
Durham E-Theses

The design and intelligent control of an autonomous

mobile robot

Robinson, Stephen David

How to cite:

Robinson, Stephen David (1996) The design and intelligent control of an autonomous mobile robot,
Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/5341/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5341/
 http://etheses.dur.ac.uk/5341/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

The Design and Intelligent
Control of an

Autonomous Mobile Robot

Stephen David Robinson BSc.

School of Engineering, University of Durham.

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

A thesis submitted in accordance with the requirements of the
Council of the University of Durham for the degree of Doctor
of Philosophy (Ph.D.).

December 1996

Abstract

This thesis presents an investigation into the problems of exploration, map building and

collision free navigation for intelligent autonomous mobile robots.

The project began with an extensive review of currently available literature in the field

of mobile robot research, which included intelligent control techniques and their application.

I t became clear that there was scope for further development with regard to map building

and exploration in new and unstructured environments.

Animals have an innate propensity to exhibit such abilities, and so the analogous use of

artificial neural networks instead of actual neural systems was examined for use as a method

of robot mapping. A simulated behaviour based mobile robot was used in conjunction with a

growing cell structure neural network to map out new environments. When using the direct

application of this algorithm, topological irregularities were observed to be the direct result

of correlations within the input data stream. A modification to this basic system was shown

to correct the problem, but further developments would be required to produce a generic

solution. The mapping algorithms gained through this approach, although more similar to

biological systems, are computationally inefficient in comparison to the methods which were

subsequently developed.

A novel mapping method was proposed based on the robot creating new location vectors,

or nodes, when it exceeded a distance threshold from its mapped area. Network parameters

were developed to monitor the state of growth of the network and aid the robot search process.

In simulation, the combination of the novel mapping and search process were shown to be

able to construct ma,ps which could be subsequently used for collision free navigation.

To develop greater insights into the control problem and to validate the simulation work

the control structures were ported to a prototype mobile robot. The mobile robot was

of circular construction, with a synchro-drive wheel configuration, and was equipped with

eight ultrasonic distance sensors and an odometric positioning system. I t was self-sufficient,

incorporating all its power and computational resources.

The experiments observed the effects of odometric drift and demonstrated methods of

re-correction which were shown to be effective. Both the novel mapping method, and a new

algorithm based on an exhaustive mesh search, were shown to be able to explore different

environments and subsequently achieve collision free navigation. This was shown in all cases

by monitoring the estimates in the positional error which remained within fixed bounds.

Acknowledgements

Not through tradition but genuine appreciation must I first thank Professor Phil Mars

for his supervision and all round support. Phil's wit and infectious enthusiasm for all things

academic and social have proved invaluable over my time in Durham and I owe him a great

debt of gratitude.

Thanks must be extended to the Engineering and Physical Sciences Research Council
whose financial support is also gratefully acknowledged.

I would also like to thank Dr Jim Bumby for his advice and the donation of the robot's

ultrasonic sensors. Thanks to Peter Baxendale and Jim Swift for their help relating to the

computer board and the Xilinx FPGAs.

For their advice, and excellent construction of the mobile robot I wish to thank Brian

Blackburn and Roger Little of the mechanical workshop. I would like to thank all the members

of the electronics workshop, especially Peter Friend and Ian Hutchinson for their humour,

advice and assistance. For their computing assistance I would also like to thank Jonathan

Spanier, Mathew Jubb, and John Glover.

I am deeply indebted to all my friends, iespecially Martin Bradley and Mark Docton, for

their enthusiasm, zest and camaraderie for without which Durham would certainly have been

a lesser place.

Finally I would like to thank my mother, father (who tirelessly proofread this work), and

family, for their ever present support throughout all my endeavours.

Declaration

I hereby declare that this thesis is a record of work undertaken by myself, that it hcis not

been the subject of any previous application for a degree, and that all sources of information

have been duly acknowledged.

© Copyright 1996, Stephen David Robinson

The copyright of this thesis rests with the author. No quotation from it should be published

without written consent, and information derived from it should be acknowledged.

ni

Contents

Contents iii

List of Figures viii

1 Introduction 1

1.1 Overview of Autonomous Mobile Robotics 1

1.2 Summary of Thesis 2

2 Review of Current Mobile Robot Research 4

2.1 Introduction 4

2.2 Review of Control Algorithms 4

2.2.1 Neurocontrol - 5

2.2.2 Fuzzy Logic 9

2.2.3 Reinforcement Algorithms 11

2.2.4 Genetic Algorithms 14

2.2.5 Summary of Control Algorithms 16

2.3 Review of Robot Designs 16

2.3.1 Reactive based Control 16

2.3.2 Neurally Inspired Robots 17

2.3.3 Robots based on Reinforcement Learning 21

2.3.4 Genetic Based Controllers 23

2.3.5 Fuzzy Logic Systems 24

2.3.6 Behaviour Based Control Paradigm 24

2.4 Summary 25

IV

3 The Design of a Mobile Robot Control Structure in Simulation 27

3.1 Introduction 27

3.2 The Software Simulation Strategy 28

3.3 The Graphical User Interface 29

3.4 The Robot Simulation Software 33

3.5 The Physical Systems Simulation 35

3.5.1 The Robot's Sensor Systems 35

3.5.2 The Robot's Drive Mechanism . 35

3.5.3 The Physical Systems and their Simulation Models 36

3.6 The Robot Controller 38

3.6.1 The Controller Architecture 38

3.6.2 The Mapping Module . 41

3.7 Summary 42

4 Simulations of an Artificial Neural Network Mapping Robot 44

4.1 Introduction 44

4.2 Natural and Artificial Neural Networks for Mapping 44

4.3 Description of the Growing Cell Structure Algorithm 46

4.4 The Growing Cell Structure used in the Mapping Module 50

4.5 Problems with the Growing Cell Structure for Mapping 53

4.5.1 Measuring Correlation of the Sensor Data 54

4.5.2 Reduction of Correlation using a Shift Register 58

4.5.3 Reduction of Correlation using Random Sampling 61

4.5.4 Conclusions on the Growing Cell Structure 62

4.6 Summary 63

5 Simulations of a Novel Mapping Method 65

5.1 Introduction 65

5.2 A Novel Topological Method for Mapping 66

5.3 Parameters for Monitoring Network Growth 67

5.3.1 Network Coverage 68

5.3.2 Network connectivity 69

5.3.3 Network Error 69

5.4 The Robot Control System 71

5.4.1 A Navigation Strategy using Coverage 71

5.5 Simulation Results 73

5.5.1 Basic Map Development 74

5.5.2 Map Development Wi th Active Linking 74

5.5.3 Navigation using the Constructed Map 76

5.5.4 Map Construction and Navigation within a Maze 79

5.5.5 Conclusions on the Novel Mapping Method 81

5.6 Summary of the Novel Technique 81

5.7 Summary of Simulation Work 81

6 The Robot Design 83

6.1 Introduction 83

6.2 Global Overview 83

6.3 The Mechanical Chassis 84

6.4 The Electronic Hardware •. 99

6.4.1 The Programmable Logic 100

6.4.2 The Communications Interface to the Motor Controller ICs 103

6.4.3 The DC Motor Controller 106

6.4.4 The Stepper Motor Controller 108

6.4.5 The Ultrasonic Ranging System 110

6.4.6 The Hardware Implementation of the Ultrasonic Ranging System . . . 114

6.4.7 The Magnetic Sensor System 119

6.4.8 The Eight ColUsion Detectors 120

6.4.9 Other Hardware Facilities 122

6.5 The Computational Systems 122

6.6 The Summary 123

7 The Robot Hardware Assessment 124

7.1 Introduction 124

7.2 The Assessment of the Robot's Mobility 124

vi

7.3 The Assessment of the Ultrasonic Sensor System 134

7.4 The Assessment of the Magnetic Sensor System 139

7.5 Summary of the basic tests 144

8 Experiments on Robot Exploration, Mapping and Navigation 145

8.1 Introduction 145

8.2 Re-synchronising the Robot's Map and Environment 146

8.3 Robot Mapping using Behaviour Based Exploration 151

8.4 Robot Exploration using an Exhaustive Mesh Search

Algorithm 164

8.5 Summary of the experimental work 175

9 Conclusions and Suggestions for Further Work 177

9.1 Conclusions 177

9.2 Further Work 179

A Derivation of the Motor Model 181

B Description of the A* graph search algorithm 183

C The Circuit Board Layouts 185

D The F P G A s Configuration Downloading Description 194

References 196

V l l

List of Figures

2.1 A single processing element 6

2.2 The fuzzy controller 9

2.3 Fuzzy set partitions 10

2.4 The inference process 10

2.5 De-fuzzification 11

2.6 The reinforcement learning framework 12

2.7 The adaptive heuristic critic 14

2.8 The genetic operators 15

3.1 Initial set-up of the main simulation software 28

3.2 Software reuse 29

3.3 The mobile robot simulation window 31

3.4 The data display window 32

3.5 Three dimensional network display 33

3.6 Simulation parameters entry panel 34

3.7 The main simulation elements 34

3.8 The robot's sensor vector 37

3.9 Sequential and concurrent architectures 39

3.10 The control structure 40

4.1 Voroni regions formed by a three node graph 47

4.2 Adaptation of a node 47

4.3 Insertion of a new node 48

4.4 Development of a 2D growing cell network to a 2D data set 49

4.5 Network growth of a mobile robot using simple GCS 51

vni

4.6 Development of the GCS during exploration of the environment 52

4.7 Problem mapping 53

4.8 The path of the robot with samphng points 55

4.9 Comparison of unbiased autocorrelation function for data sequences 56

4.10 Unbiased autocovariance for three different robot paths of 3000 samples long 57

4.11 Variation of autocovariance for different path lengths 58

4.12 Comparison of correlation of x,y and total distance measures 59

4.13 Shift register used for de-correlating incoming data 59

4.14 Comparison of the input and output data from the two tap shift register . . . 60

4.15 Output correlation from a ten tap shift register 61

4.16 Random sampling used for de-correlating incoming data 61

4.17 Output correlations for different sized memory banks 62

4.18 Development of a GCS structure using a 400 long memory after 2000 seconds. 63

5.1 The creation of a new node in the network 67

5.2 Calculation of coverage from sensor range measures 68

5.3 Discontinuous interaction between node and environment 70

5.4 Flow diagrams for coverage control strategy 72

5.5 Stages of network growth without active linking 75

5.6 Stages of network growth with active linking 77

5.7 Path planning and corresponding robot motion 78

5.8 Path planning and corresponding robot motion in a maze 80

6.1 Photographs of the mobile robot 85

6.2 Interactions of the component subsystems 86

6.3 The robot chassis 87

6.4 The drive wheel assembly 89

6.5 The odometry wheel assembly 91

6.6 The drive transmission 92

6.7 The steering transmission 94

6.8 The mounting for the head assembly 96

6.9 The head assembly 97

IX

6.10 The ultrasonic sensor housing and collision detector 98

6.11 An overview of the electronic systems 99

6.12 The system's logic layout 101

6.13 The address map 102

6.14 The motor controller interface 103

6.15 The motor controller pulse generator 104

6.16 The motor controller timing diagram 105

6.17 The motor controller feedback loop 107

6.18 The interface logic 108

6.19 The ' H ' bridge power amplifier 109

6.20 The stepper motor commutation cycle 110

6.21 The logic interface I l l

6.22 The stepper motor circuit diagram I l l

6.23 The error eliminating rapid ultrasonic firing scheme 112

6.24 The sensor firing period timing diagram 113

6.25 The ultrasonic sensor timing diagram 113

6.26 The schematic diagram of the sensor system 115

6.27 The down counter's operation in mode 4 116

6.28 The schematic diagram of the sensor module ; . . . 116

6.29 The Polariod sensor operating cycle 117

6.30 The Polaroid short range operating cycle 118

6.31 The sensor circuit 119

6.32 The down counter's operational mode 1 120

6.33 The magnetic sensor schematic 121

6.34 The schematic diagram of the colhsion system 121

6.35 The collision detector diagram 122

7.1 The transfer function of the system 126

7.2 The robot's step response at different gain values 129

7.3 Displacement of the drive system for different controllers 131

7.4 Trapezoidal velocity profiling for different controllers 132

7.5 Robot curve (degrees/metre),at different wheel angles . 133

7.6 The sensor error recorded as a function of distance measured 136

7.7 Table of firing times for the sensors operating EERUF 137

7.8 Tests for crosstalk rejection 138

7.9 The output values from the two sensors A and B 140

7.10 The calibrated field values from the two sensors A and B 142

7.11 The error in the magnetic field sensor system 143

8.1 The correction mechanism for odometric drift 146

8.2 The triangular map of the environment showing range data 147

8.3 The angular correction required with a translational disturbance 149

8.4 The position correction required with a translational disturbance 149

8.5 The angular correction required with a rotational disturbance 150

8.6 The positional correction required with a rotational disturbance 150

8.7 The angular correction required for both a translational and a rotational dis­

turbance 152

8.8 The positional correction required for both a translational and a positional

disturbance 152

8.9 Robot mapping using behaviour based exploration 154

8.10 Estimated positional error during navigation of a rectangular environment . . 156

8.11 Estimated angular error during navigation of a rectangular environment . . . 156

8.12 Robot mapping using behaviour based exploration 157

8.13 Robot mapping using behaviour based exploration 158

8.14 The magnetic field map of the environment 159

8.15 Estimated positional error during navigation without correction 161

8.16 Estimated angular error during navigation without correction 161

8.17 Estimated positional error during navigation with correction 162

8.18 Estimated angular error during navigation with correction 162

8.19 Mapping problems using the coverage behaviour 163

8.20 Map correction using active linking 163

8.21 Robot mapping using the exhaustive mesh search algorithm 166

8.22 Estimated positional error during navigation without correction 168

X I

8.23 Estimated angular error during navigation without correction 168

8.24 Estimated positional error during navigation with correction 169

8.25 Estimated angular error during navigation with correction 169

8.26 Robot mapping using the exhaustive mesh search algorithm 171

8.27 The magnetic field map of the environment 172

8.28 Estimated positional error during navigation without correction 173

8.29 Estimated angular error during navigation without correction 173

8.30 Estimated positional error during navigation with correction 174

8.31 Estimated angular error during navigation with correction 174

A . l The circuit diagram for the motor and load 181

C. l The control circuit board layout 186

C.2 The control circuit connectors diagram 187

C.3 The power and drive circuit board 188

C.4 The connectors for the DC motor driver circuit 189

C.5 The connectors for the stepper motor driver circuit 190

C.6 The connectors for the regulated power supply 191

C.7 The connectors for the ultrasonic sensor power supply 192

C. 8 The connector for the battery supply and fuse protection circuit 193

D. l Programming the FPGAs 195

xn

Chapter 1

Introduction

1.1 Overview of Autonomous Mobile Robotics

Man has long dreamed of the possibility that one day he might be able to create artificial

creatures so complex that they could rival animals or even human beings. This dream can

be traced through myths of antiquity, to the elaborate clockwork automata of more recent

centuries, and eventually to the burgeoning field of present day robotics [1]. Embedded

at the forefront of this technology remains the aspiration to develop autonomous robotic

machines which can interact intelligently with new surroundings without the need of human

intervention. Both the unfulfilled nature of these goals and the benefits of working solutions

ensures this is a current area of active research.

I t is appropriate to define, in this context, the use of terms such as 'intelligence' and 'au­

tonomous mobile robot'. Any single definition of intelligence encompassing all its widespread

meanings would be controversial. For the purpose of this thesis it will be used to denote that

ability to vary behaviour in response to changing situations, requirements and past experi­

ence [2]. The inclusion of 'autonomous' and 'mobile' draws distinction from fixed manipulator

robots and other systems which are not entirely self-contained. Autonomous mobile robot

research is therefore concerned with self-sufficient vehicles which can exhibit intelligent be­

haviour when faced with new conditions. This is in contrast to the study of 'automatic guided

vehicles' (AGVs) which examines the problems of robots which have more defined objectives

within structured environments.

The diversity of the research effort stems from the broad range of potential applications

for which mobile robots can be used. In industry there is a need for robots to transport

goods around unstructured environments. In hospitals similar robots are being developed

for transportation. Other obvious apphcations involve robots operating in hazardous envi­

ronments where it is unsafe for humans to work. These conditions arise in the chemical and

nuclear industries where i t could be important to map out contaminated areas. In the off-

shore industries most submersible vehicles are tethered, but this limits the robot's range, and

tethers can become snagged. Therefore there is a need for free-swimming vehicles which axe

self-contained and have some intelligence [3]. The use of robots in space is of active interest

especially as the communication time lag created by the speed of light increases over distance.

I t then becomes more important for the robots to share some of the control burden.

The major contributors to the research have come from backgrounds of physics, mathe­

matics, electrical engineering, mechanical engineering and computer science. Each diflferent

approach has focused on issues considered to be important to a particiilar application. The

diversity of activities has ranged from the practical aspects of propulsion involving legged

motion, to the artificial intelligence problems of representing and manipulating knowledge in

a useful manner. At the lower physical level of endeavour such systems can be shown to work

or fail within relatively defined constraints. However in regard to the comparative examina­

tion of intelligent systems there exists no such universally regarded benchmarks. This results

not from a lack of cooperation but a lack of agreement of importance of issues, originating

from the diverse set of applications. There is still fundamental disagreement over the best

strategy for which intelligent systems can be constructed. Some researches favour traditional

artificial intelligence techniques, often referred to as the planning approach, whilst others

attempt to dispense with any form of internal representation often called reactive control.

Unti l systems emerge which are generally recognised cis being effective solutions to robotic

problems it must be important to consider all the potentially intelligent techniques available

for use by autonomous mobile robots.

One core component of mobile robot systems is that of positioning with respect to some

wider frame of reference. No robot can usefully operate if it cannot position its task within

its frame of influence. This is the problem of navigation and requires, not only, robot posi­

tioning within a frame of reference but also the ability to move from one location to another.

Many methods have been used to simplify the difficulties of this problem often involving the

modification of an environment to suit a robot. Other solutions rely on providing a map

for the robot which includes features which the robot is known to be able to determine in

advance. However the most challenging aspects of the problem occur when a robot has to

build up its own information integrating new knowledge into existing representations. This

active area of research is still in the developmental stage and represents the main topic of

this thesis.

1.2 Summary of Thesis

The initial aim of this work was to investigate the field of autonomous mobile robots in order

to find an area of research for which further investigation was required. Chapter 2 presents a

review of the current state of the research field. This provides a critical summary of intelligent

control algorithms followed by their application as described in the literature. The chapter

reaches the conclusion that the problem of exploration, map building and navigation without

collision must be further addressed.

Chapter 3 commences with a discussion of the potential merits of the use of simulation

at the start of the design cycle. The design strategy and an overview of the simulator is then

explained, including a description of the mathematical modelling of the physical systems. The

potential structure for the robot controller is also described in greater detail with respect to

the problems of exploration and mapping.

Chapter 4 examines the background to biological as well as artificial neural networks as

a potential solution to environmental mapping. A neural network solution to the problem is

described and then tested in simulation. Problems associated with this method are examined

and comparative tests are undertaken on two modifications. The conclusions from this work

are drawn and suggestions to make this method a generic solution are presented.

Chapter 5 examines a novel mapping method based on the placement of new nodes outside

the original map. Following the detailed description of this method, network parameters are

described which can be used to monitor the growth and aid in the exploration process.

An exploration strategy is described based on this approach which is then simulated in an

environment wi th obstacles. The resulting map is then navigated by the simulated robot

using a shortest path search technique. This work is summarised and a decision is made to

port the systems onto a real mobile robot.

The design of the prototype mobile robot is described in Chapter 6. The design is sub­

divided into mechanical, electronic and computational systems which are then described in

greater detail individually. Emphasis is placed on the reasons behind the design decisions.

The basic robot tests are described in Chapter 7. These were conducted to produce an

accurate assessment of the actuator and sensor systems. Not only are the various sub-systems

calibrated but the interactions of these elements during operation are observed. Only from

this detailed knowledge can the actions of the robot controllers be fully understood.

Chapter 8 describes the experiments in exploration, mapping and navigation which were

performed on the mobile robot. This was undertaken to compliment the previous work

performed in simulation. The experiment examined robot re-synchronisation and the explo­

ration and navigation of two different mapping techniques. In the final section conclusions

are drawn from the experimental work.

The thesis ends with Chapter 9 which describes the conclusions that this work has pro­

vided. Finally suggestions for further work are made.

Chapter 2

Review of Current Mobile Robot
Research

2.1 Introduction

Over recent years, the field of autonomous mobile robots has produced an increased volume

of literature relating to task achieving agents which require minimal human interaction. This

chapter collates this information and presents a survey of the methods and results reported to

date and hence, those aspects which require further attention can be determined. To do this

the present range of intelligent algorithms wil l be examined, followed by their results as robot

controllers. Only then ca,n the advantages and disadvantages of each system be considered

in order to build an objective picture of the aims and success of the present research. This

chapter finishes with a critical analysis of the hterature in an attempt to extract those ideas

which appear to have the most potential for implementation.

2.2 Review of Control Algorithms

This review introduces some of the fundamental problems associated with the control of

mobile robots and then broadly covers the relevant aspects of neurocontrol, fuzzy logic,

genetic, and reinforcement algorithms. The research is highly diverse and often incorporates

many different control strategies. I t is therefore not possible to fully categorise each instance

into a particular discipline, but it is useful to indicate the general motivation. The section

has been subdivided into categories, reflecting the range of reactive through to planning

architectures. However this should provide an insight into the tools that are being applied to

the problems of intelligent robot control.

Attention has recently been focused on the application of intelligent control to problems

not solvable by conventional control techniques. Mobile robot control involves complex in-

teractions between the controller, the environment and the uncertainty involved. In these

dynamic, non-deterministic and previously unknown environments, it is insufficient for a con­

troller to be purely static and pre-programmed. To be robust, a controller must be flexible

and adaptive, utilising on-line learning. Hence, intelligent control must be considered as the

use of general-purpose control systems, which learn over time how to achieve goals (or opti­

mise) in complex, noisy, non-linear environments whose dynamics must ultimately be learned

in real time [4].

More generally mobile robots are examples of embedded systems which must interact with

the environment for the duration of their working life where the environment is considered to

be everything which is not the robot, and is often dynamic in nature [5]. Embedded systems

take sensor information and in combination with internal state, attempt to evaluate the best

action. The internal state consists of the robot's memory information and may incorporate

all previous sensor-actuator data. Although internal states are not necessary (pure reactive

controllers), they allow the system to distinguish between identical sensor information by

temporal assessment.

Dependent on the use of internal state, mobile robots can be categorised between the

two extremes of reactive a.nd planning controllers. In the past. Artificial Intelligence (AI)

techniques were proposed for the logical control of robotics applications. They require a

world model at a level of definition so that all lifetime tasks can be incorporated in the

analysis. This prior knowledge is unrealisable in any real world situation, and to compound

the problem the computational capabilities cannot cope with these large models. Another

unattainable assumption is that the world interface wil l be precise enough for this large

internal world model to remain synchronised with that of the world. I t is therefore more

useful to consider a looser definition of a planning controller.

Planning can be considered to be any sort of internal construct which constrains or guides

the robot. This causes problems of maintaining the validity of the internal state informa­

tion. Reactive control attempts to overcome this by minimising internal state's duration and

quantity invoking short computational sequences. Some researchers call for the eradication

of any formal planning [6], whereas others argue for the smooth integration of a traditional

symbolic planner [7]. This is currently an important aspect of research and it is central to

the control problem.

2.2.1 Neurocontrol

The ability of animals to thrive in the world and produce a rich set of behaviours can be

attributed to their neuronal mechanisms. Neurocontrol is defined as the use of well specified

neural networks (artificial or natural) to emit actual control signals [8]. Hence, control so­

lutions using neurocontrol attempt to mimic the success which natural structures produce.

Real nervous systems decompose the problem in parallel onto many neurons both temporally

and spatially and are able create complex responses. To model nervous systems at a simpli­

fied level. Artificial Neural Networks (ANNs) have been developed. This development and

its application in control systems aims to replicate those aspects of biological systems that

conventional techniques cannot adequately cope with. These include the ability to integrate

multiple sensor data both spatially and temporally, reject noise throughout the whole system,

and be generally fault tolerant.

Research into the use of artificial neural networks was originally derived from observations

of neural mechanisms where simplified mathematical models of brain cells are combined

into networks. However, it is the underlying mathematical construct of a network built

up of differentiable functions which is important, and hence ANNs are also referred to a

connectionist systems, reducing biological ambiguity. Although research is highly diverse,

it is possible to point to three elements that ANN's possess [9]. To determine information

throughput they require an organised topological network of processing elements. A method

of encoding information or training is required and also a method of recalling information.

The smallest functional unit in an ANN is a processing element (PE) and is shown in

figure 2.1. An input vector to the node is multiplied by a weights matrix and summed

together before being acted upon by a threshold function to give an output. In this manner

an infinite input range can be mapped into a bounded output, of which the most commonly

used threshold function is the sigmoid.

Figure 2.1: A single processing element

W i t h greater numbers of PE's linked together the topological combinations increase expo­

nentially, so i t becomes useful to consider collections of neurons called fields (layers) and their

connections both internal and external. This gives rise to three distinct types of connection.

Intra field, or lateral connections, connect neurons in a specific layer. Inter field connections

allow outputs from one layer to be used to drive the inputs of another. Recurrent connections

introduce at least one feedback loop into the forward path of data flow.

Learning Mechanisms

For any system to learn i t must gain knowledge. Learning takes place between the two

extremes of being guided by a knowledgeable teacher, and pure discovery (using information

redundancy). These correspond to the categories of supervised and unsupervised learning

schemes respectively. In some situations a fully knowledgeable teacher is non realisable and

a method of reinforcement learning is used.

Supervised Learning In supervised learning a network's desired and actual responses are

compared to provide an error value which can be used to adjust the system. Error correction

learning methods use this error vector to update the weights in the network. This requires

all the information at the moment of training and is therefore is not satisfactory for on-line

learning. Common examples of this technique are the multi layer perceptron (MLP) using

backpropagation of errors for training, radial basis functions (RBF), and the cerebellar model

articulation controller (CMAC).

Mul t i layer perceptrons do not require system models but learn data associations. To con­

struct an ANN model of the inverse dynamics of a system, the network would be trained using

samples of input and output data. In mobile robotics applications i t is not often feasible to

build up a mathematical model of a system and therefore this method offers a solution. How­

ever, i t is slow to converge (train) which is computationally expensive. An important factor

wi th MLPs is the inherent global non-linearity in all the layers which causes an error surface

with potentially many local minima. Hence, although a desired function can be approximated

by an ANN, training techniques cannot be proven to converge on the global minima. Another

limitation is that associations cannot be independently manipulated without retraining. This

is because the threshold functions act globally so that the memory is distributed and highly

interrelated (a input output association is affected by many parameters).

The literature reports MLPs being used to map the inverse dynamics of the world model,

simply connecting sensors to motor actuators [10] [11]. Other projects have incorporated

ANNs into a larger control scheme and in this respect they have been used for sensor mapping,

data confidence [12] and function approximation [11].

Radial basis functions and CMAC are also trained in the above manner but avoid some of

the problems that beset MLPs. This is primarily because the threshold function acts locally

(the output is active only over a range of the input value) so that only a small number of

parameters affect network output for a given input. This allows local functional relationships

to be changed without disturbing pre-taught actions. The output layers in these networks

use a linear threshold function which form only one global error minima, hence fast and

proven convergence. Since convergence can be shown for a given set of radial basis functions,

network error minimisation becomes the problem of basis function placement.

Reinforcement Learning Reinforcement learning becomes more applicable as the density

of reward information that can be assigned for given output decreases. When scalar reward

values can be derived for an output, methods such as the adaptive heuristic critic (AHC) can

be used. An example of this method successfully being employed is by Gachet [13] where

reinforcement is only available from performed actions. Gachet uses a neural network to

implement the AHC, but in general, other reinforcement algorithms can be used. These

techniques are further discussed in the reinforcement learning section.

Unsupervised Learning A controller which receives no performance feedback from the

environment about its previous actions must learn in an unsupervised manner. I t must

utilise redundancy in the input output data to self organise discovering patterns, features,

regularities, correlations and categories.

Hebbian learning is an example of an unsupervised learning technique based on the corre­

lation of values of two PE's. Hebb describes this method of learning in his book Organisation

of Behaviour which is reported in [14].

When an axon of cell A is near enough to excite a cell B and repeatedly or

persistently takes part in flring i t , some growth process or metabolic change takes

place in one or both cells such that A's efficiency as one of the cells firing B is

increased.

The method is often integrated into larger ANN structures between specific nodes or

layers. In this way action correlations between pre-encoded behaviours can be learned on­

line [15]. Another variation of the basic learning strategy is explored by Heemskerk [16].

Recurrent Networks Recurrent networks fall into two broad classifications, those of si­

multaneous recurrence, and time lagged recurrence [8]. Simultaneous recurrent networks use

an iterative relaxation technique and converge to stable static patterns. They can be con­

sidered as a static mapping method. Time-lagged recurrent networks (TLRN) offer greater

computational power at the cost of more complex adaptation. In a TLRN each neuron at

time t can use as an input any output value of neuron at {t — 1). Events occurring over a

period of time greater than that within lag -1 can be represented in exponential decays and

bucket brigades.

Recurrent networks exhibit the property of short term memory. I f presented momentarily

wi th a stimulus i t wil l effect the response of the network over a period of time. They can

also estimate parameters whose value varies slowly over time. Attention has also focused

on the construction of deterministic finite state automatas using recurrent neural networks.

However, the theory of these systems remains unclear at the present time. Until this is further

advanced it wi l l not be possible to accurately determine the benefits or limitations of their

use.

Continuous
Input -

Varriables
O

EC

N

SI
N

/—^

O

N
N

Q

Continuous
Output

Varriables

Figure 2.2: The fuzzy controller

2.2.2 F u z z y Logic

Fuzzy logic Control is a knowledge based control strategy that allows a more abstract rule

based model of a system to be used in an embedded controller. A control application will be

described by rules relating sets of input situations to sets of output controls. A controller

simply 'fuzzifies' the input variables and then performs logical operations on the fuzzy sets,

as directed by the control rules, these are then 'de-fuzzified' to produce control outputs

(figure 2.2).

Each fuzzy set possess a membership function which maps aiiy input variable to a mem­

bership value (or Grade value) of that set. The sets form fuzzy partitions of the input's

domains, as can be seen in the three set of low, medium and high in figure 2.3. The mem­

bership function used for these sets is bell-shaped, but other functions can be used including

monotonic, triangular and trapezoid. These sets overlap in coverage allowing interpolation

at the rule boundaries. The grade value is then used to determine the extent of action

rules based upon that input. In an example case with no logical operators (for illustration

simplicity) the following rules apply.

IF u is Low THEN take action Ai

IF u is Medium THEN take action A2

IF u is High THEN take action A3

For a given value of u we can compute the membership values for the three sets, Low,

Medium and High. From this value we then use an inference process on the three actions

Ai,A2 and ^ 3 as shown in figure 2.4. Although this technique multiplies the membership

value and action set, other methods such as thresholding can be used. Finally de-fuzzification

is achieved by extracting information contained in the resultant manipulated sets into a single

output at a given instant (yout)- One such method of achieving this is by taking moments of

area as shown in figure 2.5.

1.0

t
Grade
Value 0.5 H

0.0

Medium

0.0 u

Figure 2.3: Fuzzy set partitions

Grade
Weighting

Factor °^
Value

Weighting
Factor Grade

Value 0-5 Medium

Weighting
Factor Grade

Value

Figure 2.4: The inference process

10

1.0

Weighting
Factor 0-5 i

0.0

0.0 0.5 1.0
'out

Figure 2.5: De-fuzzification

Fuzzy logic's non-linear control is achieved by manipulation of the fuzzy sets with logical

operators. In concurrence with Boolean logic, operators such as AND, OR and NOT axe used

on the sets. The AND operator takes the minimum of the membership functions, the OR

operator takes the maximum of the membership functions, and NOT corresponds to taking

one's complement of the membership functions.

Sofge and White [4] describe fuzzy logic and neurocontrol in the broader field arguing

that fuzzy logic is an innovative subset of 'old A I ' and neurocontrol is an innovative subset

of classical control. Both fuzzy control and neurocontrol deal with non-linear variables of

bounded range [0,1] and there governing equations are similar. Hence, neurocontrol and

fuzzy adjoin (leading to the idea of neuro-fuzzy control), hnking the original disciphnes. I t

is therefore possible to incorporate some or all of these methods into a control system.

2.2.3 Reinforcement Algor i thms

Reinforcement algorithms are important for the control of mobile robots as they learn on­

line using more abstract goal information. Reinforcement learning systems act to improve

their performance over time, given an evaluative feedback signal (reinforcement) derived from

previous, actions. I t is self evident that the upper limit of performance is determined by the

quality of reinforcement signals received, which is often referred to as the credit assignment

problem. This can be broken down into two areas of the structural and temporal credit

assignment. Structural credit assignment deals with the distribution of credit across states,

whereas temporal credit assignment determines actions, responsible for credit, over time.

Reinforcement learning systems receive only scalar values as a reinforcement feedback

and therefore i t is often referred to as learning with a critic, as opposed to supervised learning.

There are two basic types of reinforcement, that which is immediate, relating to the last state-

action pair, or delayed, where reinforcement is received only at a particular goal state. This

provides only evaluative feedback of the performance with respect to a particular goal but does

11

Word

Embedded Agent

Figure 2.6: The reinforcement learning framework

not provide direct error information of the system's internal representation [17]. There is a

fundamental compromise which exists in reinforcement learning systems between exploitation

and exploration. Any system that only receives appraisal from a performed action cannot

possess certain knowledge of rewards associated with actions not performed. Therefore in any

situation, an agent can exploit the knowledge it has gained, or explore a different action to

attempt to find a better alternative. Systems biased to exploiting wil l perform better in the

short term, and systems with an exploratory bias should converge better in the long term.

Consider the application of reinforcement learning to a navigational task for a mobile robot

operating in two dimensions. The inter-relation between the robot and the environment, or

reinforcerhent learning framework, can be viewed as in figure 2.6. In this example the world

state s would be the position of the robot in a static environment. The robot can change its

position, the world state, through actions performed a. A task might involve moving to a

particular destination which would require the robot to sequence actions to manipulate the

world into the corresponding goal state. The agent must utilise information i received from

sensors which map (J) the world state guided by reinforcement r. This reinforcement signal is

manufactured from the world state through the application of credit assignment. The robot

must therefore attempt to maximise its cumulative reinforcement received. An example of

an immediate reinforcement scheme would be to return reward value dependent on how near

it is to an optimal path. However, i f a reinforcement signal was only available at the goal

state then a method which used delayed reinforcement would be required.

12

Immediate reiniforcement algorithms

Probability vector algorithms including the Stochastic Learning Automaton (SLA) use rein­

forcement signals to attribute a probabihty distribution over all possible actions. This system

is based only on the reinforcement signal for a particular action and not on sensor informa­

tion.. In effect only the mapping R is used and it cannot associate locally optimal actions with

particular states of the world as there is no internal state access to sensor information. Ex­

amples of this method are the Linear Reward Penalty(LRP), Linear Reward Inaction {LRJ),

and Interval Estimation (IE). The method can only search for the global best actions based

on probabihties, hence it can get caught in non optimal states or absorbing states.

Associative algorithms utilise the input function / as well as the reinforcement values,

allowing them to associate action probability vectors with states. I t is not sufficient to

use a separate stochastic learning automata for each state as this would not generalise across

actions. To be able to generalise, a parametrised distribution function is required of which the

most common implementation is to use a neural network. The main advantage of associative

algorithms is that they are able to associate optimal actions over whole classes of world state.

They also generalise from past interactions with the world but it is not always possible to

scale them to more complex problems.

Delayed Reinforcement

The above algorithms require a constant and accurate feedback of reward after each action

has been taken in the environment. Tasks faced by mobile robots are often defined in terms of

goal positions or end states into which an environment must be manipulated, prior to which

no reward is attained. One method used for these problems is that of temporal difference

methods which include the adaptive heuristic critic and a form of dynamic programming

called Q-learning. [18]

Q-learning discretely partitions the world into a finite set of states s and then learns

the value of every action a performed from that state. The function Q(s,a) is built up

which returns the expected discounted reward of taking action a in state s given that optimal

actions are taken thereafter. As the world is explored, reinforcement values become dispersed

throughout the states and converge to the correct value, as the environment is exhaustively

searched. The method is computationally expensive and the Q function must be re-learned

for new goals.

The adaptive heuristic critic (AHC) learns the function which attributes expected future

reinforcement to each input state. The algorithm stores two vectors, one for expected rein­

forcement and the other which measures the frequency that it has been in that state (the

states activation). When no reinforcement signal is present, all expected reinforcement values

decay with respect to their activation and a discounting factor. Wi th the application of a

13

Figure 2.7: The adaptive heuristic critic

reinforcement signal, the expected values are increased dependent on their activations. There­

fore, reinforcement is propagated back through the actions which were more active, prior to a

global reinforcement, spreading reward through time. The AHC method converts the global

reinforcement problem to a local one which can then be solved by most immediate learning

algorithms. Figure 2.7 shows a neural implementation where the expected discounted future

reward values are stored by the layer LB neurons and the activation value is based on values

in the LA and LQ layers.

The primary aim for reinforcement learning algorithms is to be able to learn in real time.

However, the complex learning algorithms can cause slow convergence to optimal behaviours

which can be directly related to the time taken for each iterative step. The operation of each

step in time and data size are often bounded, and these systems are referred to as being

strictly incremental. For real control applications, these algorithms must be used in dynamic

environments and their capability to operate wil l primarily depend on their transient activity.

2.2.4 Genet i c Algor i thms

A Genetic Algorithrii (GA) is a method which drives a population of points in a search

space using a set of operators to maximise a given performance measure or fitness [19]. The

algorithm is not guaranteed to find the optimal solution but wil l converge to near optimal

solutions. The members of the population are individually evaluated and the best are carried

into the next generation, proportionate to performance. Genetic operators are used to re-

combine existing members, aiding crossing over of beneficial data strings. Data mutation are

14

Fitness

Reproduction

j I I I I 1 \ I I I I

I I I I I ~

I I I ; I I ^ T T

Crossover

Break point
Mutation

I i l . - r l

Smallest Elements Under Genetic Manipulation

Figure 2.8: The genetic operators

also used to expand the range in the search space.

