

Durham E-Theses

Functionalisation of hydrocarbons using fluorinated alkenes

Spink, Robert C.H.

How to cite:

Spink, Robert C.H. (1996) Functionalisation of hydrocarbons using fluorinated alkenes, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5336/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.

UNIVERSITY OF DURHAM

A THESIS
entitled

FUNCTIONALISATION OF HYDROCARBONS USING FLUORINATED ALKENES

submitted by
ROBERT C. H. SPINK B. Sc.
(Hatfield College)

A candidate for the degree of Doctor of Philosophy

10 OCT 1997

In Memory of Daniel John Spink
(13th December 1994-14th December 1995)

For God so loved the world, he gave his only son.

John $3: 16$

Acknowledgements

I would like to express my thanks to Professor R. D. Chambers for his considerable help and advice throughout this period of research.

I must also thank my mother and father for their continual support throughout the last three and a half years, and indeed the numerous years before I embarked on this course. I would also like to thank my sister, for a friendly voice at the other end of the phone during the 'bad' times, and my Great Aunt Di, for without her support the typing of this thesis would have been a considerably more difficult task.

My grateful thanks to Professor N. Bartlett (University of California, Berkeley) for his collaboration and to British Nuclear Fuels Fluorochemicals Ltd. for their financial support.

This thesis could not have been completed without the help of the technical staff in the department who are: Lenny Lauchlan (Chromatography and 5-a-side Football); Dr. Mike Jones and Lara Turner (Mass Spectrometry); Dr. Ray Matthews, Dr. Alan Kenwright and Mrs. Julia Say (NMR); Ray Hart and Gordon Haswell (Glass Blowing); Dave Hunter (High Pressure Laboratory); Professor J. A. K. Howard and Dr. A. Batsanov (X-ray crystallography), and many thanks to the late Tom Holmes for endless help with practical chemistry and advice on women.

For the endless banter I would like to thank the 'Class of 92 ' which consisted of Alex, Alan, Keith (honouree member) and Stephen and also the other members of Lab 115. Many thanks to my 'Friends in the North': Mark, Helen, Dan, Dave and Steve-oline. Finally, thanks to Kev, Tom and Ben for putting up with me, on my continual visits to Durham during the past months.

Memorandum

The work described in this thesis was carried out at the University of Durham between October 1992 and September 1995. This thesis is the work of the author, except where acknowledged by reference, and has not been submitted for any other degree.

The work has been presented, in part, by the author at:

9th. European Symposium on Fluorine Chemistry, Bled, Slovenia

Copyright

The copyright of this thesis rest with the author. No quotation from it should be published without his prior written consent and information from it should be acknowledged.

Nomenclature

Throughout this thesis an " F " in the centre of a ring is used to denote that all bonds are to fluorines.

```
The following abbreviations are also used:
DTBP .Di-tert-butyl peroxide
DBPO Di-benzoyl peroxide
FEP Fluorinated ethylene-propylene (HFP/TFE copolymer)
GLC Gas chromatography
HF Hydrogen fluoride
HFP Hexafluoropropene
IR Infra red
MS Mass spectrometry
NMR Nuclear magnetic resonanec
PY Pyridine
TFE Tetrafluoroethylene
UV Ultra violet
```


Abstract

Functionalisation of Hydrocarbons using Fluorinated Alkenes

Functionalisation of hydrocarbons is a field of continuing activity and a variety of approaches to this field, have been taken. This thesis is concerned with the functionalisation of the carbon-hydrogen bond, in hydrocarbons, using fluorinated alkenes via a free radical chain mechanism.

Addition of the nucleophilic alkyl radical to the electrophilic fluorinated alkene, specifically hexafluoropropene, occurs readily to give incorporation of the polyfluoroalkyl group into a number of hydrocarbons, including aliphatic, mono-, bi- and polycyclic systems.

Further chemistry of these polyfluoroalkylated systems has been investigated, including dehydrofluorination of the polyfluoralkyl group to give a series of novel mono-di- and poly-enes with polyfluoroalkenyl groups.

$$
\mathrm{R}-\mathrm{CF}_{2} \mathrm{CFHCF}_{3} \xrightarrow{-\mathrm{HF}} \mathrm{R}-\mathrm{CF}=\mathrm{CFCF}_{3}
$$

Perfluorination of the polyfluoroalkylated systems, using high valency metal fluorides, produced a range of new perfluorocarbons of interest and the monocyclic polyfluoroalkylated systems were further functionalised, by radical chemistry, to give isomeric products.

CONTENTS

Introduction
Introduction of Highly Fluorinated Groups Into Organic Compounds 1
1.1 Fluorine in Organic Chemistry 2
1.2 Methods of Introducing Fluoroalkyl Groups 3
1.21 Electrophilic Fluoroalkylating Agents 3
1.22 Nucleophilic Perfluoroalkylating Agents 6
1.23 Perfluoroalkylorganometallics 7
1.24 Fluoroalkylation Via Radicals 11
1.3 Functionalisation of the Carbon-Hydrogen Bond 13
1.31 Free Radical Additions' to Fluorinated Alkenes 13
1.32 Reaction Rate and Regiochemistry 14
1.33 Methods of Initiation 20
1.4 Free-Radical Additions to Hexafluoropropene (HFP) 20
1.41 Addition of Oxygen Containing Compounds 20
1.42 Additions of Nitrogen Containing Compounds 27
1.43 Additions of Alkenes and Aryl Derivatives 28
Results and Discussion
Free Radical Additions of Hydrocarbons to Hexafluoropropene 30
2.1 Introduction 31
2.11 Additions of Alkanes to Hexafluoropropene (HFP) 31
2.12 Addition of Partially Fluorinated Alkanes to Hexafluoropropene 32
2.13 Addition of Cycloalkanes to Hexafluoropropene 33
2.2. Addition of Alkanes 36
2.21. Propane 36
2.22. 2-Methylpropane 37
2.3. Addition of Monocyclic Hydrocarbons 38
2.31. Cyclopropane 38
2.32. Cyclopentane 39
2.33. Cyclohexane 41
2.4. Addition of Bicyclic Hydrocarbons 44
2.41. Cis-Decalin 44
2.42 Trans-decalin 46
2.43. Norbornane 47
2.5 Addition of Polycyclic Hydrocarbons 51
2.51 Adamantane 51
2.6 Competition Reactions 54
2.61. DTBP, $140^{\circ} \mathrm{C}$ 54
2.62 Gamma rays $\left(20^{\circ} \mathrm{C}\right)$. 55
2.63 Crude competition reactions 56
2.7 Conclusions 57
Dehydrofluorination of Hexafluoropropene adducts. 58
3.1 Introduction 59
3.2 Regiochemistry of the Double Bond 59
3.3 Dehydrofluorinations 62
3.31. 1,1,2,3,3,3-Hexafluoropropylcyclohexane (24) 62
3.33 1-(1,1,2,3,3,3-Hexafluoropropyl)adamantane (22) 67
3.34 trans-1,4-Bis(1,1,2,3,3,3-hexafluoropropyl)cyclohexane (27a). 70
3.35 1,x-Bis(1,1,1,2,3,3,3-hexafluoropropyl cyclohexane ($x=2-4$) (27) 72
3.36 1,1,2,3,3,3-Hexafluoropropylcyclopentane (25) 74
3.37 1,x-Bis(1,1,2,3,3,3-hexafluoropropyl)cyclopentane ($\mathrm{x}=2,3$) (50) 75
3.38 x -(1,1,2,3,3,3-Hexafluoropropyl)trans-decalin ($\mathrm{x}=1,2$) (34) 77
3.39 x -(1,1,2,3,3,3-Hexafluoropropyl)cis-decalin ($\mathrm{x}=1,2,9$) (33) 79
3.40 exo-2-(1,1,2,3,3,3-Hexafluoropropyl)norbornane (37) 81
3.41 exo-2,x-Bis(1,1,2,3,3,3-hexafluoropropyl)norbornane $(x=5,6)(38)$ 82
3.42 1,3,5,7-Tetrakis(1,1,2,3,3,3-hexafluoropropyl)adamantane (44) 84
3.5 Kinetic v's Thermodynamic Control 87
3.6 Conclusions 89
High Valency Metal Fluoride Fluorinations 90
4.1 Introduction 91
Cobalt trifluoride fluorination of Hydrocarbons 92
4.2 Cobalt Trifluoride Fluorinations. 95
4.21 2,5-Bis(1,1,2,3,3,3-hexafluoropropyl)tetrahydrofuran (58) 95
4.22 1,1,2,3,3,3-Hexafluoropropylcyclohexane (24) 95
4.23 1,1,2,3,3,3-Hexafluoropropylcyclopentane (25) 96
4.24 trans-1,4-Bis(1,1,2,3,3,3-hexafluoropropyl)cyclohexane (27a). 97
$4.251, x-\operatorname{Bis}(1,1,2,3,3,3$-hexafluoropropyl)cyclohexane ($\mathrm{x}=2-4$) (27) 99
$4.26 \cdot 1, x-\operatorname{Bis}(1,1,2,3,3,3$-hexafluoropropyl)cyclopentane ($\mathrm{x}=2,3$) (26) 101
4.27 x -(1,1,2,3,3,3-Hexafluoropropyl)cis-decalin ($\mathrm{x}=1,2,9$) (33) 103
4.28 1-(1,1,2,3,3,3-Hexafluoropropyl)adamantane (22) 103
4.29 Z-Pentafluoroprop-2-enylcyclohexane (43a). 104
4.3 Methanol/TFE. Telomers 105
4.4 Fluorinations using High Valency Nickel Fluorides in Anhydrous HF 106
4.41 Silver (II)Nickel(IV)hexafluoride trans-1,4-bis(Z-pentafluoroprop-2-enyl)cyclohexane (46) 106
4.42 Nickel (III) trifluoride
2,5-bis(Z-pentafluoro-2-propenyl)tetrahydrofuran (72) 107
4.5 Conclusions 108
Functionalisation of Hexafluoropropene adducts 110
5.1 Introduction 111
5.2 Attempted additions of Functionalised Hydrocarbons to Hexafluoropropene 111
5.21 Cyclohexyl chloride 111
5.3 Chlorination of Hexafluoropropene adducts 112
5.31 1,1,2,3,3,3-Hexafluoropropylcyclohexane (24) 112
5.32 1,1,2,3,3,3-Hexafluoropropylcyclopentane (25) 113
5.4 Dehydrochlorination of Chlorinated Hexafluoropropene adducts 114
5.41 x -(1,1,2,3,3,3-Hexafluoropropyl)cyclohexyl chloride ($\mathrm{x}=2-4$) (74) 114
5.42 x -(1,1,2,3,3,3-Hexafluoropropyl)cyclopentyl chloride(x=2,3) (75) 116
5.5 Ethoxide attack on pentafluoropropenyl derivatives 117
5.51 Z-Pentafluoroprop-2-enylcylohexane (43) 117
5.52 trans-1,4-Bis(Z-pentafluoro-2-propenyl)cyclohexane (46) 118
5.4 Conclusions 119
Instrumentation 120
Experimental to Chapter Two 123
6.1 General Procedure 124
6.11γ-ray initiated reactions 124
6.12 Peroxide initiated reactions 124
6.2 Free-Radical Additions of Alkanes to Hexafluoropropene 125
6.21 Propane. 125
6.22 2-Methylpropane 126
6.31 Cyclopropane 126
6.32 Cyclopentane. 127
6.33 Cyclohexane 128
6.41 Cis-decalin 129
6.42 Trans-decalin 130
6.33 Norbornane 131
6.51 Adamantane 132
6.6 Competition Reactions 134
6.61 Competition between cis- and trans-decalin 134
6.62 Competition between cyclohexane and cyclopentane 135
6.63 Competition between cyclohexane and trans-decalin. 135
6.64 Competition between cyclohexane and cyclopentane 135
6.65 Competition between cyclohexane and trans-decalin. 135
6.66 Competition between cyclohexane and cis-decalin 136
6.7 Crude competition reactions. 136
6.71 Competition between adamantane and 2-methylpropane 136
6.72 Competition between propane and 2-methylpropane 136
Experimental to Chapter Three 137
7.1 General Procedure 138
7.71 Potassium hydroxide eliminations 138
7.71 Sodium tert-Butoxide eliminations 138
7.2 Deuterium exchange reactions. 138
7.21 1,1,2,3,3,3-Hexafluoropropylcyclohexane (24) 138
7.22 1-(1,1,2,3,3,3-Hexafluoropropyl)adamantane (22) 138
7.3 Dehydrofluorination of Hexafluoropropene Adducts 139
7.31 1,1,2,3,3,3-Hexafluoropropylcyclohexane (24). 139
7.32 1-(1,1,2,3,3,3-Hexafluoropropyl)adamantane (22) 140
7.33 trans-1,4-Bis(1,1,2,3,3,3-hexafluoropropyl)cyclohexane (27a). 141
7.34 1,x-Bis(1,1,2,3,3,3-hexafluoropropyl)cyclohexane ($x=2-4$) (27) 141
7.35 1,1,2,3,3,3-Hexafluoropropylcyclopentane (25) 142
7.36 1,x-Bis(1,1,2,3,3,3-hexafluoropropyl)cyclopentane ($\mathrm{x}=2,3$) (26) 142
7.37 x -(1,1,2,3,3,3-Hexafluoropropyl)trans-decalin ($\mathrm{x}=1,2$) (35) 142
7.38 x -(1,1,2,3,3,3-Hexafluoropropyl)cis-decalin ($\mathrm{x}=1,2,9$) (33) 143
7.39 exo-2-($1,1,2,3,3,3-H e x a f l u o r o p r o p y l) n o r b o r n a n e ~(37) ~$ 143
7.40 exo- $2, \mathrm{x}-\mathrm{Bis}(1,1,2,3,3,3$-hexafluoropropyl)norbornane ($\mathrm{x}=5,6$) (35) 143
7.41 1,3,5,7-Tetrakis(1,1,2,3,3,3-hexafluoropropyl)adamantane (40) 144
7.5 Caesium Fluoride Isomerisations 144
7.51 1-(Z-Pentafluoroprop-2-enyl)adamantane (45b) 144
7.52 Z-Pentafluoroprop-2-enylcyclohexane (43a) 144
Experimental to Chapter Four 145
8.1 General Procedure 146
8.2 Cobalt trifluoride fluorinations 146
8.21 2,5-Bis(1,1,2,3,3,3-hexafluoropropyl)tetrahydrofuran (58) 146
8.22 1,1,2,3,3,3-Hexafluoropropylcyclohexane (24) 147
8.23 1,1,2,3,3,3-Hexafluoropropylcyclopentane (25) 147
8.24 trans-1,4-Bis(1,1,2,3,3,3-hexafluoropropyl)cyclohexane (27a) 147
8.25 1,x-Bis(1,1,2,3,3,3-hexafluoropropyl)cyclohexane ($\mathrm{x}=2-4$) (27) 148
8.26 1,x-Bis(1,1,2,3,3,3-hexafluoropropyl)cyclopentane ($x=2,3$) (25) 148
8.27 x -($1,1,2,3,3,3$-Hexafluoropropyl) cis-decalin ($\mathrm{x}=1,2,9$) (33) 149
8.28 1-(1,1,2,3,3,3-Hexafluoropropyl)adamantane (22) 149
8.29 Z-Pentafluoro-2-propenylcyclohexane (43a) 149
8.3 Methanol/TFE Telomers 149
8.31 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8-Tetradecafluorononanol (68) 149
8.32 1,1,2,2,3,3,4,4,5,5,6,6-Dodecafluoroheptanol (69) 149
8.4 Fluorinations in Anhydrous Hydrogen Fluoride 150
8.41 General apparatus. 150
$8.42 \mathrm{AgNiF}_{6}$ Fluorination
trans-1,4-Bis(z-pentafluoro-2-propenyl)cyclohexane (62) 150
$8.43 \mathrm{NiF}_{3}$ Fluorination
2,5-Bis(Z-pentafluoro-2-propenyl)tetrahydrofuran (72) 151
Experimental to Chapter Five 152
9.1 Attempted additions of cyclohexyl chloride to hexafluoropropene 153
9.2 Chlorination of 1,1,2,3,3,3-hexafluoropropylcyclohexane (24) 153
9.3 Chlorination of 1,1,2,3,3,3-hexafluoropropylcyclopentane (25) 153
9.5 Dehydrochlorination of x -(1,1,2,3,3,3-hexafluoropropyl)cyclohexyl chloride ($\mathrm{x}=2-4$) (74) 154
9.6 Dehydrochlorination of x-(1,1,2,3,3,3-hexafluoropropyl)cyclopentyl chloride ($\mathrm{x}=2,3$) (75) 155
9.7 Reactions of the pentafluoropropenyl derivatives of cyclohexane 155
9.91 Z-pentafluoro-2-propenylcyclohexane (43a) 155
9.82 trans-1,4-di(z-pentafluoro-2-propenyl)cyclohexane (46) 156

Chapter One

Introduction of Highly Fluorinated Groups Into Organic Compounds

1.1 Fluorine in Organic Chemistry

There are very few naturally occurring organic compounds containing fluorine. Therefore organofluorine chemistry is an almost entirely synthetic field which is continually expanding. Three general approaches have been used for the synthesis of fluorinated organic compounds, which can be categorised as perfluorination, selective fluorination and the incorporation of an already fluorinated group.

A variety of methods are available for selective and perfluorination which have been reviewed elsewhere ${ }^{1,2}$. Perfluorinated compounds have found a wide range of uses, such as inert fluids and coatings, because of their high chemical and thermal stability and 'non-stick' properties. Their ability to absorb oxygen and carbon dioxide created interest in compounds such as perfluoromethyldecalin (1) as 'blood substitutes'.

Selective fluorination of certain organic compounds can lead to increased biological activity, as replacing a hydrogen with fluorine has a significant effect of the electronic properties of the molecule with minimal steric disruption. For example 5-fluoro-uracil (2) has shown anti-cancer properties.

H
(2)

(3)

The introduction of a fluorinated group, such as a trifluoromethyl group, into an organic compound can also lead to high biological activity, for example the antidepressant Prozac ${ }^{\text {TM }}$ (3). The fluoroalkyl group can also increase the lipophilicity of a
molecule, for example the plant protection agent Trifluralin ${ }^{\mathrm{TM}}$ (4) has a high activity due to its high lipophilicity.

(4)

This thesis is concerned with methodology for the introduction of polyfluoroalkyl groups via free radical additions to fluorinated alkenes. Therefore this introduction will include a general discussion of methods available to introduce perfluoro- and polyfluoroalkyl groups, some basic principles of free radical chemistry and a more comprehensive review of free-radical additions to hexafluoropropene (HFP), which is employed extensively in the original work done here.

1.2 Methods of Introducing Fluoroalkyl Groups

A wide range of methods, including electrophilic, nucleophilic and free-radical processes, have been devised to introduce fluoroalkyl groups into organic compounds and the following sections give brief introductions to these methods.

1.21 Electrophilic.Fluoroalkylating Agents

A series of perfluoroalkyl and polyfluoroalkyl arylidonium salts have been prepared ${ }^{3}$. These act as sources of electrophilic fluoroalkyl equivalents $\left(\mathrm{R}_{\mathrm{F}}{ }^{+}\right)$and react with nucleophiles, such as carbanions, phenyl derivatives, alkenes and alkynes.

Generally, the best method of preparation of the fluoroalkyl arylidonium salts is the reaction of an arene, e.g. toluene, with [bis(trifluoroacetoxy)iodo]perfluoroalkane (scheme 1.1), which is usually produced in situ via oxidation of iodoperfluoroalkanes with trifluoroperacetic acid ${ }^{4}$.

Scheme 1.1

$$
R_{F}=C_{3} F_{7}
$$

The preferred counterion is the triflate anion, because of its electron withdrawing trifluoromethyl group which reduces its nucleophilicty and consequently it does not participate in the reactions of the salt.

Grignard reagents (scheme 1.2) and perfluoroalkynyllithium reagents reacted with the iodonium salts to give the expected products, perfluoroalkyllithium reagents also reacted, but gave lower yields ${ }^{5,6}$. Enolate ions of β-diketones and β-ketoesters reacted to give alkylation at both the carbon and oxygen ${ }^{6}$.

Scheme 1.2

Aryl systems reacted with the iodonium salts to give electrophilic aromatic substitution products ${ }^{7,8}$.

The reaction mechanism (scheme 1.3) is thought to proceed via intermediate (5), rather than (6), as compound (7) is not produced and, in general, a high proportion of ortho
products are observed, which would also favour the less sterically hindered intermediate (5).

Scheme 1.3 Addition of electrophilic fluoroalkyl group to phenyl systems

(6)

In general, addition of iodonium salts to alkenes, with allylic hydrogens, is followed by rearrangement of the double bond ${ }^{9}$.

Alkynes are less reactive than alkenes and give a mixture of substitution and addition products, depending on the solvent ${ }^{10}$. Trimethyl silyl enol ethers react to produce carbonyl compounds in good yield ${ }^{11-13}$.

Sodium hydride eliminated hydrogen fluoride from some polyfluoroalkyl aryliodonium salts ${ }^{12}$ to produce the alkenyl salts (8).

(8)

The alkenyl salt reacts at both vinylic carbons, with loss of fluoride ion or iodobenzene, but this can be controlled to an extent by the hardness of the nucleophile. For example, the soft t-butylthiophenoxide ion reacts at both sites whereas with the hard phenoxide ion only fluorine substitution occurs ${ }^{7}$.

1.22 Nucleophilic Perfluoroalkylating Agents

Nucleophilic perfluoroalkyl groups can be produced by addition of fluoride ion to perfluoroalkenes, for example, the reaction between HFP and caesium fluoride in aprotic solvent.

The resulting carbanion (9) reacts with perfluoroacyl fluorides ${ }^{14,15}$, perfluoroalkenes ${ }^{16}$, and electrophilic fluoroaromatics ${ }^{17}$, in situ.

1.23 Perfluoroalkylorganometallics

There are many examples of perfluoroorganometallic reagents in the literature and several excellent reviews ${ }^{18-21}$. and this is just a brief introduction to some of the most commonly used perfluoroalkyl organometallic reagents. Examples of reactions between organometallic reagents and organofluorine compounds are known, but are beyond the scope of this review and are reviewed elsewhere ${ }^{22,23}$.

Perfluoroalkyllithium reagents

Initial attempts to produce perfluoroalkyllithium reagents failed because of their instability and only fluoro-alkenes were produced. It was assumed that the perfluoroalkyllithium reagent decompose, with β-elimination of lithium fluoride. The most general method of producing a perfluoroalkyllithium reagent is by halogen-lithium exchange at low temperature ${ }^{24}$.

$$
\mathrm{C}_{3} \mathrm{~F}_{7} \mathrm{I} \xrightarrow[\mathrm{Et}_{2} \mathrm{O},-74^{\circ} \mathrm{C}]{\mathrm{CH}_{3} \mathrm{Li}} \mathrm{C}_{3} \mathrm{~F}_{7} \mathrm{Li}
$$

Perfluoroalkyllithium reagents react with a wide variety of electrophiles, including carbonyl compounds ${ }^{25-27}$. Lithium-halogen exchange, in situ is preferred because of the instability of the perfluoroalkyl lithium reagent.

Perfluoroalkyllithium reagents react with chromiun tricarbonyl complexes of benzaldehydes, attacking at the least sterically hindered face of the molecule to give high asymmetric induction ${ }^{28,29}$.

Perfluoroalkyl magnesium reagents

Perfluoroalkyl magnesium reagents are more stable than perfluoroalkyl lithium reagents, but still must be prepared at low temperature with pure magnesium. The favoured method is insertion of magnesium in to a carbon-halogen bond ${ }^{30,31}$. Trifluoromethyl magnesium halides are more difficult to produce than the longer chain perfluoroalkyl magnesium reagents. The maximum yield of trifluoromethyl magnesium iodide (11) was only 45% and it was much less reactive perfluoropropyl magnesium iodide ${ }^{32}$ (10).

$$
\begin{aligned}
& \mathrm{C}_{3} \mathrm{~F}_{7} \mathrm{I}+\mathrm{Mg} \cdot \underset{\substack{\mathrm{Et}_{2} \mathrm{O}}}{-20^{\circ} \mathrm{C}} \mathrm{C}_{3} \mathrm{~F}_{7} \mathrm{Mgl} \text { (10) } \\
& \mathrm{CF}_{3} \mathrm{I} \\
& \hline \mathrm{Mg} \frac{-30^{\circ} \mathrm{C}}{(\mathrm{Mg}} \mathrm{CF}_{3} \mathrm{Mgl} \\
& (11)
\end{aligned}
$$

An alternative method to perfluoro Grignard reagents was developed by reacting an unfluorinated Grignard reagent with a perfluoroalkyl iodide at low temperature. These reagents reacted in situ with acetone to give the corresponding alcohol ${ }^{33,34}$.

Perfluoroalkyl Grignard reagents react with a variety of electrophiles, including carbonyl compounds ${ }^{35}$.

$$
\begin{aligned}
& \mathrm{n}-\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{MgBr} \xrightarrow{\mathrm{R}_{2} \mathrm{CO}} \mathrm{n}-\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CR}_{2} \mathrm{O} \\
& \mathrm{R}=\mathrm{CF}_{3}, 64 \% \\
& \mathrm{R}=\mathrm{CH}_{3}, 90 \%
\end{aligned}
$$

At low temperature, perfluoroalkyl esters can be produced from dialkyl carbonates, with perfluoroalkyl ketones only produced as byproducts, because of the stability of the hemiketal salt intermediate ${ }^{36}$ (12).

Perfluoroalkyl zinc reagents

Solvated perfluoroalkyl zinc reagents are produced by reaction of zinc with perfluoroalkyl iodides in ethereal solutions ${ }^{37}$.

$$
\mathrm{C}_{3} \mathrm{~F}_{7} 1+\mathrm{Zn} \xrightarrow[\text { Dioxane }]{0^{\circ} \mathrm{C}} \mathrm{C}_{3} \mathrm{~F}_{7} \mathrm{Znl} \quad 50-60 \%
$$

They can also be prepared by ligand exchange with other perfluoroalkylated metals. Solvated perfluoroalkyl zinc are too stable to react with carbonyl compounds, unless they are activated by pyridine ${ }^{38}$.

Perfluoroalkyl halides react with electrophiles in the presence of zinc, presumably via a perfluoroalkyl zinc halide intermediate ${ }^{39}$.

Perfluoroalkyl copper reagents

Perfluoroalkyl copper reagents were first prepared by addition of copper metal to perfluoroalkyl iodides in a co-ordinating solvent ${ }^{40}$. They can also be produced by decarboxylation of perfluorocarboxylates in the presence of copper (I) halide and metathesis of other perfluoroalkylorganometallic reagents with copper metal or copper (I) salts.

$$
\mathrm{R}_{\mathrm{F}} \mathrm{I}+2 \mathrm{Cu} \xrightarrow{\mathrm{DMSO}} 110-120^{\circ} \mathrm{C} \quad \mathrm{R}_{\mathrm{F}} \mathrm{Cu}+\mathrm{Cul}
$$

Reactions with organic halides can be carried out using pregenerated perfluoroalkyl copper ${ }^{41}$ or in situ ${ }^{42}$.

$$
\mathrm{C}_{3} \mathrm{~F}_{7} \mathrm{I}+\mathrm{PhCH}=\mathrm{CHBr} \xrightarrow[100^{\circ} \mathrm{C}]{\mathrm{Cu}, \mathrm{Py}} \quad \mathrm{PhCH}=\mathrm{CHC}_{3} \mathrm{~F}_{7} \quad 82 \%
$$

Perfluoroalkyl copper reagents react with alkenes, presumably via the perfluoroalkyl radical generated from decomposition of the perfluoroalkyl reagent ${ }^{43}$.

A lot of interest has been generated by the addition of perfluoroalkyl copper reagents to aryl halides and there are many excellent reviews on this in the literature ${ }^{19,20}$.

1.24 Fluoroalkylation Via Radicals

The most common source of perfluoroalkyl radicals is homolytic bond cleavage of the carbon-halogen bond in perfluoroalkyl halides. This can be initiated by thermolysis, ultraviolet light, gamma rays, electrolysis or chemical initiators, such as peroxides. The trifluoromethyl radical has been produced by these methods and its reactions with aromatics, heteroaromatics, alkenes and alkanes have been reviewed by Chambers ${ }^{21}$ and McClinton ${ }^{44}$.

1.25 Functionalisation of the Carbon-Iodine Bond

Perfluoroalkyl iodides are also used as telogens in free-radical telomerisations with perfluoroalkenes ${ }^{45-46}$, and polyfluoroalkenes ${ }^{47}$, for example trifluoromethyl iodide and tetrafluoroethylene ${ }^{48}$.

$$
\begin{aligned}
\mathrm{CF}_{3} \mathrm{I} & \xrightarrow{\text { hv or } \Delta} \dot{\mathrm{CF}}_{3}+\mathrm{I} \\
\mathrm{CF}_{3} \mathrm{I} & \xrightarrow{\mathrm{CF}_{2}=\mathrm{CF}_{2}} \mathrm{CF}_{3} \mathrm{CF}_{2} \dot{\mathrm{C}} \mathrm{~F}_{2} \\
\mathrm{CF}_{3} \mathrm{CF}_{2} \dot{\mathrm{C}} \mathrm{~F}_{2} & \xrightarrow{\mathrm{n}\left(\mathrm{CF}_{2}=\mathrm{CF}_{2}\right)} \mathrm{CF}_{3}\left(\mathrm{CF}_{2} \mathrm{CF}_{2}\right)_{\mathrm{n}} \mathrm{CF}_{2} \dot{\mathrm{CF}} \\
\mathrm{CF}_{3}\left(\mathrm{CF}_{2} \mathrm{CF}_{2}\right)_{\mathrm{n}} \mathrm{CF}_{2} \dot{\mathrm{CF}} \mathrm{~F}_{2} & \xrightarrow{\mathrm{CF}_{3} \mathrm{I}} \mathrm{CF}_{3}\left(\mathrm{CF}_{2} \mathrm{CF}_{2}\right)_{\mathrm{n}+1} \mathrm{CF}_{3}
\end{aligned}
$$

Telomerisations proceed via a free-radical chain mechanism, which is discussed more fully in the next section. The chain length of such telomers can be controlled by the ratio of the reactants. Increasing the proportion of perfluoroalkyl iodide reduces the telomer chain length, whereas increasing the proportion of perfluoroalkene increases the telomer chain length.

1.3 Functionalisation of the Carbon-Hydrogen Bond

1.31 Free Radical Additions to Fluorinated Alkenes

A further method of introducing a fluoroalkyl group into an organic compound is insertion of a fluorinated alkene into a carbon-hydrogen bond, via a free-radical chain mechanism, which is an on going project in this laboratory ${ }^{49}$.

Free-radicals are uncharged species and therefore are not as easily stabilised by solvents as ions ${ }^{50}$, although solvent effects can be important ${ }^{51}$. A free-radical chain reaction (scheme 1.4) can consist of thousands of steps which can be categorised into three important stages: initiation, propagation and termination.

Scheme 1.4 Free-Radical Addition Chain Mechanism

Initiation

Propagation

Addition

Telomerisation

Chain transfer

Termination

In free-radical addition reactions the propagation stage consists of three separate processes: addition, telomerisation and chain transfer.

Hexafluoropropene (HFP) is a particularly useful fluorinated alkene for freeradical addition reactions, as is it an industrially available fluorinated alkene that only forms a homopolymer under extreme conditions ${ }^{52}$, because of steric inhibition by its trifluoromethyl group. Consequently in free-radical additions to HFP, chain transfer competes successfully with telomerisation and only addition products are observed.

1.32 Reaction Rate and Regiochemistry

The propagation stages dominates the radical chain and are therefore the major processes in determining the regiochemistry and rate of the reaction. In additions to HFP, the propagation stage consists of two processes, addition of the radical to the double bond and abstraction of a hydrogen by the fluoroalkyl radical.

Many reviews ${ }^{53-58}$ have been published on the factors affecting radical additions to double bonds and hydrogen-abstraction reactions and they concluded that both processes depend on the complex interplay of polar effects, steric effects and radical stabilisation.

Free-radical addition

Radical addition to a double bond is an exothermic process ${ }^{59}$, as a π-bond is broken and a σ-bond is formed, and therefore an early 'reactant-like' transition state (13) is expected.

In an early transition state the stability of the radical formed is not of major importance, and polar and steric effects are the dominating factors affecting the rate and regiochemistry of addition. Tedder ${ }^{55}$ concluded from experimental data that polar effects had a major affect on the overall rate of addition to fluorinated alkenes: This was demonstrated by comparing the reactivities of methyl and trifluoromethyl radicals towards ethene and tetrafluoroethylene (Table 1.1). It was reported that the electrophilic trifluoromethyl radical reacted with ethene at a faster rate than the methyl radical, whereas the methyl radical reacted faster with the electrophilic alkene tetrafluoroethylene.

Table 1.1 Ratio of radical addition rates to Tetrafluoroethene/ ethene 5 .

	$\mathrm{k}_{\mathrm{C}_{2} \mathrm{~F}_{4}} / \mathrm{k}_{\mathrm{C}_{2} \mathrm{H}_{4}\left(164^{\circ} \mathrm{C}\right)}$
$\mathrm{CH}_{3} \cdot$	9.5
$\mathrm{CF}_{3} \cdot$	0.1

Giese ${ }^{58}$ explained the effect of polarity on rate of addition by Molecular Orbital theory. In the addition of a methyl radical to ethene the methyl radical's SOMO is situated approximately between the HOMO and LUMO of ethene and interacts about equally with both resulting in stabilisation of the HOMO. For an electrophilic alkene, such as tetrafluoroethylene, the electron-withdrawing substituents on the double bond lower the energy of the alkene LUMO increasing its interaction with the methyl radical's SOMO which results in stabilisation of the SOMO and HOMO and an increased reaction rate.

The regiochemistry of addition to unsymmetrical alkenes was more complex. A study by Tedder ${ }^{55}$ of mono-fluorine substituted alkenes $\left(\mathrm{CH}_{2}=\mathrm{CHF}\right)$ found that both nucleophilic and electrophilic radicals favoured addition at the CH_{2} of the alkene (table 1.2).

Table 1.2 Orientation Ratios ($\alpha: \beta$) for addition at $150^{\circ} \mathrm{C}$

	α $\mathrm{CH}_{2}=\mathrm{CHF}$
$\mathrm{CH}_{3}{ }^{\bullet}$	$1: 0.09$
$\mathrm{CH}_{2} \mathrm{~F} \bullet$	$1: 0.3$
$\mathrm{CHF}_{2}{ }^{\bullet}$	$1: 0.2$
$\mathrm{CF}_{3}{ }^{\bullet}$	$1: 0.2$

As the size of the attacking radical was increased, from a trifluoromethyl radical to a perfluoro-tert-butyl radical, the proportion of addition at the less substituted vinylic carbon also increased (table 1.3).

Table 1.3 Orientation Ratio $(\alpha: \beta)$ for addition at $150^{\circ} \mathrm{C}$

	α
$\mathrm{CH}_{2}=\mathrm{CHF}$	
	$1: 0.1$
$\mathrm{CF}_{3} \cdot$	$1: 0.02$
$\left(\mathrm{CF}_{3}\right)_{2} \mathrm{CF} \bullet$	$1: 0.005$
$\left(\mathrm{CF}_{3}\right)_{3} \mathrm{C} \bullet$	

These results suggested that steric effects dominated in this system. Giese explained the preference of an attacking radical for the least substituted end of the alkene by an unsymmetrical transition state (14) in which steric interactions between the radical and alkene substituents are minimised.

Nevertheless a small polar effect was observed, as increasing the nucleophilicity of the radical did increase the proportion of addition at the fluorine-substituted vinylic carbon. Increasing the number of fluorine substituents on the alkene complicated the system. For trifluoroethylene (table 1.4), it was found that addition of the nucleophilic methyl radical favoured addition at the more substituted vinylic carbon, suggesting that polar effects were dominant in this system.

Table 1.4 Orientation Ratio ($\alpha: \beta$) for addition at $150^{\circ} \mathrm{C}$

	α $\mathrm{CHF}=\mathrm{CF}_{2}$
$\mathrm{CH}_{3}{ }^{\bullet}$	$1: 2.1$
$\mathrm{CH}_{2} \mathrm{~F}^{\bullet}$	$1: 2.0$
$\mathrm{CHF}_{2}{ }^{\bullet}$	$1: 0.9$
$\mathrm{CF}_{3} \cdot$	$1: 0.5$

In additions to HFP, nucleophilic carbon radicals preferentially attack the difluoromethylene group. In this case there is no conflict between polar and steric effects as the CF_{2} group is the more electrophilic (c.f. nucleophilic additions to HFP ${ }^{60}$) and the less sterically hindered site.

Hydrogen Abstraction

Generally, hydrogen-abstraction has a larger activation energy than radical addition and therefore the transition state usually occurs later and so the stability of the radical formed must be considered, along with polar and steric effects.

Studies by Tedder ${ }^{56}$ on hydrogen abstraction by trifluoromethyl and methyl radicals on alkanes (table 1.5) produced evidence of an Evans-Polyani relationship (E_{A} $=\alpha[\mathrm{D}(\mathrm{R}-\mathrm{H})]+\beta)$, i.e. there was a direct relationship between the strength of the bond broken in the alkane and the activation energy of hydrogen-abstraction, confirming the importance of the stability of the radical formed in hydrogen abstraction. This relationship was only valid when polar effects were constant, indicating the importance of polarity in hydrogen abstraction.

Table 1.5 Evans-Polyani Relationship

X	α	$\beta\left(\mathrm{kcalmol}^{-1}\right)$
$\mathrm{CH}_{3}{ }^{\bullet}$	0.49	74
$\mathrm{CF}_{3}{ }^{\bullet}$	0.53	84

In alkanes, radical stability increases as the number of alkyl substituents are increased, as the radical formed is stabilised by its neighbouring alkyl substituents via hyperconjugation. This was confirmed in ESR studies on the tert-butyl radical ${ }^{61}$.

Steric factors also affect the rate and site of addition. Steric hindrance can block hydrogen-abstraction at certain sites in a molecule, whereas the release of steric compression on formation of radical, which increases with the number of substituents, also has a beneficial effect on stability of the radical.

Again polarity has a major influence on the rate and selectivity of hydrogenabstraction. Tedder ${ }^{57}$ showed that electrophilic radicals, such as the trifluoromethyl radical, abstract hydrogens at a faster rate than nucleophilic radicals, such as the methyl radical, from carbons with electron-repelling substituents, whereas nucleophilic radicals abstract hydrogens at a faster rate than electrophilic radicals from carbons with electronwithdrawing substituents (table 1.6).

Table 1.6 Relative rates of H -abstraction by $\mathrm{CH}_{3} \bullet$ and $\mathrm{CF}_{3} \bullet$ (ethane as standard)

	$\mathrm{D}(\mathrm{R}-\mathrm{H})$ Kcalmol $^{-1}$	164 $\mathrm{k}_{\text {rel }}\left(\mathrm{CH}_{3} \bullet\right)$	164 $\mathrm{k}_{\text {rel }}\left(\mathrm{CF}_{3} \bullet\right)$
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{D}$	91	14	60
$\mathrm{CH}_{3} \mathrm{COCH}_{2}-\mathrm{H}$	92	2.1	0.5

The fluoroalkyl radical (15) produced from addition to HFP, is a large electrophilic radical and therefore will preferentially abstract hydrogens from nucleophilic carbons, for example the carbon with an α-oxygen, although steric hindrance may occur in some systems.

(15)

1.33 Methods of Initiation

Although various methods of free radical initiaton, such as thermal and UV initiation, have been used in the additions to HFP this project is primarily concerned with chemical (peroxide) and gamma ray initiation.

Chemical initiation of radical reactions is affected by thermal decomposition of compounds with unusually weak bonds, such as the O-O bond in peroxides. It involves homocleavage of the initiator first, which then reacts with the substrate ${ }^{62}$.

Peroxide Initiation

Dibenzoyl peroxide (DBPO) and tert-butyl peroxide (DTBP) are typical examples, and their reactions are generally conducted at $80^{\circ} \mathrm{C}$ and $140^{\circ} \mathrm{C}$ respectively ${ }^{63}$, at which temperature their half lives are $c a$. four hours.

Gamma irradiation provides a flexible method of initiation as not only can the duration of the reaction be varied, but also, unlike peroxides, it is temperature independent and therefore reactions can also be performed at a variety of temperatures ${ }^{64}$. However, a radiation source, such as the Co^{60} source available to our laboratory, is needed. Gamma rays do not homolytically cleave the substrate directly. The Co^{60} source is encased in a steel sheath, which absorbs the radiation and produces secondary electrons. The secondary electrons ejected from the metal then interact with the organic substrate to produce excited molecules which disassociate into radicals which start the chain reaction.

1.4 Free-Radical Additions to Hexafluoropropene (HFP)

1.41 Addition of Oxygen Containing Compounds

The first free-radical additions to HFP were performed by Lazerte ${ }^{65}$, on butanal and methanol.

$$
\begin{array}{ccc}
\mathrm{CH}_{3} \mathrm{OH} & +\mathrm{CF}_{2}=\mathrm{CFCF}_{3} \frac{\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}\right)_{2}}{120^{\circ} \mathrm{C}, 3 \mathrm{hr}} \mathrm{HOCH}_{2} \mathrm{CF}_{2} \mathrm{CFHCF}_{3} \\
5.5 & : 1 & 67 \%
\end{array}
$$

Muramatsu ${ }^{66}$ and Haszeldine ${ }^{67}$ have investigated additions to HFP of alcohols using γ-ray, uv, thermal and peroxide initiation (Table 1.7).

Table 1.7 Free-radical additions of alcohols to $\mathrm{HFP}\left(\mathrm{R}_{\mathrm{F}}=\mathrm{CF}_{2} \mathrm{CFHCF}_{3}\right)$

Hydrogen abstraction, in alcohols and aldehydes, occurred at the carbons atom neighbouring the oxygen, as the oxygen lone pairs stabilise the intermediate radical via resonance. This interaction also increases the nucleophilicity of the alkoxy radical in the addition step.

The importance of steric hindrance in radical attack was emphasised by Haszeldine, who successfully added 1,1,1-trifluoroethanol (16) to HFP, but observed no addition of 2,2,3,4,4,4-hexafluorobutan-1-ol ${ }^{67}$ (17) to HFP.

Muramatsu ${ }^{66}$ and Abroskina ${ }^{68}$ performed some preliminary investigations into additions of ethers to HFP, using gamma rays. This was followed by a more systematic investigation by Chambers et al ${ }^{69-71}$. Other workers have successfully used other types of initiation ${ }^{72-74}$ and additions of ethers are summarised in table 1.8. More recently successful additions of polyethers to HFP have also been achieved ${ }^{75,76}$.

Table 1.8 Free-radical additions of ethers to HFP

Ether	$\begin{aligned} & \text { Ether } \\ & \text { / HFP } \end{aligned}$		Products and yields (\%)				Ref
O	1.9:1	γ-rays		65			[81]
	$\begin{gathered} 2.3: 1 \\ 3.9: 1 \\ 1: 1.1 \\ 2: 1 \end{gathered}$	$\begin{gathered} \gamma \text {-rays } \\ \gamma \text {-rays } \\ \text { UV } \\ \text { DBPO } \\ \gamma \text {-rays } \end{gathered}$		$\begin{array}{r} 91 \\ 95 \\ 73 \\ 80 \\ 59-5 \end{array}$		$34-95$	$\begin{aligned} & {[66]} \\ & {[72]} \\ & {[75]} \\ & {[68]} \\ & {[68]} \end{aligned}$
	$1.6: 1$	γ-rays		64		31	[71]
$\left\langle\begin{array}{l}0 \\ 0\end{array}\right.$		DBPO		90			[72]
	$\begin{gathered} 1.6: 1 \\ 3: 1 \\ 3: 1 \\ \hline \end{gathered}$	$\begin{gathered} \gamma \text {-rays } \\ 300^{\circ} \mathrm{C} \\ \text { UV } \\ \hline \end{gathered}$		$\begin{aligned} & 70 \\ & 10 \\ & 82 \\ & \hline \end{aligned}$			[71] [74] [73]
	$\begin{gathered} 1.4: 1 \\ 3.2: 1 \\ 3: 1 \\ 1: 1.3 \\ \hline \end{gathered}$	$\begin{gathered} \gamma \text {-rays } \\ \gamma \text {-rays } \\ \text { UV } \\ \text { UV } \\ \hline \end{gathered}$		$\begin{aligned} & \hline 81 \\ & 79 \\ & 95 \\ & 51 \end{aligned}$		7	[66] [71] [73] [75]
$\mathrm{C}_{0}^{\mathrm{O}}$	1:2			31			[75]
	$2.9: 1$	γ-rays		70			[81]
O	$\begin{gathered} 2.3: 1 \\ 3: 1 \\ 3: 1 \end{gathered}$	$\begin{gathered} \gamma-\text { rays } \\ 280^{\circ} \mathrm{C} \\ \mathrm{UV} \end{gathered}$	$\% \mathrm{~V}_{\mathrm{F}}$	$\begin{aligned} & 68 \\ & 61 \\ & 65 \\ & \hline \end{aligned}$			[69] [74] [73]
V°	$\begin{aligned} & 2.8: 1 \\ & 2.9: 1 \\ & 1: 1.6 \end{aligned}$	$\begin{gathered} \gamma \text {-rays } \\ \gamma \text {-rays } \\ \text { UV } \end{gathered}$		$\begin{aligned} & 38 \\ & 44 \end{aligned}$		$\begin{array}{r} 43 \\ 57 \\ 39 \\ \hline \end{array}$	$\begin{aligned} & {[69]} \\ & {[66]} \\ & {[75]} \end{aligned}$
$\wedge^{\circ} \wedge$	$2.3: 1$	$\gamma \text {-rays }$				28	[69]

Hydrogen abstraction in ethers occurs at the carbon neighbouring the oxygen, again as the resulting radical is resonance stabilised by the neighbouring oxygen. This stabilisation can be explained by M.O. theory.

The interaction of the heteroatom lone pair with the adjacent carbon radical producing a nucleophilic radical which attacks the electrophilic alkene ${ }^{75}$. This is shown in valence bond form below.

Chambers ${ }^{71}$ established a reactivity order for cyclic ethers of oxolane > oxepane > oxane, by competition reactions. The increased reactivity of the five and seven membered rings over the six-membered ring was attributed to the increased energy barrier to an eclipsing interaction between the orbital containing the radical and a lone pair on the neighbouring oxygen, in the six-membered ring.

Muramatsu ${ }^{77}$ observed that addition of the mono-adduct of diethyl ether to HFP only yielded a small amount of di-adduct, which was in contrast to diethyl ether itself. Therefore he suggested that the di-adducts of acyclic ethers were formed by intramolecular hydrogen abstraction, via a six membered transition state (18).

Chambers ${ }^{69}$ observed tri-adduct formation with n-dibutyl ether and postulated that it was also formed by intramolecular hydrogen abstraction, in a similar mechanism as proposed by Muramatsu.

Addition to HFP of a series of ethers, with electron withdrawing substituents ${ }^{77}$, highlighted the effect of polarity on radical additions.

$$
\mathrm{R}^{1}=\mathrm{CHF}_{2}, \mathrm{CHFCl}, \mathrm{CH}_{2} \mathrm{CF}_{2}
$$

$$
\mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{~F}, \mathrm{CF}_{3}, \mathrm{CH}_{2} \mathrm{Cl}, \mathrm{CH}_{2} \mathrm{CF}_{2}
$$

The ethers with α-fluorine atoms were less reactive than those without, suggesting that the fluorine atoms were reducing the nucleophilicity of the ether radical attacking the HFP. The electron-withdrawing substituents of both sets of ethers directed hydrogen abstraction by the fluoroalkyl radical to the opposite side of the molecule in formation of the mono-adducts

Surprisingly, borate ethers readily undergo HFP addition ${ }^{69}$. It was suggested that the intermediate carbon radical was stabilised by extensive 'allylic-type' conjugation with neighbouring oxygen and boron ($\mathrm{B}=\mathrm{O}-\mathrm{C} \bullet$).

Although tetramethylsilane reacts with HFP to give the mono-addition product, reaction occurs at the methoxy group in methoxytrimethylsilane, as the oxygen provides greater stabilisation of the carbon radical. Jones ${ }^{78}$ was able to add HFP to several siloxanes, including silicon oil.

$$
\mathrm{R}_{\mathrm{F}}=\mathrm{CF}_{2} \mathrm{CFHCF}_{3}
$$

Several isomers of the mono-adducts were afforded from addition to HFP of esters ${ }^{69,79}$, but the preferred site of addition was at the carbon neighbouring the ether oxygen.

1.42 Additions of Nitrogen Containing Compounds

Addition of nitrogen containing substrates have been investigated in this laboratory ${ }^{78,80,81}$. Free-radical additions of amines to HFP were complicated by competition with nucleophilic attack on HFP by the nitrogen of the amine ${ }^{81}$. Tertiary amines did undergo radical addition to HFP, as nucleophilic attack by the nitrogen is sterically hindered by its substiuents.

A route to HFP adducts of primary and secondary amines was found by protecting the amine with trimethylsilyl groups before adding HFP (table 1.9) and then hydrolysing the product ${ }^{80}$.

Table 1.9 Free-radical addition of silyl amines ${ }^{80}$ to $\mathrm{HFP}\left(\mathrm{R}_{\mathrm{F}}=\mathrm{CF}_{2} \mathrm{CFHCF}_{3}\right)$

Silyl amine	Initiator	Products and yields (\%)		Ref	
	γ-rays	 21		40	[80]
	γ-rays				[80]
	γ-rays		86		[80]

Addition of amides ${ }^{78,80-82}$ (table 1.10) was more successful than to amines. The carbonyl group of the amide reduces the electron donating ability of the nitrogen and therefore reduced its nucleophilicity, although it also reduces the nucleophilicity of the nitrogen-stabilised radical. The amide adducts could then be hydrolysed or reduced to amines ${ }^{80}$.

Table 1.10 Free radical addition of amides to $\mathrm{HFP}\left(\mathrm{R}_{\mathrm{F}}=\mathrm{CF}_{2} \mathrm{CFHCF}_{3}\right)$
Amide

1.43 Additions of Alkenes and Aryl Derivatives

Muramatsu et al ${ }^{83}$ used equimolar amounts of the alkyl benzene and DTBP to get addition to HFP in low yields. Indanes (20) were formed as well as the expected mono-adduct (19). Haszeldine ${ }^{84,85}$ produced similar results using thermal initiation.

Indane formation was believed to occur by cyclisation of the fluoroalkyl radical. A similar mechanism was proposed for indane formation in benzylic derivatives of alcohols ${ }^{79}$, ethers ${ }^{86}$ and carbonyl compounds ${ }^{79}$.

Thermal additions of alkenes ${ }^{87,88}$ were complicated by cyclic products and only low yields of mono-adducts were produced by allylic insertion.

The patent literature claimed cyclohexene gave a significantly greater yield of the monoadduct (21), using thermal initiation ${ }^{89}$, but only trace amounts could be produced by DTBP initiation, in this laboratory ${ }^{90}$.

(21) 60%

Chapter Two
 Free Radical Additions of Hydrocarbons to Hexafluoropropene

2.1 Introduction

The functionalisation of hydrocarbons is a field of continuing activity and a variety of approaches in this field have been taken ${ }^{91-93}$. In the present work the reactions of several alkanes and cycloalkanes with hexafluoropropene have been investigated, as a remarkably simple method of functionalisation.

2.11 Additions of Alkanes to Hexafluoropropene (HFP)

Addition to HFP, of several short, straight or branched chained hydrocarbons $\left(\mathrm{C}_{2}-\mathrm{C}_{4}\right)$ were claimed in the patent literature, using thermal ${ }^{89}$ and UV irradiation ${ }^{94}$ (table 2.1). Haszeldine at al also added HFP to n-butane and n-pentane ${ }^{95}$. All the reactions were performed using a three fold excess of the hydrocarbon.

Table 2.1 Addition of alkanes to HFP (thermal \& UV initiation)

Both types of initiation gave low to moderate yields of HFP adducts. For the straight chain alkanes, with four or more carbon atoms, there is little selectivity at the site of hydrogen abstraction which led to mixtures of isomeric HFP adducts. Di-adducts were only produced by systems with four or more carbons. This may be due to the
electronic or steric effect of the fluoroalkyl group in the mono-adducts deactivating the systems to further attack.

Preliminary work, in this laboratory ${ }^{90}$, has also been performed on aliphatic hydrocarbons, using γ-rays and peroxide initiation (table 2.2).

Table 2.2 Addition of alkanes to HFP (γ-rays and Peroxide)

${ }^{\mathrm{a}} 140^{\circ} \mathrm{C}, 24$ hrs. ${ }^{\mathrm{b}} 10 \mathrm{Mrads}, 18^{\circ} \mathrm{C}, 4$ days

Again, only low to moderate yields were achieved. The low reactivity of $n-$ hexane may have been due to impurities in the hydrocarbon (8% cyclohexene), as competition reactions with cyclohexane, showed that they have comparable reactivities. Several isomeric adducts, which were inseparable, were produced in the n-hexane reaction, demonstrating the lack of selectivity of hydrogen abstraction from the secondary carbons.

2.12.Addition of Partially Fluorinated Alkanes to Hexafluoropropene

Additions to 2-trifluoromethylbutane and 1,1,1-trifluoropentane, using thermal initiation, were attempted ${ }^{96}$ (table 2.3). They are especially of interest as the
trifluoromethyl group has a similar electron withdrawing effect as the $\mathrm{C}_{3} \mathrm{~F}_{6} \mathrm{H}$ group, but has lower steric requirements. Therefore it should be possible to determine which effect has the greater influence on di-adduct production.

Table 2.3 Addition of partially fluorinated alkanes to HFP (thermal initiation)

	Conditions	Products $\left(\mathrm{R}_{\mathrm{F}}=\mathrm{CF}_{2}\right.$ \& yields (\%, calcula	HFP)	Ref
	$292{ }^{\circ} \mathrm{C}, 4$ days		7	[96]
	$280^{\circ} \mathrm{C}, 4$ days		25	
	$260^{\circ} \mathrm{C}, 4$ days		10	
$\stackrel{\wedge}{\mathrm{CF}_{3}}$	$295{ }^{\circ} \mathrm{C}, 4$ days		23	[96]
	$277^{\circ} \mathrm{C}, 4$ days		20	
	$260^{\circ} \mathrm{C}, 4$ days		10	

Generally, as the temperature increased so did the reaction conversion, but the yields of the desired products decreased. In neither case were mono-adducts formed from insertion into carbon-hydrogen bond β - to the trifluoromethyl group. This strongly suggests that it is the inductive effect of the fluoroalkyl group, and not its steric bulk, that dictates the site of addition of a second HFP group.

2.13 Addition of Cycloalkanes to Hexafluoropropene

Additions to HFP, of cyclic hydrocarbons have been claimed in the patent literature using thermal initiation ${ }^{89}$ and UV irradiation ${ }^{94}$ (table 2.4).

Table 2.4 Addition to HFP of Cycloalkanes (thermal and UV initiation)

	Alkane / HFP.	Initiator	Products \& yields(\%, calculated, Ref based on HFP) $\left(\mathrm{R}_{\mathrm{F}}=\mathrm{CF}_{2} \mathrm{CFHCF}_{3}\right)$		
\triangle	3:1	$310^{\circ} \mathrm{C}$	$D-R_{F}$	5	[89]
	$\begin{aligned} & 3: 1 \\ & 3: 1 \end{aligned}$	$\begin{gathered} 290^{\circ} \mathrm{C} \\ \text { UV, } \sim 50^{\circ} \mathrm{C} \end{gathered}$		43	$\begin{aligned} & {[89]} \\ & {[94]} \end{aligned}$
	$\begin{aligned} & 3: 1 \\ & 3: 1 \end{aligned}$	$\begin{gathered} 280^{\circ} \mathrm{C} \\ \text { UV, } \sim 50^{\circ} \mathrm{C} \end{gathered}$		54 38	[89] [94]

The reactions were generally done on a very small scale and only the monoadducts were claimed, characterised by elemental analysis only, and no additional products were indicated. These should not be discounted especially in the thermal reactions where the hydrocarbon is susceptible to fragmentation from which many addition products may result. All the systems gave moderate to poor yields using these initiators.

Use of γ-rays to initiate addition to HFP of a cyclic hydrocarbon system was reported by Russian workers in 1976. Their initial studies were on the adamantane system ${ }^{97}$. They conducted a series of reactions using gamma rays, varying the temperatures $\left(20-100^{\circ} \mathrm{C}\right)$ and reaction time. In general they used a five fold excess of HFP to produce 1-(1,1,2,3,3,3-hexafluoropropyl)adamantane (22).

(22)

Using up to a twenty-fold excess of HFP, they also produced 1,3-bis(1,1,2,3,3,3hexafluoropropyl)adamantane ${ }^{98}$ (23).

(23)

Podkhalyuzin and Nazarova also investigated the addition to cyclohexane ${ }^{99}$. The yield of (1,1,2,3,3,3-hexafluoropropyl)cyclohexane (24) was optimised using a 1.5 excess of cyclohexane over HFP. Several reactions were performed for kinetic studies with the temperature being varied from $20^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$ and $81^{\circ} \mathrm{C}$. The reaction was very clean giving only the mono-adduct. It was found that the reaction was almost
completely inhibited by benzene or iodine, which confirmed the radical nature of the reaction.

