
Durham E-Theses

Pro�ling large-scale lazy functional programs

Jarvis, Stephen Andrew

How to cite:

Jarvis, Stephen Andrew (1996) Pro�ling large-scale lazy functional programs, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5307/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5307/
 http://etheses.dur.ac.uk/5307/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

University of Durham

Profiling Large-Scale Lazy Functional Programs.

Stephen Andrew Jarvis

Laboratory for Natural Language Engineering,

Department of Computer Science.

Submitted in partial fulfilment of the

requirements for the degree of

Doctor of Philosophy

©1996, Stephen A. Jarvis

The copyright of this thesis rests
with the author. No quotation
from it should be published
without the written consent of the
author and information derived
from it should be acknowledged.

Abstract

The LOLITA natural language processing system is an example of one of the

ever increasing number of large-scale systems written entirely in a functional pro

gramming language. The system consists of over 50,000 lines of Haskell code and is

able to perform a number of tasks such as semantic and pragmatic analysis of text,

context scanning and query analysis. Such a system is more useful if the results are

calculated in real-time, therefore the efficiency of such a system is paramount. For

the past three years we have used profiling tools supplied with the Haskell com

pilers GHC and HBC to analyse and reason about our programming solutions and

have achieved good results; however, our experience has shown that the profiling

life-cycle is often too long to make a detailed analysis of a large system possible,

and the profiling results are often misleading.

A profiling system is developed which allows three types of functionality not

previously found in a profiler for lazy functional programs. Firstly, the profiler is

able to produce results based on an accurate method of cost inheritance. We have

found that this reduces the possibility of the programmer obtaining misleading

profiling results. Secondly, the programmer is able to explore the results after

the execution of the program. This is done by selecting and deselecting parts of

the program using a post-processor. This greatly reduces the analysis time as

no further compilation, execution or profiling of the program is needed. Finally,

the new profiling system allows the user to examine aspects of the run-time call

structure of the program. This is useful in the analysis of the run-time behaviour

of the program.

Previous attempts at extending the results produced by a profiler in such a way

have failed due to the exceptionally high overheads. Exploration of the overheads

produced by the new profiling scheme show that typical overheads in profiling

the LOLITA system are: a 10% increase in compilation time; a 7% increase in

executable size and a 70% run-time overhead. These overheads mean a considerable

saving in time in the detailed analysis of profiling a large, lazy functional program.

Acknowledgements

I would like to express my sincere thanks to the following people:

To my supervisor Rick Morgan for his tireless support and to Roberto Garigliano for

his encouragement. To my colleagues at Durham University; James Blowey, Paul

Callaghan, Russell Collingham, Chris Cooper, Marco Costantino, Miguel Fernan

dez, Jon Hazan, Johannes Heitz, Kevin Johnson, Dave Nettleton, Brett Parker,

Sanjay Poria, Deborah Robson, Nimish Shah, Sengan Short, Simon Shiu, Mark

Smith, Agnieszka Urbanowicz, Yang Wang and Clare Woodward.

To Patrick Sansom and Simon Peyton Jones from Glasgow University.

To my parents, my brother Douglas, and especially Louise.

Declaration

The material contained within this thesis has not previously been submitted for a

degree at the University of Durham or any other university. The research reported

within this thesis has been conducted by the author unless indicated otherwise.

The copyright of this thesis rests with the author. No quotation from it should be

published without his prior written consent and information derived from it should

be acknowledged.