Points in the search space correspond to a string of data elements (conventionally bits in a

bit string) and the set of all points is called the breeding pool. The bits are analogous to 'genes'

and the strings attempt to imitate gene structures or 'chromosomes'. Initially each individual

is tested in the problem domain to evaluate its performance or fitness. This information

is then used to determine the members that wil l be subject to the genetic operators and

those wi l l be discarded. The operators used most commonly are reproduction, crossover and

mutation and their action on small string is graphically shown in figure 2.8.

The reproduction operator selects the fittest individuals and copies them to keep the pop­

ulation,size the same for each generation. This is done on a probabilistic basis proportionate

to fitness (often referred to as the roulette wheel) which ensures a smooth selection process.

The members which are not selected are discarded. The crossover operator selects a pair

of strings at random, picks a random break point along its length and then swaps the data

strings over. The mutation operator selects randomly both individual and element in it , to be

mutated. This stops the algorithm from premature convergence where improvement is halted

because all individuals have the same value for a specific gene. I t also prevents the search

from being sparse.

The genetic algorithm can be viewed as critic based. Wi th the overall performance being

15

a compromise between exploration and exploitation in the search space. Where the reproduc­

tion operator acts in an explorative fashion utilising known performance and the crossover

operator explores the space for possibly better alternatives.

2.2.5 S u m m a r y of Contro l Algori thms

The algorithms described above, comprise some of the latest ideas in intelligent control,

because they have the ability to vary their behaviour in response to varying situations. This

makes these algorithms of particular importance for mobile robots, but at this stage it is not

possible to determine which methods show the greatest potential for future results.

Having looked at the various intelligent algorithms alone, i t is important to assess how

they have been used in mobile robot experiments. In the following section these algorithms

wil l be seen within the present context of research, as reviewed from the searched literature.

2.3 Review of Robot Designs

This section presents a critical review of the work which has been reported in the fiterature

by researchers in the broadly definable field of autonomous mobile robot control. I t is not

always possible exactly to categorise many of the reported control architectures because of

their hybrid nature. However, this section is subdivided to indicate the spectrum of projects

from reactive to planning controllers.

2.3.1 Reac t ive based Contro l

Moorman and Ram [20] describe a parametrised schema based reactive control system called

ACBARR (A Case BAsed Reactive Robotic system). This method is built upon a set of

reactive sensor-motor actions or schemas whose parameters are contained in a set of inter­

changeable behaviours or cases. Each case is divided into three parts, general information,

parameter ranges and applicability information. The cases are instigated dependent on the

match between their applicability and the world state. A library of robust cases was built up

by a human operator empirically observing the simulations.

The simulations demonstrated the effectiveness of the ACBARR system to get out of sit­

uations a purely reactive strategy could not (notably a boxed canyon) whilst still maintaining

reactive advantages. However the simulations relied upon sensor information that was highly

rich and possibly unrealisable for an in situ mobile robot.

I t can be shown that a reactive controller will perform sequences of actions if the en­

vironment provides the correct sensor stimuli. Based on these ideas Nilsson [21] discusses

Teleo-reactive programs. T-R sequences consider chains of states and actions that lead to

16

a predetermined goal. For each state a control loop is built such that its action moves the

system further down the chain towards the goal, hence teleo (distance) reactive. Inputs to

the T-R modules can be taken from different sources, thus allowing different architectmes.

Nilsson provides no experimental data but indicates the potential mobile robot applications

as these ideas are developed.

2.3.2 Neura l ly Inspired Robots

Franceschini et al. [22] have taken inspiration for neural connectivity from insects. They have

successfully simulated and built a mobile robot that moves through a static environment and

reacts to the relative motion. This passive control system is modelled on that of a housefly,

which does not possess a visual cortex, indicating that most of the visuomotor control is

achieved in parallel, and at a 'low level'.

The described robot possesses a compound eye which is loosely based on that of the insect,

implemented in parallel and analogue electronic units. Arrays of units called elementary

motion detectors (EMDs) detect motion of the visual flow fleld, which are connected to the

panoramic compound eye located around the periphery of the circular frame. Two reactions

are integrated into the robot, target attraction and object repulsion. However, the basic

reactive control technique can cause the robot to become caught in local minima. Although

this system wi l l not work for a dynamically changing environment or when the robot is at

rest, i t demonstrates a fusion of sensory motor information for control in real time.

Heemskerk et al. [16] describes an approach to controlling a toy car in which behaviours,

described as sequences of procedures, are used to train a neural network. Distal schemas (the

externally observable behaviours) are used to create the proximal schemas (the embodiment

of the control) such that by carrying out the proximal schemas, the distal schemas emerge.

Four light detectors are used as the input layer to the controlling neural network. The

second layer uses lateral inhibition so that all the logical combinations of the inputs model to

a speciflc active winner node. The connections between this layer and the two output motor

control nodes are adjusted by the CALM learning rule (Categorisation And Learning Module).

Under supervised learning the vehicle is directly controlled and the CALM algorithm performs

Hebbian learning. Further work is being carried out to implement a reinforcement distal

supervisor.

Methods using adaptive neural networks to condition actions are explored by Pfeifer

and Verschure [15] by using the Distributed Adaptive Control (DAC) paradigm. Sensors

are connected to an avoidance layer and an approach layer by variable connection weights.

These are connected to a motor command^ layer by fixed weights to trigger predetermined

responses. The avoidance and approach layers have an inhibitive connection so that obstacle

avoidance remains a higher priority. The mobile robot uses a tactile bump sensor, a target

17

sensor and a range finder. The network implements a form of on-line Hebbian learning that

progressively associates the range finder data to the bump and target information and hence

the predetermined responses.

Experiments were conducted in simulation and demonstrated the robot's ability to cor­

relate the range finder data with the other sensors in such a way that a combined emergent

behaviour forms from past experience. There is no distinction between learning and per­

formance phases as the algorithm for updating the weights forces an equilibrium for stable

environments which wil l change correspondingly to the environment.

Research has gone into the use of feed forward networks (FFNs) and simple recurrent

networks (SRNs). Meeden et al. [11] uses a mobile robot in a small environment with a light

source to evaluate the performance of these networks. A l l the control networks are trained by

a modified version of the complementary reinforcement backpropagation algorithm (CRBA)

where data can be incrementally built up during the training phase.

To maximise the number of comparative tests between networks, Meeden initially used a

simulator with the percentage punishment as the performance index. Various methods were

used in an attempt to increase the temporal abilities of the SRNs. These included the use

of copying previous values of the hidden units and motors to the inputs, and training the

network to attempt to predict subsequent sensor values. The most complex controller tested

included auto-association of the input values to the output values.

Tests were carried out on two relatively simple tasks in a confined space. That of avoid and

move with the goal of moving without collision and light as food where a light source indicated

a food stimulus. The avoid and move experiments indicated that the sensory feedback from

past motor states was more important in decreasing punishment than the tactile collision

sensors or light sensors. Prediction and contextual memory were of benefit, whereas auto-

association made no difference. The light as food experiments demonstrated that the robot,

once trained to seek the food source, exhibited hierarchical behaviours.

Nagata et al. [10] sets out a control architecture comprising two feed forward neural

networks. A 'reason' network was used to correlate input sensor signals to actuator outputs,

and to be able to coordinate responses, a second, or 'instinct' network, incorporated a short

term mernory on its inputs taken from the reason network and some of the sensors.

The aim was to encode two different types of behaviour in two separate robots, those of

seek and escape. Initially the neural networks were modelled on a computer and a range

of stimuli and required outputs were fed to the networks. Using a method similar to back

propagation the connection weights were changed. Prom this, the robot's behaviour was

simulated and the useful stimuli-output conditions were used to update the network. In the

next stage, the network simulator drove the actual robot so that its actions could be further

tested. Finally the fixed connection weights were downloaded onto the mobile robots.

18

The experiment successfully demonstrated a neural networks potential to effectively con­

trol a real-time mobile robot. The network interpolates from the set of input and output

relationships which were used to program it . However because of the fixed weight connec­

tions this particular use of a neural network cannot learn new information once it is in situ.

One attempt to embed a neural control structure in VLSI is outlined in [23]. A resistive

grid is used for path planning, a nearest-neighbour classifier for localisation using range data,

and a sensory motor network for obstacle avoidance. For path planning, a hexagonal resistive

grid, shaped to the environment, is used to empirically compute optimal paths to goals so

that wall collisions are avoided. The grid is implemented in VLSI and a gradient descent is

performed between the start and goal positions where the voltage difference is applied. For

localised positioning of the robot at a particular instant, a single layer neural network takes

its inputs from a 360° infra-red range finder and outputs via a 'winner takes all' network

to best match a node in the resistive grid. To avoid obstacles, an avoidance module takes

relative velocity information and uses a low level network to directly control the motors. I t

is hoped to be able to teach the obstacle avoidance network to associate appropriate motor

action with different sensory inputs.

To date the path planning and localisation module have not been implemented in VLSI

but run in software on a SUN 4 workstation linked to the robot. Using this method they have

reported real time control in static environments but comment that operation in dynamic

environments could only be achieved with hardware implementation.

The use of custom designed neural VLSI has been investigated by Peacock and Bolouri

[24]. Simulations of the VLSI stochastic network are run on a PC and used to control a

mobile robot. The architecture used is a three layer feed forward neural network with off­

line training. Infra-red, ultrasonic and tactile sensors have been interfaced so that it can avoid

obstacles whilst being attracted to, or repelled from, a moving source. Moderate success has

been reported.

COLUMBUS is a mobile robot with a global aim of maximising its knowledge of the

environment [12] and follows on from his work in simulated environments [25]. I t is equipped

with a time of flight sonar system and two neural networks to interpret the data and limit the

sensor noise. The sensor interpretation network takes previous sonar readings and interpolates

to give a value of estimated reward for a given position. The confidence estimation network

then returns the expected error in the result of the interpretation network. These results are

processed to construct an exploration utility function which maps the environment. From

this, gradient descent can be then used to determine exploration paths.

The approach requires an accurate determination of the position of the robot at any

instant, and due to cumulative errors this cannot be accurately predicted. To overcome this,

recent data was compared against that predicted by the global model using an error squared

function. The local model could then be matched to the global one by reducing this cost

19

function. This system could only operate in real time by using a remote link to several SUN
workstations performing the computation.

Mitchell et al. [26] has taken a reinforcement learning pohcy and combined it with predic­
tive neural network to reduce the number of examples required for such a network to learn.
The evaluation function Q(s,a) measures the cumulative future expected reward, given the
present state s and the next action to be taken a. Once this function is learned a robot can
select such actions so as to maximise its reward. Mitchell's explanation based neural network
(EBNN) uses a neural network as an action model to predict the next state given a previous
state and action. With this differentiable network model, EBNN constructs target slopes by
extracting the derivative of the final reward with respect to features of the state s. From this
information, the evaluation function can be described with reduced sampling as the rest of
the information about the environment was encoded in the action model.

Changes have been made to make EBNN more applicable to mobile robot applications.
The values of the target slopes were derived from the approximate action model and therefore
their accuracy can be computed by comparing the observed with the predicted values. This
is then used to weight the learning of these slope values. To avoid the problem of suboptimal

action choices Watson's Q-Learning has been employed. EBNN has been demonstrated to
work in simulation and allows domain knowledge to be transferred between learning tasks.

A method for the coordination and integration of primitive reactive behaviours using a
adaptive heuristic critic is described by Cachet et al. [13]. Six behaviour primitives are
defined including such as goal attraction, perimeter following (contour left), perimeter fol­
lowing (contour right), etc., where each behaviour produces a time variant value of speed
and direction. These six vectors each have an attributed coefficient which is controlled by
a fusion supervisor module and the summed values are used to control the robot's wheels.
They term this architecture and Adaptive Fusion of Reactive Behaviours (AFREB).

The fusion supervisor is a neural network adaptive heuristic critic (AHC). Filtered in­
formation from ultrasonic sensors is input to the network and the output values determine
the coefficients. Through the use of a simulation the AHC was trained to produce emergent
behaviours by combinations of the primitive behaviours. The robot in simulation and in em­
pirical tests was shown to perform surveillance, go to goal and follow a path without collision
in a constricted environment. They are attempting to improve the input's resolution using a
Kohonen Neural Network.

The use of recurrent neural networks evolved using a genetic algorithm has been explored
by Yamauchi and Beer for the learning of reactive and sequential behaviours [27]. The paper
examines the application of continuous time Hopfield recurrent networks to three areas of
sonar data recognition, one dimensional navigation, and sequence learning.

Real sonar data from a full scan around the perimeter of two different objects was used
to test the networks. Networks were then evolved using eight fully interconnected neurons.

20

After 15 generations a network was found to work in simulation and could on a real mobile
robot correctly categorise in 17 out of 20 trials. The navigation exercise placed an agent in
a one dimensional 'world' containing a landmark and a goal which were not close enough to
be sensed at the same time. The agent had to detect whether the landmark was between it
and the goal, or on the other side and then use this information to move to the goal. This
was achieved by evolving three submodules. One module categorises the environment and
dependent on that information it triggers one of the other two modules to seek the goal. They
have also demonstrated the abilities of recurrent networks to learn sequences of bit streams
from reinforcement signal. Although they report that three bit sequences have been learned,
their genetic algorithms search space increases exponentially with the number of neurons.

Although the use of genetic algorithms for evolving a successful network can be achieved,
it is limited to off-line learning. The applicability of GAs to real time learning is not evident
nor discussed.

2.3.3 Robots based on Reinforcement Learning

Mitchell, Keating and Kambhampati at the University of Reading have experimented with
simple 'insect' robots [28]. These mobile robots possess simple ultrasonic sensors and low
computational power and are designed to act in reactive fashion to the environment. They
describe a learning strategy based on a fuzzy automaton algorithm. They build up five
automata based on classes of ultrasonic input i.e. obstacle close to left sensor, obstacle far
from left sensor etc. Each automata builds up a probability distribution across the set of
actions based on the reinforcement from the external critic.

A simulation was initially used to experiment with the automata's learning parameters
and aspects of reinforcement. Many simulations were run initialising the automatas with
random probability values. The robot was shown to learn to move around its environment
without collision when all five automata were used, however, as expected, with less than five
automatas, the system cannot converge to the desired behaviour.

Ashwin Ram and Juan Santamaria [29] have designed a reactive schema architecture
whose parameters are continually refined by a learning and adaptation module and is called
SINS (Self-Improving Navigation System). The motor schemas used were avoid static obsta­

cle, move to goal and noise (random motion). The sensor data is converted to four vectors
that characterise the environment and then associations between these cases and output pa­
rameter values are made. Using a reinforcement method the number of cases are built up
and used as a library for adapting future parameter values.

The empirical comparisons were all made by computer simulation and demonstrated SINS
improvement over fixed and random schema systems. Experiments were carried out to find
optimal values for the learning module's parameters. It was also shown that the architecture

21

was relatively robust to environmental changes.

Kaelbling [30] describes the use of a reinforcement algorithm called interval estimation.

This technique produces an action map which maps all internal and sensor inputs to an
action. The experiments were entirely simulated and the full input information was only five
bits with only three actions to be mapped to. The Interval estimation records the number
of times an sensor action has occurred and the number of times a positive reinforcement has
exceeded a predetermined threshold.

The experiments qualitatively validated the learning algorithm. However, this method
cannot cope with delayed reinforcement and must record every possible input state, which
is unrealistic for more complex systems. They point to Q learning and other approaches to
overcome these difficulties.

Mahadevan and Connell [31] investigate Q learning, a temporal reinforcement strategy,
combined with two different methods of propagating reinforcement across states. The two
methods used were that of statistical clustering and Hamming weight. The tests are primarily
carried out in a behaviour based architecture as pioneered by Brooks [6] but comparisons with
monolithic architectures are shown. The results are presented for both simulations and real
robots where the task chosen was that of pushing boxes in a playpen. This problem requires
that an autonomous robot locate boxes in an irregular shaped room and then push the boxes
to the walls.

The robot described had ultrasonic and infra-red sensors. Eight ultrasonic sensors faced
radially from the circular frame, each having a two bit resolution of 'near' and 'far'. Although
this reduces informational input (reduced precision), the abstraction process reduces the
error in the resultant data (increased certainty). The infra-red detector acted as a forward
bump detector and a motor current monitor indicated if the robot was in some way stuck.
The Hamming algorithm requires that all possible states are stored hence a reduced input
resolution was chosen so that the state space could be diminished. This was overcome by the
statistical technique where the robot learns a set a clusters, each with an associated Q value,
for each action.

The results suggest that individual behaviours can be effectively learned, sometimes out­
performing the hand coded agents. They also demonstrate that by breaking up the problem
into hierarchical layers the reinforcement tasks are simplified, thus improving performance.
Overall it was shown that reinforcement algorithms work substantially better in a subsump-
tive architecture and that the clustering improved over Hamming as a structural credit as­
signor.

Dorigo and Colombetti [32] describe the design and interaction of a modularised archi­
tecture based on reactive control. They use reinforcement learning to translate into agent
actions, a stipulated demand. Each module or classifier system is composed of a performance
system, an apportionment of credit system and a rule based discovery algorithm. The per-

22

formance system includes a set of classifiers or sensor-action pairs with an associated credit
indicated by the apportionment of credit system. To introduce new classifiers into the per­
formance system a genetic algorithm selectively recombines and replaces low credited ones.
The classifier system modules were combined into various architectures including monolithic,
flat and multilevel hierarchical.

The results have shown that complex interactions with the environment can be achieved,
including certain type of sequential behaviour where enough sensor stimulus has been per­
ceived. It was also shown that with 'robot shaping' the trainer could remain relatively
abstract. Adaptation to an environment was shown to be aided by the genetic algorithm and
speeded up by correct choices of architecture.

Dorigo and Colombetti elaborate on their proposed ideas in [33] to include discussion
and experimentation on the sequencing of behaviours. Reactive controllers can only perform
sequences of actions if the sensory stimuli lead the behaviour, otherwise the agent must utilise
some form of internal state. These are explored and implemented as a memory bit accessed
by a coordinating classifier system.

The task set for the robot was to move backwards and forwards between two points.
This environment does not directly indicate which point is the present goal, so the robot
must develop self initiated sequences to cope with this. The simulated results show that non
reactive behaviour sequences could be learned but highlighted complications in determining
reward values for actions that could have more than one interpretation. To overcome this,
previous reinforcement values were stored in an attempt to indicate to the system which goal
was being sought.

2.3.4 Genetic Based Controllers

Koza investigates a genetic evolved architecture [34] and compares it against a hand-coded
subsumption architecture reported elsewhere. The paper focuses on a wall following behaviour
to be implemented in a software simulation. A set of basic functions that can be linked to
terminals (sensors, actuator or other functions) is laid down for the genetic algorithm to
work with. Squares are placed around the environment's perimeter and the fitness indicator
is determined by the number of these intercepted in a run. It was this fitness function that
caused the development of the structure. The algorithm also involves reproduction crossover
of chains of functions and terminators.

The best of the generations program that performed the wall following behaviour, when
inspected, could be seen to be similar in action to the subsumption architecture against
which the algorithm was being tested. Although this method produced a controller of the
same ability as a hand coded one, the evolutionary stage could not be directly implemented
on a real robot.

23

In Koza's book Genetic Programming [35] he again takes a problem reported by other
researchers and uses genetic methods to solve it. The undertaken task is that of box pushing
and was reported by Srihar Mahadevan [31] (reviewed above). The fitness function being the
sum of the distance between the box and the wall summed over the test time. Koza reports
the success of the GA to find a solution which matches that of Mahadevan, but then proceeds
to compare both methods based on false assumptions. He assumes that during optimisation
of the control algorithm there is access to accurate and complete world data and that an
unlimited number of trials can be performed. Both these are unrealistic and Mahadevan
does not assume them.

2.3.5 Fuzzy Logic Systems

Saffiotti describes the use of fuzzy logic to coordinate the responses of a set of behaviours
[36]. Sensory information is processed and mapped into the local perceptual space centred
upon the mobile robot. Also, indicators called artefacts created by higher level planning
are added to provide global information for the behaviours. These artefacts allow strategic
(e.g. sequential) goals to be specified which will be acted upon in a reactive manner. Each
behaviour's responses are then multiplied by an activation level dependent on its contextual
applicability, and this eliminates potential local minima associated with reactive control.

Simulations and empirical techniques were used to evaluate the system. They have shown
the ability of the robot (called Flakey) to move through previously undefined environments
avoiding obstacles. Flakey came second in the first AAAI robot competition in San Jose.

2.3.6 Behaviour Based Control Paradigm

Brooks's original work is outlined in [6] where he uses the ideas of subsumption architecture
for mobile robots. The physical robot used had a ring of twelve Polaroid sensors and two
Sony CCD cameras. The three control levels used were avoid obstacles, random motion, and
a directed exploratory mode. The results indicate that this reactive control system works,
but also reveals problems of local minima.

Eustace, Barnes and Gray at the University of Salford (UK) have used a behavioural
based control system to produce co-operation between physically separate mobile robots [37].
Four strategy levels are used in total and these are SELF, ENVIRONMENT, SPECIES and
UNIVERSAL. The SELF and ENVIRONMENT levels search out battery charging locations
and avoid obstacles respectively. The SPECIES level coordinates interaction between in­
dividual robots. The UNIVERSAL level is task oriented. Each level takes in sensor data
weighted according to level relevance and outputs a motion vector which used to compute
the total response.

The task is for the robots to move a pallet supported from beneath by two robots at either

24

end. The robots use force and torque sensors connected on the capture head, which holds up
the pallet, to interact in the task. Through simulation and real demonstrations this system
has been shown to avoid obstacles without dropping the pallet. The main consideration,
reported is that of optimising the values of importance assigned to each level.

2.4 Summary

One of the first observations that must be made concerning the research field of mobile
robots is that there is a large and diverse number of applications. There is little consensus
on any benchmark problems, which in turn leads to a correspondingly diverse set of robot
experiments. Although this makes any kind of quantitative comparisons between projects
nearly impossible, a qualitative assessment can be made.

It is not unsurprising that there is such diversity. Often the higher level control aspects
come from ideas born from Artificial Intelligence, itself a relatively new discipline. Many of
the sensory systems that can be used on mobile robots are also in development and arguably,
the computational requirements for these projects are only just becoming reahsable. In such
a state of flux and with each advance, new possibilities open up, leading to a discontinuous
research effort.

It is possible to see from the literature one aspect which has not been fully addressed
and which must form the basis for further research. This is the problem of map building
and navigation. In order for mobile robots to be able to demonstrate intelligent behaviour
they must first be able to understand their own spatial constraints. An area of particular
and active research interest is that of a robot exploring an unknown environment. Such a
robot must be able to integrate newly acquired knowledge into previously stored maps, whilst
coping with the inherent noise.

Columbus, designed by Sebastian Thrun, attempts to satisfy these criteria. It uses only
time of flight sonar readings and builds up a representation of its environment. A mini­
mum of prior knowledge is used with the robot's main aim of efficient exploration. Effective
exploration is achieved by the robot storing predictive reward and expected error from the
sensor data, thus allowing it to judge which areas are less well explored. The primary focus
of the research has been on the development of a working physical robot which demonstrates
that relevant problems have been tackled. However, it is unclear as to whether uncertainty
between the positions of locations could cause problems after long periods of exploration.

The work carried out on the SRI robot Flakey has demonstrated that it can interact
with the real world. Although the robot does not construct as detailed information about its
immediate environment as Columbus, it able to navigate through it to non-immediate goals.
However, Flakey demonstrates a method of smoothly integrating higher level plans to a local
navigational strategy. This continues to the idea of defining objectives in a more abstract

25

and controllable fashion.

The above chapter has examined the large area of research which is currently being
undertaken in the research field of autonomous mobile robots. From a detailed assessment
of the literature, the problem of map building and navigation has been targeted for active
consideration, and will be examined in more detail in the following chapter.

26

Chapter 3

The Design of a Mobile Robot
Control Structure in Simulation

3.1 Introduction

To be able to further develop the ideas of a map building mobile robot, the design methodol­
ogy must be examined. Although an eventual realisation of the design of a working robot is
required, this is not the only test bed with potential for experimentation. With the current
range of available research computers, it is possible and even advantageous to simulate the
full mobile robot design prior to a prototype being constructed.

One of the major benefits that simulation offers, is the ease of accessibility of all the
parameters of the robot's control system during the test runs. Not only does this allow
swift elimination of errors in the system, but speeds up the development time of the control
algorithms during the initial design phase. The complexity of both the control system and
the environment models can be incrementally increased and this in conjunction with the
relatively short run times leads to a quick and fluid development process.

A major criticism of simulation work is that it does not offer realistic experimental con­
ditions, and therefore the results obtained have little absolute value. This criticism holds
only when the physical dynamics of the system have not been properly considered and poor
system models are used. Hence, if good models which more accurately mimic reality have
been implemented, it is certainly possible to conduct important comparative tests between
control systems. However, at this stage, it is not possible for the many interactions between
the robot and its environment to be fully modelled. In order to fully validate the control
systems in absolute and independently comparable conditions the controller would have to
be ported to a real robot. However, in the earlier stages of development the use of simulation
work is highly important.

Although the final aim is to develop a working mobile robot, this is not necessarily the

27

best way to approach the initial design of the control system. It takes considerable time
to develop a working prototype, giving rise to long delays before any control aspects can
be considered. Also, even though it is possible for the robot environment to be simplified
to aid initial development, there is a basic level of competence which any control system
must possess. As with all physical processes, tests conducted with a real robot take time to
conduct, including the downloading and uploading of run time information, which can lead
to lengthy basic tests. For these reasons, it was considered important to design and test the
initial control systems in software before being ported to a real mobile robot platform.

3.2 The Software Simulation Strategy

The software was developed within a UNIX environment because of the combined advantages
of processing power and display development software. This development software to produce
a graphical user interface, which is required for displaying the robot's information, was based
on the XI1 windowing system. This is based on a client server protocol, allowing the software
to operate over a network upon available machines. It is also possible to run this over a
network on a PC equipped with suitable software. With the use of a suitable tool-kit (XView)
the simulation package could be developed under the standard C programming language.

Parent Process Process forks Child Processes

Initialisation
Program

Graphical
User

Interface

Data

Transfer

Robot
Simulation
Software

Figure 3.1: Initial set-up of the main simulation software

As with any UNIX environment it is possible to have more than one process, or program
running simultaneously and this can be achieved by the fork function. When the program is
initially executed it splits, or forks, into two separate processes, one of which is used for the
robot simulatioris, and the other for the graphical user interface (Figure 3.1). These programs
are linked by a data channel, or pipe, which allows the programs to transfer information. The
graphical user interface handles all the simulation parameters and displays all the results, as
required by the user. Whereas the simulation software mimics the actions of a mobile robot,
and returns data and any requested information.

The use of the fork command to split the programs up into separate entities was primarily
used to increase software reusability. It is often important to, analyse the streams of data
being produced by the robot simulation software and this is possible by simply replacing the
graphical user interface with a suitable program. The information flow of the data processing

28

Data
Processing
Program

Data Processing Program

Data

Transfer

Robot
Simulation
Software

IVIobile Robot Display Program

Graphical
User

Interface

Data

Transfer

Physical
Mobile
Robot

Figure 3.2: Software reuse

program is shown at the top of Figure 3.2. Such a program can run the simulations many
times in order to assess the effects of changing specific parameters.

The lower half of the Figure 3.2 shows how the graphical user interface can be reused for
displaying the information from the physical mobile robot. This both aids the development
process and allows interpretation of the robot's actions based upon its informational state.
Hence the graphical user interface offers a tool for examining a real robot in greater detail.

3.3 The Graphical User Interface

A graphical user interface waŝ chosen for displaying the information produced in the simu­
lation run by the robot. This form of display has the advantage of being able to show large
amounts of positional data in a clear and concise manner. A basic requirement is that the
software be able to show the environment, and the robot's motions within it. This main
program window from which all the other functionality is called, was called the mobile robot
simulator, and is described in more detail below.

Figure 3.3 shows the main simulation window. It comprises four selection buttons mounted
above the main display window, with the simulation run time and a path clear button be­
neath. The environment is defined in terms of an occupancy grid with each element either
an object or a space. The resolution of this environment is 64 by '64 blocks, however this
changes dependent on the environment loaded in. The path of the robot can also be seen as
a meandering line in the free space. In^this example the robot starts off its path from the
middle left hand side of the maze. This simulation has been stopped at an arbitrary time to

29

show a typical robot path.

A design feature is that the robot is shown as a point source which can move to any point
in the free space. This can be considered as a representation of the real environment where
the walls have been enlarged to account for the radial size of the robot. Such a representation
has the advantage that all connected free space regions are traversable without reference to
the width of the robot. Also when the traversable maps are shown, any mapping errors can
be easily seen as they cross an object region.

Three of the four buttons at the top of the display access menus. The file button has
an associated menu from which maps can be saved and loaded to the screen, also new envi­
ronments can be loaded. The robot button calls up a range of parameters associated with
the robot which can be easily changed. The simulator button allows the simulations to be
stopped, started or reset. Prom here other simulation parameters may be accessed, including
the simulation run time and environmental size. The last button is for the display menu and
is used to open the various data display methods, which are described in more detail below.

The main simulation display window is called up from the main display menu is and shown
in Figure 3.4. This is used to display the the robot's stored information in as clearer form as
possible. An example of a mapping topology is shown to illustrate the type of information
that needs to be displayed. Here, the position of the map can be shown with relation to the
environment, with only the environment and the topological links displayed.

The buttons at the bottom are present in the later versions of the simulation software
which are used in Chapter 5 to allow access to the larger quantities of data stored in the
mapping structure. The first three buttons toggle on and off the environmental objects,
topological links, and the nodal range data, for easier visual inspection. The vectors menu
allows associated vector information about nodes to be displayed.

It is often useful to examine properties of the networks during the development. If this
is to be achieved whilst indicating the relative positions, some form of three dimensional
display technique must be used. As the development of such software is time consuming,
an independently written software program was used. By accessing the main display menu
button, the data is written out in a format that this Xss program can display, and the program
is started.

Figure 3.5 shows the image that is produced. The environment is shown all at one level in
the x-y plane with the scalar of each node being indicated by its height in the z plane. The
whole image can be rotated and translated to permit viewing at all angles. This method is
useful for determining which network parameters most accurately reflect network properties.

During the testing of the simulated mobile robot many parameters need to be changed at
the start of each new simulation, and to avoid having to recompile the program each time,
data entry panels were designed. Figure 3.6 shows the simulation parameters entry panel.

30

Mobile Robot Simulator

File Robot; Simulator Display

mmm.
mmm

mmmm
mmmm
mmmm

mmmm

m m m m

m m m mm
mm

m i sii i m m m m
l i i i i i i S
i ; ; i : Wi m 1 m Si m 1 m m P m 1 m m m m is is 1 Si M m • i ; m i i 1 si m M m. m M i i 1

m m m m

1
H m M m m H m m m H m m m M
• • m • m

>:;*• m m. m • 4;* • ; i
•

1 m 1 i m m i
Si: m-m Si m m m i ; i 1? m m 55; is

v.-.-.

mmmm
mmmm
mmmm
mmmm
mmmm
mmmm
mmmm
mmmm
mmmm
i E I
•y^-

m m m m

m 1 ^ 5": mm is
m Mr i mm 1 m ml si

MM ^-•

Simulation Time : 51 Clear)

Figure 3.3: The mobile robot simulation window

31

Display

SSSSiSi

mmmi
mmmi

^'''x- '••

'vSS ^vvs vw>
sSw sSSs sSss <

SSI
SSS!
11: ii?
J- .'>i.

mmmi

mmmmi
mmmmi
mmmmi i i i i

^ ^ ^ ^ ^ ^ mmmmwim mmmmmm

mmmm

l i i
mmmm

i i i t i i mmmmmm

mm
m m
m i
mm
mm
mm
m m
mm

mmmmmm
mmmmmm

i i*

S i

mmmmmm

mmm
mm

mm
m m

mm
mm
mm
mm
w. w.
mmm
mmm
m 1 1

m.mrmmmmm
mmmmmmm

mmmm
mmmm

mmmmmmmm
mmmmmmmm

mmm

mmmmmmmmmmmmmmmw mmmmmmmmmmmmmmmmmmm
Objects : Links ; Data ; Vectors

Figure 3.4: The data display window

32

g

Figure 3.5: Three dimensional network display

Examples of different forms of data entry can be seen here. The first is a choice of simulation
output to be fed to the robot controller; random environmental sampling, or that produced
by the robot. The other scalar parameters can also be easily changed. There is a similar
data entry panel for the robot's control parameters, which is not shown.

The above describes the functionality of the graphical user interface, which is one ele­
ment of the simulator. Described below are the methods used to simulate the actions and
interactions of the robot with its environment.

3.4 The Robot Simulation Software

The robot simulation software can be described in terms of three main elements. These
are the robot controller, the robot chassis, and the environment which the robot is situated
within. The interactions of these components can be seen from figure 3.7. As with a real
mobile robot the control algorithms would be executed in software but here, all the physical
systems must be simulated in software.

The robot controller is the control architecture of the robot, and takes values from the
sensors and returns an actuator demand. In order to more accurately mimic real systems the

33

Simulator

Robot

6 L

I

Simulation Parameters

Output Source Random

Simulation Run Time:

Display Refresh Time:

Odometry Noise (%):

Sensor Noise (%): 0

0

Environmental Width Cm): 5j

Defaul t) Apply ji Cancel)

Figure 3.6: Simulation parameters entry panel

Sensor

Physical Systems Simulation

Present
Values 1 Location

The Robot 1 The Robot
The Environment The Robot

1
The Robot

The Environment
Controller 1 Chassis

Actuator i Motion
Demands

Figure 3.7: The main simulation elements

34

sensor values are periodically sampled whilst the actuator demands are updated. The rate
at which this can be performed can be changed in the simulations, but was initially selected
to be at half second intervals. The control architecture is described in greater detail in 3.6.1.

The rest of the robot simulation software attempts to reproduce the responses which
a control architecture would receive if mounted on a real robot. To achieve this both the
robot chassis, and the robot's interaction with its environment must be modelled. Therefore,
the general aspects of the robot's mechanical design must be determined so that it may be
modelled to an acceptable level of accuracy. Similarly the type of sensory systems must
be defined before software models can be constructed and the environment with which the
simulated robot interacts through its mechanics and sensors must also be defined. These
methods by which these systems have been constructed are more clearly stated in the next
section.

3.5 The Physical Systems Simulation

Before the physical systems can be simulated, the general properties of the robot mechanics
have to be defined. The entire mechanical structures need not be completely defined at this
stage, just the general modes of interaction of the sensors and the drive mechanisms.

3.5.1 The Robot's Sensor Systems

The sensory systems that were selected, as might be expected, are task dependent. As the
defined task is that of map building and navigation the sensors that are most applicable are
concerned with the measurement of spatial distance, and of distance travelled.

For the measurement of open distances, the time of flight (TOF) of a short pulse of energy
from the sensor to target and back again is the most commonly used method. Although pulses
of light can be used to gain fast data with a high angular resolution, the high speed electronics
make it prohibitively expensive. Cheaper and more widely available ultrasonic devices are
available which offer realistic range measurement systems.

Odometry or dead reckoning are terms used to describe the measurement of distance
travelled by a wheeled vehicle. This is achieved by the integration of all the robot's movements
as monitored by its wheel encoders. This type of sensor system is cost effective and widely
used.

3.5.2 The Robot's Drive Mechanism

Before the drive mechanisms can be modelled, the best drive mechanism for this application
must be selected. There are a range of possible configurations which have been used in

35

mobile robotics application, however the most suitable is problem specific. Impor tant factors

are manoeuvrabil i ty, design complexity, and wheel slippage, causing errors i n the odometric

systems.

The most common f o r m of mobile vehicle is of course the car. This drive configuration is

termed Ackerman steering where the f ront wheels must point at certain angles in a t u r n to

avoid wheel slip. As w i t h the tricycle drive system where only one wheel at the f ront is used

for steering, b o t h these systems cannot t u r n on the spot. W i t h this inabil i ty, such systems

would require control solutions outside the intended scope of this work and hence neither

were used.

, Dif ferent ia l drive systems have two wheels mounted on either side of a robot p la t form

w i t h one or two castors for stability. The advantages of such a simple design axe the ease

of construction and relative low weight. The main disadvantage for this application is that

the p l a t f o r m changes its orientation dependent on its direction of travel. This would increase

the complexity of the sensory systems which would be required for correction. Also the

drive wheels can be subject to wheel slippage, leading to errors i n the moni tor ing of the

robot 's posit ion. Tracked vehicles, such as those used by mih ta ry tanks, are essentially

similar . A l though they per form well over a range of surfaces, they rely on skid steering which

inherently leads to large errors i n the monitor ing of the robot's position.

The synchro-drive configuration is based upon the idea that al l the wheels can be syn­

chronously pointed i n any angular direction and also rotated to provide propulsion. As only

the wheels are angularly rotated, the main body of the robot stays at a f ixed angle. Therefore

the angle of the sensory systems mounted on the robot are independent of the robot's direc­

t i o n of travel. D u r i n g the robot's motion, because a l l the wheels apply the same force there

is reduced slippage and improved dead reckoning accuracy. Al though this system is more

mechanically complex, i t provides many advantages which lead to its selection. The most

preferable p lan view shape of the robot is circular, as its mobi l i ty is constant, irrespective of

orientat ion.

3.5.3 T h e P h y s i c a l Systems and their Simulat ion Models

The pre l iminary physical design is of a circular plan view robot w i t h a number of T O F

distance measures equidistantly mounted around its periphery. The number of these sensors

is a compromise between f u l l angular coverage against f i r i ng rate, as each sensor requires a

certain interval to be able to detect its own ultrasonic pulse. To a t ta in complete angular

coverage requires 24 sensors but this would require too much t ime for a f u l l sample, therefore

i n i t i a l l y only 8 sensors were used. Figure 3.8 shows the concatenated sensor vector that is

regularly sampled by the robot controller. The simulation model must produce a vector of the

eight range distances (5 o , . . . , ^ 7) combined w i t h the odometric posit ion estimate {Ox, Oy).

36

Plan View of Robot

Sensor Vector =

Figure 3.8: The robot's sensor vector

I n order to model the motor drive system two components were considered. Fi rs t ly i t was

assumed tha t a demand angle could be issued to orientate the wheels and that this motion

would be instantaneous. Even though this is unrealistic, the control algorithms do not make

rap id t u rn ing movements, and i t was therefore acceptable.

