mock catalogues.

Weighting	$\pi_{c u t}\left(h^{-1} \mathrm{Mpc}\right)$	N	χ^{2}.	Prob.	$r_{0}\left(h^{-1} \mathrm{Mpc}\right)$	γ
N	20	17	9.27	0.900	3.2 ± 0.2	1.80 ± 0.12
	30	17	12.33	0.726	3.2 ± 0.3	1.79 ± 0.10
	40	17	28.13	0.031	3.3 ± 0.3	1.77 ± 0.10
Y	20	16	8.21	0.916	4.5 ± 0.9	1.7 ± 0.4
	30	16	8.02	0.924	4.8 ± 0.5	1.6 ± 0.3
	40	16	10.67	0.787	5.6 ± 0.9	1.5 ± 0.2

Table 5:5. Minimum χ^{2} fits to à power law model for the Durham/UKST $\xi(r)$.

Weighting.	$\pi_{\text {cut }}\left(h^{-1} \mathrm{Mpc}\right)$	N	χ^{2}	Prob.	$r_{0}\left(h^{-1} \mathrm{Mpc}\right)$	γ
N	20	9	1.48	0.993	3.1 ± 0.3	1.70 ± 0.12
	30	9	1.73	0.988	3.0 ± 0.5	1.74 ± 0.15
	40	9	14.22	0.083	2.6 ± 0.6	1.72 ± 0.23
	20	9	12.12	0.151	4.1 ± 0.4	1.72 ± 0.10
	30	9	2.09	0.978	4.6 ± 0.6	1.61 ± 0.12
	40	9	4.22	0.839	4.2 ± 0.6	1.64 ± 0.12

Table 5.6: Minimum χ^{2} fits to a power law model for the Durham/UKST $\xi(r)$.
error bars come from splitting the survey into 4 roughly equal quadrants and assuming that each quadrant provides an independent estimate of the correlation function. Table 5.5 shows the results and individual 1σ errors in each parameter from minimum χ^{2} power law fits to the Abel inverted $\xi(r)$ in the $\sim 0.1-17 h^{-1} \mathrm{Mpc}$ region using these error bars and the $\Delta \chi^{2}=1$ contour. Table 5.6 shows the corresponding results for the Richardson-Lucy inverted $\xi(r)$. The solid lines on figures 5.18 and 5.19 are the best fits to the weighted and unweighted estimates with a $\pi_{c u t}$ of $30 h^{-1} \mathrm{Mpc}$. Note that for the weighted Abel inverted. $\xi(r)$ the negative point at $r \sim 4.5 h^{-1} \mathrm{Mpc}$ has been deleted in the minimum χ^{2} fit. If included this point can bias the estimated value of \dot{r}_{0} low by $2-3 \sigma!$ Also, a word of caution is sounded about the significance levels of these χ^{2} fits due to the non-independent nature of these points.

Comparing tables 5.5 and 5.6 shows that the two different methods of inversion produce consistent results. However, the effect of using an unweighted estimate again causes a lower value of r_{0} to be estimated. This is in agreement with the results of section 5.3.4. Also, it can be seen that the value of $\pi_{\text {cut }}$ does not significantly alter these minumum χ^{2} fits, again consistent with section 5.3.4. The Richardson-Lucy method gives a slightly smoother $\xi(r)$ than the direct Abel method. This may have been expected given that the iteration was (hopefully) stopped before convergence to the small scale noise occurs. The Abel method, because it is a point by point inversion, does appear to suffer from this problem. The unweighted $\xi(r)$ is consistent with a power law with $r_{0} \simeq 3.1 h^{-1} \mathrm{Mpc}$ and $\gamma \simeq 1.75$, whereas the weighted $\xi(r)$ has $r_{0} \simeq 4.6 h^{-1} \mathrm{Mpc}$ and $\gamma \simeq 1.6$. Given that chapter 4 showed that the weighted estimate does not suffer from any systematic bias this estimate of $\xi(r)$ is preferred here. Finally, figure 5.20 shows that the original $w_{v}(\sigma)$'s are well reproduced by the inverted $\xi(r)$'s. Error bars on this figure come from the quadrants of the survey.

Figure 5.18: $\xi(r)$ as evaluated via direct Abel inversion of an integral equation involving $w_{v}(\sigma)$ for the Durham/UKST survey with $\pi_{c u t}=30 h^{-1} \mathrm{Mpc}$.

Figure 5.19: $\xi(r)$ as evaluated via Richardson-Lucy iterative inversion of an integral equation involving $w_{v}(\sigma)$ for the Durham/UKST survey with $\pi_{\text {cut }}=30 h^{-1} \mathrm{Mpc}$.

Figure 5.20: The predicted $w_{v}(\sigma)$ from the Richardson-Lucy inversion for the Durham/UKST survey with $\pi_{\text {cut }}=30 h^{-1} \mathrm{Mpc}$. The solid lines are the measured $w_{v}(\sigma)$'s from figure 5.10 , while the points are the $w_{v}(\sigma)$'s calculated from the inverted $\xi(r)$.

5.5 Discussion

In an effort to determine the best estimate of the redshift space correlation function the weighted estimates of $\xi(s)$ from figure 5.3 for the Durham/UKST survey, the APM-Stromlo survey (Loveday et al. 1992a) and the Las Campanas survey (Tucker et al. 1995) are combined. Similarly, the real space correlation functions of these surveys have also been combined (Loveday et al. 1995b and Lin et al. 1995a) using the weighted Abel inversions of $\xi(r)$ (from equation 5.11). Figure 5.21 shows these real and redshift space correlation functions. The plotted points are an error weighted mean of the 3 surveys and the error bars themselves assume that each survey provides a statistically independent estimate of ξ. The thick solid line is the real space $\xi(r)$ estimated from inversion of the APM $w(\theta)$ by Baugh (1996). The thin lines drawn are not formal fits to the data but are merely shown to guide the eye.

The real space $\xi(r)$ appears well modelled by an almost featureless single power law in the $\sim 0.5-25 h^{-1} \mathrm{Mpc}$ regime, with approximate parameters $r_{0} \simeq 5.0 h^{-1} \mathrm{Mpc}$ and $\gamma \simeq 1.8$. The high point seen at $\sim 30 h^{-1} \mathrm{Mpc}$ is in the region where it was previously shown that the Abel inversion technique overestimates ξ (see figure 5.16) and therefore this point is not to be trusted. This estimate of $\xi(r)$ agrees quite well with one inverted from the APM $w(\theta)$ by Baugh (1996). However, Baugh's (1996) $\xi(r)$ has a slight "shoulder" feature on $5-25 h^{-1} \mathrm{Mpc}$ scales which is not immediately apparent in the data presented here.

The redshift space $\xi(s)$ can be approximated by a single power law but appears better modelled with two power taws. The regime where $\xi(s)$ appears to change shape is $4-7 h^{-1} \mathrm{Mpc}$, namely where $\xi \sim 1$. Below these scales the slope is considerably flatter, while on larger scales it is similar to that found in real space.

One can make a few comments about the relative shapes of the real and redshift space correlation functions. Firstly, $\xi(s)$ appears flattened below $\xi(r)$ on scales $\leq 3 h^{-1} \mathrm{Mpc}$, altering both the slope and amplitude of ξ. Secondly, on scales $\geq 6 h^{-1} \mathrm{Mpc}, \xi(s)$ appears enhanced over $\xi(r)$ but only the amplitude is altered while the slope remains the same. Thirdly, there is no compelling evidence of the "shoulder" feature seen in $\xi(s)$ by Shanks et al. (1983) and Shanks et al. (1989) on scales $2-7 h^{-1} \mathrm{Mpc}$, although this is the regime where $\xi(s)$ appears to change shape. Similarly, the slight "shoulder" seen in Baugh's (1996) $\xi(r)$ does not appear to be reproduced, although it does cross the 1σ error bars on the $\xi(r)$ presented here. Finally, this enhancement on larger scales is very pleasing to see as such an effect was predicted from linear theory (Kaiser, 1987) and will be used in chapter 6 to measure $\Omega^{0.6} / b$.

Figure 5.21: The best estimates of the real and redshift space correlation functions as combined from the Durham/UKST, the APM-Stromlo and the Las Campanas galaxy redshift surveys to produce an error weighted mean.

5.6 Conclusions

The redshift space 2-point correlation function, $\xi(s)$, has been estimated from the Durham/UKST galaxy redshift survey and agrees well with other optical estimates of $\xi(s)$ on both small ($<10 h^{-1} \mathrm{Mpc}$) and large ($>10 h^{-1} \mathrm{Mpc}$) scales. In comparsion with two models of structure formation in the Universe, namely SCDM and LCDM, the agreement is also good on small scales. However, on large scales the Durham/UKST survey $\xi(s)$ shows a significant detection of large scale power above and beyond that of SCDM. The LCDM model is more consistent with the data but still produces too little large scale power at the $1-2 \sigma$ level. Also, systematic errors do not appear to dominate the estimate of $\xi(s)$ from the Durham/UKST survey and cannot account for the systematic difference seen between the weighted and unweighted estimates which is probably a combination of statistics and a possible systematic bias in the unweighted estimate, thought to be the integral constraint, see chapter 4.

The projected correlation function, $w_{v}(\sigma)$, has been estimated from the Durham/ UKST galaxy redshift survey. Using a power law model for the real space correlation function, $\xi(r)$, the best fit amplitude $r_{o}^{\dot{o}}=5.1 \pm 0.3 h^{-1} \mathrm{Mpc}$ and slope $\gamma=1.59 \pm 0.09$ are found. These values are consistent with those estimated from other optical surveys. A method of estimating $\xi(r)$ from $w_{v}(\sigma)$ using an application of the Richardson-Lucy inversion technique is developed and then tested. This method (and another) are then applied to the Durham/UKST survey to give consistent results to the above $\xi(r)$.

Finally, the real and redshift space correlation functions are combined from the Durham/UKST, APM-Stromlo and Las Campanas galaxy redshift surveys. This shows that $\xi(r)$ appears to have the shape of a single power law, while $\xi(s)$ is better modelled by two power laws. $\xi(s)$ is flattened with respect to $\xi(r)$ on scales $\leq 3 h^{-1} \mathrm{Mpc}$ yet has a similar slope and higher amplitude on scales $\geq 6 h^{-1} \mathrm{Mpc}$.

Chapter 6

Redshift Space Distortions via the 2-Point Correlation Function

6.1 Introduction

Chapter 5 concentrated on the redshift space correlation function, $\xi(s)$, and methods of estimating the real space correlation function, $\xi(r)$, from the projected correlation function, $w_{v}(\sigma)$. This projected correlation function was estimated from the correlation function perpendicular and parallel to the line of sight, $\xi(\sigma, \pi)$, which is affected by the peculiar velocities of galaxies. In this chapter these redshift space distortions are used to estimate some important cosmological parameters.

Throughout this chapter a slightly naive approach is taken in that the analysis is segregated to the non-linear and linear regimes, namely the small and large scales, respectively. The transition between the linear and non-linear regimes can be traced (using numerical simulations) and the accuracy of the modelling determined. It may be better to model simultaneously both regimes at the same time but in this first analysis the simpler approach is taken.

The format of the chapter is as follows. The estimates of $\xi(\sigma, \pi)$ for the Durham/ UKST galaxy redshift survey (which were used in chapter 5) are formally presented. These are followed by the analysis of $\xi(\sigma, \pi)$ in the non-linear regime where an estimate of the 1-D pairwise velocity dispersion of galaxies is found. Finally, the analysis of $\xi(\sigma, \pi)$ in the linear regime is shown. This is where the quantity $\beta \simeq$ $\Omega^{0.6} / b$ is estimated, where Ω is the mean mass density of the Universe and b is the linear bias factor relating the matter and galaxy distributions. The chapter ends with the main conclusions from this analysis of the Durham/UKST survey.

6.2 Method of Calculation

$\xi(\sigma, \pi)$ is estimated as follows. A random catalogue is distributed exactly as for the previous estimates of ξ, see chapters 4 and 5 . Then the $D D, D R$ and $R R$ pair counts are calculated with and without a weighting. However, binning is now done as a function of two variables, σ and π, perpendicular and parallel to the line of sight, respectively. These two variables were shown in the schematic diagram of figure 5.7 and are now mathematically defined. The line of sight unit vector, $\overrightarrow{\hat{n}}$, is defined by the bisector of the angular separation of the i 'th and j 'th points on the sky, θ, and the vector of pair separation, $\overrightarrow{\mathbf{s}}$, where

$$
\begin{align*}
\cos \theta & =\frac{\overrightarrow{\mathbf{r}}_{i} \cdot \overrightarrow{\mathbf{r}}_{j}}{r_{i} r_{j}} \tag{6.1}\\
\overrightarrow{\mathbf{s}} & =\overrightarrow{\mathbf{r}}_{i}-\overrightarrow{\mathbf{r}}_{j} \tag{6.2}
\end{align*}
$$

and $\overrightarrow{\mathbf{r}}_{i}$ and $\overrightarrow{\mathbf{r}}_{j}$ are the position vectors of the i 'th and j 'th points respectively. π and σ are then naturally defined as the components of $\overrightarrow{\mathbf{s}}$ parallel and perpendicular to $\overrightarrow{\hat{\mathbf{n}}}$

$$
\begin{align*}
\pi & =\left|\overrightarrow{\mathbf{r}}_{i} \cdot \overrightarrow{\hat{\mathbf{n}}}-\overrightarrow{\mathbf{r}}_{j} \cdot \overrightarrow{\mathbf{n}}\right| \tag{6.3}\\
\sigma & =\sqrt{r_{i}^{2}-\left(\overrightarrow{\mathbf{r}}_{i} \cdot \overrightarrow{\hat{\mathbf{n}}}\right)^{2}}+\sqrt{r_{j}^{2}-\left(\overrightarrow{\mathbf{r}}_{j} \cdot \overrightarrow{\hat{\mathbf{n}})^{2}}\right.} \tag{6.4}
\end{align*}
$$

The result is a 2-dimensional array in $D D, D R$ and $R R$ and ξ is then calculated using the estimator of Hamilton (1993). The results of $\xi(\sigma, \pi)$ are relatively insensitive to the specific definitions of σ and π used. Very similar results are found when one uses the definitions of Fisher et al. (1994). Even the small angle approximations of σ and π (eg. Hale-Sutton, 1990) give reasonably consistent results for $\xi(\sigma, \pi)$.

6.3 Results from the Durham/UKST Galaxy Redshift Survey

Figures 6.1 and 6.2 show contour plots of constant ξ as a function of σ and π without and with a weighting, respectively. The bin sizes are $0.2 d e x$ in pair separation and no smoothing has been applied. Solid contours are for $\xi>1$ and have $\Delta \xi=1.0$, dotted contours are for $0<\xi<1$ and have $\Delta \xi=0.1$ and dashed contours are for $\xi<0$ and have $\Delta \xi=0.1$. For clarity, the two contours in bold denote $\xi=1$ and $\xi=0$ and to help the eye determine the significance of the elongation/compression of the ξ contours, an isotropic model of ξ is plotted as the 4 smooth curves. These two figures show the larger scale features more clearly than the smaller scale ones. Therefore, as a visual aid, figure 6.1 is recalculated with linear binning. This is shown in figure 6.3 where the contours are the same as in figure 6.1 but $0.5 h^{-1} \mathrm{Mpc}$ bins are used. Again, no smoothing has been applied.

It is seen that the unweighted estimate is biased low with respect to the weighted estimate. This is very similar to what was seen in chapter 5 . The shape of the

Figure 6.1: $\xi(\sigma, \pi)$ evaluated from the Durham/UKST survey using an unweighted estimator on a $\log -\log$ plot.

Figure 6.2: $\xi(\sigma, \pi)$ evaluated from the Durham/UKST survey using a weighted estimator on a $\log -\log$ plot.

Figure 6.3: $\xi(\sigma, \pi)$ evaluated from the Durham/UKST survey using an unweighted estimator on a linear-linear plot.
contours are important because in real space they should be circles centered on the origin but in redshift space galaxy peculiar velocities distort their shape. On very small scales ($\leq 2 h^{-1} \mathrm{Mpc}$) the contours are elongated along the line of sight direction (π). This is due to the rms velocity dispersion of galaxies in virialised regions such as clusters and is the well known "finger of God" effect (eg. Peebles, 1980). On larger scales ($>7 h^{-1} \mathrm{Mpc}$) the contours are compressed along the line of sight direction (π). This is due to infall (outfall) of galaxies into overdense (underdense) regions. As will be shown in sections 6.5 and 6.6 these two effects can be used to imply information about the dynamics of the Universe.

Viewing these figures by eye gives the impression that the unweighted estimate has less noise associated with it than the weighted one. This is confusing as the weighting used was supposed to produce the minumum variance in ξ. It is possible that the $w=1 /\left(1+4 \pi \bar{n} S(x) J_{3}(s)\right)$ weighting is no longer optimal in terms of producing the minimum variance in ξ. Basically, in $\xi(s)$ the s variable defines bins which are spherical shells and the above weighting is optimal in this case (eg. Efstathiou, 1988 or Loveday et al. 1995b). However, in $\xi(\sigma, \pi)$ the σ and π variables define bins which are cylindrical shells and this change in geometrical shape could imply that the above weighting is no longer optimal. However, despite the visual impression which favours the unweighted estimate of $\xi(\sigma, \pi)$, the weighted estimate is again preferred (similar to chapters 4 and 5) because this estimate does not suffer from the systematic bias which lowers the unweighted estimate.

6.4 Comparison with the CDM Simulations

6.4.1 The N-Body Simulations

ξ was calculated from the SCDM \& LCDM simulations (as described in chapters 4 and 5) assuming the distant observer approximation, namely that the N -body cube was at a large distance away from the observer such that the line of sight direction can simply be assumed to be the z-direction. Binning was then done in the σ and π variables which (in the distant observer approximation) define cylindrical shells in $\sqrt{x^{2}+y^{2}}$ and z, respectively.

Figure 6.4 shows the mean contour plot of constant ξ as a function of σ and π for the 9 full SCDM N-body simulations. It is clear that the small scale ($\pi<10 h^{-1} \mathrm{Mpc}$) rms velocity dispersion dominates the whole plot, elongating the contours drastically in the π direction. This elongation is seen even on large scales ($\pi>10 h^{-1} \mathrm{Mpc}$) where it was hoped that the compression in the π direction from dynamical infall would be prominent. The $\xi=1$ contour cuts the σ axis between $4.5-5.0 h^{-1} \mathrm{Mpc}$ which agrees well with the real space amplitude for these simulations $\left(5.0 h^{-1} \mathrm{Mpc}\right)$.

Figure 6.5 shows a similar plot for the 5 full LCDM N-body simulations. Even in these simulations the small scale ($\pi<10 h^{-1} \mathrm{Mpc}$) rms velocity dispersion is significant although less so than for the SCDM simulations. There is possible evidence

Figure 6.4: The mean $\xi(\sigma, \pi)$ evaluated from the 9 full SCDM N -body simulations on a $\log -\log$ plot.

Figure 6.5: The mean $\xi(\sigma, \pi)$ evaluated from the 5 full LCDM N-body simulations on a $\log -\log$ plot.
of a compression in the π direction near $\pi \sim 20 h^{-1} \mathrm{Mpc}$, this will be investigated in section 6.6. The extra large scale power in this model can be seen as the $\xi=1$ contour now cuts the σ axis at $\sim 6.5 h^{-1} \mathrm{Mpc}$. Again this agrees well with the real space amplitude for these simulations $\left(6.0 h^{-1} \mathrm{Mpc}\right)$.

6.4.2 The Mock Catalogues

ξ was calculated from these mock catalogues in exactly the same way as the Durham/ UKST data (as outlined in section 6.2). Only one example of $\xi(\sigma, \pi)$ from the set of SCDM/LCDM mock catalogues is shown so that a direct comparison of the relative noise levels in the mock catalogues and Durham/UKST survey can be made.

Figures 6.6 and 6.7 show the contour plots of constant ξ as functions of σ and π for the first mock catalogue drawn from the SCDM simulations with ξ calculated without and with a weighting, respectively. Comparison with figure 6.4 shows that the mock catalogues do reproduce the same features seen in the $\xi(\sigma, \pi)$ from the SCDM simulations. The noise levels are similar to those seen in the Durham/UKST data for both plots with the weighted estimate being slightly worse, see section 6.3 for a possible explanation. The systematic bias which lowers the unweighted estimate on large scales is not immediately apparent in figure 6.6. This is because the bias in these mock catalogues was quite small, ~ 0.03 in ξ, and should only really be added for an ensemble of surveys, not just the one shown here.

Figures 6.8 and 6.9 show the corresponding plots for the first mock catalogue drawn from the LCDM simulations. One can make similar qualitative statements (to those for the SCDM mock catalogues) regarding the noise levels in $\xi(\sigma, \pi)$, the systematic bias seen in the unweighted estimate and the ability of the mock catalogues to reproduce the same features as the simulations.

6.5 Non-linear Effects - Small Scales

6.5.1 Modelling the Pairwise Velocity Dispersion

Following the modelling of Peebles (1980) define $\overrightarrow{\mathbf{v}}$ to be the peculiar velocity of a galaxy above the Hubble flow, therefore $\overrightarrow{\mathbf{w}}=\overrightarrow{\mathrm{v}}_{i}-\overrightarrow{\mathrm{v}}_{j}$ is the peculiar velocity difference of two galaxies separated by a vector $\overrightarrow{\mathbf{r}}$. Now let $g(\overrightarrow{\mathbf{r}}, \overrightarrow{\mathbf{w}})$ be the distribution function of $\overrightarrow{\mathbf{w}}$. The correlation function in real space is convolved with this distribution function to give the redshift correlation function in σ and π space

$$
\begin{equation*}
1+\xi(\sigma, \pi)=\int[1+\xi(r)] g(\overrightarrow{\mathbf{r}}, \overrightarrow{\mathbf{w}}) d^{3} w \tag{6.5}
\end{equation*}
$$

where

$$
\begin{equation*}
r^{2}=\sigma^{2}+r_{z}^{2} \quad, \quad r_{z}=\pi-\frac{w_{z}}{H_{0}} \tag{6.6}
\end{equation*}
$$

Figure 6.6: $\xi(\sigma, \pi)$ evaluated using an unweighted estimate from the first mock catalogue selected from the SCDM simulations on a log-log plot.

Figure 6.7: $\xi(\sigma, \pi)$ evaluated using a weighted estimate from the first mock catalogue selected from the SCDM simulations on a $\log -\log$ plot.

Figure 6.8: $\xi(\sigma, \pi)$ evaluated using an unweighted estimate from the first mock catalogue selected from the LCDM simulations on a log-log plot.

Figure 6.9: $\xi(\sigma, \pi)$ evaluated using a weighted estimate from the first mock catalogue selected from the LCDM simulations on a log-log plot.
and w_{z} is the component of $\overrightarrow{\mathbf{w}}$ parallel to the line of sight, which for simplicity is called the z direction. Note that $(1+\xi)$ is convolved (and not simply ξ) because it is the data pair counts that are actually altered by the convolution and this transfers itself to ξ since $D D \sim(1+\xi)$. It is common to assume that g is a slowly varing function of $\overrightarrow{\mathbf{r}}$ such that $g(\overrightarrow{\mathbf{r}}, \overrightarrow{\mathbf{w}})=g(\overrightarrow{\mathbf{w}})$ and therefore it is possible to make the approximation

$$
\begin{equation*}
\int d w_{x} \int d w_{y} g(\overrightarrow{\mathbf{w}})=f\left(w_{z}\right) \tag{6.7}
\end{equation*}
$$

Equation 6.5 then becomes

$$
\begin{equation*}
1+\xi(\sigma, \pi)=\int[1+\xi(r)] f\left(w_{z}\right) d w_{z} \tag{6.8}
\end{equation*}
$$

which further reduces to

$$
\begin{equation*}
\xi(\sigma, \pi)=\int_{-\infty}^{\infty} \xi(r) f\left(w_{z}\right) d w_{z} \tag{6.9}
\end{equation*}
$$

when the normalisation of $f\left(\ddot{w}_{z}\right)$ is considered, namely that $\int f\left(w_{z}\right) d w_{z}=1$. If it is considered necessary to include a streaming model which describes the relative bulk motion of galaxies towards (or away from) each other then this can be incorporated as follows

$$
\begin{equation*}
g(\overrightarrow{\mathbf{r}}, \overrightarrow{\mathbf{w}})=g(\overrightarrow{\mathbf{w}}-\hat{\mathbf{r}} v(r)) \tag{6.10}
\end{equation*}
$$

where $v(r)$ is the streaming model in question. In equation 6.7 this implies

$$
\begin{equation*}
\int d w_{x} \int d w_{y} g(\overrightarrow{\mathbf{w}}-\hat{\mathbf{r}} v(r))=f\left(w_{z}-v\left(r_{z}\right)\right) \tag{6.11}
\end{equation*}
$$

and equation 6.5 then becomes

$$
\begin{align*}
1+\xi(\sigma, \pi) & =\int[1+\xi(r)] f\left(w_{z}-v\left(r_{z}\right)\right) d w_{z} \tag{6.12}\\
\therefore & =\int_{-\infty}^{\infty}\left[1+\xi\left(\sqrt{\sigma^{2}+r_{z}^{2}}\right)\right] f\left[w_{z}-v\left(r_{z}\right)\right] d w_{z} \tag{6.13}
\end{align*}
$$

where again

$$
\begin{equation*}
r_{z}=\left(\pi-\frac{w_{z}}{H_{0}}\right) \tag{6.14}
\end{equation*}
$$

Obviously, models for the real space 2 -point correlation function, $\xi(r)$, the distribution function, $f\left(w_{z}\right)$, and the streaming motion, $v\left(r_{z}\right)$, are required. The real space 2-point correlation function is simply modelled by a power law (similar to chapters 4 and 5)

$$
\begin{equation*}
\xi(r)=\left(\frac{r_{0}}{r}\right)^{\gamma} \tag{6.15}
\end{equation*}
$$

and in chapter 5 this was shown to be accurate out to $\sim 20 h^{-1} \mathrm{Mpc}$. For the distribution function one could assume two possible models which could be used to describe the galaxy velocity dispersion, namely an exponential

$$
\begin{equation*}
f\left(w_{z}\right)=\frac{1}{\sqrt{2}\left\langle w_{z}^{2}\right\rangle^{\frac{1}{2}}} \exp \left[-\sqrt{2} \frac{\left|w_{z}\right|}{\left\langle w_{z}^{2}\right\rangle^{\frac{1}{2}}}\right] \tag{6.16}
\end{equation*}
$$

or a Gaussian

$$
\begin{equation*}
f\left(w_{z}\right)=\frac{1}{\sqrt{2 \pi}\left\langle w_{z}^{2}\right\rangle^{\frac{1}{2}}} \exp \left[-\frac{1}{2} \frac{\left|w_{z}\right|^{2}}{\left\langle w_{z}^{2}\right\rangle}\right] \tag{6.17}
\end{equation*}
$$

where $\left\langle w_{z}^{2}\right\rangle^{\frac{1}{2}}$. is the rms pairwise velocity dispersion, namely the second moment of the distribution function $f\left(w_{z}^{i}\right)$

$$
\begin{equation*}
\left\langle w_{z}^{2}\right\rangle=\int_{-\infty}^{\infty} f\left(w_{z}\right) w_{z}^{2} d w_{z} . \tag{6.18}
\end{equation*}
$$

N-body simulations done by Efstathiou et al. (1988b) show that for a wide set of initial conditions $f\left(w_{z}\right) \sim \exp \left(-\alpha\left|w_{z}\right|^{3 / 2}\right)$ gives a good fit to this distribution function and so either the exponential or the gaussian model seem realistic. One might expect a good streaming motion model to depend on the clustering, biasing and the mean mass density of the Universe. The infall model of Bean et al. (1983) takes the maximal approach by assuming $\Omega=1$ and $b=1$ and uses the second BBGKY equation (eg. Peebles, 1980) to give

$$
\begin{equation*}
v\left(r_{z}\right)=-H_{0} r_{z}\left[\frac{\xi\left(r_{z}\right)}{1+\xi\left(r_{z}\right)}\right] \tag{6.19}
\end{equation*}
$$

6.5.2 Testing the Method with the CDM Simulations

Before testing the modelling of section 6.5 .1 it would be advantageous to know the answers one is trying to reproduce. The 2-point correlation functions of these CDM simulations have already been calculated in chapter 4 and therefore need no more description here. The value of $\left\langle w_{z}^{2}\right\rangle^{\frac{1}{2}}$ for these 2 CDM simulations is now estimated directly from the N-body cubes. Using the SCDM/LCDM subsamples of section 4.5.1 the rms (1- \dot{D}) difference in peculiar velocities of galaxies is calculated as a function of real space separation r. Figure 6.10 shows the results of the 1-D galaxy pairwise velocity dispersion obtained from averaging over the 9 and 5 simulations of SCDM and LCDM, respectively: It can be seen that $\left\langle w_{z}^{2}\right\rangle^{\frac{1}{2}} \simeq 950$ and $750 \mathrm{kms}^{-1}$ for the SCDM and LCDM simulations, respectively, on scales $\sim 1 h^{-1} \mathrm{Mpc}$.

Section 6.5.1 showed that there are 3 parameters which can be estimated in trying to fit these models to the non-linear effects. It is not sensible to try to fit all 3 parameters simultaneously and it is found that the results of the fitting process are insensitive to the value of γ chosen, provided a realistic value is used. In this case (for the CDM simulations) $\gamma=2.2$. Also, when considering the streaming model a value of $r_{0}=5.0-6.0 h^{-1} \mathrm{Mpc}$ is assumed in the ξ used to estimate $v\left(r_{z}\right)$, again the fits are relatively insensitive to the value used. At this stage one might think of using the γ and r_{0} estimated from chapter 4 but in practice the results differ little when this is done. The fitting of the other two parameters, $\left\langle w_{z}^{2}\right\rangle^{\frac{1}{2}}$ and r_{0}, is done by calculating the minimum value of an approximate χ^{2} statistic using the standard deviation seen in the ξ 's in the N-body simulations. 40 points in π are fit from

Figure 6.10: The 1-D galaxy pairwise velocity dispersion, $\left\langle w_{z}^{2}\right\rangle^{\frac{1}{2}}$, as a function of real space separation, r, for the SCDM and LCDM simulations.
$0-20 h^{-1} \mathrm{Mpc}$ in linear bins of width $0.5 h^{-1} \mathrm{Mpc}$ for four different values of σ. Once again it is important to sound a note of caution about the significance levels of the results in this χ^{2} statistic because of the non-independent nature of the points. The results of the χ^{2} statistic for the different models are shown in tables 6.1 and 6.2 for the full SCDM and LCDM N-body simulations, respectively. Figures 6.11 and 6.12 show these minimum χ^{2}. fits to $\xi(\sigma, \pi)$ for the full SCDM N-body simulations with the exponential and gaussian velocity dispersion models, respectively. Figures 6.13 and 6.14 show the corresponding plots for the full LCDM N-body simulations. The histogram denotes the measured $\xi(\sigma, \pi)$, while the solid and dotted lines are the fits with and without the streaming model, respectively.

