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Abstract 
This thesis describes ahe reaction of phenyl dithiadiazolyl, [PhCNSSN]*, and phenyl 

diselenadiazolyl, [PhCNSeSeN]', with zero-valent phosphine complexes of platinum and 

palladium. 

Chapter one outlines the experimental techniques utilised to prepare and characterise the 

compounds prepared during the course of this research and contains techniques solely 

employed within the laboratory that this research was undertaken. 

The second chapter describes the chemistry of dithiadiazolyls and an improved synthetic 

route to the ligand [PhCNSSN]'. 

The third chapter outlines the chemistry of platinum and palladium and also describes the 

synthesis of the platinum and palladium complexes used throughout this project. 

Chapter four describes the reaction of [Pt(PPh3)4], [Pt(dppe)2] and [Pd(dppe)2] with 

[PhCNSSN]* to form the novel monometallic complexes [Pt(SNC(Ph)NS-5,5)(PPh3)2], 

[Pt(SNC(Ph)NS-5,5)(dppe)] and [Pd(SNC(Ph)NS-S,5)(dppe)]. These complexes have 

been extensively studied by x-ray crystallography, magnetic measurements, e.s.r. and 

u.v./vis spectroscopy. The biological activity of [Pt(SNC(Ph)NS-5,5)(PPh3)2] and m.o. 

calculations on [Pt(SNC(H)NS-5,5)(PH3)2] were used as a basis for further study. 

In chapter five the formation of trimetallic dithiadiazolyl complexes from the reaction of 

[PhCNSSN]* with zero-valent phosphine complexes has been described. 

[Pt3(Hs-sSNC(Ph)NS)2(PPh3)4], [Pt3(|lS-sSNC(3,4FC6H3)NS)2(PPh3)4] and 

[Pd3(|is-sSNC(Ph)NS)2(PPh3)4] have been stmcturally characterised. The unique type of 

bonding in these species has been described with the aid of m.o. calculations undertaken on 

[Pt3(^s-SSNC(H)NS)2(PH3)4]. 

Chapter six describes the decomposition of monometallic to trimetallic dithiadiazolyl 

complexes with the varying stabilities of different monometallic species rationalised; kinetic 

measurements made and a mechanism for the decomposition is proposed. N.m.r. and e.s.r. 

spectroscopy has been used to observe other decomposition products formed. 

Chapter seven examines the oxidative decomposition of monometallic dithiadiazolyl 

complexes electrochemically (by cyclic voltammetry) and chemically (by reaction with 

NOBF4). The reaction between [Pd(SNC(Ph)NS-5,5)(dppe)], NOBF4 and trace moisture 

results in the formation of a novel dimetallic species [Pd2(M-S-sSNC(Ph)N(H)S)(dppe)2] 

which has been structurally characterised. 

Finally, chapter eight outlines an improved synthetic route to (PhCNSeSeN)2 and the frozen 

glass e.s.r. spectrum of [PhCNSeSeN]*. Reaction between [PhCNSeSeN]* and [Pt(PPh3)4] 

has resulted in the formation of [Pt(SeNC(Ph)NSe-5e,5g)(PPh3)2] and reaction between 

[PhCNSeSeN]* and [Pd(PPh3)4] has resulted in the formation of 

[Pd3(^Se-SeSeNC(Ph)NSe)2(PPh3)4] 



Abbreviations 
The following abbreviations are used in this thesis: 

[RCNSSN]* 1,2,3,5 dithiadiazolyl ring system 

[RCNSSN] 1,2,3,5 dithiadiazolylium ring system 

(SNC(Ph)NS-S.S) chelating 1,2,3,5 dithiadiazolyl ligand 
(^S-sSNC(Ph)NS) bridging 1,2,3,5 dithiadiazolyl ligand 

(|iS-sSN(H)C(Ph)NS) bridging 1,2,3,5 dithiadiazolyl-imine ligand 

[RCNSeSeN]* 1,2,3,5 diselenadiazolyl ring system 

[RCNSeSeN] . 1,2,3,5 diselenadiazolylium ring system 

(SeNC(Ph)NSe-5e,5e) chelating 1,2,3,5 diselenadiazolyl ligand 
(HSe-SeSeNC(Ph)NSe) bridging 1,2,3,5 diselenadiazolyl ligand 

cp cyclopentadienyl 

C.V. cyclic voltammetry 

d.s.c. differential scanning calorimetry 

e.s.r. electron spin resonance 

HOMO highest occupied molecular orbital 

IR infra-red 

LUMO lowest occupied molecular orbital 

Me methyl 

MeCN acetonitrile 

n.m.r. nuclear magnetic resonance 

Ph phenyl 

R substituted phenyl group 

SOMO singly occupied molecular orbital 

thf tetrahydrofuran 
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CHAPTER ONE 

GENERAL EXPERIMENTAL 



1.1. INTRODUCTION 

The following chapters in this thesis contain chemistry that has been undertaken using a 

wide range of techniques, some of which may be unfamiliar to the reader. It is 

appropriate therefore to begin by outlining these experimental methods. The experimental 

work and physical measurements were undertaken by the author after the required 

training. Where this is not the case the operators involved are mentioned. 

1.2. GENERAL EXPERI]VIENTAL 

Many of the reactions undertaken and the compounds prepared were air and moisture 

sensitive; therefore inert atmosphere techniques were applied throughout the majority of 

this work. A l l air and moisture sensitive materials were handled under dry nitrogen in a 

Vacuum Atmospheres HE43-2 glove box fitted with an HE493 Dri-Train and standard 

vacuum line techniques were used throughout. Unless stated O2 free N2 (BOC) was 

used as the inert gas (dried further through a P4O10 column). Al l glassware was pre-

dried overnight at ca.l30°C prior to use. 

1.3. THE STORAGE AND HANDLING OF DRY LIQUID S O 2 . 

Liquid SO2 was used extensively as a solvent and was handled on a Monel vacuum line 

fitted with stainless steel and monel 'Whitey' taps (IK54) which are in turn fitted with 

Teflon compression ferrules. Sulfur dioxide was transferred from the original canister 

into specially designed pressurised cylinders containing P4O10 or CaH2 as a drying 

agent. The SO2 handling and storage equipment was designed and built by Dr. Z.V. 

Hauptman formerly of the Durham University Chemistry Department. 



1.4. SPECIALISED GLASSWARE 

1.4.1. The Closed Soxhlet Extractor. 

The closed soxhlet extractor^] functions as a normal soxhlet extractor (figure l.a.) except 

that the J.Young Teflon tap allows the use of SO2 in a closed system as the extracting 

solvent. The V4" glass tubing enables connection to the metal vacuum line via Swage 

lock Teflon compression fittings or the conventional vacuum line via a glass adapter and 

Swage lock fitting. 

1.4.2. The "Dog". 

The "dog" (figure l.b.)^^] is a twin bulbed reaction vessel connected by a glass tube 

partitioned by a glass sinter. As with the closed extractor. Teflon vacuum taps and I/4" 

tubing facilitates the use of SO2 as a solvent in this apparatus although in the course of 

this research it was more commonly inverted and used as a method of slow diffusion of 

solutions to facilitate crystal growth, a procedure described more fully in chapter four. 

1.5. PHYSICAL IVIETHODS. 

1.5.1. Elemental Analysis. 

Carbon, hydrogen and nitrogen analysis was undertaken by Mrs J. Dostal, Miss J. 

Magee and Mr. B. Coult on a Carlo Erba 1106 Elemental Analyser. 

1.5.2. Infrared Spectroscopy. 

Infrared (I.R.) spectra were recorded as KBr discs using a Perkin-Elmer FT 1720X 

spectrophotometer. Samples that were more moismre/air sensitive were run as nujol 

mulls using KBr plates (enclosed in a brass holder) and were made up in a glove box. 

1.5.3. Differential Scanning Calorimetry. 

Differential scanning calorimetry (d.s.c.) measurements were undertaken with a Mettler 

FP80 control unit linked to a Mettler FP85 thermal analysis cell and interfaced with an 

Opus PC in computer running a d.s.c. analysis program. The computer program was 

written by Dr.J.M. Rawson. 

1.5.4. Nuclear Magnetic Resonance Spectroscopy. 

Nuclear magnetic resonance (n.m.r.) spectra were recorded on a Bruker AC250MHz 

spectrometer. Standard n.m.r. tubes were used after oven drying. 



1.5.5. Electron Spin Resonance Spectrometry. 

Electron spin resonance (e.s.r. or e.p.r.) spectra were obtained in conjunction with Dr. 

J.M.. Rawson at the University of Edinburgh on a Bruker ER200D-SRC spectrometer 

with attached plotter. Oven dried standard e.s.r. tubes were used throughout. Typical 

errors are +/-0.002rnT for hyperfine coupling and +/-0.005 for g-tensors. 

1.5.6. Ultra-Violet/Visible Spectroscopy. 

Ultra violet/visible (U.V./vis.) spectra were recorded on a Unicam U.V./vis. 

spectrophotometer (UV2) connected to an Elonex PC. 

1.5.7. Mass Spectrometry. 

Routine mass spectra were recorded on a V.G. Analytical 7070E spectrometer using 

electron impact (E I) or chemical-ionisation techniques by Dr. M . Jones and Miss L.M. 

Turner. F.A.B. mass spectra were obtained using a dedicated ion source fitted with a 

F.A.B. atom gun at the University of Manchester Institute of Science and Technology. 

1.5.8. Cyclic Voltammetry. 

Cyclic voltammetry (c.v.) measurements were recorded using a Bioanalytical Systems 

type CV-113 potential wave generator and a Linseis type LY1710Q x-y chart recorder. 

The cyclic voltammogram was undertaken in a 3-Iimbed undivided cell with a basal 

bulbt^J (figure I.e.). Into different limbs were placed the reference (Ag/Ag"'"), working 

(Pt dot) and auxiliary (Pt coil) electrodes held by tight "Swage lock" connectors. Samples 

(ca.20mg) and supporting electrolyte [Bu4N][BF4] (500mg) were placed in the cell and 

dissolved in MeCN. The sample was agitated between scans by a magnetic flea. Further 

details can be found in a previous thesis submitted by this research groupf^l. 

1.5.9. Single Crystal X-Ray Diffraction. 

Single crystal x-ray crystallography was undertaken on a Stoe Stadi-4 four-circle 

diffractometer fitted with an Oxford Cryosystems low temperature devicel^l or a Siemens 

SMART CCD detector, and using graphite monochromatic Mo-Ka radiation. The data 

were corrected for absorption by means of cp-scanst^] and a subsequent empirical 

absorption correction["^l. The structures were solved by Patterson or direct methods using 

the SHELXS 86 programf^l and were refined using a ful l matrix least squares method, 



1.5.10. Magnetic Measurements 

Magnetic measurements were run by Dr. C. Gregory of the Department of Physics, 

University of Durham, on a Faraday Balance (Oxford Instruments) in the range 10-300K 

and with an applied field of IT. Accurately weighed samples of about 50mg were loaded 

in scalable Teflon buckets. 

1.5.11. Biological Test Measurements 

Biological test measurements were undertaken by Dr. S. Fricker at the Johnson-Matthey 

Technology Centre (Reading). 

1.6. CHEMICALS AND SOLVENTS 

1.6.1. Purification of Solvents. 

Acetonitrile (Aldrich HPLC Grade) was dried by refluxing over CaH2 under an 

atmosphere of dry N2 followed by distillation (with filtration through a glass column 

packed with pre-dried alumina) into clean dry flasks equipped with J.Young Teflon 

vacuum taps. It was then degassed via a freeze-thaw cycle and stored under dry N2. 

Dichloromethane (BDH), dried by distillation from CaH2 into clean dry flasks, was 

degassed and stored under N2. 

Toluene was dried by refluxing over lump sodium, followed by distillation under an 

atmosphere of dry N2 onto fresh Na wire into a clean dry flask from where it was 

degassed and stored under N2. 

Diethyl ether, anhydrous (BDH) was stored over sodium wire and used direct from the 

Winchester. 

Tetrahydrofuran (thf), was purified (by Mr. B. Hall of the Chemistry Department) by 

fractional distillation from sodium under an atmosphere of dry nitrogen. The solvent was 

then stored under N2 in a Winchester equipped with a teflon tap. 

CDCI3 (Goss) was dried over P4O10 in the back leg of a "dog" before vacuum transfer 

into the front limb prior to use. 

1.6.2. Chemicals. 

The precious metal chlorides, K2PtCl4, K2PdCl4 and PdCl2 were loaned by Johnson-

Matthey and used as provided. 



KOH (BDH), NaBH4 (Aldrich), PhCN (Aldrich), ChsCOONa (Aldrich), dibenzylidene 

acetone (Aldrich & Avocado), 1,2-dichloroethane (Aldrich), LiN(SiMe3)2 (Aldrich), 

SeCl4 (Aldrich), Se powder (various sources) and SCI2 (BDH) were also used as 

provided. 

PPhs (Fluka) and SbPhs (Aldrich) were recrystallised from EtOH prior to use. 

Strip lithium metal (Aldrich) was delivered under argon and transferred to storage under 

mineral oil. 



Figure l .a. The Closed Extractor. 
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Figure l.b. The Twin - Bulbed Reaction Vessel (The "Dog") 
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Figure I.e. The Cyclic Voltammetry Cell (a) Illustrating the Modified 

Swage lock Glass to Metal Connector (b). 
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CHAPTER TWO 

T H E PROPERTIES OF DITHIADIAZOLYLS AND 
T H E SYNTHESIS OF 1,2,3,5 PHENYL 

DITHIADIAZOLYL 



2 .1 INTRODUCTION 
2 .1 .1 . General Introduction. 

Dithiadiazolyls are carbon, di-nitrogen, di-sulfur lit heterocycles isoelectronic with the 

[SNSSN]+*, radical present in [S6N4]Cl2. Theoretically, 4 isomers of these compounds 

may exist (figure 2.a.), although only the 1,2,3,5 and the 1,3,2,4 species have been 

isolated. The structure and chemistry of these compounds has been comprehensively 

reviewed^]. 

Figure 2.a. Isomers of Dithiadiazolyl 

1,2,3,4 1,4,2,3 1,3,2,4 1,2,3,5 

2 .1 .2 . 1,3,2,4 Dithiadiazolyls. 

1,3,2,4 radicals are prepared by the cycloaddition reaction between [SNS]Xand an 

organic nitrile to form the 6% salts [RCNSNS]X, which can be reduced to the radical. 

The 1,3,2,4 radicals are inherently unstable and decompose to the thermodynamically 

more stable 1,2,3,5 radical. The 1,3,2,4 species, although interesting, are not directly 

relevant to this work and wi l l only be mentioned briefly in later sections of this 

introduction. Their chemistry has been examined in great detail in another recent review 

articlet2]. 

2 .1 .3 . 1,2,3,5 Dithiadiazolyls. 

Until the late 1980's much of the research of this group, and others, has concentrated on 

devising new and improved routes to forming the parent cation, [RCNSSN]"*", and its 

subsequent reduction to the radical. From that period on higher yielding routes (the most 

recent of which wil l be described later in this chapter) have resulted in a change of 

emphasis away from novel synthesis towards a better understanding of the physical and 

chemical properties of the species. 
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In the solid state the majority of [RCNSSN]* species exist as dimer pairs through weak 

intermolecular S-S interactions (figure 2.b.). This dimerisation process produces a 

remarkably stable 67C-27t-67C delocalised system and renders the compound diamagnetic 

i.e. [RCNSSN]2. In solution these dimer pairs are almost completely dissociated 

producing 'free radical' [RCNSSN]' species. The strength of association in solution and 

solid state is dependent upon the nature of R, as described below. 

Figure 2.b. Dimer pair of phenyl dithiadiazolyl. 

2e 

2.1.4. Potential Applications and Synthetic Aims. 

There is much current interest in the use of stable free radical species as 'molecular 

building blocks' in the synthesis of novel materials with unusual magnetic and/or 

electrical properties. To induce conducting properties in dithiadiazolyls it was envisaged 

that the ring systems would have to stack (figure 2.c.). 

Unfortunately, the dimerisation process highlighted above gives only diamagnetic 

insulators in the solid state although, encouragingly, the enthalpy of dimerisation (AH 

2.52kcal/mol)f3] is very low (cf. I2 3.65kcaI/mol)[4]. One of the two S-S intermolecular 

bond can be broken by making the R group non-planar, (e.g. CFs^^], Met^l) where the 

interaction is now only through one sulfur atom of each ring. Unfortunately, these non-

planar species will not be able to stack when fully eclipsed due to the steric hindrance of 

the R group and the compounds are still diamagnetic insulators in the solid state. 
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Figure 2.c.Idealised stacking 
in dithiadiazolyls. 

A whole range of planar dithiadiazolyls were prepared in this and other laboratories in the 

hope of preparing materials that can exist as segregated stacks; [XnCeHs-nCNSSN]*, 

where X = halide, CN, [CNSSN]-, [CNSNS]*, [CNSeSeN]*, etc. Unfortunately this 

has met with only limited success, the vast majority of diese compounds crystallising in 

dimeric pairs. The first notable success came from Oakley et al who achieved one-

dimensional stacking f r o m the difunct ional ised di th iadiazolyl 

[1,3(NSSNC(C6H4)'"NSSN)]" and its selenium analoguef^l. Recently twisted stacks 

have also been seen in the solid state in the planar difluorinated dithiadiazolyl 

[2,3,FC6H3CNSSN]-[8] (figure 2.d.). 

In another breakthrough trimer species were formed by co-sublimation of CRCNSSN)2 

and I2 to produce mixed valence radicals which are semi-conductors at room 

temperature[9-ll] (figure 2.e). Similar mixed valence species have been prepared in this 

research group by co-crystallisation of radicals with cations e.g. [p-

C1C6H4CNSSN]3C1[12]. The physical solid state properties of the latter have not yet 

been investigated. 
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Figure 2.d. Packing diagram of 
P^^CfiHgCNSSN]*. 

Figure 2.e. Iodine doped 
phenyl dithiadiazoIyL 

2.1.5 The Preparation and Properties of [p-NCC6F4CNSSN]*. 

Until late 1993 no dithiadiazolyl radical had been prepared with truly novel magnetic 

properties. However, interest was aroused by the solid state packing of the dithiadiazolyl 

[m-NCC6H4CNSSN]*n3] which crystallises in two phases; the P-phase consisted of 

transoid dimer pairs as opposed to the cisoid pairs normally seen in (RCNSSN)2, 

whereas the a-phase formed more conventional cisoid dimers. It was the molecular 

packing of the latter though that proved the more interesting with further secondary 

interactions occuring between the cyano group and the two sulfurs. 
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In this laboratory by replacing the hydrogens by fluorines, it has been possible to 

completely break the close intermolecular sulfur-sulfur interactions hence forming the 

first dithiadiazolyl radical which retains its paramagnetic nature in the solid statet^^l 

(figure 2.f.). 

Figure 2.f. Packing Diagram of the p-phase 
of|;7-NCC6F4CNSSN]* 

The [P-NCC6F4CNSSN]* radical is also polymorphic with two phases. Structurally both 

phases are very similar consisting of chains of monomeric [p-NCC6F4CNSSN]* radical 

units packed in a head to tail manner through weak CN...S interactions. In the a-phase 

these chains are aligned in an anti-parallel manner, whereas those in the P-phase are all 

aligned in the same direction. Magnetically the two phases are very different; the a-

phase^^] is paramagnetic at room temperature with a magnetic moment of 1.6|iB. Below 

8K this phase exhibits long range anti-ferromagnetic order. The magnetic behaviour of 

the P-phase[i5] is quite remarkable. Above 36K the material exhibits a one-dimensional 

antiferromagnetism. Below 36K an unprecedented transition to a weak ferromagnet 

occurs i.e. below 36K the material behaves like a weak classical magnet. The first 

organic ferromagnet was discovered in 1991 and no other compound (apart from a poorly 

characterised and understood fuUerene charge transfer species with a transition 

temperature of I6K) has been observed with ferromagnetic behaviour above 3Kt^^J. 
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2.1.6. Formation of Metal Complexes. 

Previous investigations by LB. Gorrell concerned the reaction of (PhCNSSN)2 with a 

series of low-valent metal complexes, with the hope of inserting a transition metal into the 

ring system (probably through the S-S bond); these were mostly unsuccessful. 

Reaction between [PhCNSSN]* and a whole series of metal carbonyls resulted, on the 

whole, in the formation of black, insoluble, poorly characterised, powdersn6]. 

However, reaction with [Fe2(CO)9]n7] and [Ni(cp)C0]2[^^^ resulted in the formation of 

novel complexes. In both cases reaction occurred with the elimination of carbonyl to 

yield dimetallic complexes where the dithiadiazolyl ring bridges two metal centres via the 

two sulfurs of the ring system (figures 2.g and 2.h.). In the iron species one of the ring 

nitrogens has been protonated as will be described later. 

Figure 2.g. Structure of [Fe2(!is.sSNCPhN(H)S)(C0)<;]. 

oa 

The position of the NH hydrogen is not shown 

Figure 2.h- Structure of [Ni2(cp)2(^is-sSNCPhNS)] 
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Each sulfur atom acts as a 1+2 electron donor and formally oxidises the metal by +1. As 

the S-S bond is now formally broken it is conventional to write the ring system as 

(SNCPhNS) i.e. [Fe2(|is-sSNCPhN(H)S)(CO)6] and [Ni2(^s-sSNCPhNS)(cp)2]. 

In both cases it was originally thought that the free radical remained delocalised 

throughout the ring system. A recent n.m.r. and m.o. study of the iron complex by 

Boere has proved that one of the ring nitrogens on the iron species undergoes protonation 

rendering the ring diamagneticn9][20] is perhaps an indication of the difficulty 

involved in the preparation and characterisation of dithiadiazolyl complexes that this has 

been the only other investigation into the work of Gorrell. This recent research by Boere 

has only involved some modifications of known complexes; various analogues of the 

iron species were prepared where the dithiadiazolyl phenyl group had different 

substituents on the para position (see section 2.1.11). 

2.1 .7 . Electron Spin Resonance Spectroscopy. 

E.s.r. spectroscopy is a vital tool in the study of dithiadiazolyls and is thus used 

extensively in our research. A good review of the technique, especially in relation to 

[PhCNSSN]* and similar species, has recently been publishedl^i]. 

Simple solution state measurements of [RCNSSN]* exhibit well resolved isotropic 

spectra with hyperfine splitting to two equivalent ^^N nuclei, ON =0.5mT to yield a 

1:2:3:2:1 quintett3,22] (see Fig 2.i.). Hyperfine coupling to the substituents on R is also 

sometimes observedl^,23,24] 

Figure 2.L E.S.R Spectrum of [PhCNSSN] 

E.s.r measurements have been used to monitor the equilibrium between monomer (e.s.r. 

active) and dimer (e.s.r. inactive). Increased dimerisation at lower temperatures yielded 
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thermodynamic data on the monomer-dimer equilibriumt^'^^l. They have also been used 

to investigate the rearrangement of 1,3,2,4 radicals (main hyperfine splitting 1:1:1 triplet, 

coupling to only one ring nitrogen) to 1,2,3,5 radicals[26] and to give an indication of the 

spin distribution of the singly occupied molecular orbitals (see section 2.1.8.). 

Anisotropic spectra (frozen glasst^'^^l, powder[24,28] and single crystal spectra[29]) 

separate out the hyperfine coupling into their x,y and z axes (similar to solid state 

n.m.r.). This enables calculations of the percentage occupancy (spin density) of the 

radical on the ring atoms. 

The only e.s.r. investigation of a dithiadiazolyl complex has been on [Ni2(M-S-

sSNCPhNS)(cp)2], the only complex so far prepared. The spectrum consisted of a 

broad unresolved singlet (i.e. no hyperfine coupling is visible)n9,20] 

2 .1 .8 . Theoretical Studies 

Molecular orbital calculations on dithiadiazolyls are often undertaken in conjunction with 

synthetic chemistry and e.s.r. spectroscopy. As stated in section 2.1.1., the 1,3,4,5 and 

1,2,3,4 isomers have never been prepared. Theoretical studies (as well as chemical 

common sense) have shown that these two species would be the hardest to synthesiseHJ. 

The M.O. diagram of [PhCNSSN]+ (figure 2.k.) gives an indication of where the 

electron density is distributed in the frontier molecular orbitals. 

The three highest occupied molecular orbitals in the cation form the delocalised 6n 

system. In the free radical the lowest unoccupied molecular orbital (the 2a27i*) becomes 

the singly occupied molecular orbital which contains the unpaired electron. As correlated 

by e.s.r. measurements the radical electron can occupy orbitals on both nitrogens but not 

the carbon, which is on a node. The two sulfur atoms also make a significant 

contribution and ^̂ S (0.75%) hyperfine splitting can occasionally be seen in the e.s.r. 

spectra[3,27] jn contrast, the singly occupied molecular orbital of the 1,3,2,4 radical^] 

shows a large molecular orbital contribution to the outermost ring nitrogen compared to a 

much smaller contribution from the nitrogen bound to carbon (hence large hyperfine 

e.s.r. coupling is only found on the former). 
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Figure 2.j. Frontier Molecular Orbitals of [HCNSSN]" 
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Theoretical calculations have been undertaken on both the nickel and iron transition metal 

complexes prepared from [PhCNSSN]*. In the nickel speciesHS] a satisfactory account 

of the bonding could be gained from the orbital diagrams (figure 2.k.) and helped to 

explain the splitting of the S-S bond of the ring system more thoroughly than simple 

bonding rules. 
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Figure 2.k. Molecular Orbital Diagram of 
[Ni2(Hs-sSNCPhNS)(cp)2]. 
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The m.o. of the iron complexH^] had proved to be misleading, the ring protonation, and 

susequent loss of the unpaired electron was not initially taken into account as stated 

previously in this chapter. Recent theoretical studies have, however, supported the 

experimental results which indicate that a ring nitrogen is protonated and the radical 

lost[20]. 

2 .1 .9 . X-Ray Crystallography. 

Crystallography is a vital tool for investigating the solid state properties of dithiadiazolyl 

radicals and their complexes, not only for structural determination but also for elucidating 

the intermolecular interactions and packing. 
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2.1.10. Magnetic Measurements. 

As mentioned previously dithiadiazolyls have been studied extensively in the hope that 

they may yield interesting magnetic properties 

In a very basic description, most materials can be classed into one of 4 main magnetic 

groups; diamagnetic, paramagnetic, ferromagnetic and ferrimagnetic depending apon the 

allignment of the spins of their electrons. Al l the above main magnetic types are shown 

below (figure 2.1. with the arrows indicating spin alignment). 

Figure 2.1. Classes of Magnetism. 

It It It It It It 
It It It It It It \ ^ / / \ 

DIAMAGNETISM PARAMAGNETISM 
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FERROMAGNETISM F E R R I M A G N E n S M 

Diamagnetic compounds (most organic materials and many main group compounds and 

dithiadiazolyl dimer pairs) have their electron spins paired in opposite directions and thus 

have no net magnetic moment and in mm no magnetic properties. Anti-ferromagnetic 

compounds also have their spins aligned in opposite directions but in this case they are 

not paired. Paramagnetic compounds (mostly transition metal complexes) have their 

spins pointing in random directions and thus also have no overall magnetic moment. 

Of more interest are ferromagnetic compounds which have their spins aligned (e.g. 

classical magnets) and ferrimagnetic materials which have spins pointing in opposite. 

directions, but with unequal weighting thus yielding a slight net magnetic moment. The 

potential use of compounds with such properties has been discussed previously (section 

2.1.4.) and in a recent reviewt^O]. 

Magnetic measurements have been undertaken on poorly characterised dithiadiazolyl 

complexes of manganeset^^] and rutheniumt^U carbonyls. They have, however, 

provided httle firm information on the magnetic properties of such species. 
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2.1.11. Cyclic Voltammetry. 

C.V. studies have been undertaken on a range of [RCNSSN]7[RCNSSN]+ and 

[RCSNSN]7[RCSNSN]+ species to determine their half wave potential, E'/2. These 

value have been used to measure, by the Hammett constant, the electronic effects of the R 

group[32-34] jiTig voltammogram shown below (figure 2.m.) also gives evidence for the 

formation of the dithiadiazolide anion. 

Figure 2.m. Cyclic Voltammogram of [PhCNSSNl*. 

..A 
[PhCNSSNl /(PhCNSSNT 

[PhCNSSN]*/[PhCNSSNT 

\ 

As with other techniques described previously, the [RCNSNS]' to [RCNSSN]* 

isomerisation[26] can be studied by this method. Also, a limited c.v. study has been 

undertaken on a range of iron dithiadiazolyl(imine) complexes [Fe2(|is-

s S N C P h N ( H ) S ) ( C O ) 6 ] (where R = H, CF3, OCH3) and [Ni2 ( | i s -

sSNCPhNS)(cp)2]t^^'2°J. The latter shows a reversible one electron oxidation. 

2.1.12. Further Techniques. 

Other techniques routinely used to study dithiadiazolyls include, I.R., d.s.c, elemental 

analysis and mass spectrometry. N.m.r.. spectroscopy is rarely used due to the presence 

of the free radical and subsequent paramagnetic broadening of the spectraf35]. 
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2.2. RESULTS AND DISCUSSION 

2.2 .1 . Synthesis of (PhCNSSN)2. 

I f [PhCNSSN]* were to be the chosen ligand for a series of reactions with different 

transition metal complexes then a high yield synthesis of this species would have to be 

developed. In general dithiadiazolyls have only been studied for their properties and 

yields have not been of paramount importance. This is obviously not the case here and 

many grammes of this material had to be prepared throughout this research. 

The best synthetic route for preparing (PhCNSSN)2 was reported by Oakley and co-

workers[36n37], xhe method used here is a modification of this route which gives higher 

yields. The key step in all synthetic routes to dithiadiazolyls is the ring formation step. 

2.2 .2 . Original Synthetic Routes. 

The salt [RCNSSN]+ was first prepared by reaction between nitrile, (NSC1)3 and 

elemental suphurt^S]. other low yielding synthetic routes have been reported and are well 

documentedtl]. Reduction of dithiadiazolylium salts can be undertaken by many different 

reducing agents including zinc/copper couple (the prefered reagent), PhsSb, potassium, 

mercury and zinc in oxygen donor solvents, t.h.f. (the prefered solvent), monoglyme or 

802^^1. Purification is usually by sublimation to yield dark red/green dichroic crystalline 

material. 

2.2 .3 . Preparation of (PhCNSSN)2 - The Persilylated Amidine Route. 

This preparation was reported by Oakley and co-workers. The reaction between 

Li[N(SiMe3)2] and PhCN in Et20 followed by the addition of Me3SiCl results in the 

formation of RC(=NSiMe3)N(SiMe3)2 which can be isolated as an oily solid (no yield is 

quoted for the benzonitrile reaction but the highest yield quoted for any other R group is 

72%)[36] This compound can then react with 2SCI2 in a condensation reaction to form 

the salt, [PhCNSSNJCl, in 90% yield and 2Me3SiCl. Reduction of [PhCNSSNJCl by 

Zn/Cu couple can yield pure (PhCNSSN)2 after sublimation in about 50% yield. This 

synthetic route, although an improvement from previous reactions, still has two main 

disadvantages; the low overall yield (at best 30%) and the large amount of time and effort 

required (two intermediates have to be isolated). 
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2.2 .4 . Preparation of [PhCNSSN]2 Without Isolation of Amidine . 

At the start of this study this research group had managed to cut down this reaction to the 

isolation of just one intermediate, the dithiadiazolium salt[34]. This route is described in 

the experimental section (2.3.1. and 2.3.2.). 

The reaction of PhCN and Li[(N(SiMe3)2] in Et20 yields a straw coloured solution of the 

salt Li[PhC(=NSiMe3)(NSiMe3)]. Instead of reacting with MesSiCl (as in the Oakley 

method) the salt is reacted with SCI2 'in situ'. The solution is cooled down to 0°C and 2 

equivalents of SCI2 are added to yield [PhCNSSNJCI, 2Me3SiCl and LiCl in an 

exothermic reaction. MesSiCl and excess SCI2 are removed by washing with Et20. The 

partial solubility of [PhCNSSN]Cl in SO2 allows its slow extraction over several days 

and leaves behind the last impurity, LiCl. The dithiadiazolium salt is gained in a 70% 

yield. 

The salt can be reacted with Zn/Cu couple in t.h.f. at room temperature. The dark red 

suspension formed contains [PhCNSSN]*, (PhCNSSN)2, ZnCl2, CuC^, CuCl and 

perhaps some other uncharacterised Zn and Cu containing sulfur complexes. The whole 

mixture is dried in vacuo and a cold finger is inserted into the reaction vessel. On 

heating to 110°C only [PhCNSSN]2 is sublimed on to the finger in 47% yield. The entire 

reaction scheme is shown below (Reaction scheme 2.a.). 