The forward propulsion was expected to be developed by a small D C motor which could be

easily modelled as a voltage controlled device. Assuming there was no slip between the wheels

and the ground, the to ta l force (F) applied by the robot on the floor could be determined

as shown i n equation 3.1 as derived in appendix A . This force changes dependent on the

supplied voltage Vdc and the forward velocity of the robot (u). The constants are the gear

t r a i n reduction (G) , a constant that includes the number of poles and the number of turns in

each wind ing (K) , the flux per pole ($) , the armature resistance (Ra) and the robot's wheel

radius (r) . These constants can be calculated f r o m the motor's specifications along w i t h the

pre l iminary gear t r a i n assembly.

^ G K $ / , G K $
(3.1)

A motor w i t h an integral gearbox was chosen so that w i t h a wheel radius of 5 cm and a

1:1 gear t r a in the max imum velocity of the simulated robot would be just above 20 cm/sec.

This velocity would correspond to the f u l l 12 volts being applied to the motor (Vdc). A

drive motor power factor can be defined as the appUed terminal voltage (Vdc) divided by

12. Therefore the actuator demands f r o m the robot controller are simply an angle and drive

motor power factor.

To calculate a l l the values to be used i n the equation 3.1 the specifications of the motor

combined w i t h gearbox were taken f r o m the manufacture's data. I t is 12 volt motor w i t h a

37

m a x i m u m continuous operating current of 0.493 amps producing 600 m N m of torque. I t has

an integral gearbox of 100:1 w i t h an angular velocity of 40 r .p .m. at 12 volts. Its terminal

resistance is stated at 10 ohms. The motor has permanent magnets and therefore K $ is

constant and can be deduced f r o m the motor's standard operating conditions. The geared

down torque Tg is related to the rotors torque T by: Tg = T G . Where T can be described:

T = K $ I a . Hence subst i tut ing 0.493 amps for la and 0.6 for Tg into equation 3.2 we get

K # = 0.01217. Hence the to ta l force applied by the robot on the floor can be re -wr i t t en as

i n equation 3.3.

K $ = ^ (3.2)

F = 2.4341Vdc - 59.247U (3.3)

K n o w i n g the direction i n which the wheels are point ing and also the force that is being

applied, the dynamics of mot ion are computed using Newton's Second Law (F = ma) , where

the mass (m) was assumed to be 3 K g . From the acceleration (a), the velocity and position

of the robot can be computed at any instance. I n the simulation, i f the robot collides w i t h

any objects its velocity is zeroed.

The environment is stored as a two dimensional occupancy gr id w i t h i n another file, so

tha t alterations can be easily made. This informat ion is used along w i t h the robot's position

to determine the values of the ultrasonic distance measures, at the regular sampling times.

I f required, whi te noise can be added to the sensor distance values to a t ta in a greater model

realism. The s imulat ion software possesses the exact posit ion of the robot w i t h i n the environ­

ment, however, this is not used for supplying the odometric posit ion to the robot controller.

Instead there axe a separate posit ion estimate which is constantly updated and can be made

subject to accumulative errors i f required.

3.6 The Robot Controller

Described above are the physical systems and their simulation models, by which the robot

controller can sample a value of the sensors at constant intervals and update a demand action

to be undertaken by the robot i n the next t ime step. The general approach to the control

architecture and the various forms of mapping are described i n more detail below.

3.6.1 T h e Control ler Archi tec ture

Before examining the ind iv idua l components which are required to bu i ld up the control

system, the overall control strategy must be more clearly defined. This framework must

38

Sequential Architecture Concurrent Architecture

Sensors
•—

c c 0IS1

Pi

po _C o

ns
or

c E
x

ns
or

S S
o H

2

^ Actuators

o
o

Sensors

Navigation

Exploration

Obstacle Avoidance

Random Wander

Actuators
3»-

Figure 3.9: Sequential and concurrent architectures

provide simple solutions which are computationally easy to implement, as many of the early

mobile robots had large computat ional burdens and suffered slow performance. The system

selected must be flexible enough so that different algorithms can be implemented and tested

against each other. This would also allow any algori thm to be incrementally bu i ld up in

sophistication, w i thou t having to design a new interface w i t h the sensors and actuators.

Such a system was f i rs t described by Brooks [38] who called his control framework a

subsumption architecture. He recognised that the robots which were able to perform any

useful tasks at that t ime were designed to be based on the ideas of the A r t i f i c i a l Intelligence

community. These control systems take the sensory input and perform sequential operations

on i t . The main drawback of this approach is the large amount of computational effort that is

required for each motor control output . A l l the sensor informat ion must be fused together and

used i n conjunct ion w i t h the robot's world model before any response can be determined.

Therefore, these systems can be slow i n their actions. However, other robot experiments

suggested that a faster system response could be obtained by having concurrently operating

systems that produce reactive reflexes.

Brooks combined these different methods by a t tempting to decompose the tasks that

the robot performs so that they could be r u n concurrently. This means that each of the

concurrently running layers, or behaviours, cannot be held up i n its processing by the other

systems. Not only does this allow fast reflex responses by lower levels but allows for the

complexity of the system to be incrementally added. Figure 3.9 shows the architectures of

b o t h a sequential and a concurrent control system.

The impor tan t aspect of the concurrent design is the way i n which the actions that are

produced by each of the layers are combined into one unified control output . Brooks's solution

to this problem was to priorit ise the importance of each of the layers, then the actions of the

higher layers would simply override (or subsume and heiice the nanie) the responses of the

lower layers. I n essence, the problems of sensor fusion have been dispensed w i t h at the cost

of requir ing some f o r m of actuator output fusion.

39

Sampled
Sensor
Values

Mapping Module

A v o i d Behaviour

Wander Behaviour
Actuator

^ Demand
Vector

Figure 3.10: The control structure

I t is however, not obvious how subsumption could scale up directly to incorporate more

complex layers. I n certain circumstances i t might be to the robot's disadvantage for the

higher layers to override some of the reflex actions, and in such a case the upper layer would

either have to simulate the reflex, or take informat ion f r o m the lower levels. This wpuld

cause unnecessary computat ion or the invalidation of the dis t inct ion between the layers, i n

the above cases respectively. There are some problems w i t h the system when i t is scaled

up, but i t does off'er a system that allows fast responses to control inputs and which can be

incrementally bu i l t up i n complexity. This is why i t was chosen for the control architecture.

Below the design chosen for the simulations is described in more detail.

Figure 3.10 shows the controller architecture. The sampled sensor values f o r m the inputs

to the three modules. The avoid and the wander behaviours produce vectors which are used

to f o r m an actuator demand vector. The mapping module i n the figure is passive and can

only record in format ion f r o m the sensors. Al though, i t might be useful to get feedback f r o m

the mapped data to aid i n the directing of the robot, i n the i n i t i a l stages of testing this was

avoided. This allowed more accurate assessment of different control structures on the same

repeatable paths, because when feedback is used the paths are no longer comparable. I n the

more advanced work, which is reported i n Chapter 5, the network layer takes a non passive

role and more direct ly controls the robot's output .

The wander behaviour produces a vector output which attempts to direct the robot away

f r o m its present path . This is achieved by monitor ing the angular direction of travel of the

robot, and then ou tpu t t i ng a vector which is an angular deviation away f r o m this. The size

of the deviat ion is random, but is w i t h i n a specified tolerance. I t was found empirically that

too large a value of this tolerance caused the robot to move slowly and erratically throughout

the environment. Whereas too small a value forced the robot's pa th to be near straight. A

tolerance of 36 degrees i n either direction gave good results.

The avoid layer produces an output vector based on the ultrasonic range informat ion

which at tempts to drive the robot into areas of perceived open space. For each of the range

40

sensors, a repulsive vector is calculated, and then al l the vectors are then added together.

The vector is inversely proport ional to the distance recorded by the sensor, and its angle is

diametr ical ly opposite to the direction which the sensor faces. Therefore when the robot is

close to objects, large repulsive forces are created which direct the robot away.

The vectors are mul t ip l i ed be gains Ki and K2 for the wander and avoid behaviours

respectively. This allows the effects of bo th behaviours to be balanced to improve the robot

explorative path . The vectors can then be simply added together to produce a combined

control response.

3.6.2 T h e Mapping Module

The fundamenta l a im of the work is to design a robot which moves around unexplored areas

bu i ld ing up maps for navigational purposes. I n order to achieve this the robot must be able

to know where i t is, where i t wants to go, and finally work out some path to this destination.

Such a robot requires the abi l i ty to estimate its own posit ion w i t h respect to the informat ion

tha t i t has already gathered. Borenstein [39] categorises the problem into two sets of part ial

solutions, that of relative and absolute positioning methods.

Odometry is an example of a relative positioning method which provides distance infor­

ma t ion f r o m the wheel encoders. This system is self-contained and provides good short term

data, however the error constantly increases unless an independent reference is used.

A n absolute posit ion measurement system produces informat ion not relative to its own

state, but to that of another system. The more simple methods require the environment to

be modif ied , however the more challenging problems arise when no changes are allowed.

The methods of Active Beacons and Artificial Landmark Recognition bo th use a modified

environment. I n the first method, three or more transmitters are used for t r iangulat ion by

the robot . These can be l ight or radio sources placed at known locations. When passive

indicators are used instead, the problein becomes that of ar t i f ic ia l landmark recognition.

Examples of landmarks are bar-codes, but other objects can be used.

Natural landmark Recognition triangulates f r o m distinctive features. The environment

is not changed, but the positions of these landmarks must be known i n advance. I n Model

Matching the current sensor informat ion is compared to a wor ld model, or map. I f a match

can be found, then a positional estimate can be made. The map matching domain covers

the current research areas of updat ing previous maps i n dynamic environments and the

development of new maps to cover unexplored areas.

O f the absolute posit ioning methods, only the map matching technique can be employed

for map bui ld ing i n unknown environments. However, this can be used i n conjunction w i t h ,

relative posi t ioning methods, par t icular ly w i t h that of odometry to improve accuracy. The

ma in advantage of map matching is its use of natural ly occurring structure. The production

\
41 -

of maps also enables path planning and navigation through environments which have local

m i n i m a traps i n which many reactive strategies fa i l . Also the robot can learn and improve

its posi t ioning accuracy by exploration. The disadvantages are that there must be enough

stat ionary features for the robot to be able to perform proper map matching. The level

of mapping detail is dependent on the tasks that are expected to be achieved. Also this

method presents impor tan t sensory and computational burdens. A t the present t ime map

based posi t ioning is at an early stage of development, restricted to laboratories and simple

environments.

Central to map based posit ioning is the idea of some f o r m of internal representation of

the wor ld . There are two major types of representation that are commonly used, and these

are Geometrical and Topological maps. Geometrical maps at tempt to posit ion objects w i t h i n

geometric relationships to one another. Examples of such are occupancy maps, line maps

and polygon maps; where a l l the features that are recorded are positioned w i t h respect to

one a rb i t ra ry frame of reference. The major d i f f icu l ty arises f r o m at tempting to match local

maps w i t h the global map when there are error uncertainties i n position. The geometrical

description takes no account of these errors which can lead to false descriptions of posi­

t iona l relationships. I n order to reduce this problem the main focus becomes the attempted

e l imina t ion of errors at the sensing stage.

The topological approach builds up maps, not w i t h respect to a global frame of ref­

erence, but by describing the local relationships between observed features. This method

therefore produces a graph hke structure w i t h the nodes (the observed features) being hnked

together by edges (their localised relationships). These relationships can be achieved wi thout

posi t ional estimates, and unlike the geometrical approach, i t is possible to bu i ld up a topolog­

ical map wi thou t posit ional informat ion . This therefore eliminates the conflict between the

robot 's estimated posit ion and its posit ion w i t h i n the map. However, maps w i t h no positional

in fo rma t ion cannot be used for opt imal global path planning.

The inab i l i ty of geometric mapping explici t ly to take into account the uncertainty of posi­

t iona l relations between nodes can be tolerated when the problem is constrained by a known

environmental map. However, i n an exploratory phase the posit ion of the robot can only be

estiniated, which makes the discovered relations between new features also estimates. I n such

situations any mapping technique that expl ic i t ly reflects this level of estimation, must have

a greater potent ia l for accurate mapping. I t is f r o m this observation that i t is suggested that

some f o r m of topological mapping must be superior for explorational knowledge acquisition.

3.7 Summary

Software s imulat ion is impor tant i n the prehminary design of a mobile robot. I t allows for

quick assessments of the basic elements early i n the design cycle. I t forces design consider-

'42

ations to be made as to the basic type and provisional construction which is best suited for

the task, and requires assessments of different sensor systems and drive mechanisms.

There is also a need i n the design process to have effective tools for data visualisation

which can only be adequately provided by a graphical user interface. However, such systems

must be complemented by good systems modelling to achieve reahstic results. The accuracy

of this model l ing cannot reproduce the true nature of real interactions and i t is therefore

envisaged that the developed controller designs must eventually be implemented on physical

robots.

A l t h o u g h there are many possibilities for control architectures, i t has been argued that

a layered control system is the most suitable framework for development. This solution

combines computat ional efficiency w i t h ease of development. The selection of architectures

and the determinat ion of a mapping module leads to an assessment of the fundamentals of

different mapping strategies. From this i t is suggested that topological forms of mapping

should be more f u l l y investigated.

Th i s chapter has examined the role of simulation and described bo th a software simulator

and out l ined the basic design of the mobile robot. However, a mapping technique which has

the advantages of topological maps is required. Such a strategy and the simulations of this

make up the body of the next chapter.

43

Chapter 4

Simulations of an Artificial Neural
Network Mapping Robot

4.1 Introduction

This Chapter examines the background to biological as well as ar t i f ic ia l neural networks

which possess mapping strategies. Based on this, a neural network based solution for use as a

mapping module is then described and tested. Problems associated w i t h this implementation

are examined and comparative tests are carried out on two modifications. Conclusions of

this work, to make the neural network solution viable for use as a mapping module, are then

presented.

4.2 Natural and Artificial Neural Networks for Mapping

A f t e r man, the most effective autonomous systems which depend upon their own abilities to

explore, map and navigate are l iv ing organisms. They provide proof that such funct ional i ty

is possible, bu t how are these actions seemingly so easily achieved? Much research has been

carried out i n Biology i n an at tempt to answer this question. One particular study is reported

here which examines rat navigation by modell ing neurological systems. Rats were chosen,

as they can exhibi t fast learning of environments, and can f o r m sub-opt imal paths towards

goals.

Burgess et al. [40] in i t i a l ly detail the current th ink ing in neurophysiology as to how map­

ping in fo rmat ion is stored in a rat's brain. Many researchers beheve that a structure called

the hippocampus is involved w i t h a rat's abi l i ty to locate itself. This structure is composed

o f many cells which only fire when the rat is i n a particular por t ion of its environment. These

place cells, w i t h their associated firing fields, densely cover the environment and are strongly

infiuenced by sensory cues. They allow the rat to distinguish between different locations and

. 44

have been shown to be bu i l t up rapidly when a rat enters a new environment.

I t appears f r o m this study that the rat's nervous system is using localisation based on

some f o r m of phenomenological representation. This is similar to a topological map which

does not consist of place cells, but localised areas of recognisable features. The implicat ion

is tha t a rat 's mapping systems are far closer to topological rather than geometrical maps.

Burgess et al. proceeds to describe a neurological model for navigation which is then used

to simulate the movements of a rat. The model is composed of several layers of cells, the first

being a set of cells which take informat ion f r o m cues i n the environment. The next layer is

composed of the place cells which f o r m their firing fields f r o m the layer below. The cells i n

the final layer combine the firings of many place cells to provide larger firing fields. Goals

and obstacles can be associated w i t h these larger firing fields which can then be used for

navigation. The pr imary a im of this work is to validate the proposed neurological model as

opposed to achieving the best navigational strategies. However, i t does provide strong clues

as to how rats achieve exploration and navigation.

Zimmer [41] combines the ideas of a topological map w i t h an ar t i f ic ia l neural network

method of bu i ld ing the map. He terms his map a 'Quali tat ive Topological Map ' which is a

graph style topological map w i t h positional informat ion associated w i t h each node. Zimmer

recognised tha t a topological map is very similar to some forms of self organising maps, which

pe r fo rm unsupervised learning. I n particular a variat ion called the Growing Cell Structure,

which can increase its mapping size by introducing new nodes into its topology. This was to

f o r m the basis of the robot's automatic mapping generation system.

The type of robot problem that Zimmer describes is the exploration of a controlled en­

vironment based on using simple passive sensors. The sensors that the robot uses are 24

peripheral ly mounted l ight sensors, 24 touch sensors and an odometric posit ion estimate.

The environment included obstacles and l ight sources, similar to studio spotlights, to provide

dist inctive i l lumina t ion . I n bo th simulation and on a real robot Zimmer showed that the

robot could produce topological maps of the environment subject to the correct selection of

network parameters.

The ma in premise of this work is that an environment can be categorised on the basis of

l ight and dark regions. Al though , these make for simple sensory systems, a particular set of

l igh t ing schemes is not a fixed property of an environment. I t is also unrealistic to introduce

direct ional l ight ing sources which allow the al l environmental locations unique sensor vectors.

The combination of b o t h a topological mapping framework and that of a self organising

a r t i f i c i a l neural network require more detailed examination. However, such work must be

undertaken using more realistic sensory systems operating in more realistic environments,

where the problems of non unique location vectors, are present. The next section describes

the growing cell structure a lgor i thm i n greater detail. This is then followed by simulations in

which active sensors, and environments w i t h non-unique location vectors are incorporated.

45

4.3 Description of the Growing Cell Structure Algorithm

The method tested out i n this section is based on a graph structure i n which the nodes rep­

resent points of data storage about a localised regions and the links between them indicate

neighbouring regions. The algorithms which are used to bu i ld up the maps are based on

the work of Bernd Fritzke [42]. Fritzke describes a self organising network for unsupervised

learning, which he calls a Growing Cell Structure (GCS). The a lgor i thm is designed to con­

struct a suitable network structure and size, recording the statistical properties of an input

data set. This is achieved by inserting (growing) and sometimes removing nodes (cells) i n a

network. A l though this method was originally designed to map a given set of data, the aim

is to use i t to b u i l d up internal data maps of an environment dur ing active exploration. For

the rest of this section the original a lgor i thm w i l l be discussed, followed in the next section

by its adaptat ion to be used in the mobile robot domain.

The Growing Cell Structure is based on nodes and connections between nodes. The nodes

store an n t h dimensional vector along w i t h informat ion which is used in the growing phase of

s t ruc tura l development, also each node keeps track of its immediate topological neighbours.

As opposed to the Kohonen network, the structure is made up of k dimensional simplexes

(when k = 2 this produces a tr iangular mesh). Simplexes were chosen for their minimal

complexi ty and tha t the number of connections increases linearly w i t h A;. However, as the

mobile robot operates i n a two dimensional environment only networks of two dimensional

simplexes (meshes composed of triangles) w i l l be considered.

Tnew=rold{l-Ol) (4.1)

Each of the cell's vector weights can be considered as the posit ion of the node in the input

space (as defined by the number of dimensions of the cell's vector weights). The algori thm

at tempts to place nodes i n this space according to the presentation of informat ion to the

network, w i t h topologically close neighbours having similar signals being mapped to them.

To be able to do this, each node stores informat ion apart f r o m the vector weights. A l l cells

have a counter value labelled T , which allows the statistical na tme of the input data set to

be computed. Each t ime a node is selected for adaptation the signal counter is incremented

whi ls t a l l the other values of r are decreased (see equation 4.1) and these values are normalised

to yield the relative signal frequency or h. The reason that a l l non selected cells have their

values of r decreased is that over t ime the cells move around i n the input space, which affects

the accuracy of the value of telative signal frequency of that region. This region that the

cell occupies (the region of the input space which maps to this cell) is defined as the Voroni

Region and has an associated volume (Fg). Figure 4.1 shows the Voroni regions of a 2D

network mapped onto a 2D input space. This spl i t t ing up of the input space into subregions

is called a Voroni tessellation, and although in this example the Voroni tessellation is i n two

46

dimensions, i n general they are n dimensional hyper-volumes, where n is the dimension of

the inpu t space.

Figure 4.1: Voroni regions formed by a three node graph

The GCS in i t i a l l y starts w i t h a three cell structure w i t h the input vectors randomly

ini t ia l ised over the domain of the input space and the values of r set to zero. The network

is t ra ined by presenting vectors f r o m the input data stream and then adapting the network

for each. This is achieved by locating the best matching uni t (bmu), which has the min imum

Euclidean distance to the presented vector. The weight vector of the bmu is adapted towards

the inpu t t ed vector by an amount £(,. The topological neighbours of this cell (as denoted by

the l inks to other cells) are then adapted towards the input vector by an amount e„. The

value of et is selected to be larger than that of e„ so that the influence of a data presentation

is d is t r ibuted over a larger region of the network. Figure 4.2 graphically shows the adaptation

of one of the cells and the movements of bo th i t and its neighbours in the input space. The

adaptat ion is completed when the values for T are updated.

+

A
S7

Network Before Adaption Network After One Adaption

Figure 4.2: Adapta t ion of a node

W i t h each adaptation the network moves f r o m the in i t i a l random positions to a dynamic

equ i l ib r ium based on the d is t r ibu t ion of the input data. Following a constant number of

adaptations (A), the network is then 'grown' by one cell being inserted. Where the node is

inserted depends on the desired structure of the network. The algori thm described below

at tempts to cover the input space w i t h a nodal density representative of the statistical prop-

. 47

erties of the inpu t data stream. The insertion process begins by selecting the node w i t h the

highest computed relative signal frequency (cell q). The topological neighbours of cell q are

then searched to find the one w i t h the largest Euclidean distance i n the input space, and this

is called cell f. The new node (cell r) to be created is then inserted between these two nodes

(each element i n cell r's vector weight is initialised to the average value of the respective

elements i n cells q and f) . Then the new cell is l inked up topologically to cells common to

b o t h q and f so that the network remains consistent as a mesh of simplexes. Final ly the

values of T are redistr ibuted to reflect the density of informat ion that each node would have

received were i t to have been in its new location f r o m the start. This involves the calculation

of the density of presentation of input data in the input space and hence uses the values of

Voroni field stored by each of the nodes. The insertion process is shown i n figure 4.3.

Cellq

Cel l f

Key- Values ofTau

Figure 4.3: Insertion of a new node

The process of network growth can be seen in figure 4.4. The four diagrams show the

progressive growth of a two dimensional network onto a two dimensional data set. The

nodes are shown as black dots w i t h their topological links displayed between them. Their

positions are a graphical representation of their respective weight values, the input data set

is indicated by the whi te areas f r o m which the input data is taken randomly. The network

at an early stage forms an approximation of the data set and w i t h repeated t ra in ing i t forms

i n increasingly matched mapping of the data.

The GCS a lgor i thm is based around a certain number of repeated adaptations followed

by insert ion of a cell. The to ta l cycle is then repeated un t i l a certain density of nodes has

been at tained. However, i n some situations node insertion by itself is insufficient correctly

to map an input data source. A prime instance is when the input data is split into separate

regions of positive probabi l i ty density. I n such a case, nodes can be placed in locations of zero

probabi l i ty . This is mainly caused because the network at each stage in the growth process

represents the data set at the level of def ini t ion allowable by a l imi ted number of cells. Hence

at the start of the growth process, nodes can be inserted i n zero probabi l i ty density regions

between established nodes. These can stay in those regions and corrupt the val idi ty of the

48

Display

mmmmmmmmmmm mmwmwmmmwmmm

a) 0 Adaptions
Display

Display

1 1 1.

-
\ > \

MM MM

b) 100 Adaptions
Display

c) 1000 Adaptions d) 4000 Adaptions

Figure 4.4: Development of a 2D growing cell network to a 2D data set. The model param­
eters were A = 100, = 0.06, e„ - 0.002, a = 0.05

49

final network, and i t is therefore necessary to delete nodes i n this original GCS model. To

assess which nodes are potent ial ly i n regions of zero input probabi l i ty dis t r ibut ion, the node's

relative signal frequencies are monitored. These relative signal frequencies together w i t h the

voroni field sizes give an indicat ion of the probabi l i ty of input signals being mapped to a

par t icular node i n the network. When this probabil i ty drops below a pre-set threshold the

node is deleted.

W i t h respect to the desired properties of an internal data structure as discussed above

the growing cell a lgor i thm has many useful features. I t is computationally efficient w i t h the

ab i l i ty to increase or decrease i n bo th content and structure. The links between nodes indicate

s imi lar ly matched nodes or regions, and for a mobile robot this can be used to indicate the

topology of the environment and hence produce a map. There are however some assumptions

i n the design of the growing cell structure which do not hold for the mobile robot application

and these must be addressed.

4.4 The Growing Cell Structure used in the Mapping Module

I n the previous section the growing cell a lgori thm was described. The product ion of a good

qual i ty topological map was shown f r o m a stream of statistically independent samples. I n

this next section the GCS w i l l be trained f r o m data taken f r o m a mobile robot's sensors, i n

order to generate a topological map of the environment.

The first robot control system which was tested used the simplest f o r m of growing cell

s tructure network. This simply took the stream of data vectors f r o m the robot's sensors

and used them to construct a network. The output f r o m the control system d id not use any

in fo rmat ion which was held by the network, the control being produced by the combination

of two behaviours. I n effect the GCS simply monitored the movements of the robot i n the

environment and made adaptations to . learn this. As the control system makes no use of

the in fo rmat ion i n the map to direct the exploration, the control system must use a method

of moving w i t h i n the environment designed to maximise the area covered uniformly. The

par t icular control system used i n these tests included informat ion f r o m only the wander and

avoid layers and hence the paths could not be altered by using informat ion f r o m the bui l t up

map.

The growing cell structure starts w i t h three cells which have to be initialised w i t h data.

The cells were not init ial ised w i t h random vector weights but were instead located i n a circular

r ing around the robot prior to release i n the environment. The robot has no prior knowledge

of the environment or the vector values that those positions would possess, so the values for

in i t ia l i sa t ion were chosen to be those that the robot was detecting.

The first experiment was conducted i n a rectangular gr id , w i t h the robot moving w i t h

b o t h the wander and avoid behaviours i n operation. The sensors i n this experiment are being

50

M6lr'iie ICobot Simulator

fite Robot simulator Display

1?;

MM MM

i: - 1 } I
Simulatifln Time :OTO

a) Path of the robot

Display

b) Robot's network

Figure 4.5: Network growth of a mobile robot using simple GCS

Scimpled at half second intervals, so in total the network shown in figure 4.5b has received a

total of 1200 input vectors shown only once each. The £aint lines on this diagram emanate

firom each of the cells and graphically show the information stored at each node. The robot

shown in this diagreim has used eight range finder sensors, but similar results are obtainable

for other numbers of sensors. The path the robot has traversed in the environment is also

displayed in figmre 4.5a. It can be seen fi"om this path that the movement in the environment

covers the area well, even though it is non directed.

The growth of this network in combination with a robot's movements in the environ­

ment indicate a good matching both in cell values and network topology. At this stage of

experimentation, no noise affects have been included. The diagram shows that this form of

mapping could have potential as a mobile robot's internal data structure.

The next experiment compeires the growth of a network moimted on the mobile robot,

with that obtained by randomly sampling data in the environment, to assess the differences

in the growth jind resultant output. Figure 4.6 shows the growth of the network at the same

stages of adaptation as was the network shown in figure 4.4, as the sampling rate in the test

was every half a second. The robots shown, possessed four range sensors, each without noise

disturbance, cmd drove under the control system as in the prior experiment.

It can be cleeirly seen from the diagr£im that the network growth is inferior to the network

which has had data randomly SEimpled over the whole region. If the growth in the network

is compared at the time interval of 500 seconds (corresponding to 1000 adaptations), the

network of figure 4.4 can be seen to be more fully developed and with a more even topology.

In figure 4.6c the left hand side of the network is showing signs of twisting but the right hand

portion is growing in a more even manner. These disturbances persist into the final network

structure at time 2000 seconds (d), with the final topology showing signs of both good and

51

A

a) 0 Seconds
Display

c) 500 Seconds

Disptay

b) 50 Seconds
Display

d) 2000 Seconds

Figure 4.6: Development of the GCS during exploration of the environment. The model
parameters were A = 100, £5 = 0.06, c„ = 0.002, a = 0.05

52

bad areas of development. Using the described control system, these results are typical of an

average run, however the diSerence between networks is diverse. The diversity can be seen

when the robot is forced to proceed down different trajectories (seeding different values of

the wamder behaviour's random number generator).

It is siiggested that two differences that lead to the network's misshape are the corre­

lation in the input data stream, asid the inabiUty for a robot with mass to cover the full

cirea (producing a less rich data set). This would suggest that a suitable solution might be

developed by reducing the correlation of the received data stream, or by using feedback from

the network to force the path to have an inherently lower correlation value.

Figure 4.7: Problem mapping

One other major problem for the GCS is its handling of fragmented shapes. Figure 4.7

shows the network growth over a complex shape. It can be seen that there is a tendency for

the network to develop towcird the centre of the distribution, and this results in nodes and

connections over the central object. As the robot moves, the network does not have enough

nodes to adequately record the information, which leads to mapping fEiiline. This is because

the development of the network is only linked to the number of samples it has been trained

with, not to the area of the environment that has been covered.

4.5 Problems with the Growing Cell Structure for Mapping

Simulations using a mobile robot as a data source for the production of growing cell structures

have shown effects which have not be reported in the original paper by Fritzke [42]. Twisting

and distortion of the network have been observed and it is hypothesised that this is a direct

result of the correlation in the input data stream from which the network has been trained.

53

The following experimentation tests out this hypothesis.

The growing cell structure which has been discussed by Pritzke, takes an unknown input

data stream and models this through unsupervised learning. The algorithm creates a topo­

logical map which clusters data with similar characteristics onto topologically close regions

on the map. Pritzke extensively discusses the algorithm for the creation of the mapping,

and shows a few examples of the network's ability to fit an input data source. One of the

features of the network's growth is its ability to record the probability density of the input

data stream in nodal density, so that after training, each node has an equal probability of

being selected. However, although the network should record the probability distribution, i t

is assumed that successive signals are independent of each other.

I f the growing cell structure is to be used to map information from a mobile robot, then

the particular statistical properties that this type of data source produces must be considered

with respect to the algorithm. The mobile robot takes in data from its sensors in a periodic

fashion (dependent on the number of sensors, this could be expected to take around half a

second). We can treat this as an n dimensional vector, having components from the distance

measures and the odometric calculations. Each successive data vector from the robot will

therefore be similar to the last vector and hence the data is sequentially correlated.

The correlation of the input data stream from the mobile robot in an environment can

be considered to be the combination of two effects. Firstly, the robot's motion within the

environment dictates the lower bound on the correlation of the input data, i f i t is considered

over the whole of the robot's run. I f the robot moves slowly from one location to the next

wi th respect to the environmental size, the sequential correlation in the data stream will be

far greater than i f the robot covers a larger area in the same number of samples. Hence,

the amount of correlation from different control strategies wil l vary significantly. The second

factor that determines the correlation of the data in the input stream is the order in which

the data is presented to the network. I f we have the ful l run of data from the mobile robot

then the order of presentation of data can be altered to minimise the correlation of the data

stream. In practice i t would be computationally expensive to store all observed data, but by

storing only recent data i t would be possible to use this to reduce the correlation of the data.

Our prime interest is to form an even topological map in the two dimensions of x and y.

I t is proposed that the efi'ects of input data which is sequentially similar wi l l be investigated,

and suitable methods to combat this problem wil l be examined. I t is important to investigate

a suitable method to assess this correlation.

4.5.1 Measur ing Corre la t ion of the Sensor D a t a

These experiments are based on the belief that network growth in a growing cell structure

can be affected by the sequence of information in the input data stream. I t is therefore

54

important to produce some form of measure that usefully indicates the sequential similarity

of a sequence of data. This measure of self similarity is the opposite of the assessment of

randomness, and therefore methods which have been used to assess randomness will be used.

Initially a path in an environment wil l be chosen and then different measurements for

randomness wil l be then used to assess their suitability. Figure 4.8 is the path of the robot in

a rectangular environment showing as squares the points at which the robot took a sample

in the environment. This path produced three thousand data samples which would be used

to train a network, these can be used to assess the correlation in this data set.

Sequential Samples Taken by the Robot

Figure 4.8: The path of the robot with samphng points

Different methods of assessing the randomness of the sequence of data must be compared

on this example path. The measures of autocorrelation, auto-covariance and correlation

coefficient wi l l be compared. The parameters of x,y, and distance from the origin d will be

also compared for use.

RxxihM) = E{X{ti)X{t2)] (4.2)

I f we wish to examine the similarity of the data in the x direction we must consider the

sequence of values of x from the robot's path, or input data set X{t). The autocorrelation

of X{t), denoted by Rxx{h^t2) is the expected value of the product X{ti) x ^(^2) (equa­

tion 4.2). Given that from the path we have a sequence of samples, we can assess the average

correlation between data points at a specified separation. For larger values of separation,

there are less product pairs and the average becomes less reliable. I f instead of creating the

average by dividing the sum by the number of pairs, the sum is divided by the number of

samples, this biases the function. This biased autocorrelation function reduces the mislead-

55

ing correlation values produced at larger separations, where the average value becomes less

reliable.

The biased autocorrelation function was used on the sequence of x values from the path

(shown in figure 4.8) to produce the graph of figure 4.9 a). The x axis of the graph indicates

the value oit2-, t\ being zero. The robot's correlation values are shown against those produced

by a stream of random samples in the environment (created by the C language function

rand()). Figure 4.9 b) shows, two others paths in the same environment, and their values of

autocorrelation. The values of autocorrelation show large differences between the three paths

taken. I t appears at first that some of the robot paths have, on average, lower correlation

values than that of randomly distributed values. This is because the average values of x have

been assumed to be the same, but for a short robot run this is not necessarily true. Therefore,

different runs in the same environment can produce difi'ering plots of the autocorrelation

function. Hence the autocorrelation function is not a good comparative measure.

T 1 1 1 1 1 1 r -
robot path

random sampling •

0 100 200 300 400 500 600 70O 800 900 1000

Time shift (Samples)

a) Random and robot Correlations

1 1 I 1 I [1 1 I
paihl
paUi2
paOO -

t t 1 1

100 200 300 400 500 600 700 800 900 1000

Time shift (Samples)

b) Different robot paths

Figure 4.9: Comparison of unbiased autocorrelation function for data sequences

The auto-covariance function eliminates the average values of the data set so that a more

accurate comparisons can be made. The equation for calculating this function is shown in

equation 4.4, using the value of rnean computed from equation 4.3.

ixxit) = E{X{t)] (4.3)

Cxx[h,t2)=Rxx{tut2) - M t) y (4.4)

The paths that produced the autocorrelations\graphs in figure 4.9 were repeated and the

auto-covariances were calculated and recorded in figure 4.10. I t can be seen from the graph

that the mean values have been removed and the similarity between different paths can be

more accurately assessed. The shape of the graphs wil l be further discussed later.

56

20
robot path 1
robot path 2
robot path 3

300 400 500 600 700

Time shift (Samples)

900 1000

Figure 4.10: Unbiased autocovariance for three different robot paths of 3000 samples long

To check that the number of samples that were being used was not affecting the results,

differing run lengths were tested. Figure 4.11 shows the unbiased auto-covariance for four

run lengths, indicated by the number of samples taken. I t can be seen from these, that only

when the run length approached the value of the T maximum, were the results badly affected.

The function that has been discussed can be normalised so that different environments can

be compared on the same graph. This function is called the correlation coefficient and allows

for the comparison of data sets with differing variance values. Hence, this function can be

used to compare different correlation factors, and it can be used to compare factors between

different environments. This function is calculated from the equation 4.5. Figure 4.12 shows

a comparison between the a;,y,and total distance d correlation coefficients. Also displayed on

the same graph is data stream taken from a random sampling in the environment.

rxx{ti,t2) = Cxxih.h)
VCxx{tuh)Cxx{t2,t2)

(4.5)

To assess the reason for the nature of the graphs produced so far, from the correlation

methods, the production of the examined path must be understood. The path is typical of

those generated by the motion of the robot under the influence of two behaviours; those of

avoid and wander. The wander behaviour creates a force vector intended to produce a path

for the robot that would meander but not produce Brownian motion (Brownian motion tends

to move slowly from a given place). The wander behaviour in each instance produced a vector

that deviated uniformly randomly from the direction of travel by an amount 0.1 x T T . The

avoid behaviour simply produced a repulsive vector from the sensor range measures. These

behaviours combine to drive the robot backwards and forwards in the environment. I t is

57.

1000 samples
2000s(anples

-100 _1_ - 1 -

0 100 200 300 400 500 600 700 800 900 1000

Time shift (Samples)

Figure 4.11: Variation of autocovariance for different path lengths

this tendency for the robot to wander to and fro, that leads to the oscillating values for the

correlation. As the comparison between samples becomes further apart (greater values of r)

the correlation decreases. I t can also be seen that for random presentations of the data to

the network, the correlation values are near zero (the same training sets that produced good

topologies).

I t is hypothesised that the distortions which have been observed with the GCS algorithm

are a direct result of the correlated nature of the presented data. Therefore, reducing the

correlation of the input data stream should lead to better network growth and twist free

topologies.

The next section looks at two different methods that could be used for the reduction of

the correlation in the input data. The first is based on a shift register with a number of taps,

and the second re-presents the data randomly from a short term memory.

4.5.2 R e d u c t i o n of Corre lat ion using a Shift Register

This section looks at the potential benefits which could be gained from the use of a tapped

shift register for the de-correlation of the data stream presented to the GCS. Each time the

robot takes a complete sampling of its sensors, this is fed into the shift register (as shown in

figure 4.13 where each block represents a fu l l sample). At intervals of m samples apart, copies

of the data blocks are taken to be used to train the network. In effect this method produces

n times as many training vectors for the network. The method relies on the assumption that

after m samples the statistical dependence between samples is sufficiently small so that the

correlation does not interfere with itself.

58

Total distance (random sampling)
Total distance (robot path)

In the X axis (robot path)
In the y axis (robot path)

0 100 200 300 400 500 600 700 800 900 1000

Time shift (Samples)

Figure 4.12: Comparison of correlation of x,y and total distance measures

FIFO shift register
Data
Input

spacing m n Register Taps

Data presented to the network

Figure 4.13: Shift register used for de-correlating incoming data

The information which is used to adapt the network is a newly formed stream of data,

and it is the correlation between terms in this data stream that wil l be assessed. One factor

inherent with this design is the increase in the number of data samples that are created.