These tables and figures for the N -body simulations show that the streaming (infall) model only becomes important (in terms of producing consistent results for $\left\langle w_{z}^{2}\right\rangle^{\frac{1}{2}}$) when $\sigma>1-2 h^{-1} \mathrm{Mpc}$. This assumes that $\left\langle w_{z}^{2}\right\rangle^{\frac{1}{2}}$ does not vary with σ. Also, the exponential distribution function gives a better fit to $\xi(\sigma, \pi)$ regardless of streaming effects, the gaussian one does not quite have the correct shape. This was seen in both the SCDM and LCDM simulations. The best fit model to the N -body simulations, namely exponential with infall, had $\left\langle w_{z}^{2}\right\rangle^{\frac{1}{2}}=980 \pm 22 \mathrm{kms}^{-1}$ and $r_{0}=5.00 \pm 0.24 h^{-1} \mathrm{Mpc}$ for the SCDM simulations and $\left\langle w_{z}^{2}\right\rangle^{\frac{1}{2}}=835 \pm 60 \mathrm{kms}^{-1}$ and $r_{0}=5.12 \pm 0.69 h^{-1} \mathrm{Mpc}$ for the LCDM simulations (where the errors come from the scatter in the best fit points in tables 6.1 and 6.2). The values of the velocity dispersion can be compared with those estimated from figure 6.10 on $1 h^{-1} \mathrm{Mpc}$ scales, namely 950 and $7.50 \mathrm{kms}^{-1}$ for the SCDM and LCDM simulations, respectively. This agreement is adequate given that the exponential model was an assumption. The values of r_{0} can be compared with the approximate real space values estimated from figures 4.9 and 4.11 , namely $5.0 h^{-1} \mathrm{Mpc}$ and $6.0 h^{-1} \mathrm{Mpc}$ for the SCDM and LCDM simulations, respectively. Again, the agreement is adequate in both cases although slightly small for the LCDM model. However, closer inspection of figure 4.11 shows that $r_{0} \simeq 5.0 h^{-1} \mathrm{Mpc}$ on scales $r \leq 3 h^{-1} \mathrm{Mpc}$, this probably explains the lower r_{0} seen for the LCDM model.

Tables 6.3 and 6.4 show the results of fitting the exponential model to the unweighted $\xi(\sigma, \pi)$ estimates from the SCDM and LCDM mock catalogues, respectively. The corresponding results for the weighted $\xi(\sigma, \pi)$ estimates are given in tables 6.5 and 6.6 . The standard deviations from the SCDM/LCDM mock catalogues are used in these χ^{2} fits: The error bars quoted are simply the 1σ standard deviations seen between the mock catalogues themselves and therefore reflect the errors in an individual mock catalogue. All of the $\left\langle w_{z}^{2}\right\rangle^{\frac{1}{2}}$ values in tables 6.3, 6.4, 6.5 and 6.6 are consistent, given the quoted errors, with the corresponding results from the full N -body simulations. The SCDM mock catalogue r_{0} 's in table 6.3 and 6.5 are consistent with the value of $5.0 h^{-1} \mathrm{Mpc}$, agreeing well with the SCDM N-body simulations regardless of weighting. The LCDM mock catalogue unweighted r_{0} 's of table 6.4 are slightly lower than expected, $4.5 h^{-1} \mathrm{Mpc}$ compared with $6.0 h^{-1} \mathrm{Mpc}$. This is probably a combination of the smaller r_{0} on small scales and the slight systematic bias seen in these unweighted estimates. The weighted r_{0} 's of table 6.4 are higher, $\sim 5.3 h^{-1} \mathrm{Mpc}$, which is expected given the the weighted/unweighted results of chapter 4 for the LCDM mock catalogues.

σ $\left(h^{-1} \mathrm{Mpc}\right)$	$\left\langle w_{z}^{2}\right\rangle^{\frac{1}{2}}$ $\left(\mathrm{kms}^{-1}\right)$	r_{0} $\left(h^{-1} \mathrm{Mpc}\right)$	χ^{2} $\left(N_{\text {bin }}=40\right)$	
Exponential \& Infall				
$[0,0.5]$	990	5.1	39.95	
$[0.5,1]$	1000	5.3	24.67	
$[1,2]$	980	4.8	21.17	
$[2,4]$	950	4.8	34.40	
Exponential \& No Infall				
$[0,0.5]$	970	5.1	46.29	
$[0.5,1]$	960	5.4	32.32	
$[1,2]$	800	4.9	28.72	
$[2,4]$	550	5.1	48.20	
Gaussian \& Infall				
$[0,0.5]$	750	4.9	152.78	
$[0.5,1]$	740	5.2	76.46	
$[1,2]$	700	4.6	63.08	
$[2,4]$	690	4.6	54.33	
Gaussian \& No Infall\|				
$[0,0.5]$	740	4.9	144.56	
$[0.5,1]$	710	5.3	57.61	
$[1,2]$	610	4.8	28.25	
$[2,4]$	470	5.1	14.94	

Table 6.1: Minimum χ^{2} results for r_{0} and $\left\langle w_{z}^{2}\right\rangle^{\frac{1}{2}}$ from the SCDM N-body simulations using two forms for modelling the velocity dispersion, with and without a streaming model.

$\begin{gathered} \sigma \\ \left(h^{-1} \mathrm{Mpc}\right) \\ \hline \end{gathered}$	$\begin{gathered} \left\langle w_{z}^{2}\right\rangle^{\frac{1}{2}} \\ \left(\mathrm{kms}^{-1}\right) \end{gathered}$	$\begin{gathered} r_{0} \\ \left(h^{-1} \mathrm{Mpc}\right) \end{gathered}$	$\begin{gathered} \chi^{2} \\ \left(N_{b i n}=40\right) \end{gathered}$
Exponential \& Infall			
[0;0:5]	770	4.1	13.82
[0.5, 1]	810	5.3	7.81
[1,2]	850	5.4	16.46
[2,4]	910	5.6	11.07
Exponential \& No Infall			
[0,0.5]	780	4.2	14.24
[0.5,1]	760	5:4	8.14
[1,2]	720	5.6	14.02
[2,4]	570	5.9	8.96
Gaussian \& Infall			
[0;0.5]	570	4.2	129.39
[0.5,1]	610	5.2	73.79
[1,2]	650	5.3	83.02
[2,4]	620	5.3	124.40
- Gaussian \& No Infall			
[0,0.5]	560	4.2	118.00
[0.5,1]	580	5.3	58.14
[1,2]	570	5.5	48.48
$\cdot[2,4]$	440	5.8	23.37

Table 6.2: Minimum χ^{2} results for r_{0} and $\left\langle w_{z}^{2}\right\rangle^{\frac{1}{2}}$ from the LCDM N-body simulations using two forms for modelling the velocity dispersion, with and without a streaming model.

Figure 6.11: Minimum χ^{2} fits to $\xi(\sigma, \pi)$ from the full SCDM simulations at different σ separations using an exponential model for the velocity dispersion. Solid lines have a streaming model included, dotted lines do not.

Figure 6.12: Minimum χ^{2} fits to $\xi(\sigma, \pi)$ from the full SCDM simulations at different σ separations using a gaussian model for the velocity dispersion. Solid lines have a streaming model included, dotted lines do not.

Figure 6.13: Minimum χ^{2} fits to $\xi(\sigma, \pi)$ from the full LCDM simulations at different σ separations using.an exponential model for the velocity dispersion. Solid lines have a streaming model included, dotted lines do not.

Figure 6.14: Minimum χ^{2} fits to $\xi(\sigma, \pi)$ from the full LCDM simulations at different σ separations using a gaussian model for the velocity dispersion. Solid lines have a streaming model included, dotted lines do not.

σ $\left(h^{-1} \mathrm{Mpc}\right)$	$\left.w_{z}^{2}\right)^{\frac{1}{2}}$ $\left(\mathrm{kms}^{-1}\right)$	r_{0} $\left(h^{-1} \mathrm{Mpc}\right)$
Infall		
$[0,0.5]^{*}$	1055 ± 277	5.14 ± 0.50
$[0.5,1]$	1017 ± 248	5.30 ± 0.65
$[1,2]$	1043 ± 270	4.83 ± 0.92
$[2,4]$	1012 ± 326	4.98 ± 1.20
No Infall		
$[0,0.5]$	1040 ± 276	5.15 ± 0.50
$[0.5,1]$	958 ± 237	5.35 ± 0.63
$[1,2]$	871 ± 265	4.97 ± 0.86
$[2,4]$	628 ± 298	5.32 ± 1.02

Table 6.3: The mean and 1σ standard deviation of the minimum χ^{2} results for r_{0} and $\left\langle w_{z}^{2}\right\rangle^{\frac{1}{2}}$ from the 18 SCDM mock catalogues using the unweighted $\xi(\sigma, \pi)$. An exponential form of the velocity dispersion with and without a streaming model was used in the fitting procedure.

σ $\left(h^{-1} \mathrm{Mpc}\right)$	$\left\langle w_{z}^{2}\right\rangle^{\frac{1}{2}}$ $\left(\mathrm{kms}^{-1}\right)$	r_{0} $\left(h^{-1} \mathrm{Mpc}\right)$
Infall		
$[0,0.5]:$	683 ± 157	3.89 ± 0.44
$[0.5,1]$	703 ± 163	4.72 ± 1.03
$[1,2]$	691 ± 225	4.67 ± 1.32
$[2,4]$	804 ± 475	4.73 ± 1.74
No Infall		
$[0,0.5]$	663 ± 152	3.92 ± 0.42
$[0.5,1]$	640 ± 170	4.81 ± 0.99
$[1,2]$	530 ± 241	4.86 ± 1.21
$[2 ; 4]$	470 ± 532	5.27 ± 1.54

Table 6.4: The mean and 1σ standard deviation of the minimum χ^{2} results for r_{0} and $\left\langle w_{z}^{2}\right\rangle^{\frac{1}{2}}$ from the 15 LCDM mock catalogues using the unweighted $\xi(\sigma, \pi)$. An exponential form of the velocity dispersion with and without a streaming model was used in the fitting procedure.

σ $\left(h^{-1} \mathrm{Mpc}\right)$	$\left\langle w_{z}^{2}\right\rangle^{\frac{1}{2}}$ $\left(\mathrm{kms}^{-1}\right)$	r_{0} $\left(h^{-1} \mathrm{Mpc}\right)$
Infall		
$[0,0.5]$	932 ± 190	5.01 ± 0.44
$[0.5,1]$	966 ± 181	5.26 ± 0.38
$[1,2]$	917 ± 265	4.57 ± 0.48
$[2,4]$	812 ± 178	4.49 ± 0.58
No Infall		
$[0,0.5]$	922 ± 187	5.01 ± 0.44
$[0.5,1]$	915 ± 167	5.31 ± 0.36
$[1,2]$	752 ± 225	4.75 ± 0.41
$[2,4]$	448 ± 131	4.98 ± 0.38

Table 6.5: The mean and 1σ standard deviation of the minimum χ^{2} results for r_{0} and $\left\langle w_{z}^{2}\right\rangle^{\frac{1}{2}}$ from the 18 SCDM mock catalogues using the weighted $\xi(\sigma, \pi)$. An exponential form of the velocity dispersion with and without a streaming model was used in the fitting procedure.

σ $\left(h^{-1} \mathrm{Mpc}\right)$	$\left\langle w_{z}^{2}\right)^{\frac{1}{2}}$ $\left(\mathrm{kms}^{-1}\right)$	r_{0} $\left(h^{-1} \mathrm{Mpc}\right)$
Infall		
$[0,0.5]$	608 ± 183	3.83 ± 0.34
$[0.5,1]^{\prime}$	794 ± 234	5.16 ± 0.69
$[1,2]$	838 ± 129	5.17 ± 0.69
$[2,4]$	778 ± 152	5.21 ± 0.68
No Infall		
$[0,0.5]$	592 ± 168	3.87 ± 0.33
$[0.5,1]$	750 ± 222	5.24 ± 0.65
$[1,2]$	689 ± 128	5.31 ± 0.67
$[2,4]$	441 ± 135	5.59 ± 0.55

Table 6.6: The mean and 1σ standard deviation of the minimum χ^{2} results for r_{0} and $\left\langle w_{z}^{2}\right\rangle^{\frac{1}{2}}$ from the 15 LCDM mock catalogues using the weighted $\xi(\sigma, \pi)$. An exponential form of the velocity dispersion with and without a streaming model was used in the fitting procedure.

These results confirm that the correct $\left\langle w_{z}^{2}\right\rangle^{\frac{1}{2}}$ and r_{0} can be reproduced from the mock catalogues. The results from the weighted estimates have slightly smaller errors than those from the unweighted estimates. They also do not suffer from any systematic bias in r_{0}. Therefore, the weighted estimates are favoured here.

6.5.3 Results from the Durham/UKST Galaxy Redshift Survey

Table 6.7 shows the results for r_{0} and $\left\langle w_{z}^{2}\right\rangle^{\frac{1}{2}}$ from minimum χ^{2} fits to the Durham $/$ UKST survey unweighted $\xi(\sigma, \pi)$. Table 6.8 shows the corresponding results for the weighted $\xi(\sigma, \pi)$. The standard deviations on an individual LCDM mock catalogue are used in the χ^{2} fits. Note that these χ^{2} 's are more than likely biased low by the non-independent nature of the points. The error bar quoted in each parameter comes from the $\Delta \chi^{2}=1.0$ contour, namely the 68% confidence interval on an individual parameter. Figures 6.15 and 6.16 show plots of the fits to the unweighted Durham/UKST $\xi(\sigma, \pi)$ data for the exponential and gaussian velocity dispersion models, respectively. Figures 6.17 and 6.18 show the corresponding plots for the weighted $\xi(\sigma, \pi)$ data. As before, the histograms show the measured $\xi(\sigma, \pi)$, while the solid and dotted lines are the fits with and without the streaming model. From these tables and figures one can make 4 comments. Firstly, the streaming model is again required to produce the most consistent fits for $\left\langle w_{z}^{2}\right\rangle^{\frac{1}{2}}$ for $\sigma>1-2 h^{-1} \mathrm{Mpc}$ (assuming that it is independent of σ). Secondly, the noise in the data does not enable a clear determination between an exponential or a gaussian velocity dispersion (both models produce very similar minimum χ^{2} values). Thirdly, better fits (ie. lower χ^{2} 's) are obtained to the unweighted $\xi(\sigma, \pi)$ than the weighted $\xi(\sigma, \pi)$. As discussed in section 6.2 this is because the weighted $\xi(\sigma, \pi)$ is noisier. Finally, the systematic bias in ξ from using an unweighted estimator is also apparent here. Therefore, the best fit unweighted r_{0} 's are again biased low, see chapters 4 and 5 .

Assuming that at each σ value an independent estimate of r_{0} and $\left\langle w_{z}^{2}\right\rangle^{\frac{1}{2}}$ are obtained, one can combine these to produce the best estimate of these two parameters. For the unweighted Durham/UKST $\xi(\sigma, \pi)$, the exponential distribution function with a streaming model gives $r_{0}=3.32 \pm 0.28 h^{-1} \mathrm{Mpc}$ and $\left\langle w_{z}^{2}\right\rangle^{\frac{1}{2}}=400 \pm 66$ kms^{-1}. The gaussian function with a streaming model gives $r_{0}=3.13 \pm 0.23 h^{-1} \mathrm{Mpc}$ and $\left\langle w_{z}^{2}\right\rangle^{\frac{1}{2}}=291 \pm 40 \mathrm{kms}^{-1}$. For the weighted Durham/UKST $\xi(\sigma, \pi)$, the exponential velocity dispersion with a streaming model gives $r_{0}=4.61 \pm 0.20 h^{-1} \mathrm{Mpc}$ and $\left\langle w_{z}^{2}\right\rangle^{\frac{1}{2}}=416 \pm 36 \mathrm{kms}^{-1}$. The gaussian function with a streaming model gives $r_{0}=4.58 \pm 0.22 h^{-1} \mathrm{Mpc}$ and $\left\langle w_{z}^{2}\right\rangle^{\frac{1}{2}}=334 \pm 30 \mathrm{kms}^{-1}$. These measured values of r_{0} can be compared with those estimated in chapter 5 using projected methods involving ξ, namely $r_{0}=3.2 \pm 0.2$ (unweighted) and $r_{0}=5.1 \pm 0.3$ (weighted). The agreement between these weighted/unweighted values of r_{0} is good and it is pleasing to see that different methods of analysis on the same data set have produced similar results. Again, one should note that the non-independent nature of $\xi(\sigma, \pi)$ implies that the error bars quoted here are more than likely an underestimate.

$\begin{gathered} \sigma \\ \left(h^{-1} \mathrm{Mpc}\right) \end{gathered}$	$\begin{gathered} \left\langle w_{z}^{2}\right\rangle^{\frac{1}{2}} \\ \left(\mathrm{kms}^{-1}\right) \end{gathered}$	$\begin{gathered} r_{0} \\ \left(h^{-1} \mathrm{Mpc}\right) \\ \hline \end{gathered}$	$\begin{gathered} \chi^{2} \\ \left(N_{b i n}=40\right) \end{gathered}$
Exponential \& Infall			
[0,0.5]	400 ± 200	3.7 ± 0.8	1.84
[0.5,1]	330 ± 95	3.4 ± 0.5	3.86
[1,2]	400 ± 105	3.3 ± 0.4	5.81
[2,4]	470 ± 95	3.2 ± 0.4	4.00
Exponential \& No Infall			
[0,0.5]	350 ± 190	3.8 ± 0.8	1.73
[0.5,1]	210 ± 85	3.7 ± 0.5	4.53
[1,2]	180 ± 95	3.8 ± 0.3	6.91
[2,4]	10 ± 85	4.2 ± 0.4	8.13
Gaussian \& Infall			
[0,0.5]	280 ± 125	3.5 ± 0.7	1.83
[0.5,1]	240 ± 60	3.3 ± 0.4	3.79
[1,2]	280 ± 50	3.0 ± 0.3	4.80
[2,4]	350 ± 55	3.1 ± 0.3	3.38
Gaussian \& No Infall			
[0,0.5]	260 ± 130	3.7 ± 0.7	1.74
[0.5,1]	180 ± 75	3.8 ± 0.5	4.51
[1,2]	160 ± 85	3.8 ± 0.3	6.56
[2,4]	10 ± 75	4.2 ± 0.4	8.14

Table 6.7: Minimum χ^{2} results of r_{0} and $\left\langle w_{z}^{2}\right\rangle^{\frac{1}{2}}$ for the Durham/UKST survey using two forms for modelling the velocity dispersion, with and without a streaming model. The fits were done to the unweighted $\xi(\sigma, \pi)$.

σ $\left(h^{-1} \mathrm{Mpc}\right)$	$\left\langle w_{z}^{2}\right\rangle^{\frac{1}{2}}$ $\left(\mathrm{kms}^{-1}\right)$	r_{0} $\left(h^{-1} \mathrm{Mpc}\right)$	χ^{2} $\left(N_{\text {bin }}=40\right)$	
Exponential \& Infall $_{\| \|[0,0.5]}$				
510 ± 120	5.1 ± 0.6	18.99		
$[0.5,1]$	300 ± 50	4.7 ± 0.3	23.51	
$[1,2]$	500 ± 65	4.5 ± 0.2	29.56	
$[2,4]$	500 ± 65	4.7 ± 0.4	47.97	
Exponential \& No Infall				
$[0,0.5]$	470 ± 130	5.2 ± 0.6	19.10	
$[0.5,1]$	180 ± 70	4.8 ± 0.4	24.01	
$[1,2]$	270 ± 90	4.8 ± 0.3	29.52	
$[2,4]$	180 ± 80	5.5 ± 0.2	56.10	
Gaussian \& Infall				
$[0,0.5]$	430 ± 85	5.0 ± 0.6	17.49	
$[0.5,1]$	220 ± 40	4.4 ± 0.4	26.28	
$[1,2]$	350 ± 65	4.2 ± 0.4	30.62	
$[2,4]$	420 ± 40	4.8 ± 0.3	38.41	
Gaussian \& No Infall\|				
$[0,0.5]$	410 ± 85	5.2 ± 0.6	17.83	
$[0.5,1]$	140 ± 60	4.8 ± 0.4	25.06	
$[1,2]$	230 ± 80	4.8 ± 0.3	29.56	
$[2,4]$	190 ± 70	5.5 ± 0.2	55.56	

Table 6.8: Minimum χ^{2} results of r_{0} and $\left\langle w_{z}^{2}\right\rangle^{\frac{1}{2}}$ for the Durham/UKST survey using two forms for modelling the velocity dispersion, with and without a streaming model. The fits were done to the weighted $\xi(\sigma, \pi)$.

Figure 6.15: Minimum χ^{2} fits to the unweighted $\xi(\sigma, \pi)$ estimated from the Durham/UKST survey at different σ separations using an exponential model for the velocity dispersion. Solid lines have a streaming model included, dotted lines do not.

Figure 6.16: Minimum χ^{2} fits to the unweighted $\xi(\sigma, \pi)$ estimated from the Durham/UKST survey at different σ separations using a gaussian model for the velocity dispersion. Solid lines have a streaming model included, dotted lines do not.

Figure 6.17: Minimum χ^{2} fits to the weighted $\xi(\sigma, \pi)$ estimated from the Durham/UKST survey at different σ separations using an exponential model for the velocity dispersion. Solid lines have a streaming model included, dotted lines do not.

Figure 6.18: Minimum χ^{2} fits to the weighted $\xi(\sigma, \pi)$ estimated from the Durham/UKST survey at different σ separations using a gaussian model for the velocity dispersion. Solid lines have a streaming model included, dotted lines do not.

6.5.4 Comparison with other Data Sets and the Simulations

The minimum χ^{2} fit of an exponential distribution function (with a streaming model) to the weighted $\xi(\sigma, \pi)$ from the Durham/UKST survey gave a value of the 1-D pairwise velocity dispersion of $416 \pm 36 \mathrm{kms}^{-1}$. This best fit value is of particular interest as recent estimates from new redshift surveys and the re-analysis of old redshift surveyṣ have been measuring larger 1-D pairwise velocity dispersions than the canonical value of $340 \pm 40 \mathrm{kms}^{-1}$ found by Davis \& Peebles (1983) from the CfA1 survey. For example, using the CfA2/SSRS2 survey Marzke et al. (1995) find $540 \pm 180 \mathrm{kms}^{-1}$ and using the Las Campanas survey Lin et al. (1995a) find $452 \pm 60 \mathrm{kms}^{-1}$. Mo et al. (1993) measured large variations ($200-1000 \mathrm{kms}^{-1}$) in the 1-D pairwise velocity dispersion for a number of samples of similar size to CfA1, they also show that it is sensitive to galaxy sampling, especially dominant clusters the size of Coma. This new estimate from the Durham/UKST survey is still on the low side supporting the old Davis \& Peebles (1983) value but is not inconsistent ($>3 \sigma^{\prime}$) with any of these other measured values. When considering these values it is important to note that the Durham/UKST survey covers a volume \sim $4 \times 10^{6} h^{-3} \mathrm{Mpc}^{3}$, approximately twice that of the CfA2/SSRS2 survey and half that of the Las Campanas survey (see table 3.4). Also, in an unbiased (COBE-normalised) CDM model, Marzke et al. (1995) estimated that the velocity dispersion would converge to 10% within a volume $\sim 5 \times 10^{6} h^{-3} \mathrm{Mpc}^{3}$. Therefore, the measurement from the Durham/UKST survey is hopefully believable and representative of the actual value in the Universe. Finally, one notes that the Durham/UKST survey does not contain any extremely dominant clusters (of Coma-like size) and therefore will not be biased high by this.

The best estimates of the 1-D pairwise velocity dispersion from the SCDM and LCDM simulations using the above techniques were 980 and $835 \mathrm{kms}^{-1}$, respectively. (Note that these values were estimated assuming an exponential distribution function, for consistency one should compare with the Durham/UKST survey exponential value:) These estimates agree well with the actual value of the 1-D pairwise velocity dispersion as measured directly from the N-body simulations. However, these values are inconsistent with the measured value from the Durham/UKST survey at high levels of significance. In fact, even taking the most negative approach possible and using the error bars from the mock catalogues on the Durham/UKST velocity dispersion, namely $\pm \sim 200 \mathrm{kms}^{-1}$ on an individual independent measurement at a given perpendicular separation and hence $\pm \sim 100 \mathrm{kms}^{-1}$ overall on the combined measurement, one still finds a significant rejection of both CDM models at the $3-5 \sigma$ level. However, it should be noted that a significant velocity bias, b_{v}, between the matter and galaxy velocity distributions ($b_{v} \sim 0.4$), see Couchman \& Carlberg (1992), would allow consistent results between the models and the data. Also, this rejection of the CDM models assumes that the simple models of linear biasing used here (Bardeen et al. 1986) are an adequate description of the galaxy formation process.

6.6 Linear Effects - Large Scales

6.6.1 Modelling the Redshift Space Correlation Function with Linear Theory

On small, non-linear scales it was seen that the velocity dispersion was mainly responsible for the anisotropies in $\xi(\sigma, \pi)$. However, to produce consistent results, it was also necessary to incorporate a model which imitated the streaming motions of galaxies. The model used by Bean et al. (1983) appeared to do an adequate job but a slightly different approach can be also taken. This is briefly described here (see Fisher, 1995, for an attempt to combine these two approaches). Kaiser (1987) showed that using the plane-parallel (distant observer) approximation in the linear regime of gravitational instability the strength of an individual plane wave as measured in redshift space is amplified over that measured in real space by a factor

$$
\begin{equation*}
\delta_{\mathbf{k}}^{s}=\delta_{\mathbf{k}}^{r}\left(1+\beta \mu_{\mathbf{k} \mathbf{l}}^{2}\right) \tag{6.20}
\end{equation*}
$$

where $\delta_{\mathbf{k}}^{r}$ and $\delta_{\mathbf{k}}^{s}$ are the Fourier amplitudes in real (r) and redshift (s) space, respectively, $\mu_{\mathbf{k l}}$ is the cosine of the angle between the wavevector, k , and the line of sight, l, and $\beta=f(\Omega) / b$ where $f(\Omega) \simeq \Omega^{0.6}$ is the logarithmic derivative of the fluctuation growth rate (eg. Peebles, 1980) and b is the linear bias factor relating the mass and galaxy distributions, $(\Delta \rho / \rho)_{g}=b(\Delta \rho / \rho)_{m}$. The plane-parallel approximation restricts use of equation 6.20 to angles less than $\sim 50^{\circ}$ which can cause a systematic effect at the $\sim 5 \%$ level in β (Cole et al. 1994a). This ($1+\beta \mu_{\mathrm{kl}}^{2}$) factor propagates through to the power spectrum, $P\left(k, \mu_{\mathbf{k} \mathbf{l}}\right) \equiv\left\langle\delta_{\mathbf{k}} \delta_{\mathbf{k}}^{*}\right\rangle$

$$
\begin{equation*}
P^{s}\left(k, \mu_{\mathbf{k l}}\right)=P^{r}(k)\left(1+\beta \mu_{\mathrm{kl}}^{2}\right)^{2} \tag{6.21}
\end{equation*}
$$

where the real space $P^{r}(k)$ is assumed to be an isotropic function of k only. Thus the anisotropy is a strong function of angle between k and l . It is common to measure the simple angle-averaged $P(k)$ and it is fairly easy to integrate over all angles to determine the amplification in redshift space of the angle-averaged $P(k)$

$$
\begin{align*}
P^{s}(k) & =\frac{\int_{-1}^{1} d \mu_{\mathrm{kl}} P^{s}\left(k, \mu_{\mathrm{kl}}\right)}{\int_{-1}^{1} d \mu_{\mathbf{k l}}} \tag{6.22}\\
& =P^{r}(k)\left(1+\frac{2}{3} \beta+\frac{1}{5} \beta^{2}\right) \tag{6.23}
\end{align*}
$$

Hamilton (1992) has extended this analysis to the 2-point correlation function, ξ, which is the Fourier transform of the power spectrum. Basically, the cosine factor in Fourier space, $\mu_{\mathrm{kl}}^{2} \equiv k_{1}^{2} / k^{2}$, becomes a differential operator in real space, $(\partial / \partial|1|)^{2}\left(\nabla^{2}\right)^{-1}$, and therefore the Fourier transform of equation 6.21 is

$$
\begin{equation*}
\xi^{s}\left(r, \mu_{\mathbf{r l}}\right)=\left(1+\beta(\partial / \partial|1|)^{2}\left(\nabla^{2}\right)^{-1}\right)^{2} \xi^{r}(r) \tag{6.24}
\end{equation*}
$$

where $\mu_{\mathbf{r l}}$ is the cosine of the angle between the pair separation, \mathbf{r}, and the line of sight, l. Hamilton (1992) then shows that the solution of this can be written in
terms of the first 3 even spherical harmonic moments of $\xi^{s}\left(r, \mu_{\mathbf{r l}}\right)$ only, all higher moments are zero (odd moments are zero by definition, see equation 6.27)

$$
\begin{equation*}
\xi^{s}\left(r, \mu_{\mathbf{r} 1}\right)=\xi_{0}(r) P_{0}\left(\mu_{\mathbf{r l}}\right)+\xi_{2}(r) P_{2}\left(\mu_{\mathbf{r l}}\right)+\xi_{4}(r) P_{\mathbf{4}}\left(\mu_{\mathbf{r l}}\right) \tag{6.25}
\end{equation*}
$$

where $\xi_{l}(r)$ are the spherical harmonic moments of $\xi^{s}\left(r, \mu_{\mathrm{rl}}\right)$

$$
\begin{align*}
\xi_{l}(r) & =\frac{2 l+1}{2} \int_{-1}^{1} \xi^{\dot{s}}\left(r, \mu_{\mathbf{r l}}\right) P_{l}\left(\mu_{\mathbf{r l}}\right) d \mu_{\mathrm{rl}} \tag{6.26}\\
\xi_{0}(r) & =\left(1+\frac{2}{3} \beta+\frac{1}{5} \beta^{2}\right) \xi^{r}(r) \tag{6.27}\\
\xi_{2}(r) & =\left(\frac{4}{3} \beta+\frac{4}{7} \beta^{2}\right)\left[\xi^{r}(r)-\bar{\xi}^{r}(r)\right] \tag{6.28}\\
\xi_{4}(r) & =\frac{8}{35} \beta^{2}\left[\xi^{r}(r)+\frac{5}{2} \bar{\xi}^{r}(r)-\frac{7}{2} \bar{\xi}^{r}(r)\right] \tag{6.29}
\end{align*}
$$

$P_{l}\left(\mu_{\mathrm{rl}}\right)$ are the usual Legendre polynomials

$$
\begin{align*}
& P_{0}\left(\mu_{\mathrm{rl}}\right)=1 \tag{6.30}\\
& P_{2}\left(\mu_{\mathrm{rl}}\right)=\left(3 \mu_{\mathrm{rl}}^{2}-1\right) / 2 \tag{6.31}\\
& P_{4}\left(\mu_{\mathrm{rl}}^{1}\right)=\left(35 \mu_{\mathrm{rl}}^{4}-30 \mu_{\mathrm{rl}}^{2}+3\right) / 8 \tag{6.32}
\end{align*}
$$

and

$$
\begin{align*}
& \bar{\xi}^{r}(r) \equiv \frac{3}{r^{3}} \int_{0}^{r} \xi(x) x^{2} d x, \tag{6.33}\\
& \overline{\bar{\xi}}^{r}(r) \equiv \frac{5}{r^{5}} \int_{0}^{r} \xi(x) x^{4} d x \tag{6.34}
\end{align*}
$$

It is possible to rewrite these equations to give an equation for β involving ξ_{0} and ξ_{2} only

$$
\begin{equation*}
\left(1+\frac{2}{3} \beta+\frac{1}{5} \beta^{2}\right) \xi_{2}(\dot{r})=\left(\frac{4}{3} \beta+\frac{4}{7} \beta^{2}\right)\left[\xi_{0}(r)-\frac{3}{r^{3}} \int_{0}^{r} \xi_{0}(s) s^{2} d s\right] \tag{6.35}
\end{equation*}
$$

or by defining,

$$
\begin{align*}
& \tilde{\xi}_{0}(r)=-\xi_{0}(r)+\frac{3}{r^{3}} \int_{0}^{r} \xi_{0}(s) s^{2} d s \tag{6.36}\\
& \tilde{\xi}_{2}(r)=-\xi_{2}(r) \tag{6.37}
\end{align*}
$$

equation 6.35 can be written as

$$
\begin{equation*}
\frac{\tilde{\xi}_{2}}{\tilde{\xi}_{0}}=\frac{\left(\frac{4}{3} \beta+\frac{4}{7} \beta^{2}\right)}{\left(1+\frac{2}{3} \beta+\frac{1}{5} \beta^{2}\right)} \tag{6.38}
\end{equation*}
$$

By Fourier transforming equation 6.23 (which has no explicit $\mu_{\mathbf{r l}}$ dependence) a somewhat simplier expression relating the angle-averaged $\xi(s)$ to $\xi(r)$ is obtained

$$
\begin{equation*}
\xi(s)=\xi(r)\left(1+\frac{2}{3} \beta+\frac{1}{5} \beta^{2}\right) \tag{6.39}
\end{equation*}
$$

assuming that $\xi(r)$ is an isotropic function of r only, this follows from a similar assumption made about $P^{r}(k)$. If the volume integral of ξ is defined as

$$
\begin{equation*}
J_{3}(x)=\int_{0}^{x} \xi(y) y^{2} d y \tag{6.40}
\end{equation*}
$$

then it is trivial to produce a similar expression to equation 6.39

$$
\begin{equation*}
J_{3}(s)=J_{3}(r)\left(1+\frac{2}{3} \beta+\frac{1}{5} \beta^{2}\right) \tag{6.41}
\end{equation*}
$$

6.6.2 Testing the Method with the CDM Simulations

In this section the results from the LCDM full simulations and mock catalogues are presented. The SCDM simulations and mock catalogues were not analysed because it was felt that the 1-D pairwise velocity dispersion strongly dominates $\xi(\sigma, \pi)$ and so could not produce accurate results given that only the linear regime is modelled in this first analysis: As will be seen below this is also the case for some aspects of the LCDM simulations. In.section 6.6 .1 it was noted that equation 6.20 was only strictly correct in the plane parallel approximation and that angles $\leq 50^{\circ}$ should really only be used. For a survey geometrically similar to the mock catalogues used here this restriction makes a negligible difference to the results for β. It should also be noted that only the weighted estimates of ξ from the mock catalogues are used here. Although the weighted $\xi(\sigma, \pi)$ diagrams appeared noisier than the corresponding unweighted ones they do not suffer from any systematic biases and should therefore produce an unbiased and realistic value of β.