(24) 60\%

More recently other systems have been studied, in preliminary work done in this laboratory ${ }^{90}$, with varying success. No reaction occurred with cyclopropane and only a small amount of addition to decalin occurred, whereas addition to cyclopentane gave a mixture of mono- (25) and di-adducts (26).

Peroxide initiation (DTBP) was also used in the addition to cyclohexane. An increased proportion of di-adducts to mono-adducts was observed, which is presumably due to the increase in temperature of the system.

2.21. Propane

In the present work a more complete investigation into the addition of propane to HFP was undertaken, using both γ-ray and DTBP initiation.

Initiator	Ratio	Yields (\%)	
	$\mathrm{C}_{3} \mathrm{H}_{8}:$ HFP	$\mathbf{(2 8)}$	(29)
γ-rays, 4 days, 6 Mrads	$1: 1$	8	trace
γ-rays, 8 days, 12 Mrads	$1: 1.2$	19	1
DTBP	$1: 1.5$	75	3

Reactions initiated by γ-rays gave low to moderate conversions to the monoadducts (28) and (29), whereas using DTBP initiation gave a greatly enhanced reaction conversion, which can be simply attributed to the increased temperature of the reaction.

A GLC/MS analysis of the product mixture from the DTBP initiated reaction identified two isomers of the mono-adduct, which could not be separated. The ${ }^{19} \mathrm{~F}$ and ${ }^{1} \mathrm{H}$ NMR spectra of the product mixture confirmed that the major isomer was 1,1,1,2,3,3-hexafluoro-4-methylpentane (28) and the minor isomer was $1,1,1,2,3,3-$ hexafluorohexane (29), agreeing with previous data ${ }^{90}$ from this laboratory.

Three major signals in the ${ }^{19} \mathrm{~F}$ NMR spectrum corresponding to a $\mathrm{CF}_{3}(-74.5$, broad singlet), CF_{2} ($-117.7 \& 121.8, \mathrm{AB}$ system), and a CFH group (-212.0, doublet) were assigned to the 2 H -hexafluoropropyl group of compound (28). The CF_{2} group is observed as an $A B$ system since the fluorines are not equivalent due to the adjacent chiral CFH group. The ${ }^{1} \mathrm{H}$ NMR spectrum exhibited three major resonances at 1.12,
2.34, and 4.82 ppm in a $6: 1: 1$ ratio which corresponded to the two equivalent CH_{3}, CH , and CFH groups respectively.

Addition to propane occurred at the secondary carbon in preference to the primary carbon despite it having a $1: 3$ statistical ratio of methylene to methyl hydrogens. This is rationalised by the increased stability of the hydrocarbon's secondary radical over its primary radical, primarily due to increased hyperconjugation in the secondary carbon radical.

2.22. 2-Methylpropane

Addition of 2-methylpropane to HFP was affected using both γ-ray and DTBP initiation.

$$
\begin{array}{ll}
\text { i, } & \gamma \text {-rays, r.t. } \\
\text { ii, } & \text { DTBP, } 140^{\circ} \mathrm{C}, 24 \mathrm{hrs}
\end{array}
$$

Initiator	Ratio	Yields (\%)	
	$\mathrm{C}_{4} \mathrm{H}_{10}: \mathrm{HFP}$	$\mathbf{(3 0)}$	$(\mathbf{3 1)}$
γ-rays, 5 days, 7.5 Mrads	$1: 1$	17	trace
DTBP	$1: 1.3$	80	3

The γ-ray initiated reaction gave a low conversion to essentially one product, which was confirmed as $1,1,1,2,3,3$-hexafluoro-4,4-dimethylpentane (30) by comparison of its $\mathrm{EI}{ }^{+}$mass spectrum, ${ }^{19} \mathrm{~F}$ NMR and ${ }^{1} \mathrm{H}$ NMR spectra with the data from previous work in this laboratory ${ }^{90}$.

At elevated temperature, using DTBP initiator, the reaction conversion was greatly increased. There was also a slight decrease in the selectivity of the reaction. Again the major product was compound (30), but a minor component ($>5 \%$) was also
detected. The EI^{+}spectrum confirmed the minor product as a mono-adduct with a $\left(M^{+}-H\right)$ peak at 207 and a base peak at 43 which concurs with loss of a ${ }^{+} \mathrm{CH}_{2} \mathrm{CF}_{2} \mathrm{CFHCF}_{3}$ fragment, suggesting addition occurred at a methyl carbon. Minor signals in the ${ }^{19} \mathrm{~F}$ NMR of the product mixture confirmed the presence of a second 2 H hexafluoropropyl group and the ${ }^{1} \mathrm{H}$ NMR spectrum of the product mixture observed small additional resonances at 0.88 (doublet), 1.39 (broad singlet) and 1.61 (broad singlet), which correspond to two equivalent CH_{3} 's, a CH and a $\mathrm{CH}_{2} \mathrm{CF}_{2}$ group of 1,1,1,2,3,3-hexafluoro-4,4-dimethylhexane (31).

Addition occurred primarily at the methyne group rather than the methyl groups despite the $1: 9$ statistical relationship between them. Again this is rationalised by the increased hyperconjugation in the tertiary carbon radical.

2.3. Addition of Monocyclic Hydrocarbons

2.31. Cyclopropane

Cyclopropane failed to react in a $\boldsymbol{\gamma}$-ray initiated reaction performed over an extended period of time (15 Mrads). Cyclopropane's low reactivity may be due to its high $\mathrm{C}-\mathrm{H}$ bond strength ${ }^{100}$ and greater electronegativity compared with the larger cycloalkanes. A reaction at elevated temperature, using DTBP initiation, was attempted to try to increase the reactivity of the cyclopropyl radical.

ii, t-butyl peroxide, $140^{\circ} \mathrm{C}, 24 \mathrm{hrs}$

Although a small amount of the mono-adduct (32) was identified by GC.-ms (M^{+}peak at 192) the product mixture was very complex and the adduct could not be isolated. The complexity of the products was most likely due to ring opening of the cyclopropane, from a large release of ring strain after H -abstraction, followed by polymerisation.

2.32. Cyclopentane

The cyclopentane obtained for these reactions had only a guaranteed purity of $95+\%$. Addition to HFP was attempted initially using γ-rays and subsequent reactions were performed using.DTBP initiation.

$$
\text { i, } \quad \gamma \text {-rays, r.t. } \quad R_{F}=\mathrm{CF}_{2} \mathrm{CFHCF}_{3}
$$

ii, DTBP, $140^{\circ} \mathrm{C}, 24 \mathrm{hrs}$

Initiator	Ratio	Conversion	Yields (\%)	
	$\mathrm{C}_{5} \mathrm{H}_{12}: \mathrm{HFP}$	w.r.t. $\mathrm{C}_{5} \mathrm{H}_{12}$	(25)	$(\mathbf{2 6)}$
γ-rays, 5 days, 7.5 Mrads	$1: 1.6$	54	86	9
DTBP	$1: 1.6$	96	49	38
DTBP	$1: 2$	100	57	23

Using γ-ray initiation moderate conversion was achieved. A pure sample of the major product (25), was obtained by fractional distillation. A ${ }^{19} \mathrm{~F}$ NMR spectrum, ${ }^{1} \mathrm{H}$ NMR spectrum and EI^{+}spectrum of the pure sample concurred with the previous data ${ }^{90}$ for $1,1,1,2,3,3$-hexafluoropropylcyclopentane (25).

A broad band proton decoupled ${ }^{13} \mathrm{C}$ NMR experiment was run on compound (25) to use as a model for other hydrocarbon adducts of HFP. Four resonances were observed in the $0-30 \mathrm{ppm}$ region and were assigned to CH_{2} ring carbons (figure 2.1). The chiral CFH group in the fluoroalkyl side chain destroys the symmetry of the cyclopentane ring and consequently separate signals are observed for each ring carbon. A fifth resonance at 42.5 ppm appears as a triplet $\left({ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 22 \mathrm{~Hz}\right)$ and can be assigned to the tertiary ring carbon, which couples with the neighbouring β-fluorines of the CF_{2} group.

Figure $2.1{ }^{13}$ C NMR chemical shifts (ppm) for the cyclopentane ring of compound (25)

Three further resonances appear at very high field and can be attributed to the carbon atoms in the hexafluoropropyl side chain. The first, at 86.0 ppm , was observed as a doublet (${ }^{1}{ }^{\mathrm{J}} \mathrm{C}-\mathrm{F} 195 \mathrm{~Hz}$) of doublets (${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 37 \mathrm{~Hz}$) of quartets (${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 34 \mathrm{~Hz}$) doublets $\left.{ }^{(2} \mathrm{J}_{\mathrm{C}-\mathrm{F}} 30 \mathrm{~Hz}\right)$. This coupling was characteristic of the CFH carbon (figure 2.2).

Figure 2.2 Carbon-Fluorine coupling to the CFH carbon in compound (25)

The second, a doublet $\left({ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 251 \mathrm{~Hz}\right)$ of doublets $\left({ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 249 \mathrm{~Hz}\right)$ of doublets $\left({ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 24\right.$ Hz) at 118.9 ppm was assigned to the CF_{2} carbon (figure 2). The final resonance at 120.2 ppm was split into a quartet $\left({ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 282 \mathrm{~Hz}\right)$ of doublets $\left({ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 26 \mathrm{~Hz}\right)$ and was assigned to the CF_{3} group (figure 2.3).

Figure 2.3 Carbon-Fluorine coupling to the $\mathrm{CF}_{2} \& \mathrm{CF}_{3}$ carbons in compound (25)

Initiation using DTBP, gave an almost quantitative reaction conversion. Fractional distillation of the products gave compound (25) and a higher boiling fraction consisting of six components, in the GC. ratio $1.7: 1.1: 2.3: 2.4: 1.5: 1$. The EI^{+}mass spectra, ${ }^{19} \mathrm{~F}$ NMR and ${ }^{1} \mathrm{H}$ NMR of the second fraction agreed with the literature data for isomers 1 , x-bis $(1,1,1,2,3,3$-hexafluoropropyl)cyclopentane ($x=2,3$) (26) which could not be distinguished from each other.

The introduction of more than one hexafluoropropyl group into a cycloalkane, not only produces the possibility of regioisomers e.g. 1,2- or 1,3 -substitution, but also diastereomers of the regioisomers because of the introduction of chiral centres in the fluoroalkyl side chain and at the site of addition in the cycloalkane. Therefore if these chiral centres were removed then characterisation should be easier (see later).

2.33. Cyclohexane

Addition to cyclohexane was initiated using both γ-rays and DTBP. The peroxide reaction was also successfully performed on a larger scale, using a one litre autoclave.

Initiator	Ratio	Conversion	Yields (\%)	
	$\mathrm{C}_{6} \mathrm{H}_{12}: \mathrm{HFP}$	w.r.t. $\mathrm{C}_{6} \mathrm{H}_{12}$	(24)	(27)
γ-rays, 5 days, 7.5 Mrads	$1: 1.5$	79	90	4
DTBP	$1: 2$	99	39	53
DTBP, 1 litre autoclave	$1: 2$	50	85	6

A high reaction conversion was achieved using γ-rays and fractional distillation of the product mixture separated, the major product, 1,1,2,3,3,3-
hexafluoropropylcyclohexane (24) from isomers of the di-adduct, $1, x$-bis $(1,1,2,3,3,3-$ hexafluoropropyl)cyclohexane ($\mathrm{x}=2,3,4$) (27). The ${ }^{19} \mathrm{~F}$ NMR and ${ }^{1} \mathrm{H}$ NMR spectra and the EI^{+}mass spectra of compounds (24) and (27) agreed with previously reported data ${ }^{90,99}$.

A broad band proton decoupled ${ }^{13} \mathrm{C}$ NMR experiment was performed on compound (24), to use as a model for characterisation of the di-adducts. The three hexafluoropropyl carbons were assigned as in the previous experiment. Six resonances were observed for the cyclohexane ring. A triplet at $41.6 \mathrm{ppm}\left({ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 21 \mathrm{~Hz}\right)$ was attributed to the methyne carbon of the ring. A multiplet at 25.5 ppm and a triplet at $24.0 \mathrm{ppm}\left({ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 4 \mathrm{~Hz}\right)$ were assigned to the two carbons neighbouring the methyne group because of their third order coupling to the difluoromethylene fluorines. Three singlets, observed at $25.8,25.5$ and 25.3 ppm , were assigned to the other three methylene carbons, with the methylene group furthest from the electron-withdrawing fluoroalkyl group being assigned the signal at highest field.

Figure 2.4 ${ }^{13}$ C NMR chemical shifts (ppm) for the cyclohexane ring of compound (24)

Unfortunately, a ${ }^{1} \mathrm{H}$ NMR and a broad band proton decoupled ${ }^{13} \mathrm{C}$ NMR of the liquid mixture of di-adducts (27) could not distinguish the structures of the separate isomers.

Peroxide initiation (DTBP) resulted in complete conversion of the hydrocarbon starting material. The product distribution differed from the γ-ray reaction, in that a greater proportion of di-adducts (27) were formed. Fractional distillation separated the mono-adduct (7) from the mixture of di-adducts (27). On standing, a solid (27a) crystallised out from the di-adduct mixture. A methanol solution of the di-adduct mixture was then cooled to $-15^{\circ} \mathrm{C}$, to remove any further solid di-adduct (27a) which
was characterised separately (see later). A GC analysis of the liquid di-adducts identified six major components, in a ratio of $1: 3.5: 15: 6: 11: 3$, which could not be separated individually.

The solid di-adduct (27a) had previously ${ }^{90}$ been described as $1,4-$ bis(1,1,2,3,3,3-hexafluoropropyl)cyclohexane although no conclusive proof of the structure was given. The ${ }^{19} \mathrm{~F}$ and ${ }^{1} \mathrm{H}$ NMR solution spectra and EI^{+}mass spectrum of the solid di-adduct (27a) agreed with the literature ${ }^{90}$, but also a broad band proton decoupled ${ }^{13} \mathrm{C}$ NMR spectrum of a CDCl_{3} solution of the solid di-adduct (27a) was run to determine its structure. Six resonances were observed, three of these signals at 85.0, 119.3 and 120.9 ppm , were assigned to the three carbons of the hexafluoropropyl groups as in compound (5). Only three signals were observed for the cyclohexane ring which eliminated the possibility that the solid was the 1,3 -bis-adduct. At high field, two triplets were observed at 22.7 and $21.1 \mathrm{ppm}\left({ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 3-4 \mathrm{~Hz}\right)$, arising from the methylene ring carbons, and another triplet at $40.6 \mathrm{ppm}\left({ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 22 \mathrm{~Hz}\right)$ due to the methyne ring carbons. The similarity in chemical shifts of the methyne carbons in (24) and (27a) strongly suggests that (27a) is the 1,4-bis-adduct and not the 1,2-bis-adduct and this is supported by the evidence of C-F coupling in both the methylene ring carbons of (27a).

A single crystal was grown, and submitted for X-ray crystallographic analysis, which conclusively identified it as a diastereomer of trans-1,4-bis (1, 1,2,3,3,3hexafluoropropyl)cyclohexane (27a) (figure 2.5).

Figure 2.5 trans-1,4-bis(1,1,2,3,3,3-hexafluoropropyl)cyclohexane (27a)

The crystal's symmetry is dominated by a centre of inversion, i. The packing of the molecule in the crystal revealed no intermolecular H -bonding interactions with CFH proton.

2.4. Addition of Bicyclic Hydrocarbons

2.41. Cis-Decalin

A γ-ray initiated reaction produced only a low conversion ($<5 \%$) of cis-decalin and so the reaction was repeated using peroxide initiation.

> ii. DTBP, $140^{\circ} \mathrm{C}, 24 \mathrm{hrs}$ $\mathrm{R}_{\mathrm{F}}=\mathrm{CF}_{2} \mathrm{CFHCF}_{3}$

Initiator	Ratio	Conversion	Yields (\%)	
	$\mathrm{C}_{10} \mathrm{H}_{18}:$ HFP	w.r.t. $\mathrm{C}_{10} \mathrm{H}_{18}$	(33)	(34)
DTBP, $140^{\circ} \mathrm{C}$	$1: 2$	39%	56	33
DTBP, $140^{\circ} \mathrm{C}$, acetone	$1: 2$	44%	49	45

The initial reaction using DTBP initiation, produced a disappointing reaction conversion (39\%) which may have been due to the immiscibility of the starting materials. Fractional distillation of the reaction mixture gave two fractions, other than starting material. The first fraction contained a group of 7 compounds, which were identified as isomers of x -($1,1,1,2,3,3$-hexafluoropropyl)cis-decalin ($\mathrm{x}=1,2,9$) (33) by their NMR and mass spectra. The ${ }^{19} \mathrm{~F}$ NMR of the first fraction identified the presence of several non equivalent hexafluoropropyl groups, but the ${ }^{1} \mathrm{H}$ NMR contained many overlapping multiplets and although the CFH protons were evident, the ring proton assignments were very difficult. The EI^{+}mass spectra of compounds (33) identified an
M^{+}peak at 288 , a $\left(\mathrm{M}^{+}-\mathrm{CF}_{2} \mathrm{CFHCF}_{3}\right)$ peak at 137 and a base peak at 95 , confirming them as isomers of the mono-adduct.

Radical addition to HFP of cis-decalin at the one- or two-position, not only generates a chiral centre in the fluoroalkyl side chain, but also at the site of addition. Consequently, four diastereoisomers are possible for addition at each site. Addition at the tertiary carbon (nine-position) does not create a chiral centre at that site, but the tertiary radical produced could invert and therefore produce both cis- and trans-isomers of 9-(1,1,1,2,3,3-hexafluoropropyl)decalin (33c). This explains the large number of isomers of the mono-adduct (33) produced.

Obviously further addition to HFP to form di-adducts (34) leads to an even greater number of possible isomers as other regio-isomers are possible as well as a further increase in chiral centres present. The second distillation fraction contained a group of sixteen compounds identified as isomers of x, y-bis(1,1,1,2,3,3-hexafluoropropyl)cisdecalin ($\mathrm{x}=1, \mathrm{y}=2-10 ; \mathrm{x}=2, \mathrm{y}=3-10$) (34) from their NMR and mass spectra. The EI^{+} mass spectra identified M^{+}peaks at $438,\left(\mathrm{M}^{+}-\mathrm{CF}_{2} \mathrm{CFHCF}_{3}\right)$ peaks at 287 and base peaks at 245 . Again, the ${ }^{19} \mathrm{~F}$ NMR confirmed the existence of several hexafluoropropyl groups and the ${ }^{1} \mathrm{H}$ NMR was very complex.

In an effort to increase the reaction conversion dry acetone was added as a cosolvent to improve the miscibility of the reactants, in the subsequent reaction. This did raise the conversion slightly, but still only a moderate reaction conversion was achieved.

2.42 Trans-decalin

Addition to trans-decalin was attempted using γ-rays at room temperature, but only a low conversion ($<5 \%$) of starting materials occurred and so the reaction was repeated using DTBP initiation at $140^{\circ} \mathrm{C}$.

Again increasing the temperature had a beneficial effect on the system. Fractional distillation, under reduced pressure, of the product mixture gave two separate fractions. The first fraction contained four components, in a GC. ratio of $1: 4.4: 10$: 4.9 , which were identified as isomers of the mono-adduct (35) by their NMR and mass spectra data. Their EI^{+}mass spectra identified M^{+}peaks at 288 and (M$\left.\mathrm{CF}_{2} \mathrm{CFHCF}_{3}\right)^{+}$peaks at 137 . The ${ }^{19} \mathrm{~F}$ NMR of the first fraction identified several $2 \mathrm{H}-$ hexafluoropropyl groups and the ${ }^{1} \mathrm{H}$ NMR identified the CFH and ring protons.

The second distillation fraction contained ten major isomers of the di-adduct (36). Their EI^{+}mass spectra included M^{+}peaks at 438 and $\left(\mathrm{M}^{+}-\mathrm{CF}_{2} \mathrm{CFHCF}_{3}\right)$ peaks at 287 and the ${ }^{19} \mathrm{~F}$ and ${ }^{1} \mathrm{H}$ NMR spectra confirmed the addition of $2 \mathrm{H}-$ hexafluoropropyl groups.

Again the sites of addition could not be conclusively determined because of the large number of isomers produced.

In comparison with addition to cis-decalin, the reaction conversion of 79% was surprisingly high and the reaction was more selective. It must be remembered though that a free-radical reaction is a chain process which can easily be several thousand steps long and any inhibitor can have a drastic effect on the overall reaction conversion.

Therefore to get a true comparison of reactivities, a competition reaction must be performed (see later).

2.43. Norbornane

Addition to HFP of norbornane was successful using both γ-ray and DTBP initiation.

$$
\begin{array}{ll}
\text { i, } & \gamma \text {-rays, r.t. } \\
\text { ii, } & \text { DTBP, } 140^{\circ} \mathrm{C}, 24 \mathrm{hrs} \\
& \mathrm{R}_{\mathrm{F}}=\mathrm{CF}_{2} \mathrm{CFHCF}_{3}
\end{array}
$$

Initiator	Ratio	Conversion	Yields (\%)	
	$\mathrm{C}_{7} \mathrm{H}_{12}: \mathrm{HFP}$	w.r.t. $\mathrm{C}_{7} \mathrm{H}_{12}$	(37)	$(\mathbf{3 8})$
γ-rays, 4 days, 6 Mrads	$1: 1.3$	65	80	12
DTBP	$1: 1.5$	100	44	45

Fractional distillation of the product mixture from the γ-ray initiated reaction gave two fractions. Analysis of the lower boiling fraction, by NMR and GC.-ms., identified two isomers of the mono-adduct (37), with very similar GC. retention times ($7.95 \& 8.00$ mins.), in a ratio of $1: 1.06$, which could not be separated. Their EI^{+}mass spectra included M^{+}peaks at 246 and base peaks at $95\left(\mathrm{M}^{+}-\mathrm{CF}_{2} \mathrm{CFHCF}_{3}\right) . \mathrm{A}{ }^{19} \mathrm{~F}$ NMR of the mixture identified two sets of signal attributable to two separate 2 H hexafluoropropyl groups and ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra were used to further determine the structures of (37) (see later).

The higher boiling fraction consisted of a group of four compounds identified as isomers of the di-adduct (38), by their $E I^{+}$mass spectra $\left(\mathrm{M}^{+}-\mathrm{F}, 377 ; \mathrm{M}^{+}-\mathrm{CFCFHCF}_{3}\right.$, 245). This was confirmed by a ${ }^{19} \mathrm{~F}$ NMR of the mixture which identified peaks at -74.7 (broad singlet), -114.1 (overlapping multiplets) and -210.8 ppm (broad singlet)
corresponding to $\mathrm{CF}_{3}, \mathrm{CF}_{2}$ and CFH groups of several 2 H -hexafluoropropyl side chains.

Complete conversion of norbornane occurred in the DTBP initiated reaction, gave almost equal amounts of the mono-adducts (37) and di-adducts (38).

2.44. Structure determination of the mono-adducts (37)

A broad band proton decoupled ${ }^{13} \mathrm{C}$ NMR experiment was run on the two component mixture (37) to identify their structures.

At low field two separate 2 H -hexafluoropropyl groups were identified. Two overlapping doublets of quartets of doublets were observed a 85.6 and 86.2 ppm and were assigned to the two different CFH groups (c.f. compound (25)). The 115-126 ppm region was complex with two overlapping doublet of doublets at 120.1 ppm , assigned to the two difluoromethylene groups, and these signals also overlapped with two overlapping quartets of doublets at 121.2 ppm , attributed to the two trifluoromethyl groups. The high field region, $0-50 \mathrm{ppm}$, contained 13 distinguishable resonances. To identify which of these signals were from methylene or methyne carbons a ${ }^{13} \mathrm{C}$ DEPT spectrum was also run on the two component mixture (37). It identified six methyne carbons, including two overlapping triplets at $44.9 \mathrm{ppm}\left({ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 22 \mathrm{~Hz}\right)$ corresponding to the two tertiary carbons attached to the fluoroalkyl group. The other four methyne resonances had no coupling to any fluorines and therefore were assigned as bridgehead carbons. As four bridgehead carbons were observed and no quaternary carbons were detected, addition to HFP must have occurred via a methylene group of norbornane and not at a bridgehead site. Comparison with ${ }^{13} \mathrm{C}$ NMR data of other substituted norbornanes ${ }^{101}$, the two lowest field methylene resonances, at 36.9 and 36.6 ppm , were
both assigned to carbons at the seven-position and therefore eliminated the likelihood that H -abstraction occurs at the seven-position either.

These results indicated that addition occurred at the two-position, but it was still unclear whether the hexafluoropropyl group was in the exo- or endo- position. To clarify this a ${ }^{13} \mathrm{C} /{ }^{1} \mathrm{H}$ HETCOR NMR experiment was run to identify the protons associated with the two- and seven-positions and then a ${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ COSY NMR experiment was run to, locate any coupling between them, in the hope that if the exoisomer was present the ${ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}$ ' W ' coupling, between the two- and seven-protons would be observed ${ }^{102}$.

Unfortunately the protons associated with the seven-position had overlapping signals with the five- and six-position protons and although coupling with the two-position proton, to this region was observed in the ${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ COSY NMR spectrum it could not be reliably attributed to ${ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}$ ' W '.

Alternatively, the protons at the one- and two-positions in the exo-isomer (37) would have a dihedral angle of almost 90° which, according to the simplified version of the Karplus equation ${ }^{102}(\mathrm{~J}=10 \cos \phi$, where ϕ is the dihedral angle), would result in very little coupling, whereas the same protons in the endo-isomer (37a) would have a dihedral angle of approximately 30°, giving rise to coupling of $6-8 \mathrm{~Hz}$.

(37)

H^{2}

(37a)

The ${ }^{13} \mathrm{C} /{ }^{1} \mathrm{H}$ HETCOR NMR spectrum identified the one-position protons, as broad singlets, at 2.45 and 2.68 ppm and the two-position protons, as overlapping multiplets at 2.14 ppm. Examination of the ${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ COSY NMR spectrum showed no coupling between these peaks and therefore the two mono-adducts were characterised as diastereomers of 2-exo-(1,1,2,3,3,3-hexafluoropropyl)norbornane (37).

The bridgehead position in norbornane is very strained and also unable to invert, for these reasons formation of a bridgehead radical is unlikely ${ }^{103}$. A radical formed at the two-position is probably more stable than the corresponding radical at the sevenposition because of the ability to undergo hyperconjugation with the corresponding protons at the three-position .

Preference for exo-attack, by HFP, is probably due to greater steric hindrance on approach to the endo site .

2.5 Addition of Polycyclic Hydrocarbons

2.51 Adamantane

Previously, Russian workers have successfully added HFP to adamantane using γ-rays initiation $97,98,104,105$. They used various solvents at temperatures between 20° $100^{\circ} \mathrm{C}$, and up to a twenty-fold excess of HFP, to produce mono-, di- and tri-adducts. Nevertheless, a reaction was attempted using DTBP, without a solvent and a three-fold excess of HFP.

Almost complete conversion of the adamantane was achieved and fractional distillation, under reduced pressure, of the product mixture gave three fractions. The ${ }^{19} \mathrm{~F},{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and EI^{+}mass spectra of each fraction confirmed them as $1-$ (1,1,1,2,3,3-hexafluoropropyl)adamantane (22), 1,3-bis(1,1,1,2,3,3hexafluoropropyl)adamantane (23) and 1,3,5-tris(1, 1, 1, 2,3,3hexafluoropropyl)adamantane (39) respectively, in agreement with the literature.

Hydrogen abstraction occurs at the bridgehead carbons in adamantane in preference to its methylene carbons, which is in contrast to the norbornane. Although the bridgehead radical of adamantane is pyramidal and cannot invert, unlike the reactive t-butyl radical, the lack of strain in the radical conformation $\left(\mathrm{sp}^{3}\right)$ and the lack of steric hindrance to abstraction of its exposed tertiary hydrogens seem to compensate for the proposed instability of a rigid radical ${ }^{103}$.

By varying the molar ratios of the reactants, adducts (22), (23) and (39) could be obtained as the major product (table 2.1).

	$\mathrm{C}_{10} \mathrm{H}_{16}$ to HFP molar ratio	Yields(\%): (22)	 (23)	 (39)	 (40)
i	1:1.2	60	19	-	-
ii	1:1.8	25	63	-	-
iii	1:3	-	8	82	-
iv	1:7	-	-	59	36

In all the reactions the conversion of adamantane was approximately 100%, except for reaction (i), in which the conversion was 92%. The most surprising aspect of these reactions was the ease of production of the higher adducts of adamantane. In other hydrocarbon systems the addition of the fluoroalkyl group significantly reduces its ability to undergo further substitution, unless an intramolecular pathway is available, as in butane ${ }^{90}$.

Addition to HFP, using a seven-fold excess, produced a waxy solid which consisted of two components, one of which was identified as compound (39). The two components could not be separated by fractional distillation, under reduced pressure, but when the mixture was dissolved in chloroform, hexane or pentane a white solid (40) precipitated from the solution. The EI^{+}mass spectrum of the white solid (40) suggested that it was the tetra-adduct with a $\mathrm{M}^{+}-\mathrm{F}$ peak at 717 and a base peak at 585 $\left(\mathrm{M}^{+}-\mathrm{CF}_{2} \mathrm{CFHCF}_{3}\right)$.The ${ }^{19} \mathrm{~F}$ solution state NMR spectrum of the solid (40) in $d_{6^{-}}$ acetone produced only three sets of signals, at -74.1 (singlet), $-121.1 \&-127.6$ (AB system) and -207.1 ppm (doublet), indicating that all the 2 H -hexafluoropropyl groups were equivalent. The high symmetry of the solid (40) was confirmed by the ${ }^{1} \mathrm{H}$ NMR spectrum of the solution which contained only two multiplets at 2.07 ppm (six
equivalent CH_{2} groups) and 5.99 ppm (four equivalent CFH groups). The broad band proton decoupled ${ }^{13} \mathrm{C}$ NMR spectrum conclusively confirmed that the solid was 1,3,5,7-tetrakis(1,1,1,2,3,3-hexafluoropropyl)adamantane (40), as it contained only five resonances at 30.1 (singlet, six methylene carbons), 41.6 (triplet, four quaternary carbons), 83.1 (doublet of doublets of quartets, four fluoromethylene carbons), 119.0 (doublet of doublets of doublets, four difluoromethylene carbons) and 121.4 ppm (quartet of doublets, four trifluoromethyl carbons). A ${ }^{19} \mathrm{~F}$ solid state NMR experiment was also run on compound (40) and it identified four signals corresponding to the 2 H hexafluoropropyl group. Interestingly, it identified two signals due to the CF_{2} group confirming that its fluorines are non equivalent. A single crystal of compound (40) was grown and submitted for X-ray crystallographic analysis, which proved the structure beyond any doubt (figure 2.8).

Fig. 2.8 Crystal structure of 1,3,5,7-tetrakis(1,1,1,2,3,3-hexafluoropropyl)adamantane (40)

2.6 Competition Reactions

To get a true comparison of relative reactivities of the hydrocarbon systems towards HFP, a series of competition reactions were performed using both γ-ray and DTBP initiation. An equimolar mixture of two hydrocarbons was reacted with a deficiency (0.15 molar ratio) of HFP and the reaction mixture was analysed before and after the reaction by GC.
2.61. DTBP, $140^{\circ} \mathrm{C}$

	Hydrocarbon ratio prior to reaction $\left(\mathrm{R}_{1}\right)$	Hydrocarbon ratio after reaction $\left(\mathrm{R}_{2}\right)$	Overall ratio $\left(\mathrm{R}_{1} / \mathrm{R}_{2}\right)$	Ratio per carbon in hydrocarbon
	43.82	0.90	0.09	

The competition reaction between cis- and trans-decalin indicates that there is no difference in reactivity between them at elevated temperatures, despite the marked differences in the conversions of their independent reactions. This evidence suggests that the independent cis-decalin reactions were inhibited by some undetected impurity. The competition reaction between cyclohexane and trans-decalin also shows that there is little difference in reactivities of the two systems, although cyclohexane is slightly more reactive. The greater reactivity of cyclopentane over cyclohexane, although only
very slight, maybe due to the lower energy barrier to an eclipsing interaction between the carbon-hydrogen bonds in cyclopentane which stabilise the intermediate radical via hyperconjugation.
2.62 Gamma rays $\left(20^{\circ} \mathrm{C}\right)$

	Hydrocarbon ratio prior to reaction $\left(\mathrm{R}_{1}\right)$	Hydrocarbon ratio after reaction $\left(\mathrm{R}_{2}\right)$	Overall ratio $\left(\mathrm{R}_{1} / \mathrm{R}_{2}\right)$	Ratio per carbon in hydrocarbon
46.72	41.74^{*}	1	0.17	
52.82	48.46^{*}	0.97	0.10	

* - HFP recovered from the reaction.

The competition reaction between cyclohexane and trans-decalin showed little difference in the reactivities of the two hydrocarbon, even at room temperature. It is interesting to note that not all the HFP (approx. 75\% consumption) was consumed in the reaction. This indicates that the reaction was inhibited by undetectable impurities, as other competition reactions involving cyclohexane have completely consumed the HFP. Again there was no significant difference in the reactivities of the cyclohexane and cis-decalin. Only 28% of the hexafluoropropene present reacted, even though the reaction was performed over twice the normal time period. This strongly suggests that impurities were present. These inhibitors are likely to have been contained within the
cis-decalin starting material as the independent reactions involving it also had low conversions. The competition reaction between cyclohexane and cyclopentane did consume all the available HFP, and again there was little difference in their reactivity.

Interestingly, performing the competition reactions at room temperature, rather than $140^{\circ} \mathrm{C}$, did not increase the selectivity between the hydrocarbons.

2.63. Crude competition reactions

Crude competition reactions were performed when the ratios of the hydrocarbon starting materials could not be determined by GC, for example if one substrate was either a solid or a gas. These crude competition reactions were performed using DTBP initiation at $140^{\circ} \mathrm{C}$ and a molar ratio of $1: 1: 1$ of hydrocarbon : hydrocarbon :HFP and the ratio of products was measured by NMR or GC.

	GLC. adduct percentages	Ratio of HFP incorporation	Ratio per 3ary/2ary Carbon

The competition reaction between adamantane and 2-methylpropane suggests that adamantane is slightly more reactive than 2-methylpropane, when the statistical ratio of tertiary carbons ($1: 4$) is taken into account, but this result maybe within the experimental error. The competition reaction between 2-methylpropane and propane suggests that 2-methylpropane is twice as reactive as propane. This can be explained
by the increased radical nucleophilicity and stability of the t-butyl radical over the isopropyl radical.

2.7 Conclusions

In general, any hydrocarbon system which gave only moderate conversion at room temperature, gave a high reaction conversion at elevated temperature $\left(140^{\circ} \mathrm{C}\right)$. The results of the competition reactions, at $140^{\circ} \mathrm{C}$ and room temperature, indicate that there are only very small differences between the reactivities of all the hydrocarbon systems and that they all produce radicals that react with HFP. The crude competition reactions also showed there are little differences in the reactivity of similar hydrocarbon systems. A notable exception was cis-decalin, but results of competition reactions involving cisdecalin, at low and high temperatures, suggest that it is as reactive as the other systems. The anomaly must be due to cis-decalin containing minute amounts of inhibitors, but sufficient enough to prematurely terminate the radical chain mechanism.

In acyclic systems, the favoured site of attack was in the order tertiary carbon > secondary carbon > primary carbon. This order is in agreement with radical stability in acyclic systems and also reflects the increased nucleophilicity of the radical. The cyclic systems were not so predictable, as in contrast to adamantane, norbornane and decalin systems favoured addition at secondary carbons. This is rationalised by the increased strain at the tertiary site in norbornane and the increased steric crowding in the decalin systems.

The NMR data of the hexafluoropropyl adducts are complex and some simplification is required for di- and poly-substituted products, for example dehydrofluorination of the polyfluoroalkyl group.

$$
\mathrm{R}-\mathrm{CF}_{2} \mathrm{CFHCF}_{3} \xrightarrow{-\mathrm{HF}} \mathrm{R}-\mathrm{CF}=\mathrm{CFCF}_{3}
$$

This process eliminates some stereospecific centres and should simplify structure determination.

Chapter Three

Dehydrofluorination of Hexafluoropropene Adducts

3.1 Introduction

Several methods have been used to remove HF from the ether adducts of hexafluoropropene, ${ }^{66,78,80,106}$ such as compound (41). In general, alkoxide bases were used with or without solvent and gave moderate to good conversions. In all cases a mixture of the Z- and E-alkenes were produced which could not be separated.

	Conditions	Yield of (42) (\%)	Ref.
i.	$\mathrm{KOH}_{(\mathrm{s})}, 150^{\circ} \mathrm{C}$	47	$[66]$
ii.	$\mathrm{KOH}_{(\mathrm{s})}$, reflux	75	$[78]$
iii.	KOH, diglyme, $120^{\circ} \mathrm{C}$	75	$[106]$
iv.	$\mathrm{KO}^{\mathrm{t} B u}, \mathrm{tBuOH}^{\circ} 25^{\circ} \mathrm{C}$	62	$[80]$

Alcoholic solutions of sodium hydroxide were used by Russian workers ${ }^{99,105,107}$ to dehydrofluorinate the cyclohexane mono-adduct (24) and the mono- (22) and di-adduct (23) of adamantane. The reactions gave good conversions, but again produced a mixture of the Z - and E - isomers of the alkene which were inseparable.

i. NaOH in $\mathrm{EtOH}, 81^{\circ} \mathrm{C}, 3 \mathrm{hrs}$

3.2 Regiochemistry of the Double Bond

In all the cases illustrated, the double bond is formed at the two-position in fluoroalkyl side chain. This raises an interesting point of regiospecificity, as theoretically, three isomers could be produced (scheme 3.1).

Scheme 3.1

As fluoride ion is a poor leaving group, due to the strength of the C-F bond, and the proton removed is quite acidic the dehydrofluorination mechanism is likely to be E1cB or E2 (concerted) with an 'E1cB-like' transition state, where C-H bond stretching occurs before C-F bond stretching.

ElcB Mechanism

E2 Mechanism (E1cB-like transition state)

In the present work, deuterium exchange reactions, using a deuterated solvent, were performed on compounds (24) and (22), in order to determine the mechanism of dehydrofluorination.
(24)

In both reactions deuterium was incorporated into the starting material (scheme 3.2) which is consistent with an E1cB mechanism, although the possibility of an independent exchange process cannot be overlooked.

Scheme 3.2 Solvent deuterium exchange in an E1cB process

If dehydrofluorination proceeds via an E 1 cB mechanism, the regiochemistry of the double bond is governed by the acidity of the proton that is removed and the strength of the C-F bond being broken. The proton at the two-position is the most acidic due to the neighbouring electron-withdrawing CF_{2} and CF_{3} groups, and therefore deprotonation of it produces the most stable carbanion. The fluoride ion is more easily removed from the
CF_{2} group than the CF_{3} group, as this leads to a smaller number of vinylic fluorines, whose lone pairs have unfavourable interactions with the electrons of the double bond ${ }^{1}$ (Figure 3.1).

Figure 3.1 Electronic repulsions between vinylic fluorines and π-electrons

3.3 Dehydrofluorinations

3.31. 1.1,2.3.3.3-Hexafluoropropylcyclohexane (24)

Dehydrofluorination of the adduct (24) was affected by potassium hydroxide or potassium t-butoxide at various temperatures.

(24)

(43a)

(43b)

(44a)

(44b)

	Conditions	Conversion(\%)	Yields (\%)			
			(43a)	(43b)		(44b)
i.	$1: 2 \mathrm{KOH}, \mathrm{EtOH}, 50^{\circ} \mathrm{C}, 20 \mathrm{hrs}$	100	71	28	0.7	0.3
ii.	$1: 2 \mathrm{KOtBu},{ }^{\mathrm{t}} \mathrm{BuOH}, 25^{\circ} \mathrm{C}, 15 \mathrm{~min}$	100	58	2	-	-
iii.	$1: 1.5 \mathrm{KO}{ }^{\mathrm{tBu}},{ }^{1} \mathrm{Pr}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 10 \mathrm{~min}$	100	92	trace	-	-
iv.	$1: 1.5 \mathrm{KO}^{\text {tBu}}, \mathrm{C}_{6} \mathrm{H}_{14}, 0^{\circ} \mathrm{C}, 15 \mathrm{~min}$	100		trace	-	-

A reaction using alcoholic potassium hydroxide, at $50^{\circ} \mathrm{C}$, was terminated after two an a half hours. Analysis of the product mixture by GLC/MS and NMR confirmed the major products as E- and Z- isomers of pentafluoroprop-2-enylcyclohexane (43) which could not be separated. Two minor products, identified as E- and Z- isomers of 1,1,1,2-tetrafluoro-3-ethoxy-prop-2-enylcyclohexane (44) by their EI^{+}mass spectra and ${ }^{19} \mathrm{~F}$ NMR spectra, were inseparable from compounds (43).

Compounds (44) were produced as a result of attack by ethoxide ions, from the solvent, on compounds (43) (Scheme 3.3), followed by loss of fluoride ion.

Scheme 3.3

In an attempt to eliminate the production of the vinylic ethers (44), the steric requirement of the base was increased by using t-butoxide. Three reactions were performed, using various solvents, and were terminated after complete conversion of the starting material. The low yields of products from the reaction in t-butanol solvent were attributed to difficulties in extracting the products. Isopropyl ether and hexane were used instead to make the workup easier, although the solubility of potassium t-butoxide
is greatly reduced in these solvents. Changing the solvent also allowed the reaction temperature to be lowered below $25^{\circ} \mathrm{C}$, the melting point of t-butanol. Using potassium t-butoxide did eliminate the formation of the vinyl ethers (44) and also had the unexpected effect of significantly reducing the proportion of E-alkene (43b) formed. The amount of E-isomer (43b) was further reduced, to negligible proportions, when the temperature of the reaction was lowered from $25^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$.

The ability to produce only the Z-isomer (43a) was surprising, as on steric grounds it might be expected that the cyclohexyl and trifluoromethyl groups would prefer to be trans to one another.

Structure determination of pentafluoroprop-2-enylcyclohexane (43)
The removal of the chiral CFH group not only increases the symmetry of the system over its precursor, but also reduces the number of diastereomers produced in the case of the higher adducts. Therefore the mono-enes are useful model compounds for structure determination of the di-enes.

The mixture of E- and Z-isomers of pentafluoroprop-2-enylcyclohexane (43) could not be separated, Their EI^{+}mass spectra both gave M^{+}peaks at 214 and the two isomers were distinguished by their respective vinylic fluorine resonances in the ${ }^{19} \mathrm{~F}$ NMR spectrum of the mixture.
${ }^{19}$ F NMR - The vinylic fluorines of the E-isomer (43b), at -148.3 and -176.5 ppm , were identified by their coupling to one another (${ }^{3} \mathrm{~J}_{\text {trans } \mathrm{F}-\mathrm{F}}=132 \mathrm{~Hz}$). Such a large coupling is characteristic of trans-fluorines ${ }^{108}$. The CF_{3}, at -68.2 ppm , was assigned by its relative integration to the vinylic trans-fluorines. The cis-fluorines of the Z-isomer (43a) were observed at -131.4 and -161.4 ppm and again the CF_{3} group was identified by its relative integration. The vinylic fluorine adjacent to the cyclohexyl group was observed as a doublet $\left({ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{H}}=31\right)$ due to its antiperiplanar coupling to the CH ring proton. The other vinylic proton was observed as a quartet $\left({ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=11\right)$ of doublets $\left({ }^{4} \mathrm{~J}_{\mathrm{F}-\mathrm{H}}=5\right)$ due to its coupling to the fluorine atoms of the adjacent CF_{3} group and smaller coupling to the CH ring proton. Surprisingly, no vicinal fluorine-fluorine coupling was observed between the two vinylic cis-fluorines.

A pure sample of Z-pentafluoroprop-2-enylcyclohexane (43a) was characterised separately. Its ${ }^{19} \mathrm{~F}$ NMR spectrum, as previously described, established it as the Z -isomer.
${ }^{13}$ C NMR - The stereochemistry of the Z-isomer (43a) was confirmed by a broad band proton decoupled ${ }^{13} \mathrm{C}$ NMR spectrum which identified three signals at low field corresponding to the three carbons of the pentafluoropropenyl group. The CF_{3} group, at 120.4 ppm , was identified as a quartet (${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=270 \mathrm{~Hz}$) of doublets $\left({ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=35 \mathrm{~Hz}\right)$ of doublets $\left({ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=10 \mathrm{~Hz}\right)$ due to its first order coupling to three α-fluorines, followed by second order coupling to the β-fluorine and third order coupling to the γ-fluorine (figure 3.2).

Figure 3.2 Carbon-fluorine coupling (Hz) to the trifluoromethyl carbon of (43a)

 fluorine was trans to the CF_{3} group and therefore the overall stereochemistry of the double bond was cis. A doublet ($\left.{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=250 \mathrm{~Hz}\right)$ of quartets $\left({ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=40 \mathrm{~Hz}\right)$ of doublets (${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=24 \mathrm{~Hz}$), at 134.9 ppm , was assigned to the vinylic carbon α to the CF_{3} group because of its large coupling to the three equivalent β-fluorines. The vinylic carbon, α to the cyclohexyl group, was observed as a doublet $\left({ }^{1 J_{\mathrm{C}}} \mathrm{F}=264\right)$ of doublets $\left({ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=10\right)$ of quartets $\left({ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3.4\right)$ at 156.6 ppm (figure 3.3).

Figure 3.3 Carbon-fluorine coupling (Hz) to the vinylic carbons of (43a)

Cy = cyclohexyl

Four other resonances were identified at 25.6, 25.9, 28.9 (doublet, ${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=2.2$) and 36.7 ppm (doublet, ${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=21$) were assigned to the CH_{2} ring carbons at the four-, three-, two-positions and the CH carbon at the one-position respectively due to the increased deshielding from the perfluoroalkenyl group (figure 3.4).

Figure $3.4{ }^{13}$ C.NMR chemical shifts (ppm) of compound (43a)

(43a)
${ }^{1}$ H NMR - A ${ }^{13} \mathrm{C}$ HETCOR experiment also made it possible to assign the proton spectrum. The methyne ring proton at 2.52 ppm was observed as a doublet $\left({ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=32\right.$ Hz), from vicinal coupling to the vinylic fluorine, of triplets $\left({ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=12 \mathrm{~Hz}\right)$, due to coupling to two neighbouring protons. The magnitude of the ${ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}$ coupling is characteristic of an antiperiplanar relationship between the protons ${ }^{102}$ and therefore the fluoroalkenyl group occupies an equatorial site (figure 3.5) on the cyclohexane ring.

Figure 3.5. Antiperiplanar coupling in equatorial conformation of compound (43a)

Several methods were used to remove HF from 1-(1,1,2,3,3,3hexafluoropropyl)adamantane (22) with surprising results.

i. $1: 2 \mathrm{KOH}, \mathrm{EtOH}, 80^{\circ} \mathrm{C}$
ii. $\quad 1: 2 \mathrm{KO}{ }^{\mathrm{B}} \mathrm{Bu},\left({ }^{\prime} \mathrm{Pr}\right)_{2} \mathrm{O}$, room temp.
iii. $\quad 1: 2 \mathrm{KO}^{\dagger} \mathrm{Bu},\left({ }^{(} \mathrm{Pr}\right)_{2} \mathrm{O},-10^{\circ} \mathrm{C}$

Conditions	Reaction	Yields:	
	conversion	$\mathbf{(4 5 a)}$	$\mathbf{(4 5 b})$
$\mathrm{KOH}, \mathrm{EtOH}, 80^{\circ} \mathrm{C}$	100%	87	trace
$\mathrm{KO}{ }^{\mathrm{t} B u},\left({ }^{(} \mathrm{Pr}\right)_{2} \mathrm{O}, \mathrm{RT}$.	100%	92	trace
$\mathrm{KO}{ }^{\mathrm{t} B u},\left({ }^{(\mathrm{Pr}}\right)_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$	100%	trace	85

Using potassium hydroxide at elevated temperature the mono-adduct was converted to almost exclusively 1 -(E-pentafluoroprop-2-enyl)adamantane (45a). Potassium t-butoxide at room temperature gave a similar product distribution as the potassium hydroxide reaction. The reaction was very exothermic and no attempt was made to control the reaction temperature, but when the reaction was repeated and the temperature was held at $0^{\circ} \mathrm{C}$ then the product distribution changed dramatically. The major component then became 1-(Z-pentafluoroprop-2-enyl)adamantane (45b) which was confirmed by a ${ }^{19} \mathrm{~F}$ NMR spectrum of the product.

Decreasing the temperature of the reaction completely inverted the product distribution from the E-isomer to the Z -isomer becoming the major product. This suggests that the Z-isomer is kinetically preferred product and at low temperature
kinetic control dominates, whereas at higher temperature the reaction is under thermodynamic control (See later).

Structure determination of compounds (45a) and (45b)

The EI^{+}mass spectra of both the E-isomer (45a) and the Z-isomer (45b) identified M^{+} peaks at 266 confirming dehydrofluorination had occurred. NMR analysis was performed on separate samples of the two compounds (45a) and (45b).
${ }^{19}$ F NMR - The two vinylic fluorines of the E-isomer (45a), at -149.3 and -175.6 ppm, were observed as large doublets (${ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=131 \& 130 \mathrm{~Hz}$) due to their trans coupling to each another. The vinylic fluorine cis to the CF_{3} group, at -149.3 ppm , was further split by the three γ-fluorines into a quartet $\left({ }^{4} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=23 \mathrm{~Hz}\right)$. The CF_{3} group, at -67.6 ppm , was in turn split by the vinylic γ-fluorine into a doublet $\left({ }^{4} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=21 \mathrm{~Hz}\right)$.
${ }^{13}$ C NMR - The CF_{3} carbon signal, at 119.5 ppm , was split into a quartet $\left({ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=273\right.$ $\mathrm{Hz})$, due to its coupling to its three α-fluorines, then into a doublet $\left({ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=36 \mathrm{~Hz}\right)$, from its coupling with the vinylic β-fluorine, and finally another small doublet $\left({ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=\right.$ 3.5 Hz), arising from coupling to the vinylic γ-fluorine. The small magnitude of this coupling confirmed the cis- relationship between the CF_{3} group and the γ-vinylic fluorine (c.f. Z-pentafluoroprop-2-enylcyclohexane (43a) and therefore that the vinylic fluorines were trans to each other (figure 3.6).

Figure 3.6 Carbon-fluorine coupling (Hz) to the trifluoromethyl carbon of (45a)

The vinylic carbon α to the CF_{3} group, was initially split into a doublet $\left({ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=242\right.$ $\mathrm{Hz})$ by its α-fluorine, then into a further doublet $\left({ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=54 \mathrm{~Hz}\right)$ by the vinylic β fluorine and finally into a quartet $\left({ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=39 \mathrm{~Hz}\right)$ by the β-fluorines of the CF_{3} group,
at 138.2 ppm . The vinylic carbon, α to the adamantyl group, was split into a doublet (${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=260 \mathrm{~Hz}$) by its α-fluorine, then into another doublet $\left({ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=36 \mathrm{~Hz}\right)$ by the other vinylic fluorine and then into a quartet $\left({ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=2.3 \mathrm{~Hz}\right)$ by the fluorines of the CF_{3} group, at 160.2 ppm (figure 3.7).

Figure 3.7 Carbon-fluorine coupling (Hz) to the vinylic carbons of ($\mathbf{4 5 b}$)

${ }^{1}$ H NMR - The high symmetry of the adamantyl group gave only three resonances in the proton spectrum which were assigned as in figure 3.8.

Figure $3.8{ }^{13} \mathrm{C}$ and ${ }^{1} \underline{H}$ NMR chemical shifts (ppm) of compound (45a)

27.8

1.76
(45a)

A pure sample of 1-(Z-pentafluoroprop-2-enyl)adamantane (45b) was characterised separately.
${ }^{19}$ F NMR - The two vinylic cis-fluorines were observed as two broad singlets at -125.2 and -154.7 ppm and the trifluoromethyl group was detected at -60.2 ppm .

The carbon and proton NMR spectra of Z-isomer were similar to those of the E-isomer and are summarised in figure 3.9.

27.9

1.77
(45b)

3.34 trans-1,4-Bis(1,1,2,3,3,3-hexafluoropropyl)cyclohexane (27a)

Compound (27a) was used in a separate dehydrofluorination reaction, from the other di-adducts of cyclohexane (27).

i. $1: 2 \mathrm{KO}^{\mathrm{t}} \mathrm{Bu},\left({ }^{\mathrm{i}} \mathrm{Pr}\right)_{2} \mathrm{O},-10^{\circ} \mathrm{C}, 20 \mathrm{mins}$.

Low temperature crystallisation was used to precipitate the compound (46) out of the organic layer. The EI^{+}spectrum of the white solid (46) gave a M^{+}peak at 344 which confirmed it as a di-ene and the stereochemistry of both, equivalent double bonds was confirmed as cis by its ${ }^{19} \mathrm{~F}$ NMR spectrum. The high symmetry of the molecule was confirmed by its broad band proton decoupled ${ }^{13} \mathrm{C}$ NMR spectrum which identified five signals, three of which were accounted for by the carbons of the pentafluoropropenyl groups. The two at high field were attributed to the methylene ring carbons (27.8 ppm , singlet) and the methyne ring carbons (35.5 ppm , doublet, ${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}$
$=21$). A crystal was grown for X-ray crystallographic analysis, which confirmed the structure as trans-1,4-bis(z-pentafluoroprop-2-enyl)cyclohexane (46) (figure 3.10).

Figure 3.10 trans-1,4-bis(z-pentafluoroprop-2-enyl)cyclohexane (46)

The $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$ and $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(1)$ bond angles are distorted to approximately 130°. This is presumably due to the steric repulsion between the trifluoromethyl and cyclohexyl groups. The distance between $\mathrm{F}(2)$ and $\mathrm{F}(4 \mathrm{a})$ is 2.515 A and between $\mathrm{F}(4 \mathrm{~b})$ and $\mathrm{H}(1 \mathrm{ax})$ is 2.241 A , so there is no significant repulsive or attractive interactions.

The di-ene (46) was observed in two forms (α and β), in a $2: 1$ ratio, which vary in the conformation of their trifluoromethyl groups. However, very high thermal parameters of CF_{3} fluorines may indicate further disorder of the trifluoromethyl groups. The α form exists with $F(4 a)$ fluorine in the mirror plane and the $F(3 a)$ and $F\left(3 a^{\prime}\right)$ fluorines related via this plane, whereas the β form exists with the $\mathrm{F}(4 \mathrm{~b})$ fluorine in the mirror plane and the $\mathrm{F}(3 \mathrm{~b})$ and $\mathrm{F}\left(3 b^{\prime}\right)$ fluorines related via this plane. The different conformations of the CF_{3} group can be seen more clearly in figure 3.11

3.35 1,x-Bis(1,1,1,2,3,3,3-hexafluoropropyl cyclohexane $x=2,3,4$

The cyclohexane di-adduct mixture (27), including the crystalline isomer (27a), was dehydrofluorinated at $0^{\circ} \mathrm{C}$

(46) 30%
i. $1: 4 \mathrm{KO}^{\dagger} \mathrm{Bu},\left({ }^{\prime} \mathrm{Pr}\right)_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 20 \mathrm{mins}$.

A GLC/MS of the product mixture identified four components, two of which existed in trace amounts, all had M^{+}peaks at 344 in their EI^{+}mass spectra. The two major products, in a $1.92: 1$ ratio, were identified as compounds (47) and (46) respectively, by their NMR data. Compound (46) crystallised out of the product mixture when methanol was added and the system was cooled in an acetone slush bath $\left(-78^{\circ} \mathrm{C}\right)$. A separate GLC was run on a solution of the solid and comparison of the retention times identified it as the minor of the two major products.

The major di-adduct formed on addition of HFP to cyclohexane is the cis-1,3isomer (47) and not the trans-1,4-isomer (46). On formation of the di-adducts it would be anticipated that the electron-withdrawing polyfluoroalkyl group in $1,1,2,3,3,3-$ hexafluoropropylcyclohexane (27) would reduce the ease of hydrogen abstraction,by the propagating electrophilic radicals (48), from the CH_{2} groups β - and γ - to it. No significant production of 1,2 -isomer is good evidence for this, however, the effect is clearly rapidly attenuated in this system, as the 1,3 -isomer (47) is twice as abundant as the 1,4-isomer (46).

The $1.9: 1$ excess of the 1,3 -adduct (47) over the 1,4 -adduct (46) obviously arises through the statistical effect.

Structure determination of cis-1,3-bis(Z-pentafluoroprop-2-enyl)cyclohexane (47)
NMR spectroscopy experiments were run on the remaining mixture, containing essentially only one component, to determine its structure.
${ }^{19}$ F NMR The ${ }^{19} \mathrm{~F}$ NMR spectrum identified three resonances consistent with two equivalent pentafluoroalkenyl groups.
${ }^{13}$ C NMR - At low field, three resonances at $119.8,135.1$ and 154.5 ppm were assigned to the two equivalent pentafluoropropenyl groups. In the $0-40 \mathrm{ppm}$ region, four resonances were observed, suggesting that the cyclohexyl ring was 1,3 -disubstituted rather than 1,2- or 1,4-disubstituted since these isomers would produce omly three and two signals respectively. The doublet at $35.6 \mathrm{ppm}\left({ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=21\right)$ was assigned to the two equivalent CH groups, at $\mathrm{C}-1$ and $\mathrm{C}-3$, and the singlet at 30.0 ppm was attributed to the
methylene carbon, $\mathrm{C}-2$, because of the deshielding due to the two adjacent fluoroalkenyl groups. A further doublet $\left({ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} \ddot{=} 2.3\right)$ at 27.4 ppm was identified as the two equivalent methylene groups, at C-4 and C-6, and finally a singlet at 24.6 ppm was assigned to the methylene carbon, $\mathrm{C}-5$, which is deshielded the least (figure 3.12).