Contents

1 Introduction 1

1.1 Efficient Programs 2

1.2 Lazy Functional Programming 3

1.3 The LOLITA System 4

1.4 Contributions of the thesis to profiling 5

1.5 Criteria for Success 7

1.6 Thesis Structure 7

2 Efficiency Analysis of Programs 10

2.1 Measuring Complexity 12

2.1.1 The theoretical approach 12

2.1.2 The practical approach 13

2.2 Tools for Practical Complexity Analysis 14

2.2.1 What is measured 16

2.2.2 Recording profiling information 18

2.2.3 Presentation of the results 19

2.2.4 The choice of run-time data 21

2.2.5 Relating resource usage to the source code 22

2.2.6 Maintaining the program's original behaviour 23

2.3 Diflferent programming paradigms 24

2.3.1 Imperative Languages 24

2.3.2 Logical Languages 25

2.3.3 Functional Languages 26

2.4 Types of profiling tool 36

CONTENTS

2.4.1 Occurrence profiling 38

2.4.2 Time profiling 40

2.4.3 Allocation and heap profiling 41

2.5 Theoretical considerations for profiler design 44

2.5.1 Methods of Propagating Profile Times 44

2.6 Current Profiling Tools 47

2.6.1 Profilers for imperative languages 48

2.6.2 Profilers for functional languages 53

2.7 Chapter summary 63

3 Large-Scale Functional Systems 65

3.1 Introduction 65

3.2 Functional Programming at Large 67

3.2.1 Real-World systems 67

3.2.2 Program comprehension 71

3.3 The LOLITA NLP System 74

3.3.1 Natural Language Engineering 74

3.3.2 LOLITA 78

3.3.3 System construction 80

3.3.4 Applications of LOLITA 82

3.4 Aspects of Large-Scale FP 86

3.4.1 Abstract types for Domain-Specific Sub-languages 88

3.4.2 The semantic parser 89

3.4.3 Semantic analysis implementation 91

3.4.4 Analysis of the domain-specific sub-language approach . . . 92

3.4.5 Lazy Evaluation 93

3.4.6 Higher-order functions and parameter hiding 97

3.4.7 Purity and referential transparency 97

3.5 Programming tools for LOLITA development 101

3.5.1 Debugging 101

3.5.2 Profiling 104

CONTENTS ^ vi

3.6 Conclusions 104

3.7 Chapter Summary 108

4 Profiling L O L I T A : Case Studies 109

4.1 Introduction 109

4.1.1 Managing the case study information 110

4.2 Case study I : Low-level functions 112

4.2.1 Aims 112

4.2.2 Analysis 113

4.2.3 Concluding remarks 115

4.3 Case study I I : Grammar transformations 116

4.3.1 Aims 116

4.3.2 Analysis 117

4.3.3 Concluding remarks 125

4.4 Case study I I I : The transformation engine 126

4.4.1 Aims 126

4.4.2 Analysis 126

4.4.3 Concluding remarks 132

4.5 Other Case Studies 134

4.6 Proposed Improvements to Profiling Tools 138

4.7 Conclusions 139

4.8 Chapter Summary 140

5 Cost-Centre Profiling 142

5.1 Introduction 142

5.2 Profiling with Cost Centres 143

5.2.1 Cost-attribution semantics for cost-centre profiling 144

5.2.2 Reduction rules and reduction sequences 147

5.2.3 Push-enter reduction semantics 151

5.3 Compilation by transformation 152

5.3.1 The CORE language 154

5.3.2 The Glasgow Haskell Compiler simplifier 157

CONTENTS vii

5.3.3 Let floating transformations 159

5.4 Chapter summary 161

6 Cost-Centre-Stack Profiling 163

6.1 Introduction 163

6.2 Cost-Centre Stacks 164

6.2.1 Cost-attribution semantics for cost-centre stacks 167

6.2.2 Secondary semantics for cost inheritance 171

6.3 An Efficient Implementation 173

6.3.1 The Push operation 177

6.3.2 Two examples 183

6.4 Integration with GHC 186

6.4.1 Identifying source-level expressions 187

6.4.2 Maintaining the current cost-centre stack 188

6.4.3 The extended run-time system 188

6.5 Maintaining Compiler Optimisations 192

6.5.1 Lazy evaluation 195

6.6 Compilation by transformation revisited 195

6.6.1 The source of broken stacks 196

6.6.2 Preserving the semantics of cost-centre stacks 198

6.6.3 Cost-centre-stack transformation rules 200

6.6.4 The cycle problem 202

6.7 Post-Processing Cost-Stack Results 203

6.7.1 An accurate inheritance profile 203

6.7.2 Selecting and deselecting cost centres 205

6.7.3 Displaying call-graphs 206

6.7.4 Further facilities 208

6.8 Chapter Summary 208

7 Results and Evaluation 210

7.1 Introductory Example 211

7.1.1 Usefulness 218

CONTENTS viii

7.1.2 Overheads 220

7.2 The Clausify Program 223

7.2.1 A cost-centre profile 224

7.2.2 A cost-centre-stack profile 225

7.2.3 Usefulness 235

7.2.4 Overheads 236

7.3 ntest— A LOLITA subset 238

7.3.1 ntest results 238

7.3.2 Summary of the cost-centre-stack table 241

7.3.3 Compilation overheads 242

7.3.4 Executable overheads 243

7.4 LOLITA 244

7.4.1 LOLITA results 244

7.4.2 Compilation overheads 251

7.4.3 Executable overheads 253

7.5 nof i b benchmark 253

7.5.1 n o f i b results 257

7.6 Complexity analysis 258

7.6.1 Worst-case analysis 258

7.6.2 Program structure 260

7.7 Heap profiling and serial time profiling 261

7.8 Chapter summary 262

8 Further Research 264

8.1 Introduction 264

8.2 Debugging 265

8.2.1 Distinguished Path Debugging Tool 265

8.2.2 Using cost-centre stacks for debugging 267

8.3 Tracing lazy functional computations 268

8.3.1 Visualisation of graph reduction 269

8.3.2 Using cost-centre stacks for tracing 270

CONTENTS ix

8.4 BSP tools project 271

9 Conclusion 273

Appendix A 276

Appendix B 286

List of Figures

2.1 Number of primitive operations counted for the functions in each of

the example programs 34

2.2 Graph reduction of sqr (5 + 2) 36

2.3 Programmed graph reduction of sqr (5 + 2) 37

2.6 An example of an un-profiled function which is shared by two profiled
functions 57

3.1 Summary of the results of the Dagstuhl workshop on Functional

Programming in the Real World 70

3.2 Structure of the LOLITA system 80

3.3 A portion of the semantic network 81

3.4 Example of the contents scanning task 83

3.5 An example output from the Chinese Tutor 84

3.6 Example of a dialogue with LOLITA 85

LIST OF FIGURES xi

3.7 A diagram showing the various levels of abstraction that exist. The
column on the left shows the layers of abstraction (based on the
Haskell language) at which applications are developed. People de
veloping at lower layers support those at higher layers by providing
tools and/or creating a level of program abstraction. The second
column shows the knowledge that those working at each level re
quire. Each level of abstraction can be bridged by the use of a
Domain-Specific Sub-language. The real power of Functional Lan
guages lies in the way in which the boundaries between these levels

of abstraction can be drawn [Jarvis, Poria and Morgan, 1995]. . . . 87

3.8 An example grammar rule 88

3.9 A fragment of the semantic net 89

3.10 Feature analysis during the post-parse stage of analysis 94

3.11 The inkFeatureForests function takes a parse forest as an argu

ment, this is the result of the LOLITA Tomita parser. I t builds as

its result a feature forest with the set of features (gramFeatSets)

