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Z A T - S Y M M E T R I C F I E L D T H E O R I E S 

A N D T H E T H E R M O D Y N A M I C B E T H E A N S A T Z 

by Kevin Edward Thompson 

Abstract 

This thesis is concerned with perturbed conformal field theory, the thermodynamic 

Bethe ansatz technique and applications to statistical mechanics. In particular, the phase 

space of two dimensional ^Ar-symmetric statistical models is examined using these tech

niques. 

The aim of the first two chapters is to review some general material concerning sta

tistical mechanics, perturbed conformal field theory, integrable two-dimensional quantum 

field theory and the thermodynamic Bethe ansatz (TBA) technique. In the third chap

ter Z/vT-symmetric statistical theories are discussed and the known featiu-es of the phase 

space of such models are surveyed. The field content of the conformal models in this space 

(called parafermionic models) is investigated in order to determine which perturbations 

can be used to investigate the phase space. 

In the fourth and fifth chapters TBA equations are proposed to describe massless and 

massive renormalisation flows from the 2iv-symmetric conformal theories under self-dual 

ZAT-symmetric perturbations. According to the sign of the perturbation parameter the 

infrared limits are shown to be either conformal c = 1 or massive theories. The ground 

state energies of these models can be discovered in all perturbative regimes via the TBA 

method and the results agree with perturbation theory in ultraviolet and infrared limits. 

Results from detailed studies of the N = 5, 6..10 models are presented throughout. It 

is also deduced that the parafermionic models lie exactly at the bifurcation point of 

the first-order transition region into the Kosterlitz-Thouless region of the ^Ar-symmetric 

phase space. 

The sixth and seventh chapters deal solely with massive perturbations. In chapter six, 

results from the TBA equations are used to deduce the mass spectrum and the vacuum 

structure of the underlying scattering theory. In chapter seven, proposals for the massive 

S-matrices are made. For iV odd the mass spectra proposed by the TBA method and that 

predicted by the S-matrix approach (using the minimality principle) differ. It is suggested 

therefore, that the N odd S-matrices contain zeroes in the physical strip, violating the 

minimality principle. 
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Chapter 1 

Statistical Mechanics and 

Perturbed Conformal Field 

Theory 

The theory of statistical mechanics is based upon the hypothesis that a model describing 

the interactions between a few individual components on a microscopic level can be used to 

infer the macroscopic behaviour of a real system. Through prudent choice of parameters 

in the model one hopes to describe all the observable phases of the macroscopic system 

and the nature of transitions between those phases. We should be able to predict how 

thermodynamic quantities like the spontaneous magnetisation or susceptibility behave 

as the experimenter varies laboratory parameters such as temperature, pressure, or the 

external magnetic field. Furthermore, we should be able to predict the set of numbers 

called critical exponents which characterise these quantities near a phase transition. To 

do this, we must first evaluate the partition function: the sum of all the Boltzmann 

weights associated with each system configuration. In practice, this is a sum which must 

be approximated. The renormalisation group method provides a means of doing so by 

relating the parameters of the model on two scales via a renormalisation group map. The 

fixed points of this map represent critical theories which are not only scale invariant but 

conformally invariant. 

In two dimensions, using a quantum field theoretical approach, the conformal sym

metry at a fixed point can often be exploited to deduce the field content and critical 

exponents completely. A quantity called the central charge provides a partial classifi

cation of such conformal field theories (the classification is only partial because several 
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such theories can possess the same central charge). Perturbations of conformal models 
are important because much of the symmetry which exists at a fixed point persists away 
from that point, particularly for integrable theories where several conserved charges can 
be found. As a consequence many models which lie between phases (of order and disorder 
say) can be described precisely in terms of pertmbed conformal models. It is therefore 
very useful to be able to construct a central charge function, a simple function of the 
ground state energy, so that small scale (ultraviolet) and large scale (infrared) limits of 
a perturbed theory may be investigated. Additionally, since perturbations into massive 
and massless phases are simply characterised by either a zero or nonzero central charge, a 
central charge function is useful when trying to distinguish which phase the perturbation 
describes. 

For integrable theories the thermodynamic Bethe ansatz (TBA) method lets us con

struct a central charge function which gives exact details about the theory in all regimes 

including those inaccessible to perturbation theory. The renormalisation group method, 

perturbed conformal field theory and integrability are reviewed in this chapter. Scattering 

theory and the basic TBA idea are presented in the next. In the remaining chapters the 

TBA method is developed and applied to construct central charge functions for pertur

bations of ^AT-symmetric conformal models to investigate the phases of 2jv-symmetric 

statistical models. 
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1.1 Statistical mechanics and the renormahsation group 

Consider N spins positioned over a square lattice, the spin S j at site i taking values 

in a discrete range. The Hamiltonian H;^{K, {si}) describes the interaction between 

these spins with a set of couplings K. In an idealised state of statistical equilibrium all 

macroscopic behaviour may be determined once the classical partition function 

Z{H^{K))=Tr^,^ye-4^"'^'''^'^^^ (1.1) 

is evaluated. This is the sum of Boltzmann weights taken over all spin configurations. 

kp is the Boltzmann constant and T the heatbath temperature. The trace consists of iV 

sums, one for each of the lattice sites. If, for example, spins can only point up or down, 

the trace would be Tr{,.) = Esi=±i Es2=±i • • • E . ^=±i -

The probability that the system will be found in a configuration {ti} is the Boltzmann 

weight for that configuration divided by the partition function. If F{si) is some functional 

of the spins, then its averaged thermal expectation value is 

Of central interest is the way thermodynamic quantities behave near criticality where 

our system undergoes some phase transition. Almost all such quantities can be expressed 

as derivatives of the Helmholtz free energy 

f{HM) = -~\ogZ{Hr,) (1.3) 

with respect to the various coupling parameters. Evaluation of the partition function 

is then our main objective if we want to predict the form of these functions. We are 

particularly interested in the thermodynamic limit where A'̂  becomes very large. The 

singular behaviour that an experimenter observes in thermodynamic quantities can only 

be described by letting JV —>̂ oo in the model, since neither the free energy nor its 

derivatives can exhibit singularities or discontinuities for finite N. Given this, it is still 

possible to make predictions about the nature of any singularities using finite-size scaling 

methods where one attempts to split the free energy into two parts, one which becomes 

singular in the large N limit and a part which remains non-singular. However, for a finite 

lattice with N sites there are 2^ possible configurations and therefore 2^ Boltzmann 

weights to be summed. In a realistic model one might wish to discuss correlations over 

a physical distance of at least 10̂  lattice spacings, that is A'' = 10̂  sites in two spatial 



Chapter 1: Statistical Mechanics and Perturbed Conformal Field Theory 6 

dimensions. Therefore, even for the simplest models summing over all configurations is 
practically impossible. Renormalisation group theory may be viewed as arising from an 
attempt to evaluate the partition function through an iterative method where at each 
stage of the iteration part of the sum is evaluated approximately. A discussion of the 
physical basis for the renormalisation group method follows (see [1] for more details). 

1.1.1 Order parameters, phase transitions and correlation length 

The correlation between spins at sites i and j on the lattice is given by 

Gij = {siSj)-{s^){sj). (1.4) 

Gij measures the variation of the spin field between points i and j a distance x apart. 

Consider, for exainple, a ferromagnet which above some critical temperature has a disor

dered phase of unbroken symmetry with average magnetisation zero: |(si)| = 0. Below 

this temperature \{si)\ is non-zero. Such a quantity, whose thermal average vanishes on 

one side of a phase transition but not on the other, is called an order parameter. For large 

distances and away from criticality the correlation will behave like a decreasing power of 

X multiplied by an exponential 

Gij ~ a^-^e-l^l/^ . (1.5) 

The constant 77 is a critical exponent and ^ is the correlation length. This is the width 

of the largest area where a group of spins as a whole all disagree with the mean. As 

the temperature increases from zero so does the correlation length until at some critical 

temperature it becomes either infinite or takes its maximum if the system is finite. 

A crucial point to note is that fluctuations occur at all wavelengths between the 

atomic (lattice) spacing and the correlation length. This means that in the statistical 

limit one must account for all fluctuations of size less than ^ and cannot ignore the 

smaller oscillations. Furthermore, length scales are locally coupled, which means that 

if the lattice spacing is a units, then fluctuations of size 1000a — 2000a are primarily 

influenced by fluctuations in the ranges 500a — 1000a and 2000a — 4000a. The result is a 

cascade where fluctuations over la — 2a influence those over 2a — 4a, which in turn effect 

fluctuations on 4a — 8a and so on. The implications are: 

1. Scaling: Fluctuations at scales between the lattice spacing a and the correlation 

length ^ behave identically, that is, in terms of fluctuations the system is scale 

invariant between these barriers. 
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2. Amplification and de-amplification: A small change in temperature, which has little 
effect on the atomic scale, can create huge differences in the macroscopic system 
(very large wavelengths) due to cascading. This is amplification. The opposite can 
occur where two dissimilar materials with quite different atomic structures can have 
the same macroscopic behaviour near criticality. This is called de-amplification or 
universality. 

The renormalisation group method exploits the physical properties of the system to 

replace the summing of the partition function with the summing over all fluctuations 

in the cascade. The idea is to evaluate the contribution from the smallest fluctuations 

in a way which leaves a distribution of unsummed spins looking like a scaled version of 

the original. The smallest fluctuation interactions are described by a coupling vector 

K for the Hamiltonian H{K) = A;i J]+^21]+••• so that each coupling uniquely labels 

a Hamiltonian. If we assume only local neighbour interactions we need only consider a 

finite dimensional K. After performing the first sum the next smallest fluctuations will 

interact locally with coupling K'. The renormalisation group method gives a map for K' 

in terms of K and the scaling property can be used to apply this map iteratively as an 

alternative to performing more and more sums. Specifically, the method comes in three 

steps: 

1. Divide the lattice into neighbourhoods of side b lattice units and pick out one spin 

in each neighbourhood so that the set {s^} forms a new lattice which looks exactly 

like a scaled up version of the original, the new spin variables being a distance b 

apart. 

2. Approximate the contribution to the partition function from the spins Si in the 

neighbourhood of s'^. Do this for each neighbourhood so that the contribution from 

the smallest wavelengths over the lattice is estimated as 

^-N'giK)-H^,(K',s'i) ^ (j_g) 

where K' is the new coupling between spins s'^ and g{K) is some function of the 

coupling K appearing N' — b~'^N times (once for each neighbourhood). The trace 

is a sum over all configurations or, equivalently, all fluctuation scales. Therefore, 

write the trace as separate sums: over smallest fluctuations and a sum over all other 

fluctuations 

Tr{,,}e-^^(^'{^')) = ^ J2 e-^'^^^'t^^", (1.7) 
l>ba a<l<ba 
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1.Evaluation 3. Resettle 

Figure 1.1: The evaluation and rescaling steps of renormalisation 

where the sums are intended to be over fluctuations of size, less than and greater 

than h lattice units. If new couplings K' can be chosen so that the sum over smallest 

fluctuations can be written 

^ ^-HN{K,{S,]) ^ ^-N'g{K)^-H„,{K',{s'J) ^ 

a<l<ba 

then the partition function can be written covariantly 

l>ba 

= e-^'sWz(FAr'(^'))-

(1.8) 

(1.9) 

The couplings K' are nonlinear functions of the couplings K, giving the discrete 

renormalisation group map 

K' = R{K). (1.10) 

The set of possible transformations {R} actually forms monoid, rather than a group. 

This is because it is impossible to define an inverse of a given map since the renor

malisation idea implicitly involves a loss of a certain amount of information at each 

step which cannot be regained by applying another renormalisation. 

3. Re-scale the whole lattice by a scale factor the aim being to set the system up 

for a reapplication of the first two steps (which is allowed by the scaling property 

of the physical system). Consequently, all physical lengths will be scaled by this 

factor. In particular, the correlation length on the new lattice ^' is 

(1.11) 
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Equation (1.9) implies the following important relationship satisfied by the free energy 

fiK)=b-'g{K) + b-''fiK'), (1.12) 

which can be used to describe the behaviour of thermodynamical quantities near criti

cality. Barber [2] shows how iterations of this relation can be used to derive the critical 

exponent set for a given free energy by splitting iterations of (1.12) into analytic and 

singular parts and then deriving the singular part with respect to the relevant scaling pa

rameters. The renormalisation method was used in this way to solve many long-standing 

problems in statistical mechanics which stemmed from an inability to describe these quan

tities when the correlation length becomes infinite. 

Due to the scaling principle, (l)-(3) can be repeated to obtain 

Z { H N { K ) ) - e-^'s(^)-^"«(«(^))Z(i7;v"(i?'(i^)), (1-13) 

where TV" = b^'^'^'N. Then, because we carry out the steps in exactly the same way, we 

begin to see the benefits of partly evaluating our partition function in this manner: we 

can replace the evaluation of all the sum in the original partition function by studying the 

iterations of the map R instead. When the lattice is infinite a partition function with 

microscopic coupling K is described by the asymptotics of the sequence K^{K) for large 

m. 

There are several methods of approximating the first sum in step (2). The most basic 

are those of decimation and blocking. Decimation has been used above. In the blocking 

method we let each s'^ be the mode or mean spin of the neighbourhood. 

1.1.2 The geometry of the renormalisation group flow 

The first step toward understanding the flow (1.10) is to flnd the fixed points K* satisfying 

R{K*) = K*. The flow in neighbourhoods of these points is described by the linearised 

version of the map. For K near K* (so that \dK\'^ is small where dK = K - K*), the 

flow is well approximated by the linearised equation 

K'= R{K* + dK) = K* + DRK*dK. (1.14) 

Eigenvalues 6̂ " of the Jacobi matrix DRK* = ( | ^ ) ^ ^ determine the local nature of the 

flow. For each non-zero scaling dimension j / j there must exist a curve which arrives at 

or leaves the fixed point tangentially to the direction determined by the eigenvector f j 

of DRK* • These eigenvectors define linear combinations of the interactions called scaling 
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fields whose couplings Ci in the Hamiltonian will have a simple power law behaviour 
(i —> IP^ under the renormalisation transformation. If > 0 {yi < 0) the flow in the 
direction ii is said to be relevant (irrelevant), whilst in the marginal case yi = 0 the linear 
approximation is insufficient to determine the local behaviour and one must resort to a 
nonlinear examination. A surface on which all flows are away from a fixed point may be 
called a relevant manifold of that point. Similar definitions hold for the irrelevant and 
marginal cases. 

One can use the idea of the relevant, irrelevant and marginal manifolds in renormal

isation theory to visualise phase transitions and critical surfaces and their relationship 

with the correlation length. The phase space of couplings is typically dissected by critical 

and non-critical manifolds flowing toward or away from fixed points of the renormalisation 

group map. As an illustration, consider a system dependent on two scaled couplings t and 

h. Suppose h = h' is fixed and t is continuously varied so that we move along curve (a) in 

Figure (1.2) until, at t — tc, we hit a critical point where the correlation length becomes 

infinite and where thermodynamic quantities look singular. Let us suppose the flow is 

restricted to the surface (A), then according to (1.11) the coupling {tc,h') will map to 

another critical point under renormalisation. Repeated iterations take us toward or away 

from a fixed point according to the signs of the scaling parameters yi. In the example 

shown in the figure, {tc, h') flows on an irrelevant manifold of {t^ he) to that fixed point. 

In general, the Hamiltonian must contain sufiicient terms to be consistent with the 

symmetries of the problem so that the renormalisation group flow remains in the space 

of chosen couplings. If an additional term is taken into consideration giving a three 

dimensional flow, {t^ he) is no longer necessarily a fixed point. Instead, we might flow to 

the fixed point P*. 

A relevantly perturbed fixed point can either wander endlessly or will asymptotically 

arrive at another fixed point of the map under successive iterations (as the relevant 

perturbation of Q* in the direction of P* does). Both theories {tc,hc) and K3 (just 

oS the manifold (B)) flow to the same fixed point P*. Renormafisation 'washes out' the 

smallest range fluctuations of each model, so the fact that different systems can flow to 

the same point means they share common large scale characteristics. This explains how 

systems consisting of very different molecular compositions (microscopically described by 

different Hamiltonians) can share exactly the same critical exponents when they undergo 

phase transitions (a macroscopic feature). This universality is due to the fact that the 
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K or H ( K ) 
c c ^ 

K or H(K) = H(t, h) 

R(K) 

Figure 1.2: An example of a typical renormalisation group flow. Theories Ki and K2 

flow apart under renormalisation demonstrating amplification, while {tc, he) and K3 flow 

to the same fixed point P* demonstrating universality. 

critical behaviour of two different Hamiltonians is described by the same fixed point of 

the renormalisation group map. The diagram also explains the contrasting amplification 

phenomenon: points Ki and K2 represent models originally close together in phase space 

but with very different large scale behaviours. 

1.1.3 The renormalisation group with continuous fields 

Replacing the set of spins over a lattice with a field (j) over the continuum, the Hamiltonian 

becomes a sum of fields ipiir) (each of which may be a function of (f> and its derivatives) 

integrated over all space with corresponding couplings gi. Assuming the couplings have 

no spatial dependence, the partition function for a continuous field (f){r) is given by the 

reduced functional integral 

Z[4>] = J[#]e-/'^''"Si»'^'('"). (1.15) 

If it is possible to preserve the form of the partition function by some transformation of 

coupling parameters when we integrate over shortest wavelengths between a and {1 + Sl)a 
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and rescale the system by r -> (1 + 6l)~^r, then in the hmit SI ^ 0 this will generate a 
system of nonlinear differential equations for the couplings given by 

^ = R^(i9J})^ (1-16) 

where the scaling parameter / is an autonomous variable. Consider the behaviour of the 

renormalisation group flow in the neighbourhood of one of the fixed points of this system. 

Writing couplings gi in terms of scaling couplings {d}, each Q wil l appear as a factor in 

front of a combination of fields which we label {^i may be any function of the original 

field 0). The Hamiltonian becomes 

H{(t>)=HFP + Y , j d^rQUr) (1.17) 

with Ci = 0 representing the fixed point theory. I f we assume that under the rescaling 

r —> r' = b~^r the field 0i transforms as 

Mr) -> ^[{r') = Ubr') = b'^'Mr'), (1.18) 

where Xi is called the scaling dimension of </)j, the action for the perturbed theory will 

scale as 

H^H' = HFP + ^ 6 ' ^ - ^ ' / cfir'CiMr'). (1.19) 
i 

Since specifying a coupling is equivalent to specifying a Hamiltonian, this transformation 

can equally be described in terms of the couplings as d —> (I = 6 '̂ d so that Xi + yi = d. 

Again, the invariant fiow on relevant and irrelevant manifolds is determined by the scaling 

dimensions t / j . 

Correlation functions of the fields (^i(r i) , . .0„(r„) defined by 

(</'i(ri),..^„(r„)) = | | [#]</ . i (n) . .< / -„( r„)e-^^--S. /<^ ' ' ' -^^*^W, (1.20) 

scale as {4>i{ri)...(f)n{rn))H —> {4>'i{ri)---(l}'n{r'n))H'• At criticality, the theory is scale 

invariant i.e. H' = H = Hpp and the correlation functions satisfy 

(^i(ri)...<^„(r„)) = b-^^b-^...b-^-{ct>r{r[)..4nK)), (1-21) 

where both sides are evaluated at the fixed point Hamiltonian. 

1.1.4 C o n f o r m a l invariance at fixed points 

The physical properties of a system at fixed point criticality lead to the scaling hypoth

esis: the physical system is invariant under a scaling and renormalisation leaves the 
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Hamiltonian invariant. Polyakov [3] suggested that such fixed point critical theories can 
be considered to be invariant under local rescalings, not just global ones. The idea of 
scale invariance, together with assumed rotational and translational invariance, implies 
the fixed point theory is then invariant under the wider set of conformal transformations. 
We denote a conformally invariant Hamiltonian by HCFT, so that Hpp = HCFT-

A general coordinate transformation x*^ —> x^^' is said to be conformal i f it leaves the 

arc length ds^ = gfj,i,dx^dx'^ invariant up to the scale change ds^ —>• ds'"^ = Q,{x)ds'^. In 

terms of the metric g^u, a theory is conformally invariant i f 

g^^{x)dxt'dx'' ga'^'dx^^'dx^' = {ga'p'd^'d^')dx''dx'' = n{x)g^^{x)dxt'dx''. (1.22) 

The infinitesimal version of a general coordinate change is written x^^ —> x^' — x'^ + e^^, 

so that wi th a flat Euclidean metric g^^, = 7/̂ ^ (with /u, i / = 1, ..d) the resulting change in 

the arc length is 

ds^ ds'^ = rjf^.dx'''dx"' = v^^AK + ^%Wp + e-^p)dx''dxl^ 

= ds'^ + ri^uieyx'^dx'^ + e'^^dx^dx") 

= ds^ + (a^e^ + d^e^)dx^'dx''. 

The infinitesimal transformation x^^ xf^ + e'^ is therefore conformal if satisfies the 

conformal Kill ing equation 

2 

df,e^ + d^Efj, = ^{d • £)v,iu • (1-23) 

When d > 2, the general solution, given by 

e'' = + uf^x" + b-^x" + (A'̂ a;̂  - 2x''X • x), (1.24) 

consists of parts corresponding to translations, rotations, scalings and what are called 

the special conformal transformations (the finite versions of which are combinations of a 

translation and inversion: x''^/x''^ = x'^/x^ + A'^). This solution hcis c !+d(d - l ) /2 + l + d = 

{d + l){d + 2)/2 free parameters in total. 

The situation is significantly different in two dimensions. Here the Killing equation for 

infinitesimal conformal transformations is equivalent to the Cauchy-Riemann equations 

= (1.25) 
8281 = -8162 

which, defining z = x^ + ix^ and z its complex conjugate, imply that the functions 

e(2r) = e\ -\- 182 and eiz) = Si — ie2 are analytic in z and z respectively. Considering 
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e{z) = —2""*"̂  and e{z) = —z""*"̂  we observe that the conformal algebra is infinite. The 
corresponding generators of infinitesimal conformal transformations 

= i„ = -^"+ia^, (1.26) 

satisfy the following algebra 

ImJn = {m-n)lm+n 

ImJn = im-n)lm+n (1-27) 

called the local conformal algebra; local because the generators involved yield transfor

mations which are not necessarily analytic everywhere (not at the origin or infinity). I f 

an infinitesimal conformal transformation is given by f{z) = ( - Z ) „ a„i„)^r, then this is 

analytic everywhere only i f a„ = 0 for all n ^ 0, ± 1 . The global generators l^i-i^ (and 

I+i__i,o) form a subalgebra. Z_i and I _ i are generators of translations, while the pair li 

and I i give the special conformal transformations. The dilatation and rotation generators 

are IQ + IQ and i{lo -IQ). 

The finite form of the infinitesimal global transformations is f{z) = {az + b)/{cz + d), 

where ad — bc^ 0. These are simply the invertible analytic maps on the Riemann sphere. 

The finite form of the local transformations are meromorphic functions which may have 

poles at zero or infinity. Together the global and local transformations 

z f{z), z J{z) (1.28) 

form the direct product of holomorphic and anti-holomorphic transformations called the 

conformal group. 

A field transforming like (f)i{ri) —>• 6~^'e"'^0j(r^) under a rotation through an angle 

0 and scaling by a factor b~^ is said to have scaling dimension Xi and spin Sj which are 

eigenvalues of IQ + lo and (̂̂ o — ̂ o) respectively. Furthermore, i f the scaling transformation 

r r ' = b^^r is replaced by a general conformal transformation written r ^ r' = b~^{r)r, 

local scaling couplings and fields (pi renormalise as 

= b{ri)y^Uri), .^^rO = b{r,)-''^<j>M), (1-29) 

and in contrast to (1.21) correlation functions satisfy the more general relation 

{<^i(ri),..<^n(rn)) = b{r,)-^^...birn)-^-{Mr[)..4nK)) (1-30) 

at a fixed point. 
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1.2 Conformal field theory 

A thorough understanding of a two dimensional conformally invariant statistical model 

can be achieved i f we view the system in the continuum limit as a two dimensional 

quantum field theory with spacetime coordinates {x, t) replacing the spatial coordinates 

of statistical mechanics. Being critical, with infinite correlation lengths, these are field 

theories of massless particles, and correlations decay as power laws. Belavin, Polyakov and 

Zamolodchikov [4] demonstrated that the existence of the infinite dimensional conformal 

symmetry can heavily restrict the field content and the correlation functions of the model. 

T h e energy-momentum tensor and generators of conformal transforma

tions on fields 

I f we make an infinitesimal general coordinate transformation —> x" + e" the response 

in the Hamiltonian action of the two dimensional theory may be written 

^^ = - \ ^ T , , ^ ' ' ' ' . (1.31) 

We may use this form to define the energy-momentum or stress-energy tensor T'"^. A 

theory invariant under infinitesimal rotations (e" = ĉ iĵ a;'̂ ) and translations (e" = a'^) will 

have T'*'" symmetric, satisfying S^T^j, = 0. Additionally, the theory is invariant under 

scaling (e'' = Ax") i f the stress-energy tensor is traceless. In terms of correlation functions, 

equation (1.31) is equivalent to 

f2{Mxi)..SM^k)-M^n)) = - I ^d>^e''{T^M^,)..4n{xn)), (1-32) 
k=l •' 

where 6^4>{x) is the variation of the field under the general infinitesimal coordinate trans

formation and both correlation functions are evaluated at the conformal point. 

Suppose the variation e"̂  is conformal in a domain R (containing the points Xi) and 

non-conformal in the complement R', the two regions being separated by contour C. 

Ensuring vanishes sufficiently fast at infinity, integration by parts is permitted and the 

generator of the variations in (1.32) becomes 

Q = [ d^xd^e''{x)T^. 
ZTT JR! 

= ^ I dsnt'e''{x)T^,, (1.33) 
ZTT Jc 



Chapter 1: Statistical Mechanics and Perturbed Conformal Field Theory 16 

where n'^ is normal to C and we have used d'^T^^, = 0. For conformal transformations 
this conservation rule, together with the traceless and symmetric conditions, means only 
two independent combinations of components of T^^ exist: 

T = Tn-iTi2, T = Tn+iTu. (1.34) 

In complex coordinates z = t + ix and z = t — ix, 9^T^^ = 0 becomes dzT = 0 and 

dzT = 0, which means T and T have pure holomorphic and anti-holomorphic dependence 

T = Tiz), T = T{z). (1.35). 

The infinitesimal variations become — e*' + ie^ and = e^ — ie^, therefore the generator 

of two dimensional conformal transformations (1.33) may be written 

^ ^ i n f c " ^ ' ^^^^^^•'^ + 2 ^ £ '^^^^^^^' ^^-^^^ 

where the contour integration around C is taken in an anti-clockwise direction enclosing 

the arguments Zi or Zi of the fields (pi on which Q acts. 

Operators in correlation functions have to be time ordered. Under the transforma

tion z' = iz' = e )̂ this becomes radial ordering in the complex plane. The origin 

represents the theory at i = -co and the spatial direction becomes 27r periodic. In the 

operator formalism of quantum field theory the variation of field (f){w,w) under conformal 

transformation {e{z),e{z)) is expressed in terms of the equal time commutator 

Sie,e)<t>i'^,'^) = [Q,4>] (1-37) 

= ^ i[dzTiz)e{z),(l>iw,w)], (1.38) 
ziri J 

c 

where we have omitted the barred contribution. The operator product A{z)B{w) is only 

convergent for \z\ > \w\, therefore the equal time commutator is better expressed using 

the radial ordering 

RiA{z)B{w)) ^ { 
A(z)B(w) if \z\ > \w\ 

B{w)A{z) if \z\ < \w\ 

Fermionic operators pick up a minus sign when interchanged, whilst parafermionic oper

ators pick up a nontrivial phase factor. Wi th cautious contour manipulation the integral 

(1.38) is equal to 

\e,e)<l>i^^ ^ ) = ^ / dze{z)R{T{z)(f>{w, w)) (1.40) 

where F-w denotes the contour of a small circle enclosing only the point w. 
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P r i m a r y fields 

A field $ is said to be primary i f under all conformal transformations u) —> / (w) ,aJ —> 

/(uJ) i t transforms as 

The pair {h, h) are said to be the conformal weights of The change in $ due to the 

infinitesimal conformal transformation u —> w + e(a;),cJ —> cJ -I - e(w) is 

4(a,),?(aJ)^('̂ ,c^^) = (hde + hde + ed + ed) ^{w,w), (1.42) 

where d { d ) is the derivative with respect to w (?ZJ) only. A field is called quasi-primary 

if i t transforms in this way under global conformal transformations and can transform in 

some other way under the local conformal transformations. 

Primary fields are so fundamental because they scale in exactly the same way as the 

fields conjugate to the coupling parameters mentioned earlier in the discussion of statis

tical mechanics theory. Conformally invariant theories perturbed by primaries are equiv

alent to the statistical Hamiltonians in the neighbourhood of a fixed point, both sharing 

the scaling (1.29) under conformal transformations. (The scaling properties determine 

the behaviour of the theories near criticality.) Consequently, i f we could determine the 

set of weights (/i, h) from the conformal symmetry these would give precisely the critical 

exponents of some fixed point theory (and of all theories in its universality class). 

Making a rotation through angle 6 and scaling by a factor b so that ^ = b~^e^^ 

and ^ = 6~^e~'̂  we find that the conformal weights are related to the scaling and spin 

dimensions via 

h = \{x + s), h=\{x-s). (1.43) 

According to our previous definition of relevant fields, a primary $ is therefore relevant 

i f its scaling dimension is less than 2. In terms of conformal weights this means 

h + h <2 =4> $ i s relevant. (1.44) 

In particular, a spinless primary $ is relevant if h < 1 and irrelevant if h > I. h = 1 is 

the marginal case. 

Via Cauchy's Integral Theorem the variation in primary $ with weight {h, h) under 

the variation e{w) is 

6u j)^{w,w) = <f dze{z) ( ^ + , ^ , ) ^{w, w), 
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where we continue to omit the contribution from the barred coordinates for simplicity. 
Comparing this equation with (1.40) we find an alternative way of expressing that ^{z,z) 
is conformal 

RiT{z)^cu, 07)) = ( + ^ j ^ ) M^^, w) + A{z, u), (1.45) 

where A is an analytic function. Prom now on we shall drop the symbol for radial ordering 

and assume all operator products are radially ordered. 

Note that under the conformal transformations z ^ w = f{z) and z = f{z) the 

correlation function of n primary fields (f>iizi,zi),.., (pni^n.Zn) are covariant. This means 

(dw\^' (dw\^' _ 
{(t>l{zi,Zi)..(l)n{Zn,Zn)) ^ ' Y l i - ^ — {(l)l{wi,Wi).4n{Wn,Wn)) , (1.46) 

where each primary field ^j{zj,Zj) has weights {hj, hj). This is simply (1.30) encountered 

earlier, which is to be expected i f the above claim is true that primary fields axe nothing 

more than the fields conjugate to the coupling parameters of statistical theories near a 

fixed point. 

T h e V i r a s o r o algebra 

The algebra of the generators of infinitesimal conformal transformations may be found 

by considering the form of Q^^ in 

Qes = [Qe,,Qe,]. (1.47) 

Since Q,. = dzit^{zi)T{zi), Q^^ may be written 
Ci 

Qes = j ^ i f dz2e2{z2)T{z2) ^ dziei{zi)T{zi) - j> dzxei{zi)T{zi) j> dz2e2{z2)T{z2)]. 