In figures $6.19,6.20$ and 6.21 the dotted line denotes the "theoretical" value of $\beta \simeq \Omega^{0.6} / b=(0.2)^{0.6} / 1 \simeq 0.38$, the solid line denotes the results from the average of the ξ 's from the 5 LCDM full simulations (ie. take the mean $\xi(\sigma, \pi)$ from the simulations and then manipulate this to get a single value of β), the shaded area denotes the 1σ scatter seen between the 5 LCDM simulations (ie. use $\xi(\sigma, \pi)$ from each simulation, manipulate them to get 5 values of β and then average and standard deviation these) and the points with error bars are the mean and 1σ scatter seen in the LCDM mock catalogues (ie. use $\xi(\sigma, \pi)$ from each mock catalogue, manipulate them to get 15 values of β and then average and standard deviation these). The errors shown are the standard deviations on an individual mock catalogue.

The results from equation 6.35 are shown in figure 6.19. This method uses the ratio of the second to zeroth spherical harmonic moments of ξ to estimate β. The ξ_{l} 's are estimated from

$$
\begin{align*}
\xi_{l}(r) & =\frac{2 l+1}{2} \int_{-1}^{1} \xi^{s}\left(r, \mu_{\mathbf{r l}}\right) P_{l}\left(\mu_{\mathbf{r l}}\right) d \mu_{\mathbf{r l}} \tag{6.42}\\
& =(2 l+1) \Delta \mu_{\mathbf{r l}} \sum_{\mu_{\mathrm{r}}>0} \xi^{s}\left(r, \mu_{\mathrm{rl}}\right) P_{l}\left(\mu_{\mathrm{rl}}\right) \tag{6.43}
\end{align*}
$$

where in this case the binning is $\Delta \mu_{\mathrm{rl}}=0.2$. It is clear that the $\sim 800 \mathrm{kms}^{-1}$ 1-D pairwise velocity dispersion of these simulations dominates this plot causing a
negative value of β to be measured until $\sim 13 h^{-1} \mathrm{Mpc}$! Of course, a negative value of β is unphysical and is simply due to the shape of the $\xi(\sigma, \pi)$ contours. In this case the values of β are meaningless. The mock catalogues trace the results of the full simulations adequately apart from on $r<10 h^{-1} \mathrm{Mpc}$ scales. In this region the mock catalogues, while still giving a negative β, are systematically above the full simulation results. The author could not find any errors in the analysis procedures to explain this result. When considering this method for the Durham/UKST survey one should note that the measured velocity dispersion is approximately half that of the LCDM simulations and therefore the elongation should be less of a problem.

The results from equation 6.39 are shown in figure 6.20. This method uses the ratio of the redshift to real space ξ 's to estimate β. The redshift space ξ is estimated directly using the methods described in chapter 4 . The real space ξ is estimated by Abel inversion of the projected correlation function, $w_{v}(\sigma)$, with $\pi_{c u t}=30 h^{-1} \mathrm{Mpc}$, as described in chapter 5. It is clear that this method is not dominated by non-linear effects above $\sim 6 h^{-1} \mathrm{Mpc}$ although they could cause the ~ 0.1 systematic offset in β that is seen out to $>30 h^{-1} \mathrm{Mpc}$. Unfortunately, for the full simulations noise begins to dominate the inversion process between $15-20 h^{-1} \mathrm{Mpc}$. For the mock catalogues noise dominates at all scales and the results almost resemble a scatter plot! While this method is less sensitive to the non-linear velocity dispersion than the spherical harmonic one, the scatter seen in the mock: catalogues renders this method almost useless for surveys of this size.

The results from equation 6.41 are shown in figure 6.21. This method uses the ratio of the redshift to real space J_{3} 's to estimate β. The redshift space J_{3} is calculated from volume integration of the above redshift space ξ while the real space J_{3} is calculated from volume integration of the above real space ξ. It is clear that this method is not dominated by non-linear effects above $\sim 15 h^{-1} \mathrm{Mpc}$ and the value of β obtained is very consistent with the "theoretical" value. The mock catalogues also reproduce the correct answer, albeit with a larger scatter. However, while one would like to combine these points to reduce the errors involved this is not possible because these points are non-independent due to the integration procedure.

These results for the mock catalogues can be summarised as follows. The ratio of the redshift/real correlation functions is only weakly affected by the non-linear velocity dispersion above $\sim 6 h^{-1} \mathrm{Mpc}$ scales but gives the noisiest estimate of β by far. The ratio of the redshift/real volume integrated correlation functions is only weakly affected by the non-linear velocity dispersion above $\sim 15 h^{-1} \mathrm{Mpc}$ scales and has significantly smaller errors than the simple correlation function method. However, these points are non-independent because of the volume integration process. The ratio of the second/zeroth spherical harmonic moments of the correlation functions is severely affected by the large non-linear velocity dispersion in these simulations, but arguably gives the least noisy estimate of β. For a smaller velocity dispersion this could be the most promising method of estimating β :

Figure 6.19: Values of $\beta \simeq \Omega^{0.6} / b$ as a function of r using the method which considers the ratio of the second to zeroth spherical harmonic moments of ξ.

Figure 6.20: Values of $\beta \simeq \Omega^{0.6} / b$ as a function of r using the method which considers the ratio of the redshift to the real space ξ 's.

Figure 6.21: Values of $\beta \simeq \Omega^{0.6} / b$ as a function of r using the method which considers the ratio of the redshift to the real space J_{3} 's.

6.6.3 Results from the Durham/UKST Galaxy Redshift Survey

In this section the results from the Durham/UKST survey are presented. Unless otherwise specified the errors shown are the 1σ standard deviation obtained by splitting the survey into 4 roughly equal quadrants and then assuming that each quadrant provides an independent estimate of β. Again, only the weighted estimate of ξ was used in the analysis for the reasons mentioned in section 6.6.2.

Figure 6.22 shows the zeroth and second harmonic moments of the 2 -point correlation function. (note that $-\xi_{2}$ is actually plotted and not simply ξ_{2}). These moments were calculated from equation 6.43 using the weighted estimate of ξ. The second harmonic moment is positive until $\sim 8 h^{-1} \mathrm{Mpc}$ which is caused by the elongation of the ξ contours parallel to the line of sight from the non-linear velocity dispersion. On larger separations the second harmonic moment is negative due to the compression of the ξ contours parallel to the line of sight from the linear infall of galaxies.

Figure 6.23 shows the real and redshift space 2 -point correlation functions. The redshift space ξ is the weighted estimate of section 5.2 .2 , while the real space ξ is the Abel inverted estimate of the weighted projected correlation function, w_{v}, with $\pi_{\text {cut }}=30 h^{-1} \mathrm{Mpc}$ (from section 5.3.4). It can be seen that $\xi(r)>$ $\xi(s)$ below $\sim 1 h^{-1} \mathrm{Mpc}$ where $\xi(s)$ is dominated by the non-linear velocity dispersion. Conversely, $\xi(s)>\xi(r)$ above $\sim 1 h^{-1} \mathrm{Mpc}$. Unfortunately, the noise in these real/redshift space estimates is probably at a level such that it dominates any measurement of β.

Figure 6.24 shows the real and redshift space volume integrals of the 2-point correlation function. Quite simply these measurements of J_{3} are the integrals of figure 6.23 out to the given separation weighted by an r^{2} factor. Once again, at small separations $J_{3}(r)>J_{3}(s)$, while at larger separations $J_{3}(s)>J_{3}(r)$. There is a near constant offset in $\lg J_{3}$, ie. a constant multiplicative factor in linear J_{3}, between the real and redshift space estimates on scales $10-20 h^{-1} \mathrm{Mpc}$. This should give a consistent estimate of β on these scales.

Figure 6.25 shows the results of applying equations $6.38,6.39$ and 6.41 to the data in figures $6.22,6.23$ and 6.24 , respectively. For clarity, error bars are not shown for the $\xi(s) / \xi(r)$ method because they are very large and only cause confusion. These points have no systematic trend (other than a large random scatter) and it is probably best to discount them from any further analysis. Concentrating on the other 2 methods, our region of interest is $\sim 10-30 h^{-1} \mathrm{Mpc}$ due to non-linear effects on smaller scales and noise on larger scales. On these scales one sees that the estimated error bars vary from quite small to quite large, $\pm 0.1-1.0$. Out of interest to the reader, figure 6.26 plots the points from figure 6.25 but with the error bars from an individual LCDM mock catalogue, namely those of figures 6.19 and 6.21.

Figure 6.22: The weighted zeroth and second spherical harmonic moments of ξ from the Durham/UKST survey.

Figure 6.23: The weighted real and redshift space ξ 's from the Durham/UKST survey.

Figure 6.24: The weighted real and redshift space J_{3} 's from the Durham/UKST survey.

Figure 6.25: Estimates of $\beta \simeq \Omega^{0.6} / b$ from the Durham/UKST survey as a function of spatial separation for 3 methods. The error bars are the variance seen from quadrant to quadrant in the Durham/UKST survey.

Figure 6.26: The same as figure 6.25 but using the error bars from the LCDM mock catalogues.

In taking a realistic opinion of figures 6.25 and 6.26 one only quotes a single value of β from each of the above methods because of the non-independent nature of the points. Therefore, no formal χ^{2} fits are attempted. For the spherical harmonics method the value at $\sim 18 h^{-1} \mathrm{Mpc}$ is quoted, $\beta=0.45 \pm 0.38$, where the error bar has been estimated by averaging the 5 error bars from this method in the $10-$ $30 h^{-1} \mathrm{Mpc}$ region. While this error bar is only a rough approximation it does agree well with a typical LCDM mock catalogue error bar (plotted in figure 6.26). For the $J_{3}(s) / J_{3}(r)$ method the value at $\sim 16 h^{-1} \mathrm{Mpc}$ is quoted, $\beta=0.59 \pm 0.46$. This point appears more or less typical of those in the $10-30 h^{-1} \mathrm{Mpc}$ region and again has the average error bar of the 5 points in this region. Comparison with the LCDM mock catalogue error bars confirms this is a realistic error estimate.

6.6.4 Comparison with other Optical Estimates of β

The best estimate of β from the Durham/UKST survey is $\beta=0.45 \pm 0.38$. This value can be compared with other optical values of β estimated using similar methods involving redshift space distortions. Peacock \& Dodds (1994) used the real and redshift space power spectrum estimates of various cluster, radio, optical and IRAS samples to measure $\beta=0.77 \pm 0.16$. Loveday et al. (1995a) used the method of the ratio of the J_{3} 's to measure $\beta=0.48 \pm 0.12$ for the APM-Stromlo survey. Lin et al. (1995a) used the spherical harmonics of ξ method to measure $\beta=0.5 \pm 0.25$ for the Las Campanas survey. These values are all consistent with $\beta=0.57 \pm 0.12$. However, it should be stated that the measurements of β which come from peculiar velocity and density field comparisons do suggest slightly higher values of β, for example $1.28_{-0.30}^{+0.38}$ from Dekel et al. (1993) and 0.74 ± 0.13 from Hudson et al. (1995).

6.7 Conclusions

Redshift space distortions in the Durham/UKST galaxy redshift survey have been investigated using the 2 -point correlation function, $\xi(\sigma, \pi)$, where the non-linear ve. locity dispersion elongates the ξ contours along the line of sight on small scales, while on larger scales the linear infall compresses the ξ contours in this same direction.

Modelling the velocity dispersion leads to an estimate of the galaxy 1-D pairwise velocity dispersion from the Durham/UKST survey of $\left\langle w_{z}^{2}\right\rangle^{\frac{1}{2}}=416 \pm 36$ kms^{-1}, although this error bar is more than likely an underestimate due to the non-independent nature of the ξ points. This value is consistent with the canonical value ($\sim 350 \mathrm{kms}^{-1}$) but is slightly smaller than recent measurements and still rules out the SCDM value of $\sim 1000 \mathrm{kms}^{-1}$.

Linear theory gives an expression for the enhancement of the clustering in redshift space as a function of $\beta \simeq \Omega^{0.6} / b$ and different methods of measuring β give consistent results from the Durham/UKST survey, with the best estimate being $\beta=0.45 \pm 0.38$. This value of β agrees well with previous optical estimates, but cannot discriminate between the SCDM and LCDM models, which predict $\beta \sim 0.4-$ 0.6 . This value of β tends to favour either an unbiased open Universe or (using a fiducial value of $b \simeq 2$) a biased critical density Universe. This value of β is less consistent with an unbiased critical density Universe.

Chapter 7

Conclusions

7.1 The Future of Galaxy Redshift Surveys

7.1.1 The Durham/UKST Survey and FLAIR

While the statistical analysis of the Durham/UKST Galaxy Redshift Survey in this thesis has concentrated on the 2 -point correlation function there are other statistics that can be estimated: In particular, the fundamental quantity of interest in the statistical analysis of large scale structure is the power spectrum, $P(k)$, which is the Fourier transform partner of the 2-point correlation function, $\xi(r)$. The Fourier space window function of the Durham/UKST survey is one of the narrowest of any survey currently available (Tegmark, 1995) and since it is this window function that determines the resolution of the estimated power spectrum, the Durham/UKST survey should give one of the best estimates of the power spectrum yet. Also, valuable morphological information can be extracted from the Durham/UKST survey via such methods as the counts-in-cells of Efstathiou et al. (1990), the higher order correlations of Baugh \& Gaztañaga (1995a), the void probability function of White (1979) and the Minkowski functionals of Mecke et al. (1994).

In order for the FLAIR system on the UKST to survive, there are three changes which must occur. Firstly, the UKST still has a large advantage in terms of field of view, ~ 25 sq. degrees compared with ~ 3 for the 2 dF , this must be used effectively and projects designed with this in mind. Secondly, the CCD system on the UKST must become more efficient than the one that was used for the majority of the observations in this thesis. Indeed, in the latter half of 1995 a new CCD was installed which gave a huge improvement in throughput in the blue region of the spectrum and now allows observations to go ~ 1 magnitude deeper in comparable observing times to those used in this thesis. It would still be possible to improve on this new CCD in terms of readout noise etc. Thirdly, and perhaps most importantly, a proper automated fiber positioning system must be built and commissioned. Not only is the fibreing up procedure a tedious and laborious job for the observer it is
also a bottleneck. While the exposure times are coming down, the time taken to fibre up is not and preparing each plateholder can take most of the night. This is obviously unacceptable given that the observations taken in each field in this thesis could take less than 5000 s in total with the new system.

7.1.2 The Next Generation of Surveys

As was seen throughout this thesis, surveys the size of the Durham/UKST survey can give constraints on the observed large scale structure in the galaxy distribution, as well as implying information about the dynamics of the Universe. One can then use these measurements to constrain models of structure formation, such as CDM. Physically larger surveys, containing more galaxies to deeper magnitudes, will obviously decrease the statistical errors seen in these structural and dynamical measurements. However, it is very important to ask what new science they will achieve and to make sure that one is not merely "stamp collecting" galaxy redshifts. Two such surveys which will come fully into play in a couple of years time are the 2dF project (Efstathiou \& Ellis et al. 1995) and the Sloan Digital Sky Survey (Gunn \& Weinberg et al. 1995). These will contain at least an order of magnitude or more redshifts than any survey currently in existence.

Some of the questions which remain unanswered by current studies of large scale structure are :-
(i) What happens to $P(k)$ between those scales probed by the recent cosmic microwave background radiation anisotropy measurements ($\lambda>300 h^{-1} \mathrm{Mpc}$) and those accessable from current redshift surveys ($\lambda<100 h^{-1} \mathrm{Mpc}$) ? The COBE experiment (Smoot et al. 1992) indicates that $P(k) \sim k$ for $k \sim 0.001 h \mathrm{Mpc}^{-1}$, while galaxy catalogues (eg. Baugh \& Efstathiou, 1993) measure $P(k) \sim k^{-1.3}$ for $k \sim 1 h \mathrm{Mpc}^{-1}$. Therefore, for these two measurements to join up, $P(k)$ must turn over in the intervening region between them. The scale at which the turn-over in $P(k)$ occurs could imply new knowledge about the dominant component of the matter distribution, particularly the microphysical processes which took place at the epoch of matter-radiation equality.
(ii) What is the value of $\beta \simeq \Omega^{0.6} / b$? Does b vary with scale? What is the value of Ω ? The indications from current redshift surveys (eg. the Durham/UKST survey) are that $\beta \sim 0.5 \pm 0.1$. However, not only would one like to determine this parameter more accurately but also to larger scales and even as a function of scale. The current redshift surveys are very limited in these respects. Assuming that Ω does not vary with scale one can deduce how b behaves with scale by measuring $\Omega^{0.6} / b$ as a function of scale. Also, since the cosmic microwave background radiation anisotropy experiments measure the fluctuations in the dominant component of the matter distribution, one could deduce b directly from $P(k)_{g a l}=b^{2} P(k)_{\text {mass }}$ which then implies Ω from the measurements of $\Omega^{0.6} / b$.
(iii) How do galaxies cluster as a function of intrinsic luminosity and morphological type? There exists only limited information on the answers to these questions (see Efstathiou, 1996), mainly due to a basic lack of statistics. Successful models of galaxy formation will have to address these questions and, conversely, the observations of clustering with luminosity and morphology should be able to constrain the galaxy formation models.
(iv) What is the morphological pattern of the galaxy distribution and can it be quantifiably described? The current maps of galaxy redshifts have revealed a rich pattern of filaments, walls, voids and cells. One can attempt to analyse this morphological distribution and also test the gaussian random phase hypothesis of the Fourier components of the density field. However, the size of the current surveys implies a dependency on a few dominant structures. Therefore, whether one uses statistical methods of higher order moments, such as counts-in-cells (Efstathiou, 1990), or topological ones, such as the genus (Gott et al. 1986), they are limited by the lack of independent features in the observed distributions. This can only be improved with larger surveys.
(v) Other questions which a larger redshift surveys could answer are; Does the galaxy luminosity function evolve with redshift and how does this affect the interpretation of the galaxy number counts? How do voids and overdensities affect the local mean galaxy density and can they alter the interpretation of the galaxy number counts? Given that the current redshift surveys are just approaching the volume within which the non-linear galaxy velocity dispersion is supposed to converge, what is the universal value of this quantity?

7.2 Summary of Results

The 3-D Durham/UKST Galaxy Redshift Survey has been constructed to sample galaxies at a rate of 1 in 3 from the 2-D Edinburgh/Durham Southern Galaxy Catalogue. The observations of this survey were carried out using the FLAIR system on the UKST during the period 1991-1994. The completed survey contains over 2000 galaxy redshifts, accurate to $\pm 150 \mathrm{kms}^{-1}$, down to $b_{J} \simeq 17.0$ in a ~ 1500 sq. degree area over the South Galactic Pole. The survey probes to a depth > $300 h^{-1} \mathrm{Mpc}$ sampling a $\sim 4 \times 10^{6} h^{-3} \mathrm{Mpc}^{3}$ volume of space. The overwhelming visual impression of the survey is that the galaxy distribution appears "cellular" on $50-100 h^{-1} \mathrm{Mpc}$ scales. The galaxy number-distance histogram shows several large peaks, some of which agree with the Broadhurst et al. (1990) pencil-beam survey "spikes". However, the observed distribution is clearly more complex than a simple 1-D periodic pattern.

The optical galaxy luminosity function has been estimated from the Durham/UKST survey using parametric and non-parametric maximum likelihood techniques. The best fit parameters to the form of a pure Schecter function are $M_{b_{J}}^{*}=-19.72 \pm 0.09+$ $5 \lg h$ and $\alpha=-1.14 \pm 0.08$, with a normalisation of $\phi^{*}=1.17 \pm 0.21 \times 10^{-2} h^{3} \mathrm{Mpc}^{-3}$.

However, while this Schechter form does have the general features seen in the nonparametric estimates it does not provide a particularly good formal fit to the shape of the non-parametric estimates. This new determination of the luminosity function is consistent with those from similar redshift surveys. Overall, a Schechter function can be used to describe the luminosity function in this redshift range, $z<0.1$. These fits favour a characteristic absolute magnitude of $M_{b_{J}}^{*} \sim-19.5$ and a flat faint end slope of $\alpha \sim 1.0$.

The significance of the observed large scale features in the galaxy distribution are investigated using the 2 -point correlation function. This clustering statistic measures the excess probability of finding a galaxy at a given distance from another. The methods of determining this correlation function from a magnitude limited survey are empirically tested using mock catalogues of the Durham/UKST survey drawn from cosmological N-body simulations. The optimal method is then applied to the Durham/UKST survey and the results show good agreement with those from previous redshift surveys. A single power law fit to the redshift space correlation function, $\xi(s)$, gives an amplitude $s_{0}=6.8 \pm 0.3 h^{-1} \mathrm{Mpc}$ and slope $\gamma=1.18 \pm 0.04$ in the region $\sim 1-30 h^{-1} \mathrm{Mpc}$. The projected correlation function, which should be independent of redshift space effects, is estimated for this survey. Using a single power law model for the real space correlation function, $\xi(r)$, gives a best fit amplitude $r_{0}=5.1 \pm 0.3 h^{-1} \mathrm{Mpc}$ and slope $\gamma=1.59 \pm 0.09$ in the region $\sim 1-10 h^{-1} \mathrm{Mpc}$. There is some doubt over the significance levels of these parameters given that a simple χ^{2} fit was used on non-independent points. Methods of inverting the projected correlation function to obtain the real space correlation function directly are investigated and a new application of the Richardson-Lucy technique is proposed and tested. The real and redshift space correlation functions from 3 different redshift surveys are combined. $\xi(r)$ appears to be well modelled by a featureless single power law out to $\sim 20 h^{-1} \mathrm{Mpc}$ with $r_{0} \simeq 5.0 h^{-1} \mathrm{Mpc}$ and $\gamma \simeq 1.8$. However, $\xi(s)$ appears better modelled by a two power law with the change of shape occuring near $\xi \sim 1$, in the $4-7 h^{-1} \mathrm{Mpc}$ region. On scales larger than these $\xi(s)$ has a similar slope to $\xi(r)$ but with a higher amplitude. Therefore, redshift space effects alone are believed to be responsible for the differences seen in these correlation functions and there is no convincing evidence for any features, such as a "shoulder", in $\xi(r)$.

The effects of redshift space distortions are then investigated, again using the 2-point correlation function, and the non-linear and linear regimes are modelled separately. On small scales, the 1-D pairwise velocity dispersion of galaxies in the Durham/UKST survey is measured to be $416 \pm 36 \mathrm{kms}^{-1}$. Again the significance levels are most likely an underestimate due to the non-independent nature of the correlation function. This value is consistent with the canonical value of ~ 350 kms^{-1} and also with other recent measurements, albeit on the slightly lower side of the new measurements. On larger scales, the dynamical infall of galaxies into overdense regions is measured to be $\Omega^{0.6} / b=0.45 \pm 0.38$. This favours either an open Universe with galaxies tracing the mass distribution or, if galaxies do not trace the mass distribution, that the density of the Universe is nearer its critical value. An unbiased critical density Universe is less consistent with this estimate of $\Omega^{0.6} / b$.

Finally, one can compare all of the observational constraints from the Durham/ UKST survey with the predictions from cosmological models of structure formation. The two models chosen are the standard cold dark matter model (SCDM), which is perhaps the most well-known and investigated cosmological model around, and a low density CDM model, with a cosmological constant to ensure spatial flatness, which is currently popular in the astronomical community (eg. Ostriker \& Steinhardt, 1995). The 2 -point correlation function from the Durham/UKST survey gives a significant detection, $>3 \sigma$, of large scale power above and beyond that of the SCDM model in the $\sim 10-40 h^{-1} \mathrm{Mpc}$ region. The LCDM model is more consistent in this region, although still $1-2 \sigma$ low. The 1-D pairwise velocity dispersion from the Durham/UKST survey (see above) is inconsistent with the SCDM value of $\sim 1000 \mathrm{kms}^{-1}$ at high levels of significance. The LCDM value of $\sim 800 \mathrm{kms}^{-1}$ does not fair much better. However, the estimate of $\Omega^{0.6} / b=0.45 \pm 0.38$ from the Durham/UKST survey cannot distinguish between the SCDM and LCDM values because they predict $\Omega^{0.6} / b \simeq 0.4-0.6$. In conclusion, the SCDM model appears to have too much power on small scales but not enough on large scales. Therefore, the observational results argue for a model with a density perturbation spectrum more skewed towards large scales, such as LCDM.

Bibliography

Bardeen, J.M., Bond, J.R., Kaiser, N. \& Szalay, A.S., 1986, Astrophys. J., 304, 15.
Baugh, C.M., 1996, Mon. Not. R. astr. Soc., 280, 267.
Baugh, C.M. \& Efstathiou, G.P., 1993, Mon. Not. R. astr. Soc., 265, 145.
Baugh, C.M. \& Gaztañaga, E., 1995, private communication.
Bean, A.J., 1983, Ph.D. Thesis, University of Durham.
Bean, A.J., Efstathiou, G.P., Ellis, R.S., Peterson, B.A. \& Shanks, T., 1983, Mon. Not. R. astr. Soc., 205, 605.
Bertschinger, E., Dekel, A., Faber, S.M., Dressler, A. \& Burstein, D., 1990, -Astrophys. J., 364, 370.
Blumenthal, G., Faber, S.M., Primack, J.R. \& Rees, M.J., 1984, Nature, 311, 517.
Bond, J.R. \& Efstathiou, G.P., 1984, Astrophys. J. Lett., 285, L45.
Broadbent, A., 1994, private communication.
Broadhurst, T.J., Ellis, R.S., Koo, D.C. \& Szalay, A.S., 1990, Nature, 343, 726.
Choloniewski, J., 1986, Mon. Not: R. astr. Soc., 223, 1.
Cole, S.M., Fisher, K.B. \& Weinberg, D.H., 1994a, Mon. Not. R. astr. Soc., 267, 785.
Cole S.M., Frenk, C.S. \& Eke, V.R., 1994b, private communication.
Collins, C.A., Heydon-Dumbleton, N.H. \& MacGillivray, H.T., 1988, Mon. Not. R. astr. Soc., 236, 7p.
Collins, C.A., Nichol, R.C. \& Lumsden, S.L., 1992, Mon. Not. R. astr. Soc., 254, 295.
Couchman, H.M.P, 1991, Astrophys. J. Lett., 368, L23.
Couchman, H.M.P, 1994, in "Numerical Methods in Astrophysics", v.II, Springer-Verlag, New York.
Couchman, H.M.P. \& Carlberg, R.G., 1992, Astrophys. J., 389, 453.
da Costa, L.N., Pellegrini, P.S., Davis, M., Meiksin, A., Sargent, W.L. \& Tonry, J.L., 1991, Astrophys. J. Suppl. Ser., 75, 935.
Dalton, G.B., 1995, private communication.
Dalton, G.B., Efstathiou, G.P. \& Lumsden, S.L., 1995, in preparation.
Davis, M., Efstathiou, G.P., Frenk, C.S. \& White, S.D.M., 1985, Astrophys. J., 292, 371.