supplied. The function has a lazy cyclic structure which can be iden

tified by the reference to the feature forest f f in the definition of the

feature forest itself. 96

3.12 The generator conditional function 96

3.13 Simplified portion of the generator code 98

4.1 Example of the initial profiling results 114

4.2 The function applyToAnyGood 119

4.3 First grammar transformation profiling result 120

4.4 Second grammar transformation profiling result 121

4.5 Third grammar transformation profiling result 121

4.6 Fourth grammar transformation profiling result 123

LIST OF FIGURES xii

4.7 Fifth grammar transformation profiling result 124

4.8 Sixth grammar transformation profiling result 124

4.9 The first stage of the grammar transformations are complete by 250

seconds of execution. At this point in the profile graph further prob

lems become apparent 127

4.10 The heap problem after 250 seconds of execution time, broken down

according to its constructors 127

4.11 Increasing the heap size to extend the length of the serial heap profile

to 300 seconds 128

4.12 The results of the extended serial heap profile shown in terms of the

constructors 128

4.13 The results of an sec expression to the function matchNewnode. . . 130

4.14 A constructor profile of the same program 130

4.15 A constructor profile showing the huge improvement to the grammar

transformation program with a corrected version of the applyTopTreins

function 132

5.1 Cost Augmented Semantic Rules for Haskell 146

5.2 Syntax of the Core language 155

5.3 Local Transformations 158

6.1 Implementation of Cost Stacks 174

6.2 Example call-graph 183

6.3 Example cost-centre-stack table 185

6.4 Implementation of the current cost-centre stack 189

6.5 Implementation of Push 191

LIST OF FIGURES xiii

6.6 Call-graph of an experimental program 193

7.1 Call-graph of experimental program 212

7.2 Results of the cost-centre profiler 213

7.3 Results of the cost-centre-stack profiler 214

7.4 Non-inherited post-processed results 217

7.5 Inherited post-processed results 219

7.6 Results of the cost-centre profiler 226

7.7 Non-zero cost-centre-stack results 227

7.8 Flat profile results of the cost-centre-stack profiler 229

7.9 Table summarising the inheritance of the Clausify results 231

7.10 Non-inherited Clausify results from the cost-centre-stack profiler. . 232

7.11 Inherited Clausify results from the cost-centre-stack profiler 232

7.12 Results of the cost-centre profiler 239

7.13 Partial results of the cost-centre-stack profiler 240

7.14 Graph-tool display of LOLITA's cost-centre-stack profile results. . 246

7.15 Graph-tool view of the most expensive cost-centre stack 247

7.16 Graph-tool view of all stacks with non-zero costs 248

7.17 Graph-tool view with selected cost centres 249

8.1 The dependency graph of a program to solve the map colouring

problem 267

8.2 The reduction of square (3 + 1) 269

Chapter 1

Introduction

When a computer is programmed, for a business system, for an engineering project,

for numerical computation or for fun, the programmer is aware of a number of

constraints on the solution. The immediate concern is for the program to do the

right thing, to produce the correct results in a number of, and preferably all of,

the situations in which the program is run. If a program has a unique specification

then checking that the results meet the requirements is a matter of course.

The programmer may also be concerned about how the program looks; the

neatness of its structure and the fact that colleagues will be able to understand

what each part of the program computes. This structure may allow program re-use,

or reverse engineering on parts of the code.

The programmer may also be concerned about the efficiency of his solution; that

the program calculates the results in sufiicient time, that i t works for a suitably

large input and that the machine on which the program is running does not run

out of memory for instance.

The subject of this thesis is the last of these three constraints; the ability of a

program to compute the correct result, and the agreeable structure and layout of

the program code will be taken for granted.

Chapter 1: Introduction

1.1 Efficient Programs

The analysis of the efficiency of a program can be addressed in two diflPerent ways

Runciman and Wakeling, 1992a]. Firstly, this analysis can be done theoretically,

that is by reasoning about the way in which the result is computed. This may

involve the analysis of the underlying algorithm, recording how many steps would

be needed to calculate the results on some abstract interpreter. The programmer

can also calculate how an algorithm would perform in the 'worst case'. Analysing

the worst case for two different algorithms allows the programmer to choose which

algorithm is better, or allows him to discover that whichever he should choose their

worst cases are equal.

I t is not always true that the worst case is a useful representation of the efficiency

of a program. In fact many programs rarely perform solely in their worst cases.

I t may be more useful, therefore, for the programmer to be able to calculate the

'average' case, based on input for example, which would be more representative of

the normal behaviour of the program. Unfortunately the mathematics involved in

calculating the average case for the execution of a program are often complicated.

Even if the programmer were able to perform this type of analysis, which is not

always the case, more often than not the programmer would not be prepared to

carry out such complicated analysis.

The second method of analysis is a practical approach. This involves taking

measurements using tools while the program is running. These tools provide the

programmer with a profile of the program including information such as the time

spent in different parts of the program and the memory used during the execution.

These tools are known as profilers.

Using a profile of a program it is possible to compare two different implementa

tions. One program may run faster than the other, or use less memory space as it

computes a result. The programmer may also be directed to parts of the program

which appear to be inefficient, contrary to his expectations. These parts of the

program can be changed and re-analysed to check for an improved solution.

Chapter 1: Introduction

Because profilers collect their results when the program is running it is easy

to check the efficiency of the program with a number of inputs. The programmer

may check good, bad and average cases with a degree of ease. No mathematical

analysis is needed. Perhaps more important is the ability to analyse the efficiency

of large programs which may exclude themselves from a mathematical approach

purely because of their size.

1.2 Lazy Functional Programming

Profilers have been built for a number of different programming languages. Profilers

for imperative languages such as C have had a good deal of success and are widely

used.

Profilers for imperative languages are relatively easy to implement as the order

of an expression's evaluation is described as being strict. When a function is called

the arguments to the function are evaluated, even if i t is not certain that they will

be used, and then the function is applied. This defined order of evaluation means

that the profiling costs, recorded between the function being called and after the

function has terminated, will be the true costs of the execution of that function.