C2 Ci Ci C2 

In the first half of this expression C2 encloses zi, in the second Ci must enclose Z2. Fixing 

zi and deforming the inner and outer contours as in Figure (1.3) Q ŝ becomes 

Qcs = j dz2e2{z2)T{z2) j dziei{zi)T{z^). (1.48) 

where C2 encloses zi. Via (1.37) and (1.42), = hde^ + e^d = ^ejJfj — 6^^6e2, so that 

63 = eide2 - e2dei . (1-49) 

Therefore 

Qe, = f dz,esizi)T{zi) = ^^jdzi[ei{zi)de2izi)-e2{z,)d€i{zi)]T{z,). (1.50) 

C3 C3 
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Figure 1.3: Contour choice for evaluation of the generator algebra 

Integration by parts and an appUcation of Cauchy's Integral Theorem gives 

1 y f 2TyZxj 2T(zi) , dT{z^) 
+ {Z2-Zi) 

(1.51) 

This operator is equal to [QeiiQei]- Choosing C3 = C i , the product T{z2)T{zi) can be 

determined since (1.48) and (1.51) are equal. By dimensional analysis, the most general 

form this product could have is 

A{z^) , B{z^) , C{zi) , D{zi) 
T{z2)T{zi) = + + + + ... (1.52) 

{z2-ZiY ' {Z2-Z1Y ' {z2-ZiY ' {Z2-Zi) 

A{zi) must be constant because, according to (1.45), T has dimension 2 (if length has 

dimension - 1 ) . Define this constant to be c/2. For B{zi) to appear i t must have di

mension 1 e.g. B{zi) = {zi + k)~^ {B is not a spin 1 field, i f i t were this would be 

apparent in expression (1.51)), however this can be absorbed into the leading term, there

fore A{zi) = c/2,B{zi) = 0,C(zi) = 2T{zi) and D{zi) = d,^T{zi). The same is true for 

the T{z2) T(^ri) expansion. So the generator algebra is 

c/2 I , 2T{z,) , dT{zi) 
T{z2)T{zi) = 

T{z2)T{^i) -

+ + {Z2-Z,r {Z2-Z,r {Z2-Z1) 

c/2 I , 2T{zi) 

+ A{zi,Z2) 

{Z2-Zir 
T{z2)T{zi) = 0, 

- j - + - , +A(gi ,?2) 
{Z2 - ZiY {Z2 - Zi) 

(1.53) 

(1.54) 

(1.55) 

where / is the identity operator. The central charge c describes a particular set of reali

sations of conformal symmetry. Knowledge of the central charge is not enough to identify 

a specific model since several different stress-energy tensors can have the same central 

charge, but it does allow us to restrict our attention to a subset of theories. 

Expanding T{z) in a Laurent series 

T{Z)= LnZ -n-2 

the modes L„ satisfy 

Lr, = — 
2ni Jc 

dzz^'+^Tiz), 

(1.56) 

(1.57) 
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where the contour C encloses the argument of the field on which the modes act. Right 
modes L„ are defined similarly through T{z) = Z^^oo These components then 

form the direct product of a pair of Virasoro algebras 

Ln\ = {m — n)Lm+n + 

Ln] = (m — n)Lm+n + 

Ln = 0. 

c 
12' 
c 
12' 

(1.58) 

(1.59) 

(1.60) 

Representat ions of the Virasoro algebra 

In order to develop the quantum field theory we need to define what is meant by a state 

and correlation function. Correlation functions are radially ordered products of operators 

between vacuum states 

{Mzi,Zl)...(f>n{Zn,Zn)) = (0|7^<^l (^ i , Zi). ..< „̂ (z„, ^n) |0) . (1.61) 

where |0) is the vacuum state. A primary state \h,h} is defined by the action of the 

operator corresponding to the primary field ^ on the vacuum: 

= k,hi^m = \4>in) = lhaj^^ji{z,z)\0). (1.62) 

Through this definition the notions of a representation, degeneracy or unitarity can be 

formulated in terms of the primary fields or states. From here on let us drop the hat 

notation, which should strictly be used over all operators (including the stress energy-

tensor and its modes). 

Regularity of T(^r)|0) at 2: = 0 and z = 00 leads to the annihilation formulae 

L J O ) = 0 ™ > - l , ^^^^^ 

(0 |L^ = 0 m < 1. 

Now return to equation (1.42) for the variation of a primary field under an infinitesimal 

conformal transformation. Choosing e = z^'^^, (1.38) gives a more useful expression for 

the variation formula when dealing with primary fields 

[LnAnJii^.z)] = {h{n + l)z^ + z-+'d,)<l>^j^(z,z). (1.64) 

Then by definition (1.62) these results imply the primary state \h,h) satisfies the highest 

weight conditions 

Lo\h,h) =^h\h,h), Lo\h,h) = h\h,h), 
_ _ (1-65) 

Ln\h,h) = 0 , L „ | / i , / i ) = 0 , V n > 0 . 
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The central extension term proportional to c in (1.58) vanishes for the commutators of 
Lo^±i and Lo,±i- Therefore these generators, which form a subalgebra, have the same 
interpretation as the global conformal transformation generators Zo,±i and Io,±i- The 
dilatation generator LQ + LQ has eigenvalue h + h = x and the rotation generator LQ — 
has h ~ h = s. I f |0) is annihilated by I-i .o,-! and i i , o , - i as above, we conclude the 
vacuum is conformally invariant. 

Each primary field ^(z, z) and its descendants 

^ { _fc„„.-/=„;-fci,..,-fc„}(^^_^ ^ L-k,--L-krnL_-,^..L_-,J,,jl{z,z), (1.66) 

wi th ki,ki > 0, form a conformal family [4>ii'ii]- I f the theory in question allows only 

primaries with highest weights {hj,hj) then all fields He among the set ®j[(t>^. ji.]- In the 

state picture a general descendant is formed by successive applications of operators L—m 

and L-n{m,n > 0) on the primary states 

I* ) = </.[-'=^'-'=^-'-'=-^-^^'-^^'-'-^"^(0)|0) = L^,,..L_kr.L_-,^..L_-Jh,h). (1.67) 

The weight of this descendant is given by 

m n 
Lo |*) = ( E ^ ^ + ^ ) l * ) ' Lom = {Y,kj + h m , (1.68) 

i=l 3=1 

where the sums M = Yl^i and N = YJj=i are called the levels of l^*) with respect 

to the left and right algebras. The set of\h,h) and its left descendants is called a Verma 

module Vh (for right modes the module is V^). We say Vh forms a representation of the 

left Virasoro algebra. The isomorphism due to the operator-state correspondence (1.62) 

is then [(p^ ^] = V/j (g) . Since left and right modes Lm and commute, it is usually 

necessary to consider only the left modes. 

Degeneracy, the K a c determinant and min imal models 

A representation is degenerate or reducible if there exists a non-highest weight state 

\x) 7̂  \h, h) which is a linear combination of the descendants in Vh such that 

i»IX> = 0 Vn>0. 

Then \x)^ which is orthogonal to all states, is said to be a null state of \h, h) with respect 

to the left algebra. One can obtain an irreducible representation if we formally put the 

null state to zero: |x) = 0. 
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A degeneracy of the Verma module Vh is predicted by the Kac matrix Mi (c, h). This 
matrix has entries which are the inner products of descendants of \h,h) at level I. For 
instance, states at level 3 can be ordered in 5 = (L_3 | / i , / i ) L _ i L _ 2 | / i , / i ) L^i\h,h))'^ 
so that M3(c, h) = (S)S, where <Ŝ  is the transposed adjoint of S. The implication is that 
h or h is a root of det (M/(c, h)) = 0 i f , and only if, there exists a linear combination of 
states \x) with zero norm and V"^^ is degenerate at level /. A l l h which are not roots give 
irreducible representations. Kac [5] proposed the following formula for det (Mjr,(c,/i)): 

det ML{C, h)=al[{h- / i r , . ( c ) )^ (^ -" ) , (1.70) 
rs<L 

where a is some constant, P{X) is the number of distinct partitions of X boxes and the 

central charge dependent weights are given by 

^ = ^rAc) = 4m(m + l ) ' ^^-^'^ 

where 

c(m) = l - — 3 - , (1.72) 
^ ' m(m + l ) ' ^ ' 

with fh any real or even complex valued number. Note that the representation with 

highest weight hr^s is degenerate at level rs where the first null vector has dimension 

hr,s + rs. The determinant has P{L — rs) zeros for L > rs, because this is the number of 

states at level L descendant from a null state \x) at level rs. 

I f m is rational with m = for coprime integers m and m, then the following 

theories are degenerate 
6(m — m)^ 

Cm,m = 1 - 1.73 
mm 

and weights (of which there can be ^(m - l ) ( m - 1)) 

imr-ms)^_-im-m)- (1.74) 
4mm 

These theories are called rational models. Once a central charge is specified, the above 

set of dimensions determine which primary fields constitute the degenerate conformal 

representations. Belavin et al. [4] demonstrated that the algebra of the operators in 

these theories is closed, i.e. the operator product expansions of any two operators in 

these models is expressible in terms of the sum of a finite number of primaries and their 

descendants. 
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U n i t a r i t y 

Hermiticity of T and T implies the modes satisfy Lj^ = L_m, = L-m- Consequently, 

a typical inner product is written 

| |L_„ | / i ) | | 2 = ( / i |Lt„L_„| / i ) = {h\LnL.n\h) 

= {h\[Ln,L.n]\h) 

= 2nh + ^{n^-n), 

where (1.58) and (1.65) are used to obtain the last two lines. Unitarity is the requirement 

that the inner product of any state is non-negative for all combinations of c and {h, h). 

Choosing n = 1 we find a necessary requirement for unitarity is 

h>0. (1.75) 

For such a theory c cannot be negative either, because regardless of the size of h one could 

increase n until the inner product becomes negative. 

Kac's determinant is a crucial tool to establish which representation (c, h) is unitary. 

Should the determinant be negative at some level i t implies the matrix has a negative 

eigenvalue which means there exist negative normed states denying unitarity. The Kac 

determinant can therefore be used to discover which models are unitary. Friedan, Qiu 

and Shenker ([6]) proved 

• For c > 1 and h> 0 the determinant has no zeros and the theory can be unitary. 

• For c < 1 and /i > 0 a necessary requirement for unitarity is given by (1.71) and 

(1.72) where m takes integer values greater than or equal to 3. 

The unitary cases m = 3,4,5,6, often denoted M.~, were identified immediately with 

various statistical models such as the critical Ising (c=l /2) , tri-critical Ising (c=7/10), 

3-state Potts (c=4/5) and the tri-critical 3-state Potts (c=6/7) statistical models by 

comparing the critical exponents of operators in these models with h + h and h — h from 

list (1.71,1.72). Friedan et al. did not prove that all the theories (1.71,1.72) with integer 

m, are unitary. This was done by Goddard, Kent and Olive [7] through their explicit coset 

construction. This method allows us to build unitary conformal models which necessarily 

have rational central charges. 

Briefly, the idea is to build a stress energy tensor T^{z) from the modes = T°-z'^ 

appearing in the level kg Kac-Moody algebra 

[T^, T^] = iffT^+n + ^^rn5'^'5m,-n (1-76) 
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of the Lie algebra g with structure constants for the compact connected Lie group 
G of dimension dim{g). I t can be shown that the stress-energy tensor gives rise to a 
Virasoro algebra with central charge 

(jt,,) _ kgdimjg) 

kg + hg 
(1.77) 

where hg is the dual Coxeter number of g. The dual Coxeter number is conveniently 

given by the formula hg = ranfc(g) f"-^ (f)'^"5']- 'fank{g) is the rank of the algebra (the 

dimension of the Cartan subalgebra) and there are dim{g) — rank{g) roots of which ni 

are long and ns are short, with lengths L and S respectively (determined by the Dynkin 

diagram of g). Any Virasoro algebra found this way necessarily has c > 1. 

If h is a subalgebra of g, one can similarly construct a corresponding stress-energy 

tensor T'^{Z), now with central charge 

eg") = ^ ^ ^ ^ ^ . (1.78) 
kh + hh 

where is the dual Coxeter of h and kh, is the level of the Kac-Moody algebra. The 

modes Km = Lm ~ -̂ m ^Iso form a Virasoro algebra with central charge given by the 

difference 

CG/H = 4'^^ - 4'^ • (1-79) 

Km is a mode of T^ — T'^ which is the stress energy tensor of corresponding to the coset 

G/H. Theories constructed this way are unitary because unitarity is built in from the 

onset. The minimal conformal series with m = 3,4,5,... is constructed by considering the 

coset G/H = 5C/(2)('=) ® 5(7(2)(i)/5t/(2)(^+i). SU{2) has rank 1, dimension 3 and dual 

Coxeter number 2, therefore the associated central charge is CQju = 3A;/(A; -I - 2) -I - 1 -|-

3(A: + l)l{k + l + 2) = l - Q{k + 2)/{k + 3), giving the c < 1 series of conformal theories 

identifying fh =^ k + 1. A more relevant example here is the quotient group 

5 0 ( p ) ( ^ ) ^ 5 0 ( p ) W -

—som—• ^ ^ ^ 
For p = 21 + 1 odd, SO{p) has dimension l{2l + 1) and dual Coxeter number 21 — 1. I f 

p = 21 the dimension is 1(21 — 1) and the dual Coxeter number is 21 — 2. Therefore, the 

level k corresponding Virasoro algebra has central charge 
kl{2l + l)/{k + 2l-l) for p = 21 + 1, M _ (1.81) 
kl{2l -l)/{k + 2l-2) for p = 21. 

In both cases the coset central charge for the coset (1.80) is the same 

.(2) , J l ) _ J 3 ) _2p-l 
-so{p) + ^soip) ^so{p) - p + i • 
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1.3 Perturbed conformal field theories and integrability 

The conformally invariant field theory with Hamiltonian HCFT corresponds to a fixed 

point of a renormalisation group flow. Suppose we consider relevant perturbations of 

such a theory 

HpcFT = HCFT + E ^ i ( ^ ) > (1-83) 

where <^i{x) is a spinless relevant primary, keeping rotational invariance, with dimensions 

{hi, hi) less than unity. The dimensionful coupHng Aj transforms as —> fe^^^'^'Aj under 

the scaling x —> b'^x and therefore has dimensions {I ~ hi,1 — hi). At least in a local 

CFT, where the generators like T and their modes have integer spin, all fields are either 

primary or have dimension at least one greater than that of a primary. Therefore, in a 

unitary local theory, where hi > 0, the only relevant fields are primaries. So (1.83) is 

actually the most general relevant perturbation we can consider. When c < 1 there are 

a finite number of primaries and F is finite. There are an infinite number of possible 

irrelevant perturbations. 

Relevant perturbations break conformal symmetry and the theory assumes either a 

finite or infinite correlation length, according to which the perturbation is said to be 

massive or massless (because the inverse correlation lengths are naturally interpreted 

as the masses m^ of a relativistic quantum field theory). The two-dimensional perturbed 

theory (1.83) is super-renormalisable which means correlation functions in a perturbative 

expansion can be rendered finite by introducing a finite number of fields to ki l l off all 

ultraviolet divergences. I t is assumed that the field content of the perturbed conformal 

field theory is the same as the unperturbed theory so that, in particular, the fields in the 

perturbed theory have the same dimensions as those in the conformal. 

The existence of integrals of motion or conserved charges is particularly important for 

two dimensional quantum field theories because such quantities not only deny particle 

production or creation for a specific massive theory, but they also force the factorisation 

of the scattering matrix for n-particles into a product of two particle amplitudes which 

may be determined. A review is left until the next section, meanwhile here we discuss 

exactly what is meant by integrability, beginning with a review of how to find integrals of 

motion by tr ial and error and the more systematic counting argument of Zamolodchikov. 

Consider a perturbation of a conformal field theory HCFT by a single spin-zero relevant 
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primary field $ of weight h <1 

H = HCFT + X j d^x ^ x ) . (1.84) 

We begin with an initial comparison of the field content of the conformal families of 

the identity A = [/] and of the perturbing primary [$]. Both families have a natural 

decomposition according to spin: A = ®~o-^s ^^'^ [^] = ®?2=o^s which persists when 

A ^ O . 

As consists of all level s descendants T ° and $s of all level s descendants of weight 

(s + h,h). These fields are not necessarily algebraically independent because all fields are 

expressible in terms of Virasoro modes, nor are they linearly independent, as some fields 

in Ag are total dz derivatives. Linear independence can be imposed by considering the 

factor spaces 

As = A , / L _ i A s _ i ^s = ^s/L-i^s-i. (1.85) 

For A = 0 all fields T ] "^ e A^ then satisfy 

dzT^"^ = 0. (1.86) 

I f A 7̂  0, dzTs'^'^ has a z dependence 

where R^'^l are assumed to be fields existing in the CFT, the dimensions of which can be 

thus deduced: 

rw {s,o) 

d^TW is,l) 

A" (n ( l - / i ) , n ( l - / i ) ) 

Ri"]^ {s - n ( l - /i), 1 - n ( l - h)) 

i ? S = {s-l + h,h) 

For large n the dimension of iZ^I^" becomes negative, but ©; i [$ / i ] contains only fields with 

zero or positive dimension, therefore the sum (1.87) must terminate. Furthermore, the 

right dimension of R['^I is less than 1 and the only fields with this dimension in a local 

unitary theory are the primaries, therefore all fields other than the first vanish unless 

l - n i l - h ) = hr, (1.88) 
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where hr is a highest weight of another primary I f this condition holds a more general 
action (1.83), which includes a term proportional to should be considered instead of 
(1.84) which is ho longer sufiicient to describe this case. I f / i ^ = 0, (1.88) tells us a second 
field \'^R['1!^ appears when h satisfies the resonance condition 1 — h = 1/n. When this 
resonance condition is not satisfied (1.87) becomes 

S^Tj") = XR'fX . (1.89) 

Only i f R ' f \ £ $ s is a total z derivative 

d^T^^, = d,es-i{z), (1.90) 

does there exist a local integral of motion 

Ps = j^T^+^dz + Qs-idz. (1.91) 

This integral is said to be local because the fields rf_ î and © s _ i are local with integer 

spin. Also strictly we should have included an additional index on this conserved charge 

since there could exist several conserved charges with the same spin. 

The derivative dzTg can be determined once the modes Dn : A —> # (n = 

0 , ± 1 , ± 2 , . . ) are defined: 

DnA{z, ^) = ^ i f / ( i ( - ^ ) " ^ ( ^ ' OMz, z). (1.92) 

The relation (1.64) can be used to relate these and the Virasoro modes 

[Ln,Dm] = -{il-h){n + l)+m)Dn+m- (1.93) 

Another important relation, obtained from (1.92), is 

D^n-il =-,d^Hz,z). (1.94) 
n! 

Via (1.64) we can equally replace the derivative dz by L _ i here (though we can not equate 

3/; and L _ i in general). Under the perturbation (1.84) the z derivative of T^ satisfies 

a,rW(z,z) = \j^^T^-\z)m,z). (1.95) 

This relationship is derived by expanding the expectation value of the stress-energy ten

sor and an arbitrary set of fields in a perturbative series involving correlation functions 

evaluated at the conformal point and powers of the coupling. Applying the dz derivative 

to the result and incorporating the identity dzdz\og{{z — z'){z — z')) = —2'7ri5^'^^z — z') 
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one obtains the above result. This gives the relation dj = XDQ. Then writing T]"^ in 
terms of {L_„.} acting on the identity operator / , we can use (1.93) and (1.94) to reduce 

(K) 

dzTs to a linear combination of L_p's acting on The result of this process may or 

may not be a total derivative. The simplest integral of motion is constructed from 

dwT{z,z) = XDo{L_2l) = Hh - 1)£>_2/ = X{h - l)L-i^z,z) (1.96) 

which gives an integral of motion Pi = J dzT + dizQ with 6 = A(/i - 1)$ for all field 

theories. In general is not a total derivative, for instance T4 = L'^_2^ satisfies 

d^n = XDoiL_2fl = X{h-l){D-2L-2 + L^2D-2)I 

= A( / i - l ) (2L_2L_i + ^ L i i ) $ (1.97) 

which is not, for general a total derivative. However, if $ should be a degenerate field 

then the right hand side of (1.97) is a total derivative. 

Rather than testing every T^_^\ by trial and error, a dimensional argument, proposed by 

Zamolodchikov [8], is used to establish a necessary condition for the existence of integrals 

of motion. Stated most simply, a spin s integral of motion exists if the dimension of the 

space Ag+i is greater than the dimension of $ s .̂ The dimensions of the subspaces for a 

given representation are contained in the character of the representation in question. For 

instance, the dimensions dh{s) = dim{^s) may be assembled into a character formula: 

X/.(9)=9-^/''Tr,9^o (1.99) 

where the prefactor is conventional. The trace Tr^ is I]s=o° Tr^^s with Trfi^s representing 

the trace of matrix where \i) and \j) are normalized states of level s which have 

Lo eigenvalue s + h, so that 

Xk{q) = q-"'''' E 9 ' ^ ' E(^l^) = 9 ' " ' ^ ' ' E dH{s)q\ (1.100) 

^Given that #s and As are level s spaces with total derivatives factored out, let us define the projection 

operator lis : *s —^ $s and define Z3o,s : As —> $ s - i to be the restriction of Do on subspace As. The 

composite of both these operators Bs = Es - i -Dcs : As —> * s - i gives the following basic result: 

dim(As+i) > dim($s) => there exists an integral of motion with spin s. (1.98) 

In order to see this, suppose there exists Ts+i e As+i such that B^+iTs+i = 0 i.e. ciim(A:er(Bs+i)) > 0. 

Then Ils{Do,s+iTs+i) = 0 and so Do.s+iTs+i is in the kernel of lis i e. is a total L _ i derivative of a 

field in $ s - i and we can write Do.s+iTs+i = dzQs-i with 6 s - i 6 $ s - i - Finally multiply by A to obtain 
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dfi(s) here simply counts states which are not Hnearly independent. The dimensions of 
$5 are easily seen to be = dh{s) — dh{s — 1) from (1.85). So the character for the 

dimensions of linearly independent states is 

Xhio) ^ - Q)Xh{q) (1.101) 

(for the A conformal family XoC?) = (1 ~ Q')XO(Q') + 9 since L - i / = 0). When the repre

sentation is degenerate one must factor out the null states. Demonstrating integrability 

thereby reduces to the construction of the appropriate character formulae. 

The character formulae for several classes of conformal theories have been established, 

but the formulae are generally very complicated when c > 1. In particular, the dimensions 

of the level subspaces necessary to prove integrability for the perturbations of the Z^f-

symmetric conformal field theories to be studied here have not yet been found (see [9] for 

details concerning character formulae of parafermionic models). 

The generalisation of the above trial and error method, to the case where additional 

currents exist (which generate an extended conformal algebra), can be stated as follows. 

Whether the additional currents {G}, satisfying dzG = 0, have integer or fractional spin 

the principle is the same. Suppose we consider an extended symmetry conformal theory, 

perturbed by the spinless field e{x) of dimension {h,h): 

HpcFT = HcFT + \ j d^x e{x). (1.102) 

If Gs-\-i (s not necessarily integer) is a descendant in the same conformal family as the 

generator G, then a spin s integral of motion will exist if any combination of fields Rg 

can be found to satisfy 

d^Gs+i = XRs (1.103) 

such that Rs is a total dz derivative. This may involve demonstrating Rg can be written as 

L _ i acting on some combination of fields, but more generally any combination of modes 

corresponding to dz must factor out of Rg so that Rg = dziR'g^i), implying 

Qg = j Gg+idz + \R[_^dz, (1.104) 

is the spin s integral of motion. We point out that candidates for Rg do not just include 

descendants of e, any combination of fields with the correct spin value will do. The 

perturbing field does not necessarily appear explicitly in the integral of motion, but the 

dimensionful coupling A does and this is how the integral of motion is 'attached' to the 

specific perturbation in question. 



Chapter 2 

Scattering Theory and the 

Thermodynamic Bethe Ansatz 

2.1 Conserved charges and exact S-matrices 

Each conserved charge restricts the particle dynamics of the perturbed theory. In partic

ular, the form of the S-matrix describing the scattering of asymptotically well-separated 

particles is heavily restrained by each conservation law. However, in d.> 2 spacetime di

mensions integrability places too heavy a restriction on the possible scattering. Coleman 

and Mandula [10] argued that when there exist many symmetries of the scattering it is so 

restrictive that only collisions at an angle of 0 or TT degrees can occur. Thus integrability 

is not compatible with real scattering m d > 2 dimensions. In 1 -t- 1 dimensions these 

are the only possible collisions anyway, so integrability does not completely exclude some 

interesting scattering. In this section we review how the existence of conserved charges 

allows the determination of the massive S-matrix up to the Castillejo-Dalitz-Dyson or 

ODD ambiguity [11]. 

Integrals of motion and massive scattering theory 

Consider a relativistic scattering theory consisting of iV particles Aa of mass nia and 

relativistic momenta Pa = {pIiPD in Minkowski co-ordinates (where a = 1, ..N). In the 

infrared regime there are asymptotic regions where particles are well separated and on 

mass-shell so that (p^)^ - (p^)^ = m^. This allows a parametrisation in terms of the 

rapidity coordinate 6a 

{pI,pI) = iEa,Pa) = imaCoshea,maSinhea) a = 1, ..N (2.1) 

30 
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so that Ea and pa are the energy and momentum of particle a. Our aim is to determine 
the scattering amplitude which relates well-separated incoming particle states to outgoing 
ones; asymptotic multiparticle states being 

\Aa, {9i), Aa, (92), .., Aa^ {0N)hn(out) • {2.2} 

In-states have ordered rapidities 6i > 62 > > 0;^ a,t t — —00. The leftmost particle 

has the largest momenta, the particle to its right the next largest and so on. As time 

progresses interactions occur as the particles successively collide. Between collisions we 

assume the motion is well approximated by some wave function for free particles. Each Oi 

is intended to label all quantum numbers including mass number and internal quantum 

numbers, so that every type of particle is represented by its own label. 

Suppose the theory has conserved charges Pj which exist in all perturbation ranges, in 

particular in the infrared .̂ The rotation generator LQ — LQ is the Lorentz boost generator 

M in Minkowski co-ordinates such that [M, Fj] = sPj. Under Lorentz transformation 

La • 0 ^ 8 + a, Pj Pj = e^^Pj. If a charge Pj acts on a one particle state |v4(i(0)) as 

Ps\Aa{ea))=^{ea)\Aa{9a)), (2.3) 

then the behaviour of the charge under Lorentz transformation implies u}s{9a) = j§e^^°, 

where 7I are constants. Alternatively, we could write u^[9a) = Kf rriae*^", with «;§ constant 

(no summation is intended) so that in light cone co-ordinates the momenta take the form 

{p,p) = (me^,me~^) i.e. P^ = p — me^, so that = 1 for all particles. 

If they are local, the operators Pj are diagonalised by the asymptotic states and their 

action on well-separated particles with localized wave packets is 

/ ^ _ \ 
Ps\Aad9i),..,AaA0N))= ET?e^'^ \AaAdi),:AaA()N)). (2.4) 

\ i= l / 

Non-local integrals of motion Qj, formed from fractional spin fields, have a different, 

non-distributive, action on asymptotic states (to be discussed later). 

For the time being consider the case where the integrals of motion are local. The 

conservation of Pj implies the following set of selection rules for an iV particle in-state 

scattering to an M particle out-state 
N ^ _ 

E^J'^'-^E^'^'^- (2-5) 
1=1 j = l 

^To avoid confusion between the spin index and Mandelstam variable to be introduced shortly we label 

the spin on a given conserved charge by s. As pointed out earlier several distinct conserved charges can 

have the same spin 
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9i and O'j are initial and final rapidities while { j j } and {7^^} are the sets of quantum 

numbers associated to Pj for in and out states respectively. The explicit mass version of 

this equation with s = 1 implies '^iLima^e^' = ^fLi'mbj^^^ which is the statement of 

conservation of momentum that we expect from the existence of Pi in all theories. 

All scattering processes in an integrable theory are necessarily elastic. The existence 

of just a couple of non-trivial conserved charges is enough to forbid particle production 

or annihilation and give N = M. However to demonstrate that the initial and final 

sets of asymptotic rapidities are identical it is necessary to have an infinite number of 

conservation laws. In practice, this property is assumed once several integrals of motion 

have been identified. After a suitable re-ordering of momenta, integrability implies the 

equality of the selection coefficients 

Vs. (2.6) 

These numbers give us the action of Pj on the asymptotic states, but tell us nothing 

about the exchange of internal quantum numbers. The only other freedom allowed in an 

integrable theory are time delays. Consequently, the asymptotic in state is a superposition 

of out states as 

\AaAdl),-,AaA0N))in = ^ ^ ^ t ' - t ( ^ 1 ' M l ^ i (^l), ( îv)o«t (2.7) 

where summation is implied. 

The determination of the S-matrix amplitudes is still highly non-trivial but is made 

possible because integrability allows the factorisation of the A'̂  particle S-matrix in terms 

of N{N — l ) /2 two particle S-matrices. As an example, consider a three particle collision. 

The three ways this scattering can occur are shown in Figure (2.1). By applying a power 

of a higher order charge one can translate all world lines by an amount proportional to 

Figure 2.1: The possible three particle collisions 
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a power of each particle's momenta. Since each particle has a diflierent momenta, the 
trajectories are shifted by different amounts and because such a charge is conserved, each 
of the processes related by translation have the same amplitude [12]. This fact is expressed 
via the Yang-Baxter factorisation equations 

E 5&?(^i2)5£t^(ei3)5g^3(e23)= E S^ti02z)S^.t{9n)StXiGn) (2.8) 

where the sums are over all internal colours consistent with (2.6). This system of con

sistency equations implies whatever factorisation we choose in order to evaluate Sj^-^^^, 

the resulting amplitude must be the same. If there are no internal quantum numbers (no 

multiplet states) this equation is automatically satisfied. A similar argument is used to 

demonstrate the factorisation of the iV particle S-matrix. 

General restrictions on the scattering amplitudes 

We first discuss analyticity, crossing and unitarity properties of the two paxticle amplitude 

S^f(9) of the forward channel scattering process AaAi, —^ A^Ac in terms of the invariant 

energy squared, that is the Mandalstam variable s: 

s = {pa+ Pbf = ml + ml + 2mamb cosh.{9), (2.9) 

where 9 = 9ab = 9a — 9b is the rapidity difference of the incoming particles. For physical 

processes 9 is real and s > {nia + mb)'^. The crossed version of this collision A^Aa -> AcA^ 

has associated the Mandelstam variable t: 

t={pa~ Pcf = 2{ml + ml)-s 

= ml^ + ml + 2mamb cosh(m — 9) 

The analyticity postulate states that the domain of s can be enlarged by continuation 

up from this part of the real axis so that S(s) becomes a complex valued matrix on the 

complex plane and takes complex conjugate values at conjugate values of s. This implies 

S is real when s is. In order to keep this function single-valued, two cuts are necessary. 

The first is along the real axis above threshold, the second is also on the real axis, and 

corresponds to the crossed dynamics being above threshold i.e. where t becomes physical: 

t > {nT'a + iTT'b)^-, a-nd is equivalent to continuing s to the region s < {ma — m^)^. The 

resulting Riemann surface is called the physical sheet. 

We take the convention that the forward channel above threshold physical process 

occurs when s is on the upper edge of s > {ma + mb)^ and the crossed channel above 
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threshold process occurs when on the lower edge of s < {rria — m;,)^. Crossing symmetry 
and unitarity read: 

S^J{s) = slli2ml + 2ml-s) 

where S{s'^) and S{s~) are the values the S-matrix takes on the upper and lower edges 

of the s > (ma + mj)'^ cut. ^(s) is a meromorphic function of s on the physical sheet. 

We assume bound state poles occur on the real axis between thresholds (rria - m;,)^ and 

{iria + rrib)^ with no other singularities in the physical strip. 

Through (2.9) we can map the first sheet of the cut s plane to the strip 0 < ImO < IT. 

The other covers map to one of the strips n7r < ^ < (n -I- l)7r. The region of the real s-axis 

below threshold maps to the pure imaginary 9 axis. Therefore, S{0) is real on Re{9) = 0 

and the only singularities occur on this axis. These are interpreted as bound states in 

either the forward or crossed channels. Crossing and unitarity become 

S^Jie) = Sllim - e), 5^^(e)5:i(-0) = 6l5l. (2.10) 

Physical scattering amplitudes in the forward channel are given by the values of S^f{9) at 

Im{9) = 0,Re{9) > 0, while Im{9) = •K,Re{9) < 0 describes the crossed channel physical 

scattering. 

For purely elastic scattering processes, where there are no particle multiplets, things 

are further simplified. A simple pole 9 = iu^^f^ in the amplitude for AaA^ scattering 

corresponds to bound state particle Ac in the forward or crossed channels. A positive 

(negative) residue implies the bound state occurs in the forward (crossed) channel, and 

the mass of the bound state must be given by 

= m ^ - f +2mam6COs(u^t). (2.11) 

Crossing symmetry means there is a pole at ^ = iu^^ (u (̂, = n — u ;̂,) corresponding to 

the same particle in the crossed channel. The u ;̂, are called fusing angles and trivially 

satisfy u'^^ + u^^ + u^^a — 27r. It is usually assumed that the bound states exist as stable 

asymptotic states and that their scattering is also described by the S-matrix. 