Although, this might imply a faster training time, the underlying data only covers the same

area of the environment. Therefore, for comparative tests the network lambda value should

be multiplied by n, so that the network creates the same number of nodes per unit time

independently of the number of taps.

To investigate the de-correlating effects of the shift register, the data produced by the

robot in a rectangular environment was used. This input data was passed through the shift

register, and subsequently analysed for correlation. For the first test, and to compare the

results with a theoretic analysis, a simple two tap register was used. This register was set to

have a delay of 200 samples between the taps. This means that for the first 200 samples out

of the shift register, there wil l only be data from the first tap. Figure 4.14 shows the input

59

Truncated input data sequence
Truncated two tap shift register output

100 150 200

Time shift (Samples)

300

Figure 4.14: Comparison of the input and output data from the two tap shift register

and output data's correlation between successive samples. Each data sequence was truncated

by the removal of the first 200 samples so as to test the validity of the method. I t can be

shown that for even values of shift r that the value of output correlation Vyy corresponds to

half the shift for the original sequence TXX (see equation 4.6). For the odd shift values the

value is more complex but is described in equation 4.7. This assumes that the sequence is

ergodic, and the sequence under analysis is sufficiently long.

The results from the figure 4.14 matches that which would be expected from the equations.

W i t h more taps the graph of the coefficient of correlation becomes more complex. Figure 4.15

shows the correlation produced by a 400 long shift register with ten taps.

ryy{T) = r^x (4.6)

(r) m 2 -f-
T + 1

m + l -
r + 1

(4.7)

Although this method breaks up the correlation function from being continuous, i t remains

unclear as to whether this produces better results for the development of network growth.

In some instances, the development of the growth has not been noticeably improved. For

example, using a ten tap 400 long shift register, the growth of the network in the environment

used in section 4.4, is not improved. The method's beneficial use at this stage of development

is inconsistent. This might well be attributable to the repeating nature of the correlations

against the shift T . Although it might spread out the correlations, there is no mechanism to

reduce them.

60

0.6

0.4

0.2 h

-0.2

-0.4

X ii

Ten tap 400 long shift register

50 100 150 200

Time shift (Samples)

250 300

Figure 4.15: Output correlation from a ten tap shift register

4,5.3 R e d u c t i o n of Corre lat ion using R a n d o m Sampling

This method uses a shift register style memory bank of length m. Data from the robot's

sensors is fed into the register at each sampling instance, and then a block is selected at

random to be the output (see figure 4.16). The block is selected by using a random operator

to give a uniform distribution of selection. This method unlike the one above, produces the

same number of output vectors as it takes in, and hence the correlation plots can be directly

compared.

Data bank size m
Data
Input

Uniformly distributed random selection

Data output to network

Figure 4.16: Random sampling used for de-correlating incoming data

Figure 4.17 shows the correlation produced by different memory lengths on the path of the

robot in a rectangular environment. This method shows a gradual decrease in the correlation

between data points as the separation between them increases. This becomes more marked as

the memory length increases. For a memory length of 200 samples the correlation becomes

constant for differing separations of T . This method appears in the experiments so far to

61

0.8

0.6

0.4

K 0.2

-0.2 h

-0.4

\ 1 1 1 I - 1

memory length= 1
memory length=40

r \ memory length= 100 -

r \ \
memory length=200

-

1 1 1 1 1

50 100 150 200

Time shift (Samples)

250 300

Figure 4.17: Output correlations for different sized memory banks

produce consistent de-correlation of the input data steam. The networks which have been

produced by this method similarly show a better growth than those without i t .

Figure 4.18 shows the development of a network using a 400 long memory store, for the

same length of time and in the same environment as used previously in section 4.4. Therefore,

the network can be directly compared to that produced without the memory store. I t can

be seen that the network has grown evenly and fitted itself to the underlying structure of

the enclosure. I t can be seen that the network is located mainly in the central regions of

the environment, unhke the network produced by random sampling. This results from the

robot's path within the space which more densely covers the central regions.

The results reported above seem to support the claim that network distortion is directly

a result of correlation within the input data stream. This method of using a memory and

random selection de-correlates the data and leads to a uniform network growth.

4.5.4 Conclus ions on the Growing C e l l Structure

The GCS was originally designed for unsupervised learning of high dimensional mappings

from a statistically independent data source. The beneficial factors for using the system are

its ability to cope with high dimensional data streams and the automatic generation of map

topologies. The problems which have been experienced come from the particular restrictions

that are inherent for a mobile robot. That is the highly correlated nature of the sequential

samples from the robot's sensors, and the requirement to have an accurate mapping in just

two of the dimensions.

The requirement for this accurate mapping conflicts with the mobility of the GCS nodes in

62

Figure 4.18: Development of a GCS structmre using a 400 long memory after 2000 seconds.
Network parameters were A = 100,66 = 0.04,e„ = 0.004,and a = 0.05

the input space. If the network is trained directly from the robot data the nodes are dragged

by local factors in the path, and the nodes and connections between them become imchecked.

For a reliable solution the problems which corrupt the GSC must be more accurately defined.

The GCS needs uncorrelated data over the full input domain. This is impossible for the

defined problem as the robot cannot know the bounds of its environment. Its environment

is defined as unknown at the start of the robot's nm. The use of the memory bank in the

last experiment, showed a method of reducing the correlation in the data stream for a given

envfronment. This reduction in the correlation produced a good map of the environment,

where previously only poor results had been obtained. However, for different paths and

more complex environments, the size of the memory and other parameters would need to be

changed. These parameters would have to be adaptive, cind a generic solution to this problem

has not been yet been developed. Such a method would require yet greater algorithmic

complexity.

Generic, and therefore reUable solutions to the problems appear to be far from being

developed, whilst the complexity of the system keeps increasing. It is now argued that

simpler methods can be iised to buUd up maps in static environments, overcoming many of

the difficulties involved in the use of the GCS algorithm.

4.6 Summary

This Chapter examined the problem of exploration of cin imknown static environment and

subsequent collision free navigation. The use of a software based simulator for comparative

63

testing in conjunction with a phenomenological (or free space) mapping control system has

been argued.

The growing cell structure neural network method has been examined in detail and its

use as the basis of a robot mapping system investigated. Although the network structure has

been shown to develop with statistically independent input data, poor network growth has

been observed when trained directly from a robot. More complex environments have been

shown to exasperate the problem, leading to failure to produce usable networks.

A corrective solution which uses de-correlation of the training data has been proposed,

and two potential methods have been experimentally tested. Only one of the methods is

shown to be useful in the de-correlation of the data. This method has then been used to

successfully train the network with data from the robot run.. However, the development of

this approach into a generic solution requires considerably more algorithmic complexity. I t is

therefore argued that a simpler method for the construction of the network is possible, which

wi l l be developed further in the following chapter.

64

Chapter 5

Simulations of a Novel Mapping
Method

5.1 Introduction

The Growing Cell Structure develops a network structure in stages by the insertion of nodes

between older nodes. The newly created nodes inherit, or interpolate the information pos­

sessed by the older nodes. This type of network growth is in effect interpolative growth, with

new nodes being created within the domain of the network. For such a network to develop

and cover larger areas in the input space, nodes must be dragged from their positions so that

new nodes can be formed behind them. Not only is this disadvantageous for the data stored

in the nodes, which must be re-adapted to match that of the new locations, but the validity

of the connections between the nodes becomes unchecked.

The novel method proposed attempts to overcome the difficulties described above by

employing extrapolative growth. Instead of new nodes being created within, forcing larger

numbers of nodes to be moved, old nodes wil l remain in their created positions. Therefore

with stationary nodes their informational content need not be changed and the connections

between them need not be reassessed. New nodes will be deposited by placing them outside

the network structure, with connections being made to existing nodes. This method relies

on the incoming data stream being sequentially correlated in {x,y), because the formation

of a new node and its connections are determined by a distance threshold. I f a data sample

was presented which was spatially distant then the links formed to i t would be erroneous,

which as previously discussed, is an important property of data produced by mobile robots.

Extrapolative methods would not have to retrain already covered space, and therefore present

a method which should converge on a solution in a shorter space of time. The novel approach

to be described is based on such an extrapolative method.

65

5.2 A Novel Topological Method for Mapping

The use of a graph representation of free space is still used in this method, offering the flex­

ibili ty and potential for data efficiency that a grid method cannot. Also the network that

wi l l be developed wil l be based upon a mesh of triangular elements linking up the nodes.

This has been chosen over a completely free structure so that a greater connectivity will be

produced, giving path finding algorithms using the network a richer potential for paths. The

structure and the data of the network is still that used in the previous GCS algorithm, re­

ceiving information from ultrasonic sensors mounted around the robot's periphery. Similarly

each node records its position relative to some datum (This is normally the start of the robot

run). The following description relates the growth of the network to the robot motions in

the environment.

Initially the robot is considered to have been placed in an unknown environment. Similarly

the robot has a network which is initialised with three nodes and also three connections

between them. The triangle of nodes is located so that its centre is where the robot starts

off, wi th each node being spaced evenly apart, forming an equilateral triangle. Other than

the positional data of the nodes, the information contained with respect to the sensors is

initialised to that of the robot's current values. This is the internal configuration of the robot

prior to each new training run.

The robot can then start moving around in its environment, continually taking odometric

readings and sensor values. The robot's position is used to find the nearest node in the

network. The sensor values of this node are updated by adapting them to the new sensor

values by an amount e. However, the position of this or any other node is not changed.

As the robot moves around in the new environment, its distance from the nearest node

is continually being monitored. When this value increases above a defined threshold delta, it

is presumed that the robot is in a new area of which its network should store information. A

new node is created, containing the values of the data the robot is detecting at that time. As

well as creating a new node, the connections that link i t up must also be formed. The network

being composed of triangles and nodes requires that each node must have two connections

to i t (forming the apex of the triangle). The first assumed connection is that to the nearest

node from which the distance exceeded the threshold delta. A third node must be selected

and this is chosen to be that neighbour of the near node which is closest to the new node.

A new triangular structure is created with the three selected nodes as vertices. The network

has now developed by one node and two connections (or one triangle), the distance delta is

zeroed and the robot moves on t i l l the distance increases above that of the threshold again.

This mechanism allows the robot's internal network of information to develop, covering the

robot's known area with nodes spaced out according to the delta parameter. The creation of

a node in the network and its relation to the environment are shown in figure 5.1.

66

Length Delta Robot's Path

Figure 5.1: The creation of a new node in the network

The above mechanism is a method for the spacing out of the nodes in the environment,

but does not explicitly connect all the nodes within that environment. The connections that

are developed between the nodes are a result of the insertion process, and do not necessarily

link up the nodes in a locaHsed region with the best topological structure. A search algorithm

which was efficient in covering the area with nodes would not necessarily create a good topo­

logical structure. I f the connections are to be used to abstractly store information regarding

the layout of the nodes and traversable paths between them, additional links must be made

to update the structure of the network.

Each link between the nodes represents the potential for the robot to move without

collision. Therefore, i f while the robot is moving around within the network and it passes

from one node to the next which are not linked, these are then linked up. For the following

description the previous node, and the present node that the robot is attached to will be

termed nodes A, and B respectively. For the insertion of a new connection between nodes A

and B a new triangle must also be introduced. The third node required to link in the triangle

was chosen to be a neighbour of the past node, so node C was chosen as the neighboin node of

A, which was closest to the node B. Hence, potentially, two new connections are introduced

for each linking operation.

5.3 Parameters for Monitoring Network Growth

For a robot to drive around and then use its networks information afterwards to update or

re-examine its environment, it must have some means of monitoring the completeness of its

knowledge. To find out these parameters, which are important to the development of the

network and the accuracy of which that network maps the environment, we must look at

the fundamentals of the mapping. I t is proposed that the three fundamental factors, are

environmental coverage, network connectivity and network error. Each factor provides an

67

Node under
inspection

Membership
value of one

Membership
value of zero

Figure 5.2: Calculation of coverage from sensor range measures

independent cost function by which to monitor the success of the resulting network.

5.3.1 Network Coverage

A n important factor is the amount of knowledge that the robot stores in its network about

the environment. A ratio of the area mapped, over that which the robot can observe, gives

an indication of the robot's coverage of the environment. This is one of the parameters which

was used and it was termed coverage.

The most basic element in the map is the node which is considered to cover an area of

the environment. This area is dependent on the proximity of the nodes as determined by

the factor delta. Each node also stores information about ultrasonic range measures giving

an indication of the free space that can be detected at that point. Each sensor value can

be considered to be a segment of a circle whose angle is dependent on the physics of that

particular sensor, and of radial length which is the distance measure itself For a given

elemental area within that sonar sweep there can be assigned a value of membership to the

total network. This membership value is a reflection of the amount that particular element

is covered by the network. In the simplest case this value is either 0 or 1. I f the element is

within a distance delta of a node it is assumed to belong to the network and a membership

value of 1 is returned, otherwise 0. Figure 5.2 shows, the regions of a node's sonar sweep

'covered' by other nodes.

The area that is covered within a sensor segment is computed in a piecewise manner. Each

elemental area is multiplied by its associated membership function and these are integrated

over the total area of the sensor. The values for coverage are computed for an individual node

by summing the covered area for all the sensors pertaining to that particular node, divided

68

by the total area that the node covers. This normaUsed fraction gives an indication of the

level of coverage around the node. For a network as a whole, the coverage can be deduced

by computing the ensemble average of the nodes coverage.

This method is computationally expensive, but gives a clear indication of the state of the

robot's network with respect to the nodes locations. The results show, as the robot creates

more nodes within the environment, the value of the network coverage increases. This value

tails off to a maximum as the nodes in the network maximally cover the area. Although the

value does not usually reach unity, the value reached is relatively high.

5.3.2 Network connectivity

Although the coverage values give a good indication to the nodal distribution in the environ­

ment, it includes no information as to the quality or quantity of the connections which exist

between the nodes in the network. I f the connectivity of the network structure is to be used

for the planning of navigable paths in the environment, i t would be beneficial i f the robot

could monitor the network structure that is being developed. However, there is no simple

method of producing a cost function for uniformity in a graph topology.

A method is proposed that could be used to assess this function. However this must

be regarded as an ad hoc approach, and of a developmental nature. The method compares

the Euclidean distance of nodes that are in each others sonar 'beams' with the topological

shortest distances between them. For a given node Ni, the network is searched to find if any

other nodes that are in the sweep of Nis sonar range measure. The A* algorithm is then

used to find the minimum topological route between these nodes, which is then compared to

the actual Euclidean distance.

The above method wil l reveal discrepancies in the network structiure which cannot be

observed using purely the coverage method. For example, in the case where branches of

the same network wrap around an object, the nodes can 'see' each other, yet with a close

nodal proximity this is not shown up in the value of the coverage. This information is not

reliable enough to form the basis of an automatic method of restructuring the network, but

is proposed to give feedback as to the quality of the developed topology. The robot could

incorporate this error function for directing its search process.

5.3.3 Network Error

One of the goals which has been defined for the robot, is the ability to be able to detect

changes that have occurred in its environment. This is based on whether the robot's network

information is still correct. This error could be manifested in the distribution of nodes

(coverage), validity of its links (connectivity), or the values of range information that are

possessed by the nodes. This last form of error measure can be used by the robot to detect

69

Sensor Values

at point A

Sensor Values

at point B

Figure 5.3: Discontinuous interaction between node and environment

changes which can influence both of the other sets of network information.

The network of nodes represents a sampling of the environment. Hence it is only possible

accurately to assess the error in a node's information if the robot is guided to its exact

location. This is a restrictive method, so some form of interpolation must be used, or a

method of correction for localised position displacement from the node. The latter was

chosen for the preliminary tests because of its computational ease. Each time the error value

was to be calculated, the robot's sensor vector would be biased by a difference vector, which

would then allow for a direct comparison to the nodal value.

The nodal error measure, described above, can be adversely affected by the discontinuous

nature of interaction of sensor measures with the environment. Nodes contain information

relevant to a region in the environment. The above method of error calculation assumes

that the sensor values corresponding to the node are continuous over its domain. Figure 5.3

shows such a case where one of the sensor values changes dramatically within the node's

domain. This erroneous value for the sensor wil l corrupt the error term derived for this node,

indicating a network error and swamping the other sensor's information.

For the robot to be able to use the comparison of its stored and current sensor values to

calculate any error in the estimated robot's position, ehmination of erroneous sensor com­

parisons was carried out. This was achieved by rejecting from the calculation any error term

which exceeded a threshold value. Hence large discontinuities would not swamp the valid

small error terms of the other sensors.

70

5.4 The Robot Control System

The problem for the robot has been explicitly defined. The robot is expected to drive around,

building up information about its environment. Once the robot has sufficiently mapped out

the environment i t should switch out of the learning phase. The robot would be expected to be

able to navigate around the environment without collision. However, i f the robot detects any

change in the environment, i t wil l be expected to update its knowledge of the environment.

This goal can only be achieved in incremental stages from tested building blocks.

The simplest method of integrating the new mapping strategy into a robot control struc­

ture would be to use it with a robot wandering without using information from the network.

A suitable control output could be created using a wander and avoid behaviour, which would,

over time, move the robot around the environment in which i t was placed. The network has

no influence over the control of the robot but instead attempts to build up a map of the

environment. The network always lays down nodes in a uniform manner, but the connections

can be affected by the path that the robot has taken. In more confined spaces, the network

produces more even topologies, where as in larger spaces the network is more distorted.

The main drawback of such a simple strategy, is that the robot has no method by which

to monitor the development of the network which truly reflects its state. In order to increase

the effectiveness of the robot's control method, feedback from the developing map should

be used to direct further actions. The following describes one such method which uses the

coverage property to direct the robot's actions.

5.4.1 A Navigation Strategy using Coverage

The coverage value gives the robot an indication as to the detected area of the environment

which has been modelled. This can now be used to switch the robot's action between an

exploration and an exploitation strategy. The exploration phase could be random or directed

to search in area of less knowledge. The exploitation phase allows the robot to move within

its environment utilising the map and thereby checking its validity.

Figure 5.4 shows in the form of a flow chart the sequential steps the robot must under­

take. Initially the robot is configured so that it starts in the exploration mode. The robot

is presumed to have no world knowledge at this point. The simplest form of exploration be­

haviour is the random wander, but more intelligent search processes could be used to reduce

the time taken before the search is complete. I t is assumed that once a sufficiently high value

of coverage has been attained within the network, the robot has successfully explored its

environment. Once this has been achieved, the robot then switches to the navigation phase.

The navigation process works by comparing the structure of the network to the robot's

movements within the environment. Therefore the robot must attach itself or lock onto a

71

Start of Exploration Mode

Exploration Behaviour

Coverage^ "°
Low? .

Yes

Start Navigation Mode

Start of Navigation Mode

CoverageN^ No
High? Start Exploration Mode

Attempt to Attach to a Node

Failure

Success

Find a Connected Destination Node
Failure

Proceed Along Route
Success

Is there a Blockage?
Recompute path to

old node

Yes
Disconnect the Link

Is the route finished ?

Figure 5.4: Flow diagrams for coverage control strategy

72

node. I f this is not possible the robot returns to the exploration phase to move it away from

the localised obstruction. Once attached, the robot can determine a destination node within

the map. This could be selected on the bases of frequency of visitation, thereby directing its

motion evenly around the network. Once the route to that node has been determined (this is

performed by using the A* search algorithm), the robot can proceed along this path. I f the

robot successfully navigates to the destination node, the process is started again. However,

i f the robot encounters an obstacle along the route to the node, the network structure must

be adapted by removal of this connection.

The obstacle is detected in this strategy by monitoring the velocity of the robot during

the navigation. I f this is detected to be zero for a period of time, then the robot is presumed

to be stuck. The link that the robot is presently navigating down is removed, and a new

path is then computed to the same destination goal as before. I f this proves successful then

the robot wi l l continue its path towards the goal. However, i f the network has been split into

sub regions rendering navigation via the map impossible, then it reverts back to exploration.

One of the problems , of this approach is that it relies only on coverage as a measiue of

the network's quality and completeness. However, the coverage parameter cannot give any

information relating to the network structure or the errors stored by the nodes. The main

problem is that topological connections are not sufiiciently developed by the time the coverage

parameter reaches its peak. Hence, areas of the map can be badly connected even though

the robot is in its navigation phase.

Although the technique can cope to an extent with changes within the world, the robot

does not actively search for errors. The robot makes no use of discrepancies between present

sensor values and recorded values.

5.5 Simulation Results

The previous section has described in detail a novel method for the construction of networks

which can be used for mapping an environment. This section reports on simulations which

have been used to test these ideas, looking at potential problems and corrective actions that

can be taken. In the flrst experiment we observe a robot using the new technique to build up

useful maps in an unknown environment. A problem is reported for which a modification in

the network linking is required, and a successful solution is described. The resulting network

is used in conjunction with a graph searching algorithm, to direct the robot's actions within

the environment. The robot control strategy which is used is shown to combat errors in

the network, and able to relearn previously false information. Finally the control strategy is

demonstrated in its ability to learn and solve a maze based problem.

73

5.5.1 Basic Map Development

This first experiment looks at the application of the basic novel approach for the construction

of a map. In this test the mapping module is not used to control the robot's motion but simply

to build up information from observing the robot's sensors. The robot's motion is produced

by the combined action of a random wander and obstacle avoidance behaviours. This same

strategy was used in the previous tests on the GCS algorithm, and has been described in

greater detail. The environment in which the robot has been tested has been designed to

include straight edges, sharp corners, rounded objects, and is in nature asymmetric. Through

the use of three circular objects the open space is broken up so that a mapping method must

join up the disconnected arms of its developing map.

Figure 5.5 shows the development of the robot's spatial map as the robot explores the

environment. The figure is split up into three time periods, each of which displays the network

and the robot's path so far. - The left hand windows show the robot's internal model of the

environment by projecting the network into the environmental positions of each node. The

right hand diagrams show the robot's path in the environment up to that moment in time.

The first pair of diagrams show the start conditions with the robot's network being made up

of one triangle with its centroid located at the initial position of the robot. The second pair

of diagrams show the robot after it has moved within the environment for a period of sixty

seconds. The map which has been produced covers entirely the region of the environment that

has just been explored. This demonstrates the map's ability to create a relatively detailed

topology from a single explorative path. I t can also be seen that the map has joined up

around the bottom left hand circular obstacle as the robot traversed around it in a clockwise

direction. The link was created as the robot detected that there was no direct connection

between two consecutive nodes which i t had passed over. The final set of diagrams shows the

network which has been created over three hundred and fifty seconds. Although the network

that has been formed is accurate over the area that the robot has moved, i t is obviously

topologically incomplete because of the absence of a link between the two right hand circles.

This is arguably a problem for the robot's directional control, but in this simplest case there

is no feedback from the network to direct the robot's motion. However, the networks data

contains a discrepancy which can be used to rectify the problem.

5.5.2 Map Development With Active Linking

As described in the previous section on the theory of the novel approach, the environmental

connectivity can be used to get a comparative measure of the topological, as compared to

direct distance. This can be used selectively to connect up nodes that are physically located

within close range, but have long path lengths through the map. This assessment of nodal

connectivity was undertaken at periodic intervals of fifty seconds of simulation time.

74

mmm

Objects; tinte

Mobile R«t>DtSimuliitw

file ; Robots: SimoWci

SimBl3ttonT4me:ai>

Mobile R0:̂ <rtSJthttlSSW

Sfffliilat«in7}ims:S]

MoklteReiiotSiinulMsr

Simulation Time :3S0

Network Development Robot's Path

Figure 5.5: Stages of network growth without active linking

75

The assessment process examines each node in turn, and for a given node, the range

measures that are directed radially outwards are compared to the positions of known nodes.

I f the nodes are within the range measures scan, the network and topological distances can

be computed. Given that there exists a large enough discrepancy between the two measures,

and the node is physically close (within a distance of three delta lengths), a link is added.

Figure 5.6 shows this linking mechanism applied to that same robot path as before. I t is

obvious from the last frame that this method has been able to create a more accurate map

than that produced by the original method. I t can be easily seen that network has developed

a correct link between two separate regions even though the robot has not directly explored

this. I f the rest of the topology is examined there are some other differences. One of the

problems associated with network re-linking are the chances of introducing an illegal link.

Ah example of this can be seen in the bottom left hand corner of the network, where a hnk

cuts across the circular object. This particular error is minor and, as will be shown, can be

removed by the robot checking the validity of the network later.

Linking has been shown to offer a mechanism by which the robot can use the information

stored so far to rectify discrepancies within the map. In this simplest case where the robot

cannot use the information of the network to direct the robot's path, the direct alteration

of the network is required. However, as this problem can also be considered as part of

exploration, the discrepancy information could be used to direct the robot's motion. This

remains a possible area of research if topological discrepancies become a problem in further

work.

Although this method has been shown to be beneficial in the above example, there must

be reservations for its use as the basis of network construction. This stems from the interpre­

tation of the sensor information which is used to develop hard links. Any noise in the sensors

data, coupled with misalignment of the growing network could lead to unstable network con­

struction. In such situations, i t is better to use the information for exploration. Errors can

be checked against the environment, rather than potentially error prone network data. The

extent of these problems wil l only become apparent when tests using noisy information are

performed.

5.5.3 Navigation using the Constructed Map

Shown in figure 5.7 is the map built up using the active linking mechanism during the

construction phase. The map is now to be used to direct and guide the path of the mobile

robot. The robot starts its movement from the top right of the window and the diagrams

show the robot planning and driving to two sequentially selected goal locations.

In the first diagram the robot starts from the top right and is required to plan a path to

the bottom left. For demonstration purposes this was selected by the user, but destination

76

Olsptay

Objects: Unk OatS; Vectafs

Display

iiitiintnuTHrimiHiHitniin

Network Development

Mobile Robot simulstw

fib Robot s i'lmtiaitx Ois l̂sy *:

Sfmulation T4M« :Oit
MQblte S imula^

1

Slmotatton Ttme :£1

Mobile Robot Simulator

Sli>iolattonTlme:3S0

Robot's Path

Figure 5.6: Stages of network growth with active linking

77

Di<|il«y

Mobile Robot SlnKilouir

file ; Robot: Simot»fof ; Oispte

S|mt»i«ft>iiTI(«»i5»7.s Clear:

Object; ; links mm

Mobile Robot SIl««l««r

T»raT:T2s'" '''"''"''"''"'"'"'Tie'"
Disolav

t i i n i m i i i i i i H T I I T I I I I I I I I I I I I I T I T n r
Ltotes; :W«w

Mobile Robot Siitiulstw

ffl Illlllllll
simulation Tlroo: 401 CIW:

Network Information Directed Robot Path

Figure 5.7: Path planning and corresponding robot motion

78

nodes are more normally computed by the robot. As the start and end nodes are known, the

robot can use the A* algorithm on its network to produce a shortest path which is shown in

the top left hand diagram. The guidance system then uses the positional information of the

nodes to enable i t to move along this course. This loop of actions has been reported on in

the previous section. I t can be seen from the diagram that the robot has achieved collision

free navigation in the environment.

After the robot has traversed the first path, it is then requested to drive back to a

new node which is close to the original start location. This wil l demonstrate that the path

planning algorithm can produce new shortest routes and that the system can cope and correct

topological errors within a network. The planned path to the new goal node can be seen to

pass through a link which wi l l force the robot against an obstacle, and as the path is traversed,

this is what happens. When the robot has collided, the control system senses no motion and

removes this illegal link. The robot then computes its path to the goal again, and the result

is a successful movement combined with a corrected map.

5.5.4 Map Construction and Navigation within a Maze

So that the network development and the use of the A* algorithm could be more extensively

tested another test was designed. The previous test environment contains open spaces and

is not confined, so a maze was chosen to test the method in more restrictive circumstances.

The search method used, incorporated some of the information produced by the coverage

algorithm. This information is in the form of a vector that can be computed for each node

and gives an indication of the location around the node where there is least coverage. This

was used to encourage the robot to continue its movement into unexplored locations.

The first pair of diagrams in figure 5.8 show the robot building up the network map which

it wi l l then used to navigate. In this example the environmental width was eight meters, and

the robot's value for delta was set to forty centimetres. The time taken for the robot to build

up a complete map of the maze was 350 seconds, after which the robot could then use the

map for navigation.

The second set of diagrams show the robot traversing the network using the built up map.

The robot in this example starts in the right hand side of the maze and is requested to move

to the bottom left location. The A* algorithm computes the shortest route and the robot

simply drives down that path.

The ability of this novel approach to create a useful map within a confined environment is

demonstrated. Here the ability of the system to construct a map in a unknown location and

subsequently use that map to produce collision free navigation is demonstrated. The robot

control system is shown to be resistant to limited errors within the network and be able to

correct them.

79

«»*«

! « » * «

I Objects t i
nl<$ • Data - Vectors

ss>»s
K » a »

r T T T T T T T T T T T T T l

« it» «»i>««»»iSl«<:a

x * * x : * * K * * X » *

X » « X * * X » « X » «

» » » »
* x * «

« X > « « X W «

« « x » « x » « x » « x » « x » « x » * x » « x * * x » « x » * x » « x <

« X « X S S S ! » R « » « « ! 1 « « » S K » « « ! S « " "
» * X > l * K » * X » « X r f * X » * X * * X * * «_

Objects r li"^'

Network Information

rite V ; «ob*t:.! Simulator • : Displa.

Simulation Time : SI

M»Mle ReiKiKSlniulMor

S;w«lath.BTin,BVjM Clear; '

Du-ected Robot Path

Figure 5.8: Path planning and corresponding robot motion in a maze

80

5.5.5 Conclusions on the Novel Mapping Method

The novel method, in comparison to the GCS, is embedded more directly in the environment.

The creation of nodes is dependent not on number of training samples, but on the spatial

position of the data values. At the creation of a new node its data is taken directly from

the sensor values recorded at that position rather than being interpolated from the network.

The fixed nature of the nodes and the connections between them hmit the topological errors

that can be introduced later.

In all of the experiments the network had been completely developed within only 350

seconds corresponding to just 700 samples. Another advantage is that at each stage in

the creation of the map the developed network is correct and can be used for navigational

purposes.

One of the problems associated with the exploration of more complex mazes is directing

the robot to the unexplored regions. In this maze experiment a simple form of direction was

used to drive the robot when it was in the location of an unexplored region. This could be

integrated in a control strategy with the fact that the partial map is navigable. The controller

would navigate the robot to the edge of an unexplored area where the coverage vector could

be used to move the robot in the correct direction for searching. This would then be an

efficient search strategy.

5.6 Summary of the Novel Technique

A novel method is proposed to form the basis of a mapping system for a mobile robot.

This method is shown accurately to map different environments with far less algorithmic

complexity than the growing cell structure. The system is shown to be capable of exploring

an environment and creating a topological map from the information. This map is then used

by the navigation module for collision free navigation. The method is shown to be resistant

to minor topological faults, being able to correct these errors.

A method of monitoring the network's coverage of the environment has been described,

which produces a vector which can be used to direct the robot search. The vector is used in

conjunction with the wander and avoid behaviours to increase the sophistication of the search

process. This method has been successfully employed in a maze, with the robot mapping out

the entire area. The robot was then able to plan paths and navigate to any desired location.

5.7 Summary of Simulation Work

A control strategy capable of generating topological maps and then subsequently using them

for navigation has been shown to work in simulation. However, these simulations did not

81

include accumulative errors that develop in odometric measurement systems. Neither were

the errors that are inherent to ultrasonic range measurement incorporated. Both these types

of errors are hard to accurately model, as they develop from the complex interaction of the

robot wi th its surroundings.

The simulation work has provided a productive way of building up the control algorithms

which can be used on a mobile robot. However, for further insights to be gained, the com­

plexity of the modelling of the simulator must be increased. This presents problems not

only of accurately mimicking the interaction of the robot with its surroundings, but also of

computational time for each simulation. I t is suggested this approach wil l give diminishing

returns for the inputted research effort.

In order to continue the design of the control algorithms, the systems were then ported to

a real mobile robot. Solutions to mechanical, computational and algorithmic problems will

need to be developed. The design of the robot and its physical construction are reported in

the next chapter.

82

Chapter 6

The Robot Design

6.1 Introduction

There are many benefits to be gained from building a prototype robot to test out the control

designs ported from simulation. Such real test situations offer greater challenges to control

systems and allow for validation of the simulation work. I t is always possible to construct

new environments which push the limits of the robot's abilities, forcing the need for bet­

ter robotics systems. Finally, only real systems present the best objective situations for

researchers empirically to compare their designs.

This chapter describes the design of a prototype mobile robot and includes the consider­

ations taken to achieve i t . To facilitate a greater understanding of the various systems and

their interactions, the chapter has been subdivided. Initially, the mobile robot as a working

entity is described. Following this overview, the design is subdivided to reflect the different

aspects brought together in the complete robot. The flrst section details the mechanical

system with the design considerations that were taken. Next, the electronic systems are. ex­

amined. This section is split into modules, each examining in detail particular subsystems.

The last section describes the embedded computer system.

6.2 Global Overview

The design goal is to build an autonomous robot which is as compact as possible with sufficient

sensory and computational abilities. There is a balance in the level of complexity of the control

systems against the larger physical size of robot which would be required to house them. This

can only be achieved by determining the level of complexity and then proceeding to design

the most compact robot around this.

The requirements for the robot's control system are an extension of the work that was un­

dertaken in simulation. Of primary importance is that the robot be mobile and autonomous.

83

This means that all the power and computation requirements for the ful l duration of any

robot run must be self contained. The physical frame of the robot must also have room for

mounting the sensors and be able to have sufficient power to supply these and the motor

drive systems.

After considering all these factors, which are described in their respective sections in more

detail, i t was decided that the robot should be of a circular design with a diameter of no more

than 40 centimetres. The circular shape means that i t has exactly the same manoeuvrability

in all directions. I t was also decided that the robot should have the potential to move at

a reasonable speed. However it is important not to have too powerful a drive system in an

experimental mobile robot which must be resistant to control failure. I t was therefore decided

that a speed which related to a robot length per second would be sufficient. Hence the top

speed designed for initially was 40 cm/s. Figure 6.1 shows the photographs of the completed

mobile robot taken from the side and above.

To simplify the description of the robot i t is useful to split the design into three broad

subsections of mechanical, electronic and computational systems. Figure 6.2 graphically

illustrates the interaction of these systems in the working mobile robot. Each subsystem is

at 'a different level of abstraction from the environment and therefore has different design

requirements.

The mechanical section covers the basic design of the physical robot frame. This includes

the mechanical linkages for the robot's actuators, their dynamics and the positioning of all the

robot's sensors. The positioning of the batteries and the circuit boards are also included. The

electronics section examines the interface hardware needed to implement the sensor systems,

however this does include some low level computational routines. Finally the computational

section details the computational aspects of the design.

6.3 The Mechanical Chassis

There are many different mechanical chassis configurations which can be used for a mobile

robot drive system. These have already been outhned in Chapter 3 in section 3.5.2. The

design selected as being the most preferable for the robot's chassis was the synchro-drive. This

was due primarily to the fixed orientation of the robot's frame irrespective of the direction

of travel. There are also benefits for the accuracy of odometry with reduced wheel slippage.

Overall the advantages of this system outweigh the greater mechanical complexity required

to construct a working system.

In the synchro-drive configuration three or more wheels are used to propel the robot.

The orientation or direction of forward motion of all the wheels, which are mechanically

linked, are in parallel. This synchronism in their directions gives rise to the configuration's

name and means that the robot can move in any direction without changing the orientation

84

Figure 6.1: Photographs of the mobile robot

85

The mobile robot

Computational Systems

Electronic Hardware

Mechanical Chassis

actions observations

Physical Environment

Figure 6.2: Interactions of the component subsystems

of the chassis. This has the major advantage that any sensor mounted on the chassis does

not have to correct for the direction of robot travel as in differential drive systems. The

forward rotation of each of the wheels is also mechanically linked and this provides a more

even propulsion which reduces the effects of wheel slippage. The particular form by which

this synchro-drive has been implemented is now described in greater detail.

• Figure 6.3 shows the complete robot as viewed from the side, a height of about 40 cen­

timetres. The base of the chassis consists of the wheel assemblies and the battery housings.

Between the lower and the upper fixing plates, the drive and steering belt transmissions are

housed. The design uses a head assembly which can be rotated, allowing greater sensory

observation even though the robot frame's orientation is fixed. Apart from the encoders for

positional and angular feedback, all the sensors are mounted on this head assembly. This

includes the ultrasonic range detectors, the collision switches, and the magnetic field sensor.

This maignetic field sensor is mounted on a bridge to keep it physically far from any onboai'd

magnetic fields.

At the base of the robot there are four wheels in contact with the ground. Three of

these are used for propulsion and are equally spaced out, forming a triangular base. The

fourth is mounted in the centre and provides odometric information. Although many mobile

systems take information from encoders mounted on the same wheels that produce the motion,

this configuration cannot detect slippage. Such slippage could be caused by the robot over

86

• Magnetic sensor o — mounting

1
'E

. i H w i r f didid£>m&^iitijl
H-h 11 T ^

Head

assembly

Upper

fixing plate

Steering transmission

Drive transmission

Lower
fixing plate

Batteries and

wheel assemblies

Figure 6.3: The robot chassis

87

accelerating or decelerating, or by driving the wheels when motion is impeded. This is a new

design for a synchro-drive configuration in that i t uses the synchronous tiu-ning of the wheels

to be able to turn a fourth central wheel to point in the same direction of travel as the robot.

By mounting an encoder directly on this wheel, only one encoder is required to determine the

forward and backward odometric distances. As only one encoder is used this can be used to

control the drive motor in a feedback loop which then takes into account the actual position

of the robot on the ground.

There are three lead acid 12 volt batteries used for the on board power supply. These

are mounted around the periphery of the lower fixing plate to increase the stability of the

design. Between the two fixing plates, there are the main pulley systems for the drive and the

steering transmissions. The lower set of belts are linked to the drive motor mounted beneath

the fixing plate, and the upper belts are linked to the steering motor mounted between the

fixing plates. Above the upper fixing plate is the head assembly. This is mounted on the

upper fixing plate by an external slide ring that has been cut into the edge of the plate. The

head assembly is then mounted on posts which run on guide wheels. The head assembly is

rotated by a motor with a belt transmission onto a centrally mounted pulley on the head.