Figure $3.12{ }^{13} \mathrm{C}$ NMR chemical shifts (ppm) of compound (47)

 as the two equivalent CH ring protons. The large antiperiplanar Hydrogen-Hydrogen coupling confirmed that both perfluoroalkenyl groups occupy equatorial sites in the cyclohexane ring.

3.36 1,1,2,3,3,3-Hexafluoropropylcyclopentane (25)

Dehydrofluorination was performed at $-78^{\circ} \mathrm{C}$, as earlier attempts at higher temperatures had led to tarring of the product.

i. $1: 1.5 \mathrm{KO}^{\mathrm{t}} \mathrm{Bu},(\mathrm{Et})_{2} \mathrm{O},-78^{\circ} \mathrm{C}, 30 \mathrm{mins}$.

Complete conversion of starting material was achieved to only one product which was identified as Z-pentafluoroprop-2-enylcyclopentane (49). The M^{+}peak was observed at 200 in the EI^{+}mass spectrum and the compounds ${ }^{19} \mathrm{~F}$ NMR data identified the existence of the perfluoroalkenyl group with cis stereochemistry only. A broad band proton decoupled ${ }^{13} \mathrm{C}$ NMR spectrum was run on the product to provide a model for the structure determination of the elimination products of the di-adducts of
cyclopentane. The ${ }^{13} \mathrm{C}$ NMR detected six resonances (figure 3.14), three of which, at $120.4,134.7$ and 155.3 ppm confirmed the presence of the Z-pentafluoroprop-2-enyl group. The other three signals were assigned to the cyclopentane ring. A doublet ${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}$ $=22$) at 36.8 ppm was attributed to the methyne ring carbon and singlets at 29.5 and 26.2 ppm were assigned to the methylene ring carbons at the two and three positions respectively due to the deshielding effect of the perfluoroalkenyl group (figure 3.13).

Figure $3.13{ }^{13} \mathrm{C}$ NMR chemical shifts (ppm) of compound (49)

The low temperature at which the reaction was performed seemed to remove any trace of the E-isomer, which suggests that the Z-isomer is kinetically favoured.
3.37 1.x-Bis(1,1,2,3,3,3-hexafluoropropyl)cyclopentane $x=2,3(50)$

Again the dehydrofluorination was performed at $-78^{\circ} \mathrm{C}$.

Distillation of the product mixture gave a fraction containing three components, (50a), (50b) and (50c), which could not be separated. A ${ }^{19} \mathrm{~F}$ NMR spectrum of the fraction mixture identified three sets of cis-fluorine resonances and M^{+}peaks at 330
were observed in the mass spectra of all three components, establishing them as isomers of bis(Z-pentafluoroprop-2-enyl)cyclopentane, in a ratio $4.7: 1.6: 1$.

Again, a combination of the polar and steric effect of the polyfluoroalkyl group in 1,1,2,3,3,3-hexafluoropropylcyclopentane (25) favours further addition of HFP to γ position, although some addition does occur at the β-position.

(6)

Structure determination of compounds (50a), (50b) and (50c)

${ }^{13} \mathrm{C}$ NMR- A broad band proton decoupled ${ }^{13} \mathrm{C}$ NMR spectrum was run on the three component mixture. The spectrum was complex at low field, with the perfluoroalkenyl resonances overlapping each other, but between $0-42 \mathrm{ppm}$ the spectrum was much clearer (figure 3.). The major component was identified as trans-1,3-bis(Z-pentafluoroprop-2-enyl)cyclopentane (50a). A large singlet at 29.9 ppm was assigned to the two equivalent methylene ring carbons, the singlet at 31.4 was attributed to the other methylene ring carbon, because of the shift to higher field from the two adjacent perfluoroalkenyl groups, and a doublet $\left({ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=22 \mathrm{~Hz}\right)$ was assigned to the two equivalent methyne ring carbons attached to the perfluoroalkenyl groups. Similarly, the signals at $28.4,32.2$ and 37.0 ppm (doublet, ${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=22 \mathrm{~Hz}$) were assigned to cis-1,3-bis(Z-pentafluoroprop-2-enyl)cyclopentane (50b). The minor component was identified as trans-1,2-bis(Z-pentafluoroprop-2-enyl)cyclopentane (50c). The doublet at lowest field ($40.3 \mathrm{ppm},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=23 \mathrm{~Hz}$) was assigned to the methyne ring carbons of the 1,2 -isomer due to its increased deshielding. A singlet at 28.9 ppm was assigned to the two methylene ring carbons equivalent to each another and a small singlet (21.5 ppm) at lowest field was assigned to the other methylene ring carbon, because of its increased shielding (figure 3.14). (50)

(50a)

(50b)

(50c)

$3.38 \mathrm{x}-(1,1,2,3,3,3$-Hexafluoropropyl) trans-decalin $\mathrm{x}=1,2$ (34)

Dehydrofluorination of the mono-adducts of trans-decalin (34) was performed at $0^{\circ} \mathrm{C}$.

A ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction mixture confirmed complete conversion of the starting material, and distillation of the product mixture gave a single fraction of two components, (51a) and (51b) in a $1: 3.3{ }^{19} \mathrm{~F}$ NMR ratio. Further analysis of their NMR and mass spectra identified the components as 1-(Z-pentafluoroprop-2-enyl)trans-decalin (51a) and 2-(Z-pentafluoroprop-2-enyl)trans-decalin (51b) respectively .

Therefore it was established that addition of HFP occurred at the secondary carbons and not at the bridgehead position in trans-decalin. As in adamantane, the
trans-decalin bridgehead has an unstrained sp^{3} configuration, but in adamantane the bridgehead proton is very exposed whereas in trans-decalin each bridgehead proton has four 1,5-hydrogen interactions (figure 3.15).

Figure $3.151,5 \mathrm{H}$-interaction at the bridgeheads in trans-decalin

The steric effect of these hydrogens therefore inhibit the addition of HFP at the bridgehead position, whereas there are no steric barriers to addition at the equatorial positions of the methylene ring carbons. Addition preferentially occurred at the twoposition rather than the one-position. This can be accounted for by the increased steric demand of the one-position.

Structure determination of compounds (51a) and (51b)
A broad band proton decoupled ${ }^{13} \mathrm{C}$ NMR experiment and a ${ }^{13} \mathrm{C}$ DEPT NMR experiment were run on the two component mixture.
${ }^{13} \mathrm{C}$ NMR - Three groups of resonances at low field corresponded to the $\mathrm{CFH}, \mathrm{CF}_{2}$ and CF_{3} carbons of the two different pentafluoropropenyl groups. Compounds (51a) and (51b) were distinguished by the signals arising from the carbons (β) neighbouring the carbon attached to the perfluoroalkenyl group. A ${ }^{13} \mathrm{C}$ carbon DEPT spectrum of the mixture identified three doublets, with ${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}$ coupling constants of $c a .3 \mathrm{~Hz}$, as methylene carbons. The two large doublets at 35.6 ppm and 28.5 ppm were assigned to the CH_{2} groups β - to the fluoroalkenyl group in compound (51b). The doublet at higher field was assigned to the CH_{2} carbon neighbouring the bridgehead, due to the increased deshielding from it. A much smaller doublet at 29.5 ppm was assigned to the CH_{2} group β - to the fluoroalkenyl group in compound (51a), and a small, broad CH signal, at 42.5 ppm , was assigned to the bridgehead carbon β - to the fluoroalkenyl group in compound (51a) (figure 3.16).

Figure $3.16{ }^{13} \mathrm{C}$ NMR chemical shifts (ppm) of the carbons β - to the fluoroalkenyl groups in compounds (51a) \& (51b)

(51a)

(51b)

The other signals in the ${ }^{13} \mathrm{C}$ NMR spectrum were tentatively assigned, by comparing chemical shifts with data from methyl-substituted trans-decalin ${ }^{109}$ and Z-pentafluoroprop-2-enylcyclohexane (43a).
${ }^{1} \underline{\mathrm{H}}$ NMR - Two sets of doublets $\left({ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=32 \mathrm{~Hz}\right)$ of triplets $\left({ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=12 \mathrm{~Hz}\right)$, at 2.24 and 2.58 ppm , in a $1: 3.3$ proton NMR ratio confirmed that the pentafluoropropenyl groups of both (51a) and (51b) are equatorial. The rest of the proton spectrum was assigned using a ${ }^{13} \mathrm{C} /{ }^{1} \mathrm{H}$ HETCOR NMR experiment.

$3.39 \times-(1,1,2,3,3,3-$ Hexafluoropropyl) cis-decalin $\mathrm{x}=1.2,9$ (33)

Dehydrofluorination of the mono-adducts of cis-decalin (33) gave only the Zalkenes (52), using potassium t-butoxide.

i. $1: 2 \mathrm{KO}^{\dagger} \mathrm{Bu},(\mathrm{Et})_{2} \mathrm{O},-10^{\circ} \mathrm{C}, 15 \mathrm{mins}$.

Distillation of the product mixture gave a fraction containing three components which could not be separated. Analysis of the fraction, using GLC/MS and NMR, identified the three products as 1-(Z-pentafluoroprop-2-enyl)cis-decalin (52a), 2-(Z-
pentafluoroprop-2-enyl)cis-decalin (52b) and 9-(Z-pentafluoroprop-2-enyl)decalin (52c).

In cis-decalin, some addition of the fluoroalkyl group did occur at the bridgehead position, in contrast to trans-decalin. This can be rationalised as the bridgehead site in cis-decalin has fewer 1,5 Hydrogen interactions (figure 3.17) than the corresponding site in trans-decalin.

Figure 3.17. 1.5 Hydrogen interactions at the bridgehead in Cis-decalin.

Again the two-position is attacked in preference to the one-position and this can be accounted for by the increased 1,5 hydrogen interactions at the one-position.

Structure determination of compounds (52a), (52b) and (52c)
The ${ }^{19} \mathrm{~F}$ NMR spectrum of the three component mixture identified three sets of cis-fluorines in the ratio $2.5: 2.9: 1$. The three products all had M^{+}peaks at 268 in their EI^{+}mass spectra as alkenes by GLC/MS which identified .
${ }^{13} \mathrm{C}$ NMR - The broad band proton decoupled spectrum was complex and so a ${ }^{13} \mathrm{C}$ DEPT spectrum was also run on the mixture to identify the methyne carbons. Three doublets with ${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}$ coupling constants $c a .20 \mathrm{~Hz}$ were assigned as the carbons attached to the perfluoroalkenyl groups. The two larger doublets, at 37.3 and 31.3 ppm , were identified as methyne carbons by the ${ }^{13} \mathrm{C}$ DEPT spectrum and the smaller doublet, at 34.0 ppm , was assigned to the quaternary carbon of 9-(Z-pentafluoroprop-2enyl)decalin (52c). Again the two major components, 1-(Z-pentafluoroprop-2-enyl)cisdecalin (52a) and 2-(Z-pentafluoroprop-2-enyl)cis-decalin (52b), were distinguished by their carbons β - to their fluoroalkenyl groups (figure 3.20). Three doublets with ${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}$ coupling constants $c a .3 \mathrm{~Hz}$ were observed. The doublets at 28.1 and 34.1 ppm were assigned to the compound (52b), with the doublet at lower field assigned to the carbon neighbouring the bridgehead, because of the deshielding effect of the bridgehead. The
doublet at 23.1 ppm was assigned to CH_{2} group β - to the fluoroalkenyl group in compound (52a) (figure 3.18).

Figure $3.18{ }^{13} \mathrm{C}$ NMR chemical shifts (ppm) of the carbons α - and β - to the fluoroalkenyl groups in compounds (52a) and (52b)

(52a)

(52b)

Two sets of bridgehead carbons, at $35.9 \& 35.7 \mathrm{ppm}$ and 35.3 and 35.2 ppm , were also identified by the ${ }^{13} \mathrm{C}$ DEPT spectrum. The smaller set ,at higher field, was assigned to compound (52a) because of the increased deshielding of the perfluoroalkenyl group and the larger set was assigned to compound (52b). The rest of the carbon spectrum was assigned tentatively using data on corresponding methyl-substituted cis-decalins ${ }^{109}$.
${ }^{1} \underline{\mathrm{H}} \mathrm{NMR}$ - Two doublets of triplets at 2.56 and 2.71 ppm of similar size confirmed that addition of the fluoroalkyl group occurred at the equatorial positions, in the two major components.

3.40 1, 1,2,3,3,3-Hexafluoropropylnorbornane (37)

Dehydrofluorination of compound (37) was achieved easily using t-butoxide as the base.

i. $1: 2 \mathrm{KO}^{\dagger} \mathrm{Bu},\left({ }^{(} \mathrm{Pr}\right)_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 20 \mathrm{mins}$.

A ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction mixture confirmed a 98% conversion of the starting material. Distillation of the reaction mixture gave a pure sample of exo-2-(Z-pentafluoroprop-2-enyl)norbornane (53) identified by its NMR and mass spectra.

A broad band proton decoupled ${ }^{13} \mathrm{C}$ NMR spectrum was run on compound (53) as a model for the higher adducts of norbornane. The removal of the chiral CFH group eliminated the possibility of diastereomers and therefore simplified the ${ }^{13} \mathrm{C}$ NMR spectrum considerably. The Z-pentafluoropropenyl group was identified as three signals at low field. A further seven resonances were observed in the $0-45 \mathrm{ppm}$ region. A ${ }^{13} \mathrm{C}$ DEPT NMR spectrum identified three of these resonances at methyne carbons, a doublet $\left({ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3.1 \mathrm{~Hz}\right)$, at 42.0 ppm , was assigned as the bridgehead carbon closest to the perfluoroalkenyl group and a singlet, at 36.1 ppm , was assigned to the other bridgehead. The final methyne resonance, a doublet $\left({ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=20 \mathrm{~Hz}\right)$ at 38.8 ppm , was attributed to the carbon attached to the perfluoroalkenyl group. The methylene resonances were assigned by comparison with data from other substituted norbornanes ${ }^{101}$ (figure 3.19).

Figure $3.19{ }^{13} \mathrm{C}$ NMR chemical shifts (ppm) of the norbornyl group of compound (53)

A ${ }^{13} \mathrm{C} /{ }^{1} \mathrm{H}$ HETCOR NMR spectrum of compound (53) was used to assign its complex proton spectrum and a ${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ COSY NMR spectrum was used to identify any protonproton coupling.

3.41 exo-2.x-Bis(1,1,2,3,3,3-hexafluoropropyl)norbornane $x=5,6$ (38)

Dehydrofluorination of the norbornane di-adduct mixture (38) also proceeded successfully.

i. $1: 3.3 \mathrm{KO}^{\dagger} \mathrm{Bu},\left({ }^{\mathrm{P}} \mathrm{Pr}\right)_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 20$ mins.

Distillation of the reaction mixture gave a fraction containing two components, which were inseparable. NMR and mass spectra, of the fraction identified the two components as exo-2,5-bis(Z-pentafluoroprop-2-enyl)norbornane (54a) and exo-2,6-bis(Z-pentafluoroprop-2-enyl)norbornane (54b) in a 1.7 to 1 ratio.

It is unsurprising that the major product was compound (54a) as the two fluoroalkenyl groups are in positions, such that steric crowding and electronic effects are minimised in the molecule.

Structure determination of compounds (54a) and (54b)

Compounds (54a) and (54b) were identified as the dehydrofluorinated products by their M^{+}peaks, at 356 , in their EI^{+}mass spectra.
${ }^{19} \mathrm{~F}$ NMR - Two sets of cis-fluorine signals, in a ratio of $1.7: 1$, suggested that each diene contained equivalent Z-pentafluoropropenyl groups and therefore addition had only occurred at the exo-positions of the methylene groups in norbornane.
${ }^{13}$ C NMR - Three groups of signals at low field confirmed the presence of two perfluoroalkenyl groups. Nine resonances were observed in the $0-50 \mathrm{ppm}$ region and a ${ }^{13} \mathrm{C}$ DEPT NMR spectrum identified five of them as methyne carbons. Of these, two doublets at $38.0\left({ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=21 \mathrm{~Hz}\right)$ and $39.9 \mathrm{ppm}\left({ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=20 \mathrm{~Hz}\right)$ were assigned as the carbons attached to the perfluoroalkenyl groups and the remaining three as bridgehead carbons. A large doublet $\left({ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=2.6 \mathrm{~Hz}\right)$ at 41.9 ppm was assigned as the bridgehead
carbon in exo-2,5-di-ene (54a), because of its similar chemical shift to the analogous bridgehead of the mono-ene (53). Singlets at 48.2 and 36.2 ppm were assigned as bridgehead carbons of exo-2,6-di-ene (54b). The lower field singlet was attributed to the bridgehead carbon between the two perfluoroalkenyl groups, because of the large deshielding from them and the higher field singlet was assigned to the other bridgehead carbon.

(54a)

(54b)

The relative sizes of the carbon resonances indicate that the major component of the mixture was exo-2,5-bis(Z-pentafluoroprop-2-enyl)norbornane (54a).

3.42 1,3,5,7-Tetrakis(1,1,2,3,3,3-hexafluoropropyl)adamantane (40)

An eight fold excess of potassium t-butoxide was used to dehydrofluorinate the tetraadduct (40).

i. $\quad 1: 8 \mathrm{KO}^{t} \mathrm{Bu},\left({ }^{(} \mathrm{Pr}\right)_{2} \mathrm{O}, \mathrm{rt}$.
(55) 78%
$R_{F}=-{C F_{2}}_{2}$ CHCF $_{3} \quad R_{F}^{1}={ }_{F}^{F}$

Complete conversion of the tetra-adduct was achieved in a very exothermic reaction. Distillation of the product mixture, using a Kugelrohr apparatus under reduced
pressure, gave a fraction containing two components, (55a) and (55b) in a $2: 1$ ratio. The fraction was dissolved in chloroform and cooled (approx. $-50^{\circ} \mathrm{C}$), at which point, a white solid (55a) precipitated out.

The incorporation of an Z-pentafluoropropenyl group into (55b) can simply be attributed to statistical probability.

Structure determination of (55a) and (55b)

A GLC/MS of the two component mixture identified, M^{+}peaks at 656 in both EI^{+} mass spectra, indicating that both were isomers of the tetra-ene (55).
${ }^{19} \mathrm{~F},{ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra were run on a solution of the white solid, identifying it as 1,3,5,7-tetrakis(E-pentafluoroprop-2-enyl)adamantane (55a).
${ }^{19}$ F NMR - Only three signals were observed in the ${ }^{19} \mathrm{~F}$ NMR spectrum indicating the high symmetry of the molecule. The two vinylic fluorines were observed as doublets at -149.7 and -170.3 ppm with coupling constants of $134 \& 135 \mathrm{~Hz}$ respectively confirming their trans -relationship. The trifluoromethyl group was observed as a broad singlet at -67.6 ppm .
${ }^{13} \mathrm{C}$ _NMR - Only five signals were observed in the carbon spectrum which is summarised in figure 3.25. Two resonances were observed at high field, a singlet at 36.4 ppm , assigned to the methylene carbons, and a doublet $\left({ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=21 \mathrm{~Hz}\right)$ at 38.4 ppm attributed to the quaternary carbons (figure 3.20).

Figure $3.20{ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR chemical shifts (ppm)of compound (55a)

${ }^{1} \underline{H}$ NMR - Only one resonance was observed in the proton spectrum, at 2.21 ppm which corresponds to the six equivalent methylene groups.

The minor isomer was identified as 1 -(E-pentafluoroprop-2-enyl)-3,5,7-tris(Z-pentafluoroprop-2-enyl)adamantane (55b) by its ${ }^{19} \mathrm{~F}$ and ${ }^{1} \mathrm{H}$ NMR spectra. ${ }^{19}$ F NMR - Two CF_{3} resonances were observed, at -60.4 and -68.5 in a $1: 3$ ratio, and were assigned to the Z - and E-perfluoroalkenyl groups respectively. Four vinylic resonances were identified. Two broad singlets at -126.7 and -148.6 ppm were assigned to the two cis-fluorines and two doublets (${ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=135 \mathrm{~Hz}$) at -150.6 and -171.6 were assigned to the six trans-fluorines (figure 3:21).
${ }^{1}$ H NMR - Two singlets were observed in the proton spectrum at 2.19 and 2.18 and were assigned to the two sets of methylene groups.

Figure $3.21{ }^{19}{ }^{\mathrm{F} \text { and }}{ }^{1} \underline{\mathrm{H} \text { NMR chemical shifts (ppm) of compound (} \mathbf{5 5 b} \text {) }) ~}$

3.5 Kinetic v's Thermodynamic Control

It was thought that, in all the hydrocarbon systems, the E-isomer would have been the more thermodynamically stable alkene, because of the steric interactions between the alkyl and the trifluoromethyl groups. This seemed to be the case in the adamantyl system, but the reactions involving the cyclohexyl system were not so conclusive. Fluoride ion induced double bond isomerisations (scheme 3.4), were performed at high temperature, to give more conclusive evidence of which stereoisomer was the more thermodynamically stable.

Caesium fluoride isomerisations were performed on compounds (43a) and (45a).

(43a)

(45a)

(43a) 49%
(43b) 37%

(45a) Trace
i. 1:5 CsF,Tetraglyme, $200^{\circ} \mathrm{C}, 50 \mathrm{hrs}$.

In the adamantyl system, the Z -alkene (45a) was almost completely converted into the E-alkene (45b). This established that the E-alkene (45b) was thermodynamically more stable. In the cyclohexyl system, the Z-alkene (43a) remained the major component in the reaction mixture, even after fifty hours of CsF isomerisation
at $200^{\circ} \mathrm{C}$. This suggest that the isomerisation process had reached an equilibrium and that the E-alkene (43b) and Z-alkene (43a) have similar thermodynamic stabilities.

For both systems, the Z-alkenes (45a) and (43a) were the products favoured by kinetic control. The rate determining step of the ElcB mechanism is loss of fluoride ion from the intermediate anion (Figure 3.22).

Figure 3.22 Rate determining step of E1cB mechanism

The intermediate anion has an sp^{3} configuration and is able to take up either the gauche or trans conformation, consequently the gauche conformation of the anion is more stable. This result is surprising given the steric size of the alkyl and trifluoromethyl groups which may have been expected to favour the trans conformation. Preference of the gauche conformation may be accounted for by the 'gauche effect' as seen in 1,2difluoroethane ${ }^{110,111}$. It has been argued that this is due to fluorine-fluorine lone pair attraction ${ }^{112}$, whereas others say it is the trans conformer which is conjugatively destabilised rather than stabilisation of the gauche conformer ${ }^{113}$. Another possibility is that there is a destabilising interaction between the trifluoromethyl fluorines and difluoromethylene fluorines (figure 3.23) which competes successfully with the steric interactions of the alkyl and trifluoromethyl groups.

Figure 3.23 Gauche conformer of the intermediate anion

3.6 Conclusions

Dehydrofluorination of the hexafluoropropyl side chain is a convenient route to a novel set of mono-, di- and poly-enes which opens up a new area of chemistry, for example, they could be used as monomers. The tetra-ene (40) has possibilities as a monomer in a dendritic polymer because of its tetrahedral shape.

Not only can dehydrofluorination be performed easily, but by reducing the temperature of the t-butoxide system only the Z-isomer of many of the alkenes has been produced. This has not only simplified the product mixtures, which is useful synthetically, but also allowed fuller characterisation of many of the HFP di-adducts.

Better characterisation of the di-adducts allowed a fuller discussion of the factors affecting the incorporation of more than one hexafluoropropyl group. It was concluded that polar and steric effects both contributed to the site of addition in a mono-adduct, although these factors attenuated quickly as the site of addition became more remote from the initial hexafluoropropyl group.

Chapter Four

High Valency Metal Fluoride Fluorinations

4.1 Introduction

In the late 19th century it was observed that CeF_{4} and PbF_{4}, evolved fluorine on heating ${ }^{114}$. These observations lead to investigations into using high valency metal fluorides as fluorinating agents in organic chemistry. Various high valency metal fluorides, such as silver difluoride and manganese trifluoride, were investigated, but in general cobalt trifluoride was easy to use, regenerate and provided the best results ${ }^{115}$.

Fluorinations using cobalt trifluoride were found to produce less fragmentation than when using direct fluorination, which was attributed to the lower heat of reaction of cobalt trifluoride ${ }^{116}$, which is approximately half that of direct fluorination ${ }^{117}$ (figure 4.1).

Figure 4.1

In general, a large excess of cobalt trifluoride should be present so that only 25 30% is consumed during the reaction, otherwise the yields of perfluorinated products usually falls ${ }^{116}$. Fluorination of a substrate becomes more difficult as the number of fluorines atoms, in the substrate, increases. The technique is flexible, in that it is possible to control the extent of the reaction by altering the reaction temperature or the input rate of the organic substrate. The level of fluorination can be varied depending on the reaction temperature, but generally the technique is used to attain perfluorination.

Cobalt trifluoride fluorination involves two main stages. Initially cobalt difluoride undergoes oxidative fluorination to cobalt trifluoride, which is achieved by passing fluorine over a cobalt fluoride bed at $250-300^{\circ} \mathrm{C}$. When the cobalt trifluoride, in
the reactor, has been fully regenerated then the organic substrate is passed over the cobalt trifluoride bed to produce perfluorinated material, cobalt difluoride and hydrogen fluoride (scheme 4.2).

Scheme 4.2
i) Regeneration

$$
2 \mathrm{CoF}_{2}+\mathrm{F}_{2} \longrightarrow 2 \mathrm{CoF}_{3}
$$

ii) Fluorination

$$
2 \mathrm{CoF}_{3}+\mathrm{R}-\mathrm{H} \longrightarrow 2 \mathrm{CoF}_{2}+\mathrm{R}-\mathrm{F}+\mathrm{HF}
$$

Cobalt trifluoride fluorination is thought to proceed via a radical-cation mechanism ${ }^{1,118}$. Initially the substrate is oxidised to a radical cation (56), followed by loss of a proton to form the corresponding radical (56a). The radical is then further oxidised to form a cation (56b), which then undergoes fluoride ion addition (scheme 4.3).

Scheme 4.3

(56b)

Cobalt trifluoride fluorination of Hydrocarbons

In the late 1940's much interest was generated in perfluorination of hydrocarbons, using cobalt trifluoride, as perfluorocarbons were found to be unaffected
by uranium hexafluoride. A series of n -alkanes $\left(\mathrm{C}_{4}-\mathrm{C}_{11}\right)$ and cyclic hydrocarbons (table 4.1) were successfully perfluorinated ${ }^{119-124}$.

Table 4.1 Cobalt Trifluoride Fluorination of Cyclic Hydrocarbons

Hydrocarbon	Reaction Temperature	Major Product	Yield	Ref.
		F	28\%	[119]
			38\%	[119]
	$300^{\circ} \mathrm{C}$		$\begin{aligned} & 45 \% \\ & \text { (crude) } \end{aligned}$	[121]
	$350{ }^{\circ} \mathrm{C}$		23\%	[121]
	$380{ }^{\circ} \mathrm{C}$		40\% (crude)	[121]
	$350{ }^{\circ} \mathrm{C}$,		$\begin{aligned} & 42 \% \\ & \text { (crude) } \end{aligned}$	[121]
	$\begin{gathered} 250^{\circ} \mathrm{C} \text { and } \\ 350^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & 25 \% \\ & \text { (crude) } \end{aligned}$	[121]
	$350{ }^{\circ} \mathrm{C}$		17\%	[121]
	$350{ }^{\circ} \mathrm{C}$		$\begin{aligned} & 42 \% \\ & \text { (crude) } \end{aligned}$	[121]
	$350^{\circ} \mathrm{C}$		21\%	[121]
	$250-380^{\circ} \mathrm{C}$		$\begin{aligned} & 38 \% \\ & \text { (crude) } \end{aligned}$	[121]

The early reactors were superceded by a horizontal reactor containing cobalt trifluoride in a nickel tube with a central rotating shaft with paddles attached, so as to agitate the cobalt trifluoride and improve the contact with the organic vapour ${ }^{116}$ and a series of perfluorodicyclohexyl compounds were produced using this method (scheme 4.4).

Scheme 4.4

Polyfluorination ${ }^{125,126}$ can also be achieved, usually to give compounds containing one or two remaining hydrogens, but the product mixtures tend to be complex as at high. temperatures the fluorination process shows little selectivity. However monofluorination of some hydrofluorocarbons has been accomplished recently ${ }^{127,128}$.

Although cobalt trifluoride was generally recognised as the best high valency metal fluoride fluorinating agent, the reactions with hydrocarbons show that the perfluorinated products are produced in moderate yields due to degradation of the substrate. More recently this has been combated, in ethers, by the introduction of a polyfluoroalkyl group into the substrate prior to perfluorination ${ }^{129}$.

This resulted in much improved yields over perfluorination of the parent ethers ${ }^{130}$.

4.21 2,5-Bis(1,1,1,2,3,3-hexafluoropropyl)tetrahydrofuran (58)

In the present work, a sample of 2,5-bis(1, 1, 1, 2, 3, 3hexafluoropropyl)tetrahydrofuran (58), which had been previously prepared in this laboratory ${ }^{75}$, was passed through the cobalt trifluoride reactor at $400^{\circ} \mathrm{C}$, the maximum temperature of the reactor.

i. $\mathrm{CoF}_{3}, 400^{\circ} \mathrm{C}, \mathrm{N}_{2} 30 \mathrm{ml} \mathrm{min}^{-1}$

* recovery (\%) calculated, based on (59)

A GLC/MS ${ }^{19} \mathrm{~F}$ NMR and ${ }^{19} \mathrm{~F} /{ }^{19} \mathrm{~F}$ COSY NMR of the product mixture identified the major products as cis- and trans-perfluoro-2,5-dipropyltetrahydrofuran (59), whose data agreed with the literature ${ }^{75}$, and also the presence of various polyfluorinated products. The polyfluorinated products were removed from the product mixture by continuous extraction with acetone, but the cis- and trans- isomers of (59) could not be separated. Even at $400^{\circ} \mathrm{C}$, there was very little decomposition during the reaction. This can be attributed to the presence of the two polyfluoroalkyl groups in the starting material (58) which significantly stabilised the ether to cobalt trifluoride fluorination.

4.22 1,1,2,3,3,3-Hexafluoropropylcyclohexane (24)

The cobalt trifluoride fluorination of 1,1,2,3,3,3-hexafluoropropylcyclohexane (24) was conducted at $375^{\circ} \mathrm{C}$.

* recovery (\%) calculated, based on (60)

GLC/MS and ${ }^{19} \mathrm{~F}$ NMR analysis of the product mixture identified the major product as perfluoropropylcyclohexane (60) and the major polyfluorinated product was identified as 2 H -perfluoropropylcyclohexane (60a). Again the polyfluorinated products were removed by continuous extraction with acetone. A trace amount of perfluorocyclohexane was identified as the only decomposition product and was separated from (60) by preparative scale GLC.

Again very little decomposition occurred during the reaction because of the fluoroalkyl group, in fact, the.hydrogen in the hexafluoropropyl side chain of (24) was the most difficult to fluorinate, presumably because of the electron withdrawing properties of the neighbouring trifluoromethyl and difluoromethylene groups deactivating the site.

The ${ }^{19} \mathrm{~F}$ NMR spectrum of the purified perfluoropropylcyclohexane (60) agreed with the data published by Lin and Lagow ${ }^{131}$ who produced compound (60) in moderate yield on a small scale by direct fluorination at $-130^{\circ} \mathrm{C}$. GLC/MS identified the polyfluorinated products as containing one or two remaining hydrogens ($\mathrm{M}^{+}-\mathrm{F}$ peaks at 413 \& 395) and 2 H -perfluoropropylcyclohexane (60a) was identified by its $\mathrm{M}^{+}-\mathrm{F}$ peak at 413 and base peak at 151 , corresponding to the ${ }^{+} \mathrm{CF}_{2} \mathrm{CFHCF}_{3}$ fragment.

4.23 1,1,2,3,3,3-Hexafluoropropylcyclopentane (25)

Cobalt trifluoride fluorination of 1,1,2,3,3,3-hexafluoropropylcyclopentane (25) was conducted at $375^{\circ} \mathrm{C}$.

GLC/MS analysis of the product mixture identified the two major products as perfluoropropylcyclopentane (61) and 2H-perfluoropropylcyclopentane (61a), which
were separated by continuous extraction with acetone. The perfluorocarbon mixture contained a small trace of perfluorocyclopentane, but this was removed from (61) by preparative scale GLC.

A ${ }^{19} \mathrm{~F}$ NMR spectrum of perfluoropropylcyclopentane (61) identified three singlets at $-81.2,-116.1$, and -125.1 ppm , which were assigned to the CF_{3} group, the neighbouring CF_{2} group and the remaining CF_{2} group of the perfluoropropyl side chain respectively. Another smaller singlet was detected at -185.2 ppm and was assigned to the tertiary CF group in the cyclopentane ring. The remaining signals were observed as two AB systems at $-123.0 \&-128.3 \mathrm{ppm}\left({ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=270\right)$ and $-129.0 \&-132.5\left({ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}\right.$ $=259$) which were assigned to the two CF_{2} groups in the cyclopentane ring. In each AB system, the signals at lower field were assigned to the axial fluorines, as these are expected to be more deshielded than the equatorial fluorines. The EI^{+}mass spectrum of (61) contained a $\mathrm{M}^{+}-\mathrm{F}$ peak at 381 and a base peak at 69 , corresponding to the CF_{3} fragment. Compound (61a) was identified by its EI^{+}mass spectrum which contained a $\mathrm{M}^{+}-\mathrm{F}$ peak at 363 and a base peak at 151 , corresponding to the ${ }^{+} \mathrm{CF}_{2} \mathrm{CFHCF}_{3}$ fragment.

4.24 trans-1,4-Bis(1,1,2,3,3,3-hexafluoropropyl)cyclohexane (27a)

The cobalt trifluoride fluorination of trans-1,4-bis $(1,1,2,3,3,3-$ hexafluoropropyl)cyclohexane (27a) was conducted at various temperatures to try to identify the optimum temperature of the reaction. The crystalline solid was heated so that it liquefied before entering the reactor.

i. $\mathrm{CoF}_{3}, 300-400^{\circ} \mathrm{C}, \mathrm{N}_{2} 30 \mathrm{ml} / \mathrm{min}$

		\% Composition of products by GLC/MS			
	Recovery*	$\mathrm{C}_{\mathrm{n}} \mathrm{F}_{2 \mathrm{n} / 2 \mathrm{n}+2}$ $\mathrm{n}<12$	$\mathrm{C}_{12} \mathrm{~F}_{24}$ $\left(\mathrm{M}^{+}-19,581\right)$	$\mathrm{C}_{12} \mathrm{~F}_{23} \mathrm{H}$ $\left(\mathrm{M}^{+}-19,563\right)$	$\mathrm{C}_{12} \mathrm{~F}_{22} \mathrm{H}_{2}$ $\left(\mathrm{M}^{+}-19,545\right)$
$400^{\circ} \mathrm{C}$	77%	23.3	64.5	8.8	3.4
$350^{\circ} \mathrm{C}$	68%	9.8	78.1	10.6	1.5

*calculated, based on (62)

The major products in both reactions were identified as the cis- and transisomers of perfluoro-1,4-dipropylcyclohexane (62). A GLC/MS analysis of the product mixture from the reaction at $400^{\circ} \mathrm{C}$ identified a surprisingly large amount of perfluorinated decomposition products, the major component of which was identified as perfluoropropylcyclohexane (60) $\left(\mathrm{M}^{+}-19,431\right)$. Lowering the reaction temperature, to $350^{\circ} \mathrm{C}$, reduced the proportion of decomposition products, without increasing the proportion of polyfluorinated products. A pure sample of perfluoro-1,4dipropylcyclohexane (62) was obtained by continuous extraction of the product mixture, with acetone, followed by preparative scale GLC. Chlorotrifluoromethane was then added to compound (62) and the solution was cooled to $-15^{\circ} \mathrm{C}$, at which point trans-perfluoro-1,4-dipropylcyclohexane (62a) crystallised out of the solution.

Both the cis- and trans-isomers of perfluoro-1,4-dipropylcyclohexane (62) were produced from only the trans-isomer of the substrate. This is consistent with the proposed oxidative radical mechanism, as the tertiary radical produced can rapidly interconvert (figure 4.3) to give both cis- and trans-isomers.

Figure 4.3

Structure determination of cis- and trans-perfluoro-1.4-dipropylcyclohexane (39)
The EI ${ }^{+}$mass spectra of the cis- and trans- isomers of perfluoro-1,4dipropylcyclohexane (62) identified $\mathrm{M}^{+}-\mathrm{F}$ peaks at 581 . A ${ }^{19} \mathrm{~F}$ NMR spectrum of a solution of trans-perfluoro-1,4-dipropylcyclohexane (62a) identified three singlets at
$-81.2,-119.4$ and -126.1 ppm , in a $3: 2: 2$ ratio, which were assigned to the perfluoropropyl group. A large AB system at $-117.7 \&-126.7 \mathrm{ppm}$ was assigned to the four equivalent difluoromethylene groups of the cyclohexane ring and a singlet at -186.7 ppm was assigned as the axial fluorine in the fluoromethyne group due to its similar chemical shift as the corresponding fluorine in perfluoropropylcyclohexane (60). cis-Perfluoro-1,4-dipropylcyclohexane (62b) was identified from the ${ }^{19} \mathrm{~F}$ NMR spectrum of mixture of cis- and trans- isomers of (62). The perfluoropropyl fluorines were observed as three singlets at $-81.0,-113.4$ and -124.8 ppm respectively. The singlet at -119.4 was assigned to all the ring fluorines and the singlet at -183.0 ppm was assigned to the fluoromethyne group. The equivalence of both perfluoropropyl groups and the difluoromethylene groups of the cyclohexane ring were explained by rapid interconversion of the cyclohexane chair conformation (figure 4.2).

Figure 4.2

4.251,x-bis(1,1,2,3,3,3-hexafluoropropyl)cyclohexane $x=3,4(27)$

Cobalt trifluoride fluorination of compound (27) was conducted at both $375^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$, at both temperatures the major group of products were isomers of perfluorodipropylcylohexane (62) and (63).

Temp	Recovery*	\% Composition of products by GLC/MS			
		$\mathrm{C}_{\mathrm{n}} \mathrm{F}_{2 \mathrm{n} / 2 \mathrm{n}+2}$ $\mathrm{n}<12$	$\mathrm{C}_{12} \mathrm{~F}_{24}$ $\left(\mathrm{M}^{+}-19,581\right)$	$\mathrm{C}_{12} \mathrm{~F}_{23} \mathrm{H}$ $\left(\mathrm{M}^{+}-19,563\right)$	$\mathrm{C}_{12} \mathrm{~F}_{22} \mathrm{H}_{2}$ $\left(\mathrm{M}^{+}-19,545\right)$
	75%	44.5	44.5	10.0	1.0
$375^{\circ} \mathrm{C}$	83%	10.9	58.1	23.3	7.7

*calculated, based on (63)

GLC/MS analyses of both reactions, identified perfluorinated decomposition products and polyfluorinated products, of which 2 H -perfluoro-dipropylcyclohexane (63a) $\left(\mathrm{M}^{+}-19,563\right.$; base peak, 151) was the major component.

(63a)

Isomers of perfluorodipropylcyclohexane (62) and (63) were obtained by continuous extraction of the product mixture with acetone, followed by preparative scale GLC, but could not be separated.

Again lowering the temperature, from $400^{\circ} \mathrm{C}$ to $375^{\circ} \mathrm{C}$, reduced the amount of decomposition products greatly and enhanced the proportion of perfluorodipropylcyclohexane (62) and (63).

Structure determination of perfluoro-1.3-dipropylcyclohexane (63)

The ${ }^{19} \mathrm{~F}$ NMR spectrum of the pefluorocarbon mixture was complex, especially in the difluoromethylene region and so a ${ }^{19} \mathrm{~F} /{ }^{19} \mathrm{~F}$ COSY NMR spectrum was also run on the mixtures.

The CF_{3} and CF groups of both isomers of perfluoro-1,3-dipropylcyclohexane (63) were readily distinguished at -80.9 ppm and $c a .-184 \mathrm{ppm}$. In trans-perfluoro-1,3dipropylcyclohexane (63a) the perfluoropropyl groups occupy equatorial positions giving the cyclohexane ring a rigid conformation, and therefore three $A B$ systems at $-120.0 \&-125.0,-121.3 \&-131.3$ and $-122.8 \&-140.8 \mathrm{ppm}$ in a $1: 2: 1$ ratio were assigned to its CF_{2} ring groups at 2, $4 / 6$ and 5 positions respectively. In contrast, the cyclohexane ring of cis-perfluoro-1,3-dipropylcyclohexane (63b) will be rapidly inverting, as in compound (63b), and its three CF_{2} ring groups at the $2,4 / 6$ and 5 positions were tentatively assigned to singlets at $-115.6,-115.1$ and -126.2 ppm in a 1 : $2: 1$ ratio. Finally two groups of singlets at $c a .-127$ and -114 ppm were assigned to the CF_{2} of the perfluoropropyl groups of both isomers.

4.26 1,x-bis(1,1,2,3,3,3-hexafluoropropyl)cyclopentane $x=2,3$ (26)

The cobalt trifluoride fluorination of compound (26) was also conducted at $375^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$, and isomers of perfluorodipropylcyclopentane (64) were identified as the major products in both cases.

i. $\mathrm{CoF}_{3}, 350-400^{\circ} \mathrm{C}, \mathrm{N}_{2} 30 \mathrm{ml} / \mathrm{min}$

		\% Composition of products by GLC/MS			
	Recovery*	$\mathrm{C}_{\mathrm{n}} \mathrm{F}_{2 \mathrm{n} / 2 \mathrm{n}+2}$ $\mathrm{n}<11$	$\mathrm{C}_{11} \mathrm{~F}_{22}$ $\left(\mathrm{M}^{+}-19,531\right)$	$\mathrm{C}_{11} \mathrm{~F}_{21} \mathrm{H}$ $\left(\mathrm{M}^{+}-19,513\right)$	$\mathrm{C}_{11} \mathrm{~F}_{20} \mathrm{H}_{2}$ $\left(\mathrm{M}^{+}-19,495\right)$
$400^{\circ} \mathrm{C}$	48%	20.8	71.3	7.4	0.4
$375^{\circ} \mathrm{C}$	77%	10.5	71.0	17.1	0.7

[^0]

GLC/MS analyses of the product mixtures identified the major perfluorinated decomposition product as perfluorodipropylcyclopentane (61) ($\mathrm{M}^{+}-19,381$; base peak at 69) and the major polyfluorinated product as 2 H -perfluorodipropylcyclopentane (65) $\left(\mathrm{M}^{+}-19,363\right.$; base peak at 151$)$.

(65)

Lowering the reaction temperature, from $400^{\circ} \mathrm{C}$ to $375^{\circ} \mathrm{C}$, reduced the proportion of perfluorinated decomposition products, but it also had the effect of increasing the percentage of polyfluorinated products and therefore the proportion of perfluorodipropylcyclopentane (64) remained unchanged.

Structure determination of perfluoro-1,3-dipropylcyclopentane (64a)
The two major isomers of perfluorodipropylcyclopentane (64) were identified as a 1:1 mixture of cis- and trans-perfluoro-1,3-dipropylcyclopentane (64a) by ${ }^{19} \mathrm{~F}$ NMR and ${ }^{19}$ F/ ${ }^{19} \mathrm{~F}$ COSY NMR spectra on the mixture.

(64a)

As in perfluoro-2,5-dipropyltetrahydrofuran (59), five $A B$ systems were observed in the difluoromethylene region. A comparison of the spectra suggested that two singlets, at -114.2 and -122.4 ppm , arose from the CF_{2} groups at the two positions, one from each isomer. Two AB systems centred at approx. -126 ppm were assigned to the CF_{2} group neighbouring the CF_{3} groups because of their characteristic chemical shift, again one from each isomer. Two AB systems at $-123.0 \&-124.3 \mathrm{ppm}$ and $-126.1 \&-134.1$ ppm , were assigned to the two equivalent CF_{2} groups at the four and five positions in the cyclopentane ring, of both isomers. The final AB system and a singlet, both centred
at approx. -118 ppm were assigned to the CF_{2} groups, neighbouring the tertiary ring CF group, of the perfluoropropyl group in both isomers.

4.27 x -(1, 1,2,3,3,3-hexafluoropropyl)cis-decalin ($\mathrm{x}=1,2,9$) (33)

 The cobalt trifluoride fluorination of compound (33) was performed at $375^{\circ} \mathrm{C}$.

The major group of products were identified as isomers of perfluoro-xpropyldecalin ($x=1,2,9$) (66), polyfluorinated products contributed 13% to the product mixture, but were removed by continuous extraction with acetone overnight. The major perfluorinated decomposition products were identified by GLC/MS as the two isomers of perfluorodecalin (5\%) confirming isomerisation occurred at the bridgehead position during fluorination. The ${ }^{19} \mathrm{~F}$ NMR spectrum of the perfluorocarbon mixture was very complex in the difluoromethylene region because of the number of isomers of the product and the number of CF_{2} groups within each isomer. A ${ }^{19} \mathrm{~F} /{ }^{19} \mathrm{~F}$ COSY NMR was run on the mixture, but still the AB systems could not be resolved.

4. 28 1-(1,1,1,2,3,3-hexafluoropropyl)adamantane

Attempts to perfluorinate alkyladamantanes ${ }^{132}$ using cobalt trifluoride have led to significant amounts of perfluorinated decomposition products, as occurred with norbornane ${ }^{133}$, but by introducing trifluoromethyl groups, in a two step process, and then fluorinating by passing the substrate through a thermally graduated reactor several times, perfluorination was attained.

A simple reaction was performed, where $1-(1,1,2,3,3,3-$ hexafluoropropyl)adamantane (22) was passed through the CoF_{3} reactor at $400^{\circ} \mathrm{C}$.

i. $\mathrm{CoF}_{3}, 400^{\circ} \mathrm{C}, \mathrm{N}_{2} 30 \mathrm{mlmin}^{-1}$

The product mixture was very complex due to a large amount of perfluorinated decomposition products. A GLC/MS of the mixture indicated that the major product was perfluoro-1-propyl-adamantane (67) ($\mathrm{M}^{+}-19,555$), but it could not be isolated from the mixture and so no further characterisation was possible. Decomposition presumably occurred as the adamantyl cage structure was unable to withstand the high temperature. In further reactions the temperature was reduced, but this only increased the amount of polyfluorinated products.

Attempts to perfluorinate 1,3-bis(1,1,1,2,3,3-hexafluoropropyl)adamantane (23) at $400^{\circ} \mathrm{C}$ also gave an extremely complex mixture of perfluorinated decomposition products including a small amount of perfluoro-1,3-dipropyl-adamantane ($\mathrm{M}^{+}-19,705$) which could not be separated. Therefore it seemed that a further increase in the percentage of fluorine content of the starting material had no beneficial effect on the reaction.

4.29 Z-pentafluoro-2-propenylcyclohexane (43a)

As the CFH proton in the fluoroalkyl group of the hexafluoropropyl adducts proved, consistently, to be the most difficult. to fluorinate, the cyclohexane adduct (24) was dehydrofluorinated prior to fluorination.

The major product was identified as perfluoropropylcyclohexane (60) and only a small amount of polyfluorinated products (60b) were identified and no perfluorinated decomposition products were observed.

Removing the CFH group prior to fluorination allowed a lower temperature to be used without resulting in an increased amount of hydrogen containing products. The lower temperature also eliminated any decomposition and this resulted in an increased amount of the desired perfluorocarbon.

4.3 Methanol/TFE. Telomers

Telomers produced from radical addition of methanol to tetrafluoroethylene have long been known ${ }^{134}$. Cobalt trifluoride fluorinations of the heptanol and nonanol derivatives were conducted, at $400^{\circ} \mathrm{C}$ and $300^{\circ} \mathrm{C}$, as a quick convenient route to perfluoroalkanes.

Fluorination of the nonanol telomer at $400^{\circ} \mathrm{C}$, produced perfluorooctane (68a) as the major product and similarly perfluorohexane (69a) was identified as the major product from the heptanol telomer.

Lowering the temperature of the heptanol derivative, to $300^{\circ} \mathrm{C}$, significantly reduced the proportion of perfluorohexane (69a) produced and 1 H -perfluorohexane (70) became the major product. The reaction probably proceeds via an acid fluoride, which then loses OCF_{2} (scheme 4.5). When the reaction was repeated at $200^{\circ} \mathrm{C}$, a ${ }^{19} \mathrm{~F}$ NMR
spectrum of the products, identified a signal at +24.3 ppm , characteristic of an acid fluoride.

Scheme 4.5

Both reactions provide quick and simple routes to perfluoroalkanes and also could be used to produce 1 H -perfluoroalkanes, if required by simply reducing the reaction temperature.

4.4 Fluorinations using high valency nickel fluorides in anhydrous HF

It has long been suspected that electrochemical fluorination (Simons Process) using a nickel anode in anhydrous HF creates higher nickel fluorides than nickel (II) fluoride ${ }^{135}$ and therefore such high valence nickel fluorides were possible low temperature, fluorinating agents in their own right.

4.41 Silver (II)Nickel(IV)hexafluoride

trans-1,4-bis(Z-pentafluoroprop-2-enyl)cyclohexane (46)
A brown slurry of AgNiF_{6} in anhydrous HF was slowly added to a slightly soluble mixture of trans-1,4-bis(Z-pentafluoroprop-2-enyl)cyclohexane (46) in anhydrous HF at approximately $0^{\circ} \mathrm{C}$

An exothermic reaction occurred immediately, and the brown AgNiF_{6} was reduced to an olive green solid, assumed to be $\mathrm{Ag}(\mathrm{I}) \mathrm{Ni}(\mathrm{II}) \mathrm{F}_{3}$. When no further reaction was observed the anhydrous HF was allowed to distil into a soda-lime trap and the remaining green solid was washed with Arklone and then analysed using ${ }^{19}$ F NMR. The ${ }^{19}$ F NMR spectrum produced a weak set of signals similar to that of the cis- and trans- isomers of perfluoro-1,4-dipropylcyclohexane, except that no tertiary ring fluorines were evident (normally observed at approx. -185 ppm), suggesting that the tertiary ring protons were not fluorinated and the product was $2 \mathrm{H}, 2 \mathrm{H}$-perfluoro-1,4-dipropylcyclohexane (71).

Removing the CFH group from the fluoroalkyl side chains by dehydrofluorination prior to fluorination would make the tertiary ring proton the hardest site to fluorinate, as it is the closest to the electron withdrawing side chain and therefore $\mathrm{NiF}_{6}{ }^{2-}$ was not a strong enough oxidiser to give complete fluorination.

4.42 Nickel (III) trifluoride

2.5-bis(Z-pentafluoro-2-propenyl)tetrahydrofuran (72)

Nickel trifluoride is a stronger oxidiser than $\mathrm{NiF}_{6}{ }^{2-}$ as it does not carry a negative charge. It is formed by adding BF_{3} to a solution $\mathrm{K}_{2} \mathrm{NiF}_{6}$ in anhydrous HF from which it removes fluoride ion to produce nickel (IV) tetrafluoride which is unstable above $-40^{\circ} \mathrm{C}$ and loses fluorine to give nickel (III) trifluoride as a black precipitate.

Compound (58) was dehydrofluorinated, using sodium t-butoxide, to form 2,5-bis(Z-pentafluoroprop-2-enyl)tetrahydrofuran (72) prior to fluorination. The black slurry of nickel trifluoride in anhydrous HF was added slowly to the slightly soluble 2,5-bis(Z-pentafluoro-2-propenyl)tetrahydrofuran (72) in anhydrous HF, at approximately $0^{\circ} \mathrm{C}$.

The solid gradually turned a light brown colour as the nickel trifluoride was reduced. The reaction was left overnight to ensure complete conversion and then the anhydrous HF was distilled off and the remaining brown solid was washed with chlorotrifluoromethane. A ${ }^{19} \mathrm{~F}$ NMR spectrum of the chlorofluorocarbon solution identified a weak set of signals similar to those of perfluoro-2,5dipropyltetrahydrofuran (59) and there was no evidence of any CFH signals.

Fluorination of the tertiary ring protons may have been aided by the neighbouring activating oxygen, but in more recent work, in collaboration with Bartlett and Roche in this laboratory, perfluoro-1,3,5,7-tetrakispropyladamantane (73) was produced via nickel trifluoride fluorination of 1,3,5,7-tetrakis(1,1,2,3,3,3hexafluoropropyl)adamantane (55), confirming that NiF_{3} is even able to fluorinate the CFH proton and therefore is a stronger fluorinating agent than AgNiF_{6}.

4.5 Conclusions

Cobalt trifluoride fluorinations were performed successfully on the monoadducts of cyclopentane and cyclohexane to produce their perfluorinated derivatives, which could be isolated from their product mixtures, but perfluorination of the diadducts gave mixtures of perfluorinated cis- and trans-isomers which were inseparable. Full interpretation of the ${ }^{19} \mathrm{~F}$ NMR spectra of these isomers was difficult, but was helped by the use of ${ }^{19} \mathrm{~F} /{ }^{19} \mathrm{~F}$ COSY experiments. In all cases the presence of the fluoroalkyl group in the starting material stabilised it to fluorination, lessening the amount of decomposition products, but the proton of the CFH group in the side chain was the most difficult to remove and was the major contributor to the hydrogen
before fluorination. In all these reactions any polyfluorinated products were easily removed using continuous extraction with acetone and perfluorinated decomposition products were removed by preparative GLC. Cobalt trifluoride fluorinations of the 1(1, 1, 2, 3, 3,3-hexafluoropropyl)adamantane and 1,3-bis(1,1,2,3,3,3hexafluoropropyl)adamantane were hampered by decomposition of the adamantyl skeleton, even when the percentage of fluorine was increased in the starting material. Dehydrofluorination of the fluoroalkyl side-chain, as in the cyclohexane adduct, should allow lower temperatures to be used and may reduce the amount of decomposition observed.

Cobalt trifluoride fluorination of the methanol/tetrafluoroethylene telomers provided an convenient method of producing either the perfluoroalkanes or 1 H perfluoroalkanes by simply varying the reaction temperature.
AgNiF_{6} in anhydrous HF , fluorinated all but the most deactivated hydrogens in the substrate, at $0^{\circ} \mathrm{C}$. Whereas NiF_{3} in anhydrous HF proved to be strong enough to fluorinate even the hydrogen in the hexafluoropropyl side chain, at $0^{\circ} \mathrm{C}$, yet still maintain the adamantyl skeleton in (73).

Chapter Five
Functionalisation of Hexafluoropropene Adducts

5.1 Introduction

Previous attempts to affect radical addition of HFP to alkenes such as cyclohexene, in this laboratory, led only to trace amounts of the desired products ${ }^{90}$, presumably due to formation of allylic radicals which are too stable to react further (scheme 5.1).

Scheme 5.1

Therefore to introduce unsaturation into the hydrocarbon moiety of a hexafluoropropene adduct, another functional group must first be introduced followed by α, β-elimination of it (scheme 5.2).

Scheme 5.2

5.2. Attempted additions of Hexafluoropropene (HFP) to Functionalised Hydrocarbons

5.21 Cyclohexyl chloride

In the present work, addition of cyclohexyl chloride to HFP was attempted in repeated experiments, using both γ-rays and peroxide initiation, but only trace amounts of x-(1,1,2,3,3,3-hexafluoropropyl)cyclohexyl chloride (74) were produced.

i. γ-rays, 7 Mrads, 4 Days, $18^{\circ} \mathrm{C}$
ii. DTBP, $140^{\circ} \mathrm{C}, 24$ hours

A GLC/MS of the γ-ray reaction mixture identified a small group of isomers of the mono-chlorinated adduct (74) with a (M-Cl) $)^{+}$peak at 233 and a ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction mixture confirmed HFP incorporation, but no further workup of the reaction was performed. The reaction was repeated using acetone to make the two compounds miscible, but it had no significant effect on the reaction. The low reactivity of the system may be due to the electron withdrawing properties of the chlorine deactivating the system to radical addition.

GLC/MS analysis of the DTBP initiated reaction identified the major product as cyclohexene $\left(6 \% ; \mathrm{M}^{+}, 82\right)$. This suggests that a hydrogen β - to the chlorine is abstracted and elimination of a chlorine radical (scheme 5.3) is preferred to addition to HFP.

Scheme 5.3

5.3 Chlorination of Hexafluoropropene adducts

5.31.1.1.2.3.3.3-Hexafluoropropylcyclohexane (24)

As an alternative to addition of cyclohexyl chloride to HFP, chlorination of 1,1,2,3,3,3-hexafluoropropylcyclohexane (24), using sulphuryl chloride, was performed.

A two-fold excess of compound (24) was used in an attempt to produce only the monochlorinated adducts (74).