The overall yield for this simplified method is about 33% and is a slight improvement on 

the method highlighted previously. The one slow step is the extraction with SO2. 
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Reaction Scheme 2.a. Synthesis of (PhCNSSN)2 

PhCN + Li[N(SiMe3)2] 
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2 .2 .5 . The Preparation of (PhCNSSN)2 Avoiding SO2Extraction. 

During this research I have developed another method for the preparation of phenyl 

dithiadiazolyl which eliminates the SO2 extraction stage (section 2.3.3.). 

Instead of removing LiCl from the [PhCNSSN]Cl/LiCl solid mixmre obtained after the 

condensation step and washing with Et20, the solids were reduced without SO2 

purification. As lithium chloride does not effect the Zn/Cu couple reduction or the 

subsequent sublimation of phenyl dithiadiazolyl it does not need to be removed. Thus 

the whole reaction can be undertaken in one vessel and gives a yield of 47% 

(PhCNSSN)2 in high purity (as shown by elemental analysis). 

Thus in this final synthetic route a significant increase in yield and saving in time can be 

gained. The whole reaction can be undertaken in two days. 
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2.3. Experimental. 
2.3 .1 . The Preparation of [PhCNSSNJCl. 

Li[(N(SiMe3)2] (4.9g, 29.6mmol) was dissolved in Et20 (100ml). PhCN (3.9ml, 

38.2mmol) was added and the straw coloured solution was left stirring overnight. The 

solution was cooled to 0°C and SCI2 (5ml, 65.8mmol) added dropwise, with stirring. A 

bright yellow solid precipitates immediately under an orange solution. This suspension 

was stirred for 3hr, filtered, washed with Et20 (3x30ml) and dried in vacuo . The 

yellow solids were then extracted in a closed soxhlet extractor with SO2 (30ml) until all 

the yellow [PhCNSSN]Cl had extracted leaving behind the insoluble LiCl (at least 48hr). 

The SO2 was then removed and the yellow crystalline material dried in vacuo.. 

Yield 4.48g, 70%. 

IR Vniax(cm-l) 1590w, 1580w, 1320w, 1295w, 1210w, 1170w, 1150w, 1135w, 

llOOw, 1065m, 1025m, lOOOw, 940w, 920sh, 890sbr, 840s, 780s, 720w, 690sbr, 

670sh, 650sh, 550ssh, 475m, 395sh, 325ssh, 310shd, 280m, 255w. 

Elemental analysis, found: C, 35.41%; H,2.32%; N,12.41%, calc: C,38.80%; 

H,2.32%; N12.93%) 

D.s.c. 192°C (decomposition). 

Mass spec (assignable peaks) ^/e, EI+: 181 [PhCNSSN]+, 78 [SSN]+, CI+: 103 

[PhCN]+, CI-: 181 [PhCNSSN]+, 78 [SSN]+ 

2.3 .2 . The Reduction of [PhCNSSN]Cl to [PhCNSSN]2. 

[PhCNSSNJCI (4.0g, 18.6mmol) and Zn/Cu couple (1.3g, 0.20mmol) were stirred in 

thf (30ml) overnight. The resultant dark red suspension was dried in vacuo. The solids 

were heated to 110°C and the red/green dichroic crystals of (PhCNSSN)2 sublimed. The 

crystals were removed from the cold finger and the residues resublimed. This process 

was repeated until no new product could be sublimed. 

Yield 1.6g,47%. 

IR Vjnax(cm-l) 1265w, 1240, 1225, 1190w, 1180w, 1160w, 1145shd, 1140, 1120shd, 

1095W, 1075, 1030sh, 1020, lOOOw, 980wbr, 920sh, 900sh, 840shd, 830ssh, 825shd, 

805ssh, 775ssh, 765ssh, 720, 690sh, 685ssh, 665shd, 655shd, 650ssh, 620shd, 

510ssh, 490sh, 445w, 435w, 405w, 265wbr. 
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Elemental analysis, found: C, 45.75%; H,2.64%; N,15.24%, calc: C,46.38%; 

H,2.78%; N15.45%) 

D.s.c. 121°C(endotherm). 

Mass spec (assignable peaks) ^IQ, EI+: 181 [PhCNSSN]+, 78 [SSN]+, CI+: 103 

[PhCN]+, C I - 181 [PhCNSSN]+, 78 [SSN]+ 

2 .3 .3 . The 'Single Pof Preparation of [PhCNSSN]2. 

Li[(N(SMe3)2] (7.08g, 42.3mmol) was dissolved in Et20 (100ml). PhCN (4.4ml, 

43mmol) was added and the straw coloured solution left stirring overnight. The solution 

was then cooled to 0°C and SCI2 (5.8ml, 76.3mmol) added dropwise over a period of 

lOmin. The resultant yellow precipitate was stirred for 3h, filtered, washed (3x50ml 

Et20) and dried in vacuo. The bright yellow solids ([PhCNSSN]Cl and LiCl) and Zn/Cu 

couple were stirred in t.h.f. (50ml) overnight. The deep red suspension was pumped to 

dryness in vacuo. The solids were then heated to 110°C and sublimed to yield red/green 

dichroic crystals of (PhCNSSN)2 on the cold finger. The crystals were removed from 

the cold finger and the process repeated until no new product could be subhmed. 

Yield 3.45g, 49.9%. 

IR Vn,ax(cm-l) 1265W, 1240, 1225, 1190w, 1180w, 1160w, 1145shd, 1140, 1120shd, 

1095w, 1075, 1030sh, 1020, lOOOw, 980wbr, 920sh, 900sh, 840shd, 830ssh, 825shd, 

805ssh, 775ssh, 765ssh, 720, 690sh, 685ssh, 665shd, 655shd, 650ssh, 620shd, 

510ssh, 490sh, 445w, 435w, 405w, 265wbr., 

Elemental analysis, found: C,46.04%; H,2.64%; N, 15.24%, calc.:C,46.38%; H,2.78%; 

N15.45%). 

D.s.c. 121°C(endotherm) 

Mass spec (assignable peaks) ^IQ, EI+: 181 [PhCNSSN]+, 78 [SSN]+, CI+: 121 

[PhCN]+, CI+: 181 [PhCNSSN]+, 78 [SSN]+ 
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2.4. CONCLUSION. 
It is hoped that this chapter will have provided a flavour of the rich and diverse chemistry 

of dithiadiazolyls and, in particular, 1,2,3,5-dithiadiazolyls. It was also an aim of this 

introductory chapter to highlight the potential magnetic and electronic properties of these 

unusual species and thus provide a valid reason for further study. 

As indicated in this chapter, the one area of this chemistry that has been underdeveloped 

is the use of these heterocycles as ligands to transition metal species. It is this field that 

provides the basis for this thesis. As such it was important that a high yield, low effort, 

preparation of the ligand of choice, [PhCNSSN]*, could be, and has been, developed. 
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CHAPTER T H R E E 

THE PROPERTIIES OF PLATINUM AND 
PALLADIUM CO-ORDINATION COMPOUNDS 

AND THE SYNTHESIS OF THEIR ZERO VALENT 
PHOSPHINE COMPLEXES 



3.1. INTRODUCTION 
3.1 .1 . General Introduction 

Six elements form the platinum group metals, Ru, Os, Rh, Ir, Pd, and Pt. Two of these 

elements, platinum and palladium, have been studied throughout the course of this thesis. 

To the non-chemist platinum metal is most commonly associated with jewellery and hard 

currency. Platinum has, however, many industrial uses e.g. as electrodes, 

thermocouples, crucibles and as a component of glasses. Its compounds are used in 

medicinal drugs and as heterogeneous and homogeneous catalysts in the preparation of 

small organic molecules and polymers. 

Palladium metal is used in the electronics industry, dentistry and its compounds are even 

more extensively used than platinum in heterogeneous and homogeneous catalytic 

processes. 

The above applicationsf^^ result in millions of pounds p.a. being spent on investigations 

into the chemical properties of these two elements. 

3.1 .2 . Complexes of Platinum and Palladium 

Platinum and palladium form a large number of complexes in a wide range of oxidation 

states (0 to IV for Pd and 0 to V I for Pt), co-ordination numbers (2 to 6) and geometries 

(e.g. planar, square planar, tetrahedral and octahedral)t^a]. Due to the presence of f 

orbitals and the subsequent lanthanide contractiont^b] between the 2nd and 3rd row 

transition elements the two metals have almost the same atomic radii. Consequently, 

there are many similarities between the chemical properties and reactivities of these two 

elements. 

In direct contrast, the properties of nickel (the first row member of the triad) are in many 

ways markedly different. Nickel is a 'hard' metal and hence prefers to bond in its 

complexes with hard bases such as N H 3 , CN", F", CO, OR- etc. whereas Pt and Pd 

prefer to bond with soft bases such as PR3, ASR3,1% SR" etc.t^L As such it perhaps 

comes as no suprise that the chemistry achieved with S and Se ligands and Pt and Pd in 

this thesis could not be readily repeated with Ni, as mentioned in chapter four. 

32 



The Comprehensive Co-ordination Chemistryf'^J and Comprehensive Organometallic 

Chemistryf^] series provide a good general overview of the chemistry of these two 

metals. 

3 .1 .3 . Zero-valent Chemistry. 

The zero-valent chemistry of Pt and Pd is dominated by phosphine complexes. The metal 

can be bound to 2,3 or 4 phosphines, forming linear (14 electron), planar (16 electron) 

and tetrahedral (18 electron) complexes respectively. The tendency for 4 co-ordinate 

species [M(PR3)4] to dissociate to give three or two co-ordinate species, which may be 

stable in the solid state and in solution, depends upon the electronic and steric effects of 

the phosphine ligandt^J For example, [Pt(PMe3)4] (least bulky phosphine) forms only the 

4 co-ordinate species. [Pt(PEt3)4] (more bulky) dissociates to [Pt(PEt3)3] on heatingt^L 

With the larger triphenylphosphine groups, [Pt(PPh3)4] exists as [Pt(PPh3)3].PPh3[8][9] 

in the solid state whereas in solution [Pt(PPh3)2] is also observable by 3lp and n.m.r. 

spectroscopy[^1. Very bulky phosphines can produce complexes with only two 

phosphines in the solid state e.g. [Pt{?(t-Bu)3}2p^^ and [Pd{PPh(t-Bu)2}2]t^^]- Four 

co-ordinate species can also be stabilised by the use of chelating phosphines such as 1,2-

bis(diphenylphosphino)ethane) (dppe) i.e. [M(dppe)2] (see section 3.2.4 and 3.2.5). 

Other zero-valent complexes can be prepared with ligands such as arsines (e.g. 

[Pd(AsPh3)4)][^2])^ olefins (e.g. M(cod)2[^3]) and carbonyls (e.g. Pd4(CO)5(PR3)4 and 

Pt3(CO)3(PR3)3) 

3 .1 .4 . Chemistry and Applications of Zero-Valent Complexes. 

Zero-valent complexes can react by simple ligand (L) displacement (e.g. 

[Pd2dba3.CHCl3] to [Pd(PPh3)4][14]) maintaining the low oxidation state. However, the 

most important reaction is the oxidative addition of 2X (where X = CI", I " , SR- etc.) to 

form, usually, square-planar M(II) complexest^c] (equation 3a). The most widely studied 

example of this process is the vast oxidative addition chemistry of [Pt(PPh3)3][2d]. When 

the oxidative addition involves organics and is reversible, a whole series of catalytic 

processes can occur e.g.[Pd(PPh3)4] can be used as a catalyst for the oxidation of 1-3 

dienesfl^]. It is this potential oxidation of zero-valent Pt and Pd phosphine complexes 

that is employed extensively later in this thesis. 
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Equation 3a. 

M ^ L A + 2X ^ M " L B X 2 

3.1 .5 . Square-planar Chemistry of Platinum and Palladium. 

By far the most common complexes of Ft and Pd are square-planar four co-ordinate 

M(II) species with zero to 4 donor ligands (L= PR3, NR3, SR2, olefin etc.) and with 

four down to zero one electron oxidising ligands (X=. F", CI", SR", OR", CR3- etc.) i.e. 

MLnX4.n. The formal oxidation of the metal, (H), is maintained with the appropriate 

counterion(s) i f necessary e.g. K2PtCl4. It must be noted that for these and other 

transition metal complexes there are different, equally valid, methods of electron 

countingf2e] Many properties of these complexes have been studied, including cis-trans 

isomerism in ligand exchange and the 'trans effect' using the Pt species 

[Pt(Cl)2(NH3)2]ll61 and their biological properties (see 3.1.6.) 

There are many commercial applications of these square planar compounds such as the 

oxidation of ethylene by [PdCU]^" in the Wacker process^^lClS]. applications in 

particular relate to the work described here: biological activity and low dimensional 

conductiviy. 

3.1.6 . Cis-platin and Other Square-Planar Anti-Cancer Drugs. 

Until 1969 simple square-planar complexes of platinum were mainly studied for the 

trends in their substitution reactions highlighted above. At this time the anti-tumour 

activity of cis-[PtCl2(NH3)2][^^l was discovered. The discovery of this complex, which 

is also known as cis-platin, has resulted in great interest in the chemistry of square-

planar platinum. 

Although cis-platin was an effective treatment for many cancers including testicular and 

lung cancer, it produced numerous side effects including nausea and vomiting[20]. More 

potent and less toxic platinum (II) analogous have since been discovered e.g. 

carboplatin[2l] and spiropIatinf22]. Recently, more water soluble carboplatin analogue 

complexes have also been studied[23a] (gee figure 3.a. for examples of anti-cancer 

complexes). 
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The most common site of attack by these complexes has been cancer cells' helical D.N.A. 

Removal of the X" ligands from the complex allows the platinum to bind with the 

guanidine base pairs thus kinking the double stranded D.N.A. strand, preventing 

replication and in turn cell division. Other sites of attack have been highlighted and the 

mechanism of these processes has been studied in great detailt^Sb] general though it 

can be said that the Pt species complex to the D.N.A. and inhibits cell replication thus 

killing the cancerous cells. 

Although cis platinum (H) complexes have been studied widely, there has been limited 

success with octahedral complexes of Pt(rV) e.g. oxoplatin[24] Some of the other trends 

of activity have also been broken e.g. trans complexes such as trans-2-pyridine dichloride 

platinum(II) have shown activity against tumour lines[25]. 

Other limitations remain, however. The greater reactivity of analogous square planar 

Pd(n) complexes means that these species frequently decompose before reaching the 

active sites. Therefore palladium complexes show much lower activity than those of 

platinum[26]. 

Thus, despite some notable exceptions highlighted above, in the preparation of new 

complexes which may be cancer active, the greatest likelihood of anti-tumour activity 

would still be in the preparation of square planar Pt(n), in a cis geometry, with X-

groups that are removable in an aqueous medium. 

Figure 3a. Some Platinum Anti-Cancer Complexes 
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Pt 

Cis-platin 

iH 

OH 
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Trans-active comple: 
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3.1 .7 . Linear Chain Compounds. 

In 1969 a new area of one-dimensional metals was highlighted through a structural study 

by Krogmann et alt^?] of a series of partially oxidised Pt and Ir salts e.g. 

M2[Pt(CN)4]Xn.pH20. In these salts and similar 15/16e- complexes, the partially empty 

5dz2 orbitals can overlap to form a one dimensional stack (figure3b). 

A whole series of partially oxidised cyano and bis(oxalato) (e.g. [Pt(C204)2]^') salts 

were prepared with Pt-Pt separation down to 2.717A in Rbi.67[Pt(C204)2].1.5H20[4] (in 

platinum metal the Pt-Pt bond distance is 2.775A). These complexes had varying 

degrees of conductivity and were, on the whole, one-dimensional conductive materials. 

Figure 3b. Idealised stacking in 
square-planar complexes 

A range of other stacked square planar complexes of Pt, Pd and Ni has been studied such 

as partially oxidised Pt amine saltsf^S] and metal dithiolenest^^] (see Figure 3c. overleaf). 

In general, high room temperature conductivity is only obtained by partial oxidation to 

form 15/16e- complexes e.g. Lio.82[Pt{S2C2(CN)2}2].2H20 has an RT conductivity of 

lOOQ-l cm-l cf. lOQ-1 cm-l for Na[Pt{S2C2(CN)2}2].1.15H2O[30]. 
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Figure 3c. Metal dithiolene anion 

In recent years these complexes have not evoked the same level of interest compared with 

the 1970's and 1980's although they still attract attention because of their unusual 

properties e.g. the molecular conductor [NHMe3][Pt(dmit)2] where dmit = 4,5-

dimercapto-1,3-dithiole-2-thione)[31] 

3.1 .8 . Sulphur-Nitrogen Complexes of Platinum and Palladium. 

There is a large range of sulfur-nitrogen ring systems complexed to transition metalsf^^" 

^ " ^ l . Many of these complexes involve Pt and Pd (see Figure 3.d.). As indicated from the 

examples, almost all these species have square planar co-ordination and involve the 

ligands in both chelating and bridging bonding modes as either le- oxidisers and/or two 

electron lone pair donors,. 

Figure 3d. Some Sulfur-Nitrogen Ring Systems of Pt and Pd 

P., 

N "Pt CI 

Ph,P^ 

Ph,P 

•N 
M=Ptt37] 
M = Pd[38"39] 

N' 

Of greatest relevance to this work, is the preparation of Pt and Pd complexes containing 

sulfur ligands by the oxidation of zero-valent complexes in the presence of the ring 
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system in question. In these reactions the metal inserts into the ring as shown below 

(Equations 3b.) 

Equations 3b. Examples of +2 Oxidation of Zero Valent Pt and Pd 
Phosphine Complexes 

Ph2 

[Pd(dppe)2] + Sg ^ I ,Pd^ + dppe 
-S 

\ / I . [40] 

Ph2 

[Pt(PPh3)3] + [S4N4H4] ^[PtSNSN(PPh3)2 

M° + [S4N4] [MSNSN] species 
[42] 

2(Ph3P)2Pd(C2H4) + S4N4 »• [(Ph3P)2Pd(S2N2)]2 + 2PPh3 + 2C2H4 

3.1 .9 . 3lP N.m.r. Spectroscopy of Phosphine Complexes. 

The platinum and palladium complexes which will be studied during the course of this 

thesis all possess phosphine ligands. 3lp (100% natural abundance , 1=^2), with its 

high relative sensitivity (66.3x10*3), is a convenient nucleus for n.m.r.. 

The range of chemical shift values is far greater for phosphorus than for proton although 

some general trends do emerge. In the context of this research there is a shift to higher 

frequency on the co-ordination of a phosphine to Pt or Pd e.g. PPh3 (6-5ppm)t^3a]^ 

[Pt(PPh3)3] (549.9ppm)f9]; dppe (6-13.2ppm)[43b], [Pd(dppe)2] (530.9ppm)[44]. 

In platinum-phosphine complexes coupling between P and i^Spt (33.8% abundant, 

1=1/2) results in Pt satellites. Again only a limited amount of information can be gained 

from the size of the Jp.pt coupling constant in this series of compounds. Zero-valent 

platinum phosphine complexes usually have values of around 4000Hz e.g. [Pt(PPh3)3] 

with Jp.pt 4438Hz[61 and [Pt(dppe)2] with Jp.pt 3730Hz. Pt(n) phosphine based species 

usually have Jp.pt coupling constants of around 3000Hz e.g. [(SNSN)Pt(PPh3)2] Jp.pt 

2827Hz and 2994Hz[45]. i t must be stated however that these are general rules only. 
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3.2. RESULTS AND DISCUSSION 

3.2 .1 . Preparation of zero-valent phosphine complexes of Pt and Pd. 

Four zero-valent phosphine complexes have been used extensively in this research, 

[Pd(PPh3)4], [Pt(PPh3)4], [Pd(dppe)2] and [Pt(dppe)2] and, to a lesser extent, 

[Pt(PPh3)3] and [Pt(PMe2Ph)4]. The complexes were prepared either in accordance with 

the literature methods, sometimes with minor modifications to the literature procedures or 

in methods directly analogous to known procedures. 

Johnson-Matthey pic. kindly loaned the research group the precious metal halides 

K2PtCl4, K2PdCl4 and PdCl2. These compounds were reduced to the required 

phosphine complex via three synthetic routes; 

(i) Preparation of the zero-valent dibenzylidene acetone complex of Pd, 

[Pd2dba3.CHCl3]n4] and subsequent ligand exchange reaction with PPh3 or dppe to 

form [Pd(PPh3)4] and [Pd(dppe)2] respectively. 

(ii) Reduction of K2MCI4 by NaBH4 in the presence of PPh3 or dppe to form the 

required complexf'*^] 

(iii) Reaction of K2PtCl4 with PPh3 or PMe2Ph in the presence of KOH to form 

[Pt(PPh3)4] and [Pt(PMe2Ph)4][47]. 

3.2 .2 . The preparation of Dppe (Ph2PC2H4PPh2). 

The chelating diphosphine, dppe, was prepared in accordance with the literature 

method,[48] producing the phosphine in high purity, as shown by elemental analysis, 

and 3lp spectroscopy, d.s.c. and I.R. spectroscopy. The white crystalline solid was 

used in later reactions. 

3.2 .3 . The Preparation of [Pdidbas.CHCls]. 

[Pd2dba3.CHCl3] was also prepared in accordance with the literature proceduren4]. 

PdCl2, dba, (dibenzylidene acetone) and Na[CH3C00] were stirred in hot MeOH (40°c) 

forming a red brown precipitate [Pd(dba)2]. Boiling this solid in CHCI3 resulted in the 

formation of purple crystals of the dimeric Pd complex, Pd2dba3. In this complex the 

metal is bridged by the olefinic double bonds of the dba ligand to form a 16 electron zero 

valent palladium complex (see figure 3e.). Again satisfactory analyses proved the purity 

of the species. 
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Figure 3e. Pd2dba3 
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3.2 .4 . The Preparation of [Pd(PPh3)4] and [Pd(dppe)2] from 

[Pd2dba3.CHCl3]. 

The dba ligands on [Pd2dba3.CHCl3] can be removed by simple ligand displacement 

(e.g. using bipyridine)[^41. In the same publication it was reported that [Pd(PPh3)4] 

could be prepared by stirring [Pd2dba3.CHCl3] and PPh3 in benzene. I discovered that 

this reaction also occured in toluene (see Equation 3c.). Increased yields were obtained 

by reducing the solvent concentration before filtering the product and washing with 

EtOH. The bright yellow colour of the complex and good analysis (elemental, d.s.c, 

and I.R.) indicated the presence of the pure palladium-phosphine species. No room 

temperature ^ip n.m.r spectra were recorded due to the ligand exchange processes that 

occur (i.e. exchange between [Pd(PPh3)4], [Pd(PPh3)3] and [Pd(PPh3)2]) which only 

slow to a rate below the n.m.r. timescale at -80°C['*9]. This reaction avoids the use of 

hydrazine hydrate and dimethyl sulphoxide, reagents required in the preparation of 

Pd(PPh3)4 from PdCl2[50]. 

I suggest that an analogous reaction could be used to form [Pd(dppe)2], with dppe 

replacing PPh3. However, although most of the relevant analysis, and the bright yellow 

colour of the product indicated the presence of a pure product, the 3ip n.m.r spectra 

showed evidence for two minor impurities (at 632.75 and 556.25) as well as the peak for 

[Pd(dppe)2] at 530.86.[50] 
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[Pd2dba3,ChCl3] 

Equation 3d. 

4PPh3 [Pd(PPh3)4] 

2dppe [Pd(dppe)2] 

Other trial reactions (unrelated to the main body of this work) indicated that further 

substimtion reactions could take place e.g. with AsPh3 to form [Pd(AsPh3)4]. In fact, 

this reaction may prove to be a good synthetic route to a whole series of zero-valent 

phosphine and arsine complexes of palladium. 

3 .2 .5 . The reduction of K2MCI4 by NaBH4 in the presence of phosphine. 

This synthetic route was used to prepare [Pd(PPh3)4], [Pt(PPh3)4], [Pd(dppe)2], and 

[Pt(dppe)2] in an analogous method to the literamre procedure that was used to prepare 

zero-valent complexes of arylated poly tertiary phosphine and arsine complexes of Pt[461. 

In general, an excess of phosphine was dissolved in boiling EtOH and an aqueous 

solution of K2PtCl4 or K2PdCl4 added. Finally, an aqueous solution of NaBH4 (in 

excess) was carefully added to yield the yellow zero-valent phosphine complex as a 

precipitate with the evolution of gaseous H2, and B2H6 (see Equation 3d.). 

Equation 3.d. 

4PPh3 
K2MCI4 + 2NaBH4 + or 

[Pd(PPh3)4] 
^ or + 2NaCl + 2KC1 + B2H6 + H2 

2dppe [Pd(dppe)2] 

Although [Pd(PPh3)4], and [Pt(PPh3)4] could be prepared (as shown by spectroscopic 

and elemental analysis) the reaction did not always provide a pure product and other 

synthetic routes highhghted in this chapter were used preferentially. 

For the two dppe complexes, [Pd(dppe)2] and [Pt(dppe)2], the products formed were of 

a higher purity. In the case of [Pt(dppe)2], producing a pure product (as indicated by 

analysis and spectroscopic techniques shown in the experimental section) was essential as 

none of the major chemical suppliers (e.g. BDH, Lancaster, Avocado, Aldrich etc.) sold 

this complex. As in the synthesis of [Pd(dppe)2] from [Pd2dba3.CHCl3], small amounts 
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of an impurity were highlighted (in this case there was only the one additional peak at 

632.7ppm). However [Pd(dppe)2] is a Ught sensitive, easily oxidisable, complex which 

readily starts to decompose within a week even when stored under N2 in darkness. Thus 

it was better to prepare fresh, slightly impure, complex than to purchase it from Aldrich 

from where only a brown, greatly oxidised complex could be obtained. 

3 .2 .6 . The Reaction of K i P t C ^ with Phosphine in the Presence of K O H . 

This was by far the best method for preparing the purest samples of [Pt(PPh3)4][47]. An 

aqueous/ethanol solution of KOH was added to a boiling EtOH solution of PPh3. To the 

resultant basic phosphine solution, an aqueous solution of KiPtCU was added dropwise 

producing bright yellow |Pt(PPh3)4] which was washed (H2O, EtOH) and dried in vacuo 

(see Equation 3e.). As in the case of [Pd(PPh3)4] no room temperature ^ip spectra were 

run due to ligand exchange processes that can only be slowed down below -SO°C^^l 

Equation 3e. 

KjPtCU + PPh3 + KOH • [Pt(PPh3)4] 

The above method was utilised to prepare [Pt(PMe2Ph)4] except that the increased 

solubility of the phosphine complex in EtOH created a problem. In the preparation 

(section 3.3.8) reducing the volume of the solvent in vacuo precipitated out the bright 

yellow solid product. However, subsequent reactions yielded only a sticky yellow 

brown solid of low purity. No attempt was made to prepare the analogous Pd complex. 

3.2.7 The Preparation of [Pt(PPh3)3] from [Pt(PPh3)4]. 

It has been shown by X-ray crystallographyt8][9] that Pt(PPh3)4 exists as the planar three 

co-ordinate species Pt(PPh3)3 with the fourth PPh3 group not bonded. Thus it is not 

suprising that by simply boiling Pt(PPh3)4 in EtOH, one phosphine can be removedt46]. 

The yellow-orange crystalline solid formed, Pt(PPh3)3, is slightly more oxygen and 

moisture sensitive than [Pt(PPh3)4] and was thus used immediately after preparation and 

drying in vacuo. 
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3.3. EXPERIMENTAL 

3.3 .1 . The Preparation of [Pd2dba3.CHCl3]. 

PdCl2(1.08g, 6.09mmol), dba (4.70g, 20.06mmol) and Na[CH3C00] (4.00g, 

48.8mmol) were stirred at 40°C in MeOH (150ml). The reddish-purple precipitate which 

formed was filtered, washed with H2O (20ml) and acetone (20ml) and pumped to 

dryness in vacuo. The precipitate was dissolved in boiling CHCI3 (160ml) and the deep 

violet solution removed by canula filtration from the residual solids. To this solution 

Et20 (250ml) was slowly added and the solution cooled to 0°C to yield deep purple 

needles of Pd2dba3.CHCl3 which were filtered, washed with Et20 (20ml) and dried in 

vacuo. 

Yield 2.18g, 69.2% 

IR Vinax(cm-l) 3053w, 1645w, 1615s, 1575sh, 1541s, 1486sh, 1443m, 1385(w), 

1335m, 1272w, 1245w, 1185s, 1157w, 1095br, 1027w, 976m, 912w, 856w, 760s, 

699ssh, 678m, 622w, 598w, 559w, 515m. 

Elemental analysis, found: C,60.97%; H,4.12%; N,0.00%. Calc.:C,60.32%; H,4.19%; 

N,0.00% 

Nm.r.; (250mHz; solvent C D C I 3 ) complex multipletsf^^]. 

D.s.c. 124.0°C mpt (lit. 122-124°cn4]). 

3.3 .2 . The Preparation of [Pd(PPh3)4] from [Pd2dba3.CHCl3]. 

;Pd2dba3.CHCl3] (0.3g, 0.29mmol) and PPh3(1.24g, 4.73mmol) were stirred at room 

temperature in MePh (20ml) for Ihr to yield a bright yellow precipitate [Pd(PPh3)4]. 

The solvent was reduced to ~5ml in vacuo to complete the precipitation. The solids were 

filtered, washed with EtOH (2x20ml) and dried in vacuo. 

Yield 0.50g, 75% 

IR Vinax(cm-l) 3052m, 1958w, 1885w, 1813w, 1153m, 1569w, 1475s, 1431ssh, 

1322w, 1305w, 1263W, 1179w, 1153w, 1082m, 1068w, 1025m, 998m, 910w, 848w, 

802w, 742ssh, 692ssh, 619w, 539w, 505sh, 432w, 407m, 

Elemental analysis, found: C,74.35%; H,4.92%; N,0.00%.Calc.: C,74.83%; H,5.24%; 

N,0.00%) 
D.s.c.. 115°Cdec. (lit. 116°C[50]). 
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3 .3 .3 . The Preparation of [Pd(PPh3)4] from NaBH4 reduction of 

K z P d C U . 

PPh3 (3.66g, 14.0mmol) was dissolved in refluxing EtOH (100ml). An aqueous 

solution of K2PdCl4 (l.Og, 3.06mmol)was canular transferred into the phosphine 

solution and the mixture stirred at 60°C to yield a brown coloured solution. Excess 

aqueous NaBH4 (>0.23g, 6.13mmoI) was added producing the immediate evolution of 

H2 and the formation of a bright yellow precipitate. The suspension was stirred for 

20mins, filtered, washed with H2O (10ml) and EtOH (2x10ml) and dried in vacuo. 

Yield 2.62g, 14.0mmol. 

IR Vjnax(cm-l) 3052m, 1958w, 1885w, 1813w, 1153m, 1571w, 1475s, 1431ssh, 

1322w, 1305w, 1263W, 1179w, 1082m, 1068w, 1025m, 998m, 910w, 848w, 802w, 

742ssh, 692ssh, 619w, 539w, 505sh, 430w, 407m. 

Elemental analysis, found: C,75.55%; H,4.83%; N,0.00%.Calc.:C,74.83%; H,5.24%; 

N,0.00%. 

D.s.c. 118°Cdec. (lit. 116°C[50]). 

3 .3 .4 . The Preparation of dppe. 

PPh3 (20g, 76mmol) was dissolved in T.H.F. (100ml). Thin strips of L i (1.06g, 

153mmol) were added and the T.H.F. refluxed for 2hrs to yield a deep red/brown 

solution. The solution was cooled to 0°C and CICH2CH2CI (6ml, 76.2mmol) was added 

dropwise over 20mins. The resultant solution was refluxed for 30mins, allowed to cool 

to room T and poured into cold H2O to yield an off white solid which was filtered and 

recrystallised from EtOH to yield white crystalline Ph2PC2H4PPh2 

Yield 8.94g, 62.9% 

IR Vmax(cm-l) 2926s,br, 1944w, 1884w, 1583wsh, 1568w, 1464s, 1432s, 1377s, 

1328m, 1304m, 1273m, 1185w, 1160sh, 1097m, 1080m, 1066sh, 1024s, 998sh, 

907w, 845w, 751sh, 740sh, 726ssh, 705sh, 692ssh, 674sh, 505ssh, 474m, 446m, 

Elemental analysis, found: C,78.44%; H,6.11%; N,0.00%. Calc: C,78.37%; H,6.08%; 

NO.00% 

N.m.r.; (250mHz; solvent CDCI3) ^H 57.34 (m, 20, Ph), 2.14 (s, 4, CH2), 3ip 5-9.47 

(s). 
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D.s.c. 143°Cmpt(lit 140-142°C[48]) 

3 .3 .5 . The Preparation of [Pd(dppe)2]. 