Not all programming languages have this strict order of expression evaluation.

Some are lazy. A function's argument will not be evaluated if it is not going to

be used by that function and when it is needed, possibly in another function, it

will only be evaluated once. Programming languages which exhibit lazy evaluation,

such as lazy functional languages, are not as easy to profile. This is partly because

the order of evaluation is not as intuitive as i t is with a strict language. The pro

filing costs between a function being called and its termination will not necessarily

represent the complete costs of executing that part of the program; the evaluation

of some of the functions arguments may be delayed until they are needed, thus

moving their evaluation to what appears to be another function.

More recently profilers for lazy functional languages have been developed. Many

of the advances have taken place over the past five years. As a consequence of this,

Chapter 1: Introduction

the results of testing such tools on large functional programs are only now becoming

apparent. This thesis provides the results of a three-year study of the profiling of

a large system written in a lazy functional programming language. In response

to these results a number of improvements to the field of profiling are proposed.

These improvements are implemented in a new profiling tool which is tested within

the domain of the natural language processing system known as LOLITA.

1.3 The L O L I T A System

The Laboratory for Natural Language Engineering at the University of Durham

has developed the LOLITA system for natural language processing applications.

The system consists of 50,000 lines of source code (not including comments; with

comments, the system consists of approximately 80,000 lines), equivalent to about

500,000 lines of imperative code [Turner, 1982], divided between 170 modules. In

addition there are around 450 data files. Although the system was initially devel

oped by one person, a team of approximately twenty people is currently engaged

in developing various aspects of LOLITA. The LOLITA system is written entirely

in the lazy functional programming language Haskell.

This thesis contains a study of the profiling of the LOLITA system over a num

ber of years. This study is unique for a number of reasons. Unlike many other large

lazy functional systems LOLITA is written in a lazy functional language because

the language was considered best suited to the task. The aim was not to experi

ment with the suitability of lazy functional languages for particular programming

tasks, nor is LOLITA a system related to the use of functional languages such as

a compiler. The development team of around 20 programmers are specialists in a

number of areas such as mathematics, linguistics, economics and computing. They

are not all programmers. Some have little or no programming experience when they

join the project. For this reason the testing of the current profiling tools found in

this thesis is based purely on the effectiveness of the profiling tools for the devel

opment of a very large functional program. This work diflPers from that of Sansom

Chapter 1: Introduction

Sansom, 1994] which focuses on the profiling of the Haskell compiler GHC and also

the work by Runciman and Wakeling [Runciman and Wakeling, 1993] in which the

programmers have experience in the implementation of functional programming

languages.

1.4 Contributions of the thesis to profiling

The series of profiling experiments performed using the LOLITA system over a pe

riod of three years has highlighted a number of problems with the current profiling

tools:

• A functional program is usually composed of a number of small functions.

This can often cause problems when profiling large programs as i t can be

difficult to pinpoint exactly where an efficiency problem manifests itself in

the code. One of the problems with profilers is that they have presented their

results at a low level in the code, reporting a large percentage of the execution

costs as a result of supporting or library functions. This is of little help in the

identification of an inefficient algorithm, particularly for programmers who

may be programming at a much more abstract level in the code. Alternative

methods of profiling allow the programmer to identify which parts of the code

he is interested in profiling. This gives the programmer more flexibility over

where in the code the results are displayed. However, existing schemes have

relied on the programmer recompiling and profiling the program each time

he wishes to shift his attention from one part of the code to another. This

may cause significant problems.

• Functional programs use a large number of shared functions. I t is often useful

to identify which parent functions make most use of these shared functions,

allowing the path of expensive function calls in a program to be identified.

To date no accurate scheme exists; statistical averaging has been used in

some implementations of profilers, alternative implementations have no form

of cost inheritance at all.

Chapter 1: Introduction

• Profiling takes a long time, particularly if the programmer is required to

identify the parts of the code which he is interested in profiling. Tracking

down an efficiency problem in the code can require a number of recompilations

and executions of the program. The result is a task which, with a large

program, can conceivably take days to complete.

In response to these problems a number of improvements are proposed and imple

mented:

• An accurate method of cost inheritance is introduced which allows the paths

of expensive function calls to be identified. Al l of the costs in the program

can be identified, in particular shared functions have their costs accurately

divided between the parent functions. This scheme is implemented as part

of the standard profile of a program.

• Existing profiling semantics are extended to model this method of profiling.

This allows the description of the mapping of execution costs to individual

parts of the program to be mathematically defined. This is useful for more

formal reasoning about a program's execution costs.

• A new profiling system is implemented on the Glasgow Haskell Compiler;

modifications are also made to the compiler optimisations so that the effi

ciency of the compiled code is not affected by the introduction of the new

profiler.

• A post-processor is designed to allow programmers to manipulate the new

profiling results after the execution of the program. This means that the

program does not have to be recompiled in order to view the profiling costs

at a different part in the program.

• The post-processor allows the results of the existing profilers to be produced.

I t also allows the results to be displayed as inherited costs. This prevents

any ambiguity in the presentation of results of shared functions and provides

a useful device in allowing the programmer to find the cause of efficiency

problems in his code.

Chapter 1: Introduction

1.5 Criteria for Success

The success of this work will be evaluated in terms of providing evidence for or

against the following statements:

1. The new method of profiling presented in this thesis provides an opportunity

for a reduction in the time needed to profile a large lazy functional pro

grammed system, when the programmer selects and deselects parts of the

code for profiling.

2. The new method of profiling extends the profiling results presented by previ

ous profilers in so much as the accurate inheritance of shared program costs

can be achieved.

