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Abstract 

In this thesis, a Bayes linear methodology for the adjustment of covariance matrices is 

presented and discussed. A geometric framework for quantifying uncertainties about 

covariance matrices is set up, and an inner-product for spaces of random matrices 

is motivated and constructed. The inner-product on this space captures aspects 

of belief about the relationships between covariance matrices of interest, providing 

a structure rich enough to adjust beliefs about unknown matrices in the light of 

data such as sample covariance matrices, exploiting second-order exchangeability and 

related specifications to obtain representations allowing analysis. 

Adjustment is associated with orthogonal projection, and illustrated by examples 

for some common problems. The difficulties of adjusting the covariance matrices 

underlying exchangeable random vectors is tackled and discussed. Learning about the 

covariance matrices associated with multivariate time series dynamic linear models is 

shown to be amenable to a similar approach. Diagnostics for matrix adjustments are 

also discussed. 
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Chapter 1 

Introduction 

. . . There is no way, however, in which the individual can avoid the burden 

of responsibility for his own evaluations. The key cannot be found that will 

unlock the enchanted garden wherein, among the fairy-rings and the shrubs 

of magic wands, beneath the trees laden with monads and noumena, blossom 

forth the flowers of probabilitas realis. With these fabulous blooms safely in 

our button-holes we would be spared the necessity of forming opinions, and the 

heavy loads we bear upon our necks would be rendered superfluous once and 

for all. 

Bruno de Finetti 

Theory of Probability, Vol 2 

1.1 Introduction 

Often random variables (or unknown quantities) are not independent of one another. 

That is, knowledge of the outcome of a particular random variable eflJ'ects beliefs 

about other random variables. Clearly the random variables the amount of rain to fall 

this Saturday and the amount of rain to fall this Sunday fall into this category, since 

12 



CHAPTER 1. INTRODUCTION 13 

knowledge of the amount of rain that fell on Saturday will be very helpful in assessing 
the amount of rain to fall on Sunday. A common way of measuring the amount of 
linear association between two random variables is the covariance between them. 
Given collections.of random variables, one may extend the concept of covariance to 
that of the covariance matrix. This is a matrix of numbers containing information 
about the pairwise linear association between variables. This thesis is concerned with 
the modelling and revising of covariance matrices in the light of predictive data. A 
Bayes linear approach wil l be taken to the problem, and the theory will be illustrated 
with examples for some common statistical problems. 

1.2 Prevision and expectation 

In this thesis, a random quantity is any well-determined real number whose precise 

value is unknown. Beliefs about the "location" of a given random quantity, X, are 

quantified by making a statement about it's prevision (de Finetti 1974, Chapter 3), 

P{X). P{X) is the quantity, x that you would choose in order to minimise the loss, 

or penalty, L , given by 

L = K{x-X)^ (1.1) 

for some unit of loss, K (de Finetti 1974, Section 3.3.6). Such an approach to the 

quantification of uncertainty was advocated in de Finetti (1974), and is used as a 

starting point for the subjectivist theory of statistical inference developed by Gold

stein and others (see for example, Goldstein (1981), Farrow and Goldstein (1993) and 

Goldstein (1994)). 

Unfortunately there is a problem with such a definition of prevision, since one 

must have a linear preference for the incurred loss, L. In fact, the loss should be in 

units of utility, de Finetti was, of course, well aware of this, hence his Digression on 
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decisions and utilities (de Finetti 1974, Section 3.2). However, his "resolution" is not 
really satisfactory, and in any case, one must be extremely careful to avoid circularity, 
since utility is usually defined in terms of probability, something which we wish the 
concept of prevision to supercede. 

Frank Ramsey also recognised the subjective nature of probability, and the prob

lem with the usual betting rate definition (non-linear preferences). Ramsey gives his 

own solution to the problem in Ramsey (1931) (or Ramsey (1990)). However, I prefer 

a solution which works with probability currency, essentially by working with tickets 

in a raffle for a single fixed prize. Such a solution is discussed for upper and lower 

probabilities in Walley (1991, Section 2.2). The idea of using the lottery analogy 

for ensuring linear preference is discussed in Savage (1954, Chapter 5). This idea is 

developed and used for a probability currency approach to belief elicitation in Smith 

(1961). I particularly like Smith's "small diamond in a block of beeswax" formulation, 

but as Savage (1971) points out, this would not be a truly "utility-free currency for 

exploring a subject's opinions about the future of a diamond market"! 

Note that these definitions all rely in some way, on the concept of equally likely 

events. Indeed, I strongly suspect that any careful definition of subjective probability 

or prevision must necessarily make exactly such a recourse at some point. 

To make precise the definition of prevision for unbounded quantities requires a 

limiting argument, and one must be careful to ensure that all limits exist. There 

are, of course, many random quantities for which there does not exist a prevision, 

but such quantities are all unbounded. These will not be considered further, and 

so attention will be restricted to strictly bounded quantities, since this thesis is not 

really the place to discus the origin and foundations of prevision. 

For the rest of this thesis it will be assumed that there is a well-defined notion of 
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prevision which obeys the conditions of coherence 

P{X + Y)=P{X) + P{Y) (1.2) 

in f (X) < P{X) < sup(X) (1.3) 

discussed in Section 3.1.5 of de Finetti (1974). Note that the choice of P{X) is 

not viewed as some kind of decision problem, under a quadratic loss function, but 

as a one-dimensional summary of the random quantity X, with desirable linearity 

properties, such as 

P{aX + bY + cZ+---)^ aP{X) + bP{Y) + cP{Z) + ••• (1.4) 

and always of intrinsic interest, irrespective of any decision problem which may or 

may not be present. 

Prevision is simply a primitively defined expectation, E{X), of a random quantity, 

X, and the two concepts usually coincide provided that you are coherent. However, 

the notation E{X) is reserved to mean something which is in practice, the same, but 

conceptually different (a precise definition will be given later). The prevision of a 

vector or matrix of random quantities is the vector, or matrix of previsions. 

1.3 Covariance 

Covariance is a measure of linear association between two random quantities. In this 

thesis, the covariance, Cov(X, F) , between the random quantities X and F will be 

defined by 

Coy{X, Y) = P{XY) - P(X)P(r), VX, Y (1.5) 
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The notion of covariance easily extends to vectors of random quantities. For two 
vectors of random quantities, X and Y , the covariance matrix between them, Cov(X, 
Y ) , is defined by 

Cov(X,Y) = PiXY^)-P{X)P{Yf, yX,Y (1.6) 

The covariance of a vector of random quantities with itself, Cov{X,X), is the co-

variance matrix for X , and is denoted Var(X) . This thesis is concerned with the 

quantification of uncertainty about such matrices, and methods for learning about 

such matrices. 

1.4 Bayes linear methods 

The Bayes linear approach to subjective statistical inference is founded upon de 

Finetti's theory of prevision. The idea that the foundations of statistical inference 

could be based upon concept of revision of prevision was given in Goldstein (1981). 

A more gentle overview of the methodology from a slightly more simplistic viewpoint 

is given in Farrow and Goldstein (1993). Analysis is carried out using only first and 

second order belief specifications. Linear Bayesian methods have been considered 

previously in the literature. Some of the basic ideas and key results can be found in 

Stone (1963) and Hartigan (1969). 

Bayes linear methods require only a specification of prevision for every quantity 

under consideration, and also specifications for the covariance between every pair of 

quantities (in other words, the covariance matrix for the vector of all quantities under 

consideration). For example, i f we are interested in a vector of random quantities, B, 

and wish to learn about i t using a vector of observable quantities, D, we would form 
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the vector 

P{B) + Cov(B, D)Yav{D)''[D - P{D)] (1.7) 

Note that this is a vector which depends only on our prior specifications and the data. 

In fact, i t is the Bayes linear rule for B, using the data, D. In this thesis, it will be 

assumed that all the variance matrices being considered are strictly positive definite, 

and hence invertible. In fact, such a restriction can nearly always be dropped. All 

that one requires is that the specifications for the covariance matrix are coherent; 

namely that the covariance matrix is non-negative definite. The corresponding re

sults can usually be obtained, simply by using any generalised inverse in place of an 

inverse. Moreover, the Moore-Penrose generalised inverse is a natural choice, with 

some desirable properties. More complete discussion of such issues can be found in 

Goldstein and WooflP (1995b). 

I t is worth pointing out at this point, that the Bayes linear rule is just a projection 

in the space spanned by the random quantities and the observables, with respect to 

expected quadratic loss. Moreover, when the quantities involved in the equations are 

all indicators for events, this projection gives the usual form of conditional probability 

P(BP) = ^ ,,S, 

leading to the famous Theorem of Bayes (1763) (or Bayes (1958)), 

mio) = ™p (1.9) 

Thus, from a foundational perspective, the linear Bayes rule should be regarded as a 

generalisation of Bayes' Theorem, and not as some sort of approximation to it. This 

is the crux of the argument in Goldstein (1981). It is also worth noting that Bayes 

(1763) begins his essay by defining probability. Paraphrasing him, in more modern 
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parlance, he essentially defines the probability of an event to be the expected value 
of it's indicator, as does de Finetti (1974), and as do we. Obviously, he considered 
expectation to be a more primitive concept than that of probability. Conventional 
treatments, which make probability primitive, and define expected values with re
spect to probability measures, have perhaps obscured the simplicity of the concept of 
expectation. 

The use of second-order exchangeability as a fundamental modelling assumption 

was first discussed in Goldstein (1986a), but has since been discussed from a founda

tional perspective in Goldstein (1994). 

Second order belief structures have many useful properties with respect to linear 

adjustment, and these are discussed in Goldstein (1988a). The particular properties 

associated with exchangeable belief structures are discussed in Goldstein and Wooff 

(1995a), together with the important notion of Bayes linear sufficiency, first outlined 

in Goldstein (1986b), and more recently discussed in the context of an example, in 

Goldstein and O'Hagan (1995). Comparisons of belief structures are discussed in 

Goldstein (1991), and diagnostics for adjustments are given in Goldstein (1988b). 

Graphical summaries of diagnostics are given in Farrow and Goldstein (1995). 

Later, the geometric construction underlying second-order belief structures and 

linear belief adjustment will be given; for now it is sufficient to note that it is highly 

dependent on the covariance specifications made. Consequently, it is important that 

the specified covariances are appropriate. Bayes Unear methods for estimating scale 

parameters were considered, both by Stone (1963) and Hartigan (1969), by fitting 

variance parameters linearly on quadratic data. Further, Stone points out that gen

uine variance estimation would require fourth order moment specifications. Modifying 

linear Bayes estimates due to information about variance was considered in Goldstein 

(1979) and Goldstein (1983). In some ways, this could be considered a precursor to 
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the work contained in this thesis. 

1.5 [B/D], the Bayes linear programming 

language 

[B/D] is a fully functional interpreted programming language which implements most 

features of the Bayes linear methodology. It is freely available to the academic com

munity over the World-Wide Web, via the URL h t tp : / / fou r i e r .du r . ac .uk :8000 / 

s ta ts /bd/ . The program is outlined in Wooff (1992) and Goldstein and WoofF 

(1995b), and documented fully in Wooff (1995b). I t provides a framework for belief 

specification and analysis, and facilities for carrying out adjustments using data, and 

producing diagnostic summaries of data adjustments. It also has facilities for produc

ing Bayes linear diagnostic influence diagrams, such as those described in Goldstein, 

Farrow, and Spiropoulos (1993) or Goldstein and Wooff (1995b). A tutorial intro

duction to [B/D] can be obtained from the sequence of technical reports Goldstein 

(1995), WoofF (1995a) and Wooff and Goldstein (1995). Al l of the examples in this 

thesis were implemented in [B/D], and reference will be made to the package, where 

this is felt to be appropriate. 

1.6 Revising beliefs about covariance structures 

Quantifying relationships between variables is of fundamental importance in Bayesian 

analysis. However, there are many difficulties associated even with learning about co-

variances. For example, i t is often difficult to make prior covariance specifications, but 

i t is usually even harder to make the statements about the uncertainty in these covari

ance statements which are required in order to learn about the covariance statements 

from data. Further, a covariance structure is more than just a collection of random 
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quantities, so we should aim to analyse such structures in a space where they live 
naturally. In this thesis, such an approach will be developed and illustrated, based 
around a geometric representation for variance matrices and exploiting second-order 
exchangeability specifications for them. 

In Chapter 2, a methodology will be developed for the modelling and quantifi

cation of uncertainty about covariances between random variables. In Chapter 3, 

the geometric representation of covariance matrices is discussed. In Chapter 4, this 

representation is used to enable learning about the covariance structure underlying 

exchangeable random vectors. 

1.7 Covariance estimation for dynamic linear 

models 

In Chapter 5, the suggested approach to covariance estimation is applied to the devel

opment of a methodology for the revision of the underlying covariance structures for 

a dynamic linear model, free from any distributional restrictions, using Bayes linear 

estimators for the covariance matrices based on simple quadratic observables. This 

is done by constructing an inner-product space of random matrices containing both 

the underlying covariance matrices and observables predictive for them. Bayes linear 

estimates for the underlying matrices follow by orthogonal projection. 

The method is illustrated with data derived from the weekly sales of six leading 

brands of shampoo from a medium sized cash-and-carry depot. The sales are modelled 

taking into account the underlying demand and competition effects and the covariance 

structure over the resulting dynamic linear model is adjusted using the weekly sales 

data. 
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1.8 Diagnostic analysis of matrix adjustments 

In Chapter 6, methodology for the diagnostic analysis of matrix adjustments is dis

cussed. A framework is outlined whereby the a posteriori observed changes in belief 

may be compared to the a priori expected changes in belief for general Bayes linear 

problems. This theory provides a general unified framework for the a priori and a 

posteriori analysis of Bayes linear statistical problems. 

1.9 Distributional Bayesian approaches to 

covariance estimation 

Until recently, most authors have followed a Wishart conjugate prior approach to 

covariance matrix estimation (see for example, Evans (1965), Chen (1979), Haff (1980) 

or Dickey, Lindley, and Press (1985)). This approach, whilst tractable, places severe 

restrictions on the form of the prior distribution (there is only one hyper-parameter 

which expresses uncertainty about the matrix), and requires a multivariate normal 

assumption for the distribution of the residuals. 

More recently, a different approach has been proposed by Leonard and Hsu (1992). 

Essentially, they learn about the logarithm of the covariance matrix using the loga

rithm of sample covariance matrices. This solves the positivity problems associated 

with covariance revision, but imposes a tremendous specification burden, for param

eters without an intuitive interpretation. Further, they require a joint multivariate 

normal assumption for the elements of the logarithm of the covariance matrix, and 

since they rely on sampling methodology, have serious computational problems for 

large matrices. 

Brown, Le, and Zidek (1994), make further progress: working within a distribu

tional Bayesian paradigm, they develop a reasonably flexible prior over the elements 
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of a covariance structure, and offer interpretations for the parameters that one is 
required to specify. However, this work is still restricted to multivariate Normal like
lihoods, and there is a weak restriction on the form of the mean structure for the 
data. 

Covariance matrix adjustment for dynamic linear models is reviewed in West and 

Harrison (1989). For multivariate time series, the observational covariance matrix 

can be updated for a class of models known as matrix normal models using a simple 

conjugate prior approach. However, the distributional assumptions required are ex

tremely restrictive, and there is no method which allows data-driven learning for the 

covariance matrix for the updating of the state vector. 

I t would seem that those authors who have considered the problem of covariance 

matrix revision have come to the conclusion that i t is such a difficult problem that 

they are prepared to make whatever distributional assumptions necessary in order to 

make the analysis as simple as possible. In particular, the sole justification for the 

Wishart conjugate prior approach seems to be that it makes the problem simple and 

tractable. The distributional assumptions made are usually such that expectations 

and conditional expectations have desirable linearity properties which simplify the 

problem. In this thesis, no distributional assumptions are required, but exactly these 

sorts of linearity properties are used as a starting point. 



Chapter 2 

Partial belief specification and 

exchangeability 

2.1 Partial belief specifications 

Given a set of random quantities of interest, and a selection of observable random 

quantities predictive for them, a distributional Bayesian approach would require a 

ful l joint probability distribution to be specified over all of the variables of interest, 

before any analysis could take place. On the contrary, all that is required for a Bayes 

linear analysis is the first and second moments of that joint distribution, since many 

aspects of the relationships between variables are captured by such specifications. 

The utility of working with first and second order characteristics has long been 

appreciated in other disciplines. For example, in classical mechanics, when summaris

ing the properties of a heavy object, one describes i t using the position of the centre 

of mass (its first order characteristics) and its moments of inertia (its second order 

characteristics). One could work exclusively with the mass distribution function for 

the object, but often there would be little utility to be gained from doing so. Further, 

working with first and second order characteristics tends to make analyses simple, 

23 
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tractable and robust. This analogy is taken much further in de Finetti (1974). Of 
course, the analogy only goes so far, and second-order characteristics can mean a lot 
more than just covariance specifications (for example, a ful l distributional Bayesian 
analysis of a statistical problem can be undertaken within this second-order frame
work). See Goldstein (1981) and Goldstein (1994) for a more complete discussion of 
the general foundational viewpoint. 

2.2 Exchangeable representations for covariances 

Let Xi, X2,... be an infinite, second-order exchangeable sequence of random vectors, 

each of length r, namely a sequence for which = {Xik,..., X^k)'^, n = P{Xi), S = 

Var(Jrj) does not depend on i, and A = Gov{Xk, X / ) , k ^ I does not depend on k, I. 

In other words, the second-order beliefs are invariant under an arbitrary permutation 

of the index, k. Exchangeable sequences are the subjectivists generalisation of inde

pendent, identically distributed variables. Of course, they are not independent (or 

even uncorrected), but they are very well behaved, as the following representation 

shows. 

From the given specification, we may use the second-order exchangeability repre

sentation theorem (Goldstein 1986a) to decompose Xk as 

Xk = M + Rk (2.1) 

where M and Rk are vectors of random quantities, and P{Rk) = 0, Cov(M, Rk) = 

0, V/c, Cov{Rk, Ri) = 0, V/c 7̂  /, and the vectors Rk = {Rik, • • •, Rrk)'^ form a second 

order exchangeable sequence. Here, M may be thought of as representing underlying 

population behaviour, and Rk as representing individual variation. We can now 

see that whilst the quantities, Xk, themselves are not necessarily uncorrected, they 
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would be uncorrelated if there were no uncertainty about the underlying mean, M 
of the quantities. 

Bayes linear updating for such a representation would be informative for the 

means, and so Var (M) would go to zero, given sufficient data. However, the data is 

not informative for future Rk under a second-order analysis, and so we do not learn in 

any way about the matrix Var(J?fc). Var(J?fc) is the underlying covariance matrix for 

the data, and has an important effect on the way in which we learn about the means. 

A method for quantifying uncertainty about the matrix, Var(J2fc), is now presented, 

a necessary step on the way to providing a method for learning about such a matrix. 

For the matrix A = (a i , a 2 , . . . , a„) , define 

vecA = ( a i ^ a^T,..., a „ T (2-2) 

The vec operator and it's properties are discussed in Searle (1982, Section 12.9). 

Consider the sequence of r^-dimensional vectors 

Yk = ^rec{RkRJ) (2.3) 

representing the quadratic products of the residuals. It is assumed that the Yk are 

second-order exchangeable, and the additional specifications S' = Var(yfc) and A' = 

Cov(l^fc, Yi), k 7̂  / are expressed. Once again, S' and A ' should be specified directly. 

Note however, that i f a multivariate normal assumption was felt appropriate for the 

Rk, then E' — A ' may be inferred from the fourth moments of that distribution. This 

is the subject of the next section. Of course, if one feels that some other distribution 

is more appropriate, then the moments of that distribution may be used. Indeed, if 

one feels up to the task, it is preferable to make the specifications directly. One is 

only constrained by the usual conditions of coherence. 
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The exchangeability representation theorem may be used to decompose the vector 
Yk and then re-write the representation in matrix form in the following way. 

RkRk'^^V + Uk (2.4) 

where V and Uk are r x r random matrices such that P{Uk) = 0, Cov(vecV, vecC4) — 

Cov(vecC/fc, vecf/;) — 0, ^k ^ I, and the vecUk form a second-order exchangeable 

sequence. In particular, Var(vecF) = A ' and Var(vec[4) = E' - A ' is not de

pendent on k. Here, V represents underlying covariance behaviour, and Uk rep

resents individual variation within the quadratic products of residuals (note that 

P{V) = P{RkRk'') = y3.r{Rk)). 

I f we observe a sample Xi,..., X „ of size n, then the sample covariance matrix 

takes the form 

^—f:iX^-X){X^-Xf (2.5) 

j2{Rw-R)iR.- Rf (2.6) 

where Z = (1/n) E L i - ^ j ) '^'^i- Beliefs for the sample covariance matrix 5 are, 

by (2.6), uniquely determined by representation (2.4). Imagine forming a sequence 

of sample covariance matrices, Si, 82, • •.; each based on n observations. Then the 

covariance structure for the sample covariance matrices takes on the following form. 

Cov(vecy,vec5fc) = Var(vecy) VA; (2.7) 

Cov{vecSk,vecSi) = Var(vecl/) VA; / / (2.8) 

Var(vec5,) = Var(vecF)-f ^ ^ ^ ^ ^ yk (2.9) 
n 

These results are derived in Appendix A. 
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Observing sample covariances from a sample of size n reduces uncertainty for V, 
the underlying covariance matrix, by linear fitting, but is uninformative for Uk for 
k > n. 

2.3 Automated specification of the residual 

quadratic structure 

Specification of the matrix Var(vecJ7fc) is a very unfamiliar problem. However, if 

i t is assumed that conditional upon knowledge of V (ie. Var(vecy) = 0), the Rk 

are multivariate normally distributed, then Var(vecf/fc) may be inferred from the 

fourth moments of the multivariate normal distribution with mean vector zero, and 

covariance matrix Vav{Rk). The multivariate normal distribution is discussed in 

Searle (1982, Section 13.4), and quadratic forms thereof in Searle (1982, Section 

13.5). 

I f X = {Xi,X2,X3,X4)^ is a multivariate normal vector such that P(-X') = 0, 

then 

Cov{X^PX, X^QX) = 2Tj:[PV&r{X)QYar{X)] (2.10) 

where P and Q are any constant conformable matrices. This is a well known result 

from normal theory, and is discussed in Searle (1971) and Rohde and Tallis (1969). 