The principle behind the Yang-Baxter equation was that the amplitudes for two pro

cesses equivalent but for the translation of one world line, should be equal. The boot

strap principle supposes this can be done when bound states are involved. For a di

agonal scattering, the Yang-Baxter factorisation equations are trivially satisfied and as 
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an alternative the bootstrap equations are used to determine the form of the S-matrix. 
A bound state residue 9ab = iu^b occurring in the three particle scattering A^AaAi,: 
Sdab{6a,db,dd) = Sda{6da)Sdb{6db)Sab{6ab), where particles form a bound state Ac, 

must give the same amplitude as the two particle scattering Scd{S)- This condition gives 

the bootstrap equation 

ScdiO) = Sadie + iula)Sbd{e - iv^bc) • (2.12) 

When combined with (2.4) the bootstrap equation gives the following condition on the 

coefficients 7 f : 

7 | - e - " " - 7 l + e"^^7| . (2.13) 

One begins with the assumption that the theory contains at least two particles, and that 

fusing angles and u\i exist for the formation of bound states. Using the system (2.13) 

those values of spin for which such fusions exist are determined and (2.11) gives mass 

7712 in terms of mi. Once two angles are known, it is easy to use the bootstrap equation 

(2.12) to show there exists another angle giving a pole in the physical strip corresponding 

to another particle with mass 7713 given by (2.11). One continues cranking the bootstrap 

handle until no new masses are produced. The set of fusion angles u^^ when used in (2.13) 

restrict the values of s for which we should look for integrals of motion. It is possible to 

write down the non-diagonal version of this equation, though it is not usually used as a 

practical alternative to the Yang-Baxter equation. 

In summary, for non-diagonal scattering, analyticity, crossing, unitarity, the factori

sation equations, and the commutations [Pj, 5] = 0 pin down the S-matrix S^{9) up to 

the CDD ambiguity 

Slt^^{9)S'^. (2.14) 

The CDD factor itself satisfies crossing and unitarity requirements: 

*(0) = * ( i 7 r - e ) , ^{9)^{-9) = l. (2.15) 

The importance of this ambiguity will be discussed in Chapter (7). 
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2.2 The sine-Gordon S-matrix 

The massive two-dimensional sine-Gordon model is defined by the Lagrangian 

1 C = ^{d,<pf + '^cosP^. (2.16) 

mo is dimensionful constant which essentially defines the scale of the theory, whereas fixing 

P dictates the physical particle content. (2.16) therefore describes a family of relativistic 

scattering theories. An alternative parametrisation of this model is through h or ^, where 

h_8Tr 
2 ~ /32 32 ^ ' (2.17) 

(2.18) 1 - pysn • 

Pre-empting the discussion of ZAT models we are particularly interested in the theories 

with P'^ = 32Tr/N, where A'' > 5 is an integer, in which case 

h = 
N-4 

2 ' N-4: 
(2.19) 

The sine-Gordon S-matrix is the minimal 0(2)-symmetric solution of the unitary, 

crossing and factorization equations (see [13] for more details). As a quantum field theory 

this model contains two types of particle: the soliton {A) and antisoliton {A). Using the 

compact notation of [13] the two-particle scatterings are given by 

^(^1)^(^2) = 5(^1-^2,0^(^2)^(^1) 

1(^1)^(^2) = S{9i-92,OA{92)A{9i) (2.20) 

A{9i)A{92) = ST{9I -02,0 A{92)A{9i) + SR{9I - 92,0 A{92)A{9,), 

the amplitudes for which are encapsulated in the non-diagonal scattering matrix S 

( 

S{9,i) = 

S{9,K) \ 

SR{9,0 ST{9,0 

ST{9,0 SR{9,0 

V 

So {9,OR{9,0 

S{9,0 J 

where all entries not shown are zero, 5o is a scalar: 

1 
So{9,0 = 

sinh ( i ( 0 - m ) ) exp 
.00 d k M k 9 ) s m h [ ^ k ) 

Jo k cosh (f) sinh 
(2.21) 
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and P is a simple matrix: 

AA AA AA 

AA f sinh( |(e-?7r)) 

-sinh ( ^ ) -sinh (1̂  

-sinh (I) -sinh ( ^ ) 

AA 

AA 

AA 

AA V sinh(|(6'-z7r)) 

For convenience later we introduce the shorthand notation 

a{9) = smhi^i9 - in)), b{9) = - smh{^), c = - s i n h ( y ) . (2.22) 

The poles in So at 9 = iir - ik^ir for A; = 1,2,... < [1/^] are interpreted as AA bound 

states or breathers. According to (2.11) the breather masses are 

kn 
Mk = 2Msm{—C] k = l,2,...n-l, (2.23) 

where A and A have renormalised mass M , and n is the integer part of [N — l ) /4 (when 

N is an integer). The soliton labels A and A will often be replaced by n and n+1, so that 

Mn = Mn+i = M. (2.24) 

Although the scattering among solitons and antisolitons is non-diagonal, once a bound 

state is involved the scattering becomes diagonal. Introducing the block notation 

s m h ( | + ^ 

the diagonal amplitudes are 

[x] = {x-l){x + l ) , 

Sjk= n {j,k = l...n-l) 
\j-k\+\ 
step 2 

and 
h/2+k-l 

Skn = Sk,n+l = i-l)'' n W (fc = l . . . n - l ) . 

(2.25) 

(2.26) 
h/2-k+l 

step 2 

When h = 2n {N — 4n + 4:), the entire S-matrix is diagonal and the sohton amphtudes 

are 

n even : Snn = Sn+i,n+i - H ' '^">"+i =̂  11 ' 
i = l i=3 

step 4 step 4 

2 n - l 2 n - 3 

n odd : Snn = Sn+l,n+l = H {0 i Sn,n+l = " H • (2.27) 
!=1 

step 4 
i=3 

step 4 
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2.3 The T B A technique 

There are two distinct ways to develop a Hamiltonian approach to a relativistic field theory 

on a toroidal geometry given by two circles of circumference R and L. Periodicity of one 

axis, in the L-direction leads to the quantisation of states with momenta taking values 

(for integer m). These states evolve in the time-like R-direction under the influence of 

Hamiltonian HL- With this description, the partition function is Z{R, L) = Tr(e~^^^) so 

that l/R is proportional to the temperature. In the limit L -> oo the free energy per unit 

length is Rf{R) = \\mL^oo—z^ogZ{R,L). In contrast, quantisation in the R-direction 

means states representing particles with momenta ^ (with integer n) evolve in the L-

direction under Hamiltonian HR. In this picture the partition function is dominated by 

.EQ{R) (the ground state energy oi HR) as L becomes large, so that Z{R,L) ~ e-LEo{R) 

Consequently, the free energy per unit length and ground state energy are equal in the 

L —> oo limit: 

Eo{R) = Rf{R). (2.28) 

in a unitary conformal theory Eo{R) is related to the central charge c by Eo{R) = 

—Trc/6R [14,15]. This result is obtained by considering the variation in the free energy per 

unit length in response to an incremental increase in the radius R. For the non-conformal 

theory we may take the following relationship to define the effective central charge c(r) 

E o { R ) ^ f o R - ^ , (2.29) 

where /o is the bulk term. c(r) depends on the finite-size scaling parameter r ~ MR, 

where M is the lightest mass or inverse correlation length and has the property that in 

the small r limit c(r) —> c : the central charge of the limiting theory (c is replaced by 

c — 12Ao for a non-unitary theory with lowest conformal weight Ao). 

The thermodynamic Bethe ansatz method allows the determination of the function 

EQ{R) and therefore c(r). To begin with, consider a theory consisting of N identical 

neutral particles with two-particle scattering amplitude S{9). In the space of all configu

rations there are regions where the relativistic particles are spatially well separated with 

\xi ~Xj\ > M~^ (provided L is chosen to be much greater than M'^) and have on mass-

shell energies and momenta Ei = Mcosh^i and pi = Msinh^i so that - pi = M^. In 

these regions all off shell contributions may be ignored and the A'̂ -particle state can be 

described by the Bethe wave function '^{xi,X2, ••,XN) = A{Q)e^i^^^\ where A{Q) is 

some a configuration dependent function. 
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If a pair of particles, which are originally well separated at Xi and Xj, interact and pass 
to another free configuration where the Bethe wave function description can also be used, 
the S-matrix can be used to match the wave functions of the two configiurations. That is, 
the encounter is described by the multiplication of the wave function by S{9i — 9j). If the 
ith. particle, originally at Xi, is passed in the spacelike direction through distance L until 
we regain the same free configuration that we started with, the resulting wave function 
is simply the original multiplied by a phase (—1)^ which accounts for the fermionic (F 
odd) or bosonic (F even) nature of the particles involved: 

'^{xi,..,Xi,Xi+i,..,XN) = (-l)^*(a;i,..,a;i - L,Xi+i, ..,XN) . (2.30) 

The original wave function picks up an S-matrix amplitude for every interaction. Repeat

ing this process for every particle results in N quantisation equations for the momenta 

Pi : e*P'^ Yijj^i Si^i — ^j) = 1. Taking logarithms the following set of admissibility condi

tions for the rapidities {9i} in the free regions is discovered 

MLsinh^i - iJ2^og S{9i - 9j) = 2Tm^. (2.31) 

where rii are integers, one for each of the N particles. (An additional amount TT should 

appear in the right hand side of this equation when the particles are fermionic. In the 

thermodynamic limit to be considered shortly this contribution can be neglected.) This 

equation is valid provided the distance L is not comparable with the correlation length 

(L :» M~^), otherwise off mass-shell effects appear and the wave function description of 

the separated particles is not permitted. In terms of rapidities the state {9i,..,9]\/) has 

energy H = Xi^iMcosh^i. These Bethe ansatz equations are extremely complicated 

but yield very useful results in the thermodynamic limit as L —> oo with the ratio L/N 

constant. 

The statistics are a combination of wavefunction and generalised S-matrix statistics. A 

particle is said to be of fermionic type if (-1)^5(0) = - 1 and bosonic type if (-l)^S'(O) = 

1. Now suppose we can re-arrange the above equations so that the sequence {rii} is 

strictly monotonic if the particles are of fermionic type (e.g. {ni)F = (1,3,4,7,18,...)) 

and monotonic, but not strictly, if of bosonic type (e.g. {ni)B = (2,4,5,5,7,...)). These 

give rise to a density of rapidities or roots denoted Pr{9) so that d = pr{9)LA9 rapidities 

lie in the interval {9,9 + A9). The above system becomes 

M L sinh 0i - i l j d9' \ogS{9i - 9')pr{e') = 2™^. • (2.32) 
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Here, and in the following, the integration range is assumed from —oo to C X D unless specified 
otherwise. With no integers missing from the sequence {n-i}, the rapidity density is p{9) 
defined so that at most D = p{9)LA9 rapidities can appear in the interval {9,9 + A9). 
The number of different distributions with the same number of roots in this interval 
is (£) j^J)!(j| for fermionic particles and ^^j^^^i]! for bosonic particles (when two or more 
particles may have the same rapidity value). As L —> oo the product of these expressions 
over all 9 ranges gives the number of densities which we are unable to distinguish from 
Pr {9). The logarithm of this quantity divided by L defines the entropy S per unit length. 
For fermionic particles this is 

S{p,Pr) = j d9 [plogp - {p - Pr) l0g(p - Pr) - p.logp,] , (2.33) 

{S{p + Pr,p) for bosonic particles). In this limit (2.32) gives the following important 

integral equation which relates the root density Pr{9) and level density p{9) 

Mcosh9 + jd9' ip{9 - 9')pr{9') = 2TTP{9) . (2.34) 

The level density at 9 is thus dependent on all roots via the kernel ip{9) = —i-^ log 5(0). 

The total energy per unit length of the system is H{pr) = J d9 Mcosh9pr{9). 

The thermodynamic relation F = E — TS connects the free energy, energy, tempera

ture (T = l/R) and entropy. For rapidity densities this becomes the functional in p and 

Pr 

Rf{p, Pr) = RH{pr) - S{p, Pr) - (2.35) 

This expression must be minimised to determine which root density pr gives the equi

librium configuration. Through functional differentiation of the energy and entropy with 

respect to root density (and using the important dependency equation (2.34)) we can 

obtain a condition for the system to be in equilibrium. Introducing the pseudo-energy 

e{9) and L-function L{9) 

7 = ^ l T 7 ^ ' L{9) = ±log{l±e-<^^), (2.36) 

where the upper and lower signs correspond to fermionic and bosonic type particles re

spectively, it is easy to verify that the derivative of the free energy is zero provided 

MR cosh e = e{9) + ^ [ d9' ip{9 - 9')L{9'). (2.37) 
2TT J 

This thermodynamic Bethe ansatz equation must be solved for e{9) which is then substi

tuted into the general free energy expression to determine the equilibrium free energy / . 
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The result is 

Rf{R) = [ d9 Mcosh{9)L{9). (2.38) 
27r J 

In the rest of this work we shall deal only with theories consisting of particles of fermionic 

type. 

The generalisation to the case of P distinct types of particles of masses Mk which have 

reflectionless scattering (described by the diagonal P^ x matrix of amplitudes 5|j(0)) 

is straightforward. We obtain a system of P integral equations relating the respective 

root densities Pr,ki6) to level densities pk{9), for k = 1, ..,P, and these will be required in 

order to write down a condition which gives the equilibrium free energy. The most general 

thermodynamic Bethe ansatz system for P types of particle with diagonal scattering is 

then 
p 

RMiC0sh9 = ei{9) + ^^i^ij * Lj){9) (2.39) 
j=i 

where (pij{9) = —i-^logSij{9). We consider the fermionic case Lj{9) = log(l -I- e~^i^^^) 

and * denotes the convolution 

f*9{e) = ^ j f { 9 ' ) g { 9 - 9 ' ) d 9 \ (2.40) 

The corresponding generalisation of (2.38) is 

Rf{R) = Eo{R) = - E ^ / Li{9)MiCosh9. (2.41) 

The TBA method gives bulk free energy /o zero, so Eo{R) = —^^^^ and the effective 

central charge or finite-size scaling function is 

Q P roo 
c{r) = -o E / Li{9)mircosh9, (2.42) 

where r = RMi and rrii — Mi/Mi are normalised masses with 77Zi = 1, and ei{9), the 

solutions to the system (2.39), give the required L-functions. 

In all derivations of TBA systems the idea is basically the same. One must find 

equations like (2.34) which relate root and level densities. These will always come from the 

appropriate Bethe ansatz equations and are necessary because they provide the functional 

derivatives of level densities with respect to root densities which are required to extremize 

the free energy. 

In the next chapter we define the class of two dimensional statistical models which are 

Zjv-symmetric. Among this class are models which are conformally invariant. In order to 
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describe the neighbourhood of these points we need to study relevant perturbations which 
remain in the ZAr-symmetric phase space. Non-diagonal generalisations of the system 
(2.39) are required to describe these perturbations. In such situations the derivation is 
far more complicated because it is necessary to diagonalise the Bethe equations. The full 
non-diagonal calculation is carried out in Appendix (A) for a system of solitons which 
interact via the sine-Gordon S-matrix written above. Because the derivation is very 
complicated it is often more practicable to make a conjecture based on knowledge of the 
ultraviolet limit of the theory in question. One can then use the TBA method to discover 
exact results which may be compared to perturbed theory. 

Many of the TBA techniques to be used here are extensions or applications of results 

from the work of Zamolodchikov [16, 17, 18] and Klassen and Melzer [47, 53]. 



Chapter 3 

^TV-symmetric Models and 

Parafermionic Field Theories 

Consider a class of theories with spins Gj = e^^i,9j G [0,27r), located at sites j on a 

two-dimensional square lattice interacting according to the reduced Hamiltonian 

'^m)] = E v{9^ - 9j) - /î v E • (3-1) 

The corresponding partition function is Z{{ai}) = Tr[^.jexp{—'H[{9i}]), where the in

verse temperature factor 1/kpT is implicit in the Hamiltonian. V{9) is an even, 2TT-

periodic potential describing the interaction of neighbouring spins. Summation is over 

nearest neighbours (ij) with the supposition that V{0) < V{9 0). 

When HN = 0 the model has a continuous 0(2)-symmetry which, according to the 

Mermin-Wagner theorem [19], forbids the formation of an ordered phase no matter how 

low the temperature becomes provided the spins have a finite range of interaction. How

ever, a phase transition can occur via the Kosterlitz-Thouless mechanism: above some 

temperature TKT vortices are free, correlations are exponential and the system is dis

ordered (the order parameter has zero expectation value). Below TKT vortices become 

bound together and correlations are algebraic. The latter phase is called the Kosterlitz-

Thouless phase, also known as the soft or massless phase. 

For a slightly increased and low enough temperature, below Tc say, we expect to 

observe spontaneous symmetry breaking to an ordered phase [20]. Interestingly, Jose et 

al. [21] have shown that in the subset of models of Villain form (defined by (3.7)), the 

massless phase persists for small positive values of h^, as long as N > 5. The reason 

is that Tc < TKT for N > 5, therefore at temperatures T satisfying Tc < T < TKT 

43 
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the Kosterlitz-Thouless phase remains as a third phase between massive low and high 
temperature domains. For N < 5, Tc TKT SO an intermediate phase cannot exist. 

3.1 ZAT-symmetric statistical theories 

The limit ^ oo pins the classical spin variable to N discrete angles Oj = ^n{j), where 

n{j) G {0,1,2,..A^ — 1}. The result is the pure model. If only nearest neighbours 

interact, the partition function may be written 

Z{{ai}) = Tr{ , , j e -^( i . . ) = Tq.^j J] > (3-2) 
(id) 

where 
N-l N-l 

W{ai, a j ) = e-̂ '̂̂ '̂'̂ )̂ = ^ Wkiajaj)' = ^ ^^fce'^t"(^)-"«l'=. (3.3) 
k=0 k=0 

The real positive coefficients Wk satisfy Wk = wj^i^k and wo = 1 so that the Hamiltonian 

is real. Therefore, there are (the integer part of parameters required to define 

a ZAT model and this is the dimensionality of the phase space of ZAr-symmetric theories. 

The point wi = W2 = ••• = W[N/2] = 0 corresponds to zero temperature theory and 

wi = W2 = ••• = w^i^j2\ = io the high temperature limit. 

The Zjv-symmetric models have been the subject of a great deal of research for several 

reasons. This set of models generalises the well known Ising model {N = 2) which exhibits 

an order-disorder phase transition typifying that of the ferromagnetic to paramagnetic 

universality class. The ZAT generalisations could describe the phases of systems with 

ZAT-symmetry with equal success. Phase transitions in such systems arise naturally in 

the condensation and melting of two-dimensional crystals in condensed matter theory. 

Transitions from solid to liquid have been observed for idealised symmetric molecules on 

a smooth substrate e.g. experiments with He^ on exfoliated graphite have been carried 

out which reveal exact order-disorder phase transitions expected from a system with 

underlying Z3-symmetry (an obvious symmetry of the graphite substrate which could be 

described by the large /13 limit of (3.1) above) [22]. Transitions from order to disorder via 

an intermediate liquid-crystal phase characterised by a power law decay of the 'orientation' 

order parameter have also been found (see [23] for a discussion of these features in real 

systems with Ze-symmetry). Such intermediate phases have correlations agreeing with 

those expected in the Kosterlitz-Thouless regions mentioned above. 

When starting with a potential such as F, a convenient parametrisation of the phase 
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space is 

Xr^exp{-V{2iTr/N) + V{0)} r = 0,1, 2, ..[Ar/2], (3.4) 

where Xr = x^-r because V is even and a;o = 1. Equivalently, as mentioned above, we 

can use the numbers Wk- The two are related through 

Xr = {j:w,e¥'>r)/lJ2w,) r = 0,1,2,..[N/2]. (3.5) 
9=0 9=0 

It is now useful to introduce the idea of a duality transformation, which may be defined as 

follows. Using parametrisation (3.3), the dual transformation for this model is carried out 

by replacing the summation over spin variables ai by the same summation over dual spins 

IJ,i positioned at sites z on a dual lattice which interact via the same form of Hamiltonian 

but with the coupling Wk replaced by 

5̂̂  = (1 + Y : w y - ^ ^ ' ) / i l + Y ^ w , ) . (3.6) 
9=1 9=1 

The effect of this transformation is to exchange low and high temperature fixed points. 

The theories defined by (3.3) and (3.4) are dual i.e. Wk = x^. Either description is 

equally valid as a starting point for the description of the phase space. Under the dual 

transformation there is always an invariant [A^/4]-dimensional hyperplane given by Wk = 

Wk for k = l,..[iV/2] on which systems are said to be self-dual. With = (ui)'' and 

/Xj = {fxiY, order parameters (cr*̂ ) and their dual disorder parameters (/i') define the 

different phases of the theory: 

• {a'') 7^ 0, (/i') = 0 for an ordered phase, 

• (cr'=) = 0, {/x') 7̂  0 for a disordered phase, 

• (cr*̂ ) — {^') = 0 in a Kosterhtz-Thouless phase. 

It has been conjectured that provided N is prime these are the only phases [24]. (This is 

based upon the assumption that the product of expectation values of powers of order and 

disorder fields might satisfy the relation (a'^)(/i') = e^*^'(/i')(a'^), so that the expectation 

values cannot both be nonzero for TV prime.) For non-prime iV other 'partially ordered' 

phases exist where expectation values of certain powers (CT )̂ or (/x') can both be non-zero 

(provided kl = N). It is necessary to investigate these regions for a complete under

standing of the ZAf-symmetric phase space, but here we are interested in the three phases 

above. In particular, we ask: does the three-phase picture outlined above for small 
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continue for the pure TZ.^ model, as universality might suggest? This has been shown to 
be so in [24] for the subset of theories which have a potential of Villain form [25], defined 
by 

oo 
mO^}) = EHj{e^ - 9,) e-^J(^) = E > (3-7) 

{ij) l=-oo 

where spin variables 6i take the same discrete values as above and /? 6 [0, oo), which plays 

a role like temperature, specifies a particular model. In terms of parameters Xr, each 

Villain model corresponds to a point on the line given by the equations 

/=—oo l=—oo 

Cardy [26] succeeded in showing that a wider class of theories also have this intermediate 

massless phase behaviour. Much earlier, Baxter [27] studied the A'̂ -state Potts model 

(defined by (3.2) with H { a i , a j ) = eSu^^a-, for constant e, or as w\ = W2 = •••W[NI2] in 

terms of Z^r parameters) and showed that a first-order transition exists between ordered 

and disordered phases when N > 5. This means that for iV > 5 the Kosterlitz-Thouless 

region does not keep order and disorder domains apart everywhere. 

Most is known about the simplest case N=5. Using the lo^-parametrisation, the phase 

space is hypothesised to be that shown in Figure (3.1). Four phases are shown: (1) and (2) 

are both massless Kosterlitz-Thouless phases (the case N=b has the symmetry wi <—> 

W2), (3) is the ordered and (4) the disordered phase. The dashed fine (a) represents the 

subset of 5-state Potts models given by wi = W2 and (b) denotes the set of Villain models. 

Theories along AB are self-dual. The transition from order to disorder can occur in two 

ways: via a first-order transition, as happens along the Potts line as it intersects AB, or 

through an intermediate massless phase as is seen for the Villain line. All these features 

have been confirmed numerically. For instance, the susceptibility per unit spin diverges 

across the borders of (1) and (2) with domains (3) and (4) [28]. 

C and C label those points on the self-dual line where the line of first-order transi

tions are believed to bifurcate into pairs of Kosterlitz-Thouless transitions. Fateev and 

Zamolodchikov [31] identified sets of self-dual Boltzmann weights Wk for the general Z^r 

model and conjectured there are critical points located at C and C for A''=5 and their 

generalisations to higher N. In 1985, they found parafermionic or ZAT-symmetric confor-

mal field theories which are natural candidates to describe these special points [32, 33]. 

The Fateev-Zamolodchikov Boltzmann weights and their critical exponents were matched 

with those of the parafermionic theory both analytically [29] and numerically [30]. In 
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^2 1 

Figure 3.1: Phases for the general Z5 model. The Kosterlitz-Thouless regions 1 and 2 are 

massless, while regions 3 (ordered) and 4 (completely disordered) are massive. The line 

AB is self-dual; a labels the line of Potts models, and b is the Villain line. 

other words the exact locations of the conformal points are known. 

However, it is not proved that the conformal field theories are positioned at the open

ing of the first-order transition line into the massless Kosterlitz-Thouless phase. The 

conformal theories could he within the massless regions, rather than at their opening. 

For the Z 5 case, Alcaraz [30] used numerical evidence to suggest that the point at which 

the first-order transition line bifurcates into the Kosterlitz-Thouless region coincides with 

the parafermionic theory. Apart from this work, it remains unproven that the conformal 

theories are located at the opening of the Kosterlitz-Thouless regions. One of the main 

aims of this work is to demonstrate that this claim is true for all values of A'̂  > 5. The 

positions would be established if we could prove that perturbing the conformal theories 

in the self-dual directions gives a massless phase in one direction and a massive phase in 

the other. This would almost certainly pin down the conformal points because if they lay 

entirely within the massless region both perturbations would have to be massless. 

Actually, another scenario is possible. The conformal points could lie on the self-

dual line between the Kosterlitz-Thouless openings. We later show that perturbing the 

parafermionic models by the appropriate field, with a positive coupling, drives us along 

the self-dual line to another conformal theory which has to be at the opening of the 

massless phase because in this direction the infrared limiting theory has effective central 
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charge consistent only with the massless neighbourhood of the Kosterlitz-Thouless phase. 
This would mean there exists a segment on the self-dual line between the opening of 
massless phases which has infinite correlation length. Although not rigourously proved, 
there is numerical evidence to suggest, at least for N = 5, that the whole line between the 
openings of the Kosterlitz-Thouless regions is first order (see [28]) which would discount 
this possibility. 

The space of fields in the parafermionic models provide a natural candidate for the 

perturbing field, namely ê '̂^ of dimension 6/{N -|- 2), which is both ZAr-symmetric and 

self-dual. We therefore consider the e^'^^ perturbation of the parafermionic theory 

= ZN + x j e(2) {x)cPx (3.9) 

with positive and negative signs of the coupling. We shall show that for one sign of 

coupling (A < 0) this perturbation forces us into a first-order surface, while for the other 

(A > 0) the fiow is from the conformal theory with central charge 

- = f ^ | 

into the massless Kosterlitz-Thouless phase, to a conformal theory with c = 1. 

The integrability of (3.9), proven in [34], suggests there could well exist a set of TBA 

equations which encode the exact flow of the theory from ultraviolet to infrared via the 

effective central charge. As mentioned earlier, the derivation of these equations is by no 

means simple when the theory is non-diagonal (as the massive ZAr-symmetric theories 

are). This difficulty is compounded by the fact that the S-matrix for the massless flow is 

unknown. In such circumstances one can postulate a system of TBA equations and then 

make several checks on the validity of that conjecture. This problem is addressed for the 

flows (3.9) in the next chapter. In the next section we discuss the parafermionic algebra 

and show how the fields ê^̂  arise. 

3.2 Zjv-symmetric conformal field theories 

The two-dimensional pure ZA^-symmetric lattice model described in the last section has 

spins aj which can only take values 

aj €{w'':w = e^^^v, g = 0,1,2.., iV - 1}. (3.11) 

Following [32, 33] we let cr^j = {ojY^k = 1,2, ..^N - 1 be the spin at site j raised to 

power k, so that Ok,j can only take values lu'*^. The charge conjugate of ak,j is written 
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(7̂ .̂ = (Tjv-fcj- Let us suppose there are critical fixed-point models in the phase space 
of all models where we assume it is possible to replace the spins on the lattice by a 
conformal continuous spin field (Tki^) with scaling dimension 2dk. The critical theory is 
Zjv symmetric if, and only if, all correlation functions are invariant under 

ak{x) ^ w'^'^Ukix) Vm. (3.12) 

This defines a ZAr-charge k for the field ak{x). The system is said to possess the Kramers-

Wannier duality if the order fields crk{x) are partnered by disorder fields iJ,kix) of the same 

dimensions such that all correlation functions are invariant under duality transformation 

cTfc <—> /ifc. The self-dual theory also has the ZAT symmetry fxi{x) —> w'^^fj,i{x) Vn, and 

the disorder fields are said to have a ZAr-charge I. Gk has ZAT X ZAr-charge {A;,0}, while 

^k has ZAT X ZAr-charge {0, k). The ZAT statistical model is not self-dual in general, and 

self-duality is not restricted to fixed point or even critical theories. 

The notion of mutual locality is very useful when describing the relative statistics 

of the fields in ZAr-symmetric conformal theories. If {a\{zi,zi)... OLM{ZM-,'^M)) is some 

M-point correlation function which picks up a phase w"^'' = e^'"'^^^^ as the coordinate 

Zk is analytically continued around zi in the anti-clockwise direction, then the number 

-jf^i = —kl/N is called the mutual locahty exponent (MLE) of the two fields a/t and ai. If 

7yfc( is an integer, ak and ai are said to be mutually local, otherwise mutually semilocal. A 

non-integer valued MLE simply means the correlation function is not single-valued. The 

field ai is local (semilocal) if it is local (semilocal) with respect to itself. In particular 

fields Gk and ak' are mutually local. 

For N > 2 the operator product expansions of ak{z,z)ij,k{0,0) and ak{z,z)fj,l{0,0) 

begin 

. , (z . . ) , . (0 ,0) = ^^^^_y°'^>^_- (3.13) 

where the fields ipk and ipk are conformal with non-negative dimensions (Afc,Afc) and 

(Ak,Ak). 

At this point we know neither dk nor Ak- It is possible to fix the latter immediately 

since the MLE of the fields ak and ^k is known. The MLE is -k'^/N so analytic continu

ation z ->• e'^'^^z ( z e~'^'^^z) gives a phase ĝ '̂ ^̂ *̂̂ "̂ '') inside some correlation function 

due to (3.13). Hence 

Afc-Afc = - — mod (Z) , k = l,..N-l. (3.15) 
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By the same argument, the MLE of and is Â fc — A ^ . We assume that there exist 
self-dual critical theories such that the pair ipk^fpk satisfy: 

1. Afc = 0 

2. dripk = 0 and dztpk = 0) implying these fields are purely holomorphic and anti-

holomorphic: ipk = i^ki^) and Vfc = i'ki^)-

Unlike the local fields encountered earlier, this pair in general have fractional spins, t/jk 

and ipk are parafermionic currents and their modes will generate some extension of the 

Virasoro algebra. With this pair of assumptions the spins of the fields ipk are simply the 

left dimensions A ^ = ruk — k^/N for integer mjt. Suppose we select this spin so that 

AAT-A: = AA;, then the parafermionic currents ipk have spin 

k{N-k) 
^k^ • (3.16) 

The fields ipk,'^Pk are themselves semilocal with ZAT X ZAr-charges {k, k} and {k, —k}. 

The MLE for fields ijjk and ipk' is —2kk', implying the identity Ak+k' — A ^ — A^/ = 

—2kk' via (3.16). Omitting z dependence, the operator product expansion therefore looks 

like 
00 

Mz)^k'{z') = Ck,k' {z - ^ ' ) W - ^ ' = - ^ ' = ' - (3-17) 
n=0 

where A; + A;' is modulo N. Ck^k' are parafermionic structure constants which are found by 

imposing associativity on the algebra once the normalisation {ipk{z)ipk'{^)) = f̂cfc'̂ "̂̂ ^* 

is fixed. In particular, when A; -I - A;' = 0, '̂Q^̂  is the identity operator, and '^^^li^) which 

has spin 2, is identified {2Ak/c)T{z), where we scale by this constant to have conformal 

invariance. There is also *Q^ ,̂ a spin 1 field, which is ignored because it generates a spin 

C/(l) symmetry, greater than the ZAT symmetry. The algebra of the parafermion currents 

looks like 

Mz)4i^') = {z-z')=^^ [I + {2Ak/c)Tiz')iz-z'f + 0{iz-z')% (3.18) 

Mz)i^k'{z') = ck,k'{z-z')— [i^k+k'{z') + Oiz-z')]; k + k'^N, (3.19) 

Mz)4'i^') = Ck,N-k'{z - z')='^''^ [i^k-k'{z') + 0{z-z% k'<k. (3.20) 

Additionally, the ipk satisfy 

n . W * M = f ^ + 1 ^ + 0 ( 1 ) (3.21) 
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and are thus primary. Fateev and Zamolodchikov [32] have shown that the central charge 
for this theory must take values given by (3.10). 