Dppe (1.52g, 3.81mmol) was dissolved in refluxing EtOH (100ml). An aqueous 

solution of K2PdCl4 (0.57g, 1.75mmol) was canular transferred into the phosphine 

solution and the mixture stirred at 60°C to yield a brown coloured solution. Excess 

aqueous NaBH4 (>0.137g, 3.50mmol) was added to yield an immediate evolution of H2 

and the formation of a bright yellow precipitate. The suspension was stirred for 20mins, 

filtered, washed with H2O (10ml) and EtOH (2x10ml) and dried in vacuo. 

Yield 1.36g, 85.8% 

IR Vniax(cm-l)3047m, 1583sh, 1479s, 1431s, 1408m, 1364w, 1261m, 1190w, 1169w, 

1090s, 1066m, 1025ssh, 871m, 815m, 739s, 693ssh, 660m, 522sh, 509sh, 483m, 

428w, 412w. 

Elemental analysis, found: C,68.75%; H,5.36%; N,0.00%. Calc: C,69.13%; H,5.37%; 

NO.00% 

N.m.r.; (250mHz; solvent CDCI3) ^H 6h 7.78-7.13 (m, 20, Ph), 2.19 (s, 4, CH2), 3lp 

5p30.9 

D.s.c. 94°C mpt, 202°C and 226°C dec. 

3.3 .6 . The Preparation of [Pt(PPh3)4]from K2PtCl4 and NaBUj. 

PPh3 (2.08g, 7.93mmol) was dissolved in refluxing EtOH (100ml). An aqueous 

solution of K2PtCl4 (0.7g, 1.69mmol)was canular transferred into the phosphine 

solution and the mixture stirred at 60°C to yield a clear solution. Excess aqueous NaBH4 

(>0.128g, 3.38mmol) was added with an immediate evolution of H2 and the formation of 

a bright yellow precipitate. The suspension was stirred for 20mins, filtered, washed with 

H2O (10ml) and EtOH (2x10ml) and dried in vacuo. 

Yield 1.40g, 66.2%) 

IR W ( c m " ^ ) 3053m, 1959w, 1888w, 1816w, 1583msh, 1476ssh, 1431sssh, 1305w, 

1265W, 1198m, 1181m, 1154w, 1119m, 1083m, 1069wsh, 1026sh, 998w, 743s, 

721m, 694s, 619w, 542m, 507ssh, 415s. 

Elemental analysis, found: C,69.02%; H,4.55%; N,0.00%.Calc.:C,69.50%; H,4.86%; 

N,0.00% 
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D.s.c. 109°C (weak) exotherm and 161°C (strong) dec (lit. 159-160°C[47]) 

3.3 .7 . The Preparation of [Pt(PPh3)4] from K2PtCl4/KOH. 

PPh3 (2g,7.63mmol) was dissolved in refluxing EtOH (15ml). KOH (0.2g,3.56mmol) 

dissolved in a mixture of EtOH (7ml) and H2O (1ml) was canular transferred on to the 

phosphine solurion. K2PtCl4 (0.7g, 1.69mmol) dissolved in H2O (6nil) was added 

slowly to this alkaline triphenylphosphine solution while stirring at 65°C for 20mins. 

The pale yellow solid formed was filtered and washed with H2O (10ml) and Et20 

(2x10ml) and dried in vacuo 

Yield 1.6g, 76%. 

IR VmaxCcm-̂ ) 3053m, 1959w, 1888w, 1816w, 1583msh, 1476ssh, 1431sssh, 1305w, 

1265w, 1198m, 1181m, 1154w, 1119m, 1083m, 1069wsh, 1026sh, 998w, 743s, 

721m, 694s, 619w, 542m, 507ssh, 415s. 

Elemental analysis, found: C,69.51%; H,4.76%; N,0.00%.Calc.:C,69.50%; H,4.86%; 

N,0.00%. 
D.s.c. 109°C (weak) exotherm and 160°C (strong) dec (lit. 159-160°C[47]) 

3 .3 .8 . The Preparation of Pt(PPh3)3 from Pt(PPh3)4 . 

Pt(PPh3)4 (l.Og, 0.80mmol) was suspended in EtOH (15ml) and refluxed, with stirring, 

for 2hrs. The hot suspension was filtered and the resultant deep yellow crystals were 

dried in vacuo. 

Yield 0.33g, 42%. 

IR Vinax(cm-l) 1431VS, 1302w, 1082m, 1020m, 995w, 740shd, 731m, 712m, 680s, 

509ssh, 500s, 415m. 

Elemental analysis, found: C,66.33%; H,4.62%; N,0.00%.Calc.:C,66.0%; H,4.59%; 

N,0.00%) 
D.S.C.204°C dec (lit. 205-206°C[47]). 

3.3 .9 . The Preparation of [Pt(PMe2Ph)4]. 

PMe2Ph (0.6ml, 4.20mmol) was dissolved in EtOH (20ml). KOH (0.20g, 3.56mmol) 

dissolved in a mixture of EtOH (7ml) and H2O (1ml) was canular transferred onto the 

phosphine solution. K2PtCl4 (0.40g, 0.96mmol) dissolved in H2O (5ml) was added 

slowly to this alkaline phosphine solution to yield a deep yellow solution. The solvent 
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was removed in vacuo until a yellow solid [Pt(PMe2Ph)4] had precipitated out of 

solution. This precipitate was filtered and washed with H2O (3x10ml) and dried in 

vacuo. 

Yield 0.60g, 83%. 

IR Vjnax(cm-l) 2955m, 2890m, 1582m, 1483m, 1431sh, 1415m, 1321w, 1283m, 

1271m, 1177w, 1154w, 1091m, 1070w, 1027m, lOOOw, 963w, 931ssh, 895ssh, 

889ssh, 860shd, 825m, 739ssh, 717shd, 696s, 669s, 489ssh, 415ssh. 

Elemental analysis, found: C,51.43%; H,5.84%; N,0.00%.Calc.:C,51.40%; H,5.93%; 

N,0.00%. 

D.s.c. 88.7°C mpt. 

3.3.10. The Preparation of [Pt(dppe)2]. 

Dppe (1.33g, 3.33mmol) was dissolved in refluxing EtOH (60ml). An aqueous solution 

(4ml) of K2PtCl4 (0.59g, 1.42nmiol) was canular transferred into the phosphine solution 

and the mixmre stirred at 60°C to yield a colourless solution. Excess aqueous NaBH4 

(.0.107g, 2.84mmol) was added with a immediate evolution of H2 and the formation of a 

bright yellow precipitate. The suspension was stirred for lOmins, filtered, washed with 

H2O (10ml) and EtOH (2x10ml) and dried in vacuo. 

Yield 1.20g, 85.4%. 

IR Vn,ax(cm-^) 3048m, 196w, 1890w, 1813w, 1583m, 1569w, 1480m, 1432ssh, 

1407w, 1304W, 1272W, 1179w, 1156w, 1089m, 1066m, 1025m, 999w, 871m, 815m, 

802m, 738sh, 693ssh, 660m, 520ssh, 513ssh, 489m, 412m. 

Elemental analysis, found: C,62.90%; H,4.92%; N,0.00%.Calc.:C,62.96%; H,4.88%; 

N,0.00%. 

N.m.r.; (250mHz; solvent CDCI3) ^H 67.88-6.91ppm (m, 20,Ph), 2.22ppm (s, 4, 

CH2), 31p 530.7ppm, (Jp.pt 3732Hz) 

D.s.c..230°C dec. 
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3.4. CONCLUSION 

Chapter two described the chemistry of the ligand [PhCNSSN]* and its previous, limited, 

reaction chemistry with transition metal species. In this chapter a series of zero-valent 

platinum and palladium phosphine complexes has been prepared with the aim of forming 

interesting complexes with the above chalcogen ring system. It was hoped that these 

metal complexes would lose phosphine and be oxidised by the sulfur atoms of the ring; it 

has been shown in this chapter that these species can be oxidised by various other 

ligands, including sulfur based compounds. 

A range of properties and industrial applications of Pt and Pd species have been 

highlighted. It was hoped that [PhCNSSN]' based Pt and Pd complexes might also 

exhibit similar properties and have similar uses. 
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CHAPTER FOUR 

T H E SYNTHESIS AND PROPERTIES OF 
MONOMETALLIC PLATINUM AND PALLADIUM 

DITHIADIAZOLYL COMPLEXES 



4.1. INTRODUCTION 

4.1 .1 . The Chelating Bonding Mode of (SNCPhNS). 

The two dithiadiazolyl based complexes discussed in chapter two, [Ni2(M.s-

sSNCPhNS)Cp2] and [Fe2(|is-sSN(H)CPhNS)(CO)6] both contain two metal centres 

bridged by the two sulfurs of one chalcogen ring system. Each sulfur atom acts as 2+1 e 

electron donors to each metal. Therefore with two sulfurs 6 electrons from the ring are 

formally used for bonding. 

A second type of bonding may be envisaged where the ligands open up at the S-S bond 

and chelate to one metal centre as a 1+le oxidising ligand (2X ligand) i.e. 2 electrons 

from the ring are formally used for bonding. 

The two types are shown below (figure 4.a.). 

Figure 4.a. Bonding Modes of [PhCNSSN]* 

LxM 2e • MxL 

le; 

LxM^ 
le 

• N : 

CPh 

4.1 .2 . Requirements for Metal Complex Precursor. 

[PhCNSSN]* would be a +2 oxidising ligand if it were to chelate one metal centre and 

remain as a radical. In order to form monometallic dithiadiazolyl species the heterocycle 

must be reacted with a metal complex with a low oxidation state and a +2 higher 

oxidation state that is readily available. Zero-valent group 10 complexes belong to one 

class of species that fits these requirements. The metal should also preferably be able to 

extend the delocalisation of the [PhCNSSN]' radical i.e. it should provide an unfilled 

orbital which would allow further delocalisation of the K system. It would be less likely 
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that the (SNC(Ph)NS) fragment could stabilise the unpaired electron on its own when the 

ring is broken. 

4.1 .3 . Preliminary Reactions with Zero-Valent Group 10 Complexes. 

Previous to this research several reactions were undertaken between group 10 metals and 

[PhCNSSN]*. The reaction of [Ni(PPh3)4] with [PhCNSSN]* yielded only dark 

decomposition products and no new characterisable productsf^]. This unpromising result 

led to the conclusion that exploring the difficult to access Ni phosphine chemistry would 

not be worthwhile. The reaction between [Pt(PPh3)4] and [PhCNSSN]* in MePh did 

yield an initial blue solid which appeared to indicate the synthesis of a monometallic 

species (by elemental analysis)[2]. However, the compound decomposed when 

redissolved in CH2CI2 making further analysis difficult. 

In contrast the reaction of [PhCNSSN]' with [Pd(PPh3)4] in MePh resulted in the 

formation of a novel trimetallic dithiadiazolyl speciest2][3], as will be discussed in chapter 

5. Finally, reaction between [Pd(dppe)2] and [PhCNSSN]* in MePh produced a green 

solid which was also poorly characterised again due to its decomposition in suspenion 

and in solutionis] 

These preliminary results did give some indication that novel dithiadiazolyl complexes 

could be isolated but for a thorough characterisation to be undertaken the problems 

associated with their instability in solution would have to be overcome. 
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4.2. RESULTS AND DISCUSSION. 

4 .2 .1 . The Synthesis of Monometallic Dithiadiazolyl Complexes. 

4.2.1.a. The Preparation of [Pt(SNCPhNS-5',5)(PPh3)2].MeCN. 

The addition of MeCN to a mixture of [Pt(PPh3)4] and (PhCNSSN)2 led to the 

immediate formation of a dark blue-green microcrystalline solid of [Pt(SNCPhNS-

5,5')(PPh3)2].MeCN under a blue-green precipitate. After 20niin the soluble fraction 

was filtered off and the precipitate washed with fresh MeCN. Elemental analysis 

indicated that the complex was obtained as its MeCN solvate, subsequently confirmed 

from structural data. 

Four analogous complexes, [Pt(SNC(3,4F-C6H3)NS-5,5)(PPh3)2], [Pt(SNC(p-

ClC6H4)NS-5',5')(PPh3)2], [Pt(SNC(p-BrC6H4)NS-5,5)(PPh3)2] and [Pt(SNC(p-

MeC6H4)NS-5',5)(PPh3)2] were prepared by the same synthetic route from the specific 

substituted dithiadiazolyl and [Pt(PPh3)4] by O.G.Dawet^] and all subsequent analysis of 

these species was undertaken by him. Consequently no experimental or analysis figures 

are quoted here. 

4.2.l.b. The Preparation of [Pt(SNCPhNS-5,5)(dppe)]. 

The addition of MePh to a mixture of [Pt(dppe)2] and [PhCNSSN]2 led to the formation 

of a deep royal blue precipitate under a blue solution. The solution was heated to 70°C 

and after 24h the soluble fraction was filtered off and the precipitate washed with fresh 

MePh. Satifactory elemental analysis was achieved for the composition 

[Pt(SNC(Ph)NS-5,5)(dppe)]. 

The analogous complex [Pt(SNC(3,4-FC6H3)NS-S,5)(dppe)] was prepared by the same 

synthetic routet^l. 

4.2.I.e. The Preparation of [Pd(SNC(Ph)NS-5,5)(dppe)]. 

The addition of MePh to a mixture of [Pd(dppe)2] and [PhCNSSN]2 led to the immediate 

formation of a green precipitate under a green solution. After 1 V2h the soluble fraction 

was filtered off and the precipitate was washed with fresh MePh. Satisfactory elemental 

analysis was achieved for the composition [Pd(SNC(Ph)NS-5,5)(dppe)]. 
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4.2.l.d. The General Reaction to Form Monometallic Species. 

In all the reactions to form monometallic complexes there is a loss of phosphine from the 

metal phosphine complex (either 2PPh3 or dppe) and [PhCNSSN]* co-ordinates on to the 

metal through the two sulfurs, as shown in the following sections. The overall equations 

are shown below (equation 4.a.). 

Equation 4.a. Formation of Monometallic Dithiadiazolyl Complexes. 

[Pt(PPh3)4] + [RCNSSN]* • [Pt(SNC(R)NS-5,5)(PPh3)2] + 2PPh3 

[M(dppe)2] + [RCNSSN]* • [M(SNC(R)NS-5,5)(dppe)] + dppe 

M = Pt or Pd 

4 .2 .2 . Crystal Growth of Monometallic Complexes. 

Growth of crystals suitable for X-ray diffraction proved to be highly problematic. 

Recrystallisation proved impossible as all three complexes decompose to further products 

in solution, as explained in the following two chapters. To overcome this problem 

crystals were grown directly from the reaction between [PhCNSSN]* and the zero-valent 

metal phosphine. 

Crystals of [Pt(SNCPhNS-5,5)(PPh3)2].MeCN were grown by slow transfer of 

[PhCNSSN]* over excess (PhCNSSN)2 through a grade 3 sinter into a solution of 

[Pt(PPh3)3] over excess [Pt(PPh3)3]. Crystals started to form after Ih. The apparatus 

used for this reaction was an upturned 'dog' (see chapter 1 for a diagram and ful l 

description). This facilitates a diffusion controlled reaction and the monometallic species 

that is formed grows as crystals suitable for X-ray diffraction (see figure 4.b.). In a 

diffusion controlled reaction fewer micro crystals are formed and these act as nucleation 

sites for the growth of large crystals as the reaction proceeds. 

In similar reactions crystals of [Pt(SNCPhNS-5,5)(dppe)] and [Pd(SNCPhNS-

5,5')(dppe)] were grown with MeCN as the solvent overnight. This technique has been 

used successfully by this group in the pastn][6][7]. 
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Figure 4.b. Crystal Growth Reaction of [Pt(SNCPhNS-S,S)(PPh3)2]. 

[PhCNSSN]-
in solution 

Slow reaction 
in solution 

[PtCPPhj),] 
in solution 

Slow precipitation ^ K J 
Excess soUd of crystals of 
(PhCNSSN)^ [Pt(SNCPhNS)(PPh3)2] ^"^'^"s'sJ 

4.2 .3 . X-Ray Structures. 

X-ray structural determinations were undertaken on [Pt(SNCPhNS-

5,5)(PPh3)2.MeCN], [Pt(SNCPhNS-S,5)(dppe)] and [Pd(SNCPhNS-5,5)(dppe)]. All 

three structural solutions were undertaken by Dr. S.E.Lawrencet^l. 

Structural diagrams of all three complexes are shown in Figures 4.c, 4.d and 4.e. and 

selected bond lengths and angles are given in table 4.a. as are, for comparison, selected 

structaral data for (PhCNSSN)2[8]. 

The structural information gives conclusive evidence for the formation of the first 

monometallic dithiadiazolyl complexes, with the (SNCPhNS) group behaving as a 

chelating rather than a bridging ligand. The platinum complexes are also the first 

dithiadiazolyl species of that metal to be reported. 

The two dppe complexes are essentially isostructural and are closely related to the 

triphenyl phosphine species. Al l three contain square planar M(^^) species formed by 

oxidation of the M^*^) phosphine complex by the sulfur atoms of the chelating 

(SNCPhNS) group. As stated in chapter two, square planar Pt(H) and Pd(n) complexes 

are the most common structural type in group 10 chemistry. 

There is no significant difference in atomic radii between Pt and Pd (due to the lanthanide 

contraction[9]) and thus no significant difference in M-P and M-S bond lengths. Thus the 

metal-sulfur bond lengths are essentially identical for both of the dppe complexes. The 
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Pt-S bond distances are slightly shorter than those observed in other sulfide-bound Pt 

complexes (2.32-2.36A)[10]. This indicates a slight double-bond character of the Pt-S 

bonds. The Pt-S bonds in the triphenylphosphine species are slightly longer than those 

observed for the dppe complex for a reason that will be discussed below. 

The S-S bond length increases greatly from 2.089A in (PhCNSSN)2 to >3.1A in the 

complexes and is thus effectively broken on insertion of the metal. The other 

(SNCPhNS) ring parameters, most notably bond angles, are consistent with this ring 

expansion and with the expected decrease in S-S and N-S bond orders. The N-S^ l] and 

C-N[12] bond lengths are still though intermediate between the lengths associated with 

single and double bonds. There is thus still appreciable n delocalisation over the 

(SNCPhNS) framework in addition to any S-Pt K bonding and the lowest energy 

conformation of the six membered ring would be planar. 

For a six-membered planar ring the ideal average internal angles would be 120°. 

However, the ideal S-M-S angle for square-planar species would be 90°. To 

accommodate the metal atom, the ring thus buckles at the S-S to metal interface and the 

metal atom sits above the planar (SNC(Ph)NS) fragment as is shown clearly in the side 

on view of [Pt(SNCPhNS-55)(dppe)] in figure 4.d and measured by angle 6 in table 4.a. 

The different phosphines are not simply spectator ligands that complete the co-ordination 

sphere: they provide the major structural differences observed in these species. The 

triphenyl phosphine groups in [Pt(SNCPhNS-5',5)(PPh3)2] are sterically far bulkier i.e. 

(PPh3 has a larger cone angletl^]) than V2dppe and thus the P-M-P angle in 

[Pt(SNCPhNS-5,>S')(PPh3)2] is greater. This has the knock on effect of decreasing all 

the other metal based bond angles. The S-Pt-S angle is decreased by two effects; slight 

lengthening of the Pt-S bonds explained above and, more significantly by further 

buckling along the S-S axis thereby raising the Pt atom above the plane of the 

(SNC(Ph)NS) fragment. The latter effect is shown clearly in figure 4.f. in which the 

structure of [Pt(SNCPhNS-5,5)(PPh3)2] is superimposed onto the structure of 

[Pt(SNCPhNS-5,5')(dppe)]. This effect also causes a slight decrease in trans annular 

S...S interaction in [Pt(SNCPhNS-5,5)(PPh3)2] 
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Finally, a curious phenomenon is the marked difference in S-M-P angles in both dppe 

based complexes (e.g. 93.9(2)° and 88.7(2)° in [Pd(SNCPhNS-S5)(dppe)]). There is 

no obvious single reason for this effect although it is perhaps caused by packing 

requirements (unlike the triphenylphosphine based complex there is no solvent of 

crystallisation in these two species to aid packing). Another explanation is that the 

bulkier triphenyl phosphine species may prevent great variation in S-M-P angle in 

[Pt(SNCPhNS-5,5)(PPh3)2]. The S-M-P angles have more potential for variation than 

the S-M-S and P-M-P angles which are held more rigidly by the chelating ligands. A 

final reason could be the trans effectti^] ̂ i^h opposite ligands attempting to push charge 

into the same metal orbitals. When at 180° d and p orbitals are in maximum competition 

due to charge donation in opposite directions and competition for the same orbitals 
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4.2.4. E . s . r . Spectroscopy. 

From simple bonding principles there is no evidence for the unpaired electron present in 

[PhCNSSN]* being significantly involved in the bonding on complexation, as shown in 

the canonical form below figure 4.g.). 

Figure 4.g. [M(SNCPhNS-5,S)(PR3)2] 

As such in solution monometallic complexes should exhibit an e.s.r. signal similar to that 

of the parent radical [PhCNSSN]*. All three complexes are e.s.r. active and gave signals 

with well resolved hyperfine splitting. Unfortunately, as previously stated, all three 

complexes decompose in CH2CI2 liberating [PhCNSSN]' which partially obscures the 

signal for the complex. An example of this effect is shown for [Pt(SNCPhNS-

S,5)(dppe)] (figure 4.h.). 

To overcome this problem the complexes were prepared 'in situ' from [PhCNSSN]* and 

the specific zero-valent phosphine complex. The excess phosphine complex reacts with 

any [PhCNSSN]* liberated during decomposition. In both Pt species (see figure 4.i. for 

spectrum of [Pt(SNCPhNS-5,S)(PPh3)2)]) there is hyperfme coupling to 195pt (1=1/2, 

33%), and to the two nitrogen and two phosphorus nuclei. This indicates that the 

unpaired electron occupies a molecular orbital which is extensively delocalised over the 

whole metallo heterocyclic framework. The spectrum for [Pd(SNCPhNS-5,5)(dppe)] 

(figure 4.j.) shows even clearer resolution with hyperfme coupling to two phosphorus, 

two nitrogen and one palladium atom, ^^^Pd (1=̂ /2, 22.23%). 

The g-value, peak width (AB) and hyperfine splitting (ox), for all three complexes and 

selected data for the fluorinated dithiadiazolyl platinum complex [Pt(SNCC6F5NS-

5,5)(PPh3)2] and [PhCNSSN]*n5] are given in table 4.b. 
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Table 4.b. Electron Spin Resonance Parameters for Monometallic 

Complexes (units in mT). 

COMPOUND 

PARAMETERS 

COMPOUND giso ON op ABpp 

[PhCNSSN]* 2.0102 0.517 0.04 

[Pt(SNCPhNS-S,S)(PPh3)2] 2.0386 5.385 0.553 0.280 0.20 

[Pt(SNCC6F5NS-S,S)(PPh3)2] 2.047 5.51 0.54 unobs 

[Pt(SNCPhNS-S,S)(dppe)] 2.046 5.479 0.548 0.352 

[Pd(SNCPhNS-S,S)(dppe)] 2.0310 0.372 0.573 0.383 0.10 

In the case of [Pt(SNCPhNS-5,5)(PPh3)2] and [Pd(SNCPhNS-5,5)(dppe)] the values 

in (figure 4.b.) were used to simulate their spectra (figures 4.i. and 4.j. respectively). 

A curious phenomenon in the spectra of the complexes is that the nitrogen hyperfine 

splitting of phenyl dithiadiazolyl actually increases on complexation despite radical 

electron seepage onto the metal. As hyperfine splitting is proportional to % occupancy of 

the free electron on any individual element, there must be gain of free radical electron 

density. As there is no electron density on the ring carbon (being on a node for the 

somo) then we must assume that free radical electron density is solely gained from the 

two ring sulfurs. 

From the in situ preparation of [Pt(SNCC6F5NS-S,S)(PPh3)2], from the parent radical 

and excess [Pt(PPh3)4] it was envisaged that hyperfine coupling to the aryl ring fluorines 

could be observed (as is the case for [C6F5CNSSN]*n6]). However, fluorine coupling 

only resulted in a broadening of the hyperfine interactions already observed. 
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Figure 4.i. E.s .r . Spectrum of [Pt(SNC(Ph)NS-S,S)(PPh3)2]. 

Generated 'in situ' from [PhCNSSN]* and [Pt(PPh3)4]. 

EXPERIMENTAL 

SIMULATION 

3223 3250 3275 
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Figure 4.j. E.s .r. Spectrum of [Pd(SNC(Ph)NS-S,5)(dppe)]. 

Generated 'in situ' from [PhCNSSN]* and [Pd(dppe)2]. 

EXPERIMENTAL 

SIMULATION 
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4,2 .5 . Molecular Orbital Studies on [Pt(SNC(H)NS-S,5)(PH3)2]. 

The e.s.r. spectroscopy measurements discussed in the previous section indicate what the 

singly occupied molecular orbital of monometallic dithiadiazolyl complexes would look 

like. EHMO calculations were undertaken by J.M.Rawson on the hypothetical 'parent' 

complex [Pt(SNC(HN)S-5,5)(PH3)2], the phenyl groups being replaced by H to 

simplify the calculation. The input geometry was identical to that observed in the 

crystallographic smdy apart from the phenyl groups replaced by protons at 1.08A. The 

HFOMO (highest fully occupied molecular orbital), SOMO (singly occupied molecular 

orbital) and LUMO (lowest unoccupied molecular orbital) are shown in figure 4.k. 

The SOMO of the complex is formed by interaction of the Pt dxz orbital with the SOMO 

of the [HCNSSN]* radical and is antibonding with respect to both S-N and S-Pt. As 

with the dithiadiazolyl radical itself, the SOMO is nodal at carbon. Of particular interest 

is the fact that the SOMO has no orbital contribution from P. We must therefore assume 

that the P coupling observed in the e.s.r. spectrum occurs via a spin polarisation 

mechanism - when the coupling parameter (isotropic hyperfine interaction)[17] for P is 

taken into account the amount of s orbital density found on P is about fif ty times that 

observed for N . The LUMO, some 3eV above the SOMO, is predominantly based on the 

NCN fragment of the dithiadiazolyl ring with less than 1 % contributions from either S or 

Pt. The HFOMO, only 0.8eV below the SOMO, is formed by interaction of the HFOMO 

of [HCNSSN]* with d orbitals based on Pt. The dyz orbital contributes the greatest 

component (32%) of the orbital contribution, although there is also a further 15% from 

dx2-y2 and 5% from dz2 orbitals. 
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4.2 .7 . Magnetic Measurements. 

From e.s.r. spectroscopy and m.o. calculations there is conclusive proof for the presence 

of an unpaired electron in the isolated molecule and in solution. X-ray crystallography on 

[Pt(SNCPhNS-5,5)(PPh3)2], [Pt(SNCPhNS-5,5)(dppe)], and [Pd(SNCPhNS-

S,5)(dppe)] have also shown that these monomeric radical complexes do not closely 

interact in the solid state (i.e. do not dimerise like the parent compound (PhCNSSN)2). 

Magnetic measurements were undertaken on the three [PhCNSSN]* complexes shown 

above to demonstrate the existence and magnetic effect of this free electron in the solid 

state and to elucidate its magnetic properties. 

Al l the magnetic data obtained are shown in graphical form on the pages immediately after 

this description. 

Plots of magnetic susceptibility (x) vs temperature (K) for all three complexes are shown 

in figures 4.1., 4.p. & 4.t. As the temperature is lowered there is a gradual spin 

alignment of the unpaired electrons with the applied magnetic field. This results in an 

exponential increase in magnetic susceptibility on lowering the temperature. If the graph 

were extrapolated to OK then in each case x would reach infinity. 

The plot of inverse magnetic susceptibility vs temperature for [Pt(SNCPhNS-

5,5)(PPh3)2] and [Pt(SNCPhNS-5,5)(dppe)] (figures m & q) results in a linear 

dependence of Vj^ as a function of temperamre. Both compounds thus obeys the Curie-

Weiss law (equation 4.b.) where 9 is the temperature when Vj^ = 0. This temperature 0 

is 4K for both Pt speciesHSJ. 

X a V ( T . e) 
Equation 4.a. Curie -Weiss Law 

At higher temperamres there is a slight increase in V̂ ^ above the line representing linear 

dependency. This is due to the fact that no diamagnetic correctiontl^] has been made for 

the sizeable number of paired electrons involved in bonding in these two large molecules 
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[note; Xobs = Xparamagnetic + Xdiamagnetic]- At higher temperatures, and thus lower 

Xparamagnetic this diamagnetic constant will have a larger effect. 

Below l lOK, [Pd(SNCPhNS-5,5)(dppe)] (figure 4u) also obeys the Curie-Weiss law 

where again 6 = 4K. From this temperamre onwards increases markedly above the 

linear dependence value, and by too large a factor to be explained solely by the lack of a 

diamagnetic correction. It must be assumed that due to the poor stability of the palladium 

species there must be a fair proportion of the decomposition product, [Pd3(|is-

sSNCPhNS-5,5)2(dppe)2], present (this complex will be discussed further in chapter 5). 

The effect of this diamagnetic impurity coupled with the paired electron effect described 

for the two Pt species, results in a big decrease of x at higher temperatures and thus 

further increases ̂ Ij. 

The magnetic moment (|ieff mol-l) for [Pt(SNCPhNS-5,S)(PPh3)2].MeCN (figure 4.n) 

and [Pt(SNCPhNS-5,5)(dppe)] (figure 4.r.) is about 1.73BM down to 20K. This value 

is typical for an S=V2 spin only paramagnet with one unpaired electron per moleculet^O]. 

Below this temperature there is an exponential increase in magnetic moment. This is 

taken to be due to small amounts of [PhCNSSN]* radical impurity as explained below. 

The magnetic moment is proportional to the square route of %T. As the temperature is 

lowered the value for % becomes more influential and i f the value for % is higher than 

expected, then |j.eff will also increase. The calculations take into account the molecular 

weight of the complexes (i.e. 941.63g for [Pt(SNCPhNS-5,5)(PPh3)2] MeCN and any 

lower molecular weight species with unpaired electrons (i.e. [PhCNSSN]*, 181.26g) will 

artificially increase the magnetic susceptibility. The same effect is observed for 

[Pd(SNCPhNS-5,5)(dppe)] (figure 4.v.) although the magnetic moment is lower than 

expected at all temperatures due to the presence of the diamagnetic impurity 

[Pd3(SNCPhNS-5,5)2(dppe)2] . 

Finally a plot of xT vs temperature was made for all three complexes (figures 4.o., 4.s. 

& 4.W.). Again, as anticipated, at lower temperatures this value increases greatly due to 

[PhCNSSN]* impurity and in the palladium species the value for yl is lower due to the 

reasons already explained in the previous paragraph. 
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Thus all three monometallic complexes are classical paramagnetic materials and it has 

been possible to prepare a series of [PhCNSSN]* based compounds which do not 

dimerise in the solid state to form diamagnetic solids. Presumably the lack of interaction 

between neighbouring electrons is due to the bulky phenyl phosphine groups which 

prevent close interaction between unpaired electrons in adjacent molecules. 
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Magnetic Measurements on [Pt(SNC(Ph)NS-S,S)(PPh3)2]MeCN. 
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Magnetic Measurements on [Pt(SNC(Ph)NS-5,5)(PPh3)2].MeCN. 
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Magnetic Measurements on [Pt(SNC(Ph)NS-5,5)(dppe)]. 
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Magnetic Measurements on [Pt(SNC(Ph)NS-5,5)(dppe)]. 
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Magnetic Measurements on [Pd(SNC(Ph)NS-S,S)(dppe)]. 
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Magnetic Measurements on [Pd(SNC(Ph)NS-S,S)(dppe)]. 
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4.2.8. Ultra VioletA^isible Spectroscopy. 

The U. VVvisible spectra of all the monometallic dithiadiazolyl complexes prepared show 

an absorbance at the red end of the visible region with X values of between 658 and 

684nm e.g. see figure 4.x for spectrum of [Pt(SNC(Ph)NS-5,5)(PPh3)2]. In contrast, 

the parent radicals [RCNSSN]* show no absorbance in this region. Due to the rapid 

decay of the signal caused by the decomposition of the complexes in solution, an accurate 

measurement of extinction coefficient was not possiblef^H. It was therefore not possible 

to determine the particular ligand-metal transition that occurs. Values for a range of 

monometallic species prepared by both the author and O.G.Dawe are shown in table 4.c. 

Figure 4.x. U.VyVis Spectrum of [Pt(SNC(Ph)NS-S,5)(PPh3)2] 
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4.2.9. Biological Properties. 

As highlighted in chapter 3 square-planar platinum complexes have atttracted great 

biomedical interest due to the anti-cancer activity that many exhibit. Johnson Matthey 

expressed an interest in this biological aspect of the monometallic platinum dithiadiazolyl 

complexes. They all contain 16e- square-planar platinum and the free radical is 

delocalised over the extended ring system. It was hoped that this free radical would 

increase activity (free radical compounds are well known for their toxicity). 