From this, one may easily deduce that 

P{X,X2XsX,) = P{X,X2)P{X,X4) + P{X,Xs)P{X2X,) + P{X,X,)P{X2X,) (2.11) 

This may also be deduced from the fact that the moment generating function is 

mx{t) = ea;p |^ t ' ^Var (X)t | (2.12) 
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and that 

The algebra is a little tedious, but leads to the more general result that previsions 

(expectations) of odd products are zero, and previsions of even products can be 

calculated by forming all possible pairs, then for each combination, form the product 

of the prevision of the pairs, then sum over pairs. A vectorised version of (2.11) is 

required. First some notation for two different "direct products" of matrices is needed. 

The direct product is discussed in Searle (1982, Section 10.7) and it's relationship with 

the vec operator is discussed in Searle (1982, Section 12.9). 

Definition 1 For r x r matrices A (having entry aij in row i, column j ) and B 

(having entry bij in row i, column j ) the (left) direct product^ A® B of A and B is 

defined to he the x matrix with the- element ajkhm in row r{l - 1) + j, column 

r{m- l ) + k. 

Definition 2 For r x r matrices A (having entry aij in row i, column j ) and B 

(having entry bij in row i, column j ) the star product A-kB of A and B is defined to 

be the x matrix with the element ajkhm in row r{k — l)-\-m, column r[l — 1) + j . 

I t is worth noting that 

AkB = Ir,r{A®B) (2.14) 

where Ir,r is the {r,ry^ vec-permutation matrix. A full review of the definitions of, 

and the relationships between vec, vec-permutation matrices and direct products can 

be found in Henderson and Searle (1981). 

Now, given (2.11), it trivially follows that for the mean zero, MVN vector X, we 

have 

Var(vec(XXT)) = Var(X) ® Var(X) + Var(X) • Var(X) (2.15) 
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This is the dispersion matrix for the p-dimensional Wishart distribution with 1 degree 
of freedom, and (2.15) is a special case of the Wishart dispersion result in Hender
son and Searle (1979). Equation (2.15) may be regarded as a primitive statement 
about the way in which the fourth-order moments depend on the second-order mo
ments, thus weakening the requirement of a multivariate normality assumption. The 
distributional assumption was made only so that the fourth order moments may be 
deduced from the first and second-order moments. Whatever distributional assump
tion is made, i f the fourth-order centred moments depend only on the second-order 
centred moments, then the function will be symmetric across covariances. Equation 
(2.15) represents one of the simplest symmetric functions on the covariance possible, 
and so the assumption of this form for the dependencies may be natural independently 
of any normality assumption. 

An analogy may be useful at this point. The usual second-order Bayes linear 

adjustment gives results identical to those which would have been obtained using 

a distributional Bayesian approach, together with the assumption of multivariate 

normality. However, the Bayes linear adjustment is used as a natural method for 

updating moments without making any distributional assumptions at all. In the same 

way, I suspect that (2.15) represents a natural way to assign the fourth-order moments 

using only the second-order moments, irrespective of any distributional assumptions. 

In all of the illustrative examples in this thesis, (2.15) was used in order to "de

duce" the form of the fourth order residual structure. A [B/D] macro was written 

which automatically formed quadratic products of desired variables, and made the 

residual specifications accordingly. 

I t is appropriate to end this section with a major caveat. The specifications made 

for the quadratic (and indeed, any other) covariance structure must necessarily be 

statements of belief. Ultimately, any method which automatically assigns specifica-
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tions for the fourth-order moments using lower-order moments is nothing more than 
a crude approximation (although there will often be situations where the analysis is 
quite insensitive to the precise specifications at this level). I would say that speci
fication of belief for quadratic products (and specification of belief, more generally) 
is an area that should be given more attention. However, the requirement that all 
such specifications must be made in order simply to revise beliefs about covariance 
structures is unreasonable, and is one of the central themes of this thesis. In the 
next chapter, a structure will be developed in such a way that the minimum speci
fication required in order to carry out such analyses is vastly reduced, consequently 
diminishing the need to resort to techniques such as those outlined in this section. 

2.4 Bayes linear adjustment for the quadratic 

structure 

Let the sample covariance matrix S, have elements Sij, and the underlying covari

ance matrix, V, have elements Vij. Form the vector space, V of all (real) linear 

combinations of the these elements (together with the unit constant, 1). 

V = span{l,Vij,Sij\yi,j} (2.16) 

and then define the inner-product, (•, •) : V x V —>• R via 

{X, Y) - PiXY), yX,YeV (2.17) 

Note that this inner-product induces the distance (or loss) function 

d{X, Y) = P([X - F]2) , VX, € V (2.18) 
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Now define the observable subspace £> C V via 

D = span{l,Sij\yi,j} (2.19) 

Now for any subspace C C V, define the adjusted expectation operator, E^ : V -4 C 

to be the bounded linear operator which orthogonally projects Y e V into G. In 

particular, form ED{Vij), V«,jf. These depend only on the data, and represent the 

Bayes linear rules for the Vij, given the data. Explicitly, using (1.7), (2.7) and (2.9), 

ED(vecF) = P(vecF) + Cov(vecF,vec5)Var(vec5')-^[vec5-P(vecF)] (2.20) 

- P(vecF) + Var(vecF) |var(vecF) + Y^^iX^^j vec[5 -

(2.21) 

Further, i f beliefs over Uk are assigned by MVN fitting, using (2.15), this becomes, 

EoivecV) = P(vecy)-F Var(vecy) 

X {var(vecV') + MW£W±Mfl)i^j"' 

xvecf^ - P{V)] (2.22) 

They are related to posterior beliefs about the Vij in a way made explicit in Goldstein 

(1994). 

The specifications made, can therefore be used as a basis for a Bayes linear analysis 

of the covariance structures. However, for large matrices, the number of quantities 

involved in the adjustments will be prohibitively large (though simphfications could 

be made by focussing on small subsets of the problem). I t would be desirable to 

analyse covariance matrices in a space where they live more naturally, exploiting 

their matrix structure. 



Chapter 3 

Bayes linear matrix spaces 

3.1 Bayes linear inner-products 

At the end of the last chapter, a special case of general construction of belief struc

tures was demonstrated. In general, given a collection of quantities of interest, 

B = [Bi,B2,.. •] and a collection of predictive observables, D = [Dq = 1, Di, D2, • •.], 

form the real vector space, V, of all linear combinations of these quantities 

V = span{B\jD] (3.1) 

and then define an inner product, (• ,•) : V x V R on V via 

{X,Y) = P{XY),yX,Y eV (3.2) 

This induces the norm 

\ \ X f = P ( X 2 ) , VX e V (3.3) 

32 
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which in turn induces the metric 

d{x, Y f = p{[x - vx , y € V (3.4) 

This is a natural metric to have on a space of random quantities. Note that if all 

quantities have zero prevision, then this inner-product simply corresponds to covari-

ance. However, the inner-product has not been defined to be covariance, since two 

quantities should not be viewed as being "the same", simply because they have a 

correlation of one. Viewing them as being "the same" requires them to have the 

same prevision, and a correlation of one. Note that there is still a slight subtlety 

associated with the use of this inner-product, since strictly speaking, it is only an 

inner-product over equivalence classes of random quantities whose normed difference 

is zero. However, from a linear perspective, this inner-product captures exactly what 

is required. An introduction to the functional analytic ideas used in this chapter can 

be found in Kreyszig (1978). Where necessary, form the completion of the space V, 

and denote the resulting Hilbert space by Ti (see Kreyszig 1978, Section 3.2-3). 

For any closed subspace G C Ti, define the adjusted expectation operator, EG : 

H ^ G, to be such that, for all Y G H, E G ( F ) is the orthogonal projection of Y 

into G. Note then that EDg{Y) = P ( F ) , V F , and so where there is no confusion, 

the subscript is dropped, so that E ( F ) = P ( F ) . Note that expectation and adjusted 

expectation are defined entirely in terms of the inner-product, (•, •), and that the 

inner-product is defined in terms of prevision. 

By keeping distinct notation for the two concepts of prevision and adjusted ex

pectation, it is at all times clear whether or not we are dealing with a primitively 

defined prevision, or a projection in the relevant Hilbert space. Whilst this is not 

quite so critical in the case of scalar adjustments, it is very helpful for the spaces of 

random matrices which will be constructed in the next section. 
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Also note that for any X E B, E D ( X ) is the Bayes linear rule for X, given 
the data, (see Section 1.4) since the orthogonal projection of X into D is the linear 
combination of elements of Z) which minimises expected quadratic loss. Consequently, 

ED{X) = P{X) + Cov{X, D)YaT{D)-'[D - P{D)] (3.5) 

where D is the vector of elements of D. 

3.2 Spaces of random matrices 

In Chapter 2, we saw how beliefs about a covariance matrix may be revised, first 

by forming quadratic products of the scalar quantities, giving rise to the covariance 

matrix, and then specifying covariance matrices over the second-order exchangeable 

decompositions of all of these quantities, and then carrying out adjustment in the 

usual Bayes linear way. However, i t is immediately obvious that faced with problems 

where the covariance matrix to learn about is large, the magnitude of belief speci

fication and computation required in order to carry out adjustment is going to be 

considerable. I t would be desirable to create a framework whereby matrices may be 

analysed in a space where they may be either treated as a whole, or broken down into 

as many components as the belief analyst feels comfortable working with. For small 

problems, or in problems where a great deal of detailed knowledge about the inter

action of variables is known, it may well be desirable to work with the components 

of the matrices directly. However, faced with large problems, or problems where it is 

infeasible to elicit such detailed specifications, one may simply wish to make simple 

scalar statements representing uncertainty in the prior or sample matrices, and the 

"interaction" between them. I t is perfectly possible to set up a framework where a 

Bayes linear analysis may take place given such limited specifications. 
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The representation which will allow us to treat a covariance matrix as a single 
object is now developed. Let 

B = [Br,B2,...] (3.6) 

be a collection of random r x r non-negative definite, real symmetric matrices, repre

senting unknown matrices of interest. These might, for example, represent population 

covariance matrices. Let 

D=[DuD2,...] (3.7) 

be another such collection, representing observable matrices (such as sample covari

ance matrices). Finally, form a collection of linearly independent r x r constant 

matrices such that Cr(i-i)+j is the matrix with a 1 in the ( i , j ) " * position, and zeros 

elsewhere, where i and j range from 1 to r and call this collection 

C=[Cu...,Cr2] (3.8) 

This collection of matrices is a basis for the space of constant r x r matrices. Next 

form a vector space 

Af = span{B U C U £>} (3.9) 

of all linear combinations of the elements of these collections, and define the inner-

product (over equivalence classes) on J\f as 

( P , Q ) = P ( T r ( P Q T ) ) V P , Q G A ^ (3.10) 

which induces the norm 

||P||2 = P(||P||2,), VP G A T (3.11) 
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which in turn induces the metric 

d{P,Q)' = P{\\P-Q\\l) yP,QeAf, (3.12) 

where || • | |F denotes the Frobenius norm of a matrix. This is the sum of the squares 

of the elements, or equivalently, the sum of the squares of the eigenvalues. Where 

necessary, form the completion of the space. The complete inner-product space, or 

Hilbert space, is denoted by M. 

Analogously with the revision of belief over scalar quantities (Goldstein 1981), we 

learn about the elements of the collection B, by orthogonal projection into closed 

subspaces of M spanned by elements of the collection C U D, in order to obtain 

the corresponding adjusted expectations, namely the linear combinations of sample 

covariance matrices which give our adjusted beliefs. 

Note also that the projection into the constant space, E^, is such that 

Ec{Q) = PiQ), yQeM (3.13) 

and so where there is no confusion, we often drop the subscript to get E{Q) = P{Q). 

3.3 Matrix inner-product 

Why choose the inner-product {P,Q) — P{TT{PQ'^)) for the matrix space? Are 

there other inner-products which would be equally appropriate? As for the Bayes 

linear theory for random scalars, all of the theory is developed for a general inner-

product space, and so one is free to use any inner-product which one feels to be 

appropriate. However, there are foundational reasons for using this inner-product, 

since the induced norm is based on the expectation of a proper scoring rule for matrices 
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(Goldstein 1996), and so an argument for using this inner-product can be given which 
is similar to that used in Goldstein (1986b). Further, there is a sense in which the 
inner-product chosen here is the natural extension of the inner-product {X,Y) = 
P{XY) used for scalar quantities. 

Given a vector space. A/" of n x n random matrices, let (pij : M Vij be the 

homomorphism which maps the matrix to it's ( i , j)*'* element, for all i and j. For 

example, for any P € M, <j)ij (P) is the {i, jY^ element of P — a random scalar. Vij is a 

vector space of random scalars, ^ij{Af). Define an inner-product (•, •)„ : VijXVij -> R 

over each of the vector spaces Vij, and henceforth regard them as inner-product 

spaces. Now define a new space Q to be the direct sum of the spaces Vij (direct sums 

are discussed in Section 3.3 of Kreyszig (1978)). 

Q = ®0^ i . (3.14) 

The inner-product, [•, •] on Q is uniquely determined by the inner-products on the 

subspaces i t is composed of. 

n n 
P'Q] = Y 1 ^(Pij^ Qijh' = (PIUPU, • • •,Pnn),q = ( ^ l l , 9l2, • • • , Qun) & Q (3.15) 

1=1 j=l 

Ignoring the inner-products, the vector space, Q is isomorphic to the vector space A/", 

via the isomorphism, ^ : Q —)• A/" defined via 

HPn,Pl2, • • • ,Pnn) = 

/ Pn Pl2 ••• Pin \ 
P2I P22 ••• P2n 

V Pnl Pn2 ••• Pnn J 

(3.16) 

I f one is prepared to accept (f) as an inner-product space isomorphism from Q, to A/", 

the inner-product {•, •} : A/" x A/" -> R over M is induced. For example, if (l){p) = P, 
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and (f){q) = Q, then 

{P,Q} = \p,q]^f:j:{Pr„qi,h (3.17) 
i=i j=i 

But i f on each of the scalar spaces, the usual Bayes linear inner-product 

(Pij, Qij)ij = PiPijQij), Vpy, Qij e Vij (3.18) 

is used, one may deduce that 

{P,Q} = \p,q] (3.19) 

= JLEHPim) (3.20) 
i=lj=l 

= P{Tr[PQ'^]), yP,QeAf (3.21) 

I t is important to note that adopting the usual Bayes linear inner-product on the 

scalar subspaces in no way forces us to adopt the inner-product advocated for the 

matrix space. The spaces Q and Af are only necessarily isomorphic when considered 

purely as vector spaces. The matrix inner-product for Af is only imphed given the 

additional specification that the inner-product spaces Q and M are isomorphic. Vec

tor and inner-product space isomorphisms are defined in Sections 2.8-8 and 3.2-2 of 

Kreyszig (1978), respectively. 

Note that by viewing the matrix space in this way, many desirable properties of 

the matrix inner-product become apparent, which link matrix and scalar spaces. An 

important property has already been mentioned — projection of a random matrix 

into the constant space gives it's prevision. Also, note that the induced norms are 

consistent. In other words, for any matrix P, 

\\Pf = {P,P} = 0^\\pijf = {p,j,Pij) = 0 yi,j (3.22) 
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This is important when i t comes to matching up the completions of matrix and 
component scalar spaces. 

If all matrices of interest contain only one non-zero component (all in the same 

position), the inner product becomes {P,Q) = P{PijQij), inducing the distance 

d{P,QY — P{{Pij - QijY), as for the usual Bayes linear theory for scalar quanti

ties. Further, when matrices are decomposed, the different subspaces representing 

different parts of the matrices remain orthogonal, preventing different subspaces from 

influencing one another. The matrix structure is a generalisation of the scalar Bayes 

linear structure, and scalar Bayes linear adjustments can be recovered by decompos

ing all variance structures to the one component level. Viewing the matrix space 

as a direct sum of a large number of orthogonal subspaces of matrix components is 

analagous to viewing a probability distribution as an amalgamation of a partition of 

indicator functions for the component events. 

The matrices we are considering do not have to be finite dimensional. All of the 

theory remains valid if we think in terms of representations of random bounded linear 

self-adjoint operators on a (possibly infinite-dimensional) vector space. 

3.4 General Bayes linear representations 

3.4.1 n-step exchangeable collections 

There is a common form of symmetry which often arises amongst ordered vectors 

of random quantities. I t is essentially just a slightly weaker concept than that of 

(second-order) exchangeability. The covariance structure is invariant under arbitrary 

translations and refiections of the ordering, and the auto-correlation function becomes 

constant after some distance, n. We will call ordered vectors with this property, 

second-order n-step exchangeable. As we have seen, covariance may be interpreted 
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as an inner-product on a space of random quantities. This same symmetry also 
occurs, under the same sorts of circumstances, for collections of random matrices in 
a random matrix inner-product space. Hence, a concept of n-step exchangeability 
which is sufficiently general that it is also valid for spaces of matrices is required, and 
so the concept is formalised as follows. 

Let {Yjkfij, k} be a collection of random entities of interest. Also form a maximal 

linearly independent collection of constant entities of the same type, and call this 

collection C = [Ci, C 2 , . . . ] . When dealing with random scalars, C will consist of the 

single scalar, Ci = 1. In Section 3.2, the constant space for a collection of random 

matrices was described. Form the vector space 

V = span{Ci,Yj,\yi,j,k} (3.23) 

so that the random entities are now vectors within this space. Define an inner-product 

( • , • ) : V x V —> R on V. The inner-product should capture certain aspects of our 

beliefs about the relationships between the elements of V. Form the completion of the 

space V, and denote this Hilbert space by Ti. In such a general Bayes linear space, 

a bounded linear expectation function E(-) : H —> span{C}, is defined such that 

V y e Ti, E{Y) is the orthogonal projection of Y into span{C}, with respect to the 

inner-product (•,•). 

Definition 3 / / 3n G N such that E{Yjk) = Sj V;, k, and 

{Yik,Yji) = doij \/i,j,\k-l\ = 0 

{Yik,Yji) = duj \^i,j,\k-l\ = l 

(yik, Yji) = d(n-i)ij Vz, j,\k - l\ = n - 1 
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iYik,Yji) = dj yij,\k-l\>n (3.24) 

the collection {Yjk\yj,k} is said to be generalised (second-order) n-step exchangeable 

over k. I f n = l, the collection is said to be generalised (second-order) exchangeable 

over k. 

• 

3.4.2 Representation for n-step exchangeable collections 

Goldstein (1986a) constructs a general representation for second-order exchangeable 

collections. There is an analagous representation for collections with the weaker 

property of n-step exchangeability, constructed in a similar way. 

Theorem 1 Let {Yjk\'^j,k} be generalised second-order n-step exchangeable over k 

with respect to the inner-product (•,•). Then the Yjk may be represented as 

Y,k = Mj + R,k yj,k (3.25) 

where the Mj and Rjk have the following properties: 

E{Yjk) = E{Mj), E{Rjk)^0 yj,k (3.26) 

{Mi,M,) - {M,,Yjk)=Cij, {M„Rjk) = 0 yi,j,k (3.27) 

{Rik, Rji) = {Yik, Rji) = {Yik, Yji) - dj yi,j, k, I (3.28) 

Further, the {Rjk\\/j,k} are generalised second-ordern-step exchangeable overk, with 

{Rik,Rji)=0 V z , ; , | f c - / | > n . 

Proof 
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Let 
1 ^ 

Mim = - J 2 ' ^ i k Vz>m (3.29) 

Observe that the sequence Mn, Mi2,... is CauchyMi ie. that (Mik-Mu, Mik-Mn) —> 

0 as /c, / —> oo, which follows directly from the properties of n-step exchangeable 

sequences. Construct the quantity Mi to be the Cauchy limit of this sequence so that 

( M i ^ , Y) = {Mi, Y) \/i, W e n (3.30) 

Continuity of the inner-product is given in 3.2-2 of Kreyszig (1978). Linearity of 

E(-) gives E{Mim) = Bi Vz,m, and hence applying (3.30) for F G C we deduce 

E(Mi) = Ci. Define Rik via Rik = Xik - Mi V ,̂ so that E(Pj^) = 0 Vz, m. The other 

properties of the representation follow directly from (3.30). • 

As for the case of second-order exchangeability, the mean components of the repre

sentation, Mj, represent the quantities which may be learned about by linear fitting on 

the data. I t is possible to resolve as much uncertainty as is wished about these quan

tities given a sufficient number of observations, by such linear fitting. Therefore, the 

n-step exchangeable collection {Yjkl^j, k} with representation Yjk = Mj + Rjk V j , k 

will be said to identify the random quantities Mj, V j . 

3.4.3 Example 

Consider the following simple time series model for a sequence of observations {Xi,X2, 

. . . } . 

Xt = Mt + Rt, yt>l (3.31) 

Mt = Mt_i + St, yt>2 (3.32) 
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M l = 51 (3.33) 

Where the random quantities {i^jjS'ilVi > 1} have zero prevision, are mutually un-

correlated, and are such that Yax{Iti) = r and Var(5'i) = s Vi > 1. Now form the one 

step differences of the observations. 

= Xt~ Xt-i ^Rt- Rt-i + St (3.34) 

Applying Definition 3 to the space V = span{l,Xl\Vi > 2} with the inner-product 

{X,Y) = P{XY), yX,Y e V, we see that the {X,' |Vi > 2} are (second-order) 2-step 

exchangeable. Applying Theorem 1, we see that the {Xl\\/i > 2} identify zero. 

3.4.4 Matrix example 

Reconsider the exchangeable vector example developed in Chapter 2. Imagine forming 

a sequence of sample covariance matrices, { ^ i , 6*2,...}, each based upon n observa

tions. Then form the matrix vector space 

V = span{RiR{^, R2R2^, ...,Si,S2,...} (3.35) 

(each Si is based upon n of the RjRj^) and impose the inner-product 

(.4,B) = P(Tr(AB'^)), yA,BeV (3.36) 

Complete this space into a Hilbert space, M. Limit points such as V, the under

lying covariance matrix, will be added to the space upon completion. I t is clear 

that both the residual and sample covariance matrices are generalised (second-order) 
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exchangeable, and that they have exchangeable representations 

RkRk^ = V + Uk (3.37) 

and 

Sk = V + Tk (3.38) 

where {Tk,Tk) = {Uk,Uk)/n. This is deduced from equations (2.7), (2.8) and (2.9) 

using the consistency of the inner-products on the scalar and matrix spaces. I t is 

clear that the sample covariance matrices identify the underlying covariance matrix, 

V. Hence we may learn as much as is desired about this matrix by linear fitting on 

sufficiently many sample covariance matrices. 