The space of all parafermionic mutually semilocal fields is denoted {F}. We observed 

earlier that the space of conformal fields can be split into conformal families, each of 

which is characterised by a single highest weight field and forms a representation of the 

Virasoro algebra. In order to do the same for the parafermionic algebra it is convenient 

to first decompose {F} into subspaces F^g ^j of different charges [q,q] = {k + l,k — I}, so 

that ^pk € F[2k,0]:'^k ^ F[o,2k]-><^k G P[k,k] and fik € F[k,-k]- With this reorganisation all 

fields of F[k,k] and F^k,-k] are local. Specifically, the fields I,T{z),T{z) are in î [o,o]-

The modes A,A^,A and of parafermionic currents can be introduced, in a man

ner analogous to (1.57), through operator expansions with arbitrary semilocal fields of 

dimension (A, A) 

°° k 
V'iW</'[fc,fc](o,o) = Yl ^'""^""'^i+kyN-m^krkM, (3.22) 

m=—oo 
oo 

4iz)cP^krk]M ^ Y : z^^"^-'Al_,y^_^cP,-,{0,0). (3.23) 
m=—CO 

We have similar equations for the barred components which introduce modes ^(i+fc)/Af_m 

and A]^ t w . , . Note that each mode is dependent on the charges of the fields on which 

they act. The reason for looking only at the currents V'l, V'l) "̂11V"! is that according to the 

above operator products the full algebra of the parafermionic currents ipk,'4>k is uniquely 

determined by the algebra generated by the operators A,A^,A,A\ The dimensions of 

the fields in the right hand side above are 

A^,+kyN-mh,k e P[k+2M •• (A + m - A ) , (3.24) 

Al-kyN-mh,k € F^k-2M • (A + m - A ) . (3.25) 

Expressions (3.22,3.23) can be inverted to express the modes in terms of integrals of 

the parafermionic currents. These can then be used to find the parafermionic algebra 

generated by these modes. 

If u = (modulo Z), the fields obtained by applying the parafermionic modes to 

the fields ^ have dimensions 

A,(t>k -.{A-u, A) A,<j)k : (A, A + u) (3.26) 

and unlike the action of the Virasoro modes L„ and L - n j these parafermionic modes 

decrease (or increase) the spin by a fractional amount. The action of the conjugate 
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modes Al is exactly the same with —k replacing k. If we assume the dimensions of these 
fields are bounded below, there must exist fields which are annihilated by all operators 
Ay with > 0, i.e. 

^{i+fc)/iv+nO-fc = 0, -4(i+fc)/Ar+„crfc = 0 Vn > 0 (3.27) 

(and ^[i_jt)/Ar+„+i^^fc = ^ ^ ^\i-k)/N+n+i'^k = 0 Vn > 0, for the conjugate modes). 

This highest weight condition for the parafermionic algebra defines scalar fields (order 

parameters) ak G {F{k,k]}- The algebra of the modes can be used to show that these fields 

(and the ^k) have dimension ̂  
k{N-k) 

= 2Ar(Ar + 2) • (^-'^^ 

All the fields spanning { i^} can be obtained by applying the operators A,A\A,A^ to 

the parafermionic highest weight fields Gk defined by (3.27). Each order field and its 

descendants give an irreducible representation [(Jk]A of the parafermionic current algebra 

and [ F ] = ®';^-^[cJk]A. 

One simple example is the conformal Z 3 or 3-state Potts model which coincides with 

m = 5 in the minimal series. This model has Virasoro primaries Us with LQ weights s = 

i ' I ' T ' 3) f ) ^ ) 1^' % and | . Each of these fit into representations of the parafermionic 

algebra, though not all of these fields are parafermionic primaries, cri/g and cri/40 are 

parafermionic primaries and descendants .A_3/20"i/8 and v4_i/2'7i/4o are the fields with 

dimension ^ and |^ respectively. 

We now briefly describe a way of organising the descendants of the fields ak and their 

dimensions. A special set of descendants of Gk are the principal semilocal fields (/>ĵ  ^j 

(where the index q runs from -A; to -A; -|- 2{N — 1) in steps of 2): 

.(fc) 
\k+2l,k] [̂fc+2Z k] ~ ^{k~l+2l)IN-l-^{k-\+2l-2)IN-l\k-l+2l~4)/N-\--^{k-l+2)IN-l<^k : 

{dk + ^^^ ^ ^\dk) l = 0,l,..N-k (3.29) 

^[k-2l,k] - '^-{k+l-2l)/N'^-{k+l+2l+2)/N^-{k+l+2l+A)/N---^{k+l-2)/N"l<: 

( 4 + ^ ^ ^ , 4 ) / = 0,1,..A; (3.30) 

^The algebra of the parafermionic modes is stated in [32] to give 

00 

i=0 
= -jj—Lm+n + -{n -\- —)(n - 1 -I- —)<5„+m,o. 

where Ci = n f ^ - Just set m = n = 0 to obtain ^Loak = { ^ ) { ^ ) ( r k , giving (3.28). 
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where [̂̂ laAr.fc] ~ ^[9,i]- ^[k!k] P̂̂ "̂  fields ak, 4{%k] duals fj.k 

and the parafermionic currents ipk are o] ~ [̂W+2A; N] • ^® apply the barred modes 

A,A^ in a similar way we can construct the principal semilocal fields which have 

dimensions {d^^\d^^^). These dimensions are 

-k < a < k. 
(3.31) 

4 + ^^^#±^, -k<q<k. 
k<q<2N-k. 

The dimensions of all other fields of {F} differ from those of the principal semilocal fields 

only by integers. 

For this work the most important principal semilocal fields are those which are charge 

neutral and self-dual. This is because we want to examine perturbations of the self-dual 

conformal ZAT theories which preserve that ZAT invariance and 'aim' the perturbation 

along the self-dual direction. If we were to perturb by a field with non-zero ZAT X ZAT-

charge we would leave the ZAr-invariant subspace. 

ZAT X ZAT neutral fields are obtained from a highest weight field Ok through application 

of A or as well as A or through (3.29) and (3.30). We therefore require the principal 

semilocal descendant field (l)'^-2i k-2j] *° '̂ ^^^ k — 21 = 2j. The resulting fields ê -'̂  = ĴQ̂ Q̂J 

are called thermal operators and have dimension {d^2j > '^^2j ) where 

4°^ = 1 7 T ^ j = l , . . , [ iV/2]. (3.32) 

There are [iV/2] such operators because the spin field index k can only run up to A'' — 1. 

This number coincides with the dimensionality of the ZA^ phase space. Under the duality 

transformation Hk <—> ak the thermal operators can change parity when j is odd: ê -'̂  —> 

{—iye^^\ Consequently, there are [iV/4] self-dual spinless thermal operators coinciding 

with the dimensionality of the self-dual hypersurface in phase space. 

We note that ê -'̂  is a relevant field only when N > {j — + 2), so the thermal 

operator ê -'̂  first appears as a relevant field in model ZAT where N = {j — -I- 2) -j-1. 

Specifically, the first self-dual thermal operator ê^̂  becomes relevant in the Z 5 model. 

For N = 6 and 7 the phase spaces are three-dimensional but the self-dual hypersurface 

remains one dimensional. In the case N = 8 the self-dual region becomes two dimensional 

and another self-dual field appears, namely e^^\ which is irrelevant. This field remains 

irrelevant until Z19 . As we increase A'' more self-dual fields appear, each being irrelevant 

until N becomes sufficiently large, ê^̂  has dimension 

A = ^ . (3.33) 



Chapter 3: '2.1^-symmetric Models and Parafermionic Field Theories 54 

Since this is the only self-dual ZAr-symmetric field by which we can make a self-dual 
perturbation for A'̂  = 5, it could be that we can drive the theory into the first order phase 
or into the massless phase according to the sign of the coupling of this field. It will be 
shown that the field ê^̂  has this property for all values of A''. 



Chapter 4 

The Zjv TBA Systems 

TBA equations for the flows from self-dual ZAr-symmetric conformal models in the self-

dual directions are presented in this chapter. We begin with massless flows which have 

infinite correlation length for all values of the perturbing parameter (see Section (1.1.2)). 

4.1 Known massless equations 

It has been conjectured by Fateev [34] that the massless flows ^A/=2m ("^ — 3) coincide 

with the perturbed coset theories 

50(̂ ^ )̂13) + A<^i,i,Acij ^ g ^ ^ ^ , (4.1) 

as A increases from zero to infinity, where the relevant spinless perturbing field ^i, i ,Adj 

has dimension A = 6/(A/' - j - 2). This fiow is said to be 6„-related if m — 2n -I- 1, or 

d„+i-related if m = 2n + 2. The basis for this observation is that the dimension of 

<? '̂i,i,Adj coincides with that of the self-dual energy field e^"^^ and the central charge for the 

nonperturbed theory is, via (1.82), c = (2m — l ) / (m -I- 1) — CAr=2m- The infrared limiting 

central charge is c = 1 which characterises another massless theory which could be in the 

Kosterlitz-Thouless phase. This evidence alone is not enough to conclude that the fiows 

(4.1) coincide with 2^^2m because the fact that two models have the same ground state 

energy does not mean they are the same theory. However, in this and the next section 

we show that the infrared limits of the TBA equations for the flows (4.1) agree perfectly 

with perturbation theory about a conformal theory which lies in the Kosterlitz-Thouless 

region of ZAT phase space. 

TBA equations have been found for the flows (4.1) without explicit reference to '2.2m-

symmetric models. We state these and later give strong evidence that they give the 

55 



Chapter 4: The ZAT T B A Systems 56 

ground state energy for the •^A/=2m models. The only other TBA equations stated for a 
Zj^^ theory are for N = 5. This apart, no odd-N TBA systems have been proposed. We 
present these shortly, but first explain what is known about the even and N — 5 theories 
beginning with the d„-related or A'̂  = 4n + 4 cases. In Section (4.5) we carry out the 
first check on the TBA systems by calculating the ultraviolet and infrared limits of the 
effective central charge. 

4 . 1 . 1 Z4N+4 T B A 

Equations have been hypothesised to explain the flows between a sequence of coset models, 

ending in the flow (4.1) with m = 2n + 2 (AT = 4n -h 4). The equations may be written as 

[36] 
n+l I 

(a = l,2;2 = l , . . . n - M ) , (4.2) s[-\e)=4'^\9) -y: 

where a = 3—a, * denotes the convolution already defined and L-functions have an ad

ditional upper index with L[°'\9) = log(l + e~^i ^^^^) . In this massless theory each pseu-

doenergy e["̂  {9) has an associated energy according to which the corresponding particle 

is called a left or right mover: 

(9) = mire^/2 for right movers, 

ui^\e) = mire-^/2 for left movers, 

where i runs from 1 to n -|-1 for this dn+i case and mj is the mass ratio of the i-th particle 

Mi and the lightest mass of the theory. (Strictly we should refer to crossover scales rather 

than masses for these infinite correlation length theories, but we shall continue with this 

usage for convenience.) The right and left moving massless 'particles' have S-matrix 

elements 

= S^^{9) = Siji9), S^H9) = S^^{9) = {T,^{9))-' , 

where Sij{9) is the d„ sine-Gordon S-matrix for h = 2n oi section (2.2) and Tij{9) is 

obtained by replacing each block {x} in (2.25-2.26) by {x). Both the kernels (pij,tpij and 

the masses Mi come from the sine-Gordon data of Section (2.2). The kernels are {—i) 

times the derivative of the logarithm of Sij{9) and Tij{9) 

4^jk = ^ log , ^jk = ^ log ^J-t • (4-4) 

One must interpret these amplitudes for massless 'scattering' with care. It is not clear 

that the massless S-matrix has a proper physical meaning in its own right: it is diflicult 
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to produce a convincing argument that two massless particles travelling in the same 
direction can scatter. Also the assertion that integrability implies S-matrix factorisation 
is questionable. Nonetheless, quantities like central charge or ground state energy, which 
are derived using the massless S-matrices do make sense and can be verified in a variety 
of ways. 

The solutions e\'^\9) to (4.2) allow the calculation of the effective central charge, 

which is naturally given by 

^ W - 4 E / d e i . i ' ' \ e ) L ^ H o ) - (4.5) 
TT . ^ j J-oo 

a=l,2 

Note the massless TBA systems have the following Z 2 symmetry under reversal of spatial 

momenta and simultaneous interchange of right and left movers 

e'l'^He)ef\-e), (4.6) 

which simplifies the calculation of the central charge function and reduces the amount of 

computation required in any numerical calculations. 

In the large r limit L\^\6) becomes vanishingly small at any values of 9 for which 

Lj^\6) is non-zero, and vice versa, so the system (4.2) decouples into 

n-l-l 

4''H0) = i.^'^He) - Y . < l > i j * L f \ e ) (a = l , 2 ; i = 1, ...n + 1). (4.7) 

These are exactly the TBA equations expected for the ultraviolet limit massive sine-

n+1 Gordon model with ^2 = ^ or 

= ^ (N=4n-F4) (4.8) 

which can be easily derived since the theory has diagonal scattering. Note that there is 

a complete absence of mass scale in the r —^ 00 limit where we can make an arbitrary 

shift of the 6 variable without deviating from the fixed point. 

4 . 1 . 2 Z4n+2 T B A 

For the 6„-related flows, with m = 2n - M (A?" = 4n -|- 2), the TBA equations have also al

ready been discovered [37, 38]. The underlying massless scattering theory is not diagonal 

and consequently this means the introduction of additional pseudoenergies [cn^, £n^, Cn^) 

corresponding to pseudoparticles or magnons which have zero energy. These have a real 
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effect on the entropy and therefore on the final TBA equations. The TBA system can 
then be written as 

e[^\e) = ui-\9)-Y:k,*L'f\9)-Aj*Lf\e) 

- k n j l tp<l>i*LiP\9), (« = 1, 3; ^ = 1, ..n), 

4"^W = -E41'< Î*4^ (̂̂ ), (« = 0,2,4). (4.9) 

Here l^^^ represents the incidence matrix of an 05 Dynkin diagram so that /jŝ ^ = 1, 

l^^^^ = 0 etc. This and the incidence matrices for other Dynkin diagrams ( / [ " " ] , i l ^ s ) ) 

are a convenient way of encoding the TBA equations. Setting 5 = 4—a, the energy terms 

are again given by equation (4.3), now for 1 = 1, ..n. Parity symmetry is implemented as 

in (4.6). The masses Mi and the kernels (j)ij, ipij can be found from the sine-Gordon data 

of Section (2.2) with h = 2 n - l = A^/2-2 and 

For this and the other non-diagonal cases A'̂  = 4n + 1,4n -I- 3 the soliton-sohton kernels 

Tun 
and il)nn are defined by 

^nn{9) = Xp*4>nn-li9) , fpnn{9) = Xp*'^nn-l{9) , (4.11) 

where Xp{9) = 2h/{pcosh(2h0/p)) for N = 4n + p, while (pnn-i and ipnn-i are given 

in Section (2.2). For N<7, 4>n,n-i and V'n.n-i are not defined and we set (/)„„='!/)„„=0. 

Again, the effective central charge is given by 

^ W = 4 E / d e 4 ' ' H e ) L ' r \ 9 ) . (4.12) 
TT 7-00 

a=l,3 

In the infrared limit of this theory r—>oo, the equations separate into two sets as 

before, one where the index a takes the values 0,1,2 and a second in which it takes the 

values 2,3,4. (Due to the symmetry (4.6) only one of these need appear in the calculation 

of the central charge.) The first set is 

e['H9) = ui'\e)-Y:<l>ij*Lf\9) - 6,,n E ^i*Lf{^) = 1= ••") -
j = l P=0,2 

4°)(̂ ) = - < / . I * L W ( ^ ) (a = 0,2). (4.13) 
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Again we observe that these equations coincide with the ultraviolet limit of the massive 
sine-Gordon TBA system (A.38) with couphng (3'^ = ^̂ ŷ̂  or 

P' = ^ (N=4n+2). (4.14) 

which are derived in Section (A.l) of Appendix (A). In this appendix we explain how 

magnonic densities arise in theories with non-diagonal scattering. 

4 . 1 . 3 Z 5 T B A 

The only previously known A'-odd case was a conjecture for the N = 5 flow from c—8/7 

to c= l found by Ravanini et al. [39]. The TBA equations, with solutions £^^\-^s^^K are 

e(-){e) = z.W(e) -j2lipU*L^''H0) (« = 1, "6), (4.15) 
/3=1 

where v^^^O) = ^mre^Sia + \mre~^5Qa , ^(^) = l/cosh0 and 1^^'^ is the incidence matrix 

of the 66 Dynkin diagram, labelled so that 1 and 6 are the nodes which are farthest apart. 

This system also has the parity symmetry £̂ ^̂ (6') = £(^^(—^), which again helps in the 

evaluation of the central charge function 

O POO p 
c(r) = 4/ de v^^\e)L'^^\e) + v^'^\e)L^^\e) . (4.i6) 

TT^ 7-00 ^ ^ 

In this case the limit r ^ 00 removes all trace of ê^̂  from the equations satisfled by 

e^^\ and vice versa. So 

5 
Ad. 

3=1 
e^-){e) = z.(°)(^) - ^ Q^ct^*L(^He) {a = 1, ..5), (4.17) 

where / [^ j ' is the incidence matrix of the ^5 Dynkin diagram. Analogous equations deter

mine the infrared form of ê ®' (9). Again this is exactly the TBA for the ultraviolet limit 

of the 

P' = ^-f (4.18) 

sine-Gordon model. 

4.2 The Ziv Y-systems 

Unfortunately, there is nothing at all known about the S-matrices of the massless scatter

ing for the flow z\^''. A direct derivation of the ZAT TBA equations is therefore currently 

impossible. However, we know that the infrared limits of the Â  = 4n -I- 2, AT = 4n -I- 4 
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and N = 5 T B A equations for Z^j^^ coincide w i t h those of the ultraviolet l i m i t of the 
massive sine-Gordon for given by (4.8),(4.14) and (4.18) respectively. This leads to 
the conjecture that (apart f r o m mass terms) the 71.2-symmetric version of the 0^ = 32Tr/N 
massive sine-Gordon TBA system is the TBA system for the flows when N >5. 

I n Section ( A . l ) we derive a set of sine-Gordon T B A equations for = 327r/(4n-l-2), 

tha t is we prove (4.13). Though complicated by the fact that i t is necessary to diagonalise 

a very intricate set of Bethe equations, the derivation follows along similar lines to the 

diagonal case developed earlier. 

The pseudoenergy solutions to each T B A system are also solutions to a set of func

t ional equations obtained f r o m the T B A system fol lowing the removal of any energy terms 

and the subst i tu t ion 

y/")(^) = e^i"'W. (4.19) 

The result ing Y-system which actually represents the T B A equations of bo th massless 

and massive directions is useful for several reasons. First , the stationary {0 independent) 

version of the Y-system enables one to calculate the central charge of the ultraviolet and 

in f ra red l i m i t i n g theories. Also, the Y-system allows us to determine the dimension of 

the pe r tu rb ing f ie ld of the corresponding perturbative theory. B o t h provide a means of 

checking that the T B A system describes the perturbed conformal theory i t is meant to. 

Also, the Y-systems are basically simpler to manipulate than the ind iv idua l T B A systems. 

For these reasons, and because i t is known how to wri te down the Y-systems of sine-

Gordon models at ra t ional values of P'^/32n [40], we carry out the above symmetrisation 

using the Y-systems rather than the T B A equations. Therefore, the next step in the 2AT 

T B A derivation is to find the Y-systems for = 327r/(4n -I- 2). This is explained i n 

Section ( A . l ) . Then i n Section (A.2) we apply the rules la id out i n [40] to obtain the 

sine-Gordon Y-system for = 327r/iV for a l l integers N >5. These funct ional equations 

f a l l in to four dist inct classes, each represented by one of the diagrams i n Figure (A.2). 

These can be made symmetric almost immediately, and the result is a set of Y-systems 

which are believed to represent the flows Z^j^\ A summary of the whole scheme is given 

i n Figure (4.1). 

The symmetrised version of the sine-Gordon Y-systems of Section (A.2) are the 

Y-systems represented by the graphs i n Figure (4.2). Using the functions defined by 

Y["\e,r] = y / < ^ ) ( ^ - ^ ) F / " ) ( 0 + i f : ) 

Y[''^{e,r} = ( n - y / " ) ( ^ - H ^ ) ) ( i + r / " ) ( 0 + H ^ ) ) (4.20) 
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bjj -related massive sine-Gordon 
TBA equations at p = 32n / (4 n + 2 ) 

Y-system at 
(3 = 3271 / (4 n + 2 ) 

Y-system for the 
sine-Gordon model at 

P = 327C/ N 

Massive and massless TBA equations 

for perturbed -symmetric theories 

Symmetric Y-system, 
believed to represent 
the Z[y[ -symmetric 
theories 

Figure 4 .1: Summary of the strategy behind the derivation of the T B A equations. 

F / - ) { e , r } - ( i + y W ( ^ - i z ^ ) - i ) - ' ( l + y / ° ) ( ^ + i z ^ ) - i ) - \ 

the four types of Y-systems may be wr i t t en as follows. 

1) = 4 n + l 

Nodes ( j < n - l , Q ! = 1,6), w i t h a = 1—a : 

3=1 

(4.21) 

Nodes ( n - l , a = l , 6 ) : 

X F i ' ^ {e, 3 / 4 } F i ' ^ {e, 2 / 4 } F i ' ^ 1/4} 

F^2,[^,i] = (i+e\w-0"'(i+eke))(i+yi^^(^))(i+^P^w) 
X Y^^\e, 3 / 4 } F l ' ^ { e , 2 / 4 } F f {^ , 1/4} 

Nodes (n , a=l... 6) : 

/3 

w i t h y i " l ( 0 ) = 0 when a ^ 1,6. 
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2) N = 4n+2 (bn) 

Nodes ( j < n - l , Q ! = l , 3 ) : equation (4.21) holds w i t h 5 = 4-Q:. 

Nodes ( n - 1 , Q!= 1,3): 

Yl%[e,i] = ( i + r S ( ^ ) - i ) - ^ ( i + y „ n ( ^ ) ) ( i - H y ( - i ) ( ^ ) ) 

X ( i + y i " + i ) ( ^ ) ) F i " ) { ^ , i / 2 } 

Nodes (n , a=0... 4) ( w i t h Yi^\{9) = 0 when a ^ 1,3) : 

F i " ) [ e , i / 2 ] = ( i + 5 - ^ ( 0 ) ) n ( i + i ^ i ^ ^ w - T " " ' 

3) iV = 4 n + 3 

Nodes ( z ' < n - l , a=l, 3 ) : equation (4.21) holds w i t h a = 7-a. 

Nodes ( n - l , Q ! = l , 6 ) : 

YIUOA] = {i + Yi%{e))(i + Y('He)){i + Y i % i e r Y Y [ ' \ e , i / 4 } 

Y^:UoA] = {i + Yi%{9)){i + Y(^He)){i + Yi'\{^^^^^^ 

Nodes (n , a = 1 . . . 6 ) : 

¥['^6,3/4] = ( i + F i i \ ( 0 ) ) ( i + y W ( ^ ) - i ) ~ ^ ( i + y „ ( ^ ) ( e ) - i ) - ^ 

X v^'He,2/4}v^'){e,i/4} 

Y^:\o,i/4] = ( i + y p ) ( ^ ) ) ( i + y ( ^ ) ( 0 ) - ^ ) " ' 

F ^ ^ [ 0 , i / 4 ] = (^i + Y(^\e))(i + YP{e))(i + Y('He)) 

Y^nho,m = i^ + Y^'He)) 

Y^:\e,i/4] = {i + Yj^'He)){i + Y^'Hor'y' 

F ( f ) [0 ,3 /4 ] ^ {i + Yi^Md)){i + Y('He)-Y{i + Y^'HerY 

4 ) Ar = 4 n + 4 (dn+i) 

I n this case the scope of equation (4.21), w i t h a = 3—a, can be extended to cover a l l of 

the nodes {i=l... n+1, a = l , 2 ) : 

FS")[̂ ,I] = {i + Y l ^ \ e r Y Y [ { i + Y l ' ' \ e ) f " ' ' 
3=1 
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N=4n+1 

a=l # 
n-l n,l 

®—®—®—m 

0 n,4 

a=3 Q Q p () O n,3 

N=4n+2 

a=l 4 d — 

a=6 O Q Q-

N=4n+3 

a=l « 

n,5 

n,2 

n,6 

O - O 

n-l n,l 

® @ ® C«) 

, 0 - 0 

a=2 0 — a - o - ^ ; 

N=4n+4 

a=l 4 
1 2 

-® ® 

# #̂  ̂  * 

® 

® 

Figure 4.2: Diagrammatic representations of the ZAT Y-systems. The left (r ight) column 

represents the massive (massless) theories. The darkest nodes label energies vl^\o) = 

rriir cosh 6 and i/f {9) = \mire^ respectively. The lighter nodes correspond to the energies 

u^"* = 0 and u^^^ — ^ m j r e " ^ respectively. Nodes wi thout shading have zero associated 

energy. 
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To wr i t e down the massless T B A equations f r o m the Y-systems one must carry 
out the fo l lowing steps. 

1. Take the logar i thm of a l l equations and then Fourier t ransform w i t h respect to 6. 

Every pair of shifts i n the Y-system gives a hyperbolic cosine term. 

2. Re-arrange the result to express each Fourier transformed pseudoenergy i n terms of 

the transformed L-functions L f \ k ) and K-functions K^^\k) = l o g ( l + e^^^* )̂). 

3. Fourier invert to obtain a set of integral equations for the pseudoenergies e\°'\6). 

This expression involves a convolution for every product i n the above step. 

4. Introduce the appropriate scale-dependent energy terms v^^^ and v^^^ of (4.3) by 

hand. 

We should not find the last step so surprising. The ultraviolet l i m i t of the sine-Gordon 

model has lost a l l the scale dependence therefore the symmetric version of the correspond

ing system also has the same feature. A l l Zyvr T B A equations can be derived f r o m the 

Y-systems listed above v ia these steps. The '2.^ Y-systems for A?̂  = 4 n + 4 and N = An+2 

give exactly the equations (4.7) and (4.9). The results for odd-N are stated next. 

The diagrams i n Figure (4.2) help when constructing the T B A equations. The Y -

system diagrams do not encode any explicit scattering information; they simply represent 

conditions on pseudoenergies which give an equi l ibr ium state. I f nodes of ej^^ and ê -̂ ^ are 

on the same horizontal level then a convolution —cpij * L^^^ appears i n the T B A equation 

for ef'^ The same is t rue for the pair ê '̂ ^ and e^^\ On the other hand, a vertical fink 

f r o m the node of e|̂ ^ s imply means that ê -̂ ^ appears via the convolution —ipij * L^p. As 

for the magnonic nodes, any direct horizontal connection between el"^ and e j f ^ gives rise 

to the convolution <̂ 2 * i n the T B A equation for e'n'' • I f the direct magnonic l ink 

is vert ical , the convolution —(f>2 * L^"^ appears instead. The only contr ibut ion which is 

d i f f i cu l t to discover direct ly f r o m the Y-system diagrams is the addit ional contr ibut ion 

to En'^ (and en^) f r o m the magnons. This is denoted by a double l ink which signifies the 

cont r ibu t ion f r o m the negative convolution of an L- func t ion and a kernel for each magnon 

to which En^ is connected wi thou t passing through Cn^. 
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4.3 New massless systems 
4.3.1 Z7 T B A 

The first new massless system comes f r o m applying the above steps to the N = 7 Y-

system. The nota t ion used here to s impl i fy things a l i t t l e is ê ^̂  = e^^^ ê ^̂  = e^i \ ...e^^^ = 

^1 — ^1 • 

e(i)(0) = u^^He)-<p3*iL('^He) + L(^\9))-4>4*L^^^e)-<p5*L(^){e) 

e(2)(0) = < / ,2*(K(3) (e ) -L( i ) (e ) ) 

e(3)(^) = (f,2*{K^^)(e) + K(^){e) + K^^\e)) 

£(5)(^) = cl)2*{K^^H0) - L^^HO)) 

£(6)(^) = l / (6 ) (e )_^3*(L(4) (^ ) + L(2)(e)) - , / ,4*L(5)(e)_ , / ,5*L(3)(0) 

Here n = 1, so there exist no bound states and the lower index is not required. The L -

and K-funct ions are L(° ) (e ) = l o g ( l + e-^ '° ' (^)) and K^^XO) = l o g ( l + e^'^'W), while the 

energy terms are v^^^O) = mre^/2 and u^^^O) = mre~^/2. The kernels are obtained by 

subs t i tu t ing h = 3/2 into the fol lowing functions 

*»< '̂ = ^ 

8 / i c o s h f e 
(^) = 2.2/,.L (4-25) 

3 ( 4 c o s h ^ ( f 0) - 3 ) 

Shcosh^e 

= ^ ( 4 c o s h ' ( f . ) - l ) ' ^ ' ' ' ^ 

where more generally h is equal to N/2 — 2. 

I n the r —)• 00 l i m i t , the system (4.22) decouples and coincides w i t h the ultraviolet 

l i m i t of the = 32ir/7 massive sine-Gordon theory 

e(l)(e) = 1/(1) ( 0 ) - , / > 3 * ( L W ( ^ ) + L ( 5 ) ( ^ ) ) - < / , 4 * L ( 2 ) ( ^ ) _ ^5*^(3) (0) 

e(3)(^) = (j)2*{K^^\e) + K^'^^e) + K^^^e)) (4.27) 

e(4)(e) = (j)2*K(^H9) 

which has energy t e rm u^^\6) = m,rcosh6. This is seen most clearly by not ing is 

vanishingly small when is not, and vice-versa, so that (4.22) decouples. Also (4.22) 
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clearly has the par i ty invariance mentioned above so that left and right moving particles 

are treated on an equal foot ing. The central charge for the T B A system is 

3 Q fOO P 
( r ) = 4 / v^^\e)L'^^\e) + u^^\9)L'^^\e) 

vr 7-00 '• ^ 
(4.28) 

4.3.2 Z An+l T B A 

A p p l y i n g the above steps to the N = An + I Y-systems we obtain the fol lowing T B A 

equations. 

E6V2*4^^(e), ( « = 2 , . .5) , 
/3=1 

(4.29) 

where 5 = 7 — a. The energy terms are i''i\0) = i'f\—G) = ^mj re^ , where rui is the 

i t h mass M j of (2.23,2.24) divided by that of the lightest particle. For any A'^=4n-|-1 

the magnonic structure is identical to that of A'^=5, as given i n equation (4.17). The 

addi t ional terms come f r o m the n—1 breathers present i n the spectrum i n addit ion to 

the fundamenta l soliton-antisoliton doublet. Since each ZAT Y-system involves different 

sh i f t factors, the kernels appearing i n each system differ and are specified by (4.23) w i t h 

h = N / 2 - 2. 

4.3.3 Z 4n+3 T B A 

Finally, for iV=:4n-|-3 the magnonic structure is identical to that of A'^=7. I n general there 

are n — 1 breathers, and the T B A equations are 

<t>2*K^^\e) (4.30) 

^ f \ 0 ) - j : [ l ^ i j - L f { e ) - i > , , . L f { 9 ) 

3 = 1 
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Si,n [</'3*(4'̂ (̂ ) + L^^Ho)) + 4>A*L^^\o) + 4>5*Ll^\e) . 

The kernels here are given by (4.23)-(4.26), again w i t h h — N/2 — 2 and here we take 

a = 7 — a. 

The t i lde nota t ion introduced throughout allows the effective central charge to be 

w r i t t e n 

^W = 4 E r d 9 4'\e)L^\e) + u l ' \ e ) L f \ e ) . (4.3i) 
J-oo 

As usual the sum runs f r o m « = 1, . .n - I - 1 i n the d„+ i case. 

4.4 Adaptation for the massive perturbations 

The T B A equations believed to represent the massive per turbat ion Z^^^ are obtained 

f r o m the Z j v Y-systems by taking the same steps as above, apart f r o m the last where the 

energy terms 

m^rcosh^ i fQ; = l , i = l,..n ( j = 1, . .n + 1 i n case) 
(4.32) 

0 else 

are inserted to break the scale invariance. I t is a noteworthy feature of the T B A method 

tha t by changing only the energy terms (4.3) to those of (4.32) a system is obtained which 

describes the self-dual per turbat ion i n the massive direction. I n Section (5.1) we show 

there is precise agreement between these two types of T B A system and the pertiurbed 

theories (3.9) w i t h positive and negative couplings i n the ultraviolet regime. I n the next 

section i t is shown that the different energy terms give infrared l im i t i ng central charges 

consistent w i t h massless and massive theories respectively. 