3. The new method of profiling provides these new facilities without imposing

an unacceptable overhead on the compilation or execution of the program

such that the new method of profiling would offer no benefit to a functional

programmer.

1.6 Thesis Structure

The thesis is divided into nine chapters.

Chapter 2 considers in detail the efficiency analysis of programs; introduced in

section 1.1. I t considers in more detail the questions involved in the theoretical

and practical analysis of efficiency in programs. The criteria for a profiling tool are

discussed and the differences between profilers for imperative, logical and functional

languages are analysed. The different types of profiling tool are categorised and

any theoretical considerations in their design are introduced. Some of the current

profiling tools for imperative languages are discussed; these provide a context for

looking at the more recent profilers for functional languages.

Chapter 3 discusses the programming of large-scale functional systems and in

particular the experience gained in the development of the LOLITA system; intro-

Chapter 1: Introduction

duced in section 1.3. The LOLITA system is one of the few real-world functional

programs which is not implicitly related to the development of functional program

ming languages. For this reason there are many aspects of the programming of

the system which make i t unique. The programmers of the system are taught to

program at an abstract level in the code, which facilitates the production of spe

cialised code for the natural language processing capabilities of the system. This

also provides a unique insight into the needs of applications programmers in a large,

lazy functional program. The chapter ends with a discussion of the programming

tools which are needed for system development.

Chapter 4 provides a number of case studies of the profiling of the LOLITA

system. These case studies are chosen from a two-year period of data collection.

They highlight the problems which the LOLITA programmers have experienced

with the current profiling tools supplied with the Glasgow Haskell Compiler and

the Chalmers Haskell Compiler. Proposed improvements are made to the existing

profiling tools based on the information collected from these case studies.

Chapter 5 discusses the implementation of the existing cost-centre profiler on

the Glasgow Haskell Compiler. This profiler is used as a basis for the changes which

are proposed in the previous chapter. In order to understand the details of the

proposed changes, the cost-centre profiler is described in part. These details include

the cost-attribution semantics and the core language optimisations performed by

the compiler simplifier.

Chapter 6 contains the description of a new profiler, the cost-centre-stack pro

filer, built on top of the existing cost-centre profiler. This allows the proposed

improvements to be implemented in a profiler on the Glasgow Haskell Compiler.

The cost-attribution semantics seen in the previous chapter are extended. Further

semantics are introduced to model the behaviour of cost inheritance. In this chap

ter the efficient implementation of this new profiler is also discussed. This ensures

that the profiler has acceptable overheads despite collecting considerably more pro

filing information. The implementation with the Glasgow Haskell Compiler is also

discussed. Compiler transformations are modified so that the new profiler preserves

Chapter 1: Introduction

the efficient code produced by the compiler optimiser. Finally a post-processor is

described which allows the new results to be combined in an eff'ective program

ming environment. This is a new way of presenting profiling results and allows the

programmer to view the effects of accurate cost inheritance.

Chapter 7 contains the results of the new profiler for small and large programs.

Attention is paid to the new results which the cost-centre-stack profiler produces.

I t is shown how these can be useful in helping the programmer to identify the path

of function calls to computationally expensive parts of the program. The chapter

also investigates the overheads which this new method of profiling imposes and

whether these overheads make this method of profiling feasible.

Chapter 8 considers further research. The method of profiling presented in this

thesis is applicable to two other important areas in the analysis of lazy functional

programs; debugging and tracing. I t is proposed that the new theory introduced

to implement the cost-centre-stack profiler will also provide a unique solution to

these further fields. In addition it is discussed how the profiling theory is also being

applied in the development of further profilers.

In Chapter 9 the conclusions of the thesis are presented.

Chapter 2

EfHciency Analysis of Programs

The future paradigm of programming may well be clearly established; to create

software a specification is first written according to the user's directives, and then

the specification is refined to an implementation which is clear and efficient. In

particular, this paradigm is a prime motivation behind the study of functional

programming. Much has been written about the process of transforming one func

tional programming language into another [Ajisaka, 1987][Burstall and Darling

ton, 1977] [Darlington and Burstall, 1976][Loveman, 1977]. However, a key part

of the process, assessing the efficiency of functional programs, has, until recently,

remained largely untouched.

Computing takes time. Some problems take a very long time; others can be done

quickly. Some problems seem to take a long time, and then a faster way to do them

is discovered (a faster algorithm). The study of the amount of computational effort

which is needed to perform a calculation is the study of computational complexity.

I t is particularly important in the context of real-world applications that a

programmer is able to record the demand on the necessary resources needed for

the execution of a program. In a real-world environment there may be limits on

the resources available and often these resources will be shared between different

people or programs. By studying and analysing the complexity of a program, i t is

possible to understand the demands which are placed on the available resources.

Chapter 2: Efficiency Analysis of Programs 11

Improvements can then be made to the program and efficient and effective solutions
are produced.

Measuring the complexity of a program also highlights those parts of the pro

gram which perform differently from the programmer's expectation. Performance

bugs can be identified in the execution of a program. An error in the algorithm

design or the refinement of a specification can be identified at the program level.

This analysis enables the relationship between the program's code and its resources

to be understood by the programmer. There are therefore a number of benefits

from doing this type of analysis.

I f the complexity of a program is to be classified, a scale on which complexity

constraints can be measured must first be established [Wilf, 1986]. A program is

considered complex if i t is based upon a complex algorithm. In turn, an algorithm

is considered complex if its application requires the execution of a complex compu

tation. A computation is a calculation performed by the machine, usually in the

process of applying a part of the algorithm to a particular setting in order to get a

result.

To fulf i l l the goal of measuring the complexity of programs, therefore, it must

be possible to measure the complexity of individual computations; from this the

complexity of algorithms can be determined and finally the complexity of programs.