(74) 27%

The reaction was terminated when no further gases evolved from the reaction mixture, indicating that no sulphuryl chloride remained. A ${ }^{1} \mathrm{H}$ NMR of the reaction mixture confirmed chlorination of the cyclohexane ring had occurred as several new signals in $3.5-4.5 \mathrm{ppm}$ region were observed. Fractional distillation of the reaction mixture gave two fractions. The major fraction consisted of recovered starting material and the other fraction was identified as isomers of $\mathrm{x}-(1,1,2,3,3,3-$ hexafluoropropyl)cyclohexyl chloride (74).
5.32 Chlorination of 1,1,2,3,3,3-hexafluoropropylcyclopentane (25)

1,1,2,3,3,3-Hexafluoropropyl)cyclopentane (25) was chlorinated using sulphuryl chloride (1:1 ratio) and uv initiation.

(75)

A ${ }^{1} \mathrm{H}$ NMR of the reaction mixture confirmed chlorination had taken place with several new signals in the $4-5 \mathrm{ppm}$ region, corresponding to CHCl protons. GLC/MS analysis identified isomers of x -($1,1,2,3,3,3$-hexafluoropropyl)cyclopentyl chloride x $=2,3(75)$ as the major products $\left((\mathrm{M}-\mathrm{Cl})^{+}, 219\right)$ but a trace amount of di-chlorinated adducts were also detected $\left(\mathrm{M}^{+}, 288\right)$.

Six major isomers of compound (75) were observed in three groups of two by GLC. Two regioisomers of (75) are possible, both containing three chiral centres and therefore sixteen isomers of the mono-chlorinated adduct are possible, making conclusive structure determination virtually impossible.

5.4 Dehydrochlorination of Chlorinated Hexafluoropropene adducts

$5.41 \mathrm{x}-(1,1,2,3,3,3$-Hexafluoropropyl)cyclohexyl chloride $\mathrm{x}=2,3,4$ (74)

Dehydrochlorination of compounds (74) using either aqueous sodium hydroxide ${ }^{136}$ or triethylamine ${ }^{137}$ failed, but a review of the literature ${ }^{138,139}$ indicated that the weak base, lithium chloride in dimethyl formamide was an unusual, but successful dehydrochlorinating agent and so dehydrochlorination, using this system, was attempted.

A GLC/MS of the product mixture indicated that nearly all the starting material (89%) had undergone dehydrochlorination to produce isomers of $\mathrm{x}-(1,1,2,3,3,3-$ hexafluoropropyl)cyclohex-1-ene $\mathrm{x}=1,2,3(76)\left(\mathrm{M}^{+}, 232\right)$. Distillation of the reaction mixture gave a pure sample of (76), whose IR spectrum confirmed the existence of a double bond ($v^{-1}, 1680 \mathrm{~cm}^{-1}$). The ${ }^{1} \mathrm{H}$ NMR of (76) identified vinylic proton resonances in the $5.5-6.5 \mathrm{ppm}$ region, confirmed that the double bond was located in the cyclohexane ring and no vinylic fluorine resonances were observed in the ${ }^{19} \mathrm{~F}$ NMR spectrum establishing that dehydrofluorination had not taken place.

A reaction was also carried out using dimethyl formamide alone, to determine whether the lithium chloride participated in the previous reaction. The reaction conversion was significantly lower than in the previous reaction, suggesting that the
lithium chloride does have a role in the dehydrochlorination process. The chloride ion may be acting not only as a base, but also as a nucleophile helping to displace chloride ion from the substrate in the transition state (77).

The lithium cation may also co-ordinate to the chlorine leaving group, aiding the loss of chloride ion ${ }^{140}$.

Structure determination of x-(1, 1,2,3,3,3-hexafluoropropyl)cyclohex-1-ene $x=1,2,3$ (76)
A broad band proton decoupled ${ }^{13} \mathrm{C}$ NMR was run on compounds (76) and although it was complex, four major singlets were observed between $124-128 \mathrm{ppm}$ corresponding to vinylic carbons in the cyclohexane ring, suggesting that compounds (76a) and (76b) were the major isomers.

(76a)

(76b)

(76c)

Two small triplets, at 129.8 and 131.7 ppm , were also observed indicating that isomer (76c) was also produced, but only as a minor product. This was confirmed by a ${ }^{1} \mathrm{H}$ NMR of (76) which identified a small multiplet at 6.23 ppm corresponding to the vinylic proton of ($\mathbf{7 6} \mathbf{c}$). A large multiplet at 5.71 ppm was also observed and presumably resulted from the vinylic protons of both contained (76a) and (76b).

5.42 x -(1,1,2,3.3,3-Hexafluoropropyl)cyclopentyl chloride $\mathrm{x}=2,3$ (75)

Having successfully dehydrochlorinated the cyclohexyl system, the lithium chloride/DMF procedure was applied to the cyclopentyl derivative (75) and again good conversion was achieved to give isomers of $\mathrm{x}-(1,1,2,3,3,3-$ hexafluoropropyl)cyclopentene $\mathrm{x}=2,3$ (78).

i. 1:1.5 LiCl, DMF, $150^{\circ} \mathrm{C}, 20 \mathrm{hrs}$

Distillation of the reaction mixture gave a pure sample of compounds (78), but the individual isomers were inseparable. A ${ }^{1} \mathrm{H}$ NMR of compounds (78) identified three vinylic proton resonances, indicating that compound (78a) was the major isomer. The smallest multiplet, at 6.56 ppm , was attributed to the vinylic proton of (78c) due to the increased deshielding of neighbouring fluoroalkyl group. Another small multiplet, at 6.13 ppm was assigned to vinylic proton of ($\mathbf{7 8 b}$) nearest the fluoroalkyl group, for similar reasons and the final, large multiplet, at 5.60 ppm , was assigned to the remaining vinylic proton of (78b) and the two vinylic protons of (78a)

Although the introduction of unsaturation into the cyclopentyl system was successful, the chlorination reaction showed little selectivity and this was reflected in the mixture of unsaturated products (78).

5.51 Z-Pentafluoroprop-2-enylcylohexane (43)

Dmowski showed that the pentafluoropropenyl derivative of tetrahydrofuran readily underwent nucleophilic attack at its double bond, by alkoxide ions ${ }^{106}$. A comparative reaction was performed with z-pentafluoroprop-2-enylcylohexane (43).

i. $1: 2 \mathrm{NaOEt}, \mathrm{EtOH}, 80^{\circ} \mathrm{C}, 138 \mathrm{hrs}$

The disappearance of the vinylic fluorine, at -131.4 ppm , in the starting material was monitored by ${ }^{19} \mathrm{~F}$ NMR, and after five and a half days the reaction was terminated. A ${ }^{1} \mathrm{H}$ NMR of the product mixture confirmed the incorporation of the vinylic ethoxysubstituents with multiplets at $4.13 \& 3.84 \mathrm{ppm}$ corresponding to the CH_{2} groups and triplets at $1.29 \& 1.26 \mathrm{ppm}$ assigned to the CH_{3} groups of both the Z - and E - isomers of the vinylic ether (44). The ${ }^{19} \mathrm{~F}$ NMR spectrum of the products also identified a small amount of the addition product 1-ethoxy-2,2,3,3,3-pentafluoroprop-2-enylcylohexane (79), but this was not isolated. Distillation of the product mixture gave the Z- and Eisomers of 1-ethoxy-2,3,3,3-tetrafluoroprop-2-enylcylohexane (44) in a $3.5: 1$ ratio (by ${ }^{19}$ F NMR), which could not be separated.

${ }^{19} \mathrm{~F}$ nmr ratio

1

In comparison with pentafluoro-2-propenyltetrahydrofuran (42), which achieved almost complete conversion after three hours at $60^{\circ} \mathrm{C}^{106}$, the cyclohexane derivative (44) reacted at a much slower rate. This is presumably due to cyclic substituents on the double bond. The oxygen of the tetrahydrofuranyl substituent inductively withdraws electron density from the double bond, increasing its electrophilicity, whereas the cyclohexyl substituent releases electron density to it, making it less electrophilic and therefore less susceptible to nucleophilic attack.

5.52 trans-1.4-Bis(Z-pentafluoro-2-propenyl)cyclohexane (46)

Nucleophilic attack, using ethoxide ion was also attempted on trans-1,4(z-pentafluoro-2-propenyl)cyclohexane (46).

i. $1: 4 \mathrm{NaOEt}, \mathrm{EtOH}, 80^{\circ} \mathrm{C}, 72 \mathrm{hrs}$

After three days, a ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction mixture confirmed that all the starting material had reacted and the major product was identified as trans-1,4(z-1-ethoxy-2,3,3,3-tetrafluoroprop-2-enyl)cyclohexane (80) which was isolated by adding methanol to the liquid product and cooling to $-78^{\circ} \mathrm{C}$, at which point it crystallised out as a white solid. The ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction mixture indicated that the other major product was trans-1-(z-1-ethoxy-2,3,3,3-tetrafluoroprop-2-enyl)-4-(z-pentafluoro-2-propenyl)cyclohexane (81) (35\%), but this was not isolated.

(81)

The increased reactivity of the cyclohexyl di-ene over the mono-ene is most likely due to the decreased electron withdrawing ability of the cyclohexyl substituent due to the electron withdrawing effect of the extra fluoroalkenyl group.

5.6 Conclusions

Attempts to add cyclohexyl chloride to HFP were unsuccessful, but chlorination of the HFP adducts was possible. The low yields from chlorination may be improved, but the reactions were performed using an excess of the adduct in order to only achieve mono-chlorination. Unfortunately, the low selectivity of the chlorine radical, coupled with the increased number of chiral centres in the chlorinated products, produced a large number of isomers of the chloro-derivative and it was not possible to identify the sites of chlorination unambiguously.

Dehydrochlorination of the chloro-derivatives failed using conventional bases, such as triethylamine, but the weak base lithium chloride in aprotic solvent, selectively dehydrochlorinated the system without any dehydrofluorination occurring. Unfortunately, several inseparable unsaturated products were produced, which reflected the low selectivity of the chlorination reactions.

Z-Pentafluoroprop-2-enylcyclohexane reacted at a slower rate with ethoxide, than the corresponding tetrahydrofuranyl derivative, presumably because of the reduced electrophilicity of its double bond. However the double bonds of the 1,4-di-ene seemed to be more electrophlic as a consequence of the extra fluoroalkenyl group.

Instrumentation

Distillation

Fractional distillation of lower boiling product mixtures (up to $150^{\circ} \mathrm{C} / 1 \mathrm{mmHg}$) was carried out using a Fischer Spahltroh MMS255 small concentric tube apparatus. Higher boiling materials were distilled using a Buchi kugelrohr GKR-51 apparatus. Boiling points were recorded during the distillation or using the Siwoloboff method.

Elemental Analysis

Carbon, hydrogen, and nitrogen elemental analyses were obtained using a PerkinElmer 240 Elemental Analyser or a Carlo Erba Strumentazione 1106 Elemental Analyser.

GLC Analysis

Gas liquid Chromatography (GLC) analysis was carried out using a Hewlett Packard 5890A gas liquid chromatograph equipped with a 25 m cross-linked methyl silicone capillary column. Preparative GLC was performed on a Varian Aerograph Model 920 (catharometer detector) gas liquid chromatograph with packed columns, which was mainly a $3 \mathrm{~m} 10 \%$ SE 30 .

IR Spectra

IR spectra were recorded on a Perkin-Elmer 457 or 577 Grating spectrophotometer using conventional techniques.

Mass spectra

Mass spectra of solid samples were recorded on a VG 7070E spectrometer. GLC mass spectra were recorded on the VG 7070E spectrometer linked to a Hewlett Packard 5790A gas chromatograph fitted with a 25 m cross-linked methyl silicone capillary column.

NMR spectra

${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker AC250 (250.13 MHz), a Varian VXR400S (399.952 MHz) and a Bruker AMX500 (500.14 MHz) NMR spectrometer.
${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian VXR400S (100.582 MHz) and a Bruker AMX500 (125.77 MHz) NMR spectrometer.

19F NMR spectra were recorded on a Bruker AC250 (235.34 MHz), a Varian VXR400S (376.29 MHz) and a Bruker AMX500 (470.54 MHz) NMR spectrometer.

Melting Points

Melting points were carried out at atmospheric pressure and are unconnected.

Reagents and Solvent

Unless otherwise stated, reagents were used as supplied. Solvents were dried by standard methods and stored over a molecular sieve (type 4A).

Chapter Six

Experimental to Chapter Two

6.11γ-ray initiated reactions

Any liquid or solid reagents and solvent, if used, were introduced into a Pyrex Carius tube (volume ca. 60 ml). The tube was then degassed three times, by freezethawing. Any gaseous reagents, including HFP, were also carefully degassed, separately, and then transferred into the cooled (liquid air) Carius tube using standard vacuum line techniques. The tube was sealed in vacuo, while frozen (liquid air), placed inside a metal sleeve and then allowed to reach room temperature within a fumehood. The tube was then taken to the ${ }^{60} \mathrm{Co}$ source and irradiated ($55 \mathrm{Krad} \mathrm{hr}^{-1}$) 10 cm from the source at room temperature. On termination of the reaction the tube was cooled (liquid air) and opened. Any remaining HFP was recovered as it returned to room temperature and the products were poured out.

6.12 Peroxide initiated reactions

The reactions were carried out in either $150 \mathrm{ml}, 250 \mathrm{ml}$, or 1 litre nickel autoclaves, fitted with bursting discs (maximum working pressure ca. 200 bar). The autoclave was charged with any solid or liquid and solvent and then sealed using a copper gasket. The system was degassed three times by freeze-thawing and then any gasses, degassed separately, were transferred into the liquid air cooled autoclave, using standard vacuum line techniques. The autoclave valve was closed and then transferred, in a Dewar flask of liquid air, to a purpose built high pressure cell where it was allowed to warm and then heated in a thermostatically controlled, rocking furnace for 24 hrs at $140^{\circ} \mathrm{C}$. On completion the autoclave was cooled (liquid air), and any remaining HFP was recovered as it returned to room temperature and the products were poured out.

6.2 Free-Radical Additions of Alkanes to Hexafluoropropene

6.21 Propane

i. γ-ray initiation

A Carius tube was charged with propane $(2.2 \mathrm{~g}, 50 \mathrm{mmol})$ and HFP $(7.6 \mathrm{~g}, 51$ mmol) and then irradiated for 4 days with γ-rays (6 Mrads) at room temperature. The tube was opened and gaseous components $(8.7 \mathrm{~g})$ were recovered. A colourless liquid was removed and fractional distillation of it $\left(81-82^{\circ} \mathrm{C}\right)$ gave 4-methyl-1,1,1,2,3,3hexafluoropentane (28) ($0.8 \mathrm{~g}, 8 \%$); (Found: C, 37.4; H, 4.2. $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~F}_{6}$ calculated: $\mathrm{C}, 37.1$; H, 4.1\%); IR, MS and NMR data agreed with work done previously in this laboratory ${ }^{90}$; IR. number 1; Mass spectrum 1; NMR number 1.

ii. γ-ray initiation

A Carius tube was charged with propane $(2.3 \mathrm{~g}, 52 \mathrm{mmol})$ and HFP $(9.0 \mathrm{~g}, 60$ mmol) and then irradiated for 8 days with γ-rays (12 Mrads) at room temperature. The tube was opened and gaseous components $(9.0 \mathrm{~g})$ were recovered. A colourless liquid was removed and fractional distillation of it $\left(81-82^{\circ} \mathrm{C}\right)$ gave a mixture of mono-adducts ($2.0 \mathrm{~g}, 20 \%$) which could not be separated, but were identified as 4 -methyl-1, $1,1,2,3,3-$ hexafluoropentane (28) (19\%) and 1,1,1,2,3,3-hexafluorohexane (29) (1\%). MS and NMR data agreed with work done previously in this laboratory ${ }^{90}$; Mass spectrum 2; NMR number 2.

iii. DTBP initiation

An autoclave (150 ml) was charged with propane $(2.4 \mathrm{~g}, 55 \mathrm{mmol})$, HFP $(12.7 \mathrm{~g}$, $82 \mathrm{mmol})$ and DTBP $(0.6 \mathrm{~g}, 4 \mathrm{mmol})$ and then rocked at $140^{\circ} \mathrm{C}$ for 24 hrs . The autoclave was opened and gaseous products $(6.3 \mathrm{~g})$ were recovered. A pale yellow liquid was removed and fractional distillation of it $\left(81-82^{\circ} \mathrm{C}\right)$ gave a mixture of inseparable monoadducts ($8.3 \mathrm{~g}, 78 \%$), 4-methyl-1,1,1,2,3,3-hexafluoropentane (28) (75\%) and 1,1,1,2,3,3-hexafluorohexane (29) (3\%).

6.22 2-Methylpropane

i. γ-ray initiation

A Carius tube was charged with 2-methylpropane ($3.5 \mathrm{~g}, 60 \mathrm{mmol}$) and HFP ($8.9 \mathrm{~g}, 60 \mathrm{mmol}$) and then irradiated with γ-rays for 5 days (7.5 Mrads) at room temperature. The tube was opened and gaseous components (10.2 g) were recovered. A colourless liquid was produced and fractional distillation of it $\left(103-104^{\circ} \mathrm{C}\right)$ gave 4,4-dimethyl-1,1,1,2,3,3-hexafluoropentane (30) (2.1g, 17\%); (Found: C, 40.5; H, 4.9. $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~F}_{6}$ calculated: C, $40.4 ; \mathrm{H}, 4.8 \%$); IR, MS and NMR data agreed with work done previously in this laboratory ${ }^{90}$; IR. number 2; Mass spectrum 3; NMR number 3.

ii. DTBP initiation

An autoclave (150 ml) was charged with 2-methylpropane ($2.5 \mathrm{~g}, 43 \mathrm{mmol}$), HFP ($8.18 \mathrm{~g}, 55 \mathrm{mmol}$) and DTBP ($0.60 \mathrm{~g}, 4 \mathrm{mmol}$). The autoclave was opened and gaseous products $(3.4 \mathrm{~g})$ were recovered. A pale yellow liquid was removed and fractional distillation of it $\left(103-104^{\circ} \mathrm{C}\right)$ gave a mixture of inseparable mono-adducts $(7.4 \mathrm{~g}, 83 \%)$, 4,4-dimethyl-1,1,1,2,3,3-hexafluoropentane (30) (80\%) and 1.1.1.2,3,3-hexafluoro-5methylhexane (31) (3\%); Mass spectrum 4; NMR number 4.

6.3 Free-Radical Additions of Monocyclic hydrocarbons to Hexafluoropropene

6.31 Cyclopropane

i. γ-ray initiation

A Carius tube was charged with cyclopropane $(2.5 \mathrm{~g}, 62 \mathrm{mmol})$ and HFP $(9.7 \mathrm{~g}$, 62 mmol) and then irradiated for 12 days with γ-rays (18 Mrads) at room temperature. The tube was opened and only gaseous components (11.9 g) were recovered, which were identified as starting materials by GLC/MS.
ii. DTBP initiation

An autoclave (150 ml) was charged with cyclopropane ($2.3 \mathrm{~g}, 54 \mathrm{mmol}$), HFP $(8.8 \mathrm{~g}, 58 \mathrm{mmol})$ and $\operatorname{DTBP}(0.7 \mathrm{~g}, 5 \mathrm{mmol})$ and then rocked at $140^{\circ} \mathrm{C}$ for 24 hrs . The autoclave was opened and gaseous components $(8.5 \mathrm{~g})$ were recovered. A pale yellow
liquid (2.3 g) was removed, but analysis by GLC/MS gave a complex mixture of products including a smail component identified as 1,1,2,3,3,3hexafluoropropylcyclopropane (32) (M^{+}peak at 192; Mass spectrum 5).

6.32 Cyclopentane

i. γ-ray initiation

A Carius tube was charged with cyclopentane $(7.1 \mathrm{~g}, 0.1 \mathrm{~mol})$ and HFP $(23.6 \mathrm{~g}$, 0.16 mol) and then irradiated with γ-rays for 5 days (7.5 Mrads) at room temperature. The tube was opened and HFP (15.4 g) was recovered and a colourless liquid obtained. Cyclopentane (3.2 g) was removed by distillation, further fractional distillation gave two fractions, boiling at $134-135^{\circ} \mathrm{C}$ and $80-81^{\circ} \mathrm{C} / 15 \mathrm{~mm} \mathrm{Hg}$. The first fraction was identified as $1,1,2,3,3,3$-hexafluoropropylcyclopentane (25) (10.3g, 86\%), (Found: C, 43.5; H, 4.6. $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~F}_{6}$ calculated: $\mathrm{C}, 43.6 ; \mathrm{H}, 4.6 \%$); IR, MS and NMR data agreed with work done previously in this laboratory ${ }^{90}$; IR spectrum 3, Mass spectrum 6, NMR number 5 ; and the second fraction was identified as a mixture of isomers of $1, x$-bis- $(1,1,2,3,3,3-$ hexafluoropropyl)cyclopentane ($\mathrm{x}=2,3$) (26) (1.9g, 9\%) (Found: C, 36.0; H, 2.9. $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~F}_{12}$ calculated: $\mathrm{C}, 35.7 ; \mathrm{H}, 2.7 \%$); IR, MS and NMR data agreed with work done previously in this laboratory ${ }^{90}$; IR. number 4, Mass spectrum 7, NMR number 6.

ii. DTBP initiation

An autoclave $(250 \mathrm{ml})$ was charged with cyclopentane ($10.5 \mathrm{~g}, 0.15 \mathrm{~mol}$), HFP $(36.3 \mathrm{~g}, 0.24 \mathrm{~mol})$ and $\operatorname{DTBP}(0.75 \mathrm{~g}, 5 \mathrm{mmol})$ and then rocked at $140^{\circ} \mathrm{C}$ for 24 hrs . The autoclave was opened and HFP $(5.3 \mathrm{~g})$ was recovered and a pale brown liquid obtained. Cyclopentane (0.4 g) was removed by distillation, further fractional distillation gave two fractions, boiling at $134-135^{\circ} \mathrm{C}$ and $80-81^{\circ} \mathrm{C} / 15 \mathrm{~mm} \mathrm{Hg}$. The first fraction was identified as $1,1,2,3,3,3$-hexafluoropropylcyclopentane (25) (15.5g, 49\%) and the second fraction was identified as $1, x$-bis(1,1,2,3,3,3-hexafluoropropyl)cyclopentane ($\mathrm{x}=2,3$) (26) (20.2g, 38\%).
iii. DTBP initiation

An autoclave $(150 \mathrm{ml})$ was charged with cyclopentane $(7.0 \mathrm{~g}, 0.1 \mathrm{~mol})$, HFP $(29.5 \mathrm{~g}, 0.2 \mathrm{~mol})$ and $\operatorname{DTBP}(0.6 \mathrm{~g}, 4 \mathrm{mmol})$ and then rocked at $140^{\circ} \mathrm{C}$ for 24 hrs . The autoclave was opened and HFP $(15.0 \mathrm{~g})$ was recovered and a pale brown liquid obtained. Fractional distillation of the liquid gave two fractions, boiling at $134-135^{\circ} \mathrm{C}$ and $80-$ $81^{\circ} \mathrm{C} / 15 \mathrm{~mm}$ Hg. The first fraction was identified as $1,1,2,3,3,3-$ hexafluoropropylcyclopentane (25) $(12.5 \mathrm{~g}, 57 \%)$ and the second fraction was identified as $1, x$-bis $(1,1,2,3,3,3$-hexafluoropropyl)cyclopentane ($\mathrm{x}=2,3$) (26) (8.3g, 22\%).

6.33 Cyclohexane

i. γ-ray initiation

A Carius tube was charged with cyclohexane $(8.4 \mathrm{~g}, 0.1 \mathrm{~mol})$ and HFP $(22.9 \mathrm{~g}$, 0.15 mol) and then irradiated with γ-rays for 5 days (7.5 Mrads). The tube was opened and HFP (10.9 g) was recovered and a colourless liquid obtained. Cyclohexane (1.8 g) was removed by distillation, further fractional distillation gave two fractions, boiling at $154-155^{\circ} \mathrm{C}$ and $105-106^{\circ} \mathrm{C} / 15 \mathrm{mmHg}$. The first fraction was identified as $1,1,2,3,3,3-$ hexafluoropropylcyclohexane (24) (16.6 g , 90%), (Found: C, 46.4; H, 5.5. $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~F}_{6}$ calculated: C, 46.2; H, 5.2\%); IR, MS and NMR data agreed with literature ${ }^{99}$, IR. number 5 , Mass spectrum 8 , NMR number 7 ; and the second fraction was identified as a mixture of isomers of $1, x-\operatorname{bis}(1,1,2,3,3,3$-hexafluoropropyl)cyclohexane $(x=2-4)(27)$ ($1.2 \mathrm{~g}, 4 \%$) (Found: $\mathrm{C}, 37.6 ; \mathrm{H}, 3.3 . \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~F}_{12}$ calculated: $\mathrm{C}, 37.5 ; \mathrm{H}, 3.2 \%$); IR, MS and NMR data agreed with work done previously in this laboratory ${ }^{90}$, IR. number 6 , Mass spectrum 9, NMR number 8.

ii. DTBP initiation

An autoclave (250 ml) was charged with cyclohexane ($8.3 \mathrm{~g}, 0.1 \mathrm{~mol}$), HFP $(30.0 \mathrm{~g}, 0.2 \mathrm{~mol})$ and $\operatorname{DTBP}(0.6 \mathrm{~g}, 4 \mathrm{mmol})$ and then rocked at $140^{\circ} \mathrm{C}$ for 24 hrs . The autoclave was opened and HFP (7.4 g) was recovered and a yellow liquid obtained. Cyclohexane $(0.7 \mathrm{~g})$ was removed by distillation, further fractional distillation of the liquid gave two fractions, boiling at $154-155^{\circ} \mathrm{C}$ and $105-106^{\circ} \mathrm{C} / 15 \mathrm{mmHg}$. The first
fraction was identified as $1,1,2,3,3,3$-hexafluoropropylcyclohexane (24) $(9.0 \mathrm{~g}, 39 \%)$, and the second fraction was identified as mixture of isomers of $1, \mathrm{x}$-bis $(1,1,2,3,3,3-$ hexafluoropropyl)cyclohexane ($\mathrm{x}=2-4$) (27) (20.1g, 53\%), from which, 2R,2'S-trans-1.4-bis(1,1,2,3,3,3-hexafluoropropyl)cyclohexane (27a) m.p. $80-81^{\circ} \mathrm{C}$, (Found: C, 37.3; H, 3.0. $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~F}_{12}$ requires: $\mathrm{C}, 37.5$; $\mathrm{H}, 3.1 \%$); IR. number 7, Mass spectrum 10, NMR number 9; crystallised out on standing.

iii. DTBP initiation, 1 litre autoclave

An autoclave (1 litre) was charged with cyclohexane ($454 \mathrm{~g}, 5.4 \mathrm{~mol}$) and DTBP $(20.5 \mathrm{~g}, 0.14 \mathrm{~mol})$. The autoclave was degassed three times by compressing with nitrogen which was then removed. The autoclave was heated to $140^{\circ} \mathrm{C}$ whilst being stirred and HFP ($405 \mathrm{~g}, 2.7 \mathrm{~mol}$) added to the mixture, through a one-way valve over a period of 6 hours. The autoclave was allowed to cool to room temperature and then was pressurised with nitrogen, which was then removed and then opened. A yellow oil (856 g) was recovered and distillation of it gave cyclohexane (225 g), 1, 1,2,3,3,3hexafluoropropylcyclohexane (24) (537g, 85\%) and 1,x-bis(1,1,2,3,3,3hexafluoropropyl)cyclohexane $(\mathrm{x}=2-4)(27)(62.2 \mathrm{~g}, 6 \%)$ (mixture of isomers).

6.4 Free-Radical Additions of Bicyclic alkanes to Hexafluoropropene

6.41 Cis-decalin

i. γ-ray initiation

A Carius tube was charged with cis-decalin ($6.9 \mathrm{~g}, 0.05 \mathrm{~mol}$) , HFP ($15.3 \mathrm{~g}, 0.1$ mol) and dry acetone (8 ml) and irradiated with γ-rays at room temperature for 5 days (7.5 Mrads). Nearly all of the HFP (14.5 g) was recovered. The colourless liquid product mixture (7.6 g) was analysed by GLC/MS and ${ }^{19} \mathrm{~F}$ NMR which identified traces of x -(1,1,2,3,3,3-hexafluoropropyl)cis-decalin ($\mathrm{x}=1,2,9$) (33) (ca. 5% by gc.), but no further workup was performed.
ii. $D T B P, 140^{\circ} \mathrm{C}$

An autoclave (150 ml) was charged with cis-decalin ($13.8 \mathrm{~g}, 0.1 \mathrm{~mol}$), HFP (29.1 g , 0.2 mol) and DTBP ($0.6 \mathrm{~g}, 4 \mathrm{mmol}$) and then rocked at $140^{\circ} \mathrm{C}$ for 24 hours. The autoclave was opened and HFP (19.8 g) was recovered and a yellow liquid $(23.3 \mathrm{~g}$) obtained. Cis-decalin $(8.4 \mathrm{~g})$ was removed by distillation, further fractional distillation of the liquid gave two fractions, boiling at $120-121^{\circ} \mathrm{C} / 20 \mathrm{mmHg}$ and $152-153^{\circ} \mathrm{C} / 20 \mathrm{mmHg}$. The first fraction was identified as a mixture of isomers of $x-(1,1,2,3,3,3-$ hexafluoropropyl)cis-decalin ($\mathrm{x}=1.2 .9$) (33) (6.3g, 56%), (Found: C, 54.2; H, 6.1. $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~F}_{6}$ requires: $\mathrm{C}, 54.2 ; \mathrm{H}, 6.3 \%$); IR spectrum 8 , Mass spectrum 11 , NMR number 10; and the second fraction was identified as mixture of isomers of x.y-bis(1,1,2,3,3,3-hexafluoropropyl)decalin ($x=1, y=2-10 ; x=2 . y=3-10$) (34) $(5.6 \mathrm{~g}, 33 \%)$, (Found: $\mathrm{C}, 43.6 ; \mathrm{H}, 4.0 . \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~F}_{12}$ requires: $\mathrm{C}, 43.8 ; \mathrm{H}, 4.1 \%$); IR spectrum 9, Mass spectrum 12, NMR number 11.
iii. $D T B P, 140^{\circ} \mathrm{C}$, acetone

An autoclave $(150 \mathrm{ml})$ was charged with cis-decalin $(7.0 \mathrm{~g}, 0.05 \mathrm{~mol})$, HFP $(16.2 \mathrm{~g}$, $0.11 \mathrm{~mol})$, $\operatorname{DTBP}(0.6 \mathrm{~g}, 4 \mathrm{mmol})$ and dry acetone $(8 \mathrm{ml})$ and then rocked at $140^{\circ} \mathrm{C}$ for 24 hours. The autoclave was opened and HFP $(10.7 \mathrm{~g})$ was recovered and a yellow liquid $(12.3 \mathrm{~g})$ obtained. Cis-decalin $(3.9 \mathrm{~g})$ was removed by distillation, further fractional distillation of the liquid gave two fractions, boiling at $120-121^{\circ} \mathrm{C} / 20 \mathrm{mmHg}$ and $152-$ $153^{\circ} \mathrm{C} / 20 \mathrm{mmHg}$, the first consisted of $\mathrm{x}-(1,1,2,3,3,3$-hexafluoropropyl)cis-decalin $(x=1,2,9)(33)(3.1 \mathrm{~g}, 49 \%)$ and the second consisted of x, y-bis $(1,1,2,3,3,3-$ hexafluoropropyl)cis-decalin ($\mathrm{x}=1, \mathrm{y}=2-10 ; \mathrm{x}=2, \mathrm{y}=3-10$) (34) (4.3g, 45\%).
6.42 Trans-decalin

A Carius tube was charged with trans-decalin ($6.9 \mathrm{~g}, 0.05 \mathrm{~mol}$), HFP ($15.5 \mathrm{~g}, 0.1$ mol) and dry acetone (8 ml) and then irradiated with γ-rays at room temperature for 5 days (7.5 Mrads). Nearly all of the HFP. (14.7g) was recovered. The liquid product mixture (7.5 g) was analysed by GLC/MS and ${ }^{19} \mathrm{~F}$ NMR which identified traces of x -(1,1,2,3,3,3-hexafluoropropyl)decalin ($\mathrm{x}=1,2$) (35) (ca. 5% by GLC) and no further workup was performed.

ii. DTBP initiation

An autoclave (250 ml) was charged with trans-decalin ($13.9 \mathrm{~g}, 0.1 \mathrm{~mol}$), HFP $(23.1 \mathrm{~g}, 0.15 \mathrm{~mol})$, DTBP $(0.8 \mathrm{~g}, 5.5 \mathrm{mmol})$ and dry acetone $(2 \mathrm{~g})$ and then rocked at $140^{\circ} \mathrm{C}$ for 24 hours. The autoclave was opened and HFP (4.1g) was recovered and a yellow liquid $(33.3 \mathrm{~g})$ obtained. Acetone and trans-decalin (2.9 g) were removed by distillation, further fractional distillation of the liquid gave two fractions, boiling at 95$97^{\circ} \mathrm{C} / 6 \mathrm{mmHg}$ and $130-135^{\circ} \mathrm{C} / 6 \mathrm{mmHg}$. The first fraction was identified as a mixture of isomers of x-(1,1,2,3,3,3-hexafluoropropyl)decalin ($x=1.2$) (35) (11.5g, 51\%), (Found: C, 54.2; $\mathrm{H}, 6.1 . \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~F}_{6}$ requires: $\mathrm{C}, 54.2 ; \mathrm{H}, 6.3 \%$); IR spectrum 10 , Mass spectrum 13 , NMR number 12; and the second fraction was identified as a mixture of isomers of $\underline{x}, \mathrm{y}$-bis (1, 1, 2,3,3,3-hexafluoropropyl) trans-decalin ($\mathrm{x}=1, \mathrm{y}=2-10 ; \mathrm{x}=2, \mathrm{y}=3$-10) (36) ($9.5 \mathrm{~g}, 27 \%$), (Found: $\mathrm{C}, 43.6 ; \mathrm{H}, 4.0 . \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~F}_{12}$ requires: $\mathrm{C} ; 43.8 ; \mathrm{H}, 4.1 \%$); IR spectrum 11, NMR number 13, Mass spectrum 14.

6.33 Norbornane

i. γ-ray initiation

A Carius tube was charged with norbornane ($7.2 \mathrm{~g}, 75 \mathrm{mmol}$), $\mathrm{HFP}(15.7 \mathrm{~g}, 0.1$ $\mathrm{mol})$ and dry acetone $(8 \mathrm{ml})$ and then irradiated with γ-rays at room temperature for five days (7.5 Mrads). The tube was opened and HFP (5.5g) was recovered and a colourless liquid (17.1g) obtained. Fractional distillation of the liquid gave two fractions, boiling at
$80^{\circ} \mathrm{C} / 20 \mathrm{mmHg}$ and $120^{\circ} \mathrm{C} / 20 \mathrm{mmHg}$. The first fraction was identified as two diastereomers of exo-2-(1,1,2,3,3,3-hexafluoropropyl)norbornane (37) (13.9g, 80\%), (Found: $\mathrm{C}, 48.8 ; \mathrm{H}, 4.8 . \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~F}_{6}$ requires: $\mathrm{C}, 48.8 ; \mathrm{H}, 4.9 \%$); IR spectrum 12 , Mass spectrum 15, NMR number 14 ; and the second fraction was identified as a mixture of isomers of $2, x$-bis (1,1,2,3,3,3-hexafluoropropyl)norbornane $(x=5,6)(38)(1.0 \mathrm{~g}, 6 \%)$, (Found: C, 39.4; $\mathrm{H}, 3.0 . \mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~F}_{12}$ requires: $\mathrm{C}, 39.4 ; \mathrm{H}, 3.1 \%$); IR spectrum 13, Mass spectrum 16, NMR number 15.

ii. DTBP initiation

An autoclave (150 ml) was charged with norbornane $(6.05 \mathrm{~g}, 60 \mathrm{mmol})$, HFP $(14.3 \mathrm{~g}, 90 \mathrm{mmol})$ and DTBP $(0.6 \mathrm{~g}, 4 \mathrm{mmol})$ and then rocked for 24 hours at $140^{\circ} \mathrm{C}$. The autoclave was opened, no HFP was recovered and a pale yellow liquid (19.5 g) was obtained. Fractional distillation of the liquid gave two fractions, boiling at $80^{\circ} \mathrm{C} / 20$ mmHg and $120^{\circ} \mathrm{C} / 20 \mathrm{mmHg}$, the first consisted of exo-2-(1,1,2,3,3,3hexafluoropropyl)norbornane (37) (7.1g, 33\%) and the second consisted of $2, \mathrm{x}$ -bis(1,1,2,3,3,3-hexafluoropropyl)norbornane ($\mathrm{x}=5,6$) (38) (9.5g, 27\%).

6.5 Free-Radical Additions of Polycyclic Hydrocarbons to Hexafluoropropene

6.5.1 Adamantane

i. DTBP initiation

An autoclave (150 ml) was charged with adamantane $(2.7 \mathrm{~g}, 40 \mathrm{mmol})$, HFP (4.5 g , $60 \mathrm{mmol})$ and DTBP $(0.5 \mathrm{~g}, 4 \mathrm{mmol})$ and then rocked for 24 hours at $140^{\circ} \mathrm{C}$. No HFP was recovered and adamantane $(0.14 \mathrm{~g})$ crystallised of the liquid product. Fractional distillation gave three fractions, boiling at $99-101^{\circ} \mathrm{C} / 9 \mathrm{mmHg}, 124-126^{\circ} \mathrm{C} / 9 \mathrm{mmHg}$ and $143-145^{\circ} \mathrm{C} / 9 \mathrm{mmHg}$. The first fraction was identified as $1-(1,1,2,3,3,3-$ hexafluoropropyl)adamantane (22) ($0.7 \mathrm{~g}, 15 \%$), (Found: $\mathrm{C}, 54.4 ; \mathrm{H}, 5.5 . \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~F}_{6}$ calculated: C, $54.5 ; \mathrm{H}, 5.6 \%$); MS and NMR data agreed with literature data ${ }^{97}$, IR
spectrum 14, Mass spectrum 17, NMR number 16; the second fraction was identified as 1,3 -bis(1,1,2,3,3,3-hexafluoropropyl)adamantane (23) (4.2g, 63\%), (Found: C, 43.7; $\mathrm{H}, 3.8 . \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~F}_{12}$ calculated: $\mathrm{C}, 44.0 ; \mathrm{H}, 3.7 \%$); MS and NMR data agreed with literature data ${ }^{98}$, IR spectrum 15, Mass spectrum 18, NMR number 17; and the third fraction was identified as $1,3,5$-tris(1,1,2,3,3,3-hexafluoropropyl)adamantane (39) (1.2g, 13\%), (Found: C, 39.1; H, 2.5. $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~F}_{18}$ calculated: $\mathrm{C}, 38.9 ; \mathrm{H}, 2.7 \%$); MS and NMR data agreed with literature data ${ }^{98}$, IR spectrum 16, Mass spectrum 19, NMR number 18.

ii. DTBP initiation

An autoclave $(250 \mathrm{ml})$ was charged with adamantane $(13.8 \mathrm{~g}, 0.1 \mathrm{~mol})$, HFP $(17.6 \mathrm{~g}, 0.12 \mathrm{~mol})$ and $\operatorname{DTBP}(0.7 \mathrm{~g}, 5 \mathrm{mmol})$ and then rocked for 24 hours at $140^{\circ} \mathrm{C}$. No HFP was recovered and adamantane (1.1 g) crystallised of the liquid product $(28.0 \mathrm{~g})$. Fractional distillation gave two fractions, boiling at $99-101^{\circ} \mathrm{C} / 9 \mathrm{mmHg}$ and $124-126^{\circ} \mathrm{C} / 9$ mmHg , which consisted of 1 -(1,1,2,3,3,3-hexafluoropropyl)adamantane (22) (16.3g, 60%) and 1,3 -bis(1,1,2,3,3,3-hexafluoropropyl)adamantane (23) (7.9g, 19\%) respectively.

iii. DTBP initiation

An autoclave $(250 \mathrm{ml})$ was charged with adamantane ($12.0 \mathrm{~g}, 0.09 \mathrm{~mol}$), HFP ($23.1 \mathrm{~g}, 0.15 \mathrm{~mol}$) and DTBP $(0.7 \mathrm{~g}, 5 \mathrm{mmol})$ and then rocked for 24 hours at $140^{\circ} \mathrm{C}$. No HFP or adamantane were recovered and distillation of the liquid product $(34.2 \mathrm{~g})$ gave two fractions, boiling at $99-101^{\circ} \mathrm{C} / 9 \mathrm{mmHg}$ and $124-126^{\circ} \mathrm{C} / 9 \mathrm{mmHg}$, which consisted of 1-(1,1,2,3,3,3-hexafluoropropyl)adamantane (22) (6.3g, 25\%) and 1,3-bis(1,1,2,3,3,3hexafluoropropyl)adamantane (23) ($24.2 \mathrm{~g}, 63 \%$) respectively.

iv. DTBP initiation

An autoclave (250 ml) was charged with adamantane $(6.8 \mathrm{~g}, 0.05 \mathrm{~mol})$, HFP. ($23.5 \mathrm{~g}, 0.15 \mathrm{~mol}$) and DTBP $(0.7 \mathrm{~g}, 5 \mathrm{mmol})$ and then rocked for 24 hours at $140^{\circ} \mathrm{C}$. No HFP or adamantane were recovered and distillation of the liquid product $(28.3 \mathrm{~g})$, and
distillation gave two fractions, boiling at $124-126^{\circ} \mathrm{C} / 9 \mathrm{mmHg}$ and $143-145^{\circ} \mathrm{C} / 9 \mathrm{mmHg}$, which consisted of 1,3-bis(1,1,2,3,3,3-hexafluoropropyl)adamantane (23) (1.7g, 8\%) and 1,3,5-tris(1,1,2,3,3,3-hexafluoropropyl)adamantane (39) (24.0g, 82\%) respectively.

v. DTBP initiation

An autoclave (250 ml) was charged with adamantane ($2.7 \mathrm{~g}, 20 \mathrm{mmol}$), HFP. $(20.8 \mathrm{~g}, 140 \mathrm{mmol})$ and DTBP $(0.5 \mathrm{~g}, 4 \mathrm{mmol})$ and then rocked for 24 hours at $140^{\circ} \mathrm{C}$. The autoclave was opened and HFP $(8.9 \mathrm{~g})$ was recovered and a waxy liquid $(12.7 \mathrm{~g})$ obtained. Kugelrohr distillation $\left(175^{\circ} \mathrm{C}, 1 \mathrm{mmHg}\right)$ removed any involatile impurities and then the waxy mixture was then dissolved in chloroform at which point a white solid precipitated out. Removal of the solvent from the liquid layer gave 1,3,5-$\operatorname{tris}(1,1,2,3,3,3$-hexafluoropropyl)adamantane (39) (6.9g, 59\%) and the white solid was identified as $1,3,5,7$-tetrakis($1,1,2,3,3,3$-hexafluoropropyl)adamantane ($\mathbf{4 0}$) ($5.3 \mathrm{~g}, 36 \%$) m.p. $110-112^{\circ} \mathrm{C}$, (Found: $\mathrm{C}, 36.0 ; \mathrm{H}, 2.2 . \mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~F}_{24}$ requires: $\mathrm{C}, 35.9$; $\mathrm{H}, 2.2 \%$); IR spectrum 17, Mass spectrum 20, NMR number 19.

6.6 Competition Reactions

Competition reactions were performed using either DTBP or γ-ray initiation using the usual experimental procedure described previously. A 0.15 molar deficiency of HFP to hydrocarbon was used. The reactions were followed by the disappearance of hydrocarbons from capillary GLC traces (Flame ionisation detector) before and after the reaction, therefore eliminating any differences in detector responses.

6.61 Competition between cis- and trans-decalin

An autoclave (150 ml) was charged with cis-decalin $(6.9 \mathrm{~g}, 50 \mathrm{mmol})$, transdecalin $(6.9 \mathrm{~g}, 50 \mathrm{mmol})$, HFP $(2.3 \mathrm{~g}, 15 \mathrm{mmol})$ and DTBP $(0.3 \mathrm{~g}, 2 \mathrm{mmol})$ and then rocked at $140^{\circ} \mathrm{C}$ for 24 hrs . The autoclave was opened and HFP (0.1 g) was recovered. The GLC traces from before and after the reaction showed the peak integration of cisdecalin decreased from 52.18% to 43.12% and the peak integration of trans-decalin decreased from 47.82% to 43.69%.

6.62 Competition between cyclohexane and cyclopentane

An autoclave (150 ml) was charged with cyclohexane ($4.2 \mathrm{~g}, 50 \mathrm{mmol}$), cyclopentane $(3.5 \mathrm{~g}, 50 \mathrm{mmol}), \operatorname{HFP}(2.4 \mathrm{~g}, 16 \mathrm{mmol})$ and DTBP $(0.3 \mathrm{~g}, 2 \mathrm{mmol})$ and then rocked at $140^{\circ} \mathrm{C}$ for 24 hrs . No HFP was recovered. The Glc. traces showed the peak integration of cyclohexane decreased from 54.76% to 44.54% and the peak integration of cyclopentane decreased from 45.13% to 36.94%.

6.63 Competition between cyclohexane and trans-decalin

An autoclave (150 ml) was charged with cyclohexane ($4.2 \mathrm{~g}, 50 \mathrm{mmol}$), transdecalin $(6.9 \mathrm{~g}, 50 \mathrm{mmol}), \operatorname{HFP}(2.4 \mathrm{~g}, 16 \mathrm{mmol})$ and DTBP $(0.3 \mathrm{~g}, 2 \mathrm{mmol})$ and then rocked at $140^{\circ} \mathrm{C}$ for 24 hrs . No HFP was recovered and the GLC traces showed the peak integration of cyclohexane decreased from 53.41% to 49.75% and the peak integration of trans-decalin decreased from 46.58% to 34.46%.

6.64 Competition between cyclohexane and cyclopentane

A Carius tube was charged with cyclohexane ($8.4 \mathrm{~g}, 0.1 \mathrm{~mol}$) and cyclopentane ($7.0 \mathrm{~g}, 0.1 \mathrm{~mol}$) and HFP ($4.5 \mathrm{~g}, 0.03 \mathrm{~mol}$) and then irradiated with γ-rays at room temperature for four days (6 Mrads). No HFP was recovered and the GLC traces showed the peak integration of cyclohexane decreased from 55.58% to 44.76% and the peak integration of cyclopentane decreased from 44.29% to 38.83%.

6.65 Competition between cyclohexane and trans-decalin

A Carius tube was charged with cyclohexane $(2.5 \mathrm{~g}, 30 \mathrm{mmol})$ and trans-decalin ($4.0 \mathrm{~g}, 30 \mathrm{mmol}$) and HFP $(1.4 \mathrm{~g}, 9 \mathrm{mmol})$ was irradiated with γ-rays at room temperature for four days (6 Mrads). The tube was opened and HFP (0.35 g) was recovered. The GLC traces showed the peak integration of cyclohexane decreased from 46.72% to 41.74% and the peak integration of trans-decalin decreased from 52.82% to 48.46\%.
6.66 Competition between cyclohexane and cis-decalin

A Carius tube was charged with cyclohexane $(2.5 \mathrm{~g}, 30 \mathrm{mmol})$ and cis-decalin ($4.0 \mathrm{~g}, 30 \mathrm{mmol}$) and HFP ($1.3 \mathrm{~g}, 9 \mathrm{mmol}$) and then irradiated with γ-rays at room temperature for eight days (12 Mrads). The tube was opened and HFP (0.94 g) was recovered. The GLC traces showed the peak integration of cyclohexane decreased from 42.99% to 41.14% and the peak integration of cis-decalin decreased from 57.01% to 55.45\%.

6.7 Crude competition reactions

Crude competition reactions were performed using DTBP at $140^{\circ} \mathrm{C}$ and equimolar ratio of each hydrocarbon and HFP, using the same experimental technique as previously outlined. Unfortunately, due to the nature of the reactants, GLC's of the starting materials could not be run and so the GLC ratios of the products included differences in response factors.

6.71 Competition between adamantane and 2-methylpropane

An autoclave $(150 \mathrm{ml})$ was charged with adamantane $(6.8 \mathrm{~g}, 50 \mathrm{mmol}), 2-$ methylpropane ($2.9 \mathrm{~g}, 50 \mathrm{mmol}$), HFP $(7.5 \mathrm{~g}, 50 \mathrm{mmol})$ and DTBP $(0.5 \mathrm{~g}, 3 \mathrm{mmol})$ and then rocked at $140^{\circ} \mathrm{C}$ for 24 hrs . Analysis of the product GLC trace showed the peak integration of 1-(1,1,2,3,3,3-hexafluoropropyl)adamantane (22) 32\%, 1,3-bis(1,1,2,3,3,3-hexafluoropropyl)adamantane (23) 12% and 1,1,2,3,3,3-hexafluoro-4,4dimethylpentane (30) 9\%.

6.72 Competition between propane and 2-methylpropane

An autoclave $(150 \mathrm{ml})$ was charged with propane $(4.4 \mathrm{~g}, 0.1 \mathrm{~mol}), 2-$ methylpropane ($5.8 \mathrm{~g}, 0.1 \mathrm{~mol}$), $\operatorname{HFP}(15.0 \mathrm{~g}, 0.1 \mathrm{~mol})$ and DTBP $(0.6 \mathrm{~g}, 4.1 \mathrm{mmol})$ and then rocked at $140^{\circ} \mathrm{C}$ for 24 hrs . Analysis of the product GLC trace showed the peak integration of 1,1,1,2,3,3-hexafluoro-4-methylpentane (28) 28% and $1,1,1,2,3,3$ -hexafluoro-4,4-dimethylpentane (30) 62\%.

Chapter Seven
 Experimental to Chapter Three

7.1 General Procedure

7.11 Potassium hydroxide eliminations

Potassium hydroxide powder was dried under vacuum and then dry ethanol, was added under nitrogen, with stirring. The solution was then heated to the required temperature, with stirring, and the hexafluoropropene adduct added dropwise. The reaction mixture was then heated, with stirring, for the required time span. On termination, the reaction mixture was poured into water and neutralised with 10% hydrochloric acid. The organic layer was extracted with dichloromethane, dried over MgSO_{4}, and then fractionally distilled to give a purified sample of the alkene.

7.12 Sodium tert-Butoxide eliminations

Sodium tert-Butoxide was dried under vacuum and then dry solvent was added under nitrogen, with stirring. The resulting mixture was cooled to the required temperature and then the hexafluoropropene adduct was added dropwise. The reaction mixture was then stirred, for the required time span at the same temperature. On termination, the reaction mixture was poured into water and neutralised with 10% hydrochloric acid. The organic layer was extracted with dichloromethane, dried over MgSO_{4}, and then fractionally distilled to give a purified sample of the alkene.

7.2 Deuterium exchange reactions

7.21 1,1,2,3,3,3-hexafluoropropylcyclohexane (24)

A sealable NMR tube was charged with Sodium t-butoxide ($0.1 \mathrm{lg}, 0.7 \mathrm{mmol}$), tbutanol(D) (ca.1 ml) and compound (24) ($0.3 \mathrm{~g}, 1.3 \mathrm{mmol}$). The tube was sealed under vacuum and then allowed to warm to room temperature and left for a further 15 minutes. A ${ }^{19} \mathrm{~F}$ NMR number was then run on the contents, which detected 2Dhexafluoropropylcylohexane (24a) (4\% by NMR).

7.22 1-(1,1,2,3,3,3-hexafluoropropyl)adamantane (22)

A sealable NMR tube was charged with Sodium t-butoxide ($0.1 \mathrm{~g}, 0.6 \mathrm{mmol}$), tbutanol(D) (ca. 1 ml) and compound (22) ($0.3 \mathrm{~g}, 1 \mathrm{mmol}$). The tube was allowed to
warm to room temperature and left for a further 15 minutes. A ${ }^{19} \mathrm{~F}$ NMR number was then run on the contents, which detected which detected 2Dhexafluoropropyladamantane (22a) (9\% by NMR).

7.3 Dehydrofluorination of Hexafluoropropene Adducts

7.31 1.1,2,3.3.3-hexafluoropropylcyclohexane (24)
i. $\mathrm{KOH}, 50^{\circ} \mathrm{C}$

Dry ethanol (15 ml) was added to potassium hydroxide $(1.9 \mathrm{~g}, 33 \mathrm{mmol})$ and the solution was heated to $50^{\circ} \mathrm{C}$. Compound (24) ($3.5 \mathrm{~g}, 15 \mathrm{mmol}$) was added, and the mixture was refluxed for two and a half hours. Dichloromethane and ethanol were removed by distillation and further distillation gave a fraction, boiling at $140-143^{\circ} \mathrm{C}$, containing two products identified as pentafluoroprop-2-enylcyclohexane (43) (2.9g, 90%), MS and NMR data agreed with literature ${ }^{99}$; Mass spectra 21 and 22, NMR number 20 and 21; and 1-ethoxy-2,3,3,3-tetrafluoroprop-2-enylcyclohexane (44) (1\% by NMR).

ii. $\mathrm{Na} \mathrm{O}^{\mathrm{t}} \mathrm{Bu}, 25^{\circ} \mathrm{C}$

Dry t-butanol (15 ml) was added to sodium t-butoxide $(9.0 \mathrm{~g}, 80 \mathrm{mmol})$ and the suspension was warmed to $25^{\circ} \mathrm{C}$. Compound (24) ($9.4 \mathrm{~g}, 40 \mathrm{mmol}$) was added, and the mixture was stirred for 15 minutes. Dichloromethane and t-butanol were removed by distillation and further distillation of the organic layer gave the major fraction, boiling at $140-143^{\circ} \mathrm{C}$, identified as pentafluoroprop-2-enylcyclohexane (43) (5.0g, 60%).

iii. $\mathrm{Na} O^{t} \mathrm{Bu}, 0^{\circ} \mathrm{C}$

Dry isopropyl ether (100 ml) was added to sodium t-butoxide ($50.5 \mathrm{~g}, 0.45 \mathrm{~mol}$) and the suspension was cooled to $0^{\circ} \mathrm{C}$. Compound (24) ($70.2 \mathrm{~g}, 0.3 \mathrm{~mol}$) was added, and the mixture was stirred for 30 minutes. Dichloromethane, isopropyl ether and t-butanol were removed by distillation and further distillation of the organic layer gave the major fraction, boiling at $142-144^{\circ} \mathrm{C}$, identified as Z-pentafluoroprop-2-enylcyclohexane
(43a) (59.1g, 92\%) (Found: C, 50.6; H, 5.2. $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~F}_{5}$ calculated: C, 50.5; H, 5.2\%), NMR number 20, Mass spectrum 21, IR spectrum 18.
iv. $N a O^{t} B u, 0^{\circ} \mathrm{C}$

Dry hexane (80 ml) was added to sodium t-butoxide $(16.6 \mathrm{~g}, 0.15 \mathrm{~mol})$ and the suspension was cooled to $0^{\circ} \mathrm{C}$. Compound (24) (23.9g, 0.1 mol$)$ was added, and the mixture was stirred for 10 minutes. Dichloromethane, hexane and t-butanol were removed by distillation and further distillation of the organic layer gave the major fraction, boiling at $143^{\circ} \mathrm{C}$, identified as Z-pentafluoroprop-2-enylcyclohexane (43a) (18.6g, 85\%).

7.32.1-(1,1,2,3,3,3-hexafluoropropyl)adamantane (22)

i. $\mathrm{KOH}, 81{ }^{\circ} \mathrm{C}$

Dry ethanol (12 ml) was added to potassium hydroxide $(1.7 \mathrm{~g}, 31 \mathrm{mmol})$ and the solution was heated to $81^{\circ} \mathrm{C}$. Compound (22) ($4.0 \mathrm{~g}, 14 \mathrm{mmol}$) was added, and the mixture was refluxed for 15 hrs . Dichloromethane and ethanol were removed by distillation and further distillation gave a fraction, boiling at $220-222^{\circ} \mathrm{C}$, identified as $\underline{\mathrm{E}}$ -pentafluoroprop-2-enyladamantane (45a) (3.2g, 87\%) (Found: C, 58.6; H, 5.9. $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~F}_{5}$ requires: $\mathrm{C}, 58.6 ; \mathrm{H}, 5.7 \%$), NMR number 22, Mass spectrum 23, IR spectrum 19.

ii. $N a O^{t} B u, R T$

Dry isopropyl ether (50 ml) was added to sodium t-butoxide $(7.9 \mathrm{~g}, 70 \mathrm{mmol})$ and compound (22) ($11.4 \mathrm{~g}, 40 \mathrm{mmol}$) was added to the suspension, at room temperature, and stirred for 30 minutes. Dichloromethane, isopropyl ether and tbutanol were removed by distillation and further distillation gave a fraction, boiling at $219-221^{\circ} \mathrm{C}$, which consisted of 1-(E-pentafluoroprop-2-enyl)adamantane (45a) (9.6g, 90\%).
iii. $\mathrm{Na} \mathrm{O}^{\mathrm{t}} \mathrm{Bu},-10^{\circ} \mathrm{C}$

Dry isopropyl ether (20 ml) was added to sodium t-butoxide ($3.2 \mathrm{~g}, 28 \mathrm{mmol}$) and cooled to $-10^{\circ} \mathrm{C}$, using a salt-ice bath. Compound (22) (3.75g, 13 mmol) was added dropwise and the mixture was stirred for 30 minutes at $-10^{\circ} \mathrm{C}$. Dichloromethane, isopropyl ether and t-butanol were removed by distillation and further distillation gave a fraction, boiling at $219-221^{\circ} \mathrm{C}$, which consisted 1 -(Z-pentafluoroprop-2enyl)adamantane (45b) (3.1g, 85\%) (Found: $\mathrm{C}, 58.7$; $\mathrm{H}, 5.4 . \mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~F}_{5}$ requires: C , 58.6; H, 5.7\%), NMR number 23, Mass spectrum 24, IR spectrum 20.