The triphenyl phosphine complex [Pt(SNCPhNS-5,5)(PPh3)2].MeCN. was extensively 

tested against a series of cell cultures including human tumour lines (e.g. SKOV-3)f20] 

and the results are shown in table 4.d. The parameter employed, IC50 is the 

concentration of compound (|J.g/ml) required to give 50% decrease in cell proliferation of 

a culture (i.e. the less compound required the higher the toxicity). The values for the 

parent anti-cancer drug cis platin [Pt(NH3)2Cl2]t2^^ are also shown for comparison. 

Cis^ samples are cultures which have previously been exposed to cis-platin and have 

thus gained a degree of resistance. The resistance factor (R.F.) gives a measure of how 

active a complex is against a resistant strain of a culture as compared with the non-

resistant strain. 

It is evident that [Pt(SNCPhNS-5,5)(PPh3)2.MeCN] is more potent than cis-platin 

against almost all the cell strains tested. This is almost certainly mainly due to the 

presence of the free radical on the complex although the presence of toxic MeCN in the 

lattice may also be a factor. 

On initial examination these results are encouraging. On closer examination, however, 

there is little selectivity in the activity i.e. the dithiadiazolyl complex is very toxic towards 

all cell cultures. This is not a useful property when only cancerous cells are to be 

targeted. Also, although the complex is remarkably stable in water it is very insoluble in 

aqueous systems (e.g. the human body). As a result of these findings no further testing 

was deemed worthwhile with respect to the use of [Pt(SNCPhNS-5,5)(PPh3)2] as an 

anti-cancer drug though the toxicity and solubility characteristics can be expected to 

change for related compounds. All monometallic dithiadiazolyl species should, though, 

be treated with great care. 
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Recently [Pt(SNC(3,4F-C6H3NS-5,S)(PPh3)2] and [Pt(SNC(3,4F-C6H3)NS-

5',5)(dppe)] have been submitted for biological testing. It is hoped that the partially 

fluorinated species may possess more discrimination in their biological properties. 

Table 4.d. Biological Test Results For [Pt(SNCPhNS-S,S)(PPh3)2]. 
IC50 vs. Cell Line 

C E L L CULTURE [Pt(SNCPhNS-S,S)(PPh3)2] CISPLATIN 

A2780 0.5 8.90 

A2780 cisR 0.35 29.0 

A2780 RF 0.7 3.3 

CHI 0.43 0.082 

CHI cisR 0.43 0.33 
C H I R F 1 4.0 

41M 0.66 0.22 

41M cisR 0.7 1.05 
41MRF 1.1 4.7 

SKOV-3 1.45 14.5 

HX62 1.05 2.80 

RF = Resistance factor = 
IC50 Resistant (cisR) Line 

IC50 Sensitve Line 
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4.2.10. F.A.B. Spectroscopy of [Pt(SNCPhNS-S,S)(PPh3)2]. 

The FAB mass spectrum (positive ion) of [Pt(SNCPhNS-5',5)(PPh3)2] shows the parent 

ion Pt(SNCPhNS-5,S)(PPh3)2 901, and its breakdown product Pt(PPh3)2 719. 

However, there are also molecular ion peaks at higher ™/z ratios which can be assigned to 

dimetallic species [Pt2(|i-SNCPhNS-5,S)(PPh3)4] 1620, [Pt2(|i-SNCPhNS-

5,5)(PPh3)3 1358 and [Pt2(|i2-SNCPhNS-5,5)(PPh3)2] 1096. It is not uncommon for 

monometallic species to dimerise in the FAB sourcef̂ S] and gives evidence for the 

formation of oligomeric complexes. 

4.2.11. Other Techniques. 

Cyclic Voltammetry experiments were undertaken on all three main monometallic 

complexes and the results are discussed in Chapter 7. 

Due to the presence of the unpaired electron, the n.m.r spectra of monometallic 

species are poorly resolved and are affected by paramagnetic broadening as discussed in 

chapter two. No peaks attributable to monometallic complexes could be observed in the 

3lp n.m.r. between 300 and -300ppm, even when the complex is prepared in situ from 

the starting zero-valent phosphine and [PhCNSSN]*. This is not suprising; it is often the 

case that species that yield good e.s.r. spectra have n.m.r. resonances too broadened to 

be observable[24]. 
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4.3. EXPERIMENTAL. 
4.3.1. Preparation of [Pt(SNCPhNS-S,S)(PPh3)2].MeCN. 

[Pt(PPh3)4] (O.SOOg, 0.402mmol) and (PhCNSSN)2 (0.073g, 0.20 mmol) were stirred 

in MeCN (20ml) to yield, immediately, a deep green-blue, microcrystalline precipitate 

under a green solution. The suspension was stirred for 20min, filtered and washed with 

fresh MeCN (3xlOml). The pale green filtrate and washings were discarded and the 

microcrystalline solid dried in vacuo 

Yield 0.288g,76%. 

IR Vniax(cm-l) 3051w, 148Gm, 1435ssh, 1324m, 1178w, 1160w, 1095ssh, 1070w, 

1026w, 999w, 925w, 900w, 823w, 742m, 693s, 645wsh, 536s, 522s, 510s, 496m, 

459w, 429w. 

Elemental analysis, found: C57.61%; H3.95%; N4.19. Calc: C57.37%; H4.07%; 

N4.46%). 

U.v. absorption (CH2CI2) Xmax 680nm-l (8= 11 l6dm^Tno\-hm-^). 

E.s.r., g= 2.0485, apt=5.30mT, ap=0.26mT, aN=0-55mT. 

Ds.c. 136°C (dec). 

4.3.2. Crystal growth of [Pt(SNCPhNS-5,S)(PPh3)2].MeCN, 

Freshly prepared [Pt(PPh3)3] (O.OlOg, O.OSmmol) was placed in one limb of a two-

limbed vessel with (PhCNSSN)2 (O.lOOg, 0.28mmol) in the other. MeCN (10ml) was 

added to each. Inversion of the sealed reaction vessel allowed slow diffusion through a 

grade three sinter of a solution of [PhCNSSN]* into the former limb. Within 30min dark 

blue-green crystals were forming over solid [Pt(PPh3)3]. After three days the solvent 

was removed yielding a number of well-formed crystals suitable for X-ray analysis. 

4.3.3. Preparation of [Pd(SNCPhNS-5,S)(dppe)]. 

[Pd(dppe)2] (0.500g, 0.55mmol) and (PhCNSSN)2 (0.1 Ig, 0.30mmol) were sfirred in 

MePh (20ml) to yield immediately a deep green precipitate under a green solution. The 

suspension was stirred for lV2h, filtered and washed with fresh MePh (3x10ml). The 

pale green filtrate and washings were discarded and the solid was dried in vacuo 

Yield 0.37g, 97%. 
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IR Vniax(cm-l) 3053m, 1483sh, 1435ssh, 1319m, 1172w, 1103m, 1026w, 998w, 

875w, 823m, 746m, 706ssh, 692ssh, 655w, 528ssh, 483m. 

Elemental analysis, found: C,58.04%; H,3.72%; N,4.39%. Calc: C,57.76%; H,4.27%; 

N4.08%. 

U.V. absorption (CH2CI2) X âx 672.0nm-l, (e = 153dm3mol-lcm-i). 

E.s.r.; g= 2.03, apd=0.63mT, ap=0.37mT, aN=0.56mT. 

D. s.c. 154°C (dec). 

4 .3 .4. Crystal growth of [Pd(SNCPhNS-S,S)(dppe)] 

Freshly prepared [Pd(dppe)2] (0.069g, 0.076mmol) and (PhCNSSN)2 (0.095g, 

0.26mmol) were placed in separate limbs of a two bulbed vessel separated by a grade 3 

sinter. MeCN (10ml) was added to each and the reaction vessel inverted. Slow diffusion 

of the [PhCNSSN]* solution through the sinter occurred and within 30mins dark green 

crystals were forming over solid [Pd(dppe)2]. After a day the solvent was removed 

yielding a number of well formed crystals suitable for X-ray analysis. 

4 .3.5. Preparation of [Pt(SNCPhNS-S,S)(dppe)]^ 

[Pt(dppe)2] (0.850g, 0.85mmol) and [PhCNSSN]2 (0.16g, 0.44 mmol) were stirred in 

MePh (10ml) at 70°c to yield an immediate deep royal blue precipitate under a blue 

solution. The suspension was stirred for 24hrs with no colour change, filtered and the 

solids washed with fresh MePh (3xlOml). The pale blue filtrate plus washings were 

discarded and the solid was dried in vacuo. 

Yield 0.41g,92%. 

IR Vjnax(cm-l) 2862w, 2724w, 2362w, 1654w, 1591w, 1570w, 1462s, 1377s, 

1318ssh, 1225sh, 1169sh, 1098w, 1023w, 997w, 919w, 896w, 881w, 846w, 822sh, 

812sh, 769w, 758w, 744sh, 710ssh, 702ssh, 689ssh, 654w. 

Elemental analysis found: C,51.27%; H,3.72%; N,4.46%. Calc.:C,51.15%; H,3.78%; 

N3.62%). 

U.V. absorption (CH2CI2) Vax 680.0nm-l, (e = 877dm3mol-lcm-l). 

E. s.r. g= 2.04, apt=5.48mT, ap=3.56mT, aN=5.48mT. 

D.s.c.218°C (dec). 
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4.3.6. Crystal growth of [Pt(SNCPhNS-S,S)(dppe)]. 

[Pt(dppe)2] (0.050g, 0.05mmol) and [PhCNSSN]2 (0.084g, 0.23mmol) were placed in 

separate limbs of a two bulbed vessel separated by a grade 3 sinter. MeCN (10ml) was 

added to each and the reaction vessel inverted. Slow diffusion of the [PhCNSSN]* 

solution through the sinter occurred and within 30mins dark blue crystals were forming 

over solid [Pt(dppe)2]. After a day the solvent was removed yielding a number of well 

formed crystals suitable for X-ray analysis. 
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4.4. CONCLUSION. 
In this chapter a new range of metal dithiadiazolyl complexes has been discovered and 

extensively characterised. The major problem in handling these complexes, their 

instability in solution, has been overcome and crystalline material was isolated for 

structural characterisafion. These monometallic platinum and palladium species 

([M(SNC(R)NS)(P)2] where M=Pt or Pd and P=phosphine) are the first examples of a 

dithiadiazolyl acting as a chelating rather than a bridging Ugand and, in the case of the Pt 

species, the first structurally characterised Pt complexes of [RCNSSN]*. 

The retention of the unpaired electron in these compounds and its delocalisation onto the 

metal atom (as well as within the dithiadiazolyl species) has been shown by e.s.r. 

spectroscopy and molecular orbital studies. The [PhCNSSN]* based complexes have 

also been studied magnetically and are shown to be paramagnetic solids. Unfortunately, 

the bulky phosphine ligands prevent any interaction between adjacent molecules and thus 

inhibit any potentially useful magnetic properties. This could perhaps be overcome by 

using planar counter ligands. The deep blue or green colouration of these species has 

allowed a U.V./vis study although decomposition of these species in solution has limited 

the information that can be gained. 

The biological properties of the Pt complex [Pt(SNC(Ph)NS-S,5)(PPh3)2].MeCN have 

been probed and compared to the anti-cancer drug cis-platin. Despite the high toxicity 

and low selectivity of this particular dithiadiazolyl complex several other analogues, with 

different substituents on the phenyl ring of the dithiadiazolyl have been prepared with the 

hope of enhanced selectivity in future tests. 
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CHAPTER F I V E 

T H E SYNTHESIS AND PROPERTIES OF 
T R I M E T A L L I C PLATINUM AND PALLADIUM 

DITHIADIAZOLYL COMPLEXES 



5.1. INTRODUCTION 
5.1.1. Decomposition of Monometallic Dithiadiazolyl Complexes. 

As previously stated in chapter four, solutions of [Pt(SNCPhNS-S,5)(PPh3)2] and 

[Pd(SNCPhNS-5',5)(dppe)] decompose to yield orange precipitates under orange 

solutions. Previous studiest̂ ] on the platinum based orange species gave little indication 

about the nature of the species formed. There was, however, analytical evidence (C,H 

and N) to suggest that dithiadiazolyl remained bonded to the metal. E.s.r. studies on the 

monometallic species (chapter four) indicated that some [PhCNSSN]* was lost during 

this decomposition. It was thus inferred that the new compound formed contained a 

greater ratio of metal to chalcogen ring system. 

5.1.2. Reaction Between [Pd(PPh3)4] and (PhCNSSN)2. 

The reaction between [Pd(PPh3)4] and (PhCNSSN)2 in toluene did not yield a 

monometallic species but instead a red solid was formedH]. Crystals of this species were 

grown from CH2CI2 and a preliminary X-ray determination yielded a trimetallic 

dithiadiazolyl speciest̂ l. This complex, along with the compounds described above, will 

be discussed in the following sections. 
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5.2. RESULTS AND DISCUSSION. 

5.2.1. Preparation of Trimetallic Complexes. 

When [Pt(PPh3)4] and (PhCNSSN)2 were stirred in MePh an immediate blue precipitate 

[Pt(SNCPhNS-5,5)(PPh3)2] formed. On heating to 70°C this species started to 

decompose, firstly to a brown precipitate under a brown solution and finally to a bright 

orange solid under an orange solution. The solid was washed with fresh MePh and the 

solution (mainly PPh3) and washings discarded. Satisfactory analysis was obtained for 

the composition, [Pt3(ns-sSNCPhNS-5,5)2(PPh3)4]. 

In a similar reaction [Pd(dppe)2] and (PhCNSSN)2 were stirred in MePh to yield an 

immediate green precipitate [Pd(SNCPhNS-5,5)(dppe)]. On heating to 70°C this 

complex also started to break down via a brown suspension until again an orange solid 

had formed under an orange solution. In this case the reaction went to completion faster 

than in the analogous Pt reaction described above. Thus the monometallic Pd 

intermediate, [Pd(SNCPhNS-5,5)(dppe)], is less stable than the Pt species 

[Pt(SNCPhNS-5,5)(PPh3)2]. Again the solid was washed with fresh MePh and the 

solution and washings discarded. Satisfactory analysis was obtained for the 

composition, [Pd3(^s-sSNCPhNS)2(dppe)2]. 

Toluene was also the solvent of choice for the reaction between [Pd(PPh3)4] and 

(PhCNSSN)2. In this case, however, the sole product was a deep red precipitate under a 

red solution: from the visible colour change (and e.s.r. inactivity) no unstable 

intermediate was observed. The red solids (presumably [Pd3(M.s-sSNCPhNS)2(PPh3)4]) 

were filtered and washed with fresh toluene. The solids were then refluxed in CH2CI2 to 

further purify and yield a microcrystalline material which was fitered and dried. This 

crystalline solid satisfied the analysis for the composition [Pd3(|is-sSNCPhNS-

)2(PPh3)4].2CH2Cl2. 

5.2.2. Crystal Growth of Trimetallic Complexes. 

Crystals of [Pt3(ns-s-SNCPhNS)2(PPh3)4].2MePh suitable for X-ray diffraction were 

grown by slow diffusion of a toluene solution of [PhCNSSN]* through a grade three 

sinter into a saturated solution of [Pt(PPh3)3] over excess [Pt(PPh3)3]. Crystals of 

[Pd3(^-SNCPhNS-5,5)2(PPh3)4].2CH2Cl2 suitable for X-ray analysis were grown by 
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slow diffusion of a CH2CI2 solution of [PhCNSSN]* into a saturated solution of 

[Pd(PPh3)4] over excess [Pd(PPh3)4]. The crystal growth method employed in both 

cases was described fully in chapter four. 

Crystals of the analogous Pt species with the difluoro ligand, (SNC(3,4FC6H3)NS), 

(i.e. [Pt3(M,s-sSNC(3,4FC6H3)NS)2(PPh3)4]) were grown in conjunction with 

O.G.Dawe[3] from the decomposition of a solution of [Pt(SNC(3,4FC6H3)NS-

5,5)(PPh3)2] in CDCI3. This solution decomposed to the trimetallic species which 

crystallised out of solution as its CDCI3 solvate. 

In all three cases the crystals were suitable for X-ray diffraction studies. 

5.2.3. X-Ray Structures of Trimetallic Species. 

The X-ray structural studies of these trimetallic species (figures 5.c., 5.d. and 5.e.) 

reveal a novel type of group 10 complex. They are composed of linear M3 chains 

bridged by two 'trans' (SNC(Ph)NS) ligands. All the metals possess square planar 

gometries; the terminal metal atoms have an MP2S2 environment whereas the central 

metal is bonded only to the dithiadiazolyl S atoms thus producing a MS4 co-ordination 

geometry. This structural type can thus be envisaged as two monometallic species, 

[Pt(SNCPhNS-5,S)(PPh3)2], sandwiching a bare metal atom in a trans fashion. 

The two Pt species (Figures 5.c. and 5.d.) have a crystallographic inversion centre. 

Selected bond lengths and angles are shown in table 5.a. There is little significant 

difference between the bond lengths and angles in both Pt complexes. The minor 

differences (e.g. the P-Pt-P bond angle) can probably be attributed to the packing 

requirements of two different solvents of crystallisation, MePh and CDCI3 respectively. 

In comparing [Pt3( îs-sSNCPhNS)2(PPh3)4] to [Pt(SNCPhNS-5,5)(PPh3)2] (structural 

details in chapter four) the major stmctural difference for the dithiadiazolyl ring is that in 

[Pt3(^s-sSNCPhNS)2(PPh3)4] it now bridges between a PtP2 unit and a central Pt atom. 

Neither Pt atom can thus insert as closely into the S-S bond as can occur in the 

monometallic chelating species. This results in a decrease in S-S distance (3.019(6)A 

from 3.168(4)A) and a decrease in S-Pt-S angle (78.8(2)A and 80.4(2)A from 

86.78(8)A) as the chalcogen system contracts slightly at the S-S interface. There is also 

an accompanying increases in S-M bond distance (e.g. 2.332(5)A & 2.387(4)A from 
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2.294(2)A & 2.309(2)A). As the chalcogen ring now takes up less space around the 

metal the triphenylphosphine groups are able to take up more space (P-Pt-P 103.3(2)° 

from 100.01(7)°), and are more strongly bound to platinum (2.297(2)A and 2.305(2)A 

from 2.311(2)A and 2.322(2)A). 

A feature of the 3,4, di-fluoro complex is that only the 'trans' di-fluoro species is present 

in the crystal. There is no obvious reason why a cis species should not be formed. It 

could be the case that both isomers were formed and that the trans species crystallised 

preferentially. 

The structure of [Pd3(|is-sSNCPhNS)2(PPh3)4] is shown in figure 5.e. and, unlike the 

two Pt based species, does not possess a crystallographic inversion centre. Selected 

bond lengths and angles are shown in table 5.b. The palladium complex has no 

immediate monometallic analogue for comparison. In an indirect comparison with the 

dppe species [Pd(SNCPhNS-5,5)(dppe)] a similar trend to that observed for the two 

platinum species described above can be seen i.e. the metals in the trimetallic complex do 

not insert into the S-S bond as effectively as in the monometallic species resulting in 

longer S-Pd bond lengths and a smaller Pd-S-N angle. 

These trimetallic species are unusual since Pt and Pd based complexes more often form 

mono or di-nuclear species or long chains or clusterst̂ a]. However, there are examples 

of trimetallic and higher oligomeric species with bridging ligands e.g. the Pt blues (see 

section 5.7.). In recent years there has also been a series of tri and tetra, homo and 

hetero metallic Pd(II) and Pt(II) species prepared with bridging double halides or thiolate 

ligands e.g. [NBu4]2[(C6F5)2Pt(|xCl)2Pt(nCl)2Pt(C6F5)2][5] (shown in figure 5.a.) and 

[P(CH2Ph)Ph3]2[(C6F5)2Pd(^lSC6F5)2Pt(^SC6F5)2Pt(^SC6F5)2Pd(C6F5)2]f6]. 

Figure 5.a. Pt chain species. 

Pt Pt Pt 
Li'sCe CI CI CeFjj 
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An interesting feature of these trimetallic dithiadiazolyl complexes is their close metal-

metal interactions ranging between 2.8499(11)A and 2.9026(4)A. Though these are 

close interactions (the covalent radii of Pt and Pd are 1.28 and 1.31 A respectivelyt'^l) they 

are longer than those observed for genuine Pt-Pt and Pd-Pd bonded species, e.g. Pt-Pt 

clusters usually have Pt-R bonds of between 2.61 and 2.79Af 8]. Some examples of such 

metal-metal bonded species for Pt and Pd are shown in figure 5.b. 

From this evidence I would conclude that the metal-metal interaction in the trimetallic 

species is not a full single bond but it still represents a significant bonding interaction. 

Figure 5.b. Selected M-M Bonded Complexes. 
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Figure 5.d. X-Ray Structure of 
[Pt3(|is-sSNC(3,4FC6H3)NS)2(PPh3)4].4CDCl3.. 

The triphenylphosphine phenyl groups (except the carbon atoms bound to phosphorus), 
deuterochloroform solvate and all the protons have been removed for claritv. 
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Table 5.a. Selected bond lengths and angles for both trimetallic platinum 
complexes. 

T R I M E T A L L I C 
PLATINUM C O M P L E X 

3,4 F T R I M E T A L L I C 
PLATINUM C O M P L E X 

Bond Length 
o 

(A) 

M(l)-S(l) 2.367(4) 2.383(2) 

M(l)-S(2) 2.387(4) 2.380(7) 

M(l)-P(l) 2.300(5) 2.297(2) 

M(l)-P(2) 2.301(4) 2.305(2) 

M(2)-S(l) 2.332(5) 2.344(2) 

M(2)-S(2) 2.344(4) 2.340(2) 

S(l)-N(l) 1.66(1) 1.669(7) 

S(2)-N(2) 1.64(1) 1.667(7) 

Pt(l)-Pt(2) 2.865(1) 2.9026(4) 

S(1)....S(2) 3.019(6) 

C(l)-N(l) 1.31(2) 1.315(12) 

C(l)-N(2) 1.34(2) 1.325(12) 

Bond AngleC) 

S(l)-M(l)-S(2) 78.8(2) 79.29(8) 

S(l)-M(2)-S(2) 80.4(2) 80.90(8) 

P(l)-Pt(l)-P(2) 103.3(2) 99.06(8) 

P(l)-M(l)-S(2) 87.8(2) 91.37(8) 

M(l)-S(l)-N(l) 113.2(5) 113.3(3) 

M(l)-S(2)-N(2) 111.1(5) 107.4(3) 

M(2)-S(l)-N(l) 109.3(5) 107.4(3) 

M(2)-S(2)-N(2) 107.4(6) 107.4(3) 

S(l)-N(l)-C(l) 122.5(13) 123.9(6) 

S(2)-N(2)-C(l) 126.1(13) 123.9(7) 

M(l)-M(2)-M(r) 180.0 180.0 
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Figure 5.e. X-Ray Structure of 
[Pd3(jus-sSNC(Ph)NS)2(PPh3)4].2CH2Cl2. 

Th carbon atoms of triphenyl phosphine, dichloromethane solvate and all the protons 
have been removed for clarity. 
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Table 5.b. Selectted Bond Lengths and Angles for 

[Pd3(^lS-sSNC(Ph)NS)(PPh3)4]. 

[Pd3(^ iS . sSNC(Ph)NS)2(PPh3)4 ] 

Bond Length (A) Bond Angle (°) 

Pd(l)-S(l) 2.332(2) S(l)-Pd(l)-S(2) 80.20(8) 

Pd(l)-S(2) 2.346(2) S(3)-Pd(l)-S(4) 81.34(8) 

Pd(l)-S(3) 2.356(2) S(l)-Pd(l)-S(4) 98.74(9) 

Pd(l)-S(4) 2.361(2) S(2)-Pd(l)-S(3) 99.86(9) 

Pd(2)-S(3) 2.359(2) P(l)-Pd(2)-P(2) 102.25(10) 

Pd(2)-S(4) 2.402(3) S(3)-Pd(2)-S(4) 79.64(8) 

Pd(2)-P(l) 2.323(3) P(l)-Pd(2)-S(3) 90.37(9) 

Pd(2)-P(2) 2.345(3) P(2)-Pd(2)-S(4) 89.83(9) 

Pd(3)-S(l) 2.371(2) P(3)-Pd(3)-P(4) 101.43(9) 

Pd(3)-S(2) 2.374(2) S(l)-Pd(3)-S(2) 79.62(8) 

Pd(3)-P(3) 2.334(3) P(3)-Pd(3)-S(l) 90.93(9) 

Pd(3)-P(4) 2.351(3) P(4)-Pd(3)-S(2) 87.35(9) 

S(l)-N(l) 1.643(8) Pd(l)-S(l)-N(l) 106.5(3) 

S(2)-N(2) 1.648(7) Pd(l)-S(2)-N(2) 107.9(3) 

S(3)-N(3) 1.631(8) Pd(l)-S(3)-N(3) 111.9(3) 

S(4)-N(4) 1.649(7) Pd(l)-S(4)-N(4) 108.6(3) 

Pd(l)-Pd(3) 2.8499(11) Pd(2)-S(3)-N(3) 105.0(3) 

Pd(l)-Pd(2) 2.8693(12) Pd(2)-S(4)-N(4) 109.1(3) 

C(l)-N(l) 1.330(11) Pd(3)-S(l)-N(l) 112.4(3) 

C(l)-N(2) 1.304(11) Pd(3)-S(2)-N(2) 111.4(3) 

C(2)-N(3) 1.328(11) S(l)-N(l)-C(l) 127.1(6) 

C(2)-N(4) 1.310(11) S(2)-N(2)-C(l) 126.9(7) 

S(1)....S(2) 3.038 S(3)-N(3)-C(2) 127.1(7) 

S(3)....S(4) 3.049 S(4)-N(4)-C(2) 125.6(7) 
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5.2.4. Rationalisation of Bonding in Trimetallic Complexes. 

The X-ray structural determinations leave many questions unanswered about the bonding 

in this type of complex. Magnetic measurements conducted on the Faraday Balance 

indicate that the bulk material in the three [PhCNSSN]* based trimetallic species is 

diamagnetic, thus the unpaired electron on each dithiadiazolyl unit must have somehow 

'paired up' with another electron. 

Another interesting phenomena is highlighted when you attempt to apply conventional 

electron counting principles. I f the (SNCPhNS) acyclic fragment is thought of as a 5e-

donor (see figure 5.g. overleaf) then each metal atom can gain the 16e- electron count 

required for square planar group 10 metal complexes i.e. the terminal Pt or Pd can obtain 

2e- from each phosphine and le- from each sulfur of the chalcogen ring system. The 

central metal atom can gain 3e- each from each (SNC(Ph)NS) fragment to gain 16e-

(again see figure 5.g. overleaf). This contrasts with a classical bridging di-sulfur ligand 

which can only donate 6e- and not Se-t^l (figure 5.f ). 

Figure 5.f. Bridging Di-sulfur Ligand. 

represents a donor ligand 
with an S-S bond. 

A simplified view of this bonding is given in the valence bonding view in figure 5.g. 

This view shows one S-N and one C-N n bond in each chalcogen ring. More 

conventional bridging RS' species do not have the potential to undertake this type of 

bonding. 

Finally, the close M-M contacts can occur through partial overlap of full d22 and empty pz 

orbitals on the metal. 

The formation of longer chain complexes can be envisaged. For example a tatrametallic 

complex would be composed of four terminal phosphine ligands, two 'trimetallic' type 



ligands (i.e. no unpaired electrons, donating 5e- to the bonding) and a central 'dimetallic' 

type ligand (as found in [Ni(^is-sSNC(Ph)NS)Cp2], donating 6e-). 

Figure 5.g. Electron Counting in [M3(|is.sSNCPhNS)2(PR3)4]-
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5.2.5. Molecular Orbital Study of Pt3(^s-sSNCHNS)2(PH3)4. 

The above bonding description gives a satisfactory, simplified, explanation of the 

bonding in this type of complex. However, for such a novel system a more thorough 

interpretation of the bonding is required. Thus EHMO calculations on the parent 

analogue [Pt3[|Xs-sSNCHNS-5,5][PH3]4] were undertaken using the CACAO 

programHZ]. The Frontier Molecular Orbitals are illustrated in Figure 5.h. and indicate 

that they are extensively delocalised over the whole of the core structure. Note that in the 

following discussion, the metal orbitals are described in terms of their own internal 

geometries in which the z axis is perpendicular to the square plane given by atoms 

S2PtP2. 

The LUMO is formed by interaction of the [HCNSSN] SOMO with d-orbitals on the 

metal atoms. For the central Pt, this is predominantly dxy, 20%, with the terminal atoms 

also predominantly dxy, 8%. A l l four P atoms also make a contribution to the orbital. 

There are then two orbitals close in energy (within 0.05eV) which constitute the highest 

occupied molecular orbitals. The higher of these (the HOMO) is mostly metal based 

(although each sulfur has 2% spin density) and the central Pt atom has dx2.y2,19%, dz2, 

5% and dyz, 22% character. The terminal Pt atoms have predominantly dyz 10% and dz2 

4% contributions. The metal-metal interactions in this orbital are anti-bonding. The 

lower energy orbital of this pair (HOMO-1) is mostly S-N based, with no central 

platinum contribution. 
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5.2.6. N.m.r. Studies. 

Since the four trimetallic species described above have no unpaired electrons, they are 

e.s.r. inactive and all have well resolved and ^^P n.m.r. spectra (unlike the 

monometallic complexes discussed in chapter four). A l l the species were insoluble in 

most common solvents and only partially soluble in the solvent (CDCI3) used for n.m.r. 

studies easily precipitating back out of solution. This made interpretation of intensities of 

different species meaningless. In the case of ^Ip n.m.r. the low solubilities of these 

species results in a requirement of a large number of scans to yield spectra with a good 

signal to noise ratio. 

The I H n.m.r. spectra of [Pt3(ns-sSNCPhNS)2(PPh3)4] and [Pd3(^is-

sSNCPhNS)2(PPh3)4].2CH2Cl2 consist of aromatic proton multiplets at 67.51-

6.99ppm and 6 7.34-6.94ppm respectively; in the latter CH2CI2 (65.35ppm) is also 

observedflS]. There is no n.m.r. signal between 56-7ppm and thus indicative of no 

N-H bound proton in a chemical environment similar to those found in [Fe2()is-

sSNCPhN(H)S)(CO)6][i4]. The dppe complex [Pd3(^is-sSNC(Ph)NS)2(dppe)2] gives a 

i H n.m.r. spectrum with the dppe and (SNC(Ph)NS) aromatic protons (57.69-

7.26ppm) and dppe aliphatic protons (62.13ppm) clearly visible. 

As expected the ^̂ P n.m.r. of the Pd triphenylphosphine species consists of a single peak 

at 624.81ppm i.e. only one type of phosphorus is present (figure 5.j.). The 31p n.m.r. 

of the platinum species also consists of a single peak (5l8.5ppm) with platinum satellites 

[Jp.Pt = 3282Hz]. A much less intense peak can also be observed (5 15.36ppm) with Pt 

satellites[Jp-Pt = 3551Hz] and the nature of this second species will be discussed in 

chapter 6, as well as other decomposition products observed. The 3lp n.m.r. spectrum 

of the fluoro complex [Pt3(^s-sSNC(3,4FC6H3)NS)2(PPh3)4] is very similar [518.0, 

Jp-Pt=2805Hz]. Al l the phosphorus atoms are in an equivalent chemical environment due 

to the free rotation of the carbon-carbon bond of the (SNCNS) fragment and the partially 

fluorinated aromatic ring (3,4FC6H3). Again a second major species is observed; this 

will also be discussed in chapter six. 

The 31p n.m.r. spectra of all three triphenyl phosphine species give peaks with very 

similar values to those for four similar sulfur based complexes, [M(PPh3)2(l,5-
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Ph4P2N4S2)][ 1 ̂ 1 and [M(PhSN{4-CH3C6H4}CN-NC{4-CH3C6H4 }NSPh(PPh3)] 116] 

where M = Pt or Pd (figure 5.i. and table 5.c.). 

PhaP^ ^ P P h 3 

M 

/ \ 
A A 

N N N N 

P P 
Ph2 Ph2 

Figure 5.i. 

PhS 

N/H—SPh 

CH3C6H4C N 

C6H4CH3 

[M(PhSN[4-CH3C6H4]CN-NC[4-CH3C6H4]NSPh(PPh3)] 

M = Pt or Pd 
[M(PPh3)2(l,5-Ph4P2N4S2)] 

Table 5.c. ^ip n.m.r. of trimetallic species. 