Davis, M. \& Huchra, J., 1982, Astrophys. J., 254, 437.
Davis, M. \& Peebles, P.J.E., 1983, Astrophys. J., 267, 465.
Dekel, A., Bertschinger, E., Yahill,.A., Strauss, M.A., Davis, M. \& Huchra, J.P., 1993, Astrophys. J., 412, 1.
Eadie, W.T., Drijard, D., James, F.E., Roos, M. \& Sadoulet, B., 1971,
"Statistical Methods in Experimental Physics", North Holland, Amsterdam.
Efstathiou, G.P., 1988, in "Comets to Cosmology", Proceedings 3rd IRAS Conference, ed. Lawrence, A., Springer-Verlag, 312.
Efstathiou, G.P., 1996, "Observations of Large Scale Structure in the Universe", Les Houches Lectures, in press.
Efstathiou, G.P., Davis, M., Frenk, C.S. \& White, S.D.M., 1985, Astrophys. J. Supp., 57, 241.
Efstathiou, G.P. \& Ellis, R.S. et al., 1995.
Efstathiou, G.P., Ellis, R.S. \& Peterson, B.A., 1988a, Mon. Not. R. astr. Soc., 232, 431.
Efstathiou, G.P., Frenk, C.S., White, S.D.M. \& Davis, M., 1988b, Mon. Not. R. astr. Soc., 235, 715.
Efstathiou, G.P., Kaiser, N., Saunders, W., Lawrence, A., Rowan-Robinson, M., Ellis, R.S. \& Frenk, C.S., 1990, Mon. Not. R. astr. Soc., 247, 10p.
Eke, V.R., Cole, S.M., Frenk, C.S. \& Navarro, J.F., 1995, submitted to Mon. Not. R. astr. Soc.
Ellis, R.S., Colless, M., Broadhurst, T.J., Heyl, J.S. \& Glazebrook, K., 1995, preprint.
Fairall, A.P. \& Jones, A., 1988, Publs. Dept. Astr. Cape Town, 10.
Fong, R., Hale-Sutton, D. \& Shanks, T., 1991, in "Physical Cosmology", Proceedings 25 th Anniversary of the Cosmic Background Radiation Discovery, eds. Blanchard, A. et al., Editions Frontières, 289.
Fisher, K.B., 1995, Astrophys. J., 448, 494.
Fisher, K.B., Davis. M., Strauss, M.A., Yahil, A. \& Huchra, J.P., 1994, Mon. Not. R. astr. Soc., 266, 50.
Gaztañaga \& Baugh, C.M., 1995, Mon. Not. R. astr. Soc., 273, 1p.
Geller, M.J., Huchra; J.P. \& de Lapparent, V., 1987, in IAU Symposium 124, "Observational Cosmology", eds. Hewitt, A. et al., Dordrecht, Reidel, 301.
Glazebrook, K., Peacock, J.A., Miller, L. \& Collins, C.A., 1995, Mon. Not. R. astr. Soc., 275, 169.
Gott, J.R. III, Melott, A.L. \& Dickinson, M., 1986, Astrophys. J., 306, 341.
Gunn, J.E. \& Weinberg, D.H., 1995, in "Wide Field Spectroscopy and the Distant Universe", 35th Herstmonceux Conference, Cambridge, UK, eds. Maddox, S.J. \& Aragón-Salamanca, A., World Scientific Publishing, 3.
Guth, A.H., 1981, Phys. Rev. D, 23, 327.
Hale-Sutton, D., 1990, Ph.D. Thesis, University of Durham.
Hamilton, A.J.S., 1992, Astrophys. J. Lett., 385, L5.
Hamilton, A.J.S., 1993, Astrophys. J., 417, 19.
Hawking, S.W., 1982, Phys. Lett., 115B, 295.
Holman, B. \& Drinkwater, M.J., 1994, "FLAIR Data Reduction with IRAF", Anglo-Australian Observatory Manual.
Hubble, E., 1929, Proc. N.A.S., 15, 168.
Huchra, J.P., Vogeley, M.S. \& Geller, M.J., 1995, in preparation.
Hudson, M.J., Dekel, A., Courteau, S., Faber, S.M. \& Willick, J.A., 1995, Mon. Not. R. astr. Soc., 274, 305.
Kaiser, N., 1986, Mon. Not. R. astr. Soc., 219, 785.
Kaiser, N., 1987, Mon. Not. R. astr. Soc., 227, 1.

Kendall, M., 1975, "Multivariate Analysis", Charles Griffin \& Company, London.
Kolb, E.W. \& Turner, M.S., 1990, "The Early Universe", Addison-Wesley Publishing Company, USA.
Landy, S.D., Shectman, S.A., Lin, H., Kirshner, R.P., Oemler, A.A. \& Tucker, D.L., 1996, Astrophys. J. Lett., 456, L1.
Landy, S.D. \& Szalay, A.S., 1993, Astrophys. J., 412, 64.
Lilly, S.J., Tresse, L., Hammer, F., Crampton, D. \& Le Fevre, O., 1995, Astrophys. J., 455, 108.
Lin, H., Kirshner, R.P., Tucker, D.L., Shectman, S.A., Landy, S.D., Oemler, A.A. \& Schechter, P.L., 1995a, in preparation.
Lin, H., Kirshner, R.P., Schectman, S.A., Landy, S.D., Oemler, A.A., Tucker, D.L. \& Schechter, P.L., 1995b, in preparation.
Loveday, J., Efstathiou, G.P., Maddox, S.J. \& Peterson, B.A., 1995a, submitted to Astrophys. J.
Loveday, J., Efstathiou, G.P., Peterson, B.A. \& Maddox, S.J., 1992a, Astrophys. J. Lett., 400, L43.
Loveday, J., Peterson, B.A., Efstathiou, G.P. \& Maddox, S.J., 1992b, Astrophys. J., 390, 338.
Loveday, J., Maddox, S.J., Efstathiou, G.P. \& Peterson, B.A., 1995b, Astrophys. J., 442, 457.
Lucy, L.B., 1974, Astron. J., 79, 745.
Lucy, L.B., 1994, Astron. Astrophys., 289, 983.
Maddox, S.J., Sutherland, W.J., Efstathiou, G.P. \& Loveday, J., 1990a, Mon. Not. R. astr. Soc., 243, 692.
Maddox, S.J., Sutherland, W.J., Efstathiou, G.P., Loveday, J. \& Peterson, B.A., 1990b, Mon. Not. R. astr. Soc., 247, 1p.
Marzke, R.O., Geller, M.J., da Costa, L.N. \& Huchra, J.P., 1995, Astron. J., 110477.

Marzke, R.O., Huchra, J.P. \& Geller, M.J., 1994, Astrophys. J., 428, 43.
Mecke, K.R., Buchert, T. \& Wagner, H., 1994, Astron. Astrophys., 288, 697.
Metcalfe, N., Fong, R. \& Shanks, T., 1995a, Mon. Not. R. astr. Soc., 274, 769.
Metcalfe, N., Fong, R., Shanks, T. \& Kilkenny, D., 1989, Mon. Not. R. astr. Soc., 236, 207.
Metcalfe, N., Shanks, T., Fong, R., \& Roche, N., 1995b, Mon. Not. R. astr. Soc., 273, 257.
Mo, H.J., Jing, Y.P. \& Börner, G., 1993, Mon. Not. R. astr. Soc., 264, 825.
Ostriker, J.P. \& Steinhardt, P.J., 1995, Nature, 377, 600.
Parker, Q.A. \& Watson, F.G., 1995, in "Wide Field Spectroscopy and the Distant Universe", 35th Herstmonceux Conference, Cambridge, UK, eds. Maddox, S.J. \& Aragón-Salamanca, A., World Scientific Publishing, 33.
Peacock, J.A. \& Dodds, S.J., 1994, Mon. Not. R. astr. Soc., 267, 1020.
Peebles, P.J.E., 1973, Astrophys. J., 185, 413.
Peebles, P.J.E., 1980, "The Large Scale Structure of the Universe", Princeton University Press, Princeton.
Peebles, P.J.E., 1993, "Principles of Physical Cosmology", Princeton University Press, Princeton.
Penzias, A.A. \& Wilson, R.W., 1965, Astrophys. J., 142, 419.

Peterson, B.A., Ellis, R.S., Efstathiou, G.P., Shanks, T., Bean, A.J., Fong, R., \& Zen-Long, Z., 1986, Mon. Not. R. astr. Soc., 221, 233.
Richardson, W.J., 1972, J. Opt. Soc. Am., 62, 55.
Sandage, A., Tammann, G.A. \& Yahil, A., 1979, Astrophys. J., 232, 352.
Saunders, W., Frenk, C.S., Rowan-Robinson, M., Efstathiou, G.P., Lawrence, A., Kaiser, N., Ellis, R.S., Crawford, J., Xia, X.-Y. \& Parry, I., 1991, Nature, 349, 32.
Saunders, W., Rowan-Robinson, M. \& Lawrence, A., 1992, Mon. Not. R. astr. Soc., 258, 134.
Saunders, W., Rowan-Robinson, M., Lawrence, A., Efstathiou, G.P., Kaiser, N., Ellis, R.S. \& Frenk, C.S., 1990, Mon. Not. R. astr. Soc., 242, 318.
Schechter, P.L., 1976, Astrophys. J., 203, 297.
Schmidt, M., 1968, Astrophys. J., 151, 393.
Shanks, T., 1990, in "The Galactic and Extragalactic Background Radiation", IAU Symposium No. 139, eds. Bowyer, S. \& Leinert, C., Kluwer Academic Publishers, 269.
Shanks, T., Bean, A.J., Efstathiou, G., Ellis, R.S., Fong, R. \& Peterson, B.A., 1983, Astrophys. J., 274, 529.
Shanks, T. \& Boyle, B.J., 1994, Mon. Not. R. astr. Soc., 271; 753.
Shanks, T., Hale-Sutton, D., Fong, R. \& Metcalfe, N., 1989, Mon. Not. R. astr. Soc., 237, 589.
Shectman. S.A., Landy, S.D., Oemler, A.A., Tucker, D.L, Kirshner, R.P., Lin, H. \& Schechter, P.L., 1995, in "Wide Field Spectroscopy and the Distant Universe", 35th Herstmonceux Conference, Cambridge, UK, eds. Maddox, S.J. \& Aragón-Salamanca, A., World Scientific Publishing, 98.
Smoot, G.F., Bennett, C.L., Kogut, A., Wright, E.L., Aymon, J., Boggess, N.W., Cheng, E.S., Deamici, G., Gulkis, S., Hauser, M.G., Hinshaw, G., Jackson, P.D., Janssen, M., Kaita, E., Kelsall, T., Keegstra, P., Lineweaver, C., Loewenstein, 'K., Lubin, P., Mather, J., Meyer, S.S., Moseley, S.H., Murdock, T., Rokke, L., Silverberg, R.F., Tenorio, L., Weiss, R. \& Wilkinson, D.T., 1992, Astrophys. J. Lett., 396, L1.
Strauss, M.A. \& Willick, J.A., 1995, Phys. Lett., 261, 271.
Tegmark, M., 1995, private communication.
Tonry, J.L. \& Davis, M., 1979, Astron. J., 84, 1511.
Tucker, D.L., Oemler, A.A., Shectman, S.A., Kirshner, R.P., Lin, H., Landy, S.D., \& Schechter, P.L., 1995, in preparation.
Watson, F.G., Oates, A.P., Shanks, T. \& Hale-Sutton, D., 1991, Mon. Not. R. astr. Soc., 253, 222.
White, S.D.M., 1979, Mon: Not. R. astr. Soc., 186, 145.

Appendix A

The Durham/UKST Galaxy Redshift Catalogue

In this appendix the Durham/UKST Galaxy Redshift Catalogue is presented. Table A. 1 gives information on all of the galaxies in the catalogue with a measured redshift. This includes the UKST field number, the (α, δ) coordinates (1950), the EDSGC b_{J} apparent magnitude (after the zero-point correction from an earlier chapter) and the measured radial velocity (from the FLAIR observations) of each galaxy.

Table A.1: The field numbers, the (α, δ) coordinates (1950), the COSMOS corrected apparent magnitudes and the FLAIR measured radial velocities for all the galaxies in the Durham/UKST survey.

$\alpha(h m s)$	$\delta\left({ }^{\prime \prime \prime \prime}\right)$	b_{J}	$v .\left(\mathrm{kms}^{-1}\right)$
531			
214047.6	-25 3450.0	13.83	3450
212935.7	-24 1012.1	. 14.81	19664
213231.0	-26 5258.6	15.27	15821
214659.7	-26 1432.5	15.53	9097
213145.4	-24 2620.9	15.78	16504
213508.3	-27 2251.6	15.96	9092
213658.6	-22 4839.7	16.07	9674
213446.6	-25 0951.5	16.21	7481
213513.4	-26 5531.0	16.25	11033
214024.2	-24 3104.4	16.36	9738
213428.0	-26 3107.5	16.45	19805
212709.6	-232208.3	16.51	10317
212755.5	-25 2725.0	16.72	9147
213006.9	-232238.1	16.80	19202
214647.5	-24 3051.0	16.85	9815
213141.1	-27 2217.8	16.92	20143
213519.5	-22 4035.3	16.96	9407
213216.0	-24 4936.2	17.08	15074
212950.5	-26 3249.9	17.14	16113
212912.4	-25 1551.2	17.20	16530
532			
221019.4	-26 2346.3	13.50	4850
220525.2	-25 1821.4	14.79	5553
220022.5	-26 3856.3	14.97	9759
220153.2	-26 3841.6	15.20	5549
220909.6	-24 4510.8	15.46	7437
220820.8	-27 0514.7	15.64	4743
220314.6	-26 2546.2	15.96	6672
220932.9	-27 2418.6	16.16	9609
220556.0	-24 2110.9	16.36	16730
221036.2	-270746.2	16.58	8872
220916.2	-26 00.27 .3	16.72	10918
215604.0	-25 4736.4	16.86	8869
220828.6	-23 1701.8	16.99	17612
220522.3	-27 2039.3	17.15	5800
220512.9	-24 2937.9	17.20	16150
215035.9	-24 1529.0	17.26	28966
221006.8	-25 5554.8	17.38	18817
533			
222551.1	-25 0557.3	13.00	4633
221113.8	-27 1112.4	14.29	2569
223147.6	-22 5700.7	14.87	5492
221722.6	-251801.7	15.21	10765

$\alpha(h m s)$	$\delta\left({ }^{\circ} 1 \prime \prime\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
531			
214209.5	-25 1538.3	14.47	3561
213843.3	-26 4913.0	15.22	9350
213033.4	-27 0642.2	15.40	16148
214603.9	-25 5617.2	15.74	9540
212804.9	-24 0231.7	15.84	19439
213126.9	-27 0604.0	16.03	19921
213012.4	-22 5515.1	16.11	9942
213656.1	-22 3759.3	16.23	10325
213259.0	-26 4033.0	16.27	9114
212922.7	-25 4642.1	16.38	5016
213706.0	-22 5230.2	16.49	9371
214640.2	-26 3603.6	16.65	9601
213215.5	-24 2717.6	16.77	16570
214706.4	-26 2111.1	16.83	21905
213628.3	-22 3736.7	16.89	9470
214039.1	-24 0134.1	16.95	16461
213936.0	-27 2924.4	17.08	15797
213613.8	-22 5351.9	17.12	16648
213245.8	-262718.5	17.18	19745
212813.0	-25 3642.8	17.25	10793
532			
220805.7	-25 1912.4	14.54	4917
215903.7	-22 4335.9	14.91	5330
220844.1	-23 1200.8	15.10	5407
220634.3	-25 3947.2	15.30	2476
220314.0	-22 5653.0	15.49	17262
215822.6	-243557.8	15.89	5343
221059.0	-24 3501.3	16.09	11341
215458.7	-25 0047.4	16.34	4966
220753.5	-23 4230.7	16.47	18659
215301.3	-25 1930.8	16.70	7139
215720.1	-23 4038.9	16.75	19931
220738.1	-25 0614.5	16.96	2603
220111.8	-26 3229.4	17.06	10756
220628.8	-26 2739.3	17.19	12400
215409.6	-25 0605.5	17.22	1711
220402.4	-24 2430.1	17.34	16256
-	-		
533			
222243.8	-25 5359.9	13.92	4499
221702.5	-26 3535.0	14.61	2510
222247.8	-24 2944.5	15.17	7616
2223 09:8	-24 5906.0	15.29	10854

Table A.1: Information on the Durham/UKST galaxies.

$\alpha(h m s)$	$\delta\left({ }^{\circ}{ }^{\prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$	$\alpha(h m s)$	$\delta\left({ }^{\circ \prime \prime}{ }^{\prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
221924.1	-23 51.15 .4	15.37	11579	221945.7	-26 2206.3	15.42	9752
222209.7	$-26.5615 .5$	15.70	8949	223246.6	-26 2140.2	15.82	5783
223018.5	-2500 27.2	15.88	5638	222000.2	-270937.4	15.94	5473
221202.1	-25 5604.4	15.96	9310	221332.5	-25 55 11.2	16.08	26170
221245.5	-262822.0	16.09	9923	221236.6	-25 4846.5	16.13	11612
221932.8	-23 2021.6	16.17	8001	222846.1	-25 4038.8	16.24	10070
221650.9	-25 3502.2	16.25	4707	222956.9	-22 4809.7	16.30	15298
223232.8	-25 2229.8	16.32	9823	221304.1	-2720 22.8	16.36	24395
221410.2	-25 1718.9	16.39	17836	221940.2	-25 2648.5	16.40	4369
221643.5	-26 3415.5	16.42	26625	223012.1	-2509 26.3	16.44	6132
223237.4	-24 2956.7	16.46	9932	221234.1	-23 2940.2	16.51	9387
222336.5	-2713 29.8	16.52	9755	221544.0	-2533 36.4	16.55	10419
222840.5	-270420.9	16.57	15182	221556.0	-24 2606.9	16.61	9216
221410.2	-25 2224.6	16.65	9212	221341.5	-252037.9	16.72	10331
222544.8	-25 2314.5	16.74	2587	222645.5	-26 2640.6	16.84	10187
221331.3	-24 1436.4	16.88	18042	222832.3	-24 5921.4	16.90	10168
221200.1	-22 4033.4	16.93	11030	222928.0 .	-25 4240.0	16.94	19158
221508.6	-24 3002.7	16.94	26856	221918.1	-25 4416.1	16.96	19317
222341.2	-244602.2	16.98	15748	223120.8	-24 1822.5	17.01	11268
223038.6	-250714.7	17.02	6234		\cdots		
534				534			
223300.4	-26 1837.4	11.71	1503	223556.3	-26 06.40 .6	13.65	3408
225402.6	-25 1315.1	14.75	9345	223423.0	-24 5657.2	15.32	12942
224028.5	-26 0518.9	15.44	12544	223351.0	-26 3108.7	15.52	8096
223458.0	-26 5424.6	15.63	14484	224310.2	-242903.5	15.68	13607
224233.8	-260838.6	15:81	15679	223628.5	-224022.0	15.93	6422
223455.6	-22 3044.3	16.02	11131	224233.8	-27 2445.2	16.11	11004
223404.7	-25 0556.5	16.17	10688.	223333.2	- -241937.8	16.20	9845
224126.1	-251522.1	16.26	8205	223309.0	-25 1739.0	16.31	18047
223558.6	-22 3842.7	16.33	3444	224711.4	-23 3933.0	16.35	13989
$2233 \cdot 35.5$	-24 32.14 .6	16.37	10340	223914.3	-24 5056.0	16.39	13820
224805.5	- 240843.4	16.41	5951	223948.8	-252016.9	16.45	24095
223331.9	-24 5315.9	16.54	9957	224415.0	-271319.2	16.58	17376
223856.4	-25 1149.7	16:60	13375	223641.2	-23 0904.1	16.64	9005
223550.0	-27 1427.1	16.65	8476	225223.2	-23 5452.3	16.68	15429
224035.4	-23 4213.5	16.70	13490	223506.4	-251625.5	16.76	12383
225225.3	-26 14 46.6	16.77	24359	225311.1	-26 5432.8	16.85	3067
223828.4	-25 5212.8	. 16.88	3030	224631.2	-24 4920.6	16.93	9963
223715.9	-26 3352.1	16.95	8064	223811.2	-26 5012.3	17.03	10844
. 223844.0	-242713.6	17.06	14919	225226.9	-26 3431.4	17.08	26856
225251.8	-255202.9	17.09	26218	224818.5	-25 3001.4	17.13	15423
224802.9	-260231.6	17.19	27134	224006.4	-26 4006.5	17.21	14417 .
223757.3	$-27.0719 .9$	17.24	8351	223659.1	-252201.7	17.25	15840
224330.1	-26 1234.1	17.26	20744	224949.0	-270641.2	17.27	13265
225105.6	-264130.3	17.30	21198	-	-	-	-
535				535			
225618.7	-254748.9	$13: 91$	9222	231636.5	-225527.2	14.82	5983

Table A.1: Information on the Durham/UKST galaxies.

$\alpha(h m s)$	$\delta\left({ }^{\circ}{ }^{\prime \prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
225951.4	-24 3532.8	15.43	9686
230546.0	-263243.3	15.99	8987
225648.8	-26 0641.0	16.26	8172
230911.3	-252858.8	16.41	9572
230838.2	-27 11.27 .7	16.70	15895
230702.4	-23 1347.1	16.93	9118
225505.3	-25 1232.2	17.18	26652
231231.6	-25 2640.4	17.32	9564
231322.2	-24 1807.0	17.41	18806
230159.8	-235749.1	17.45	7710
536			
231922.5	-23 4653.4	14.18	7746
232244.9	-25 3646.0	15.63	8596
233357.9	-26 2710.9	15.98	9425
233526.1	-25 4015.1	16.12	9659
231815.7	-22 5514.5	16.28	9114
232949.8	-26 3549.6	16.46	15021
233602.9	-22 5509.1	16.56	14723
232349.5	-22 5954.2	16.62	26061
232929.6	-233738.2	16.68	17504
233556.5	-25 4323.1	16.81	9464
232754.8	-24 1901.6	16.89	17945
233712.0	-232311.0	16.97	8942
233842.6	-25 3000.9	17.03	16417
232232.5	-26 0241.7	17.07	25932
231752.8	-252109.5	17.16	7977
233609.7	-235847.8	17.20	5170
232550.8	-270541.2	17.29	9567
232411.2	-24 0748.7	17.36	26605
232809.6	-261957.5	17.44	26636
537			
234938.5	-25 40 59:2	14.12	3698
235129.7	-25 4358.9	15.36	2915
235740.4	-270032.4	15.90	17617
234720.1	-24 1813.5	16.06	16768
235458.5	-25 1216.9	16.18	19255
235837.0	-271754.6	16.27	8114
234437.4	-24 0501.0	16.31	22123
234102.3	-26 1203.8	16.39	16324
234357.7	-231032.4	16.46	8475
234615.0	-270128.8	16.48	9545
235107.1	-234009.8	16.51	14989
233956.3	-271150.4	16.53	18793
234627.4	-25 2749.5	16.56	15695
234353.4	- -252405.0	16.59	16830
235740.4	-253125.2	16.63	8230
234952.1	-271001.3	16.70	19005

$\alpha(h m s)$	$\delta\left({ }^{\circ 111}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
231631.8	-23 4306.8	15.54	7931
230313.8	-25 3059.7	16.20	15838
230015.8	-26 1132.2	16.34	14998
230351.0	-25 4152.3	16.51	15789
230102.5	-26 3647.9	16.86	15008
231501.0	-255306.7	17.16	20367
230323.1	-270828.7	17.22	8685
230151.8	-22 4120.2	17.39	26859
231139.0	-255814.5	17.43	8266
		-	
536			
233412.2	-27 1607.3	14.90	8691
233713.9	-230202.6	15.75	7686
232809.4	-23 2721.6	16.09	17751
233236.8	-23 0109.7	16.25	16592
233844.8	-230227.9	16.39	13858
233537.2	-25 0950.5	16.51	14301
233735.2	-23 0033.4	16.60	7714
232952.7	-24 2047.5	16.66	8040
232349.8	-25 1438.1	16.78	15035
233154.0	-235620.7	16.84	16170
233125.6	-26 2042.7	16.92	16237
232419.3	-231436.1	16.98	18355
232628.0	-23 1053.7	17.04	17841
232223.0	-24 3440.3	17.08	2576
232224.7	-23 4004.0	17.19	25974
233834.0	-262301.5	17.26	22132
232001.6	-22 5540.3	17.35	5159
233137.2	-233958.8	17.37	16069
		-	
537			
234147.3	-24 1555.0	15.17	14047
234249.5	-27 1036.7	15.68	14505
234249.7	-24 0304.1	15.99	14720
234930.2	-223803.5	16.09	13468
234328.7	-23 1034.8	16.24	13805
235821.9	-26 1102.1	16.28	14782
235237.6	-22 54.04 .1	16.35	14973
235848.1	-25 2825.8	16.43	8226
234152.0	-26 1902.8	16.47	14244
234225.6	-26 5407.4	16.50	14793
234300.1	-27 1758.7	16.51	14754
235522.6	-225945.0	16.54	15561
234240.2	-26 1954.1	16.57	15569
235842.2	-26 0450.5	16.62	15364
235011.2	-26 5449.6	16.65	17561
234258.6	-233621.2	16.72	14411

Table A.1: Information on the Durham/UKST galaxies.

$\alpha(h m s)$	$\delta\left({ }^{\circ \prime}{ }^{\prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
234253.1	-233103.4	16.73	26833
234624.8	-23 3118.3	16.79	17107.
234027.7	-262200.6	16.92	15199
234152.5	-240755.0	16.96	14163
235502.2	-255322.6	17.01	21934
234345.2	-26 1926.6	17.09	3777
235817.1	-23 4948.4	. 17.17	19972
472			
001030.5	-24 2933.7	14.12	10269
000233.2	-27 2242.2	16.32	8717
000329.5	-263617.9	16.77	8276
000905.3	-235716.8	17.26	16080
473			
001633.4	-231250.5	14.16	77.18
001223.4	-24 2204.8	15.05	7606
002740.6	-231607.9	15.93	17248
002849.5	-231840.7	16.04	7958
001248.6	-251013.9	16.36	16668
001406.5	-24 1057.3	16.52	7595
002437.3	-235238.2	16.75	18993
001812.1	-25 5905.0	16.92	19133
001306.7	-26 2906.0	16.98	7830
002051.6	-243346.8	16.99	7851
002259.9	-25 1124.5	17.13	17037
002248.7	-24 0633.4	17.20	19238
002915.6	-223612.7	17.23	26023
474			
003504.9	-22 4926.4	14.18	3778
003444.1	-225141.7	14.69	3086
004938.8	-225707.2	15.35	13825
004439.8	-243836.9	15.45	16174
003958.5	-235410.4	15.73	6684
005020.0	-255634.8	15.98	9572
004201.0	-233413.8	16.09.	18053
005223.1	-263831.0	16.17	17431
003613.4	-25 4951.0	16.31	18903
004554.4	-25 2357.7	16.35	19079
005150.0	-23 4925.2	16.40	17502
005246.2	-24 1853.2	16.44	17366
003430.1	-22 4721.1	16.52	19304
005045.4	-262154.1	16.60	20784
003732.2	-25 0822.2	16.67	18555
003546.8	-23 1043.0	16.70	27436
003956.1	-25 2111.6	16.79	19142
005310.4	-240549.4	16.90	13534
003441.9	-264225.8	16.92	18563
003630.9	-243732.5	16.98	21638

$\alpha(h m s)$	$\delta\left({ }^{\circ \prime \prime}{ }^{\prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
235728.6	-23 3847.7	16.75	19728
235009.0	-241958.2	16.89	15129
234247.3	-25 1104.6	16.92	17373
234354.6	-23 3559.7	16.96	13323
235908.8	-25 5118.0	17.05	4550
235603.2	-230032.9	17.11	902
-	-	-	
472			
000217.6	-253808.2	16.13	18656
000056.8	-23 1319.5	16.69	25964
000946.7	-24 0142.7	16.84	10082
000756.6	-24 3830.0	17.36	15601
473			
003253.4	-23 3858.6	14.38	3804
002845.5	-22 5010.6	15.57	8031
001250.5	-24 2016.4	16.01	7467
001409.9	-270754.2	16.22	16660
001904.6	-242315.4	16.49	5720
001952.2	-230408.5	16.65	5997
001234.5	-24 5410.8	16.90	16623
001648.8	-242635.2	16.96	18708
001311.6	-23 5841.5	16.99	19267
001905.8	-26 1815.0	17.03	16900
001459.3	-245656.5	17.19	28406
001619.6	-25 2302.2	17.22	10583
-			
474			
004017.2	-23 5007.6	14.54	6713
003520.5	-2655 27.2	14.82	5649
003833.8	-25 2929.7	15.43	16270
004615.5	-23 5002.5	15.58	16842
003729.2	-224554.1	15.91	15764
004555.7	-27 1649.1	16.00	5445
003445.8	-254750.2	16.12	18503
004318.8	-26 1135.6	16.28	11120
004501.5	-25 4247.2	16.34	20883
005216.8	-234728.7	16.38	9668
003738.2	-25 2522.4	16.43	7495
005433.7	-23 3655.8	16.47	2657
00.4825 .4	-23 2120.8	16.56	35375
004611.8	-270012.6	16.64	6667
005138.2	-23 2758.1	16.68	16534
004742.0	-233307.8	16.77	16297
004146.4	-243605.7	16.84	20398
004006.8	-225742.2	16.91	15204
003843.9	-23 3741.2	16.95	15780
005454.2	-270548.1	17.03	21785

Table A.1: Information on the Durham/UKST galaxies.