What is complexity? Although complexity can be intuitively understood, a

precise definition is needed if a scientific investigation is to be carried out. Intu

itively, a computation is complex i f i t is difficult to do. But how can difficulty be

measured? A common approach, and the one to be followed here, is to measure

the complexity of a computation by measuring the resources required to execute

it — it being assumed that a difficult computation will require more resources to

carry it out.

One resource often used in this context is time. One computation is considered

to be more complex than another i f the execution of the former takes more time

than the latter. The amount of time required to perform a computation is called

the 'time complexity'.

Chapter 2: Efficiency Analysis of Programs 12

Another resource often used to measure complexity is the amount of storage
space required. This is based on the assumption that the more difficult a compu
tation is, the more space will be required for its execution. The amount of storage
required by a computation is referred to as the 'space complexity'.

2.1 Measuring Complexity

The problem of reasoning about the time and space complexities of programs can

be addressed in two different ways; the theoretical and the practical approaches

Runciman and Wakeling, 1992a .

2.1.1 The theoretical approach

The theoretical approach is described as developing a framework in which a pro

grammer may reason about a program's intensional properties (how a result is

computed) using algebraic methods similar to those used to reason about its ex-

tensional properties (the result of the computation).

Theoretically, the 'time cost' of a program can be represented as the number of

steps an abstract interpreter needs to compute its result. One way of computing

this time cost would be to simulate the abstract interpreter and count the number

of steps it would need; alternatively, the time cost of a program may be expressed

in terms of the time cost of its parts, in a more 'compositional' manner. This

latter method is essentially more difficult in lazy functional programming as the

reduction steps must also consider how much of the result is required.

The theoretical approach is concerned with providing a method of converting a

functional program into a series of equations, a necessary precursor to automatic

analysis. These time equations can be solved by traditional methods (complexity

measured in big-0 notation for instance), yielding either an exact solution, an

upper bound or an approximate solution.

Chapter 2: Efficiency Analysis of Programs 13

There has been a collection of work in this area, [Wadler, 1988] [Bjerner and
Holmstrom, 1989] and [Sands, 1991], which is reported as having had a moderate
amount of success [Runciman and Wakeling, 1992a]. One of the deficiencies of this
technique is that reasoning about large programs can be a lengthy and difficult task.
Automation of this theoretical method of time analysis would solve this problem
but how successfully it might be accomplished has yet to be explored.

Theoretical analysis is also limited by the fact that in most cases the calculations

are worst case analyses; the average case is in many situations too difficult to

calculate. For many programs the analysis may therefore be misleading, as systems

spend most of their time in a 'better than worst' state. Even when the worst case

is the normal one, the complexity analysis concerns the input as it grows towards

infinity. Most systems will have a restriction on their input, though this restriction

is not considered in the analysis of the order of complexity.

In many cases the theoretical approach will be useful in the analysis of algo

rithms, the results of which can be used to determine whether one algorithm is

preferable to another. Programs however, may require a more practical approach

to complexity analysis, so that constraints such as average case analysis and finite

input can be considered.

2.1.2 The practical approach

The practical approach, which is the subject of this thesis, considers tools which

gather statistical information about the use of resources while the program is being

executed. The tools provide us with a profile of the computation and inform us of

information such as how often each statement is executed and the amount of time

spent in each part of the program code.

These statistics allow the programmer to see which parts of the program are

executed most often and for how long their execution lasts. In addition they permit

the identification of those parts of the program which are executed infrequently or

not at all! The run-time behaviour of the program can be shown and consequently

Chapter 2: EfHciency Analysis of Programs 14

the programmed solution can be examined in terms of its run-time complexity.

The program can be executed with a sample of data which represents an average

input. Many of the efficiency improvements may be made according to the results

of such a profile, as a large proportion of the system time will be spent processing

such cases. Of course this may mean that the program takes a large amount of

time to process data in a 'worst case', but providing such a case is rare, this may

not be of importance anyway.

Tools which provide such a profile allow the non-theoretician to analyse the

behaviour of his programs. These tools also allow the experienced programmer to

speed up the efficiency analysis of his code. A majority of programmers will in

preference choose 'automatic' over 'hand/paper' analysis of their programs. This

observation is particularly true within the domain of computing. Programs are

often so shrouded in the beauty of their autonomous behaviour that the designer

is happy for them to remain un-quantified, until of course something goes wrong!

Profiling tools are now examined in more detail.

2.2 Tools for Practical Complexity Analysis

When programs are written, the primary concern is the correctness of the code.

Any debugging which is performed is mainly to correct logical errors. The result is

a program which meets the initial correctness requirements, or specification. The

measurement of the complexity of the program, to determine its efficiency, is often

considered secondary to this correctness, and it is not until the programmer is

happy with the correctness of the code that he begins to consider the complexity

of his solution.

The first attempt at the efficiency analysis of a program might often consist of

recording the execution time and perhaps the amount of memory needed to run the

program. These two metrics give a profile of the program; a tool which measures

these execution costs (and others) is therefore called a profiler.

Chapter 2: Efficiency Analysis of Programs 15

Profiling tools have been developed which provide more comprehensive infor
mation. There are various methods of gathering profiling information, these are
described in section 1.4; first some of the more general problems involved in profil
ing are considered [Sansom, 1994][Platter and Nievergelt, 1981 .

In developing profiling tools there are some general principles which should be

noted:

• What is measured — There are a number of different resources which can

be measured. Memory space can be divided into the memory used for the

program stack, which is used for procedure calls and argument values, and

that used for the program heap, which is used as working memory for the

evaluation of expressions. CPU time can also be measured. This may be

the time used by the program on a single processor, or the total time used

if a number of parallel processors are utilised for the program evaluation.