3.5 Primitive specification of the matrix 

inner-product 

This thesis is primarily concerned with making specifications for the random matrix 

inner-product by building i t up from specifications made for the quadratic scalars 

of which the matrices are composed. In a sense, this is analogous to specifying an 

expectation of a random quantity by breaking it up over a partition of events and 

specifying probabilities over the partition. However, just as there are many advan

tages to making expectation primitive, and specifying expectations directly, so there 

are with matrix inner-products. Initially, it may seem difficult to make primitive spec

ifications for the matrix object inner-product, simply because it is a very unfamiliar 

problem. Nevertheless a scheme for elicitation based upon graphical modelling of the 

relationships between matrices, followed by quantifications of uncertainty, and pro

portions of uncertainty resolved due to knowledge of parent nodes, could be used in a 
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way very similar to that often used for random scalars. In this way, the specification 
burden will be vastly reduced. Given a problem involving just a few (possibly large) 
matrices, all that will be required in order to carry out a basic analysis is a specifica
tion for the inner-product between every pair of matrices, rather than between every 
pair of scalars of which they are comprised. 



Chapter 4 

Covariance matrix adjustment for 

exchangeable vectors 

4.1 Introduction 

Consider the problem of learning about the covariance matrix for the r-dimensional 

exchangeable random vectors, {XfcjVfc G N}. As described in Chapter 2, form the 

exchangeable decomposition of the quadratic products of the residual vectors. 

RkRk'^ = V + Uk (4.1) 

Let C be a basis for the constant observable matrices, and let D = [Di, D2,...] be a 

collection of observable matrices predictive for the matrix, V in (4.1). Then form a 

vector space of random matrices, as described in Chapter 3, 

V = span{C UVUD} (4.2) 

46 
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and impose the usual matrix inner-product 

{A, B) = PiTr{AB^)) (4.3) 

I f necessary, form the completion of the space. Denote the resulting Hilbert space by 

M. 

4.2 Decomposing the variance structure 

As a simple example, D might consist only of the sample covariance matrix, 5, 

based on n observations. In this case, the adjusted expectation for the "population" 

matrix would be a weighted linear combination of the prior and sample covariance 

matrices. However, by breaking down the sample covariance matrix into its compo

nent sub-matrices, one may resolve a greater proportion of our uncertainty about the 

"population" covariance matrix. 

For simplicity, consider the problem of learning about the covariance structure 

induced by representation (2.4) for 2-dimensional vectors. The covariance matrices 

will be 2 X 2. Consider the sample covariance matrix 

\ Si2 S22 J 

and the corresponding "population" covariance matrix 

(4.4) 

V 1̂ 12 y22 

In the notation of the previous chapter, attention could be restricted to 

B-[V],Ds-[S],C= 0 0 ' 1 0 ' 0 1 (4.6) 
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where all 2 x 2 symmetric matrices can be constructed as linear combinations of the 

elements of C*. Using these collections, our adjusted expectation for V given Ds 

(and C) would take the form 

Ec+Ds{V) = {l-a)P{V) + aS (4.7) 

where a is the coefficient of the orthogonal projection determined by the inner-product 

(4.3). This simple form arises because from (P6) of Goldstein (1988a), 

EcMV) = MV) + ED-EaiD){V) (4.8) 

Also, by (3.38), P{D) = P{S) = P(V), and for the constant space, C, Ec(-) = ?(•)• 

Explicitly, the coefficient a takes the form: 

^ ( V - P ( V ) , V - P ( V ) ) 
( S - P ( , S ) , S - P { S ) ) ^ ' 

i:l.E?=,nVar(Vi,) ^^^^^ 
E t i EJ=i{nVar(y«) + Var(C/ii)} 

However, to improve the precision of the estimates, the projection space could be 

enlarged by constructing 

0 0 / ' I -Si2 0 / ' i 0 522 
(4.11) 

Such a space is termed the individual variance collection. This allows different sample 

covariances to have different weights, i f for example, there is higher prior uncertainty 

about some of the variances. Indeed, this may be taken a stage further, by construct-

*In the last chapter, a basis for all real matrices was suggested. However, if all of the other 
matrices in the problem are symmetric (as will usually be the case), then it is sufficient to work with 
a basis for only the symmetric matrices. All we require is that for all matrices, M, which are linear 
combinations of matrices in the problem, the constant matrix, P(M) e span{C}. 
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mg 

Dp = Sn 0 
0 0 

'S'l2 
0 

S22 
0 

0 
0 

0 
0 

0 

0 Sn 

Sn 
0 

0 
'S'22 

0 

S'22 
0 

f 0 0 

0 0 ^ 

0 Snj 

0 0 ^ 
0 522 . 

(4.12) 

This last collection is called the full variance collection. This not only allows the 

different covariances to have different weights, but also allows relationships between 

covariances to have an effect on the adjustment. I f V is projected into the span of 

Dp and C, then the adjusted expectation for V w i l l correspond precisely wi th the 

adjustment which would have been obtained using Bayes linear estimation on the 

quadratic products of the residuals in the scalar space. 

Breaking down the population matr ix in the same way, we let 

Vr Vn 0 
0 0 

0 Vu 
Vu 0 

0 0 
0 ^22 

(4.13) 

As the projection space is enlarged, more of the uncertainty about the variance 

structures is resolved, at the expense of doing more work. Generally projection should 

be carried out in as rich a space as is practicable, but for large variance matrices, the 

difference both in computational effort and in effort required for prior specification, 

between adjusting by D 5 , Dj and DF is substantial, so that a subjective assessment 

of the relative benefits of each adjustment must be made. 
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4.3 Example 

4.3.1 Examination performance 

A simple example, based on data relating to the examination performance of first 

year mathematics undergraduate students at Durham university, is presented. Those 

students who have only one A Level in mathematics are of particular interest, and 

so attention is restricted to these in this account. For illustrative purposes, focus on 

a few key variables, namely a summary of A Level performance (A), performance in 

the Christmas exams ( X ) , and the end of year exam average (E). 

For the exchangeable decomposition of (say) Ak, write 

Ak = MA + RA, (4.14) 

and for the exchangeable decomposition of (say) RA^RX^, write 

RA,RX,=VAX + UAX, (4.15) 

so that, for example, VAX represents the underlying covariance between the A and 

X variables, and UAXk represents the residual for the k^^ observation. Construct the 

"population" and sample covariance matrices: 

/ VAA VAE VAX \ f SAA SAE SAX \ 

V= VAE VEE VEX , S= SAE SEE SEX (4.16) 
\ VAX VEX VXX J \ SAX SEX SXX J 

A Bayes linear belief net was formed to represent beliefs about the relationships 

between the quadratic products of the residuals (Figure 4.1). Such graphs are dis

cussed in Goldstein (1990), and f rom a more general perspective in Smith (1990). In 

general, the graphs have the property that nodes are generalised conditionally inde-
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Common 
Variance 

Figure 4.1: A conditional linear independence graph for the mean components of the 
quadratic products of the residuals 

pendent given their parents, where generalised conditional independence is determined 

by a tert iary operator, • I I •/• which obeys the following conditions. 

• BUC/{C + D) 

• BU C/D ^Cn B / D 

• BU{C + D)/E ^ [{B U C/{D + E)} n { B U D/E]] 

We say that A is generalised conditionally independent of B given C i f and only 

i f ^ I I B/C. Goldstein (1990) shows that adjusted orthogonality is a generalised 

conditional independence property. Explicity, 

BJ1C/D^'&C+D{B) = '&D{B) (4.17) 

defines a generalised conditional independence relation, which Smith (1990) refers 

to as weak conditional independence. This is the generalised conditional indepen

dence used to define the graph in Figure 4.1. The common variance node of Fig

ure 4.1 reflects beliefs about the positive correlation between variances. This node 

does not represent an observable quantity, but is modelled conceptually in order 
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to s implify the graph. Covariances are influenced by the corresponding variances. 

This graph was used to help structure the belief specification over the mean com

ponents of the variance structure. First a list ordering on the nodes is chosen: 

{CV,VAA,VXX,VEE,VAX,VAE,VEX} {CV denotes the node representing common 

variance). 

The nodes are modelled as linear combinations of an orthonormal basis for the ran

dom variables. The coefficients of the combinations obviously form a lower triangular 

mat r ix w i t h respect to a list ordering on the nodes, so that 

V = AE (4.18) 

where V is the vector of list ordered nodes, E is a, vector of orthonormal random 

variables, and A is the lower triangular matr ix of coefficients. Clearly we have 

V a r ( y ) = AA^ (4.19) 

and so A is the Choelesky triangle for the variance matrix. 

By th inking about the uncertainty of nodes, and the contribution to that uncer

tainty by the parents of that node, the Choelesky triangle of the covariance matrix 

for the vector of list ordered nodes was specified as follows: 

A 

1 0 0 0 0 0 0 \ 
0.71 0.71 0 0 0 0 0 

13.26 0 13.26 0 0 0 0 
7.07 0 0 7.07 0 0 0 
2.17 1.08 1.08 0 1.25 0 0 
3.25 1.62 0 1.62 0 1.86 0 
6.50 0 3.25 3.25 0 0 3.75 / 

(4.20) 

For example, the common variance node, CV was assigned a variance of 1, arbitrarily. 

Next, VAA was assessed to have a variance of 1, and to be such that one half of the 
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standard deviation of VAA would be resolved due to knowledge of the unobservable 

common variance node. That determines the second row of the matrix A, since the 

coefficients for the modelled orthonormal variables contributing CV and VAA must 

be the same, and the sum of their squares must be 1. Next, the quantity Vxx was 

assessed to have a standard deviation of 18.75, and to be such that one half of it 's 

variance would be resolved due to knowledge of the common variance node, thus 

determining the th i rd row. Similar specifications were made in order to determine 

the rest of the matr ix . 

This implies the covariance matrix, M = AA"^: 

M 

1 
0.71 

13.26 
7.07 
2.17 
3.25 
6.50 

0.71 
1 

9.38 
5.00 
2.30 
3.44 
4.59 

13.26 
9.38 

351.56 
93.75 
43.06 
43.06 

129.17 

7.07 
5.00 

93.75 
100.00 

15.31 
34.44 
68.89 

2.17 
2.30 

43.06 
15.31 
8.59 
8.79 

17.58 

3.25 
3.44 

43.06 
34.44 

8.79 
19.34 
26.37 

6.50 \ 
4.59 

129.17 
68.89 
17.58 
26.37 
77.34 / 

(4.21) 

A n alternative approach to the specification of a covariance matr ix is given in Garth-

waite and Dickey (1992). I t may be instructive to look at the induced correlation 

matr ix , M. 

( 1 0.71 0.71 0.71 0.74 0.74 0.74 \ 
0.71 1 0.5 0.5 0.78 0.78 0.52 
0.71 0.5 1 0.5 0.78 0.52 0.78 

M = I 0.71 0.5 0.5 1 0.52 0.78 0.78 (4.22) 
0.74 0.78 0.78 0.52 1 0.68 0.68 
0.74 0.78 0.52 0.78 0.68 1 0.68 

V 0.74 0.52 0.78 0.78 0.68 0.68 1 / 
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Also consider the inverse of the covariance matrix: 

54 

( 4.00 
- 1 . 4 1 
-0 .08 
-0 .14 

0 
0 

V 0 

-1.41 
5.00 
0.08 
0.15 

-0.98 
-0.65 

0 

-0.08 
0.08 
0.01 
0.01 

-0.05 
0 

-0.02 

-0.14 
0.15 
0.01 
0.05 

0 
-0.07 
-0.03 

0 
-0.98 
-0.05 

0 
0.64 

0 
0 

0 
-0.65 

0 
-0.07 

0 
0.28 

0 

0 \ 
0 

-0.02 
-0.03 

0 
0 

0.07 j 

(4.23) 

Table 4.1 shows the zero and non-zero elements for the lower triangle of ( • 

represents a non-zero element). I t can be seen that the zeros in the inverse covari

ance matr ix correspond to the adjusted orthogonalities represented by the graph. For 

example, the zero in row VEX-, column VAA-, means that VEX and VAA are orthogo

nal after adjusting by the other variables. Such properties of graphical models and 

covariance matrices are discussed in Whit taker (1989). 

CV VAA Vxx VEE VAX VAE VEX 

CV 

VAA • 
Vxx • • 
VEE • • • 
VAX 0 • • 0 
VAE 0 • 0 • 0 
VEX 0 0 • • 0 0 

Table 4.1: The conditional independences implied by Figure 4.1 

Specifications are also required over the residual components of the variance 

structure. These specifications are more diff icult to make, since we are not used 

to th inking about such quantities. In this example, for simplicity, belief specifica

tions over the residual structure were chosen to be consistent w i th those imposed 

under a multivariate normal specification corresponding to the prior specifications 

over the elements Ri^^ as discussed in Section 2.3. W i t h respect to the ordering 
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{VAA, VXX, VEE, VAX, VAE, VEX}, the residual covariance matrix, A'', took the form 

/ 127 496 248 251 178 351 \ 
496 19997 5626 3150 1670 10607 
248 5626 6332 1182 1254 5969 
251 3150 1182 1046 599 1949 
178 1671 1254 599 573 1477 
351 10607 5969 1949 1477 8439 / 

(4.24) 

Having made specifications over the quadratic products of residuals, beliefs over all 

relevant covariance matrices are determined. 

From the sample covariance matr ix, S = Ds, construct the individual variance 

collection, Di (6 objects) and the f u l l variance collection. Dp (36 objects), as well 

as the individual collection for the mean structure, Vj (6 objects). Form the random 

matr ix space, M over all these objects, and investigate adjustments in this space. 

4.3.2 Quantitative analysis 

The prior covariance matr ix was specified directly as follows: 

E{V) = 
I 7.98 11.14 15.75 \ 

11.14 56.26 53.04 
V 15.75 53.04 100.00 / 

(4.25) 

This mat r ix was specified using a graphical model, and a variance component ap

proach, as discussed for the quadratic structure in the last section. The sample 

covariance matr ix (34 cases) is: 

/ 8.28 20.15 24.75 \ 
20.15 178.30 160.74 

V 24.75 160.74 258.26 / 
(4.26) 

Note that the sample covariance matr ix is not too far f rom the prior specification. 

The adjusted matrices were formed as the appropriate linear combinations of the 
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observables, as described in Section 3.2, and derived explicitly for the simplest case 
in Section 4.2. 

^DsiV) = 

^DAV) = 

^DAV) = 

(4.27) 
/ 8.08 14.08 18.69 \ 

14.08 96.08 88.18 
V 18.69 88.18 151.65 j 

f 8.04 15.96 17.72 \ 
15.96 98.90 78.63 (4.28) 

V 17.72 78.63 159.21 / 

/ 8.30 15.43 20.06 \ 
15.43 92.04 80.66 (4.29) 

V 20.06 80.66 156.79 / 

I n fact, these matrices are the observed values oiEc+DsiV), EC-\-D,{V) and EC+DF{V) 

respectively, but the C is dropped f rom the notation, and assumed implici t ly to be 

included in the projection space. These adjusted matrices may be used as a basis 

for assessing our posterior beliefs about the matr ix object (see Goldstein 1994 and 

Goldstein 1996). They represent prior inferences for posterior judgements. 

Note that the last matr ix (4.29) represents the adjusted matr ix which would have 

been obtained using a standard Bayes linear analysis on the quadratic products of the 

residuals. In this particular example, all adjusted matrices are positive definite. In 

general, we view negative eigenvalues in the revised structure as providing diagnostic 

warnings of possible conflicts between prior beliefs and the data, or as warning of 

inappropriate model choice or selection of projection space. 

I t is desirable to be able to compare the estimates of V: E£)^(F) , 'Ei^siV), and 

Er)j{V). Thus, the standard interpretive and diagnostic features of the Bayes linear 

methodology are used to assess the model and understand the adjustments taking 

place. 

Goldstein (1991) develops a formal framework for the comparison of covariance 

structures. Essentially, one focusses attention on the eigenstructure of the transfor

mation which maps one covariance structure to the other. The transformation which 
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accomplishes this is known as the belief transform, and it 's eigenstructure contains all 

necessary information about the adjustment. Further details are given in Goldstein 

and WooflF (1994). 

Quantitatively, given any two covariance matrices, R and 5, the belief transform 

is the linear transformation, T such that 

TR = S (4.30) 

Since all of the matrices are strictly positive definite, we can compute T as 

T = SR-' (4.31) 

The eigenvalues of this matr ix are those quoted in Tables 4.2, 4.3, 4.4 and 4.5. How

ever, the eigenvectors quoted are normalised wi th respect to the second matrix, in 

order to make interpretation easier. A discussion of this, and other issues which arise 

in the case where the matrices are not of f u l l rank is given in Goldstein and Wooff 

(1995b). 

Variable Primary eigenvector Secondary eigenvector 
A 0.12 0.08 
E -0.11 0.11 
X -0.01 -0.12 

Eigenvalue ratio 1.81 1.44 

Table 4.2: Eigenstructure of the belief transform for the mapping f rom E{V) to 

Looking first at Table 4.2, we can see that for the first adjustment, variance was 

infiated by a factor 1.81 in a direction close to the difference between A and E, and 

that variance was inflated by a factor of 1.44 in a direction close to A + E - X. 

The other component had eigenvalue close to one. Table 4.3 shows that when Dj is 
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Variable Primary eigenvector 
A -0.11 
E -0.10 
X 0.0 

Eigenvalue ratio 1.51 

Table 4.3: Eigenstructure of the belief transform for the mapping f rom EDg{V) to 

Variable Smallest eigenvector 
A -0.16 
E -0.10 
X 0.10 

Eigenvalue ratio 0.81 

Table 4.4: Eigenstructure of the belief transform for the mapping f rom E£)^(F) to 

Variable Primary eigenvector Secondary eigenvector 
A 0.25 0.10 
E 0.13 -0.05 
X -0.09 -0.06 

Eigenvalue ratio 1.81 1.62 

Table 4.5: Eigenstructure of the belief transform for the mapping f rom E{V) to 
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added to the adjustment, variance is inflated by a factor of 1.51 in a direction close 
to A + E. Other directions had eigenvalues close to one. Table 4.4 shows that adding 
the whole of Dp to the adjustment actually reduces variance by a factor of 0.81 in a 
direction close to A + E - X (other eigenvalues close to one). Table 4.5 shows the 
overall adjustment transformation. The overall transform is the composition of the 
three part ial transforms (Goldstein 1991). Variance has been inflated by a factor of 
1.81 in a direction close to 2A + E, and by a factor of 1.62 in a direction close to 
2A- {E + X ) . Examination of the belief transforms in this way allows interpretive 
analysis of the changes in belief. 

4.4 Bayes linear influence diagrams for matrix 

objects 

Figure 4.2 shows a Bayes linear influence diagram representing the adjustments and 

corresponding diagnostic information for the random matrices. Such diagrams are de

scribed in detail in Goldstein, Farrow, and Spiropoulos (1993) for random quantities, 

w i t h a similar interpretation for random matrices, where adjusted orthogonality is de

termined instead by the inner-product (3.10), so that our conditional independence 

relation, (4.17), becomes 

B U C/D ^ P[Tr{{B - ED{B)){C - ED{C))}] = 0 (4.32) 

This is a generalised conditional independence property, as defined in Smith (1990), 

and consequently, all of the usual properties of conditional independence graphs based 

upon such a relation w i l l hold. Each node represents a space of covariance matrices. 

The outer shadings of the V node represent proportions of uncertainty about V re

solved by projection into the various spaces. Shadings start at 3 o'clock, and progress 
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1' igurr 1.2: Diagnostic influeucc diagram summarising changes in exi^ectatiou of the 
matr ix ()bjoct.s 
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in an anti-clockwise fashion. The f u l l circle represents the total uncertainty about the 
values of the space of covariance matrices. The first outer portion shaded represents 
the proportion of our uncertainty resolved by the sample covariance matrix alone 
(Ds)- By comparing this w i t h the first shaded portion for the Vj node, i t can be seen 
that considerably more has been learned about the matr ix object, than about the 
6-dimensional space over the individual variance collection. 

The next shading gives the additional information gained by using the individual 

collection as the projection space. This tells us a great deal more about the elements 

of the Vj collection, but l i t t le about the matr ix object as a whole. The other shading 

shows the additional uncertainty resolved due to including the f u l l variance collection 

in our projection space. There is information to be gained by enriching our projection 

space, but one must balance information gained wi th extra effort involved. Whether or 

not one chooses to include the complete variance collection w i l l depend upon the size 

of the problem under consideration, and upon how much the answer really matters. 

I t is no coincidence that the tota l amount of uncertainty resolved for the V and 

Vi nodes is the same in the case of fu l ly decomposed structures. This is essentially 

because the V node represents the heart of the belief transform for the adjustment of 

the Vi node in this case (Goldstein 1990). This is mentioned only in passing, since i t 

is of l i t t l e relevance to the rest of the thesis. See Goldstein (1990) for a discussion of 

these kinds of properties of exchangeable adjustments. 

Shadings i n the centres of the nodes are diagnostics based on the size and bearing 

of the adjustments, as described in Goldstein (1988b). Diagnostics for matrix adjust

ments are discussed more fu l l y in Chapter 6. For now i t suffices to mention that the 

more red shading present, the larger the diagnostic warning. The diagram shows a 

lot of shading for the adjustment of the V matrix, indicating a contradiction between 

the data and our prior beliefs. 
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4.5 Summary 

Analysing matrices in a space where they live naturally not only has great aesthetic 

appeal, but is very powerful and i l luminat ing in practice. Working in this space 

simplifies the handling of large matrices, by reducing the number of quantities involved 

and summarising effects over the whole covariance structure. For the same reasons, 

diagnostic information about adjusted beliefs is easier to interpret. Structures may 

be decomposed as much or as l i t t l e as desired. 

This approach allows learning for collections of covariance structures, and exam

ination of their relationships. I t generalises the "element by element" approach to 

revision, which can be viewed as taking place in a subspace of the larger space. Ex

changeability representations lie at the heart of the methodology: all specifications 

are over observables, or quantities constructed f rom observables, rather than artificial 

model parameters, and no distributional assumptions for the data or the prior need 

be made. 