$\alpha(h m s)$	$\delta\left({ }^{\circ \prime \prime} 11\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$	$\alpha(h m s)$	$\delta\left({ }^{\circ}{ }^{\prime \prime}{ }^{\prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
004056.1	-25 3400.5	17.03	19250	005436.7	-22 4122.4	17.07	18589
003733.8	-24 4437.2	17.08	15769	003540.0	-22 4644.2	17.09	26988
004012.7	-270534.2	17.11	2003	004332.1	-26 4641.3	17.14	25759
004014.1	-265643.2	17.15	10656	005234.9	-240826.6	17.16	8116
004252.8	-271350.8	17.18	36264	004022.9	-26 2110.9	17.20	33076
004307.0	-243118.8	17.23	15758	-	-	-	
475				475			
011323.1	-27 0624.1	13.85	3592	011310.1	-26 4243.7	14.41	3688
011649.7	-25 4736.1	14.86	16028	005629.3	-26 0222.7	15.07	5583
010102.3	-25 5907.5	15.38	5525	011530.2	-271729.1	15.78	16992
011229.6	-265029.5	15.85	13303	010616.7	-262222.7	16.16	11750
0103.42 .8	-242506.3	16.17	11745	005948.1	-25 4622.4	16.20	11858
010044.4	-23 3945.8	16.27	12127	011523.9	-2546 05.7	16.31	13409
005557.2	-232939.5	16.41	16575	010649.4	-24 2334.8	16.79	16879
010158.4	-25 5709.0	16.91	13258	005628.1	-271602.5	16.91	32001
011135.8	$-2638.21 .3$	16.98	17256	010327.9	-2704 27.9	17.00	16239
010141.1	-27 1906.4	17.05	17543	011159.5	-25 5952.5	17.09	16885
010536.6	-24 2411.2	17.12	19276	005953.7	-2230.35.1	17.27	16413
476				476			
012806.0	$-22.5529 .8$	11.32	1588	011845.2	-26 5915.8	13.85	5775
012824.5	-23 5042.5	14.58	5890	013845.3	-261628.7	14.89	16629
013346.2	-224632.7	15.11	14663	013555.7	-23 1057.0	15.28	14078
012856.7	-26 4428.9	15.38	5689	012515.2	$-25 \cdot 2250.2$	15.44	12942
012217.7	-230519.3	15.47	9430	012918.4	-25 4810.6	15.60	5992
0124.28 .2	-231243.5	15.66	9876	012731.0	-25 1848.2	15.94	21030
012437.8	-230355.0	16.00	9434	013107.0	-26 0541.8	16.03	21340
011711.1	-26 4435.6	16.14	5662	013320.1	-22 5840.9	16.20	15885
013036.9	-271820.9	16.33	11601	013131.3	-25 4842.9	16.35	5780
012427.6	-26 3701.4	16.41	15028	013831.0	-233901.7	16.43	15210
013349.3	-225514.2	16.46	17861	013126.7	-230120.0	16.51	18091
012851.0	-24 5544.8	16.56	13151	013325.1	-255330.1	16.61	25563
013613.5	- 254748.2	16.63	1495	013740.9	-26 1216.7	16.74	9380
012906.6	-270719.3	16.74	5970	012307.4	-235749.1	16.76	5584
012151.8	-262036.4	16.77	12764	013304.4	-230020.0	16.83	14897
012448.2	-24 3756.1	16.85	21357	012205.2	-22 5849.8	16.98	9458
013021.5	-252132.7	17.02	337.18	011956.0	-25 5544.6	17.04	5620
012510.4	-243123.4	17.07	21329	012826.9	-271808.9	17.08	27416
012226.3	-240615.7	17.11	9440	012344.1	-23 1320.9	17.17	5548
012011.0	-261625.9	17.19	4626	013156.1	-23 1320.2	17.20	12484
012311.9	-271635.4	17.21	23871	012426.6	-22 4451.0	17.22	9950
012348.4	. -270324.8	17.23	9600	012750.2	-270630.0	17.29	32704
	477				477		
015615.2	-26 3209.3	13.27	4525	015125.8	-2400 12.7	13.74	1486
0159.13 .0	-25 0956.7	14.34	22815	014732.5	-263154.6	14.76	9455
014631.3	-272323.6	15.03	1359	014835.0	-271710.5	15.64	16440
014642.5	-27 1943.4	15.74	8774	014046.2	-253510.5	15.78	3920
015027.9	-26 3341.1	15.92	5745	014608.1	-242435.3	16.08	4724

Table A.1: Information on the Durham/UKST galaxies.

$\alpha(h m s)$	$\delta\left({ }^{\circ}{ }^{\prime \prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
015049.3	-26 3400.8	16.09	5352
014045.5	-263223.2	16.33	8653
014356.5	-265120.3	16.47	17960
015748.0	-233758.2	16.58	6045
014758.9	-25 5002.8	16.68	16644
015448.8	-25 2120.6	16.71	16400
015138.8	-24 0149.4	16.76	21050
014002.5	-26 0452.5	16.82	5874
014441.8	-270827.2	16.93	9839
015441.1	-23 1735.1	17.20	5918
015243.6	-24 4403.7	17.32	12317
014833.7	-254726.1	17.35	16644
478			
022248.5	-250054.2	12.71	2976
021619.5	-25 5911.3	14.66	10792
021536.8	-233651.3	15.26	11026
020904.8	-251515.1	15.67	9709
020948.4	-25 5843.9	15.98	16922
020301.4	-235613.6	16.21	9065
$02 \cdot 1151.1$	-23 0233.0	16.29	12217
020705.2	-240654.1	16.40	16679
020642.6	-235432.4	16.52	16653
021646.1	-26 4728.4	16.75	15024
022137.2	-25 2148.1	16.88	17832
022102.7	-26 2250.8	17.00	17544
021459.8	-24 2921.6	17.15	13265
021850.7	-232503.7	17.34	11633
021257.7	-253420.7	17.38	16868
021129.5	-27 1409.2	17.42	16799
479			
022405.8	-24 3048.0	12.69	1390
02.2714 .2	-26 4523.4	14.55	4823
022910.4	-23 1335.3	15.24	17309
023613.2	-272643.3	15.40	13433
022505.8	-24 0907.4	15.59	5291
024334.4	-232635.5	15.74	6850
022958.2	-24 5546.2	15.91	11766
024216.7	-24 4501.5	16.14	6857
023748.9	-230812.6	16.21	9865
023115.5	-26 5938.2	16.30	12828
022325.5	-23 3112.1	16.37	15750
022610.5	-240216.7	16.45	24839
022750.9	-223224.8	16.67	16489
024010.0	-25 4628.0	16.77	7195
022745.5	-25 4444.3	16.83	16706
022343.4	-26 4729.9	16.87	17617
023241.1	-2319 41.5	16.95	15703

$\alpha(h m s)$	$\delta\left({ }^{\circ}{ }^{\prime \prime \prime}{ }^{\prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
014300.7	-22 3438.4	16.19	12283
015459.6	-25 3305.2	16.38	9018
014923.2	-25.4614.0	16.56	12891
015544.9	-23 3601.9	16.66	12713
015110.4	-26 5439.6	16.69	17014
014817.2	-25 0257.6	16.73	13030
015005.3	-24 1615.3	16.78	17818
015645.1	-24 4426.8	16.85	25007
015023.1	-24 3353.3	17.16	17608
020017.7	-272010.0	17.26	12193
015314.4	-265458.4	17.34	24979
-	-	-	
478			
021011.5	-22 4218.0	14.15	12356
020757.4	-223958.3	15.12	5585
021033.2	-26 4136.0	15.40	17451
021046.5	-22 4329.0	15.79	12164
022219.4	-23 1113.9	16.13	10548
021238.9	-250514.0	16.27	11067
022058.9	-23 0854.5	16.36	15696
021005.1	-270815.5	16.48	9590
021346.4	-225651.7	16.54	9721
021708.9	-27 2608.5	16.84	17206
021818.4	-263600.6	16.94	17768
021325.8	-272801.1	17.11	17430
021416.9	-235015.9	17.19	9792
021249.6	-26 4059.5	17.36	11461
020502.3	-223723.1	17.40	16315
-		-	-
479			
023952.6	-24 2040.6	14.42	1566
024401.0	-263059.8	14.87	6892
024126.2	-242435.9	15.28	7389
022920.0	-231410.1	15.48	16565
024252.4	-26 3936.0	15.72	7111
022501.3	-26 5201.7	15.83	4952
024038.4	-254737.5	16.06	7049
023512.6	-234456.5	16.19	15419
022943.0	-261622.1	16.26	13816
023739.0	-252057.4	16.33	7322
022831.0	-25 5147.4	16.43	10107
024329.8	-255817.9	16.52	10373
023602.4	-230347.0	16.75	16198
024359.7	-250755.3	16.80	6919
022516.0	-24 3701.1	16.86	10587
022631.0	-25 3409.3	16.89	16658
024115.4	-223855.3	16.97	9850

Table A.1: Information on the Durham/UKST galaxies.

$\alpha(h m s)$	$\delta\left({ }^{\circ} 11 \prime\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
023154.7	-27 2311.5	16.99	30728
022949.4	-25 3828.8	17.06	4754
480			
030023.8	-23 0341.7	11.41	1356
030153.0	-26 4725.1	15.01	3790
02.5933 .3	-25 3033.7	15.26	10814
025727.6	-24 2929.6	15.47	10586
030331.1	-23 2634.3	15.65	11687
025947.3	-24 0112.3	15.79	10401
030431.5	-26 2015.9	15.96	11108
025211.2	-22 4220.5	16.13	8418
030249.9	-22 3307.2	16.32	4274
030603.9	-234515.3	16.44	19938
024912.1	-25 0857.3	16.48	33754
030355.7	-23 3316.2	16.52	10230
030644.0	-232605.1	16.58	23310
030329.0	-23 2037.7	16.65	11307
025725.7	-270206.7	16.73	15131
025329.9	-26 3738.3	16.80	18542
025713.0	-272557.1	16.90	5335
025608.3	-24 0053.6	16.94	19173
025210.8	-25 1548.1	17.00	18672
024537.2	-22 4856.8	17.11	25529
025641.2	-24 0520.9	17.17	10697
025509.4	-23 3608.1	17.21	4563
024917.8	-24 0917.2	17.21	4742
030612.6	-23 0557.1	17.33	10347
024650.8	-26 1335.2	17.38	31466
481			
031742.5	-26 1426.1	11.56	1710
031853.8	-25 4129.6	. 14.33	1471
030908.1	-25 1748.0	15.38	6324
030916.4	-27 0710.3	15.74	20642
030908.8	-26 0721.8	16.06	19932
032423.3	-23 0648.5	16.17	15775
031642.3	-24 0924.7	16.23	15284
032541.6	-26 2152.5	16.27	12599
031313.5	-27 2202.2	16.42	20602
031728.3	-26 2007.9	16.52	21032
032808.0	-24 3120.5	16.55	16146
032052.1	-23 2200.2	16.57	15603
032428.0	-252641.1	16.61	12183
032034.5	-26 0059.3	16.78	19216
030919.5	-23 0455.6	16.83	16194
031946.3	-23 1404.8	16.92	15365
030815.4	-26 1202.3	17.11	22659
466			

$\alpha(h m s)$	$\delta\left({ }^{\circ}{ }^{\prime \prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
022815.6	-26 1013.5	17.00	14062
023442.5	-225523.5	17.15	15855
480			
030558.6	-23 0648.6	14.46	10237
024923.9	-25 5426.4	15.06	6700
024908.1	-27 1026.7	15.41	3467
025701.5	-23 5133.5	15.56	2762
030537.2	-27 1541.0	15.72	6432
025607.7	-23 1459.7	15.90	7987
025138.7	-270159.6	16.02	18197
024747.4	-25 5828.2	16.25	13588
025121.1	-26 4827.0	16.40	18935
025902.8	-25 3115.0	16.46	11083
025112.6	-272052.5	16.50	20313
030454.3	-263537.5	16.57	6368
024758.6	-265601.9	16.63	18132
030633.6	-24 1141.3	16.66	20717
030440.4	-23 1603.2	16.80	12178
030636.0	-233729.9	16.87	19523
030306.2	-251624.9	16.92	19460
030541.2	-27 2042.8	16.98	20156
030601.2	-245256.2	17.03	9570
024826.6	-25 1129.9	17.15	10491
024946.9	-24 2528.0	17.19	22621
025928.8	-231406.1	17.21	19494
025133.8	-262347.2	17.23	15107
024839.7	-26 5425.9	17.36	7017
025316.6	-252247.7	17.40	34246
481			
031623.7	-260107.0	13.42	1764
032336.8	-26 3345.7	14.88	12904
031007.1	-252005.5	15.67	6242
031234.2	-250333.3	15.80	15405
030705.5	-23 5958.2	16.14	21901
031339.0	-26 5508.6	16.19	4329
032643.0	-264710.0	16.25	13133
032642.6	-23 1047.7	16.40	15954
030813.1	-25 5458.5	16.50	23043
032606.3	-271511.3	16.53	11199
032302.9	-24 1005.9	16.56	21017
032239.2	-26 4217.6	16.59	19430
031320.2	-230012.5	16.65	10651
031051.1	-25 5821.4	16.79	12876
032136.5	-24 2537.3	16.87	10793
031644.6	-22 5412.9	16.94	26572
-	-	-	-
466			

Table A.1: Information on the Durham/UKST galaxies.

$\alpha(h m s)$	$\delta\left({ }^{\circ \prime \prime \prime}{ }^{\prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
215911.4	-32 1336.8	12.07	2508
214536.4	-32 2435.0	14.33	5309
215409.2	-28 5125.0	14.69	6095
214442.0	-295532.7	15:02	6795
215920.9	-31 2742.7	15.25	2820
215436.3	-29 3757.5	15.39	10887
214335.3	-30 1530.2	15:56	7112
215708.9	-302527.4	15.65	5153
215838.7	-27 4428.5	15.96	19762
215311.5	-29 2857.9	16.18	9664
214424.5	-283034.2	16.26	14260
215635.0	-29 2605.6	16.39	11127
214244.1	-292316.4	16.58'	13955
215845.3	-310803.1	16.64	11470
215557.7	-27 4930.5	16.70	20281
214728.7	-302334.8	16.80	28186
214729.8	-30 1908.7	16.85	27720
215440.3	-2756 41.2	16.88	24373
214015.2	-29 1550.2	16.95	21380
22.0136 .5	-282029.5	17.04	28082
214423.5	-28 5509.3	17.12	21778
214750.5	-2829 55.6	17.14	28301
467			
220823.0	-304835.1	13.05	4341
222250.8	-312717.8	14.02	8507
222321.0	-312359.9	14.43	4433
221625.1	-283916.7	14.78	8398
222316.0	-310720.5	15.07	8532
220420.1	-30 0456.0	15.22	8823
220400.0	-29 11.33.8	15.44	18173
222529.0	$-3031.27 .6$	15.67	15871
221959.5	-32 1903.0	15.89	8286
220622.8	-274846.9	16.05	6985
220533.2	-30 2743.8	16.10	12334
222237.8	-275717.8	16.17	15234
22.0540 .9	-30 5005.2	16.27	18131
220537.6	-29 0709.5	16.42	16791
220754.7 .	-291336.1	16.59	7324
222115.5	-29 2534.0	16.64	18336
220909.6	-.28 2033.5	16.73	24876
222515.1	-305631.7	16.76	18551
220737.6	-303614.5	16.81	10949
222526.3	-301616.4	16.90	17053
220811.9	-29 0826.8	16.91	18170
221734.1	-29 1845.6	16.95	24783
468			
223931.1	-301908.2	12.93	1358

$\alpha(h m s)$	$\delta\left({ }^{\circ 111}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
215625.5	-320723.3	13.56	3033
220053.5	-280227.0	14.51	6829
215826.1	-314614.7	14.86	2468
213937.2	-29 3546.0	15.08	7005
215921.3	-315952.0	15.30	2814
215136.0	-283556.9	15.51	9844
215516.7	-285400.5	15.61	6420
214327.5	-293314.9	15.80	14030
215428.2	-315552.9	16.03	16730
215556.3	-28 5742.8	16.20	6353
215529.9	-303352.7	16.30	16224
214709.2	-310927.5	16.43	5044
215849.5	-31 1223.6	16.62	11509
220139.6	-311330.1	16.67	27679
215643.8	-29 0031.6	16.73	17739
214653.8	-32 0404.1	16.82	28171
214256.5	-302722.1	16.85	7044
214926.7	-290728.6	16.91	27390
214600.8	-275432.8	16.97	22090
215624.1	-315202.6	17.10	20818
215207.3	-311231.9	17.13	22198
-			
467			
220350.5	-31 2425.8	13.76	4205
221325.7	-273910.8	14.23	5316
221314.9	-303706.5	14.59	7833
221133.0	-30 1347.7	14.93	4515
222404.0	-310834.9	15.15	3947
221328.6	-320137.8	15.36	8320
220625.9	-275833.5	15.56	7417
222437.6	-313831.0	15.85	8371
222334.8	-28 2103.5	16.01	3518
220758.3	-30 2724.3	16.08	18010
221120.4	-28 4820.0	16.13	17671
222434.2	-30 4503.2	16.24	16802
221330.6	-28 5918.3	16.35	18116
220545.4	-310752.0	16.58	2613
222156.0	-311221.0	16.63	17611
221313.6	-281154.2	16.67	18455
221844.3	- -311251.2	16.74	17297
221326.0	-290202.2	16.77	18339
220524.5	-29 3456.9	16.88	25496
221648.9	-283503.4	16.91	17889
222103.8	-30 4426.2	16.92	24598
221844.9	-275235.4	16.98	18069
468			
222831.1	-2839 27.8	14.88	10874

Table A.1: Information on the Durham/UKST galaxies.

$\alpha(\mathrm{hms})$	$\delta\left({ }^{\circ}{ }^{\prime \prime \prime}\right.$)	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$	$\alpha(h m s)$	$\delta\left({ }^{\circ} 11 \prime\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
223530.3	-28 2938.9	15.20	9459	22 2945.2	-31 1032.0	15.63	8573
222717.0	-28 4328.3	15.71	8410	223942.5	-28 5045.8	15.92	8544
224150.6	-32 1957.3	15.97	8572	223434.6	-31 0021.8	16.06	8491
222858.0	-273333.9	16.14	2040	222853.0	-31 4438.7	16.17	17441
222753.8	-30 4718.1	16.25	4161	223923.9	-31 2108.7	16.31	8689
222934.6	-31 2627.2	16.36	16997	222734.2	-31 5155.1	16.42	14586
222941.0	-30 4310.9	16.56	16663	222833.5	-28.21 23.9	16.62	8394
223103.8	-29 1221.9	16.69	8351	223403.9	-32.09 35.6	16.70	11407
223154.9	$-27^{-56} 23.7$	16.75	11873	224021.7	-30 2210.1	16.78	8261
223102.5	-29 0934.7	16.82	8871	224509.2	-28 4834.4	16.86	10086
223909.2	-30 3817.6	16.88	17468	223638.6	-28 1437.1	16.96	14663
224020.5	-32 0211.3	17.01	23610	224548.2	-29 4923.2	17.01	9718
224715.5	-28 1905.9	17.03	8860	223233.7	-27 4615.1	17.06	11742
223625.5	-31 2101.4	17.07	8426	223132.6	-28 5847.7	17.08	19329
222552.3	-30 2122.2	17.14	8591	224752.2	-31 3058.7	17.25	31544
224329.0	-30 5843.2	17.34	17574	223931.0	-31 2048.3	17.37	8484
224450.1	-3149 15.4	17.40	24179	224821.2	-28 5131.3	17.41	14832
223042.1	-31 1915.6	17.47	17086	224524.6	-29 4709.8	17.49	24058
224802.1	-29 1116.6	17.52	9644		-		
469				469			
230926.1	-28 4839.9	11.94	1444	225614.1	-30 4543.0	14.46	8799
230612.8	-31 0747.2	15.02	1740	224953.5	-29 1917.5	15.23	11367
225434.3	-31 4323.7	15.50	9556	225923.3	-32 22.13 .9	15.54	8304
224923.0	-28 5225.3	15.63	12424	230204.1	-30 4119.6	15.72	8537
230107.7	-29 0041.4	15.76	1763	231109.0	-29 5127.4	15.84	8587
224949.3	-30 0717.9	15.85	4611	230447.0	-27 3646.8	15.88	8667
230256.2	-32 2525.3	15.93	17873	225642.7	-32 0242.7	16.12	17560
224858.6	-29 4241.8	16.25	11230	224912.7	-31 3610.6	16.29	20407
230919.8	-31 10.57 .0	16.34	32633	230449.0	-29 0518.6	16.44	14843
225012.6	-31 2343.2	16.47	22953	230359.2	-31 2537.5	16.48	20950
225035.9	-29 4918.0	16.50	23750	230310.2	-31 1021.4	16.53	8517
231051.8	-29 1725.8	16.55	8740	224838.0	-30 1323.9	16.59	13276
225010.0	-28 5955.3	16.65	20909	230014.6	-29 4455.2	16.68	15097
230206.1	-30 3237.5	16.69	21591	230732.5	-31 3033.8	16.75	20187
225405.3	-28 5815.5	16.87	12053	225049.0	-29 3929.3	16.93	23178
225833.6	-28 2257.3	16.95	24962	225026.4	-30.19 41.3	16.97	13206
23.0311 .1	-310029.8	16.98	8617	230652.5	-285111.4	17.01	14907
230317.0	-31 3458.1	17.04	11415	224835.0	-32 1138.9	17.06	23350
22.5844 .5	-31 4802.3	17.13	16395	230841.0	-30 5255.5	17.14	22565
230817.8	-29 3851.9	17.16	31058	230931.7	-27 4538.6	17.16	31623
225941.3	-31 2200.0	17.21	24999	225358.6	-305027.4	17.22	24184
230117.4	-32.06 21.2	17.25	25154	230713.0	-312030.5	17.26	16339
230107.5	-29 2346.5	17.28	21620				
470				470			
232107.2	-29 3943.9	13.73	6989	2329.46 .8	-28 0249.2	14.67	8755
231952.8	-29 3318.1	14.90	6852	232817.4	-2756 46.8	15.19	8530
231644.3	-28 1747.9	15:38	8504	232936.4	-31 2516.0	15.42	18218

Table A.1: Information on the Durham/UKST galaxies.

$\alpha(h m s)$	$\delta\left({ }^{\circ}{ }^{\prime \prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$	$\alpha(h m s)$	$8\left({ }^{\circ} 111\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
232821.7	-27 4804.1	15.49	8420	232326.8	-32 0733.8	15.79	18136
232028.3	-29 0211.4	15.89	13475	232328.9	-30 4851.8	15.99	18857
231230.6	-28 1106.4	16.03	8830	231134.3	-29 2819.6	16.06	14962
231935.4	-29 3929.2	16.09	15277	231729.0	-29 4756.5	16.12	15134
232101.6	-30 1521.3	16.29	15489	233333.7	-3150 21.7	16.38	19805
232608.4	-27 3249.3	16.41	9555	232514.2	-315709.8	16.46	18911
232837.9	-32 0832.6	16.48	16373	232422.9	-29 2209.1	16.49	20710
233232.8	-31 1421.8	16.51	15671	233305.6	-29 1914.3	16.56	10203
232725.2	-29 1218.4	16.59	13248	233100.8	-29 5918.5	16.62	15147
232950.5	-30 1615.2	16.65	15394	232412.0	-273706.8	16.68	16018
232830.9	-30 1418.4	16.71	15376	233240.6	-29 1503.8	16.80	15192
233057.7	-29 0244.7	16.89	14829	233415.8	-30 2629.2	16.91	18636
232655.8	-31 3859.3	16.93	10696	231443.8	-28 0802.3	16.97	26554
233045.6	-28 5601.9	16.98	19638	233147.4	-27 4511.2	16.99	16193
231800.7	-28 1954.5	17.00	16427	231235.6	-29 4727.9	17.03	8666
233357.2	-3140 13.1	17.06	19796	232930.7	-27 5529.6	17.06	7922
232545.2	-29 2511.4	17.08	20844	233202.2	-28 0622.9	17.13	8295
232458.2	-30 4123.0	17.14	10467	233344.7	-30 1307.2	17.15	15295
233115.7	--3145 11.1	17.16	18753	231343.3	-30 4718.3	17.17	33775
232936.4	-30 3023.9	17.17	31340	232243.0	-29 4848.0	17.18	22449
231654.5	-29 4931.0	17.20	15345	232658.4	-31 2404.0	17.21	18541
231647.1	-32 1533.7	17.22	35721	231844.9	-314728.1	17.29	28358
471				471			
23.4508 .2	-28 2501.2	13.67	8587	234901.5	-28 3835.4	14.07	8321
234956.4	-30 2733.4	14.89	8745	233852.8	-29 3552.9	14.96	15628
234452.8	-28 2448.0	14.97	8210	23.4438 .8	-28 1408.2	15.10	8455
234640.1	-29 1828.8	15.20	10507	234919.2	-28 1229.8	15.24	8646
233914.1	-28 1807.0	15.25	8282	234547.5	-28 2110.1	15.36	10153
235605.2	-30 0724.3	15.49	8946	234520.2	-28 3555.9	15.52	9966
234949.0	-29 1804.3	15.62	8606	234856.0	-28 1758.4	15.63	10242
235151.6	-29 0957.5	15.72	8810	234954.9	-28 3715.5	15.74	8640
234402.3	-28 5917.2	15.80	19082.	234749.3	-28 1306.6	15.84	8750
233632.2	-315052.4	15.99	15733	235551.9	-32 0150.3	15.99	17747
234608.4	-29 16.20.6	16.03	10977	234834.2	-31 3659.1	16.27	13140
233458.7	-31 1741.9	16.28	14943	235152.8	-27 4757.5	16.31	15179
234951.0	-27 5501.6	16.33	8710	234707.9	-29 3858.8	16.34	9059
234551.8	-28 5445.9	16.35	10734	234945.8	-29 4626.5	16.38	8902
233829.0	-32 1114.9	16.39	18268	234550.4	-29 0129.7	16.44	15599
234419.0	-29 2213.4	16.45	10391	234341.1	-30 2815.2	16.48	16393
235405.8	-29 3414.6	16.51	8795	234652.7	-30 4156.7	16.53	13619
234232.4	-28 3252.2	16.54	8265	234710.5	-27 5845.5	16.61	19360
235015.9	-29 54.35 .0	16.62	12824	234051.0	-29 2205.5	16.64	15294
233538.5	-313508.1	16.65	25845	234404.9	-28 2239.4	16.69	17013
233543.6	-3146 35.1	16.70	15280	235229.7	-27 5639.2	16.71	21006
234154.7	-28 0700.6	16.75	22610	234048.0	-32 0656.2	16.78	16449
234219.0	-29 4908.3	16.80	9625	233804.7	-29 3310.5	16.81	15565
234315.9	-28 2917.5	16.82	15547	234900.2	-3145 27.4	16.82	13131

Table A.1: Information on the Durham/UKST galaxies.

$\alpha(h m s)$	$\delta\left({ }^{\circ}{ }^{\prime \prime \prime}\right)$	b_{J}.	$v\left(\mathrm{kms}^{-1}\right)$
234340.0	-27 4713.9	16.84	8646
234800.2	-282423.1	16.87	8767
409			
000548.4	-301135.5	13.88	1476
000357.0	-32 1405.7	14.93	8583
000914.9	-302443.7	15.33	7720
001031.7	-305954.8	15.53	9238
000936.5	-310240.3	15.75	9546 .
000813.2	-301430.7	15.96	7725
000517.9	-282207.8	16.21	8427
000951.2	-293406.8	16.29	16864
235859.9	-28 4148.1	16.32	19273
000744.9	-303553.1	16.38	14528
000632.3	-275236.8	16.41	17892
235800.2	-302414.2	16.48	17749
235805.6	-311555.2	16.63	18388
235929.0	-273156.8	16.68	11702
000742.2	-293757.1	16.79	7427
000417.3	-315307.7	16.91	12177
001032.8	-312103.3	16.97	18572
235834.7	-280523.1	16.98	18628
235739.3	-2754 41.1	17.07	18911
001054.8	-28 43.52 .6	17.19	4292
235807.5	-274247.3	17.21	8620
410			
003147.1	-28 0446.8	12.10	1671
002634.8	-31 0652.9	14.52	7340
002409.3	-30 4936.7	15.54	5981
002037.4	-28 2535.3	15.85	18437
003318.1	-284533.5	16.03	6997
003404.2	-305113.4	16.16	18081
003232.3	-273829.6	16.23	21909
003322.4	-283151.1	16.27	7179
003333.2	-31 2826.1	16.41	16117
001918.7	-30 4337.6	16.57	27013
003137.3	-28 2927.4	16.62	4958
002020.1	-29 2145.8	16.75	20791
002852.1	-29 2529.1	16.80	28783
002744.5	-295328.1	16.87	29459
003143.3	-28 5238.3	16.95	33789
001440.9	-283127.8	16.98	16810
003236.0	-303423.9	17.01	1905
003136.8	-293932.2	17.06	18471
002335.7	-28 5151.4	17.16	- 16451
001358.0	-292657.8	17.19	14292
411			
005521.8	-274616.2	13.25	5573

$\alpha(h m s)$	$\delta\left({ }^{\circ}{ }^{\prime \prime \prime}{ }^{\prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
234319.8	-28 5240.2	16.86	15614
234421.5	-310039.2	16.88	26369
409			
235958.8	-30 5401.7	14.59	9080
000226.6	-30 4703.5	15.05	8281
000229.5	-27 5934.2	15.42	9872
000258.2	-30 5154.7	15.60	8565
235902.2	-295337.4	15.80	8285
000923.2	-290031.2	16.05	19975
000032.1	-30 0841.9	16.26	18379
000000.3	-31 0047.9	16.30	18470
000611.0	-314357.3	16.37	16847
000453.0	-28 3752.0	16.40	18366
235942.9	-30 4637.4	16.42	8721
000952.6	-29 2851.7	16.57	16667
000808.4	-315618.7	16.65	17934
000505.0	-312512.6	16.75	16916
000117.9	-28 1123.3	16.85	19068
000423.7	-280731.6	16.96	18549
000049.0	-310631.6	16.97	29341
000120.6	-290330.8	16.98	20445
000254.8	-29 0920.0	17.12	18856
235749.9	-305650.2	17.20	9505
235907.7	-294626.9	17.25	18855
410			
003142.9	-310250.3	13.95	1536
003151.8	-315213.9	15.36	9513
003238.1	-283250.1	15.77	7060
001143.9	-315612.2	15.93	6838
001625.5	-283100.0	16.11	18731
003347.2	-303437.7	16.19	18140
001337.4	-29 1124.1	16.26	18145
001608.1	-305010.8	16.37	4681
001408.5	-280312.7	16.45	32758
002140.6	-284259.0	16.58	11821
002259.8	-29 3248.8	16.68	10318
001449.0	-3154 08.1	16.76	30998
001557.1	-310052.3	16.86	18631
001944.5	-311144.8	16.88	32105
002553.9	-311356.8	16.97	15350
003354.2	-29 4308.3	16.99	16055
002958.5	-291630.0	17.05	28903
002717.4	-303159.2	17.10	7487
002623.0	-293827.3	17.19	22873
-	-	-	-
411			
005428.7	-32 1400.4	14.59	5798

Table A.1: Information on the Durham/UKST galaxies.