Other operating system measures can also be recorded such as: network

communication; number of file handles; systems calls; and garbage collection.

This is discussed in more detail in section 2.2.1.

• How this information is recorded — As well as knowing what to record there

must also be an effective way of gathering this information. The general

problem of monitoring a program's execution (that is, observing the empirical

behaviour of programs) and the particular problem of observing program

performance is addressed in section 2.2.2.

• Presenting the profiling results to the programmer — Recording information

using a profiling tool is only going to be successful if the results are presented

to the user in some interpretable form. This will require displaying the results

in some way that is meaningful to the programmer; section 2.2.3.

• What program data should be used — With the introduction of practical

complexity analysis comes the choice of what input data should be used when

the program is tested. Some data should be chosen to represent the 'average

case' of input. Data can also be selected for 'bad case' analysis or even 'worst

Chapter 2: Efficiency Analysis of Programs 16

case' analysis, although the distinction between this and the infinite worst
case of theoretical complexity analysis should be noted; section 2.2.4.

• Relating resource usage to the source code — While sampling the resources

used during the execution of a program, it is necessary to relate these costs

to units of the program source code. This relationship between the costs and

units of the source code may follow a number of techniques; section 2.2.5.

• Preserving the original behaviour of the program — The profiling tool should

maintain the program's original behaviour. Transformations and optimisa

tions which take place during the compilation and execution of the program

should be preserved whilst profiling. The profiler should not, as far as pos

sible, increase the resources needed by the program for its execution. Or, at

least, any extra resources which were needed in profiling the program should

not be included in the profiling results; section 2.2.6.

• Programming paradigm — The method of collecting the costs of a program's

execution and the way in which these results are presented will depend on

the programming language in which the source code is written. For some

languages which are designed to be more abstract, such as functional lan

guages for instance, this problem becomes even more pronounced. Delayed

evaluation schemes introduce problems of where the costs of the evaluation

of an expression should be attributed; section 2.3.

The remainder of this chapter is concerned with the discussion of these principles

and of some of the profiling tools currently available.

2.2.1 What is measured

A profiler is only worthwhile if i t produces relevant information for the user to

interpret. I t is therefore necessary to consider carefully exactly what metrics should

be recorded.

Chapter 2: EfHciency Analysis of Programs 17

The first and simplest results which can be recorded are the number of calls to
portions of the code; although the number of procedure calls will not necessarily
correspond to the amount of resources used, so for instance 'more calls' may not
necessarily mean that 'more resources' are used. However, a lower limit can be
established if we consider that each call to a function requires a fixed amount of
space and a fixed amount of time in which to be executed. I t may also be useful to
the programmer to know that some parts of the code are called considerably more
than others.

This method is undeniably crude, as clearly some parts of the code will take

longer to execute than others. Therefore, the amount of execution time at each

part of the program may also be measured. The frequency counts can then be

augmented with the percentage of total execution time that this part of the code

took to execute.

Execution time is established as the amount of CPU time dedicated to the

evaluation of a piece of code. This time should be free from any time-sharing

properties that the underlying operating system may exhibit. The time may come

from a single processor or may be the collection of results from multiple processors.

The third measurement considered is the measurement of memory usage. This

allows the programmer to 'see' the allocation of memory to individual parts of the

program, a process which is typically hidden in the language implementation, in

particular in those languages which use dynamic storage management. Memory

costs may for instance be recorded in terms of individual functions, modules, or

language constructs.

The measurement of time and space usage can be extended. During the col

lection of cost data it is also possible to record the point in time at which this

measurement is taken. Thus the results are a collection of pairs containing the

program cost and the point at execution time in which this cost was recorded.

This is useful because, as well as recording the fact that a function uses a large

amount of memory, i t may also be useful to the programmer to know when the

function used this memory.

Chapter 2: Efficiency Analysis of Programs 18

I t may also be useful to include in the profiling results some of the operating
system overheads such as file manipulation and transfer, communication costs,
garbage collection and the division of tasks to processors. Language-specific issues
such as expression reductions and the number of times different parts of the internal
representation of the code are visited may also be useful metrics to keep. This
enables the programmer to gain an overall picture of the execution costs.

One or a number of these measures can be adopted for a successful profiling tool.

Often the application which is being profiled will have specific efficiency needs; a

fast execution time, a low memory usage, or both. The appropriate measure can

therefore be selected. A combination of these features is often presented.

2.2.2 Recording profiling information

Recording the profiling data requires some method of collecting information about

the resources used during expression evaluation, then a way of relating this infor

mation to the unit of code which caused the evaluation to take place.

This information can be gathered using two approaches.

One method of profiling, termed Execution sampling, is based on sampling

operating system signals. The execution of the program is interrupted at regular

intervals (every 20ms for example). At this interrupt, the interrupt handler can

increment the resource counters which are associated with the piece of code that the

program is currently executing. So for example, time profiling may be implemented

by the interrupt handler incrementing a time counter associated with that code unit

which is being executed. Memory profiling can be implemented by scanning the

memory cells to detect which are currently being used by that part of the code.

At the end of the program's execution the sample for each piece of code will be

divided by the total number of samples, thus producing a percentage of the total

time or memory spent executing that part of the program. This is an effective

method of dividing execution costs between parts of the program, though i t does

have drawbacks. The execution time must be long enough to have a reasonable

Chapter 2: Efficiency Analysis of Programs 19

number of samples; if not, the results will be inaccurate. Also, as the samples are
not controlled by the code being executed, it is possible that two runs of the same
program may produce slightly different results.