4.5 Ultraviolet and infrared limits of c(r) 

The ul t raviolet and infrared l imi t s of c{r) may be found as follows, beginning w i t h the 

massless direction. The effective central charge is (4.31) w i t h energy terms given by (4.3) 

and pseudoenergies e|"^ (0) appearing i n the L-functions satisfy any of the massless T B A 

systems i n Section (4.1) or (4.3). The par i ty symmetry e ' f \ 9 ) — e ' f ^ - O ) means the 

integrand is even, which implies 

c( r ) - 4 E / ° ° m , r e V 2 1 o g ( l + e'^^' '^^)). (4.33) 
TT . . 7-00 
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For small r , the pseudoenergies and L-functions become constant i n the region given by 
- l o g ( 2 / r ) <C 6* < l o g ( 2 / r ) . For 9 < - l o g ( 2 / r ) and 9 > log(2 / r ) the pseudoenergies 
are also constant w i t h the exception of those whose energy terms grow exponentially (see 
Figure (4.4)). S t r ic t ly we should include masses i n al l such estimates, but they make no 
essential difference to any of the asymptotic calculations where contributions of the f o r m 
l o g ( m j ) are insignificant. W i t h r small, vl^\9) = ^m^re^ is negligible for 9 on (—oo,^c) 
provided 9c <^ l o g ( 2 / r ) , therefore we only need consider the integral (4.33) over (^c, oo)-
i^i^\9) can be neglected on this range and the pseudoenergies ef'\9) may be treated as 
magnonic. This leads to a slightly modif ied T B A equation i n which t ' f ^ ^ ^ ) are assumed 
zero on (^c) oo), say 

-^^=-?^ + E * ^ . * 4 " ^ (4-34) 
j 

where '^ij{9) represents a l l convolution terms. 

For computat ional purposes one could easily discretise (4.33) and substitute the nu

merical solutions to the T B A equations to evaluate c(r) at any r , but we would like an 

exact expression for the ultraviolet l i m i t . To achieve this wri te the sum i n (4.33) over a l l 

nodes 

6 
c(0) = l i m y r d9 mire^l2 l o g ( l + e^^'^'^^)) 

= l m i ^ ^ ^ ° ° ^ ^ , W ( ^ ) l o g ( i + e - . ^ ° ' W ) . (4.35) 

Several of the nodes have zero energy term, but this expression allows us to use the 

fo l lowing t r ick. Differentiate the modif ied T B A equations w i t h respect to 9 to obtain a 

system of the general f o r m 

Since ^ ^ ^ i " ^ = the r ight hand side may be substituted into (4.35) and provided ^ij 

is even, the result can be w r i t t e n 

giving 

^(«>(oo) 

'{ec) 
(0) - J i - E ^ \ - e ^ \ 0 ) ) ] l \ . (4.38) 
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The exponential nonzero energy terms j / ^ ^ are damped by the doubly exponentially de
caying L\^\0) and f } ^ ^ = ^mire"^ are negligible as above. Therefore 

/ ("V ) 

A t this poin t we introduce Rogers' d i logar i thm funct ion 

which satisfies the ident i ty 

logy ^ l o g ( l - y ) 

1 - y V 

(4.39) 

0 < X < 1, (4.40) 

This can be verified by differentiat ing w i t h respect to e. I f we define the stationary 

Y - f u n c t i o n values 

tJ") = limy/"^(e) (0 finite), (4.42) 

;t^^"^ = Xxm y/"^(e) ( r f i n i t e ) , (4.43) 

where Q takes any value i n - l o g ( 2 / r ) < 0 - C l og (2 / r ) because al l pseudoenergies are 

constant i n this region, the ultraviolet central charge can be expressed as 

fi / 1 \ / 1 \ 

A l l pseudoenergies are finite for d » l o g ( 2 / r ) except for & which has x'^^ = oo. 

Tu rn ing to the large r l i m i t , is small on (—oo, —0c) provided —Qc <S — l o g ( r / 2 ) . 

Thus as r increases, the range of integration should be over (—oo, oo). When Q increases 

th rough 0 f r o m below ef^{&) grows exponentially, which means vf^{&) becomes doubly 

exponentially suppressed by l}^^ {0) as 9 approaches 0"̂  near zero. Consequently we may 

wr i t e 

c(oo) = \im - % y [ dO mire^/2 l og ( l + e-'^i^^"^) (4.45) 

r->oo TT-̂  ^ 

I n the large r l i m i t the pseudoenergy solutions of the T B A equations are constant i n the 

region - l o g ( r / 2 ) < ^ < log(r-/2) apart f r o m e\^\6) and e\^\9) as displayed i n Figure 

(4.5) . The f o r m of the energy functions i'i°'\o) and pseudoenergies e[°^(0) are exactly 

those needed to make the product UI^\9)L\"'\9) negligible near 9 = 0 and 9 = - o o . As a 

result, the calculation of limr->oo £(?•) follows as above to give the i n f r a j ed central charge 

fi / 1 \ / 1 \ 

2 M = ; ^ E ^ I — ^ r r ^ ' (4-46) 
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where the exponentials of pseudoenergies near 9 = 0 as r —> oo are introduced 

r(") l i m y / " ^ ( 0 ) (0 finite). (4.47) 

As for the massive direction, the ultraviolet and infrared l imi ts work in much the same 

way. For the massive theories the pseudoenergy solutions are symmetric (see Figure (4.6)) 

so tha t the central charge becomes 

3 

: ( r ) = r d9m^rcosh94^\9) 

= -~^y d9 mircosh9Lf>{9). 
Jo 

(4.48) 

Therefore limj—>oc(r) gives the same ultraviolet central charge obtained above. I n the 

massive direct ion, when r is small, the energy f |^^(0) and corresponding pseudoenergy 

'blows up ' near 9 = ± l o g ( 2 / r ) . For 9 outside these walls the L-functions k i l l off al l 

contr ibutions to the integral. Consequently, as r is increased, the walls ofe\^\9) approach 

each other and meet. Therefore the contr ibut ion to the central charge decreases. We 

conclude limr-^oo c ( r ) = 0. 

The finite values of the stationary Y-funct ions , T^"^ and z } " ^ were found numer

ical ly by i te ra t ing the Y-systems for fixed values of 9. The results suggest di logari thm 

sum-rules similar to those stated i n [41]. A few of the stationary values are given by 

(a) ^ s in(( i + 3)7?) sin(^r?) 

' ~ sm{{2T]))sm{r)) ' 

X p = {i + 2)i, 

for i = 1 . . . n—1 and 77 = j f ^ - A l l other stationary values can be found by subst i tut ing 

these (and some simple expressions for .z|"^) into the relevant f u l l Y-system (see Appendix 

(B) ) . The fol lowing sum rules were verified numerically, for al l cases up to A' '=30: 

,1 + T (a) 
2{N-1) 

N + 2 + < 

1 
= < 

4 ior N = An+l 

5/2 iorN = An+2 

2 for AT = 4 n + 3 

1 for A'' = An+A 

4 for AT = An+l 

5/2 f o r A r = 4 n + 2 

2 for A^ = 4n-K3 

1 for AT = 4n-h4 



3 for = 4n- |- l 

3/2 for N = 4n+2 

1 for N = 4n+3 

0 for N = 4 n + 4 
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The ul t raviolet and infrared central charges are therefore 

2(N-1) 

CUV = cr-cx= , (4.49) 

ciR = cx-cz = l , (4.50) 
and for the massive T B A , 

cm = cx - cz = 0. (4.51) 

I t is quite remarkable tha t the symmetric version of the sine-Gordon T B A equations lead 

to the ul traviolet charge CN conjectured. These results imply the proposed T B A equations 

could certainly represent the per turbed theories Z^j^\ Furthermore, the infrared l i m i t has 

the central charge of a c = 1 conformal theory i f massless energy terms are used whereas 

massive energy terms give c = 0, which is also expected for a massive theory. I t is therefore 

plausible that the ZAr-symmetric conformal theories are positioned at the opening of the 

Kosterlitz-Thouless region on the self-dual line e.g. at the points C and C i n figure (3.1) 

for N = 5. Further evidence w i l l be given i n the next chapter. 

4.6 Numerical solutions 

Being such a complicated system of coupled nonlinear equations, w i t h exact solution only 

possible at r = 0 and r = oo, a numerical method proves extremely useful i n the study 

of the ZAT T B A systems. Our a im is to solve each system to discover the f o r m of the 

effective central charge c ( r ) for a l l values of r . Among other things this would allow us to 

compare the T B A results w i t h the predictions f r o m per turbat ion theory. Here we discuss 

the par t icular numerical method used to solve the equations and leave the main results 

u n t i l the next chapter. 

Ignor ing upper indices, the generic T B A system may be w r i t t e n 

saie) = MO) - E / do'i^-bie - 9')Lb{9'). (4.52) 
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For each value r , discretise the 9 axis i n steps of A9 so that at 9i = iA9 the values of the 
pseudoenergies are given by 

imax 

Sa{9i) = M0i)-J2( E ^0xPabi{i-j)mLbi0j))^fa{{eb{9i)}). (4.53) 
6 j=—imax 

The integer imax is taken sufficiently large and A9 > 0 sufficiently small so that the sum 

is a very good approximation to the integral (4.52). Note that the value of Sa at 9i is 

dependent on a l l other pseudoenergies at a l l other points 9j. 

I f ea{iA9) — e^a\iA9) is an i n i t i a l guess, we find the i terat ion scheme 

e^:^+%A9) = faist'\iA9)) (4.54) 

does not i n general converge. This problem is easily rectified i f we instead consider 

e^r%m = \faieP{^A9)) + ^^^(iAe), (4.55) 

(or some similar modif icat ion) which shares the same solution as (4.54) i n the l i m i t n -> oo 

but is now convergent. A l though there are other methods which give a faster rate of 

convergence, the simple scheme (4.55) proves quite sufficient to solve a l l the cases of 

interest i n this work (more generally, whether or not a method is convergent depends 

on the eigenvalues of the ma t r ix ds^fa- the i terat ion w i l l diverge i f any have magnitude 

greater than un i ty and the fastest convergence occurs when eigenvalues are as close to 

zero as possible). Appendix (D) contains programs solving the Z5 and Z7 T B A systems. 

The numerical method was used to solve the Z5, Ze , •••^10 T B A systems i n bo th massive 

and massless directions. Figure (4.3) displays the effective central charges for the massless 

models over the range 0.0001 < r < 70. To obtain these graphs between two and four 

hundred iterations of the above scheme were required at every value of r . The program 

is terminated when the central charge value produced is the same (to w i t h i n 10~^^: the 

computer numerical accuracy) on two consecutive iterations. The first result f r o m this 

numerical data (for the theories N = 5, 6,.., 10) is that ultraviolet and infrared l imits of 

the effective central charge are CN = 2{N - 1)/{N + 2) and c = 1 to w i t h i n ten significant 

figures. The Z5 central charge func t ion has a slower convergence to c = 1 than a l l others. 

This is explained i n the next chapter. Another i n i t i a l observation f r o m the graphs is that 

a l l the c ( r ) satisfy Zamolodchikov's c-theorem: that the effective central charge c(r ) is a 

monotonic decreasing func t ion of r . 



Chapter 4: The ZAT T B A Systems 73 

Figure 4.3: The effective central charge c(r ) for the perturbations Z^j^^ described by the 

Z j v T B A systems for N = 5,6, ...10. The ultraviolet and infrared l imits are c = cj^ and 

c = 1 respectively. 
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Figure 4.4: The six pseudoenergy solutions for the massless Z7 T B A system i n the 

ultraviolet regime at r = 10~^. The pseudoenergy labels used here are epsilonl = 

e^i\ epsilon2 = e^'', ...epsilonG = e^"^ -(2) (6) 
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Chapter 5 

T B A Equations and Perturbation 

Theory 

The ultraviolet l imit of massive and massless Zyv TBA equations gives effective central 

charge CAT. This is certainly a good indication that the proposed TBA equations could 

represent the flows Z^j^\ I f the TBA equations stated really do describe these perturbed 

conformal theories then the ground state energy predicted by the TBA method must 

agree with conformal perturbation theory about the ultraviolet limit described by small 

A in (3.9). The same must be true in the infrared regime. We begin this chapter with an 

analysis of the ground state energy in ultraviolet regime. 

5.1 The ultraviolet region 

Mapping from the {-parametrised cylinder to the infinite z-plane via the map z = e~'^'"^l^, 

the small A expansion of the ground state energy for a unitary conformal theory perturbed 

by a spinless primary field e, of dimension (A, A ) , may be found. The integral measiue 

on the cylinder (f^i is replaced by {E?dzidzi)/{{2n)'^ZiZi), while via (1.41) the integrand 

receives a factor {B?/{{2Tr)'^ZiZi))~'^ for each primary field in the correlation function. 

Temporarily dropping the suffix from the ground state energy, the result is 
C) OO 

E^^^^'H\R) = - ^ + -^EBrnt^ ' (5-1) 
m=2 

where couphng A appears in the dimensionless parameter t = -27rA (i?/27r)^~^^ and the 

normalised coefficients Bm are 

= ( 2 . ) - i m ! / [ U j - ^ ) { < ^ ^ m z 2 , Z 2 ) . . . e { z ^ , z ^ ^ ^ ^ ^ (5.2) 

77 
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The connected correlation functions of the perturbing field e are evaluated at the con-
formal point. Conformal invariance means Bi = 0 and translational invariance allows 
us to fix one of the field arguments to unity. The two-dimensional theory is super-
renormalisable, therefore we expect any ultraviolet expansion to have only a finite number 
of divergent terms which can be renormalised. The series (5.1) is assumed to converge in 
some finite region near t = 0. 

For any conformal theory the two and three point correlation functions are fixed up 

to a normalisation constant by conformal invariance to be 

and 

Ceef 
{e{l,l)e{zi,zi)e{z2,Z2)) = 

[(1 - Z,){1 - Z,)il - Z2)il - Z2)izr - Z2)iz, - Z2)f ' 

where Ceee is the three point correlation coefficient. The identities [35] 
f z i _ TTJ^jA) 

{ z , z , ) ^ - ^ [ i l - z i ) { l - z i ) f ^ ~ 7 ( 2 A ) ' 
( f i z i ( f z 2 7 r V ( A / 2 ) 

/ 
/ {ZIZIZ2Z2Y-^ [(1 - ^ l ) ( l - Zi){l - Z2){1 - Z2){Z, - Z2){z, - Z2)f 2j{3A/2) 

(the integration ranges here are over the entire plane) allow B2 and B3 to be calculated 

explicitly as 
R l 7 ( A ) 2 „ _ C... 7 ( A / 2 ) ^ 

where 7(2;) = r{x)/r{l—x). These are coefficients which depend only on A and Ceee-

For the self-dual models under discussion the perturbing dimension of ê )̂ is 

A = 6/(A'' - I - 2) and the values of Ceee for the unperturbed conformal theory were found 

by Zamolodchikov and Fateev [32] to be 

_ 2 n(")(7)nt")(2)3 / r((iv + 3)/(iv + 2))r(i - s / j N + W 

35 nw(4)3 \j V{{N + l)l{N + 2))V{l + bl{N + 2)f ^ ' 

where m̂ )(i) = ni=i (r(l + T^)in^ ' iv fe ) ) -

An obvious difference between the TBA and perturbation theory approaches is that 

in the T B A picture E{R) depends on R and mass scale M , while the perturbation theory 

depends on i? and the coupling constant A. The relationship between A and M can be 

determined by dimensional analysis, via (1.19), to be of the form 

A = KM^ , (5.5) 
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where y = 2—2A is the scaling dimension of A and K is a dimensionless constant to be 
determined later. The relationship (5.5) can be used to check that the TBA equations 
proposed in the last chapter do actually correspond to the ê-̂^ perturbation of the c = 
2(A'' — 1)/(A'^ + 2) theory, rather than some other, as follows. I f each of the Y-systems 
has the periodicity P given by 

y}"^ [e + 2mP) = y/"^ [6) (5.6) 

then we should be able to expand any solution of this system in positive and negative 

powers of u{6) = e^l^. When MR is small, but not zero, the pseudoenergy solutions may 

be thought of as a sum of left and right kink-like solutions (the kinks become singular 

at either Q = —oo or ^ = oo for the non-magnonic pseudoenergies), so that we may 

view the ultraviolet corrections as coming from the presence of the other kink a distance 

21og(2/MR) away. These appear in powers of ?/(21og(2/MR)) so that the first corrections 

to RE{R) form a regular series for small MR 

oo 
RE(R) = + 27r y (MR)?"" + further terms. (5.7) 

6 
m=l 

The further terms are related to the bulk contribution to be discussed shortly. Comparing 

coefficients of in this expansion with those in the perturbative expansion for A = 

6/(iV - I - 2) (the dimension of the perturbing field ê )̂) we find that the periodicity of the 

Y-system must satisfy 
2 2 ( i V - 4 ) 

i f i t genuinely represents the perturbed theory Z^j^\ The periodicity of the Y-systems 

listed in Section (4.2) was verified numerically for all values of A'̂  up to N—30 and found 

to be given by 

^ / " ^ ( ^ + 2 . z ^ ) = y / " ) ( e ) , (5.9) 

which implies P = {N + 2)/{N - 4), in fu l l agreement with (5.8). 

The quantity RE^'P'^^^\\, R) is dominated by the bulk free energy for large A, so 

that asymptotically i?£j(P®''*) (A, i?) ~ £{X)R?. The ground state energy obtained from 

the T B A method does not have any infrared bulk term (at large MR, RE[R) becomes 

constant), therefore to compare the perturbative and TBA expansions i t is necessary to 

subtract the bulk term from the perturbative series. One should compare the small M 

T B A expansion with the small A expansion of 

RE{\,R) = RE^P^'^HX^R) - ^ ( A ) i ^ ^ (5.10) 
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that is, 
vrc 

RE{X, R) = - — - E{\)R^ + 27r ^ B^t"^ . (5.11) 
771=2 

Additional care must be exercised when a power t^ is proportional to the bulk related 

term S{X)R?, in which case logarithmic terms appear. 

In the non-resonant case the bulk term (or more correctly the anti-bulk term) pro

portional to R? may be extracted exactly from the TBA equations. Fateev [43] has given 

expressions for the functions £ in terms of the mass scale for A'̂  = 4n 4- 4. In massive and 

massless directions these are 

_ singAfsin2gA7 _ M ^ s i n ^ ^ 

i-massive — „ • oa ' ^massless — o • o/i ' \y-'-^) 

where Oj^ = 2TT/{N—A). I t is believed these hold for all values oi N >b, which is backed 

up by numerical evidence in several cases. 

When N — 5,6,7 and 10 the terms t^, t^, t^ and t^ are respectively proportional to R^. 

These are the only cases where we might expect an extra contribution to the ultraviolet 

expansion given above. In actual fact, there is no resonance for TV = 5 and N = 6 because 

by I'Hopital's rule the bulk related terms (5.12) vanish. The N = 7 and A'̂  = 10 theories 

are therefore the only resonant cases. The ultraviolet expansion corrections are given, in 

the massive cases, by considering the difference 

sin ON sin 26 
l im 

171—1 2sm39M 
({MRf - ( M R ) ^ ^ ' " ) (5.13) 

This expression may be evaluated by considering m (^qr^) = 1 + £ where e is small as 

N ^ 2 The term in round brackets becomes 

{MRf -{MRf ^^^'^ = (Mi? )2(l - e2 - ' °g (Mi i ) ) 

= -2e{MRf log{MR) + 0{e'^). 

and -2sin(30Ar) = -2sin[67r/(Ar - 4)] is 27rm£COs[67r/(Ar - 4)] to 0(e). Noting that 

sin(0jv) sin(20Ar) needs no expansion, the final result is 

„^2sm^Af sin2gjv Ar-4 
^massive = -M — — — log MR . 5.14) 

IT COS 39N -/V+2 

In the massless case sin^jv appears instead of sm29N and the results are 

£ ^ l = log M R , il=v°i = ^ M M o g M R 

(5.15) 

e ^ l i l - - ^ M ^ l o g M R , £i::-i;l = A M ^ l o g M R 
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I t is also possible to find the logarithmic terms directly from perturbation theory. 
These appear when one considers the divergences in the coefficients B3 at order A^ for 
N = 7 and in B2 at A^ for N = 10. After introducing a cutoff scale a to cope with short 
distance divergences the logarithmic terms can be calculated as 

—1 1 R 
Bz{l) = —C^,^=^h{-)Hog— + non-smgnlar terms (5.16) 

2 
i?2(10) = -^TIOST; 1-non-singular terms (5.17) 

2 Zna 

By non-singular terms we mean the coefficients of the pure i?^ part in the analytic ex

pansion. Substituting (5.16) and (5.17) into the general series (5.1) we rediscover the ful l 

logarithmic bulk terms, but now in terms of A rather than in terms of the mass scale. 

Equating perturbative and TBA expressions allows K to be found exactly. The results in 

both massless and massive directions are 

A r = 7 : «3 ^ 3 / (47 r37( | ) 'C<f - ' ) , 
(5.18) 

Ar=10 : = 3/(87r2). 

The constant of proportionality K in (5.5) has also been determined exactly for the massive 

flows A/" = 4n + 4 by Fateev [43]. We conjecture that the formula therein also holds for 

all N (for massless as well as massive perturbations), i.e. is given by 

2 _ 4 7(Ar+2) 'yiN+2) 
K — 

(.N+2) 

(5.19) 

7(^) Lr(̂ )r(̂ ) 
This formula can be checked against values obtained from the numerical solution to the 

T B A equations as described below. 

So far we have asserted that the massive and massless TBA equations do describe the 

perturbed conformal theories differing only in the sign of a coupling constant A. I f Fm 

denotes the TBA coefficients for the massless fiow, and Fm those for the massive flow, 

then assuming the mass scales are equal in both directions, we would expect 

Fm = i-irPm . (5.20) 

Using the iterative method described earlier, the TBA equations in massless and massive 

directions were solved to find RE{R) for N = 5,6, 7,8,9 and 10 concentrating on 0.003 < 

{MR)y < 0.5 in the ultraviolet region. For convenience we set M = 1. The ^-axis was 

descretised in step sizes between 0.08 and 0.125, depending on the value of A''. The 

coefficients were determined by fitting the numerical data to the expansion (5.11). To 
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ensure the solution was really of the form above we included various test powers of (Mi?) 

in the fit and found their coefiicients were negligible. Using less than three hundred 

iterations in each case we obtained highly accurate results: the constant term in the fit 

agreeing with —cn/6, where c is the ultraviolet central charge (3.10), with an error of 

the order 10~^^. The exact constant piece, bulk terms from equations (5.12) and (5.15) 

and the non-perturbative contributions to bulk terms for iV=7 and 10 given in (5.18) 

were then subtracted. After performing this subtraction for massless and massive cases 

we should have a regular expansion in (MR)^, with coefficients that satisfy the general 

rule (5.20). 

Values of massless and massive coefficients Fm and Fm obtained from these fits are 

listed in Appendix (C) for m = 1,2, ..8. The m=0 and m = l coefficients were left firee; 

the difference between their measured values and exact predictions gives a further check 

on the numerical accuracy. The agreement with (5.20) is surprisingly good. Coefficients 

wi th odd m clearly have opposite sign, whilst coefficients with even m match up to small 

numerical error. Note also that the Z5 TBA has F3 = F3 = 0 up to numerical error. 

This agrees with the perturbative expansion where the coefficient Ĉ ^̂^ vanishes, via (5.4), 

since n'^>(7) = 0 . 

Equating coefiicients of {MR)^ in expansions (5.1) and (5.7), then substituting (5.5) 

we find 

\^ 2lT J Bn 

Equating {ti^f and {n^f provides a further test that the TBA equations axe consistent 

wi th conformal perturbation theory. We should have the following coefficient ratio equal-

N B l / B i F i / F i F i / F i 

6 0.046260423 0.046260427 0.046260424 

8 0.379827746 0.379827746 0.379827746 

9 14.448969 14.448967 14.448991 

Table 5.1: Comparison of perturbative and TBA coefiicient ratios for the Ze, and Z 9 

systems. 
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ities: F^/F^ = F^/F^ = B l / B j (provided B2 and B^ are finite). This can be verified 

numerically for 7V=6, 8 and 9 (not for N = 5,7,10 because F^ = F^ = 0,B3 = 00 and 

B2 = 00 respectively.) Using equations (5.3) and (5.4) to evaluate B2/BI, the results are 

shown in Table (5.1). The A''=7 and 10 results enforce formulae (5.15) and (5.18) because 

any errors in the subtracted bulk terms would destroy the agreement that the fits show 

with the prediction (5.20). 

Numerical values of using TBA data, are given by 

7 (̂+2) 
(5.22) 

and similarly for ̂ num obtained from F2. The results are stated in Table (5.2), with 

excellent agreement. Note that for N=10 the second-order (m=2) term is obscured by 

the logarithm, but a prediction can still be obtained in an analogous way from K^y^m-

These results justify the exact TBA conjecture (5.19) for aU N > 5. 

N K2 
""exact 

^2 
"'num 

K-2 
""num 

5 0.0235204664 0.0235204667 0.0235204663 

6 0.0371477546 0.0371477547 0.0371477547 

7 0.0434800500 0.0434800501 0.0434800501 

8 0.0442207130 0.0442207131 0.0442207131 

9 0.0418094000 0.0418094001 0.0418094003 

10 0.0379954439 0.0379954451 0.0379954487 

Table 5.2: Comparison of exact and numerical values for K^. K relates the perturbation 

theory coupling A and TBA mass parameter M via A = K M ^ . K^um denotes the numerical 

prediction for the massless direction and Knum for the massive direction. 
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5.2 The massless infrared region 

As far as the ultraviolet asymptotics are concerned the predictions from the TBA equa

tions, proposed at the start of Chapter (4), agree very well with perturbation theory for 

Z^"*. The infrared behaviours are very difl'erent according to the sign of the coupling. 

Here we discuss the massless direction, where the TBA method predicts the infrared 

limiting central charge value c(oo) = 1. 

To compare the predictions of TBA equations with perturbation theory in the massless 

infrared regime we must first identify which (irrelevantly) perturbed conformal theory 

describes the infrared hmit of Z^j^\ There are several conformal theories with unit central 

charge, and we should consider only those which contain self-dual, Z^r-symmetric fields if 

they are to lie in the Kosterlitz-Thouless phase of the Zjv-symmetric phase space discussed 

earlier. A class of c = 1 theories are described by the action of a free boson compactified 

on a circle of radius f ($ s $-|-27rf) 

In terms of complex coordinates z = xi+ix2 and z = Xi—ix2, the equations of motion in 

complex coordinates imply ^{z,z) may be split into holomorphic and anti-holomorphic 

parts ^{z,z) = ^{4'{z) + 4>{z)). The fields (l){z) and (j){z) are not primary, however the 

vertex operators 

V+m{z,z) = V2cos{p<t>{z)+p^{z)) , V-m{z,z) = V2sm{p(f,{z)+p'${z)) , 

are, with {p,p) = {^+mr, ^—mr) and n , m G 2 . These have conformal weights [44] 

( A „ ^ , A „ ^ ) = ( i p ^ \ f ) = {\{^.+mff, i(S-mf)2) . 

Two types of field are of particular interest to us: the spin zero AT-fold symmetry breaking 

fields V^Q and the spin zero vortex fields with conformal weights 

N'^ . ^ M 2 f 2 
Ajvo(r) = Aivo(r) = , A O M ( 0 = Aoiw(r) = 

I f a prefactor of ( l / r ) ^ is inserted before the integral (5.23) one can see that V^Q are 

the N-fold symmetry breaking fields in (3.1). These are therefore associated with the 

order fields a. In contrast the FQM fields are interpreted as vortex-like objects (see that 

p ^ p for these fields so they must represent some sort of topological distortion). In 

particular we suppose fields represent single vortices. As pointed out in Chapter 
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(3) vortices are present in the disorder phase where ^ took nonzero expectation values, 
so duality between order and disorder fields earlier may be extended to the Kosterlitz-
Thouless region (even though that region is expected to have zero values of expectation 
value of order and disorder parameter). In particular, these facts allow us to determine 
a value of the compactified radius f which describes a conformal model in the self-dual 
surface (in the Kosterlitz-Thouless region). In the 2jv model the duality transformation 
which exchanges the order and disorder fields exchanges the N-fold symmetry breaking 
field with the unit vortex field. We see from the dimensions of the fields involved that 

the duality VNO <—>• Vbi can be implemented by the 'radius duality' f <—> ^. Therefore, 

the system is self-dual only at f = rgd = \/-/V/2, giving 

AMo{rsd) = ^oiirsd) = N/4. (5.24) 

Since rrnin < fsd < ^max for N > 5, we see that the self-dual unit central charge the

ory compactified at radius f = fg^ consists of irrelevant primaries and is therefore the 

candidate for the infrared limit of the self-dual perturbation into the Kosterlitz-Thouless 

region of the ^//-symmetric phase space. 

Pure c = 1 behaviour can not be attained for finite MR; there must be corrections from 

irrelevant fields consistent with the symmetry of the Z^r theory. In this infrared regime 

the theory is non-renormalisable which simply means an infinite number of corrections 

are necessary to describe the 'arrival' of the perturbed theory at the c = 1 infrared 

l imit . Any divergent terms in ultraviolet perturbation expansions may be viewed as arising 

because of quantum effects which become huge as we approach smaller and smaller length 

scales. In contrast, the infrared divergences appear for the non-physical reason that we 

have not included sufficient terms in the action to make the correlations finite. However, 

it is still possible to approximate an asymptotic expansion of RE{R). The irrelevant 

fields with the dominant contributions in the infrared regime are the primary fields of 

dimension Ar/4 mentioned above and the first spinless descendant in the conformal family 

[ / ] , namely TT. An approximate asymptotic description is therefore given by the action 

S = SiR[^fsd] + Ml tpj^jid^x + ;U2 y TTd^x + further corrections , (5.25) 

where the self-dual V'Ar/4 consists of a combination of the unit vortex and iV-fold symmetry 

breaking fields. TT is a descendant with non-vanishing one-point correlation function. 

Even though the renormalisation group eigenvalue of T and T is y = 2(1 — A) = —2, TT 

has a one point function proportional to ^2R~^ on the cylinder. The two point function 
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wi l l be proportional to fj,2^~'^ and so on. In contrast, ipN/A is primary and so has vanishing 
one-point correlation function. 'i/'Af/4 has y = 2(1 — N/4) and so the two-point correlation 
functions are proportional to / i fR~^ , / i fR~^ , ̂ fR~^, . . . for N = 5,6,7.. respectively. In 
general, corrections to RE{R) come from V'7V/4 in powers of n\R'^~^. 

The corrections to pure c = 1 behaviour from these fields can be extracted from the 

T B A equations. In contrast to the ultraviolet limit, when MR is large, the non-magnonic 

pseudoenergies are dominated by their energy terms in the central region between kinks at 

0 = - log(MR/2) and 6 = log(MR/2) (see Figure (4.5) for an example). The correspond

ing L-functions have double exponential decay in the mid region and so the non-magnonic 

pseudoenergies play no direct role in the expressions for the corrections to the infrared 

central charge. By completely neglecting the infiuence of the two equations with energy 

terms on the magnonic equations in the central region — log(MR/2) <^ 0 <€. log(MR/2), 

we are left with magnonic diagrams only. From the Y-systems listed in Section (4.2) we 

find one node remains for A?̂  = 4n -I- 2 

Y},^\e-f^)YP{e + g ) = l , (5.26) 

which implies the periodicity ¥^^^{0+^) = ¥^^^{6). For the odd cases, A^ = 4n-M and 

N = 4n4-3, the magnonic pseudoenergies form di-iype Y-systems. These are 

5 _,[d4) 

Y}r\G-^SY^''\e+^)='[l[l + Yj,P\er') , (5.27) 

for AT = 4n -h 1, and 
5 [̂d4l 

Yt\d - t ) y t \ ( ) + t ) = n ( l + ^nKO)) ° ' (5-28) 
/3=2 

for Â" = 4n-h3. a runs from 2 to 5 in both cases. These Y-systems also have the periodicity 

[42] Y^''\e+'^) = Y^^^e) (where h = N/2-2). This result implies corrections to RE{R) 

are in powers of {MR)'"^^ = {MR)'^~^. The exponent is exactly that expected from the 

irrelevant V'Af/4 perturbation of the Kosterlitz-Thouless c = 1 point. The TBA method 

thus suggests the asymptotic infrared expansion 

RE{R) = -^ + y Dk{MR)^^-^^*'. (5.29) 

where Dk are constant. However, since the infrared limit is not renormalisable, we expect 

additional counterterms to appear (with dimensions different to A'̂ /4) because (5.29) can

not generally provide a good description of the infrared asymptotics. For A'^=4n-|-4, where 



Chapter 5: TBA Equations and Perturbation Theory 87 

there are no magnonic pseudoenergies in the TBA system at all, the leading corrections 
are identified as corresponding to the TT field (as discussed below). This suggests that 
the direct interactions between the non-magnonic pseudoenergies are responsible for the 
TT corrections to scaling in all theories. 

Resonances between powers of ^\R^~^ from V'Ar/4 and p2R~^ from TT are expected 

to appear as logarithmic corrections. For N = 5 the dominant correction comes from the 

/̂»;v/4 field. In contrast when N = 6 the first correction is expected to be logarithmic and 

for all other values of N the first correction is from TT. In all AT = 4n -|- 4 theories, any 

sign of corrections to V'Af/4 is delayed until a term proportional to (There is no term 

proportional to because the coefficient B2 vanishes for A = n.) 