7.33 trans-1,4-bis(1,1,2,3,3,3-hexafluoropropyl)cyclohexane (27a)

Dry isopropyl ether (25 ml) was added to sodium t-butoxide ($2.1 \mathrm{~g}, 18 \mathrm{mmol}$) and cooled to $-10^{\circ} \mathrm{C}$, using a salt-ice bath. Compound (27a) ($3.5 \mathrm{~g}, 9 \mathrm{mmol}$) was added and the mixture was stirred for 30 minutes at $-10^{\circ} \mathrm{C}$. Dichloromethane, isopropyl ether and t-butanol were removed by distillation and methanol was added to the organic layer which was then cooled in an acetone slush bath $\left(-78^{\circ} \mathrm{C}\right)$. A white solid precipitated out which was identified as trans-1.4-bis(Z-pentafluoroprop-2-enyl)cyclohexane (46) (2.1g, 72%) mp. $101-102^{\circ} \mathrm{C}$, (Found: $\mathrm{C}, 41.8 ; \mathrm{H}, 2.9 . \mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~F}_{10}$ requires: $\mathrm{C}, 41.9 ; \mathrm{H}, 2.9 \%$), NMR number 24, Mass spectrum 25, IR spectrum 21.

7.34 1. x-bis $(1,1,2,3,3,3$-hexafluoropropyl)cyclohexane ($x=2-4$) (27)

Dry ethyl ether (50 ml) was added to sodium t-butoxide $(15.9 \mathrm{~g}, 142 \mathrm{mmol}$) and cooled to $-10^{\circ} \mathrm{C}$, using a salt-ice bath. Compounds (27) ($16.0 \mathrm{~g}, 40 \mathrm{mmol}$) in ethyl ether $(30 \mathrm{ml})$ was added and the mixture was stirred for 30 minutes at $-10^{\circ} \mathrm{C}$. Dichloromethane, ethyl ether and t-butanol were removed by distillation and further distillation of the organic layer gave a fraction, boiling at $100-102^{\circ} \mathrm{C} / 21 \mathrm{mmHg}$, which was identified as a mixture of cis-1,3-bis(Z-pentafluoroprop-2-enyl)cyclohexane (47) ($8.2 \mathrm{~g}, 57 \%$) (Found: $\mathrm{C}, 41.7 ; \mathrm{H}, 2.9 . \mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~F}_{10}$ requires: $\mathrm{C}, 41.9 ; \mathrm{H}, 2.9 \%$), NMR number 25, Mass spectrum 26, IR spectrum 22; and trans-1,4-bis(Z-pentafluoroprop-2-enyl)cyclohexane (46) (4.3g, 30\%) which precipitated out on cooling in an acetone slush bath $\left(-78^{\circ} \mathrm{C}\right)$.

7.35 1,1,2,3,3,3-hexafluoropropylcyclopentane (25)

Dry ethyl ether (40 ml) was added to sodium t-butoxide ($5.0 \mathrm{~g}, 40 \mathrm{mmol}$) and cooled to $-78^{\circ} \mathrm{C}$, using an acetone slush bath. Compound (25) ($4.4 \mathrm{~g}, 20 \mathrm{mmol}$) was added dropwise and the mixture was stirred for 35 minutes at $-78^{\circ} \mathrm{C}$. On completion the reaction was allowed to slowly warm to room temperature. Dichloromethane, ethyl ether and t-butanol were removed from the organic layer by distillation and further distillation gave a fraction, boiling at $119-121^{\circ} \mathrm{C}$, identified Z-pentafluoroprop-2enylcyclopentane (49) (3.0g, 68\%), (Found: C, 47.9; H, 4.5. $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~F}_{5}$ requires: $\mathrm{C}, 48.0$; H, 4.5\%), NMR number 26, Mass spectrum 27, IR spectrum 23.

7.36 1. x-(1.1,2,3,3,3-hexafluoropropyl)cyclopentane ($x=2,3$) (26)

Dry ethyl ether (50 ml) was added to sodium t-butoxide $(9.0 \mathrm{~g}, 80 \mathrm{mmol})$ and cooled to $-78^{\circ} \mathrm{C}$, using an acetone slush bath. Compound (26) ($7.4 \mathrm{~g}, 20 \mathrm{~mol}$) was added and the mixture was stirred for 35 minutes at $-78^{\circ} \mathrm{C}$. Dichloromethane, ethyl ether and t -butanol were removed from the organic layer by distillation and further distillation gave a fraction, boiling at $76-77^{\circ} \mathrm{C} / 21 \mathrm{~mm} \mathrm{Hg}$, identified as a mixture of three isomers of 1.x-(Z-pentafluoroprop-2-enyl)cyclopentane ($\mathrm{x}=2,3$) (50) (4.0g, 60\%) (Found: C, 43.9; $\mathrm{H}, 2.6 . \mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~F}_{10}$ requires: $\mathrm{C}, 43.7 ; \mathrm{H}, 2.4 \%$), IR spectrum 24 ; Mass spectra 28,29 and 30; NMR number 27, 28 and 29.

7.37 x -(1, 1,2,3,3,3-hexafluoropropyl) trans-decalin (x=1,2)(35)

Dry ethyl ether (20 ml) was added to sodium t-butoxide ($4.5 \mathrm{~g}, 40 \mathrm{mmol}$) and cooled to $-10^{\circ} \mathrm{C}$, using a salt-ice bath. Compound (35) ($5.8 \mathrm{~g}, 20 \mathrm{mmol}$) was added and the mixture was stirred for 30 minutes at $-10^{\circ} \mathrm{C}$. Dichloromethane, ethyl ether and t butanol were removed from the organic layer by distillation and further distillation gave a fraction, boiling at $75-77^{\circ} \mathrm{C} / 6 \mathrm{mmHg}$, identified as a mixture of two isomers of $\mathrm{x}-(\mathrm{Z}-$ pentafluoroprop-2-enyl)trans-decalin (x=1.2) (51) (8.8g, 82\%) (Found: C, 58.1; H, 6.6. $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{~F}_{5}$ requires: $\mathrm{C}, 58.2 ; \mathrm{H}, 6.4 \%$), IR spectrum 25; Mass spectra 31 and 32 ; NMR number 30 and 31.

Dry ethyl ether (40 ml) was added to sodium t-butoxide ($4.5 \mathrm{~g}, 40 \mathrm{mmol}$) and cooled to $-10^{\circ} \mathrm{C}$, using a salt-ice bath. Compound (34) (5.8g, 20 mmol) was added and the mixture was stirred for 30 minutes at $-10^{\circ} \mathrm{C}$. Dichloromethane, ethyl ether and tbutanol were removed from the organic layer by distillation and further distillation gave a fraction, boiling at $138-140^{\circ} \mathrm{C} / 20 \mathrm{mmHg}$, identified as a mixture of isomers of x -(Z-pentafluoroprop-2-enyl)cis-decalin ($\mathrm{x}=1,2,9$) $\mathbf{(5 2)}(4.6 \mathrm{~g}, 85 \%)$ (Found: C, 58.1; H, 6.3 . $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{~F}_{5}$ requires: $\mathrm{C}, 58.2 ; \mathrm{H}, 6.4 \%$), IR spectrum 26; Mass spectra 33 and 34 ; NMR number 32 and 33.

7.39 exo-2-(1,1,2,3,3,3-hexafluoropropyl)norbornane (37)

Dry isopropyl ether (20 ml) was added to sodium t-butoxide $(6.8 \mathrm{~g}, 60 \mathrm{mmol}$) and cooled to $-10^{\circ} \mathrm{C}$, using a salt-ice bath. Compound (37) (7.5g, 30 mmol) was added and the mixture was stirred for 1 hour at $-10^{\circ} \mathrm{C}$. Dichloromethane, isopropyl ether and t-butanol were removed from the organic layer by distillation and further distillation gave a fraction, boiling at $65-67^{\circ} \mathrm{C} / 20 \mathrm{mmHg}$, which consisted of exo-2-(Z-pentafluoroprop-2-enyl)norbornane (53) (6.2g, 90\%) (Found: $\mathrm{C}, 53.1 ; \mathrm{H}, 4.9 . \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~F}_{5}$ requires: $\mathrm{C}, 53.1 ; \mathrm{H}, 4.9 \%$), IR spectrum 27 , Mass spectrum 35 , NMR number 34.

7.40 exo-2.x-(1, 1,2,3,3,3-hexafluoropropyl)norbornane ($x=5,6$)(35)

Dry isopropyl ether (15 ml) was added to sodium t-butoxide ($4.5 \mathrm{~g}, 40 \mathrm{mmol}$) and the suspension was cooled to $-10^{\circ} \mathrm{C}$, in a salt-ice bath. Compound (35) $(4.6 \mathrm{~g}, 12$ mmol) was added and the mixture was stirred for 30 minutes at $-10^{\circ} \mathrm{C}$. Dichloromethane, isopropyl ether and t-butanol were removed from the organic layer by distillation and further distillation gave a fraction, boiling at $101103^{\circ} \mathrm{C} / 20 \mathrm{mmHg}$, identified as a mixture of two isomers of exo-2,x-(Z-pentafluoroprop-2-enyl)norbornane $(x=5,6)(54)(3.8 \mathrm{~g}, 93 \%)$ (Found: $\mathrm{C}, 43.6 ; \mathrm{H}, 2.8 . \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~F}_{5}$ requires: $\mathrm{C}, 43.8 ; \mathrm{H}, 2.8 \%$), IR spectrum 28; Mass spectra 36 and 37; NMR number 35 and 36.

Dry ethyl ether (30 ml) was added to sodium t-butoxide ($4.5 \mathrm{~g}, 40 \mathrm{mmol}$), and stirred at room temperature. Compound (40) (3.7g, 5 mmol) in ethyl ether (20 ml) was added and the mixture was stirred for 30 minutes at room temperature. Dichloromethane, ethyl ether and t-butanol were removed from the organic layer by distillation and further Kugelrohr gave a fraction, boiling at $c a .175^{\circ} \mathrm{C} / 1 \mathrm{mmHg}$, identified as a mixture of two isomers of 1,3,5,7-tetrakis(pentafluoroprop-2enyl)adamantane (55a) ($2.6 \mathrm{~g}, 78 \%$) (Found: $\mathrm{C}, 40.2 ; \mathrm{H}, 1.8 . \mathrm{C}_{22} \mathrm{H}_{12} \mathrm{~F}_{20}$ requires: C , 40.3; H;. 1.8\%) Mass spectrum 39, NMR number 38; from which 1.3,5.7-tetrakis(E-pentafluoroprop-2-enyl)adamantane (55), IR spectrum 29; Mass spectrum 38, NMR number 37 ; precipitated out when the mixture was dissolved in chloroform and cooled in an acetone slush bath.

7.5 Caesium Fluoride Isomerisations

7.51 1-(Z-pentafluoroprop-2-enyl)adamantane (45b)

A Carius tube was charged with caesium fluoride ($7.6 \mathrm{~g}, 50 \mathrm{mmol}$), dry tetraglyme (10 ml) and compound ($\mathbf{4 5 b}$) $(2.7 \mathrm{~g}, 10 \mathrm{mmol})$. The tube was cooled (liquid air) and sealed under vacuum. It was allowed to warm to room temperature and then it was heated in a rotating oil bath at $200^{\circ} \mathrm{C}$ for 50 hrs . On completion the tube was opened and a sample of the product mixture was transferred into an NMR tube and a ${ }^{19} \mathrm{~F}$ NMR number was run on it, which showed almost complete conversion to 1 -(Z-pentafluoroprop-2-enyl)adamantane (45a) (ca. 97\%).

7.52 Z-pentafluoroprop-2-enylcyclohexane (43a)

A Carius tube was charged with caesium fluoride ($7.1 \mathrm{~g}, 50 \mathrm{mmol}$), dry tetraglyme (10 ml) and compound (43a) ($2.1 \mathrm{~g}, 10 \mathrm{mmol}$). The tube was cooled (liquid air) and sealed under vacuum. It was allowed to warm to room temperature and then it was heated in a rotating oil bath at $200^{\circ} \mathrm{C}$ for 50 hrs . On completion the tube was opened and a sample of the product mixture was transferred into an NMR tube and a ${ }^{19} \mathrm{~F}$ NMR number was run on it, which showed a 37% conversion to E-pentafluoroprop-2-enylcyclohexane (43b).

Chapter Eight
Experimental to Chapter Four

8.1 General Procedure

The apparatus for fluorination with cobalt trifluoride consisted of a nickel tube with inlet and outlet pipes and nickel paddles attached to a rod situated along the centre of the tube and rotated by an electric motor. Cobalt trifluoride (440 g) was contained in the tube and heated to the required temperature, using an electric heating tape wrapped around the tube, with continual stirring. Dry nitrogen ($30 \mathrm{ml} / \mathrm{min}$) was passed through the reactor for 10 mins , prior to use. Starting materials were dropped into the reactor at a rate of $1 \mathrm{ml} / 10 \mathrm{mins}$. in a nitrogen flow ($30 \mathrm{ml} / \mathrm{min}$.). After all the compound for fluorination was added, the reactor was flushed with nitrogen for 30 mins. Products were collected in a trap cooled with liquid air, which was detached from the reactor and left to warm up in an efficient fumehood. A condenser containing anhydrous soda-lime was attached so as to remove any hydrogen fluoride and the product pippetted out. Any polyfluorinated products were removed by continuous extraction with acetone and pure samples of the perfluorinated product were isolated preparative scale GLC

After fluorination the cobalt fluoride system was regenerated by passing 50% fluorine gas $(95 \mathrm{ml} / \mathrm{min})$, from a cylinder, via FEP tubing through the heated reactor $\left(280^{\circ} \mathrm{C}\right)$ until the soda-lime trap, attached to the exit, became detectably warm.

8.2 Cobalt trifluoride fluorinations

8.21 2,5-Bis(1,1,2,3,3,3-hexafluoropropyl)tetrahydrofuran (58)

Compound (58) ($7.4 \mathrm{~g}, 20 \mathrm{mmol}$) was passed over a fully regenerated cobalt trifluoride bed at $400^{\circ} \mathrm{C}$, according to the general procedure outlined above. Continuous extraction, with acetone, of the liquid product $(8.9 \mathrm{~g})$ removed the polyfluorinated products and preparative scale GLC (Fomblin column, $160^{\circ} \mathrm{C}$) of the resulting perfluorocarbon layer, isolated perfluoro-2,5-dipropyltetrahydrofuran (59) (7.1g, 80\%) NMR and MS in agreement with earlier work in carried out in this laboratory ${ }^{75,90}$. MS spectrum 40 and NMR number 39.

8.22 1,1.2,3,3,3-hexafluoropropylcyclohexane (24)

Compound (24) ($3.5 \mathrm{~g}, 15 \mathrm{mmol}$) was passed over the fully regenerated cobalt trifluoride, at $375^{\circ} \mathrm{C}$. Continuous extraction, with acetone, followed by preparative scale GLC (Fomblin column, $120^{\circ} \mathrm{C}$) of the liquid product $(6.0 \mathrm{~g})$ gave perfluoropropylcyclohexane (60) (63\%) b.p. 132-134 ${ }^{\circ} \mathrm{C}$ (Siwoloboff); (Accurate mass, $\mathrm{M}^{+}-19$ found 430.97; $\mathrm{C}_{9} \mathrm{~F}_{17}{ }^{+}$; calculated 431.06). NMR and MS in agreement with literature ${ }^{131}$, IR spectrum 30, MS spectrum 41 and NMR number 40.

8.23 1,1,2,3,3.3-hexafluoropropylcyclopentane (25)

Compound (25) ($3.9 \mathrm{~g}, 18 \mathrm{mmol}$), was passed over the fully regenerated cobalt trifluoride, at $375^{\circ} \mathrm{C}$. Continuous extraction followed by preparative scale GLC (Fomblin, $110^{\circ} \mathrm{C}$) of the liquid product (6.12g) gave perfluoropropylcyclopentane (51) (60%) b.p. $103-105^{\circ} \mathrm{C}$ (Siwoloboff); (Accurate mass, $\mathrm{M}^{+}-19$ too weak; $\mathrm{C}_{9} \mathrm{~F}_{17}{ }^{+}$; required 381.06). IR spectrum 31, MS spectrum 42 and NMR number 41.

8.24 trans-1,4-bis(1.1,2,3,3,3-hexafluoropropyl)cyclohexane (27a)

i. $400^{\circ} \mathrm{C}$

Compound (27a) ($2.4 \mathrm{~g}, 6 \mathrm{mmol}$) was passed over the fully regenerated cobalt trifluoride, at $400^{\circ} \mathrm{C}$. Continuous extraction followed by preparative scale GLC (Fomblin, $165^{\circ} \mathrm{C}$) of the liquid product $(2.9 \mathrm{~g})$ gave a mixture of cis- and trans-isomers of perfluoro-1,4-dipropylcyclohexane (62) (60\%) (Accurate mass, $\mathrm{M}^{+}-19$ found 580:96; $\mathrm{C}_{12} \mathrm{~F}_{23}{ }^{+}$; calculated 581.07); IR spectrum 32 , MS spectrum 43 and 44, NMR number 42 and 43. Several recrystallisations from chlorotrifluoromethane cooled to $-15^{\circ} \mathrm{C}$ gave only trans-perfluoro-1,4-dipropylcyclohexane (62a); m.p. $80-81^{\circ} \mathrm{C}$.
ii. $350^{\circ} \mathrm{C}$

Compound (27a) ($3.5 \mathrm{~g}, 9.1 \mathrm{mmol}$) was passed over the cobalt trifluoride bed at $350^{\circ} \mathrm{C}$. Continuous extraction followed by preparative scale GLC (Fomblin, $165^{\circ} \mathrm{C}$) of the liquid product $(3.7 \mathrm{~g})$ gave a mixture of cis- and trans-isomers of perfluoro-1,4dipropylcyclohexane (62) (70\%).

8.25 1,x-bis(1,1,2,3,3,3-hexafluoropropyl)cyclohexane ($x=2-4$)(27)

i. $400^{\circ} \mathrm{C}$

Compound (27) ($3.5 \mathrm{~g}, 9 \mathrm{mmol}$) was passed over cobalt trifluoride, at $400^{\circ} \mathrm{C}$. Continuous extraction followed by preparative scale GLC (Fomblin, $165^{\circ} \mathrm{C}$) of the liquid product (4.1 g) gave a mixture of isomers of perfluoro-1, x-dipropylcyclohexane $(\mathrm{x}=2-4)(62)$ and (63) (44\%) b.p. $167-169^{\circ} \mathrm{C}$ (Siwoloboff); (Accurate mass, $\mathrm{M}^{+}-19$ found 580.96; $\mathrm{C}_{12} \mathrm{~F}_{23}{ }^{+}$; calculated 581.07); IR spectrum 33, MS spectrum 45 and 46 , NMR number 44 and 45.
ii. $375^{\circ} \mathrm{C}$

Compound (27) ($5.0 \mathrm{~g}, 13 \mathrm{mmol}$), was passed over cobalt trifluoride, at $375^{\circ} \mathrm{C}$. Continuous extraction followed by preparative scale GLC (Fomblin, $165^{\circ} \mathrm{C}$) of the liquid product $(6.5 \mathrm{~g})$ gave a mixture of isomers of perfluoro- $1, \mathrm{x}$-dipropylcyclohexane $(x=2-4)(62)$ and (63) (58\%)

8.26 1, x-bis (1,1,2,3,3,3-hexafluoropropyl)cyclopentane $(x=2,3)(25)$

i. $400^{\circ} \mathrm{C}$

Compound (25) (1.9g, 5 mmol) was passed over the CoF_{3} bed at $400^{\circ} \mathrm{C}$. Continuous extraction of the liquid product (1.3g) with acetone overnight, followed by preparative scale GLC. (Fomblin, $160^{\circ} \mathrm{C}$) gave a mixture of isomers of perfluoro-1, X dipropylcyclopentane ($x=2.3$) (64) (71\%), b.p. $159-161^{\circ} \mathrm{C}$ (Siwoloboff); (Accurate mass, $\mathrm{M}^{+}-19$ found 530.97); $\mathrm{C}_{11} \mathrm{~F}_{21}{ }^{+}$calculated 530.86); IR spectrum 34, MS spectrum 47, NMR number 46.
ii. $375^{\circ} \mathrm{C}$

Compound (25) ($5.0 \mathrm{~g}, 14 \mathrm{mmol}$), was passed over the CoF_{3} bed at $375^{\circ} \mathrm{C}$. Continuous extraction of the liquid product (5.7 g) with acetone overnight, followed by preparative scale GLC. (Fomblin, $160^{\circ} \mathrm{C}$) gave a mixture of isomers of perfluoro-1,xdipropylcyclopentane ($\mathrm{x}=2,3$) (64) (71\%)

8.27 x -(1, 1,2,3,3,3-hexafluoropropyl)cis-decalin ($\mathrm{x}=1,2,9$) (33)

Compound (33) ($1.8 \mathrm{~g}, 6 \mathrm{mmol}$) was passed over the CoF_{3} bed at $400^{\circ} \mathrm{C}$. Continuous extraction of the liquid product $(3.0 \mathrm{~g})$ gave a perfluorocarbon mixture containing perfluoro- x-propyldecalin ($x=1,2.9$) (66) (68% by GLC)(Accurate mass, $\mathrm{M}^{+}-19$ found $592.96 ; \mathrm{C}_{13} \mathrm{~F}_{23}{ }^{+}$calculated 593.08$)_{\mathrm{i}}$ IR spectrum 35 , MS spectrum 48 , NMR number 47.

8.28 1-(1,1,2,3,3,3-hexafluoropropyl)adamantane (22)

Compound (22) ($2.0 \mathrm{~g}, 7 \mathrm{mmol}$) was passed over the fully regenerated CoF_{3} bed at $400^{\circ} \mathrm{C}$. The resulting liquid product $(2.28 \mathrm{~g})$ was very complex, as in table 4.7 , and although perfluoro-1-propyladamantane (67) (32\% by GLC.; $\mathrm{M}^{+}, 574$; MS spectrum 49) was identified by GLC/MS, it could not be isolated by preparative scale GLC

8.29 Z-pentafluoro-2-propenylcyclohexane (43a)

Compound (43a) ($4.0 \mathrm{~g}, 19 \mathrm{mmol}$) was passed over the fully regenerated CoF_{3} bed at $375^{\circ} \mathrm{C}$. Continuous extraction, with acetone, of the liquid product $(7.1 \mathrm{~g})$ gave perfluoropropylcyclohexane (60) ($6.4 \mathrm{~g}, 90 \%$).

8.3 Methanol/TFE Telomers

8.31 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8-tetradecafluorononanol (68)

Compound (68) ($3.9 \mathrm{~g}, 9 \mathrm{mmol}$) was passed over the CoF_{3} bed at $400^{\circ} \mathrm{C}$. Continuous extraction, with acetone, of the liquid product (3.4 g) gave perfluorooctane (68a) (92\%); MS spectrum 50, NMR number 48.

8.32 1, 1, 2, 2, 3, 3,4,4,5,5,6,6-dodecafluoroheptanol (69)

i. $400^{\circ} \mathrm{C}$

Compound (69) ($3.0 \mathrm{~g}, 9 \mathrm{mmol}$) was passed over the CoF_{3} bed at $400^{\circ} \mathrm{C}$. Continuous extraction, with acetone, of the liquid product (1.97 g) gave perfluorohexane (69a) (93\%); MS spectrum. 51 , NMR number 49.

Compound (69) ($2.2 \mathrm{~g}, 7 \mathrm{mmol}$) was passed over the fully regenerated CoF_{3} bed at $300^{\circ} \mathrm{C}$. Continuous extraction, with acetone, of the liquid product $(1.2 \mathrm{~g})$, gave perfluorohexane (69 a) (24%). Addition of water to the acetone layer gave 1 H perfluorohexane (70) (76\%); NMR number 50, MS spectrum 52.

8.4 Fluorinations in Anhydrous Hydrogen Fluoride

8.41 General apparatus

A metal vacuum line with Whitey valves, a soda-lime tower and Pyrex glass trap (cooled with liquid N_{2}) was connected to a Teflon FEP sub-line to which a Teflon FEP T-piece reactor containing the reactants in separate tubes was then attached. The subline was equipped with Teflon valves each having a Kel-F stem with a Teflon tip so as to isolate the sub-line from the metal vacuum line, because anhydrous HF in contact with the metal line is a powerful oxidising system in the presence of fluoroacid.

All the starting materials were weighed and transferred into the dry Teflon FEP T-piece reactor on an aluminium tray inside a dry atmosphere bag, as spillage of the highly oxidising reagents could ignite the polyethylene bag. All the reactions were carried out under vacuum in the Tefion FEP subline

8.42 AgNiF_{6} Fluorination of trans-1,4-bis(z-pentafluoro-2-propenyl)cyclohexane (62)

One leg of the FEP T-piece reactor was charged with compound (62) (0.1g, 0.4 mmol) and anhydrous $\mathrm{HF}(1 \mathrm{ml})$ was distilled on to it. The other leg was charged with $\mathrm{AgNiF}_{6}(1.0 \mathrm{~g}, 3.6 \mathrm{mmol})$ and anhydrous $\mathrm{HF}(2 \mathrm{ml})$ was distilled onto it to form a slurry. This leg was then poured slowly, at $\sim 0^{\circ} \mathrm{C}$, onto the substrate. A fast exothermic interaction occurred, but no non-condensable gas (e.g. CF_{4}) was produced. The supernatant anhydrous HF was decanted back so as to ensure all of the solid oxidiser interacted with the substrate. The $\mathrm{Ag}(\mathrm{II}) \mathrm{Ni}(\mathrm{IV}) \mathrm{F}_{6}$ was reduced to an olive green solid $\left(\mathrm{Ag}(\mathrm{I}) \mathrm{Ni}(\mathrm{II}) \mathrm{F}_{3}\right)$. The anhydrous HF and any volatiles were distilled under vacuum in the closed T-apparatus to give a clear distillate. The anhydrous HF was allowed to distil slowly into the soda-lime tower without bumping. When all anhydrous HF had been
visibly consumed a very small colourless liquid remained, which was extracted using Arklone, but its ${ }^{19}$ F NMR number contained only solvent signals. The other reactor limb (which contained the AgNiF_{3}) was washed with Arklone and its ${ }^{19} \mathrm{~F}$ NMR number showed a definite set of CF_{x} signals indicating the product was $1 \mathrm{H}, 4 \mathrm{H}-$ perfluorodipropylcyclohexane (71).

$8.43 \mathrm{NiF}_{3}$ Fluorination of 2.5 -bis(Z-pentafluoro-2-propenyl)tetrahydrofuran (72)

Tubes A and B of the T-piece reactor were charged with $\mathrm{NiF}_{3}(1.8 \mathrm{~g}, 15 \mathrm{mmol})$ and compound (72) $(0.4 \mathrm{~g}, 1.3 \mathrm{mmol})$ respectively. The reactor was attached to the FEP sub-line and evacuated. Anhydrous HF was distilled onto both the nickel salt ($\sim 2 \mathrm{ml}$), to give a black slurry, and the organic substrate ($\sim 2 \mathrm{ml}$), which was slightly soluble. The black slurry was poured slowly, at $\sim 0^{\circ} \mathrm{C}$, onto the organic substrate. A fast exothermic interaction occurred with the nickel salt reduced to brown nickel difluoride. The supernatant anhydrous HF was decanted back so as to ensure all of the solid oxidiser interacted with the substrate and when the reaction was complete the anhydrous HF was slowly distilled, without bumping, into the soda-lime trap. The remaining products were extracted with chlorotrifluoromethane and a ${ }^{19} \mathrm{~F}$ NMR of the extract identified a set of weak CF_{x} signals corresponding to perfluoro-2,5-dipropyltetrahydrofuran (59).

Chapter Nine
Experimental to Chapter Five

9.1 Attempted additions of cyclohexyl chloride to hexafluoropropene (HFP)

i. γ-ray initiation

A Carius tube was charged with cyclohexyl chloride $(8.9 \mathrm{~g}, 75 \mathrm{mmol})$ and HFP. ($15.4 \mathrm{~g}, 100 \mathrm{mmol}$) and then irradiated for 4 days with γ-rays (6 Mrads) at room temperature. The tube was opened and gaseous components (14.7 g) were recovered. Analysis of the colourless liquid (9.2 g), by GLC/MS and ${ }^{19} \mathrm{~F}$ NMR identified traces of x-(1,1,2,3,3,3-hexafluoropropyl)cyclohexyl chloride ($x=2-4$) (74), but no further workup was performed.

ii. DTBP initiation

An autoclave (150 ml) was charged with cyclohexyl chloride ($8.0 \mathrm{~g}, 67 \mathrm{mmol}$), HFP $(15.4 \mathrm{~g}, 100 \mathrm{mmol})$ and $\operatorname{DTBP}(0.6 \mathrm{~g}, 4 \mathrm{mmol})$ and then rocked at $140^{\circ} \mathrm{C}$ for 24 hrs. The autoclave was opened and gaseous products (14.9 g) were recovered. A pale yellow liquid $(8.8 \mathrm{~g})$ was removed and analysis of the mixture, by GLC/MS and ${ }^{19} \mathrm{~F}$ NMR, identified traces of x -(1,1,2,3,3,3-hexafluoropropyl)cyclohexyl chloride $(\mathrm{x}=2-4)(74)$ and cyclohexene (6% by GLC).

9.2 Chlorination of 1,1,2,3,3,3-hexafluoropropylcyclohexane (24)

A mixture of compound (24) $(27.7 \mathrm{~g}, 0.12 \mathrm{~mol})$ and sulphuryl chloride $(8.4 \mathrm{~g}$, $0.06 \mathrm{~mol})$ was irradiated with UV light (1000 W , medium pressure, mercury lamp, at a distance of $c a .100 \mathrm{~mm}$), whilst being cooled with an electric fan to $c a .60^{\circ} \mathrm{C}$) until no further gases were evolved from the mixture (1.5 hours). Distillation of the remaining liquid (29.3 g) gave a fraction, boiling at $163-165^{\circ} \mathrm{C}$, identified as $\mathrm{x}-(1,1,2,3,3,3-$ hexafluoropropyl)cyclohexyl chloride ($\mathrm{x}=2-4$) (74) (8.60g, 27\%) (Found: C, 40.2; H, 4.1. $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{ClF}_{6}$ requires: $\mathrm{C}, 40.2 ; \mathrm{H}, 4.1 \%$), NMR number $51, \mathrm{MS}$ spectrum 53.

9.3 Chlorination of 1,1,2,3,3,3-hexafluoropropylcyclopentane (25)

A mixture of compound (25) (10.6g, 50 mmol$)$ and sulphuryl chloride $(6.5 \mathrm{~g}, 50$ mmol) was irradiated was irradiated with UV light, using the procedure outlined above, for 2 hours. Distillation of the remaining liquid gave a fraction, boiling at $153-155^{\circ} \mathrm{C}$, 83% (Found: $\mathrm{C}, 37.5 ; \mathrm{H}, 3.5 . \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{ClF}_{6}$ requires: $\mathrm{C}, 37.7 ; \mathrm{H}, 3.6 \%$), NMR number 52, MS spectrum 54.
9.5 Dehydrochlorination of x-(1,1,2,3,3,3-hexafluoropropyl)cyclohexyl chloride ($x=2-4$) (74)
i. $\mathrm{NaOH}(a q)$

Compound (74) ($5.5 \mathrm{~g}, 20 \mathrm{mmol}$) was added to aqueous 33% Sodium hydroxide $(1.4 \mathrm{~g}, 35 \mathrm{mmol})$ and refluxed at $90^{\circ} \mathrm{C}$ for 20 hours. The reaction mixture was then cooled and the organic layer was separated and dried with MgSO_{4}. GLC/MS analysis of the reaction mixture identified starting material only.

ii. $E t_{3} N$

Compound (74) ($7.6 \mathrm{~g}, 28 \mathrm{mmol}$) was added to a mixture of triethylamine (3.6 g , $35 \mathrm{mmol})$ and diethyl ether $(10 \mathrm{ml})$ and stirred at room temperature for 20 hours. The reaction mixture was neutralised with $10 \% \mathrm{HCl}$ and the organic layer was separated and dried with MgSO_{4}. GLC/MS analysis of the reaction mixture identified starting material only.

iii. $L i C l, D M F$

Lithium chloride ($1.3 \mathrm{~g}, 30 \mathrm{mmol}$) was dried under vacuum and dry dimethyl formamide (20 ml) was added. To this mixture was then added compound (74) (5.3g, 20 mmol). The resulting miscible mixture was refluxed at $150^{\circ} \mathrm{C}$ for 20 hours. The reaction mixture was then cooled, neutralised with $10 \% \mathrm{HCl}$, washed with water and the organic layer was separated and dried with MgSO . Distillation of the organic layer gave a fraction, boiling at $146^{\circ} \mathrm{C}$, identified as x-(1,1,2,3,3,3-hexafluoropropyl)cyclohex-1-ene $(\mathrm{x}=2-4)(76)(4.1 \mathrm{~g}, 89 \%)$ (Found: $\mathrm{C}, 47.0 ; \mathrm{H}, 4.3 . \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~F}_{6}$ requires: $\mathrm{C}, 46.7 ; \mathrm{H}, 4.3 \%$), NMR number 53, MS spectrum 55, IR spectrum 36.

Compound (74) ($4.3 \mathrm{~g}, 16 \mathrm{mmol}$) was added to dry dimethyl formamide (15 ml) and the mixture was refluxed at $150^{\circ} \mathrm{C}$ for 20 hours. in a round bottomed flask fitted with a water condenser and a drying tube. The reaction mixture was then cooled, neutralised with $10 \% \mathrm{HCl}$, washed with water and the organic layer was separated and dried with MgSO 4 . Distillation of the organic layer gave a fraction, boiling at $146^{\circ} \mathrm{C}$, identified as $\mathrm{x}-(1,1,2,3,3,3$-hexafluoropropyl)cyclohex-1-ene $(\mathrm{x}=2-4)(76)(1.7 \mathrm{~g}, 46 \%)$

9.6 Dehydrochlorination of x-(1,1,2,3,3,3-hexafluoropropyl)cyclopentyl chloride

 $(x=2,3)(75)$Lithium chloride ($2.7 \mathrm{~g}, 60 \mathrm{mmol}$) was dried under vacuum and dry dimethyl formamide (20 ml) was added and to this mixture compound (75) (10.8g, 40 mmol) was then added. The resulting miscible mixture was refluxed at $150^{\circ} \mathrm{C}$ for 20 hours. The reaction mixture was then cooled, neutralised with $10 \% \mathrm{HCl}$, washed with water and the organic layer was separated and dried with MgSO 4 . Distillation of the organic layer gave a fraction, boiling at $130-132^{\circ} \mathrm{C}$, identified as $\mathrm{x}-(1,1,2,3,3,3-$ hexafluoropropyl)cyclopent-1-ene $(x=2.3)(78)(6.6 \mathrm{~g}, 72 \%)$ (Found: $\mathrm{C}, 43.8 ; \mathrm{H}, 3.7$. $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~F}_{6}$ requires: $\mathrm{C}, 44.0 ; \mathrm{H}, 3.7 \%$, NMR number 54 , MS spectrum 56.

9.7 Reactions of the pentafluoropropenyl derivatives of cyclohexane

9.91 Z-pentafluoro-2-propenylcyclohexane (43a)

Sodium metal $(0.9 \mathrm{~g}, 40 \mathrm{mmol})$ was added to ethanol $(18.4 \mathrm{~g}, 0.4 \mathrm{~mol})$ under nitrogen until it had reacted completely. Compound (43a) (4.3g, 20 mmol) was added dropwise to the alkoxide solution and the mixture was warmed to $80^{\circ} \mathrm{C}$ and refluxed for 138 hours. On termination of the reaction, the product mixture was diluted with water, neutralised with 10% hydrochloric acid and the organic layer was extracted with dichloromethane and dried with magnesium sulphate. Distillation removed any solvents and further distillation of the liquid product gave a fraction, boiling at $178^{\circ} \mathrm{C}$, identified as an inseparable mixture of the Z- and E- isomers of 1-ethoxy-2,3,3.3-tetrafluoroprop-2-enylcyclohexane (44) $(82 \%, 3.67 \mathrm{~g})$ (Found: $\mathrm{C}, 55.0 ; \mathrm{H}, 6.7 . \mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~F}_{4} \mathrm{O}$ requires: C , $55.1 ; \mathrm{H}, 6.7 \%$); NMR number 55 and 56 , MS spectra 57 and 58 IR spectrum 37.

9.82 trans-1,4-di(z-pentafluoro-2-propenyl)cyclohexane (46)

Compound (46) ($1.9 \mathrm{~g}, 5 \mathrm{mmol}$) in ethanol (5 ml) was added dropwise to a stirred solution of sodium ethoxide $(1.4 \mathrm{~g}, 20 \mathrm{mmol})$ in ethanol $(20 \mathrm{ml})$, and then warmed to $80^{\circ} \mathrm{C}$ and refluxed for 72 hours, using the same procedure as above. The organic productrs were dissolved in methanol and cooled to $-78^{\circ} \mathrm{C}$, in an acetone slush bath, from which a white solid crystallised out and was identified as trans-1.4(z-1-ethoxy-2.3.3.3-tetrafluoroprop-2-enyl)cyclohexane ($\mathbf{8 0}$) ($1.0 \mathrm{~g}, 52 \%$) m.p. $45-46^{\circ} \mathrm{C}$ (Found: C , $48.4 ; \mathrm{H}, 5.0 . \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~F}_{8} \mathrm{O}_{2}$ requires: $\mathrm{C}, 48.5 ; \mathrm{H}, 5.1 \%$); NMR number 57, MS spectrum 59, IR spectrum 38.

Appendices and References

Appendix One
 NMR Data

1. 4-Methyl-1,1,1,2,3,3-hexafluoropentane (28)
2. 1,1,1,2,3,3-Hexafluorohexane (29)
3. 1,1,1,2,3,3-Hexafluoro-4,4-dimethylpentane (30)
4. 1,1,1,2,3,3-Hexafluoro-5-methylhexane (31)
5. 1,1,2,3,3,3-Hexafluoropropylcyclopentane (25)
6. 1,x-Bis($1,1,2,3,3,3$-hexafluoropropyl)cyclopentane ($\mathrm{x}=2,3$) (26)
7. 1,1,2,3,3,3-Hexafluoropropylcyclohexane (24)
8. 1,x-Bis(1,1,2,3,3,3-hexafluoropropyl)cyclohexane ($\mathrm{x}=2-4$) (27)
9. trans-1,4-Bis(1,1,2,3,3,3-hexafluoropropyl)cyclohexane (27a)
10. x -($1,1,2,3,3,3$-Hexafluoropropyl) cis-decalin ($\mathrm{x}=1,2,9$) (33)
11. x, y - $\operatorname{Bis}(1,1,2,3,3,3$-hexafluoropropyl) cis-decalin $(\mathrm{x}=1, \mathrm{y}=2-10, \mathrm{x}=2, \mathrm{y}=3-10$) (34)
12. x -(1,1,2,3,3,3-Hexafluoropropyl)trans-decalin ($\mathrm{x}=1,2$) (35)
13. $\mathrm{x}, \mathrm{y}-\operatorname{Bis}(1,1,2,3,3,3$-hexafluoropropyl)trans-decalin ($\mathrm{x}=1, \mathrm{y}=2-10, \mathrm{x}=2, \mathrm{y}=3-10$) (36)
14. 2-exo-(1,1,2,3,3,3-Hexafluoropropyl)norbornane (37)
15. 2,x-Bis($1,1,2,3,3,3$-hexafluoropropyl)norbornane ($\mathrm{x}=5,6$) (38)
16. 1-(1,1,2,3,3,3-Hexafluoropropyl)adamantane (22)
17.1,3-Bis(1,1,2,3,3,3-hexafluoropropyl)adamantane (23)
17. 1,3,5,-Tris(1,1,2,3,3,3-hexafluoropropyl)adamantane (39)
18. 1,3,5,7-Tetrakis(1,1,2,3,3,3-hexafluoropropyl)adamantane (40)
19. Z-Pentafluoroprop-2-enylcyclohexane (43a)
20. E-Pentafluoroprop-2-enylcyclohexane (43b)
21. 1-(E-Pentafluoroprop-2-enyl)adamantane (45a)
22. 1-(Z-Pentafluoroprop-2-enyl)adamantane (45b)
23. trans-1,4-Bis(Z-pentafluoroprop-2-enyl)cyclohexane (46)
24. cis-1,3-Bis(Z-pentafluoroprop-2-enyl)cyclohexane (47)
25. Z-Pentafluoroprop-2-enylcyclopentane (49)
26. trans-1,3-Bis(Z-pentafluoroprop-2-enyl)cyclopentane (50a)
27. cis-1,3-Bis(Z-pentafluoroprop-2-enyl)cyclopentane (50b)
28. trans-1,2-Bis(Z-pentafluoroprop-2-enyl)cyclopentane (50c)
29. 2-(Z-Pentafluoroprop-2-enyl)trans-decalin (51b)
30. 1-(Z-Pentafluoroprop-2-enyl)trans-decalin (51a)
31. 1-(Z-Pentafluoroprop-2-enyl) cis-decalin (52a)
32. 2-(Z-Pentafluoroprop-2-enyl)cis-decalin (52b)
33. exo-2-(Z-Pentafluoroprop-2-enyl)norbornane (53)
34. exo-2,5-Bis(Z-pentafluoroprop-2-enyl)norbornane (54a)
35. exo-2,6-Bis(Z-pentafluoroprop-2-enyl)norbornane (54b)
36. 1,3,5,7-Tetrakis(E-pentafluoroprop-2-enyl)adamantane (55)
37. 1-(Z-Pentafluoroprop-2-enyl)-3,5,7-tris(E-pentafluoroprop-2-enyl)adamantane (55a)
38. Perfluoro-2,5-dipropyltetrahydrofuran (59)
39. Perfluoropropylcyclohexane (60)
40. Perfluoropropylcyclopentane (61)
41. trans-Perfluoro-1,4-dipropylcyclohexane (62a)
43.cis-Perfluoro-1,4-dipropylcyclohexane (62b)
42. trans-Perfluoro-1,3-dipropylcyclohexane (63a)
43. cis-Perfluoro-1,3-dipropylcyclohexane (63b)
44. Perfluoro-1, x-dipropylcyclopentane ($x=2,3$) (64)
45. Perfluoro-x-propyldecalin ($x=1,2,9$) (66)
46. Perfluorooctane (68a)
47. Perfluorohexane (69a)
48. 1H-Perfluorohexane (70)
49. x-(1,1,2,3,3,3-Hexafluoropropyl)cyclohexyl chloride ($x=2-4$) (74)
50. $x-(1,1,2,3,3,3-$ Hexafluoropropyl)cyclopentyl chloride ($\mathrm{x}=2,3$) (75)
51. x-($1,1,2,3,3,3$-Hexafluoropropyl)cyclohex-1-ene ($x=2-4$) (76)
52. x -(1,1,2,3,3,3-Hexafluoropropyl)cyclopent-1-ene ($\mathrm{x}=2,3$) (78)
53. Z-1-Ethoxy-2,3,3,3-tetrafluoroprop-2-enylcyclohexane (44a)
54. E-1-Ethoxy-2,3,3,3-tetrafluoroprop-2-enylcyclohexane (44b)
55. trans-1,4-Bis(Z-1-ethoxy-2,3,3,3-tetrafluoroprop-2-enyl)cyclohexane (80)
56. 4-Methyl-1,1,1,2,3,3-hexafluoropentane (28)

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{1} \mathrm{H}$				
1.12	m		6	e
2.34	m		1	a
4.82	d of m	${ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=44$	1	c
${ }^{19} \mathrm{~F}$				
-74.5	br s		3	d
-117.7	A of $A B$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=265$		
-121.8	B of $A B$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=265$	2	b
-212.0	d	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{H}}=27$	1	c

2. 1, 1, 1,2,3,3-Hexafluorohexane (29)

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{1} \mathrm{H}$				
1.00	m		3	e
1.58	m		2	
1.90	m		2	a
4.82	d of m	${ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=44$	1	c
${ }^{19} \mathrm{~F}$				
-74.5	br s		3	d
-108.0	A of $A B$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=269$		
-111.1	B of $A B$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=270$	2	b
-211.0.0	br s		1	c

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{1} \mathrm{H}$				
1.14	s		9	e
4.91	d	${ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=44$	1	c
	d	${ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=20$		
	q	${ }^{4} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=5.9$		
${ }^{19} \mathrm{~F}$				
-74.6	S		3	d
-117.6	A of $A B$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=270$		
-126.1	B of $A B$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=270$	2	b
-206.9	d	$2 \dot{\mathrm{~J}}_{\mathrm{F}-\mathrm{H}}=40$	1	c

4. 1, 1,1,2,3,3-Hexafluoro-5-methylhexane (31)

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{1} \mathrm{H}$				
0.88	d	${ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4.5$		f
1.39	br s			e
1.61				a
4.91	d of m	${ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=44$		c
${ }^{19} \mathrm{~F}$				
-75.5	s		3	d
-105.9	A of $A B$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=265$		
-109.5	B of $A B$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=265$	2	b
-210.3	br s		1	c

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{1} \mathrm{H}$				
1.63	m		8	e,f
2.52	m		1	a
4.74	d	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{H}}=44.3$	1	c
	d	${ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{H}}=20.7$		
	q	${ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{H}}=6.18$		
${ }^{19} \mathrm{~F}$				
-74.8	s		3	d
-114.4	A of $A B$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=266$		
-116.6	B of $A B$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=266$	2	b
-211.5	d	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{H}}=38$	1	c
${ }^{13} \mathrm{C}$				
25.1	brs			e
25.6	s			f
25.8	s			g
26.1	br s			h
42.5	t	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=22$		a
86.0	d	${ }^{1} \mathrm{~J}_{\text {C-F }}=195$		b
	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=37$		
	q	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=34$		
	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=30$		
120.2	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=251$		c
	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=249$		
	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=24$		
120.2	q	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=282$		d
	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=26$		

6. 1, x - $\operatorname{Bis}(1,1,2,3,3,3$-hexafluoropropyl)cyclopentane $(x=2,3)(26)$

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{1} \mathrm{H}$				
1.97	m		4	e,f,g,h
2.64	, m		1	a
4.78	m		1	c
${ }^{19} \mathrm{~F}$				
-74.67	br s		3	d
-74.92	br s			d
-116.64	overlapping m		2	b
-211.10	d	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{H}}=39.5$	1	c
-211.20	brs			c

7. 1, 1,2,3,3,3-Hexafluoropropylcyclohexane (24)

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{1} \mathrm{H}$				
1.24	m		5	$\mathrm{e}_{a x}, \mathrm{f}_{\text {ax }}, \mathrm{g}_{a x}, \mathrm{~h}_{\text {ax }}, \mathrm{i}_{\text {ax }}$
1.84	m		6	$\mathrm{a}_{\mathrm{ax}}, \mathrm{e}_{\mathrm{eq},}, \mathrm{f}_{\mathrm{eq}}, \mathrm{g}_{\mathrm{eq}}, \mathrm{h}_{\mathrm{eq}}, \mathrm{i}_{\text {eq }}$
4.65	d	${ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=41$		
	d	${ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{H}}=14$		
	q	$3 \mathrm{~J}_{\mathrm{F}-\mathrm{H}}=7.0$		
	d	${ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{H}}=6.6$	1	c
${ }^{19} \mathrm{~F}$				
-74.8	br s		3	d
-114.4	A of $A B$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=266$		
-118.8	B of $A B$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=266$	2	b
-212.3	d	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{H}}=39$	1	c
${ }^{13} \mathrm{C}$				
24.0	t	$3^{3} \mathrm{~J}_{\text {C-F }}=4.5$		e
25.3	s			f
25.5	s			g
25.5	m			i
25.8	s			h
41.6	t	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=21$		a
84.8	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=195$		c
	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=37$		
	q	${ }^{2} \mathrm{~J}_{\text {C-F }}=34$		
	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=31$		
119.9	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=252$		b
	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=248$		
	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=24$		
121.2	q	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=282$		d
	d	${ }^{2} \mathrm{~J}_{\text {C-F }}=26$		

8. 1, x - $\operatorname{Bis}(1,1,2,3,3,3$-hexafluoropropyl)cyclohexane ($x=2-4$)(27)

			\cdot	
Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{1} \mathrm{H}$				
1.33	m			a,e,f,g,h,i
1.69	. m			a,e,f,g,h,i
2.09	m			a,e,f,g,h,i
4.84	d of m	${ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=41$		c
${ }^{19} \mathrm{~F}$				
-76.96	br s		3	d
-120.94	m	-	2	b
-213.79	br s		1	c
-214.57	br s			

9. trans-1,4-Bis(1,1,2,3,3,3-hexafluoropropyl)cyclohexane (27a)

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{1} \mathrm{H}$				
1.36	m		2	$\mathrm{e}_{\mathrm{ax}}, \mathrm{f}_{\text {ax }}$
2.07	m		3	$\mathrm{a}, \mathrm{e}_{\mathrm{eq}}, \mathrm{f}_{\mathrm{eq}}$
4.83	d	${ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=44$	1	c
		${ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{H}}=21$		
		${ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{H}}=6.0$		
${ }^{19} \mathrm{~F}$				
-74.2	s		3	d
-117.1	A of $A B$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=269$	2	b
-118.4	B of $A B$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=267$		
-211.2	d	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{H}}=44$	1	c
${ }^{13} \mathrm{C}$				
22.8	t	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=4.4$		e
24.1	t	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=2.9$		f
40.6	t	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=22$		a
85.0	d	${ }^{1} \mathrm{~J}_{\text {C-F }}=196$		b
	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=38$		
	q	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=34$		
	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=31$		
119.3	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=253$		c
	d	${ }^{1} \mathrm{~J}_{\text {C-F }}=249$		
	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=24$		
120.9	q	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=282$		d
	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=26$.

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{1} \mathrm{H}$				
1.31	m			
1.56	- m		16	a,e,f,g,h,i, ${ }_{2}, \mathrm{k}, \mathrm{l}, \mathrm{m}$
1.70	m			
2.08	m		0.5	n
2.20	m		0.5	n
4.80	m		1	c
${ }^{19} \mathrm{~F}$				
-74.6	br s	-	3	d
-111.4	overlapping			
-118.5	m		2	b
-206.4	m		1	c
-212.1,	m			c

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{1} \mathrm{H}$				
1.00 to 1.75	overlapping m		16	a, e, f to m
2.10	m		1	n
4.83	m		1	c
${ }^{19} \mathrm{~F}$				
-74.4	br s		3	d
-74.8	br s			
-118.9	overlapping m		2	b
-211.9,	br s	-	1	c
-212.6	d	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{H}}=40$		

13. $x . y-\operatorname{Bis}(1,1,2,3,3,3$-hexafluoropropy1) trans-decalin $(x=1, y=2-10, x=2, y=3-10)(36)$

		$\overbrace{a}^{n}]_{f}^{e}-\left(\stackrel{b}{C} F_{2} \stackrel{c}{C F H C f}\right.$	3_{3}	
Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{1} \mathrm{H}$				
1.19 to 2.20	overlapping m		30	a, e to m,
2.62	m		1	n
- $4 . .90$	overlapping m		2	c
${ }^{19} \mathrm{~F}$				
-73.5	- br s		3	d
-74.1	br s			
-111.5	m			
-118.1 to -119.4	overlapping m		2	b
-204.2 to -211.9	overlapping m		1	c

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{1} \mathrm{H}$				
1.26	m		3	$h, g_{a x}, f_{a x}$
1.61	m		4	$\mathrm{e}_{\mathrm{ax}}, \mathrm{h}, \mathrm{g}_{\mathrm{eq},}, \mathrm{f}_{\text {eq }}$
1.75	m		1	$e_{\text {eq }}$
2.14	m		1	a
2.37	br s		1	i
2.45	br s		1	k
4.81	m		1	c
${ }^{19} \mathrm{~F}$				
-74.7	brs		3	d
113.0	A of $A B$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=265$		
-118.8	B of $A B$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=265$	2	b
-211.2	d	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{H}}=44$	1	c
${ }^{13} \mathrm{C}$				
28.0	s	.		g
30.4	s			f
31.4	s			e
35.8	s			i
36.9	br s			h
37.6	d	${ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=5$		k
44.9	t	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=22$		a
86.2	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=196$		c
	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=37$		
	q	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=34$		
	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=31$		
120.0	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=251$		b
	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=249$		
	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=22$		
121.3	q	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=282$		d
	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=29$		

	$\mathrm{CF}_{3} \mathrm{CF}$		$\stackrel{\stackrel{\mathrm{d}}{\mathrm{C}} \mathrm{FH}_{3}}{ }$	
Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{1} \mathrm{H}$				
1.00	m		3	h, $\mathrm{gax}, \mathrm{f}_{\mathrm{ax}}$
1.50	m		5	$\mathrm{e}, \mathrm{h}, \mathrm{g}_{\mathrm{eq}}, \mathrm{f}_{\mathrm{eq}}$
2.15	m		1	a
2.32, 2.39	br s		1	i
2.54, 2.80	brs		1	k
4.75	m		1	c
${ }^{19} \mathrm{~F}$				
-74.7	br s	-	3	d
-114.1	m		2	b
-210.8	m		1	c

16. 1-(1,1,2,3,3,3-Hexafluoropropyl)adamantane (22)

| | | | |
| :---: | :---: | :---: | :---: | :---: |
| | | | |
| | | | |

17.1,3-Bis(1, 1,2,3,3,3-hexafluoropropyl)adamantane (23)

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{1} \mathrm{H}$				
1.80	'm		6	
2.28	s		1	
4.93	d	${ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=44.0$	1	c
	d	${ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=20.2$		
	q	${ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=6.4$		
${ }^{19} \mathrm{~F}$				
-74.3	s	-	3	d
-121.7	A of $A B$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=275$		
-129.4	B of $A B$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=275$	2	b
-207.1	d	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{H}}=37$	1	c
${ }^{13} \mathrm{C}$				
27.0	s			g
31.8	m			e
33.8	s			f
35.3	s			h
40.6	t	${ }^{2} \mathrm{~J}_{\text {C-F }}=21$		a
83.8	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=197$		c
	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=42$		
	q	${ }^{2} \mathrm{~J}_{\text {C-F }}=34$		
	d	${ }^{2} \mathrm{~J}_{\text {C-F }}=26$		
119.1	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=261$		b
	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=247$		
	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=23$		
121.1	q	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=283$		c
	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=26$		

18. 1.3,5,-Tris(1,1,2,3,3,3-hexafluoropropyl)adamantane (39)

	$\mathrm{CF}_{3} \mathrm{CFHC}$		FHCF_{3}	
Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{1} \mathrm{H}$				
1.83	" m		12	e,f
2.15	s		1	g
4.95	d	${ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=41$	3	c
	d	${ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=19$		
	q	$4 \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=5.3$		
${ }^{19} \mathrm{~F}$				
-74.2	br s	-	3	d
-120.7	A of $A B$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=273$	2	b
-128.7	B of $A B$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=275$		
-207.3	d	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{H}}=29$	1	c
${ }^{13} \mathrm{C}$				
26.7	s			g
31.5	s			f
33.2	s			e
41.3	t	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=22$		a
84.1	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=197$		c
	q	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=42$		
	t	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=26$		
119.1	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=262$		b
	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=248$		
	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=26$		
121.0	q	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=283$		c
	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=26$		

			FHCF_{3}	
Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{1} \mathrm{H}$				
2.07	m		3	
5.99	d	${ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=42$	1	c
	d	$3^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=20$		
	q	${ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=6.4$		
${ }^{19} \mathrm{~F}$				
-74.1	s	,	3	d
-121.1	A of $A B$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=276$		
-127.6	B of $A B$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=276$	2	b
-207.1	d	, ${ }^{2} \mathrm{JF}_{\mathrm{F}-\mathrm{H}}=36$	1	c
${ }^{13} \mathrm{C}$				
30.1	s			e
41.6	t	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=22$		a
83.1	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=194$		c
	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=39$		
	q	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=34$		
119.0	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=261$		b
	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=249$		
	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=22$		
121.4	q	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=282$		c
	d	${ }^{2} J_{\text {C-F }}=26$		

Chemical
shift \quad Multiplicity
21. E-Pentafluoroprop-2-enylcyclohexane.(43b)

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{19} \mathrm{~F}$				
-68.2	d	${ }^{4} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=19$	3	c
-148.3	d	${ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=132$	1	a
	quintet	${ }^{4} \mathrm{~J}_{\mathrm{F}-\mathrm{F}, \mathrm{H}}=24$		
-176.5	d	${ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=132$	1	b

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{1} \mathrm{H}$				
1.76	S		2	e
1.96	S		2	g
2.06	S		1	f
${ }^{19} \mathrm{~F}$				
-67.6	d	$3^{3} \mathrm{~J}_{\mathrm{Fd}-\mathrm{Fb}}=21$	3	d
-149.3	d	${ }^{3} \mathrm{~J}_{\mathrm{Fb}-\mathrm{Fc}}=131$	1	b
	q	${ }^{4} \mathrm{~J}_{\mathrm{Fb}-\mathrm{Fd}}=22$		
-175.6	d	${ }^{3} \mathrm{~J}_{\mathrm{Fc}-\mathrm{Fb}}=130$	1	c
${ }^{13} \mathrm{C}$				
27.8	s			
36.3	s			
36.8	s			
119.5	q	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=273$		d
	d	${ }^{2} \mathrm{~J}_{\text {C-F }}=36$		
	d	${ }^{3} \mathrm{~J}_{\text {C-F }}=3.5$		
138.2	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=242$		c
	q	${ }^{3} \mathrm{~J}_{\text {C-F }}=54$		
	d	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=39$		
160.2	d	${ }^{1} \mathrm{~J}_{\text {C-F }}=260$		b
	d	${ }^{3} \mathrm{~J}_{\text {C-F }}=36$		
	q	${ }^{4} \mathrm{~J}_{\text {C-F }}=2.3$.	