The three drive wheel assemblies have the same basic design, which consists of an inner

shaft fixed to the wheel assembly and an outer shaft which drives the wheel's forward motion.

Figure 6.4 shows the drive shaft (e), and the steering shaft (c) in greater detail. In all these

figures, light grey moving parts indicate a linkage to the drive system, whereas darker grey

signifies hnkage to the steering system. The top of the steering shaft spins in a bearing

mounted in the upper fixing plate (a), and is rotated by means of a pulley (b) that is driven

by a belt (d). This is a notched timing belt which does not slip over the pulley so that all the

wheels wi l l remained aligned after they have been correctly set-up. The outer shaft is fixed

wi th respect to the lower plate by bearings (f) . This allows the pulley on the inner shaft to

be mounted close to the top of the outer shaft therefore stopping this inner shaft from falUng

out of the upper bearing. The rotation from the outer shaft is transmitted to the wheel by

two gears (g) which drive a 90 degree gearbox (j) which in turn drives the wheel (i). The

outer gear (g) must be fitted with bearings so that i t smoothly rotates rather than being

tangentially thrust into the wheel housing (h). The wheel itself is mounted with a bearing

to reduce frictional losses.

The wheel is mounted offset from the central axes of the shafts to reduce friction when

turning. Instead of the wheel spinning on its own vertical axis, i t describes a circle around the

shaft's central axis. During a stationary turning manoeuvre, the inner shaft rotates but the

outer shaft remains fixed. This causes the drive transmission gears (g) to act as a planetary

gear system, causing the wheel to rotate. As this gearing ratio is 1:1 this leads to the wheel

rotating forward once for each angular revolution. Hence, the wheel must be positioned with

its own radius offset from the shaft's axes for i t to describe a circle centred on these axes.

j

I / / / / / /

I

"U"

Jzzzzzzzzzzzz]
Ms

p

. ^ ^ ^ ^ ^ ^ ^ ^ ^

I

Jl

Figure 6.4: The drive wheel assembly

89

This assembly has the advantage that when the wheels are turned, the drive pulleys are not

forced to move and therefore require no clutch. However, when the wheel is providing a

propulsive force it creates a torque on the steering shaft because it is mounted at an oflFset.

This must be countered by a holding torque applied to the steering shaft to stop the wheels

being forced off course.

The central wheel is for the odometric readings and is angularly synchronised to the other

wheels. Figure 6.5 shows the mechanism in greater detail. Unlike the other wheel assemblies,

the odometry wheel has only one shaft, which is hollow (d). This is secured by two bearings,

one in the upper plate (b), and the other in the lower plate (e). The assembly is rotated

by a pulley (c) linked to one of the three drive wheels steering shafts. At the bottom of the

shaft is the main housing (f) that allows only vertical movement of the odometry assembly

(h). This assembly is sprung mounted so that the odometric wheel remains in contact with

the ground at all times. Two pins which run in a slot in the housing (g) have been screwed

into this assembly to prevent it from rotating in the housing. They also limit its vertical

travel length, and thus prevent it from falling out. The assembly provides a mount for a

thin aluminium wheel (i) which has bearings and a rotary encoder mounted on it (j) . The

electrical connections from this encoder axe routed through the hollow shaft to appear at the

top of the upper plate (a). The odometric wheel unlike the drive wheels is not mounted to

the side of the shaft's axis. This is because during a stationary turn of the wheel assemblies,

the odometry wheel must not register any forward motion.

In order to describe both the drive and the steering transmission systems, the robot

is sectioned and viewed from above. First the lower section which provides the linkages

between the drive motor and the drive wheel assemblies shall be described, and this is shown

in figure 6.6. There are three main fixing pillars between the upper and lower plates to keep

them in line, and beneath these are mounted the three battery packs. By mounting these

low down and far apart on the robot, this not only lowers its centre of gravity, but increases

the inertial resistance to i t toppling over.

A DC motor was selected to provide the propulsive force for the robot's drive system.

DC motors offer low weight for their mechanical power output, and can be easily controlled

to provide variable speeds. A 12 volt riiedium duty DC motor was selected with in integral

gearbox providing a rated output of 60 r.p.m. at 300 mNm torque. Wi th a gearing up ratio of

1:2 in the transmission to the 3 cm radii wheels, the velocity of the robot at rated load would

be 0!377 ms~^. To work out the acceleration time taken for the robot to reach its maximum

velocity, the work done to accelerate the robot's body (5 kg) to this speed, must be deduced

using equation 6.1. The motor power can be calculated from the motor's rated load torque

using equation 6.2. For this preliminary assessment of the motor's capability, it is assumed

that the developed motor power is constant, independent of speed. From this value, the time

taken to accelerate the robot to its maximum speed is calculated from equation 6.3. This

90

I -T . *

iit||<r

Figure 6.5: The odometry wheel assembly

91

Main transmission belt Drive transmission pulley

One of the three
battery packs

Fixing pillars

Dc motor and drive pulley

Figure 6.6: The drive transmission

92

gearing ratio and motor selection gives a maximum robot speed of 38 centimetres a second

and an acceleration time to this speed of under a fifth of a second. This motor selection

provides adequate performance in both maximum velocity and acceleration times.

Work Done = ^mv'^ (6.1)

= 0.355 (Joules)

Motor Power = (at rated load) (6.2)

= 1.884 (Watts)

Work Done
Acceleration time = — (6.3)

Motor Power
= 0.19 (Seconds)

From the above analysis it can be seen that the motor must be geared up to drive the

wheels. This is achieved by using a motor to drive shaft pulley selection of 80 teeth to 40

teeth respectively. The transmission gearing ratio form the drive shaft to the wheels is 1:1,

which satisfies the gearing requirements. Finally, a large timing belt is used to transmit the

drive force equally to the drive pulleys of each of the wheel assemblies. The two timing belts

can be seen in figure 6.6. The drive linking the motor to the drive shaft is in the bottom left

hand corner and the main transmission belt forms a triangular loop around the three drive

pulleys.

The steering transmission system is similar to the drive transmission. The three pulleys,

each mounted on the inner shafts of the wheel assemblies, are linked by a large timing belt

to provide a turning force (see figure 6.7). When this system is set-up, each of the pulleys

must be adjusted so that all the wheels point in the same direction. There is also a pulley

belt link to the central odometric wheel so that its angular movement is linked to the rest

of the wheels. A stepper motor was chosen to provide the motive power for the orientation

of the wheels. The primary reason for this choice is that a stepper motor has a holding

torque which resists motion. As has been described above, when the robot moves forward it

generates a torque on the steering shaft which must be resisted, otherwise the wheels would

change direction. Therefore, the use of a stepper motor has a dual purpose, to provide this

holding torque whilst the motor is in forward motion, and to orient the wheels.

Different stepper motors have different step angles. This is the change in rotor's angle

caused by advancing the excitation phase sequence. The stepper motor chosen had a step

angle of 7.5 degrees and gearing down ratio of 7.5:1 was selected, so that of each step of the

motor the wheels would move by 1 degree. The strength of a stepper motor is defined in terms

93

steering stepper motor

ular transmission
the odometric wheel

Figure 6.7: The steering transmission

94

of its holding torque. This is the maximum static value of torque that the excited motor can

resist. Prom this value i t is possible to determine the 'pull out' torque, or the maximum

torque that the motor can develop. For low inertial, high friction systems, the maximum

'pull out' torque has been documented at 0.71 times the holding torque of the motor [43]. I t

was empirically determined that the maximum torque required by the steering system from

the motor, was 57 mNm. This turning force significantly depended on the siuface that the

robot was on, for smooth floors the values were much reduced. The value of 57 mNm was

obtained from a test on a floor tile similar to most office environments. A stepper motor

was therefore chosen that had a holding torque of 155 mNm which gives a 'pull out' torque

of 110 mNm ultimately giving a factor of about 2 safety. The stepper motor is mounted on

the lower fixing plate, however, a 360 increment encoder is mounted in the upper fixing plate

and is directly connected to the stepper motor's shaft. This produces information as to the

orientation of the wheels.

Figure 6.8 shows the mounting on top of the upper fixed plate, for the head assembly.

The outer edge of the upper fixing plate has been bevelled to form two slopes of 45 degrees

to the horizontal from both the top and the bottom of the plate. This forms an external

slide ring on which guide wheels, or journal bearings contact. There are three such bearings

mounted oh posts on the head assembly by which it is supported. One of these posts is

eccentrically fixed to allow for minor adjustments and the removal of the head. On another

of the posts is mounted a small horizontal plate. Near the edge of the rim is mounted an

infrared (IR) emitter receiver pair, whose beam the horizontal plate interrupts when at the

l imit of the head's rotation. This allows the head to orientate itself with respect to the lower

robot chassis. Mounted on the opposite side of the IR sensor housing is another emitter

receiver pair which monitors the wheel angle index. This disk is attached to the inner shaft

of one of the wheel assemblies that protrudes through the upper fixing plate. This sensor can

therefore be used to determine the angle of the wheels with respect to the lower robot chassis.

The head plate is driven round by a stepper motor identical to that used for the steering

transmission. The gearing down ratio is the largest that can be achieved with the range of

pulleys used and this was 10:1. Hence the head can moved in increments of 0.75 degrees.

The pulley attached to the head assembly was fixed by bolts in order to form a central hole

through i t . This allows electrical connections to be routed from the head assembly to the

lower levels. The power and drive circuit board is mounted on the upper fixing plate and

contains all the power electronics for the drive systems as well as the power supplies for the

control circuit board and the ultrasonic sensors. This physical separation of the control and

the power electronics reduces problems of electrical noise.

The head assembly is the main location for the robot's sensory systems and it computa­

tional electronics which is shown in figure 6.9. Both systems are quite extensively electrically

interconnected and it is therefore simplest to mount them together. The aluminium disk of

which the head is constructed also provides some shielding from the power systems below.

95

IR sensor mounting Wheel angle index

Steering motor encoder
mounted on the upper

fixing plate

head stepper motor

The power and drive
circuit board

External slide ring

Guide wheels ~

Upper fixing plate

Head plate

Figure 6.8: The mounting for the head assembly

96

collision plate ultrasonic sensor module

mounting for magnetic sensor

control circuU board

magnetic sensor module

Figure 6.9: The head assembly

97

sensor
driver
circuit

head plate

collision
plate

I

sensor housing

ultrasonic
transducer

mounting plate

microswitch

Figure 6.10: The ultrasonic sensor housing and collision detector

Eqiiidistantly positioned around the outside of the disk are the eight ultrasonic sensor hous­

ings. Each comprises an ultrasonic transducer, and a sensor driver circuit. Beneath each is

a collision detector attached to the underside of the head disk. Each detector is made up of

a collision plate attached to a microswitch and this is shown in figure 6.10.

Above the control circuit board is the mounting for the magnetic sensor. This is an

aluminium bridge that is positioned to be physically far from all the electrical systems that

could distort the external magnetic field. The two sensors which are used to determine the

magnetic field are mounted in a plastic block at right angles to each other. This block is

fixed- to the centre of the bridge.

98

6.4 The Electronic Hardware

The electronic hardware provides an interface for the computational systems to be able to

interact with all the sensors and actuators on board the robot. A l l the electronics have

been built on two PCBs, a power and drive circuit board, and a control circuit board. The

details of their layouts are included in appendix C, but the following is a description of their

functionality.

29K CPU
Board

Load

Encoder ^ ^

Motor

Load

Encoder

DC Motor

Controller

Motor

Stepper
Motor

Controller

r
o

f t

kL_N
Ultrasonic

sensor
module 0

Ultrasonic
sensor
module 7

Magnetic Field
sensor module

8 Collision
detectors

Figure 6.11: An overview of the electronic systems

In order to simplify the description of the electronics, i t is useful to consider the system

as composed of modules. Figure 6.11 shows the interactions of these modules, and their

interface to the 29K computer board which itself is described in section 6.5. The design

utilises programmable logic for interfacing and for the control logic required within the various

modules.

Both the DC drive motor and the stepper motor use separate feedback controllers. These

controllers are ICs which encapsulate a feedback control loop and are designed to interface to

computer systems. Each IC monitors the appropriate encoder and produces motor outputs

dependent on how it has been programmed to act by the computer. By using separate

feedback controllers, both the computational and interface burdens are reduced for the main

processor, whilst benefits are made from the fast hardware specific control.

99

The sensory systems are also modularised. There are eight ultrasonic sensor modules, one
for each of the sensor driver circuits. Each module incorporates control logic that interfaces
these driver circuits to event timers. Under the scheme that the sensors will operate, two event
timers are required for each sensor. It was decided to have this functionality in hardware
rather than software because the interrupt capability of the 29K board was limited. The
magnetic field module and the eight collision detectors were also linked to the computer by
the interface logic.

6.4.1 The Programmable Logic

Logic circuits are required to interface the various modules to the computer board. Also there
is ,a substantial logic requirement within the modules themselves. One option is to hard wire
logic elements from standard IC packages. This has the two disadvantages of low gate densities
and hard to change designs. It is how possible to use programmable logic devices which have
high gate densities and allow the routing of the designs to be changed. The generic name
for all channel-routed, user-programmable logic devices is Field Programmable Gate Arrays
(FPGAs). One such device is the Xilinx FPGAs which have their gate routing configurations
downloaded onto the IC each time it is to be used. This leads to fast development times and
rapid ehmination of errors. The Xihnx based FPGAs were therefore chosen to form the basis
of the robot's logic requirement. The particular architecture that Xihnx uses in its FPGA is
termed Logic Cell Array (LCA), which is trademarked.

The particular Xilinx IC that was chosen was determined by the availability of the devices
and the software used for configuring the logic. The device selected was the XC3030 which
combines a high logic count of 100 Configuration logic Blocks (CLBs) with 80 user config­
urable input/output pins. However, as the logic capability and the number of pins used on
each device increases, the routing problem becomes more complex. The routing is performed
by software, but with greater complexity, the final design can have significant electrical signal
delays. In order to supply the logic requirement for the robot and reduce delay problems,
three devices were used in total.

After the Xilinx devices are switched on, they must have their logic configurations down--
loaded. This can be achieved in different ways dependent on the mode that the IC is set-up
in. An advantage of these ICs is that they can be 'daisy chained'. Only one IC is directly
connected up to the computer board, from which all the other devices are automatically
configured. The detailed connection diagram for the three Xilinx FPGAs is contained in
appendix D which also describes the signals required by the devices to load each byte of data
in. After the three ICs have been configured the programmed logical configurations become
active and are described below.

Figure 6.12 shows the three Xilinx ICs and their logical interconnections with the rest
of the systems onboard the robot. The first Xilinx IC 0 produces all the computational

100

29K CPU Board

DC Motor Control IC
Multiplexed address

_ and data lines

Control lines

Stepper Motor Control IC
Multiplexed address

_ and data lines

Control lines

Adc ress Di ta Control
bps b is linl

Xilinx
ICO

XC3030
FPGA

Local data bus

Control lines

Logic signals^
Timer IC 0

Magnetic sensors

U. Driver Circuit 0
Signal lines

U. Driver Circuit 3
Signal lines

0-3 Collision Switches

LED Driver IC
Driver lines

U. Driver Circuit 4
Signal lines

U. Driver Circuit 7
Signal lines

4-7 Collision Switches

Address Ddta Control
bbs bs lin

Xilinx
IC 1

XC3030
FPGA

Logic signals
s* Timer IC 1

Logic signals
-= =• Timer IC 2

Logic signals
he 3- Timer IC 3

Adqress D a a Control
bjs lin|

Xilinx
IC2

XC3030
FPGA

Logic signals
1^ 3-̂ Timer IC 4

Logic signals
Timer IC 5

Logic signals
«e > Timer IC 6

Figure 6.12: The system's logic layout

101

interfaces to the other ICs. The main interface is with the motor control ICs as they require a
multiplexed address and data bus which the 29K computer board does not support. Therefore
the standard address and data busses must be latched at the appropriate times, and signals
to sequence the motor controllers must also be constructed. This IC also produces a local
data bus and control signals for all the timer ICs. This allows the computer board to be
able to access all the data registers on these devices. Each timer IC has three down counters,
which can be programmed to operate in different modes. These counters are linked up to the
other electronic systems using the logic. Timer IC 0 is used for timing the pulses from the
magnetic sensors and therefore the logic to link the sensors up to it is included within the
Xilinx IC 0.

As a method of dividing the logic up between the Xilinx ICs, the eight ultrasonic sensor
modules are split into two groups, that of 0 to 3, and 4 to 7. The eight collision switches are
similarly divided. All sensors 0 to 3 and 4 to 7 use the Xilinx ICs 1 and 2 respectively. Each
ultrasonic sensor module requires two timers, and therefore three timer ICs are linked to each
Xilinx IC, leaving one down counter free for other purposes. Also each Xilinx IC provides
four output lines for the eight bar LED display.

3F
40

7F

Stepper
Motor

Controller
(HCTL-llOO)

DC Drive
Motor

Controller
(HCTL-llOO)

80

84

88

8C

90

94

98

9C

Timer 0

Timer 1

Timer 2

Timer 3

Timer 4

Timer 5

Timer 6

CO CO
US Register

C I
CS Register

C2
LED Register

C3 Output Register
C4

Magnetic Trigger

Base Address (CSO) = 0x90000000

Figure 6.13: The address map

The Logic interface allows the various components in the system to be accessed by the
computer board as peripheral memory locations. Figure 6.13 shows the memory map of the
peripheral systems as seen by the computer. The 29K computer has five peripheral chip select
regions and the robot systems map into the base of region 0. This is termed the chip select 0

102

29K CPU

Board

P I A C S O

R A V

P I A O E

P I A W E

W A I T

J \

A O - A 7

/ I
D 0 - D 7

V

\ r

Xilinx

FPGA
A

cs
A L E

O E

A 0 - A 5 / D 0 - D 7

N V

Motor

Controller
IC

Figure 6.14: The motor controller interface

region and has a base address of 90000000 (Hex). As this computer is a 32 bit processor, the
addresses listed, refer to the word offset from the base address, and not the byte address. To
obtain the byte address, the word address is simply multiplied by the number of bytes in a
word, which is four. Both the motor controller ICs have 64 registers and therefore occupy the
first 128 addresses. Each timer IC has four addresses which are located between 40 and 7F
(Hex). There are also five system specific registers which are located from address CO (Hex)
upwards, which are described later.

6.4.2 The Communications Interface to the Motor Controller ICs

The motor controller ICs used a multiplexed address and data bus, which is not supported
by the 29k computer board, as it uses separate address and data lines. The motor controller
ICs also require special control lines that signal different phases in the read and write cycles.
An interface was designed based on the timing diagrams of the read and write cycles of both
systems.

Figure 6.14 shows the connections to and from the Xilinx IC on which the programmable
logic was used for the design. The PIACSO, PIAOE and PIAWE are the Chip Select, Output
Enable, and Write Enable lines respectively, of the Peripheral Interface Adapter (PIA). This
is a 29K external area which can be accessed in the same way as memory. The R/W line
indicates a read cycle when high and a write cycle when low. The WAIT line is used for

103

Read or
Write to _
Motor

Controller

Clock :

Single
Pulse

Generator

to

Shift Register
J , L •

h h '4 h h ^8 ^9

Figure 6.15: The motor controller pulse generator

forcing the processor to wait for external devices during a read/write cycle. Although only
the lower six addresses are used by the motor controller, all eight are required for each motor
controller to be mapped into the. right area of memory. The motor controllers use three
separate control lines each. The CS line is the Chip Select line and indicates a read or write

cycle is to start. The ALE is the Address Line Enable and indicates that a valid address is
on the address/data bus. The OE is the Output Enable and is used to signal to the IC when
to latch data onto the bus.

To be able to interface the devices, the fixed read/write pattern from the 29K computer
had to be converted to a sequenced latching of address and data information onto the mul­
tiplexed bus, with corresponding signalling. To achieve this, a shift register based solution
was devised. This is based on a single pulse being triggered at the start of a read/write cycle
which then shifts down the register under the control of a clock (as shown in figure 6.15). As
the pulse (P) propagates down the register, it activates anddeactivates set/reset flip-flops
that are linked up to the signals to to . The outputs of the flip-flops control the sequencing
of data and address bus latching as well as creating the control signals. The clocking for the
shift register is in anti-phase with the rest of the system to ensure a stable sampling of the
shift register.

Figure 6.16 shows the activations of the taps over time with the clocking signal used for
the flip-flops. From the flip-flop outputs, the read and the write cycles are generated. Both
sets of signals are generated simultaneously in the hardware, however only one set is used as
gated by the R/W data direction signal. In both cycles the 29K computer must be delayed
from executing any further instructions and therefore a WAIT signal is generated. At the
end of this wait period when the computer's CPU is released, it deactivates PIACSO clearing
all the flip-flops and registers.

To create a multiplexed address and data bus, the interface uses a communications bus
internal to the XiHnx IC. On this bus, the address and the data can be latched. The internal
latching of the address and data to this bus is controlled by the Address Enable (AE) and
the Data Enable (DE) signals. In the write cycle the CS is activated as the CPUs addresses

104

Taps

Clock

The Write Cycle

cs

A L E

A E

D E

W A I T

The Read Cycle
t

C S

A L E

A E

D E

O E

W A I T

Figure 6.16: The motor controller timing diagram

105

are latched through to the motor controller IC. ALE is activated to force the controller to
sample this address (ALE is shown here as the flip-flop's output, not the its inverse ALE
which is output to the controller). After AE becomes inactive the data bus is latched through
(DE goes high). When CS is deactivated the motor controller IC samples the data into an
internal latch. The cycle is completed when WAIT is deactivated. For the read cycle, the
CS is only activated during the address reading phase. After the address has been read, the
device specifications require a delay before the data can be read. This is finally done by
latching the data from the controller IC to the CPU board and then deactivating the WAIT
line.

6.4.3 The D C Motor Controller

The DC motor controller system comprises a controller, motor and a feedback encoder. This
is different from other mobile robot odometry systems in that it uses a feedback loop which
includes the ground movement beneath the robot. Most encoders are mounted on the drive
shaft, and therefore cannot take these efi'ects into account.

The motor controller employed for both the drive and stepper motors was the HCTL-UOO
manufactured by Hewlett Packard. This is a general purpose motor control IC that can be
used to control either DC motors or stepper motors. Therefore using these controllers reduces
the computational burden of digital motion control on the main processor.

The motor controller ICs require quadrature phase encoders. These rotary encoders have
two sets of slots which are phase displaced by 90 degrees. Prom these two channels, the
direction as well as the angular distance can be computed. Another benefit of this system
is its improved positional accuracy resulting from the ability to determine which quarter of
each slot-mask element the encoder is at. This method of counting in quarters is termed
quadrature positioning and its units are quadrature counts. A high resolution encoder was
chosen in order to maximise the accuracy of the odometric system. The encoder has 500 slots
per revolution which with a wheel radius of 3 cm, gives a resolution of just over 10 quadrature
counts per millimetre of robot travel.

The overall system layout for the DC drive motor can be seen in figure 6.17. The con­
troller's command output to the motor is in the form of a pulse width modulated signal
(PWM) and a sign/direction signal (sign). The pulse width modulation signal is a pulse
train whose mark to space ratio varies dependent on the drive power required by the motor,
and the sign indicates the drive polarity. Both these signals are further processed by interface
logic to be suitable for powering an 'H' Bridge power amplifier. The power amplifier drives
the DC motor which, through the transmission, drives the three wheels. The feedback signals
of channel A, and B come from the rotary encoder that is mounted on the odometer wheel in
the centre of the robot. The inclusion of the ground movement in the feedback loop allows the
odometry system to avoid errors caused by slippage when over accelerating or braking. Also

106

DC DC V
Motor

V
Motor ^

'H' Bridge
Power

Amplifier

Drive
Transmission

Drive
Wheels

Interface
Logic

sign

P W M

Odometry
Wheel

Motion

29K CPU Board

limit

DC Motor
Controller

03

Vector
Interupt

Divide

Figure 6.17: The motor controller feedback loop

107

if the robot is pulled or pushed, the feedback system can correct the movement by driving
back to the original location.

The 'H' bridge configuration of amplifier was selected as it allows a motor to be driven
in both directions from a single positive power supply. In order to create the correct driving
signals which are the PWM signals in each direction, two AND gates were required and are
shown in figure 6.18. These 5 volt logic signals are amplified by two BC183L transistors to
drive the bases of the power transistors (see figure 6.19). The x and y signals fire alternate
transistors in the 'H' bridge which then form a voltage across the motor (M).

pwm -

sign

Figure 6.18: The interface logic

There is a limit pin on the motor controller which when activated causes the motor
command to be set to zero. This is used by the CPU board to allow automatic shut down
of the motor in the event of a collision. There is also a vector interrupt that is generated
from the channel A of the encoder. This is used by the CPU board for automatic generation
of the robot's odometric position. After every n pulses, the CPU is interrupted and takes
information from both the drive and stepper motor controllers to get forward and angular
positional information. These vectors can then be integrated to give the robot location.

6.4.4 The Stepper Motor Controller

The stepper motor controls the angular position of the wheels and must also provide a holding
torque whilst the drive motor is in operation. To provide an accurate positioning system
another HCTL-llOO general purpose motor controller was used to form a separate control
system. However, unhke the DC motor, the motor controller also provided the sequencing
for the four phases of the stepper motor.

The stepper motor has 48 full steps per revolution which leads to a small angular diflFerence
between phases in the torque cycle. To ensure that accurate information about the motor's
position in its torque cycle was fed back to the controller, the encoder was mounted directly
on the motor's shaft. In order for the controller to provide the correct phase sequencing
for the stepper motor, it requires an encoder with an index pulse which can be aligned to a
known location in the motor's torque cycle. This also means that the encoder's number of
quadrature counts per revolution must be exactly divisible by the number of motor steps per
full revolution. Hence every revolution of the index pulse always occurs at the same location

108

+12V

BC183L

M

1N4007 1N4007

TIP 126

ov

X y V

0 0 0

0 5 +12

5 0 -12

(values in volts)

Figure 6.19: The 'H' bridge power amplifier

within the motor's torque cycle. The encoder that was selected had the maximum obtainable
resolution that fitted this requirement of 360 slots per revolution.

For the commutator in the motor controller to function correctly, the parameters that
define the motor's torque must be determined. It was determined that the motor would be
operated in half step mode to increase the accuracy of the control. One of the parameters that
the controller requires is called the ring register and must be programmed with the number
if quadrature counts in the torque cycle. As 96 half steps corresponds to 360 * 4 quadrature
counts, and there are eight half steps in a torque cycle, the value of the ring register is 120.
Figure 6.20 shows the phase sequencing over a torque cycle. The commutator's sequencing
is programmed in terms of the number of quadrature counts for which one phase is active
(x), combined with the length of overlap between adjacent phases (y). For the half stepping
mode, both these values are set at 15 quadrature counts. The Index pulse must be aligned
to the start of the commutation cycle, and this is performed by energising the last phase of
the motor (phase D) and then fixing the encoder index pulse to this position. However, to
perform fine adjustment of this alignment between the electrical and the mechanical torque
cycle the offset register is used.

There are four outputs from the motor controller to the four phases. These can be com­
bined with the PWM signal to form a drive signal for the motor. By using the phase signals in
conjunction with the PWM information, the motor phases are powered only when required
and not continuously as in most stepper motor applications. This offers significant power

109

Index
Pulse

Phase A

Phase B

Phase C

Phase D

Quadrature counts
0 15 30 45 60 75 90 105 120

A
X

X

X

One Commutation Cycle

X

Figure 6.20: The stepper motor commutation cycle

savings which lengthens the robot's operational time. Figure 6.21 shows the combination of
these signals by means of AND gates. Figure 6.22 shows the power electronics that take these
signals which drive the four transistors and power the four phases of the' stepper motor.

6.4.5 The Ultrasonic Ranging System

Of all the information gathering systems on the robot, the most important are the range
.gathering sensors. These are required to gather distance information from which the robot
can infer structure about its environment. A cheap and readily available type of sensor
virhich is used extensively in mobile robot applications are the Polaroid sensors. These are
time of flight devices which emit a ultrasonic pulse of sound whose round trip from sensor to
object can be timed. The simulation experiments suggested that about eight sensors would be
required for this control application, but there is always a balance between angular resolution
in the sensor system and rapidity of firing. More sensors give this increased resolution but the
total sensing time is lengthened, as each sensor has a unique firing duration. It was therefore
decided that eight Polaroid sensors would be used. However, if a greater angular resolution
is required, the head assembly can be rotated so that more readings can be taken at difi"erent
angles.

The Polaroid sensors handle the analogue electronics which are required to operate the

110

PWM

Phase A *~

Phase B

Phase C

Phase D *~

Drive A

Drive B

Drive C

Drive D

Figure 6.21: The logic interface

+ 12V

Drive A

OV

1N4007

Drive B

1N4007

Drive C

TIP121

1N4007

Drive

TIP121

D -

IN4007

TIP121

Figure 6.22: The stepper motor circuit diagram

transducers, but the electronics for timing and interfacing the sensors to the computer had to
be developed. These were developed with reference to the functionality of the 29K computer
board. This computer board does not support extensive interrupt facilities, and hence any
sensor system must not overburden the main processor. The system must also be versatile
enough to be able to implement a sensor firing scheme called Error Eliminating Rapid Ultra­
sonic Firing (EERUF [44]), which was developed by Borenstein to reduce errors in ultrasonic
sensors. This is based upon each sensor being fired after a specified delay which alternates
between firings. Although it increases the complexity of the firing system, it can detect
crosstalk errors which lead to erroneous distance readings. To satisfy these conditions the
system was based in hardware, which offers fast control and accurate event timing and is
also easily accessible by the computer board. The computer would only be required for light
interrupt handling leaving its CPU free for other processing.

I l l

The aim of the EERUF scheme is to be able to use standard ultrasonic sensors and
eliminate the errors associated with crosstalk. The basis of this method is that the time
of flight of an ultrasonic pulse is constant over a fixed distance irrespective of when that
reading is measured. However, the consistency of crosstalk efl'ects depends on the relative
firing times of interfering sensors. Therefore by altering the times at which sensors are fired
it must be possible to determine which sensors are experiencing crosstalk and which are not.
The actual EERUF synchronises the sensors to a fixed repeating period. Figure 6.23 shows
this firing scheme in operation for two sensors A and B. The sensors are only allowed to fire
after a fixed delay time from the start of the period. These specified delays are alternated
between successive firing periods. The diagram shows the effects of a crosstalk path that
exists between sensor A and B. Sensor B's own ultrasonic pulse is still in flight when A's
pulse is received by the sensor. Only by observing another reading is it possible to determine
that B's distance is alternating in length and therefore it must be erroneous.

Sensor A

Sensor B

Crossta k Crosstalk Crosstalk

Figure 6.23: The error ehminating rapid ultrasonic firing scheme

The method by which this system was implemented was to have two event timers dedicated
to each sensor. One of the timers stores the delay time and the second timer records the time
of flight of the pulse. There was also a main period timer that produces the synchronising
periods. The power to all the ultrasonic sensors can be switched on or off in software, so this
can be used to reduce the battery drain when they are not operating.

The ultrasonic sensors are set-up as an interrupt driven system thus freeing the processor
for other tasks. To operate the sensor system, the hardware is initiahsed and a period counter
is set to the number of firing rounds plus two. After the period timer has been started the
system is purely interrupt driven. Figure 6.24 shows the sequencing of the sensor firing broken
up into periods. These periods are created by the period timer which can be programmed
with a delay interval. At the end of the delay, the timer causes an interrupt in which all the
sequencing routines are operated. This delay interval can be repeated by simply writing a
new delay time to the period timer again. At the start of the first period after the sensors

112

Period Count n (n-1) (n-2) 0

Power up
sensors

.ictive

No firings
Power down

sensors

Loading the period timer

Figure 6.24: The sensor firing period timing diagram

have been powered up, they are allowed to settle. Then the firing rounds are performed with
each sensor system being triggered at the start of each period. At the penultimate period
interrupt, the sensors are not fired so that sensors still operating from the previous period can
finish. At the last interrupt the sensors are powered down, the period sensor is not re-loaded
and the sensing is over.

Period timer

Delay timer delay time

Range timer time of flight

Sensor state sensor active

U.S. interupt interupt request

Figure 6.25: The ultrasonic sensor timing diagram

At the start of each firing round all the delay timers are programmed with their own odd
or even delay times dependent on the period count. As soon as the value is programmed, this
starts off the delay timer, and the rest of the timing is controlled by hardware. Figure 6.25
shows the timing diagram for an individual sensor. When the delay timer is finished it
triggers both the range timer and the ultrasonic sensor circuit. The range timer is a down
counter programmed with a maximum sensor time, and if the sensor does not return an
echo value before this finishes, an interrupt is requested. In normal operation when the

113

sensor receives the incoming echo pulse it stops the range timer and requests an interrupt.
As well as requesting an interrupt, a bit is set in the Ultrasonic Sensor register to indicate
which sensor called it. Each bit corresponds to one sensor module and they are arranged
in ascending order with the LSB corresponding to sensor module 0. The interrupt request
calls an interrupt service routine which examines the U.S. register to determine which sensor
requested an interrupt. The range time for the sensor is then recorded in a global structure
allocated to store the full sensor data. After this, the range timer is reprogrammed with the
maximum range time. The hardware controlling the sensor is reset by writing a 1 into the bit
of the calling sensor in the U.S. register. Then the sensor is ready for the next firing interval.

After all the sensors have concluded firing, a software routine is called which takes the
raw timer information from the global data structure and processes it to determine which
sensors have measured valid distances, and which have been affected by crosstalk. This yields
the eight range distances and a confidence value for each of them.

6.4.6 The Hardware Implementation of the Ultrasonic Ranging System

The overview of the total ultrasonic sensor system is shown in figiure 6.26. The sensors are
split into eight identical sensor modules. Each module handles the timing and the low level
signalling required to interact with the Polaroid sensor driver circuit. The driver circuit has
been modified so that it can be operated in its normal mode, and in a short range mode
which can decrease the minimum range of the device. The selected mode is applied to all the
sensors and therefore is directly set by the short range enable line. The other direct control
line from the computer board is the ultrasonic sensor enable which also controls the power
to the sensors. The main register which is used to assess the state of the sensors and reset
them as required, is the Ultrasonic Sensor Register (U.S. Register). If a bit is set in this
register it indicates that the corresponding sensor module has requested an interrupt. If a
bit is written to this register, it resets the hardware in that particular sensor module. The
values of this register are combined by means of an AND gate which is used to trigger a level
sensitive interrupt line on the computer board.

The timers that are used in the ultrasonic ranging system are down counters which can
be programmed to operate in different modes. The period timer is one of these down coun­
ters operated in mode 4 which is a software triggered strobe. Figure 6.27 shows the three
connections to the counter and their interactions in this mode. In the example a value of

6 is written to the counter (c=6 on the WR line). Once the value has been written to the
counter the down count begins based on the clock (CLK). The counting can be halted by a
low value on the GATE pin and when this value is raised, the counting begins again. The
OUT line which is normally high, strobes low when the count value reaches zero. Hence the
period timer interrupt on the computer board is set to be inverted edge sensitive.

The schematic diagram for each of the sensor modules is shown in figure 6.28. This circuit

114

U.S. Sensor
enable

Short range
enable

29K

CPU

Board

U.S. interupt

Period timer
interupt

U.S.Power

U.S. Register
bit

Interupt 0

0
Interupt 0

0 Reset 0
•—«

0
— - *

1

— - *

Interupt 7

7
Interupt 7

7 "~" Reset 7
— «

7

+5V

Sensor Module 0

Sensor Module 1

Sensor Module 7

Period
timer

Figure 6.26: The schematic diagram of the sensor system

coordinates the delay timer, the firing of the sensor, and the timing of the flight of the echo
pulse. The delay timer is programmed by software as described previously. On the completion
of its count, OUT strobes low and if the sensor enable is active, causes the Set/Reset latch
to be set (this latch is actually implemented using a JK flip flop for synchronising purposes).
The output of the latch sets the initialise line INIT to become active. This starts both the
sensor circuit operating and sets the GATE on the range timer high, which enables the range
timer to start counting. An interrupt is caused by either the sensor circuit detecting an echo
pulse and setting ECHO high, or by the range timer counting down to zero and pulsing OUT
low (the range timer is pre-programmed with the maximum range time). The interrupt is
latched into the U.S. register and also resets the hardware ready for another delay timer
output.

The delay and range tirners are designed to meet different objectives, the delay timer for
versatility in time duration, and the range timer for accurate timing To solve this problem
the timers were run off different frequency clocks. The counters are 16 bit and therefore
have a maximum count of 2̂ ^ = 65536. The delay timer's clock is 62.5 kHz, whereas the

115

Down
counter

* C L K

— GATE GATE

OUT

Mode 4: Software Triggered Strobe

C L K RJIJIJIJUIJIJIJIJ^^
W R

G A T E

O U T

6 5 4 4 3 2 1 0

Figure 6.27: The down counter's operation i n mode 4

+ 5 V supply

Short range
enable —

Delay OUT ,

timer

Sensor
enable

Reset
sensor n

Sensor circuit ECHO

timer

Interupt
sensor n

Figure 6.28: The schematic diagram of the sensor module

116

INIT

BINH

Transmit
(internal)

Blanking
(internal) 2.38ms

ECHO

Figure 6.29: The Polariod sensor operating cycle

range t imer 's clock is 250 kHz, which gives maximum t i m i n g intervals of 1048 ms and 262

ms respectively. Hence, there is a greater accuracy in the range measurement, but more

versat i l i ty i n firing times for the delay.

The schematic diagram for the sensor circuit is dependent on the operation of the Polaroid

sensor driver circui t . I n order to understand the signals that are required to mod i fy the circuit

for short range operation, the method of operation of the Polaroid circuit must be reviewed.

The Polaroid ultrasonic ranging module is an active t ime of flight sensor which is widely

used i n mobile robotics predominantly due to its ease of use and low cost. The module

comprises one circuit board and a transducer which is used as bo th a transmitter and a

receiver for the ultrasonic pulse. This pulse frequency and durat ion is controlled on the

c i rcui t board and is set at 49.1 kHz. The m i n i m u m and max imum ranges specified for the

module are 20 cm to 10.5m respectively.