We now concentrate on the TT corrections, beginning with the AT = 4n + 4 case first. 

The kinks near 6=— log(MR/2) and 6=log{MR/2) only interact via the tails of the kernel 

functions ipij{9). The corrections from TT in ^RE{R) appear as 

^RE[R) = -^,cioo) ^ -^ ^ + 0{iMRr) . (5.30) 

(for large MR) . Coefficients Ci and C2 are given by 

12 SM^'' ' 6 [ s M r ' ' ) ^^•^^> 

(this is found via an iterative procedure similar to that explained on p.535 of [47]). Here 

Ml is the mass of the lightest particle in the theory, and T/'Ĵ ^ is the first coefficient of an 

expansion of the kernel ipn{0) where 
00 

A:=l 

The coefficients in this expression are nonzero only when s, taken modulo h, is an exponent 

of the relevant non-affine algebra g = dn+i- (Generalisations exist for coset flows ĝ )̂ x 

g^^^/g^^^ — > 9^^^ X ^^^Vff^^^ where g is an a,d or e -related algebra.) The coefficients are 

given by 
lis) h (s) (s) 

4 = — 9 ) ' (5.33) 
where qf"^ and q^^^ are components of a unit-normalised eigenvector of the Cartan matrix 

of g wi th eigenvalue 2-2cos( |s) (see [45, 46]). 

The TBA expansion (5.30) can be compared with the perturbative expansion of 

^RE{R) for action Sm[^fJ+p2STTd^x [18]: 

^RE{R)---,c{oo)+ j^2 [ 24 ) R^ [ 24 ) ^ [R^ ' ^ ' 
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because this much of the expansion is uncontaminated by counter terms. I f the TBA 
results above really are compatible with perturbation theory the coefiicients (5.31) should 
satisfy / C 2 = —c(oo)/24, which can be easily verified. A comparison of the two series 
also allows the coupling fi2 to be expressed in terms of the crossover scale M : 

Returning to the TBA result (5.31), i t was found that q'^^ = {2/y/h)sm{Tr/h) for 

N = 4n + 4 where h = {N - 4)/2. Therefore tp\^^ = 4 sin Supposing this formula to 

hold for all N >5 and substituting c(oo) = 1 and M i = 2Msin we find 

1 f n \ 

Furthermore the coupling relation becomes 

M2 = - , 2. M - ^ . (5.38) 
7r2 sm ^ 

This derivation fails for A'^<7, since the direct interaction kernels ipij{6) are not present. 

However, numerical results show R~^ corrections do appear in these cases suggesting these 

formulae, valid for N > 7, can also be used for N = 5,6 and 7. When N=7 the predicted 

coefficients agree with the numerical data below. For Ar=5 and A'̂ =6 the situation is very 

similar to the ultraviolet case where bulk terms are resonant with terms in an analytic 

expansion. The TT-related divergences of (5.36) match divergences in other parts of 

the expansion, giving a finite result. There is an additional contribution proportional 

to R~^ which comes from the term of order which can cancel the pole in Ci 

(furthermore, the regularised B2 itself diverges when N=6). The difference is found on 

setting m = 2/{N—4) then evaluating 

-1 TT / 1 1 
l im 

Af->4-|-
m L 

12 3 s i n ^ V(MR)2 (MR)(^-4)-
( ^ - 4 ) log MR 

36 cos ^ (MR)2 • ^̂ -'̂ ^ 

in a manner similar to (5.13) by considering A'̂  = 4-f ^ -|-£ here. This gives the coefficients 

ci^=5^ = l l o g M R + A , c i^=6) = _ l i o g M R + B (5.40) 

wi th constant A and B. As for C2, two additional terms must be considered at orders 

yi]^ and iJL^H2 since both become proportional to R"^ when A'̂  = 5 or 6. The result is 

that 
,(Ar=5,6) _ _ ( A - 4 ) 

54 

2 
^^.v-o,oj ^ _ log2 ^ ^ / i^^MR + B'. (5.41) 
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where A' and B' constant. Similar infrared logarithms appearing to a single power have 
previously been observed numerically, in the interpolating flows between the minimal 
models Mp Mp-i [47] mentioned in the first chapter. 

The W-N TBA equations were solved numerically for large MR to investigate the in

frared region and i t was found that the results did not coincide with the coefficients 

expected from an analytic expansion alone. When logarithmic corrections were intro

duced the fit proved exceedingly good. Through perturbation theory one can justify the 

logarithmic terms as resonances and then use the TBA equations to determine the above 

coefficients exactly. The numerical solution also gives several coefficients which are as yet 

unaccessible by the methods above. 

For R ranging from approximately 50 to 11000, RE{R)/2TT was found for A'̂  = 5, 6 

and 7 using the same normalisation M = l adopted earlier. To begin with, the exponents 

of the leading correction terms were estimated by finding the limiting slopes of plots of 

log(i?£;(i?)/27r + 1/12) against logR, with the results -0.9993, -1.9967 and -2.0010 

respectively (to be compared with the predictions of —1, —2 and —2). Thus reassiured 

that at least the leading order behaviour was as expected, the data was fit to expansions 

in powers of R and log R, leaving all the coefficients unconstrained. The following results 

were obtained for ^RE{R): 

RE{R) _ - ( 1 + .55) _ 0.0177380 0.027733log _ 0.01951 0.097 

RE{R) _ ~{l + 6e) _ 0.05555546log 0.033585 _ 0.0715log^fi 
• 27r ~ 12 R2 ^ i?2 i?4 

RE{R) _ - ( 1 + ^7) _ 0.1007662 0.153 
• 2-K ~ 12 R^ + i?3 +••• 

As in the ultraviolet case, the constant terms ^5,^6 and Sr, were used to measure the 

difference between numerical and exact values for c(oo)/12. These had modulus less 

that 10~^^. Note the first correction for the N = 5 central charge function explains 

the observation of slower convergence to c = 1 in the infrared region for the Z5 system 

observed earlier (see Figure (4.3)). 

For N=5 and 6, the coefficients of R~^logR match well with the predicted values 

of 0.02777... and -0.05555... respectively. The N=7 the formula (5.37) predicts the 

coefficient of R~^ to be —0.1007663..., again in good agreement with the numerical 

results. The other predictions are more difficult to verify as one runs up against the 

limitations in numerical accuracy. For N=7, a coefficient of 0.24369... is predicted for the 

R-'^ term, while for N=5 and N=6 the coefficients of i?-* log^ R should be -0.0185185... 
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and —0.074074... respectively. The agreement for A'̂ =6 is reasonable, and improved when 
a restricted fit (using the exact values for c(oo) and Ci) was performed. The estimate for 
this coefficient then becomes —0.0743 to three significant figures. For the other cases, no 
such convergence was observed for any coefficients beyond those reported above. This is 
not particularly surprising, since for A'̂ =5 there are more unknowns to be fixed before the 
term of interest can be determined. Note particularly that these solutions provide strong 
evidence for the hypothesis that formulae (5.36)-(5.38) be used for all A''. 

In conclusion, the perfect agreement of TBA and perturbative results in both the 

ultraviolet and infrared regimes suggests that the proposed TBA systems provide an 

exact description of the ground state energies for the perturbed theories Z^^K 



Chapter 6 

The Massive Direction 

An argument is presented here to find the energy levels of a finite volume quantum field 

theory possessing a vacuum which is degenerate in infinite volume. The argument is 

quantum mechanical but may be applied to a finite volume quantum field theory once 

transverse degrees of freedom have been summed [49]. The idea can be applied to the 

T B A theory which has finite circumference R. 

6.1 Degenerate vacua and energy spectra 

The quantum mechanical problem of identifying the ground and first excited states of a 

symmetric quartic potential theory with doubly degenerate classical ground state, in a 

way that can be applied to quantum field theory, was addressed by Coleman [48]. 

In terms of the action for an instanton travelling once between two neighbouring 

vacua, the energy levels E± were found to be 

E± = nuj/2 ± A{nSo/TTf^e-^''l^, (6.1) 

where Ti is Planck's constant, A is a constant determined by the asymptotic solution of the 

saddle-point equation of motion and LJ^ is the second derivative of the quartic potential 

V at either minima. This result is obtained by considering the Euclidean path integral of 

an instanton which moves from position Xi to Xj in a time T 

{x^e-"'^l^\x.) = N j[dx]e-'l\ (6.2) 

where A^ is a normalisation factor, H is the Hamiltonian and S the action for the instanton 

which can make several journeys between the vacua in the time T. This integral can be 

evaluated by summing over all journeys between vacua i and j located at Xi and Xj. For 

. 91 
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the double well problem Xi — ~a and Xj = a are the locations of the minima of quartic 
potential V. (6.2) is then evaluated by summing over all ways that the particle can pass 
from —a to a in time T. 

I f i f has energy eigenstates |£'„) such that H\En) = En\En) then inserting the identity 

X;„ \En){En\ = 1 into the left hand side of (6.2) gives 

(x, |e-^^/ '^|x,) = 5^e-^"^/ '^(a; , |£ ;„)(£:„ |x ,) . (6.3) 
n 

Coleman obtained the result 

^ ^ oddn 

where {^)^/'^e''^'^^'^{K)"', with constant K, comes from the evaluation of a determinant 

which arises in a semiclassical approximation. ^ comes from integrating over all jump 

times. ^0 is the action for the instanton making a single journey from —a to a (pro

portional to the mass of the instanton). I f we carry out the same procedure to evaluate 

{—a\e~^^^^\ — a), a similar expression is found, but now with summation over an even 

number of steps. Comparing the results 

( ± a | e - ^ ^ / ' ' | - a) = f 4) e'^'^^^hexpiKe-'''^'') T expi-Ke-'"/"^)] (6.5) 

wi th (6.3), the result (6.1) is obtained since it can be shown that K is a multiple of 

(5o/27r;i)i/2. 

The generalisation of (6.1) is achieved by representing an m-fold degenerate vacuum 

structure by the m x m incidence matrix so that entry (a, 6) is non-zero only when 

an instanton may tunnel from the minima a to h. This allows us to write down a matrix 

of amplitudes for an instanton travelling between two vacua in n steps via the matrix 

The appropriate generalisation is therefore 

= ( ^ ) {exp{KTe-'o/nj^^^^^ ^ ^ (n ) ] . (6.6) 

Diagonalisation of the matrix (6.6) gives the dominant contributions to the allowed ener

gies in terms of eigenvalues of / : 

Ei = huj/2 - \iA{hSolT^)2e-^°l^ . (6.7) 

This allows us to make predictions about the energy differences Ei ~ EQ. AQ, the largest 

eigenvalue, is unique by the Perron-Probenius theorem (an incidence matrix representing 
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a connected graph has a unique largest eigenvalue corresponding to an eigenvector with 
all entries positive) and A ^ - i is the least, so that —AQ < —Ai < — A 2 < ... < — A ^ - i - Each 
of the eigenvalues controls those energies which become degenerate with the same ground 
state in the infinite volume limit. In particular, the ground state energy is controlled by 
— 1 times the largest eigenvalue of the incidence matrix. 

An infinite volume field theory with a quartic potential has fields with two ground 

states | 0 + ) and | 0 _ ) each with nonzero expectation value. For a finite volume system, 

barrier penetration is possible and the resulting symmetric ground state |0s) = ;^( |0+) + 

|0_)) is unique. The antisymmetric state |0a) = ;^( |0+) — |0_)) is separated from \0s) 

with an energy Eoa proportional to R'-I'^'^e'"^'^ in d + 1 dimensions, where u is called 

the surface tension [49] . This energy diff'erence includes a factor R^l"^ from zero modes, 

a contribution from 1-loop fluctuations and an exponential which is the Boltzmann 

factor of an instanton travelling through domain walls. When 0? = 1 the splitting looks 

like R-^l'^e-^^ and a can be interpreted as the action of an instanton which is in perfect 

agreement with the semiclassical prediction above (with % replaced by provided R 

is large. Consequently, the above general result applies to the finite volume quantum field 

theory. 

In 1 + 1 dimensional field theory this instanton of mass m is called a kink. Precisely, 

a kink is an instanton solution with energy, momenta, mass and quantum numbers which 

interpolates between two (not necessarily distinct) vacua. Kinks form nontrivial multi-

particie states. Unlike most multiparticle soliton states we are not free to order kinks 

in an arbitrary configuration; a two-kink state may only be formed i f the kinks share 

a common vacuum. Kink scattering theories with this curious feature wil l be discussed 

more fully in the next chapter. Here we concentrate on the energy levels of their excited 

states. 

A simple theory with degenerate vacuum is ithe tricritical Ising model perturbed by 

the subleading energy field [52]. This model possesses a symmetric vacuum with three 

minima. I f the above claim is true, the ratio of energies {E2 — EQ)/{E\ — EQ) must equal 

xlZxl • For this theory, the vacuum is represented by incidence matrix which has 

eigenvalues AQ = V^, Ai = 0 and A 2 — — \ / 2 . Consequently, we expect the ratio to be 2, 

which was verified numerically. 
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6.2 Phase coexistence in the massive perturbation 

For the negative sign of coupling, the self-dual perturbing operator ê )̂ drives the theory 

onto a surface of first-order transitions where ordered and disordered phases coexist. 

There the vacuum structure consists of A'̂  ordered ground states with (cr) = (m = 

0,1, ..A^ — 1) and a ground state with {a) = 0. 

For the instanton argument above it was assumed that all kinks interpolating between 

vacua were of the same mass. Just as in the case of non-kink particles, 'fundamental' 

kinks give rise to bound states so that we generally have a tower of particles all of which 

interpolate between the vacua in question with their own characteristic pattern. Each 

bound state has its own tower of excitations, so that an excited state of the fu l l sys

tem in equilibrium comes from the combinations of fundamental and bound state kink 

excitations. 

Depending on the value of N in question, the masses may be ordered M^(i) < M ^ ( 2 ) < 

... < M^(„) where IT gives a permutation of mass indices l , . . , n . In the theories the 

mass spectra is given by (2.23), where Mn is the soliton mass. For N < 16 the soliton is 

the lightest mass, whereas i t is the first bound state M i which is lightest when N > 16. 

The inequalities are strict, apart from the special cases A^ = 16 where M i = M„ < M 2 

and for those higher N where one of the bound states has a mass value which coincides 

with the soliton mass. For each mass M j let the incidence matrix /^^ encode, whether or 

not kinks of that type join vacua a and b. Provided these matrices commute they can be 

simultaneously diagonalised, and we can write 

( A ( ^ A f ) , . . . Ai")) > iX?,X?,... AS")) > . . . > (Ai^)_„ A ^ L i , . . . A ^ l i ) , (6.8) 

where A o ^ ) , A P , . . is the decreasing sequence of eigenvalues of the incidence matrix for 

the least mass M i etc. Specifically, A^^ is the ith eigenvalue in descending order of the 

incidence matrix of mass Mj. The asymptotic behaviour of the k^^ energy level will 

therefore be 

Ek{R)^-Xi'^Ai{R)-X^^h2iR)..--XPAn{R) , A; = 0 , l , . . . m - 1 , (6.9) 

where Ai{R), of order exp(-Mii?) , gives the leading energy spUtting for two vacua 

and kink mass M j . The lowest energy state comes from a sum of terms proportional to 

the largest eigenvalues of each incidence matrix i.e. from the largest eigenvalue of/(^^ (for 

the lightest mass), the largest of /(^) and so on. However, i f a heavier kink has more than 
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twice the mass of the lightest, its leading contributions above wil l be less important than 
sub-leading contributions from the lightest kink, which have been omitted. The ground 
state energy from the massive TBA equations can be used to find both the maximum 
eigenvalues of the as yet undetermined incidence matrices /(•'^ and the mass spectrum of 
the kinks in the massive phase. 

The massive pseudoenergies are given by energy terms ef ' (0) ~ = Mii?cosh^ 

to order 0 ( e ~ ^ ^ ) , while the magnonic pseudoenergies are approximated by the stationary 

values log^/"^ given in Section (4.5). The general TBA system then becomes 

e\^\e) = MiRcoshe- J2 Nlf log ( l + ^ " ' ) , (6.10) 

where N^^ = ^ I^oo'^Tfi^)^^^ " ^ i * ^ ''Pif denoting some generic kernel finking e\"^ to 

ê -̂ .̂ Substituting this expression into the ground state energy 

E{R) = - ^ Y l j'^ dOM^ cosh e log (l + e-'^'^''^^^ (6.11) 

gives the asymptotic approximation to order 0(e~^^^) of 

£ ; ( i 2 ) ^ _ J L ^ r ^ ^ M , c o s h ^ e - ^ ^ « - ^ ' ^ « n f l + ' ^ - ^ ^ " ' ) • (6-12) 
27r J-cx> A a \ ' 

Identifying ^ / f ^ dOMi coshee'^'^""^^^ with Ai{R) allows us to read off the eigenvalues 

' 1/3 

A ? = n f l + ' ^ ^ ' ^ ' T ' • (6-13) 

To calculate these values i t is easier to obtain the correction term in (6.10) by substitution 

into the relevant Y-system. Thus, there are n kinks of masses Mi, i = 1 . . . n , equal to 

the corresponding sine-Gordon masses (2.23,2.24) i.e. the soliton mass M = M„ and 

Ml = 2M sin f ; Z = 1, ..n - 1, (6.14) 
i V - 4 

where n = [^^^] and we find 

A ^ ' ^ = i+1 (2 = l . . . n - l ) , (6.15) 

A J " ) = VN. (6.16) 

The fact that the kinks have the masses given by (2.23) and (2.24) wi l l turn out to be 

very important when we address the problem of the massive ZA? S-matrix in the next 

chapter. 
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I t is generally true that integrability implies these incidence matrices must commute. 

Consider states which interpolate between vacuum a at a; = —oo and c at a; = oo. 

Conservation of topological charge means this sector is invariant under time evolution. 

The fact that the theory is integrable means we can concentrate on the subspace of two-

particle states to get our result. Suppose at time t = —oo the two particles of masses Mi 

and Mj wi th i ^ j are positioned with M j to the left of Mj and 6i > 9j. The dimension 

of this two particle subspace at i = -oo is A „ = Y^b^ab^^c • ^̂ "̂  - ^ j 7̂  ̂ 3 there is 

no refiection in the integrable theory and so the space of out states must be spanned by 

states in which the kink of mass M j is to the right of kink of mass Mj when t = 00. The 

dimension of the final state space is Dgut = Y^b^ab^bci unitarity of the S-matrix 

means Din — Dout- This means [P-,P] = 0 and the incidence matrices commute. 

This fact helps prove that the eigenvalue AQ') is the largest of matrix for each 

j = 1, ..n as follows. I f the so far undetermined incidence matrices are combined to form 

a connected i?-dependent matrix Iab{R) = T,iAi{R)I^b we find that for large R there is 

a unique largest eigenvalue of Iab{R) corresponding to an eigenvector with only positive 

entries. Furthermore, the commutativity derived above implies this is a simultaneous 

eigenvector of the individual I^^^ and so corresponds to the maximum eigenvalue of each 

of the even though they are not individually connected. 

For the time being we still have to identify the set of commuting, symmetric and Zjy-

symmetric (A^-l-1) x (A'-1-1) matrices .., 7̂ "̂  which give the largest set of simultaneous 

eigenvalues (6.8). We propose two of the matrices immediately 

(6.17) 

/ 0 \ / 1 \ 

[^N-l\ab 0 1 

[ 0 . . [ 1 1 . 

where ^ j v - i is the A 'x A' incidence matrix of the affine aj^)_^ Dynkin diagram and entry 

(N + 1,N + 1) of 7(1) is fixed by the commutation [7(^),/(")] = 0. Provided N is not 

a perfect square, is fixed uniquely {N square would mean A ^ " " ^ ) and A^,") could be 

equal). The forms of Ĵ )̂ and 7^") are consistent with the idea that the kinks of mass M i 

are the (lowest mass) bound states of a set of fundamental kinks with mass Mn=M. The 

idea parallels the related sine-Gordon model, where M„ is the mass of the soliton and 

M l the mass of its first bound state or breather. For the remaining kinks we make the 

conjecture that those of mass Mj in the '2.N model should be bound states of j kinks of 
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mass M l . Accordingly, the allowed topological charges should be found among the paths 

with j steps on the graph of This fact suggests 

/ 0 

m i n ( [ A ^ _ l ] a b , l ) 

I 0 . . . j + 1 

ij = l...n-l). (6.18) 

Here the commutation of with /("^ is used to pin down the entry {N + 1,N + 1). 

Alternatively, we could have conjectured that the breather-related incidence matrices also 

satisfy the fusion rule 

7 0 ) j { i ) ^ j O - i ) + 70+i) (6.19) 

where 1^°^ = I, and 7̂ )̂ is as in equation (6.17). Bound state incidence matrices are 

found iteratively. 7̂ ^̂  is found putting j = 1, I^^^ from j = 2 and so on. For N even 

this prescription overcounts the number of links between vacua not connected to the 

central disordered vacuum. Wi th an additional assumption that multiplicities of links 

are forbidden we do regain the expression (6.18). This indeed gives the same incidence 

matrices fisted above. 

Figures (6.1) and (6.2) illustrate the kink structures for N=9 and iV=15. Tunnelling 

to and from the disordered phase only occurs via the fundamental-kink instantons, while 

instantons associated with bound states connect the ordered phases. Note also the pres

ence of tadpoles on the disordered vacuum in all but the fundamental set of kinks. Their 

appearance might be understood as being due to virtual particle-like excitations above 

the various vacua. 

Interestingly, for iV>16 some kinks appear in more than one incidence matrix from the 

set 7̂ )̂ . . . 7^""^^ i.e some pairs of vacua are joined not only by a simple kink of minimal 

mass, but also by excitations of this kink with higher masses (breathers with nonzero 

Figure 6.1: The vacua represented by the incidence matrices 7̂ ^̂  and 7̂ )̂ for the massive 

Zg theory 
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Figure 6.2: The vacua represented by the incidence matrices 7^^), 7̂ )̂ and 7̂ )̂ for the 

massive Z15 theory 

topological charge). From the topological charge point of view, the information about the 

asymptotic one-particle states encoded in the incidence matrices may be summarised as 

follows. Let a,a+i {a,i = 1, ..N — 1) always label ordered vacua I... N, with N+1 the 

disordered vacuum. The massive flow has the following features. 

1. A kink of mass Mi joins each ordered vacuum a to a + i for i — 1, ..n — 1. The 

same vacua are joined by kinks of mass Mj where j = i + 2,i + 4,.. < n — 1 . The 

excitations of both would be expected. 

2. Kinks of mass M„ join iV- |- l to each ordered vacua a. 

3. Excitations of each ordered vacuum with masses Mj,j = 2 ,4, . . . < n - 1 appear 

(indicated by tadpoles on outer part of vacuum diagrams). 

4. Excitations of the disordered vacuum appear with masses M i , M 2 , . . . M„_i and 

multiplicities 2, 3, ..n respectively. 

To complete this section we address the case where A'' factorises. I f N=PQ, then it 

is possible to use an orbifold construction [55] to produce alternative patterns of vacua, 

which might also be described by the self-dual Z^r TBA systems. In this case, the 

incidence matrices split into blocks of sizes P and Q rather than the previous N and 1: 

7W = 

\ / 

[•Ap-l]ab 0 0 lad [•Ap-l]ab 
, 7 ^ = 

[ ^ Q - l ] c d ^ 
i t 

\^ ^cb 0 

(6.20) 

J 

Ap-i and AQ-I are incidence matrices of the afiine a^ l^ and Dynkin diagrams, and 

lad is a PxQ matrix with afi entries equal to 1. The remaining incidence matrices for 
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the bound state kink vacua, 7^^^... 7("'"^), follow from 7̂ )̂ via the fusion relation (6.19), 

with 7 "̂) = 1. As before i t is assumed that after using this fusion rule we let no entry be 

larger than unity (an assumption which is actually only necessary for even values of N). 

An example of factorised vacua for N = 28 are shown in Figure (6.3). For this theory 

we expect [^^^] - 1 = 5 bound states which seems to be consistent with these figures. 

(The As part of the 7̂ ^̂  incidence matrix is omitted, since it is simply the same as the 

four-node part of 7^^^) We return to such systems of vacua in the next chapter. 

Figure 6.3: The vacua represented by the incidence matrices 7(^),7(^) and 7̂ )̂ for the 

massive theory 



Chapter 7 

The Massive Z ŷ S-matrix 

In this chapter, we turn to the S-matrix of the theory perturbed in the massive direction. 

This was considered by Fateev [34], who suggested S-matrices for three distinct cases, 

namely N odd, N = An + 2 and A^ = 4n -I- 4, the latter two being identified as 6„ and d„ 

related theories via (4.1). We claim that for the 6„ and d„ related theories the spectrum 

deduced in [34] is correct, but cannot be inferred from the S-matrices stated therein. 

Finding the correct S-matrix is important in this work because it would verify both the 

mass spectrum and vacuum picture proposed in the last section. 

The problem is as follows. The commutation of non-local integrals of motion with 

the S-matrix, together with analyticity, crossing and unitarity symmetries, allows the 

determination of the scattering amplitudes as a product of sine or cosine functions which 

have zeroes in the physical strip multiplied by some prefactor. I t is then standard to 

assume the minimaUty principle: that the prefactor is chosen to cancel all zeroes. The 

outcome of this cancellation is the introduction of poles in the physical strip which are 

interpreted as bound state particles in forward or cross channels. For the 6„ ((/„) related 

theories the symmetry of the S-matrix factorises into two copies of Z;v/2-symmetric S-

matrices (or four copies of Z;v/4-symmetric matrices in the case of the d^-related models) 

which may be thought of as factorisations distinguished by different quantum numbers. 

The S-matrices stated in [34] imply the number of particles implied is too large because 

factors with too many poles were introduced to cancel the zeroes. 

Here the corrected S-matrices are presented which (up to an orbifolding) wil l be seen 

to agree perfectly with the vacuum structure and the mass spectrum properties derived 

using the TBA approach for the 6„ and d„ related cases. For odd values of N the standard 

S-matrix calculation predicts twice as many particles predicted by the TBA method if the 

100 
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minimality principle is assumed and the vacuum structure is completely irregular. What 
is intriguing is that the vacuum structure predicted in the previous chapter is embedded 
within that suggested by the N odd S-matrix. Furthermore, i f one considers only the 
subset of poles giving this structure the corresponding particle spectrum is exactly that 
expected from the TBA method. The implication is that the minimality principle is 
violated in these cases. 

This chapter is thus divided into four parts. The first is a review of the iV odd S-matrix 

proposed by Fateev. The second and third concern modifications to Fateev's 6„ and dn 

related S-matrices and the resulting spectra and vacuum structures. In the final part 

we return to the N odd case and discuss the problem of extracting the correct vacuum 

structure and mass spectrum for that case. We adhere to the notation of [34] wherever 

possible. 

7.1 The N odd S-matrix 

The existence of a set of non-local integrals of motion {Q, Q, , Q^}, each formed from 

fractional spin fields, is used to restrict the particle scattering in the massive Z ^ ' ' theory 

for A'' = 2n + 1. These integrals satisfy the commutation rules 

QQ - u^QQ = t , QQ^ - u^Q^Q = i, (7.1) 

where UJ = e}'^'^!^. The spinless topological charges t and t are composed of fields with 

ZTV or ZAT charges 4. Similar conjugate equations hold with LO replaced by Td and all fields 

replaced by their conjugates e.g. o/^^ a\ = a^-^. I t is reasonable to suppose that the 

vacua may be characterised by expectation values a of the order parameter 0-4 and by 0 

which represents the disordered phase 

a G {0, s : s = w"*, Q = 0,1,2, ..N - 1}. (7.2) 

s labels the broken symmetry phase and iV, being odd, means s runs over the group Z^^ . 

In this degenerate vacuum theory the particle content consists of N kinds of funda

mental kink (Kos) and anti-kink (Kgo)- Asymptotic states of L kinks with individual 

rapidities 6i may be written 

but the labels on each kink cannot be arbitrary: one of the labels must be 0 and the other 

takes a value s, so that |t7j_i — ai\ = 1. These asymptotic states are eigenstates of local 
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integrals of motion Pg (s = 1,3,5,..) with eigenvalues ^ f - i M*7je*^', where JI ^re some 
constants. The existence of these integrals means the scattering theory can be factorised 
into sequences of two-particle interactions. In contrast, the integrals Q,Q {Q^,Q^) with 
spin S — {N — ^)/N (—6) are not diagonalised by the asymptotic kink states. Rather, 
their action is given by 

Q\Kao,<Ti (^l)---^(Ti-i,o-i(^i)-"7^(7L_i,<7i,(^L))in(out) 
L 

= ^{Me'^yp{ai^u(T^)\K^ 

(7.4) 

L 

= 5^(Me''')*/?t(a,_i,aj)|7f^4,„,^4,^(ei)...7ir^V^_^_,^(^,)...7C<,,_.,,J0i,))j„(<,„,) 
i=i 

(7.5) 

where the w'' (tJ^) factors are determined by the commutations (7.1). The power of the 

mass term is fixed by the identity = PN-4 and /?, are functions of neighbouring 

vacua which, by equating the actions of SQ and QS on a two kink state, must be of the 

form 

/3(a, a') = {a + u^a'), /3^a, a') = {a^ + w V ' t ) . (7.6) 

The factors in (7.4) are explained as follows. The charge Q is non-local, this means the 

fields from which i t is constructed are semilocal with respect to the fields on which they 

act. Another way of stating this non-locality is via the equal-time commutation relation 

which, for a pair of semilocal fields, states that ^{x,t)a{y,t) = Ra{y,t)'^{x^t) \ix> y, 

where R is some phase which depends on the algebra of the fields in question (7? = 1 if 

X <y). For the present case ^ is the charge and the phase picked up is w^. Since a typical 

kink Kai_^ai [Gi) travels between two neighbouring vacua this definition of the action of a 

non-local charge explains why only the leftmost vacuum label is multiplied by the phase 

factor (it appears when a charge 'acts' to the right of the kink with rapidity ^ j , but to 

the left of the vacuum cTj.) Considering this action on all kinks in a given L-kink state 

leads to (7.4). The barred integrals Q and have a similar action on the asymptotic 

states, the results in this case are given by the same formulae but with the substitutions 

5 ^ -5,u ^oj axid Pia,a') = {a + uj'^a'),P{a,a') = (at + w^a't). 

The theory is elastic with scattering matrix completely described by the two-particle 
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amplitudes Agy and Bg^s' given by 

\KoA&l)Ks,o{&2))in = J2^s,AOlM\Ko,A02)K,>fl{Ol))out, (7.7) 
s' 

\Ks,oidi)Ko,A02))in = Bs,AdiM\KsMG2)Ko,AOi))out, (7.8) 

where 612 = 62—61. The functions A and B depend only on the ratio s/s' and, introducing 

u = ^ for convenience, we may write 

As,s'{u) = A,i,,{u) = Ak{u) = AN^k{u) , , 4fc , „ 
with s/s = UJ . (7.9) 

Bs^s'iu) = Bs/s'iu) = Bk{u) = BN-k{u) 

Crossing and unitarity symmetries are expressed as 

Ak{u) = Bkil-u), (7.10) 
N-l 

Ak{u)Ak{-u) = Bk{u)Bki-u) = 1. (7.11) 
fc=0 

The S-matrix and integrals of motion Q, (Q, Q^) must commute. In other words, 

the action of SQ and QS on any asymptotic kink states must give the same result. This 

implies the following conditions on the amplitudes Ak{u) and Bk{u) 

Ak+iiu)sm{{2k + 2 - u ) f ) = Ak{u) sin{{2k + u ) f ) , 

Bk+i{u)sin{{2k + l + u ) f ) = Bk{u)sm{{2k + l - u ) f ) . 

Introducing the functions S{x) = sin(^2;) and C{x) = cos(^a;), the solutions for the 

N = 2n + 1 theory may be written 

A:-l n 
Ah{u) = a{u) l[S{2i + u) U S{2i-u), (7.13) 

1=0 i=fc+l 
fc-l n 

Bkiu) = b{u)l[Si2i + l - u ) Yl Si2i-l + u). (7.14) 
i=0 i=k+l 

Crossing and unitarity symmetries force the functions a{u) and b{u) to satisfy 

a{u) = b{l - u), Na{u)a{-u) = b{u)bi-u) = 2 ^ " ^ ^ • (7.15) 

The products in Ak{u) and Bh{u) contain zeroes. In the left hand diagram of Figure (7.1) 

the distribution of zeroes in the amplitudes B^ are shown for N = 17. 