C O M P L E X 5 (ppm) Jpt-P (Hz) 

[Pt3(H-SNC(Ph)NS-5.5)2(PPh3)4] 18.5 3282 

[Pt3(^i-SNC(3,4FC6H3)NS-5,S)2(PPh3)4] 18.0 2805 

[Pt(PPh3)2(l,5-Ph4P2N4S2)] 18.3 2861 

[Pt(PhSN{4-CH3C6H4}CN-NC{4-CH3C6H4}NSPh(PPh3)] 19.1 3651 

[Pd3(ji-SNC(Ph)NS-S,5)2(PPh3)4] 24.8 

[Pd(PPh3)2( 1,5-Ph4P2N4S2)] 25.4 

[Pd(PhSN{4-CH3C6H4}CN-NC{4-CH3C6H4}NSPh(PPh3) 25.7 

The 31p spectrum of [Pd3(|is-sSNC(Ph)NS)2(dppe)2] consists of a singlet (641.14) and 

a trace of (Ph)2P(S)C2H4(S)P(Ph)2 (543.13)[17] (figure 5.k.).formed during extraction 

of sulfur from free [PhCNSSN]*, as wil l be explained in chapter six. 
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Figure 5.j. 31? n.m.r. Spectrum of [Pd3(tis-sSNC(Ph)NS)(PPh3)4]. 
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5.2 .7 . Biological Test Results For Pt3(|is-sSNC(Ph)NS)2(PPh3)4. 

As discussed in chapter four, [Pt(SNC(Ph)NS-5,5)(PPh3)2] was tested extensively for 

its activity against different cancer cells, due to its structural resemblance to cis-platin and 

other anti-cancer drugs. The trimetallic species also have a structural similarity to another 

series of anti-tumour active chemicals, the platinum blues. These species are oligomeric 

Pt(II)-Pt(IV) chains (usually with four Pt atoms in the chain), bridged by uracil, uridine 

and thymine ligandsl^dl. These compounds still attract interest because of their biological 

properties e.g. [P t4 (NH3 )8L4]5+ where L= 3,5 dimethylglutarimidate or 

glutarimidatetlS]. Consequently [Pt3(^is-sSNC(Ph)NS)2(PPh3)4] was also tested in 

preliminary studies. Three mammalian cell lines were used in the cytotoxicity 

measurements, SW620 (colon adenocarcinoma) and SKOV-3 (ovarian carcinoma), 

which are both human tumour lines, and CHO rodent fibroblast. The last is used for 

routine cytotoxicity testing. 

The results are shown in table 5.d. As in chapter four, IC50 is the concentration of 

compound required to give 50% decrease in cell proliferation in a set sample of the 

culture. As can clearly be seen much higher concentrations of the trimetallic complex 

were required to kil l 50% of cell cultures compared with the monometallic species. This 

complex was thus much less active and no further test measurements were undertaken. 

The low activity was almost certainly a combination of the lack of free radical nature of' 

the complex, the high stability of the species and its low water solubility. 

Table 5.d. Preliminary Cytotoxicity Measurements For the Monometallic 

and Trimetallic Species Prepared From [PhCNSSN]' and Pt(PPh3)4. 

I .e .50 TRIMETALLIC MONOMETALLIC 
ilLg/ml) COMPLEX COMPLEX 

SW620 125 63 

SKOV-3 110 26 

CHO 225 55 
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5.3. E X P E R I M E N T A L . 
5.3.1. Preparation of [Pt3(^ls-sSNCPhNS)2(PPh3)4]. 

[Pt(PPh3)4] (2.5g, 2.0mmol) and (PhCNSSN)2 (0.36g, l.OOmmol) were stirred at 80°C 

in 40ml MePh to yield an immediate blue precipitate. After 4h a bright orange solid was 

present which was filtered, washed widi fresh MePh (3x 15ml) and dried in vacuo 

Yield 1.03g, 85%. 

IR vmax (cm-1) 3051W, 2363w, 1594w, 1571w, 1480m, 1456m, 1434ssh, 1405w, 

1303s, 1182m, 1166m, 1143m, 1095s, 1026m, 998m, 844w, 801w, 741m, 695m, 

693s, 676m, 644w, 618w, 536ssh, 523ssh, 511ssh, 497sh, 459w, 434w, 

Elemental analysis, found: C51.88%; H3.50%; N2.77%; Calc. C51.72%; H3.54%, 

N2.82%. 

N.m.r.; (250MHz; solvent CDCI3) ^H 57.51-7.00 (m), 3 lp 6 18.53 [Jpt-P 3282.3Hz]. 

D.s.c. broad exotherm centred at 225°C. 

5.3.2. Crystal growth of [Pt3(|is.sSNCPhNS)2(PPh3)4].2MePh.. 

Freshly prepared [Pt(PPh3)3] (O.lOg, 0.80mmol) was placed in one limb of a two-limbed 

reaction vessel with (PhCNSSN)2 (O.lOg, 0.28mmol) placed in the other. MePh was 

added to each side. Inversion of the sealed reaction vessel resulted in the slow diffusion 

of [PhCNSSN]* into a saturated solution of [Pt(PPh3)3] Within 48h red crystals suitable 

for X-ray analysis had formed. 

5.3.3. Preparation of [Pd3(ns.sSNCPhNS)2(PPh3)4].2CH2Cl2. 

[Pd(PPh3)4] (0.5g,0.43mmol) and (PhCNSSN)2 (0.072g, 0.20mmol) were stirred in 

MePh (10ml) for 5h at ambient temperature. The resultant deep red precipitate was 

filtered, washed with toluene (3x5ml) and dried in vacuo. CH2CI2 (5nil) was added and 

the mixture refluxed for 10m to yield a red microcrystalline solid which was filtered and 

dried in vacuo. 

Yield 0.20g, 75%. 

IRvmax (cm-1) 3051w, 1959w, 1890w, 1811w, 1594w, 1479sh, 1451w, 1434ssh, 

1381w, 1309ssh, 1181w, 1168m, 1148w, 1094m, 1069w, 1026m, 998m, 920w, 

902w, 845w, 822w, 739m, 714ssh, 692s, 669ssh, 650w, 618w, 527ssh, 519ssh, 

506ssh, 492m, 449w, 440w. 
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Elemental analysis, found: C55.62%; H3.91%, N2.95%, Gale: €55.60%, H3.90%, 

N2.95%. 

Nm.r., (250MHz; solvent CDCI3) ^H 67.34-6.94 (m), 5.30 (singlet-CH2Cl2), ^^P 

626.22 (s). 

D.s.c. 270°C (dec). 

5.3.4. Crystal growth of [Pd3(^is.sSNCPhNS)2(PPh3)4].2CH2Cl2. 

[Pd(PPh3)4 (0.35g, 0.31mmol) was placed in one limb of a two-limbed reaction vessel 

with (PhCNSSN)2 (0.08g, 0.22mmol) placed in the other limb. CH2CI2 (10ml) was 

added to each side. Inversion of the sealed reaction vessel resulted in the slow diffusion 

through the separating grade three sinter of a solution of [PhCNSSN]* into the former 

limb. Within 3h deep red crystals had formed. The solvent was removed and a number 

of crystals suitable for X-ray diffraction were selected. 

5.3 .5 . Preparation of [Pd3(|j.s-sSNCPhNS)2(dppe)2]. 

[Pd(dppe)2] (0.52g, 0.41mmol) and (PhCNSSN)2 (0.075g, 0.21mmol) were stirred at 

70°C in 20ml MePh to yield an immediate green precipitate. After 2l/2h a bright orange 

precipitate had formed under a yellow/orange solution. The sohd was filtered off, washed 

with fresh MePh (3x 10ml) and dried in vacuo. 

Yield 0.20g, 65%. 

IRvmax (cm-1) 3049m, 2365w, 1483m, 1450wsh, 1434ssh, 1384w, 1299sh, 1261w, 

1186w, 1167msh, 1140m, 1102sh, 1067w, 1027sh, 998wsh, 868m, 817m, 745m, 

707ssh, 695ssh, 670ssh, 646w, 525sh, 476m, 45 Iw, 434w, 419w. 

Elemental analysis. Found: C,54.06%; H,4.00%; N,3.57%; Calc: C,53.61%; 

H,3.92%, N,3.79%. 

NMR; (250mHz; solvent CDCI3) ^H 57.69-7.26 (40H,m), ^ip 5p41.17ppm(s). 

D.S.C.278°C (dec). 

110 



5.4. CONCLUSION. 

In this chapter the properties of a new class of dithiadiazolyl complex have been studied. 

These species are the major product from the solution decomposition of the monometallic 

dithiadiazolyl complexes discussed in chapter four. They are novel trimetallic complexes, 

[M3()is-sSNC(Ph)NS)2(P)4] (where M=Pt or Pd and P=PPh3 or dppe) and are 

composed of linear three metal chains bridged by the sulfur atoms of two dithiadiazolyl 

groups and capped by terminal phosphines. They have an unusual bonding system that 

has been probed during the course of this chapter by crystallography, electron counting 

rules and M.O. calculations. These measurements have provided complementary 

evidence for a rationalisation of the highly unusual bonding found in these species which 

renders all the complexes diamagnetic. 
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CHAPTER SIX 

A STUDY OF THE DECOMPOSITION OF 
MONOMETALLIC PLATINUM AND PALLADIUM 

DITHIADIAZOLYL COMPLEXES 



6.1. INTRODUCTION. 
6.1.1. The Stability of Monometallic Dithiadiazolyl Complexes. 

The previous two chapters have discussed, in depth, the physical and chemical properties 

of two new series of dithiadiazolyl complexes [M(SNCPhNS-5',5')(P)2l and [M3(^s-

sSNCPhNS)2(P)4] where M = Pt or Pd and P = PPhs or V2dppe. However, the 

research undertaken in these two chapters has left many questions unanswered. 

Both [Pt(SNCPhNS-5,5)(PPh3)2] and [Pd(SNCPhNS-5,^(dppe)] decompose to their 

respective trimetallic species [Pt3(ns-sSNCPhNS)2(PPh3)4] and Pd3(|i,s-

sSNCPhNS)2(dppe)2 but I have not yet given an explanation as to why these reactions 

take place. Also I have not mentioned why the monometallic Pt species [Pt(SNCPhNS-

5,5')(dppe)] does not decompose to the analogous trimetallic species under the same 

conditions. Finally, the reaction between [Pd(PPh3)4] and [PhCNSSN]* results in the 

formation of the trimetallic species only. For some reason the monometallic complex is 

not formed. One aim of this chapter is to consider the reasons behind these different 

stabilities. 

6.1.2. Studying the Monometallic To Trimetallic Decomposition. 

As indicated above the formation of [M3(^is-sSNCPhNS)2(P)4] from [M(SNCPhNS-

5,5)(P)2] is a very novel reaction and no direct comparison can be found in the literature. 

It was thus of some interest to attempt to elucidate the mechanism of this reaction. This 

was attempted by studying a) the stability of different derivatives and b) by monitoring 

the decomposition of the monometallic species via U.V./vis and e.s.r. spectroscopic 

kinetic studies. 

Further information was gained in the study of reactive intermediates and side products 

using multi-nuclear n.m.r. (to examine those species without an unpaired electron) and 

e.s.r. experiments (for studying species with an unpaired electron). In particular, the 

slow decomposition of [Pt(SNCPhNS-S,5)(PPh3)2] and the slower still decomposition 

of [Pt(SNCPhNS-5,5)(dppe)] provide ideal candidates for these smdies. 
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6.2. RESULTS AND DISCUSSION. 
6.2.1. A Rationalisation of the Various Stabilities of [PhCNSSN]' 

Monometallic Complexes. 

The effect of the namre of the R group on the chalcogen ring system has not yet been 

studied but there are two other factors which affect the stability of monometallic 

dithiadiazolyl complexes, the phosphine and the metal. 

There are only four phosphorus atoms per three metal centres compared to 2 phosphorus 

atoms per one metal centre in monometallic species, thus phosphine must be lost on 

decomposition. Since 1,2 bisdiphenylphosphinoethane (dppe), a chelating phosphine, is 

more strongly bound than two unidentate triphenylphosphine (PPhs) groupstlJ the dppe 

complexes are more stable than the PPhs species. As such [Pt(SNCPhNS-S,S)(dppe)] is 

far more stable in solution than [Pt(SNCPhNS-S,S)(PPh3)2], and [Pd(SNCPhNS-

S,S)(dppe)] can be isolated whereas [Pd(SNCPhNS-S,S)(PPh3)2] cannot. 

In general square-planar Pt(n) complexes are known to be kinetically more stable than 

their Pd counterpartst^l, a point highlighted in chapter two. Consequently monometallic 

Pt species are less likely to decompose than the analogous Pd species e.g. 

[Pt(SNCPhNS-S,S)(dppe)] is far more stable in solution than [Pd(SNCPhNS-

S,S)(dppe) and [Pt(SNCPhNS-S,S)(PPh3)2] can be isolated whereas [Pd(SNCPhNS-

S,S)(PPh3)2] has not been observed even as an unstable intermediate. 

The above rationalisation is condensed in the following table (table 6.a.); all the 

complexes shown are discussed in chapters four and five and in this chapter. 

The decomposition of monometallic to trimetallic complexes would appear to be 

thermodynamically favoured but the monometallic species can be stabilised as kinetic 

products[3]. In the case of the reaction between [Pd(PPh3)4] and [PhCNSSN]* the 

trimetallic complex [Pd3(ns-sSNCPhNS)2(PPh3)4] is formed directly and so we 

conclude that the "intermediate" monometallic complex [Pd(SNCPhNS-S,S)(PPh3)2] is 

kinetically too unstable and thus no e.s.r. signal is observed from the reaction. As stated 

in chapter five the 3lp n.m.r. of the complex indicates only the presence of the trimetallic 

complex. No noticeable side products or other reactions are observed. 
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Table 6.a. 1,2,3,5, Phenyl Dithiadiazolyl Complexes. 

MONOMETALLIC COMPLEXES TRIMETALLIC COMPLEXES 

[Pd(SNCPhNS-S,S)(PPh3)2] [Pd3(|IS-sSNCPhNS)2(PPh3)4] u 

[Pd(SNCPhNS-S ,S)(dppe)] :a
se

d 
il

it
y 

[Pd3(|is-sSNCPhNS)2(dppe)2] 

in
cr

ea
se

d 
ea

s 
of

 f
or

m
at

io
n 

[Pt(SNCPhNS-S,S)(PPh3)2] in
cr

e 
St

ab
 

[Pt3(Hs-sSNCPhNS)2(PPh3)4] in
cr

ea
se

d 
ea

s 
of

 f
or

m
at
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n 

[Pt(SNCPhNS-S,S)(dppe)] [Pt3(^is-sSNCPhNS)2(dppe)2] 

6.2.2. The Monometallic to Trimetallic Conversion, a Mechanistic Study 

by E.s.r. Spectroscopy. 

6.2.2.1. E.s.r. Spectroscopv of the Decomposition of rPdrSNCPhNS-S.SVdppell. 

Whilst studying the e.s.r. spectrum of [Pd(SNC(Ph)NS-5,5)(dppe)] formed from the in 

situ reaction in CH2CI2 between [PhCNSSN]* and excess Pd(dppe)2, a second high field 

spectrum of low intensity was observed (figure 6.a.). When instead the 

[Pd(SNC(Ph)NS-S,S)(dppe)] product and [Pd(dppe)2] were reacted in CH2CI2 and the 

spectrum run after an hour, the reaction had proceeded to such an extent that only this 

signal was present. The spectrum consists of a doublet of pentets, corresponding to 

hyperfine coupling to two equivalent nitrogen atoms but only one phosphorus atom (see 

figure 6.b. for first derivative experimental and the simulation spectra). This second 

signal was too weak to see Pd coupling but we assume this to be due to a monometallic 

intermediate in the formation of [Pa3(!is-sSNC(Ph)NS)2(dppe)2]. The dppe group of 

the monometallic species is now coordinated through only one P atom i.e. 

[Pd(SNC(Ph)NS-5,5)(T|l-dppe)]. A formal electron count on this complex shows the 

Pd to be electron-deficient with 15/16e-. Presumably the process is reversible, with the 

labile P atom able to coordinate again re-forming the 16/17e- complex. Nevertheless, 

this electron deficient complex may prove to be a key intermediate in the decomposition 

process. The larger value of a for P and smaller value of a for N compared with 

[Pd(SNC(Ph)NS-5,5)(dppe)] indicates a drift of spin density from the N to the P in this 

species, consistent with abstraction of electron density from the metallocycle to the metal 

and hence to the metal bonded phosphines. The shift of the signal to higher field is 

115 



consistent with more electron density on the metal (since [PhCNSSN]* based free 

electrons have lower field g values!'*]). 

6.2.2.2. E.s.r. Spectrum of a Decomposition Product of rPtrSNCrPh)NS-5.^rdppe)1. 

As described in chapter four the e.s.r spectra of [Pt(SNC(Ph)NS-5,5)(dppe)] indicated 

the decomposition of the complex by the presence of released [PhCNSSN]* which 

swamped the highfield portion of the [Pt(SNC(Ph)NS-5,5')(dppe)] spectrum. When 

excess [Pt(dppe)2] was added (mopping up [PhCNSSN]* by forming fresh monometallic 

complex) the dithiadiazolyl radical signal disappeared to be replaced by a new signal 

highfield of the main complex spectrum. This new signal consisted of a doublet of 

doublets (probably due to two inequivalent phosphorus atoms) with Pt satellites; the 

lower field satellites are swamped by the main complex signal for [Pt(SNC(Ph)NS-

5,S(dppe)]. This spectrum is shown in figure 6.c. 

A similar signal (doublet of doublets) was observed for the decomposition product of 

[Pt(SNC(C6F5)NS-5,5)(PPh3)2] (see table 6.b.). As there is no observable coupling to 

nitrogen in either case then the free electron cannot be well delocalised over an 

(SNC(Ph)NS) framework in such a species, if indeed the Pt based radical is still attatched 

to the chalcogen ring at all. 

Table 6.b. E.s.r. Spectra of Intermediates from the Decomposition of 

Two Pt Dithiadiazolyl Complexes.. 

E.s.r. Parameters S ap2 apt 

[Pt(SNC(Ph)NS-S,S)(dppe)] 2.007 1.30 0.85 5.85 

[Pt(SNC(C6F5)NS-S,5)(PPh3)2] 2.0097 2.57 ~1 5.13 
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Figure 6.a. Second Derivative E.s.r. Spectra Showing thie Decomposition 

of [Pd(SNC(Ph)NS-S,5)(dppe)] to [Pd(SNC(Ph)NS-S,5)(jii-dppe)] 

(Pd(SNC(Ph)NS)(dppe)] 

J 

after further decomposition of 
[Pd(SNC(Ph)NS)(dppe)] 

[Pd(SNC(Ph)NS)(^i-<lppe)] 
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Figure 6.b. First Derivative Experimental and Simulation Spectra of 

[Pd(SNC(Ph)NS)(lii-dppe)]. 

EXPERIMENTAL 

SIMULATION 

SIMULATION PARAMETERS. 
2.0028 
0.429mT 
1.962mT 

AHpp 0.12mT 
(also 35% Gaussian AHpp=10.0G) 

giso 

a? 
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Figure 6.c. E.s.r. Spectrum of Decomposition Product of 

[Pt(SNC(Ph)NS)(dppe)]. 
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6.2.2.3. A rationalisation of e.s.r. spectroscopic results and propossed intermediates in 

the monometallic to trimetallic conversion. 

The above e.s.r. discussion and previous e.s.r. studies in chapter five have shown two 

different ways that these electron rich , formally 17e- species can shed electron density. 

The first method, and the one that stabilises the monometallic species (as discussed in 

chapter four), is to shed electron density back into the ring system; hence hyperfine 

coupling to the ring two nitrogens is observed. This method maintains the structure of 

the complex and is shown in figure 6.d. The two canonical forms shown are only two of 

the many resonance structures that combine to form the delocalised n system of the 

species. 

Figure 6.d. Two Resonance Forms of Monometallic Dithiadiazolyl Complexes. 

^ N = S PH, / N — P R , 

™ \ / \ — " \ / \ 
N S ^ P R 3 N S ^ P R 3 

17e- M(I) 16e- M(n) 

The second method involves breaking a metal phosphine bond to form an electron 

deficient 15e-complex (figure 6.e). This intermediate species was observed (section 

6.2.2.1.) in the e.s.r. spectra of the decomposition of [Pd(SNC(Ph)NS-5,5)(dppe)] to 

[Pd(SNC(Ph)NS-5,5)(ril.dppe)]. However, the delocalised metallocycle remains intact; 

thus a degree of stability remains and the unstable species survive long enough to be 

observable by e.s.r. spectroscopy. The loss of phosphine is a logical link to 

oligomerisation to the trimetallic species which requires the loss of phosphine and 

[PhCNSSN]'. 

Figure 6.e. Unco-ordination of One Phosphine of [Pd(SNC(Ph)NS-S,S)(dppe)] 

PhC. Pd ^ PhC^ Pd 

17e- Mm 

N S ^ P - ^ N S ^ P 
15e- m) 
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A third method of the metal shedding electron density can be envisaged (although this 

method was not indicated by e.s.r. spectroscopy) and involves breaking a bond to sulfur 

(figure 6.f.). This way of breaking up the monometallic complex will be more unlikely 

than the previous method as it involves partially uncoupling the [RCNSSN]* group. The 

chalcogen ring is chelating and provides delocalisation energy through the n framework. 

However, as stated previously in forming trimetallic species, [RCNSSN]* must be lost 

and a process such as this must take place at some stage. 

Figure 6.f. Loss of phosphine from Monometallic Dithiadiazolyl Complexes. 

PhC i=: PhC . P d - PR3 Pd ^ PhC-

N S ^PRs N S 
17e- M(I) 15e- M(I) 
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6.2.3. The Monomer to Trimer Conversion; a Kinetic Study. 

6.2.3.1. Kinetic Studv of the Decomposition of rPtrSNC('Ph)NS-5.5)rPPh2)2l by 

E.s.r. and U.V.A^is Spectroscopy. 

A preliminary kinetic study was undertaken to measure the rate of decay of 

[Pt(SNC(Ph)NS-5',5')(PPh3)2] by measuring both the loss of unpaired electron signal 

(e.s.r. spectroscopy) and loss of blue colouration (U.V.A^is). The discrepancy in T=0 

for both experiments and other variables, such as temperamre and differences in baseline 

calculation, made accurate measurement impossible from these initial studies. Despite 

these provisos an indication of the kinetics of the decomposition of this Pt species can be 

gleaned. 

The decay in intensity of the e.s.r. signal is shown in graph 6.a. and of the absorption at 

the red end of the visible spectra (680nm) in graph 6.b. Both reactions were undertaken 

in CH2CI2 solution and show logarithmic decay. Plots of ln[A]t/[A]o and ln[A]t/[A]ovj 

time gives a straight line where the negative gradient is the rate constant k, as shown in 

graphs 6.C. and 6.d. The decomposition obeys the first-order law for the consumption of 

the reactant [Pt(SNC(Ph)NS-5,5)(PPh3)2] (see equation 6.a.)f5a]. There is a 

discrepancy over the measurement of the rate constant using both techniques 

4.58xlO-3s-l, by e.s.r. measurements and 1.21xlO'3s-̂  by U.V.A'̂ is spectroscopy which 

is undoubtably due to the errors mentioned previously e.g. temperaturef^b]. However, 

the figures are of the same magnimde. 

Equation 6.a. First-order Rate Law 

In = -kt 
[X]o 

Where [X] is intensity [I] or absorbance [A], 
k is the rate constant and t is time 
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These results would indicate that the first step in the decomposition is the simple loss of 

PPh3 and this is the sole method of the decomposition of [Pt(SNC(Ph)NS-5,5)(PPh3)2] 

(see equation 6.b.). 

Equation 6.b. Decomposition of Pt(SNC(Ph)NS-S,S)(PPh3)2. 

[Pt(SNC(Ph)NS-5,5)(PPh3)2] • [Pt(SNC(Ph)NS-5,5)(PPh3)] + PPhs 

Rate = k[Pt(SNC(Ph)NS-5,5)(PPh3)2] 

However, at lower concentrations of [Pt(SNC(Ph)NS-5,5)(PPh3)2] (after 3500sec. in 

the U.V. study) decomposition occurs more rapidly than expected. First-order kinetics 

no longer apply and [Pt(SNC(Ph)NS-5,5)(PPh3)2] decomposes via other routes, as well 

as by the simple loss of phosphine. These other routes will be described in section 

6.2.9. 

6.2.3.2. U.V.ms. Kinetic Measurements of rPdrSNC(Ph)NS-5..SVdppe^1. 

A similar kinetic study was undertaken on the decomposition of [Pd(SNC(Ph)NS-

5,5)(dppe)]. This reaction also followed first order kinetics as shown in graph 6.e.; thus 

loss of phosphine is again the rate determining step (in this case the first decomposition 

product is probably the same one as observed by e.s.r. spectroscopy, [Pd(SNC(Ph)NS-

5,5')(TiJ-dppe)]. On this occasion the reaction proceeded more quickly, was thus more 

difficult to measure accurately and first-order kinetics were only obeyed for SOOsec. As a 

result a higher value for the rate constant 2.36x10*3 ^as observed compared to the 

U.V./vis value for the previously discussed Pt species, 1.21xl0'3s'̂ . 
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6.2 .4 . Other Decomposition Pathways of Monometallic Complexes. 

6.2.4.1. H p N.M.R. Study of Decomposition of rPd('SNCPhNS-5..y)rdppe')1. 

As explained previously in chapter five no signal is observed for [Pd(SNCPhNS-

5,5)(dppe)]. This spectrum (figure 6.h.) thus shows only decomposition products. As 

the species decomposes, dppe extracts sulfur from the heterocycle to form 

Ph2P(S)(CH2)2P(S)Ph2 (543.35)[6] which is the major peak. There is no [PdsC^s-

sSNCPhNS)2(dppe)2] (641.17, see chapter 5) present even when the sample was rerun 

3h later. The solution had, however, changed colour by this time to orange over an 

orange precipitate. The precipitate could perhaps have included some [Pd3(|xs-

sSNCPhNS)2(dppe)2] but the solution contained another species which produced a 

doublet of doublets (655.0 and 45.20ppm, Jp-p34.4Hz). This species may contain a 

protonated ring nitrogen in a monometallic complex (as in [Fe2(^is-

sSN(H)CPhNS)(C0)6]f''] which would render both P atoms inequivalent (figure 6.g.). 

Similar 3lp values are found in the dppe complex [Pd{NS(S02NH2)NSN)}(dppe)], 

654.3 «&48.4, Jp.p40Hz[8]. 

Figure 6.g. Pd(SN(H)CPhNS-5,S)(dppe) 

Further evidence for this structure is found in a poorly resolved n.m.r. spectra which 

contains a weak, broad singlet at 6ppm (N bound protons on [Fe2(|is-

sSN(H)C(R)NS)(C0)6] are found between 6 and 7ppm[7]). 
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Figure 6.h. 31p N.m.r. Spectrum of the Decomposition Products of 

[Pd(SNC(Ph)NS-S,S)(dppe)] 

Ph2P(S)C2H4P(S)Ph2 

60 55 50 45 41 
PPM 
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6.2.4.2. ^ P n.m.r. Study of the Decomposition of rPt('SNCfPhNS-5.y)fPPh2l2l. 

The 3lp n.m.r. spectrum of a solution of [Pt(SNC(PhNS-5,5)(PPh3)2] was run at 

hourly intervals for 5h. Figure 6.i. shows the first spectrum run of [Pt(SNC(PhNS-

5,5)(PPh3)2] and the spectrum of [Pt3(^s-sSNC(Ph)NS)2(PPh3)4] for comparison. 

Figure 6.j. shows spectra run after 1,2,3 & 4hrs. 

As anticipated, the main peak observed at t=0 is for [Pt3(|Xs-sSNC(Ph)NS)2(PPh3)4] 

(singlet 5l8.02ppm, Jpt.p3288Hz), with PPh3 (6-5.15ppm)t9a] also observed from the 

decomposition of monometallic species. 

There are also four sets of what initially appear to be doublets at 526.26 &26.06ppm, 

821.65 & 21.41, 619.45 &19.19ppm and also at 515.40 and 15.36ppm. These peaks 

are marked A,B,C,and D on figures 6.g. and 6.h. Over time these signals decay at 

differing rates and after 4h only the two peaks at 519.45 & 19.19ppm remain. Thus 

there is no evidence for a doublet of doublets and protonated dithiadiazolyl nitrogen 

complex as proposed for the palladium species discussed previously. It is not known 

what these intermediate species are. 

In contrast though, the decomposition of the partially fluorinated analogue 

[Pt(SNC(3,4FC6H4)NS-5,5)(PPh3)2][l0] does yield, amongst its products, a doublet of 

doublets as viewed by ^ ip at 5l9.45ppm & 14.64ppm, Jp.p22.6Hz (c.f. a similar 

species [Pt(SNSN)(PPh3)2] 523.6ppm & 11.4ppm, Jp.p22Hz)ni]. As in the 

decomposition products previously described for [Pd(SNC(Ph)NS-5,5)(dppe)] this may 

be a ring nitrogen protonated monometallic species, the doublet of doublets indicating 

two phosphorus atoms in inequivalent chemical envimoments coupled through Pt 

(although the signal is too week to observe Pt satellites) 

Over time PPhsS (643.57)n2] is formed from the reaction of PPh3 and [PhCNSSN]* 

(and any sulfur impurities) and as this peak increases in intensity so the peak for PPh3 

decreases. 

Of greater interest is the emergence of a singlet at 5l5.43ppm with Pt satellites (Jpt-

p3552Hz) which increases with intensity at the expense of [Pt3(|Lis-

sSNC(Ph)NS)(PPh3)4]. This unknown (marked X on the spectra) is also found when 

the spectrum of [Pt3(|is-sSNC(Ph)NS)(PPh3)4] is run and may be evidence for a longer 
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chain complex where Pt>3. A similar species is observed in the decomposition of 

[Pt(SNC(3,4FC6H4)NS-5,5)(PPh3)2][10], 5 15.33ppm, (Jpt.p3555Hz) . 
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Figure 6.i. 

Initial 31p N.m.r. Spectrum of the Decomposition of 

[Pt(SNC(Ph)NS-S,5)(PPh3)2]- • 

[Pt3(HS-SSNC(Ph)NS)2(PPh3)4] 

[Pt3(}is.sSNC(Ph)NS)2(PPh3)4] [Pt3(tiS-sSNC(Ph)NS)2{PPh3)4] 

PPhi 

I r jf a M t i n 

31p N.m.r. Spectrum of [Pt3(|is-sSNC(Ph)NS)2(PPh3)4] and its 

Decomposition Products. 

[Pt3(W-sSNC(Ph)NS)2(PPh3)4] 

|Tt3(jis.sSNC(Ph)NS)2(PPli3)4] 

: Ph3Pot̂ Ĵ 

[Pt30xs-sSNC(Ph)NS)2(PPh3)4l 

s% it w V t* i'< i i •* 
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Figure 6.j. 31p N.m.r. Spectra of the Decomposition of 

[Pt(SNC(Ph)NS)(PPh3)2] after 1,2,3 & 4 hours. 

[Pt3(M-sSNC(Ph)NS)2(PPh3)4] 

[Pt3(Hs-sSNC(Ph)NS)2(PPh3)4] 

PhsPS 

•It 

X 
[Pt3(W-SSNC(Ph)NS)2(PPh3)4l 

PPh3 

I Hour 

2 Hours 

Jl^,,x v 

3 Hours 

4 Hours 
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6.2.4.3. The Decomposition of FPtCSNCrPh^NS-^.^Vdppe')]. 

As stated previously [Pt(SNC(Ph)NS->S,5)(dppe)] does not decompose as readily as its 

Pt, triphenylphosphine analogue. However, during n.m.r. and the previously described 

e.s.r. experiments it was noted that CH2CI2, CDCI3 and MePh solutions of the complex 

lose their intense blue colour over a period of days to yield yellow solutions. 

A suspension of [Pt(SNC(Ph)NS-5,S)(dppe)] was therefore stirred in CH2CI2 for 2 

days to yield a yellow solution. The solvent was removed in vacuo and the solids 

washed with MePh. Elemental analysis indicated that pure [Pt3(^s-sSNC(Ph)NS-

S,S)2(dpp&)2] (the most likely product) had not been obtained. Spectroscopic evidence 

discussed in section 6.2.4.4.. was to give some indication of the products formed. 

6.2.4.4. 31p n.m.r. Studv of rPtfSNC(Ph')NS-.9.5)rdppe)1. 

The 3lp n.m.r. spectra were recorded of [Pt(SNC(Ph)NS-5,5)(dppe)] (figure 6.k.) and 

of the yellow solids discussed in the previous paragraph (figure 6.1.). Data for the species 

observed are shown below in table 6.c. There are two species present with two 

equivalent dppe phosphorus atoms bound to platinum. The most intense peak at 837.50, 

Jpt-p3234.0Hz (compound A), probably corresponds to the trimetallic species [Pt3(|is-

sSNC(Ph)NS)2(dppe)2] (i.e. with equivalent dppe phosphine atoms) while the latter, 

unknown compound B (536.41ppm, Jpt-p2457.4Hz) may be of a higher molecular mass 

where Pt=4 or greater or some other Pt bound dppe species with equivalent phosphines. 