A typica l operating cycle is shown by a t iming diagram i n figure 6.29. Af t e r the circuit

has been powered up by supplying 5 volts to Vcc the sensor is ready to fire using the initialise

signal (I N I T) . Taking I N I T high triggers the 16 pulse transmit signal which drives the firing

transistor of the transducer. There is an internal blanking system which stops the receiver

c i rcui t f r o m operating u n t i l the transducer's oscillations have abated. Unless the Blanking

I n h i b i t (B I N H) is activated this durat ion is fixed to 2.38 ms which hmits the shortest mea­

surable distance. The module automatically increases the gain of the receiver amplifier over

t ime to compensate for the loss i n echo strength. When the re turn echo exceeds a threshold

i n the receiver, the module indicates this by dr iv ing E C H O line high.

For the circui t to be useful for measuring shorter distances then 20 cm, some additional

117

V

INIT

BINH

Transmit
(internal)

Blanking
(internal)

0.4ms

I I I ^
=». =».

ECHO

Figure 6.30: The Polaroid short range operating cycle

c i rcu i t ry must be used. I t is possible to reduce the length of the t ransmit ted burst and reduce

the t ime taken for the oscillations i n the transducer to dampen down. This can be achieved

by replacing the pulse c i rcu i t ry w i t h a custom made design. Figure 6.30 shows a short range

operat ing cycle where the number of t ransmit pulses has been reduced from 16 to 4. The

B I N H line is then asserted 0.4 ms later which forces the internal blanking off. This is the

shortest reliable t ime for blanking that was empirically found. The short range system allows

distances to be measured down to about 7 cm.

I n order to switch easily between operating the sensors i n long range, or short range mode,

i t was decided to reproduce i n hardware the circuit on the sensor for creating the transmit

pulses. These reproduced t ransmit pulses were then wired i n place of the originals on the

driver circui t board. This enables the number of pulses to be easily controlled, and allow

synchronising of the blanking signal to them.

Figure 6.31 shows the schematic diagram for the circuit that drives the Polariod sensor

driver c i rcui t . When the I N I T line goes high, indicating the start of the transmit , a clock

runn ing at the frequency of the t ransmit pulses is started (50 kHz) . There is a separate clock

for each module so tha t the clock is synchronised to the asynchronous I N I T signal. The clock

drives a counter which is used to sequence the events. I f the short range enable line is high,

the blanking inh ib i t circuit activates B I N H 0.4 ms after the I N I T pulse, as determined by

the counter value. The pulse generator circuit gates the clock signal to produce the transmit

f i r i n g pulses (X M I T) . I f the short range enable line is high, then only four pulse are gated

through, i f low then sixteen pulses are allowed to pass. The X M I T line is replaced on the

Polar iod sensor driver circuit for the original f i r ing pulses.

118

+ 5 V supply

Short range
enable

INIT 50 K H z Counter
Clock

Counter
Blanking
Inhibit
Circuit

Pulse
Generator

BINH

Polaroid
Sensor

Driver

Circuit

^ INIT

ECHO

Figure 6.31: The sensor circuit

6 . 4 . 7 T h e Magnet ic Sensor Sys tem

One of the ma jo r error modes associated w i t h mobile robotics is positional d r i f t over time.

The x,y d r i f t can be compensated by reference to sensors, such as range measures that

direct ly relate to these coordinates. However, rotat ional d r i f t errors would affect the range

measurements and are harder to differentiate f r o m standard sensor noise. Therefore i t is

useful to have some f o r m of ro ta t ion sensor that could be used as a reference.

The most obvious sensor for this is a magnetic compass, which senses the direction of

the earth's magnetic field. The commercial electronic compass systems are expensive, so a

cheaper alternative which s t i l l gives accurate values was devised. The system is based on a

new low cost saturable core magnetometer sensor produced by Speake & Co. L imi ted . Each

sensor costs £ 1 4 and produces a pulse t r a in whose frequency is inversely proport ional to the

magnitude of the field strength. The non-linearity of the sensor is documented in [45] at 5.5

per cent over the range ±0.5oersteds, which relates to the earth's field strength of about

0.5 oersteds i n the U K . B y mount ing two of these sensors perpendicular to each other, the

ambient magnetic field strength and direction can be determined.

The most accurate method for moni tor ing the two sensors, is by counting the number of

pulses f r o m each sensor over a fixed interval. This can be easily achieved by using three down

counters, one for controll ing the interval durat ion, and the others for counting the pulses.

The counter tha t was used to create a t i m i n g interval was operated in mode 1 which is shown

i n figure 6.32. The counter is in i t i a l ly wr i t t en to, w i t h the length of the interval over which

the value of O U T w i l l be low. A f t e r this has been set, i t can be repeatedly triggered w i t h a

pulse to its G A T E . ' ,

119

Mode 1: Programmable One-Shot

CLK

WR

GATE

OUT

c = •

4 3 2 1 0 4 3 2 1 0

Figure 6.32: The down counter's operational mode 1

Figure 6.33 shows the circuit schematic of the magnetic sensor hardware. The counter 0

is used for the interval t i m i n g and is operated in mode 1. When the magnetic trigger line

is pulsed high, O U T 0 goes low for the pre-set t ime interval. This magnetic trigger pulse is

created i n the hardware whenever the hardware trigger address is wr i t t en to. The inverter

drives b o t h G A T E 1 and G A T E 2 high therefore allowing counter 1 and 2 to count the pulses

f r o m sensors A and B respectively.

The sequence for operating the magnetic sensor after the counter 0 has been initialised, is

to wr i t e a known value to counters 1 and 2 and then to wr i te any value to the magnetic trigger

address. A f t e r a short interval, the values of counters 1 and 2 can be read. The number of

pulses f r o m a sensor is therefore the original known value minus the read count. These two

values can be processed by software to give the values of f ie ld intensity and direction.

6 .4 .8 T h e E i g h t Col l i s ion Detectors

There are eight collision detectors, each of which is mounted beneath an ultrasonic sensor

transducer. W h e n the robot colhdes w i t h an object i t is important for i t to be able to respond

immediately. The collision system has been implemented to create software interrupts that

pe rmi t a fast response. Figure 6.34 shows the schematic diagram of the system. Whenever a

collision switch is activated i t sets the corresponding b i t i n the CoUision Sensor register (C.S.

register). The A N D gate drives the C.S. interrupt line high causing a collision sensor inter­

rup t . Figure 6.35 shows the collision detector circuit which is composed of the microswitch

coUision sensor, and two N A N D gates. This provides a 'de-bounce' for the switch, and an

in te r rup t signal which can be reset by software.

120

250kHz
Magnetic
Trigger

Sensor A

•—
C L K O

G A T E O

O U T O

C L K O

G A T E O

O U T O

C L K O

G A T E O

O U T O

C L K O

G A T E O

O U T O

Sensor B

Counter 0
Mode 1

C L K 1

G A T E 1

OUT 1

C L K 2

G A T E 2

OUT 2

Counter 1
Mode 4

Counter 2
Mode 4

Figure 6.33: The magnetic sensor schematic

C.S. Intempt

C.S. Register

0 Reset 0
5» Collision Detector 0

1

Collision 7

Collision Detector 1

Collision 7

• • •
7. Reset 7

5* Collision Detector 7

Figure 6.34: The schematic diagram of the collision system

121

+5V

Collision n

Reset n

Collision plate

Figure 6.35: The collision detector diagram

6 .4 .9 O t h e r H a r d w a r e Facil i t ies

There are two outpu t registers which are called the L E D register and the output register, at

P I A addresses C I and C2(Hex) respectively. The L E D register, as its name suggests, is used

to drive the bank of 8 l ight emi t t ing diodes on the control board. The other output register

is of more general purpose. The lower 4 bits are used to drive the four phases of the stepper

motor tha t rotates the head assembly and the upper four are unused. The LSB of the register

activates phase A and setting any of these bits high causes the corresponding motor phase

to be powered on. These can be sequenced i n software to drive the motors.

There is also a red bu t ton mounted on the control board which can be monitored by

software. This provides a l imi ted f o r m of signalling to the robot control system when i t is

operat ing autonomously. I t can be used to indicate to the robot to commence a task.

6.5 The Computational Systems

The robot control system is based around the SA-29200 Demonstration Board [46]. This

is an Am29200 RISC microcontroller-based system which is bu i l t on a single wallet sized

card. I t has E P R O M for s tar t ing its operating system, 1 Mbytes of Dynamic R A M (D R A M)

organised as 256K x 32 bits and an RS-232 serial communications port . Also there is an ex­

pansion interface which allows f u l l access to the microcontroller's signals. This demonstration

board offers a small, low power consumption, high performance embedded computer, which

comes w i t h software allowing i t to be operated f r o m I B M - A T compatible computers. Of the

122

available computer systems its combination of funct ional i ty of a microcontroller design w i t h

ease of use, prompted its selection.

The demonstration board comes w i t h debug monitor software which can be used to down­

load programs over the serial line (RS-232) and execute them. The standard rate for data

transferral is 9600 baud. However the E P R O M which contains this development software

has been reprogrammed w i t h software which operates at 38400 baud. This has the advan­

tage of quicker download times and faster communications. A n important aspect for the

autonomy of the robot is that the serial communication line can be disconnected and then

reconnected wi thou t causing any system or communication errors. This can be done as long

as no communicat ion is at tempted dur ing the period of disconnection.

A l l programs that are to be executed on the board must be first compiled on the host

computer using a cross-compiler. The serial line must be connected f r o m the host to the board

when the board is powered up. The M i n i M 0 N 2 9 K monitor software which is supplied w i t h

the system is then started. This establishes communication w i t h the board after which the

executable program can be downloaded and executed. I f required the program can suspend

communicat ion to the host, the RS-232 can be temporari ly disconnected, leaving the robot

to operate autonomously. The RS-232 can be reconnected later for downloading back to the

host any r u n t ime informat ion .

6.6 The Summary

This chapter has examined i n detail the design and considerations behind the construction

of the prototype mobile robot. A f t e r showing why i t was necessary to transfer the problem

f r o m simulat ion to a real robot, the breakdown of the design into physical, electronic and

computat ional elements was described. Al though highly interlinked, each of these elements

could be considered to func t ion at a different level of abstraction.

The description of the mechanical chassis covers the reasons for the selection of the syncro-

drive assembly to the f u l l descriptions of al l the mechanical assemblies. I n the electronics

section the low level computer interfaces are examined, followed by descriptions of the systems

behind the robot 's actuators and sensors. Final ly the robot's 29K computational systems are

over vie wed.

So far only a description of the robot systems has been documented. I n the next section

many of the robot 's systems w i l l be subjected to basic tests to assess their performances.

Th i s commissioning of the robot allows the design requirements to be validated. This w i l l

also generate in -dep th knowledge of the functions and potential interactions of the many

sub-components of the system.

123

Chapter 7

The Robot Hardware Assessment

7.1 Introduction

Before any of the experiments on the robot could be conducted, i t was necessary to undertake

an accurate assessment of i t sensors and actuators. This was carried out, not only to calibrate

the various sub-systems, but to develop a greater understanding of the physical interactions

of the robot w i t h its environment. Only through a detailed knowledge of this interaction

could the subsequent actions of a robot controller be f u l l y understood.

The f i rs t set of tests examined the basic mobi l i ty of the robot including its performance on

different floor surfaces, and an assessment of the odometric system's accuracy. Subsequently

the active range measurement system was investigated, looking at the effects of crosstalk

between sensors and the abi l i ty of the Error El imina t ing Rapid Ultrasonic F i r ing (EERUF)

scheme to reveal this. Another factor which affects the capability of these sensors to operate

effectively is the ref lect ivi ty of the environmental walls. I t was therefore necessary to take

relative differences between wal l surfaces into account. Finally, the magnetic field sensors

were calibrated and adjustments were then made to improve their measurement accuracy.

7.2 The Assessment of the Robot's Mobility

There are two general purpose mot ion control ICs used for controll ing the movement of the

robot w i t h i n its environment. One of these creates the drive signals for the stepper motor,

which controls the direction of travel of the robot. The other I C controls the D C motor

which provides propulsion. These controller ICs are highly versatile and can be operated in

different modes dependent on the specific apphcation. These modes, where applicable, w i l l

be described below. The f u l l specifications for these devices are contained i n the technical

data [47].

The most basic mode of operation is the Position Control Mode which performs point

124

to poin t movement between the actual posit ion and a given a command position. This is

achieved internal ly on the I C by calculating the positional error and then applying f u l l d igi ta l

lead compensation to create a motor command output . The selection of the compensator's

parameters is control s i tuat ion specific, which can lead to different sets of parameters being

used for different modes of operation.

There are also two modes for the control of the motor's velocity. The first of these methods

is the Proportional Velocity Control. I n this mode a 16 b i t command velocity is compared

w i t h the actual computed velocity, and the motor command is driven i n propor t ion to the

error between these values, using the gain value K . The second is the Integral Velocity Control

Mode which internal ly implements velocity prof i l ing through posit ion control. I n this mode

b o t h a 16 b i t velocity command can be specified along w i t h an 8 b i t desired maximum

acceleration. The fundamental difference between the two modes is that , i n integral velocity

mode, there is zero steady state error i n the velocity. However i t is more diflScult to at ta in

closed loop stabil i ty.

The final control mode is the Trapezoidal Profile Mode which is a point to point position­

ing mode. I n this mode a desired acceleration, maximum velocity and a final position are

specified and the controller performs velocity prof i l ing to move to the final position. I f the

m a x i m u m velocity is reached, the profile is trapezoidal w i t h the velocity being accelerated

and decelerated w i t h i n the desired acceleration l imi ts . Otherwise i f the max imum velocity is

not reached, the profile is tr iangular. The trapezoidal profile is implemented internally, using

the integral velocity profile mode, and therefore there is no steady state error i n the velocity

values. There can however be steady state error i n the final position.

Not a l l the modes are used by the controllers of the D C and stepper motors. The stepper

motor tha t controls the point to point positioning of the wheels is a relatively high f r i c t ion

low iner t ia system which can a t ta in max imum angular velocity i n a short period of time. I t is

therefore more suitable to control this w i t h the position rather than the velocity control mode.

Also because of the inert ia and f r i c t i on there would be no advantage in using trapezoidal

velocity prof i l ing . However the use of the different modes for the D C motor would be very

appl icat ion specific. I n this system where large distances might be covered, the inert ia is a

more impor tan t factor than the f r i c t ion . Therefore the use of position, velocity, and velocity

p ro f i l i ng become impor tant . This is especially so in the case of velocity prof i l ing, where

m a x i m u m desired acceleration l imi ts can be specified to avoid wheel slippage.

I n b o t h the posi t ion control, integral velocity, and trapezoidal velocity profiUng modes f u l l

d ig i t a l compensation is performed by the controller. This compensator D{z) has the fo rm of

equation 7.1, where K is the d ig i ta l filter gain, A is the digi ta l filter zero and B is the digi tal

filter pole. Each of these values has a range of 0-255 and can be indiv idual ly programmed

in to the controller. The selection of these parameters is therefore dependent not only on the

desired response of the system but also on the actual system itself.

125

Control ler Dr ive A m p l i f i e r Motor and Load Encoder

Position
input K e (l + a s)

Ka E

Position
output

(counts) (1-t-bs) (counts) Ka (volts) s (s T ^ ^ l) (s T E + l) (metres) E (counts)

Figure 7.1: The transfer func t ion of the system

D{z) =
4 (- 2 f e)

(7.1)

I n the case of the steering mechanism i t is d i f f icu l t to model the system adequately as

i t is h ighly dependent on floor surface f r i c t ion and the robot's motion. To compound this

problem the stepper motor's speed saturates to its maximum value i n about 10 ms. I t was

therefore decided to use the controller as a proport ional controller by setting A and B equal

to zero w i t h a gain selected empirically. Low values of gain would not keep the wheels close

to the forward direction when moving, however too high values caused oscillations. A gain

value of 40 was selected which was below the oscillatory value for bo th smooth and carpeted

floor surfaces but which was high enough for wheel alignment.

The D C motor and its associated system could be far more prof i tably modelled. To be

able to determine the open loop transfer funct ion , the components i n the system model had

to be calculated. As the sampling t ime is small i t was decided to model the system i n the

s-plane ut i l i s ing analogue design techniques. The fol lowing determination of the open loop

transfer func t ion is as suggested i n technical data for the controller [48]. I n the li terature the

controller's parameters were calculated by the combination method. I t was decided however

tha t the design would be by examination of the root locus i n the s-plane followed by a

mapping in to the z-plane.

The open loop transfer of the controller and the system model is shown i n figure 7.1

which starts w i t h the lead compensator's Gc{s) input , which is the posit ion command. Gc{s)

is shown i n equation 7.2 and has a zero at —^, and a pole at —^ w i t h a gain of Kc- Here the

ou tpu t of the controller is the P W M motor command which forms the input to the H bridge

power amplif ier .

Gc{s) -
Kc (1 + as)

(1 + bs)
(7.2)

The transfer func t ion of the power amplifier can be determined by relating the average

voltage produced by the H bridge to the mark to space rat io or duty cycle of the corresponding

P W M wave-form. The calculation of the gain is shown i n equation 7.3 f r o m the maximum

126

and m i n i m u m outputs of the amplifier are ± 1 2 for duty cycles of ± 1 0 0 counts.

[Max imum Voltage Output] — [Min imum Voltage Output]

[Maximum Duty Cycle] - [Min imum Du ty Cycle]

^ [1 2] - [- 1 2]

[100] - [100]

= 0.12 (7.3)

The transfer func t ion of the motor G{s) which is driven by a voltage source is dependent

its mechanical t ime constant TM (seconds), electrical t ime constant T g (seconds) and its gain

constant K^v (metres/volt-sec). Normal ly the units of the gain constant are rads/volt-sec.

However the model of the motor and load and the subsequent encoder have been described

i n terms of distance travelled over the ground in metres. The mechanical t ime constant of

the robot was experimentally calculated by measuring the t ime taken for i t to reach 63% of

its f u l l velocity which was 0.15 seconds. As TE TM, the TE t e rm was neglected s imphfying

the equation fur ther . A value for KMV can be defined as the velocity of the robot when the

D C motor is being driven w i t h 1 volt across its terminals. Taking the maximum velocity of

the robot to be around 30 cm/s at 12 volts makes KMV = 0.025. Equation 7.4 shows the

derivat ion of the motor 's transfer func t ion G{s)

G{s) =
Position Outpu t ^(s)

Voltage Input v{s)

KMV

S{STM + 1){STE + 1)

0.025

s(0.155 + l)
(7.4)

The final element of the open loop transfer func t ion E is the encoder which converts the

distance travelled by the robot i n metres into quadrature counts. E was calculated to have a

value of 10575 (counts/metre). Therefore the transfer func t ion of the system Gp wi thout the

controller is shown i n equation 7.5.

From these transfer functions i t was possible to design different controllers using stan­

dard s-plane design techniques to produce a range of responses for test purposes. Af te r the

controller has been selected, the analogue controller can be mapped into the 2;-plane to be

implemented on the d ig i ta l c o n t r o l l ^ . The mapping was performed by using Tustin's Bilinear

Rule shown i n equation 7.6. W i t h such a fast samphng t ime T = 0.002048 (seconds) and

127

dealing w i t h low frequencies the effects the use of pre-warping would be significantly less than

the errors introduced by having to quantize the values of A, B and K into the range 0-255.

Therefore no pre-warping was performed.

The above analysis assumes that the system is linear, but this is not the always the

case. The main non-linear effect is caused by the voltage l imits w i t h i n which the amplifier

must supply the motor. Lesser effects are backlash i n the drive transmission to the wheels,

slippage of the wheels, and static f r i c t ion . Therefore, although the linear modelling of the

system cannot give adequate account of aU the system's behaviour, i t can provide useful

in fo rma t ion dur ing predominately linear operation. A n impor tant example would be the

final stage of posit ioning control when the motor is not operating i n saturation.

Having modelled the system the required response must be determined. One of the most

basic requirements of this control system is that i t should be able to reposition the wheels

given a small posit ional disturbance. This condit ion can occur when the robot is on a f r ic t ional

surface and attempts to t u r n the direction of its wheels using its stepper motor. Under such

circumstances instead of the wheels processing about a circle beneath the robot, this extra

f r i c t i o n fixes the wheels, and the robot's frame then gyrates w i t h respect to the ground. This

unwanted effect can be eliminated by a correctly tuned control system for the D C motor.

Consider the case when the robot attempts to change the direction of its wheels by turn ing

them clockwise. I f there is suflacient f r i c t i on the wheels w i l l not move i n a circle but instead

force the robot to rotate about the point of contact w i t h the ground. This rota t ion w i l l be

clockwise and force the encoder wheel to rotate around i n a circle beneath the robot. As this

encoder is the feedback monitor for the drive control system, this disturbance of its position

w i l l cause the D C motor to be powered to counter this backward mot ion of the encoder.

Hence the drive motor w i l l provide forward motion, forcing the wheels off their point of

contact w i t h the ground, and causing them to rotate beneath the robot. I f this response is

fast enough the encoder w i l l be forced back towards its i n i t i a l posit ion and hence the frame

of the robot w i l l be actively fixed in place. The wheels now describe a circle beneath the

robot being driven by the D C motor to overcome the effects of f r i c t ion . This however relies

on the drive control system having a fast response.

I n the tests three different control set-ups, or cases, were used to produce different re­

sponses i n the system. They have been numbered 1 to 3. Case 1 is a purely proport ional

controller w i t h A = 0 , B = 0 and the m i n i m u m gain of K = 1. Prom the calculated theoretical

model of the system this produces closed loop poles at s = -3 .33 ± 6.46j w i t h a damping

factor C = 0.46 and natural frequency a;„ = 7.27 rads/s where Kc = 0.25. Which should

give a percentage peak overshoot of p = 100 exp v /w^ = 19.6% and a 5% setthng time

128

0 .14

0 .12

_ 0 .1
<D
U

^ 0 .08

(U
^ 0.
16

4-1
W

° 0 .04 I -

0 .02 h

1 !
C a s e
C a s e

1
2
3 - - -

1
2
3 - - -

/
/ '

li

h

ji

li

/
/ /

/ /
/ /

0 .2 0 .4 0 .6 0 .8 1

Time (Seconds)

1.2 1.4 1 .6

Figure 7.2: The robot's step response at different gain values .

of is ~ = 0-90 seconds. Hence the range of possible values of K means that only an

underdamped purely propor t ional controller can be created.

To compare the performance of the real system w i t h the model, a step input of 0.1 meters

was given to the closed loop system w i t h the controller set-up as case 1. As the system has

been modelled as a second order system, estimates can be made as to the rise t ime U = 0.166

seconds (using simulation), percentage peak overshoot p = 19.6% and t ime to first peak

ip = 0.486 i--^) seconds can be predicted and compared to the recorded values. The step

response of the robot under the control of case 1 is shown i n figure 7.2 and f r o m this the

fo l lowing values were taken: tr = 0.48, p = 24% and tp = 0.64. Al though tr is greater than

ir this could be explained by saturation of the motor's response, however ip — ir = 0.166 is

approximately equal to tp — tr = 0.16 which is i n the linear range. The shape of the recorded

response is very similar to that produced using the control software package CODAS. One

observed difference i n the tests is that the final value is not as predicted, but this is probably

related to static f r i c t i on and backlash. Hence i t appears that the results f r o m the system

model correlate well w i t h the observed response in the linear region.

I n case 2 a lead compensator was designed to improve the performance of the proport ional

controller. As the motor has two poles one at the or igin and one at -6.66, the controller's

zero was placed at a value of-10.0. The controller's pole which must be positioned fur ther to

the lef t for a lead compensator was provisionally placed at -2000. This configuration bends

the root locus i n a circle around the zero and allows for decreased settl ing times at higher

129

values of damping factor and therefore smaller values of overshoot. W i t h values A = 251,

5 = 88 and i f = 82 we get Kc = 0.2979 and poles at s = -6 .49 ± i4.59 giving w„ = 7.95

and C = 0.816. This gives theoretically estimated values of a 5% settling t ime of ig = 0.46

seconds and a peak overshoot of p = 1.18%. This can be compared against the empirical

results shown i n the step response of figure 7.2 indicated as case 2. I t can be seen f r o m

the test that the response is significantly faster than case 1 w i t h a much reduced overshoot.

However there is s t i l l some steady state error that could well be a t t r ibuted to the non-linear

effects and the real system being higher than a second order system.

F ina l ly a value of gain for the above system Kc — 0.0836 was selected to produce a

cr i t ica l ly damped response. Keeping A = 251 and B = 88 the value of Kc relates io K = 23,

this corresponds to closed loop poles at s = -3.927 and s = -4 .512. I t is possible to calculate

the rise t ime based on analysis of the effect of the two dominant poles of the system. This is

defined as the t ime to go f r o m 10% to 90% of the final value and was calculated astr = 0.81

seconds. The actual response only reaches a final value of 0.082 but the rise t ime U measured

between 10% and 90% of this value was 0.55 seconds. I t can therefore be seen that at this

lower value of gain the f r i c t iona l effects that have not been modelled are start ing to become

significant.

I n the above work the system has been modelled and three different sets of parameters

have been selected to test bo th the accuracy of the model and the response of the system.

These three sets of parameters w i l l now be discussed i n relation to the normal operation of

the robot . T w o types of operation of the robot w i l l be considered; the response of the control

system dur ing a t u r n , and the response dur ing trapezoidal velocity prof i l ing.

Tests were conducted to determine the abi l i ty of the three sets of control parameters to

compensate for posit ional disturbances, thus keeping the robot i n posit ion dur ing a tu rn . The

robot was placed on a smooth surface and the wheels were rotated through 180° whilst the

error of the drive control system was being monitored. Figure 7.3 shows the results of the

tests for the three cases 1 to 3. One impor tan t factor to note is that as soon as the wheels stop

being turned these small values of the error stay fixed. This is most likely the effect of static

f r i c t i o n and hides the fur ther movement of the drive controller. I t can be clearly seen that the

turned controller case 2 provides the superior performance. Case 1 which is the underdamped

system does not adequately drive the response down, but performs considerably better than

the overdamped response of case 3. This is an important result as positional errors incurred

dur ing turns w i l l effect the accuracy of the robot's odometric estimate of position. Therefore

the parameters of case 2 are the most suitable for controll ing the robot's drive controller

du r ing a t u r n .

Another impor tan t aspect of the drive system's performance which must be investigated is

the trapezoidal velocity prof i l ing mode. This also uses the fuU digi ta l compensation feedback

and a set of parameters must be chosen that produces the most suitable performance. Unlike

130

0 . 008
C a s e 1
CAse...2
Case 3

0 .007

0 . 006

^ 0 .005

S 0 .004 h

" 0 .003 I-

;:; 0 .002 h-

0 .001 h-;

0 . 001
0 . 5 1 1 .5

Time (Seconds)

2 . 5

Figure 7.3: Displacement of the drive system for different controllers

the posi t ion to posit ion control of the drive system, the trapezoidal mode is not f u l l y docu­

mented i n the l i terature. Details of how the maximum velocity and the maximum acceleration

values are combined to set the command posit ion are not included. However i t is stated that

integral velocity prof i l ing is performed. Hence not all the informat ion that would be required

to theoretically predict the behaviour is available, and therefore the parameter selection was

performed based on observation. I t was found that underdamped system behaviour caused

a marked oscillatory acceleration and deceleration phase. During, this period the input to

the control system must consist of a set of ramp functions w i t h steadily increasing or de­

creasing gradients. Each change in gradient would produce a new transient response which

would explain the observed oscillatory nature. However an overdamped system, although i t

would have a greater t ime lag in response, would not overshoot and would therefore produce

a smoother change i n velocity.

Figure 7.4 shows the results of the trapezoidal velocity prof i l ing mode w i t h a specified

m a x i m u m acceleration of 1 and a max imum velocity of 7 (which is the largest value of the

velocity at which the drive motor can operate). The distance over which the robot moved was

1.5 metres, which is long enough for the robot to reach its max imum velocity. The result of

case 2's response shows the oscillatory acceleration in contrast to case 3 where the cri t ically

damped response is much smoother. Al though the response is smoother, there is a greater

t ime lag i n the response. Due to the smoother acceleration and deceleration characteristics

of the case 3 controller, i t was selected for use when the robot was in trapezoidal velocity

131

a o o
w
w
u
Q)
4J D
a

4J
•r^ u o
0)

>

0.35

0.3

0.25

0.2

0.15

0.1

0.05

-0.05

\\

: //V

J \
\ i
\ i
u
1 \
I \

• /

\ A\
\ V

AT*'
/ \ \

— I r
C^se 2 :-
c a s e 3

_L _1_
4 5 6

Time (Seconds)

10

Figure 7.4: Trapezoidal velocity profiling for difTerent controllers

profiling mode.

In summary, there are different sets of controller parameters that best suit different modes

of controller operation. When the robot is using the position control mode the parameters

should be set to case 2. However, when the robot is in the trapezoidal velocity profiling mode

the parameters should be set to case 3.

The odometric measurement system produces a positional estimate based on the infor­

mation gained from the drive and steering encoders. The simplest model for determining

the position of the robot assumes that the forward distance relates to straight line motion

and that the steering angle relates this angle of motion to some fixed starting datum. Both

these assumptions wil l be examined in further detail to assess the accruracy of this model and

provide suggestions and limitations for improvement.

Before any tests were conducted the wheels of the robot were ahgned. Although there is

l i t t le backlash on the steering drive transmission there wil l always be some small discrepancies

in the angles of the wheels^ In order to calculate this, the robot was placed on graph paper

and the true direction of each wheel was. drawn as a line. Prom this the true relative angles

of two of the wheels to the first were calculated at 0.24° and 0.48°.

An important assumption to test is that the robot moves in straight lines during purely

forward motion. In order to do this a felt-tipped pen was mounted to one side of the robot

and allowed to rest on a long sheet of paper stuck down to the floor. The robot was driven

132

u
4J
0)

s
w
0)
0)
S-)
t3)
0)

Q

(1)

(0

>

u

50 100 150 200 250

Wheel angle (Degrees)

300 350

Figure 7.5: Robot curve (degrees/metre) at different wheel angles

forward for certain distance and its path could be seen on the paper. Initially the robot was

driven under trapezoidal velocity profiling mode with the desired maximum velocity set at

its minimum value of 1 which is approximately 4 cm/sec. From the trace on the floor the

amount of curvature per metre could be assessed. This test was then repeated for different

angles of direction of the robot's wheels.

The results of this test for systematic error in the drive mechanism are shown in Figure 7.5.

The most striking feature is that unlike a differentially driven robot chassis (two wheels

operating on either side of the robot and independently driven) the curvature of the robot's

path is dependent on the direction of travel. Although the maximum curvature looks high

because it has both positive and negative components, its effects are often masked by the

robot moving in different directions. The major factors that could give rise to this curvature

w i l l now be discussed.

The most obvious cause for the directional curve is the misalignment of the wheels in

the initial set-up. I t is not simply the initial set-up which causes misalignment in the

direction of the wheels. This direction is maintained by the belt transmission from the

stepper motor and, as each belt has elastic properties, its extension wil l be related to the

force that i t transmits. This transmission force being that required to hold the wheel housings

in directional alignment. The angular forces aire caused by floor friction associated with the

robot moving at a constant velocity or undergoing acceleration. To compound the problem

each wheel has a different length of belt leading back to the stepper motor and therefore the

133

distribution of forces back to this motor wil l cause belt extension and misalignment. Hence

the misalignment wi l l be dependent on factors such as floor friction and the accelerations of

the robot.

Misalignment explains curvature in the robot's direction of travel, but i t cannot in itself

explain the change with respect to the direction of the wheels. This can be explained in terms

of wheel slippage. Each of the wheels when it is not slipping provides a propulsive forward

motion on the robot. I f there is any misalignment in the wheels this will cause conflicts in

the direction in which each wheel should move. This conflict wi l l result in slippage in some

of the wheels. The forward direction wil l then determined by the static friction from the

non-slipping wheels and the dynamic friction of the slipping wheels. Which wheel will slip

aind which wi l l not, is in turn dependent on the downward forces perpendicular to the surface

of the floor. This force, experienced by a wheel, is related to its position beneath the robot.

However, with the wheels mounted off axis, this position beneath the robot depends on its

direction. Hence the downward force on each wheel can be expressed as a sinusoidal function

dependent on wheel direction. Hence for different directions, different wheels slip, and the

curvature of the robot's path changes.

One possible method to reduce this problem is to attempt to model the system and com­

pensate for its effects. This could be achieved by using a 'look up table' made from detailed

measurements of the robot's performance or by mathematically modeUing the system and

calculating any discrepancies. The advantage of a 'look up table' is that i t would be fast to

implement in software but i t would require extensive tests over different velocities, accelera­

tions and floor surfaces. The problem with modelling is acquiring a model which adequately

models the system without being too computationally expensive. The underlying problem

with both these methods is that a poor compensation scheme can introduce additional error

thus compounding the problem. For this reason corrective compensation was not used in the

further experiments, but this is an important sensor area for further investigation.

The above analysis has only looked at those errors which are introduced into the odometric

positional estimate by systematic errors. There can be no modelling for non-systematic errors

which occur unpredictably and not as a direct result of any robot actions. At some level of

accuracy the odometric system must be accepted as having inherent errors which can only

be coped with as part of a larger control strategy.

7.3 The Assessment of the Ultrasonic Sensor System

In this section the actual operation of the ultrasonic sensor system will be examined in order

to determine the operational characteristics that can be expected. Initially basic tests wil l

be performed on the sensors, assessing the typical distance errors and the minimum ranges

of both the short and the long mode. Following this, the reflectivity of different surfaces to

134

ultrasonic frequencies wi l l be discussed. Finally the method of firing called EERUF, by which

the crosstalk between the ultrasonic sensors can be eliminated, will be assessed.

Initially the basic performance of the individual Polaroid sensor must be examined. As a

design feature the robot's sensory system incorporates two modes of operation of the ultra­

sonic sensors, these are the long and the short range modes. The long range mode operates

the sensor as originally designed, with a minimum range of about 40 cm, whereas the short

range mode is designed to operate down to around 10 cm.

The following test was designed to assess the accuracy of the two systems and their

minimum ranges after calibration. The calculation of the range distances depends on a

value for the speed of sound which was calculated for a temperature of 20°C at 343.11 m/s.

Figure 7.6 shows the error in the range results for the two systems as a function of distance

from the target. The short range system had a minimum range of 10 cm whereas the long

range had a minimum of 40 cm. I t can be seen from the figure that both systems produce the

same high accuracy distance values from 70 cm and above. Prom 70 cm and below the short

range mode has an increasing error but even at its maximum is only -1.55 cm. The above

results are after calibration of the sensors at a known temperature as this affects the speed of

sound and hence the absolute accuracy. The temperature change indoors is not sufficient to

adversely affect the results and therefore these affects were not investigated. The maximum

ranges of both modes depends on the scattering properties of the reflecting surface. In fact

both modes of the sensor were able to detect distances up to the documented maximum range

of 10.5 metres. I t was found that the long range mode would give more constantly accurate

results from poorly reflective surfaces that the short range mode could not detect.

One of the problems associated with a ultrasonic sensors for range measurement is that

this relies on the acoustic wave being reflected directly back from the object. This depends

on the angle of incidence and the reflective surface. For a given wavelength a surface falls

into one of two categories; smooth or rough. A smooth surface reflects all the incident energy

specularly in a single direction whereas a rough surface wil l reflect the energy in various

directions at different magnitudes. This property is frequency dependent, as the transition

between smooth to rough occurs when the surface irregularity dimensions cause the wave-

front to interfere with itself. Hence a surface that appears smooth for one frequency could

appear rough to a higher frequency. To calculate the transition between rough and smooth

surfaces we can use the 'Rayleigh Criterion' [49] which states that a surface is considered

smooth for

h < - ^ (7.7)
8 cos 7

Where h is the height of the surface irregularities, 7 is the angle of incidence and A is the

wavelength of the sound source. The ultrasound is at a frequency of 50 kHz and therefore

135

0.5

u
o
u
u
M
U O ra a <u
Ui

0 h

-0.5 h

-1 h

-1.5

S h p f t' R ari g e " Mo Sfe'
Lpng Rarige Mode

0 20 40 60 80 100 120 140 160

Range D i s t a n c e (cm)

Figure 7.6: The sensor error recorded a.s a function of distance measured

A = 0.00686 (m). Consequently i f the surface irregularities are below 0.857 mm then this

wi l l appear smooth for all angles of incidence. A 'normal' painted wall has irregularities far

below this value and wil l therefore be smooth for the ultrasonic sensors.

In the preliminary tests of the robot, its environment needed to be constrained to match

the simulated conditions. I t was important that the robot's responses could be seen in

simple environments with straight walls and acoustically visible objects. Therefore these

walls needed to be able to reflect at acute angles and hence be rough. To achieve this,

corrugated cardboard was taken and its backing removed. This creates a surface which has

regular undulations with a depth of h = 3 mm. Which from equation 7.7 makes a surface

which wi l l appear rough at angles of 7 < 73". This material was used to line the environments

of which the robot then used in all the main tests.

To enable the robot to detect crosstalk between its sensors or interference from the sensors

of other robots the EERUF scheme was employed. The EERUF is based on firing the sensors

at certain fixed times with respect to some synchronising pulse. The selection of these firing

times is based on some assumptions of operation. To evaluate the system the firing times of

the sensors were calculated based on the set of example values recorded in the original paper

that set out this method.

Although EERUF can eliminate crosstalk [44] i t is preferable to reduce the chances of

this occurring. In the original paper this was achieved by introducing time lags between the

136

Sensor 1 2 3 4 5 6 7 8

Tiag (ms) 0 25 50 75 100 125 150 175
^wait,a (ms) 24 24 24 24 24 24 24 24
^wait.b (ms) 18 12 6 0 20 14 8 2
Tfire.a (ms) 24 49 74 99 124 149 174 199
Tfire,b (ms) 18 37 56. 75 120 139 158 177

Figure 7.7: Table of firing times for the sensors operating EERUP

firing of sets of four neighbouring sensors. This was empirically found in their set-up to

minimise the crosstalk errors, whilst minimising the complete firing time of all the sensors.

In the experiments on this robot different time lags wi l l be introduced for all the sensors,

thus making no assumptions as to the potential interaction of the sensors.