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{1} \mathrm{H}$				
1.77	s		2	e
1.95	s		2	g
2.07	s		1	f
${ }^{19} \mathrm{~F}$				
-59.9	s		3	d
-125.2	br s		1	b
-154.7	q	${ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=11$	1	c
${ }^{13} \mathrm{C}$				
27.9	s			
36.2	s			
37.1	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=21$		
38.0	q	${ }^{3} \mathrm{~J}_{\text {C-F }}=2.3$		
120.1	q	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=270$		d
	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=36$		
	d	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=8.4$		
137.8	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=249$		c
	q	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=43$		
	d	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=30$		
160.7	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=264$		b
	d	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=13$		

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{1} \mathrm{H}$				
1.69	m		2	eax
1.89	d	${ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.2$	2	$\mathrm{e}_{\text {eq }}$
2.56	d	${ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=32$	1	a
${ }^{19} \mathrm{~F}$				
-65.9	s		3	d
-132.2	d	${ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{H}}=31$	1	b
-159.2	q	${ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=12$	1	c
	d	${ }^{4} \mathrm{~J}_{\mathrm{F}-\mathrm{H}}=3.8$		
${ }^{13} \mathrm{C}$				
27.8	s			e
35.5	d	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=21$		a
120.2	q	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=270$		d
	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=35$		
	d	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=9.6$		
135.3	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=252$		c
		${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=40$		
		${ }^{3} \mathrm{~J}_{\text {C-F }}=24$		
155.3	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=266$		b
	d	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=10$		

| Chemical
 shift | Multiplicity | Coupling constant Hz | Relative
 intensity |
| :---: | :---: | :---: | :---: | Assignment

${ }^{19} \mathrm{~F}$

-66.3	s		3	d
-132.2	d	$\mathrm{JJ}_{\mathrm{F}-\mathrm{H}}=31$	1	b
-159.1	br s		1	c

${ }^{13} \mathrm{C}$

24.6	s		f
27.4	d	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=2.3$	e
30.0	s		g
35.6	t	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=21$	a
119.8	q	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=270$	d
	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=35$	
	d	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=9.6$	
135.1	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=253$	c
	q	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=41$	
	d	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=24$	b
154.5	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=266$	
	d	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=11$	
	q	${ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3.5$	

26. Z-Pentafluoroprop-2-enylcyclopentane (49)

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{1} \mathrm{H}$				
1.63	overlapping m			
2.52	d	${ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=32$		-
${ }^{19} \mathrm{~F}$				
-65.6	s		3	d
-133.4	d	${ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{H}}=31$	1	b
-162.2	br s		1	c
${ }^{13} \mathrm{C}$				
26.2	s			f
29.5	s			e
36.8	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=22$		a
	t	${ }^{3} \mathrm{~J}_{\text {C-F }}=2.3$		
120.4	q	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=270$		d
	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=35$		
	d	${ }^{3} \mathrm{~J}_{\text {C-F }}=9.6$		
134.7	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=250$		c
	q	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=40$		
	d	${ }^{3} \mathrm{~J}_{\text {C-F }}=24$		
155.3	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=264$		b
	d	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=10$		
	q	${ }^{4} \mathrm{~J}_{\text {C-F }}=3.5$		

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{1} \mathrm{H}$				
1.65	overlapping m		3	e,f
2.50	overlapping m	.	1	a
${ }^{19} \mathrm{~F}$				
-66.9	s		3	d
-135.0	d	${ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{H}}=31$	1	b
-159.3	br s		1	c
${ }^{13} \mathrm{C}$				
29.9	s			e
31.4	s			f
36.6	d	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=22$		a
120.0	q	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=270$		d
	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=35$		
	d	${ }^{3} \mathrm{~J}_{\text {C-F }}=9.6$		
135.2	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=252$		c
	q	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=40$		
	d	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=24$		
153.6	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=264$		b
	d	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=11$		
	q	${ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3.4$		

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{1} \mathrm{H}$				
1.65	overlapping m		3	e,f
2.50	overlapping m		1	a
${ }^{19} \mathrm{~F}$				
-66.9	s		3	d
-134.9	d	${ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{H}}=31$	1	b
-159.0	br s		1	c
${ }^{13} \mathrm{C}$				
28.4	s			e
32.2	s			f
37.0	d	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=22$		a
120.0	q	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=270$		d
135.4	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=252$		c
153.4	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=266$		b

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{1} \mathrm{H}$				
1.65	overlapping m		3	e,f
2.50	overlapping m		1	a
${ }^{19} \mathrm{~F}$				
-66.9	s		3	d
-135.9	d	${ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{H}}=31$	1	b
-156.5	br s		1	c
${ }^{13} \mathrm{C}$				
25.1	s			f
28.9	s			e
40.3	d	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=23$		a
119.8	q	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=270$		d
136.5	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=250$		c
151.4	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=268$		b

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{1} \mathrm{H}$				
1.02,1.25,	overlapping m		16	e,f,g,h,i,j,k,l,m,
1.61,1.72				n
2.58	d	${ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=32$	1	a
${ }^{19} \mathrm{~F}$				
-66.3	s		3	d
-131.7	d	${ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{H}}=30$	1	b
-161.5	br s		1	c
${ }^{13} \mathrm{C}$				
26.4	s			i
26.5	s	.		j
28.5	d	${ }^{3} \mathrm{~J}_{\text {C-F }}=2.6$		f
32.8	s			g
33.5	s			h
33.6	S			k
35.6	d	${ }^{3} \mathrm{~J}_{\text {C-F }}=2.7$		e
36.4	d	${ }^{2} \mathrm{~J}_{\text {C-F }}=21$		a
42.2	s			n
42.3	s			m
120.1	q	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=271$		d
	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=35$		
	d	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=9.6$		
135.5	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=250$		c
	q	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=40$		
	d			
156.0	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=266$		b
	d	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=9.4$		
	q	${ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3.4$		

Chemical
shift Multiplicity

			-	
Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{1} \mathrm{H}$				
1.29, 1.56	overlapping m			e,f,g,h,i,j,k,l,m,
1.75, 1.84				n
2.58	d	${ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=32$	1	a
${ }^{19} \mathrm{~F}$				
-66.2	s		3	d
-132.2	d.	${ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{H}}=30$	1	b
-161.5	br s		1	c
${ }^{13} \mathrm{C}$				
20.9	s			i
23.1	d	${ }^{3} \mathrm{~J}_{\text {C-F }}=2.6$		e
24.9	S			k
26.1	s			g
27.0	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=21$		j,f
32.1	s			h
35.7	s			n
35.9	s			m
37.3	S			a
120.4	q	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=270$		d
	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=35$.		
	d	$3^{3} \mathrm{~J}_{\text {C-F }}=9.6$		
134.8	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=248$		c
	q	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=40$		
	d	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=24$		
156.5	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=265$		b
	d	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=9.6$		
	q	${ }^{4} \mathrm{~J}_{\text {C-F }}=3.4$		

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{1} \mathrm{H}$				
$1.29,1.56$	overlapping m		-	e,f,g,h,i,j,k,l,m,
1.75, 1.84				n
2.65	d	${ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=32$	1	a
${ }^{19} \mathrm{~F}$				
-66.2	s		3	d
-131.3	d	${ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{H}}=30$	1	b
-161.3	br s		1	c
${ }^{13} \mathrm{C}$				
20.8	s			j
25.6	s			h
28.0	d	${ }^{3} \mathrm{~J}_{\text {C-F }}=2.6$		f
28.9	s			g
31.3	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=21$		a
31.6	s			i
32.2	s			k
34.9	d	${ }^{3} \mathrm{~J}_{\text {C-F }}=2.3$		e
35.2	s			n
35.3	s			m
120.4	q	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=270$		d
	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=35$		
	d	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=9.6$		
134.9	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=248$		c
	q	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=40$		
	d	${ }^{3} \mathrm{~J}_{\text {C-F }}=24$		
156.7	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=266$		b
	d	${ }^{3} \mathrm{~J}_{\text {C-F }}=9.6$		
	q	${ }^{4} \mathrm{~J}_{\text {C-F }}=3.4$		

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{1} \mathrm{H}$				
1.25	m		3	f,g.j
1.57	m		4	f,g,i,j
1.71	m		1	i
2.35	s		2	e,h
2.54	d	${ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=36$	1	a
${ }^{19} \mathrm{~F}$				
- -67.1	s		3	d
-130.7	d	${ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{H}}=31$	1	b
-162.2	brs		$\cdot 1$	c
${ }^{13} \mathrm{C}$				
20.9	s			i
23.1	d	${ }^{3} \mathrm{~J}_{\text {C-F }}=3.1$		e
26.1	s			g
27.0	S			f
32.1	s			h
35.7	S			n
35.9	s			m
37.3	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=21$		a
120.4	q	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=270$		d
	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=35$		
	d	${ }^{3} \mathrm{~J}_{\text {C-F }}=9.6$		
134.5	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=250$		c
	q	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=40$		
	d	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=25$		
156.5	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=265$		b
	d	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=9.6$		
	q	${ }^{4} \mathrm{~J}_{\text {C-F }}=3.4$		

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{1} \mathrm{H}$				
1.65	m			fax, h
1.86	m			feq
2.46	s			e
2.53	m			g
2.63	m		\cdot	a
${ }^{19} \mathrm{~F}$				
-66.0	s		3	d
-130.5	d	${ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{H}}=32$	1	b
-159.3	brs		1	c
${ }^{13} \mathrm{C}$				
35.2	s			f
37.0	s			h
38.0	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=21$		a
	d	${ }^{3} \mathrm{~J}_{\text {C-F }}=2.3$		
41.9	d	${ }^{3} \mathrm{~J}_{\text {C-F }}=2.6$		e
120.5	q	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=270$		d
	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=35$		
	d	${ }^{3} \mathrm{~J}_{\text {C-F }}=9.6$		
135.3	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=251$		c
	q	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=40$		
	d	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=25$		
155.2	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=266$		b
	d	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=11$		
	q	${ }^{4} \mathrm{~J}_{\text {C-F }}=3.4$		

Chemical shift	Multiplicity	Coupling constant Hż	Relative intensity	Assignment
${ }^{1} \mathrm{H}$				
1.65	m		4	$h, f_{\text {ax }}$
1.86	m		2	$\mathrm{f}_{\text {eq }}$
2.46	m		1	g
2.53	m		1	e
2.63	d	${ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=36$	2	a
${ }^{19} \mathrm{~F}$				
66.0	s		3	d
128.7	d	${ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{H}}=30$	1	b
158.6	br s		1	c
${ }^{13} \mathrm{C}$				
33.1	s			f
36.2	S			g
36.5	s			h
41.9	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=20$		a
48.2	s			e
120.4	q	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=269$		d
	d	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=35$		
	d	${ }^{3} \mathrm{~J}_{\text {C-F }}=9.4$		
135.7	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=252$		c
	q	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=40$		
	d	${ }^{3} \mathrm{~J}_{\text {C-F }}=25$		
154.7	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=267$		b
	d	${ }^{3} \mathrm{~J}_{\text {C-F }}=11$		
	q	${ }^{4} \mathrm{~J}_{\text {C-F }}=3.4$		

Chemical shift	Multiplicity	.Coupling constant Hz	Relative intensity	Assignment
${ }^{1} \mathrm{H}$				
2.21	s		2	e

${ }^{19} \mathrm{~F}$

-67.6	d
149.7	d
	q
170.3	d
	q

$$
\begin{gathered}
{ }^{3} \mathrm{~J}_{\mathrm{Fd}-\mathrm{Fb}}=23 \\
{ }^{2} \mathrm{~J}_{\mathrm{Fb}-\mathrm{Fc}}=134 \\
{ }^{3} \mathrm{~J}_{\mathrm{Fb}-\mathrm{Fd}}=23 \\
{ }^{2} \mathrm{~J}_{\mathrm{Fc}-\mathrm{Fb}}=135 \\
{ }^{4} \mathrm{~J}_{\mathrm{Fc}-\mathrm{Fd}}=9.4
\end{gathered}
$$

$$
3
$$

$$
\mathrm{d}
$$

$$
{ }^{2} \mathrm{~J}_{\mathrm{Fb}-\mathrm{Fc}}=134 \quad 1 \quad \mathrm{~b}
$$

1 c
${ }^{13} \mathrm{C}$

36.4	s	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=21$	e
38.4	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=273$	a
118.8	q	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=36$	d
	d	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3.4$	
	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=248$	c
139.7	d	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=52$	
	q	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=40$	
	d	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=261$	b
156.1	d	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=39$	

38. 1-(Z-Pentafluoroprop-2-enyl)-3,5,7-tris(E-pentafluoroprop-2-enyl)adamantane (55a)

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{1} \mathrm{H}$				
	s		1	a
2.19	s		1	e
${ }^{19} \mathrm{~F}$				
-60.4	s		3	d
-68.5	s		9	h
-126.7	s		1	b
-148.6	s		1	c
-150.6	m		3	f
-171.6	d	${ }^{2} \mathrm{~J}_{\mathrm{Fb}-\mathrm{Fc}}=135$	3	g

39. Perfluoro-2,5-dipropyltetrahydrofuran (59)

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{19} \mathrm{~F}$				
-81.6	S			d
-120.4	A of $\mathrm{AB}(1)$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=306$		b
-121.0	A of $A B(2)$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=306$		b
-121.2	A of $A B(3)$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=297$		e
-121.7	s			a
123.0	S			a
124.3	B of $\mathrm{AB}(1)$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=306$		b
124.4	B of $A B(2)$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=306$		b
125.0	A of $A B(4)$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=261$		c
125.5	s			c
-126.7	B of $\mathrm{AB}(4)$	${ }^{2} \mathrm{~J}_{\text {F-F }}=261$		c
-127.6	A of $A B(5)$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=258$		e
-131.4	B of $A B(3)$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=297$		e
-132.9	B of $A B(5)$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=258$		e

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{19} \mathrm{~F}$				
-80.6	s		3	d
-112.3	s		2	b
-118.2	A of $\mathrm{AB}(1)$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=298$	2	e
-121.9	A of $\mathrm{AB}(2)$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=284$	2	f
-123.9	A of $A B(3)$	${ }^{2} \mathrm{~J}_{\text {F-F }}=288$	1	g
-128.4	s		2	c
-128.9	B of $\mathrm{AB}(1)$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=302$	2	e
-139.9	B of $A B(2)$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=287$	2	f
-142.2	B of $A B(3)$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=289$	1	g
-185.6	s		1	a

41. Perfluoropropylcyclopentane (61)

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{19} \mathrm{~F}$				
-81.2	S		3	d
-116.1	S		2	b
-123.0	A of AB (1)	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=266$	2	e
-125.1	s		2	c
-128.3	B of $\mathrm{AB}(1)$	$2 \mathrm{~J}_{\text {F-F }}=270$	2	e
-129.0	A of $A B(2)$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=259$	2	f
-132.5	B of $\mathrm{AB}(2)$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=259$	2	f
-185.2	s		1	a

42. Trans-perfluoro-1,4-dipropylcyclohexane (62a)

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{19} \mathrm{~F}$				
-81.2	s		3	d
-117.7	A of $A B$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=297$	4	e
-119.4	S		2	b
-126.1	S		2	c
-126.7.	B of $A B$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=297$	4	e
-186.7	S	,	1	a

43.Cis-perfluoro-1.4-dipropylcyclohexane (62b)

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{19} \mathrm{~F}$				
-81.0	s		3	d
-113.4	s		2	b
-119.4	s		2	c
-124.8	S		4	e
-183.0	s		1	a

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{19} \mathrm{~F}$				
-80.8	s		6	d
-113.9	s		4	b
-120.0	A of $\mathrm{AB}(1)$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=288$	1	e_{ax}
-121.3	A of $A B(2)$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=300$	2	f_{ax}
-122.8	A of $A B(3)$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=286$	1	g_{ax}
-125.0	B of $A B(1)$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=289$	1	$\mathrm{e}_{\text {eq }}$
-127.5	s		4	c
-131.3	B of $A B(2)$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=300$	2	$\mathrm{f}_{\text {eq }}$
-140.8	B of $A B(3)$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=287$	1	$\mathrm{g}_{\text {eq }}$
-184.3	S		2	a

45. cis-Perfluoro-1,3-dipropylcyclohexane (63b)

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{19} \mathrm{~F}$				
-80.9	s		6	d
-111.4	s			b
-115.1	s			f
-115.6	S			e
-126.2	s			g
-127.7	s			c
-182.8	s			a

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{19} \mathrm{~F}$				
-83.3	s		6	d
-114.2	m			e
-117.1	A of $A B(1)$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=295$		b
-117.9	m			b
-118.2	B of $A B(1)$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=295$		b
-122.4	m			e
-123.0	A of $\mathrm{AB}(2)$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=267$		f
-124.3	B of $A B(2)$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=267$		f
-125.6	A of $A B(3)$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=295$		c
-125.8	A of $A B(4)$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=295$		c
-126.1	A of $A B(5)$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=278$.	f
-127.5	B of $A B(3)$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=295$		c
-127.9	B of $A B(4)$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=296$		c
-134.1	B of $A B(5)$	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=277$		f
-183.9	s		2	a
-185.9	S			a

47. Perfluoro-x-propyldecalin ($\mathrm{x}=1,2,9$) (66)

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{19} \mathrm{~F}$				
-80.6	s			d
-108.6 to -140.2	overlapping m			a-c,e-1
-182.2 to -188.2	overlapping m			n,m,o

	$\mathrm{F}_{3} \mathrm{C}^{-}$			
Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{19} \mathrm{~F}$				
-81.2	s		3	a
-121.4	s		2	d
-122.2	s		2	c
-126.0	s		2	b

49. Perfluorohexane (69a)

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{19} \mathrm{~F}$				
-80.9	s		3	a
-122.5	s		2	c
-126.1	s		2	b

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{1} \mathrm{H}$				
8.34	t	$\begin{gathered} { }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=52 \\ 4 \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=5 \end{gathered}$		f
${ }^{19} \mathrm{~F}$				
-81.4	S		3	a
-122.7	S		2	d
-123.4	s		2	c
-126.2	S		2	b
-129.8	s		2	e
-137.6	d	${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{H}}=52$	2	f

51. x-(1,1,2,3,3,3-Hexafluoropropyl)cyclohexyl chloride ($x=2-4$) (74)

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{1} \mathrm{H}$				
1.35-2.28	overlapping m			a,f,g,h,j,k
2.67	m			a
3.87	m			e
4.48	m			e
4.61	m			e
4.81	d	$\mathrm{J}_{\mathrm{H}-\mathrm{F}}=44$		c
${ }^{19} \mathrm{~F}$				
-74.5	s			d
-117.3	m			b
-118.3	m			b
-211.6	brs			c

52. x -(1.1,2,3,3,3-Hexafluoropropyl)cyclopentyl chloride $(\mathrm{x}=2,3)(75)$

Chemical shift	Multiplicity	Coupling constant	Relative
intensity			

Chemical shift	Multiplicity		

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{1} \mathrm{H}$				
1.29	t	$\mathrm{J}_{\mathrm{H}-\mathrm{H}}=7.0$		j
1.56-1.79	m			e,f,g
2.32	m			a
4.13	q	$\mathrm{J}_{\mathrm{H}-\mathrm{H}}=6.9$		h
	d	$\mathrm{J}_{\mathrm{H}-\mathrm{F}}=3.4$		
${ }^{19} \mathrm{~F}$				
-62.8	br s			d
-161.0	br s			c

56. E-1-Ethoxy-2,3,3,3-tetrafluoroprop-2-enylcyclohexane (44b)

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{1} \mathrm{H}$				
1.25	t	$\mathrm{J}_{\mathrm{H}-\mathrm{H}}=7.0$		j
1.56-1.79	m			e,f,g
2.48	m			a
3.82	m			h
${ }^{19} \mathrm{~F}$				
-67.0	br s			d
-162.2	br s			c

Chemical shift	Multiplicity	Coupling constant Hz	Relative intensity	Assignment
${ }^{1} \mathrm{H}$				
- 1.30	t	$\mathrm{J}_{\mathrm{H}-\mathrm{H}}=7.0$		g
1.59,1.67	m			e
2.32	m	-		a
4.14	$\begin{array}{r} \mathrm{q} \\ \mathrm{~d} \end{array}$	$\begin{aligned} \mathrm{J}_{\mathrm{H}-\mathrm{H}} & =6.8 \\ \mathrm{~J}_{\mathrm{H}-\mathrm{F}} & =3.4 \end{aligned}$		f
${ }^{19} \mathrm{~F}$				
-63.2	s			d
-161.0	m			c
${ }^{13} \mathrm{C}$				
15.4	s			g
28.7				e
37.3				a
69.0				f
121.2	q	$\mathrm{J}_{\mathrm{F}-\mathrm{F}}=270$		d
	d	$\mathrm{J}_{\mathrm{F}-\mathrm{F}}=37$		
133.6	d	$\mathrm{J}_{\mathrm{F}-\mathrm{F}}=204$		c
	q	$\mathrm{J}_{\mathrm{F}-\mathrm{F}}=39$		
150.0	brs	.		b

Appendix Two

Selected NMR Spectra

1. exo-2-(1,1,2,3,3,3-Hexafluoropropyl)norbornane (37)

2D ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HETCOR NMR spectrum (expansion)
2. exo-2-(1,1,2,3,3,3-Hexafluoropropyl)norbornane (37)

2D ${ }^{1} \mathrm{H}$ COSY NMR spectrum (expansion)
3. Perfluoro-2,5-dipropyltetrahydrofuran (59)

2D 19.F COSY NMR spectrum (expansion)
4. Perfluorodipropylcyclohexane (62) \& (63)

2D ${ }^{19} \mathrm{~F}$ COSY NMR spectrum (expansion)
5. Perfluorodipropylcyclopentane (64)

2D ${ }^{19}$ F. COSY NMR spectrum (expansion)

1. exo-2-(1,1,2,3,3,3-Hexafluoropropyl)norbornane (37)
$2 D^{1} \mathrm{H}^{13} \mathrm{C}$ HETCOR NMR spectrum (expansion)

2. exo-2-(1, 1,2,3,3,3-Hexafluoropropyl)norbomane (37)

2D ${ }^{1} \mathrm{H}$ COSY NMR spectrum (expansion)

3. Perfluoro-2.5-dipropyltetrahydrofuran (59)

2D ${ }^{19} \mathrm{~F}$ COSY NMR spectrum (expansion)

4. Perfluorodipropylcyclohexane (62) \& (63)

2D ${ }^{19} \mathrm{~F}$ COSY NMR spectrum (expansion)

$$
\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CF}_{2}
$$

5. Perfluorodipropylcyclopentane (64)

2D ${ }^{19}$ F COSY NMR spectrum (expansion)
$\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CF}_{2} \widehat{\mathrm{~F}} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{3}$

Appendix Three

IR Spectra

1. 4-methyl-1,1,1,2,3,3-hexafluoropentane (28)
2. 1,1,1,2,3,3-hexafluoro-4,4-dimethylpentane (30)
3. 1,1,2,3,3,3-hexafluoropropylcyclopentane (25)
4. 1,x-bis(1,1,2,3,3,3-hexafluoropropyl)cyclopentane ($\mathrm{x}=2,3$) (26)
5. 1,1,2,3,3,3-hexafluoropropylcyclohexane (24)
6. 1,x-bis(1,1,2,3,3,3-hexafluoropropyl)cyclohexane ($\mathrm{x}=2-4$) (27)
7. 2R,2'S-trans-1,4-bis(1,1,2,3,3,3-hexafluoropropyl)cyclohexane (27a)
8. x -($1,1,2,3,3,3$-hexafluoropropyl)cis-decalin ($\mathrm{x}=1,2,9$) (33)
9. x, y-bis $(1,1,2,3,3,3$-hexafluoropropyl) cis-decalin ($\mathrm{x}=1, \mathrm{y}=2-10, \mathrm{x}=2, \mathrm{y}=3-10$) (34)
10. \dot{x}-(1,1,2,3,3,3-hexafluoropropyl)trans-decalin ($\mathrm{x}=1,2$) (35)
11. x, y-bis(1,1,2,3,3,3-hexafluoropropyl)trans-decalin $(\mathrm{x}=1, \mathrm{y}=2-10, \mathrm{x}=2, \mathrm{y}=3-10)(36)$
12. 2-exo-(1,1,2,3,3,3-hexafluoropropyl)norbornane (37)
13. 2,x-bis(1,1,2,3,3,3-hexafluoropropyl)norbornane ($\mathrm{x}=5,6$) (38)
14. 1-(1,1,2,3,3,3-hexafluoropropyl)adamantane (22)
15.1,3-bis(1,1,2,3,3,3-hexafluoropropyl)adamantane (23)
15. 1,3,5,-tris(1,1,2,3,3,3-hexafluoropropyl)adamantane (39)
16. 1,3,5,7-tetrakis(1,1,2,3,3,3-hexafluoropropyl)adamantane (40)
17. Z-Pentafluoroprop-2-enylcyclohexane (43a)
18. 1-(E-pentafluoroprop-2-enyl)adamantane (45a)
19. 1-(Z-pentafluoroprop-2-enyl)adamantane (45b)
20. trans-1,4-bis(Z-pentafluoroprop-2-enyl)cyclohexane (46)
21. cis-1,3-bis(Z-pentafluoroprop-2-enyl)cyclohexane (47)
22. Z-Pentafluoroprop-2-enylcyclopentane (49)
23. 1, x-bis(Z-pentafluoroprop-2-enyl)cyclopentane ($x=2,3$) $(\mathbf{5 0})$
24. x-(Z-pentafluoroprop-2-enyl)trans-decalin ($\mathrm{x}=1,2$) (51)
25. x-(Z-Pentafluoroprop-2-enyl)cis-decalin ($\mathrm{x}=1,2,9$) (52)
26. exo-2-(Z-Pentafluoroprop-2-enyl)norbornane (53)
27. exo-2,x-Bis(Z-pentafluoroprop-2-enyl)norbornane ($x=5,6$)(54)
28. 1,3,5,7-Tetrakis(E-pentafluoroprop-2-enyl)adamantane (55)
29. Perfluoropropylcyclohexane (60)
30. Perfluoropropylcyclopentane (61)
31. Perfluoro-1,4-dipropylcyclohexane (62)
32. Perfluoro-1,3-dipropylcyclohexane (63)
33. Perfluoro-1, x-dipropylcyclopentane $(x=2,3)(64)$
34. Perfluoro-x-propyldecalin ($x=1,2,9$) (66)
35. x-(1,1,2,3,3,3-Hexafluoropropyl)cyclohex-1-ene ($x=2-4$) (76)
36. 1-Ethoxy-2,3,3,3-tetrafluoroprop-2-enylcyclohexane (44)
37. trans-1,4-Bis(Z-1-ethoxy-2,3,3,3-tetrafluoroprop-2-enyl)cyclohexane (80)

Appendix Four

EI ${ }^{+}$Mass Spectra

1. 4-methyl-1,1,1,2,3,3-hexafluoropentane (28)
2. 1,1,1,2,3,3-hexafluorohexane (29)
3. 1,1,1,2,3,3-hexafluoro-4,4-dimethylpentane (30)
4. 1,1,1,2,3,3-hexafluoro-5-methylhexane (31)
5. 1,1,2,3,3,3-hexafluoropropylcyclopropane (32)
6. 1,1,2,3,3,3-hexafluoropropylcyclopentane (25)
7. 1,x-bis($1,1,2,3,3,3$-hexafluoropropyl)cyclopentane ($\mathrm{x}=2,3$) (26)
8. 1,1,2,3,3,3-hexafluoropropylcyclohexane (24)
9. $1, \mathrm{x}$-bis $(1,1,2,3,3,3$-hexafluoropropyl)cyclohexane ($\mathrm{x}=2-4$) (27)
10. $2 R, 2^{\prime}$ 'S-trans $S^{-1} 1,4$-bis($1,1,2,3,3,3$-hexafluoropropyl)cyclohexane (27a)
11. x -($1,1,2,3,3,3$-hexafluoropropyl)cis-decalin ($\mathrm{x}=1,2,9$) (33)
12. x, y-bis(1,1,2,3,3,3-hexafluoropropyl)cis-decalin $(\mathrm{x}=1, \mathrm{y}=2-10, \mathrm{x}=2, \mathrm{y}=3$ -
10) (34)
13. x -(1,1,2,3,3,3-hexafluoropropyl)trans-decalin ($\mathrm{x}=1,2$) (35)
14. x, y-bis $(1,1,2,3,3 ; 3$-hexafluoropropyl)trans-decalin ($\mathrm{x}=1, \mathrm{y}=2-10$,
$x=2, y=3-10)(36)$
15. 2-exo-($1,1,2,3,3,3$-hexafluoropropyl)norbornane (37)
16. 2, x -bis $(1,1,2,3,3,3$-hexafluoropropyl)norbornane ($\mathrm{x}=5,6$) (38)
17. 1-(1,1,2,3,3,3-hexafluoropropyl)adamantane (22)
18.1,3-bis(1,1,2,3,3,3-hexafluoropropyl)adamantane (23)
18. 1,3,5,-tris(1,1,2,3,3,3-hexafluoropropyl)adamantane (39)
19. 1,3,5,7-tetrakis(1,1,2,3,3,3-hexafluoropropyl)adamantane (40)
20. Z-Pentafluoroprop-2-enylcyclohexane (43a).
21. E-Pentafluoroprop-2-enylcyclohexane (43b)
22. 1-(E-pentafluoroprop-2-enyl)adamantane (45a)
23. 1-(Z-pentafluoroprop-2-enyl)adamantane (45b)
24. trans-1,4-bis(Z-pentafluoroprop-2-enyl)cyclohexane (46)
25. cis-1,3-bis(Z-pentafluoroprop-2-enyl)cyclohexane (47)
26. Z-Pentafluoroprop-2-enylcyclopentane (49)
27. trans-1,3-bis(Z-pentafluoroprop-2-enyl)cyclopentane (50a)
28. cis-1,3-bis(Z-pentafluoroprop-2-enyl)cyclopentane (50b)
29. trans-1,2-bis(Z-pentafluoroprop-2-enyl)cyclopentane (50c)
30. 2-(Z-pentafluoroprop-2-enyl)trans-decalin (51b)
31. 1-(Z-pentafluoroprop-2-enyl)trans-decalin (51a)
32. 1-(Z-Pentafluoroprop-2-enyl) cis-decalin (52a)
33. 2-(Z-Pentafluoroprop-2-enyl) cis-decalin (52b)
34. exo-2-(Z-Pentafluoroprop-2-enyl)norbornane (53)
35. exo-2,5-Bis(Z-pentafluoroprop-2-enyl)norbornane (54a)
36. exo-2,6-Bis(Z-pentafluoroprop-2-enyl)norbornane (54b)
37. 1,3,5,7-Tetrakis(E-pentafluoroprop-2-enyl)adamantane (55)
38. 1-(Z-Pentafluoroprop-2-enyl)-3,5,7-tris(E-pentafluoroprop-2enyl)adamantane (55 a)
39. Perfluoro-2,5-dipropyltetrahydrofuran (59)
40. Perfluoropropylcyclohexane (60)
41. Perfluoropropylcyclopentane (61)
42. trans-perfluoro-1,4-dipropylcyclohexane (62a)
43. cis-perfluoro-1,4-dipropylcyclohexane (62b)
44. trans-Perfluoro-1,3-dipropylcyclohexane (63a)
45. cis-Perfluoro-1,3-dipropylcyclohexane (63b)
46. Perfluoro-1, x-dipropylcyclopentane ($\mathrm{x}=2,3$) (64)
47. Perfluoro- x-propyldecalin ($x=1,2,9$) (66)
48. Perfluoro-1-propyladamantane (67)
49. Perfluorooctane (68a)
50. Perfluorohexane (69a)
51. 1H-Perfluorohexane (70)
52. x-($1,1,2,3,3,3$-hexafluoropropyl)cyclohexyl chloride ($x=2-4$) (74)
53. x-(1,1,2,3,3,3-hexafluoropropyl)cyclopentyl chloride ($x=2,3$) (75)
54. x-($1,1,2,3,3,3$-hexafluoropropyl)cyclohex-1-ene ($x=2-4$) (76)
55. x-($1,1,2,3,3,3$-hexafluoropropyl)cyclopent-1-ene ($x=2,3$) (78)
56. Z-1-ethoxy-2,3,3,3-tetrafluoroprop-2-enylcyclohexane (44a)
57. E-1-ethoxy-2,3,3,3-tetrafluoroprop-2-enylcyclohexane (44b)
58. trans-1,4-Bis(Z-1-ethoxy-2,3,3,3-tetrafluoroprop-2-enyl)cyclohexane (80)'

1. 4-methyl-1,1,1,2,3,3-hexafluoropentane (28)

ROB20 62 (1.034)

	Rat nt	1	mass	fel lnt	1	kass	Sth int		\%3ss		1 tat	1	Nass	Re	1 lnt	1		Rel lat	1 N		Rel int			Rel lat	1 hass	ne! lat	
\geqslant	8.81	1	3	21.84	1	5	R.54	1	78		P. 38	1	25		0.48	1	121	22	1	117	2.8	11		4.18	1153	1.5	
\%	2. 11	1	4	2.11	1	3	8.84		11		2.35	1	\%		ว.\%	1	18	2.19	1	119	2.65	1		2.\%	1150	Q. 89	
3	2.65	1	41	85.73	1	${ }_{5}$	8.61	1	7		8.42	1	87		8.18	1	123	0.5	1	120	2.6	1	139	1.42	1163	Q.03	
3	1.31	1	42	7.6	1	5	4.17	1	3		12.38	1	${ }^{8}$		0.81	1	14	4.12	!	!	2.23	1		4.18	1173	Q 24	
27	2is	1	43	; 2.80	1	5	8.58	1	74		8.3	1	63		23	1	16	8.73		12	203		14	2.4	115	2.45	
\%	515	1	4	7.83	1	59	5.65	1	T		3.45	1	3		1.2	1	180	0.19	1	123	0.82			4.16	1175	0.8	
3	8.8	1	45	2\%	1	68	8.47	1	76		8.62	1	${ }^{31}$		3.43	31	107	0.16	1	124	2.91	11	145	2.4	117	Ler	
3	0.17	1	15	1.6	1	${ }^{\text {E }}$	1.97	1	π		通4	1	33		46.45	1	1 198	0.38	1	125	2.83	1	147	1.11	1179	L.	
3	1.35	1	47	3.42	1	5	2.34	1	7		219	1	3		2.88	1	188	567	1	127	20	1		2.83	118	\&.\%	
を	2.48	i	4	P. 76	1	63	1.33	1	3		8.31	1			5.23	1	116	2.8	1	128	6.11	1		213			
33	1.54	1	4	2.23	1	¢	3.44	1	${ }^{8}$		2.26	1	*		0.21		11	0.13	1	12	2.46	1		2.\%	1		
34	Q.er	1	5	2. 23	1	55	22.13	1	81		2.41	1	37		8.78	1	113	4.18	1	131	0.46		153	4.11	1		
35	2.33	1	51	c. 41	1	\pm	1.E 5	1	E		7,41	1	38		8.22	1	114	0.15	1	12	Q.34	1	155	0.69	1		
37	3.87	1	${ }^{\text {c }}$	2.75	1	57	3. 37	1	83		1.15	1			2.8	1	115	288	1	13	4.49		158	6.4	1		
38	2π	1	53	4.3	1	63	E321	1	24		8.25		12		8.73		115	4.21	1	15	1.64		15	8.03	1		

2. 1, 1, 1,2,3,3-hexafluorohexane (29)

$\sim \sim_{2} \mathrm{CFHCF}_{3}$

ROBPR	5810.						3538944
Mass	Rel Int						
20	0.01	60	0.70	100	0.88	133	0.73
26	0.74	61	2.98	101	2.98	135	2.60
27	11.92	62	0.48	102	0.30	136	0.18
28	1.35	63	2.08	103	0.63	137	0.14
29	5.87	65	100.00	104	0.27	139	2.23
31	1.49	66	2.60	105	0.88	140	0.16
32	0.33	69	58.33	106	0.26	141	0.06
33	1.15	70	1.84	107	0.25	142	0.01
34	0.01	71	4.75	108	1.17	143	0.01
36	0.01	73	26.27	109	7.06	144	0.02
37	0.70	74	1.83	110	0.36	145	0.28
38	2.20	75	7.03	111	0.18	146	0.72
39	15.39	77	44.44	112	0.60	147	1.61
40	2.11	78	4.05	113	5.03	148	0.08
41	56.48	79	0.57	114	0.64	151	3.36
42	4.51	80	0.15	115	5.06	152	0.12
43	94.44	82	13.08	116	0.29	153	0.15
44	7.75	83	1.79	117	0.04	155	1.12
45	2.34	84	0.38	118	0.11	156	0.08
46	1.46	85	0.56	119	0.88	157	0.05
47	39.35	86	0.09	120	0.09	159	2.05
48	1.03	87	0.26	121	0.34	160	0.14
49	0.35	88	1.10	122	0.08	163	0.08
50	3.13	89	3.76	123	0.06	155	0.01
51	37.04	90	1.32	124	0.02	173	0.31
52	1.16	91	11.34	125	0.05	175	2.08
53	7.52	93	53.70	126	0.37	176	0.13
54	0.50	94	2.58	127	3.07	177	0.03
55	0.38	95	6.02	128	0.26	179	0.02
56	0.95	96	0.26	129	0.71	193	0.08
57	6.22	97	0.87	130	0.07		
58	0.76	98	0.04	131	0.69		
59	9.95	99	0.30	132	0.57		

3. 1,1,1,2,3,3-hexafluoro-4,4-dimethylpentane (30)

$\rightarrow-\mathrm{CF}_{2} \mathrm{CFHCF}_{3}$

ROS 83 (1.354																								
Mass	Rel lat		Mass	fel Int	1	Lass	Rel Int	1	Mass	Ral Iat		Hass	Rel lat			fel Int		flss	Ral lat		llass	Collat	1 hass	Plel It
20	0.01	1	42	3.5	1	59	10.9	1	76	4.30	1	9	46		109	7.11	1	128	2.25		147	4.74	1 1717	46
8	2.82	1	43	219	1	6	0.65	1	π	1250	1	9	414	1	111	4	1	129	1.82		149	1.87	117	52
$\boldsymbol{6}$	8.58	1	4	8.37	1	61	13.\%	1	78	4.53	1	5	291	1	111	438		13	40		150	412	1174	43
27	6.84	1	45	1.17	1	62	8.68	1	79	4.78	1	\%.	4.18	1	113	328	1	131	65	1	15t	2π	117	
28	1.28	1	46	8.74	1	63	1.11	1	8		1	97	4.30	1	114	a ${ }^{\text {a }}$	1	132	417	1	152	26	(181	R 2
29	2.3	1	47	4.12	1	64	2.12	1	81	4.35	1	9	2.5	1	115	243	1	13	27	1	153	2.18	1107	4.18
30	4.54	1	48	1.13	1	65	78.16	1	8	518	1	99	2.24	1	116	48	1	131	4.15	1	154	413	1188	6.81
31	2%	1	49	Q. 21	1	65	1.8	1	83	1.74	1	10	2.61	1	117	4*	1	15	4.2	1	15	4e	1189	431
3	2.21	1	5	221	1	57	1.31	1	64	449	1	101	2.97	1	119	4.5	1	137	4.13	1	157	4.1	1190	42
3	6.73	1	51	16.51	1	69	33.10	1	85	1.35	1	182	43	1	121	2\%	1	139	4 3	1	199	0.7	119	438
3	2.61	1	5	2.97	1	7	4.7	1.	87	12.6	1	113	28	1	121	48	1	14	4.6	1	160	$2 \cdot$	1 188	29
31	6.41	1	53	4.00	1	71	1.97	1	88	1.73	1	14	46	1	128	48	1	141	1.57	1	161	29	119	412
38	1.51	1	51	062	1	7	4.4	1	89	36	1	155	3.3	1	123	1.74	1	12	4.10	1	163		1	
37	18.33	1	5	7.2	1	3	2.43	1	3	0.6	1	18	4.27	,	124	469	1	143	4.27	1	455	46	1	
4	2.78	1	5	188.89	1	74	8.50	1	31	34.83	1	117	7.62	1	120	48	1	145	49	1	167	213	1	
41	57.46	1	58	9.83	1	75	2.89	1	9	258	1	188	1.57	1	121	7.23	1	146	4.6	1	169	25	1	

4. 1, 1, 1,2,3,3-hexafluoro-4,4-dimethylhexane (30)

ROB4 77 (1.284)

P294 7 (1.294) 515066																					
Mass Rel Iat 1 hass Rel lat				1 Mass Rel lat			1 Hass		l lat	1 kass		Rel lat	1 hess		cs Pel It	1 mas	Pal lat	1 lass Rel Let		I Fiss Bel lat	
$\boldsymbol{\chi}$	421	14	4.32	1	3	1.35	1	69	618	1	83	0.78	1	5	411	1110	4.87	113	1.4	1173	5.5
27	4.22	143		1	56	8.49	1	7	Q2	1	8	4.24		97	413	1.143	1.6	1134	611	1174	47
cis	4.97	14	3.67	1	57	2.1	1	71	b. 21	1	6S	233	1 .	99	8.9	1. 114	469	1138	48	1.181	$2{ }^{2}$
- 29	2.63	45	8.5	1	58	8.16	-	72	4.16	1	86	2\%	11	10	413	115	4.13	1141	Et	119	2.5
38	Q. 88	46	8.52	1	53	3.88	1	73	4.41	1	87	1.40	11	101	1.10	119	4.17	1145	45	118	617
31	0.38	4.	33.13	1	68	4.28	1	74	867	1	68	t2	11	12	2.16	1121	4.34	116	42	119	$4{ }^{\text {a }}$
5	Q 31	148	8.78	1	61	3.47	1	75	4.72	1	89	0.94	1	103	2.8	1122	4.6	1147	22	127	4.
33	2.45	149	8.07	1	62	818	1	76	2.14	1	9	450	1	148	0.16	112	2.38	1119	0.17	1	
31	6.21	15	8.45	1	63	82	1	77	5.01	1	91	7.98	1	165	2.28	1127	5.75	1151	178	1	
38	6.78	151	5.46	1	64	1.43	1	78	4.23	1	9	0.41	1	16	417	1128	233	115	L. 6	1	
39	2.3	15	8.33	1	65	3.28	1	73	W	1	93	2.17	1	107	243	1128	4.15	1154	412	1	
48	1.46	153	0.61	1	66	208	1	81	288	1	94	4.4		10	2.21	1121	4.	1158	42	1	
41	24.80	154	2.17	1	67	880	1	8	1.62	1	¢	1.27	1	18	1.30	112	48	\| 167	104	1	

5. 1,1,2,3,3,3-hexafluoropropylcyclopropane (25)
$D-\mathrm{CF}_{2} \mathrm{CFHCF}_{3}$

6. 1, 1,2,3,3,3-hexafluoropropylcyclopentane (25)

RSCPRF2 128 (2.134)

RSCPRF2 198 (3.167)

ROBCYRFH 244 (4.067)
2998272

Mass	Rel Int						
20	0.01	71	1.03	115	1.01	161	0.01
27	0.93	72	0.25	116	0.16	163	0.07
27	3.65	73	2.70	117	0.25	164	0.01
28	2.46	74	0.19	118	0.03	165	0.17
29	3.21	75	0.96	119	0.33	167	0.90
30	0.08	77	9.43	120	0.09	168	0.06
31	0.23	78	0.64	121	0.73	169	0.11
32	0.08	79	2.15	122	0.12	171	0.10
33	0.26	80	0.46	123	0.45	172	1.02
37	0.10	81	3.07	124	0.08	173	1.77
38.	0.51	82	2.87	125	0.13	174	0.10
39	10.52	83	100.00	127	2.39	175	0.52
40	1.94	84	8.88	128	0.17	176	0.05
41	30.74	85	1.28	129	0.30	177	0.16
42	4.34	86	0.12	130	0.03	179	0.05
43	3.21	87	0.41	131	0.37	181	0.01
44	0.23	88	0.35	132	0.13	183	0.01
45	0.20	89	0.98	133	1.61	185	0.14
46	0.26	90	1.16	134	0.12	186	0.03
47	2.18	91.	2.60	135	0.56	187	0.10
48	0.06	92	0.18	136	0.04	189	0.01
49	0.05	93	1.82	137	0.07	191	0.15
50	0.91	94	0.45	138	0.02	193	0.30
51	6.86	95	1.45	139	0.37	195	10.66
52	1.05	96	0.38	140	0.17	196	0.77
53	4.99	97	0.84	141	0.34	197	0.05
54	3.55	98	0.14	142	0.04	199	0.09
55	75.96	99	0.20	143	0.04	204	0.02
56	11.34	100	0.17	145	1.27	205	0.02
57	1.77	101	1.42	146	0.07	207	0.01
58	0.22	102	0.36	147	0.54	211	0.01
59	3.72	103	2.07	148	0.04	213	0.79
60	0.24	104	0.53	149	0.30	214	0.18
61	0.92	105	0.54	151	3.01	215	0.02
62	0.16	106	0.08	152	0.09	217	0.02
63	0.67	107	0.13	153	0.50	231	0.00
64	1.12	108	0.17	154	0.02	232	0.06
65	3.01	109	2.04	155	1.53	233	0.13
66	0.62	110	0.20	156	0.10	234	1.20
67	4.17	111	0.33	157	0.08	235	0.09
68	0.54	112	0.18	158	0.05		
69	13.11	113	7.14	159	0.92		
70	0.42	114	0.73	160	0.06		

RSCPRF2 225 （3．758）

1354784

21	0.16	5	55.7	日	58	49	0.97	151	5.07	153	0.7	25	0.46	50	0.06	2\％	0.08
2	0.15	5	1．46	®	1.9	180	0.65	152	0.59	184.	0.15	26	0.21	21	0.06	27	0.19
2	0.37	5	4.02	8	4.15	［1］	3.7	13	2.7	18	2.8	27	288	－	0.12	77	0.02
26	1.78	58	1.97	9	4.76	12	0．8	15	0.35	$1{ }^{2} 8$	0.7	28	0.21	2	0.10	\％	0.15
J	3．85	97	18．56	9	9.81	13	3.40	15	0.51	17	0.47	29	0.3	＊	0．0	5	0.04
28	2.6	60	1.66	92	1.15	124	0.7	18	0.09	19	0．06	20	0.09	\％	0.17	3	0.00
2	4.52	4	9.28	9	1.6	123	0.58	177	0.71	18	0.4	73	0.51	27	0.07	30	0.06
3	0.71	12	1.81	9	0.5	125	0.71	198	0.68	190	0.5	22	0.73	28	0.00	35	0.62
3	2.17	63	4.70	9	7.41	17	9.78	157	5．25	19	3.34	23	1.8	Ei	0.7	5\％	0.10
$\underline{2}$	0.58	4	4.70	\％	1.85	138	1.18	160	0.4	192	15	7	0.2	20	0.0	307	0.08
5	0.7	65	2.02	7	4.51	17	22	14	0.50	13	13.5	区	0．0	21	0.4	313	0.01
4	0.03	6	3.65	9	0.78	150	0.59	12	0.15	29	1.50	20	0.16	23	14.1	517	0.10
3	0.19	67	18．61	\％	0．\％	131	1.70	165	0．56	19	0.95	7	0.16	23.	0.52	72	0.04
36	0.71	68	5.4	100	0.71	18	1.21	13	0.25	1\％	0.50	28	0.04	235	0.50	IT	0.12
37	0.4	6	38.12	102	4.83	58	2.91	155	1.18	277	1.55	27	0.08	27	0.01	3	0.18
38	1．\％	10	1.9	102	1.28	134	0.50	156	0．35	1717	0.17	III	3.8	23	0.0	5	1.45
7	上．ख	7	3.62	10	7.61	135	1.05	167	3.00	199	2.4	23	100．00	π	0.05	\％	0.20
4	4.01	7	1.9	104	1.97	135	0.15	18	0.3	200	0.25	23	Q 11	3	0.19	38	0.6
41	3.91	3	10.08	105	1.41	15	0.71	1 \％	0.98	201	0.41	25	0.57	24	0.04	38	0.14
4	3.64	7	1.11	108	0.25	13	0.0	170	0.18	20	0.15	38	0.05	23	0.11	315	1.44
4	2.7	\＄	4.09	107	0.51	157	1.62	171	1.2	20	1.08	25	0.31	m	0.15	313	12.4
4	1.47	76	2.88	109	1.14	140	0.17	172	1.4	204	0.35	28	0.02	78	0.0	346	1.12
45	1.04	π	4.78	109	14.0	141	2.71	13	10.5	208	1.7	239	0.11	27	0.56	37	0.07
46	1.4	18	3.74	110	1.55	112	0.43	174	1.10	28	0.16	240	0.07	230	0.04	319	0.04
4	13.80	7	11.14	山	3．06	15	0.8	175	0.2	207	0.11	241	0.98	73	0.21	333	0.08
49	0.45	80.	4.46	12	2.13	14	0.7	176	0.23	28	0.77	212	0.20	2	0.11	33	0.60
4	0.45	${ }^{11}$	2.7	113	5.07	145	4.08	17	2.23	29	0.71	24	1.14	23	0.46	364	0.13
30	4.08	12	8.60	114	1.38	146	0.72	178	0.23	210	0.12	24	0.24	\％	0.41	35	0.15
4	19.80	6s	5.26	45	3.7	147	3.23	179	1.08	211	0.74	215	0.17	3	0.07	37	0.05
52	2.37	H	2.20	116	0．78	188	0.36	190	0.16	212	3．\％	246	0.02	37	0.05	$3{ }^{3}$	0.06
5	7.67	85	4.89	117	1.58	149	J．83	181	0.3	235	7．23	24	0.11	27	0.04		
54	6.12	80	0.58	118	0.8	150	0.62	182	0.20	214	6.81	249	0.12	\％	0.1		

ROBTCYRF 421 (7.017)

ROBCDEC1 010 (19.168)

ROBCDEC2 774 (12.981)

ROBTDEC2 699 (11.6כ1)

ROB22D 363 ($\overline{6} .051$)

ROBEED S27 (8.784)										6881 こ8	
Mass	Fel Int	1	Mas 5	Rel Int	1	Mas 5	Rel Int	1	Mas 5	Rel Int	
E0	0.07	1	81	0.36	1	135	0.55	!	198	0.08	
25	0.03	.	82	1.41	1	136	0. 10	1	199	0.15	
26	0.26	I	83	1.70	1	137	0. 16	1	201	0.02	
27	4.13	1	84	0.62	1	138	0.07	1	203	0.11	
28	1. 35	1	85	0.77	1	139	0.60	1	204	0.19	
29	3. 35	1	86	0.12	1	140	0.24	1	205	0.60	
38	0.11	1	87	0.17	1	142	1.05	1	206	0.06	
31	0.53	1	88	C. 49	1	142	0.17	1	207	0.04	
32	0. 38	I	89	1.31	1	143	0. 36	1	209	0. 14	
33	0. 65	1	90	1.54	1	144	0. 12	1	211	0. 16	
36	Q. 04	1	31	E. 64	1	145	1.70	1	213	0.07	
37	0. 11	I	92	0.47	1	146	0.21	1	215	0.05	
38	0.51	1	93	1. 25	1	147	0.39	I	216	0.07	
39	10. 27	1	94	0.93	1	148	0.05	1	217	3.42	
40	1.87	1	95	2. 38	1	149	0.17	1	218	6.21	
41	13.54	1	96	1.20	1	150	0.06	1	219	0.51	
42	3.42	1	97	3.01	1	151	2. 16	1	221	0.02	
43	C. 38	1	98	0.37	1	152	0.23	1	223	0.06	
44	0. 31	1	99	1. 36	1	153	0.43	I	225	0.57	
45	0.23	1	100	0.24	1	154	0.10	1	226	0.07	
46	0.13	1	101	2. 23	1	155	0. 20	1	227	0.12	
47	1. 96	1	102	0.43	1	156	0.05	1	2อ9	0.25	
48	0.014	1	103	5. 13	1	157	0. 18	1	230	0.34	
50	0. 55	1	104	0.58	1	158	0.12	1	231	0.31	
51	7.48	1	105	0.18	1	159	3. 91	1	233	0.05	
52	0.85	1	106	0.06	I	160	0.25	1	235	0.16	
53	2. 38	1	107	0.23	1	161	0.15	1	237	0.03	
54	1.49	1	108	0.35	1	163	0.29	1	241	0.02	
55	3. 57	1	109	2. 64	1	164	0.11	1	243	0. 04	
56	0.23	1	110	0.32	1	165	0.56	1	245	9.15	
57	1.11	1	111	Q. 15	1	166	0.98	1	246	0.93	
58	0.19	1	112	0. 11	1	167	0. 12	1	247	0.13	
59	3. 51	1	113	1.31	1	163	0. 14	1	249	0. 0.14	
50	0.30	1	114	0.79	1	170	0.04	1	253	0.16	
61	0. 24	1	115	4.09	1	171	a. 25	1	255	0.21	
62	0. 14	1	116	0.90	1	172	0. 11	1	267	0.03	
63	0. 74	1	117	1.79	1	173	0. 36	1	273	0.05	
64	0.96	1	118	0.15	1	174	0.05	1	275	0.80	
65	5.6E	1	119	0.44	1	176	0.02	1	276	0.10	
66	3.87	1	120	0.14	1	177	1.08	1	277	0.04	
67	180.00	1	121	1.01	1	178	0.09	1	291	0.03	
68	5.92	1	12 l	0.35	1	179	0. 36	1	295	0.49	
69	12. 80	1	123	0.83	1	181	0.11	1	296	0.07	
70	-0.52	1	124	0.57	1	183	0.05	1	297	0.03	
71	0.78	1	125	0.27	1	183	0.19	1	309	0.07	
73	0.42	1	126	0.08	1	184	0.03	1	311	0.03	
73	0.58	1	127	4.35	1	185	0.71		317	0.08	
74	0.10	1	128	0.65	1	186	0.07	1	329	0.04	
75	1.06	1	129	0. 59	1	187	0. 215	1	331	0.05	
76	0.24	1	130	0.05	1	189	0.13	1	335	0.06	
77	22. 17	1	131	0.20	1	191	0. 21	1	337	0.08	
78	1.50	1	132	0.30	1	195	0.14	1	357	0.35	
79	3.61	1	133	0.86	1	196	0.04	1	358	0.06	
80	0.62	1	134	0.19	1	197	0.66	1	376	0.06	
-	-									---	
Mass	Rel Int	1	Mass	Rel Int	1	Mass	Rel Int	1	Mass	Rel Int	
377	0. 25	1	378	0.04	1			1			

ROBADRF 654 (10.901)

Mass	Rel Int						
20	2.64	75	2.24	128	1.23	182	0.04
24	1.19	77	22.74	129	1.13	183	0.13
25	2.56	78	13.90	130	0.35	184	0.08
26	8.94	79	43.10	131	0.55	185	0.59
27	23.06	80	7.44	132	1.13	186	0.06
28	11.31	81	10.88	133	2.40	187	0.04
29	19.07	82	5.01	135	100.00	189	0.08
31	5.39	83	1.72	136	10.24	190	0.07
32	1.51	84	0.66	137	0.80	191	0.23
33	1.14	85	0.97	138	0.17	192	0.07
34	0.04	86	0.13	139	0.28	193	0.06
35	0.13	87	0.30	140	0.45	196	0.05
36	0.91	88	0.72	141	1.78	197	0.19
37	2.80	89	1.47	142	0.46	198	0.06
38	9.81	90	3.96	143	0.36	199	0.12
39	31.90	91	16.92	144	0.14	201.	0.03
40	12.72	92	8.73	245	0.58	203°	0.07
41	34.91	93	22.41	146	0.28	204	0.07
42	4.28	94	3.31	147	0.24	205	0.28
43	3.69	95	2.24	148	0.11	206	0.06
44	1.78	96	1.25	149	0.25	207	0.06
45	0.63	97	1.19	150	0.17	209	0.19
46	0.57	98	0.36	151	1.05	210	0.07
47	1.43	99	0.41	152	0.19	211	0.18
48	0.27	100	0.35	153	0.45	216	0.06
49	1.22	101	1.10	154	0.31	217	0.20
50	5.52	102	0.59	155	0.24	218	0.03
51	11.53	103	1.29	156	0.11	219	0.11
52	4.66	104	0.76	157	0.11	223	0.14
53	10.13	105	2.40	158	0.09	224	0.08
54	4.98	106	1.78	159	0.26	225	0.14
55	13.58	107	7.97	160	0.11	226	0.05
56	2.80	108	1.02	161	0.09	228	0.09
57	2.56	109	2.51	162	0.05	229	0.21
58	0.77	110	0.59	163	0.08	230 231	0.06 0.10
59	2.07	111	0.40	164	0.13	231 237	0.10 0.03
60	0.37	112	0.38	165	0.42	237	0.03
61	0.62	113	2.16	166	0.07	241	0.04
62	1.42 4.34	114	0.78 2.29	167	0.12	242	0.07 0.15
63	4.34 2.53	115	2.29 0.66	169	0.07	244	0.04
64 65	2.53 8.51	116	0.66 1.06	171	0.15	245	0.05
66	5.33	118	0.34	172	0.05	$247{ }^{\circ}$	0.26
67	16.59	119	1.64	173	0.10	248	0.07
68	4.01	120	0.43	174	0.05	266	0.03
69	18.75	121	0.65	176	0.03	267	0.11
70	1.02	122	0.39	177	0.19	285	0.10
71	0.62	123	0.69	178	0.07	286	0.05
72	0.37	124	0.22	179	0.15		
73	0.89	125	0.35	180	0.03		
74	1.14	127	5.09	181	0.06		