Two signals with Pt satellites are further split into doublets (unknown A). This may be 

due to the presence of inequivalent P atoms (of dppe) coupling with each other in a metal 

complex in which one ring nitrogen is protonated (as proposed in section 6.2.4.1 for the 

Pd analogue). The ^ip n.m.r. data of two related complexes [Pt(SNSN)(dppe)] and 

[Pt(SeNSN)(dppe)] are included for comparisonHll. The chemical shift values and 

coupling constants are very similar to this unknown species. n.m.r. spectroscopy 

shows the presence of a broad peak at 56.8 Ippm which may be attributed to an N bound 

proton in an (SN(H)C(Ph)NS) ligand system. 

Two further peaks at 848.55 & 34.17ppm can also be observed but are of too small an 

intensity to view any Pt satellite, no firm attempts have been made to elucidate the 

possible species that may give rise to these peaks due to their low intensity. 
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The 31p n.m.r. spectra of the yellow solids indicate that as the reaction proceeds the 

signal proposed to be the trimetallic complex increases in intensity with respect to all the 

other signals and some Ph2P(S)C2H4P(S)PPh2 (643.35)[6] is also formed. 

Table 6.c. 3lp Decomposition products of Pt(SNC(Ph)NS-S,S)(dppe). 

C O M P L E X 5 Jpt-P Hz Jp.p Hz 

[Pt3(^s-sSNC(Ph)NS)2(dppe)2] 37.50 3234.0 

Unknown B 36.41 2457.4 

Unknown A P(l ) 44.61 2576.4 7.9-8.6 

Unknown A P(2) 41.32 3070.9 8.6 

[Pt(SNSN)(dppe)] P ( l ) 43.7 2756 12 

[Pt(SNSN)(dppe)] P(2) 41.1 2784 12 

[Pt(SeNSN)(dppe)] P( l ) 42.7 2868 12 

[Pt(SeNSN)(dppe)] P(2) 40.0 2787 12 

Unknown C 34.17 

Unknown D 47.56 
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Figure 6.k. ^Ip N.m.r. Spectrum of the Decomposition of 

[Pt(SNC(Ph)NS-S,5)(dppe)] 
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Figure 6.j. 31P N.m.r. Spectrum of the Yellow Solids Formed from the 

Decomposition of [Pt(SNC(Ph)NS-5,S)(dppe)]. 
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6.2.4.5. The Reaction Between rPtrSNC('Ph)NS-5.5)rdppe)1 and FPtrPPh^^^l. 

The previous discussion has highlighted the difficulties in forming [Pt3(ns-

sSNC(Ph)NS)2(dppe)2] by attempting to decompose [Pt(SNC(Ph)NS-5,5)(dppe)] 

dissolved in CH2CI2. The dppe ligand has proved to be too strongly bound to allow a 

quick relatively clean decomposition as observed for [Pt(SNC(Ph)NS-5,5)(PPh3)2.]. In 

fact, all that is required to form a trimetallic species is the insertion of a bare metal atom 

between two [Pt(SNC(Ph)NS-5,5)(dppe) units. It was hoped that [Pt(PPh3)4] could 

provide this metal atom. 

[Pt(SNC(Ph)NS-5,5)(dppe)] and [Pt(PPh3)4] were stirred in MePh for two weeks at 

70°C. During this time there was a gradual colour change from blue through brown to an 

orange solid under an orange solution. This solid was washed with fresh MePh, filtered 

and dried in vacuo. Unfortunately the compound formed, probably [Pt3(|iis-

sSNC(Ph)NS)2(dppe)2], was not formed in great purity (as indicated by elemental 

analysis) and due to its insolubility in common solvents it could not be recrystallised. 

Low solubility also made 31? n.m.r. difficult but the spectrum did yield a peak at 

637.3Ippm, corresponding to the major product in the decomposition of 

[P t (SNC(Ph )NS -5 ,5 ) (dppe ) ] as described and assigned to [Pt3(^s-

sSNC(Ph)NS)2(dppe)2] (637.50ppm). 

6.2.4.6. The Reaction Between rPtCSNCCPhlNS-.S.^irdppe)! and rPdrPPh^)^!. 

I f indeed Pt from [Pt(PPh3)4] inserted into a trans sandwich of [Pt(SNC(Ph)NS-

5,S)(dppe)] then it may be possible to insert another metal, the most obvious being Pd. 

As such [Pt(SNC(Ph)NS-5,5)(dppe)] and [Pd(PPh3)4] were stirred in MePh at 70°C for 

10 days to yield an orange solid under an orange solution. This solid was washed with 

fresh MePh, filtered and dried in vacuo. Elemental analysis satisfied the composition 

[PtPdPt(|is-sSNC(Ph)NS)2(dppe)2]. Poor solubility resulted in difficulties running the 

3lp n.m.r. spectra. Two peaks were observed at 637.34ppm, some [Pt3(|is-

sSNC(Ph)NS)2(dppe)2] had formed, and at 538.13ppm. The second value is very close 

to the former and is almost certainly due to [PtPdPt(|is-sSNC(Ph)NS)2(dppe)2]. 

Unfortunately, the peaks were too small in intensity for Pt satellites to be observed. 
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An x-ray structural determination was required to prove that this complex had indeed 

been formed. Failure of previously utilised crystal growth techniques and poor solubility 

in common solvents meant that crystals of the required quality could not be prepared. 

However there are many complexes which contain both Pt and Pd atoms e.g. (mixedPt-

Pd A-frame speciesHB] and the linear chain species discussed in chapter five^^I. There is 

therefore a precedent for mixed metal compounds being formed. 

6.2.4.7. i H n.m.r. of decomposition products and the decomposition of FPhCNSSNI* 

As indicated in chapter five the ^H n.m.r. spectra of the three trimetallic species [Pt3(p,s-

sSNC(Ph)NS)2(PPh3)4] , [Pd3(^s-sSNC(Ph)NS)2(PPh3)4] and [Pd3(^s-

sSNC(Ph)NS)2(dppe)2] contained various impurities. The ^H n.m.r. spectra of [Pt3(|a,s-

sSNC(Ph)NS)2(PPh3)4] and [Pd3(!is-sSNC(Ph)NS)2(PPh3)4] are shown (figures n & 

o) and show the expected peaks in the phenyl region (as previously discussed in chapter 

five) and various higher and lower field impurities. As stated before, the trimetallic 

species precipitate out of solution so these impurities may be of lower intensity than 

indicated. The peaks at 85.30ppm in [Pd3(|is-sSNC(Ph)NS)2(PPh3)4] and 82.29ppm in 

[Pt3(|is.sSNC(Ph)NS)2(PPh3)4] may be attributed to solvent of crystallisation 

(CH2Cl2[^^] & MePhHSa] respectively). The other peaks can not be so readily explained 

away although the most obvious cause would be products from the decomposition of 

[PhCNSSN]']. There has already been ^̂ P n.m.r. evidence (see previous sections) for 

the extraction of sulfur from the chalcogen ring system (forming Ph3PS or 

Ph2P(S)C2H4(S)PPh2) and an attempt to rationalise any decomposition pathways (with 

or without trace H2O) are shown in figure m). 

The only way the chalcogen ring system can be protonated is by attack from trace 

amounts of water. The oxygen from water is more likely to attack the more 

electropositive ring sulfur with protons attacking the ring nitrogens. As can be seen the 

major source of protons in these species is amine groups (NH) which usually have a 

chemical shift range of between 3-5ppmn6b]. There are no peaks found in this region for 

[Pd3(^s-sSNC(Ph)NS)2(PPh3)4] or [Pt3(^s-sSNC(Ph)NS)2(PPh3)4]. Interestingly 

there are two sharp peaks found at about 8.3ppm in both triphenyl phosphine species 

(88.27ppm & 8.30ppm in the Pd species and 88.32ppm & 8.29ppm in the Pt species). A 

140 



similar set of values was found for the decomposition products of the reaction between 

[PhCNSNS][AsF6] and H20[17] (figures 68.31 & 8.32ppm). They could be attributed to 

amide species (RC(0)N(H)R 55-8.5) although the signal is usually broadHSb]. it is a 

possibility that the low field signals at 61.25 & 1.55ppm in [Pd3(^s-

sSNC(Ph)NS)2(PPh3)4], 2.46ppm in [Pt3(Hs-sSNC(Ph)NS)2(dppe)] and 1.57ppm in 

[Pd3(|i,s-sSNC(Ph)NS)2(dppe)2] (the only impurity found in this proton n.m.r. 

spectrum) could just be trace aliphatic impurities e.g. from the solvent. 

Finally, as shown above, decomposition products are seen in the ^H n.m.r. spectrum of 

[Pd3(ns-sSNC(Ph)NS)2(PPh3)4] but, as stated in chapter five, not the 3lp n.m.r. 

spectrum. It is possible that in the purification (recrystallisation with CH2CI2) any 

phosphorus based impurities have all been removed. 

Figure 6.m. Proposed Decomposition of [PhCNSSN]* 

No 
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6.2.5. Attempted Rationalisation of the Decomposition Of 

Monometallic to Trimetallic Species. 

The spectroscopic studies so far undertaken have indicated that the first step in the 

decomposition is the loss of phosphine (in the case of the dppe complexes e.s.r. evidence 

indicates that one P atom may become detatched from the metal). A reaction scheme can 

be postulated from this starting point. Loss of one phosphine effectively makes the metal 

centre electron poor (a 14-15 electron species from a 16-17e species). It is thus 

susceptible to attack from the two sulfur atoms of a second monometallic species to form 

a dimetallic complex, [M2(^s-sSNC(Ph)NS)(SNC(Ph)NS-5,5)(P)2] with loss of a 

second phosphine molecule. The sulfurs of the chelating dithiadiazolyl ring can now 

attack a second monometallic species displacing the (SNC(Ph)NS) radical already bound 

and forming the trimetallic species. As can be seen these later two reactions also 

consume monometallic complexes and result in loss of first order kinetics as time 

progresses (as indicated in section 6.2.3.). i.e. as the reaction progresses, the loss of 

phosphine is no longer the main method of reacting monometallic species. This reaction 

pathway is shown in reaction scheme 6.a. 
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Reaction Scheme 6.a. Proposed Mechanism for the Decomposition of 
Monometallic to Trimetallic dithiadiazolyl Complexes 
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6.3. EXPERIMENTAL 
6.3.1 . The Decomposition of [Pt(SNC(Ph)NS-S,S)(dppe)]. 

[Pt(SNC(Ph)NS-S,S)(dppe)] (0.380g, 0.490mmol) was stirred in CH2CI2 for 2 days to 

yield a yellow solution. The solvent was removed in vacuo and the solids washed with 

MePh (3x5ml) and dried in vacuo. The product is assumed to be mainly [Pt3(|j,s-

sSNC(Ph)NS)2(dppe)2] 

Yield 0.163g, 60.15%. 

IRvmax (cm-1) 3019w, 2372w, 2314w, 1637br, 1481m, 1434ssh, 1409m, 1379m, 

1305m, 1215m, 1187m, 1160w, 1142w, 1102m, 1069m, 1009m, 997m, 877m, 821m, 

790w, 717m, 703ssh, 691ssh, 615m, 576w, 531s, 483m, 419w. 

Elemental Analysis, found: C49.91%; H3.97%; N3.58%; Calc: C45.43%; H3.35%, 

N3.21%). 

N.m.r.; (250MHz; solvent CDCI3) 57.10ppm (40H, m), 2.17ppm (8H, s), ^Ip 

637.25ppm [Jpt-p) 3233.5Hz]. 

DSC 271.3mpt. 

6.3 .2 . The Preparation of [Pt3(Hs-sSNC(Ph)NS)2(dppe)2]. 

[Pt(SNC(Ph)NS-S,S)(dppe)] (0.173g, 0.223mmol) and [Pt(PPh3)4] (0.145g, 

0.117mmol) were stirred in MePh at 70°c for two weeks to yield a bright orange solid 

under an orange solution. The solid was filtered, washed with fresh MePh (3x5ml) and 

dried in vacuo. 

Yield 0.105g, 56.8%. 

IR vmax (cm-l) 3021W, 2371W, 1632br, 1480m, 1432s, 1411m, 1377w, 1304m, 

1215W, 1186m, 1159w, 1101m, 1070m, 1006m, 996m, 875m, 819m, 788w, 715m, 

701ssh, 690s, 613m, 577w, 531s, 483m, 409w. 

Elemental analysis, found: C47.95%; H3.56%; N2.16%; Calc:. C45.43%; H3.35%, 

N3.21%). 

NMR; (250MHz; solvent C D C I 3 ) 5H 7.62-7.25 (40H, m), 2.17 (8H, s), ^ ip 

(250MHz; solvent C D C I 3 ) 5p 37.31 [JR-P) unobserved Hz]. 

D.s.c. 250°C (very broad exotherm). 
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6.3 .3 . The Preparation of [PtPdPt(^is.sSNC(Ph)NS)2(dppe)2]. 

[Pt(SNC(Ph)NS-S,S)(dppe)] (0.389g, 0.502mmol) and [Pd(PPh3)4] (0.350g, 

0.303mmol) were stirred in MePh at 70°c for lOdays to yield a bright orange solid under 

an orange solution. The solid was filtered, washed with fresh MePh (3x5nil) and dried 

in vacuo . 

Yield 0.105g, 56.8%. 

IR vmax (cm-1) 3422br, 305 Iw, 2622w, 1636w, 1570w, 1482m, 1435ssh, 1409m, 

1307m, 1304m, 1261w, 1180m, 1168m, 1138m, 1103s, 1026sh, 998sh, 878m, 819m, 

746sh, 700shd, 693ssh, 674sh, 640w, 581m, 530s, 490m. 

Elemental analysis, found: C48.31%; H3.36%; N2.94%; cal.: C47.87%; H3.54%, 

N3.38%. 

N.m.r.; (250MHz; solvent C D C I 3 ) 87.41-7.24ppm(40H, m), 2.17ppm (8H, s), ^^P 

538.13ppm [Jpt-p unobserved Hz]. 

D.s.c. 259.7°Cdec. 

6.3.4. Attempted Crysta l Growth Reaction of [PtPdPt(^is-

sSNC(Ph)NS)2(dppe)2]. 

[Pt(SNC(Ph)NS-S,S}(dppe)] (0.148g, 0.191mmol) and [Pd(PPh3)4] (O.lOOg, 

0.087mmol) were placed in separate limbs of a two bulbed reaction vessel separated by a 

grade three sinter. MePh (10ml) was added to each side and the reaction vessel inverted. 

Slow diffusion of [Pd(PPh3)4] through the sinter occurred and after 4-5 days orange-red 

crystals had formed over solid [Pt(SNC(Ph)NS-5,5)(dppe)]. After 14 days the solvent 

was removed to yield small brittle crystals unsuitable for x-ray analysis. 
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6.4. CONCLUSION. 
Chapters four and five outlined two new classes of dithiadiazolyl complex, the 

monometallic [M(SNC(Ph)N(H)S-5,5')(P)2] and trimetallic species [M3(^s-

sSNC(Ph)NS)2(P)4] (where M=Pt or Pd and P= PPh3or ^'i^ppe^)- This chapter has, by 

experimental measurements and theoretical hypothesis, outlined chemical pathways taken 

by the monometallic complex in its decomposition to trimetallic and other species. 

The varying stabilities of monometallic dithiadiazolyl complexes have been studied and 

rationalised through the effects of the metal (Pt or Pd) and phosphine (dppe or 2PPh3). 

E.s.r. spectroscopy has highlighted some of the reactive intermediates in the 

monometallic decomposition and , in conjunction with U.V./vis spectroscopy, kinetic 

measurements have elucidated the first step in the decomposition i.e. loss of phosphine. 

It has thus been possible to make an attempt at describing the mechanism of mono to 

trimer conversion. Further kinetic studies at various temperatures could give an indication 

of the thermodynamics of the initial first order decomposition and more detailed study 

over longer time periods may indicate what rate order(s) the reaction follows after the loss 

of first-order characteristics. 

When studying the decomposition through 31p n.m.r. spectroscopy various species have 

been observed which are neither intermediates in the 'trimerisation' process nor M3 

species themselves. It has been possible to make informed guesses as to what these 

species may be, the most likely being dithiadiazolyl ring nitrogen protonated complexes 

or higher chain length bridging dithiadiazolyl compounds. Obviously isolation of pure 

solid material would make characterisation easier. 

Proton n.m.r. studies have also highlighted the formation of various protonated 

decomposition products, either protonation of dithiadiazolyl ring nitrogen on complexes 

prepared or products from the decomposition of the free ligand [PhCNSSN]*, probably 

from reaction with trace water. 

Lastly, [Pt(SNC(Ph)NS-5,SXdppe)], though more stable than other monometallic 

species, does decompose to [Pt3(^is-sSNC(Ph)NS)2(dppe)2] among other products. 

Reaction with Pt(PPh3)4 to form [Pt3(Hs.sSNC(Ph)NS)2(dppe)2] is potentially 

interesting, repeating with [Pd(PPh3)4] to form [(PtPdPt)()is-sSNC(Ph)NS)2(dppe)2]. 
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A fu l l x-ray structural characterisation is required to conclusively prove that these 

reactions have taken place and the problem of low solubility of these species must also be 

surmounted (perhaps by changing the R group on the [PhCNSSN]*). At a later stage 

perhaps other metals (e.g. Ir, Ag) can be inserted into this square-planar 'trans sandwich' 

of two Pt(SNC(Ph)NS-5,5Xdppe) units. 
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CHAPTER SEVEN 

AN OXIDATIVE DECOMPOSITION STUDY ON 
MONOMETALLIC DITHIADIAZOLYL 

COMPLEXES 



7.1. INTRODUCTION. 
7.1 .1 . Proposed One-Electron Oxidation of Monometallic Dithiadiazolyl 

Complexes. 

In the previous two chapters the decomposition of monometallic dithiadiazolyl species in 

solution, and the subsequent compounds formed, have been discussed. It is almost 

certainly the unpaired electron on monometalhc complexes that destablilises them (cf. the 

comparitive stability of other square-planar Pt and Pd species). As stated in chapter two, 

uncomplexed 1,2,3,5 dithiadiazolyls also have an unpaired electron. This ring system 

can be readily oxidised to form the cation and again, as previous mentioned in chapter 

two the cation is formed as one of the stable intermediates in the synthetic pathway to 

forming the radical. 

In the monometallic complexes i f this electron can be removed by oxidation (e.g. figure 

7.a.) there is a good chance that the salts would be far more stable in solution. In the 

case of Pt species, for biological properties, the salts may be less toxic and more soluble 

in polar solvents (H2O in particular). 

Figure 7.a. Proposed One-Electron Oxidation of 
Monometallic Dithiadiazolyl Complexes 

^ N — s ^ p ^ i ^ ^ = s : ^ P 

PhC W ^ • PhC^ M ^ [X]" 

N S ^ P N S ^ P 

7.1 .2 . Cyclic Voltammetry. 

Before undertaking any chemical oxidation or reduction an electrochemical study (in 

particular cyclic voltammetry) can indicate the possibility of oxidising the monometallic 

complexes, as envisaged above. Previous C.V. smdies on the [RCNSSN]* radical have 

shown that the species can undergo a reversible oxidation to form a cation and a 

reversible reduction to form an anionn][2]. The oxidation can be readily achieved (e,g, 

by CI2 or Br2). The reduction is much harder to achieve and there is only limited evidence 
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for the formation of the anionic salt [Na(18-crown-6)] [PhCNSSN] [2] and this has 

involved very strong reduction by alkali metal. 

Interestingly, the C.V. of the nickel dithiadiazolyl species, [Ni2(Hs-sSNC(Ph)NS)(cp)2], 

shows a reversible one electron oxidation[3][4] (as described in chapter 2) and it should 

perhaps be possible to prepare an oxidised nickel species. 

There have also been electrochemistry studies undertaken on group 10 complexes e.g. the 

Pt(II) to Pt(m) oxidative decomposition of [Pt2(NH3)4(C5H4N-0)2](N03)5][51- Of 

more relevance are the electrochemical studies of Pt(n) and Pd(n) dithiolene complexes. 

These complexes, previously discussed in chapter three undergo reversible oxidation and 

reduction processesf^l 
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7.2. RESULTS AND DISCUSSION. 
7.2.1 . Cyclic Voltammetry Study of [PhCNSSN]* Based Monometallic 

Complexes. 

As stated in the introduction an electrochemical study on the monometallic species formed 

should give an indication as to whether a clean chemical oxidation can be achieved and 

thus cyclic voltammograms of [Pt(SNC(Ph)NS-5,5)(PPh3)2] [Pt(SNC(Ph)NS-

5.5')(dppe)] and [Pd(SNC(Ph)NS-5,5)(dppe)] were run. C.V. studies of the known 

decomposition products of monometallic species i.e. [RCNSSN]*, PPh3 and dppe were 

also run for comparison. Al l cyclic voltammograms were run referenced to Ag/Ag"*" and 

then calibrated to the standard calomel electrode (S.C.E.) at +0.34V, the x-axis in amps 

(A) and the y-axis in volts (V) . 

The C.V. of [Pt(SNC(Ph)NS-5,5)(PPh3)2] (figure 7b.) consists of two reversible 

reductions at EV2 +0.01V and -1.04V and an irreversible oxidation at EV2 0.42V. The 

reversible reductions probably involve the the ring system taking on another electron to 

become anionic and then the metal centre taking on an electron to become a 17 electron 

species. In Pt dithiolene complexes the reductive process was observed to be mainly 

ligand based as shown by e.s.r. spectroscopy. A second reduction was not observedf^l 

in these dithiolene species. 

The C.V. of [Pd(SNC(Ph)NS-5,5)(dppe)] (figure 7.c.) consists of one reversible 

reduction at El/2 -1.44V and three irreversible oxidations at El/2 -O.lOv, +0.30V and 

+1.12V. As with the dithiolene based complexes the reduction is probably a ligand (i.e. 

SNC(Ph)NS) based process. 

Finally the C.V. of [Pt(SNC(Ph)NS-S,S)(dppe)] consists of one reversible reduction at 

EI/2 +0.1 OV and one irreversible reduction at -1.66V. No oxidation attributable to the 

complex was observed. An oxidative decomposition may occur but the low solubility of 

the complex in MeCN (the solvent of choice for this C.V. study) resulted in only limited 

information being obtainable from the cyclic voltammogram 

In conclusion, the absence of a reversible oxidation indicates that it is unlikely that an 

oxidised monometallic complex can be formed, or at least not as a major product. 

However, the irreversible oxidations found for [Pt(SNC(Ph)NS-5,5)(PPh3)2] and 
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[Pd(SNC(Ph)NS-5',5)(dppe)] show that on oxidation these species decompose on to 

further products which in turn may be interesting and novel species. 

7.2 .2 . Oxidative Decomposition of Monometallic Complexes. 

The oxidising agent chosen was NOBF4. On oxidation N0+ abstracts an.electron to 

form NO gas which is liberated and [BF4]- remains as the counterion. The liberation of 

gas both gives an indication that the reaction has proceeded and cleanly removes a side 

product. 

Molar equivalents of complex and oxidising agent were stirred in MeCN to yield the 

immediate evolution of NO and a colour change from blue (for the Pt species) or green 

(for the Pd complex) to an orange solution. In all three cases there was a further colour 

change after 3h to form yellow solutions, indicating further reaction. Elemental analysis 

and infra-red spectroscopy gave a further indication that reaction(s) had taken place. No 

d.s.c. measurements were made as no reaction yielded only one clean product as will be 

shown in the following sections. 
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7.2 .3 . The 3 lp n.m.r. Spectra of the Products of the Reaction Between 

[Pd(SNC(Ph)NS-S,5)(dppe)] and NOBF4. 

The 31? n.m.r. spectra (in CDCI3) (figure 7.d.) indicated that two products had formed, 

the minor product, a singlet (5 59.6), indicating a complex where both dppe phosphines 

were equivalent and the major product with a doublet of doublets at 656.6 and 52.9ppm 

indicating a complex where both dppe phosphines are inequivalent and couple to each 

other (Jp.p 27.8Hz). Paramagnetic broadening of the n.m.r. spectra indicates that 

some [Pd(SNC(Ph)NS-5,5)(dppe)] remains i.e. that there may not have been a complete. 

1:1 reaction between the complex and NOBF4. 

On standing in CDCI3 crystals, of what was presumably one of the two species described 

above, started to slowly precipitate out of solution. A crystal of suitable quality was 

submitted for an x-ray structural analysis. 
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Figure 7.d. 3 lp N.m.r. Spectrum of the Products from the Reaction 

Between [Pd(SNC(Ph)NS-S,S)(dppe)] and NOBF4 

ss 53 

158 



7.2 .4 . X-Ray Structure of [Pd2(ns-sSNC(Ph)N(H)S)(dppe)2][BF4]2-

The structure of the species that was crystallised (see the previous section) was [Pd2(M-s-

sSNC(Ph)N(H)S)(dppe)2][BF4]2 (see figure 7.g. for diagrams and table 7.b. for 

selected bond lengths and angles). The structure is both suprising and highly unusual. It 

consists of a dimetallic compound bridged by the sulfurs of the chalcogen ring with each 

Pd atom also bonded to a dppe group. The complex is a dicationic salt (with two BF4" 

counterions) which formally oxidises both metals from 17 to 16 electron square-planar 

species. Finally, the (SNC(Ph)NS) ligand has picked up a proton on a ring nitrogen to 

become diamagnetic i.e. (SNC(Ph)N(H)S). A schematic bonding diagram is shown 

below (figure 7.e.). 

Figure 7.e. [Pd2(jAs^SNC(Ph)N(H)S)(dppe)2] 2f 

Ph a : 

H 

P= Vjdppe 

On reaction with [Pd(SNC(Ph)NS-5,5)(dppe)] and N0BF4(and trace H2O or solvent, 

MeCN to provide the proton) to form [Pd2(fxs-sSNC(Ph)N(H)S)(dppe)] the ring system 

now bridges two metal centres in a bonding mode similar to that described in chapter five 

for the trimetallic species. The two sulfur atoms are pulled further away from each metal 

centre (between 2.351(2)A and 2.384(2)A in [Pd2(jxs-sSNC(Ph)N(H)S)(dppe)] 

compared with 2.285(3) and 2.294(3)A in [Pd(SNC(Ph)NS-5,S)(dppe)] and the SPdS 

bond angle is subsequently smaller (82.66(6)° and 81.91(6)° in [Pd2(ns-

sSNC(Ph)N(H)S)(dppe)] compared with 89.6° in [Pd(SNC(Ph)NS-5,5)(dppe)]. The 
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ring strain described in chapter four for monometallic species is also reheved to a certain 

extent and the internal chalcogen ring angles are thus larger - closer to those observed for 

the uncomplexed ligand. Finally, as with other bridging dithiadiazolyl ligands the S-S 

bond interaction is shorter (3.106A) than that found for the chelating species (c.f. 

3.227(7)A for the original monometallic complex). The metal is now bridging two 

(SNC(PhNS) units and cannot therefore insert as fully into the S-S bond of the ring. 

In the ring itself the proton on the nitrogen prevents ring delocalisation in contrast with 

the (SNC(Ph)NS) ring complex that we have discussed previously (figure 7.f.). Thus in 

(SNC(Ph)N(H)S) complexes there will be one CN bond with predominantly double 

bond character and one with predominantly single bond character (in the CN(H) 

fragment). In (SNC(Ph)N(H)S) both CN bond lengths wi l l be very similar and 

intermediate between single and double bond character. 

Figure f. Comparison of the two ligands 
(SNC(Ph)NS) (1) and (SNC(Ph)N(H)S) (2). 

N -

PhC 

N -

H 
N-

PhC 

N-

The following (table 7.a.) shows the CN bond lengths of various complexes discussed in 

this thesis. In the dimetallic nickel species and the monometallic palladium complex the 

CN bond lengths are equal and thus acyclic (SNC(Ph)NS) is the ligand while in the 

dimetallic Pd salt and the Fe complex both CN bond lengths are definitely inequivalent. 

This is yet more evidence, along with the c.v. and n.m.r. studies undertaken by 

Boere et al that the ligand in the Fe species is in fact the dithiadiazolyl imine species 

(SNC(Ph)N(H)S)[3][4]. 
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Table 7.a. CN Bond Lengths of Selected [RCNSSN]' Based Species. 

COMPOUND C-N Bond Length (A) R E F E R E N C E 

(PhCNSSN)2 1.33 & 1.34 [8] 

Ni2(^is-sSNC(PhNS)(cp)2 1.324(4) & 1.336(4) [9] 

Pd(SNC(Ph)NS-5,5)(dppe) 1.33(1) &1.36(1) chapter four 

Pd2(^is-sSNC(Ph)N(H)S)(dppe) 1.305(9) & 1.359(9) this chapter 

Fe2(^s-sSNC(Ph)N(H)S)(CO)6 1.295(8) & 1.348(7) [10] 

The Pd-Pd bond interaction (3.0686(7)A) is longer than that found in the trimetallic 

species [Pd3(^is-sSNC(Ph)NS)2(PPh3)4] (2.8499(11)A & 2.8693(12)A) and complexes 

with genuine Pd-Pd bonds eg.[(Ti3Ti2-cp)(n-Br)(Pd)2(P-iPr3)2] (Pd-Pd 2.6lA)[ i i ] and 

many A-frame complexesn2] such as [Pd2(dppm)2(OCOCF3)] (Pd-Pd 2.594Ap^l This 

is not surprising as a Pd-Pd bond is not required to satisfy the bonding requirements of 

either metal i.e. each metal has the 16e'required for stability in the square -planar 

geometry-. There are many examples of dipalladium complexes without a formal Pd-Pd 

bond e.g. trans-[(PPh3)(C6F5S)Pd(^i-SC6F5)2Pd(SC6F5)(PPh3)][l4] [Pd2(|i-

MeC02)2Cl2(PPhMe2)2]tl^] and [PdCl2{But2P(CH2)ioPBut}]2[i6]. 
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Figure 7.g. X-Ray Structure of 

[Pd2(|xs.sSNC(Ph)N(H)S)(dppe)2][BF4]2.3CDCl3. 
(the dppe phenyl groups, deuterochloroform solvate and all the protons have been 

removed for clarity). 

c m C101 
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Table 7.b. Selected Bond Lengths and Angles for 
[Pd2(^-SNC(Ph)N(H)S-5,S)2(dppe)]. 

Pd2(|X-SNC(Ph)N(H)S-S,5)2(dppe) 
Bond Length (A) Bond Angle (°) 

Pd(l)-P(2) 2.283(2) P(2)-Pd(l)-P(l) 85.66(7) 

Pd(l)-P(l) 2.305(2) P(2)-Pd(l)-S(l) 175.93(6) 

Pd(l)-S(l) 2.351(2) P(l)-Pd(l)-S(l) 97.85(6) 

Pd(l)-S(2) 2.352(2) P(2)-Pd(l)-S(2) 93.67(6) 

Pd(l)-Pd(2) 3.0686(7) P(l)-Pd(l)-S(2) 175.23(7) 

Pd(2)-P(3) 2.283(2) S(l)-Pd(l)-S(2) 82.66(6) 

Pd(2)-P(4) 2.296(2) P(3)-Pd(2)-P(4) 85.00(7) 

Pd(2)-S(l) 2.354(2) P(3)-Pd(2)-S(l) 178.94(7) 

Pd(2)-S(2) 2.384(2) P(4)-Pd(2)-S(l) 95.59(7) 

C(l)-N(2) 1.305(9) P(4)-Pd(2)-S(2) 171.22(7) 

C( l ) -N( l ) 1.356(9) S(l)-Pd(2)-S(2) 81.91(6) 

N(l ) -S( l ) 1.690(6) N(2)-C(l)-N(l) 128.7(6) 

N(2)-S(2) 1.687(6) C(l)-N(l)-S(l) 129.4(5) 

S(1)....S(2) 3.106 N(2)-S(2)-Pd(l) 109.1(2) 

N(2)-S(2)-Pd(2) 100.5(2) 

Pd(l)-S(l)-Pd(2) 81.41(6) 

C(l)-N(2)-S(2) 125.7(5) 

N(2)-S(2)-Pd(l) 109.1(2) 

N(2)-S(2)-Pd(2) 100.5(2) 

Pd(l)-S(2)-Pd(2) 80.77(6) 
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7.2 .5 . A Re-evaluation of the 3 l p n.m.r. Spectra of the Products of the 

Reaction Between [Pd(SNC(Ph)NS-S,S)(dppe)] and NOBF4. 

The 3 lp n.m.r. spectrum of the crystalline product [Pd2([is-sSNC(Ph)N(H)S)(dppe)] 

was in accordance with the crystal structure, the proton rendering the dppe phosphines 

inequivalent, as such a doublet of doublets at 556.6 and 52.9ppm (Jp.p 27.8Hz) was 

observed. The unidentified minor peak previously observed at 559.6ppm was now 

absent although a further minor peak at 651.4 was now observed. This latter peak (or 

perhaps the one at 559.6ppm ) may be due to the oxidised monometallic species or a 

dimetallic species with a non protonated dithiadiazolyl but with a further BF4 oxidation to 

form a di-positive species. 