$\alpha(h m s)$	$\delta(011 \prime)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
004817.7	-31 3921.9	14.87	6262
004753.5	-304529.2	15.42	12938
005220.3	-31 1741.3	15.69	9991
003610.6	-281732.7	15.90	17275
004107.2	-305041.6	16.08	14424
004534.1	-321431.2	16.12	1730
004425.3	-314851.4	16.35	1703
004026.4	-28 4436.2	16.41	24742
004045.8	-320001.4	16.46	9936
003511.0	-274428.7	16.55	18527
005253.2	-313532.9	16.58	9929
005457.5	-294307.2	16.60	23165
005354.8	-29 2125.6	16.68	22699
004913.5	-284604.7	16.77	32607
003650.8	-31 1353.9	16.85	17873
003729.1	-29 1102.5	16.89	34331
005630.4	-302920.3	16.93	10146
003833.5	-29 5446.3	17.00	33572
004701.2	-310511.8	17.05	17594
005316.6	-29 0425.6	17.13	22566
004029.7	-303203.9	17.21	18934
412			
011126.5	-32 0045.1	12.69	5722
010349.3	-302644.7	13.84	9607
011828.2	-312235.7	14.83	9454
011420.5	-314151.3	15.20	10524
010347.5	-30 4432.0	15.36	6907
011028.5	-312754.5	15.46	5543
012012.2	-301437.6	15.63	11112
010842.9	$-32.2612 .3$	15.86	10559
010343.2	-30 3955.6	15.99	10080
010928.7	-314323.1	16:10	9864
010015.6	-29 1729.3	. 16.24	17316
010718.1	-30 4804.4	16.33	24579
011428.7	-285437.2	16.43	18687
011652.9	-291737.5	16.54	8634
011721.4	-311035.5	16.60	17350
011854.2	-300251.6	16.66	20377
011255.1	-28 1052.7	16.72	11247
010938.5	-30 1902.0	16.80	26801
010417.7	- 302728.7	16.85	27423
011439.0	-275507.1	16.89	17732 .
010359.1	-27 39.01 .2	16.91	15911
011856.3	-310122.6	17.01	9133
011430.7	-312206.0	17.04	10633
011113.1	-305946.9	17.07	17028
010705.6	-295816.0	17.11	18248

$\alpha(h m s)$	$\delta\left({ }^{\circ} 111\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
003651.3	-301312.4	15.04	7298
004149.0	$-285421: 1$	15.53	13047
005455.3	-311228.5	15.80	9443
004716.5	-303403.8	16.04	14418
004216.3	-310027.6	16.10	21424
004548.5	-30 5732.0	16.19	13056
003737.7	-32 2324.8	16.37	9337
003544.2	-27 4904.0	16.43	18276
003734.2	-295610.2	16.48	13233
004717.7	-314302.0	16.57	24615
005119.1	-275233.0	16.59	22615
005522.0	-28 3310.9	16.65	15569
004953.1	-273702.8	16.72	11791
003710.2	-29 1050.0	16.82	33599
005032.2	-29 3855.4	16.85	34821
005233.4	-321122.4	16.92	20211
004431.7	-290756.7	16.97	22225
004043.0	-312856.9	17.03	26605
004601.6	$-29.2846 .1$	17.08	14443
004325.1	-29 3905.4	17.14	16290
005411.0	-31.09 13.6	17.29	23419
412			
010839.1	-30 4216.2	13.34	5940
011036.0	-314255.0	14.79	5571
010958.3	-32 1938.5	15.07	10179
011132.9	-322853.0	15.24	5985
011122.4	- -320630.2	15.44	6242
011555.0	-310211.5	15.49	10780
005756.0	-30 1055.0	15.71	9883
011107.1	-30 2926.3	15.89	5660
010513.1	-31 1844.2	16.01	9557
011552.1	-30 1055.6	16.16	11319
011909.8	-30 1215.2	16.31	10915
011117.1	-3155 05.0	16.40	5683
010900.8	-314326.9	16.48	5685
011106.6	-320328.6	16.57	5868
012026.6	-30 4811.3	16.61	17942
011124.1	-315432.9	16.70	5840
010947.2	-320830.1	16.77	5737
005734.7	-304519.0	16.84	9807
012000.8	-282011.2	16.86	24515
010823.8	-31 1423.9	16.90	5535
011212.9	-312656.8	16.94	5773
005748.2	-29 4834.6	17.02	10025
005825.6	-282626.5	17.06	29041
011149.7	-283544.6	17.09	11240
010916.0	-292257.5	17.13	18151

Table A.1: Information on the Durham/UKST galaxies.

$\alpha(h m s)$	$\delta\left({ }^{\prime \prime \prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
413			
013159.7	-29 4023.0	10.86	1757
013630.7	-32 0433.1	-14.87	8958
013738.1	-28 1234.0	15.35	17026
013003.4	-31 2057.1	15.51	21276
012835.7	-27 5746.9	15.72	6032
012034.0	-28 1510.8	16.00	16047
0125 04.3	-28 3711.6	16.11	10184
013030.4	-29 3412.7	16.27	19372
013429.4	-28 3448.3	16.37	16000
013052.0	-29 1246.8	16.45	10086
012420.0	-28 4048.0	16.52	9344
012124.8	-27 5109.6	16.56	28481
014233.0	-28 2646.9	16.64	9283
012413.9	-314741.1	16.66	31894
012756.9	-28 5151.5	16.71	9927
012729.1	-29 4720.2	16.77	21023
012427.6	-28 2552.6	16.80	21229
013210.8	-31 4821.1	16.84	20418
013333.9	-29 3830.1	16.87	21879
012640.0	-29 1752.1	16.92	26162
012135.4	-31 23.42 .8	16.96	32778
013944.2	-29 3434.4	17.09	12287
013131.7	-29 0533.8	17.14	13674
414			
015325.9	-30 1000.9	13.25	4412
014337.4	-29 1717.3	14.69	5867
020352.7	-30 2840.6	15.34	10646
014739.5	-28 0132.7	15.49	13384
020029.3	-29 3614.0	15.65	18407
015314.5	-31 2058.9	15.98	8276
014447.8	-314738.5	16.08	8684
020041.8	-27 4138.1	16.34	22906
020525.2	-27 5124.1	16.37	20837
015111.4	-32 1055.5	16.53	10383
014937.7	-273627.4	16.65	27328
014518.0	-31 5145.9	16.73	18390
014459.2	-285155.9	16.80	18613
015705.9	-28.0846.8	16.83	17758
020337.1	-304324.4	16.86	8557
014448.0	-29 5130.9	16.90	10957
015637.6	-31 0652.2	16.93	4939
020515.7	-29 4747.7	16.98	11638
015155.8	-28 0638.8	16.99	17885
020623.0	-281536.1	17.01	18146
015057.5	-29 0805.6	17.12	18185
015558.1	-28 2211.9	17.16	26492

$\alpha(h m s)$	$\delta\left({ }^{\prime \prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
413			
013803.3	-29 0957.5	13.93	5371
012637.1	-32 1617.9	15.12	6291
014329.4	-28 0957.6	15.42	8998
012034.9	-31 0248.1	15.62	9483
012500.7	-28 5936.2	15.95	11432
013937.2	-28 4759.3	16.05	11576
013556.0	-28 5320.6	16.20	9111
014019.7	-31 0344.4	16.29	15043
012908.8	-313039.7	16.40	9135
012131.0	-30 1832.2	16.49	7400
013516.1	-28 0854.8	16.52	11681
012520.7	-32 2216.6	16.62	18018
013314.7	-29 2007.3	16.65	12689
012130.3	-30 3928.2	16.69	29821
013028.6	-29 3400.0	16.72	19125
014140.6	-30 2423.6	16.80	17762
014141.6	-30 2447.6	16.83	17867
012806.3	-28 4327.4	16.85	20680
012900.1	-29 2614.5	. 16.89	11094
013113.8	-30 3843.2	16.95	21420
012134.3	-28 3859.6	17.03	16036
012944.9	-28 2647.9	17.12	17106
012626.0	-29 5419.9	17.14	28488
414			
015655.5	-28.03 10.6	14.33	4769
015901.6	-315813.1	14.87	5520
020116.2	-29 5917.7	15.42	12667
015842.0	-32 0943.3	15.57	5450
014738.9	-28 0358.2	15.84	12945
015220.0	-30 5516.6	16.03	20414
015723.8	-29 4331.5	16.31	3074
015600.4	-30 4921.1	16.35	17166
014852.6	-275803.5	16.41	18310
014517.1	-30 3039.1	16.57	12892
015747.1	-31 2845.8	16.67	37381
015359.2	-27 5434.8	16.79	19320
015133.4	-31 3514.5	16.80	19526
020142.2	-31 1732.3	16.85	20203
015759.9	-29 2918.0	16.87	4767
015606.7	-27 4921.0	16.92	25263
015521.5	-28 1953.6	16.96	22074
014733.0	-29 0028.1	16.99	27970
014438.0	-30 1835.6	16.99	18367
020012.8	-29 0143.5	17.05	25510
014707.3	-29 5633.8	17.14	18425
020259.8	-28 0249.1	17.16	22647

Table A.1: Information on the Durham/UKST galaxies.

$\alpha(h m s)$	$\delta\left({ }^{\circ \prime \prime \prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
015341.2	-27 3908.2	17.17	19146
415			
021338.7	-3126 00.6	13.02	3455
021201.5	-31 2256.2	14.86	3734
020844.5	-3150 04.4	15.45	12747
022333.2	-295026.8	15.78	18674.
021533.5	-280110.6	15.92	17665
020909.9	-303644.0	16.05	11631
022120.9	-29 0731.4	16.35	18382
021024.6	-300056.8	16.42	10552
021406.2	-30 17.58 .7	16.54	19657
022620.5	-29 4439.3	16.59	17992
020944.4	-30 4148.3	16.65	12539
021609.5	-30 0902.3	16.75	23770
022659.3	-29 4658.0	16.83	17996
022004.5	-313614.0	16.95	8152
021437.6	-311833.5	17.10	21562
021021.4	-314101.0	17.12	17823
020734.3	-313551.9	17.26	17776
022459.9	-294105.2	17.31	19010
022907.2	-2755 18.9	17.40	18342
416			
024135.1	-29 1249.6	12.75	1493
024728.8	-30 4705.0	14.67	1179
025020.6	-305850.8	14.92	6730
02.3446 .8	-292426.2	15.56	4874
023023.6	$-29.5455 .1$	15.99	5075
024127.3	-295031.5	16.24	- 6659
023231.7	-28 3040.3	16.72	- 15121
024750.8	-312260.0	16.90	6130
024520.9	-320129.1	17.14	6838
025211.3	-290638.0	17.30	16609
417			
025330.8	-273730.8	13.39	5272
025907.1	-28 3950.1	14.49	6571
030259.3	-273150.6	15.13	6048
031322.9	-314216.2	15.83	20068
030241.1	-28 1420.9	16.18	12500
030627.8	-315516.6	16.44	19978
031003.6	-29 3927.1	16.56	20251
030327.5	-273734.4	16.60	15141
030756.5	$-30.3100 .5$	16.64	20665
031144.4	-302014.7	16.70	16381
030259.4	-30 1133.0	16.78	16219
031359.2	-31 0842.3	16.85	18579
031434.4	-29 0251.3	16.97	6900
030407.2	-3123 05.9	17.01	19440

$\alpha\left(\begin{array}{l}\text { m }\end{array}\right)$	$\delta\left({ }^{\circ}{ }^{\prime \prime} 1\right)^{\prime}$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
020419.7	-283846.5	17.19	24624
415			
022827.6	-3149 03.7	14.60	4635
021427.3	-301054.3	15.13	3765
021204.9	-321712.1	15.58	3492
020753.3	-315653.5	15.89	4489
020828.9	-313922.4	16.05	12643
021747.8	-285030.0	16.31	17924
022243.3	-282851.0	16.40	10006
021831.4	-28 4228.8	16.48	17888
021555.4	-28 0644.7	16.58	8032
022521.9	-29 4335.8	16.63	17917
020948.4	-291550.1	16.69	10732
020906.2	-293135.0	16.81	14529
022844.5	-31 3950.4	16.85	24304
021650.1	-275553.6	17.02	17380
021155.3	-31 2840.5	17.10	18247
021348.6	-275548.8	17.24	19718
020810.6	-304540.5	17.28	21827
022442.6	-313845.5	17.33	24492
022252.2	-313239.5	17.42	19179
416			
024657.4	-31 2249.6	14.59	5866
024634.6	-314435.1	14.87	4992
024631.6	-274005.2	15.38	6952
024927.6	-302500.8	15.93	5740
023632.7	-313345.8	16.18	4929
022951.8	-29 4923.6	16.35	4932
024054.7	-321556.1	16.85	4491
022936.9	-30 0517.6	17.08	16308
024746.3	-31 0941.7	17.18	16093
-		-	-
417			
025417.0	-322313.9	14.37	5010
030753.9	-311945.5	14.58	4781
025308.7	-300207.2	15.45	6694
031433.0	-311017.7	16.07	18730
031045.3	-314024.2	16.27	4132
031022.1	-28 2837.1	16.47	19615
030645.4	-28 0705.9	16.58	20598
025726.8	-305514.0	16.61	19208
030533.0	-29 3434.5	16.69	21249
030606.3	-3145 50.6	16.72	19961
030016.3	-322250.1	16.83	16930
031408.5	-292450.5	16.92	20977
031328.6	-320229.5	17.00	20036
030451.2	-305130.7	17.02	18305

Table A.1: Information on the Durham/UKST galaxies.

$\alpha(h m s)$	$\delta\left({ }^{0.111)}\right.$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$	$\alpha(h m s)$	$\delta\left({ }^{\circ}{ }^{\prime \prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
030750.4	-29 4212.1	17.03	20508	030944.8	-28 2618.6	17.07	19766
031218.5	-29 0113.4	17.13	19579	025929.7	-29 2745.9	17.16	17996
030536.5	-27 4004.8	17.19	21939	030930.9	-30 2328.2	17.22	20241
031008.6	-29 04.27 .1	17.31	18857	031143.8	-32 2851.3	17.38	19902
031127.9	-304335.8	17.41	19873				
404				404			
215409.5	-34 4914.1	12.98	2717	220053.1	-32 3138.5	13.60	2478
215911.1	-33 0740.3	14.40	4251	220937.8	-36 1101.3	14.62	9707
215116.9	-34 0337.2	14.75	4900	220847.2	-34 0757.8	14.93	2661
220430.4	-33 3735.9	15.01	2769	215902.9	-36 1539.3	15.24	9586
221056.0	-33 3848.7	15.41	4247	215521.7	-34 3251.7	15.55	10574
215247.6	-34 5350.3	15.56	4683	215714.6	-371137.9	15.66	16540
220705.7	-33 0432.8	15.71	14015	220546.6	-35 1612.1	15.77	9235
220843.8	-35 3243.7	15.98	17625	221157.3	-34 2032.1	16.09	8347
221149.0	-36 0241.3	16.28	3734	220629.0	-36 0828.1	16.34	17554
221047.5	-35 3434.1	16.40	3933	220744.0	-34 4942.9	16.44	8305
220341.3	-36 5212.6	16.49	27468	220745.2	-32 5431.8	16.51	12853
220629.7	-34 5304.6	16.56	8450	215955.1	-32 4907.3	16.58	2221
2208.21 .8	-352038.5	16.59	9440	221138.2	-34 0321.9	16.61	8384
220624.8	-352638.4	16.62	8208	22.0526 .8	-33 5515.2	16.70	18321
220802.8	-32 38 11.5	16.72	10622	221101.6	-34 3558.3	16.75	17624
215906.5	-36 3729.7	16.77	17185	221156.4	-37 1014.2	16.83	10742
220450.8	-32.49 42.5	16.83	17700	215314.6	-34 5401.8	16.86	4895
221103.3	-36 4618.3	16.96	9632	220638.0	-36 5527.2	16.99	17305
215737.2	-35 $26 \cdot 59.8$	17.00	10755	220856.2	-37 2231.4	17.03	17216
220129.3	-35 3840.2	17.04	27226	221123.8	-37 0849.5	17.05	17189
220117.2	-33 3227.1	17.07	9541	220407.2	-34 2208.8	17.09	16276
220509.2	-34 0943.6	17.10	4345	215408.9	-355107.5	17.12	20564
220754.0	-35 1911.4	17.14	4894		-		
405				405			
221313.2	-37 0535.8	12.74	3343	222627.7	-35 4341.0	14.33	8458
221353.3	-363859.5	14.68	3500	221900.2	-35 2728.8	14.88	3422
221836.6	-37 1703.0	15.12	9276	222306.3	-32 4413.6	15.42	3278
223300.9	-350623.1	15.62	26770	222606.4	-364127.8	15.64	12965
222339.2	-34 2800.4	15.74	8974	2232.39 .5	-37 2409.2	15.85	8667
221839.3	-32 5008.4	15.96	4136	222317.7	-34 5824.1	16.00	17724
222634.8	-33 1640.7 .	16.04	8581	223246.3	-34 5347.1	16.12	17766
221414.7	-33 1849.9	16.14	4009	222447.2	-36 4421.5	16.27	8472
223459.1	-32 3722.0	16.32	14523	223222.7	-33 2527.4	16.33	9275
222745.9	-35 4014.8	16.37	17655	223546.8	-36 3820.7	16.38	27709
223542.6	-37 1446.0	16.42	17315	222608.9	-35 3550.8	16.45	8440
221831.9	-32 4517.4	16.47	9038	222946.7	-35 5159.0	16.52	29266
221600.4	-36 2910.8	16.55	8996	221439.5	-32 3230.7	16.57	15196
222636.9	-35 4833.8	16.60	8219	223232.2	-36 3438.2	16.61	12493
221532.2	-33 4302.8	16.63	17200	221345.2	-36 2440.1	16.67	9102
222620.1	-354526.8	16.68	8762	221723.2	-34 5511.6	16.70	12270
221637.7	-37.04 32.0	16.73	17133	221610.4	-34 4802.3	16.74	20777

Table A.1: Information on the Durham/UKST galaxies.

$\alpha(h m s)$	$\delta\left({ }^{\circ}{ }^{\prime \prime}{ }^{\prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
223329.0	-362558.4	16.78	12351
222026.2	-34 4548.9	16.83	20567
221629.2	-350751.0	16.86	11218
223119.5	-372751.8	16.88	21942
221832.2	-331158.3	16.90	24108
223521.6	-351125.7	16.95	18365
221956.9	-323602.0	16.99	17724
223050.8	-365645.6	17.01	23392
223354.9	-34 0651.2	17.03	8626
222624.7	-354503.1	17.06	9056
222747.7	-370507.4	17.16	5493
406			
225423.1	-36 4345.9	11.40	1659
225456.5	-36 1737.0	13.58	2307
225353.5	-370225.7	14.31	2076
224039.9	-370741.6	15.08	11857
224056.6	-3259 29.7	15.26	8508
224550.2	-371103.3	15.40	8217
224249.1	- -352448.6	15.57	8946
225455.5	-33 3030.1	15.64	8763
225055.6	$-34.2448 .6$	15.75	8503
225231.9	-341114.1	15.93	8788
224524.8	-32 5040.6	16.04	16505
224254.2	-331236.4	16.09	9281
224747.8	-34 2629.8	16.13	9056
224638.7	-331928.7	16.23	11769
225357.9	-340301.4	16.31	8775
225232.5	-34 3853.5	16.39	8807
223721.8	-371418.9	16.44	17608
22.4614 .7	-33 0503.4	16.50	16683
223718.8	-363900.2	16.52	18071
224337.7	-341752.0	16.58	23523
225154.0	-344507.1	16.63	17091
225312.0	-372101.3	16.67	11025
225932.3	-365334.5	16.67	16448
224805.0	-372355.6	16.71	11006
224418.8	-365010.4	16.75	20362
223645.5	-365834.4	16.79	17676
223836.0	-332154.9	16.83	8542
224756.5	-35 1553.1	16.84	26908
225450.5	-33 2647.7	16.86	16633
224321.2	-3542 42.5	16.87	24196
223829.4	-365617.0	16.91	21414
224256.5	-372227.2	16.93	8856
224430.9	-343409.8	16.95	27416
224229.7	-354131.4	16.95	28318
224419.3	-363002.2	16.97	20838

$\alpha(h m s)$	$\delta\left({ }^{\circ} 111\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
223255.6	-35 0433.9	16.81	8283
222451.5	-35 5950.0	16.84	17851
221713.2	-35 4947.8	16.87	7740
223531.7	-35 4925.2	16.90	18703
222415.5	-35 1722.8	16.94	17673
221233.8	-365630.3	16.97	11011
222017.6	-335505.0	16.99	2432
221423.5	-371146.6	17.02	17456
222606.0	-32 3551.4	17.04	29488
222658.5	-35 1729.6	17.13	23731
406			
225508.0	-360733.2	13.03	2323
225802.1	-353818.5	14.14	1753
224003.5	-352011.1	14.83	12308
224309.8	-363003.0	15.20	8690
225448.7	-342118.6	15.36	8886
224453.4	-360332.8	15.43	8686
224133.8	-364833.4	15.61	12040
224645.5	-332810.3	15.67	8782
223741.9	-351917.3	15.86	8621
224620.4	-33 5941.4	16.00	20406
224409.5	-331250.7	16.05	16832
223722.3	-36 2841.3	16.12	17648
225132.2	-32 4047.8	16.19	16208
223932.1	-323811.8	16.27	17487
225112.2	-33 1612.4	16.37	17233
224815.1	-32 4214.2	16.41	12228
$2238 \cdot 31.9$	-335212.5	16.48	18201
223620.3	-36 2540.9	16.52	17731
224123.1	-363711.3	16.56	17648
224859.6	-35 5704.1	16.60	24839
225615.4	-335026.4	16.64	8691
225255.0	-34 2452.0	16.67	8486
223633.0	-325817.5	16.69	17203
225006.7	-345245.1	16.74	16991
225824.8	-370930.1	16.77	8983
225923.6	-32 5734.6	16.81	4009
225435.6	-331927.4	16.84	16781
22.4116 .3	-362518.1	16.85	20167
224139.5	-371956.8	16.87	19790
224816.2	-365335.4	16.87	19595
224300.7	-33 3037.3	16.92	21984
224331.1	-371521.2	16.94	11366
224047.3	-364205.2	16.95	20674
224603.3	-371715.1	16.97	31692
224624.1	-363631.4	16.98	12106

Table A.1: Information on the Durham/UKST galaxies.

$\alpha(h m s)$	$\delta\left({ }^{\circ}{ }^{\prime \prime}{ }^{\prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$	$\alpha(h m s)$	$\delta\left({ }^{\circ}{ }^{\prime \prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
225525.1	-33 25 57.5	16.99	16584	2249.55 .2	-33 5637.0	17.00	22752
224117.5	-35 3123.3	17.01	22200	225428.0	-33 3144.3	17.03	20131
224627.9	-37 1404.3	17.03	32223	223949.5	-33 2602.0	17.03	17279
224912.3	-36 3645.2	17.05	20116	224221.8	-35 5217.3	17.06	8797
223704.6	-34 3328.6	17.06	8817	225358.4	-34 1337.5	17.08	9765
224610.0	-34 3009.3	17.09	35710	224442.3	-34 3651.5	17.10	8558
225914.0	-364510.9	17.10	1624	225557.7	-36 1747.3	17.10	17611
407				407			
230419.5	-36 3254.5	12.96	2728	230654.5	-36 4128.4	14.33	1657
231404.7	-35 4750.8	15.03	10753	231039.2	-342523.8	15.57	10404
230350.0	-36 31 14.4	15.85	18040	230225.5	-33 1924.8	15.94	16779
230138.2	-33 2634.5	15.98	16526	230419.9	-33 4837.2	16.06	8665
230554.2	-32 5233.4	16.24	16209	231627.5	-33 0956.7	16.28	18657
230316.6	-364138.3	16.33	11666	231548.6	-33 3606.3	16.39	16197
230322.7	-34 3225.8	16.40	16856	232210.3	-355023.1	16.42	16444
230613.5	-33 5124.3	16.46	18470	230209.6	-37 0534.8	16.48	18085
230150.5	-32 4730.4	16.53	25201	230206.4	-32 4916.3	16.57	24460
232019.0	-34 1900.1	16.60	24237	231213.6	-35 4145.5	16.60	10741
230447.9	-33 0846.1	16.62	16451	230145.9	-34 1007.6	16.66	25391
231950.0	-37 1540.7	16.68	16364	232111.3	-35 5647.2	16.71	16442
230731.8	-37 2429.5	16.73	25767	230057.5	-33 2759.2	16.76	16453
231812.7 .	-36 5120.1	16.78	25782	230919.2	-33 4147.2	16.80	19546
230438.2	-33 3801.9	16.83	8561	231656.8	-35 0340.2	16.84	15873
231151.4	-36 0900.3	16.85	26707	232222.5	-35 5359.4	16.88	16318
232017.7	-34 1906.6	16.91	24276	231916.1	-32 5405.1	16.92	12016
230214.9	-32 5845.0	16.93	18033	230659.5	-32 4624.5	16.94	16422
231008.3	-32 5317.9	16.97	11519	231419.3	-341623.0	17.02	16306
408				408			
234109.9	-36 5928.8	14.76	12482	234421.4	-36 0421.6	14.95	12609
232742.2	-35 1322.3	15.23	16172	233328.6	-32 4705.4	15.32	15612
232736.1	-33 2056.2	15.35	16057	234728.8	-36 0132.6	15.52	12975
233943.9	-36 41:34.8	15.71	16199	234458.1	-36 2833.5	15.78	16846
234112.8	-36 3330.9	15:85	9792	232637.2	-351603.5	15.90	16430
234121.4	-33 0014.6	15.96	11442	233955.6	-330526.3	15.99	15562
234405.9	-360225.2	16.01	13518	233539.1	-360027.5	16.02	16151
234543.2	-35 3031.5	16.09	17135	233152.8	-351223.0	16.10	11906
234726.5	-35 1137.0	16.12	13466	234335.5	$-37.0232 .9$	16.15	16864
233917.8	-37 2155.0	16.17	15599	234449.7	-34 3413.6	16.26	11617
234344.4	-35 4410.5	16.31	10804	234635.5	-35 2003.8	16.38	13109
234151.2	-36 1142.6	16.39	11120	234338.8	-33 2942.1	16.43	11590
234030.8	-36 1327.4	16.45	16733	234155.6	-36 2146.1	16.46	11358
234741.8	$-35.2634 .4$	16.47	14831	232855.7	-33 0315.9	16.51	16340
234207.9	-35 3348.5	16.53	12069	234625.9	-35 1651.1	16.56	19593
234104.9	-34 2627.5	16.59	13481	234536.0	-35 2405.2	16.61	16618
232931.4	-34 1308.0	16.61	25919	234150.9	-365115.9	16.63	16938
234701.6	-365120.3	16.65	17229	233923.9	-37 1451.1	16.66	15821
234023.9	-35 1528.1	16.68	11820	234135.5	-34 4024.1	16.7	12679

Table A.1: Information on the Durham/UKST galaxies.

$\alpha(h m s)$	$\delta\left({ }^{\circ}{ }^{\prime \prime \prime}\right.$)	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$	$\alpha(h m s)$	$\delta\left({ }^{\circ}{ }^{\prime \prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
234641.4	-36 4651.3	16.74	14698	232728.2	-36 0554.9	16.76	5800
232559.3	-35 0601.4	16.78	25794	233329.6	-32 4848.2	16.80	15819
233518.4	-35 3343.9	16.82	16070	233914.2	-36 2532.5	16.85	11600
233741.2	-36 3258.5	16.87	13714	234501.2	-32 3820.7	16.90	11246
232845.3 .	-34 2150.4	16.91	15903	234643.0	-35 1234.3	16.92	10567
234454.0	-35 1743.3	16.95	17727	234335.3	-35.50 02.	16.98	12557
234536.4	-33 0911.3	17.04	26862	232650.0	-35 1450.6	17.06	23799
234413.6	-353952.5	17.07	12856				
349				349			
235426.0	-35 0220.2	13.76	14800	000020.9	-34 3050.4	14.25	6842
000308.6	-36 1343.8	14.77	9320	235222.6	-34 5246.6	14.79	16002
235527.0	-34 3409.1	14.94	14656	234935.7	-34 5206.8	14.99	8568
235930.2	-33 4443.2	15.22	8755	235429.6	-36 1923.6	15.51	13707
000721.5	-36 5505.8	15.54	7140	235959.4	-36 3315.6	15.60	13680
234832.5	-36 3947.9	15.66	13913	000324.4	-36 2332.3	15.70	8657
235213.7	-36 2613.3	15.71	13853	235653.0	-35 2740.5	15.74	14909
235624.4	-35 2107.6	15.80	14784	000254.8	-36 1315.9	15.85	8826
235308.8	-34 2613.7	15.87	15025	000821.5	-35 2430.7	15.91	14402
000818.5	-37 2616.4	15.93	6814	234831.0	-35 5403.4	15.96	16816
001048.1	-3547 11.9	15.98	27743	000158.9	-32 3139.7	16.00	8338
000943.1	-33 4432.7	16.02	7661	235037.4	-33 1234.0	16.05	17880
000021.1	-36 0002.5	16.06	14750	000357.1	-32 3457.0	16.11	13531
235455.9	-36 5248.3	16.14	8363	235436.8	-353759.3	16.19	15148
000304.3	-35 0532.9	16.20	8643	235302.3	-36 4511.1	16.23	15289
235718.4	-35 1623.7	16.26	14342	235027.4	-35 0518.6	16.27	13137
000327.2	-36 2328.8	16.29	8643	000759.5	-33 2446.4	16.31	7807
2348.09 .2	-36 2557.5	16.33	14156	235310.5	-33 4709.9	16.36	17291
235112.8	-34 5743.8	16.37	16555	000732.0	-35 3928.2	16.39	14573
000654.2	-35 2506.5	16.43	14703	000251.5	-35 2111.4	16.47	9079
235749.5	-34 0227.5	16.49	14415	000744.5	-37 0829.4	16.50	8530
235409.5	-34 5120.7	16.52	16211	000604.7	-33 4310.6	16.53	14648
235716.6	-32 4605.9	16.56	12369	000330.1	-32 5855.5	16.58	13762
2356 28.0	-33 3025.3	16.59	17715	235448.1	-32 5402.8	16.60	17916
235735.9	-363028.9	16.62	17919	234931.9	-36 1356.6	16.65	14079
235036.5	-34 1628.7	16.66	17868	235225.1	-33 1344.3	16.69	17009
235421.2	-350655.6	16.69	14086	235429.3	-35 0454.7	16.70	15153
235024.1	-345759.8	16.71	16651	001040.7	-35 3933.5	16.72	22228
000828.8	-35 4149.3	16.73	15084	000711.6	-35 5441.3	16.75	18428
235731.9	$-35.5612 .3$	16.76	8360	000719.6	-35 3531.2	16.76	15824
001045.7	-35 4855.8	16.77	29636	235436.6	-34 4714.3	16.77	10097
001029.5	- 341436.3	16.78	6680	000549.9	-35 3656.6	16.79	14856
001056.5	-35 4712.8	16.80	7949	001009.6	-36 1755.7	16.81	21612
235905.3	-36 2356.0	16.84	21813	000624.4	-35 5715.1	16.86	14874
000033.6	-36 1312.0	16.87	14685	000713.9	-36 4521.6	16.87	15111
235053.5	-34 3515.9	16.88	17007	000238.9	-34 5917.1	16.90	34412
235113.1	-35 4653.3	16.90	17333	234823.0	-34 4352.3	16.91	17102
235313.1	-34 4433.4	16.93	15735	235004.6	-35 2542.2	16.94	19962

Table A.1: Information on the Durham/UKST galaxies.