Figure 7.7 shows the basic firing times that were used in all the robot tests. Initially the

period over which the sensors are to be fired is chosen at 200 ms. Then each sensor has its

associated time lag Tiag which are spaced at 25 ms intervals which reduces the chances of

crosstalk. Added to these time lags are the alternate wait times Twait.a and Twait.b to produce

the firing times Tfire.a and rfire,b- This produces all the firing times for a period spacing of

200 ms which are split into alternate firing phases of a and then b. Hence a given sensor fires

at Tfire.a during period 'a' followed at Tfire.b in period 'b'. A l l the values are scaleable and

therefore i t is possible to change the period interval and scale all the firing times accordingly.

-Therefore it is possible to increase or decrease the firing rate of all the sensors by simply

scaling the firing times whilst still keeping the ability to detect crosstalk in the sensors.

In all the experiments this method has shown itself to be highly effective at detecting

crosstalk between the sensors. The most basic test before the sensors were mounted on the

robot involved pointing sensors 1 and 2 in the same direction separated by half a metre.

The target was a sheet of card two metres away. The firing times for the sensors were set

to their delay values Tgre.a = T'wait,a and Tfire,b = ^wait.b therefore without their time lags.

Figure 7.8 shows the set-up for the three tests to confirm that the system was detecting

crosstalk between the sensors. Test a) consisted of firing the sensors at the target. From the

firing tinies i t can be seen that the sensors both fire at the same time in the 'a' periods but

in the 'b' periods, sensor 2 fires before 1. In this test sensor 1 rejected its false readings but

sensor 2 recorded the correct value. In test b) a piece of card was used to direct the sensor

I's pulses onto 2. Here sensor 2 correctly rejected its distance value and sensor 1 recorded a

correct value. Finally in test c) the pulses were separated and both sensor recorded correct

distance measures.

General results from the EERUF as tested on the robot indicate that the larger the dis­

tances measured from the robot, the more likely rejection wif l occur. One effect which can

137

a)

1 2

b)

Figure 7.8: Tests for crosstalk rejection

1 2

c)

cause this, is that residual echoes from other sensors are reflected around within the robot's

environment. Any sensor which is measuring a large distance has its gain automatically

increased by the electronics in the Polaroid sensor module. Therefore for larger distance

measures there is a greater likelihood of the sensor detecting any residual ultrasonic reflec­

tions.

So far only static tests have been performed on the EERUF scheme, but for the robot

it is important that the system can operate effectively whilst moving. This introduces extra

complications, as the distances that the range sensors are measuring can be changing over

time. As the EERUF method relies on monitoring the differences between sequential values

of range measurement any extra change in distance over time wil l affect the system. Hence

the faster the robot moves the greater its rejection rate becomes. However, it is possible to

correct for this i f the robot's velocity is known, which can be easily determined in software.

From the velocity measurement and the angle of each of the sensors, it is possible to compute

the expected change in the distance. This value can then be subtracted from the difference

in the sequential range measurements. This method has been shown to reduce the rejection

rate substantially whilst the robot is moving. Although it is reduced, i t is still slightly higher

than for a static robot.

The major parameter to be set on the system is the period interval over which the sensors

fire. The default value for this is 200 ms, but by increasing this value the rate at which the

sensors fire can be increased. However if this value is set too short rejection rates increase.

Empirically a good compromise value of 250 ms was found. One option for further work that

138

has not been examined here, is the idea of adaptive changing of the period interval based on

the rejection rate. This would have the effect of dynamically tailoring the sensor firing rate

to suit the local crosstalk conditions.

7.4 The Assessment of the Magnetic Sensor System

The magnetic sensor system consists of two perpendicularly mounted magnetic field sensors

whose frequency varies inversely with the field strength. This frequency is monitored by the

robot by counting the number of pulses for given interval (0.04 seconds). The two values

for the sensors can then be used to determine the angle and magnitude of the magnetic field

through the sensor unit. Described below is the method by which this system was calibrated

and linearised, and shows the typical error limits on the subsequent magnetic field reading.

The sensor system was calibrated after it had been mounted on the robot and required

no further adjustments. As the two sensors are attached to the robot's head, readings could

be taken at 0.75° angular interval over the head's moveable range of 315°. The robot's head

is moved by means of a stepper motor, and therefore care was taken to make sure that i t

was switched off whilst the sensor readings were being taken. Figure 7.9 shows the recorded

number of counts from both sensors, A and B, as a function of the head angle. From the figure

it can be seen that both the sensors' output consisted of roughly sinusoidal wave-forms which

are not calibrated with respect to amplitude and zero offset. The response of the sensors is

non-linear wi th respect to frequency and this can be seen as a slight elongation of the low

values and sharper peaks.

The non-linearity can be corrected as described in the data sheet [45] which is shown in

equation 7.8. In this equation H is the field strength for a measured period value of T, To

is the period at zero field and Tmin is the period approximating to the maximum negative

value of field strength in oesteds. The coefficients C Q , c\ and C2 are determined fi-om the

calibration procedure. As no calibrated reference value of field strength could be obtained it

was assumed that the maximum values of detected field strength were 0.5 oesteds (the value

of the field strength of the earth's magnetic field). This potentially introduces an error factor

into the magnitude of the detected field but does not affect its angle.

i / = co + c i (T - T o) + C 2 (T - T ^ i n) ' (7.8)

To calibrate a sensor its values of the maximum, minimum and zero field counts must

be read off the graph. These can be normalised by dividing by the zero field count when

To = 1. The three coefficients can then be found by substituting values H for the maximum,

minimum and zero field counts and solving for co, ci and C2. The values from the graph for

sensor A were T§ = 2654, T^^^ = 3073 and r^ i„ = 2340 giving the coeflicients eg = 0.05367,

139

P u l s e Counts a g a i n s t Robot Head Angle
3200

3100

3000

2900

2800

2700

2600

2500

2400

2300

• • • 1
Sensor A

...B..

\
\ \

\̂

\
^ /

- V

\^

. . . s .

\
\
\

V

\

\

/

/

s / s J

50 100 150 200 250 300 350

Figure 7.9: The output values from the two sensors A and B

140

cf = 4.6798 and ^ = -3.8345. Similarly the values for sensor B were To* = 2715, T^^ = 3150

and T^i„ = 2394 giving the coefficients eg = 0.05360, c\ = 4.6829 and c| = -3.9801.

(rpa \ /T"^ —334n\'^

— - 1 - 3.8345 ^^^r] (7.9)
2654 / V 2654 /

/ T'' \ /t''~23Q4\^
H'' = 0.05360 + 4.6829 —— - 1 - 3.9801 (7.10)

^ZtLo J y z715 J

The values of the linearised field strengths i / " and i f * can then be found by substituting

the count values from sensor A (T") and B (T**) into equations 7.9 and 7.10 respectively.

The results of applying this calculation to the test data is shown i i i figure 7.10. Prom this it

can be seen that both sinusoidal wave-forms are phase displaced by 90° and have maxima

and minima of 0.5 and -0.5 oesteds respectively. The shght rounding affect at the base of

the minima as seen in figure 7.9 has also been eliminated, and the curves have a more linear

appearance. The angle of the field with respect to the robot a can be calculated using the

inverse tangent as shown in equation 7.11.

« = t a n - i (- | J) (7.11)

To assess the accuracy of the final values of the sensor system its position must be com­

pared to the angles at which they were detected. Figure 7.11 shows this error expressed

in degrees as plotted against head angle. The most interesting phenomena is the repetitive

undulation repeating in cycles of four. This is attributable to the effects of the permanent

magnetic fields in the stepper motor used to drive the robot's head. This occurs in cycles

based on the four magnetic states in the electrical cycle of the stepper motor. Without phys­

ically moving the sensor system higher up or using // metal shielding this cannot be reduced

further. The rest of the deviations are probably attributable to other magnetic influences on

the sensor by the robot. These, however, are small and would be difficult to compensate for.

The magnetic sensor system has been shown to be accurate down to ±2° The main

expected use of the magnetic sensor is for repositioning of the robot's head. This situation

might occur if there was an sudden angular translation, or could be the result of slow angular

drif t . W i t h its level of accuracy the magnetic sensor system could easily achieve this. Overall

for the cost and simplicity of this sensor system the results obtained are very accurate and

wi l l be useful for the control of the robot.

141

F i e l d (Oesteds) a g a i n s t Robot Head Angle (Degrees)
0.6

0.4 h

0.2 h

0 h

- 0 . 2 h

- 0 . 4 h

-0.6

Sensor
Sgilsor

A

\
\
\

\ ̂
 /

I
J

1
r

\

\

\ -

V
\

\
\.

\

/
/'

ii
1'

i'

,̂

\ J

r ^

1

ll

\

50 100 150 200 250 300 350

Figure 7.10: The calibrated field values from the two sensors A and B

142

Angular E r r o r (Degrees) a g a i n s t Robot Head Angle (Degrees)

2 h

0 h

-2 h

50 100 150 200 250 300 350

Figure 7.11: The error in the magnetic field sensor system

143

7.5 Summary of the basic tests

The above work has examined in detail the sub-systems that comprise the prototype mobile

robot. The first section covered mobility, and the actions and interactions of the drive and

steering control systems. I t was shown that different control parameters were preferable

for different control requirements. These can be substituted as required. An important

observational result was that the robot's path was curved and this depended on the angle to

which the wheels pointed. This curvature would introduce odometric error but this must be

recognised as a mode of error inherent in odometric measurement.

The ultrasonic sensor system was then tested. As part of this the accuracy of the range

measurements in both the long and the short modes of operation of the sensors was deter­

mined. Then the method of firing of the sensors, called EERUF, was tested to determine

its ability to reject erroneous range measurements caused by crosstalk between sensors. The

system was shown to be able to perform this even when the robot was moving.

Finally the magnetic sensor system was calibrated so that the non-linear operation could

be compensated for, therefore improving its positional accuracy. I t has been shown that even

with the effects of the magnetic disturbances from the robot's chassis and electronics, the

sensor is accurate to ±2° accuracy.

In conclusion, the sub-systems of the robot have been satisfactorily tested and their var­

ious modes of operation recorded. After these detailed interactions of the robot's mechanism

were more fully understood, the experiments on exploration, mapping and navigation were

then undertaken.

144

Chapter 8

Experiments on Robot Exploration,
Mapping and Navigation

8.1 Introduction

This chapter contains the experimental results of tests on the control system used in explo­

ration, mapping and navigation on the prototype mobile robot. The research was undertaken

to complement the work previously conducted in simulation. Simulation allows swift devel­

opment in the early stages of design. However the limitations of this method are exposed

when the interactions between the robot and its environment become more complex. Only

through testing these controllers under real conditions can more be learnt about the control

of real robots.

A major factor affecting real robotic systems is noise and inaccuracy in sensors and

actuators. Initially basic tests were conducted to examine methods for counteracting the

problems of odometric noise in the positioning system. This was conducted using a simple

three node map.

Following this, the novel mapping method which uses a behaviour based controller for

exploration was investigated for its ability to map out different environments. Again the

problems associated with odometric error were examined but this time with respect to the

larger topologies which had been constructed.

Finally a new method of searching the environment was devised and tested in the same

environments as the previous mapping methods. As with the other experiments the ability of

the robot's odometric systems to keep the robot positioned after exploration were examined.

The work is summarised with the main conclusions drawn from the results of the experimental

work.

145

Vn
1

Vn
Positional

Error
R.stimator

A S ,
^

Sr Mapping Positional
Error

R.stimator

Se
K

A S ,
^ :* Module Sn- S ,

Positional
Error

R.stimator
K

8.2

Figure 8.1: The correction mechanism for odometric drift

Re-synchronising the Robot's Map and Environment

Any mobile robotics solution that uses odometry to provide a relative positioning is subject

to the problems of drif t error. I f this error is not reduced with reference to some other

sensory system, the gulf between the robot's estimated and actual positions will render the

previously gained knowledge useless. To reduce this error and therefore re-synchronise the

robot's world representation, corrections must be made to the robot's estimated positional

state. This estimated state can be described in terms of three component coordinates x, y

and the relative angular position of the robot's base §1,. In all the following experiments these

were taken with respect to the initial location where the robot started its actions.

For the robot's information to remain synchronised with the environment, the drif t in all

three of these components had to be corrected. This correction could only be made through

comparison of the recorded state with current sensor information. To determine the x and y

corrections the ultrasonic range measures were used and for the angle §1, the magnetic sensor

was used.

Figure 8.1 schematically shows the processes by which the correction in the robot's state

was determined. Sr is the vector which is composed of the estimates of the robot's x, y and

9b states. This data was used in conjunction with the mapping information to determine the

nearest node to the robot from which the node's range and magnetic field information Vn were

ascertained. The positional error estimator uses this vector with the sensor information VT

and the estimated distance from the node {Sn — Sr) to produce an estimated positional error

^e. This vector was then multiplied by a gain term K composed of an odometric correction

factor Kx^y and an angular correction factor Kg. The x and y terms were multiplied by Kx^y

and the 6 term was multiplied by Kg. This gave rise to the correction yector ASr which was

added to the estimated robot's state Sr. Therefore the gain factor K determined the rate by

which the robot could react to changes in its environment. This process of re-correction was

performed each time the robot's sensors were fired.

In order to validate the robot's ability to re-synchronise its knowledge to an environ­

ment experiments were performed to observe correction of translational and rotational dis-

146

Display

Objects) links: Data; vectors

Figure 8.2: The triangular map of the environment showing range data

turbances. A simple rectangular environment of 2.46 by 2.71 metres, with dimensions pri­

marily determined by the availability of laboratory space was used. In all these tests the

robot initially set up a triangular map consisting of one triangle centred on the start position

of the robot with a node at each vertex. This was created by the robot moving forward to

the first vertex, or node, firing its sensors at this location and storing the information at the

node. This process was then repeated for the other two nodes before the robot returned to its

original starting position. The actual information taken by the mobile robot can be seen in

figure 8.2. The triangular map is shown in black with the nodes as dots at the comers. This

diagram depicts the range information as eight lines emanating firom each node (the magnetic

field data is not shown). FVom this information the size and shape of the environment can

be inferred.

The first test consisted of a translation of the robot after the initial map had been set up

to observe its ability to correct for this form of error. Both the odometric correction factor

Kx,y and the angular correction factor KQ were set to a value of 0.5. The robot was placed in

the environment and directed to set up a triangular map. Then the robot was moved, with

respect to the previous figure, upward by 50 cm atad to the right by 50 cm without the wheel

147

encoder moni to r ing this. The correction procedure was then started. As the robot can only

correct each t ime the sensors are fired, the robot was set to navigate to each node i n t u rn

and fire its sensors when i t had arrived. A f t e r each nodal visi t the positional estimate was

corrected by the value AS'r- Throughout the test the to ta l corrections required to the robot's

posi t ional and angular state were recorded.

Figure 8.3 shows the angular correction of the robot and figure 8.4 shows the transla-

t iona l correction i n x and y. A l l values are plot ted over 45 nodal visits w i t h the translational

disturbance being introduced after the 15th visi t . Over the first 15 visits, where no distur­

bance has been introduced, corrections i n bo th the angle and posit ion of the robot have been

required to keep the robot synchronised, offsetting its natural odometric d r i f t . The angular

correction was that angle by which the robot's head assembly had to be rotated to correct

for the angular d r i f t i n the robot's base. Af t e r the robot was moved, a small disturbance was

registered on the angular correction which was probably caused by a combination of effects;

the n o n - u n i f o r m i t y of the magnetic field over the test region, plus positional error i n the

placement of the robot. The positional correction i n x and y rose asymptotically towards an

expected correction factor of 50 cm. This response clearly shows the proport ional natrue of

this corrective control system. This test has therefore verified that , i n certain circumstances,

the robot can recover f r o m a sudden translational disturbance.

Following the translat ion test, the robot's response to a rotat ional disturbance was exam­

ined. The robot was placed w i t h i n the same environment and directed to create a triangular

map. O n completion of the map, and after having returned to its start location, the robot was

l i f t e d up and rotated through roughly 45 degrees anticlockwise. This direction corresponds

to a positive angle for the robot. Dur ing the test bo th the correction factors required by the

angular and posit ional system were recorded. Figure 8.5 shows the angular offset that was

required by the robot to synchronise the angle of the head assembly. This clearly shows the

magnetic sensory system creating a fast response to the angular change and w i t h i n a few

nodal visits correcting for the disturbance. Any angular shif t i n the robot's head assembly

would create false range readings and therefore incorrect correction estimates. These can be

seen f r o m figure 8.6 which shows the correction required i n x and y. The effects of the distur­

bance were transient and allowed the robot to remain synchronised w i t h respect to positional

d r i f t . Therefore i t can be seen that the robot can quickly respond to angular shifts.

B o t h the above tests looked at the effects of correction for translational and angular

disturbances on the robot i n isolation. I f bo th a translation and a ro ta t ion were applied

to the robot , i t could be possible that the individual responses of the x, y and 9i) would

compete, forcing the robot to synchronise to a false location. I t is therefore impor tant to test

for this behaviour. The same conditions and environment'were used as i n the previous two

tests. However i n this test bo th the translational and the rotat ion disturbances were applied

together. The robot was therefore moved 50 cm upwards and 50 cm right w i t h a rotat ion of

148

0)
Q)
U

0)
Q

0)

I
; Angle

i
10 15 20 25 30

Number of Node V i s i t s

35 40 45

Figure 8.3: The angular correction required w i t h a translational disturbance

01
Q)
U

4J

a)

0) o c
Id

tn
•rH
Q

0.7

0.6

0.5

0.4

0.3

0.2

0.1

-0.1

1 • !
D b l t a X
D e l t a y

. - - — - f - ' ^ :rr=

/ '
/

1 /

/ /
/

/
f
1 1
1 1
1 1

1 1
1 f
1 1
1 1

i j
11

i
10 15 20 25 30

Number of Node V i s i t s

35 40 45

Figure 8.4: The posi t ion correction required w i t h a translational disturbance

149

CO
0)
0) u
tn
0)

Q

0)

60

50

40 h

30 h

20 h

10 h

-10

1
Angle

10 15 20 25 30 35 40 45

Number of Node V i s i t s

Figure 8.5: The angular correction required w i t h a rotat ional disturbance

0.08

0.06 h

„ 0.04 h
tn
0)
U I 0.02

0)

^ 0 (d
4J w

• H

° -0.02

-0.04

-0.06

,\

' \
\ \ ' I

D
D

s l t a X
s l t a y

/ \
1 \

^ / \
\
\

/

\ -'-^^
/

^/
/

10 15 20 25 30

Number of Node V i s i t s

35 40 45

Figure 8.6: The positional correction required w i t h a rotat ional disturbance

150

45 degrees.

Figure 8.7 shows the angular correction against node visits which shows the typical pro­

por t iona l response. This is explained by the magnetic field over the test area being reasonably

u n i f o r m , and therefore the correction required at one location would be l i t t l e different to that

required at another. The positional d r i f t is shown in figure 8.8. The correction is less smooth

than i n the purely translat ion test. However the robot does successfully re-synchronise w i t h

i ts environment.

The above experiments show that under certain restricted conditions the robot has been

shown successfully to re-synchronise after experiencing translational and rotat ional distur­

bances. This process is fundamental to the success of a robot i n bui ld ing and maintaining the

use of stored maps. A l though the predominant use of the correction mechanism is expected

to be for small changes, i t w i l l be seen later that sudden larger scale corrections may be

required as par t of the navigation process.

8.3 Robot Mapping using Behaviour Based Exploration

I n Chapter 5 a method for bui ld ing maps was described. This method involved the robot

operat ing under based control. I t was controlled by competing behaviours based on random

wander, avoid obstacles and an explorative behaviour, called coverage. Under the direction

o f these competing behaviours the robot was shown i n simulation to be able to explore and

map out environments. This method of exploration and mapping w i l l now be tested on the

mobile robot to assess its performance and to validate the simulation work.

I n the or iginal simulations the random wander behaviour was included to direct the robot

i n the absence of any other useful control actions, and also to force the robot off any control

m i n i m a where the robot might get stuck. I n effect this random action can smooth over

the deficiencies encountered i n a behaviour based control system. Unlike the simulation

experiments where the actions of a controller can be observed over long periods of simulation

t ime, on the mobile robot the observation t ime was more l imi ted . Therefore to be able quickly

to determine the faults and true abilities of the control system the actions of the random

wander behaviour was suppressed. Hence i n these tests the robot was only controlled by an

avoid behaviour, i n combination w i t h the directed exploration of coverage.

For practical considerations the coverage behaviour was slightly modified. One of the main

considerations for this depended on the more l imi ted processor power available to the robot

than was available i n simulation. This is especially important for the coverage behaviour, as

i t is based upon integrating up the free area 'seen' by the range sensors w i t h respect to the

locations o f the other nodes. Therefore as the number of nodes increases so the computational

burden increases non-linearly. One method of reducing the length of t ime i t takes to compute

the coverage vectors for a l l the nodes is by increasing the coarseness of the integration steps. I t

151

0)
0)
u
0)

Q

0)
rH

50

40

30 h

20 h

10 h

Angle

0 5 10 15 20 -25 30 35 40 45

Number of Node V i s i t s

Figure 8.7: The angular correction required for bo th a translational and a rotat ional distur­
bance

ra
0)
Sh

0)
S

0.8

0.7

0.6

0.5

0.4

Id

.1̂ 0.2
o

0.1

0

-0.1

• 1 - !
D ^ l t a x

-
/
/ / / / /

; /
1

1

1 1

-
/N / ^ / A

/ / ' \ ^

1 /
1 /
1 /

1 /

--/-»-/ J / / /;
/1

/ / ^ ^
7

10 15 20 25 30 35

Number of Node V i s i t s

40 45

Figure 8.8: The posit ional correction required for bo th a translational and a positional dis­

turbance

152

was found tha t the original setting for this, as based on the simulation results, took the robot's

processor too long to compute. A l though the exact computat ion t ime is highly dependent

on the network's informat ion , i t would typical ly take about a minute for a network of over

twenty nodes. To compensate for this, the coarseness of the coverage integration procedure

was increased by eight times.

Exper imental ly i t was found to be better for robot guidance when the angle of the coverage

vector pointed to the greatest segment of free area, rather than to the mean free axea. This

would force a response where two nearly equal lobes of free space existed either side, of node.

I t is impor tan t to note that the coverage vector is quantised into eight discrete angular values.

However, i n conjunct ion w i t h the action behaviour, the angular direction of the robot remains

continuous.

The i n i t i a l experiment consisted of mapping the same environment as was previously

used i n the re-synchronising experiments. The robot was placed w i t h i n the environment

and made t o create the p r imary three nodes tha t make up i ts tr iangular map. The mode of

control was the same as that used i n simulation in Chapter 5, w i t h the robot computing the

vectors for the nodes after each new node was created. Figure 8.9 shows the development

of the map i n three stages over t ime. The figures on the left show the coverage vectors at

these t ime instants, and to the right are the corresponding network maps w i t h included range

measurements

The reduction i n the processing power on board the robot causes some degradation in

the quality, of the vector informat ion . However, its action is sufficient to direct the robot

to search out its environment. One of the l imitat ions of a behaviour based search stems

f r o m the robot moving whilst taking range informat ion. The range system which employs a

method of error correction called E E R U F produces poorer performance whilst moving. This

is because the system is based around monitor ing changes i n the range measurement. I f

the measurement values are changing as a consequence of mot ion this must be corrected for.

However predict ing the change i n a range measure due to small robot movement is not always

linear, and the number of rejections of correct ranges w i l l increase. Therefore the above test

was carried out w i t h the max imum desired robot velocity set at 8.5 cm/s.

A f t e r the map had been constructed the robot was switched into navigation mode. I n

this mode the robot sought the node which had been visited least and then computed a pa th

to i t using the map's topological connections. This was then repeated, forcing the robot to

vis i t the nodes i n a reasonably evenly dis t r ibuted manner. I n i t i a l l y the odometric correction

factors Kx^y and Kg were set to zero so that typical errors could be monitored. Af te r one

hundred nodal visits, the correction factors were then each set to 0.5, thus forcing the robot

to correct for any detected errors. For comparison this correction phase was continued for a

fu r the r one hundred node visits.

Figure 8.10 shows the magnitude of the positional error estimate Se as taken in the x

153

Disp lay

:Otijeai;.i;;: links ; ; Date j : : : v « t o « < ; ;

A

m m m

ObjBC-i ;mte Data : Vectors ^ f>M!B£itt

::;;;^:-;i;;;:"::::;:-:;:!::!:;£n6tPia/' • ' .

;

« ^ 1 \ / ^ /

.*•• :

Objects tteka

Coverage Vectors Network Informat ion

Figure 8.9: Robot mapping using behavioiir based exploration

154

and y values. I t can be seen f r o m the data that there is a considerably larger error in the

estimates whils t the robot was wi thout correction for visits 0-100. This error is erratic but

relatively consistent, suggesting that sometimes the error introduced by the robot's curvature

can cancel itself out, as this is dependent on direction travelled. When odometric correction

is used between visits 100-200 the. error is reduced and the robot remains more synchronised

w i t h its environment. Figure 8.11 shows the estimated error i n the robot angle as determined

by the robot 's magnetic field comparisons. Here too the error is far more erratic whilst

the robot is not under corrective control. Similar ly the value of the error is reduced w i t h

correction.

From the above test i t has been seen that the errors which are detected between the robot

and its environment can be successfully reduced through the use of correction of the robot

odometric state. However this correction is hot to an averaged observation of the environment

at these nodes, bu t to the first v is i ta t ion to the node dur ing construction. Any errors i n this

first v is i t are frozen into the network for its durat ion of usage. A n impor tant aspect which

has not been explored is the adaptation of the node's informat ion based on repeated visits.

Thus those i n i t i a l errors become reduced. However the rate of adaptation must be less than

correction otherwise the system becomes unstable.

The method was then tested out on an environment which presents greater difficulties for

a mapping robot . One of the major problems in mapping is its abi l i ty to l ink up disparate

arms of the mapping structure. The l inking of these arms where significant error has bui l t

up can potent ia l ly miss-map non adjacent areas together thereby creating discontinuities i n

the stored in format ion . The simplest instance of this is a circular object placed w i t h i n an

environment. Therefore the dimensions of the environment were kept the same except that

a circular object of radius 60 cm was introduced into the centre.

A f t e r this environment had been set up an experiment was conducted to test the robot's

ab i l i ty to map this using the behaviour based exploration method. The robot was in i t ia l ly

placed i n the b o t t o m right hand corner of the environment w i t h the its inter-nodal distance

set at 30 cms. Figures 8.12 and 8.13 show six momerits i n the exploration of this environment.

I n the fo l lowing discussion these w i l l be referenced as times 1 to 6. A t each instant the left

hand figure reveals the coverage vector of each node whereas the r ight hand figure shows the

network topology combined w i t h the range informat ion.

A t t ime instant 1 the robot has created the three node network and dependent on its

posi t ion the mapping route w i l l be either upward or to the. left . On this occasion the robot

was nearest the lowest lef t node and therefore its direction was towards the lef t . As soon as

the robot recognises i t has moved a length delta f r o m the network, a new node is created w i t h

associated range informat ion . This can be seen i n the second t ime frame where the network

comprises four nodes. The coverage direction s t i l l points to the left and this directs the robot

in to new free space. A t the t h i r d t ime frame the network has 7 nodes w i t h the lower region

155

w (U u
0)

0)

o

m
•H
P

0 .18

0.16

0 .14

0 .12

0.08

0.06

0.04

0.02

0 20 40 60 80 100 120 140 160 180 200

Number of Node V i s i t s

Figure 8.10: Est imated positional error dur ing navigation of a rectangular environment

m
0)
0) u Bi
0)

Q

6 h

4 h

2 H

-2 -̂

-4 h

E r r o r :

20 40 60 80 100 120 140

Number of Node V i s i t s

160 180 200

Figure 8.11: Est imated angular error dur ing navigation of a rectangular environment

156

Ob)M« tmte :;pate,: VecfeM ; Oosifion.

A

,.£»)=».: .̂ "-"̂

;Ob»Bra unfc ^ ; Date : tfectofi , (^^ .mte : Data « c M « Paiittoo

'...<: A

Objects: Ltete : ,£)aJa..: ,:'̂ ctx><5 ^ .''<»»(«' :, •

Coverage Vectors Network Informat ion

Figure 8.12: Robot mapping using behaviour based exploration

157

*

•

Objecrs tinfa. Data ViKtoc : (ion

Display

Objec's : unfc Data Vetiore;: : feiUon |

Coverage Vectors

1 \
•. - I f —

•

Display

Otimts : Lfeks : Data; J^ctsrs Pasiffon :

Network Informat ion

Figure 8.13: Robot mapping using behaviour based exploration

158

Display

:^ \

\

Figure 8.14: The magnetic field map of the environment

almost mapped, with the shape and the position of the circular object becoming apparent. It
can be seen from the coverage vectors that they are dependent on the position of the newer
nodes and some of their directions have changed reflecting the new state of free space.

At the fourth time instant shown in figure 8.13 the robot has mapped over half of the
environment and this continues imtil, by the final frame, the robot has fully covered the r^on
using just 14 nodes. Prom the range measurements the shape of the rectangular border can
be seen with the circular centre section missing. However, this is not aU the information that
the robot possess about its enviromnent as figure 8.14 shows the magnetic field vectors stored
in the robot's network. Here the magnitude of the field is represented by the length of the
line and its direction points to magnetic north. Following the exploration of the environment
all the information can be saved to a data file which can be recalled by the robot for use at
a future time.

So far we have shown that the mobile robot can map out an enviromnent using the control
strategies first developed in simulation. What was not explored in simulation was the effects
of odometric error and the subsequent synchronising of the data using correction. If the robot

159

cannot synchronise itself to this in fo rmat ion then the learned informat ion w i l l inevitably be

lost. Therefore the next tests use this map which has been formed to examine synchronisation

after the development of a topological map.

T w o tests were conducted, one w i t h the odometric correction and the other wi thout . Bo th

tests involved orienting the robot at the start location of the previous test. Then the network

tha t was created i n the previous experiment was loaded back into the robot memory. For

the environment and the robot 's in format ion to be synchronised the odometric position of

the robot was reset to its s tar t ing da tum of zero. The robot was then directed to navigate

around the environment v is i t ing each node in t u r n that i t had created. This was selected as

i t is a repeata,ble cycle of 14 visits which can be monitored to examine i f the sensor's error is

increasing or staying w i t h i n fixed bounds.

I n the test w i thou t odometric correction figure 8.15 shows the magnitude of the positional

discrepancy against node visits. I t can be seen that over the number of visits the error is

slowly rising, i n fact this test was terminated by the robot coll iding w i t h an object at 39th

v is i t . Figure 8.16 shows the error monitored by the magnetic sensor and this can clearly

be seen r is ing away f r o m the da tum position. Therefore i t is not sufficient for the robot to

b u i l d maps wi thou t some f o r m of correction. This leads to loss of synchronisation and in this

instance collision.

I n the second test bo th correction factors Kx,y and Kg were set to 0.5. Figure 8.17 shows

the magnitude of the error i n the estimated position. Unlike the previous test the graph

shows a marked cyclic repet i t ion every 14 visits. Also the magnitude of this cycle remains

constant, indicat ing that the robot does not lose synchronisation w i t h its environment. The

measured error of the robot f r o m its mapped data is at maximum 8 cm. Therefore as long as

there is this level of clearance of the nodes f r o m any object, then the robot w i l l not collide.

Observing the angular error of the robot as shown i n figure 8.18 this is markedly smaller

t han w i thou t the corrections w i t h a max imum error d r i f t of ± 2 ° . I t can therefore be clearly

seen tha t the robot has successfully explored this environment and has kept this informat ion

synchronised w i t h its observations. Hence the robot has achieved collision free navigation.

There are however problems associated w i t h this system of exploration and mapping.

A l t h o u g h the coverage parameter drives the robot to distr ibute nodes around its environment

this does not necessarily lead to the creation of a connected topology. This problem was first

observed . in the simulations and a method by which this was resolved used active l inking of

the separate arms of the network. Figure 8.19 shows the results of an exploration after which

the riodes were dis t r ibuted around the environment but w i t h unconnected branches. The

coverage vectors indicate no propulsive force on the robot to move over the gap and therefore

this method of active l ink ing was employed. The corrected map after using the active l inking

is shown i n figure 8.20. Following this the network can be used effectively for navigation.

The main drawbacks of this f o r m of exploration and mapping is that its performance

160

0.12

0.08

0.06

•H 0 . 04

0.02

10 15 20 25 30 35 40

Number of Node V i s i t s

Figure 8.15: Est imated positional error dur ing navigation wi thout correction

m
Q)
0) u
t31
0)

Q

0)

E r r o :

5 .. 10 15 20 25 30 35 40

Number of Node V i s i t s

Figure 8.16: Est imated angular error dur ing navigation wi thout correction

161

0.08

0.07

0 . 06

SH 0.05

0.04

^ 0 . 03

0.02

0.01

5 10 15 20 25 30 35 40 45 50

Number of Node V i s i t s

Figure 8.17: Est imated positional error dur ing navigation w i t h correction

0 - 5 10 15 20 25 30 35 40 45 50

Number of Node V i s i t s

Figure 8.18: Est imated angular error dur ing navigation w i t h correction

162

0<»«t«V

Objecyi: links Date : Vectors iXxiSan

Coverage Vectors

Oiiects, Uflkl: Oa)a,;:::**Cb3re:;: POSlttC*

Network Informat ion

Figure 8.19: Mapping problems using the coverage behaviour

Figure 8.20: M a p correction using active l inking

163

is parameter dependent and still without a reliable method of monitoring the completeness

of the search. Even with more powerful processing capability the angular quantisation of

the range measurement system brings a limit to the accuracy of this technique. For this

system to be able to operate effectively, greater processing capability must be available so

that more accurate determination of the coverage parameters can be performed. The system

does however allow for relativity coarse mapping of an environment which can be successfully

used for navigation without collision.

8.4 Robot Exploration using an Exhaustive Mesh Search
Algorithm

Previously the methods used for mapping have ranged from being purely passive to aiding in

the exploration process. However none of these methods takes fu l l control of the robot when

it is in its search phase. A new method of mapping was developed whereby the algorithm

took complete control of the robot and at the end of this search phase relinquished control

back to the robot. This new mapping method is based on a triangular mapping mesh and

attempts to place new triangles where sensed free space can be detected. Therefore it will be

referred to as the exhaustive mesh search algorithm.

The basic principal of this algorithm involves two steps. The first step is to find, given the

present network structure, the possible new locations around the robot where new triangles

could be placed. Of the three nodes of this new triangle two must be already connected to the

network, and therefore the problem is to find if there is enough free space to accommodate

this new vertex. This caii then be determined based on the range measurements of the nearby '

nodes. Following the determination of the locations of these potential new vertices, the robot

can then navigate to these locations. I f the robot encounters no collisions a new node and

new triangle are formed. This technique wil l be described in greater detail below.

The network must be able to keep track of the locations and positional associations to

other triangles of these potential new vertices. This is achieved by associating with every

topological triangular link a status flag and positional location. Hence each triangle possesses,

apart from its own three vertices, three locations and status flags of new vertices which i f i t

were realised would create three new triangles surrounding the original. To keep track of the

growth and state of all these new vertices the assigned status flag can have one of three states:

Triangle Present, Object in the Way or Potential New Vertex. I f there already exists another

triangle comprised of this topological link whose other node is at the vertex, then the status

flag is set to Triangle Present. I f the range measurements from the nodes at each end of the

link indicate there is no free space for the new vertex, then the status flag is automatically

set to Object in the Way. I f however these range measurements indicate that there is fi:ee

space for this vertex then the flag is set to Potential New Vertex. Hence for any network the

164 ,

potential new vertices can be computed using this method.

The determination by the adjacent nodes of whether there is sufficient free space is depen­

dent on the inter-nodal spacing of the triangles and a factor which wil l be termed clearance.

Each link has an associated vertex location and also two nodes at each end. Unless both of

these nodes can predict sufficient free space to the vertex the status of the link will be set to

Object in the Way. Prom the vertex location the angular range measurement for each node

which overlays this position can be calculated. The distance required can be then compared

to the distance recorded by the range measurement at the node. This minimum distance

wi l l be the inter-nodal spacing but in practice this allows no room for error in either the

range measurement or the positioning of the robot. Therefore the recorded distance must be

greater than the inter-nodal distance plus the clearance value. I f this is true for both the

nodes then the status of the link is set to Potential New Vertex.

The second step involves the robot searching the network to check to see if the potential

new vertices are realisable or not. The algorithm selects a new vertex with the status Potential

New Vertex for the robot to visit. In all the following tests this choice was based on selecting

the closest vertex to the robot's present location. A navigational path is then selected from

the robot's location to one of the nodes connected to the associated link. After navigating

to this point the robot then proceeds to the specified location. I f the robot collides and

therefore encounters an object the status flag is set to Object in the Way and the robot then

re-attaches to the previous node in the network. I f however the robot reaches the location

successfully then a new node and hence a new triangle is created. This in turn can have

new vertices and which means the network has to be re-calculated for potential new vertices.

This search process is continued until all the status flags in the network are assigned Triangle

Present or Object in the Way and therefore the search of the environment is complete.

For comparative purposes the first test of this form of mapping was conducted in the

same rectangular environment as used in previous experiments. The inter-nodal distance

was set to be 50 cm and the value of clearance was set to 10 cms. The robot was placed

in the environment with its search phase activated. Figure 8.21 shows the development of

the network in six stages with the vertices of status Potential New Vertex shown as black

dots. Initially the robot set up a triangular map as before. Following this the potential new

vertices were computed and this can be seen in the first figure. The robot computed that it

was closest to the top left vertex, and therefore navigated to one of the adjacent nodes and

then moved towards the potential vertex. The manoeuvre was successful and a new node

and triangle were added to the network topology. Again the potential new vertices were

calculated and the result is shown in the next figure. This search phase continued until there

were no more Potential New Vertices as shown in the last diagram. The environment has

been completely mapped and the robot can now use this information to navigate around.

As in the previous tests it was important to examine the eff'ects of odometric synchroni-

165

OtieiQ: l-nks;; Data; Vof.ore : : , f«!t«J

Display

/ \ /

/

Figure 8.21: Robot mapping using the exhaustive mesh search algorithm

166

sation to the mapping structure. To assess the potential for odometric error to build up the

robot was directed to navigate sequentially to the nodes as i t had built them in turn. As

far as possible, from this constructional sequencing, the robot would then retrace its steps.