Chapter 5 

Covariance matrix adjustment for 

dynamic linear models 

5.1 Introduction 

The approach to covariance estimation is now applied to the development of a method

ology for the revision of the underlying covariance structures for a dynamic linear 

model, free f rom any distributional restrictions, using Bayes linear estimators for the 

covariance matrices based on simple quadratic observables. This is done by con

structing an inner-product space of random matrices containing both the underlying 

covariance matrices and observables predictive for them. Bayes linear estimates for 

the underlying matrices follow by orthogonal projection. 

The method is illustrated using data derived f rom the weekly sales of six leading 

brands of shampoo f rom a medium sized cash-and-carry depot. The sales are mod

elled taking into account the underlying demand and competition effects, and the 

covariance structure over the resulting dynamic linear model is adjusted using the 

weekly sales data. 

Covariance matr ix adjustment for dynamic linear models is reviewed in West and 

63 
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Harrison (1989). For multivariate time series, the observational covariance matrix 

can be updated for a class of models known as matrix normal models using a sim

ple conjugate prior approach. However, the distributional assumptions required are 

extremely restrictive, and i t is diff icult to learn about the covariance matrix for the 

updating of the state vector. 

5.2 The dynamic linear model 

5.2.1 The general model 

Let Xi,X2,... be an infinite sequence of random vectors, each of length r , such 

that Xt — {Xit, X2t, • • •, Xrt)^. These vectors represent the observations at each 

time point. Suppose that we model the relationships between these vectors in the 

following way. 

Xt = F'^Gt + Ut (5.1) 

©i = G@t-i+^t (5.2) 

The prior second-order specification is as follows: 

E{ut) = EiiOt) = 0, Var(0o) = E, Var( i / i ) = V, Var(a;t) = W, Vt (5.3) 

C o v ( 0 „ u t ) = Cov{u„uJt) = 0 Vs,t, Cov(0s, Wj ) = 0 Vs < t (5.4) 

C o v ( a ; „ a ; t ) = C o v ( i / „ i / i ) = 0 Vs ^ i (5.5) 

The state vector, 0 f is p dimensional, and the p x r and p x p dimensional matrices, F 

and G are assumed to be known. This is a second-order description of the (constant) 

multivariate t ime series dynamic linear model (DLM) described in West and Harrison 
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(1989). No distributional assumptions are made for any of the components in the 
model. Ways to learn about V and W from data are now described. West and 
Harrison (1989, Chapter 15) give a conjugate prior solution to the problem of learning 
about V for a class of these models known as matrix normal models, if one is prepared 
to make the necessary distributional assumptions. However methods for learning 
about the matrix W tend primarily to be ad hoc. The standard method for updating 
W is the discount factor approach, outlined in West and Harrison (1989), which 
simply inflates the W matrix at each iteration, so that the prior is swamped by the 
data at a given rate. Such an approach fails to utilise the fact that there is information 
about the W matrix present in the observations. 

5.2.2 Example 

As an illustration of the approach, consider a simple locally constant model for the 

sales of 6 leading brands of shampoo from a medium sized cash-and-carry depot. 

As above Xi,X2,... is a sequence of random vectors, each of length 6, such that 

Xt = (Xit, X2t, • • •, X^t)^. The component X^ represents the (unknown) sales of 

brand i at time t, simply measured as a number of bottles. The vectors of sales are 

modelled as follows 

Xt = et + ut yt (5.6) 

where 

Qt^&t-i+cJt yt (5.7) 

Prior beliefs are are given by (5.3), (5.4) and (5.5). Here it has been assumed that 

the process is locally constant, but with different underlying demands for each of 

the components of the series. This is a simple model, with no seasonal component, 

chosen to illustrate our methodology, and would be unrealistic if there were noticeable 
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trends within any of the components of the series. However, for high dimensional 

time series with no obvious trends, it is often the case that, provided the covariance 

structure is appropriate, many of the interesting features of the series can be captured 

using just such a model. To this end covariances are introduced between components 

of the state vector and also for the way demand changes over time, and for the 

way observations vary from the underlying demand. A more detailed treatment of 

multivariate sales forecasting within a fully specified Bayesian framework is given 

by Queen, Smith, and James (1994) and Queen (1994) who consider the problem of 

developing a dynamic model for multivariate sales, and the development of a prior 

distribution with sufficient flexibility to capture the effects of market interaction. 

These methods are based upon the dynamic graphical model ideas discussed in Queen 

and Smith (1992) and Queen and Smith (1993). 

The second-order DLM requires the following quantifications. Firstly, the F and 

G matrices must be specified. Then, a priori specifications are needed for the ex

pectation of the initial state vector, HQ = E(0o). Finally, specify the matrices 

E = Var(0o), V̂  = Var(i/t), = Var(wt)Vl 

In the example, the specification for the mean vector was 

E(0o) = (10,9,9,8,8,7)'^ (5.8) 

The following specifications were made for the covariance matrices, using exchange

ability judgements concerning the way in which the observations vary from their 

means. 

E = 

/ 9 
3 
3 
3 
3 

V3 

3 
9 
3 
3 
3 
3 

3 
3 
9 
3 
3 
3 

3 
3 
3 
9 
3 
3 

3 
3 
3 
3 
9 
3 

3 \ 
3 
3 
3 
3 
9 / 

(5.9) 
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W 

V 

1 4 1 1 1 1 1 N 
1 4 1 1 1 1 
1 1 4 1 1 1 
1 1 1 4 1 1 
1 1 1 1 4 1 

V 1 1 1 1 1 4 ) 
/ 36 -4 -4 -4 -4 - 4 \ 

-4 36 -4 -4 -4 -4 
-4 -4 36 -4 -4 -4 
-4 -4 -4 36 -4 -4 
-4 -4 -4 -4 36 -4 

V - 4 -4 -4 -4 -4 36 / 

(5.10) 

(5.11) 

For example, for the matrix, E, it was decided to be appropriate to associate a stan

dard deviation of 3 with each of the variables. A correlation between variables of 1/2 

was also felt appropriate. In truth, there is perhaps more symmetry in these specifi

cations than is really appropriate, but specification is hard, and viewing variation in 

the sales of the various shampoos as second-order exchangeable greatly reduces the 

number of specifications which have to be made over the second order structure, and 

will allow further exchangeability modelling to simplify the fourth order specifications 

in later sections. 

Notice however that many aspects of the underlying mechanisms have been cap

tured by these specifications. In this model, ©j represents the vector of demands at 

time t. From the positive correlations in Var(0o), if the mean of one product turned 

out to be higher than anticipated, we would revise upwards beliefs about the means 

of the other products. Also, the positive correlations within Var(ci;t) indicate that 

there is a common component to the demands, whilst the negative correlations within 

Var(i/() indicate that brands are competing, and tend to succeed at the expense of 

one another. 
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5.2.3 Bayes linear analysis 

With the second-order specification that has been made, sales data may be used to 

carry out a Bayes linear analysis which will be informative for the mean of future 

observations. However, learning about the covariance matrices W = Var(u>f) and 

V = Var(i/t) will not occur. The methods of the previous chapters will now be 

adapted, in order to enable such learning. 

5.3 Quadratic products 

5.3.1 Exchangeable decomposition of unobservable 

products 

For the general DLM outlined in Section 5.2.1, form the quadratic products of uJt and 

i/t, namely vec{ujt(^i^) and vec{utiyt^). We view vec(u;tu;t'^) and vec(^'(//t'^) to be 

second-order exchangeable over t. Explicitly, second-order beliefs over the vectors of 

quadratic products of residuals will remain invariant under the action of an arbitrary 

permutation of the t index (this is what I mean when describing a DLM as constant). 

As described in Section 2.2, using the second-order exchangeability representation 

theorem (Goldstein 1986a), an element of a second-order exchangeable collection of 

vectors may be represented as the sum of a mean vector, common to all elements, and 

a residual vector, uncorrected with the mean vector and all other residual vectors. 

This representation may be applied to vec(u>tu;f'̂ ), and then re-written in matrix 

form as 

cjtuft'^ = V''+ 8^ yt>l (5.12) 
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as for (2.4), where and S'^ are random matrices of the same dimension as CiJeWt"̂ , 

P(vec(S'n) = Cov(vec(y'^),vec(5n) = 0, Vt (5.13) 

and 

Cov(vec(5'n, vec(5,^)) = 0,ys^t (5.14) 

Var(vec5,^) = Var(vec5n, Vs,t (5.15) 

Decomposing vec{i/ti^t'^) similarly gives 

utut^ = V + S'i Vt > 1 (5.16) 

with properties as for representation (5.12). Note that P(y^) = P(ci;(a;t'̂ ) = Var(a;() 

= W and so learning about will allow learning about the covariance matrix for the 

residuals for the state, and Piy") = P{utUt^) = Var(i/t) = V, and so learning about 

V will allow learning about the covariance matrix for the observational residuals. 

Representations (5.12) and (5.16) decompose uncertainty for Utu^i^ and v>t^t^ into 

two parts. Bayes linear updating (with enough data) will eliminate the aspects of 

uncertainty derived from uncertainty about and . 

In order to conduct a Bayes linear analysis on the quadratic structure additional 

covariance specifications Var(vecy^), Var(vecV'''), Var(vecS'^) and Var^vecS!^), for 

some t are needed. 

5.3.2 Example 

In the example, the Xt vector is 6-dimensional, and so the matrices, V^, V", 5" 

and S"^ are 6 x 6-dimensional. Consequently, the matrices Var(vecy'^), Var(vecy), 

Var(vecS'^) and Var(vecS'i'') are 36 x 36-dimensional. When referring to the compo-
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nents of Var(vecy'^), the notation vfji^i will be used to denote the covariance between 
the {i,jy^ and {k, / ) " ' elements of V^. Similar notation is used for Var(vecy). Also 
sfji^i and Siji^i are used for the components of Var(vec5^) and Var(vec5('') respectively. 
The following covariance specifications were made for our example: 

= 9/4, V ,̂ v^,j = 9/16, ^ j, = 1/5, Vz ^ j, (5.17) 

= 25, Vz, = 1, Vz ^ j, = 4, Vz ^ i , (5.18) 

s%,i = 30, Vz, sr,,,- = 15, Vz ^ i , = 2500, Vz, 4,,. = 1000, Vz ^ j . (5.19) 

For instance, ŵ ĵj is the variance specification for the (z, z)*'' element of V^, which 

represents the underlying variance of the z*'' element of u>t. From (5.10), it has ex

pectation 4. From (5.7), this value governs the rate of change of ©<. By considering 

the range of plausible variances for the way ©t might change over time, it was felt 

reasonable that a standard deviation specification of 3/2 should be made. The other 

specifications were made in a similar fashion. For simplicity in this example, the spec

ifications for sfji^i and s^ji^i were made using the fourth moments of the multivariate 

normal distribution compatible with the given second-order structure as a guide. 

Whilst considerably more specifications would be required for a full Bayes or Bayes 

linear analysis, (5.17), (5.18), and (5.19) are sufficient for our purposes as these are 

the only specifications needed for the matrix object approach to belief revision which 

is to be taken in the later sections. 

There is a lot of symmetry in these values, greatly simplifying the specification, 

but once again, any non-negative covariance structure over the quadratic products is 

acceptable. Here assumptions of exchangeability over the variances and the covari-

ances have been used. Many of the specifications made for the quadratic structure 

will be "averaged over" in the matrix object approach to covariance adjustment which 
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shall be developed, and so there is a limit to the effort that one would wish to put 
into very detailed specifications at this stage, since the suggested analysis will not be 
overly sensitive to the individual specifications. 

5.3.3 Observable quadratic terms 

First, certain linear combinations of the observables which do not involve the state 

vector, 0t , will be constructed. This is useful for various reasons, and in particular 

because it greatly reduces the prior specification required for the analysis of the 

quadratic structure. In this thesis, we shall mainly be concerned with DLMs for 

which there exists an r x r matrix H, such that HF'^ = F'^G. We call such DLMs 

two-step invertible. Note that a DLM will be two-step invertible if F is of full rank 

and r > p (as will often be the case for high-dimensional time series), and there will 

often be many matrices H satisfying HF'^ = F'^G. For example, H = F'^G'^F'^^ 

(where represents any generalised inverse of F'^) is a solution. Further, if F is 

of full rank, r < p and such a matrix exists, then H = F'^GF{F^F)~^, and so H 

exists, if and only if F'^GF{F^F)-^F'^ = F'^G. Note also that the matrix has the 

property that H'^F^ — F^G^. For a two-step invertible DLM, the following vectors 

of observables which do not involve the state vector may be constructed: 

X[ = Xt-HXt-i^F'^iVt + iyt-Hiyt-i > 2 (5.20) 

X'; = Xt-H^Xt-2 = F^u}t + F'^G(Vt-i+i^t-H^'^t-2 Vi > 3 (5.21) 

Form the matrices of quadratic products, X[X['^ and X"X"'^ Vi. These are pre

dictive for and V\ 

Not all DLMs are two-step invertible, but for the constant dynamic linear model 

outlined in Section 5.2.1, it is always possible to construct linear combinations of the 
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observations which do not involve the state, provided only that the constant dynamic 
linear model in question is observable (for a discussion of the very weak restriction 
of observability, see West and Harrison (1989, Chapter 5)). However, in general such 
linear combinations require more than two successive observations from the series. 
Consequently, for simplicity attention is restricted to the two-step invertible model. 
However, the approach is quite general, and may be applied similarly for any constant 
observable DLM, the only diflFerence being that the covariance specification is more 
complicated, more quantities are involved in the adjustment, and the identifiability 
results are more complex, and in general, slightly weaker. 

5.3.4 Example 

For the example, F, G and H are all the identity, and so the one and two-step 

differences of the observables are formed: 

XP = Xt-Xt-i=<^t + Ut-Ut-i yt>2 (5.22) 

= X ( - Xt_2 = c j ( u ; t _ i - f i/f - i/f_2 V t > 3 (5.23) 

The quadratic products of these, xj^^xj^^'^ and xf^xf^'^ are then formed. These 

observables are predictive for and V and so may be used to learn about the 

underlying covariance structure. All means and covariances that are required for the 

subsequent analysis are determined by specifications in (5.8), (5.9), (5.10), (5.11), 

(5.17), (5.18) and (5.19). The precise form of the covariance structure over the ob

servables is rather complex, and given below. Recall that the operators (g) and • 

were defined in Definitions 1 and 2 respectively (page 28). The covariance structure 

over the quadratic products of the 1-step differences is determined by the following 

relations: 

Cov(vecI '̂̂ , vec{x\^^xP'^)) = Var(vecF'̂ ) (5.24) 
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Cov(vecF^vec(A:f^xf)'^)) = 2Var(vecF'') (5.25) 

Covivecix[^^x\^^'^),wec{xPxi^^^)) = Var(vecF'̂ ) + 4Var(vecy'') 
+ Var(vec5n+Var(vec5t''_i) 
-I- Var(vec5i^) 
+ 2[E{V (»V) + E{V-kV)] 
+ A[E{V) (8) EiV) + EiV) • EiV^) 
+ E{V'^)®E{V'') + E{V'')-kE{V)] 

(5.26) 

Covi^rec{x[^^xl^^'^),vec{xl^\x\^]J)) = 4(Var(vecF'') + Var(vecF'̂ )) + Var(vec5t1i) 

(5.27) 

Cov{vec{xi^^xi^^'^), vec{xi^\xl]}j)) = 4Var(vecF'') + Var(vecF'̂ ) Vi, Vs > 2 

(5.28) 

The covariance structure over the quadratic products of the 2-step differences are 

given below. 

Cov(vecT/'̂ ,vec(Xp)A:p)'^)) = 2Var(vecF'̂ ) (5.29) 

Cov(vecF^ vec(xf ^Xf )'r)) = 2Var(vecF'') (5.30) 

Cov(vec(xf^Xp^T)^^ec(Xp^Xp)T)) ^ 4Var(vecF'̂ ) + 4Var(vecF'') 
+ Var(vec5n -I- Var(vec5(''_2) 
+ Var(vec5t^)-1-Var(vec5f_i) 
+ 2[E(F''® F'') + E(F''* F") 
-I- EiV^ ®V") + E{V'^*V'^)] 
+ 4[E{V'')®E{V') + E{V')*E{V'^) 
+ E{V'^)^E{V'')+E{V'^)irE{V)] 

(5.31) 

Cov(vec(Xp)xp^T),vec(xS!\xS!.\T)) = 4[Var(vecT/'') + Var(vecy'^)] + Var(vec54̂ _i) 

(5.32) 

Covivec{x'^^x'^^'^),vec{x[%xi%^)) = 4[Var(vecF'') + Var(vecF'̂ )] Var(vec5fl2) 

(5.33) 

Cov(vec(xf ^ X f ^'^), wec{x[%x[%'^)) = 4Var(vecF'') + Var(vecF'̂ ) Vt, Vs > 3 

(5.34) 
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The covariances between the one and two step differences are determined as follows: 

Cov(vec(xS^)xf )'̂ ), vec(xJ5,xi57)) = 4Var(vecy'') + 2Var(vecy'̂ ) Vi, Vs > 3 

(5.35) 

Cov{^rec{xPxl^^^),^rec{x'^^2X'^+2^)) = 4Var(vecF'') + 2Var(vecV '̂*̂ ) + Var(vec5t_2) 

(5.36) 
Cow{vec{xPxP^),vec{X^^^iX[%'^)) = 2Var(vecF'̂ ) + 4Var(vecF'') 

+ Var(vec5J'_2) + Var(vec5f^_i) 
+ E{V'')^E{V'')+E{V'')-kE{V'^) 
+ E{V'^)<B>E{V) + E{V'^)*E{V') 

(5.37) 
Cow{vec{xPxP^),yec{xi^^x[^^^)) = 2Var(vecF'̂ ) + 4Var(vecy'') 

+ Var(vec5n + Var(vec5^) 
+ E{V'')®E{V'^) + E{V)*E{V'^) 
+ E{V'^)(8)E{V) + EiV'^)-kE{V) 

(5.38) 

Cov(vec(x5^^xj^ '̂̂ ),vec(xS^\xi!\T)) = 4Var(vecF'') + 2Var(vecF'̂ ) + Var(vec5J'_i) 

(5.39) 

Cov{^^ec{xPxl^^'^),vec{X^%X^%^)) = 4Var(vecF'') + 2Var(vecF'̂ ) Vi,Vs > 2 

(5.40) 

These results are obtained by focussing on a general element of a matrix on the 

left hand side, and then substituting into the left hand sides the definition (5.22) 

and (5.23), expanding the covariances, substituting representations (5.12) and (5.16), 

and then simplifying the result using known orthogonalities to deduce the general 

element of the matrices on the right hand side. However, there are several hundred 

terms in some of the expansions and a computer algebra package was used to ensure 

the accuracy of the results. Appendix B deals with the derivation of these results, 

using the REDUCE computer algebra system. 
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5.4 n-step exchangeability 

5.4.1 n-step exchangeable collections 

Recall that in Section 3.4 the concept of n-step exchangeability was introduced. The 

covariance structure over X[, X" and their quadratic products is second-order n-step 

exchangeable. In Section 5.5.1 an inner-product space of random matrices appropriate 

for dynamic linear models will be constructed, and collections of matrices within this 

space will be found which exhibit generalised second-order n-step exchangeability. 

More formally, form collections X* = {X^^XjjVz,;, > 2} and X** = {X^JXj'jV 

hj,yt > 3}, of the matrices {X'tX[^\yt > 2} and {X;'X;'T|Vt > 3} defined in Section 

5.3.3, where denotes the i^^ component of the vector X[. Form a vector space, 

V consisting of all linear combinations of the elements of X* and X** and the unit 

constant, and define the inner-product on this space as {X, Y) = P{XY), yx, Y G 

V. We may easily check that X* is (second order) 2-step exchangeable over t, and 

that X** is 3-step exchangeable over t. 

5.4.2 Identification of the covariance structure underlying 

the D L M 

The n-step exchangeability representation theorem (Theorem 1) allows construction 

of models for the observable quadratic products which have been formed. The ele

ments of the collection {X[X[^\yt > 2} for the two-step invertible DLM, are 2-step 

exchangeable over t. Using Theorem 1, construct the representation (3.25). The 

identified quantities may be constructed as the Cauchy limit of the arithmetic means 

of the elements. 
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Lemma 1 The 2-step exchangeable collection {X^X['^\\/t > 2} identify the matrix 

M' = F'^V^F + + HVH'^ (5.41) 

and the 3-step exchangeable collection {X"X"'^|Vf > 3} identify 

M" = F'^GV'G'^F + F^VF + + H'^VH'^'^ (5.42) 

Proof 

M' = lim ^EX;X;T (5.43) 

1 ^ 
= yin^^j^T.iF'^^t^i^t-Hvt^{){F'^u,t^Ut-Hut_^y (5.44) 

1 ^ 
Ar->-oo N 

+F'^u}ti^t^ - F'^iVtUt-i^H'^ + UtUit^F 

-VtU^.^'H^ - Hut_WF - Hut-iuJ) (5.45) 
1 ^ 

= ^im - Y^F'^uJtcVt^F + iytiyt^ + Hiyt-iUt-.'^H'^ (5.46) 

= F'^y'^F + y ' ' + F y / / ' ^ (5.47) 

The derivation of M" is similar. ^ • 

Now since | [i^M'/Z^ - (M" - M')] = HVH^ we deduce that for a 2-step in

vertible series, the collection 

{ \ [HX[X[^H^ - {X'lXf - XJXD] I W > 3} (5.48) 

identifies HVH'^. 
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Now if r >p, H can always be chosen to be invertible. If r < p, since it has been 
assumed that F and G are of full rank, so is H, and so H is invertible. Consequently, 
it shall be assumed that H has been chosen to be invertible. Now, since | [ M ' -
H-\M" - M')H-'^] = V and M ' - V - HVH^ = F^V'F it is trivial to deduce 

Theorem 2 For a 2-step invertible series with invertible H, put 

Mt = I [X[X['' - H-\X'IX'r - X[X'J)H-'^] (5.49) 

fi) The collection of matrices {M^lVt > 3} identify V". 