$\alpha(h m s)$.	$8\left({ }^{\circ}!14\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$	$\alpha(h m s)$	$\delta\left({ }^{\circ}{ }^{\prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
000948.5	-3721 46.4	16.95	15771	235229.4	-36 2837.5	16.96	14778
234814.4	-33 1519.1	16.97	21060	235302.5	-34 4941.2	16.98	10383
350				350			
002753.5	-33 3116.0	11.23	1545.	0027.10 .1	-33 3210.2	14.03	141
002302.3	-33 1911.4	14.32	14940	001312.8	-33 1830.0	14.61	7363
002834.8	-37 0959.1	14.90	7298	003339.3	-32 5243.8	. 15.09	4421
001448.1	-32 47 37.1	15.26	7834	001228.2	-33 1119.0	15.29	18349
002954.3	-36 59.28.8	15.41	9092	002027.4	-34 5144.2	15.58	14842
002351.6	-33 4124.5	15.64	9543	003017.5	-33 2647.4	15.78	14797
001724.7	-36.19 32.7	15.84	7333	003436.4	-32 4814.5	15.86	14935
003416.1	-36 3152.0	15.90	12411	001532.3	-33 1224.3	-15.93	7677
001524.2	-32 4815.4	15.99	7480	001925.1	-33 3327.9	16.03	14325
003516.6	-33 5837.5	16.13	8639	001939.0	-34 3250.0	16.16	18303
-00 2856.1	-37 2135.9	16.18	7042	002844.1	-32 3600.8	16.22	13663
002045.1	-35 0239.8	16.22	18469	001642.5	-36 5228.2	16.26	19794
002544.1	-35 4425.4	16.31	32214	003337.6	-365051.2	16.35	18797
002000.9	-34 23 52.9	16.35	15112	001807.2	-34 4459.6	16.38	7577
001526.6	-34 1031.7	16.42	8819	001434.8	-34 4935.2	16.46	15183
002418.6	-330325.0	16.47	14803	002202.5	-33 2153.1	16.54	14431
001232.8	-34 20 51.8	16.55	6630	002128.6	-33 4232.6	16.56	15309
002810.3	-37 2115.6	16.58	6967	001902.9	-34 1157.2	16.63	32629
001735.0	-34 3356.5	16.65	7364	002210.9	-33 3240.1	16.67	14749
003231.8	-36 42 14.6	16.69	18698	002334.6	-36 0554.5	16.69	20477
001618.7	-35 0211.8	16.70	28597	001945.1	-33 3057.0	16.71	14270
002220.2	-35 5321.2	16.73	32867	002404.7	-36 4737.5	16.74	13225
002609.4	-33 2012.9	16.75	14199	003433.2	-36 0629.6	16.76	16484
002314.0	-33 1814.6	16.78	14453	002102.8	-34 3134.8	16.78	14783
002257.3	-33 1918.6	16:81	14723	001933.8	-33 3312.5	16.82	21919
003421.0	-32 3031.6	16.83	27009	002657.2	-33 1502.0	16.85	15618
001230.2	-3409 21.4	16.87	14903	003415.7	-34 1823.8	16.89	9772
351				351			
005702.0	-34 3557.3	13.77	3427	003930.8	-33 1440.4	14.79	9642
005237.1	-35 3533.1	14.89	17368	004025.4	-37 0909.8	15.19	7100
005838.4	-35 3040.9	15.35	11598	005214.1	-36 0722.4	15.56	13681
004654.4	-33 4213.5	15.67	9062	005330.3	-34 4118.0	15.69	10236
005824.5	-363819.6	15.93	11742	00.4643 .0	-34 2513.3	16.08	14395
005450.0	-36 5145.2	16.12	16988	005353.4	-35 3128.3	16.18	14526
004959.6	-32 5458.8	16.20	6020	004347.3	-34 3921.7	16.22	19249
004743.4	-33 23.08 .2	16.26	23633	003838.6	-33 5228.9	16.35	14471
003721.8	-33 0841.5	16.45	15199	003741.7	-36 2847.1	16.47	13278
003707.6	-36 0444.3	16.49	6347	005159.3	-35 4256.3	16.55	17072
004355.9	-34 4224.9	16.58	14559	005537.2	-36 1048.5	16.60	14617
005332.3	-35 4554.5	16.64	17164	005032.4	-35 1812.4	16.68	13538
003912.7	-34 4048.0	16.70	11442	003821.7	-3722 54.3	16.72	10383
004707.8	-33 2226.0	16.74	13381	004729.7	-34 2303.8	16.76	6668
004205.2	-36 5805.2	16.78	20694	004716.4	-34 2834.7	16.82	13967
004516.9	-35.1135.1	16:83	6898	005305.2	-35 5203.0	16.83	17388

Table A.1: Information on the Durham/UKST galaxies.

$\alpha(h m s)$	$\delta\left({ }^{\circ}{ }^{\prime \prime}{ }^{\prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
004931.4	-34 0752.0	16.87	17835
005135.2	-35 5613.9	16.89	10138
004920.6	-331651.1	16.95	11621
003635.7	-334121.7	16.97	14355
003838.0	-36 2825.5	16.99	8730
004430.6	-340402.3	17.01	11514
352			
01.1146 .6	-325457.2	13.62	3564
011746.2	-340943.6	14.12	3539
011848.0	-362248.9	14.39	9652
011601.7	-372201.9	14.96	9519
011728.4	-33 20.44 .3	15.14	9369
010501.0	-370119.9	15.32	3964
011643.8	-361115.2	15.52	15130
011123.7	-34 1045.2	15.62	6642
010458.4	-365609.1	15.78	14508
010249.2	-34 4800.7	15.87	14833
011158.7	-35 2304.4	15.93	9488
011656.2	-331635.6	16.02	9263
010500.9	-34 1757.8	16.09	19777
010018.1	-333137.7	16.18	10625
011508.4	-345957.8	16.20	15491
012016.4	-33:4620.3	16.25	10256
011548.1	-36 4608.1	16.29	7158
010600.5	-36 3318.5	16.33	6483
012317.1	-333036.2	16.37	9337
011202.7	- 335942.4	16.42	20313
011405.0	-33 1233.0	16.51	5538
010745.6	-361923.5	16.57	5471
011439.4	-37.0203.0	16.65	20321
011815.3	- -365638.5	16.73	11475
012205.1	-340127.1	16.79	9024.
010136.2	-331939.1	16.81	15005
012032.2	-32 5943.8	16.87	20931
011532.5	-355226.8	16.89	22559
353			
014702.9	-325924.1	13.30	4986
013520.5	-34 1042.3	13.94	5778
01.2807 .5	-331737.4	14.39	4850
014731.0	-35 0442.3	14.62	8342
013305.0	-330154.3	14.86	10655
013120.9	-365114.9	15.07	9211
013206.0	-330528.2	15.20	19109
012948.0	$-3403.35 .8$	15.41	20791
0137.04 .3	-363247.0	15.50	8874
0141.13 .2	-3343 37.3	15.64	8772
013340.7	-361005.3	15.84	9347

$\alpha(h m s)$	$\delta\left({ }^{\circ}{ }^{\prime \prime \prime}{ }^{\prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
005022.2	-361744.6	16.89	9802
005542.9	-36 1956.5	16.91	9177
005631.0	-360760.0	16.97	11727
004744.4	-3600 38.8	16.99	17843
005548.2	-33 0257.4	17.01	17949
005720.8 .	-343254.2	17.03	19703
352			
011210.8	-32 3145.2	14.08	5262
010759.8	-360008.4	14.23	3938
012216.3	$-33.2602 .2$	14.47	9250
010627.3	-36 3641.4	14.97	6684
011507.5	-360248.2	15.23	9607
012117.7	-35 1146.8	15.39	6041
011722.3	-33 2206.1	15.55	5881
011617.1	-33 4640.1	15.74	5799
010311.2	-340154.5	15.81	5859
011856.1	-33 2854.2	15.91	5662
012326.2	-371852.7	15.98	9365
011418.6	-331128.1	16.06	5477
011242.0	-331705.8	16.13	6614
01.2048 .7	-325638.2	16.19	9183
010836.3	-334857.2	16.24	9941
012139.5	-340345.4	16.27	1502
010044.2	-360949.7	16.32	14441
011627.0	$-3323.46 .7$	16.36	9059
012151.7	-353238.5	16.39	3560
011721.2	-355535.8	16.46	10042
011748.5	-331136.6	16.55	20280
011935.4	-3254 25.0	16.62	9216
011119.2	-3319 19.4	16.70	6665
011651.0	-331258.1	16.77	20289
011409.4	-335748.4	16.79	11412
010634.9	-363528.8	16.84	17434
010518.8	-362626.5	16.88	6016
-	-	-	-
353			
012541.0	$-35.5835 .7$	13.64	5679
0126.07 .0	-361458.8	14.24	5456
014055.6	-342936.3	14.53	3846
013355.3	-363329.1	14.72	9797
013148.8	-34 4201.8	14.90	3759
013627.2	-331640.1	15.12	10785
013959.9	-333040.5	15.32	5828
014503.5	-324916.5	15.49	10526
014131.1	-343311.6	15.55	3754
013319.2	-345251.3	15.72	5968
012952.0	-345535.6	15.90	9262

Table A.1: Information on the Durham/UKST galaxies.

$\alpha(h m s)$	$\delta\left({ }^{\circ \prime \prime}{ }^{\prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$	$\alpha(h m s)$	$\delta\left({ }^{111}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
012704.8	-33 0626.7	15.93	19500	013056.8	-331600.4	15.97	- 4981
- 013504.2	-333507.7	16.02	13580	013314.3	-33 1333.0	16.04	18956
014319.4	-34.36 48.6	16.07	8542	013341.2	-364237.9	16.09	9412
013711.2	-341554.5	16.13	8778	014344.3	-35 0410.5	16.16	20450
014738.7	-363528.4	16.19	9880	014607.7	-35 0502.4	16.20	18307
012629.9	-352326.7	16.24	5647	014155.1	-36 2630.5	16.25	8312
013910.2	-35 1540.5	16.32	8795	012427.7	-33 0921.4	16.36	20625
012539.2	-325343.6	16.40	17902	013443.7	--354409.4	16.48	8927
01.3737 .4	-34 2047.4	16.52	20270	013204.5	-35 3753.5	16.55	24560
014410.5	-361452.2	16.56	18349	012714.3	-33 1238.5	16.58	11369
013008.9	-332010.7	16.59	10709	014152.0	-353058.4	16.62	20994
014231.1	-363629.8	16.65	20309	013326.5	-33 2329.4	16.67	21042
014059.5	-352935.2	- 16.72	8470	014719.5	-331627.7	16.75	11336
013321.6	-362012.9	16:80	16001	014524.5	-36 3754.3	16.80	8984
014554.4	-352949.1	16.82	8113	014506.3	-371547.5	16.82	20790
013312.4	-361650.8	16.86	12120	013833.3	-372146.8	16.86	21144
013716.4	-33 5036.1	16.88	10580	013436.4	-364353.7	16.89	5312
014138.6	-340627.7	16.90	8630	013158.1	-334448.7	16.90	14982
014124.4	-354137.0	16.91	20656	-	-	-	
354				354			
020755.6	-331032.7	13.48	3299	020445.4	-36 4127.5	13.80	5836
015818.3	-34 2950.9	14.08	4814	020541.1	-352620.1	14.64	6070
015903.8	-34 3618.2	14.80	4752	015843.6	-34-58 32.5	14.99	10923
015240.2	-35 2423.4	15.19	5135	020553.8	-370957.8	15.41	6964
015236.8	-345812.8	15.51	15443	020502.1	-371813.9	15.58	18234
015021.6	-360510.9	15.71	7592	014953.7 .	-334633.1	15.77	8703
015231.8	-35 5447.3	15.91	9988	. 020256.9	-35 4153.1	15.93	18332
014827.5	-325106.1	16.00	16203	020201.8	-352100.7	16.04	10382
014835.6	-33 0200.8	16.14	3359	014851.2	-362227.8	16.16	5735
015501.2	-370601.3	16.18	13449	015720.9	-355123.2	16.19	8830
020801.9	-364319.7	16.35	9835	015151.9	-331528.7	16.43	8624
015158.9	- 333545.9 .	16.46	20529	014852.2	-330135.1	16.48	8092
0153.49 .4	-34 5326.6	16.52	24259	021044.7	-352627.0	16.54	5996
020221.6	-3539 28.2	16.60	8990	015304.3	-333054.1	16.62	20435
020917.5	-350419.4	16.68	13768	015832.9	-331956.1	16.69	22603
020757.4	-363847.5	16.71	16829	020502.5	-371322.7	16.73	18212
020457.8	-341851.2	16.75	14230 .	015008.6	-360708.4	16.77	9785
020418.2	-323515.5	16.79	7092	015240.3	-332617.7	16.81	26852
020652.3	-361629.2	16.81	24700	-	-	-	-
355				355			
023530.0	-33 0825.9	12.93	4406	022843.5	-342631.3	14.50	4483
023107.7	-370445.5	14.77	9434	023556.7	-335513.1	14.96	4991
023035.4	-331320.2	15.41	10806	023255.2	- 340510.3	15.62	6282
021513.5	-370828.0	15.83	9467	022342.1	-370136.8	15.93	5769
022054.8	-370622.3	15.99	12913	023451.7	-330745.8	16.08	21429
023519.8	-332658.9	16.15	6375	023306.2	-371139.0	16.19	13670
021414.9	-360516.1	16.22	9394	022441.7 .	-364749.5	16.30	9553

Table A.1: Information on the Durham/UKST galaxies.

$\alpha(h m s)$	$\delta\left({ }^{\circ}{ }^{\prime \prime \prime}{ }^{\prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
021620.7	-330426.6	16.31	10224
022847.3	-361325.3	16.39	4696.
021738.6	-341021.6	16.56	19741
022629.9	-362734.2	16.65	13059
021936.9	-33 0240.4	16.71	10509
021635.2	-335954.5	16.77	20385
023231.0	-332624.8	16.84	19294
023417.1	-352804.6	16.91	3009
022605.7	-342739.2	17.04	9575
022041.4	-341652.4	17.22	19188
356			
025550.4	-365504.6	12.89	6154
025823.6	-370706.8	15.03	1612
024618.6	-352346.1	15.42	5042
025101.0	-345635.2	15.65	4374
025209.5	-335518.7	15.69	18897
025248.3	-35 1104.9	16.06	6331
024207.1	-361404.9	16.22	6337
025631.5	-340205.8	16.39	4832
024819.2	-351259.2	16.49	10463
024613.6	-370652.8	16.57	11693
024525.4	-351729.3	16.63	25976
025351.8	-34 2643.5	16.66	19162
025004.3	-355601.9	16.82	16371
023817.2	-333856.1	16.85	10648
025756.6	-361754.1	16.88	23000
024409.3	- 363534.0	16.91	10497
025128.0	-334213.6	16.96	4617
024709.3	-33 2138.4	17.02	10823
02.5713 .9	-37 2943.1	17.06	19380
025455.2	-354504.6	17.08	26392
025905.0	-325514.9	17.15	28087
024630.6	-350209.8	17.29	18876
357			
032047.6	-372307.8	10.60	1521
032304.0	-371105.7	14.44	1913
032140.9	-355718.1	15.32	1823
031908.1	-365415.6	15.68	12478
031724.0	-324947.5	16.04	1673
030813.8	-364922.3	16.16	10480
030056.0	-3542 21.8	16.28	4451
031720.0	-325629.6	16.35	13161
031633.5	-33 1755.3	16.56	15536
030402.2	-352640.3	16.69	19876
031226.6	-35 5916.8	16.77	19500
030559.0	-365433.2	16.85	20010
030556.8	-353253.1	16.96	18284

$\alpha(h m s)$	$\delta\left({ }^{\circ}{ }^{\prime \prime \prime}{ }^{\prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
023426.4	-372839.3	16.35	18456
021824.8	-365740.8	16.53	9256
021535.7	-372206.8	16.62	12486
021404.0	-351214.3	16.68	15972
022611.4	-34 5139.8	16.72	4892
022848.8	-32 5752.3	16.82	10071
022446.5	-363316.0	16.86	9499
021345.6	-350319.9	17.03	19550
021944.0	-343732.9	17.16	6103
021257.2	-360745.2	17.24	9393
356			
024647.0	-365519.8	14.12	5129
024456.0	-360240.4	15.36	6192
024508.3	-343810.2	15.58	6332
024614.4	-361402.3	15.66	4452
025025.3	-361001.1	15.82	16782
025203.3	-363422.9	16.12	18828
024813.9	-350118.9	16.37	10888
025825.5	-371740.5	16.45	19816
025006.4	-362419.7	16.51	28593
025549.6	-361107.9	16.58	15743
025632.7	-34 1416.4	16.65	19122
025646.4	-372458.6	16.77	19757
024849.9	-35 1714.4	16.83	11369
024901.6	-350056.1	16.86	11465
025241.3	-362312.5	16.89	19053
025512.0	-323019.4	16.92	4746
025703.7	-365338.4	17.00	7638
024934.3	-351647.3	17.04	10389
025047.4	-330412.3	17.07	4946
024526.9	-345543.7	17.11	24846
024735.2	-361837.5	17.19	4060
-		-	-
357			
031511.9	-32 4529.7	12.59	4333
030822.8	-332041.5	14.60	1110
032309.7	-370609.9	15.43	1802
031904.4	-355229.1	16.00	12944
031552.4	-331425.4	16.06	4569
031858.8	-354630.5	16.22	4139
030609.7	-34 2208.3	16.30	16796
030655.5	-365502.4	16.43	18767
031251.5	-33 4309.1	16.60	20010
030616.4	-365345.8	16.73	19712
030542.4	-35 4105.1	16.82	4456
030215.9	-33 1139.9	16.93	16799
030029.3	-370530.3	17.04	29305

Table A.1: Information on the Durham/UKST galaxies.

$\alpha(h m s)$	$\delta\left({ }^{\circ, 1 \prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$	$\alpha(h m s)$	$\delta\left({ }^{\circ}{ }^{\prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
030109.0	-364842.8	17.09	16017	032153.9	-37 2539.0	17.09	17652
030733.3	-32 5409.3	17.11	19176	030342.5	-350205.9	17.14	19326
344				344			
215912.7	-41 1953.2	14.35	10683	220307.9	-41 0027.5	14.64	10957
221144.0	-39 0319.2	14.81	11658	221528.6	-381720.8	14.91	10629
215402.8	-38 2904.1	15.33	9601	215407.3	-38 2905.9	15.33	9774
221302.4	-41 1825.5	15.56	14753	220130.5	-374415.3	15.74	9965
221425.9	-38 1538.3	15.89	21529	220738.7	-4125 45.9	15.99	8242
215842.1	--39 5952.0	16.04	20826	221741.8	-39 0720.7	16.22	14350
220749.5	-37 5312.6	16.28	10431	220952.4	-38 4332.0	16.32	10822
220515.0	-38 27.04.6	16.35	11039	221538.9	-39 5430.7	16.43	18788
215755.0	-40 3030.0	16.43	20196	220016.4	-38 1834.4	16.45	16991
220824.0	-415810.6	16.49	16360	221711.1	-415537.7	16.51	20557
215624.5	-402546.0	16.55	18946	220600.5	-40 5836.6	16.57	18655
220321.9	-39 1004.3	16.68	11044	22.1414 .6	-40 4005.3	16.84	14304
221234.1	-38.24 05.1	16.85	16942	220754.8	-41 0750.0	16.87	17240
215840.3	-37 4722.4	16.87	2687	221217.4	-402806.9	16.95	19125
221819.3	-38 5244.6	17.02	17302	220444.7	-39 1808.9	17.09	10825
221523.0	-39 4613.8	17.12	18348	220901.1	-38 4721.1	17.24	11206
220951.4	-40 49 05.7	17.26	22303	220305.6	-39 3445.0	17.34	21318
215728.8	-40 1043.2	17.37	20372	215907.8	-413352.5	17.45	19050
345				345			
223057.0	-411131.5	12.83	2014	221919.9	-402033.0	14.01	2282
222034.6	-38 1727.9	14.85	8250	222944.1	-381822.1	14.92	3058
223100.1 .	-39 3923.5	15.16	17100	222347.2	-41 4944.4	15.35	19834
$22 \cdot 4021.6$	-40 1840.4	15.43	9157	223038.8	-37 4807.7	15.52	10800
222013.5	-38 1448.3	15.67	8428	222148.4	-38 4931.6	15.81	2570
224020.1	-39.44 26.2	15.88	9586	221935.6	-385306.9	15.90	8366
223352.7	-39 1442.2	15.97	2023	223211.3	$-38.3050 .3$	16.09	9016
222837.0	-38. 2738.2	16.17	21790	22.223 .5	-38 1434.7	16.19	11291
223932.3	-40 1411.8	16.27	9040	224218.0	-40 1059.8	16.31	9793
223151.2	-39 0525.1	16.33	17343	222924.2	-41 5323.2	16.43	2624
221917.1	-39 5447.8	16.44	15152	222609.2	-40 0055.7	16.49	10721
223802.6	-39 3649.6	16.52	16497	224431.3	-41 0847.0	16.55	19906
222011.1	-39 4142.0	16.60	16168	223144.5	-37 50.17 .0	16.62	11034
223525.0	-38 5236.0	16.63	18207	223639.7	-37 4718.7	16.67	13483
223527.2	$-4032.18 .0$	16.68	17417	223101.7	-403534.6	16.77	15630
223030.3	-38 2736.1	16.79	21614	222403.6	-40 1033.7	16.93	21517
224306.9	-374021.0	16.94	10804	224239.8	-40 5020.6	16.98	17293
222822.5	-42 0712.1	17.00	17302	222437.8	-40 5518.6	17.01	17752
223249.7	-41 4541.9	17.06	22447	224138.6	-412820.0	17.09	20156
223705.3	-41 3202.3	17.13	9088		-		
346				346			
225210.6	-39.55 49.2	11.82	1448	224633.0	-37 44.10.8	13.78	8538
225917.9	-41 2600.5	14.91	1688	230122.8	-39 3155.9	15.56	16916
230229.0	-40 4207.0	15.77	16585	224933.0	-40 3440.7	15.85	10001
22.5756 .5	-373630.5	16.03.	8358	$2251 \cdot 24.3$	-402455.7	16.09	9421

Table A.1: Information on the Durham/UKST galaxies.

$\alpha(\mathrm{hms})$	$\delta\left({ }^{\prime \prime}{ }^{\prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$	$\alpha(h m s)$	$\delta\left({ }^{\prime}{ }^{\prime \prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
22.5612 .8	-40 5325.1	16.29	17043	231051.8	-42 1603.7	16.41	1766
230445.1	-40 0502.1	16.46	17915	225700.5	-38 5348.9	16.50	10333
224937.6	-38 1412.0	16.56	8411	230610.9	-39 4820.1	16.64	5307
230843.3	-40 5015.6	16.66	13455	225051.4	-39 5654.0	16.70	8610
225338.0	-39 3839.2	16.84	8371	230542.6	-40 3442.9	16.86	16653
224903.8	-40 3351.5	16.88	9677	230005.8	-38 0741.7	16.89	8432
230322.6	-37 3918.4	16.97	11676	224540.6	-39 2646.1	17.00	2639
230012.8	-39 5029.9	17.09	16856	230901.9	-38 5922.2	17.11	9762
230033.2	-38.33 38.8	17.13	16082	230137.6	-39 3707.4	17.21	935
224859.6	-40 0323.8	17.30	17012	230449.7	-38 0350.9	17.33	18029
225648.5	-40 4118.2	17.52	9711	230328.8	-42 1517.7	17.53	22268
347.				347			
233336.0	-38 1252.0	11.44	688	231247.6	-38 4827.3	13.78	2884
231207.9	-38 0741.0	14.62	2834	232030.6	-38 0650.8	14.90	16015
2328.50 .2	-42 2524.1	15.19	1685	231746.6	-42 0237.2	15.36	16749
233314.9	-4100 10.4	15.47	15697	233141.2	-38 0224.6	15.64	11377
232242.0	-38 4319.7	15.66	10717	232758.7	-41 3057.1	15.67	17064
231902.1	-38 4111.8	15.83	10542	233334.3	-37 4537.9	15.87	16033
232342.4	-39 2928.1	15.90	10877	232039.9	-40 3302.1	16.03	15445
232314.0	-39 3447.8	16.07	10344	233455.6	-37 3340.4	16.11	15947
233451.1	-40 5936.0	16.17	15843	232635.7	-38 1115.1	16.20	16131
233046.8	-385511.9	16.20	16128	232628.0	-38 4043.0	16.27	10825
231707.2	-41 0401.3	16.33	15496	233141.7	-39 5356.8	16.40	18341
233218.2	-40 4319.6	16.44	13516	232951.9	-41 3004.5	16.47	17111
232346.4	-39 4850.4	16.52	15041	231953.3	-40.55 17.8	16.53	17017
233410.1	-39 3452.1	16.54	17033	232712.3	-374839.6	16.55	15999
232946.3	-41 0303.7	16.58	14754	232728.5	-38 1103.3	16.63	16042
231600.4	-39 4300.8	16.66	17307	233156.8	-40 2052.7	16.67	15980
232934.8	-38 0401.3	16.69	10799	233533.8	-40 5336.6	16.71	15370
232318.9	-38 2342.9	16.73	10897	233539.7	-40 4001.8	16.73	24874
233408.8	-37 3443.6	16.76	11492	233331.3	-405651.5	16.78	15114
232719.1	-3759 30.9	16.82	27734	231546.4	-37 3414.2	16.84	18263
231758.3	-4137 21.1	16.87	17222	231116.9	-4138 55.2	16.90	10287
232715.5	-39.43 39.1	16:93	17009	231933.0	-42 1635.7	16.96	27095
233059.5	-39 5214.3	16:98	16097	232214.9	-4128 08.9	16.98	16204
348				348			
234817.5	-41 0034.1	12.96	1634	234406.9	-38 4447.7	14.87	12370
234245.7	-38 3652.0	15:12	12736	234103.0	-38 5727.1	15.14	12529
234003.3	-39 2034.0	15.18	12502	235327.8	-41 1009.2	15.29	18449
234513.0	-3752 29.6	15.42	13005	235922.9	-40 5626.7	15.49	14984
235038.1	-42 0138.9	15.53	8731	234458.2	-38 2038.1	15.62	13279
234155.8	-37 3949.5	15.77	12534	233926.8	-39 2937.5	15.78	12835
235109.2	-37 57. 08.4	15.90	13306	234254.7	-37 5304.1	15.93	15649
235834.5	-38 2417.2	16:03	13400	235441.9	-41 1020.1	16.07	14980
234208.0	-40 2239.5	16.08	15309	235044.7	-40 0128.0	16.10	15533
235633.4	-38 5523.1	16.23	15028	234723.1	-38 5248.5	16.24	12220
235215.5	-39 1349.8	16.34	18222	234923.7	-39 4313.2	16.36	11956

Table A.1: Information on the Durham/UKST galaxies.

$\alpha(h m s)$	$\delta\left({ }^{\circ}{ }^{\prime \prime}{ }^{\prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
235438.7	-385823.8	16.40	15158
235451.2	-412021.4	16.43	14864
234702.4	-385131.2	16.51	12838
234217.2	-41 2901.1	16.53	12287
235828.7	-410453.5	16.57	20566
233924.2	-380654.3	16.64	32858
233801.0	-42 1426.3	16.68	18697
235538.8	-39 4915.0	16.74	12845
234736.0	-381342.1	16.79	12994
234919.6	-412625.8	16.87	19898
235210.5	$-38.1846 .8$	16.88	17428
234035.6	-412704.6	16.91	15362
. 235421.9	-392801.6	16.93	15701
235945.6	-380143.3	16.94	14786
235111.3	-40 1648.4	16.98	12277
235242.7	-385719.5	17.01	20060
235801.9	-405114.9	17.04	14948
293			
000434.1	-4138 06.5	14.41	13919
000253.1	-39 1100.8	15.52	6619
000456.6	-42 0156.2	16.00	16035
001024.3	-413720.4	16.21	12246
000555.1	-410809.7	16.34	18500
000045.8	-42 1831.5	16.50	12655
000042.1	-392346.5	16.70	15146
001100.0	-422053.5	16.77	25527
000239.6	-421631.5	16.99	9147
000203.5	-405812.7	17.23	13304
294			
003247.2	-3749 59.7	14.57	6954
001536.0	-375914.6	15.34	7044
002126.7	-42 2401.1	15.78	15974
002724.7	-41 1314.7	16.08	11999
002257.5	-415247.9	16.16	8018
001851.1	-41 2333.8	16.25	20724
003643.9	-413023.2	16.38	14515
003332.7	-380712.9	16.49	18760
001303.3	-420701.9	16.53	26232
003023.7	-42 0228.1	16.57	9138
001608.3	-4156 08.1	16.62	28559
001850.5	-41.40 50.8	16.66	12123
003140.8	-38 1019.7	16.71	9088
001732.8	-393623.3	16.94	14236
003037.1	$-39.4926 .5$	17.00	19086
002417.0	-40 0036.2	17.03	8868
001319.0	-4125 35.2	17.09	24785
002720.5	-40 0701.2	17.16	19396

$\alpha(h m s)$	$\delta\left({ }^{017}{ }^{\prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
234745.8	-382722.6	16.42	12617
235926.6	-39 3804.2	16.46	8637
234234.2	-374728.1	16.52	9736
234252.8	-40 5101.4	16.56	19909
233836.2	-39 1408.9	16.62	13636
235410.6	-375023.5	16.67	15204
234802.6	-42 2334.3	16.73	26220
235005.2	-3742 02.6	16.78	10398
235427.2	-400912.1	16.84	20850
234438.4	-385102.3	16.88	12747
235435.7	-412816.3	16.89	17926
234550.8	-383330.2	16.92	12437
234057.6	-395310.3	16.94	12191
235644.8	-4153 03.7	16.96	15746
233844.0	-38 4255.3	17.00	12417
234708.6	-380657.7	17.03	12866
	-	-	
293			
001048.7	-37 4732.4	15.10	15117
000837.5	-39 1554.8	15.59	3280
000722.1	-400803.8	16.15	17604
000120.4	-39 2916.5	16.27	19869
000803.0	-41 0953.2	16.49	20776
000435.5	-414521.3	16.61	13115
000543.6	-39 1601.7	16.71	15286
001251.7	-41 1304.0	16.95	8512
000617.7	-413058.6	17.13	15403
-		-	-
294			
002442.1	-41 1542.0	14.96	7829
003640.3	-390754.2	15.70	19052
002048.3	-4129 45.2	15.81	8064
002035.7	-42 2151.1	16.09	15982
003859.6	-380742.1	16.19	7382
003018.0	-39 4458.0	16.33	19903
002719.0	-380507.3	16.46	6955
002232.3	-422914.5	16.50	12469
002322.5	-42 1548.7	16.55	27461
002806.9	-4105 47.2	16.60	20509
002940.7	-40 2223.2	16.64	20920
002450.6	-382724.7	16.68	20396
001822.6	-42 0631.1	16.73	16019
002214.3	-39 5921.6	16.96	19029
003354.9	-393219.7	17.02	18607
002016.8	-382330.0	17.08	35673
002943.2	-385546.2	17.13	13973
002459.3	-40.02 54.4	17.16	20794

Table A.1: Information on the Durham/UKST galaxies.