7.2.6. The 31 p n.m.r. Spectra of the Products of the Reaction Between 

[Pt(SNC(Ph)NS-S,S)(dppe)] and NOBF4. 

The 3 l p n.m.r. spectra (in CDCI3) of the orange solids from the reaction between 

[Pt(SNC(Ph)NS-5,5)(dppe)] and NOBF4 (figure 7.h.) show that many different 

products have formed and the reaction was not as straightforward as that found 

previously in the Pd analogue. The chemical shift and coupling constant values are 

shown in the table below as well as the values for the related species 

[Pt(SNS(H)N)(dppe)]BF4n7] (which has very similar 31p n.m.r. values to complex B 

discussed more fully below) 

There are two main species present (A & B), which provide a doublet of doublets 

(inequivalent phosphorus atoms in dppe coupling through a Pt atom) with Pt satellites 

(i.e. coupling to one phosphorus bound Pt). Either one could be the Pt analogue of the 

Pd species [Pd2(^s-sSNC(Ph)N(H)S-S,S)(dppe)2]. The other could simply be a 

monometallic complex with a ring nitrogen protonated. The other major product, complex 

C, has a 31p n.m.r. signal which consists of a singlet with Pt satellites and thus the dppe 

phosphorus atoms bound to the Pt are equivalent. This could be the monometallic 

oxidised species [Pt(SNC(Ph)N(H)S-5,5)(dppe)]. Three other peaks were present 

(D,E, & F), of too low an intensity to view any coupling. There is insufficient evidence 

to identify these. 
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Figure 7.h.The 31p N.m.r. Spectra of the Products of the Reaction 

Between [Pt(SNC(Ph)NS-S,5)(dppe)] and NOBF4. 
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Table 7.c. 31p n.m.r. peaks of the products from the reaction between 

[Pt(SNC(Ph)NS-S,S)(dppe)] and NOBF4. 

COMPOUND 5 (ppm) Jpt-p (Hz) Jp.p (Hz) 

A 39.2 3291.1 poorly resolved 

33.1 3030.1 5.4 

B 39.5 3075.3 11.1 

46.15 2848.0 11.1 

[Pt(SNS(H)N)(dppe)]BF4 38.6 2734 10 

44.6 3162 10 

D 37.3 unobserved unobserved 

E 34.3 unobserved unobserved 

F 48.3 unobserved unobserved 

7.2.7. The 31p n.m.r. Spectrum of the Products of the Reaction Between 

[Pt(SNC(Ph)NS-S,S)(PPh3)2] and NOBF4. 

The orange solids from the reaction between [Pt(SNC(Ph)NS-5,5)(PPh3)2] and NOBF4 

were dissolved in CDCI3 and their ^̂ P n.m.r. spectra recorded (figure 7.i.). Again as in 

the previous two reactions the major species is a doublet of doublets (with Pt satellites) 

which could again be a Pt analogue of the Pd species [Pd2(|Xs-sSNC(Ph)N(H)S-

S,S)(dppe)2] (i.e. [Pt2(^is-sSNC(Ph)N(H)S-S,S)(PPh3)2]. The 3ip data of this 

proposed species and a similar complex [Pt(SN(H)SN)(PPh3)2]BF4[l3] (for comparison) 

are shown in table 7.c. 
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Figure 7.i. The 3 lp N.m.r. Spectra of the Products of the Reaction 

Between [Pt(SNC(Ph)NS-S,5)(PPh3)2] and NOBF4. 
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Table 7.c. 31p n.m.r. of Species A and [Pt(SNS(H)N)(PPh3)2]BF4. 

C O M P L E X 5 (ppm) J p t . P (Hz) J p . p (Hz) 

A 17.6 2883.4 23.3 

7.65 3227.6 23.3 

[Pt(SNS(H)N)(dppe)]BF4 12.9 2683 22 

6.0 3433 22 

Another major species (B) 6l5.15ppm, Jpt.p 31 lOHz, may be the monometallic oxidised 

species [Pt(SNC(Ph)NS-5,5)(PPh3)2]. There are many other peaks of lower intensity 

which are further unknown products in what was obviously a very complex reaction with 

many products. 
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7.3. EXPERIMENTAL 
7 .3 .1 . The Reaction Between [Pd(SNC(Ph)NS-5,5)(dppe)] and NOBF4. 

[Pd(SNC(Ph)NS-5,S)(dppe)] (0.228g, 0.33mmol) and NOBF4 (0.039g, 0.33mmol) 

were stirred in MeCN (10ml) to yield an immediate evolution of gas and the formation of 

a red solution. The solution was stirred for 3h during, which time a yellow solution had 

formed. This solution was filtered and solvent removed in vacuo to yield an orange solid 

initially assumed to be [Pd(SNC(Ph)NS-5,5)(dppe)]BF4. 

Yield 0.170g. 

IR VmaxCcm"') 3054w, 2366w, 2344w, 1637w, I654w, 1540m, 1523m, 1482sh, 

1435ssh, 1413m, 1331w, 1307m, 1281m, 1188m, 1163m, 1101s, 1059sh, 1083sh, 

997ssh, 928m, 876sh, 848w, 819m, 747sh, 715ssh, 705ssh, 691ssh, 615w, 530s, 

479m, 426w. 

Elemental Analysis, found: C,51.10%; H,3.90%; N,3.49%. Calc: C,51.28%; 

H,3.79%; N3.63%). 

7 . 3 . 2 . The Reaction Between [Pt(SNC(Ph)NS-S,S)(dppe)] and NOBF4. 

Pt(SNC(Ph)NS-5,5)(dppe) (0.246g, 0.318mmol) and NOBF4 (0.042g, 0.325mmol) 

were stirred in MeCN (10ml) to yield an immediate evolution of gas and the formation of 

a red solution. The solution was stirred for 3h to yield a yellow solution which was 

filtered and the solvent removed in vacuo. Initially assumed to be [Pt(SNC(Ph)NS-

5,5)(dppe)]BF4. 

Yield 0.169mg. 

IR Vn,ax(cm-i) 3053W, 2365w, 2343w, 1637w, 1540m, 1524m, 1482sh, 1435ssh, 

1413m, 1307m, 1283s, 1188m, 1162m, UOOs, 1059sh, 1081sh, 995ssh, 928m, 

874ssh, 848w, 820m, 748sh, 715ssh, 705ssh, 689s, 532s, 479m, 427w 
Elemental analysis, found: C,45.34%; H, 3.28%; N3.10,%. Calc.:C,46.00%;H,3.40%; 

N,3.25%) 

7 . 3 .3 . The Reaction Between [Pt(SNC(Ph)NS-S,S)(PPh3)2] and NOBF4. 

[Pt(SNC(Ph)NS-5,5)(PPh3)2] (0.130g, 0.137mmol) and NOBF4 (0.0016g, 

0.137mmol) were stirred in MeCN (8ml) to yield an immediate evolution of gas and the 
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formation of a red solution. This solution was stirred for 3h during which time a yellow 

solution had formed. This solution was filtered and dried in vacuo. 

Initially assumed to be [Pt(SNC(Ph)NS-S,5)(PPh3)2]BF4 formed. 

Yield 0. 120mg 

IR Vinax(cm-l) 3379w, 3240w, 3055w, 1974w, 1909w, 1817w, 1685w, 1627m, 

1585sh, 1543m, 1527m, 1481ssh, 1436s, 1332w, 1312m, 1283w, 1187m, 1163m, 

1095s, 1058s, 997s, 894w, 874w, 745s, 692s, 618w, 587w, 545ssh, 525s, 513s, 

497s, 443w. 

Elemental analysis, found: C, 51.58%; H,3.26%; N,2.54%. Calc.:C,52.28%;H,3.58%; 

N,2.84%) 
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7.4. CONCLUSION 
Before undertaking the research included in this chapter it was hoped that a clean 

oxidation of [M(SNC(Ph)NS-S,5)(P)2] (where M=Pt or Pd and P= PPh^or ^/jdppe) 

could be achieved to form the corresponding monometallic salt [M(SNC(Ph)NS-

S,5)(P)2][BF4]. A preliminary cyclic voltammetry study had indicated that this would 

not be the case (at least not as a single major product) and that oxidative decomposition 

products could be formed instead or, indeed, as well as. On reaction of 

[Pt(SNC(Ph)NS-5,5)(PPh3)2] and [Pt(SNC(Ph)NS-5,5)(dppe)] with the oxidising 

agent NOBF4 this theory held true with a whole series of decomposition products being 

formed (as shown by ^^P n.m.r. spectroscopy). To isolate out pure products further 

purification would be required e.g. separation by column chromatography. The main 

advantage about the species formed is their ready solubility in common solvents (e.g. 

MeCN and CH2CI2) and extracting crystalline material should be possible, with perhaps 

Pt analogues of the following Pd species being isolated. 

The oxidative decomposition of [Pd(SNC(Ph)NS-5,5)(dppe)] provided a much cleaner, 

simpler reaction with one major product. This species was crystallised and structurally 

characterised as [Pd2(SNC(Ph)N(H)S-5,5)(dppe)2]; from the oxidation of 

[Pd(SNC(Ph)NS-5,5)(dppe)] with two equivalents of NOBF4 and a ring nitrogen 

protonation. This highly unusual species is further concrete evidence for the existence of 

(SNC(Ph)N(H)S) as a ligand. I f (RCNSSN(H)) could be prepared as the starting reagent 

then a new area of chemistry could be opened up. With the loss of free radical namre this 

species may prove to be easier to handle and react more cleanly with more transition 

metals compared with [PhCNSSN]*. 

Finally, from this and the previous two chapters, a pattern is emerging in the ^̂ P n.m.r. 

spectra of the decomposition products of [M(SNC(Ph)NS-5,5')(P)2]. In complexes 

derived from [Pt(SNC(Ph)NS-5,5)(PPh3)2] the chemical shifts come between 5 and 

35ppm, from Pt(SNC(Ph)NS-5,5)(dppe) 635-50ppm and Pd(SNC(Ph)NS-5,5)(dppe) 

540-60ppm. A trend is thus emerging in the chemical shift patterns of these species. 
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CHAPTER EIGHT 

T H E PREPARATION OF PHENYL 
DISELENADIAZOLYL AND ITS REACTION WITH 

PLATINUM AND PALLADIUM COMPLEXES 



8.1. INTRODUCTION 
8.1 .1 . The Replacement of Sulfur with Selenium in [RCNEEN]* (E = 

chalcogen). 

So far in this thesis only the properties of 1,2,3,5, dithiadiazolyls and their complexes 

have been discussed. However, it is only recently that any [RCNSSN]* species have 

shown any interesting magnetic or electronic properties (see chapter 2). As such the 

attention of this research group and Oakley et al in Canada has turned to selenium as a 

direct replacement for sulfur i.e. diselenadiazolyls (figure 8.a.) 

R — Q 
/ \ 

N-
Se 

Figure 8.a. 1^3,5 diselenadiazolyl. 

It was hoped that selenium based compounds, with more diffuse p and d orbitals, would 

provide stronger intermolecular interactions that would result in one dimensional stacking 

and, hopefully, interesting conducting properties. 

8 .1 .2 . The Synthesis and Properties of 1,2,3,5 Diselenadiazolyl. 

In 1989 the first diselenadiazolyl radical, [PhCNSeSeN]*, was reported by Oakley et 

al.t^l The salt, [PhCNSeSeNJCl, was synthesised in an analogous manner to their 

method of preparing [PhCNSSNJCl except that PhsSb and SeCU (yielding SeCh "in 

situ' and Ph3SbCl2) were used instead of SCI2. The cation was reduced to the radical 

with PhsSb. Unfortunately, as for the sulfur species, the radical crystallised in 

diamagnetic dimer pairs (i.e. (PhCNSeSeN)2) with some dissociation to the monomer, 

[PhCNSeSeN]*, in solution. Further studies have been undertaken on similar species i.e. 

[RCNSeSeN]* where R = Ht^l and para substituted phenylene derivativest^l e.g. [p-

ClC6H4CNSeSeN]*. Recently iodine doping of [PhCNSeSeN]*[4] has resulted in the 

formation of a charge transfer species analogous to that described in chapter two for 

phenyl dithiadiazolyl. 
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8.1 .3 . Multi and Mixed Diselenadiazolyls Complexes. 

The greatest interest in diselenadiazolyl research to date has been in the preparation of 

difunctional diselenadiazolyl and mixed diselenadiazolyl and dithiadiazolyl radicals (and 

radical cations); in character a continuation of the solely sulfur based researcht^'^1. The 

most interesting of these compounds prepared was the P-phase of l,3-[NSeSeNC 

(C6H4)CNSeSeN]"['^] (see figure 8.b.) which forms chains of discrete dimers in the 

solid state with semi-conducting properties (the band gap is 0.77eV). 

Figure 8.b. l,3-[NSeSeNC(C6H4)CNSeSeN] 

8.1.4. The Preparation and Characterisation of [PhCNSeSeN]* and its 

use as a Ligand. 

As previously stated there has only been limited research undertaken on [PhCNSeSeN]* 

complexes compared to their sulfur analogues. As a result there is no convenient high 

yielding route for the preparation of [PhCNSeSeN]* and only a limited physical study has 

been undertaken e.g. only a cursory e.s.r. study as discussed in the latter sections. 

Finally, attempts to use [PhCNSeSeN]* as ligand have been very limited with only a few 

failed attempts to repeat work previously undertaken with [PhCNSSN]*[^J. Thus there 

are many areas of this field of chemistry to be developed, some of which will be included 

in the following chapter. 
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8.2. Results and Discussion. 

8.2 .1 . The Preparation of [PhCNSeSeN]Cl. 

I f [PhCNSeSeN]* is to be used as a ligand a high yielding preparation with the minimum 

of experimental work would be a great advantage. Oakley et al used the same method to 

prepare [PhCNSeSeN]Cl as they did to prepare [PhCNSSN]Cl i.e. starting with the 

previously synthesised persilylated benzamidine but instead of condensation with SCI2, 

two reagents, SeCU and PhsSb are used to generate SeCl2 'in situ' and prepare 

[PhCNSeSeN]Cl in 90% yield (see figure S.c.pl 

Figure 8.c. Condensation Reaction to form [PhCNSeSeN]Cl 

N 
/ / W / 

2SeCl4 
NSiMes 

N(SiMe3)2 

2Ph3Sb 

As with the sulfur system the initial preparation of the benzamidine is time consuming 

and leads to lower yields from basic starting material (benzonitrile and lithium 

bistrimethyl silylamide see chapter 2). Also, with this method only the comparatively 

expensive compound SeCU is used as a source of selenium. 

In this laboratory, the salt Li[(SiMe3)2NC(Ph)(SiMe3)] was prepared 'in situ' from 

PhCN and Li[N(SiMe3)2] (as in the preparation of [PhCNSSN]Cl) in Et20 and the 

ethereal solution canula transferred onto a 1:1 mixture of SeCVSe (another 'in situ' prep 

of SeCl2[8]) to yield [PhCNSeSeN]Cl, LiCl and SiMesCl. As in the sulfur system Et20 

soluble SiMesCl is removed by filtration and LiCl is removed by exhaustive extraction of 

[PhCNSeSeNJCl with SO2 (see figure 8.d.). The use of Se (the cheapest source of 

selenium) with SeCU is a more cost effective method of preparing SeCl2. Satisfactory 

analysis was obtained for the salt [PhCNSeSeN]Cl. 
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Figure 8.d. Preparation of [PhCNSeSeN]Cl 

PhCN + Li[N(SiMe3)2] 

Et20 

,NSiMe3 / 
^NSiMes 

Se/SeCU 

R-

(Et20 Insoluble) 

Se 

Cr + LiCl + SiMesCl 
(Et20 Insoluble) (Et20 Soluble) 

SO2 (Extraction) 

-LiCl (SO2 Insoluble) 

R- c r 

8 .2 .2 . Reduction of [PhCNSeSeNjCl to (PhCNSeSeN)2. 

Three reducing agents, Zn/Cu couple, Ag powder and PhsSb, were tried to remove the 

chloride ion from [PhCNSeSeN]Cl to yield (PhCNSeSeN)2. Reduction of 

[PhCNSSN]Cl by Zn/Cu couple and subsequent vacuum sublimation yields good quality 

crystalline (PhCNSSN)2 in around 50% yields. Preparation of the selenium analogue 

under similar conditions yielded only 10%,of a powdered material. Better yields were 

achieved with other reducing agents: in an analogous reaction silver powder was used as 

the reducing agent and resulted in an improved yield after sublimation, 52.3% (see 

equation S.a.). 
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Equation 8.a. Reduction of PhCNSeSeNCl by Metal Powders. 

Zn/Cu or Ag 
[PhCNSeSeN]Cl ^ [PhCNSeSeN] + ZnCl2/CuCl2 or AgCl 

Finally, PhsSb was used as the reductant,the method employed by Oakley et al. PhsSb 

and PhCNSeSeNCl were refluxed in MeCN. Ph3SbCl2 was washed out to leave behind 

(PhCNSeSeN)2 (86% yield) which was further purified by sublimation (yield 30.8%). 

8.2.3. One Pot Synthesis of (PhCNSeSeN)2. 

As in the case of (PhCNSSN)2 the development of the preparation of (PhCNSeSeN)2 

has reached the stage where pure [PhCNSeSeN]Cl need not be isolated. After the 

condensation reaction and washing with Et20 (to remove MesSiCl) Ph^Sh is added to the 

[PhCNSeSeN]Cl/LiCl mixture with MeCN as the solvent. The mixture is refluxed, 

filtered to remove Ph3SbCl2 and the residue sublimed to yield pure crystalline 

(PhCNSeSeN)2 (LiCl is left behind). Higher temperature sublimation (170°C) increases 

the speed of sublimation and produces crystalline product. The yield (30.8%) from 

starting materials is acceptable for pure crystalline (PhCNSeSeN)2. 

8.2.4. Previous E.s .r . Spectroscopic Studies on [PhCNSeSeN]*. 

In many respects the physical properties of [PhCNSeSeN]* and related species have been 

thoroughly examined e.g. structural and theoretical studies and infra red 

spectroscopy[10]. However, e.s.r. spectroscopy has not been used extensively. In 

chapter two it was shown that [RCNSSN]* species have been extensively studied by 

e.s.r. spectroscopy with well resolved hyperfine splitting in solution (isotropic spectra) 

and in the solid state, powder and single crystal (anisotropic spectra). In comparison 

[PhCNSeSeN]* shows only a broad unresolved singlet even at low temperatures^]. 

Consequently a direct comparison of the nature of the SOMOs in [PhCNEEN]* (where E 

= S or Se) has not been possible (although an extensive physical study using other 

techniques (e.g. m.o. studies and infra red spectroscopy) of a homologous pair, 

[HCNEEN]*, has been reportedt^O] recently). Chapters 2 and 4 highlight the compatibility 

of M.O. calculations and e.s.r. studies. Room temperature solution e.s.r. spectra of 
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[PhCNSeSeN]* in C H 2 C I 2 , t.h.f. and diglyme all showed broad singlets in first 

derivative spectra (giso = 2.0376 in t.h.f., peak-to-peak line width, AHpp= 32G), similar 

to the data previously reportedHl (g^^^ = 2.0394, C H 2 C I 2 at 295K). We have found that 

powdered samples of this material also exhibited broad singlets at room temperature (g = 

2.0386) whilst crystalline samples were found to be e.s.r. inactive. No attempt had yet 

been made to record a frozen glass spectrum of this radical to attempt to separate out the 

hyperfine interactions of the species. 

8.2 .5 . Anisotropic 'Frozen Glass' E.s.r. spectra of [PhCNSeSeN]*. 

Despite the absence of hyperfine coupling in isotropic spectra, we found that hyperfine 

tensors to both N and Se could be determined from frozen glass spectra of 

[PhCNSeSeN]* i.e. by freezing a solution of [PhCNSeSeN]* in t.h.f.in an e.s.r. tube 

(using liquid N 2 ) . The anisotropic spectrum obtained (figure S.e.) shows a strong 

similarity to that observed^ for [PhCNSSN]*, although replacement of S by Se has two 

effects; firstly, we observe a greater anisotropy in the spectra of [PhCNSeSeN]* i.e. the 

x,y, and z contributions are spread further apart and secondly, the higher natural 

abundance of "̂ "̂Se (c.f. 33S) has also allowed us to clearly observe and calculate the 

anisotropic hyperfine interactions with the chalcogen. The anisotropic data for 

[PhCNSeSeN]* (frozen glass, t.h.f.), PhCNSSN* (frozen glass dS-tolueneHll), 

[SNSSN]+* (frozen glass D2S04tll]) and [SNSeSeN]+* (frozen glass SOj^^^^) are listed 

in table 8.a. The values obtained for [PhCNSeSeN]* have been used to simulate the 

spectrum (figure 8.f.). The anisotropic data were also used to simulate the frozen glass 

spectrum of [PhCNSeSeN]* (figure E.g.). 
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Figure S.e. Frozen Glass E.s.r. Spectrum of [PhCNSeSeN]' 
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Figure 8.f. Frozen Glass Experimental and Simulation E.s.r. Spectra of 
[PhCNSeSeN]*. 
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Table 8.a. E.s.r. spectral parameters^ for 4-phenyl-l,2,3,5-
diselenadiazolyl and 4-phenyl-l,2,3,5-dithiadiazolyl radicals. 

rSNSSNl+*'' rSNSeSeNl+*: rPhCNSeSeN]*^ fPhCNSSN]* 

Temperature (K) 77 77 77 77 

gxx 2.0013 1.9941 1.9828 2.0021 

8yy 2.0062 2.0108 2.0214 2.0078 

g2Z 2.0250 2.1355 2.1001 2.0218 

<J?> 2.0108 2.0468 2.0346 2.0106 

^iso 2.01112 2.0464 2.0376 2.0102 

fl[N]+Axx[N] 0.918 0.692 1.367 1.410 

a[N]+Ayv[N] -0 ~0 0.200 0.107 

a[N]+Azz[N] ~0 ~0 0.133 0.035 

<a[N]> 0.306 0.243 0.567 0.517 

aN 0.319 0.519 

a[E]+Axx[E] 0.3784 -18.0 13.066 

a[E]+Ayy\E] ~0 -7.0 5.600 

a[E]+Azz[E] -0.0882 5.0 3.866 

<a[E]> 0.0967 2.0 1.200 

aE 0.0861 0.616 

AHpp(iso) 0.1 3.4 3.2 0.04 

a: hyperfine interactions in mT. 
b: taken from reference [11] 
c: taken from reference [12] 
d: this work 

As stated above, solution (first and second derivative) and solid state spectra (powders 

and crystalline samples) of samples of [PhCNSeSeN]* failed to provide any hyperfine 

interactions O N and ase > which we hoped to compare to the isostructural [PhCNSSN]*. 

This arose through the large line width of these spectra, masking the hyperfine 

interactions. However, frozen glass spectra provided a significant quantity of 

information. We have assigned g^x, gyy and gzz in [PhCNSeSeN]* by direct comparison 

with the frozen glass spectra^ll of [PhCNSSN]* and single crystal spectrat^^] of 

[PhCNSSN][S3N3] (PhCNSSN* trapped in lattice). The relative orientations of the 

tensors are thus; ^xx perpendicular to the ring plane, gyy along the C 2 axis and gzz parallel 

to the E-E bond vector in the ring plane (Figure 8.g.). 
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Figure 8.g. The ^Aj SOMO of [RCNEEN]* and the relative 
orientations of the tensors 

gxx 

gyy 

gzz 

From Table 8.a. we can see that replacement of sulfur by selenium in [RCNEEN]*, leads 

to a wider spread of anisotropic g-factors producing a greater separation of the 

component line shapes. The larger values of giso for [PhCNSeSeN]* is consistent with 

previous observations; [SNEEN]+* radicals (isoelectronic with [RCNSeSeN]*) produce a 

shift in ^-factor from 2.01112 (E=S)[ll] to 2.0472 (E=Se)[l2], and this has been 

attributed[l2] to greater spin-orbit coupling in selenium compared with sulfur based 

radicals (the ratio of spin-orbit coupling constants^^] Se:S is 4.4:1). 

The anomalously large line width observed in the solution spectra (in comparison to the 

frozen glass spectra) on substituting S by Se, is similar to that observed for the 

isoelectronic [SNEEN]+* radicalst^^] jn these systems, the variation in line-width (as 

expressed by McConnellHS]) has been found to be dependent on the extent of anisotropy 

in g. It has already been noted above that replacement of S by Se leads to a greater 

anisotropy, and hence a greater line-width in the isotropic spectrum, masking all 

hyperfine structure in the solution spectrum of [PhCNSeSeN]*. 

The mean anisotropic nitrogen hyperfine coupling constants (<aN>) show that there is a 

modest increase in s-electron density at nitrogen on replacing sulfur by selenium (in 

agreement with predictionf^OJ), increasing from 0.517mT to 0.567mT. Since the average 

of the anisotropic Se hyperfine couplings (~7.5mT) is significantly larger than the line-

width of the first and second derivative solution spectra (3.2mT at room temperature), we 

must assume that the signs of two of the anisotropic hyperfme interactions are opposite 

with respect to the third. Preston, Sutcliffe et al. have shown^ 1][12][16] that this is the 
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case for the isoelectronic systems [RCNSSN]*, [SNSSN]* and [SNSeSeN]*. In all cases 

they observed flixx(E) to oppose ayy(E) and azz(E). Assuming a similar pattern for 

[PhCNSeSeN]*, we have determined <a(Se)> to be 1.200mT - approximately double the 

values of as in [PhCNSSN]*. 

When the hyperfme coupling constants (in MHz) (Table 8.a.) are converted into unpaired 

spin populations using theoretical one-electron parametersn7]^ the change in unpaired 

spin density on replacing S by Se in [RCNEEN]* radicals can be estimated. These data 

are presented in Table 8.b.. 

Table 8.b.Estimated unpaired spin populations^ of valence atomic s and p 
orbitals in [PhCNSSN]* and [PhCNSeSeN]* 

[PhCNSSN]*b [PhCNSeSeN]* [SNSSN]+*c [SNSeSeN]+*c 

Ns 0.8 0.9 0.5 0.4 

Npx 22.5 19.9 15.7 11.6 

ES 0.5 0.2 0.7 0.3 

Epx 33.8 42.0 45.3 

a: Percentage unpaired spin populations were estimated using the experimental hyperfme 
tensors in Table 1 and equations given in reference [17]. 

b: Determined from data given in reference [11]. 
c: Taken from reference [12]. 

The unpaired electron density in [PhCNSeSeN]* is distributed primarily over the 

NSeSeN fragment in a 7t-type orbital, indicating that this radical has a T T - S O M O of 2 A 2 

symmetry, analogous to that found[lOHl2][l8] for [PhCNSSN]*, [SNSSN]* and 

[SNSeSeN]*. The total electron density on the (NSeSeN) fragment is calculated at 

1.096e- in excellent agreement wth previous workt^^] and indicates a slight residual 

negative electron density at the nodal atom (S for [SNSSN]+* and [SNSeSeN]+*, C for 

[PhCNSSN]* and [PhCNSeSeN]*). Of the four radical systems discussed, the spin 

densities in the two [RCNEEN]* based species are the most evenly distributed and 

consequently we believe these to be the more delocalised 7C-systems. The increased n-
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character arises from the lack of positive charge (in [SNEEN]+* the electropositive 

chalcogen atoms bear the greater positive charge and this tends to localise the spin density 

on E). 

Although the isotropic data indicate a marginal increase (+0.1%) in s-electron density at 

N (on replacing S by Se), consistent with previous proposalsHO], the story is more 

complex; in fact, there is a net increase in ;t-electron density at the chalcogen. on moving 

from [PhCNSSN]* to [PhCNSeSeN]*, and a corresponding decrease in 7C-electron 

density at N(-2.6%). Substitution of sulfur by selenium in the isoelectronic [SNEEN]+* 

analogues also leads to an increase in 7c-electron density[l2] at E(+3.3%). Thus 

replacement of S by Se would appear to have a similar electronic effect to using 

fluorinated substituentst^^l i.e. producing an increase in unpaired spin density at the 

electropositive ring atoms. Such an increase in 7C-electron density at the chalcogen may 

help explain the stronger bonding interactions in both (C6F5CNSSN)2 and 

(PhCNSeSeN)2 compared to (PhCNSSN)2. Sulfur^^ labelling experiments on 

[PhCNSSN]* would facilitate a complete evaluation of the two related radicals, 

[RCNEEN]*. 

8.2.6. Preliminary Complexation Reactions of [PhCNSeSeN]* with 

M(PPh3)4 (where M = Pd or Pt). 

A preliminary reaction between [PhCNSeSeN]* and [Pd(PPh3)4] in CH2CI2 led only to 

the formation of a deep red e.s.r. inactive solution. Further studies were undertaken (see 

section 8.2.9.). In contrast the preliminary reaction between [PhCNSeSeN]* and 

[Pt(PPh3)4] led to the initial formation of a lime green solution which proved to be e.s.r. 

active. 

8.2.7. Solution State E . s . r . Spectra of [Pt(SeNC(Ph)NSe-

Se,SeHPPh3)2]' 

Addition of a small quantity of (PhCNSeSeN)2 to [Pt(PPh3)4] in an e.s.r. tube in 

CH2CI2 led to an immediate lime-green coloration of an e.s.r. active material, which 

turned orange on standing over a period of ca. 10 minutes. A rapid decrease in intensity 

of the e.s.r. spectrum accompanied this colour change. We postulate that 

(PhCNSeSeN)2 reacts with [Pt(PPh3)4] in a manner analogous to that previously 
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described in chapter four for [PhCNSSN]* , i.e. an unstable monomeric complex, 

[Pt(SeNC(Ph)NSe-5e,5e)(PPh3)2], is formed first which rapidly decomposes to a 

diamagnetic species, possibly [Pt3(M.Se-SeSeNC(Ph)NSe)2(PPh3)4] and (PhCNSeSeN)2. 

By carrying out the reaction in the presence of a large excess of [Pt[PPh3]4 ] , the spectra 

were not obscured by the contaminant [PhCNSeSeN]* (the technique which is also used 

to analyse the sulfur based species discussed in chapter four). 

Although the first derivative spectrum of the initial solution was poorly resolved, the 

second derivative spectrum and simulation (figure 8.h) clearly shows a complex 

consistent with the proposed formulation, [Pt(SeNC(Ph)NSe-5e,5e)(PPh3)2]. The 

spectrum shows hyperfine coupling to ^^^Pt and two equivalent ^^N nuclei and shoulders 

attributed to ^^P. Although coupling to "̂ Ŝe was not directly observable, we have 

estimated (from the simulation) a magnitude of ca. 0.4mT. The data used to simulate the 

spectrum are listed in Table 8.c., along with those reported for the sulfur analogue 

[Pt(SNC(Ph)NS-5,5)(PPh3)2]. The resonances in this complex are significantly broader 

(AHpp = 0.6mT) than those observed for the sulfur analogue (AHpp = 0.2mT). The 

spectrum is highly asymmetric and this has made satisfactory simulation difficult. We 

believe this asymmetry arises primarily through the rapid loss of signal intensity caused 

by sample decomposition, although second order line-broadening effects may also be 

contributing factors. To date we have been unable to determine anisotropic hyperfine 

couplings for this complex from frozen glass spectra; the latter are observed as broad 

unresolved singlets. 
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Figure 8.h. Second Derivative E.s.r. Experimental and Simulation Spectra of 

[Pt(SeNC(Ph)NSe-Se,S^)(PPh3)2]. 

EXPERIMENTAL 

SIMULATION 
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Table 8.c. E S R spectral parameters for [Pt(SeNC(Ph)NSe-Se,Se)(PPh3)2] 
and [Pt(SNC(Ph)NS-S,S)(PPh3)2]. 

Pt(SeNC(Ph)NSe-Se,Se)(PPh3)2 Pt(SNC(Ph)NS-S,5)(PPh3)2 

îso 2.0615 2.0386 

apt 4.405 5.385 

« N 0.587 0.553 

ap -0.16 0.280 

OE -0.40 

ABpp 0.60 0.20 

Hyperfine interactions in mT. 

Metal complexation would appear to lead to a drift of electron density from the chalcogen 

to the metal centre, producing a smaller value for aE and strong coupling to the metal 

centre, whilst leaving ON virtually unchanged. Thus we have been able to verify the 

estimate of O N in the uncomplexed radical [RCNSeSeN]* by comparison with this 

complex. Moreover, by losing electron density at Se, the line-width is substantially 

decreased (from 32G to 6G) allowing us to observe much of the hyperfine coupling to 

the heteroatoms. Notably, an in the metal complex (0.587mT) is in good agreement with 

that predicted from the anisotropic data for [Pt(SNC(Ph)NS-S,5)(PPh3)2] (0.553mT). 