(ii) The collection of matrices {x ' ^Xj^ - Mt - HMtH'^\yt > 3} identify F'^V'^F. 

• 

If p > r, the entire matrix is not identified. This would require a fuller selection 

of observables than we have considered here. The identified matrix, F'^V'^F, is the 

transformation of with the most immediate effect on the adjustment, since it is 

the contribution to the uncertainty for Xt from 0^, given ®t-\- To see this, note 

that 

Xt = F^G@t-i + F'^ivt + i^t (5.50) 

and so 

giving 

Also, 

Var(Xt) = F'^GYar{@t-i)G'^F + F^P{V'')F + P{V) (5.51) 

Var(Xt|0t_i) = PiF^VF V ) (5.52) 

Var(X, |0 , )=P(y ' ' ) (5.53) 

and so the additional uncertainty comes from the F^V^F. 
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5.4.3 Example 

In the example. Theorem 2 implies that the collection {Xp^xf^^ - xPxP^\\/t > 

3} identify and that the collection {xj^^xi^^^ _ ijs^(2)j^(2)T|y^ > identify V . 

It is worth noting that in the simple example being considered here, we have that 

Xp) = Xp) + X S (5.54) 

and so adding the collection {Xp^Xp^'^|V^ > 3} to the space spanned by the 

{xPxi^^'^\\/t > 2} has the eflFect of introducing terms of the form xS^^xji^ -I-

x[]}iX[^\ It is also worth noting that the collection of quantities 

{ - i {xPxlV + xi'\xl'^^)\\/t > 3} (5.55) 

identifies the matrix V, and that in this example, such a collection has smaller 

variance than the collection {Xp^X^^"^ - |Xp^Xp^^|Vi > 3}, and so represents a 

better collection with which to identify V (since uncertainty about the underlying 

quantities is resolved more quickly). 

By observing sales at an increasing (but finite) number of time points, one may 

resolve through linear fitting, as much uncertainty as is desired about the underlying 

covariance structure for the particular time series model being dealt with. 

If all fourth order prior belief specifications have been made, a simple Bayes linear 

analysis can be carried out in order to learn about the underlying covariance structure 

by adjusting the elements of V, by the elements of the observable matrices 

Xp^Xj^^'^, Xp^Xp^'^. However, for long, high-dimensional time series, the number 

of quantities involved in a full linear adjustment is extremely large, and so it is 

important to reduce the dimensionality of the problem, and preserve the inherent 

matrix structure. This is done by carrying out adjustments in a matrix space. 
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5.5 Matrix objects for the time series 
5.5.1 Formation of the matrix space 

To learn about r x r dimensional covariance matrices, first form the r x r constant 

matrix basis, by defining Cr{i-i)+j to be the matrix with a 1 in the {i, jY^ position, and 

zeros elsewhere, where i and j range from 1 to r. Call this collection C = [ C i , . . . , Cr2 . 

Define the collections of matrices 

Xl = {X'^X'J, HX'^X'^^H'^.H-'X'^X'^'H-'^} (5.56) 

X} = {X[X[^,X'lXf,HX[X[^H'^,H-^X[X\^H-^'^,H-^X'lX'l'^H-''^}, Vi > 3 

(5.57) 

Following the construction given in Chapter 3, form the real vector space, M whose 

elements are linear combinations of random r x r matrices as follows. 

N = span[CuXlvjXlu ..] (5.58) 

Define an inner-product on M via 

{A, B) = P(Tr[^5^]), \fA,BeJ\f (5.59) 

Complete into a Hilbert space, M.. Now since the collections whose mean limit 

points are HVH'^, V", and F^V^F are present in the space, jV, Cauchy limit points 

such as HVH^, V", and F'^V'^F are present in the completed space, M. The inner-

product on this space is determined by our beliefs about the quadratic products, since 

{A, B)^Y.I1 [CoviAjk, Bjk) + P{Ajk)P{Bjk)] VA, 5 G X (5.60) 
j=i fc=i 
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Bayes linear adjustment may be carried out in this space by orthogonal projection of 
the matrices of interest into subspaces of observable matrices. As previously noted, 
this matrix approach to belief adjustment is a more direct way of getting at desirable 
linearity properties of conditional expectations for matrices, than via the somewhat 
artificial constructs such as the matrix Normal, inverse Wishart and matrix T distri
butions. The definitions and properties of such distributions are described in Dawid 
(1981), and their application to matrix Normal DLMs is discussed in West and Har
rison (1989, Section 15.4). Essentially, the notation and distributions are chosen 
so that they are consistent under marginalisation (Dawid 1981, Section 2), leading 
to simple linear conditional and predictive distributions for matrix Normal models 
(Dawid 1981, Section 8). Consequently, the updating equations for a matrix Normal 
DLM retain a simple linear form (West and Harrison 1989, Section 15.4.4). 

5.5.2 Example 

For our example, simply construct 

Af = span{C, X^^X?\ X^^^X?\ X?^xf^\ X?X?\ ...} (5.61) 

and impose the inner-product (5.59), inducing the Hilbert space M, which contains 

limit points such as V and V^. Note that in order to evaluate (5.59), the specifi

cations needed are precisely those which were made in Section 5.3.2. The fact that 

many other aspects of the fourth order specifications are not necessary is very helpful, 

as this greatly reduces the specification burden. Often it is most straightforward to 

make direct primitive specifications for the matrix object inner-product. However, 

for simplicity here, the specifications for the matrix inner product have been built 

up from specifications over the scalar quadratic products, thus establishing the links 

between the scalar and matrix analysis, as discussed in Chapter 3. 
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5.5.3 n-step exchangeable matrix objects 

The definition of generalised n-step exchangeability applies directly to matrix ob

jects in the space M. The collection of matrix objects {X[X[^\yt > 2} is 2-step 

exchangeable in the space M, and the collection {X"X'l^\yt > 3} is 3-step exchange

able. This leads to a restatement of Theorem 2 for matrices in the space M. The 

limit points are the matrices of limit points of their elements, due to the consistency 

of the inner-products on the scalar and matrix spaces, as shown in Section 3.3. 

Theorem 3 Put Mt = | [x'^X'^^ - H'^X'lX'P^ - X\X[^)H-^'^'. 

(i) The collection { M t | > 3} identifies V in M. 

(ii) The collection [X[X[^ -Mt- HMtH'^\\/t > 3} identifies F'^V'^F in M. 

• 

5.5.4 Adjustment 

Consider observing n > 3 time points in the series. Form the matrix space, and 

the observable subspace Dn C. M 

Dn = span{C U X | U X | U . . . U Xl} (5.62) 

Then the adjusted expectation map, ED„{-) : M -> Z)„, is the orthogonal projection 

into the D„ space. In particular, evaluate Yjo^iy^) and 'E£>^{F'^V'^F), which are 

matrices in the Dn space ( V and F'^V'^F are chosen because they are the matrices 

in M which we are most interested in). 
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5.6 Bayes linear adjustment for the example 

5.6.1 The adjusted covariance matrices 

Adjustments were carried out using 17 time points from the actual time series. The 

sample means for the 6 brands were 16.5, 3, 4.5, 27.5, 3.4 and 31. The matrix objects 

and y were adjusted in the following ways: 

M 1 1 1 1 1 \ 
1 4 1 1 1 1 
1 1 4 1 1 1 
1 1 1 4 1 1 
1 1 1 1 4 1 I 1 1 1 1 1. 4 / 

(5.63) 

( 4.8 0.9 
0.9 3.9 
1.0 1.2 
1.0 0.9 
0.8 1.1 

V 1.5 0.3 

1.0 
1.2 
4.0 
1.1 
1.1 
0.7 

1.0 
0.9 
1.1 
6.8 
0.7 
0.8 

0.8 
1.1 
1.1 
0.7 
3.9 
0.8 

1.5 \ 
0.3 
0.7 
0.8 
0.8 
4 . 7 / 

/ 36 - 4 - 4 - 4 - 4 - 4 \ 
- 4 36 - 4 - 4 - 4 - 4 
- 4 - 4 36 - 4 - 4 - 4 
- 4 - 4 - 4 36 - 4 - 4 
- 4 - 4 - 4 - 4 36 - 4 

V _4 - 4 - 4 - 4 - 4 36 ) 

( 41.8 
-5.4 
-4.4 
-8.0 
-4.7 

\ -2.4 

-5.4 
36.7 

-3.8 
-0.2 
-3.2 
-4 .1 

-4.4 
-3.8 
36.1 
-4.4 
-3.5 
-7.5 

-8.0 
-0.2 
-4.4 
56.6 

-5.6 
4.8 

-4.7 
-3.2 
-3.5 
-5.6 
34.9 
-4.9 

-2.4 \ 
-4 .1 
-7.5 

4.8 
-4.9 
44.0 / 

(5.64) 

(5.65) 

(5.66) 

The prior specifications were given in (5.10) and (5.11). The adjusted matrices are 

perturbations of the prior expectations for the matrices. Notice that the variance 

associated with the fourth variable has been inflated considerably in both matrices. 
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Variable (Brand) Primary eigenvector Secondary eigenvector 
1 -0.07 0.21 
2 -0.03 -0.21 
3 -0.02 -0.12 
4 0.39 0.05 
5 -0.07 -0.13 
6 -0.09 0.31 

Eigenvalue ratio 1.88 1.47 

ible 5.1: Eigenstructure of the belief transform for the adjustme 

Variable (Brand) Primary eigenvector Secondary eigenvector 
1 0.02 -0.11 
2 0.04 0.02 
3 0.03 0.02 
4 0.12 0.03 
5 0.02 0.00 
6 0.07 -0.08 

Eigenvalue ratio 1.89 1.24 

Table 5.2: Eigenstructure of the belief transform for the adjustment 

The sample variances for the 17 cases of the six brands considered were 167, 22, 

37, 560, 18 and 427. Informally, i t seems that there may indeed be more variability 

associated with the fourth (and last) variable. 

More formally, as described in Section 4.3.2, one may analyse the eigenstructure 

of the belief transform implied by the adjustment. Examining Table 5.1 shows that 

for the adjustment of the matrix V^, variance has been inflated by a factor of 1.88 

in a direction close to the fourth brand, and by a factor of 1.47 in a direction close 

to the diff'erence between the second and the sum of the first and last brands. Other 

components had eigenvalues close to one, and hence were of minimal interest. Table 

5.2 shows that for the adjustment of the matrix V^, variance has been inflated by a 

factor of 1.89 in a direction close to the fourth brand, and by a factor of 1.24 in a 

direction close to the difference between the first and last brands. 
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5.6.2 First order adjustment 

Since the aim is to predict sales more accurately, a sensible test of the procedure is to 

compare the performance of the first order model, (5.6), (5.7), using both the prior 

and adjusted covariance matrices. Carrying out the adjustment shows that the Bayes 

linear diagnostic warnings (the size and bearings of the adjustments, as described 

in Goldstein (1988b)) are noticeably closer to their expected values when using the 

adjusted matrices. For the given example, most of the size ratios for adjustments of 

the first order structure were noticeably closer to one using the adjusted covariance 

structure to predict future values, suggesting that the adjusted matrices match more 

closely with the forecast performance of the model. 

The improvements in forecast performance are graphically illustrated using di

agnostic Bayes linear influence diagrams. Two sequences of diagrams are given in 

Figures 5.1, 5.2, 5.3, 5.4 and 5.5. The top diagrams represent the usual Bayes linear 

adjustment for a dynamic linear model using the a priori covariance structure, and 

the bottom diagrams represent the adjustment using the updated covariance struc

ture. The shadings in the centre of the nodes are diagnostics based on the sizes of 

the adjustment. The larger the amount of red or blue, the stronger the diagnostic 

warning. Within each diagram, the upper layer of nodes represent the unobservable 

quantities in the models; namely Ut and W j . The lower row of nodes represent the 

observable quantities; namely the X f . I t can be seen that the lower series of dia

grams has consistently, slightly less diagnostic warning, indicating that the revised 

covariance structure matches more closely with the forecast performance of the model. 

Of course, since the revision of the covariance matrices was carried out using the 

first 17 weeks worth of data, one would hope that the diagnostics would improve 

when the first order adjustments are carried out for those weeks, using that revised 

covariance structure. A purely sample based estimate of the covariance structure 
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would probably perform even better! However, it is at least reassuring to see that 
the adjustment clearly hasn't niade things worse. Further, i f we focus attention on 
Figure 5.5, we see that the improved matching of the forecast performance of the 
model continues as first order adjustments continue on new data. Note that the 
diagnostics have not significantly improved using only 17 weeks of data. For these 
kinds of time series structures, it takes a large amount of data to learn a significant 
amount about the underlying variance structures, and this point is explored further 
in the next section. Diagnostics for scalar and matrix adjustments are discussed more 
fully in Chapter 6, and the calculations underlying the diagnostics for this example 
are discussed in Section 6.1.2. 

5.7 Iterative adjustments 

5.7.1 Methodological considerations 

For real-time problems, data will arrive for consideration one time point at a time. 

Suppose we are currently at time t. We must consider how best to use the available 

data in order to make predictions for future sales. We will wish to use all of the 

data to revise beliefs about the covariance structure for our dynamic linear model, 

and then carry out first order adjustments using the revised covariance structure. 

However, when we receive the data for time point t + 1, we will update beliefs for 

the covariance structure. Having done so, we will need to re-compute the first order 

adjustments for all time points, using the revised covariance structure. I t will not be 

sufficient to simply add data for the last time point to the adjustment. The quadratic 

data is informative for the covariance structure underlying the entire first order series, 

and not just for the last time point. 
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Figure 5.1: First order adjnstmeut.s: weeks 13 17 
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5.7.2 Illustrative example 

Consider Figure 5.6. Each small node represents 8 weeks of sales data for the top 

two brands of shampoo. Each node on the top row represents 16 matrix objects 

— one for each week for both X[X['^ and X"X"'^. The large node in the middle 

represents the two matrix objects and y . The bottom rows of small nodes each 

represent 8 two-dimensional vectors of weekly sales. The shadings for the bottom row 

of nodes correspond to those for a conventional stepwise Bayes linear adjustment of 

the structure. The shadings for the row above take the covariance structure updates 

into consideration. The shadings in the centre of the nodes are diagnostic warnings, 

based on the size and bearing of the adjustments. I t is immediately obvious that the 

shadings for the adjustments which take into account available quadratic data improve 

proportionately with time, indicating an improvement in the understanding of the 

forecast performance of the model as the covariance structure tends to the "true" 

underlying structure, as the model learns about the variability of components and 

correlations across them, thus improving forecast estimates, and associated standard 

errors. Note though, that the rate of learning in this example is very slow. Each 

portion of shading on the large central node represents the proportion of uncertainty 

resolved by eight weeks of sales data. Even at the end of the process, having used 40 

weeks worth of quadratic sales data, only about one sixth of the uncertainty about 

the underlying covariance structure has been resolved. I t is no wonder that in the 

last section, improvements in diagnostics using only 17 time points was marginal. 

Diagnostics for Bayes linear adjustments are discussed in Chapter 6. 
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5.8 Conclusions 

Good forecasting requires careful updating of the covariances within the time series 

structure; Informally, the degree of shrinkage between the prior and the data is up

dated, and relationships between variables are properly taken into account. Since one 

is able to adjust the covariance matrices for both the observational as well as state 

residuals, i t is possible to understand the competition and demand effects taking 

place within the series. By taking a matrix object approach, the problem is greatly 

simplified by reducing it's dimensionality. This is important for both simplifying be

lief specification and belief adjustment, and also for interpretation of the structure 

of the adjustment and accompanying diagnostics. There are also the general advan

tages of the Bayes linear approach; namely of allowing complete fiexibility for the 

prior specifications, without placing distributional restrictions on the data or model 

components. 

Of course, i t is in principle possible to take a distributional Bayesian approach to 

this problem. Provided one is up to making a joint distributional statement about the 

components of the underlying matrices and the quadratic observables (a formidable 

task), one could use MCMC techniques, for example, to sample from the distribution 

to obtain posterior estimates. However, for non-trivial problems the problem would be 

sufficiently high-dimensional that assessing convergence would be extremely difficult. 

Also, it would be hard to assess the eifect of the largely arbitrary choice of distribution 

made. Further, an a priori analysis to tackle design issues (such as how many time 

points are needed to reduce uncertainty about the underlying covariance matrices 

to one tenth of their a priori values) would be difficult to contemplate using such 

a framework. On the contrary, using the Bayes linear approach advocated in this 

chapter, a ful l a priori analysis is possible, allowing the handling of such design 

questions before receiving any data. 



Chapter 6 

Matrix adjustment diagnostics 

6.1 Bayes linear diagnostics 

6.1.1 The size and bearing of a scalar adjustment 

Before going on to discuss general Bayes linear diagnostics, it is important to outline 

the usual concept of size and bearing for scalar Bayes linear adjustments. These 

concepts are discussed more fully in Goldstein (1988b). For the adjustment of a 

collection of scalar random quantities, B = [Bi,B2,...], by a data space, D, we a 

priori form the random vector ED{B) = {ED{BI),ED{B2), .. .)'^. When the data 

space is observed to be D = d, the precise value of the vector ED{B) = Ed{B) 

becomes known. The further away Ed{B) is from E{B) relative to prior standard 

deviation, the more surprising our change of belief. With this in mind, the size, 

Sized{B) of the adjustment is defined as follows. 

S i . e . (B)= „ax ' ^ - W - y ^ (6.1) 
^ ^ xespan{B} Var(X) 

94 
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Now let U = [Uo = 1, Ui, U2,...] be an orthonormal basis for span{B} with respect 

to the inner-product (•,•). Then the bearing, Zd{B) is defined by 

Z,{B) = Y,MUi)Ui (6.2) 
i=l 

The bearing has the property that it is the quantity, X which maximises the expres

sion in (6.1). Hence, 

Sizerf(5) = Var(Zd(S)) = ^ Elm (6.3) 
i= l 

Also note that the bearing is a complete summary of the adjustment, since 

Ed(X) - E(X) = Cov(X, Zi{B)) (6.4) 

The size ratio, Sr^iB) of an adjustment, is the magnitude of the size of the adjust

ment, relative to it's expected value. Hence, 

and E(Var(Z£,(5))) is given by the trace of the belief transform for the adjustment, 

Cov(£) ,B)Var (S) -^Cov(B,£) )Var (£) ) - i (Goldstein 1988b). A size ratio close to 

one indiciates observations consistent with prior beliefs. A very large size ratio is due 

to a surprisingly large change in belief, indicative of too small specifications made 

for prior uncertainties. A size ratio very close to zero is due to a surprisingly small 

change in belief, indicative of too large specifications made for prior uncertainties. 

I t is a simple transformation of the size ratios which is used to shade the diagnostic 

warnings in the centres of nodes on diagnostic Bayes linear influence diagrams. 

To those readers familiar with the basic concepts of functional analysis, it should 
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now be clear that the bearing is derived from the Riesz representation for the bounded 

linear functional Eci{X) - E{X) (see Section 3.8-1 of Kreyszig (1978), for example). 

Note then, that the fact that the linear function Ed{X) - E{X) is in fact a func

tional (a function whose image is a subset of the real or complex numbers) is crucial 

to the concept of the bearing, and all of the elegant additive properties of the bear

ing for sequences of adjustments (Goldstein 1988b) depend upon the existence of a 

Riesz representation. Note also that when we are dealing with matrices, the function 

Ed{X) - E{X) is most certainly not a functional, and so in order to make any sense 

of the standard diagnostic and interpretive features of the Bayes linear methodology, 

a clarification of precisely what is meant, in general, by terms such as the size and 

bearing of the adjustment, is required. 

6.1.2 Examples 

Consider Figures 5.1, 5.2, 5.3, 5.4 and 5.5. The shadings in the centre of the nodes 

are a non-linear transformation of the size ratios for the depicted adjustments. Red 

shadings represent size ratios lager than one, and blue shadings represent size ratios 

smaller than one. The transformation has been chosen so that a shading of more 

than half of the available area is "surprising". I t is clear that the lower diagrams (the 

first order adjustments using the revised covariance structure) have slightly smaller 

shadings, representing size ratios closer to one, representing adjustment sizes closer 

to expected values. This is indicative of a covariance structure which more closely 

matches the forecast performance of the model. 

Figure 5.6 shows the improvement over time of the forecasting performance of the 

model as more covariance information becomes known. The diagnostic shadings for 

the row of first order adjustments including covariance updating become proportion

ately smaller than those without covariance adjustment as more information about 
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the covariance structure becomes known. The diagnostics for the matrix adjustments, 
shown in the large central node, are calculated using the subspace bearing technique 
discussed in the next section. 

6.2 The subspace bearing 

6.2.1 Definition 

Here the bearing is generalised to the space of random matrices. For any given con

stant matrix, G, and projection space D, the bearing is defined to be the (essentially) 

unique random matrix, B, with the properties E{B) = 0 and 

{A-E{A),B) = {E,iA),G)-{E{A),G), ^AeM (6.6) 

where Ed{A) represents the realisation oiEoiA) after observing D = d. This matrix is 

derived from the Riesz representation for the functional {Ed{A) -E{A),G). Different 

choices of the constant matrix, G, give information about different projections of the 

adjusted expectations. 

The choice of G which causes diagnostics to match up exactly with those for 

scalar Bayes linear adjustment in the case of exclusively one-component matrices, is 

the choice given by the constant matrix whose elements are all 1. To see this note 

that the for this choice of G, the functional of interest, (£^(^4) - E(A),G), becomes 

E E E . ( A , ) - E ( ^ , , ) (6.7) 
i j 

and so for a one-component matrix, whose only non-zero element is in row ̂ , column 

j, this becomes Ed,{Aij) — E{Aij), as for the usual case of scalar adjustments. The full 

correspondence follows since the one-dimensional matrix subspaces are orthogonal 
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under the matrix inner-product. 

6.2.2 Example 

Reconsider Figure 4.2 from Chapter 4. At the centre of the V node, red (blue) 

shadings represent changes in expectation larger (smaller) than expected a priori. 

Adjusting by the sample covariance matrix, Ds, caused a much larger change in 

expectation than expected a priori. This is evidence of over-confidence about our 

ability to predict the true value of the covariance matrix, and suggests re-examination 

the prior specification. Notice also that adding the full variance collection. Dp, to 

the adjustment had the potential to change our expectation considerably, but in fact, 

hardly changed it at all. This is perhaps evidence of overestimation of the importance 

of the covariance terms. 