																		T－30	
tass	itl a ：	；${ }^{\text {a }}$ 3	ñ： ar	［ Mess	\％t： as	Nass	nit ： ar	1 Mass		1 Nass	3x：$: \pm$ ：	；Kass		：\times				： at	
3	237	，	$3:$	5	240	： 5	：．E！	i ： 4	\＆：${ }^{\text {a }}$	：π		； 203		：		2.3	2	2．8	
5	4．79	58	2．3	3	3.87	： 6	3.45	： 45	2．ab	117	3.2	¢	2.5	：		3．	\％	2.3	
3	L． 0.0	5	：．7\％	37	$2: 5$	$: 17$	25	，145	23	： 17		21：				¢－	\＃	2.2	
3	：．${ }^{\text {d }}$	32	20゙	3	a．：	：\％	2．：	； 14	2.3	；：${ }^{\text {a }}$	d．2	：23	3.1			江		20．3	
2	幺®00	3：	3． y_{8}	\＃	Li＊	：19	2 S	1 i	3：	1：73	：3	－${ }^{\text {as }}$	2． 2	：		セエ		26．	
2	412	3	2.23	d	C． 5	：a	d．	：：$: 3$	a：	－ 58	2.2	： $2: 7$	4.2	：		diE	87	2.3	
：	4.17	\％	2.33	$3:$	5	i22	3.4	i	2：	！：3	2．：3	－ミ：a	d．${ }^{\text {H }}$			1．8	3i	2.3	
Σ	3.5	\vdots	d．5	z	6.47	！2	2． 54	： 5	3．3．		¢．：	；ê！3				：$: 3$	파	3.3	
2	25	：	5	：	4．3	3	2．54	：	2．5	：${ }^{\text {a }}$	d．${ }^{\text {a }}$	－\％	2以			2．	！	2．：	
\cdots	いむ	56	3．32	1 －	e．e：	： c_{4}	2.6	1 ist	\＆．：	－${ }_{\text {ch }}$	3.8	：${ }^{3}$	：． 2			3.5	－	NK	
\％	3：	6	¢5	：	0.5	：3	2．：	1 15	2.7	：${ }^{18}$	$2{ }^{2}$	（ 3	2.5	：${ }^{\text {x }}$		$2:$	！	4E	
3	4.10	3	： 4	$\stackrel{3}{\square}$		27	E．m	1：5	$3:$	1 ：${ }^{\text {a }}$	3．it	1 Fer	2.5	：		2a	号	2 Cg	
4	2． 3 \％	53	：3：4	7	d．${ }^{\text {a }}$	1： 2	：． 37	－	a．： 4	1 ${ }^{18}$	3．48	1 ） 3 S		i		d． 9	3TE	$\because:$	
${ }^{\text {a }}$	： 2.73	π	2．\％	7	a．：	1129	2.4	1153	2．：3	（ 28	6.3		2． 11.51			4.5		2.38	
$\dot{+}$	353	3	2.4	1 여	2．3	13	2.6	： 59	：：5	1 19：	2.50	； 29	11.5			2．0）	：	48	
3	¢ 3	is	2：${ }^{\text {a }}$	：：	2．33	：$:$	2.3	：159	d． 12	！172	3．7：		1.8			2．${ }_{\text {des }}$	：		
\cdots	8． 4	r	4．：	： $1 \times$	2.38	is	2.38	1 ： 6	a：：	－ 193	2．7	1 2	$2: 2$			$2{ }_{25}$	－	8． 28	
45	2． 2	74	$2 .: 1$	： 3	8.31	1	．． 31	$1: 65$	8．：	1 ：	8.3	128	2兌	i		dx	；	2． 8	
－	a．5	1 \％	249	：：4	2.38	－ 134	：．${ }^{\text {a }}$	$1: 64$	d：1	； 138	2． 87	1 25	2． 3	13		d．${ }^{\text {d }}$	：+1	2． 2.5	
47	1．83	i5	$2 .: 7$	；：\times	：． 33	：3	2.31	1165	8.37	1 ： 7	3.7	251				2．：	7×1 +5		
40	2.5	7	4． 31	：${ }^{\text {\％}}$	4.45	136	2.16	1 ：50	2.87	： 57						ixis			
2	0.5	13	：．．\％	： 177	ミ．	$1: 7$	8.3	1 ：67	む	；	7． 28		8.28			1．4．			
5	2：8	； 7	4.38	1181	Q． 29	1.30	2.87	$1: 63$	0.7	$1{ }^{1}$	2．2	124	4.3			2.35			
5	2.5	83	2.35	1 ：	2.2	1139	2.30	1 17a	2．28	1	a．2	！ 312	d．3			2.2			
53	25	81	2：8	；1：8	4.4	114	2.55	1． 171	2.3	1 ¢ ${ }_{\text {¢ }}$	3.30	： 243	$1 . .43$	1		2			
4	8．\％	1 dis	2．3	$1: 3$	8.33	：41	4．E：	1172	2.87	1285	R．3	！ 24	1.33	1		2．			
5	：5i：	13	2.58	1 H	2.74	i 14	2.3	113	2.5	$13 \times$	$2: 2$	215	8.48	31		2ä			
\％	248	134	d． 3	1124	4.45	143	2.4	1174	8.28	1201	dと	134	2.10			2.2			

MEx																	
3	2.30	7	3． $\mathrm{D}^{\text {a }}$ ：$\because: ~$	－$+\frac{6}{4}$	；${ }^{5}$	2.19	； 373	E：	；	$2 \rightarrow$	：x	2.2	：$=$	－	\square	\：2	
3	d．2i	$i:$	8．5	： 53	： 5	2\％	： 30	C．3	； 26	2．：8	： 32	d． 3	15	3ij	－	$\therefore 2$	
－	むふ	$\%$	2．38 i．$\because: 7$	：${ }^{\text {F }}$	： 8	8.70	： 301	ละ．	i	3.28	； 3	3.3	； 5	吕安	ت	6.5	
± 5	的动	－4．	$2: 3$ ：$\because 8$	2.32	；	$\therefore .57$	；	2．3	；	2.24	：	3.2	：	以：	－i	2．${ }^{5}$	
57	： 33	K	d．3：：： 3	d三	；150	2.53	； 3	：． 34	：	2.37	： 39	山4	：住	T．3	－	บ：	
\％	C．5	7		3F\％	： 300	2.0 ¢	： $2 \times$	こう	：Sx	：．32	182	2．	； 3	4.	： 71	$2 \times$	
\because	5π	73	： 3 ；：	：． 0 $^{\text {c }}$	， 5	：． 2	： 36	3.3	－ir	E：3	：$\because:$	3 B	：3ax	$\therefore 2$	－i	2.2	
Ie	3．：\％	7	¢：7 ：	ง．	－	2．：1	； 30	\therefore－	：	23	：	2.2	： 31	258	－	2．2：	
\because	2． 30	30	小玉	1．35	： 3	．．	：n	E．0：	：	3.7	； $3: 4$	2． 17	：－3	2．3	－	1.0	
2	$3: 2$	31	0．3：： 24	3.9	： 156	2 O	；	ins	：${ }_{\text {B }}$	2.5	：\because	2．${ }^{4}$	；	：．it	－	2.67	
3	3.3	3	－．39 ：	2 j	；：	\therefore ：	；$\grave{\prime}$		：	25	： $3:$	aic	； 5	－．${ }^{\text {a }}$	00_{i}	以 3	
37	3 L	－3	： 30 ：	－ 3	： Cs	3.5	； 32	2.07	；坒	3.50	：\because	0.2	！	$2 . \dot{3}$	＋5i	2．3	
3	273	3	230：${ }^{3}$	2安	； 163	：． 23	1 4	2.2	； \boldsymbol{x}_{5}	3.8	；	2.4	15	：$:$	4 ES	d\＆	
4	2．5：	3	2.39 ：	¢． 34	：$: 78$	2.3	124	5.3	：忩	2． 5	： z	2．9	：	$\therefore: 3$	－ 7 ？	2.2	
is	3.5	36	2.7 ： 230	$\therefore 93$	：17：	．． 5	：Er	2.5	： 253	：．$: 1$	：	8.57	：	a：	：79	2．2：	
42	2.7	87	2m：	1．5：	：	2.41	！ $2: 7$	ذ．	： 87	2.89	： 3	dx	： 37	2，	58	$2 . \%$	
4	三－2	38	23i ！ 2	L．：	：$: 73$	：．A	： 213	$3 .:$	： 30	$3 . \hat{x}$	12	243	； 2	231	51	423	
－	2．：	69	：	¢	；	53	： za	：．cit		2.11	13	25	－ 48	2．2	1 ${ }^{5}$	2.35	
\pm	2．3	31	12． $2: ~ 234$	：．：	： 17	3.7	$1 \geqslant 0$	2：3	： 3 T3	2.33	：5ill	Q3	1 ※た	2.5	： 37	20	
47	ご：	1 2	： 3 弦 ；	1．3＇	；：TE	：． 20	1 32：	2.4	1 274	235	；㐫	23	1 ＋8\％	65i	$5:$	2.00	
4	2.5	53	23 E ： 36	3.3	； 177	267	13	53	i 5	2：d	： 5	2x	1408	い：	：	32	
52	2．$=1$	3	208： 5	d． 16	－ 178	3.2	1 坔4	2.51	157	¢588	i 5	2.28	1 4 ：i	2．is	：E：？	2.27	
51	4.5	13	273：30	d．c7	$1: 77$	2.69	1䇝	2.41	127	1.19	1309	2.45	1 il3	$2: 1$	1 른	32	
シ	2．8	\％	2．99 i 50	！．89	1 16t	2.78	1 25	8.89	i 37	2.42	13 nt	2.55	（ 415	530	－	2.26	
5	23	13	：．3： i ：43	1.51	1 182	2.7	131	2.6	1388	2.6	1 3is	241	$14!3$	2．3	57	2.7	
5	12．3i	98	Q．39 1 i4：	3.63	－182	43	120	8.34	： 88	2.38	135	2.34	1 セ2：	2.5	${ }_{59} 5$	2：	
56	4.81	99	2.7 ：： 22	1．33	1 184	3：8	129		i 33	：．3		：． 3	1－2	334	545	$2 x$	
8	7.42	1 18！	$250: 43$	0.97	1 18	L． 30	1 ご：	4.30	1 134	愍	1 1 ${ }^{3}$	1．ig	1 185	3．1	5.5	d．	
58	3.11	1120	8.551 i4	2.18	－ 186	2.1	133	2.3	1 35	：． S_{1}	15	2．	1 ＋c7	2：7	59	542	
5	25	1183	2．31：55	3.58	$1318{ }^{1}$	8.51	123	2.24	1286	6． 28	1 ）	$2.5:$	143	2.0	－54a	$4{ }^{3}$	
0	2.7	113	2．75 1 ：40	1.18	1185	2.53	1 25	809	1237	2.21	1 S5	1.51	141	20	1 505	2.88	
$6:$	0． 3	1 $\mathbf{1}$	2：7 1：47	1.55	1198	7.57	127	1.3	139	d． 8	137	6.88	145	10． 12 $^{\text {a }}$	5 5	341	
2	2.3	： 36	2．3 1 10	233	1 ；9	：． 33	138	2.15	1291	－ 5	1 Nㅏㄴ	53	1 ＊	23	150	a－${ }^{-1}$	
む	2.45	： 07	8．47 i ． 49	0.42	1192	2.39	1 2\％	Q 4.3	i 20	2．s	1361	8.84	145	Q 36	－58	d：d	
34	2． 56	189	¢\％ 15	14.57	1193	233	124	3.42	1 ${ }^{205}$	2.6	1 式	212	1 4：	2.3	1		
む	4．5	$18: 8$	2．731：52	2.71	1 188	1．：${ }^{\text {a }}$	1343	li． i	！	2.6	1305	Q．55	142	23	：		
¢5	Q． 2	：14	2.48115	1.57	1 180	23	13^{44}	a．：3	13	2.3	137	5．70	；4S	2.30	：		
0	d． 53	［13	$2 \mathrm{La} 1 \mathrm{is}_{6}$	2.65	$1: 37$	：．34	1245	2.61	1 ¢ C_{1}	3\％	1330	2.36	1 ＋	2 d	；		
63	30.30	114	． 1.23115	2． 3	1188	2.11	－ 246	8.17	i 37	234	13 T：	2.6	1－45	d．	1		

ASADRFY 824 （13．73＂4）

Reverir $824(13.734)$																			
2	410	6	0.501538	43	1191	7.21	1248	27	26	囱	1	50	1.23		416	414	1 1 510	47	
χ	0.46	18	1．211139	291	119	1．68	1243	12．8	127	1.16	1	35	43		417	268	｜51］	4.71	
23	481	1 8	249114	4.81	1198	265	124	25	120	$4{ }^{2}$	1	535	1.85		414	413	1517	473	
\checkmark	3.13	189	291114	13.45	1 194	42	1265	24	129	474	1	5	0.3		419	1.3	1518	414	
31	43	19	1．69 1142	234	1155	5.51	12%	1.18	1391	2.5	1	357	Q． 15		42	22	1519	463	
3	247	1 21	18.941143	635	118	1.8	1247	1.90	130	1．54	1	\＄8	12.23		42	43	153	1.3	
33	43	19	1.871145	12.6	1197	3.31	1848	2.37	1334	6.20	1	369	25		43	8.71	15	028	
33	32	193	1.981146	3.8	1 198	6.44	249	1.8	13	1.37	1	351	279		424	434	15	1．6	
4	1.07	18	4.31147	4.80	1199	2.51	18	0.55	13	22	1	35	40		4	43	15	4	
4	11.34	1 5	6.731148	4.79	120	1.81	1 21	1.21	137	43	1	353	25		42	125	157	0.37	
42	466	1 \％	1.451149	1．66	1 201	255	28	4.48	138	238	1	355	8.65		420	261	150	1.17	
43	5.71	157	2131151	54.81	122	1.34	23	211	38	216	1	387	27．\％		42	449	153	4.17	
4	438	19	6.5115	320	1233	4.8	128	445	318	238	1	380	313		431	42	！531	4.45	
45	42	19	65115	4.35	183	468	1 \％	32	311	06	1	369	248		43	1.38	157	4.4	
47	18.18	1 1	42415	1.44	120	21.15	186	469	312	0.3	1	371	4.45		43	37	159	2.14	
48	tax	1101	3.7115	2.19	186	213	1 27	243	313	1.42		313	5.62		45	$5{ }^{5}$	1501	41	
5	4.5	112	1.161156	4.5	127	1.59	20	066	314	231	1	374	1.15		43	479	513	1.49	
51	12.58	1110	4.361157	1．\％	123	2.81	1 他	5.2	315	480	1	35	1．23		［7］	419	｜54	43	
52	45	1 10	1.71158	1.79	1 as	4.4	8	1.38	｜ 317	$2 \square$	1	37	4.1		43	29	55	311	
5	4.42	115	24315	21.08	1 20	1.6	81	1.31	318	43	1	319	［5．8		41	4.5	516	7	
5	L． 38	1 106	0.37164	244	1 21	1.18	22	4.2	1319	0.6	1	30	1.89		42	6.14	547	24	
5	64.31	1107	0.51161	8.60	1212	64	83	1．64	1312	1.22	1	31	4.35		43	43	519	4.4	
56	15．1t	1180	4621162	468	1213	1.71	\％${ }^{\text {a }}$	249	32	423	1	38	4.5		4 H	4	\％	5	
51	2269	1109	12\％1 13	304	1214	1.8	25	36	5	1.11	1	338	413		45	64	－87	45	
58	L．54	1111	1.21154	288	1215	1.65	26	155	34	$2 ?$		35	2.81	1	449	4.5	55	128	
99	2あ	1．111	1551165	4.75	1216	471	287	27	5	แx		87	1.53	1	45	4.15	58	25	
6	450	1113	7.651165	1.71	1211	2.81	268	44	1	265	1	380	2.1	1	40	2． 3	58	4.519	
61	276	1114	2281167	28	1218	1.81	269	C\％	31	1.62	1	38	446	1	45	2	59	4.10	
62	42	1115	7.311168	43	1 219	12.18	27	43	38	し2	1	391	4.72	，	$4{ }_{4}$	4	5	23	
63	2.49	1116	2101169	397	181	1.55	211	231	39	20	1	38	1.13	1	45	4.4	5	1010	
6	6.91	1117	27117	1.24	1201	231	212	4.74	38	2		383	12.		467	4.15	58	18.63	
65	13.53	1418	251171	5.2	123	1.35	23	279	30	1.8		34	1.97		471	413	58	1.77	
66	1.35	1119	1.291772	1.28	123	4.41	214	4.31		49		30	4.19		473	418	158	6.51	
67	1.5	1 120	676113	4．5	124	1.41	215	238		4.9		361	4.48		477	42	615	45	
69	51.4	112	4.631174	E2	120	4.9	21	3.17		1．15		39	6.17	1	479	43	1616	4.2	
7	2.58	1123	1.481175	45	120	4.84	218	4.6	35	1.6 4.17		＊	4 c	1	481	2.2	165	2.58	
71	1.23	1123	1.581176	3．20	120	3613	29	1.74	351	43		41	414	1	483	4.7	165	6.15	
72	42	1124	133117	1094	120	1．60	201	1.57		3．49		43	L20	1	46	1.8	1657	627	
7	4.75	1120	4481176	1.98	120	5，9\％	1 1211	1．57	139 130	3.4 4.51	1	4	4.11	1	486	4.34	1671	La	
74	0.27	116	258179	2.34	120		1220 1283	2．35	｜ 341	2.25	1	－ 6	1.4	1	487	414	1678	420	
18	1.62	1127	23.911818	25	$\begin{array}{ll}1 \\ 1 & 31 \\ 128\end{array}$	12.6	1233 124	12.58	131 1312	2．5		46	4	1	431	48	1677	4.6	
76	4.34	1128	3.971218	1.65	1 1 123	217	120	1.88 1.8	1312 1313	1.818		40	1.6	1	48	43	1 68	L．t5	
7	17.67	112	3.971188	2.13	123	42	1205	1.8	134 1 344	4		4	1.28	1	497	46	177	1.11	
7	1.2	113	1．411183	308	1 23	42	1208	4.35	1345	45	1	＊ 4	298	1	49	1.84	17 H	2.31	
79	257	1 L3t	3.821184	48	125	38	288	2.65	I 345	4.5		410	281	1	508	4	1		
8	45	1129	2701165	388	120	45	28	268	1 1 1 147	215		411	4.45	1	58	43	1		
4	2.3	115	6.97118	48	127	1.58	23	25．99	$\begin{array}{ll}1 & 34 \\ 1 & 348\end{array}$	373	1	412	414	1	50	26	1		
6	282	113	1.71118	27	128	4.68	21	25.99	$\begin{array}{ll}1 & 346 \\ 1 & 349\end{array}$	1．7	1	413	45	1	5	240	1		
83	280	1135	20\％ 168	2.8	128	1.58	1828	271 1.4	1349 1381	15	1	414	4.4	1	58	4.15	1		
84	4.99	1135	4461269	7.45	124 1 124	4.54	1283	1.4 8.74	1351	46	1	415	2.74	1	59	25	1		
6	2.40	117	067119	28	1241	14.2	8	8.74	1 S01	42	1	4 S	2.	1	3	20			

21. Z-Pentafluoroprop-2-enylcyclohexane (43a)

RSCYRF 229 (3.817)

RSCYPP: 29 (3.017)

26	2.10	45	0.95	63	2.12	71	8.53	95	20.37	III	3.05	127	2.13	151	12.35	172	12.4
27	22.00	46	0.71	64	1.61	80	46.54	96	3.28	112	1.5	131	2.12	152	2.68	173	1.74
28	28.00	47	2.71	65	5.13	81	75.58	97	6.91	143	15.67	157	2.14	15	3.20	175	1.53
29	14.40	50	2.78	66	2.10	82	78.80	98	1.16	114	4.09	151	5.56	154	3.80	178	10.14
30	0.47	51	10.71	67	65.90	83	16.84	9	14.17	215	12.21	131	0.90	158	4.64	180	0.\%
31	1.74	52	2.13	68	14.40	84	2.42	100	97.56	116	1.6	155	4.81	157	4.61	181	3.28
32	4.98	5	6.91	67	28.57	85	16.62	101	2.70	117	3.71	157	2.35	158	71.24	184	1.04
3	1.22	54	17.74	70	3.11	86	4.52	102	7.37	19	8.41	138	1.15	159	4.29	188	7.77
37	0.68	55	31.34	71	1.58	87	4.95	103	17.8	120	1.84	139	7.72	151	0.70	186	2.02
38	2.48	56	76.96	7	4.55	68	4.49	10	1.45	171	9.35	140	11.0	163	4.72	193	0.97
39	40.09	57	10.48	3	7.60	87	12.67	105	1.30	178	1.53	141	1.75	185	5.93	198	2.10
40	8.27	59	0.91	74	4.18	90	2.16	10	2.65	13	1.12	143	0.87	166	2.81	19	6.57
41	100.00	59	4.87	75	8.18	91	3.20	107	3.51	125	13.94	145	16.13	167	3.92	24	37.63
42	11.06	60	0.72	76	1.15	92	0.75	108	38.71	126	3.77	146	1.71	168	1.51	25	3.95
43	12.4	61	1.53	7	11.75	93	7.95	109	7.06	177	9.10	147	4.29	169	0.71		
44	1.35	62	0.77	78	1.25	94	1.78	110	0.79	128	1.08	149	1.61	171	3.14		

22. E-Pentafluoroprop-2-enylcyclohexane (43b)

ROBCYRF 254 (4.234)

Mass	Rel Int						
20	0.03	71	2.15	114	3.77	159	4.84
. 26	1.15	72	4.73	115	11.28	160	0.33
27	9.76	73	6.44	116	1.46	161	0.42
28	5.49	74	3.96	117	3.01	163	3.43
29	7.16	75	9.76	118	0.76	164	0.60
30	0.20	76	1.95	119	8.35	165	3.43
31	0.95	77	13.57	120	1.77	166	1.67
32	0.16	78	1.72	121	7.85	167	1.96
33	0.67	79	10.67	122	1.07	168	0.85
37	0.54	80	49.39	123	0.97	169	0.50
38	2.30	81	72.56	125	10.82	171	3.13
39	38.26	82	79.88	126	3.39	172	6.63
40	7.51	83	14.94	127	7.81	173	1.80
41	100.00	84	3.13	128	0.81	174	0.20
42	10.37	85	15.09	129	1.80	175	2.78
43	12.20	86	2.59	130	0.34	176	0.30
44	0.76	87	4.54	131	1.95	177	0.45
45	1.01	88	5.14	132	2.41	179	8.00
46	0.76	89	12.35	133	4.80	180	0.72
47	3.24	90	2.07	134	0.91	281	2.42
48	0.12	91	3.16	135	5.11	182	0.22
49	0.25	92	0.90	136	0.55	183	0.11
50	3.62	93	7.47	137	2.09	184	0.29
51	15.24	94	2.74	138	1.16	185	3.32
52	2.86	95	23.02	139	6.75	186	1.12
53	10.21	96	3.81	140	7.05	187	0.14
54	30.03	97	7.43	141	1.12	191	0.10
55	39.63	98	1.57	142	0.15	193	0.75
56	78.05	99	14.63	143	0.61	194	2.67
57	13.57	100	. 67.68	145	11.59	195	0.57
58	1.33	101	20.73	146	0.68	196	0.08
59	6.06	102	7.47	147	3.70	197	0.25
60	0.95	103	14.94	148	0.50	199	0.28
61	. 1.75	104	1.10	149	1.66	199	5.26
62	1.18	105	1.13	150	0.49	200	0.44
63	3.43	106	2.52	151.	10.37	207	0.08
64	2.23	107	4.04	. 152	2.02	212	0.08
65	6.40	108	31.10	153	4.65	213	0.25
66	6.94	109	6.33	154	2.28	214	24.85
67	96.34	110	0.72	155	5.34	215	2.12
68	13.41	111	2.86	156	0.78	216	0.11
69	29.27	112	1.41	157	2.52		
70	3.28	113	11.59	158	51.83		

23. 1-(E-pentafluoroprop-2-enyl)adamantane (44a)

ROB27 576 (9.681)

ROB27 589 (9.818)

RSTCYRF2 197 （3．284）

RSTCY	182191	（3．24）															716800	
Hass	fel int	；Mass	Rel lnt	；Mass	Rel Int	；hass	Rel int	；Mass	Rel Int	：hass	Rell int	hass	Rel Int	；niss	fel lint	；Mss	Rel int	
20	0.7	3	14.29	18	12．83	111	18.00	140	6.14	178	29.57	202	0.62	$\omega 1$	0.47	35	0. т	
34	0.71	54	73.14	85	45.14	： 112	4.93	142	5.71	172	7.57	203	0.91	23	0.17	33	0.11	
25	1.62	55	13.29	84	15.14	133	35.7	112	1.96	13	2.50	204	0.31	23	0.58	硙	0.10	
26	7.57	56	6.00	85	22.0	114	11.43	143	33.4	174	0.63	205	0.0	24	0.16	3	2.25	
71	23.86	57	23.43	86	2.82	： 115	43.6	14	3.61	i． 173	1.03	206	0.38	23	0.67	矿	2.20	
28	17.57	58	3.78	87	6.18	116	7.00	： 145	34.88	： 176	2.26	207	1.10	23	0.21	27	0.16	
2	9.57	97	16.85	＊	24.71	117	19.71	： 146	4.21	17	7．万	208	0.52	27	0.2	m	0.24	
31	8.11	60	1.54	${ }^{8}$	48．00	； 48	2.45	： 147	7.43	179	20.27	209	2.7	W5	0.3	79	0.24	
32	1.15	61	2.09	9	8.39	119	23.4	149	1.27	： 180	2.52	210	5．36	240	0.28	271	0.21	
3	1.53	62	3.25	91	6.61	： 120	3.14	149	1.35	181	1.46	211	33.29	241	1.34	231	0.20	
3	0.19	63	9.07	72	1.93	121	28.14	151	7．4	128	1.4	212	24.14	242	0.6	35	0.29	
35	0.74	64	7.79	7	10.29	12	4.07	151	37.71	183	5.04	213	2．96	243	1.95	235	0.78	
36	1.36	65	25.00	94	11.29	； 123	4.51	152	10.13	184	8.6	214	0.69	24	2.37	8	1.34	
57	1.81	6	14.29	95	100．00	124	0.96	15	8.73	165	4.4	24	2.56	24	0.16	28	1.41	
3	7.14	67	29．86	96	17．00	123	4．96	154	1.66	186	9．86	216	0.63	247	0.4	27	0.17	
39	22.57	68	12.43	97	46.29	126	5.35	155	0.85	187	2.08	217	1.31	21	0.17	\％ 6	0.10	
40	4.11	69	58.29	98	11.43	17	26.71	156	3.07	； 188	0.50	218	0.25	Z1	0.14	지	0.09	
41	19．85	70	9.25	99	7.3	128	3.68	150	25.23	188	1.87	219	0.67	25	0.19	305	1.19	
42	1.25	71	7.50	100	7.29	129	3．86	158	82．86	190	0.81	20	0.31	255	1.25	505	1.26	
43	0.81	π	7.93	101	65.71	130	1.2	199	15.29	（ 191	9.25	27	1.18	25	1.24	37	0.23	
4	1.84	万	4.11	102	34.57	131	4．86	160	2.15	192	2.75	72	0．36	257	0.51	3	0.2	
45	2.13	14	6.93	103	57.71	152	9.57	161	3.54	173	4.21	23	1．76	27	0.51	316	0.17	
46	1.58	75	5.14	104	4.07	13	14．86	163	7.29	1 194	1.08	24	0.35	259	0.51	34	0.85	
47	7.77	76	11.00	105	1.58	134	2.45	164	4.57	1 195	2.77	23	0.81	297	0.59	I5	0.3	
48	0.52	π	57.14	106	7.21	135	3.79	165	16．06	197	27．08	26	0.4	231	0.7	\＄	0.07	
49	1.47	78	＊ 7.25	107	14.43	136	0.60	156	5.37	198	4.07	2π	0.89	26	0.8	59	0.25	
50	8.00	79	18．77	108	83.43	17	6.36	167	4.13	199	17.45	28	0．36	263	0.24	34	1．3	
51	25．00	80	12.29	109	20．88	158	4.18	168	1.13	200	1.76	\％	0.73	235	0.21	34	9.14	
52	4.07	81	11.86	110	3.54	139	21.27	169	3.18	201	1.17	230	2.02	235	0.98	345	0.88	

RSCYRF2 358 (5.967)

27. Z-Pentafluoroprop-2-envlcyclopentane (49)

RSDPF $172(3.200)$. 201616

20	0.86	43	4.03	61	1.45	81.	5.90	: 103	12.15	125	1.16	; 143	0.18	161	1.52	180	2.70
24	0.70	4	2.09	(62	2.26	82	3.68	: 104	0.60	126	1.00	: 14	0.52	162	0.18	181	0.82
25	1.94	45	2.56	63	5.90	8	16.73	106	3.07	171	3.78	-145	2.15	163	0.36	182	0.09
26	13.31	46	1.84	- 44	4.35	84	3.05	108	43.35	128	0.65	1 16	0.29	164	0.26	183	0.05
77	54.05	47	6.60	: 65	8.32	85	9.53	; 109	5.57	: 129	0.63	; 147	0.25	165	1.40	189	0.16
28	16.94	48	0.34	1 36	5.85	8	33.67	1111	13.71	130	2.95	; 148	0.13	: 168	0.18	185	4.4
27	23.19	49	1.30	67	44.15	87	2.60	112	2.42	; 131	11.49	- 149	0.61	167	0.54	188	0.26
31	11.19	50	7.11	68	97.58	88	8.11	(113	7.51	1152	2.82	: 150	0.81	168	0.05	195	0.63
32	0.76	51	20.7	69	3.67	89	19.35	-144	2.78	(133	2.07	: 151	2.55	169	0.07	1\%	0.06
3	3.04	52	3.38	70	4.18	90	2.34	: 115	3.68	1 134	0.57	: 152	0.92	170	0.24	177	0.04
35	0.48	53	9.78	71	2.71	91	2.87	: 116	0.58	1 135	1.22	153	1.05	171	1.54	19	0.22
36	1.70	54	5.19	π	4.06	93	4.08	117	1.05	136	0.72	: 154	0.89	177.	2.26	199	1.69
37	4.54	55	3.47	T	7.86	- 95	18.95	49	8.01	17	1.64	: 155	0.11	13	0.10	200	12.80
38	6.50	56	3.63	75	19.35	\%	2.02	120	2.21	158	1.80	: 156	0.51	175	0.03	201	0.41
39	82.26	57	17.74	77	20.71	. 97	4.59	; 121	4.18	13	5.90	: 157	10.53	176	0.06	207	0.05
40	18.95	59	. 1.69	78	1.34	99	7.61	- 127	0.54	140	5.90	: 158	59.68	17	0.12		
41.	68.71	59	. 6.85	79	6.70	101	19.96	1. 123	0.12	141	4.03	159	5.19	178	0.13		
12	100.00	60	2.31	80	1.88	102	6.96	: . 124	0.30	142	0.37	- 160	0.51	179	0.58		

28. trans-1, 3-bis(Z-pentafluoroprop-2-enyl)cvclopentane (50a)

RSCPRF 343 (5.717)

RSLPTF 343 (5.717) 770538																		
Hass	Rel int	Mass	fel Int	Hass	Rel lat	; hass	fel int	Hass	dint	Mess	Rel Int		El Int	: hass	1 nt	Hess	Int	
20	1.22	56	6.99	98	9.84	120	4.31	152	5.44	184	2.20	216	2.10	248	0.21	22	0.77	
24	0.83	57	43.52	9	19.43	121	16.71	15	8.68	185	2.91	217	0.33	249	0.2	28	0.36	
25	1.17	58.	4.95	90	4.31	122	2.69	154	1. .17	18	0.40	218	0.55	250	0.2	84	0.31	
26	6.67	59.	14.25	91	1.57	123	0.74	155	0.76	197	3.59	219	2.25	31	2.9	27	0.09	
77	22.80	60	1.13	92	0.66	124	0.70	156	1.74	198	1.12	220	0.73	22	0.58	289	0.51	
29	11.66	61	2.49	93	5.31	125	4.47	157	12.5\%	189	3.98	27	2.89	83	0.07	289	0.20	
29	7.55	62	3.72	94	3.85	125	5.73	158	64.7	190	1.30	27	0.88	35	0.10	280	0.20 5.05	
30	0.07	63	9.54	95	4.63	127	21.11	159	10.73	191	0.79	23	0.41	28	0.06	212	0.56	
31	15.41	4	6.19	\% 6	4.83	129	4.47	160	0.97	192	0.50 1.19	23	0.21	278	0.48 0.10	${ }_{8}^{42}$	0.89	
32	1.17	65	13.18	97	7.64	129	3.82	161	1.7	193	1.19	27	0.89	20	0.65	27	0.02	
35	4.15	66	9.97	98	0.83	130	3.47	162	1.4 25.13	194	4.60	20	3.14		0.51	(1)	0.24	
35	1.23	67	1.45	99	4.15	131	5.31	163	2.13	195	4.60	a	3.14	20	6.5	501	0.42	
36	2.27	68	5.88	100	2.19	172	8.94	164	5.57	196	4.15	28	0.21	262	6.85	301	0.15	
37	5.5	69	59.07	101	37.31	23	11.66	165	11.77	17	100.0	27	3.01	23	0.60	58120	0.15	
38	10.36	70	5.83	102	17.88	134	1.73	166	2.17	198	8.38	330	0.45	23 23	0.62	318 310	0.05	
39	61.66	71	3.82	103	54.92	135	1.07	167	1.00	199	4.40	210	3.11	265	1.12	311	1.42	
40	9.59	72	2.72	104	3.30	136	0.48	168	0.86	200	2.30	203	4.64	235	1.12	312	0.16	
41	38.34	B	0.96	105	0.93	137	7.46	169	8.27	201	5.4	20	0.43	267	0.11	315	0.23	
42	2.45	74	2.69	106	5.21	158	3.98	170	4.08	202	1.09	23	0.06	280	0.04	58	0.07	
43	1.95	75	22.41	107	9.33	139	15.67	171	15.16	203	1.31				0.5	59	0.62	
4	6.35	76	3.50	108	38.34	140	3.59	172	19.58	204	0.09	236	0.05	30	0.58	50		
45	7.19	7	27.92	109.	12.69	141	1.35	13	4.11	205	1.01	25	0.54	20	3.5	31	1.35	
45	4.05	76	1.70	110	1.25	142	0.35	174	0.96	206	0.58	238	0.16	2	0.47	5	0.06	
47	16.19	77	1.59	111	0.69	143	2.78	175	1.36	207	1.97	245	1.16	213	0.07			
49	1.82	80	0.70	112	2.82	144	2.07	176	2.72	208	0.62	240	6.012	215	0.14			
49.	2.95	81	5.83	113	26.42	145	26.42	17	12.05	208	3.05	241	0.08	276	0.05			
50	16.45	82	4.70	114	8.42	146	2.75	178	2.56	10	0.60	290	0.31	27	0.51			
51	62.18	83	26.42	145	10.23	147	4.86	179		211	1.14	24	0.51	278	0.06			
52	5.63	${ }^{3} 4$	9.46	116	1.45	148	0.51	180	1.68	212	7.67		1.68	271	0.71			
53	9.59	85	2.91	117	1.09	149	0.62	181	6.48	213	7.67			28	0.15			
54	1.31	86	0.49	128	1.13	[50	4.34	182	5.02	24	. 40	246	0.30	20	0.15			
55	1.86	87	2.17	119	18.91	151	25.39	183	8.16	25	2.66	247	1.89	311	0.25			

RSCPRF' 351 (y. 851)

Resph	F 315																	6802
hass	Rel lnt	; Mass	勋 Int	Hass	Rel int	; Mass	Rel lnt	; liss	Rel Int	; Miss	Sel lnt	; Mas	Bel Int	; Mes	Rel tot	; Ress	Pel int	
20	1.50	54	2.26	86	1.78	118	1.50	150	4.61	182	2.65	24	1.69	246	0.4	29	0.41	
25	0.16	55	2.21	87	4.15	149	23.23	151	26.17	185	4.50	25	3.04	27	1.72	37	0.31	
24	0.71	5	9.29	*	19.16	120	5.5	152	5.76	184	1.83	216	2.38	299	0.7	78	0.60	
25	1.96	57	46.78	9	37.85	121	2.56	131	8.00	185	0.\%	27	5.58	250	0.71	271	5.61	
26	8.24	58	6.83	9	7.7	122	3.91	154	1.49	18	0.43	218	3.72	31	3.10	T2	0.62	
71	17.76	59	19.39	91	3.71	125	1.07	155	0.55	187.	1.55	219	2.00	22	0.66	28	0.23	
28	9.87	60.	2.35	92	1.11	: 124	0.80	156	1.9	1 19	1.14	\pm	0.910	20	0.15	27	0.34	
27	5.8	61	2.68	93	8.94	: 125	5.90	157	13.\%	189	3.64	21	3.14	27	0.64	Z	0.14	
30	2.10	62	5.26	94	3.50	126	6.85	158	68.21	1%	1.14	20	0.\%	28	0.10	300	0.04	
31	9.16	65	14.25	\%	80.57	127	30.14	159	10.11	191	0.54	23	0.35	259	1.01	301	0.47	
32	1.42	64	9.81	$\%$	8.41	127	5.43	150	0.86	192	0.54	24	0.13	20	0.55	302	0.14	
3	2.9	65	20.74	77	24.50	127	22.34	161	1.20	193	0.71	$\mathbb{3}$	0.37	261	13.71	58	0.108	
4	0.2	66	20.09	96	3.49	: 130	4.91	162	2.19	: 191	1.19	26	0.72	262	0.97	509	0.61	
35	1.29	67	42.52	9	9.55	151	6.66	163	2.66	: 193	4.21	II	3.91	233	0.5	310	7.77	
36	2.26	68	15.19	100	3.80	152	11.77	164	5.47	1\%	6.53	28	0.56	24	0.86	511	2.41	
37	3.91	69	100.00	101	57.71	138	15.42	165	10.16	177	73.70	\%	5.90	245	1.89	312	0.20	
38	9.99	7	10.69	102	26.87	134	2.13	166	2.00	19	18.69	230	0.79	26	0.36	315	0.19	
59	37:02	71	-7.68	103	89.12	135	1.49	167	0.92	199	5.5	21	3.74	1 27	0.20	317	0.6	
40	7.4	72	6.13	104	5.55	136	0.45	168	1.05	200	2.32	22	2.05	1 249	0.55	58	0.15	
41	24.30	T	3.35	105	1.24	137	8.70	169	1.13	201	5.61	25	8.40	: 70	0.5	59	0.58	
42	6.02	74	5.72	106	7.18	138	4.21	170	4.38	20	1.61	31	0.41	: 71	4.67	500	6.67	
43	1.37	7	42.99	107	11.92	137	18.22	171	13.38	203	1.08	W5	0.2	: 12	0.58	W10	1.21	
4	4.26	76	7.48	. 108	62.62	140	3.71	172	16.82	204	0.78	36	1.51	31	0.12	\$17	0.69	
45	4.4	7	62.62	109	17.16	141	2.27	173	1.56	205	1.25	25	0.70	; 71	0.8	35	0.15	
46	3.53	76	3.74	110	2.09	142	0.45	174	0.77	206	0.61	$2{ }^{2}$	0.11	: 278	0.08	369	0.18	
47	11.86	79	4.26	111	1.39	143	3.29	175	0.69	207	3.14	23	1.61	29	3.31	350	1.02	
18	1.02	60	1.36	112	3.50	14	2.42	176	1.77	218	0.97	26	0.57	30	0.70	31	0.41	
49	2.18	81	12.15	113	39.79	145	27.21	17	11.7	209	3.74	211	9.2	221	1.7			
50	16.57	82	10.63	114	12.71	146	3.2	178	2.92	210	0.72	212	1.14	28	0.61			
51	60.73	85	53.77	115	14.95	147	5.5	179	23.26	21	1.18	23	0.39	23	0.5			
52	5.84	84	20.56	116	2.13	148	0.70	180	2.12	212	1.59	24	0.41	酸	1.61			
53	9.81	85	9.58	117	1.68	149	0.74	191	5.84	213	8.24	245	1.15	20	0.57			

RSCPRF 301 (5.017)

RSWPF 301 (5.017)

20	0.26	52	2.17	81	6.36	110	0.4	137	15.7	168	1.58	177	0.84	76			
24	0.30	53	3.55	82	3.4	111	0.45	140	2.34	169	7.35	198	0.7			28	0.18
25	0.68	54	0.82	83	23.86	; 112	1.59	: 141	0.63	170	1.70	199	0.12 2.41	20	1.10	289	0.08
26	3.7	55	2.70	84	3.09	: 113	12.36	112	0.16	171	3.50	200	2.41 1.01	229	0.17 1.38	269	0.54 1.15
27	8.81	56	4.69	85	1.7	; 114	4.76	143	1.20	172	7.42	201	1.56	20	0.18	31	1.15
28	3.59	57	21. \%	88	2.10	: 115	19.32	14	1.25	173	0.62	202	0.62	31	1.8	\#2	1.50
7	1.80	58	2.49	87	1.88	: 116	2.06	145	14.63	174	0.15	203	0.57	252	0.75	ITr	0.19 0.14
30	0.60	59	6.25	*	8.31	: 117	1.04	146	1.4	175	0.58	20	0.06	23	0.71	38	0.15
31	3.84	60	1.07	69	19.74	: 118	0.70	147	0.67	176	0.71	205	0.51	236	0.03	34	0.31
32 3	0.49	61	1.77	9	3.30	: 119	15.91	148	0.71	17	1.21	200	0.21	231	0.26	377	0.04
33	1.02	62	2.27	91	1.46	120	2.66	149	0.9	188	0.18	207	0.80	28	0.31	28	0.78
34 35	0.07	63	5.47	92	0.36	12	10.51	150	6.45	177	0.97	208	0.35	23	0.52	278	0.15
33	0.51 0.91	64 65	3.94 9.23	93 94	4.12	123	1.78 0.40	151	11.65	180	0.65	209	0.48	211	4.4	20	0.18
π	1.97	66	2.17	85	26.85	124	0.4 0	152	1.77	181	2.95	210	0.07	212	0.58	27	3.71
38	4.90	67	1.19	96	3.34	125	$2 . 万$	154	0.17	153	2.98	212	0.45	245	0.06 0.78	\%	0.20 0.06
37	23.58	68	5.50	97	2.95	126	3.50	155	0.31	184	16.62	213	1.71	246	0.15	27	0.05
40	5.58	69	53.98	98	0.62	17	4.77	156	0.80	185	4.72	214	0.15	247	0.78	327	0.09
41	28.71	70	4.87	9	6.29	128	0.59	157.	9.94	186	0.49	215	1.07	249	0.11	398	0.09
42	5.22	11	3.16	100	1.78	129	2.04	158	100.00	187	1.50	216	0.69	250	1.66	310	1.11
43 4	0.72	72	1.19	101	23.01	150	1.16	159	6.21	188	0.56	217	0.15	231	1.19	311	0.51
4 4	1.76	3	16.05	102	11.65	131	3.77	160	0.14	189	1.05	28	0.82	22	0.30	315	0.08
45	1.87	74	3.16	103	37.71	132	4.15	161	0.69	190	0.34	219	4.01	25	0.2	539	0.15
48	1.39	75	20.60	104	2.27	13	5.18	162	0.68	191	0.71	20	0.54	259	0.24	50	1.21
48	0.17	7	1.79	105	0.55	134	0.69	163	6.9\%	198	0.09	22	1.31	261	9.25	31	0.15
19	1.77	78	1.31	107	4.76	136	0.74	164 165	1.58	193	0.36	23	0.39	269	0.15		
59	6.68	79	0.98	108	31.23	137	3.98	166	0.93	195	1.8	24	0.10	24	0.71		
1	23.72	80	1.26	109	3.98	188	2.71	167	0.61	196	0.31	725	1.15	265	0.71		

31. 1-(Z-pentafluoroprop-2-enyl)trans-decalin (51a)

RSTDECRF 551 (9.184)

RSTIECFF 51 (9.184)
17304

26	0.50	52	1.59	7	0.78	91	3.47	110	1.03	152	0.58	155	0.34	182	0.85	213	0.28
27	8.26	5	7.77	T	0.57	92	0.71	111	0.88	13	1.57	157	0.68	188	0.57	219	0.48
28	13.45	54	11.55	74	0.27	93	13.89	12	0.47	134	0.46	158	3.35	184	0.77	20	0.51
29	9.94	55	27.66	75	1.7	94	4.20	113	1.94	135	6.51	157	1.45	185	0.61	${ }_{28}$	0.78
30	0.35	56	2.63	76	0.34	9	51.4	114	1.42	136	0.67	161	0.72	187	0.53	2b	0.57
31	0.26	57	1.66	7	6.62	96	13.89	115	4.71.	137	1.11	163	0.92	189	0.45	\#1	1.00
52	3.18	58	0.20	78	1.71	97	3.65	146	0.46	139	4.73	164	0.12	191	0.36	7\%	0.19
3	0.40	59	1.69	79	13.60	98	0.49	117	0.40	140	0.74	165	1.37	173	0.42	203	0.27
38	0.54	81	0.29	80	6.36	99	1.28	119	2.34	141	1.05	166	1.07	177	0.56	231	0.53
39	17.88	62	0.21	81	100.00	100	1.36	120	0.38	113	0.36	167	9.65	198	0.35	240	0.73
40	3.65	63	0.98	82	43.71	101	9.80	121	6.85	145	2.\%	168	1.4	199	0.37	248	0.51
41	47.31	64	0.41	8	8.41	102	2.07	122	2.28	146	0.46	168	0.48	200	1.20	233	0.\%
42	5.26	65	4.50	88	0.91	103	1.71	133	1.40)	147	2.18	171	1.20	201	0.31	288	16.67
43	3.07	66	7.69	85	0.56	104	0.72	125	1.05	148	0.40	172	0.26	205	0.41	289	2.35
4	1.4	67	91.81	86	1.16	105	0.74	126	0.62	149	0.75	173	0.50	206	0.28		
45	0.24	69	24.12	87	6.51	106	0.4	17	4.28	151	3.29	177	1.21	207	0.67		
47	1.68	69	26.46	68	0.65	107	12.57	128	0.86	152	0.65	179	1.23	209	0.62		
50	0.67	70	1.92	89	1.71	108	4.57	129	0.90	15	0.69	100	1.75	211	0.43		
51	3.76	71	0.44	9	0.57	109	7.16	131	0.56	154	0.37	181	1.23	212	0.36		

32. 2-(Z-pentafluoroprop-2-envl)trans-decalin (51b)

RSTEECP5 567 (9.451)				; Mass	Piel Int	; Mass	Ael Int	: Hess	Rel Int	; fixs	Rel lat	: Mass	Rell Int	; Hess	Pel Lot	: hes Rel int		
Mass	Rel Int	; 月ass	fiel lat															
20	0.05	: 50	1.19	73	1.08	: 97	3.77	121	6.03	145	3.84	168	0.16	192	1.05	26	4.24	
25	0.06	1 51	7.05	74	0.27	: 97	0.76	12	1.04	146	0.52	: 169	0.84	175	0.71	W	4.60	
26	0.25	: 52	2.72	73	1.75	- 99	1.73	13	1.36	147	2.97	170	0.3	194	0.56	28	0.33	
77	11.61	: 3	15.71	7	8.35	- 100	1.28	124	0.24	148	0.41	171	2.05	19	0.10	29	0.41	
28	6.58	; 54	26.21	78	2.40	101	4.42	125	2.62	149	0.75	172	0.35	197	2.06	23	1.75	
2	15.00	: 55	36.96	79	18.35	102	1.72	126	1.64	150	0.2	173	0.73	198	0.4	231	0.12	
30	0.59	; 56	5.76	80	7.95	103	2.02	127	5.80	151	4.38	174	0.15	199	0.71	29	4.24	
31	0.38	: 57	4.24	81	56.43	104	0.28	128	1.03	152	0.71	175	0.25	200	0.2	240	2.90	
32	1.04	; 58	0.37	12	26.43	- 105	1.46	127	2.97	153	8.77	177	1.94	201	0.21	241	0.21	
33	0.41	: 59	2.21	85	6.21	106	1.16	130	0.35	154	9.69	178	0.81	205	1.84	: 288	8.88	
36	0.06	: 60	0.15	84	0.77	107	12.68	131	0.66	155	1.34	179	2.71	206	3.51	: 248	1.10	
37	0.15	: 61	0.46	85	1.52	108	16.96	152	0.71	156	0.2	180	1.50	207	2.24	25	7.97	
38	0.71	: 62	0.24	86	1.10	109	8.13	150	13.04	157	0.76	181	1.70	208	0.5	24	0.77	
37	37.32	: 63	1.23	87	1.51	: 110	2.13	134	9.73	158	3.17	182	0.25	209	0.35	288	16.79	
40	7.01	: 64	0.56	! 88	0.90	111	1.98	135	71.43	159	2.85	183	0.57	211	1.35	269	2.15	
41	100.00	; 65	6.83	99	2.11	112	2.3	136	8.26	160	0.35	184	0.24	212	0.62			
42	B. 26	; 66	5.58	90	0.33	113	4.46	137	1.94	1615	1.38	185	0.74	213	0.41			
43	7.19	: 67	65.00	91	5.89	(114	1.50	138	0.30	152	0.18	186	0.19	214	0.73			
4	0.36	: 68	21.25	: 92	2.95	: 115	4.69	139	4.69	: 163	1.03	! 187	1.14	219	0.68			
45	0.24	- 69	27.32	93	16.96	116	0.53	140	0.71	: 164	0.12	; 180	0.16	22	0.50			
46	0.31	- 70	1.94	94	7.63	117	0.49	141	1.81	165	2.13	189	0.13	201	0.30		-	
47	2.54	: 71	0.49	95	49.57	119	3.75	142	0.31	166	0.75	190	0.12	20	0.38			
49	0.09	: 71	0.42	: 96	9.51	(120	0.73	: 143	1.4	167	2.13	191	2.03	275	1.21			

ROBCDEC 599 (9.984)
4177920

Mass	Rel Int						
20	1.21	86	1.20	151	5.96	206	2.43
21	0.01	87	1.86	152	2.01	207	1.31
24	1.29	88	3.04	153	7.06	208	0.35
25	3.46	89	4.09	154	6.57	209	0.86
26	12.55	90	2.97	155	0.99	210	0.50
27	32.16	91	11.76	157	2.06	211	1.56
28	18.53	92	6.76	158	4.83	212	0.84
29	24.12	93	17.65	159	2.38	213	0.31
30	0.63	95	98.04	160	0.58	214	0.10
31	3.36	97	5.59	161	1.19	215	0.02
32	0.35	98	1.46	162	0.38	216	0.03
33	1.16	99	2.35	163	1.31	217	0.07
36	2.06	100	2.13	164	1.14	218	0.17
37	4.83	101	6.76	165	2.38	219	0.97
39	77.25	102	3.46	166	1.17	220	0.61
41	100.00	103	3.43	167	1.81	221	0.16
42	1.1 .37	104	1.28	168	0.47	222	0.20
43	8.14	105	1.69	169	1.04	223	0.10
44	1.99	106	3.41	170	0.70	224	0.28
45	1.59	107	12.94	171	2.16	225	1.40
47	4.24	108	18.63	172	0.70	226	2.70
50	10.29	109	12.25	173	0.72	227	2.08
51	15.29	110	8.73	174	0.23	228	0.40
52	9.31	111	3.04	175	0.26	229	0.84
53	30.59	112	3.26	176	0.47	230	0.09
54	44.71	113	5.10	177	2.13	231	0.07
55	45.49	114	3.70	178	1.13	232	0.12
56	10.29	115	7.16	179	2.21	233	1.01
57	7.06	116	1.28	180	1.21	234	0.13
58	1.37	117	1.47	181	1.07	235	0.04
59.	3.41	119	6.76	182	0.42	236	0.02
60	0.55	121	9.61	183	0.67	237	0.08
61	1.26	122	1.89	184	0.72	238	0.29
62	1.86	123	2.33	185	0.94	239	2.30
63	2.43	125	3.24	186	0.42	240	1.64
64	4.09	126	2.55	187	0.69	241	0.10
65	14.12	127	7.65	188	0.28	242	0.03
67	72.16	128	2.50	189	0.73	244	0.04
68	49.80	129	3.38	190	0.35	245	0.05
68	18.43	130	0.77	191	1.16	246	0.21
69	29.41	131	0.97	192	0.84	247	0.92
71	0.64	133	14.71	193	0.67	248	6.76
72	0.92	135	67.45	194	0.35	249	0.87
73	1.72	137	2.18	195	0.24	250	0.05
74	1.67	139	7.16	196	0.67	251	0.12
75	4.75	140	1.37	197	2.43	252	0.30
77	20.10	141	2.18	198	1.12	253	4.31
78	9.61	142	0.82	199	0.93	254	0.48
79	29.02	143	1.81	200	0.28	260	0.01
80	21.67	145	5.96	201	0.21	262	0.02
81	62.75	146	0.85	202	0.08	264	-0.07
82	51.37	147	2.57	203	0.14	266	0.80
84	0.88	148	0.53	204	0.25	267	1.08
85	2.01	149	0.78	205	1.67	268	11.96

ROBHOR2 464 (\%.734)

Mass	Rel Int						
20	0.05	79	4.91	133	3.00	189	2.33
25	0.03	80	1.32	134	1.01	290	0.49
26	0.54	81	2.64	135	0.70	191	3.61
27	5.97	82	1.22	136	0.19	192	1.25
28	1.90	83	5.52	137	2.60	193	0.37
29	3.94	84	10.06	139	48.70	194	0.23
30	0.12	85	2.76	140	3.57	195	2.22
31	1.10	86	0.76	141	4.02	196	2.14
32	0.48	87	0.81	142	0.92	197	19.97
33	1.38	88	3.00	143	1.00	198	79.87
34	0.03	89	5.60	144	0.66	199	8.08
36	0.04	90	0.83	145	14.29	200	0.81
37	0.36	91	1.25	146	1.78	201	0.61
38	1.72	92	0.21	147	6.17	202	0.31
39	24.51	93	1.54	148	0.69	203	0.61
40	4.55	94	1.18	149	0.30	204	0.23
41	19.16	95	16.88	150	1.27	205	1.86
42	1.52	96	4.30	151	9.38	206	0.50
43	0.23	97	20.45	152	2.64	207	0.59
44	0.57	98	2.17	153	1.13	208	0.41
45	0.90	99	11.20	154	0.14	209	4.22
46	0.46	100	1.51	155	0.57	220	7.14
47	4.22	101	12.34	156	2.13	211	5.07
48	0.13	102	4.18	157	2.92	212	0.33
49	0.14	103	1.94	158	21.43	213	0.87
50	2.58	104	0.16	159	5.56	214	0.35
51	16.72	105	0.22	160	0.29	215	0.61
52	2.31	106	2.67	151	0.70	$2: 6$	0.23
53	6.45	107	3.04	163	7.75	217	1.22
54	2.82	108	11.36	164	2.41	228	5.52
55	8.20	109	25.32	165	16.40	219	0.86
56	1.07	210	2.76	166	1.87	220	0.17
57	7.63	111.	0.38	167	0.95	221	0.42
58	0.77	212	0.89	268	0.21	222	0.31
59	4.83	213	5.76	169	2.84	223	2.53
60	0.41	114	6.05	170	4.46	224	0.67
61	0.37	115	15.42	171	5.24	225	1.77
62	0.80	116	1.61	172	1.14	226	0.42
63	3.13	117	0.55	173	0.43	227	1.11
64	1.65	118	0.27	174	0.31	228	0.53
65	9.38	119	7.63	175	0.75	229	2.23
66	28.41	120	1.97	176	1.34	230	0.61
67	24.84	121	5.07	177	8.48	231	0.89
68	3.86	122	0.80	178	2.92	232	0.27
69	17.37	123	0.41	179	3.65	233	0.46
70	2.07	124	0.18	180	0.68	234	0.08
71	1.08	125	1.37	181	0.98	235	0.46
72	0.51	126	0.90	182	1.30	236	0.12
73	0.68	227	36.20	183	8.12	237	0.56
74	0.83	128	6.57	184	4.22	238	0.13
75	7.95	129	-00.00	185	2.45	239	0.39
76	1.19	230	7.95	186	0.35	240	0.09
77	10.39	131	1.61	187	1.24	241	0.50
78	2.26	132	2.68	188	0.37	242	1.18
Mass	Rel Int	Mass	Rel Iat	Mass	Rel Int	Mass	Rel Int
		265	0.14	287	0.22	314	0.31
244	0.17	266	0.05	287	3.98	315	0.16
245	1.43	267	1.46	288	0.61	316	0.11
246	0.33	268	0.24	289	0.36	317	0.79
247	0.41	269	0.44	290	0.07	318	0.13
248	0.18	270	0.20	292	0.28	321 323	0.04 0.06
249	0.09	272	0.33	292	0.10	323 325	0.06 0.18
251	0.03	272	0.08	294	0.05	325 327	0.18 0.09
251	0.40	273	0.17	295	0.36	327 328	0.09 0.13
252	0.09	275	0.25	296	0.30 0.63	328 336	0.13 0.76
253	0.34	276	0.17	297	0.63 0.10	336 337	0.76 0.36
255	3.94	277	0.78 0.19	298 301	0.10 0.04	337 338	0.36 0.07
256	0.51	278 279	0.19 0.03	301 303	0.04 0.04	338 341	0.07 0.09
257.	0.60	279	0.03 0.04	303 305	0.04 0.08	341 356	0.09 2.88
258	0.12	281	0.04 0.04	305 307	0.08 0.16	356 357	2.89 0.39
259	0.36	282 283	0.04 0.08	307 308	0.16 0.17	357 358	0.39 0.04
260	0.08	283	0.08 0.06	308 309	0.17 0.26	358	0.04
263	0.13	284	0.06 0.09	309 310	0.26 0.13		
264	0.10	285	0.09	310	0.13		