The hyperfine-coupling to both Pt and P is significantly less than in the analogous 

[Pt(SNC(Ph)NS-5,5)(PPh3)2] and this must be attributed to retention of a greater 

proportion of the electron density on the [PhCNSeSeN]* ligand. The greater residual 

electron density at selenium presumably makes [Pt(SeNC(Ph)NSe-5e,5e)(PPh3)2] 

significantly more reactive than [Pt(SNC(Ph)NS-5,5)(PPh3)2] - as indicated by the rapid 

decay of signal intensity in the e.s.r. experiment. 
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8.2.8. The Reaction of [PhCNSeSeN]' with [Pt(PPh3)4]. 

It was hoped that the reaction between [PhCNSeSeN]* and [Pt(PPh3)4], although not 

producing [Pt(SeNC(Ph)NSe-Se,Se)(PPh3)2] as a stable product, would decompose to 

the trimetallic species [Pt3(|Xse-SeSeNC(Ph)NSe)2(PPh3)4]. The reaction between 

[PhCNSeSeN]* and [Pt(PPh3)4] in MeCN led to the formation of a yellow solid which 

was filtered, washed with fresh MeCN and dried in vacuo. The elemental analysis did 

not seem to indicate that this was the case. The 3lp n.m.r. showed that there was more 

than one species present with 4 major peaks at 619.1, 18.9, 12.7 & 12.5ppm. The first 

two values are similar to that observed for Pt3(|is-sSNC(Ph)NS)2(PPh3)4 (6l8.5ppm), 

although due to the lack of solubility no satellites were observed. Either of these last two 

peaks may be due to the selenium analogue. The n.m.r. spectrum shows the phenyl 

protons of the complexes formed (87.63-7.29) and also MeCN protons (82.27), thus 

indicating that some solvent of crystallisation may be present. 

8.2.9. The Reaction of [PhCNSeSeN]* with [Pd(PPh3)4]. 

As in the [PhCNSSN]* case, the reaction between [Pd(PPh3)4] in MePh results in the 

formation of a deep red solid. Elemental analysis and a comparison of infra red spectra 

with [ P d 3 ( ^ i s - s S N C ( P h ) N S ) 2 ( P P h 3 ) 4 ] indicate that [Pd3(HSe-

SeSeNC(Ph)NSe)2(PPh3)4] has been formed. As in the sulfur based complex the 3lp 

n.m.r. spectra showed only one peak at 820.4 (c.f.[Pd3(^s-sSNC(Ph)NS)2(PPh3)4] 

8l8.5ppm and [Pd(PPh3)2(l,5-Ph4P2N4Se2)] 824.8ppm[20]). Also the iR n.m.r. 

spectra showed the phenyl protons at 87.36-6.95. The low solubility of the complex (it 

readily precipitates out of CDCI3 solution) highlighted the presence of more soluble 

impurities at 81.29, 1.61, 2.39 & 8.25ppm (again as in the sulfur case, reported in 

chapter six) 

Any attempt to recrystallise was hampered by the low solubility of the species in common 

solvents. An attempt was made to grow crystals by the method used to prepare 

crystalline samples of [Pd3(|is-sSNC(Ph)NS)2(PPh3)4] i.e. slow diffusion of a solution 

of [PhCNSeSeN]* in CH2CI2 onto a solution of Pd(PPh3)4 in CH2CI2. This led only to 

the formation of yellow crystals of cis-(PPh3)2PdCl2, as shown by a preliminary x-ray 

structural determination. 
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8.3. Experimental. 

8.3.1. The Preparation of [PhCNSeSeNJCl. 

Li[(N(SiMe3)2] (2.17g, 12.97mmol) was dissolved in Et20 (150ml). PhCN (1.6ml, 

13mmol) was added and the straw coloured solution left stirring overnight. Selenium 

(Ig, 12.66mmol) and SeCU (2.8g, 12.68mmol) were charged into a second flask which 

was cooled to 0°C. The ethereal solution was canula transfered onto these solids with 

stirring to yield immediately a red-brown precipitate under an orange solution. This 

suspension was stirred for 3hr, filtered, washed with EtiO (3x30ml) and dried in vacuo . 

The red-brown solids were then extracted in a closed soxhlet extractor with SO2 (30ml) 

until all the deep red crystalline [PhCNSeSeNJCl had extracted leaving behind the 

insoluble LiCl (at least 48hr). The SO2 was then removed and the deep red crystalline 

material dried in vacuo.. 

Yield 2.36g, 60.1%. 

IR Vniax(cm-l) 2924br, 1592w, 1570w, 1463sh, 1433sh, 1408w, 1377s, 1297m, 

1167m, 1140m, 1100m, 1064m, 1027w, 996w, 897sh, 866sh, 848m, 817m, 758m, 

744m, 706ssh, 693ssh, 646m, 526ssh, 518m, 482m, 474m, 450m, 434w, 419w. 

Elemental analysis, found: C,27.34%; H,1.81%; N,8.92%.Calc.: C,27.07%; H,1.62%; 

N9.02%). 

Mass spec. (m/e)EI+ 277(PhCNSeSeN)+, 174(SeSeN)+, 103(PhCN)+.CI+ 

275(PhCNSeSeN)-h. 

D.s.c.l86°C (dec). 

8.3.2. The Reduction of [PhCNSeSeNJCl to (PhCNSeSeN)2 with Zn/Cu 

Couple. 

[PhCNSeSeN]Cl (0.60g, 2mmol) and Zn/Cu couple (0.1 Og, 1.55nmiol) were stirred in 

thf (20ml) overnight. The resultant dark purple suspension was dried in vacuo. The 

solids were heated to 110°C and the sublimed purple powder of (PhCNSeSeN)2 collected 

on a cold finger. The solids were removed from the cold finger and the residues 

resublimed. This process was repeated until no new product could be sublimed. 

Yield 0.058g, 10.9%. 
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IR VjnaxCcm-̂ ) 2860sbr, 2100br, 1450s, 1380ssh, 1305, 1265w, 1170w, 1155w, 1115, 

1070wbr, 1025m, lOOOw, 970wbr, 920w, 860w, 820w, 780w, 770sh, 740, 725, 

715sh, 700ssh, 685ssh, 650sh, 610m. 

Elemental analysis, found: C,30.64%; H,1.77%; N,10.15%. Calc.:C,30.55%; 

H,1.81%; 10.18N%). 

Mass spec (m/e) EI+ 277(PhCNSeSeN)+, 174(SeSeN)+, 103(PhCN)+, CI+ 

278(PhCNSeSeN)+. 

D.s.c. 176°C (dec). 

8.3.3. The Reduction of [PhCNSeSeN]Cl to (PhCNSeSeN)2 with Silver 

Powder. 

[PhCNSeSeN]Cl (3.6g, 11.59mmol) and Ag powder (1.2g, 11.17nmiol) were placed 

together with a stirring bar in a 250ml round bottomed flask. T.h.f. (40ml) was added 

and the mixture left to stir ovemight, yielding a deep purple suspension. The reaction 

was then pumped to dryness, a cold finger attatchment was inserted into the flask and the 

remaining solid was sublimed at around 130°C on two occasions for around 2-3hrs each. 

After each sublimation the dark purple solid collected on the cold finger was harvested 

and the two crops combined. 

Yield 1.195g,37.5%. 

Infra red (Csl nujol mull) (v max cm'l) 1670br, 1600w, 1330s, 1310s, 1270s, 1180, 

1160, 1120s, 1070, 1030, 920w, 860w, 790sshd, 780w, 770ssh, 745, 715ssh, 700, 

690shd, 650ssh, 610, 450br, 420ssh. 

Elemental analysis, found: C,31.40%; H,1.98%; N,9.80%. Calc:C,30.55%; H,1.81%; 

10.18N%). 

Mass spec. (m/e)EI+ 277(PhCN2Se2)+, 174(SeNSe)+, 160(SeSe)+, 103(PhCN)+CI+ 

275(PhCN2Se2)+, 121(CNNSe)+-

D.s.c. 175°C (dec). 
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8.3.4. The Reduction of [PhCNSeSeN]Cl to (PhCNSeSeN)2.by PhaSb. 

[PhCNSeSeN]Cl (1.5g, 5.4mmol) and Ph3Sb (0.75g, 2.1nimol) were placed in one bulb 

of a two bulbed reaction vessel together with a stirring bar. CH2Cl2(8ml) was syringed 

into the other limb and back transferred onto the reactants. The reaction was left stirring 

overnight before the soluble fraction was filtered over into the other bulb leaving a dark 

purple solid. These two materials were then pumped to dryness and the insoluble 

fraction analysed. 

Yield before sublimation 1.15g (86%), after sublimation 0.70g (52.3%) 

Infra red (v max cm-1) 1675br, 1610w, 1525br, 1330ssh, 1310s, 1285w, 1270, 1180, 

1130ssh, 1120ssh, 1065w, 1060w, 1025, lOOOw, 970w, 940w, 920sh, 870w, 860w, 

840w, 780, 770ssh, 735sh, 720ssh, 700ssh, 690ssh, 650ssh, 610ssh, 470w, 450w, 

430ssh. 

Elemental analysis, found: C,30.38%; H,1.59%; N,10.01%. Calc.:C,30.55%; 

H,1.81%; 10.18N%). 

Mass spec ( ^ U ) EI+ 277(PhCN2Se2)+, 174(SeSeN)+, 160(SeSe)+, 103(PhCN)+ 

D.s.c. 176°C (dec). 

8.3.5. The 'One-Pot' Preparation of (PhCNSeSeN)2. 

Li[(N(SMe3)2] (3.05g, 18.2mmol) was dissolved in Et20 (100ml). PhCN (2ml, 

19.6mmol) was added and the straw coloured solution left stirring overnight. Selenium 

(1.4g, 17.8mmol) and SeCU (4.0g, IS.lmmol) were charged to a second flask which 

was cooled to 0°C. The ethereal solution was canula transfered onto these solids with 

stirring to yield immediately a red-brown precipitate under an orange solution. This 

suspension was stirred for 3hr, filtered, washed with Et20 (3x30ml) and dried in vacuo. 

The deep red solid mixture (PhCNSeSeN and LiCl) and Ph3Sb (3.26g, 9.23nmiol) were 

refluxed in MeCN. (30ml) for Ih. The deep purple suspension was filtered, washed 

(3xl0ml MeCN) and dried in vacuo. The filtrate (mainly PhsSbC^) was discarded. The 

solids were then heated to 170°C and sublimed to yield dark green-purple dichroic 

crystals of (PhCNSeSeN)2 in the sublimation tube. The crystals were removed from the 

tube and the process repeated until no new product could be sublimed. 

Yield 1.53g 30.8%. 

191 



Vinax(cm-l) 3025w, 2922m, 1670w, 1601m, 1491sh, 1449m, 1311m, 1262m, 

1175m, 1156br, 1116m, 1027s, 922w, 906w, 803m, 768m, 697s, 652ssh, 612m, 

538m, 464m, 424ssh. 

Elemental analysis. Found: C,30.68%; H,1.74%; N, 10.23%. Calc: C,30.55%; 

Hl.81,%; 10.18N%. 

Mass spec, (m/g) EI+ 277(PhCNSeSeN)+, 174(SeSeN)-h, 103(PhCN)+.CI+ 

278(PhCNSeSeN)-(-,. 

D.s.c. 175°C (dec). 

8.3.6. The Reaction Between (PhCNSeSeN)2 and [Pt(PPh3)4]. 

[Pt(PPh3)4] (0.78g, 0.62mmol) and [PhCNSeSeN]* (0.112g, 0.44mmol) were stirred in 

MeCN (10ml) for 5h to yield a yellow solid which was filtered, washed and dried in 

vacuo. Assume product to be [Pt3(|Lise-SeSeNC(Ph)NSe)2(PPh3)4]. 

Yield 0.174g, 40.0%. 

N.m.r., (250MHz; solvent CDCI3) 57.63-7.29ppm (m), 62.27ppm (MeCN). 

I.R Vjnax(cm-^)3051w, 2347w, 1597w, 1584w, 1570w, 1544w, 1491sh, 1479ssh, 

1434s, 1379s, 131 Iw, 1183m, 1157m, 1095s, 1071w, 1027m, 998m, 917w, 868w, 

846w, 778w, 743s, 693s, 665m, 618w, 560w, 545ssh, 527s, 513s, 497s, 448w. 

Elemental analysis, found: C,54.03%; H,3.80%; N,l,24%. Calc: C, 47.28%; 

H,2.48%; N, 2.57%). 

D.s.c. 276°C (dec). 

8.3.7. The Reaction Between (PhCNSeSeN)2 and [Pd(PPh3)4]. 

Pd(PPh3)4 (0.504g, 0.43mmol) and [PhCNSeSeN]* (0.087g, 0.32mmol) were stirred in 

MePh (10ml) for 5h at ambient temperature. The resultant deep red precipitate was 

filtered, washed with toluene (3x5ml) and dried in vacuo.. Assume product to be 

[Pd3(l̂ Se-SeSeNC(Ph)NSe)2(PPh3)4]. 

Yield 0.23g, 74%. 

IRvmax (cm-1) 3049m, 2347m, 1571w, 1479m, 1450sh, 1433s, 1309w, 1278m, 

1161W, 1128w, 1093m, 1025w, 998w, 868w, 739m, 691s, 666sh, 618w, 578w, 528s, 

519ssh, 506ssh, 492m, 452w. 
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Elemental Analysis; found: C54.17%; H3.53%, N2.91%, Calc: C53.84%, H3.69%, 

N2.92%). 

N.m.r., (250MHz; solvent CDCI3) 8h 7.36-6.95 (m), ̂ P̂ 8p20.4 (s). 

D.s.c. 219.7°C (dec). 

8.3 .8 . Crystal Reaction Between (PhCNSeSeN)2 and Pd(PPh3)4 in 

C H 2 C I 2 . 

Pd(PPh3)4 (l.OOg, 0.865mmol) was placed in one limb of a two-limbed reaction vessel 

with (PhCNSeSeN)2 (0.20g, 0.719mmol) placed in the other limb. CH2CI2 (10ml) was 

added to each side. Inversion of the sealed reaction vessel resulted in the slow diffusion 

through the separating grade three sinter of a solution of PhCNSeSeN into the former 

limb to yield a deep red solution over unreacted [Pd(PPh3)4]. After 3-4 days all the 

Pd(PPh3)4 had reacted, yellow crystals of (PPh3)2PdCl2 had started to form and the 

solution became yellow in colouration. 
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8.4. CONCLUSION. 
The final chapter in this thesis has concentrated on the physical properties and preliminary 

complexation reactions of Phenyl 1,2,3,5-Diselenadiazolyl. The frozen glass e.s.r. 

spectrum of this species has enabled a comparison to be made between the nature of the 

singly occupied molecular orbital on [PhCNSeSeN]* and previously reported radicals 

especially the sulfur analogue [PhCNSSN]*. 

Similar chemistry to the research outlined in the previous chapters on [PhCNSSN]* has 

also been undertaken on [PhCNSeSeN]*. As such a new simplified preparation of the 

dimeric species (PhCNSeSeN)2 has been outlined and preliminary complexation 

reactions have been undertaken. In the reaction of [PhCNSeSeN]* with [Pt(PPh3)4] the 

first diselenadiazolyl complex, [Pt(SeNC(Ph)NSe-iSe,5e)(PPh3)2], has been observed in 

solution by e.s.r. spectroscopy. Also reaction between [PhCNSeSeN]* and [Pd(PPh3)4] 

has resulted in the isolation of [Pd3(p.se-SeSeNC(Ph)NSe)2(PPh3)4] as a stable solid. 

Clearly further complexation reactions (perhaps with zero-valent dppe complexes of Pt 

and Pd) could result in the formation of more complexes. 
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APPENDIX 1 
SUPPLEIVIENTARY X-RAY STRUCTURAL DATA 

This appendix contains selected structural details for the X-ray structures discussed 
during the course of this thesis. 

[Pt(SNC(Ph)NS-S,S)(PPh3)2].MeCN. 
Empirical formula: C45 H38 N3 P2 S2 Pt 
Crystal system: 
Space group: 
Cell dimensions: 

Volume: 
Z: 
Density (calc): 
Final R indices: 

triclinic 
Pi 
a= 13.240(6)A, 
b = 13.366(6)A, 
c = 14.090(8)A, 
1946.9(7)A3 
2 
1.607mg/m3 
0.0353 (Rw = 0.0946) 

a = 63.57(1)° 
p = 76.38(2)° 
7=60.71(2)° 

[Pt(SNC(Ph)NS-S,5)(dppe)] 
Empirical formula: 
Crystal system: 
Space group: 
Cell dimensions: 

Volume: 
Z: 
Density (calc): 
Final R indices: 

C35H29N2 P2 S2Pt 
orthorhombic 
P2i2i2i 
a = 11.618(11)A, a = 90° 
b = 12.65(13)A, p = 90° 
c = 20.994(6) A, Y=90° 
2.992(4)A3 
4 
1.720mg/m3 
0.0633 (Rw = 0.1683) 
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[Pd(SNC(Ph)NS-S,S)(dppe)] 
Empirical formula: 
Crystal system: 
Space group: 
Cell dimensions: 

Volume: 
Z: 
Density (calc): 
Final R indices: 

C33 H29N2P2S2Pd 

orthorhombic 
P2i2i2i 
a= 11.653(4)A, a = 90° 
b = 12.258(8)A, p = 90° 
c = 20.826(11)A, 7=90° 
1974.8(9)A3 
4 
1.532mg/m3 
0.0444 (Rw = 0.1142) 

Space group: 
Cell dimensions 

[Pt3(^is.sSNC(Ph)NS)2(PPh3)4]-2MePh. 

Empirical Formula: C100 Hge N4 P4 S4 Pt3 
Crystal system: monclinic 

P2i/c 
a = 12.704(16) A, a = 90° 
b = 24.988(11)A, p = 101.94(3)° 
c = 12.888(6)A, 7=90° 

Volume: 4313(3)A3 
Z: 2 (Pt on inversion centre) 
Density (calc): 1.679mg/m3 
Final R indices: 0.0477 (Rw = 0.1271) 

[Pt3(|is-sSNC(3,4FC6H3)NS)2(PPh3)4].4CDCl3. 
Empirical formula: C90 H70 CI 12 F4 N4 P4 Pt3 S4 
Crystal system: 
Space group: 
Cell dimensions: 

Volume: 
Z: 
Density (calc): 
Final R indices: 

monclinic 
P2i/c 
a =13.5111(13) A, 
b = 20.902(2)A, 
c = 17.588(2)A, 
4626.9(8)A3 
2 
1.828mg/m3 
0.0531 (Rw = 0.1223 

a = 90° 
b= 111.330(5)° 
g = 90° 
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[Pd3(|is-sSNC(Ph)NS)2(PPh3)4].2MePh. 

Empirical formula: Cgs H78 C14 N4 P4 Pd3 S4 
Crystal system: 
Space group: 
Cell dimensions: 

Volume: 
Z: 
Density (calc): 
Final R indices: 

triclinic 
P-1 
a = 14.2420(10)A, a = 73.440(10)° 
b = 14.2610(10)A, p = 89.190(10)° 
c = 24.512(2)A, y = 62.090(10)° 
4174.9(5)A3 
2 
1.515mg/m3 
0.0674 (Rw = 0.1347) 

[Pd2(lis-sSNC(Ph)N(H)S)2(dppe)2][BF4]2.3CDCl3. 

Empirical formula: C62 H57 B2 CI9 F8N2 P4 Pd2 S2 
Crystal system: 
Space group: 
Cell dimensions: 

Volume: 
Z: 
Density (calc): 
Final R indices: 

monoclinic 
P21/C 
a = 11.0729(7) A, a = 90° 
b = 23.3848(14)A, b = 94.7180(10)° 
c = 27.300(2)A, g = 90° 
7045.1(8)A3 
4 
1.625mg/m3 
0.0684 (Rw = 0.1382) 
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APPENDIX 2 
CONFERENCES AND LECTURES ATTENDED 

A.2.1. Conferences Attended. 
The following is a list of conferences and post-graduate meetings which were attended by 
the author and the poster and oral presentations give by the author at these meetings. 

1. 27th International Conference on E.S.R. Spectroscopy (Cardiff March 94). 
Poster: "E.S.R. studies of some dithiadiazolyl Pt and Pd complexes with phosphine 

ligands" 

2. 7th Inorganic Ring Systems Conference (Banff, Canada, August 94) 
Poster: "Metal Insertion into the S-S Bond of Phenyl Dithiadiazolyl" 

3. The R.S.C. Autumn Meeting (Glasgow University, September 94) 
Oral Presentation: "Metal Insertion into the S-S Bond of Phenyl Dithiadiazolyl" 

4. I.C.I. Poster competition (Durham University, December 94) 
Poster: "AppUcations of Dithiadiazolyls and their Complexes" 

5. Graduate Talk (Durham University, June 95) 
Oral Presentation: "Preparation, properties and applications of the platinum-dithiadiazolyl 

complex [Pt(SNC(Ph)NS-S,S)(PPh3)2]" 

A.2.2. Lectures Attended. 

The following is a list of coUoquia, lecmres and seminars from invited speakers to the 

Department of chemistry. University of Durham, during the period of this research. An 

asterix (*) indicates those lectures which were attended by the author of this Thesis. 

1992 

October 15 Dr M. Glazer & Dr. S. Tarling, Oxford University & Birkbeck College, 
London It Pays to be British! - The Chemist's Role as an Expert 
Witness in Patent Litigation. 

October 20 Dr. H. E. Bryndza, Du Pont Central Research 
Synthesis, Reactions and Thermochemistry of Metal (Alkyl) Cyanide 
Complexes and Their Impact on Olefin Hydrocyanation Catalysis. 

October 22 Prof. A. Davies, University College London 
Ingold-Albert Lecture The Behaviour of Hydrogen as a Pseudometal. * 
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October 28 Dr. J. K . Cockcroft, University of Durham 
Recent Developments in Powder Diffraction. 

October 29 Dr. J. Emsley, Imperial College, London 
The Shocking History of Phosphorus. * 

November 4 Dr. T. P. Kee, University of Leeds 
Synthesis and Co-ordination Chemistry ofSilylated Phosphites. * 

November 5 Dr. C. J. Ludman, University of Durham 
Explosions, A Demonstration Lecture. * 

November 11 Prof. D. Robinst, Glasgow University 
Pyrrolizidine Alkaloids : Biological Activity, Biosynthesis and Benefits. 

November 12 Prof. M. R. Truter, University College, London 
Luck and Logic in Host - Guest Chemistry. 

November 18 Dr. R. Nixf, Queen Mary College, London 
Characterisation of Heterogeneous Catalysts. 

November 25 Prof. Y. Vallee. University of Caen 
Reactive Thiocarbonyl Compounds. 

November 25 Prof. L. D. Quint, University of Massachusetts, Amherst 
Fragmentation of Phosphorous Heterocycles as a Route to Phosphoryl 
Species with Uncommon Bonding. * 

November 26 Dr. D. Humber, Glaxo, Greenford 
AIDS - The Development of a Novel Series of Inhibitors ofHTV. 

December 2 Prof. A. F. Hegarty, University College, Dublin 
Highly Reactive Enols Stabilised by Steric Protection. 

December 2 Dr. R. A. Aitkent, University of St. Andrews 
The Versatile Cycloaddition Chemistry ofBu3P.CS2. * 

December 3 Prof. P. Edwards, Birmingham University 
The SCI Lecture- What is Metal? * 

December 9 Dr. A. N. Burgesst, ICI Runcorn 
The Structure of Perfluorinated lonomer Membranes. 

1993 

January 20 Dr. D. C. Claryt, University of Cambridge 
Energy Flow in Chemical Reactions. 

January 21 Prof. L. Hall, Cambridge 
NMR - Window to the Human Body. * 

January 27 Dr. W. Kerr, University of Strathclyde 
Development of the Pauson-Khand Annulation Reaction: Organocobalt 
Mediated Synthesis of Natural and Unnatural Products. 

January 28 Prof. J. Mann, University of Reading 
Murder, Magic and Medicine. * 

February 3 Prof. S. M. Roberts, University of Exeter 
Enzymes in Organic Synthesis. 

201 



February 10 

February 11 

February 17 

February 18 

February 22 

February 24 

March 10 

March 11 

March 17 

March 24 

May 13 

May 21 

June 1 

June 2 

June 7 

June 16 

June 17 

September 13 

September 13 

September 14 

Dr. D. Gilliest, University of Surrey 
NMR and Molecular Motion in Solution. 

Prof. S. Knox, Bristol University 
The Tilden Lecture: Organic Chemistry at Polynuclear Metal Centres. 

Dr. R. W. Kemmittt, University of Leicester 
Oxatrimethylenemethane Metal Complexes. 

Dr. I . Fraser, ICI Wilton 
Reactive Processing of Composite Materials. 

Prof. D. M. Grant, University of Utah 
Single Crystals, Molecular Structure, and Chemical-Shift Anisotropy. 

Prof. C. J. M. Stiriingt, University of Sheffield 
Chemistry on the Flat-Reactivity of Ordered Systems. 

Dr. P. K. Baker, University College of North Wales, Bangor 
'Chemistry of Highly Versatile 7-Coordinate Complexes'. * 

Dr. R. A. Y. Jones, University of East Anglia 
The Chemistry of Wine Making. * 

Dr. R. J. K. Taylort, University of East Anglia 
Adventures in Natural Product Synthesis. 

Prof. I . O. Sutherland!, University of Liverpool 
Chromogenic Reagents for Cations. 

Prof. J. A. Pople, Camegie-Mellon University, Pittsburgh, USA 
The Boys-Rahman Lecture: Applications of Molecular Orbital Theory 

Prof. L. Weber, University of Bielefeld 
Metallo-phospha Alkenes as Synthons in Organometallic Chemistry * 

Prof. J. P. Konopelski, University of California, Santa Cruz 
Synthetic Adventures with Enantiomerically Pure Acetals 

Prof. F. Ciardelli, University of Pisa 
Chiral Discrimination in the Stereospecific Polymerisation of Alpha 
Olefins 

Prof. R. S. Stein, University of Massachusetts 
Scattering Studies of Crystalline and Liquid Crystalline Polymers 

Prof. A. K. Covington, University of Newcastle 
Use of Ion Selective Electrodes as Detectors in Ion Chromatography. 

Prof. O. F. Nielsen, H. C. Arsted Institute, University of Copenhagen 
Low-Frequency IR - and Raman Studies of Hydrogen Bonded Liquids. 

Prof. Dr. A. D. Schliiter, Freie Universitat Beriin, Germany 
Synthesis and Characterisation of Molecular Rods and Ribbons. 

Prof. K. J. Wynne, Office of Naval Research, Washington, U.S.A. 
Polymer Surface Design for Minimal Adhesion 

Prof. J. M. DeSimone, University of North Carolina, U.S.A. 
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Homogeneous and Heterogeneous Polymerisations in Enviromentally 
Responsible Carbon Dioxide. 

September 28 Prof. H. Ila., North Eastern University, India 
Synthetic Strategies for Cyclopentanoids via OxoKetene Dithiacetals. 

October 4 Prof. F. J. Feherf, University of California at Irvine 
Bridging the Gap between Surfaces and Solution with Sessilquioxanes. 

October 14 Dr. P. Hubberstey, University of Nottingham 
Alkali Metals: Alchemist's Nightmare, Biochemist's Puzzle and 
Technologist's Dream. 

October 20 Dr. P. Quay let, Unversity of Manchester 
Aspects of Aqueous Romp Chemistry. 

October 23 Prof. R. Adamst, University of S. Carolina 
The Chemistry of Metal Carbonyl Cluster Complexes Containing Platinum 
and Iron, Ruthenium or Osmium and the Development of a Cluster Based 
Alkyne Hydrogenating Catalyst. * 

October 27 Dr. R. A. L. Jonest, Cavendish Laboratory 
'Perambulating Polymers'. 

November 10 Prof. M. N. R. Ashfoldt, University of Bristol 
High-Resolution Photofragment Translational Spectroscopy: A New Way 
to Watch Photodissociation. 

November 17 Dr. A. Parkert, Laser Support Facility 
Applications of Time Resolved Resonance Raman Spectroscopy to 
Chemical and Biochemical Problems. 

November 24 Dr. P. G. Brucet, University of St. Andrews 
Synthesis and Applications of Inorganic Materials. * 

November 25 Dr. R.P. Wayne, University of Oxford 
The Origin and Evolution of the Atmosphere 

December 1 Prof. M. A. McKelveyt, Queens University, Belfast 
Functionlised Calixerenes. 

December 8 Prof. O. Meth-Cohen, Sunderland University 
Friedel's Folly Revisited. 

December 16 Prof. R. F. Hudson, University of Kent 
Close Encounters of the Second Kind. 

1994 

January 26 Prof. J. Evanst, University of Southhampton 
Shining Light on Catalysts. 

February 2 Dr. A. Masterst, University of Manchester 
Modelling Water Without Using Pair Potentials. 

February 9 Prof. D. Youngt, University of Sussex 
Chemical and Biological Studies on the Coenzyme Tetrahydrofolic Acid. 

February 16 Prof. K. H. Theopold, University of Delaware, U.S.A 
Paramagnetic Chromium Alkyls: Synthesis and Reactivity. 
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February 23 Prof. P. M . Maitlisj, University of Sheffield 
Why Rhodium in Homogenous Catalysis. * 

March 2 Dr. C. Hunterf, University of Sheffield 
Non Covalent Interactions between Aromatic Molecules. 

March 9 Prof. F. Wilkinson, Loughborough University of Technology 
Nanosecond and Picosecond Laser Flash Photolysis. 

March 10 Prof. S.V. Ley, University of Cambridge 
New Methods for Organic Synthesis. 

March 25 Dr. J. Dilworth, University of Essex 
Technetium and Rhenium Compounds with Applications as Imaging 
Agents. 

April 28 Prof. R. J. Gillespie, McMaster University, Canada 
The Molecular Structure of some Metal Fluorides and Oxo Fluorides: 
Apparent Exceptions to the VSEPR Model. * 

May 12 Prof. D. A. Humphreys, McMaster University, Canada 
Bringing Knowledge to Life * 

October 5 Prof. N . L. Owen, Brigham Young University, Utah, USA 
Determining Molecular Structure - the INADEQUATE NMR way 

October 19 Prof. N. Bartlett, University of California 
Some Aspects ofAg(II) andAg(III) Chemistry * 

November 2 Dr P. G. Edwards, University of Wales, Cardiff 
The Manipulation of Electronic and Structural Diversity in Metal 
Complexes - New Ligands * 

November 3 Prof. B. F. G. Johnson, Edinburgh University 
Arene - Metal Clusters - DUCS lecture * 

November 9 Dr J. P. S. Badyal, University of Durham 
Chemistry at Surfaces, A Demonstration Lecture 

November 9 Dr G. Hogarth, University College, London 
New Vistas in Metal Imido Chemistry * 

November 10 Dr M . Block, Zeneca Pharmaceuticals, Macclesfield 
Large Scale Manufacture of the Thromboxane Antagonist Synthase 
Inhibitor ZD 1542 

November 16 Prof M . Page, University of Huddersfield 
Four Membered Rings and b-Lactamase 

November 23 Dr J. M . J. Williams, University of Loughborough 
New Approaches to Asymmetric Catalysis 

December 7 Prof D. Briggs, ICI and University of Durham 
Surface Mass Spectrometry 

1995 

January 11 Prof P. Parsons, University of Reading 
Applications of Tandem Reactions in Organic Synthesis 
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January 18 Dr G. Rumbles, Imperial College, London 
Real or Imaginary 3rd Order non-Linear Optical Materials 

January 25 Dr D. A. Roberts, Zeneca Pharmaceuticals 
The Design and Synthesis of Inhibitors of the Renin-Angiotensin System 

February 1 Dr T. Cosgrove, Bristol University 
Polymers do it at Interfaces 

February 8 Dr D. O'Hare, Oxford University 
Synthesis and Solid State Properties of Poly-, Oligo- and Multidecker 
Metallocenes * 

February 22 Prof. E. Schaumann, University of Clausthal 
Silicon and Sulphur Mediated Ring-opening Reactions of Epoxide 

March 1 Dr M. Rosseinsky, Oxford University 
Fullerene Intercalation Chemistry 

March 22 Dr M. Taylor, University of Auckland, New Zealand 
Structural Methods in Main Group Chemistry * 

April 26 Dr M. Schroder, University of Edinburgh 
Redox Active Macrocyclic Complexes: Rings, Stacks and Liquid Crystals 

May 3 Prof. E. W. Randall, Queen Mary and Westfield College 
New Perspectives in NMR Imaging 

May 4 Prof. A. J. Kresge, University of Toronto 
The Ingold Lecture - Reactive Intermediates : Carboxylic Acid Enols arui 
Other Unstable Species 

t Invited specially for the graduate training programme. 