Before the test was conducted the robot was placed back to its original position allowing

observation of the complete process of odometric drift to be observed. Figure 8.22 shows the

magnitude of the positional drif t . I t can be seen that as the robot retraced its steps, the error

remained below 7 cm. Only after the robot restarted this journey around the nodes for the

second time did the error suddenly ramp up. The robot then continued with a constant error

unti l it started its journey around the network for a third time. However the error which

had built up was too large and the robot collided with a wall and the test was discontin­

ued. In this test the angular error did not show the same drift properties observed in other

experiments. This shows that drift effects are not always obsei-ved and that the collusion of

fortuitous circumstances can cancel the build up of such errors.

The odometric correction system was then activated with K^^y and Kq set to their usual

values of 0.5. As usual the robot was positioned at the starting datum of the experiment

and then directed, as in the above experiment, to retrace its steps around the environment.

Figure 8.24 shows the magnitude of the positional estimated error, whereas figure 8.25 shows

the angular correction. I t can be seen from these results that the magnitude of the error

remained below 8 cm and that the errors were cyclic suggesting that they were fixed and

would not subsequently increase. Although further monitoring of the angular data would be

required to establish whether or not it would follow a cyclic pattern, i t remained well within

acceptable bounds. The robot was therefore synchronised with its environment and could

navigate without collision.

The final experiment consisted of testing out the exhaustive mesh search algorithm in

the rectangular environment with the circular object in i t . The inter-nodal separation was

selected as 25 cm and the clearance was set to 5 cms. The robot was then placed in the

bottom right hand corner of the environment. Figure 8.26 shows the following development

of the robot's network over six time intervals. Initially the Potential New Vertices surrounded

the network. In this closed environment their number did not dramatically increase as the

growth continued but they become distributed at the boundaries of the search process. This

process continued wi th the robot eventually returning fu l l circle to link up the two arms of

the network growth. The mapping of the environment was even and the quality of the range

measures can be seen with not one erroneous value extending beyond the boundaries of this

containment.

Two important factors can be seen from the network information. The first is that when a

range measure strikes the circular object at too shallow an angle it is not reflected back. This

can be. seen where the central object has a less well defined boundary. Secondly and more

importantly the range measurements of the later nodes do not quite match with the original

167

0.2

" 0.14 h
(U
J 0.12 h

0.1 h <1) u

§ 0.08 h-

P 0.06
0.04 -

0.02 -

0
0 10 20 30 40

Number of Node V i s i t s

E r r o r

1
\ L I \l\

hi 1/ V I
\ A

.4 f .A W r f 1

r
50 60

Figure 8.22: Estimated positional error during navigation without correction

10 20 30 40

Number of Node V i s i t s

Figure 8.23: Estimated angular error during navigation without correction

168

0.08

0.07

0 . 06

^ 0.05

0.04

o 0.03

0.02

0.01

10 20 30 40 50

Number of Node V i s i t s

60

Figure 8.24: Estimated positional error during navigation with correction

1.5 h

m
d)
0)
u
0) Q

Q)
Cn
5

0.5 h

-0.5

-1.5

E r r o r

10 20 30 40 50

Number of Node V i s i t s

70

Figure 8.25: Estimated angular error during navigation with correction

169

nodal values. Although this is not very pronounced it means that the network contains a

discontinuity. Although this has been present in the results of the other experiments i t can

be more clearly seen here with respect to the regularity of all the other range measurements.

Its effect on the following tests wi l l also be seen.

The network also stores values of the magnetic field direction and strength. This is

shown in figure 8.27, with the length of the lines indicating the field strength and the angle

representing the direction. Wi th respect to the magnetic field vectors the exhaustive search

algorithm has the advantage, that i t takes samples evenly over the environment. The vectors

show that although the magnetic field is not entirely uniform the rate of change is low over

the test area. These test values correlate well to the direction of those vectors taken using a

standard magnetic compass.

Following the search phase the robot was returned to its original starting position. As in

previous tests i t was then directed to navigate sequentially, in the order of creation, around

the nodes whilst observing the estimated error without odometric correction. Figure 8.28

shows the magnitude of the positional estimated error against nodal visits. The error during

the robot's first circumnavigation of its network did not increase above 7 cm. However as soon

as i t returned to the original nodes the error rose up to around 13 cm. This error remained

constant as the robot drove around again, but before it could complete a second trip the test

was brought to a conclusion by a collision with an object. I t therefore appears that those

modes of error which the robot underwent as it first mapped the environment were similarly

repeated as i t retraced its steps. Only when the robot returned back to its starting datum

could the actual errors be detected. Hence each time the robot followed this particular path

around the environment an extra positional error of around 13 cm was being introduced. As

shown in figure 8.29 the error in the angle of the robot, although less aflfected, could also be

seen to have registered a sudden change of 6°.

This experiment was then repeated but with the robot using odometric correction of

Kx,y and Kg equal to 0.5. Figure 8.30 shows the magnitude of the error in the positional

error estimate. Over the first navigation around the map the errors stayed within the same

values as those seen in the previous experiment. Similarly when the robot returned to the

start nodes the error jumped up to a value of about 13 cm. However, unlike the previous

experiment this was then corrected, and the errors returned back to those values experienced

in the first circumnavigation. This error was shown to have a cyclic nature and therefore

it is constrained so that the robot would not collide with obstacles. The results shown in

figure 8.31 which are the values of the angular error estimate mirror the trend above. The

error normally only varies about ±1° with a spike of 6° when the robot returns to its origin.

Consequently this experiment has shown that the robot can keep itself synchronised to the

map within 5 cm normally with an error of 13 cm at the discontinuity in the map.

170

• A -

• AA ̂ ArYNAA vv .\A

•

Figure 8.26: Robot mapping using the exhaustive mesh search algorithm

171

' \ , Display

•-.
""^

\ \

N N

"""-^-^

"^v,.

Objects links Data Vectors Positiott:

Figure 8.27: The magnetic field map of the enviromnent

172

0.18

0.16 h

0.14 h

0.12

.H 0.06

0.04

0 . 02

20 40 60 80

Number of Node V i s i t s

100 120

Figure 8.28: Estimated positional error during navigation without correction

6

5

4

3
w
0)
0) 2
u tn (U Q 1
tt)
iH 0 Cn 0

An

-1

-2

-3

-4
20 • 40 60 80

Nimber of Node V i s i t s

1 — !

E r r o r

- J- | l W^- -
1 V
1

100 120

Figure 8.29: Estimated angular error during navigation without correction

173

0.14

0.12 h

„ 0.1 h
m
<u
U

I 0.08

0) u a (d jj ra
•H Q

0.06

0.04

0.02

0 20 40 60 80 100 120 140 160 180

Number of Node V i s i t s

Figure 8.30: Estimated positional error during navigation with correction

m (U
0)
u tn
0) Q

20 40 60 80 100 120

Niimber of Node V i s i t s

140 160 180

Figure 8.31: Estimated angular error during navigation with correction

174

8.5 Summary of the experimental work

Initially tests were conducted into the ability of the robot to be able to synchronise its mapped

knowledge with the environment as detected by its sensors. Without this aptitude the robot

would not be able to use its gathered information. I t was shown that the robot could recover

from translational disturbances by comparing its range measures with the information stored

in the map. I t could also recover from angular disturbances using the comparison of the local

magnetic field with that stored at each node. Therefore it was shown that the robot could

synchronised a three node map with its environment.

Under behaviour based control the use of coverage was shown to be able to drive a robot

in search of new areas of free space. Using this method the robot could successfully map out

new environments. However, the use of coverage alone cannot guarantee that the topological

links of the map wi l l be most beneficially connected. Therefore coverage must be used in

conjunction with some form of method which wil l ensure that the connectivity of the network

is analysed. I t was shown that the use of the generated maps without odometric correction

is not sufficient for colhsion free navigation. In all the tests this approach led to a collision

wi th a wall or object. Through employing odometric correction collision free navigation was

shown to be viable with the estimated positional error staying within fixed bounds.

Although this system has shown itself to be successful there are some drawbacks. The

successful exploration is dependent on a number of parameters being chosen correctly. These

include the weightings of the various behaviours as well as the coarseness of the coverage

search algorithm. W i t h limited computational power the coarseness of the coverage becomes

a trade off between speed of action verses quality of decision. I t is possible to determine from

the assessment of the coverage vectors a measure of the completeness of the search phase,

however i t has been found not to be reliable. Therefore although this control system can

control the robot to explore and subsequently navigate an environment, there are marked

deficiencies.

A potential solution to the problem of explorative mapping and navigation, the exhaustive

mesh search was developed. This is a computationally inexpensive algorithm which has a

deterministic and definite search phase in the environment. This has been shown to explore,

whilst mapping, two diflFerent environments with a regularised and even mesh. As with all the

tested systems the use of odometric correction has been a fundamental requirement. I t has

also been shown that the regularised exploration means that when the robot links up separate

regions detectable discontinuities are created in the map. However the very fact that they are

detectable means that i t should in the future be possible to correct for them. There are only

two parameters to be selected which have a direct relationship to the robot's mapping and

navigation. The inter-nodal separation wil l dictate the density of network mapping whereas

the clearance parameter gives an error safety margin which can be determined by observations

175.

of the estimated positional error. This system has therefore shown its abihty to search out

new environments and then switch into a navigational phase which with odometric correction

fixes the robot within positional error bounds. I f these error bounds can be set below the

clearance value, then this system can ultimately guarantee collision free navigation.

176

Chapter 9

Conclusions and Suggestions for
Further Work

9.1 Conclusions

From the original literature survey it was. observed that the field of mobile robot research

spanned a diverse range of applications. Correspondingly this diversity has led to the devel­

opment of wide set of robot experiments and solutions. However i t was apparent that there

were no elegant solutions to the problem of robot exploration and navigation. Those partial

solutions that had been reported pointed to a need for greater investigation, and hence this

work has concentrated on the problems of exploration and collision free navigation by an

autonomous mobile robot.

A l l the presented control solutions were initially developed in simulation, and its use

has been advocated as a preUminary tool for the design of both prototype robots and their

control systems. Simulation allows provisional design considerations of sensor type and drive

mechanics to be iteratively matched to the required tasks. With simulation, the level of

difficulty experienced by the robot, in for example sensor and actuator noise, can be limited

during the early development of the controller. This allows the environmental conditions

to be suited to the competence of the robot controllers which therefore speeds up the early

stages of development.

Attracted by the innate propensity for exploration and navigation shown by many animals

the analogous use of artificial neural networks instead of real neural systems was examined for

use by a robot. Although the promise of uniform topological growth was shown in idealised

training conditions this could not be repeated with direct input produced by a simulated

robot. I t was shown that a method of random sampling from the data set could be used

significantly to de-correlate the information, thus leading to smoother topological growth.

This method was successfully used to train the network with data from a simulated robot

177

exploration. However the development of this approach into a generic solution would require

considerably more algorithmic complexity. In conclusion, the solutions gained through this

approach, although biologically more feasible, are computationally inefficient in comparison

to the methods described below.

The development of a novel solution based on a simple deterministic approach to the

creation of nodal information was shown to be able to create maps that could be used for col­

lision free navigation. In conjunction with a behaviour based search method called coverage,

the time taken for a robot to perform an explorative search could be reduced. To guarantee

correct topological development, 'a system for observation of the connectivity of the topology

was also required.

The preliminary design of a robot and its control strategy capable of exploring and build­

ing navigable maps has been developed in simulation. However, none of the simulations

included modelling of the accumulative errors that develop with odometric positioning sys­

tems. The problems of accurately mimicking the interaction of a robot with the physical world

increase in difficulty as the level of modelling becomes more exact. Hence it has been argued

that the true performance of these controllers can only be assessed by using a prototype

mobile, robot.

After the mobile robot was designed and the basic tests on the sub-systems were concluded

the most important observation, as to performance, regarded the odometric positioning sys­

tem. The implementation of a syncro-drive configuration using belt drive and having the

wheels offset lead to path curvature dependent on the direction of travel. This curvature was

found to introduce systematic errors into the odometric measurement system which could

only be effectively reduced with reference to some other sensory system. The ultrasonic sen­

sor system using the method of EERUF was shown to be able to eliminate the problems of

crosstalk even whilst the robot was moving. The magnetic sensor was demonstrated to be

accurate to within ±2° , sufficient for angular head positioning.

The iise of odometric correction was shown to enable the robot to re-synchronise itself

wi th its environment after being subjected to translation and rotational disturbances. I t is

possible, in extreme circumstances, that using this method alone would fail to attach the

robot to its correct location. However with the combined effects of the magnetic and range

correction systems it is sufficient for localised repositioning of the robot where the spatial

rate of change of these parameters is not great.

The novel mapping method, that utilised the behaviour based exploration strategy, was

shown to be able to map out environments and subsequently navigate them without collision.

This was demonstrated in the rectangular environment both without and with a central

object. This method creates sparsely distributed mapping topologies which are dependent on

a number of parameters being chosen correctly. The most important being the coarseness of

the assessment of the coverage vectors,, which results in a trade off between speed of action by

178

the robot versus quality of decision. In regard to the robot switching out of its search phase

there is no accurate and therefore reliable method by which to determine the completeness

of the search process.

A deterministic solution to the problem of exploration and navigation was finally proposed

in the exhaustive mesh search algorithm. This computationally inexpensive algorithm, which

has a definite search phase, was shown to control the robot to explore and then navigate

without collision. This method has the advantage that i t efficiently directs the robot's position

to produce a repeatable even topology. The robot could then switch out of the search phase

and navigate as desired. Effectively i t requires little computational power, exploiting the

explored physics of the environment to determine where and when exploration is possible.

9.2 Further Work

An important area for further investigation relates to the optimisation of some of the basic

sub-systems of the prototype mobile robot. One particular factor which could produce im­

proved results is that of corrective compensation for the robot's curved path. A more detailed

exaiuination could lead to suitable ways of predicting the drift which could then be compen­

sated. I t might be possible dynamically to create a model for drif t using the drive control

commands in conjunction with the corrections from the sensory re-positioning system. This

could potentially be achievable through the use of a filter technique. I t is also possible to

further optimise the performance of ultrasonic sensor system in relation to speed of operation.

In all the experiments the rate at which the sensors fired was fixed but it would be possible by

monitoring the rejection rate to control this rate of firing through adaptation.. Such a system

would match the firing rate of the sensors to the localised crosstalk conditions. This would

be especially important i f more that one robot was operating in the same environment, as the

rates of firing of these two would back down until both could get correct range information.

This was originally suggested by the authors of the EERUF algorithm but represents the best

solution for two robots being able to use the same frequency ultrasonic range measurement

systems within the same environment without complex synchronisation methods.

In the experiments of the prototype mobile robot i t was not possible to correct the position

of the robot during the explorative phase. Therefore any positional errors were frozen into

the network and could not be subsequently reduced later. I t is therefore suggested that

investigation into re-correcting either the position or information possessed by each node

could prove effective in reducing this error. I t might also be possible from observations of

the correction values to quantify the average inter-nodal error. I f possible this value would

provide a parameter reflecting the quality of the topological map and a useful index to predict

error effects when linking disparate parts of a network. This kind of error has been shown to

occur in the explorations using the exhaustive mesh search algorithm with a central object.

179

Prom this i t can be seen that an investigation into methods of propagating this positional

error back throughout the network is also required.

The present prototype mobile robot can be considered as a test bed for development

of intell igent control algorithms for mobile robots. I t is equipped w i t h a range of sensors

which have been shown adequate for the task of exploration and navigation w i t h i n static

environments. One impor tan t line of research i n this direction is being undertaken as a final

year undergraduate project . This work w i l l a t tempt to create two operating systems one on

the robot and one on a P C based simulator so that any robot controller program can be

direct ly transferred between the two wi thout modificat ion. This would reduce problems in

the developmental cycle and could be used as an educational tool for demonstrating robot

control systems.

The prototype robot has been designed w i t h a view to having more than one robot

cooperating over a task. A n obvious benefit of this approach is that the t ime taken to

explore and map an environment could be reduced considerably. I n order to be able to

achieve this the robots would have to develop some f o r m of communication strategy. Each

robot would have to be able to posit ion itself w i t h respect to the other robot. This would

require investigations into a robot's abi l i ty to relocate itself w i t h i n another map.

The above description of cooperating mobile robots presumes that subsequent robots

w i l l ' b e identical replicas of the original robot. A possibility to be considered might be that

of a robot w i t h large number of sensors w;hich could map out an environment, and then

subsequently reduce the errors between nodes whils t storing other seemingly less relevant

data about local l ight intensities, colours, magnetic fields etc. Then i t could be possible for

a much simpler robot w i t h l imi ted sensors to be able to navigate using selected informat ion

taken f r o m the highly descriptive map. Hence cheaper more simple robots might be able to

pe r fo rm navigational tasks which would be impossible to per form on their own.

The simulations and experiments have only been conducted i n static environments. Dy­

namic environments, such as those i n an office w i t h moving people,,present a more challenging

problem. To be able to cope w i t h such systems whilst s t i l l being able to explore and map, the

robot must have a greater bandwid th of sensory informat ion and a correspondingly higher

computat ional processing power. Potential solutions might involve the use of passive visual

flow fields which give rap id low level mot ion informat ion combined w i t h parallel processing

formed f r o m programmable logic. W i t h the advances i n the miniatur isat ion of microcon­

trollers i t might be possible quickly to bu i ld small inexpensive robots which could cooperate

and divide their combined resources between the problems of map bui ld ing and coping w i t h

dynamic environments.

180

Appendix A

Derivation of the Motor Model

I n this appendix a mathematical model for the forward propulsive force provided by the

motor is derived. This mathematical model was used for simulating the dynarnics of the

mobile robot 's mot ion .

u m/s

^ F

Figure A . l : The circuit diagram for the motor and load

Figure A . l shows a circuit diagram of a motor and its interaction w i t h a physical systeni.

The te rmina l voltage Vdc is applied to the motor producing an armature current la i n the

rotor. A back e.m.f. E is produced i n the armature, which rotates at u rads per second, w i t h

a torque of T N m . This is transferred to the wheels by a gearing down ratio G. The three

wheels which evenly dis tr ibute the torque to the floor wi thout slippage are modelled as one

drive wheel of radius r. The wheel transfers the shaft's geared down torque Tg at speed u)g

to the f loor to produce a forward propulsive force on the robot of F newtons. This produces

a fo rward velocity of u m/s .

A p p l y i n g Ki rchof f voltage law around the circuit we get:

E = Vdc - laRa (A . l)

and Faraday's law states :

181

(A.2)

Where K is a constant and $ is the f l u x per pole. The developed torque i n the motor is then

given by: ~

T = ^ (A.3)

Subs t i tu t ing A . l in to A.2 we get,

K $ a ; = V d c - I a R a (A.4)

and subst i tu t ing A.2 into A.3 we get:

T = K $ I a (A.5)

The gearing down of To; to TgCJg gives,

(A.6)

T „ = T G (A.7)

-9 = a

and the fo rward velocity u of the robot relates to u}g by:

u = cjo-r

Combining A.4 ,A.6 and A.8 we get:

G K $ u

r

(A.8)

Vdc - laRa (A.9)

Subst i tu t ing A.5 into A.7 gives:

Tg = G K $ I a (A.IO)

Then substi tute A.9 into A.IO to get:

G K $ / , G K $ \ ^
Tg = (Vdc - — u) (A . l l)

Ra V

The propulsive force F is related as:

F = ^ ' (A.12)
r

B y subst i tu t ing A.12 into A . l l we get the mathematical mode for the robot's propulsion:

^ G K $ / G K $ \

F = — — Vdc u (A.13)
r R a V r y

182

Appendix B

Description of the A* graph search
algorithm

The A * graph search a lgor i thm presents a method for computing the shortest paths through

the network f r o m a start to a goal destination. Given that the robot knows where i t is, where

i t wants to move and a connected topology, this a lgori thm can be used to direct the robot

on a collision free path .

Th i s A * a lgor i thm is an ar t i f ic ia l intelligence search technique and is based on a branch

and bound search . The start node on the graph is taken and its connections are expanded

to f o r m a tree o f depth two. The lengths of these paths are calculated and the lower one is

selected to be expanded again. The length of the path must include the remaining distance

to the destination and this is normally calculated by direct distance. The above process is

repeated u n t i l the goal has been reached or no fur ther paths exist. I n the latter case this

means that there is no topological hnk to the destination node. I n the A * search process

mul t ip le paths to a node are also deleted thus reducing the search space. The fol lowing shows

the algori thmic steps required to implement the A * search process as described i n [50].

1. Use the queue to store a l l the par t ia l ly expanded paths.

2. Ini t ia l ise the queue by adding to the queue a zero length pa th f r o m the route node.

3. R e p e a t

Examine the first pa th i n the queue.

I f i t reaches the goal node t h e n success.

E l s e { continue search }

Remove the first pa th f r o m the queue.

Expand the last node i n this step by one.

Calculate the cost of these new paths.

A d d the new paths to the queue.

183

Sort out the queue in ascending order according to the sum of the cost of the

expanded pa th and the estimated cost of the remaining path, for each path

I f more than one path reaches a subnode

T h e n delete a l l but the m i n i m u m cost pa th

U n t i l the goal has been found or the queue is empty.

4. I f the goal has been found re turn success and the path, otherwise re turn failure.

184

Appendix C

The Circuit Board Layouts

There are two custom bu i l t electronic circuit boards used on the robot. The power and drive

c i rcui t board houses the power supplies and the drive circuits for the motors. The control

c i rcui t board has the computer card mounted on top, and contains al l the control hardware.

Th i s appendix documents the layouts of bo th boards and the connectors that are used.

A l l of the connectors, except CO and C27, are composed of connector pins which can

be selectively removed. This allows polarisation of the connectors so that they cannot be

accidentally inserted the wrong way round. I n the figures al l the connectors are marked as

rows of boxes, one for each p in . Where a p in has been selectively removed this is indicated

by a cross.

The control circuit board layout is shown in figure C . l , w i t h the descriptions of the

connectors CO to C26 listed in figure C.2. The power and drive circuit board is shown in

figure C.3. The power transistors that require heat sinks are mounted fiush w i t h the upper

fixing plate and are screwed down. The board is shown i n sections indicat ing the location of

the drive circuits which are then shown i n the fol lowing figures. Figure C.4 is the D C motor

driver c i rcui t . Figure C.5 shows the stepper motor driver circuit of which there are two, one

for the head stepper motor, and one for the steering stepper motor. Figure C.6 shows the

regulated power supply, and figure C.7 is the circuit layout for the ultrasonic power supply.

F ina l ly the connections are shown for the main 'power i n ' connector f r o m the battery packs

i n figure C.8.

O n the control circuit board, C I is connected to C31, providing the control signals for the

stepper motor. C2 is connected to C35 which are the drive signals for the D C motor. C3 and

C6 are inputs f r o m the rotary encoders. C4 and C5 are inputs f r o m the magnetic sensors. C7

to CIO are the connectors that correspond to the ultreisonic sensors 0 to 3, and C19 to C22

relate to the ultrasonic sensors 4 to 7. C l l to c l 4 are collision sensors 0 to 3 and C l 5 to C18

are sensors 4 to 7. A l l the ultrasonic, magnetic, and collision sensor connections are to sensors

mounted on the head assembly. C24 is the connector for the head l i m i t I R detector, whereas

185

Power LEDs
OO CO

e e e

C l

o

M i l l

C3

RS - 232

The Am29200
Demonstration

Computer Board

Xil inx

XC3030

C25

C4 C5

C26

C2f

I M I I I I

C6

Red Button

0)

e

C19 C20 C21 C22
I M I I I I I I M I I M I I M I I I H I M I I I I I

C23

C24

S

Xil inx

XC3030

I C 2

ID

Xilinx

XC3030

IC 1

e

C17g C18I

C15S C l

LEDs

C13S C l

ciiN C l

M I M I M I 11 I I I M I I I I I

C7 C8 C9 CIO

Figure C . l : The control circuit board layout

C23 l inks to the wheels angle revolution index I R detector. The head stepper motor drive

ou tpu t C25 is connected to C29. The ultrasonic sensor power control signal C26 connects

to C32. O n the power and drive circuit board, C28 connects to the head stepper motor and

C30 connects to the steering stepper motor. C34 and C33 are connected to CO to provide the

power for the control board, and C36 is connected to the D C motor terminals. Final ly the

bat tery pack, w i t h its on /o f f switch is connected to C27 to provide the power to the robot

systems.

186

Steering Stepper
Motor Drive
Output (CI)

X
Drive D

Drive C

Drive B

Drive A

G N D

DC Motor
Drive Output
(C2)

X
X

GND

Encoder
Inputs
(C3 & C6)

X
Channel B

Vcc

Channel A

Index Channel

GND

Magnetic Sensor
Inputs
(C4 & C5)

X
Signal

Vcc

GND

Ultrasonic Sensor Driver
Circuit Connector

(C7,C8,C9,C10,
C19,C20,C21 & C22)

X
X M I T

B I N H

E C H O

INIT

GND

U.S. Power Supply

Collision Switch
Input

C11,C12,C13,C14,
C15,C16,C17&C18

X
Switch Pole

Inactive ON

Inactive O F F

I.R. Detector
Input

(C23 & C24)

X
Signal

Vcc

G N D

Head Stepper
Motor Output

(C25)

E
B i t s

Bit 2

Bit 1

BitO

GND

U.S. Power
Control Output

(C26)

X
GND

U.S. Enable

N C

Power Supply
Input

(CO)

ooo

Figure C.2: The control circuit connectors diagram

187

•

op
C27

Stepper Motor

Driver

I I M I I I I M I I I
C28 C29

g
Board Power

L E D

Stepper Motor

Driver

I I M I I I I N I I I I
C30 C31

Power

Supplies

DC Motor

Driver

m - n C33

C34
S I

C35 C36

Figure C.3: The power and drive circuit board

188

DC Motor
Output

(C36)

E
2

NC

DC Motor Drive
Input

(C35)
3

3

+12V-

B C 1 8 3 L

2K2

TIP 126

1N4007. 1N4007

2 1 ^

1N4007 1N40O7

IK

BC183L

-CZZH 3

Figure C.4: The connectors for the D C motor driver circuit

189

Stepper Motor
Drive Input

(C29 & C31)

X
2

• 3

4

5

Stepper Motor
Output

(C28 & C30)

10

+12V

1N4007

2K2 TIP121

1N4007 1N4007

2K2 TIP121 2K2 TIP121

1N4007

10

2K2 TIP121

OV

Figure C.5: The connectors for the stepper motor driver circuit

190

Regulated +5V
Power Supply

(C34)

E
N C

2

+12V

0.1 uF

LM340T5

lOOuF

O U T +5V

G N D

0.1 uF lOOuF

Figure C.6: The connectors for the regulated power supply

191

U.S. Power
Control Input

(C32)

X
2

NC

U.S. On/Off+5v
Power Supply

(C33)

X
NC

3

+12V

2K2

OV

lOK

BC183L

5K6

2K2

T1P121

2K2

BC183L
5.6V
Zener
diode

+
IN4007 I ' I

470uF 0.1 uF

Figure C.7: The connectors for the ultrasonic sensor power supply

192

Battery Supply
Input
(C27)

OO
OV +12V

Battery +12V Circuit + 12V

I K

Power
LED

OV

4 220uF

Figure C.8: The connector for the battery supply and fuse protection circuit

193

Appendix D

The FPGAs Configuration
Downloading Description

The F P G A s are programmable logic devices which must be programmed each t ime they are

switched on. The advantage of using them is that they can be 'daisy chained' so that only

one I C needs to be direct ly interfaced, this w i l l then control the flow of configuration data

to the other devices. Figure D . l shows the three devices w i t h the f irst I C set-up for direct

loading of i ts configuration, and the other two i n the daisy chained slave mode. The modes

are set by means of changing MO, M l and M2 .

The peripheral mode allows the device to be loaded as a memory location by the computer

board. The configurat ion data is loaded one byte at a t ime i n sequence. A f t e r the first I C has

been f u l l y programmed, i t pipes the configurations to the fol lowing ICs, and this is repeated

down the chain u n t i l a l l three ICs are f u l l y programmed. To initialise the programming, a

h igh to low t ransi t ion is w r i t t e n to the Done/Program (D / P) line by pio 7 (output pin 7 f r o m

a set of 16). A f t e r a 4^ second delay this p in is checked to see i f i t is low, which indicates i t

is i n the program state. A f t e r I N I T (pio 2) has gone high the device can be wr i t t en to, as i t

is out of the ini t ial ised state. For each byte, the R D Y / B U S Y line must be high indicating

tha t i t is ready for more data, before a new byte can be wr i t t en . The address of the I C

is the peripheral interface adapter region 0 which is one of five areas of memory set aside

for external devices, and hence the Peripheral Interface Adapter Chip Select 0 (PIACSO) is

l inked to a Chip Select line (CSO). Final ly the D / P line goes high indicat ing that the devices

are configured. The data p ip ing is performed automatically, the informat ion being i n a serial

f o r m f r o m D O U T to D I N under the control of a Configurat ion Clock (C C L K) . When this

process is complete, the configured logic becomes operational.

194

Data bus

PIACSO

PIAOE

PIAWE

PIOO

PI02

PI07

R E S E T

+5V •

MO Ml M2 PWR
DWN

D0-D7
C C L K

DOUT
CSO

CST Xilinx
CS2 IC 0
ws (Peripheral mode)

RDY/BUSY

INff

D/P

R E S E T

+5V •

5K

MO Ml M2 PWR
DWN

C C L K

DIN DOUT

Xilinx

IC 1

(Slave mode)

D/P

RESET

+5V •

MO Ml M2
DWN

C C L K

DIN

Xilinx

I C 2

(Slave mode)

D/P

R E S E T

Figure D . l : Programming the FPGAs

195

References

[I] J. Cohen. Human Robots in Myth and Science. George Allen and Unwin Ltd, 1966.

[2] J. Pearsall and B. Trimble, editors. The Oxford English Reference Dictionary, page 731.

Oxford University Press, 1995.

[3] P. J. McKerrow. Introduction to robotics, chapter 8, page 45. Addison Wesley, 1991.

[4] D. A. White and D. A. Sofge. Foreword. In D. A. White and D. A. Sofge, editors.

Handbook of Intelligent Control: Neural, Fuzzy and Adaptive Approaches, pages xi-xv.

Van Nostrand Reinhold, 1992.

[5] L. P. Kaelbling. Learning in Embedded Systems, chapter 2, page 16. Cambridge,MA;MIT

Press, 1993.

[6] R. A. Brooks. A robust layered control system for a mobile robot. IEEE J. Rob. Autom.,

pages 14-23, 1986.

[7] E. Gat. On the role of stored internal state in the control of autonomous mobile robots.

AI Magazine, 14:64-73, 1993.

[8] P. J. Werbos. Neurocontrol and supervised learning: An overview and evaluation. In

D. A. White and D. A. Sofge, editors, Handbook of Intelligent Control: Neural, Fuzzy

and Adaptive Approaches, pages 65-89. Van Nostrand Reinhold, 1992.

[9] P. K. Simpson. Artificial Neural Systems: Foundations, Paradigms, Applications, and

Implementations, chapter 3, pages 7-22. Pergamon Press, 1990.

[10] S. Nagata, M . Sekiguchi, and K. Asakawa. Mobile robot control by a structured hierar­

chical neural network. IEEE Control Systems Magazine, 2:69-76, 1990.

[I I] L. Meeden, G. McGraw, and D, Blank. Emergent control and planning in an autonomous

vehicle. In Proceedings of the Fifteenth Annual Conference of the Cognitive Science

Society, pages 735-740, 1993.

[12] S. B. Thrun. Exploration and model building in mobile robot domains. In Proceeding

of the IEEE International Conference on Neural Networks, volume 1-3, pages 175-180,

1993.

196

[13] D. Gachet, M . A. Salichs, L. Moreno, and J. R. Pimentel. Learning emergent tasks for

an autonomous mobile robot. In IROS '94 - Intelligent robots and systems: Advanced

Robotic Systems, volume 1-3, pages 290-297, 1994.

[14] P. K. Simpson. Artificial Neural Systems: Foundations, Paradigms, Applications, and

Implementations, chapter 3, page 15. Pergamon Press, 1990.

[15] R. Pfeifer and P. Verschure. Distributed adaptive control: A paradigm for designing

autonomous agents. In Towards a practice of autonomous systems. Proc. of the first

international conference on artificial life, pages 21-30, Paris France, Dec 1991. Cam-

bridge,MA,USA:MIT Press.

[16] J. N . H. Heemskerk and F. A. Keijzer. A real-time implementation of a schema driven

toy-car. In Proceedings of the Workshop on Neural Architectures and Distributed ALProm

Schema Assemblages to Neural Networks, 1993.

[17] M . M . Kokar and S. A. Reveliotis. Reinforcement learning: Architectures and algorithms.

International Journal of Intelligent Systems, 8:875-894, 1993.

[18] R. S. Sutton. Learning to predict by the methods of temporal differences. Machine

Learning, 3:9-44, 1988.

[19] A. Ram, R. Arkin, G. Boone, and M . Pearce. Using genetic algorithms to learn reactive

control parameters for autonomous robotic navigation. Adaptive Behaviour, 2(3), 1994.

[20] K. Moorman and A. Ram. A case-based approach to reactive control for autonomous

robots. In AAAI fall symposium on "AI for real-world autonomous mobile robots".

Cambridge,MA, October 1992.

[21] N. J. Nilsson. Teleo-reactive programs for agent control. Journal of artificial intelligence

research, 1:139-158, 1994.

[22] N. Prancechini, J. M . Pichon, and C. Blanes. From insect vision to robot vision. In Phil.

Trans. R. Soc. Lond. B, pages 283-294, 1992.

[23] L. Tarassenko, M . Brownlow, G. Marshall, and J. Tombs. Real-time autonomous robot

navagation using VLSI neural networks. In R. P. Lippmann, J. E. Moody, and D. S.

Touretzky, editors. Advances in Neural Information Processing, volume 3, pages 422-428,

1991.

[24] C. Peacock and H. Bolouri. A neural network controlled mobile robot. In Neural Net­

works and Fuzzy Logic, 1993.

[25] S. B. Thrun and K. Moller. Active exploration in dynamic environments. In Advances

in Neural Information Processing Systems 4, pages 531-538, 1992.

197

[26] T. Mitchell and S. Thrun. Explanation-based neural network learning for robot control.

In Advances in Neural Information Processing Systems 5, 1992.

[27] B. Yamauchi and R. Beer. Integrating reactive behaviour, sequential behaviour, and

learning using dynamical neural networks. In Third International Conference on Simu­

lation of Adaptive Behaviour, pages 382-391, 1994.

[28] R. J. Mitchell, D. A. Keating, and C. Kambhampati. Learning strategy for a simple

robot insect. In lEE Control 94, volume 1, pages 492-497, 1994.

[29] A. Ram and J. C. Santamaria. A multistrategy case-based and reinforcement learning

approach to self-improving reactive control systems for autonomous robotic navigation.

In Proc. of the second international workshop on multistrategy learning. May 1993.

[30] L. P. Kaelbling. An adaptable mobile robot. In Towards a practice of autonomous

systems. Proc. of the first international conference on artificial life, pages 41-47, Paris

France, Dec 1991. Cambridge,MA,USA:MIT Press.

[31] S. Madadevan and J. Connell. Automatic programming of behaviour-based robots using

reinforcement learning. Artificial Intelligence, 55:311-365, 1991.

[32] M . Dorigo and M . Colombetti. Robot shaping: Development situated agents through

robot learning. Technical Report 92-040, International computer science institute, 1992.

[33] M . Dorigo and M . Colombetti. Training agents to perform sequential behaviour. Tech­

nical Report 92-023, International computer science institute, 1993.

[34] J. R. Koza. Evolution of subsumption using genetic programming. In Towards a practice

of autonomous systems. Proc. of the first international conference on artificial life, pages

110-119, Paris France, Dec 1991. Cambridge,MA,USA:MIT Press.

[35] J. R. Koza. Genetic Programming: on the programming of computers by means of natural

selection. A Bradford Book. Cambridge,MA:The M I T Press, 1992.

[36] A. SafHotti, E. H. Ruspini, and K. Konolige. Blending reactivity and goal-directedness in

a fuzzy controller. In Procs. of the second IEEE con/, on fuzzy systems, pages 134-139.

San Francisco,CA,March, 1993.

[37] D. Eustace, D. P. Barnes, and J. 0 . Gray. A behaviour synthesis architecture for co-

operant mobile robot control. I i i lEE Control 94, volume 1, pages 549-554, 1994.

[38] R. A. Brooks. A robust layered control system for a mobile robot. IEEE J. Rob. Autom.,

pages 14-23, 1986.

[39] J. Borenstein, H. R. Everett, and L. Feng. Navigating Mobile Robots: Sensors and

Techniques. A. K. Peters, Ltd., Wellesley, MA, 1996.

198

[40] N . Burgess, M . Recce, and J. O'Keefe. A model of hippocampal function. Neural

Networks, 7:1065-1081, 1994.

[41] U. R. Zimmer. Self localisation in dynamic environments. IEEE/SOFT international

workshop BIES, May 1995.

[42] B. Pritzke. Growing cell structures - a self organising network for unsupervised learning.

Neural Networks, 7(9):1441-1460, 1994.

[43] P. P. Acarnley. Stepping Motors: a guide to modern theory and practice, chapter 4,

page 48. lEE Control Engineering Series 19, 1985.

[44] J. Borenstein and Y. Koren. Error eliminating rapid ultrasonic firing for mobile robot

obstacle avoidance. IEEE Transactions on Robotics and Automation, 11:132-138, 1995.

[45] R. Noble. FGM-S: Magnetic Field Sensor. Speake & Co Limited, Elvicta Estate,

Crickhowell, POWYS, NP8 IDF, 1996.

[46] The SA-29200 Demonstration Board User's Manual. Advanced Micro Devices,Inc, 5204

E.Ben White Blvd. Austin, Texas 78741-7399., 1992.

47] Hewlett Packard. General Purpose Motion Control IC, 1990. Technical Data Sheet:

Component HCTL-1100.

[48] Hewlett Packard. Design of the HCTL-lOOO's Digital Filter Parameters by the Combi­

nation Method. Application Note 1032.

[49] Beckman and Spizzichino. The Scattering of Electromagnetic Waves from Rough Sur­

faces, chapter 2, page 10. Pergamon Press Ltd. Headington Hil l Hall, Oxford 4 and 5

Fitzroy Square, London. W l , 1963.

[50] P. J. McKerrow. Introduction to robotics, chapter 8, page 454. Addison Wesley, 1991.

199