The solution has the form 

a{u) = Ar("-i)/2i2(u), b{u) = N-'^/^Ril - u), (7.16) 
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where 

and 

p . ^ . n . . . F ( ( 2 n + l ) / ( 2 n - 3 ) , - 2 / ( 2 n - 3 ) , n ) 
R{u) = 2 bn-,{u) ^ ( i / ( 2 „ _ 3 ) , ( n - 2 ) / ( 2 n - 3 ) , . ) (^•'^^ 

F r . /. = TT ^("^ + ^ + V2)r(a / + b - V 2 + l/2)r(a/ + h - 1/2) 

^ ' ' f^-^r(ai- t-6-n/2)r(a/ + 6 + 7 i / 2 - l / 2 ) r ( a / + 6 + l /2) • ^ ^ 

Such solutions are built, step by step, beginning with a ratio of sine functions by repeatedly 

using the requirements of crossing and unitarity to form an infinite product which can 

then be written as a product of gamma functions (see [12] for example). The resulting 

amplitudes satisfy the Yang-Baxter equations provided the 6„(u) are crossing symmetric 

and satisfy unitarity. 

Apart from having to satisfy crossing and unitarity, the amplitudes 6„(u) cannot be 

determined. This is the CDD ambiguity. At this point i t is conventional to assume that 

the solutions (7.13,7.14) have no zeroes in the physical strip u € (0,1). There seems to 

be no physical reason why this minimahty assumption should hold, even though over a 

period of many years this principle has led to successful predictions of bound state spectra 

for several theories. I f this principle is assumed one must introduce poles via the 6n(w) 

factor to cancel zeroes, at say. This gives rise to poles in some of the amplitudes, which 

did not have zeroes at n^, and these are interpreted as bound states of the theory. The 

resulting bound state spectrum might then be verified by some other means. 

For the theory in question, the minimahty assumption imphes 6„(u) must have the 

form 
"-2 sin[7r(n - f ^ ) ] 

^n-M = n - f ^ ^ (7.19) 
/ t i sm[7r(u - 2 ^ ) ] 

Note that this is the only part oi R{u) which contains poles (at u = for i = 1, . . n -2 ) 

since the F functions in (7.17) contain no zeroes or poles. The outcome is that some of 

the amplitudes have poles at u = 1 - for / = l , . . n - 2. For N = 17 the 

resulting distribution is shown in the right hand diagram of Figure (7.1). These poles 

would usually be interpreted as forward channel bound states which, via (2.11), have 

masses Mi = 2Msin(2^33), for / — l , . . n — 2, where M is the soliton kink mass. In 

terms of N, this is Mi = 2Msm{j^) for I — 1,..[^^^] - 2. However, this spectrum 

directly contradicts (6.14) predicted in the last chapter. In particular, the minimahty 

assumption implies approximately twice as many particles appear as predicted using the 

T B A approach. This indicates that we should use caution when attempting to apply the 
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minimality principle here. We return to this problem in Section (7.4) after we have built 

up more evidence based on the vacuum structure of the theory. 
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Figure 7.1: The left hand diagram shows the distribution of zeroes in the amplitudes 

Bk(u) for N = 17. The minimal CDD function bn-i{u) cancels all these zeroes, leaving a 

distribution of poles displayed in the right hand diagram. 

7.2 6„-related S-matrices 

For the N = 2(2n -h 1) theories, the algebra has further non-local integrals of motion B 

and B with spins n — 1/2 and 1/2 — n respectively. B commutes with Q and Q^, while 

B commutes with Q and . The commutation rule for these additional integrals looks 

like BB -\- BB = T , where T is another topological charge. The algebra of these integrals 

has the symmetry Zj^/2 ^ ^2 and the vacua are expected to have the same symmetry. 

Therefore, the vacua corresponding to the ordered phase are assumed to be characterised 

by two variables e € Z2 and s = o;^', for q = 0,1,.., 2n. So the vacua are identified by 

a € {0, es : s = w^'g = 0,1, . . , 2n; e = ±1} , (7.20) 

where 0 labels the unbroken symmetric state. The fundamental particles in this theory 

are kinks TTQ.ES and K^sfi, which separate the vacua. The actions of Q, (and Q, Q^) on 

asymptotic states is similar to (7.4) and (7.5), whereas the action of B is 

B\Kao,ai{6l)--Ka^_^^ai{6i)--Kc,j^_^^^^{6L))in(out) 

= j2iMe'')'''^S{^^-i,a,)\K_,,,.,,idi)...K^,^^^^^^ 

where 7(0", a') = (a^/^ — •zcr'̂ /^) with a similar relation for B. 
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The scattering amplitudes A^s,£'s' and B^s,e's' are naturally defined by 

\KoMQl)Kesfi{G2))in = E ( îM I^O.e'.'(^2)7re',',o(^l))o«t , (7.21) 
£',S' 

\K,sfl{0l)Ko,e's'{d2))in = 5,,,,,,, ( ^ I / T T ^ ) |7f„,o(^2)7Co,e'.'(^l))o«t • (7.22) 

The amplitudes split naturally into two sectors distinguished by values of the quantum 

number s 
A+s/s'iu) = Af(u) = A%,^ .(u) , M. 

^" '"^ ' ''^ ' ^ wi ths / s ' = a;^^ (7.23) 

Again, the S-matrix must commute with the non-local integrals of motion which gives a 

system similar to (7.12) with solutions 

A+iu) = a+iu)Sij{2-u))f[Si2i + u) f [ S{2i^u), (7.24) 
i=0 i=k+l 

A^{u) = a-{u)S{^u)]lS{2i-\-u) f[ S{2i - u), (7.25) 

i=0 i=k+l 

B+{u) = b+{u)S{^{l+u))]lS{2i + l - u ) f [ S{2i-l + u), (7.26) 
i^O i=k+l 

B-{u) = b-{u)S{^{l-u))Y[S{2i + l - u ) f [ S{2i-l + u). (7.27) 

i=0 t=fc+l 

The functions a^{u),b'^{u) are chosen to cancel the zeroes in these products. Crossing 

and unitarity requirements impose conditions similar to (7.15): 
a^{u) = 6±(1 - u), Na^{u)a±{-u) = b^{u)b'^{-u) = 2 ( 2 « + i ) - g ^ . (7.28) 

In [34] the prefactors a~{u) and a'^{u) were assumed to be the same function. However, 

this assumption is unnecessarily restrictive. I f the functions a~ {u) and a+ (u) are chosen to 

individually cancel the zeroes in the amplitudes A'^ and 4̂̂ ^ above, the minimal solution 

is given by 

a+{u) = iV("-i)/2i?+(u), . 6+(u) = A r - " / 2 7 2 + ( l - u ) , (7.29) 

, a-{u) = Ar(«- i ) /27?-(w), 6-(u) = A r - " / 2 7 ? i - ( l - n ) , (7.30) 

where 

RA^)-bn{u)2 p 2 ( i / ( 2 n - l ) , ( n - l ) / ( 2 n - l ) , n ) " ^^"^^^ 

The ratio of F factors contains neither zeroes nor poles. The individual meromorphic 

functions b~{u) and 6+(n) are chosen to cancel the zeroes of (7.24-7.27): 

1 "tl} sm[ir(u + : ^ ) ] 

S{f{u)) fL\ sm[7r(u - 2;^)] 
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Figure 7.2: The left hand diagram shows the distribution of zeroes in ampfitude B'j^{u) for 

K 
2 

the N = 22 theory. The zeroes from 5 ( ^ ( 1 + u)) are not shown. AU zeroes are cancelled 

by the minimal CDD functions 6^_i(u) which leave the distribution of poles shown in the 

right hand diagram. The same pole distributions appear in the amplitudes of B^{u). 

biiu) = 
- i s i n [ 7 r ( n + ^ ) ] 

(7.33) 
S { i { 2 - u ) ) l \ s m [ A u - ^ , ) ] 

Wherever a pole occurs we suppose this represents a bound state in a forward or cross 

channel. The poles in the CDD functions 6+(u) and b~{u) are at u = 1 - for 

/ = 1, ..n - 1 and correspond to bound state particles with masses 

2Trl 
Ml = 2M sin = l , . . n - 1. (7.34) 

. 2 ( 2 n - l ) ; ' 

This is in perfect agreement with (6.14) for N = 2(2n + 1). Let us consider the N = 22 

scattering theory, choosing N sufficiently large to see the structure of the zeroes, poles and 

resulting vacuum picture clearly (see Figure (7.2)). We can reconstruct the underlying 

vacuum structure from the position of the poles in the scattering amplitudes as follows. 

I f one of the poles is to correspond to a bound state described by the incidence matrix 

it is u = 7/9 in the amplitude B^ since this is the only pole associated with a single 

topological value k. A l l higher incidence matrices ...) have more than one fink 

from each vacuum and therefore must be associated to more than one amplitude. I t is 

natural to identify each column of poles in Figure (7.2) with one of the graphs in Figure 

(7.3). 

In order to interpret the graphs as part of the incidence diagrams for the N = 22 

vacuum structure we must show that the higher graphs may be derived from the first. 

Note also that we cannot yet determine how many points are contained in each of the 

graphs. 

The amplitude B^ which represents a link between two adjacent points in the first 

figure was defined to be the amplitude relating vacuum s and vacuum w^^s via (7.23). 
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Pole at u = 7/9 Pole at u = 5/9 Pole at u = 3/9 

Pole at u= 1/9 

Figure 7.3: Reconstruction of the bound state vacuum diagrams for N = 22. Each of the 

diagrams closes as in Figures (6.2,6.3). The dots simply indicate that a priori we do not 

know the number of nodes in each picture (see text for full discussion). 

Let the map {B'^) : s -> uP'^s indicate that links vacua separated by the factor w "̂ 

(note a;~^°s is also connected to s by this map). If the graphs of Figure (7.3) genuinely 

represent vacuum incidence matrices then we expect (-SJ*") (which links next to nearest 

nodes) to be equivalent to applying [B'^) twice. Since A'̂  = 22, we find (Bg")^ : s 

Lj'^^s = uj^^s = (jL>~^s. Therefore (B^)'^ does connect the same vacua as {B^). We then 

write 

(B+f^iBt). (7.35) 

Similarly (B^f ~ { B f ) and (5^)^ ~ (̂ 2+). Furthermore, the periodicity 

{Btr = {B+), (7.36) 

implies each of the graphs has exactly 11 nodes. For a general iV = 2(2n + 1) there are 

n — 1 poles distributed in a pattern like that of Figure (7.2); the resulting n — 1 graphs 

have N/2 nodes and look like the sequence begun in Figure (7.3). The figures obtained 

coincide with those predicted in the last chapter for a Z^r symmetric theory where N 

factorises into the product A'' = N/2 x 2. 

7.3 c?n-related S-matrices 

For the N = 4(2n + 1) theories, as in those considered already, states are formed by kink 

pairs which are restricted to travel from one of N vacua to the disordered vacua. If we 
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let £ = ±1 and s = w^'g = 0,1,.., 2n, the particle states may be written 

\Klje,)Klo{02)), \K'o.si^i)K-^{02)) (7.37) 

and 

\KloiOi)KlA02)), \Kl,{ei)K-l,{e2)). (7.38) 

As expected integrals {Q,Q,Q^,Q^} appear, but there is also another local integral of 

motion with even spin denoted D2n- This acts on asymptotic states as 

= X:£»(Me^O'"|i^^J,.,(^i)-if^:_„..(^0-i^^L.,..(^^)-{o.O (7.39) 
i=l 

and since this integral commutes with Q and it gives a restriction on the S-matrix 

amplitudes 

\K^e^)Kiaie2)U = Y.^l/A^)\KlA02)Ki,,omout (7.40) 
s' 

\Kl,i9,)K-^{92)hn = YlX/Au)\K^,t'iO2)KI,A0i))out (7.41) 

\Kio{ei)KiA02)hn = Bi,AumAe2)KiA0i))oui (7.42) 

\KiAei)K-^A^2)hn = Bl/Ay)\K-l{e2)KiAdi))out (7.43) 

Fateev has claimed that the system also has the Z2 charge symmetry e —e described 

by the operator C : CD2n — —D2nC. If this is so, we may drop the upper index on 

A, A, B and B. Now proceeding as before, with 

Ak (u) = AN/i_k = {u), s/s' = (7.44) 

and similarly for A, B and B. These amplitudes satisfy 

Ak+i{u)S{2k + 2-u) = -Ak{u)S{2k + u) 

Ak+iiu)Ci2k + 2-u) = Ak{u)Ci2k + u) 

Bk+i{u)C{2k + l + u) = Bk{u)Ci2k + l-u) 

Bk+i{u)S{2k + l + u) = -Bk{u)S{2k + l-u) 

with S{x) and C{x) are defined earlier. The solutions in this case are 

i=k—l n 

Ak{u) = a(n)(-l)'= n S{2i + u) ]][ S{2i-u), (7.45) 
i=0 i^fc+l 
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i=k—l n 

Ak{u) = aiu) n Ci2i + u) n C{2i-u), (7.46) 
k-1 n 

Bk{u) = h{u) n C{2i + 1 - u) n C!{2i -l+u), (7.47) 
1=0 k+l 

k-1 n 
Bk{u) = biu)i-l)''l[S{2i + l-u)]lSi2i-l + u). (7.48) 

2=0 k+l 

Crossing and unitarity conditions read 

Ak{u)=Bkil-u), Mu) = Bk{l-u), 
2n 2" _ _ _ _ 

Ak{u)Ak{-u) = Yl My')M-y') = Bu{u)Bk{-u) = Bk{u)Bk{-u) = 1, 
k=0 k=0 

which impose the following conditions on a{u),a{u),b{u) and b{u) 

a{u) = b{l-u), • a{u) = 6(1 - u), (7.49) 

^a{u)ai-u) = b{u)b{-u) = 2 ^ " - ^ , (7.50) 

^a{u)a{-u) = b{u)b{-u) = 2^" . (7.51) 

The minimal solution (different to that stated in [34]) is 
(u-12 

a{u) = i f ) ' Mu), (7.52) 
(u-l) 

N\2 

so that 

where 

with 

aiu) = - ) R2{l-u), (7.53) 

b{u) = ( j ) " i ? 2 ( l - u ) , (7.54) 

N 
4 

i?2(^x) = (J^^^ dn{u)P{u) , R2iu) = (^^y dniu)P{u) , (7.56) 

b{u) = ' R2{u), (7.55) 

P(u) = TT ^ M i.2 + 2n+l M 1.2 + 2n+l M I2 + 2»+l i ,^ 
"1=1 V 2n+l ''•̂  V2 "f" 2n+l 2̂ 2n+l M l 2''" 2n+l / 

Again, the factors dn{u) and dn{u) must be chosen to cancel any zeroes which would 

otherwise be present in the solutions. The minimal choice is 

= n!;^!f±#ii. ,7.58, 
1=1 - i ) ] 
" s i n [ 7 r ( i i + ^ ) ] 

r=i ^M^y- - 3r) 
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These factors give rise to poles in some of the amplitudes Bk and Bkatu = l — 
for Z = 1, ..2n — 1 and are expected to correspond to forward channel bound states with 
masses 

Ml = 2M sin j ; l = l,..2n-l (7.60) 

which is again in perfect agreement with the mass formula (6.14) derived in the last 

section. As a specific example, consider the A'̂  = 28 scattering theory. Figure (7.4) shows 

the distribution of poles in the amplitudes B^ and B^ '. the result when we have multiphed 

through by the meromorphic functions b{u) and b{u) respectively. 

The pole at u = 5/6 in amplitude B3 is supposed to connect adjacent nodes in the 

graph corresponding to part of the incidence matrix 7̂ ^̂  because all other poles correspond 

to more than one value of the label k. Together with the distribution of the other poles 

among the amplitudes B^ and B^ this allows the construction of the graphs in Figiure 

(7.5). In the notation of the last section we write {B3) : s uj^'^s. As in the 6„-related 

case, if the graphs shown do represent incidence matrices we expect ( ^ 3 ) ^ ~ [Bi) because 

Bi clearly relates next to nearest nodes. For N=28, ( - 6 3 ) ^ : s —>• uj^^s = (JJ~'^S, SO (B^)^ 

relates nodes separated by a factor as expected. Similarly, one finds ( ^ 3 ) ^ ~ {B2), 

( i ? 3 ) ^ ~ (B2) and (B^)^ ~ (Bi). Finally, we observe the periodicity 

{Bsf = (Bs), (7.61) 

which tells us that seven nodes appear in the graphs of Figure (7.5). This is exactly 

one of the possibilities predicted in the last chapter for a theory where N factorises as 

A'̂  = N/4 X 4. The graphs obtained therefore describe the '^N/A part of the incidence 

matrices for the Z;v symmetric theory. 

Thus if we exploit additional conserved charges, S-matrices which are or 2yv/4 

symmetric are obtained and from these we can only reconstruct vacuum diagrams which 

BO 

BI 

B2 

B3 

•X X Bl 

B3 

•x 
• X X -

•X X X -
2/6 4/6 1/6 3/6 5/6 

Figure 7.4: The distribution of poles in the minimal solutions B'^{u) and Bf. (u) when 

AT = 28. 
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Pole at u = 5/6 Pole at u = 4/6 Pole at u = 3/6 

Pole at u = 2/6 Pole at u = 1/6 

Figure 7.5: Reconstruction of the vacuum diagrams for N = 28. 

appear to be related to orbifolds of the full ^Ar-symmetric vacuum. For even N it is likely 

that an orbifold the full Zjv-symmetric theory would give S-matrices which would also 

predict bound states which give rise to the subdiagrams A2-1 and A4-1 for the bn and 

dn related theories respectively as well as the vacuum diagrams found above. 

7.4 Hidden vacuum structure in the N odd S-matrix 

Returning to Figure (7.1) we see that the distribution of the poles is very much more 

complicated in the N odd cases compared to the N even. However, considering only the 

poles at 

u = 1 4/ 1 = 1,.. N - 1 (7.62) 
A r - 4 ' 

gives the mass spectrum Mi = 2Msin{j^^) which agrees with the prediction (6.14). The 

poles u = 1/13,5/13 and 9/13 in the right hand graph of Figure (7.1) give exactly this 

spectrum when N = 17. 

Another interesting fact is that if one considers only these poles and their correspond

ing topological values, we can reconstruct the vacuum picture derived in the last section. 

The argument is once again based on finding the single pole-charge pair which is likely 

to correspond to a single link on the I^^^ incidence matrix. The pole in amplitude Bg at 

n = 9/13, which Unks adjacent nodes via {B^) : s -> oj^^s, is the obvious candidate. To 

accept the graphs of Figure (7.6) as being parts of the incidence matrices /^^^/^^^ and I^^^ 

we expect (Bs)^ ~ (Bi) and (Bsf ~ {B7). Indeed with N = 17, (Bg)^ : s w^̂ s = W'^s 
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Pole at u = 9/13 Pole at u = 5/13 Pole at u = 1/13 

Figure 7.6: Suggestion for the reconstruction of the vacuum diagram for N = 17. 

relates vacua s and cj^'^s, just as (Bi) does. Also, {B^)^ : s —)• LJ^^S = w^̂ s relates ex

actly those nodes connected by (-B7). Additionally, we find that the least value of m for 

which (Bs)'^ = (Bs) is m = 18 implying there are 17 nodes in the Figure (7.6) which is 

expected for the Z17 symmetric part of the incidence matrices because there is no fac

torisation here. The same pattern is true for all N odd, provided we exclude the spurious 

poles which were introduced because the S-matrix amplitude has zeroes at u = 1 — 

(k = 1, . . [ ^ ] - 1) for theories TV = 4p + 3, and at u = 1 - ^ for those with AT = 4p-|-1 

(for integer p > 1). 

In summary, the above evidence suggests that if we leave these zeroes in the physical 

strip and only introduce poles at (7.62), then we would obtain a spectrum and vacuum 

structure which agrees with the TBA prediction. The problem is that if we allow these 

zeroes we effectively lose the power of the minimality assumption. 



Chapter 8 

Conclusions 

Armed with the Y-systems summarized by the diagrams of Section (4.2), we can write 

down TBA systems (4.2), (4.9), (4.29) and (4.30) which describe a set of flows into both 

massless and massive directions from conformal theories with symmetry under the 

self-dual Z^r-symmetric perturbation operator ê ^̂ . The ultraviolet and infrared limit

ing behaviour of the ground state energy and several leading corrections from perturbed 

conformal theory can easily be obtained through analysis of the TBA equations and cor

responding Y-systems. The TBA method is constrained only by the numerical accuracy 

of the computer routine which solves the TBA system in question. 

The phase space of all two-dimensional 2Ar-symmetric statistical models has at least 

three phases when N > 5. Low and high temperature limits are identified with or

dered and disordered phases, while the existence of a massless perturbed theory with 

infrared limit identified as being conformal, self-dual and 2Ar-symmetric, demonstrates 

the existence of the third Kosterlitz-Thouless phase. It has also been established that the 

parafermionic theories are most likely located at the opening of the Kosterlitz-Thouless 

region from the first order transition region. 

New dilogarithm identities appear naturally when we attempt to evaluate ultraviolet 

and infrared limits of the effective central charge. Such identities add to a huge class of 

new identities already found using the TBA approach which suggests a deep relationship 

between integrable models, Y-systems and sum rules of the transcendental dilogarithm 

functions [57]. That the Y-systems contain the information to calculate the ultraviolet 

features like the perturbing dimension and central charge of a perturbed conformal theory, 

as well as all the infrared behaviour in both massive and massless directions, seems to 

suggests that they embody many of the features expected from an integrable theory. One 

114 
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of the most ambitious projects would be to develop a scheme for the classification of all 
integrable systems via the Y-system approach. This program has recently begun in the 
work of Bazhanov, Lukyanov and Al.B. Zamolodchikov [58] who showed that it is possible 
to pass directly from the integrable system to the Y-system, thus bypassing any need for 
an S-matrix derivation. 

In Chapter (6) the energy level problem for a degenerate vacuum quantum theory is 

discussed. Results are obtained which can be applied to quantum field theory in finite 

volume i.e. to the TEA systems with a finite circumference i?. The relationship (6.9) was 

found, which expresses excited state energies in terms of eigenvalues of incidence matrices 

which describe the paths of kinks of mass Mi travelling between degenerate vacua. A 

general expression has also been found for the incidence matrices which describe vacua 

between which bound state kinks may travel. The mass spectrum can be found in this case 

because the ground state energy is accessible from the TEA method and the degenerate 

vacuum structure can be deduced. Both facts are useful when checking a hypothesis for 

the scattering matrix of the massive theory. 

In Chapter (7) the S-matrices are proposed for the Z^r-symmetric massive scattering. 

When additional conserved charges are involved, as in the cases Â  = 4n -I- 2 and N = 

4n -h 4, the S-matrices have explicit and symmetry. For N odd the vacuum 

diagrams suggested by these matrices agree exactly with the predictions of Chapter (6). In 

the even cases, where Â  factorises, using the additional conserved charges means we only 

find A /̂2 and A /̂4 node vacuum pictures. It is believed that the full incidence structiure 

(6.20) could be reconstructed from an S-matrix with the full Z^r symmetry by a suitable 

orbifold process. One of the main results of Chapter (7) is that the minimality principle 

must be violated if the S-matrix obtained is to agree with expected mass spectra and 

vacuum structures. 

In this study we have concentrated on perturbations of Ziv-symmetric conformal field 

theories by a single self-dual field e^'^h However in any W.^ phase space there exists a 

self-dual subspace of dimension [Ar/4]. It would be interesting to investigate this subspace 

and all other perturbations of parafermionic models which remain in the phase space. 

More desirable still would be a non-integrable method which could be used to examine 

those regions of phase space off the relevant and irrelevant manifolds. This is currently a 

distant prospect, in the meantime it would be interesting to investigate just how far the 

TBA program can be developed. 
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Certainly, the quantum field theory and TBA techniques used to investigate the phases 
of the of the Zyy-symmetric systems models could be applied to many other statistical 
mechanics systems. Though derivations of the TBA equations are generally difficult, we 
have shown here that it is possible to bypass this problem in some cases when the infrared 
limit of one perturbed theory coincides with the ultraviolet limit of another, effectively 
getting two sets of Y-systems for the price of one. 



Appendix A 

sine-Gordon T B A and Y-systems 

In this appendix we derive the TBA equations for the 6„-related massive sine-Gordon 

theory with 0^ = 32Tr/N {N=4n -\- 2) using the algebraic Bethe ansatz. Then the cor

responding Y-systems are stated along with the generalisations for all N > 5. The sym

metric versions of these are believed to be the Y-systems for the perturbed parafermionic 

field theories Z^j^\ 

A . l Massive ft^-related sine-Gordon TBA 

Suppose that the 6„-related sine-Gordon theory consists of a collection of iV^ solitons 

or antisolitons, labelled by A and A respectively, each of mass M„ and Nf, breathers of 

mass Mi, i = 1,... ,n — 1. Positioning these on a circle of circumference L with periodic 

boundary conditions we intend taking the thermodynamic limit Ng, Nh, L oo as before. 

The wavefunction ̂  should remain invariant if a particle of rapidity 9 is passed through 

all the others on the ring before returning to its original position. This condition may be 

stated in the form of three sets of equations, the first when we consider invariance when 

we move a breather around the circumference and the other two when we move a sohton 

or antisoliton. Introducing a breather or soliton label on the rapidities these systems 

become 

e^LM,sinhBlY[g^^^^0l_0^^Y[Si,n{e}-et)^ = * (A.l) 
k=l k=l 

^^LM„_isinh0r ]lSn-l,k{(^r'-0k)l[Sn-l,n{^?-'-em = * (A.2) 
k=l k=l 

117 



m = (A.5) 

Appendix A; sine-Gordon TBA and Y-systems 118 

e''''^-''^'''"l[SAAs?-dk) n So{e^-e^)TAA{ef)^ = * (A.3) 

Nb Ns 
g Z L M . s i n h ^ r - Q 5 _ ^ ( ^ n _ ^ ^ ^ JJ S,{ef - et)T^ie^)<f = (A.4) 

A;=l ' k=l,ki^i 

where 0},6f, ..Of~^ are rapidities of breathers and Of the rapidities of solitons or antisoli-

tons. In particular, the notation is such that a rapidity with lower index k is intended to 

be the rapidity of a particle in a sequence 1 to A ;̂, or 1 to Ns. The upper index always 

labels the particle type. The significant difference between this and the diagonal case 

discussed earlier is that the wavefunctions ̂  of non-diagonal scattering are more compli

cated objects, being labelled by a set of Ng colour indices {a i , . . , ajv^} where each ai is a 

soliton or antisoliton label A or A (in contrast to the scalar wavefunctions of the diagonal 

scattering). The number of configurations is therefore 2̂ ^̂ . TAA and T-jj are elements of 

the transfer matrix 

'TAA{0) T^ag) 

T-AAi^) T-AxiG) 

Each element Tab{0) is itself a matrix of amplitudes for the process where particle a of 

rapidity 9 passes Â s other solitonic particles of rapidity 9I,..,6NS and returns as particle 

b of the same rapidity. This does not leave the other particles on the ring unaffected. 

If the initial configuration consists of the particle a and a combination of Ng solitons or 

antisohtons labelled {ci , C 2 , . . , CM^}, then the final configuration is particle b together with 

another combination of Â s solitons or antisolitons labelled {di , ^2, ••, t̂ iv^} where Q and 

dj can only take two values A or A. Therefore, the entries of Tab(0) are 

T . , ( ^ i ^ r , . . . , ^ j ^ j g } = E ^ a : c ^ ( ^ - ^ r ) < ^ ( ^ - ^ 2 ) • • • < : i . , , ( ^ - ^ ) ^ J (A.6) 
ki,..kMs 

where each matrix R^j {6) is the 4 x 4 non-diagonal part of the soliton scattering matrix 

(2.22). (Note that the scalar part of the sohtonic S-matrix for these interactions has 

already been taken care of above through the products of 5o factors.) Since the labels a, 6 

and all the ki are restricted in this sum we note that each Tabid) is a 2^^ x 2̂ = matrix. 

The action of Tat (9) on a wavefunction ^' is 

(r„,(^)*)«i'---3 = y : Tabieri,•.•,ok)ZZy''''''''''"' • ^^•'^^ 

Note that SAA^) = ^Ak(^) = ^nA^) i^-^) i^-^) combined. Our aim is to 

diagonalise the resulting equation. The Yang-Baxter factorisation equations ensure that 
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{TAA+T-J^){0) commute with different values of 9. The set of these matrices can therefore 
be diagonalised for all 0 by a set of 9 independent eigenvectors '^i (l = 1,2, ..2^''), with 9 
dependent eigenvalues. 

TrTi9m})^i = Xi{9m})^t (A.8) 

where TrT = TAA + 7^4 ^^^^^ of ̂ (^)-

Now consider Q. = |A(^f),...,Z(6']yJ). This is an eigenstate of both TAAi^) and 

^4^(6*), because by (2.22) and (2.22) we have 

TAAi0)^ = l[b{9-9^)n, (A.9) 
1=1 
Ns 

T-^{9)^l = '[[ai9-9f)Q. (A.IO) 
i-l 

The first equation comes about as follows. As we pass soliton A through the first anti-

soHton we pick up a phase b{9 - 9^ for the process A{9)A{9'1) —> 'A{91)A{9). The next 

encounter is A{9)A{92) —> A(^^)A(0), which picks up another factor, now of b{9 - 9'^). 

We continue until we end up with the original rapidity configuration. The second equation 

arises in the same way. 

To proceed we make the following algebraic Bethe ansatz: that all eigenstates of the 

trace above can be written as 

for some yj and r. Since T-^^ is the matrix for the process where antisoliton A passes 

through all other particles and ends up as soliton A, we see has r solitons and Ng -r 

antisolitons. The Yang-Baxter equations yield [56] 

R^c'ie - yj)Ta'b{0)Tc'd{yj) = T,a'{y,)Tay{9)RZ,{9 - Vj) (A.12) 

and these give the commutation relations for the transfer matrices 

TAA{e)T-^^{y,) = ^ f ^ f A A i y o ) T A A { 9 ) - ' ^ ^ 

TAAmM = -l^^^AAiy^^^AAi^^ + "§^fAAmAAiy^) (A-14) 

provided b{9 — yj) 7̂  0. The result is that the action of the trace of the transfer matrix 

on the state is 

[TAA{e) + T-^{9)]<i> = f i ^ l l z M ( j i b ^ e - 9 t ) + {-i)'U''(^-^k^^ 
j= i "̂ '̂  ~ \k=i k=i / 

+ terms proportional to [TAAiyj) + {-!)''Tj^iyj)] . (A.15) 
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We find that the trace is diagonalised by 5* only if 

Obtaining a(^) and b{9) from equation (2.22) and using the identity | = | j this condition 

becomes 

^ s inhf^(^?-y , ) ) 

i A s i n h ( | ( y , - ^ , " ) - f ) 

When satisfied for some yj and r, the corresponding eigenvalue from (A. 15) looks like 

{%}) = A n sinh -{9 - y, - ^TT) ]][ ^i^h - (y , - 9 ) ) , (A.18) 

^ ^ [ n £ i sinh (|(g," - 6)) + i-iy Uti «inh {^{d - - ^^))] 

n f t i s i n h ( | ( y , - e ) ) 

After diagonalisation of the transfer matrix equations, (A.1)-(A.4) become 

e'̂ ""̂ ""*̂ '' Y [ SiA(^l - Ok) n S,ASl -Ok) = l (A.20) 
k=l k=l 

where 

_ Nb Ns 

g.LM„_, sinhC" JJ 5„_i,fc(0r 1 - 9k) n '5n-l,n(er"' - f̂c) = 1 (A.21) 
fc=l k=l 

Nb Ns 
g.LM„ sinh^r -Q 5^_^(^n _ ^n) JJ ^^(^n _ ^n) X{9f\{9t}, {yj}) = 1 . (A.22) 

k=:l k = l 

We can now let the number of particles Ni, and Ng increase with the circumference L and 

so examine the thermodynamics of this theory. 