6.2.3 A space of subspace bearings 

Note that the subspace bearing is defined for a given choice of constant matrix, G. 

Consequently, for each choice of constant matrix, there is a corresponding bearing. 

In particular, it may be of interest to study the structure of the map, (f): C —> M, 

which maps a given choice of constant matrix to it's corresponding bearing, and 

its image, 0(C) C M. Notice that the map (f) is linear, and so an analysis of the 

eigenstructure of the map 

(l>*(f>:C^C (6.8) 

(where 0* denotes the Hilbert-adjoint of the (j) operator) may be informative. See 

Section 6.3 for more details of this kind of construction and analysis. 
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6.2.4 Limitations of the subspace bearing 

The above sections show that the subspace bearing can be very useful for diagnosing 

matrix adjustments, and in particular, for linking up with diagnostics for the com

ponent scalar adjustments. However, in general there is only a sensible link with 

scalar diagnostic analyses in the case where all matrices are decomposed to the one-

component level. When matrices are not decomposed to the one-component level, the 

interpretation of the subspace bearing is much less clear. However, one may not be 

prepared to undertake the specification and computational burden imposed by such 

a decomposition of structures. 

In the simple exchangeable matrices example discussed in the previous section, 

all specifications over the matrix components were made in order to deduce an inner-

product over all sub-matrices, and so no problem arose in deducing or interpreting 

the bearing. However, in the dynamic linear model example of Chapter 5, only 

specifications sufficient to allow the deduction of the inner-product over the whole 

matrix objects were given. Hence in this case, the interpretation of the calculated 

subspace bearings are unclear. In the matrix adjustment example shown in Figure 

5.6, large diagnostic warnings are present, but it is totally unclear as to whether or 

not these should really be considered to be a serious problem. 

Moreover, in general one will often wish to make primitive specifications for the 

matrix inner-product, without making any recourse to scalar components, and in this 

case it is clear that obtaining beliefs over the scalar subspaces is not possible. Also, 

the methodology underlying the subspace bearing seems contrived, and the resulting 

definitions of sizes and bearings of adjustments do not seem to fit well with an intuitive 

concept of size and bearing for an adjustment. 

The above motivates the development of a more general concept of bearing, not 

tied the the concept of the Riesz representation for bounded linear functionals on 
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Hilbert space. 

6.3 General Bayes linear diagnostics 

6.3.1 Observation operators 

Definition 4 Consider the Hilbert space % with Hilbert subspaces, C and D such 

that C C. D C H. C represents the subspace of known quantities, and D represents 

the subspace of observable quantities. Define the operator, ED{-) • H. ̂  D to be the 

orthogonal projection into the space D. Then, for a given realisation d of the space, 

D, define the observation operator, Fd as follows: 

Fd{-) :D-^C (6.9) 

where for every X e D, Fd{X) is the realisation of X. Note that the observation 

operator, Fd is linear. Also, the C space will, in general, be chosen so that Fd is 

necessarily bounded. Next define the observed adjusted expectation operator, Ed, via 

Erf(-) -.n^C (6.10) 

where 

EdiX) = FdEniX), yxen (6.11) 

Note that Ed is bounded and linear. 

• 
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6.3.2 General diagnostic measures 

The bounded linear operator, : H —> C contains all the information about the 

observed adjustment. If we are interested in the effect of the observations on some 

particular Hilbert subspace, B CH, such that B _L C*, we can look at the restriction 

of Ed to B, 

Ea\B -.B^C (6.12) 

We may compare this with the restriction of the E^j projection to B, 

E D \ B - B ^ D (6.13) 

in order to get an impression of the magnitude of the changes, compared to what we 

expected a priori. The structure of the E^IB operator is revealed by examining the 

eigenstructure of the operator, 

Edl^Erfls -.B-^B (6.14) 

where E^l^ denotes the Hilbert-adjoint of the operator E^IB. The Hilbert-adjoint 

of an operator is defined in Kreyszig (1978, Section 3.9). This is compared to the 

eigenstructure of the operator, 

ED\*BED\B : B B (6.15) 

The belief transform for B adjusted by D, 

E B \ D ^ D \ B •• B ^ B (6.16) 

*We are interested in changes of expectation. It is simpler to choose to work with a space B 
such that B ± C than to allow general B, and look at the operator - E . It doesn't make any 
difference to the analysis however, since if B J . C , all elements of B have zero expectation. 
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is defined and discussed in Goldstein (1981). The eigenstructure of this operator 
contains all information about expected changes in belief. It is worth pointing out that 
the operator E O I ^ E ^ I B is simply the belief transform EBIDE^IIB, since ED\*B = EB\D-

To see this, note that 

ED\*B -.D^B (6.17) 

is defined by the property 

{ED\B{b),d) = {b,EoUd)), ybeB,deD (6.18) 

and that 

E B \ D - - D ^ B (6.19) 

has the property 

{b,EB\D{d)) = {b,d)^{ED\B{b),d), ybeB,deD (6.20) 

Properties of projection operators are discussed in Kreyszig (1978, Section 9.5). 

For the special case of scalar adjustments (dim(C) = 1), it is clear that the opera

tor EdlfiEdle has rank 1, and so has only one non-trivial eigen-pair. The eigenvalue of 

this operator is the size of the adjustment (note that the size of a scalar adjustment 

is defined to be the square of the induced norm of the E^IB operator, that the norm of 

an operator is equal to that of it's adjoint, and that the induced norm of the Ed|^Ed|B 

operator is equal to it's single eigenvalue), and it's corresponding eigenvector is known 

as the bearing of the adjustment. The properties of the eigenvalues and eigenvectors 

of the Edl^Edls operator are discussed more fully for the general case later in this 

section. 

For general adjustments, the operator Edl^EjIs may have more than one non-
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trivial eigen-pair, and so a generalisation of the concepts of size and bearing are 
required. 

One may generalise the concept of size in a number of ways. For example, one 

could define the size of the adjustment to be the maximum eigenvalue of the operator 

EdlgEdlfi, which would lead to the (perhaps desirable) property 

Sized(B) = sup (Ed(X),Erf(X)) (6.21) 
XeB+C,E(X)=0,{X,X)=l 

sup ||Ed(J^)||^ (6.22) 
XeB+C,EiX)=0,{X,X)=l 

However, one of the key properties of the size of the adjustment is the way it's 

expected values naturally sum over sequences of adjustments. If the size was defined 

as described above, such a property would be lost. Explicitly, it is the case that for 

orthogonal subspaces, Di and D2, 

EoiffiDals = EDIIB © EOJB (6.23) 

Consequently, 

Ez)iez?2lBEDiffiD2lB = (EDJB ® E£)2|B)*(EZ?I|B © Eoalfi) (6-24) 

= {ED,\],®ED,\*B){EDAB®ED,\B) (6.25) 

= EDJBEZJJB + E£)2|BED2|B (6.26) 

In particular, 

Tr(E ,̂ez?2 iB^v^en, |) = Tr(Ez), I^E^, |B) + TV{ED, I B ^ D , \ B ) (6.27) 
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and so the expected value of the trace of the Edl^EdlB operator sums over orthog
onal sequential adjustments. To see that Tr(E£)|^E£)|B) is the expected value of 
Tr(Edl^EdlB), note that P(TV(Ed|^Ed|B)) = Tr(EB|^P(FJFd)Ec|B) = Tr(Ep|^Ez)|B). 

Of course, for scalar adjustments, Tr(Ed|5Ed|B) is just the single eigenvalue of 

EdlflEdlB, and so it corresponds precisely with the usual definition of size. In general 

however, Tr(Ed|^Ed|B) is the sum of the eigenvalues of Edl̂ ^E l̂B- This is useful for 

exactly the same reason that it's expected value, Tr(E£,|^E£)|B) (the trace of the 

belief transform) is useful for summarising a priori analysis of belief structures. Of 

course, just as it is of great value to examine in detail the full eigenstructure of the 

belief transform, EJOI^E^IB, it is always desirable to examine the full eigenstructure 

of Ed|^E(/|B in order to fully understand the observed changes in belief. To conclude, 

the following definitions are made. 

Definition 5 The size of the adjustment of B given d, Sized{B), is given by 

SizediB) = Tr(Ed|^E,|B) (6.28) 

This may be compared with it's a priori expected value, SizeoiB) given by 

SizeD{B)=Tr{ED\*BED\B) (6.29) 

The set of non-trivial eigenvectors of Edl^E^lB are known as the bearings of the 

adjustment. The eigenvalue corresponding to a particular bearing, is known as the 

size of that bearing. 

• 

The bearings of the adjustment correspond to the elements of B whose observed 

expectations are different to their a priori expectations. The corresponding sizes give 
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an indication of the magnitude of the changes. To see this, let {Zi, Z2,...,Zr} be an 
orthonormal set of non-trivial eigenvectors of E^I^EdlB with corresponding ordered 
eigenvalues {Ai, A2 , . . . , A^}. Now for any A e B, write 

A = aiZi + 0:2^2 + •••-!- arZr + A (6.30) 

where A ± span{Zi, Z2,..., Zr}. Consequently, 

Ed{A) = Ed{aiZ^ + a2Z2 + --- + arZr + A) (6.31) 

= aiEd(Zi) + a2Ea{Z2) + ••• + a,Ed(Z,) + Ed{A) (6.32) 

= aiEdiZi) + a2Ed{Z2) + • • • + arEdiZr) (6.33) 

(6.34) 

and so the bearings define the directions within the B space whose observed adjusted 

expectations differ from their a priori expected values. Note that when dim{C) = 1, 

there is only one bearing, which is just the usual scalar bearing for the adjustment. 

In practice, for finite dimensional problems, a matrix representation of the oper

ator ED\B with respect to an orthonormal bases on B and D is formed, which may 

then be transposed to give a matrix representation of E/pl^. The two matrices can 

then be multiplied together, and the eigenstructure of the resulting matrix may be 

analysed to give the bearings, and their corresponding sizes. 

Explicitly, let {Bi, B2, • • •, Bm} be an orthonormal basis for B, and let {Ci, C 2 , . . . , 

Cn} be an orthonormal basis for C. Now, for each Bi, evaluate Ed{Bi) with respect 

to the basis on C. Then, for each i we have 

Ed{Bi) = auCi + a2iC2 + ••• + a„iC„ (6.35) 
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and so we deduce that with respect to the given bases, the operator E^ls is represented 

by the n x m matrix 
/ an ai2 

Ct21 OL22 Q!2m 
(6.36) 

V OLn\ Oin2 ' " " ^nm / 

Consequently, the operator E^l^ is represented by the m x n matrix 

/ a n 0:21 

^12 OL22 

V a i m 0L2jn 

Oin2 

OLmn ) 

(6.37) 

The mxm matrix representation for the Edl^Edl^ operator may then be obtained by 

multiplying together the matrix representations for Ed\*B and E^IB- The eigenstructure 

of the resulting matrix may then be analysed in order to understand the structure of 

the Edl^EdlB operator. 

Note that the theory developed in this section applies to a general Bayes linear 

adjustment where the random objects have a multi-dimensional constant space, and 

not just to the matrix space example developed in this thesis. 

6.3.3 Example 

In order to illustrate the definitions above with a concrete example, the simplest 

possible case will be used. Consider the adjustment of the matrix V by the space Ds 

of Chapter 4. Here, to simplify notation, D will be used to denote the space C + Ds. 

The expression for the adjusted expectation turned out to be 

(6.38) 
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This is (4.7) with a = 1/3. The adjustment space of interest is the space 

B = span{V - E{V)} (6.39) 

First consider the evaluation of Size£)(B). Put 

X = 1 
23.618 

[V - E{V)] (6.40) 

This is an orthonormal basis for B. Put 

(6.41) 

and note that this has norm 1, and forms an orthonormal basis for the subspace of 

D being projected onto. Now, since 

EJ,\B{V-E{V)) = ^[S-E{V)] (6.42) 

we trivially deduce that 

ED\B{X) = 0.573Y (6.43) 

and so on span{X,Y}, the operator E ^ I B has matrix representation (0.573). Conse

quently, EijIgE/jjB has matrix representation (0.328), and so 

SizeniB) = 0.328 (6.44) 

Now evaluate Sized{B). 

\\s-E{V)\\ = 
/ 0.3 9.01 9 

9.01 122.04 107.69 
V 9 107.69 158.26 

(6.45) 
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= 51.75 (6.46) 

where s is the observed value of S. So put 

and note that this is an orthonormal basis for the subspace of C being projected onto. 

Then 

EdlB(^) = 0.731Z (6.48) 

and so on span{X,Z}, the operator E^IB has matrix representation (0.731). Conse

quently, Ed I ̂ Ed IB has matrix representation (0.534), and so 

Sized(S) = 0.534 (6.49) 

which gives a size ratio of 1.63. This tells us that the changes in belief were very 

slightly larger than expected a priori, but should not be considered a serious diag

nostic warning. 

6.3.4 Summary 

The work of this section gives a completely unified framework for both the a priori and 

a posteriori analysis of totally general Bayes linear statistical problems. A priori, the 

eigenstructure of the operator E O I ^ E ^ I B (the belief transform) is analysed in order to 

understand expected changes in belief. A posteriori, analysis of the eigenstructure of 

the operator Ed|^Ed|B (the observed belief transform) may then be analysed in order 

to understand the observed changes in belief. The approach advocated is seen to 

generalise the diagnostic methodology used for scalar adjustments, and the generalised 

concept of size remains additive over sequences of orthogonal adjustments. It is also 
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the case that analysis of the eigenstructure of the operator F^Fd provides direct 
information on the discrepancy between prior specification and observations, though 
this is not obvious from the current discussion, and will be discussed further elsewhere. 

6.4 Negative eigenvalues in adjusted matrices 

All the matrices which have been considered in this thesis have been non-negative 

definite (NND). However, in general, a matrix which is revised in an unconstrained 

manner may in certain situations turn out not to be NND. Such adjusted matrices are 

described as incoherent. In general, negative eigenvalues in an adjusted matrix act as 

a diagnostic warning of a possible contradiction between prior belief specifications and 

the data, or indeed of inappropriate choice of model or projection space. However, 

if after careful reflection, it is decided that the prior specifications made were proper 

and appropriate, given the available information at the time, there is a "quick fix" 

for the problem which may under certain circumstances, be worth considering. 

Given a matrix which has been revised in an unconstrained manner, and has 

negative eigenvalues, one can construct a sure-loser argument which shows that the 

matrix formed by diagonalising the matrix, setting negative terms to zero, and then 

un-diagonalising (namely, the projection of the matrix into the subspace of coherent 

alternatives), necessarily has smaller loss associated with it than the original adjusted 

matrix, and therefore should be preferred to the original adjusted matrix. 

Consider a random n x n matrix A, with elements a^. A specification for P(A) is 

made by specifying the matrix X with elements Xij to minimise the losŝ  

^ = E EK- - ^ij)' = U - XWF (6.50) 
1=1 j=i 

tAllowing the more general loss, L = ^^=i^"=iKij{0'ij - ^ij)^ complicates the argument 
slightly, but does not alter the conclusion. 
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Now, suppose that the specification made is incoherent {ie. there is a negative eigen
value in the matrix X). We wish to construct a matrix X which is coherent, and 
necessarily has smaller loss associated with it than X. Write the orthogonal decom
position of X as 

X = EX*E'^ (6.51) 

Since the loss is rotationally invariant, we may transform to the orthogonal coordinate 

system implied by the matrix E. Write A* = E'^AE. Then 

L = \\A* - X*\\l (6.52) 

where the non-diagonal elements of A* have zero prevision. All of the non-diagonal 

elements of X* have been chosen to be zero. Since the matrix we are considering is 

incoherent, some of the diagonal elements of X* have been specified to be negative. 

However, since we know that the corresponding element of A* is at least zero, the 

matrix X* which is formed by setting the negative elements of X* to zero, necessarily 

has smaller loss associated with it than X*. Therefore, one would be a sure-looser 

not to prefer X* to X*. Back in our original coordinate system, X = SX*E'^ is 

necessarily prefered to X. 

However, zero eigenvalues imply the existence of known combinations of variables, 

which is likely to contradict available data. For this reason, I feel that a posteriori 

correction of the matrix is undesirable, and that the constrained projection spaces 

discussed in the next chapter are a more promising way to go about ensuring that 

adjusted matrices are NND. 



Chapter 7 

Alternative approaches and further 

work 

7.1 Projections into non-negative spaces 

7.1.1 Motivation 

Consider the example of learning about the covariance matrix for a collection of ex

changeable random vectors given in Chapter 4. In this simplest case, projection into 

the space spanned by the prior expectation for the matrix and the sample covariance 

matrix was used. Both of these matrices are non-negative definite (NND), and the 

coefficients for the projection are necessarily greater than zero, whatever the belief 

specifications. In this case, the adjusted expectation is necessarily a positive combi

nation of NND matrices, and hence NND. This is clearly a desirable state of aflFairs, 

since an adjusted matrix which is not NND is incoherent. In the other examples, the 

adjusted matrices are not constrained to be NND. 

This issue is not specific to covariance matrix adjustment. For example, just 

consider the fitting of a strictly positive quantity on an unconstrained predictor. The 
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adjusted value for that quantity is not necessarily positive. Usually however, such 

a negative revision would be regarded as evidence of a contradiction between prior 

beliefs and observations or evidence of an inappropriate model, or projection space. 

Some Bayes linear theory needs to be developed for the consideration of non-linearly 

constrained problems. 

For the specific problem of constrained matrix adjustments, a few techniques due 

to special properties and decompositions of matrices are worth considering. 

7.1.2 Eigenspace projections 

Consider once more, the example of Chapter 4. 

RkRj^V + Uk (7.1) 

Also consider a sample covariance matrix, 

5 = ^ E ( A : . - x ) ( x „ - x ) ' r 
w=l 

(7.2) 

predictive for V. Write 

S = E^GE (7.3) 

where E is orthonormal, and 0 — diag{6i, 62,. •. ,0r). Note that a priori, E and 0 

are both random. Now let 0 i be the matrix with di in the (z, z)*'' position, and zeros 

elsewhere. Then 

0 = 01 + 02 + . . . - } - 0 , (7.4) 

Now define 

Si = E'^0,E (7.5) 
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Note that the Si are observable, necessarily NND, and that 

S = Si + S2 + --- + Sr (7.6) 

Consequently, instead of projecting into the space 

span{C,S} (7.7) 

one may project into the much richer space 

span{C,SuS2,...,Sr} (7.8) 

allowing resolution of a much greater proportion of uncertainty, whilst retaining a 

necessarily NND adjustment (provided that all coefficients are necessarily positive). 

Unfortunately in general, i t is not possible to deduce the beliefs over the Si from 

the usual belief specifications made. However, when a better understanding of prim

itive specifications for matrices is obtained, this may turn out not be an insurmount

able problem. In fact, all that is really needed in order to carry out such an analysis 

is a primitive specification of belief for the eigenstructure of the matrices, rather than 

the elements of the matrices. Note also that certain modelling assumptions, such as 

the assumption of second-order exchangeability, may fix the eigenstructure, giving 

beliefs over the eigenstructure from beliefs over the scalars directly. 

7.1.3 Choelesky projections 

Reconsider the same example of learning about V from a predictive S. Form the 

Choelesky decomposition of S, 

S = AA^ (7.9) 
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where A is lower triangular and essentially unique. The Choelesky triangle is a useful 
parameterisation of the covariance matrix, because it has the property that there 
is a natural one to one correspondence between i t and symmetric positive definite 
matrices. Unfortunately, the Choelesky triangle of a sum of matrices is not the sum 
of the Choelesky triangles, making it unclear exactly how one should decompose the 
triangle into a sensible projection space. 

7.1.4 Logarithmic transformations 

Another useful re-parameterisation of the covariance matrix is afforded by the matrix 

logarithm. The matrix logarithm is defined to be the inverse of the matrix exponential 

function, which is defined as follows: 

exp{A) = I + A+^ + ^ + ... (7.10) 

I t is easy to see that exp and log are rotationally invariant. Explicitly, if ̂  = EGE"^ 

is the eigen-decomposition of A, and 0 = diag{6i}, we have 

log{A) = E/o^(e)E'^ = E diag{log{9i)}Y:^ (7.11) 

As for the Choelesky triangle, there is a correspondence between it and the positive 

definite matrices. There is the same problem as with the Choelesky triangles, in 

that the logarithm of a sum is not the sum of the logarithms. However, the sum of 

logarithms is the logarithm of the product, and hence if some sort of multiplicative 

model was felt appropriate, there may indeed be a sensible way to form a projection 

space of logarithmically transformed matrices. Of course, this will be informative for 

the logarithm of the covariance matrix, which is not something necessarily of direct 

interest. 
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Leonard and Hsu (1992) focus their attention on the logarithm of the covariance 
matrix for exactly these reasons. However, their assumption of joint multivariate 
normality for the distribution of the elements of the logarithm of the covariance 
matrix seems a little speculative. Of course, since they make inferences about the full 
joint distribution of the elements of the logarithm of the covariance matrix, they have 
no problem translating those inferences into statements about the untransformed 
matrix. However, the usual computational problems associated with the sampling 
methodology that they use make the approach impractical for large problems. 

More generally, some Bayes linear theory for multiplicative models and logarithmic 

transforms for scalars may prove an easier problem to tackle in the first instance, and 

may shed some light on the matrix version. 

7.1.5 Summary 

In conclusion, I think that some progress on the problem of ensuring NND belief 

revisions is possible, and will be of great value. However, I feel that it would be 

more appropriate to examine related problems from a scalar perspective in the first 

instance. 

7.2 Restricted estimates 

A related problem to that of restricting estimates to be NND, is that of handling 

general restrictions on the form of the covariance matrix. For example, it is easy to 

imagine that a particular linear combination of variables is known, and hence that 

there is a known eigenvector, with corresponding eigenvalue known to be zero in the 

covariance matrix. I t would consequently be desirable to preserve such a structure in 

any adjusted matrices. 
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Also, two variables may be known to be independent for logical reasons and this 
would correspond to a zero in the covariance matrix which should be preserved. 

Also, there may be a particular conditional independence present which is known 

to be the case for logical reasons. This will correspond to a zero in the inverse 

of the covariance matrix, which is required to be preserved. For example, if belief 

specification has been based upon a graphical model, there may be some arcs which 

one feels should not be introduced. 