ROB14 823 (13.718)

ROB14 812 (13.534)

41. Perfluoropropylcyclohexane (60)

Mass	Rel Int						
20	0.26	70	1.17	124	4.03	212	1.45
24	0.16	74	3.13	131	48.99	231	3.78
26	0.27	81	1.81	132	1.58	243	6.70
28	1.46	86	0.29	143	6.60	255	0.34
31	14:92	93	15.93	144	0.31	262	0.58
32	0.59	94	0.45	150	2.92	281	2.52
43.	0.95	100	30.24	155	3.23	293	1.32
47	0.83	101	0.70	162	5.29	331	2.73
50	12.10	105	0.84	169	13.91	343	0.54
51	0.45	112	3.10	174	0.79	431	2.68
55	0.88	117	0.59	181	15.32		
62	1.74	119	21.77	193	7.41		
69	100.00	120	0.35	205	0.60		

Mass	Rel Int	1	Mass	Rel Int	1	Mass	Rel Int	1	Mass	Rel Int
28	0.39	1	94	0. 34	1	144	0. 36	1	213	0. 13
30	0.05	1	98	0. 10	1	148	0.06	1	219	0.57
31	4.01	1	99	0. 08	1	150	3.54	1	224	0.13
32	0. 31	1	100	17.43	1	151	0. 16	1	230	0.10
43	0.06	1	101	0.43	1	155	2.42	1	231	32.04
44	0.09	1	105.	0.57	1	156	0.16	I	232	1.91
47	0.07	1	106	0.67	,	162	5. 30	I	242	0. 04
49	0.04	1	112	1.67	1	163	0.28	1	243	5. 00
50	1.58	1	113	0.12	1	167	0.10	1	244	0.36
51	0. 11	1	117	0. 72	1	169	3.87	1	262	0.34
55	0. 22	1	118	0. 06	1	170	0. 15	1	269	0.86
62	0. 30	1	119	13.73	1	174	0.37	1	280	0.17 21.31
68	0.27	1	120	0. 35	1	180	0.07	I	281	21.31
69	100.00	1	124	2.11	1	181	33.10	1	282	1.47 0.06
70	1.21	1	125	0. 12	1	182	1.52 0.22	1	283 293	0.06 1.09
74	1.01	1	130	0.25 70.07	1	186	0.22 10.48	1	294	0.10
75	0.08	1	131	70.07	1	193	10.48	1	294	0.21
81	0.86	1	132	2.53 0.17	1	194	0.62	1	331	0.33
86	0.18	1	136	0.17	1	205	0. 93	,	381	0.33
92	0.64	1	142	0.04	1	205	0.88	I	381 382	0.83
93	8. 98	1	143	7.22	1	212	1.89	1	382	0.11

43. trans-Perfluoro-1,4-dipropylcvclohexane (62a)

44. cis-Perfluoro-1,4-dipropylcyclohexane (62b)

ROBPCY2 103 (1.717)
268697

Mass	Rel Int	Mass	Fel Int	Mass	Rel Int	Mass	Rel Int
20	0.03	120	0.88	207	0.03	306	0.03
27	0.01	124	1.50	209	0.01	312	0.48
28	0.62	125	0.10	210	0.01	313	0.13
29	0.02	129	0.03	212	1.90	314	0.01
31	2.67	131	32.93	213	0.21	317	0.01
32	0.18	132	1.08	214	0.01	319	0.06
35	0.01	133	0.01	217	0.41	325	0.03
36	0.01	136	0.15	218	0.04	331	15.24
40	0.02	137	0.06	219	3.24	332	1.03
42	0.01	141	0.02	220	0.14	333	0.04
43	0.03	143	5.34	224	0.34	343	0.27
44	0.36	144	0.39	225	0.20	344	0.03
45	0.01	145	0.02	226	0.02	350	0.03
47	0.05	147	0.01	229	0.02	355	0.05
48	0.01	148	0.11	231	16.77	356	0.01
50	1.18	150	1.12	232	0.87	363	0.01
51	0.21	151	0.15	233	0.03	375	0.07
55	0.04	155	2.55	236	0.31	381	0.29
62	0.07	156	0.14	237	0.05	382	0.02
66	0.01	159	0.02	243	4.88	393	0.40
69	66.46	160	0.01	244	0.28	394	0.04
70	0.88	162	11.28	245	0.01	405	0.02
74	0.22	163	0.64	248	0.03	409	0.00
75	0.05	164	0.02	249	0.01	412	0.09
79	0.01	167	0.26	250	0.08	413	0.03
81	0.31	169	100.00	251	0.01	425	0.01
82	0.01	170	3.35	255	0.90	431	0.59
83	0.03	171	0.07	256	0.07	432	0.06
85	0.02	174	0.42	259	0.01	443	0.07
86	0.03	175	0.11	262	0.34	444	0.01
87	0.01	176	-0.01	263	0.14	463	0.05
93	4.15	179	0.08	264	0.01	475	0.01
94	0.14	+81	28.20	267	0.09	481	2.25
97	0.01	182	1.16	269	0.13	482	0.23
98	0.03	183	0.03	270	0.00	483	0.01
100	10.21	186	0.85	274	0.05	493	0.05
101	0.25	187	0.10	275	0.06	494	0.01
105	c. 23	193	6.86	281	11.59.	512	0.01
106	0.01	194	0.36	282	0.68	531	0.02
109	0.01	195	0.01	283	0.03	543	0.01
112	1.43	198	0.06	286	0.04	581	0.23
113	0.27	199	0.01	287	0.02	582	0.03
114	0.01	200	0.01	293	1.64.		
117	0.55	205	2.32	294	0.13		
119	37.80	206	0.15	305	0.29		

Hus 68 (1.134)

RCB 68 (1.134)		1 Mas:		Rel Int	1	Mass	Rel int		Mas ${ }^{\text {a }}$	3735s5		
Mass	Pel 1 Int			Rel 1 Int								
20	0.35	1	93		0.05	,	156	0.46	1	244	1.32	
31	0. 00	1	85	0.36	1	157	0.02	1	245	6. 85		
34	0. $11^{\text { }}$	1	86	0.61	1	159	0.07	1	248	0.03		
28	c. 69	1.	87.	0. 10.	1	160	0.82	'	250	0.94		
26	0.35	1	88	0.02	1	162	13. E $^{\text {c }}$	1	ze:	0. 84		
37	1.21	1	- 83	0.03	1	152	1.81	1		2.70		
58	2.47	t	90	0.83	1	154	-. 24	1	2EE	0. 35		
39	0.49	1	31	0.07	1	155	0.81	,	287	0.31		
31	17.00	1	35	24.78	1	167	0.50	1	207	0.01		
3s	0.43	1	94	6. 94	1	159	67.11	1	263	2. 69		
33	0.05	1	95	0.87	,	170	2. 25	1	363	0.27		
35	-. $2 \times$	1	97	-0. 98	t	171	0.04	1	367	0. 16		
36	-. 88	1	98	0.28	1	174.	2.43	1	263	0.36		
37	0. 15	1	180	24.67	1	${ }^{375}$	0.40	,	274	0. 37		
38	0. 23	1	102	1.15	1	176	0.03	1	375	0.83		
37	2. 35	$!$	103	-3. 34	1	179	0. 10	1	273.	0. 81		
48	0. 32	1	103	0. 23	1	181	67.38	1	281	69. 74		
41	1.78	1	185	1.67	1	182	2. 8_{5}	1	283	2. 56		
42	d. 34	1	166	0. 36	1	183	0.87	1	283	9. 21		
43	2.88	1	107	0. 23	1	186	1. 35	I	286	a. 68		
44	-0.31	1	109	0.07	1	187.	0. 20	1	287	9. 23		
45	0.10	1	110	0.03	1	:68	2. 82.	$!$	293	5.67		
46	0.03	1	112	5.25	1	191	0.01	1	294	0.39		
47	0.33	1	113	0.86	1	193	24. 78	I	295	0. 82		
48	0.86	1	114	0. 96	1	194	1.37	1	300	0.01		
E0	8. 33	1	115	c. 02	1	195	0. 84	1	395	1.17		
51	4.06	1	117	2.60	1	198	0.67	1	305	0.69		
-	0.11	1	119	49.12	1	199	0. 03°	$!$	309	0. 21		
53	0. 26	1	120	1.04	1	208	0.86	1	312	0.09		
54	c. 04	1	121	0.83	1	203	0.61	1	313	0.83		
58	1. 32	1	123	0. 82	1	285	9.43	1	317	0.83		
55	0. 20	1	124	6.66	1	266	0.58	1	319	8. 03		
57	0.56	1	135	0.39	1	207	0.03	1.	324	8. 09		
58	0.18	1	136	-. 03	1	299	0.03	1	358	0.03		
59	0.05	1	127	0.04	1	210	0.12	1	33:	1.36		
60	0.03	1	128	0.02	1	212	4.80	1	353	0.09		
62	1.86	1	129	0.86	1	213	0.29	1	336	0.01		
53	0. 27	1	131	87.28	1	214	0.82	1	343	4.88		
64	0.37	1	132	2.99	1	217	0.73	1	344	0.36		
65	0.67	1	133	0.07	1	219	0.71	1	345	0.02		
65	0.09	1	136	¢. 64	1.	220	6. 84	1	355	0.18		
67	0.10	1	137	0. 23	1	221	0. 23	1	356	0.02		
69	100.80	1	138.	0. 22	1	224	1.67	1	353	0.12		
76	2.41	1	139	0.01	1	22s	0. 39	;	362	0.02		
71	0.13	I	141	0.82	1	225	0.62	1	363	0.16		
72	0.04	,	143	20. 86	1	229	0. 82	1	363	0. 03		
74	4.25	1	144	0. 58	1	231	25.53	1	371	0.81		
75	0.97	1	145	0. 34	1	232	2. 22	1	374	0. 01		
76	0.86	1	147	0. 33	1	233	0. 84	1	375	0. 21		
7	0. 89	1	148	-. 31	1	236	0. 63	1	381	0.61		
78	-. 03	1	150	4.86	1	237	0.88	1	383	9.05		
79	a. $18{ }^{1}$	1	158	0. 36	t	238.	0.01	1	393	2. 11		
81	3.78	1	152	0.02	1	24.	0.11	1	394	0.18'		
e2	0.57	1	135	8. 44	1	243	23. 81	1	395	0. 01		
mass	Rol int	1	Mast	Rol 1 nt	1	Mas:	Rel Int	1	mas*	Hal int.		
405	0.41	1	431	13.05	1	463	0.01%	1	531	5.84		
405	0. 03	1.	432	1.06	1	481	0.66 ?	1	332	0. 54		
499	0.01	.	433	-. 05.	1	. 482	0.01	1	333	0.63		
409	0. 01	1	443	0. 30 -	1	493	9. 38	1	347	0.01		
412	0.08	1	444	0. 03 :-	1	494	6.03	1	55	0.01		
413	0.02	1	455	-0. 01	1	512	0.03	!				
424	0.01	1	462	-0.04	1	513	0.61	;				

RSPINK11 313 (5.217)

50. Perfluorooctane (68a)

51. Perfluorohexane (69a)

ROBC6	43810.						3620864
Mass	Rel Int						
28	0.07	75	- 0.08	119	81.00	181	8.37
31	3.62	79	0.01	120	1.87	182	0.31
32	0.06	81	2.15	. 124	0.45	193	0.01
43	0.02	82	0.16	125	0.12	200	0.39
44	0.02	83	0.02	- 131	44.80	201	0.02
47	0.01	86	0.10	- 132	1.44	212	0.01
50	1.92	93	8.03	143	0.45	219	23.42
51	0.57	94	0.26	144	0.01	220	0.90
52	0.00	98	0.04	150	6.36	231	15.27
55	0.07	100	28.39	151	0.21	232	0.74
56	0.01	101	0.75	152	0.01	250	0.10
62	0.67	105	0.15	155	0.05	269	0.13
63	0.02 ,	112	1.35	162	0.64	319	0.94
69	100.00	113	0.21	163	0.03	338	0.03
70	2.63	114	0.00	169	81.00		
74	0.87	117	0.11	170	2.77		

53. x-(1, 1,2,3,3,3-hexafluoropropyl)cyclohexyl chloride $(x=2-4)(74)$

54. x -(1,1,2,3,3,3-hexafluoropropyl)cyclopentyl chloride $(\mathrm{x}=2,3$)(75)

Mass	Rel Int
27	2.3
39	11.5
41	14.9
51	5.7
62	6.9
67	100.0
77	11.0
89	1.8
91	6.9
97	6.9
103	2.2
109	4.1
117	13.8
127	3.4
159	8.0
179	2.3
199	33.3
200	2.5
218	4.1
219	4.8

ROBCYENB 242 (4.034)
1163264

Mas8	Rel Int	Mass	Rel Int	Mass	Rel Int	Mas8	Rel Int
26	0.58	73	2.00	117	0.25	168	0.12
27	5.19	74	0.38	119	0.46	169	0.18
28	2.51	75	1.89	120	0.14	170	0.02
29	2.29	76	0.43	121	1.03	171	0.43
30	0.07	77	18.31	122	0.32	172	0.96
31	0.33	78	2.24	123	1.14	173	2.75
32	0.12	79	20.60	124	0.25	174	0.24
33	0.29	80	3.39	125	0.21	175	0.36
37	0.19	81	100.00	127	4.93	177	0.85
38	0.91	82	9.86	128	0.56	178	0.08
39	14.88	83	100.00	129	0.50	179	0.05
40	2.07	84	7.13	130	0.27	181	0.03
41°	31.34	85	2.02	131	6.43	183	0.07
42	2.99	86	0.26	132	0.69	184	0.05
43	1.61	87	0.38	133	1.52	185	0.42
44	0.21	88	0.70	134	0.15	186	0.06
45	0.24	89	1.39	135	0.87	187	0.08
46	0.24	90	1.67	136	0.05	189	0.08
47	1.74	91	3.26	137	0.13	190	0.04
48	0.05	92	0.35	139	0.50	191	0.49
49	0.09	93	1.41	140	0.37	192	0.04
50	1.96	94	0.51	141	1.01	293	1.41
51	9.95	95	2.57	142	0.19	294	0.13
52	2.62	96	1.02	143	0.30	195	8.36
53	10.04	97	1.38	145	1.61	196	0.81
54	15.32	98^{-}	0.30	146	0.12	197	0.78
55	44.72	. 99	0.42	147	1.25	198	0.07
56	6.78	100	0.31	148	0.10	199	0.10
57	2.02	101	3.06	149	0.30	203	0.03
58	0.25	102	1.01	151	3.72	204	0.47
59	3.72	103	8.89	152	0.17	205	0.06
60	0.22	104	0.85	153	1.17	209	0.03
61	0.66	105	0.46	154	0.10	211	0.16
62	0.36	106	0.11	155	0.96	212	0.10
63	1.39	- 107	0.34	156	0.09	213	2.22
64	1.41	108	0.61	157	0.15	214	0.34
65	5.22	109	5.90	158	0.14	215	0.04
. 66	2.18	110	1.12	159	1.14	217	1.41
-67	5.15	111	4.20	160	0.09	218	0.12
68	0.74	112	0.68	161	0.04	223	0.05
69	15.76	113	5.28	163	0.20	232	27.46
70	0.64	114	1.24	164	0.02	233	2.73
71	0.97	115	3.08	165	0.31	234	1.30
72	0.34	116	0.52	167	1.56	235	0.12

56. $\mathrm{x}-(1,1,2,3,3,3$-hexafluoropropvl)cyclopent-1-ene $(\mathrm{x}=2,3)(78)$

RS44.419 (6.984)
Mass Rel Int

27 6.9
$38 \quad 4.6$
$39 \quad 25.3$
$40 \quad 23.0$
$51 \quad 12.6$
$53 \quad 5.7$
$65 \quad 11.5$
67 100.0
$77 \quad 12.6$
$82 \quad 2.9$
$95 \quad 6.9$
$97 \quad 16.1$
1013.4
$115 \quad 6.9$
$117 \quad 26.4$
$127 \quad 4.6$
$159 \quad 2.3$
$218 \quad 15.0$

ROBCYOET 485 (8.084)
2605056

Mass	Rel Int	Mass	Rel Int	Mass	Rel Int	Mass	Rel Ine
20	1.10	77	12:11	129	1.21	177	0.39
24	1.59	78	1.27	130	0.83	178	0.20
25	4.13	79	17.92	131	0.56	179	1.77
26	22.33	80	10.22	132	0.88	180	0.22
27	62.89	81	27.04	133	1.80	181	0.27
28	33.18	82	52.83	134	0.82	182	0.19
29	100.00	83	35.06	135	2.56	183	0.91
30	3.03	84	4.52	136	5.15	184	0.40
31	5.31	85	2.87	137	1.04	185	1.99
32	0.87	86	0.79	138	1.36	186	0.15
33	1.00	87	1.57	139	3.54	187	0.05
37	2.38	88	2.03	140	1.08	188	0.02
39	43.40	89	3.46	141	1.22	189	0.05
41	76.73	90	0.76	142	0.71	190	0.06
42	9.79	91	6.96	143	2.30	191	0.21
43	14.62	93	12.11	144	1.26	192	0.29
44	3.50	95	11.32	145	2.01	193	1.09
45	3.07	96	1.35	146	0.46	194	1.46
46	0.31	97	10.06	147	0.82	195	0.28
47	2.16	98	1.88	148	0.89	196	0.10
48	0.13	99	2.59	149	1.49	197	0.55
49	0.64	100	0.96	150	0.50	198	2.52
50	2.75	101	10.53	151	0.60	199	0.22
51	11.01	102	2.00	152	0.45	200	0.07
52	1.65	103	2.32	153	0.95	201	0.02
53	10.53	104	0.20	154	0.53	202	0.02
54	22.33	105	2.37	155	2.79	203	0.02
54	15.25	106	1.05	156	11.32	205	0.08
55	60.38	107	1.55	157	4.48	207	0.04
56.	9.98	109	11.48	158	0.55	209	0.03
57	7.43	111	23.90	159	0.63	210	0.10
58	1.25	112	1.42	150	0.15	211	1.55
59	3.30	113	2.67	161	0.39	212	1.93
60	0.40	114	1.67	162	0.51	213	0.21
61	0.80	- 115	2.63	163	1.04	214	0.01
62	0.43	116	0.80	164	0.52	218	0.03
63	3.50	117	0.92	165	0.58	220	0.06
64	0.81	118	0.55	166	0.93	221	0.29
65	5.07	119	1.14	167	0.39	222	0.03
65	2.41	120	0.85	168	0.70	223	0.02
67	83.65	121	2.33	169	4.95	225	0.06
68	35.06	122	0.98	170	7.94	238	0.05
69	26.26	123	2.32	171	1.50	240	3.46
70	3.11	124	2.11	172	0.98	241	0.32
71	2.51	125	5.27	173	3.03	242	0.02
72	0.98	126	1.36	174	0.47		
73	1.71	127	2.71	175	0.58		
75	3.93	128	1.13	176	0.15		

ROBCYOET 517 (8.617)
946176

Mass	Rel Int						
20	1.56	73	1.63	119	0.87	165	0.44
24	1.26	74	0.99	120	0.47	166	0.77
25	3.57	75	2.84	121	1.81	167	0.33
26	21.21	76	2.16	122	0.62	168	0.20
27	61.90	77	8.55	123	2.03	169	2.95
28	34.20	78	4.44	124	1.16	170	6.47
29	100:00	79	12.55	125	4.79	171	1.12
30	1.52	80	8.77	126	0.87	172	0.66
31	4.71	81	22.40	127	2.44	173	2.68
32	0.69	82	38.53	128	1.03	174	0.39
33	0.73	83	25.76	129	1.17	175	0.48
36	0.66	84	3.22	130	0.76	176	0.18
37	1.81	85	1.95	131	1.36	177	0.53
39	40.69	86	0.36	132	0.60	178	0.10
41	76.62	87	0.57	133	1.62	179	1.54
42	9.63	88	1.31	134	0.57	180	0.21
43	15.80	89	2.14	135	1.51	181	0.24
44	3.92	90	1.58	136	5.09	182	0.11
45	2.92	91	3.63	137	0.98	183	0.85
46	0.73	92	1.67	138	0.71	184	0.30
47	2.27	93	5.68	139	3.25	185	1.68
48	0.33	94	1.69	140	0.82	186	0.13
49	0.65	95	4.46	141	1.20	187	0.03
50	4.68	96	2.08	142	0.26	191	0.16
51	9.52	- 97	4.14	143	2.06	192	0.34
52	4.25	98	0.95	144	0.86	193	1.14
53	17.21	99	1.40	145	1.76	194	1.44
54	32.03	100	1.79	146	0.32	195	0.48
55	70.13	101	4.30	147	0.72	196	0.10
56	10.61	102	1.08	148	0.72	197	0.44
57	8.01	103	1.35	149	1.31	198	2.76
58	1.44	104	0.43	150	0.37	199	0.21
59	3.41	105	1.16	151	0.53	200	0.08
60	0.35	106	0.64	152	0.32	202	0.06
61	0.80	- 107	0.97	153	0.78	205	0.08
62	1.14	108	2.08	154	0.34	207	0.05
63	3.22	109	4.90	155	0.72	209	0.03
64	2.11	110	2.57	156	9.31	211	2.25
65	6.63	111	12.77	157	3.52	212	2.87
66	15.04	112	1.24	158	0.46	213	0.25
67	70.56	113	1.76	159	1.45	220	0.17
68	32.90	114	0.99	160	0.19	221	0.26
69	24.57	115	1.95	161	0.31	225	0.11
70	3.11	116	0.55	162	0.35	238	0.04
71	2.27	117	0.68	163	0.81	239	0.30
72	1.01	118	0.34	164	0.38	240	4.63

Mas	Rel Ine	Mass	Rel Int	Mase	Rol Int	Mass	Sal Inc
26	0.61	86	0.58	140	5.11	194	15.10
27	8.93	87	1.01	141	16.23	195	26.62
28	4.04	88	1.13	142	2.52	196	9.25
29	59.42	89	4.57	143	10.31	197	6.41
30	1.79	90	1.19	144	3.57	198	12.66
32	0.93	91	6.74	145	6.74	299	2.64
32	1.54	92	1.00	246	2.92	200	0.80
33	0.27	93	3.79	147	9.09	201	6.66
38	0.30	94	1.24	148	2.27.	202	1.40
39	6.82	95	12.26	149	$17.29{ }^{\circ}$	203	5.52
40	1.87	96	4.30	150	5.68	204	1.21
41	27.78	97	28.10	151	6.82	205	5.52
42	3.51	98	1.99	152	2.94	206	1.06
43	13.47	99	3.41	153	16.40	207	8.60
44	2.60	100	1.64	154	3.84	208	22.58
45	4.71	102	15.99	155	2.88	209	12.01
46	0.33	202	3.17	156	68.51	210	4.77
47	5.09	103	4.53	157	18.26	211	10.47
49	0.74	104	0.50	258	3.43	212	1.62
50	0.56	105	1.72	159	9.50	213	4.73
51	4.57	106	0.93	160	1.24	214	1.60
52	1.20	107	4.12	161	7.39	215	3.49
53	6.49	108	2.78	162	7.95	216	0.64
54	12.91	109	31.82	163	21.10	217	2.03
55	42.88	110	3.51	264	7.14	218	0.48
56	3.15	112	10.39	165	6.82	219	15.10
57	7.22	112	1.29	166	19.97	220	2.21
58	0.59	113	7.95	167	9.74	221	61.69
59	4.75	114	3.55	168	12.66	222	7.31
60	0.35	115	9.50	169	22.73	223	4.26
61	0.59	126	2.15	170	19.81	224	1.99
63	0.93	117	3.81	171	16.56	225	3.98
64	0.51	118	0.97	372	18.34	226	0.94
65	5.15	119	2.98	173	18.59	227	2.13
66	4.34	- 120	1.46 21.53	174 175	3.92 10.06 3.04	228	0.55 0.68
67	14.61	121	11.53	175	10.06	229	0.68 1.26
68	3.29	122	2.09	176	3.04	231	1.26 0.89
69	14.29	123	11.69	177	6.41 10.47	232	0.89
70	2.98	124	3.81	178 179	10.47	233	7.71
71	2.21	125	5.19	179	17.53	234	2.48 15.18
72	0.63	126	1.23	180	3.90	235	15.18
73	2.92	127	22.08	181	10.31	236 237	3.21 4.32
74	0.21	128	3.98	182	7.22	237	4.32
75	2.76	129	12.91	183	13.07	238	1.15
76	0.42	130	3.59	284	3.81	239	6.01
77	9.74	131	4.71	185	6.82	240	2.48
78	2.58	132	1.72	186	2.02	241	1.42
79	9.90	133	10.39	187	2.39	242	1.54
80	4.48	134	7.55	188	1.77	243	1.26
81	10.06	135	5.44	189	10.06	244	0.32
82	3.27	136	14.45	190	6.74	245	1.24
83	7.71	237	6.17	191	34.74	246	1.16
84	2.11	138	2.54	192	23.70	247	0.98
85	3.88	139	6.09	193	100.00	249	2.41
Mase	Rel Int	Mase	Rel Int	Hast	Rel Int	Mas:	el tne
	0.29	269	0.46	293	2.54	323	1.85
251	1.70	271	1.56	294	4.08	324	0.77
252	1.50	272	4.73	295	0.78	328	0.22
253	15.99	273	2.35	299	1.68	329	0.24
254	3.39	274	2.92	300	0.82	331 339	0.63
255	2.72	275	1.05	301	2.03 5.03	339 340	3.71 2.39
256	0.38 0.49	276 278	0.38 0.67	302 303	5.03 3.31	340 348	2.39 0.38
257	0.49 0.46	278 279	0.67 1.56	303 304	4.75	349	1.04
258	0.46 1.44	279 280	1.56 1.15	305	1.00	350	4.85
260	3.31	281	4.59	306	0.50	351	0.66
261	2.17	282	2.74	307	1.70	367	1.48
262	2.50	283	5.52	308	0.39	368	3.40
263	2.94	284	1.91	309	0.31	377	0.54
264	0.62	285	0.97	311	0.30	396	24.03
265	1.06	287	1.99	319	1.11	397	3.94
266	0.28	289	0.51	320	2.98	398	0.44
267	1.30	291	1.26	321	5.28		
268	0.26	292	7.14	322	13.07		

Appendix Five
 Colloquia, Induction Courses and Conferences

The Board of Studies in Chemistry requires that each postgraduate research thesis contains an appendix listing:-
a) all research colloquia, seminars and lectures arranged by the Department of Chemistry during the period of the author's residence as a postgraduate student.
b) lectures organised by Durham University Chemical Society.
c) details of the postgraduate induction course.
d) all research conferences attended and papers presented by the author during the period when research for the thesis was carried out.
a) Colloquia, Lectures and Seminars From Invited Speakers 1991-1994

1991

October 17.	Dr. J. A. Salthouse, University of Manchester* Son et Lumiere - a demonstration lecture.
October 31	Dr. R. Keely, Metropolitan Police Forensic Science
\vdots	Modern Forensic Science.

November 6 Prof. B. F. G. Johnson \dagger, University of Edinburgh Cluster-Surface Analogies.
November 7 Dr. A. R. Butler, St. Andrews University Traditional Chinese Herbal Drugs.
November 13 Prof. D. Gani \dagger, St. Andrews University* The Chemistry of PLP Dependant Enzymes.
November 20 Dr. R. More O'Ferrall \dagger, Dublin* Some Acid-Catalysed Rearrangements in Organic Chemistry.
November 28 Prof. I. M. Ward, Leeds University The Science \& Technology of Orientated Polymers.
December 4 Prof. R. Grigg \dagger, Leeds University Palladium Catalysed Cyclisation and Ion Capture Processes.
December 5 Prof. A. L. Smith, ex Unilever Soap Detergents and Black Puddings.
December 11 Dr. W. A. Cooper \dagger, Shell Research Colloid Science, Theory, and Practice.

January 16 Dr.'N. J. Long, University of Exeter Metallocenophanes-Chemical sugar-tongs.
January 22 Dr. K. D. M. Harris \dagger, University of St. Andrews* Understanding the Prperties of Solid Inclusion Compounds.
January 29 Dr. A. Holmes \dagger, University of Cambridge* Cycloaddition Reactions in the Service of the Synthesis of Piperidine and ndolizidine Natural Products.
January 30 Dr. M. Anderson, Sittingbourne Research Centre, Shell Research Recent Advances in the Safe and Selective Chemical Control of Insect Pests.
February 12 Dr. D. E. Fenton \dagger, University of Sheffield* Polynuclear Complexes of Molecular Clefts as Models for Copper Biosites.
February 13 Dr. J. Saunders, Glaxo Group Research Limited Molecular Modelling in Drug Discovery.
February 19 Prof. E. J. Thomas \dagger, University of Manchester Application of Organo-Stannanes to Organic Synthesis.
February 20 Prof. E. Vogel, University of Cologne* The Musgrave Lecture: Porrphyrins, Molecules of Interdisciplinary Interest.
February 25 Prof. J. F. Nixon, University of Sussex Phosphoalkylenes, New Building Blocks in Inorganic and Organometallic Chemistry.
February 26 Prof. M. L. Hitchman \dagger, University of Stratheclyde Chemical Vapour Deposition.
March 5 Dr. N. C. Billingham, University of Sussex Degradable Plastics - Myth or Magic?
March 11 Dr. S. E. Thomas \dagger, Imperial College London*. Recent Advances in Organoiron Chemistry.
March 12 Dr. R. A. Hann, ICI Image Data Electronic Photography - An Image of the Future
March 18 Dr H. Maskill \dagger, University of Newcastle Concerted or stepwise fragmentation in a deamination-type reaction.
April 7 Prof. D. M. Knight, Philosophy Department, University of Durham Interpreting experiments: the begining of electrochemistry.
May 13 Dr. J-C. Gehret, Ciba Geigy, Basel*
Some aspects of Industrial Agrochemical Research.

October 15 Dr M. Glazer \& Dr. S. Tarling, Oxford University \& Birbeck College, London

It Pays to be British! - The Chemist's Role as an Expert Witness in Patent Litigation.
October 20 Dr. H. E. Bryndza, Du Pont Central Research Synthesis, Reactions and Thermochemistry of Metal (Alkyl) Cyanide Complexes and Their Impact on Olefin Hydrocyanation Catalysis.
October 22 Prof. A. Davies, University College London The Ingold-Albert Lecture The Behaviour of Hydrogen as a Pseudometal.
October 28 Dr. J. K. Cockcroft, University of Durham Recent Developments in Powder Diffraction.
October 29 Dr. J. Emsley, Imperial College, London The Shocking History of Phosphorus.
November 4 Dr. T. P. Kee, University of Leeds Synthesis and Co-ordination Chemistry of Silylated Phosphites.
November 5 Dr. C. J. Ludman, University of Durham* Explosions, A Demonstration Lecture.
November 11 Prof. D. Robins \dagger, Glasgow University* Pyrrolizidine Alkaloids : Biological Activity, Biosynthesis and Benefits.
November 12 Prof. M. R. Truter, University College, London
Luck and Logic in Host - Guest Chemistry.
November 18 Dr. R. Nix \dagger, Queen Mary College, London Characterisation of Heterogeneous Catalysts.
November 25 Prof. Y. Vallee. University of Caen Reactive Thiocarbonyl Compounds.
November 25 Prof. L. D. Quin \dagger, University of Massachusetts, Amherst Fragmentation of Phosphorous Heterocycles as a Route to Phosphoryl Species with Uncommon Bonding.
November 26 Dr. D. Humber, Glaxo, Greenford AIDS - The Development of a Novel Series of Inhibitors of HIV.
December 2 Prof. A. F. Hegarty, University College, Dublin Highly Reactive Enols Stabilised by Steric Protection.
December 2 Dr. R. A. Aitken \dagger, University of St. Andrews The Versatile Cycloaddition Chemistry of Bu3P.CS2.
December 3 Prof. P. Edwards, Birmingham University The SCI Lecture - What is Metal?
December 9 Dr. A. N. Burgess \dagger, ICI Runcorn* The Structure of Perfluorinated Ionomer Membranes.

January 20 Dr. D. C. Clary \dagger, University of Cambridge Energy Flow in.Chemical Reactions.
January 21 Prof. L. Hall, Cambridge* NMR - Window to the Human Body.
January 27 Dr. W. Kerr, University of Strathclyde* Development of the Pauson-Khand Annulation Reaction: Organocobalt Mediated Synthesis of Natural and Unnatural Products.
January 28 Prof. J. Mann, University of Reading Murder, Magic and Medicine.
February 3 Prof. S. M. Roberts, University of Exeter Enzymes in Organic Synthesis.
February 10 Dr. D. Gillies \dagger, University of Surrey NMR and Molecular Motion in Solution.
February 11 Prof. S. Knox, Bristol University
The Tilden Lecture: Organic Chemistry at Polynuclear Metal Centres.
February 17 Dr. R. W. Kemmitt \dagger, University of Leicester

- Oxatrimethylenemethane Metal Complexes.

February 18 Dr. I. Fraser, ICI Wilton Reactive Processing of.Composite Materials.
February 22 Prof. D. M. Grant, University of Utah Single Crystals, Molecular Structure, and Chemical-Shift Anisotropy.
February 24 Prof.C. J. M. Stirling \dagger, University of Sheffield* Chemistry on the Flat-Reactivity of Ordered Systems.
March 10 Dr. P. K. Baker, University College of North Wales, Bangor 'Chemistry of Highly Versatile 7-Coordinate Complexes'.
March 11 Dr. R. A. Y. Jones, University of East Anglia The Chemistry of Wine Making.
March 17 Dr. R. J. K. Taylor \dagger, University of East Anglia* Adventures in Natural Product Synthesis.
March 24 Prof. I. O. Sutherland \dagger, University of Liverpool Chromogenic Reagents for Cations.
May 13 Prof. J. A. Pople, Carnegie-Mellon University, Pittsburgh, USA* The Boys-Rahman Lecture: Applications of Molecular Orbital Theory
May 21 Prof. L. Weber, University of Bielefeld Metallo-phospha Alkenes as Synthons in Organometallic Chemistry
June $1 \quad$ Prof. J. P. Konopelski, University of California, Santa Cruz* Synthetic Adventures with Enantiomerically Pure Acetals

June 2 Prof. F. Ciardelli, University of Pisa Chiral Discrimination in the Stereospecific Polymerisation of Alpha Olefins
June $7 \quad$ Prof. R. S. Stein, University of Massachusetts Scattering Studies of Crystalline and Liquid Crystalline Polymers
June 16 Prof. A. K. Covington, University of Newcastle Use of Ion Selective Electrodes as Detectors in Ion Chromatography.
June 17 Prof. O. F. Nielsen, H. C. Arsted Institute, University of Copenhagen
Low-Frequency IR - and Raman Studies of Hydrogen Bonded Liquids.
September 13 Prof. Dr. A. D. Schlüter, Freie Universität Berlin, Germany Synthesis and Characterisation of Molecular Rods and Ribbons.
September 13 Prof. K. J. Wynne, Office of Naval Research, Washington, U.S.A. Polymer Surface Design for Minimal Adhesion
September 14 Prof. J. M. DeSimone, University of North Carolina, Chapel Hill, U.S.A.

Homogeneous and Heterogeneous Polymerisations in Enviromentally Responsible Carbon Dioxide.
September 28 Prof. H. Ila., North Eastern University, India Synthetic Strategies for Cyclopentanoids via OxoKetene Dithiacetals.
October 4 Prof. F. J. Feher \dagger, University of California at Irvine Bridging the Gap between Surfaces and Solution with Sessilquioxanes.
October 14 Dr. P. Hubberstey, University of Nottingham Alkali.Metals: Alchemist's Nightmare, Biochemist's Puzzle and Technologist's Dream.
October 20 Dr. P. Quayle \dagger, Unversity of Manchester Aspects of Aqueous Romp Chemistry.
October 23 Prof. R. Adams \dagger, University of S. Carolina The Chemistry of Metal Carbonyl Cluster Complexes Containing Platinum and Iron, Ruthenium or Osmium and the Development of a Cluster Based Alkyne Hydrogenating Catalyst.
October 27 Dr. R. A. L. Jones \dagger, Cavendish Laboratory* 'Perambulating Polymers'.
November 10 Prof. M. N. R. Ashfold \dagger, University of Bristol High-Resolution Photofragment Translational Spectroscopy: A New Way to Watch Photodissociation.
November 17 Dr. A. Parker \dagger, Laser Support Facility Applications of Time Resolved Resonance Raman Spectroscopy to Chemical and Biochemical Problems.
November 24 Dr. P. G. Bruce \dagger, University of St. Andrews Synthesis and Applications of Inorganic Materials.

December 1 Prof. M. A. McKervey \dagger, Queens University, Belfast ${ }^{*}$ 为 Functionlised Calixerenes.
December 8 Prof. O. Meth-Cohen, Sunderland University* Friedel's Folly Revisited.
December 16 Prof. R. F. Hudson, University of Kent Close Encounters of the Second Kind.
January 26. Prof. J. Evans \dagger, University of Southhampton Shining Light on Catalysts.
February 2 Dr. A. Masters \dagger, University of Manchester* Modelling Water Without Using Pair Potentials.
February 9 Prof. D. Young \dagger, University of Sussex Chemical and Biological Studies on the Coenzyme Tetrahydrofolic Acid.
February 16 Prof. K. H. Theopold, University of Delaware, U.S.A Paramagnetic Chromium Alkyls: Synthesis and Reactivity.
February 23 Prof. P. M. Maitlis \dagger, University of Sheffield Why Rodium in Homogenous Catalysis.
March $2 \quad$ Dr. C. Hunter \dagger, University of Sheffield* Non Covalent Interactions between Aromatic Molecules.
March $9 \quad$ Prof. F. Wilkinson, Loughborough University of.Technology Nanosecond and Picosecond Laser Flash Photolysis.
March 10 Prof. S.V. Ley, University of Cambridge* New Methods for Organic Synthesis.
March 25 Dr. J. Dilworth, University of Essex Technetium and Rhenium Compounds with Applications as Imaging. Agents.
April 28 Prof. R. J. Gillespie, McMaster University, Canada* The Molecular Structure of some Metal Fluorides and OxoFluorides: Apparent Excepitions to the VSEPR Model.
May 12 Prof. D. A. Humphreys, McMaster University, Canada Bringing Knowledge to Life
\dagger Invited specially for the graduate training programme.

* Those attemded.

b) First Year Induction Course

This course consists of a series of one hour lectures on the services available in the department.

Departmental Organisation -	Dr. E.J.F. Ross
Safety Matters -	Dr. G.M. Brooke
Electrical Appliances -	Mr. B.T. Barker
Chromatography and Microanalysis -	Mr. T.F. Holmes
Atomic Absorptiometry and Inorganic Analysis - Mr. R. Coult	
Library Facilities -	Mr. R.B. Woodward
Mass Spectroscopy -	Dr. M. Jones
Nuclear Magnetic Resonance Spectroscopy -	Dr. R.S. Matthews
Glass-blowing Techniques -	Mr. R. Hart / Mr. G.
	Haswell

c) Research Conferences Attended

July 1993
$2^{\text {nd }}$ Anglo-Russian-Ukranian Symposium on Fluorine Chemistry, Durham.

September $1995 \quad 11^{\text {th }}$ European Symposium on Fluorine Chemistry, Bled, Slovenia.

References

1a. R. D. Chambers, Fluorine in Organic Chemistry, John Wiley, New York, 1973.
1b. Chemistry of Organic Fluorine Compounds II, ed. M. Hudlicky and A. E. Pavlath, American Chemical Society, Washington, 1995.
2a. R. E. Banks and J. C. Tatlow, in Organofluorine Chemistry, ed. R. E. Banks, B. E. Smart and J. C. Tatlow, Plenum Press, New York, 1994, p. 25.

2b Selective Fluorination on Organic and Bioorganic Chemistry, ed J. T. Welch, American Chemical Society, Washington, 1991.
3. A. Varvoglis, The Organic Chemistry of Polycoordinated Iodine, VCH Publishers, New York, 1992.
4. L. M. Yagopulskiii, I. I. Maletina and N. V. Kondratenko, Synthesis, 1978, 835.
5. T. Umemoto and Y. Kuriu, Tetrahedron Lett., 1981, 22, 5197.
6. T. Umemoto and Y. Gotoh, Bull. Chem. Soc Jap., 1986, 59, 439.
7. T. Umemoto and Y. Goto, Bull. Chem. Soc Jap., 1987, 60, 3307.
8. T. Umemoto and O. Miyano, Bull. Chem. Soc Jap., 1984, 57, 3361.
9. T. Umemoto, Y. Kuriu and S. Nakayama, Tetrahedron Lett., 1982, 23, 1169.
10. T. Umemoto, Y. Kuriu and O. Miyano, Tetrahedron Lett., 1982, 23, 3579.
11. T. Umemoto, Y. Kuriu, S. Nakayama and O. Miyano, Tetrahedron Lett., 1982, 23, 1471.
12. T. Umemoto and Y. Gotoh, Bull. Chem. Soc Jap., 1987, 60, 3823.
13. G. Cruciani, C. Semisch and P. Margaretha, J. Photochem. Photobiol., 1988, 44a, 219.
14. R. D. Smith, F. S. Fawcett and D. D. Coffman, J. Am. Chem. Soc., 1962, 84, 4285.
15. R. D. Chambers, C. A. Heaton, W. K. R. Musgrave and J. Chadwick, J. Chem. Soc. C., 1969, 1933.
16. R. D. Dresdner, F. N. Tlumac and G. A. Young, J. Org. Chem., 1965, 30, 3524.
17. R. D. Chambers, J. A. Jackson, W. K. R. Musgrave and R. A. Storey, J. Chem. Soc. C., 1968, 2221.
18. D. J. Burton in Synthetic Fluorine Chemistry, ed. G. A. Olah, R. D. Chambers and G. K. S. Prakash, John Wiley, New York, 1992, p. 205
19. D. J. Burton and Z. Y. Yang, Tetrahedron, 1992, 48, 189.
20. D. J. Burton, Z. Y. Yang and P. A. Morken, Tetrahedron, 1994, 50, 2993.
21. R. D. Chambers and J. Hutchinson, in Comprehensive Organic Functional Group Transformations, 1995.
22. S. C. Cohen and A. G. Massey, Adv. Fluorine Chem., 1970, 6, 83.
23. M. Hudlicky, Chemistry of Organic Fluorine Compounds, ed. E. Horwood, Ellis Horwood Ltd, 1992, p. 358.
24. O. R. Pierce, E. T. McBee and G. F. Judd, J. Am. Chem. Soc., 1954, 76, 474.
25. P. G. Gassman and N. J. O'Reilly, Tetrahedron Lett., 1985, 26, 5243.
26. P. G. Gassman and N. J. O'Reilly, J. Org. Chem., 1987, 52, 2481.
27. L. S. Chen, G. J. Chen and C. J. Tamborski, J. Fluorine Chem., 1984, 26, 341.
28. A. Solladie-Cavallo and J. Suffert, Tetrahedron Lett., 1984, 25, 1897.
29. A. Solladie-Cavallo and J. Suffert, Synthesis, 1985, 659.
30. R. N. Haszeldine, J. Chem. Soc., 1953, 1748.
31. A. L. Henne and W. C. Francis, J. Am. Chem. Soc., 1953, 75, 992.
32. R. N. Haszeldine, J. Chem. Soc., 1954, 1273.
33. O. R. Pierce, A. F. Meiners and E. T. McBee, J. Am. Chem. Soc., 1953, 75, 2516.
34. E. T. McBee, C. W. Roberts and M. A. F., J. Am. Chem. Soc., 1957, 79, 335.
35. C. F. Smith, E. J. Soloski and C. J. Tamborski, J. Fluorine Chem., 1974, 4, 35.
36. M. T. Ryan and C. J. Tamborski, J. Fluorine Chem., 1987, 34, 299.
37. R. N. Haszeldine and E. G. Waldschewski, J. Chem. Soc., 1953, 3607.
38. A. Sekiya and N. Ishikawa, Chem. Lett., 1977, 81.
39. C. Francese, M. Tordeaux and C. Wakselman, J. Chem. Soc., Chem. Commun., 1987, 642.
40. V. C. R. McLoughlin, Tetrahedron, 1969, 25, 5921.
41. M. Hudlicky, J. Fluorine Chem., 1981, 18, 383.
42. J. Burdon, P. L. Coe, C. L. Marsh and J. C. Tatlow, J. Chem. Soc., Chem. Commun., 1967, 1259.
43. P. L. Coe and N. E. Milner, J. Fluorine Chem., 1972/73, 2, 167.
44. M. A. McClinton and D. A. McClinton, Tetrahedron, 1992, 48, 6555.
45. M. Hudlicky, Chemistry of Organic Fluorine Compounds, ed. E. Horwood, Ellis Horwood Ltd, 1992, p. 421.
46a. L. E. Deev, T. I. Nazarenko, K. I. Pashkevich and V. G. Ponomarev, Russ. Chem. Rev., 1992, 61, 40.
46b. R. N. Haszeldine, J. Fluorine Chem., 1986, 33, 307.
47. J. Balague, B. Ameduri, B. Boutevin and G. Caporiccio J. Fluorine Chem., 1995, 73, 237.
48. R. N. Haszeldine, J. Chem. Soc., 1953, 3761.
49. R. D. Chambers, S. L. Jones, S. J. Mullins, A. Swales, P. Telford and M. L. H. West, in Selective Fluorination, ed. J. T. Welch, American Chemical Society, Washington, 1990, p. 68.
50. D. C. Nonhebel and J. C. Walton, Free-Radical Chemistry, Cambridge University Press, Cambridge, Mass., 1974.
51. W. A. Pryor, Free-Radicals, McGraw-Hill, New York, 1966.
52. USP 2958685
53. D. J. Hart, Science, 1984, 223, 883.
54. J. M. Tedder, Quart. Rev., 1960, 14, 343.
55. J. M. Tedder and J. C. Walton, Tetrahedron, 1980, 36, 701.
56. J. M. Tedder, Angew. Chem., Int. Ed. Eng., 1982, 21, 401.
57. J. M. Tedder, Tetrahedron, 1982, 38, 313.
58. B. Giese, Angew. Chem., Int. Ed. Eng., 1983, 22, 753.
59. H. E. O'Neal and W. E. Benson, Free-Radicals, ed. J. Kochi, Wiley, New York, 1973, Vol. No. 2.
60. R. D. Chambers and R. H. Mobbs, Adv. Fluorine Chem., 1965, 4, 50.
61. R. W. Fessenden and R. H. Schuler, J. Chem. Phys., 1967, 39, 2147.
62. D. C. Nonhebel, J. M. Tedder and J. C. Walton, Radicals, Cambridge University press, 1979.
63. C. Walling and E. S. Huyser, in Organic Reactions, ed. R. Adams, A. H. Blatt, V. Boekelheide, T. L. Cairns, A. C. Cope, D. Y. Curtin and C. Niemann, Wiley, New York, 1963, vol. 13, p. 91.
64. A. Horowitz, Acs Symp Ser, 1978, 69, 161.
65. J. D. Lazerte and R. J. Koshar, J. Am. Chem. Soc., 1955, 77, 910.
66. H. Muramatsu, J. Inukai and T. Ueda, Bull. Chem. Soc. Jpn., 1967, 40, 903.
67. R. N. Haszeldine, R. Rowland, R. P. Sheppard and A. E. Tipping, J. Fluorine Chem., 1984, 28, 291.
68. T. N. Abroskina, A. D. Sorokin, R. V. Kudryavtsev and Y. A. Cherburkov, Izv. Akad. Nauk SSSR, 1974, 8, 1823.
69. R. D. Chambers, B. Grievson and N. M. Kelly, J. Chem. Soc., Perkin Trans. I, 1985, 2209.
70. WOP 84/ 02909
71. R. D. Chambers and B. Grievson, Journal of the Chemical Society, Perkin Trans. 1, 1985, 2215.
72. J. Cortieu, J. Jullien and N. T. Lai, Tetrahedron, 1976, 32, 669.
73. USP 3816286
74. USP 3927129
75. A. K. Joel, Ph.D. Thesis, University of Durham, 1992.
76. R. N. Haszeldine, R. Rowland, R. P. Sheppard and A. E. Tipping, J. Fluorine Chem., 1985, 28, 291.
77. H. Muramatsu, H. Kimoto and K. Inukai, Bull. Chem. Soc. Jpn, 1969, 42, 1155.
78. S. L. Jones, Ph.D. Thesis, University of Durham, 1987.
79. H. Kimoto, H. Muramatsu and K. Inukai, Nippon Kagaku Kaishi, 1976, 1787.
80. A. P. Swales, Ph.D. Thesis, University of Durham, 1989.
81. B. Grievson, Ph.D. Thesis, University of Durham, 1983.
82. USP 3404147
83. H. Kimoto, H. Muramatsu and I. Inukai, Chem. Lett., 1974, 791.
84. R. N. Haszeldine, A. J. Mitchinson, R. Rowland and A. E. Tipping, J. Chem. Soc., Perkin Trans. I, 1976, 517.
85. R. N. Haszeldine, C. M. Raynor and A. E. Tipping, J. Chem. Soc., Perkin Trans. I, 1983, 2801.
86. H. Kimoto, H. Muramatsu and K. Inukai, Bull. Chem. Soc Jap., 1975, 48, 1335.
87. I. L. Knunyants and E. Y. Pervova, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1966, 1623.
88. R. N. Haszeldine, C. M. Raynor and A. E. Tipping, J. Chem. Soc., Perkin Trans. I, 1982, 2219.
89. USP 3917725
90. R. Fuss, Ph.D. Thesis, University of Durham, 1989.
91. D. Barton and W. D. Ollis, Comprehensive Organic Chemistry, Pergamon, Oxford, 1979.
92. R. C. Larock, Comprehensive Organic Transformations, John Wiley, 1989.
93. R. H. Crabtree, Chemical Reviews, 1985, 85, 245.
94. USP 3816286
95. T. Davies, R. N. Haszeldine, R. Rowland and A. E. Tipping, J. Chem. Soc. Perkin Trans. I, 1983, 109.
96. T. Davies, R. N. Haszeldine and A. E. Tipping, J. Chem. Soc., Perkin Trans. I, 1983, 1353.
97. A. T. Podkhalyuzin, V. A. Morozov and A. Z. Yankelevich, Dokl. Akad. Nauk. SSSR, 1976, 228, 609.
98. V. A. Morozov, R. A. Zamyslov and A. T. Podkhalyuzin, J. Appl.Chem. USSR, 1980, 53, 534.
99. A. T. Podkhalyuzin and M. P. Nazorova, Khim. Vys Energ, 1979, 13, 130.
100. C. Walling and P. S. Fredricks, J. Am. Chem. Soc., 1962, 84, 3326.
101. H. O. Kalinowski, S. Berger and S. Braun, Carbon-13. NMR Spectroscopy, John Wiley, New York, 1988.
102. D. W. Brown, A. J. Floyd and M. Sainsbury, Organic Spectroscopy, John Wiley, 1988.
103. J. C. Walton, Chem. Soc. Rev., 1992, 105.
104. V. A. Morozov and A. T. Podkhalyuzin, Khim. Vys. Energ., 1979, 13, 27.
105. A. T. Podkhalyuzin, V. V. Vikulin, V. A. Morozov, M. P. Nazarova and I. V. Vereshchinskii, Radiation Effects, 1977, 32, 9.
106. W. Dmowski, J. Fluorine Chem., 1980, 15, 299.
107. M. P. Nazarova and A. T. Podkhalyuzin, Kinet. Katal., 1980, 21, 286.
108. H. Gunther, NMR Spectroscopy, John Wiley, 1980.
109. E. Breitmaier, G. Haas and W. Voelter, Atlas of Carbon-13 NMR Data, Heyden, London, 1979.
110. B. E. Smart, in Molecular Structure and Energetics, ed. J. F. Liebman and A. Greenbury, VCH Publishers, Deerfield Beach, 1986, vol. 3, p. 141.
111. D. A. Dixon, N. Matsuzawa and S. C. Walker, J. Phys. Chem., 1992, 96, 10740.
112. R. F. Hoffmann and R. A. Olofson, J. Am. Chem. Soc., 1966, 88, 943.
113. R. C. Bingham, J. Am. Chem. Soc., 1976, 535.
114. J. Springer, Die Chemie des Fluors, Berlin, 1920.
115. M. Stacy and J. C. Tatlow, Adv. Fluorine Chem., 1960, 1, 166.
116. A. K. Barbour, G. B. Barlow and J. C. Tatlow, J. Appl. Chem., 1952, 2, 127.
117. R. J. Lagow and J. L. Margrave, Prog. Inorg. Chem., 1979,
118. J. Burdon, I. W. Parsons and J. C. Tatlow, Tetrahedron, 1972, 28, 43.
119. R. D. Fowler, W. B. Burford, J. M. Hamilton, R. G. Sweet, C. E. Weber, J. S. Kasper and I. Litant, Ind. Eng. Chem., 1947, 39, 292.
120. R. D. Fowler, W. B. Burford, J. M. Hamilton, R. G. Sweet, C. E. Weber, J. S. Kasper and I. Litant, Preparation, Properties and Technology of Fluorine and Organic Fluoro-compounds, Magraw-Hill, New York, 1951.
121. R. N. Haszeldine and F. Smith, J. Chem. Soc., 1950, 3617.
122. E. J. Barber, L. L. Burger and G. H. Cady, J. Am. Chem. Soc., 1951, 73, 4241.
123. V. E. Stiles and G. H. Cady, J. Am. Chem. Soc., 1952, 74, 3771.
124. G. B. Barlow, M. Stacey and J. C. Tatlow, J. Chem. Soc., 1955, 1749.
125. P. L. Coe, R. M. Habib and J. C. Tatlow, J. Fluorine Chem., 1982, $20,203$.
126. J. C. Tatlow, J. Fluorine Chem., 1995, 75, 7.
127. A. Sekiya, S. Kurosawa and T. Yamada, Chem. Lett., 1991, 2183.
128. S. Kurosawa, A. Sekiya, T. Arimura and T. Yamada, J. Fluorine Chem., 1993, 62, 69.
129. R. D. Chambers, B. Grievson, F. G. Drakesmith and R. L. Powell, J. Fluorine Chem., 1985, 29, 323.
130. M. Brandwood, P. L. Coe, C. S. Ely and J. C. Tatlow, J. Fluorine Chem., 1975, 5, 521.
131. W. H. Lin and R. J. Lagow, J. Fluorine Chem., 1990, 50, 345.
132. R. E. Moore and G. L. Driscoll, J. Org. Chem., 1978, 43, 4978.
133. S. F. Campbell, R. Stephens and J. C. Tatlow, Tetrahedron, 1965, 21, 2997.
134. U.S. Pat. 2,559,628
135. B. Zemva, L. Chacon, K. Lutar, C. Shen, J. Allman and N. Bartlett, J. Fluorine Chem., 1995, 71, 195.
136. P. B. Sargeant and C. G. Krespan, J. Am. Chem. Soc., 1969, 91, 415.
137. M. S. Raasch, R. E. Miegel and J. E. Castle, J. Am. Chem. Soc., 1959, 81, 2678.
138. R. P. Holysz, J. Am. Chem. Soc., 1953, 75, 4432.
139. M. Hauptschein and R. E. Oesterling, J. Am. Chem. Soc., 1960, 82, 2868.
140. S. Matsubara, H. Matsuda, T. Hamatani and M. Schlosser, Tetrahedron, 1988, 44, 2855.

[^0]: *calculated, based on (64)