$\alpha(h m s)$	$\delta\left({ }^{\circ \prime \prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
003206.9	-38 2225.8	17.17	22573
003216.1	-39 $3923: 4$	17.19	19856
002952.9	-40 1229.4	17.23	20732
003500.2	$-3923 \cdot 33.9$	17.24	19234
001743.8	-391014.7	17.28	27622
002955.7	-422219.3	17.35	20906
295			
005727.3	-403611.6	13.59	6890
010222.6	$\div 375416.7$	14.72	3906
005244.8	-405940.8	15.26	17919
010015.8	-42 1710.5	15.39	. 6992
005058.6	-390754.3	15.54	19439
005120.4	-373610.4	15.93	14946
004932.6	-40 1858.6	16.19	16520
004758.4	-373956.0	16.51	11962
004550.6	-42 17 37.5	16.57	5189
010423.7	-385056.2	16.73	6599
005206.0	$-38.1736 .1$	16.80	16767
005941.2	-384734.2	16.82	16496
004642.2	-39 01. 59.8	16.85	11510
005145.8	$-37.4221 .3$	16.93	16310
005510.3	-384518.9	17.00	19347
004454.4	-39 1918.8	17.09	7243
004006.7	-41 1732.4	17.14	18173
0041.44 .8	-411204.5	17.17	24340
004640.8	-391439.5	17.23	11212
005450.6	-41.40 48.8	17.26	19103
004950.0	-410535.3	17.28	31787
296			
$0130 \cdot 14.5$	-38 5609.9 :	13.66	3716
012828.0	-375842.7	14.58	9540
012816.8	-413313.9	14.78	6518
012428.7	-40 $1428: 2$	15.16	5988
011021.8	-410447.4	15.36	15659
012923.9	-41 4719.0	15.62	6427
012857.2	-3755 56.0	15.81	5896
012810.4	-413026.1	15.99	6580
012939.6	-415556.3	16.04	8287
0121.47 .5	-385335.7	16.26	6229
012855.1	-380639.6	16.39	5863
010602.1	-414908.8	16.46	19362
011814.6	-393734.1	16.51	28120
010814.4	$-39.2022 .2$	16.58	9057
011736.8	-383931.2	'16.65	9465
010908.3	-39 4920.4	16.70	20217
012528.6	-39 1209.9	16.80	27497
010724.6	-411300.2	16.85	16232

$\alpha(h m s)$	$\delta\left({ }^{0 \prime \prime}{ }^{\prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
003447.3	-413155.8	17.18	29159
00.1811 .2	-41 0755.0	17.22	21267
003036.6	-4153 47.8	17.23	9394
001326.0	-39 1729.6	17.24	15501
003340.0	-40 0021.8	17.29	20547
002756.2	-38 3641.7	17.35	12018
295			
010454.3	-42 1103.3	14.39	6811
004908.6	-3755 37.5	15.00	7048
005324.1	-374044.1	15.32	16851
004812.6	-42 1928.0	15.51	16135
004959.1	-412002.5	15.76	7219
010035.7	-38 0242.0	16.06	13357
005858.3	-385310.0	16.23	16411
004218.0	-382722.5	16.56	6922
004808.3	-42 2430.7	16.65	22993
005438.7	-39 1218.9	16.78	20421
005626.2	-392534.5	16.81	16802
005402.9	-382536.8	16.84	9824
005046.4	-395923.8	16.86	9851
005611.8	-39 4803.4	16.97	16998
004632.0	-42 1147.1	17.02	16279
004707.4	-42 1935.1	17.10	9977
004817.4	-40 4637.5	17.15	22632
005035.8	-39 4439.3	17.18	25629
005030.7	-373944.2	17.24	14363
004845.5	-391004.6	17.26	11368
005155.3	-413613.4	17.29	19096
296			
012229.8	-382319.3	14.30	5762
012335.6	-373537.3	14.62	9224
011019.9	-38 0944.6	15.00	6444
011553.0	-420707.7	15.21	6395
012355.3	-385455.7	15.58	10081
012317.7	-383236.3	15.75	5955
010759.6	-41 1533.9	15.94	13959
012651.7	-410850.5	16.01	6404
011222.6	-410825.0	16.15	9920
011410.8	-42 0444.9	16.36	23993
012734.0	-42 2333.6	16.44	6495
012855.1	-41 2803.7	16.50	26144
012141.8	-4108 26.4	16.55	9033
011356.7	-395012.3	16.60	15832
012527.1	-41 1418.5	16.69	15709
012820.5	-41 0959.8	16.71	28650
012131.6	-4054 51.7	16.83	9355
010934.9	-410139.5	16.87	16232

Table A.1: Information on the Durham/UKST galaxies.

$\alpha(h m s)$	$\delta\left({ }^{\circ}{ }^{\prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
011136.3	-38 5306.2	16.88	9635
011437.1	-41 0504.9	16.89	15945
012324.0	-380739.0	16.98	9429
012353.5	-390545.5	17.07	27971
012023.2	-391507.1	17.08	15473
012548.6	-39 3845.1	17.14	9136
012449.2	-4146 15.5	17.22	31614
010620.6	-393942.5	17.24	22051
297			
014220.1	-40 5455.2	14.44	10253
014318.7	-38 4808.0	14.84	9876
013328.7	-413236.0	15.12	7336
014217.7	-42 0458.1	15.39	6171
015600.3	-39 1705.0	15.71	17101
013220.8	-422638.4	15.90	9897
013149.1	-39 4237.1	16.00	13700
014228.9	-40 4913.5	16.13	10171
013240.8	-39 5400.6	16.19	5911
013410.4	-412023.3	16.23	7392
015003.0	-374726.3	16.34	1376
013332.2	-3754 46.7	16.42	22227
013136.7	-392039.4	16.59	8908
015442.0	-405457.0	16.61	17081
013234.8	-40 4244.9	16.67	8816
014909.7	-41 4652.2	16.75	16569
014147.7	-38 3953.4	16.79	6291
013418.2	-413635.0	16.92	11198
014203.0	-402609.4	16.98	16171
013749.5	-40 0828.5	17.00	11129
014234.3	-4154 46.6	17.05	22936
015536.9	-415624.1	17.09	16893
013549.3	-40 1230.5	17.15	17064
013858.8	-41 27.55 .2	17.23	20684
013123.5	-393553.5	17.34	8949
013249.4	-41 1841.5	17.38	23028
298			
021733.5	-38 0252.7	13.33	4948
020952.2	-392621.5	14.12	5261
021912.7	-42 1347.5	14.76	4873
020346.9	-382017.7	15.27	11553
015849.8	-41 4059.7	15.53	5592
020440.2	-373135.8	15.68	18332
020551.0	-39 4704.3	16.08	27950
021044.8	-410416.3	16.17	11350
022217.3	-40 2800.5	16.26	8789
020140.4	-42 2627.9	16.30	16065
021753.8	-415333.2	16.43	3785

$\alpha(h m s)$	$\delta\left({ }^{\circ}{ }^{\prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
011642.5	-42 1640.2	16.89	16835
011052.6	-374532.3	16.92	15892
010828.2	-395340.3	17.02	14996
012427.9	-382434.7	17.07	9274
010941.0	-413707.8	17.10	9894
011412.5	-39 2507.9	17.21	28538
010832.1	-4108 23.4	17.23	16575
011838.8	-394132.1	17.26	27991
297			
013200.8	-385220.1	14.70	5873
015550.6	-381545.0	14.95	11202
013826.2	-385610.0	15.31	5878
014353.4	-38 1924.6	15.48	6192
014245.3	-385900.9	15.83	5991
013147.9	-392300.3	15.94	5876
013119.7	-394316.8	16.02	8866
014056.6	-402559.4	16.15	16078
015457.1	-402933.4	16.21	6253
014329.7	-40 5501.7	16.32	16338
014337.0	-421224.0	16.38	8665
015508.4	-38 5511.0	16.57	17212
015548.4	-384928.9	16.61	17288
013424.0	-414733.9	16.65	20152
014351.3	-414701.0	16.69	17543
0145.54 .7	-403230.3	16.77	17802
014408.4	-40 5924.7	16.84	16265
013156.0	-374720.7	16.96	17222
015447.5	-39 1527.1	17.00	5792
015559.0	-375744.2	17.03	6148
013136.1	-38 4904.2	17.05	28196
014834.7	-380234.8	17.09	18955
013847.1	-40 2210.2	17.19	16223
013353.5	-41 2157.8	17.27	23008
013250.5	-39 4724.8	17.34	20669
-	-	-	
298			
020836.3	-41 0911.7	13.91	1480
020435.9	-41 2341.8	14.29	5307
02.1135 .0	-39 5831.2	14.93	5100
021325.4	-415537.7	15.30	17041
020823.2	-42 1927.4	15.60	4178
021111.7	-40 0254.1	16.03	5175
015757.8	-385048.5	16.12	26821
020757.8	-395111.5	16.22	5173
021421.7	-4144 43.5	16.28	11249
021818.5	-40 0729.1	16.36	21116
020548.5	-405029.3	16.44	8704

Table A.1: Information on the Durham/UKST galaxies.

$\alpha(\mathrm{hms})$	$8\left({ }^{\circ}{ }^{\prime \prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
020947.5	-40 2628.1	16.46	11594
020530.4	-41 0102.2	16.60	21334
021335.2	-41 3721.9	16.69	11136
022145.2	-40 1323.5	16.75	18039
0217.29 .7	-38 4031.2	16.77	17838
020042.8	-4158 04.5	16.90	5200
021627.5	-4154 21.2	16.95	11241
015810.0	-41 2940.8	17.00	15340
020605.0	-415255.0	17.12	16914
021905.6	-375106.7	17.17	21055
299			
023134.0	-39 1549.4	11.50	1959
022341.7	-38 3126.8	15.33	5025
024615.8	-39 1920.6	15.49	18654
024023.1	-3740 53.2	16.03	18305
024031.8	-40 1904.7	16.33	7870
024242.5	-39 0125.1	16.46	18514
023224.1	-40 1708.7	16.56	11652
024103.2	-38 3430.6	16.62	9581
022644.7	-40 5001.0	16.72	20933
023651.8	-40 5133.2	16.76	18393
022907.3	-4155 55.9	16.94	21768
024039.2	-38 3220.5	17.06	21184
023753.6	-37.46 27.1	17.17	13711
024251.7	-37 5215.0	17.19	5756
023227.2	-415251.6	17.26	26740
024043.0	-38 2058.9	17.33	9995
023247.7	-384320.3	17.39	31847
300			
030411.6	-39 1333.0	13.34	24
030217.2	-39 3300.5	15.67	5945
030443.8	-42 1105.8	15.81	9298
030542.5	-4149 18.5	15.88	9261
025725.2	-3842 10.4	16.08	11346
025625.4	-40 4134.0	16.18	9796
030318.4	-415220.1	16.23	9312
030215.6	-39 4409.4	16.33	6056
025753.4	-412018.0	16.45	21987
030104.1	-37 5407.5	16.56	19452
031153.5	-39 5456.3	16.66	12157
030726.4	-413745.8	16.78	9216
031357.3	-42 2909.8	16.86	18404
0308.34 .5	-39 4904.7	17.07	4579
025638.4	-411644.3	17.18	16522
301			
031528.8	-4117 24.4	10.92	791
031652.1	-415259.4	15.52	19308

$\alpha(h m s)$	$\delta\left({ }^{\prime \prime \prime \prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
021503.3	-39 1816.0	16.47	11487
021952.8	-38 4024.0	16.65	18321
021109.4	-42 1550.3	16.70	5337
015736.8	-41 1234.7	16.77	19460
020931.1	-38 5453.7	16.88	28264
015800.5	-40 2242.5	16.93	16717
020626.9	-381700.9	16.97	5127
021351.8	-40 0136.6	17.01	11577
020535.4	-39 4609.5	17.13	27770
021610.7	-4150 12.2	17.18	11193
299			
023041.9	-39 3055.0	14.26	1406
024145.8	-37 4602.4	15.43	5099
023237.2	-37 5023.1	15.84	21418
023430.5	-42 1453.0	16.15	16321
023240.9	-38 0433.0	16.42	21090
023620.9	-37 3415.1	16.50	18386
024621.8	-415140.5	16.58	20082
024703.4	-4155 55.7	16.68	13611
024408.0	-41 0321.5	16.74	28350
024459.9	-40 5247.8	16.84	21035
024138.3	-38 0938.3	16.98	18544
023931.8	-4126 25.3	17.15	18647
024516.6	-39 2956.1	17.19	18776
023641.3	-40 0210.2	17.23	1877
024230.1	-4108 01.8	17.27	30343
023715.3	-42 1439.5	17.36	5131
300			
030546.9	-39 4747.4	14.77	4413
030039.2	-39 0107.5	15.71	12523
025007.6	-40 5704.8	15.85	14286
025452.9	-42 1921.4	15.94	13754
031327.5	-38 0601.7	16.12	19358
030945.5	-39 1916.3	16.21	8077
031219.8	-39 2224.5	16.31	16929
025229.2	-37 4205.5	16.42	19665
030002.0	-40 5243.5	16.47	6212
030802.0	-40 0941.3	16.62	2053
030127.6	-39 5052.7	16.77	19423
031436.8	-37 3121.4	16.85	19551
030310.4	-39 3239.6	17.02	15140
030136.6	-4123 32.0	17.10	9438
-		-	
301			
032108.2	-42 2201.9	14.35	1208
032343.0	-39 3755.0	15.57	18869

Table A.1: Information on the Durham/UKST galaxies.

$\alpha(h \quad m \quad s)$	$\delta\left({ }^{\circ}{ }^{\prime \prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
033939.3	-410737.8	15.63	18410
032201.9	-402321.5	15.83	16286
032140.0	-394916.9	16.17	18848
031643.8	-413738.0	16.21	9534
032625.1	-414420.4	16.45	21745
033006.2	-403713.3	16.50	21905
033553.6	-385857.3	16.68	33845
032704.4	-381424.2	16.74	19847
033223.8	-405030.0	16.85	18741
032309.1	-403448.7	16.89	9161
033531.3	-374456.7	16.99	24596
032318.5	-420448.4	17.04	18470
032737.8	-373846.2	17.06	18971

$\alpha(h m s)$	$\delta\left({ }^{\circ}{ }^{\prime \prime \prime}\right)$	b_{J}	$v\left(\mathrm{kms}^{-1}\right)$
032249.0	-40 2455.2	15.67	9073
033624.7	-374319.1	15.90	13814
032552.2	-374637.0	16.18	9270
033303.4	-385101.8	16.41	20301
031640.8	-414923.2	16.46	19356
033149.6	-383146.3	16.54	20246
033248.0	-391414.3	16.70	18205
032018.2	$-4130.30 .2$	16.83	20822
032048.5	-400735.9	16.88	15848
033714.4	-38 2617.2	16.95	18122
033508.1	-384541.6	16.99	20182
03.3915 .3	-390531.8	17.05	7238
-	.	-	-

Appendix B

Completeness of the Durham/UKST Galaxy Redshift Catalogue

In this appendix the completeness rates of the Durham/UKST Galaxy Redshift Catalogue are presented for three different magnitude limits. For each field information is given about the magnitude limit of the field, $m_{\text {lim }}$, the total number of galaxies to this magnitude limit, $n_{\text {tot }}$, the number of measured redshifts, n_{z}, the number of unobserved galaxies, $n_{\text {unobs }}$, the number of missed galaxies, $n_{\text {miss }}$ and the completeness rate calculated from these numbers. Table B. 1 presents this information using a uniform limit of $b_{J}=16.75$, table B. 2 uses the "best" limit chosen as a compromise between having a faint magnitude limit in each field and keeping the completeness levels quite high ($>60 \%$) and table B. 3 uses an "all" limit which includes every measured redshift from the 1 in 3 catalogue.

Table B.1: Field information and completeness for a uniform magnitude limit of $m_{\text {lim }}=16.75$.

Field \#	$m_{\text {lim }}$	$n_{\text {tot }}$	n_{z}	$n_{\text {unobs }}$	$n_{\text {miss }}$	Completeness (\%)
531	16.75	33	25	0	8	75.8
532	16.75	34	22	0	12	64.7
533	16.75	50	37	2	11	74.0
534	16.75	32	29	0	3	90.6
535	16.75	13	11	0	2	84.6
536	16.75	28	17	2	9	60.7
537	16.75	38	34	1	3	89.5
472	16.75	8	4	0	4	50.0
473	16.75	32	13	1	18	40.6
474	16.75	40	31	1	7	77.5
475	16.75	26	13	1	12	50.0
476	16.75	34	27	1	6	79.4
477	16.75	29	22	0	7	75.9
478	16.75	33	19	1	13	57.6
479	16.75	45	26	3	16	57.8
480	16.75	34	29	2	3	85.3
481	16.75	40	26	1	13	65.0
466	1675	41	30	4	7	73.2
467	16.75	47	34	6	7	$\because 72.3$
468	1675	28	19	3	6	67.9
469	16.75	31	28	1	2	90.3
470	16.75	29	27	0	2	93.1
471	16.75	68	43	14	11	63.2
409	16.75	40	28	3	9	70.0
410	16.75	31	23	3	5	74.2
411	16.75	33	28	1	4	84.8
412	16.75	39	33	2	4	84.6
413	16.75	33	30	0	3	90.9
414	16.75	30	23	0	7	76.7
415	16.75	35	23	0	12	65.7
416	16.75	31	13	0	18	41.9
417	16.75	23	20	0	3	87.0

Table. B.1: Field information and completeness for a uniform magnitude limit of $m_{\text {lim }}=16.75$.

Field \#	$m_{\text {lim }}$	$n_{\text {tot }}$	n_{z}	$n_{\text {unobs }}$	$n_{\text {miss }}$	Completeness (\%)
404	16.75	40	30	3	7	75.0
405	16.75	34	34	0	0	100.0
406	16.75	49	49	0	0	100.0
407	16.75	29	25	0	4	86.2
408	16.75	44	39	0	5	88.6
349	16.75	63	58	0	4	92.1
350	16.75	46	45	0	1	97.8
351	16.75	27	27	0	0	100.0
352	16.75	51	47	0	4	92.2
353	16.75	50	48	0	2	96.0
354	16.75	45	33	0	12	73.3
355	16.75	32	24	1	7	75.0
356	16.75	31	23	3	5	.74 .2
357	16.75	33	20	1	12	60.6
344	1675	33	23	0	10	69.7
345	16.75	49	29	2	18	59.2
346	16.75	28	16	0	12	57.1
347	16.75	56	36	2	18	64.3
348	16.75	54	37	5	12	68.5
293	16.75	25	14	0	10	56.0
294	16.75	30	26	0	4	86.7
295	16.75	36	19	3	14	52.8
296	16.75	40	32	3	5	80.0
297	16.75	39	31	0	8	79.5
298	16.75	33	29	1	3	87.9
299	16.75	23	18	0	5	78.3
300	1675	35	21	1	13	60.0
301	16.75	41	19	1	21	46.3

Table B.2: Field information and completeness for the "best" magnitude limit.

Field \#	$m_{\text {lim }}$	$n_{\text {tot }}$	n_{z}	$n_{\text {unobs }}$	$n_{\text {miss }}$	Completeness (\%)
531	16.96	44	33	0	11	75.0
532	16.58	24	19	0	5	79.2
533	17.02	69	47	2	20	68.1
534	17.27	61	46	0	15	75.4
535	16.93	19	13	1	5	68.4
536	17.08	44	28	3	13	63.6
537	16.79	40	35	2	3	87.5
472	16.32	4	3	0.	1	75.0
473	16.04	12	7	1	4	58.3
474	16.70	38	31	1	5	81.6
475	16.31	17	12	0	5	70.6
476	16.85	39	31	1	7	79.5
477	16.82	33	25	0	8	75.8
478	16.54	25	18	1	6	72.0
479	17.00	58	36	4	18	62.1
480	17.23	59	46	3	10	78.0
481	16.65	36	26	1	9	72.2
466	16.97	58	38	9	11	65.5
467	16.98	63	44	8	11	69.8
468	17.14	46	31	5	10	67.4
469	17.16	56	40	6	10	71.4
470	17.22	63	49	7	7	77.8
471	16.88	80	52	16	12	65.0
409	16.68	36	27	1	8	75.0
410	17.06	52	35	5	12	67.3
411	17.14	54	42	4	8	77.8
412	16.94	50	42	3	5	84.0
413	16.96	46	41	1	4	89.1
414	17.01	49	39	0	10	79.6
415	16.85	40	26	0	14	65.0
416	16.24	17	11	0	6	64.7
417	17.07	38	30	0	8	78.9

Table B.2: Field information and completeness for the "best" magnitude limit.

Field \#	$m_{\text {lim }}$	$n_{\text {tot }}$	n_{z}	$n_{\text {unobs }}$	$n_{\text {miss }}$	Completeness (\%)
404	17.14	65	45	4	16	69.2
405	16.87	40	40	0	0	100.0
406	16.81	52	52	0	0	100.0
407	17.02	44	38	0	6	86.4
408	16.98	58	50	0	8	86.2
349	16.98	91	80	0	10	87.9
350	16.89	55	54	0	1	98.2
351	17.05	46	44	0	2	95.7
352	16.89	59	55	0	4	93.2
353	16.91	64	59	0	5	92.2
354	16.81	50	37	0	13	74.0
355	16.86	38	28	2	8	73.7
356	17.11	58	40	4	14	69.0
357	16.43	20	16	0	4	80.0
344	16.87	42	27	0	15	64.3
345	16.68	45	29	2	14	64.4
346	16.89	35	20	0	15	57.1
347	16.90	65	42	3	20	64.6
348	17.04	83	55	6	22	66.3
293	16.71	23	14	0	8	60.9
294	16.73	30	26	0	4	86.7
295	16.86	46	26	3	17	56.5
296	16.92	53	40	3	10	75.5
297	17.09	59	44	1	14	74.6
298	17.01	45	38	1	6	84.4
299	16.76	24	19	0	5	79.2
300	16.66	30	21	0	9	70.0
301	16.45	25	13	1	11	52.0

Table B.3: Field information and completeness for the "all" magnitude limit.

Field \#	$m_{\text {lim }}$	$n_{\text {tot }}$	n_{z}	$n_{\text {unobs }}$	$n_{\text {miss }}$	Completeness (\%)
531	17.36	74	40	9	25	54.1
532	17.38	78	33	1	44	42.3
533	17.02	69	47	2	20	68.1
534	17.31	66	47	0	19	71.2
535	17.47	42	21	1	20	50.0
536	17.44	77	37	5	35	48.1
537	17.18	76	45	10	21	59.2
472	17.40	35	8	0	27	22.9
473	17.29	83	25	4	54	30.1
474	17.23	88	51	9	27	58.0
475	17.34	63	22	7	34	34.9
476	17.32	76	44	3	28	57.9
477	17.39	61	33	1	27	54.1
478	17.42	81	31	7	43	38.3
479	17.18	73	38	9	26	52.1
480	17.40	71	50	5	16	70.4
481.	17.17	76	33	10	33	43.4
466	17.14	72	43	12	17	59.7
467	17.09	73	44	12	17	60.3
468	17.54	72	39	11	22	54.2
469	17.29	72	45	11	16	62.5
470	17.30	70	50	9	11	71.4
471	16.88	80	52	16	12	65.0
409	17.28	77	42	18	17	54.5
410	17.19	69	39	13	17	56.5
411	17.29	65	44	10	11	67.7
412	17.13	64	50	5	9	78.1
413	17.14	59	46	3	10	78.0
414	17.19	63	46	3	14	73.0
415	17.42	86	38	3	45	44.2
416	17.37	65	19	0	46	29.2
417	17.41	62	37	0	25	59.7

Table B.3: Field information and completeness for the "all" magnitude limit.

Field \#	$m_{\text {lim }}$	$n_{\text {tot }}$	n_{z}	$n_{\text {unobs }}$	$n_{\text {miss }}$	Completeness (\%)
404	17.19	69	45	4	20	65.2
405	17.27	76	55	6	15	72.4
406	17.10	84	84	0	0	100.0
407	17.08	47	38	0	9	80.9
408	17.07	66	53	0	13	80.3
349	16.98	91	80	0	10	87.9
350	16.89	55	54	0	1	98.2
351	17.05	46	44	0	2	95.7
352	16.89	59	55	0	4	93.2
353	16.91	64	59	0	5	92.2
354	16.91	58	37	0	21	63.8
355	17.33	76	34	12	30	44.7
356	17.29	76	43	15	18	56.6
357	17.17	65	30	4	31	46.2
344	17.47	82	36	1	45	43.9
345	17.13	83	39	6	38	47.0
346	17.54	82	30	2	50	36.6
347	17.05	82	46	3	33	56.1
348	17.07	87	55	.8	24	63.2
293	17.30	53	19	1	32	35.8
294	17.38	85	48	3	34	56.5
295	17.35	89	42	8	39	47.2
296	17.27	87	52	6	29	59.8
297	17.42	85	51	6	28	60.0
298	17.24	60	42	1	17	70.0
299	17.39	67	33	1	33	49.3
300	17.20	69	29	4	36	42.0
301	17.15	82	29	2	51	35.4

Acknowledgements

This is the one chance that I get to stand up and thank everyone who I have ever known for being so wonderful and fantastic, and I'm going to do it! If you like the Oscars then you'll love this section, darling's...

Firstly, I would like to thank my family for their support throughout my studies, from school to doctorate level. I would also like to thank the Physics Department at the University of Durham for giving me the one chance I needed to show what I could do. I acknowledge the receipt of a PPARC research studentship for the period in which this research was carried out. I thank STARLINK for the use of their computing facilities and in particular Alan Lotts for keeping the systems running at all times of the day and night when I was using the CPU's. The staff of the UKST and AAO are thanked for their help with the observations and fibreing, especially Malcolm Hartley and Quentin Parker who made the long nights pass quicker with their undeniable sense of humour. Alison Broadbent deserves thanks for her efforts in the early years of the Durham/UKST project. Of course, my gratitude goes to all my collegues in the Physics Department at Durham who have helped me along the way. However, Carlton Baugh deserves a special mention for actually reading the early version of my thesis and making constructive comments. Having written this thesis I know how much effort it takes to read it and hopefully my payment of Mars Bars was enough for him! I would also like to thank my viva examiners, George Efstathiou and Carlos Frenk, for a very entertaining day. To say I was not on top form is an understatement and their patience was appreciated. And last but certainly not least, I am hugely indebted to the guidance, knowledge and passion that my supervisor, Tom Shanks, has shown me in the past 3 years. Without him it would not have all been possible and I wish him big hugs and kisses in the future...

I believe that I have been very lucky to know and associate with a special group of people in the second term of my sentence at Durham, these people I call my friends. I start by thanking my past and present office-mates (wherever my office has been !). In particular, the members of room 157 (Omar Almaini, Scott Croom, Douglas Burke and Claire Halliday) did constantly put up with my inane sense of humour and sponge basketball games on a daily basis. I'm sure they all regret the day Doug brought that hoop and ball into the office. However, I believe we produced an excellent research atmosphere, with just the right blend of fun, frolics and hard work. I cannot remember the number of evenings I came into the department at midnight to find 2 or 3 other lost souls also working late. I think we made a good team. Also, I must say a big thanks to the early group of students who made me feel welcome when I was just starting out, Rafael Guzman, Lilian Graham, Susan Watkin, Neasa Foley and Kathy Romer get the nod here. The past and present set of postdocs in Durham also deserve mention, especially Mike and Chloe Hudson, Glenn Baggley, Michiel van Haarlem, Ana Campos, Peter Doel and Carlton Baugh. Similar sentiments go to the students Gillian Wilson, James Steel, Luis Teodoro, Vincent Eke, Paul Young and Paul Alton. The more recent additions to the department, both postdocs and students, will ensure that Durham remains a lively place for a few more years to come as people such as Enzo Branchini, Katherine Gunn, Harald

Kuntschner, Ale Terlevich etc. take over. Also, Roelof de Jong deserves thanks for producing some excellent theme parties in the past year, his party Web page will no doubt become legendary in Durham.

I would like to thank those past and present members of the "Cosmic" 5 -a-side football team... and other men I have given blood with! Rather than live up to the typical image of a physicist, I believe we showed just how "committed" we could be (or is that should be ?) in reaching the dizzy heights near the top of the table for a year (or two). This commitment culminated in a 2 month period which started with my sending off and ended triumphantly with us lifting the knockout Cup! The players that I remember most vividly are Steve Fullerton, Luis Teodoro, Roger Haynes, Nigel Metcalfe, Douglas Burke, Ray Sharples and James Gourlay. The majority of our games were battles and I could not pick any better players to go to war with than these. I can also remember in every detail each of the 5 goals I scored in actual match competition over a period of almost 4 years. Strange that, isn't it?

I feel I must mention the people from other academic institutions who have helped me along the way, mainly in terms of providing floors to sleep on when I was visiting. Creidhe O'Sullivan, Helen Tadros, Chris \& Russell Pearson, Wendy Groom and Mark Jex all supplied hospitality at one time or another. However, Wendy Groom and Helen Tadros deserve a special mention as good friends and former "veterans" of the Les Houches Summer School. We suffered together for a month on a mountain and I still get the flashbacks...

Individually, I have some special mentions; Scott Croom, a quality person who is also a superior cosmologist, is thanked for his many helpful moments when I all but forgot how to spell my name, never mind cosmological matters! Jane Chapman, who was undoubtly the backbone of the Astronomy Department in Durham (before she left for Cambridge!), constantly amazed me with her resilience and sense of humour against the brickwall of red tape she faced every day. Her leaving party was one of the highlights of my time here. Gillian Wilson deserves mention as a good friend over the past 3 years. A class act if ever I met one (I have to say this otherwise I'll never get a holiday in Hawaii !). And finally, I owe a great deal (an infinite amount in fact) to Omar Almaini who was my best friend and main confidant during his 3 years in Durham. I have fond memories of our late night conversations in the physics department and I wish him all the best for the future.