I imagine that the best way of handling such restrictions would be to choose a 

projection space which makes preserving such properties most natural. For example, 

an eigen-decomposition may be most appropriate for a known linear combination. The 

obvious element-wise decomposition demonstrated in Chapter 4 is easily modified to 

handle a known orthogonality — decompose all matrices to the one component level, 

and then neglect to include sample matrices corresponding to the known orthogonality 

in the projection space. In a similar vein, some kind of Choelesky or inverse matrix 

decomposition may prove to be the way to handle conditional orthogonalities. 

Again, there is clearly a great deal of important work to be done in this area, but 

progress looks quite possible. 

7.3 Diagnostics 

Matrix adjustment diagnostics still require attention. In the last chapter, some theory 

regarding general Bayes linear diagnostics was developed, but there is still work to 

be done. In general, without the concept of a unique bearing derived from a Riesz 

functional representation, the Bayes linear concept of the path correlation (Goldstein 

1988b) no longer makes a lot of sense. I t is still possible to define a path correlation 

as a ratio of sizes of the various partial adjustments, but interpretation is now much 

less clear. 



Chapter 8 

Summary and conclusions 

8.1 Summary 

Quantifying relationships between variables is of fundamental importance in subjec

tive statistical inference. However, there are many difficulties associated even with 

learning about covariances. I t is often difficult to make prior covariance specifica

tions, and usually even harder to make the statements about the uncertainty in these 

covariance statements which are required in order to learn about the covariance state

ments from data. Further, a covariance structure is more than just a collection of 

random quantities, so we should aim to analyse such structures in a space where they 

live naturally. In this thesis, such an approach was developed and illustrated, based 

around a geometric representation for variance matrices and exploiting second-order 

exchangeability specifications for them. 

Al l authors who have considered the problem of covariance matrix revision seem to 

have come to the conclusion that i t is such a difficult problem that they are prepared 

to make whatever distributional assumptions necessary in order to make the analysis 

as simple as possible. The distributional assumptions they make are usually such that 

expectations and conditional expectations have desirable linearity properties, which 
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simplify the problem. In this thesis, no such distributional assumptions were made, 
but exactly those sorts of linearity properties were imposed and exploited. 

Specifications made for the scalar components of random matrices can be used as 

a basis for a Bayes linear analysis of the covariance structures. However, for large 

matrices, the number of quantities involved in the adjustments will be prohibitively 

large. I t is therefore very desirable to consider matrices in a space where they may 

be treated as a single object, greatly reducing the specification burden. 

There is a common form of symmetry which often arises amongst ordered vec

tors of random quantities. I t is essentially just a slightly weaker concept than that 

of (second-order) exchangeability. The covariance structure is invariant under arbi

trary translations and reflections of the ordering, and the auto-correlation function 

becomes constant after some distance, n. Ordered vectors with this property were 

called, second-order n-step exchangeable. This same symmetry also occurs, under the 

same sorts of circumstances, for collections of random matrices in a random matrix 

inner-product space. Hence, a concept of n-step exchangeability which was sufficiently 

general that it was also valid for spaces of matrices was developed, and a represen

tation theorem analagous to that for second-order exchangeability was derived. The 

representation theorem provides a simple way of decomposing variation for n-step 

exchangeable quantities into a part which is identifiable by the data, and a residual 

part, for which data is uninformative via linear fitting. 

Just as there are many advantages to making expectation primitive, and speci

fying expectations directly, so there are with matrix inner-products. A scheme for 

elicitation based upon graphical modelling of the relationships between matrices, and 

specification of uncertainty and uncertainty reduction could be used in a way very 

similar to that often used for random scalars. In this way, the specification burden 

will be vastly reduced. Given a problem involving just a few (possibly large) matrices. 
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all that will be required in order to carry out a basic analysis is a specification for 
the inner-product between every pair of matrices, rather than between every pair of 
scalars of which they are comprised. 

Analysing matrices in a space where they live naturally not only has great aesthetic 

appeal, but is very powerful and illuminating in practice. Working in this space 

simplifies the handling of large matrices, by reducing the number of quantities involved 

and summarising effects over the whole covariance structure. For the same reasons, 

diagnostic information about adjusted beliefs is easier to interpret. Structures may 

be decomposed as much or as little as is desired. 

This approach allows us to learn about collections of covariance structures, and 

examine their relationships. I t generalises the "element by element" approach to 

revision, which can be viewed as taking place in a subspace of the larger space. 

Exchangeability representations lie at the heart of the methodology: all of our speci

fications are over observables, or quantities constructed from observables, rather than 

artificial model parameters, and no distributional assumptions for the data or the 

prior need be made. 

This approach to covariance estimation was applied to the development of a 

methodology for the revision of the underlying covariance structures for a dynamic 

linear model, using Bayes linear estimators for the covariance matrices based on sim

ple quadratic observables. This was done by constructing an inner-product space of 

random matrices containing both the underlying covariance matrices and observables 

predictive for them. Bayes linear estimates for the underlying matrices followed by 

orthogonal projection. 

Good forecasting requires careful updating of the covariances within the time 

series structure. Informally, the degree of shrinkage between the prior and the data 

requires updating, and relationships between variables must be properly taken into 
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account. Taking a matrix object approach greatly simplifies the problem by reducing 
it's dimensionality. This is important for both simplifying belief specification and 
belief adjustment, and also for interpretation of the structure of the adjustment and 
accompanying diagnostics. There are also the general advantages of the Bayes linear 
approach; namely of allowing complete flexibility for the prior specifications, without 
placing distributional restrictions on the data or model components. 

General a priori and a posteriori analysis of Bayes linear statistical problems has 

been shown to be possible within a single framework, via analysis of the eigenstructure 

of the belief transform and the observed belief transform. This will allow practical 

object-oriented implementations of the Bayes linear methodology which are not re

stricted to a particular type of random entity, making analysis of complex problems 

with unusual objects possible using standard procedures. 

Some of the work from this thesis is beginning to appear in the literature. In 

Wilkinson and Goldstein (1995a) we briefly describe a matrix inner-product, decom

positions of covariance matrices, and methods for learning about a covariance matrix 

for exchangeable random vectors. In Wilkinson and Goldstein (1995b) we discuss 

applications to covariance matrix revision for multivariate time series dynamic linear 

models, and the n-step exchangeability representation theorem. 

8.2 Conclusions 

Genuine subjective revision of belief for covariance matrices is a very difficult, but 

important problem. The methodology detailed in this thesis represents a useful contri

bution towards understanding the problem, and important methodological advances 

for carrying out revision in certain situations. However, I do not claim to have all 

of the answers — there are several important outstanding questions which still need 

addressing, and some of these are outlined in Chapter 7. The other important func-
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tion of this thesis was to demonstrate the power and fiexibility of the Bayes linear 
methodology. I t is impressive that the theory coped so well with the introduction of 
non-scalar quantities. No modification or re-interpretation of the theory was required 
in order to consider linear spaces of random matrices, and to carry out adjustments. 
Further, i t is of considerable interest that the Bayes linear diagnostic theory required 
a generalisation before being applicable to spaces of matrices. The development of 
the work for this thesis has highlighted a necessity to re-evaluate the theory sur
rounding general Bayes linear adjustment diagnostics. The general theory for Bayes 
linear diagnostics presented in Section 6.3 is of considerable importance and interest 
independently of the matrix adjustment theory developed in this thesis. 

On completing this thesis, I feel more strongly than ever that the Bayes linear 

approach to subjective statistical inference is currently the best and most natural 

approach. I t is however, equally clear that the theory is still in it's infancy, and 

that much work needs to be done. I feel that the approach to covariance estimation 

contained in this thesis captures very well the problems associated with covariance 

estimation, namely, the difficulties of belief specification, simpUfication, and ensuring 

sensible coherent revisions. By stripping away arbitrary distributional assumptions, 

the inherent problems and difficulties, often obscured by distributional and compu

tational issues, are revealed. Covariance estimation is a problem which I feel will be 

with us for some time to come. 



Appendix A 

Covariances between sample 

covariances 

This appendix is concerned with the derivation of equations (2.7), (2.8) and (2.9). 

Recall that we had exchangeable vectors, Xk with exchangeable decomposition 

Xk=^M + Rk (A. l ) 

(2.1), and that the quadratic products of the residuals were considered exchangeable, 

so that 

RkRj = V + Uk (A.2) 

(2.4). The formation of a sequence of sample covariance matrices, each based upon 

n observations of the series, was considered. Now, from (2.6), we have 

s, = - ^ t i K - R'){K - RT (A.3) 

using an obvious extension of notation. Now using the notation i?'^ for the i*^ element 

of Rl, and the notation Vij for the (i,^)*' ' element of V, we have the following simple 
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results. 

Lemma 2 

C0Y{Vij, RlRl,) = Cov(y,,-,VJ„) (A.4) 

Coy{Vij, RlRl) = lGoy{Vij,Virn) (A.5) 

CoviVij, RlRlk) = ^Coy{Vij,Vij (A.6) 

Cov{Vij ,RIRI) = -Coy{Vij,Vim) 
71/ 

(A.7) 

2, q, where • denotes the sample mean of the n cases. Also, 

CoY{RlI^,,RlRl,) = CoviVij, Vim) + Cov(C/^.„ U^,) (A.8) 

Cov{RlR]„RlRl.) = ^Cov{Vi^, Vim) + ^Cov(C/^.„ UU (A.9) 

Cov{R^,R%,RlRl) = ^Coy{Vij, Vim) + ;J^Cov(f/^.„ UU (A.IO) 

Coy{Rj,Rl,RlRl.) = ^ C o v ( y , „ Vim) + ^Cov(c/^ .„ u u ( A . l l ) 

Cov{RlRl,RlRl) = ;^Cov(y,,-, Vim) + ;^Cov(C/^.„ UL,) 
To ft 

(A.12) 

Coy{RlRl,RlRl.) = ^,Cov{V,„ Vim) + ^.Co^m,, Ul,) (A.13) 

^i,j,k,l,m,q. Also, 

Cov{R!,R%,RlRl,) 

Cov{RlR%,RlRl.) 

Cov{RlR%,RlRl.) 

Cov{RlRl,RlRl.) 

Coy{RlRl,RlRl.) 

Coy{RlRl,RlR'm.) 

Cov{Vij,Vim) 

-Coy{Vij,Vim) 
n 

-Cov(y , „ Vim) + ;^Cov(l/^.„ Ufmk) 
ft Tfc 
^ C o v ( v ; „ v i ^ ) 

-^Gov{Vi,, Vim) + ^ C 0 v ( f / ^ . „ Ufmk) 

-,Cov{Vi^, Vim) + 4cov(f/^.„ UU) 
n 

(A.14) 

(A.15) 

(A.16) 

(A.17) 

(A.18) 

(A.19) 
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Vz, j , / ,m,9,VA; ^ p . 

• 

Now, using the notation s'̂  for the {ijy^ element of Sg, we have the following 

results. 

Theorem 4 

Coy{Vi„sU = CoY{Vi„Vim) (A.20) 

Covis^sU = Cov{V,j,Vim) (A.21) 

Cov(4,5L) = Cov(y.,,y,^) + 5^^^Mi^ (A.22) 
/ 6 

Proof 

Cov{Vij,s1J = -^Y^CoHVijARl-RlMRL-RL)) (A.23) 

= E Cov(y,,-, R I A - RlRL - RfRlk + RfRL) (A.24) 

= -^j:('^)coAVi„Vim) (A.25) 

= Cov{Vij,Vlra) (A.26) 

(A.25) follows using equations (A.4) to (A.7). This gives (A.20). (A.21) and (A.22) 

can be derived similarly. • 

Vectorising (A.20), (A.21) and (A.22) gives (2.7), (2.8) and (2.9). 



Appendix B 

Using R E D U C E to assist DLM 

quadratic covariance calculations 

The covariance calculations for the quadratic products of one and two step differences, 

given in Section 5.3.4, were calculated using the REDUCE computer algebra system, 

described in Rayna (1987). Also, the precise form of the matrix inner product for the 

example discussed in Chapter 5 was deduced using the same REDUCE script. The 

following script was used to do all of the calculations required. 

'I, reduce program 
•/. for cov2iriance calculations 

operator cov,ex,x,xx,a,r,v,s,va,sa; 

for a l l j,k 
l e t c ov(j,k)=ex(j*k)-ex(j)*ex(k); 

for a l l j 
l e t e x ( - j ) = - e x ( j ) ; 

for a l l j,k 
l e t ex(j+k)=ex(j)+ex(k)! 

for a l l j 
l e t ex(2*j)=2*ex(j); 

for a l l j 
l e t ex(4*j)=4*ex(j); 

for a l l j 
l e t ex(j/2)=ex(j)/2; 

for a l l j 
l e t ex(j/4)=ex(j)/4; 

•/. model 
for a l l j , t l 

l e t x ( j , t l ) = a ( j , t l ) + r ( j . t l ) - r ( j , t l - l ) ; 
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for a l l j . t l 
l e t x x ( j , t l ) = a ( j , t l ) + a ( j , t l - l ) + r ( j , t l ) - r ( j , t l - 2 ) ; 

for a l l j , t l 
l e t e x ( a ( j , t l ) ) = 0 ; 

for a l l j . t l 
l e t e x ( r ( j , t l ) ) = 0 ; 

for a l l j , k , t l , t 2 
l e t e x ( a ( j , t 2 ) * r ( k , t l ) ) = 0 ; 

for a l l j . k , t l 
l e t a ( j , t l ) * a ( k , t l ) = v a ( j , k ) + s a ( j , k , t l ) ; 

for a l l j . k . t l 
l e t e x ( s a ( j , k , t l ) ) = 0 ; 

for a l l j,k,l,m,tl 
l e t ex(sa(j,k,tl)*va(l,m))=0; 

for a l l j , k , t l 
l e t r ( j , t l ) * r ( k , t l ) = v ( j , k ) + s ( j , k , t l ) ; 

for a l l j . k . t l 
l e t e x ( s ( j , k , t l ) ) = 0 ; 

for a l l j,k,l,m,tl 
l e t e x(s(j.k,tl)*v(l,m))=0; 

for a l l 

for a l l 

for a l l 

for a l l 

for a l l 

for a l l 

for a l l 

for a l l 

k.l.m 
et ex(v(j,k)*va(l,m))=ex(va(l,m))*ex(v{j,k)); 
k,l,m,tl 

et ex(va(l,m)*s(j,k,tl))=0; 
•k,l,m,tl 
et ex(sa(l.m,tl)*v(j,k))=0; 
,k,l,m,tl,t2 
et ex(sa(l,m,t2)*s(j,k,tl))=0; 

, k , t l , t 2 such that t l neq t2 
et e x ( r ( j , t l ) * r ( k , t 2 ) ) = 0 ; 
k , t l , t 2 such that t l neq t2 

et e x ( a ( j , t l ) * a ( k , t 2 ) ) = 0 ; 
,k,l,m,tl,t2 such that t l neq t2 
et e x ( s ( j , k , t l ) * s ( l , m , t 2 ) ) = 0 ; 
,k,l,m,tl,t2 such that t l neq t2 
et ex(sa(j,k,tl)*sa(l,m,t2))=0; 

*/. simplifications 
for a l l j,k,l.m,tl.t2 

l e t e x ( a ( k , t l ) * r ( j , t 2 ) * v a ( l , m ) ) = 0 ; 
for a l l j,k,l.m,tl,t2 

l e t e x ( a ( m , t l ) * r ( j , t 2 ) * v ( k , l ) ) = 0 ; 
for a l l j,k,l,m,tl,t2,t3 

l e t e x ( a ( m , t l ) * r ( j , t 2 ) * s ( k , l . t 3 ) ) = 0 ; 
for a l l j,k,l,m,tl,t2,t3 

l e t e x ( a ( k , t l ) * r ( j , t 2 ) * s a ( l , m , t 3 ) ) = 0 ; 

for a l l j,k,l,m,tl,t2 such that t l neq t2 
l e t e x ( r ( j , t l ) * r ( k , t 2 ) * v ( l , m ) ) = 0 ; 

for a l l j,k,l,m,tl,t2,t3 such that t l neq t2 
l e t e x ( r ( j , t l ) * r ( k , t 2 ) * s ( l . m , t 3 ) ) = 0 ; 

for a l l j,k,l,m,tl,t2 such that t l neq t2 
l e t e x ( r ( j , t l ) * r ( k , t 2 ) * v a ( l , m ) ) = 0 ; 

for a l l j,k,l,m,tl,t2,t3 such that t l neq t2 
l e t e x ( r ( j . t l ) * r ( k , t 2 ) * s a ( l , m , t 3 ) ) = 0 ; 

for a l l j,k,l,m,tl,t2,t3 such that t l neq t2 
l e t e x ( a ( l , t l ) * a ( m , t 2 ) * s ( j , k , t 3 ) ) = 0 ; 

for a l l j,k,l,m,tl,t2,t3 such that t l neq t2 
l e t ex(a(l,tl)*a(m,t2)*sa(j,k,t3))=0; 

for a l l j,k,l,m,tl,t2 such that t l neq t2 
l e t ex(a(l,tl)*a(m,t2)*v(j,k))=0; 

for a l l j,k,l,m,tl,t2 such that t l neq t2 
l e t ex(a(l,tl)*a(m,t2)*va(j,k))=0; 

for a l l j,k,l,m,tl,t2,t3,t4 
such that t l neq t2 and t l neq t3 and t2 neq t3 
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l e t e x ( a ( j , t l ) * a ( k , t 2 ) * a ( l , t 3 ) * r ( m , t 4 ) ) = 0 ; 

for a l l j,k,l,m,tl,t2,t3,t4 
such that t l neq t2 and t3 neq t4 
l e t e x ( a ( l , t l ) * a ( m , t 2 ) * r ( j , t 3 ) + r ( k , t 4 ) ) = 0 ; 

for a l l j,k,l,m,tl,t2,t3,t4 
such that t2 neq t3 and t3 neq t4 and t2 neq t4 
l e t e x ( a ( m , t l ) * r ( j , t 2 ) * r ( k , t 3 ) * r ( l , t 4 ) ) = 0 i 

for a l l j,k.l.m,tl,t2,t3,t4 
such that t l neq t2 and t l neq t3 and t l neq t4 
and t2 neq t3 and t2 neq t4 and t3 neq t4 
l e t e x ( r ( j , t l ) * r ( k , t 2 ) * r ( l , t 3 ) * r ( m , t 4 ) ) = 0 ; 

for a l l j,k,l,m,tl,t2,t3,t4 
such that t l neq t2 and t l neq t3 and t l neq t4 
and t2 neq t3 and t2 neq t4 and t3 neq t4 
l e t ex(a(j,tl)*a(k,t2)*a(l,t3)*a(m,t4))=0; 

'/, expressions 

•/. covariances for the one step d i f f s 
l l : = c o v ( v a ( j , k ) , x ( l , t l ) * x ( m , t l ) ) ; 
1 2 : = c o v ( v ( j , k ) , x ( l , t l ) * x ( m , t l ) ) ; 
1 3 : = c o v ( x ( j , t l ) * x ( k , t l ) , x ( l , t l ) * x ( m , t l ) ) ; 
1 4 : = c o v ( x ( j , t l ) * x ( k , t l ) , x ( l , t l - l ) * x ( m , t l - l ) ) 
1 5 : = c o v ( x ( j , t l ) * x ( k , t l ) , x ( l , t l - 2 ) * x ( m , t l - 2 ) ) 
1 6 : = c o v ( x ( j , t l ) * x ( k , t l ) , x ( l , t l - 3 ) * x ( m , t l - 3 ) ) 

'/, covariances for the 2-step d i f f s 
111 
112 
113 
114 
115 
116 
117 

=cov(va(j,k),xx(l,tl)*xx(m,tl)); 
= c o v ( v ( j , k ) , x x ( l , t l ) * x x ( m , t l ) ) ; 
= c o v ( x x ( j , t l ) * x x ( k , t l ) , x x ( l , t l ) * x x ( m , t l ) ) ; 
= c o v ( x x ( j , t l ) * x x ( k , t l ) , x x ( l , t l - l ) * x x ( m , t l - l ) ) 
= c o v ( x x ( j . t l ) * x x ( k , t l ) , x x ( l . t l - 2 ) * x x ( m , t l - 2 ) ) 
= c o v ( x x ( j , t l ) * x x ( k , t l ) , x x ( l , t l - 3 ) * x x ( m , t l - 3 ) ) 
= c o v ( x x ( j , t l ) * x x ( k , t l ) , x x ( l , t l - 4 ) * x x ( m , t l - 4 ) ) 

'/, coveiriances between the one and 2 step d i f f s 
1 2 3 : = c o v ( x ( j , t l ) * x ( k , t l ) , x x ( l , t l ) * x x ( m . t l ) ) ; 
1 2 4 : = c o v ( x ( j , t l ) * x ( k , t l ) . x x ( l , t l - l ) * x x ( m , t l - l ) ) 
1 2 5 : = c o v ( x ( j , t l ) * x ( k , t l ) , x x ( l , t l - 2 ) * x x ( m , t l - 2 ) ) 
1 2 6 : = c o v ( x ( j , t l ) * x ( k , t l ) , x x ( l , t l - 3 ) * x x ( m , t l - 3 ) ) 
1 2 7 : = c o v ( x ( j , t l ) * x ( k , t l ) , x x ( l , t l - 4 ) * x x ( m , t l - 4 ) ) 

1 3 4 : = c o v ( x x ( j , t l ) * x x ( k , t l ) , x ( l , t l - l ) * x ( m , t l - l ) ) 
1 3 5 : = c o v ( x x ( j , t l ) * x x ( k , t l ) , x ( l , t l - 2 ) * x ( m , t l - 2 ) ) 
1 3 6 : = c o v ( x x ( j , t l ) * x x ( k , t l ) , x ( l , t l - 3 ) * x ( m , t l - 3 ) ) 
1 3 7 : = c o v ( x x ( j , t l ) * x x ( k , t l ) , x ( l , t l - 4 ) * x ( m , t l - 4 ) ) 