Diagonalisation is only possible when (A. 17) is satisfied. The solutions to this equation 

are of the form 
= yf + iTr/2h, yj = yf - m/2/i (A.23) 

where y f \ y f ^ are real, with the upper index chosen for convenience later. The real 

parts of these solutions may themselves be viewed as rapidities, because although they 

do not correspond directly to real particles (they have no associated energy) we may 

still talk about their statistics and densities exactly as we do for real rapidities. The 

pseudoparticles to which they would correspond are called magnons. In the limit where 

the number of particles becomes large, equation (A. 17) relates the level density of the 

magnons ipn\0) and Pn\9)) to the soliton root density prA^)' 

r —?S#Ŵ ^ = P'--n)(̂ ) = 27rpWW « = 0'2- (A-24) y_oo cosh{h{9 - 9')) 
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where 4'i{9) is the kernel 

cosh{h9) 

Since the magnonic particles are only related to the solitons, we attach the soliton index 

to their rapidities. This equation is derived in the same manner as before. We begin 

by taking the logarithm of the system (A. 17) and equating the imaginary parts. In 

the large Ng limit we can first replace the sum over soliton rapidities 9]^ by an integral 

which introduces the root density for solitons, and then, by considering two consecutive 

equations in the large particle limit, we obtain the level density of the magnons. 

As for the relationships between breather and soliton densities, these are found directly 

from (A.20-A.22) in much the same way. Again we look at the imaginary part of the 

equations after taking logarithms. Then each sum over index k can be replaced by an 

integral over either breather or soliton rapidities. In the first n — 1 equations, as mentioned 

above, k runs over all varieties of breather types, so in these equations we have a sum of 

root densities (one for each breather type). A soliton root density appears from the other 

sum in these equations. In the large Nt„Ns,L limit these are related to the level density 

of the breather in question. The soliton system (A.22) gives a similar integral equation in 

this limit, only now the A(0"|{0^}, {y^}) gives rise to the root densities of the magnonic 

particles pi^l{9) and pr^l{9). There is also a contribution from the scalar piece of the 

soliton-antisoliton S-matrix ^o. Hence the integral equations relating magnon, soHton 

and breather root and level densities, together with (A.24), are 

A/T n—1 

PM = -^COSh9-\-J2i<l>Jm*Pr,m)iO) + {<t>nj*Pr,n){e) j = l,..n-l (A.26) 
m=l 

Pn{0) = ^COshe-\-J2i<l>nk*Pr,k){d) + {<l>O*Pr,n){0) 
2^ k=l 

+1 E (A.27) 
^ a=0,2 

The kernels 

4>ijiO) = ^Im\ogS,-i{9) i,j = l,..n-l (A.28) 

MO) = ^Im\ogSnj{9) i = l , . . n - l (A.29) 

MO) = ^Im\ogSo{9) (A.30) 

can be found explicitly since Sij{9),S„j{9),So{9) are those stated in Section (2.2). The 

hole and root densities for magnonic particles which appear in the final term in (A.27) 
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originate in the limit of equation (A.18). When we take the logarithm of the equations we 
would have 2Trni on the right hand side not rij, so level densities pn^ and pn^ do not arise 
naturally in the usual way. Therefore, we can simply define the densities pr% and p^^l^ of 
yj from the two terms in (A.18) to be the root and hole densities respectively. Similarly, 
for p g and p^-^^. We define = + pi°) and p^^^ = p g + pi^). 

With these relations in place the TBA equations can be determined. The free energy 

for this system may be written 

Rf{p,Pr,Pk) = R f 2 H { P r , i ) - f E 5 ( p „ p , , ) +5(pW,p(5) +5(p(,2),p(2))') , (A.31) 
i=l \ l=l / 

where energy and entropy terms are defined 

Hipr,i) = J d9pr,iMiCosh9, (A.32) 

Sip,Pr) = j d9[p\0gp-{p-Pr)\0g{p-Pr)-Prlogpr]. (A.33) 

Here we have omitted the 9 dependence of the rapidities in order to simplify things a 

little. Note that there is no energy term for the magnonic particles. The system is said to 

be in equilibrium if all derivatives of the free energy with respect to root densities (which 

represent actual configurations) vanish: 

•̂̂  = 0 j = 1, ..n - 1 (A.34) 
Sprj 
Sf = 0 . (A.35) 

OPr,n 
Sf Sf 

Spi^l Spi% 
= 0. (A.36) 

Introducing the pseudoenergies 

Pj{9) l + e-iW ^W(^) i + ee':h0) 

conditions (A.34-A.36) become 

(A.37) 

RMjCosh9 = eji9) + J 2 { c l > j k * l o g { l + e-'>')){9)-\-{<t>nj*log{l-^e-'-)){9) 
k=l 

j = l,...,n-l 
n-l 

RMnCosh9 = eAO) + Y.i'l'nk*^og{l + e-'^)){9) + {4>o*log{l + e-''^)){9) 

+ E (</.!* log(l + e-̂ '̂  )){9) (A.38) 
Q=0,2 

0 = £^^^){9) + i(t>i*\og{l + e-'-))i9) a = 0,2 
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which are the TBA equations for the sine-Gordon 6„-related theories. The kernel 4>o is 
given by 4>o = 4*0 — 4>i* 4>i and is labelled 4>nn in equation (4.13). 

The Y-system corresponding to this set of TBA equations is obtained through the 

following steps, generalising the derivations of [39]. First write down the TBA equations 

for particles j = 1, ..n—1 evaluated with arguments 9+i'K/h and 9—i'n/h. The same should 

be done for the mass M„ but with the arguments 9-\-iTr/2h and 9 — iTr/2h. Any magnonic 

equations are also shifted by ±iiT/2h. Each shifted pair of pseudoenergies is then summed 

so that the combination of energy terms becomes 2COS{'K/h)vj{9) or 2COS{'K/2h)uj{9). h 

appears in the mass spectrum identities 

M 2 = 2cos(7r//i)Mi 

Mi-i + Mi+i = 2cos{Tr/h)Mi i = 2,..n-2 

M „ _ 2 + 2cos(7r/2/i)M„ = 2 cos(7r//i)M„_i (A.39) 

Mn-i = 2cos(7r/2/i)M„. 

The next step is to write down the following set of n equations. The first is simply the 

TBA equation involving mass M i . The next n - 3 are sums of TBA equations associated 

with masses M j _ i and Mj+i for i = 2, ..n — 2. The next is the sum of the TBA equations 

for M „ _ 2 and 2cos{Tr/2h) times that for M„. The final equation is the TBA equation for 

mass Mn-i- By subtracting this system from that obtained via the above shifts one should 

find that all energy terms when collected together vanish, leaving only pseudoenergies and 

L-functions. After using the appropriate kernel identities to simplify the result, taking 

exponentials of all equations gives a set of Y-systems on the substitution Y^°'\9) = ê * 

The energy independent system becomes 

YI'\9 + I^)YI'\9-I^) = il + Yll\{9)){l + Yllli9)) z = l,...n-2 

Y^]},{9 + t^)Y^'M9-z^) = {l + Yi%{9)){l+Y<^'\9)){l + YP{9)) 

x { l ^ y ^ H e ^ ^ f ^ ) ) { l ^ m e - ^ l , ) ) 

y^id + ^^M'Ho - = (1 + + Y('Ho)-')-'{i + Y^'H9)-Y' 

+ - {l + Y('H9)-Y' « = 0,2. (A.40) 

At this point it is convenient to introduce new functions 

y(")[0,r] = y / " ) ( ^ - ^ ) Y / ' ' ^ ( 0 + ^ ) 

F;" ){^ , r} = ( i + r / " ) ( ^ - ^ ) ) ( i + y/"^(e + ̂ ) ) 

y/" ){0 , r} = ( i + y . ( ° ) ( 0 - H ^ ) - i ) ~ ' ( l + y/")(^ + H | i ) - i ) - ' 
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to express the Y-systems in a more compact form. Wi th this notation the 6„-related 
Y-system can be expressed 

Y\'\e,l] = Yi{l + Y}'\9)f"~' i = l...n-2 

F ^ j e , ! ] = {i + Yi'Me))Y^^\0,i/2}{i + Y('He)){i + YP{e)) 

Yi^\e,l/2] - ( l + y W ^ - i ) " ' « = 0,2 (A.41) 

where ^ is entry of the incidence matrix for the a„_i Dynkin diagram. 

A.2 sine-Gordon Y-systems 

Tateo [40] has given a relatively simple set of rules which enable us to write down the 

Y-systems for a general sine-Gordon model. 

1. Define the parameter 

e = (^V8vr) / ( l - /3V87r) , (A.42) 

where specifies any sine-Gordon model so that ^ is rational and may be written 

as the continued fraction 

^ = i{ni,n2,..nF) = • (A.43) 
m H , 1 

•••np 

For this theory there is one soliton, n i bound states and magnonic pseudopar-

ticles. An exceptional case is the pure dn+i theory where there are two solitons. 

Each theory corresponds to a diagram like that shown in Figure ( A . l ) . 

2. Define the shifts 

s i = « 7 r y , S2 = 6 s i , S3 = ,^3{2Si,.. sp = • • • (2S1 (A.44) 

where d = ^(nj, n^+i,ni?). Also introduce the shift label a where a = 1 for nodes 

{ 1 , 2, ..,ni}, a = 2 for nodes {ni + l ,n i + 2, ..,ni +712}, and so on, so that the shift 

associated with node i is simply 

5, = Sa. (A.45) 
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ni + 719+1 

ni + n2 

ni + 712-1 

1 2 711-1 711 "1 + 1 

Tlx = / 

Figure A . l : The Y-system graph associated to the sine-Gordon model for rational ̂ . The 

first ni black nodes represent breathers , node TII + 1 corresponds to the soliton and all 

remaining nodes are magnonic. 

3. Define the link exponent 

Ci,j = < 

1 i f i and j are neighbours in the same horizontal chain 

-1 \ii and j are neighbours in the same vertical chain 

0 for non-adjacent nodes 

(A.46) 

4. W i t h this notation in place the Y-system equation for any of the nodes k € {ni, ni -|-

712, ••, riT - n p - np-i} is 

k+Ua+l 
n (1 + Yj{9 +{k + na+l - j ) S j + Sk+n^^.+if") 

j=k+l 
k+na+1 

n (1 + Yj{e - { k + n „ + i - j ) S , - Sk+n.^.+if") 
j=k+i 

Ck 

(A.47) 

wi th Cj — C j j + i . Node ( n y — n p ) has equation 

\Ck 
717—2 

n ( l + y,(e + ( n T - l - i ) 5 , r r 
j=k+i 
71T-2 

n ( l + F , ( 0 - ( n r - l - i ) 5 , - r ' = P , 
j==k+i 

(A.48) 
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where / and / label the final magnonic nodes. A l l other nodes have associated 
equations 

(6 + Si) {9 - 5,) = n (1 + Yj'"(^))''' ' (A-49) 
jeadj{i) 

where the product in (A.49) is intended over adjacent nodes i. 

We can now list the Y-systems for the TBA of the sine-Gordon models with P'^ = 

32n/N {N > 5). Each of the systems corresponds to one of the diagrams in Figure (A.2). 

1. N=4n+1 

tells us there are (n — 1) breathers, four magnons and a sohton (see Figure (A.2)). 

W i t h a more convenient labelling for the work of the main text, the Y-systems are 

Y['\9-hs,)Y^\0-s^) = l[i^ + Y}'\e)y^r" i = l...n-2 
j 

Yi'Me + s,)Yi'Me - s,) = ( i + yiik^)) 

X (1 + yi^) {e + 3s2))(i + yP {6 - 352)) 

x{l + YPie + 2s2mi + Yj^'\e-2s2)) 

x{i-hY('He + s2)ii-hY^'He-s2) 

x ( i + yi4)(e))(n-yW(0)) 

Y<i'\e + S2)Y^'H9-S2) = ( i + y i i \ ( 0 ) ) { i + y p ) ( 0 ) - i ) - i 

y W ( ^ + 5 i ) y i " ) ( e - s i ) = n ( i + y W ( ^ ) - i ) - ' i 1 ' (c. = 2,..5). 

These can be simplified further through the definitions (4.20) introduced earlier to 

obtain the more compact form 

^• '^ [^ ,1] = I[{^ + Y}'H9)f'^ ^ = l , . . . n - 2 (A.51) 

F l ' l j e , ! ] = {l + Yj%{9)){l + Y('^H9)){l + Y('H9)) 

X y('){e, 3/4}y!f){e, 2 / 4 } y ? { 0 , i / 4 } 
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F i ' ) [ ^ , i / 4 ] = {i + Yi]},ie)){i + YP{9r'y 

y^:\o,i/4] = ui^+y^'Horr''^^' a=2,...5 

2. N=4n+2 

tells us there are (n — 1) breathers and two magnons, as well as a soliton. The 

compact form of the Y-system consists of equations (A.51) for Y^^\9) {i — 1, ..n—2), 

and 

Fl^)[e , i /2] = + + 

This is exactly the Y-system (A.41) we derived earlier, which suggests the above 

prescription is correct. 

3. N=4n+3 

^ = + ^ 1 ^ 1 - ' ^2 = (4)^1, 53 = (4)51 (A.53) 

tells us there should be (n - 1) breathers and four magnons, as well as a soliton. 

Now the compact form of the Y-system consists of equations (A.51) for Y^^^{&) 

{i = 1, ..n — 2), and 

Fl ' ) [e,3/4] = ( i + y S ( ^ ) ) ( i + F W ( 0 ) - i ) " ' ( i + y i^) (0)-^) 

X F„(2){e,2/4}V;(3){^, l /4} 

F1')[^,1/4] - ( i + y p ) ( ^ ) ) ( l + y a ) ( e ) - i ) - ^ 

Fi'^ [0,1/4] = (1 -h y i^) (0)) (1 + y p ) (Q)) (1 + (^)) 

F 1 ' ^ [ ^ , I / 4 ] - ( i + y i ' ) ( e ) ) 

Fjf ) [0 , i /4 ] = ( i - t - y i 3 ' ( e ) ) , 

-1 
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4. N=4n+4 
1 

si = (A.54) 
( n - l ) + l ' 2 

Here there are no magnonic particles, only (n — 1) breathers and two solitons. The 

Y-system is simply 

71+1 , , , + 
Yl'\9,l]=ll{l + Y^^'\9)f^ « = 1, ..n -|-1 (A.55) 

The symmetric version of these equations, which represent the perturbed theories 

are stated in Section (4.2). 

(±) 

N=4n+1 n,4 

a=l • — 
1 2 n-1 n,l 

N=4n+2 

a=l 
n-l 

9 n,2 

n,l 

0 n,0 

N=4n+3 n,2 
n,3 ^ n,5 

a=l • — n,4 

n-l n,l 

N=4n+4 

a=l • • 
1 2 

n+l 

Figure A.2: The sine-Gordon Y-systems for P'^ = 32tt/N with iV = 4n -I- l , 4n -h 2,4n + 

3,4n - j - 4 respectively. Dark nodes denote energy terms v^^^ — m^rcosh^. Those with no 

shading are magnonic with zero associated energy. 



Appendix B 

Stationary Y-values for 

Dilogarithm Sum Rules 

The stationary values of the functions at the remaining nodes for the sum rules stated in 

the Section (4.5) are given as follows, where r] = 'ir/{N + 2) and 

(a) ^ sin((i - f 3)T?) sinjiri) 
' sin((2ry))sin(r?) ' 

X p = ii + 2)i, 

for i = 1 . . . n - 1 . 

1) N = 4 n + l 

Y ( I ) = T(^) = sin2(nr/) 
sin((2n-f 2)77) sin(277) 

(T(^^)2 'Y-(2) ^ ^ _ 

( I + T W , - ( T ( ^ ¥ ) 

(T i^) )3 ( l - f T I ' ) ) = 1 + 2 X ^ 1 + (Ti^2,)2 _ 2 (T(I) )2 _ 2T^2I (T(.^')2 - (Ti^))3 

2n- f 1 

(3n + l ) ( n + l ) 

= ^"(2) = - J L -
3n + 1 

8n2 + 1 -f- 6n 
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^(4) ^ ^(2) ^ 2^5) ^ 1 2(3) = i 2 > g • 

2) iV = 4n+2 

3) AT = 4n-F3 

4) N = 4n+4 

T ( i ) = T(3) - ^^"'(^^^ 
sin((2n + 2)7?) sin(27?) 

T(O) _ T(4) = ^^"("^) 
" sin((n + 2)77) 

(2) ^ sin^jnT]) 
" sin2((n + 2)7?) 

^(3) ^ ; f (2) ^ ;t.(4) ^ = 1 
2n + l ' " " n + l ' 

^(0) ^ 2(2) = Z(4) = 1. 

-Y-(i) = T(6) = 
sin((2n-h 2)7?) sin(27?) 

„ ( 4 ) ^ sin((n + 2)7?) sin((n + 1)7?) + sin2((2n + 2)7?) 
sin2((n + 2)7?) 

T(3) = (T(4))2 - 1 

/•T(*)'\2 1 
Y(2) = T(5) = ~ ^ _ 1 

" ( l + T^ '^V/^ 

2n + l 
(5) _ n(3n + 2) 

(n + 1)2 
^(3) ^ (4n + 3)(2n + l ) 

2 ( n + l ) 
(4) _ ;t.(2) ^ 3n + 2 

~ " n + l 

y(a) _ ^(a) _ Mny) (a = 12) 
~ ^ 2sin(7?)cos((n+l)7?) ^ ' ' 



Appendix C 

Regular Ultraviolet Expansion 

Coefficients 
The following tables list the coefBcients Fm and obtained from fits of numerical so

lutions for the regular part of the small R expansion of RE{R) for massive and massless 

directions respectively. The results are very important because they confirm that the 

massive and massless TBA equations give expansion coefficients which match those of 

perturbation theory with two different signs of the coupling. 

N=5: 
m Fm (massive) Fm (massless) 

0 1.98 X 10-^^ -3.86 X 10-1^ 

1 - 7.78 X 10-12 3.23 X 10-12 

2 0.0112031704 0.0112031702 

3 - 3.37 X 10-°9 1.35 X 10-°9 

4 0.00038484 0.00038477 

5 0.019215 - 0.019217 

6 0.02056 0.02055 

7 0.0004 - 0.0006 
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N=6: 

N=7: 

m Fm (massive) Fm (massless) 

0 2.15 X 10"^^ 4.10 X 10-1^ 

1 1.01 X 10-13 1.22 X 10-13 

2 0.026663544239 0.026663544230 

3 0.0202428666 - 0.0202428658 

4 0.00088616 0.00088614 

5 - 0.0061087 0.0061090 

6 - 0.002800 - 0.002803 

7 0.00033 - 0.00031 

m Fm (massive) Fm (massless) 

0 3.98 X 10-15 8.02 X 10-1^ 

1 2.42 X 10-1^ - 5.84 X 10-15 

2 0.04302032556 0.04302032557 

3 0.0128965993 - 0.0128965995 

4 0.000972018 0.000972029 

5 0.00120282 - 0.00120286 

6 0.0000682 0.0000690 

7 - 0.0000085 0.0000077 



Appendix C: Regular Ultraviolet Expansion Coefficients 133 

A^=8: 
m Fm (massive) Fm (massless) 

2 0.06589308648 0.06589308648 

3 - 0.02744520208 - 0.02744520208 

4 0.00073623262 0.00073623264 

5 0.00102222 - 0.00102216 

6 - 0.00016842 - 0.00016851 

7 - 0.00004770 0.00004710 

8 - 0.0000268 - 0.0000226 

m Fm (massive) Fm (massless) 

0 7.27 X lO-i' i 2.89 X 10-13 

1 - 4 . 2 1 X 10-12 - 1.97 X 10-11 

2 0.124757776 0.124757776 

3 - 0.01159266 0.01159265 . 

4 0.0004886 0.0004887 

5 0.000574 - 0.000575 

6 0.000088 0.000089 

7 - 0.000028 0.000025 
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N=10: 
m Fm (massive) Fm (massless) 

0 1.17 X 10-14 - 2.94 X 10-14 

1 - 8.58 X 10-13 2.40 X 10-12 

2 0.0247185731 0.0247185730 

3 - 0.006211643 0.006211644 

4 0.00031116 0.00031115 

5 0.00030406 - 0.00030402 

6 0.0000402 0.0000401 

7 - 0.0000137 0.0000138 



Appendix D 

Numerical Routines 

This section contains listings of the two Fortran routines used to obtain numerical solu

tions of the thermodynamic Bethe ansatz equations for the 7L^ and ^ 7 flows developed 

in Section (4.1). A l l Z^r TBA equations were solved using similar programs. 

C C 

C PROGRAM : Z5area.for C 
C THE FLOW FROM c=2(N-l)/(N+2) = 8/7 TO c=l C 
C C 

implicit real*8 (a-h,o-z) 
real*8 phi(-4500:4500),mass 
real*8 eps(0:10,-2020:2020),L(0:10,-2020:2020) 
integer A(0:10,0:10) , bound 
real*8 si(0:10),rcoexp(-2020:2020),coexp(-2020:2020) 

C real*8 co(-2020:2020),rco(-2020:2020) 
common r,f2,f3,f4,f5,f6 
data A /121*0.d00/ 
external f l 
open(128,file="cr.m",status="unknown") 
write(128,*) ' { ' 

10 Format('{',F15.9, ',' F120.14, '}') 
20 Format('{',F15.9, ',' F50.14, '}') 

pi=dacos(-l.dOO) 
dth=.ldOO 
iterl=250 
iter2=200 
rmin=0.0001dOO 
istep=40 

135 
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con = 0 

C istep i s then the number of radial points 
C con i s a count, after con = istep we'll put a } at end of f i l e 

mass=l.dOO 
imax=1000 
nnn=6 
bound=700 
do 1 i=-imax,imax 

phi(i)=(dth/(2.dOO*pi))/dcosh(i*dth) 
1 continue 

r=rmin 
do 9 i=-imax-bound,imax+bound 
do 22 X=l,nnn 

L(X,i)=dlog(2.d00) 
22 continue 

C co(i)=dcosh(dth*i) (for massive direction) 
coexp(i)=dexp(dth*i)/2.dOO 

9 continue 
ijk=0 

C 

i t e r = i t e r l 
do 3 rrr=rmin,rmax,rstep 
do 3 cnt=l,istep 
con = con + 1 
i f ( con .ne. 1) then 
iter=iter2 
endif 
r=mass*rmin*l.4**con 

C 

do 7 i=-imax-bound,imax+bound 
C rco(i)=r*dcosh(dth*i) 

rcoexp(i)=r*dexp(dth*i)/2.d00 
7 continue 

do 5 n=l,iter 
do 6 i=-imax,imax 

sl(l)=0.dOO 
sl(2)=0.d00 
sl(3)=0.d00 
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sl(4)=0.d00 
sl(5)=0.d00 
sl(6)=0.d00 

do 14 j=i-bound,i+bound 
C 

s l ( l ) = s l ( l ) + p h i ( i - j ) * L ( 2 , j ) 
s l ( 2 ) = s l ( 2 ) + p h i ( i - j ) * ( L ( l , j ) + L ( 3 , j ) ) 
sl(3)=sl(3)+phi(i-j)*(L(2,j)+L(4,j)+L(5,j)) 
s l ( 4 ) = s l ( 4 ) + p h i ( i - j ) * L ( 3 , j ) 
s l ( 5 ) = s l ( 5 ) + p h i ( i - j ) * ( L ( 3 , j ) + L ( 6 , j ) ) 
s l ( 6 ) = s l ( 6 ) + p h i ( i - j ) * L ( 5 , j ) 

C 

14 continue 
eps(l,i)=(rcoexp(i)-sl(l)+eps(l,i))/2.d00 
eps(2,i)=(-sl(2)+eps(2,i))/2.d00 
eps(3,i)=(-sl(3)+eps(3,i))/2.d00 
eps(4,i)=(-sl(4)+eps(4,i))/2.d00 
eps(5,i)=(-sl(5)+eps(5,i))/2.d00 
eps(6,i)=(rcoexp(-i)-sl(6)+eps(6,i))/2.d00 
L(1,i)=dlog(1.dOO+dexp(-eps(1,i)): 
L(2,i)=dlog(l.d00+dexp(-eps(2,i)): 
L(3,i)=dlog(l.dOO+dexp(-eps(3,1))] 
L(4,i)=dlog(1.dOO+dexp(-eps(4,1))] 
L(5,i)=dlog(1.dOO+dexp(-eps(5,i)); 
L(6,i)=dlog(1.dOO+dexp(-eps(6,i)); 

6 continue 

5 continue 
cl=0.dOO 
do 8 i=-imax,imax 

cl=cl+rcoexp(i)*L(l,i)+rcoexp(-i)*L(6,i) 
8 continue 

c = (3.d00/(pi**2))*cl*dth 
ener=-c*pi/6.dOO/rrr 
print*,r,c 
write(128,20) r, c 

i f ( con .ne. istep ) then 
write(128,*) ',' 
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endif 
3 continue 

write(128,*) ' } ' 

astore=0.dOO 
do 60 i=-imax,imax 
astore=astore+phi(i) 

60 continue 
area=astore 
print*,'area = '.area 

print*,'Z5area.for finished' 
end 
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C c 

c c 

C PROGRAM : ZTarea.for C 
C THE FLOW FROM c=2(M-l)/(N+2) = 4/3 TO c=l C 
C c 

implicit real*8 (a-h,o-z) 
real*8 mass 
real*8 phil(-2020:2020),phi2(-2020:2020),stoal(-2020:2020) 
real*8 phi3(-2020:2020),phi4(-2020:2020),stoa2(-2020:2020) 
real*8 eps(0:10,-2020:2020),L(0:10,-2020:2020),K(0:10,-2020:2020) 
integer A(0:10,0:10), bound 
real*8 si(0:10),rcoexp(-2020:2020),coexp(-2020:2020) 

C real*8 co(-2020:2020),rco(-2020:2020) 
common r,f2,f3,f4,f5,f6 
data A /121*0.d00/ 

c external f l 
open(128,file="cr.m",status="unknown") 
open(141,file="irepsl.m",status="unknown") 
open(142,f ile="ireps2.m",status="unknown") 
open(143,file="ireps3.m",status="unknown") 
open(144,f ile="ireps4.m",status="unknown") 
open(145,file="ireps5.m",status="unknown") 
open(146,file="ireps6.m",status="uiiknown") 

c write(550,*) ' { ' 
write(128,*) 
write(141.*) ' { ' 
write(142,*) ' { ' 
write(143,*) ' { ' 
write(144,*) ' { ' 
write(145,*) ' { ' 
write(146,*) ' { ' 

pi=dacos(-l.d00) 
10 Format('{',F15.9. ',' F120.14, '}') 
20 Format('{',F15.9, ',' F50.14, '}') 
C dth=0.026068d00 (0.125 gives accuracy of ten figures in a l l areas) 

dth=0.125d00 
iterl=20 
iter2=180 
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C for log data 
rmin =l.dOO 
rmax =1.5d00 
rstep=0.5d00 

istep= (rmax-rinin)/rstep + 1 
con = 0 
mass=l.dOO 
imax=1000 
min=6 
bouiid=600 

C bound = K/dth where e"-K desired accuracy 

C KERNEL DEFINITIONS C 
CCC CCC 

do 1 i=-imax,imax 
phi2(i)=dth*(1.5d00/pi)/dcosh(i*dtli*3.dOO) 
phil(i)=(dth/(2.dOO*pi))/dcosli(i*dth) 

c 
phi4(i)=dtli*dcos(pi/6.dOO)*dcosh(i*dth) 
stoal(i)=(dcos(pi/6.dOO)*dcosh(i*dth))**2 

stoa2(i)=(dsin(pi/6.dOO)*dsinh(i*dth))**2 

phi4(i)=phi4(i)/(pi*(stoal(i)+stoa2(i))) 

c 
phi3(i)=dth*dcos(pi/3.dOO)*dcosh(i*dth) 
stoal(i)=(dcos(pi/3.dOO)*dcosh(i*dth))**2 
stoa2(i)=(dsin(pi/3.dOO)*dsinh(i*dth))**2 

phi3(i)=phi3(i)/(pi*(stoal(i)+stoa2(i))) 
1 continue 

r=rmin 
do 9 i=-imax-bound,imax+bound 
do 22 X=l,nnn 

L(X,i)=dlog(3.d00) 
K(X,i)=dlog(3.d00) 

22 continue 
c co(i)=dcosh(dth*i) 

coexp(i)=dexp(dth* i)/2.dOO 
9 continue 
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i t e r = i t e r l 

do 3 rrr=rmin,rmax,rstep 
con = con + 1 
i f ( con .ne. 1) then 
iter=iter2 
endif 

C 

r=rrr*mass 
do 7 i=-imax-bound,imax+bound 

c rco(i)=r*dcosh(dth*i) 
rcoexp(i)=r*dexp(dth*i)/2.d00 

7 continue 
do 5 n=l,iter 

C pr i n t * , ' i t e r a t i o n ' ,n 
do 6 i=-imax,imax 

sl(l)=0.dOO 
sl(2)=0.d00 
sl(3)=0.d00 
sl(4)=0.dOO 
sl(5)=0.d00 
sl(6)=0.d00 

C sl(7)=0.d00 
C sl(8)=0.d00 

do 14 j=i-bound,i+bound 
C 

s l ( l ) = s l ( l ) + p h i l ( i - j ) * ( L ( 4 , j ) + L ( 5 , j ) ) 
& +phi3(i-j)*L(2,j)+phi4(i-j)*L( 3,j) 

s l ( 2 ) = s l ( 2 ) + p h i 2 ( i - j ) * ( L ( l , j ) - K ( 3 , j ) ) 
sl(3)=sl(3)+phi2(i-j)*(-K(2,j)-K(4,j)-K(5,j)) 
sl(4)=sl(4)+phi2(i-j)*(-K(3,j)) 
sl(5)=sl(5)+phi2(i-j)*(-K(3,j)+L(6,j)) 
s l ( 6 ) = s l ( 6 ) + p h i l ( i - j ) * ( L ( 2 , j ) + 

& L ( 4 , j ) ) + p h i 3 ( i - j ) * L ( 5 J ) + p h i 4 ( i - j ) * L ( 3 , j ) 

C-
14 continue 

eps(l,i)=(rcoexp(i)-sl(l)+eps(l,i))/2.d00 
eps(2,i)=(-sl(2)+eps(2,i))/2.d00 
eps(3,i)=(-sl(3)+eps(3,i))/2.d00 
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eps(4,i)=(-sl(4)+eps(4,i))/2.d00 
eps(5,i)=(-sl(5)+eps(5,i))/2.d00 
eps(6,i)=(rcoexp(-i)-sl(6)+eps(6,i))/2.d00 

rco or rcoexp for a mass l i k e node 
L(l,i)=dlog(l.dOO+dexp(-eps(l,i)); 
L(2,i)=dlog(1.dOO+dexp(-eps(2,1))] 
L(3,i)=dlog(1.dOO+dexp(-eps(3,i)) ] 
L(4,i)=dlog(l.dOO+dexp(-eps(4,i)) ] 
L(5,i)=dlog(1.dOO+dexp(-eps(5, i ) ) ; 
L(6,i)=dlog(1.dOO+dexp(-eps(6.i)); 
K(2,i)=dlog(1.dOO+dexp(+eps(2,i)); 
K(3,i)=dlog(1.dOO+dexp(+eps(3,i)) ] 
K(4,i)=dlog(1.dOO+dexp(+eps(4,i))] 
K(5,i)=dlog(1.dOO+dexp(+eps(5,i) ); 

6 continue 
5 continue 

cl=0.dOO 
do 8 i=-iinax,imax 

cl=cl+rcoexp(i)*L(1,i)+rcoexp(-i)*L(6, i ) 
continue 

c = (3.d00/(pi*+2))*cl*dth 
ener=-c*pi/6.dOO/rrr 
print*,r,c 
write(128,20) r ,c 

i f ( con .ne. istep ) then 
write(128,*) ',' 
endif 

5 continue 
do 97 i=-imax,imax 

write(141,10) i*dth,eps(l,i) 
write(142,10) i*dth,eps(2,i) 
write(143,10) i*dth,eps(3,i) 
write(144,10) i*dth,eps(4,i) 
write(145,10) i*dth,eps(5,i) 
write(146,10) i*dth,eps(6,i) 
write(141,*) ',' 
write(142,*) ',' 
write(143,*) ',' 
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write(144,*) ',' 
write(145,*) ',' 
write(146,*) ',' 
endif 

97 continue 
write(128,*) ' } ' 
write(141,*) 
write(142,*) ' } ' 
write(143,*) ' } ' 
write(144,*) 
write(145.*) ' } ' 
write(146,*) ' } ' 
astorel=0.dOO 
astore2=0.d00 
astore3=0.d00 
astore4=0.dOO 
do 60 i=-bound,bound 
astorel=astorel+phil(i) 

astore2=astore2+phi2(i) 
astore3=astore3+phi3(i) 
astore4=astore4+phi4(i) 

60 continue 

print*,'areal = '.astorel 
print*,'area2 = ',astore2 
print*,'area3 = ',astore3 
print*,'area4 = ',astore4 
close(128) 
close(141) 
close(142) 
close(143) 
close(144) 
close(145) 
close(146) 

print*,'Z7area finished' 
end 
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