'/, actual number substitutions 

for a l l j 
l e t e x ( v a(j,j))=4; 

for a l l j.k such that j neq k 
l e t e x ( v a ( j , k ) ) = l ; 

for a l l 3 
l e t ex(v(j.j))=36; 

for a l l j.k such that j neq k 
l e t ex(v(j,k))=-4; 

for a l l j 
l e t e x ( v a ( j , j ) * 2 ) = (1.5)-2 + (4)-2; 

for a l l j,k such that j neq k 
l e t ex(va(j,k)-2)= (0.75)-2 + ( l ) - 2 ; 

for a l l j 
l e t e x ( v ( j , j ) - 2 ) = (5)-2 + (36)-2; 
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for a l l j,k such that j neq k 
l e t ex(v(3,k)-2)= ( l ) - 2 + (-4)-2; 

for a l l j,k such that j neq k 
l e t ex(va(j,j)*va(k,k))=0.2*l + (4)-2; 

for a l l j,k such that j neq k 
l e t e x ( v ( j , j ) * v ( k , k ) ) = 4 + (36)-2; 

for a l l j . t l 
l e t e x ( s ( j , j . t l ) " 2 ) = ( 2 5 0 0 ) ; 

for a l l j . k . t l such that j neq k 
l e t ex(s(j,k,tl)-2)=(1000)i 

for a l l j . t l 
l e t e x ( s a ( j , j , t l ) - 2 ) = ( 3 0 ) ; 

for a l l j . k . t l such that j neq k 
l e t e x ( s a ( j , k . t l ) - 2 ) = ( 1 5 ) ; 

'/. index ordering 
for a l l j.k such that j neq k and ordp(j.k) 

l e t v ( k , j ) = v ( j , k ) ; 
for a l l j.k such that j neq k and ordpCj.k) 

l e t v a(k,j)=va(j.k); 
for a l l j . k . t l such that j neq k and ordp(j.k) 

l e t s ( k . j , t l ) = s ( j . k , t l ) ; 
for a l l j . k . t l such that j neq k and ordp(j.k) 

l e t s a ( k . j . t l ) = s a ( j . k . t l ) ; 

'/, j u s t want diagonal terms 
l e t l = j ; 
l e t m=k; 

'/. expressions 
l d l : = l l ; 
ld2:=12; 
ld3:=13; 
ld4:=14; 
ld5:=15; 
ld6:=16; 

l d l l : = l l l 
ldl2:=112 
ldl3:=113 
ldl4:=114 
ldl5:=115 
ldl6:=116 
ldl7:=117 

ld23 
ld24 
ld25 
ld26 
ld27 

ld34 
ld35 
ld36 
ld37 

=123 
=124 
=125 
=126 
=127 

=134 
=135 
=136 
=137 

l e t k=j; 

l s l : = l l ; 
ls2:=12; 
ls3:=13; 
ls4:=14; 
ls5:=15; 
ls6:=16; 

l s l l : = l l l ; 
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lsl2 =112, 
lsl3 =113, 
lsl4 =114; 
lsl5 =115, 
lsl6 =116; 
lsl7 =117; 

ls23 =123; 
ls24 =124; 
ls25 =125; 
ls26 =126; 
ls27 =127; 

ls34 =134; 
ls35 =135; 
ls36 =136; 
ls37 =137; 

•/. matrix expressions 
on bigfloat,numval; 
precision 20; 

n:=6; 
c01:=n*(5)-2 + n*(n-l)*(l)-2; 
c02:=n*(1.5)-2 + n*(n-l)*(0.75)-2; 
c03:=0; 

c04:=n*ls3 + n*(n-l)*ld3 
c05:=n*ls4 + n*(n-l)*ld4 
c06:=n*ls5 + n*(n-l)*ld5 

c07:=n*ls2 + n*(n-l)*ld2; 
c08:=n*lsl + n*(n-l)*ldl; 
c09:=n*lsl3 + n*(n-l)*ldl3 
clO:=n*lsl4 + n*(n-l)*ldl4 
cll:=n*lsl5 + n*(n-l)*ldl5 
cl2:=n*lsl6 + n*(n-l)*ldl6 

cl3:=n*lsl2 + n*{n-l)*ldl2; 
cl4:=n*lsll + n*(n - l ) * l d l l ; 

cl5:=n*ls23 + n*(n-l)*ld23 
cl6:=n*ls34 + n*(n-l)*ld34 
cl7:=n*ls24 + n*(n-l)*ld24 
cl8:=n*ls35 + n*(n-l)*ld35 
cl9:=n*ls25 + n*(n-l)*ld25 
c20:=n*ls26 + n*(n-l)*ld26 

'/, now do expectations 
cc01:=4; '/. ex(va(i,j)) for i=j 
cc02:=l; '/. ex(va(i,j)) for i neq j 
cc03:=36; •/. ex(v(i,j)) for i=j 
cc04:=-4; */, ex(v(i,j)) for i neq j 

cc05:=cc01 + 2*cc03; 
cc06:=cc02 + 2*cc04; 
cc07:=2*(cc01 + cc03); 
cc08:=2*(cc02 + cc04); 

cccl:=n*cc01 + n*(n-l)*cc02; */, ex(va) 
ccc2:=n*cc03 + n*(n-l)*cc04; '/, ex(v) 
ccc3:=n*cc05 + n*(n-l)*cc06; '/, ex(x') 
ccc4:=n*cc07 + n*(n-l)*cc08; '/. ex(x") 

out "datavec.bd"; 
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write "ficovvec"; 
• write cOl; 
write c02; 
write c03; 
write c04; 
write cOS; 
write c06; 
write c07; 
write c08; 
write c09j 
write clO; 
write c l l ; 
write cl2; 
write cl3; 
write cl4; 
write cl5; 
write cl6; 
write cl7; 
write cl8; 
write cl9; 
write c20; 
write "toeanvee"; 
write cccl; 
write ccc2; 
write ccc3; 
write ccc4; 
shut "datavec.bd"; 
system "rep datavec.bd «gauss:bd"; 

bye; 

The first part of the script defines the properties of expectation and covariance. 
The next part sets up the model. Following this, simplifications in the form of known 
orthogonalities are given. The next part of the script produces the algebraic form of 
the covariances which we are interested in. The remainder of the script substitutes 
in the belief specifications made for the example, in order to deduce the covariances 
over the quadratic products, and then for the matrix inner product. Note that the 
covariances for the matrix inner-product are the constant-adjusted versions, as these 
are what is required by [B/D]. Running this script produced the following output. 

Using directory /usr/local/reduce/current as Reduce root 
REDUCE 3.4.1, 15-Jul-92 ... 

1: 1 
2: 2 
3: 3 
4: 4 
5: 5 
6: 6 
7: 7 
8: 8 
9: 9 
10: 10 
11: 11 
12: 12 
13: 13 
14: 14 
15: 15 
16: 16 
17: 17 

1: 1: 1: 1: 1: 1: 1: 
2: 

9: 9: 
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18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
LI 

46: 
L2 

47: 
L3 

20: 

24: 

28: 28: 

32: 

40: 40 
41: 41 
42: 42 
43: 43 43 
44: 44 44 
45: 45 45 

48: 
L4 ; 

49: 
L5 : 

50: 
L6 

51: 
L l l 

18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
;= EX(VA(J,K)*VA(M,L)) - EX(VA(J,K))*EX(VA(M,L)) 

;= 2*( - EX(V(J,K))*EX(V(H,L)) + EX(V(J,K)*V(M,L))) 

:= - 4*EX(V(K,J))*EX(V(H,L)) + 2*EX(V(L,J))*EX(VA(H,K)) 

+ 2*EX(V(L,K))*EX(VA(M,J)) + 2*EX(V(M,J))*EX(VA(L,K)) 

+ 2*EX(V(M,K))*EX(VA(L,J)) + EX(S(K,J,T1 - 1)*S(M,L,T1 - 1)) 

+ EX(S(K,J,T1)*S(M,L,T1)) + 4*EX(V(K,J)*V(M,L)) 

+ 2*EX(V(L,J)*V(M,K)) + 2*EX(V(L,K)*V(M,J)) 

+ EX(VA(K,J)*VACM,L)) + EX(SA(K,J,T1)*SA(M,L,T1)) 

- EX(VA(K,J))*EX(VA(M,L)) 

= - 4*EX(V(K,J))*EX(V(M,L)) + EX(S(K,J,T1 - 1)*S(M,L,T1 - 1)) 

+ 4*EX(V(K,J)*V(M,L)) + EX(VA(K,J)*VA(M,L)) 

- EX(VA(K,J))*EX(VA(M,L)) 

= - 4*EX(V(K,J))*EX(V(M,L)) + 4*EX(V(K,J)*V(M,L)) 

+ EX(VA(K,J)*VA(M,L)) - EX(VA(K,J))*EX(VA(M,L)) 

= - 4*EX(V(K,J))*EX(V(M,L)) + 4*EX(V(K,J)*V(H,L)) 

+ EX(VA(K,J)*VA(M,L)) - EX(VA(K,J))*EX(VA(M,L)) 

51: 51: 
:= 2*(EX(VA(J,K)*VA(M,L)) - EX(VA(J,K))*EX(VA(M.L))) 
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52: 
L12 := 2*( - EX(V(J,K))*EX(V(M,L)) + EX(V(J,K)*V(M,L))) 

53: 

L13 := - 4*EX(V(K,J))*EX(V(M,L)) + 4*EX(V(L,J))*EX(VA(M,K)) 

+ 4*EX(V(L,K))*EX(VA(M,J)) + 4*EX(V(M,J))*EX(VA(L,K)) 

+ 4*EX(V(M,K))*EX(VA(L.J)) + EX(S(K,J,T1 - 2)*S(M,L,T1 - 2)) 

+ EX(S(K,J,T1)*S(M,L,T1)) + 4*EX(V(K,J)*V(H,L)) 

+ 2*EX(Va,J)*V(M,K)) + 2*EX(Va,K)*V(M,J)) 

+ 4*EX(VA(K,J)*VA(M,L)) + 2*EX(VA(L,J)*VA(M,K)) 

+ 2*EX(VAa,K)*VA(M,J)) + EX(SA(K,J,T1 - 1)*SA(M,L,T1 - D) 

+ EX(SA(K,J,T1)*SA(M,L,T1)) - 4*EX(VA(K,J))*EX(VA(H,L)) 
54: 
L14 := - 4*EX(V(K,J))*EX(V(M,L)) + 4*EX(V(K,J)*V(M,L)) 

+ 4*EX(VA(K,J)*VA(M,L)) + EX(SA(K,J,T1 - 1)*SA(M,L,T1 - 1)) 

- 4*EX(VA(K,J))*EX(VA(M,L)) 

55: 

L15 := - 4*EX(V(K,J))*EX(V(M,L)) + EX(S(K,J,T1 - 2)*S(M,L,T1 - 2)) 

+ 4*EX(V(K.J)*V(M,L)) + 4*EX(VA(K,J)*VA(H,L)) 

- 4*EX(VA(K,J))*EX(VA(H,L)) 

56: 
L16 := 4*( - EX(V(K,J))*EX(V(M,L)) + EX(V(K,J)*V(M,L)) 

+ EX(VA(K,J)*VA(M,L)) - EX(VA(K,J))*EX(VA(M,L))) 
57: 
L17 := 4*( - EX(V(K,J))*EX(V(H,L)) + EX(V(K,J)*V(M,L)) 

+ EX(VA(K,J)*VA(M,L)) - EX(VA(K.J))*EX(VA(M,L))) 
58: 58: 58: 
L23 := - 4*EX(V(K,J))*EX(V(H.L)) + EXCVCL,J))*EX(VA(M,K)) 

+ EX(V(L,K))*EX(VA(M,J)) + EX(V(M,J))*EX(VA(L,K)) 

+ EX(V(M,K))*EX(VA(L,J)) + EX(S(K,J,T1)*S(M,L,T1)) 

+ 4*EX(V(K,J)*V(M,L)) + 2*EX(VA(K,J)*VA(M,L)) 

+ EX(SA(K,J,T1)*SA(H,L,T1)) - 2*EX(VA(K,J))*EX(VA(M,L)) 

59: 

L24 := - 4*EX(V(K,J))*EX(V(M,L)) + EX(S(K.J.T1 - 1)*S(M,L,T1 - D) 

+ 4*EX(V(K,J)*V(M,L)) + 2*EX(VA(K,J)*VA(M,L)) 

- 2*EX(VA(K,J))*EX(VA(M,L)) 
60: 
L25 := 2*( - 2*EX(V(K,J))*EX(V(H,L)) + 2*EX(V(K,J)*V(M,L)) 

+ EX(VA(K,J)*VA(M,L)) - EX(VA(K.J))*EX(VA(M,L))) 61: 
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L26 := 2*( - 2*EX(V(K,J))*EX(V(M,L)) + 2*EX(V(K,J)*V(H,L)) 

+ EX(VA(K,J)*VA(M,L)) - EXCVACK,J))*EX(VA(M,L))) 

62: 

L27 := 2*( - 2*EX(V(K,J))*EX(V(M,L)) + 2*EX(V(K,J)*V(M,L)) 

+ EX(VA(K,J)*VA(M,L)) - EX(VA(K,J))*EX(VA(H,L))) 
63: 63: 
L34 : = 

64: 
L35 

65: 
L36 

66: 
L37 

71: 

75: 

77:. 

67: 67 
68: 68 
69: 69 
70: 70 
71: 71 
72: 72 
73: 73 
74: 74 
75: 75 
76: 76 
77: 77 
78: 78 
79: 79 
80: 80 
81: 81 
82: 82 
83: 83 
84: 84 
85: 85 
86: 
87: 87: 87: 

9 
LDl := 

16 

88: 
LD2 := 2 

- 4*EX(V(K,J))*EX(V(M,L)) + EX(V(L,J))*EX(VA(M,K)) 

+ EX(Va,K))*EX(VA(M,J)) + EX(V(M, J))*EX(VA(L,K)) 

+ EX(V(M,K))*EX(VA(L,J)) + EX(S(K,J,T1 - 2)*S(M,L,T1 - 2)) 

+ 4*EX(V(K,J)*V(M,L)) + 2*EX(VA(K,J)*VA(H,L)) 

+ EX(SA(K,J,T1 - 1)*SA(H,L,T1 - 1)) 

- 2*EX(VA(K,J))*EX(VA(M,L)) 

- 4*EX(V(K,J))*EX(V(M,L)) + EX(S(K,J,T1 - 2)*S(M,L.T1 - 2)) 

+ 4*EX(V(K,J)*V(M,L)) + 2*EX(VA(K,J)*VA(H,L)) 

- 2*EX(VA(K,J))*EX(VA(M,L)) 

2*( - 2*EX(V(K,J))*EX(V(H,L)) + 2*EX(V(K,J)*V(M,L)) 
+ EX(VA(K,J)*VA(M,L)) - EX(VA(K,J))*EX(VA(M,L))) 

2*( - 2*EX(V(K,J))*EX(V(M,L)) + 2*EX(V(K,J)*V(M,L)) 

+ EX(VA(K,J)*VA(H,L)) - EXCVACK,J))*EX(VA(M,L))) 

67: 67: 67: 

81: 81: 

85: 

89: 
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83417 
LD3 := 

16 
90: 

16073 
LD4 := 

16 

91: 

LD5 : = 

92: 
LD6 : = 

93: 93: 

LDll := 

73 

16 

73 

16 

9 

8 

94: 
LD12 := 2 

95: 

LD13 := 

96: 

LD14 : = 

97: 

LD15 : = 

98: 
LD16 : = 

233031 

40 

85 

4 

4025 

4 

25 
4 

99: 
25 

LD17 := 
4 

100: 100: 
10401 

LD23 := 
8 

101: 
8041 

LD24 := 
8 

102: 
41 

LD25 := 
8 

103: 
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41 
LD26 := 

8 
104: 

41 
LD27 := 

8 

105: 105: 
10401 

LD34 := 
8 

106: 
8041 

LD35 := 
8 

107: 
41 

LD36 := 
8 

108: 
41 

LD37 := 
8 

109: 109: 
110: 110: 

9 
LSI := — 

4 

111: 
LS2 := 50 

112: 
46273 

LS3 := 
4 

113: 
10409 

LS4 := 
4 

114: 
409 

LS5 := 
4 

115: 
409 

LS6 := 
4 

116: 116: 
9 

LSll := 
2 

117: 
LS12 := 50 

118: 
LS13 := 12830 
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119: 
LS14 := 139 

120: 

LS15 := 2609 

121: 

LS16 := 109 

122: 

LS17 := 109 

123: 123: 
6421 

LS23 := 
2 

124: 
5209 

LS24 := 
2 

125: 
209 

LS25 := 
2 

126: 
209 

LS26 := 
2 

127: 
209 

LS27 := 
2 

128: 128: 
6421 

LS34 := 
2 

129: 
5209 

LS35 := 
2 

130: 
209 

LS36 := 
2 

131: 
209 

LS37 := 
2 

132: 132: 132: 132: 
*** Please use ROUNDED instead 

133: 
12 

134: 134: 
N := 6 

135: 
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COl := 180 

136: 

C02 := 30.375 

137: 
COS := 0 
138: 138: 
C04 := 225816.375 
139: 
C05 := 45750.375 

140: 
006 := 750.375 
141: 141: 
C07 := 360 
142: 
C08 := 30.375 
143: 143: 
C09 := 251753.25 
144: 
CIO := 1471.5 

145: 

Cll := 45841.5 

146: 
C12 := 841.5 
147: 147: 
C13 := 360 
148: 
C14 := 60.75 
149: 149: 
C15 := 58266.75 
150: 
C16 := 58266.75 

151: 
C17 := 45780.75 
152; 

C18 := 45780.75 

153: 
C19 := 780.75 
154: 
C20 := 780.75 
155: 155: 155: 155: 
CCOl := 4 
156: 
CC02 := 1 

157: 
CC03 := 36 
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158: 
CC04 := -4 
159: 159: 
CC05 := 76 

160: 
CC06 := -7 

161: 

CC07 := 80 

162: 
CC08 := -6 
163: 163: 
CCCl := 54 
164: 
CCC2 := 96 

165: 

CCC3 := 246 

166: 
CCC4 := 300 
167: 167: 168: 169: 170: 171: 172: 173: 174: 175: 176: 177: 178: 
179: 180: 181: 182: 183: 184: 185; 186: 187: 188: 189: 190: 191: 
192: 193: 194: 
195: 
0 
196: 196: 
Quitting 

First, the algebraic form of the covariances are given. The REDUCE operators 

v(-) and s(-) correspond to the matrices V" and S" respectively, and the operators 

va(-) and sa(-) correspond to the matrices V'^ and S'^ respectively. We may re-write 

the derived expressions in more conventional notation as follows. 

Cov{V-„ xipxSi) = Cov{V-„ V-i) (B.l) 

Coy{V^„ X WxS) = 2Cov(l^^„ V^i) (B.2) 

Coy{X^l^xi'^,xipxiS) = Cov(F,-,F-,)+4Cov(F,';,F^,) 
+ Cov(5,^,,, 5;;,,) + Cov(5,^(,_,), 5;;,(,_,)) 

+ 4[E(V;pE(T/-,) + E{Vil)E{V-^) 
+ E(F^,.)E(V,;^) + E(V-^,)E(V,-)] 
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Coy{X^l^xS>,xlll,^X^J^l_,^) = 4(Cov(F,';, V^,) + Cov(n-, C,)) + Cov(5,^(,_,), S^^,^,_,^) 

(B.4) 

Cov(xj?4;\4V-.)^i\U)) =4Cov(F,';,C,) + C^^ yi,j,k,l,t,s>2 (B.5) 

Cov{V^%, = 2Cov(T̂ f̂ „ C,) (B.6) 

Cov(l/^„ 4 ' )xS) = 2Cov(T/^„ C,) (B.7) 

Cov(xj?)x(?,xi')xS) = 4Cov(F,-,F-J + 4Cov(F,';,F^,) 
+ Cov(5,-^,, 5;;,,) + Cov(5,^(,_2), 5;;,(,_2)) 
+ Cov(5,-,, 5-,,) + Cov(5-
+ 2[E(y,^-F^,) + EiVilV^^) + E(Vi-F-,) + E(V,^y-,.)] 
+ 4[E{Vi-^j)E{V-,) + E{Vil)E{V-j) 
+ E(F-,.)E(Vi^)+E(F^,)E(Vi-)] 

(B.8) 

Cov(xj?x(?,41,)X^';,_,)) = 4(Cov(F,';, F^,) + Cov(F,-, C,)) + Cov(5,-

(B.9) 

Cov(z f = 4(Cov(F,';, C^) + Cov(F,-, CO) + Cov(5,^(,_2), 

(B.IO) 

Cov(xj?x(?,xgL,)4V^)) = 4Cov(Ffc';,K;;,)+Cov(Ffc-,C,) yi,j,k,l,t,s > 3 (B.l l) 

Cov(xj;)4;\xg)^,)Xi'(\^,)) = 4Cov(Ffe';,C,) + 2Cov(n-,Ci) '^iJ,k,l,t,s > 3 

(B.12) 

Cov(xj;)4;\ 4(l2)<V2)) - 4Cov(Ffc';, F^,) + 2Cov(F,'̂ , V^,) + Cov(5fc,(,_2), 5 ,̂(,_2)) 

(B.13) 
Cov(xj,^)x(;),xg).,)Xi^(\^,)) = 2Cov(F,-,F-,) + 4Cov(F,';,y^,) 

+ Cov(5,-̂ .(,_2), + Cov(5-.(,_i), 
+ E(V;pE(F-,) + E(Vi^)E(F-,.) 
+ EiV^^)E{Vr,) + EiVZ,)E{Vl^) 

(B.14) 
Cov(4̂ )4;), 4 ' )xS) = 2Cov(F-, F-,) + 4Cov(F,';, F^,) 

+ Cov(5fc^^,,5;;,,) + Cov(5,-,,5-,,) . 
+ E(F,pE(F-,)+E(F,^)E(F-,.) 
+ E(F^,.)E(F,^) + E(F^,)E(F,-) 

Cov(xWxW, xgLi)4Vi)) = ^Covin-;-, l^^i) + 2Cov(Ffc-, F^J + Cov(5,^(,_i), 5;;,(,_i)) 

(B.16) 
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Cov(xj,^)4;\41^)X2,_,)) = 4Cov(Ffc';,lC,) + 2Cov(n-,C,) yi,j,k,l,t,s > 2 

(B.17) 

Vectorising these equations gives the formulae from Section 5.3.4. The rest of the 

output is used as [B/D] input for the example adjustments. 
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