A second method, termed Procedure timing, uses samples which are instructed

by the program code itself. Statements can be inserted into the code which indicate

a read of the system clock or a scan of the memory currently in use. These costs

can then be compared at two points to give the total amount of time and the

total memory used in a certain part of the program. This method enables the

resources used in each procedure, either including or excluding any sub-procedures,

to be determined. Unfortunately, the cost of accessing the system clock is often

prohibitively expensive and the accuracy of the profile is dependent on the clock

resolution. However, it is easy to separate the profiling costs from the program

costs, as the sampling is linked directly to the execution of the code.

2.2.3 Presentation of the results

After the profiling data has been recorded there is the separate task of presenting

the data to the user. Numerical information such as percentage values or the

number of calls to functions can be presented in a number of ways:

• The information can be displayed in a table, in a textual form. This will

contain the names of functions (or units of code) and the corresponding costs

which they incurred.

• Alternatively the source code itself can be annotated with the results of the

profile. The results will still be in a textual format.

• Results can also be displayed as a graph. This method can capture more

information than the textual results as it can also show when in the program's

execution the costs were recorded.

• Finally the results can be displayed interactively. This may involve some

method of program representation, such as a call-graph, and the display of

Chapter 2: Efficiency Analysis of Programs 20

costs at selected points in this graph. Using this approach the programmer
can trace costs through the program by selecting and de-selecting parts of
the code as required.

Displaying the results in a table is a useful way of summarising large amounts of

information; it presents the data in a readable form, particularly if the program is

large. However, it does require the programmer to identify exactly where in the

program the code unit is defined.

Annotating the code with the profiUng results saves the programmer from hav

ing to map between the results and the source code, often a difficult task. This

method does however become more complicated to implement and interpret the

larger the program becomes. Identifying the parts of the program with high costs

may require trawling through large amounts of code trying to filter out the expen

sive parts from the rest.

Presenting profiling information in a textual form can be useful for both time

and memory profiles. The results can be stored in tables and can be ordered or

grouped by logical structures, such as module names for example. A programmer

may require a number of program profiles before he is satisfied with his interpre

tation of the program results.

A second dimension is added by considering 'when' in the program's execution

these time or memory costs are collected. Such results can be presented graphically

as serial profiles, showing cost over time, or may be displayed in real time as the

program is executing. These give the user timed information which may make

correlating programming problems to points in the execution, and ultimately to

sections of the source code, an easier task.

An interactive presentation of results aids the programmer by allowing him to

explore the profiling results after the execution of the program. The user may do

this by following expensive results through a program call-graph. This has the

advantage of reducing the number of program profiles needed before a satisfactory

interpretation of the results is achieved.

Chapter 2: Efficiency Analysis of Programs 21

Interactive analysis has the benefit of displaying different parts of the results
as and when the user needs them; this also highlights the relationship between
program units and costs. In addition it means that a single set of results can be
collected and viewed in many different ways; the final result of the profiler is not
static. This method is explored in more detail in this thesis.

2.2.4 The choice of run-time data

Profiling tools are sensitive to the data with which the program is run. Often the

programmer will be interested in a general case, how the program performs when

given an input of average data. In such a case there may be little attention paid

to the program data supplied; however, there are a number of interesting points

which should be noted.

• There may be a point in the execution of the program when the complexity

of the behaviour changes. A search of a list of size n may be linear if n is

below a certain threshold; above this threshold the complexity of this search

may become logarithmic.

• The program which is being executed may have a wide range of functions. If

this is the case then the profiler can be used in more than one way. Either

test data can be given to the system which will force a wide coverage of the

functions available, or the system can be tested more specifically for one, or

a collection of functions. The important thing to note is which of these tests

is being applied.

• The programmer may also be interested in more specific scenarios such as

'how the program performs with the input n'. These extraneous cases may not

be representative of the complexity of the whole program and the programmer

may need to consider some universal cases for comparison.

• Some systems require a certain amount of time to set-up. The resources

required for this set-up may not be important to the programmer, as such

Chapter 2: Efficiency Analysis of Programs 22

an operation is only a one-off cost. If this is the case, it will be necessary to
profile the system over a period of time long enough for the test results not
to be skewed by the set-up operation.

These cases will affect the results. It may be necessary therefore to understand

exactly what the program is being asked to do before analysing the profiling results.

2.2.5 Relating resource usage to the source code

A profiler will only be useful if it accurately maps the resource usage back to units

in the source code. This is the primary consideration; it does not matter how the

results are displayed or interpreted by the user if they are incorrect.

There are two issues to be considered. Firstly it is necessary to understand what

program units the costs are to be mapped to. These units may simply be function

or procedure names. They may also be data types or values in the program, each

of which can also be identified by its name. The cost of resources needed for a part

of a program will be associated with a counter of the same name.

Secondly it is necessary to identify which costs will be attributed to these

program units. The costs at one unit in the program may or may not include the

costs of all its sub-units. This distinction is defined by the terms flat profile, which

refers to the cost of the single function not inclusive of any sub-functions; and an

inherited profile which may include the costs of sub-functions in the cost of the

single function.

Shared sub-functions complicate the task of inheritance, as it is necessary to

understand what percentages of the shared sub-functions costs should go to its

parent functions. This percentage figure may be allocated accurately, accurate

inheritance, or by a statistical approach, statistical inheritance. This will be dis

cussed in more detail in section 2.5.

Another problem arises due to the fact that it may not always be obvious

which units give rise to which costs. Delayed evaluation may mean that arguments

Chapter 2: Efficiency Analysis of Programs 23

are passed through the program and are only evaluated if and when they are
needed. The cost of evaluating the arguments may be associated with the part of
the program in which the arguments are defined, or that part of the program which
cause their evaluation. These two program units may be very different, and thus
the results which the profiler produces will be diflferent.

2.2.6 Maintaining the program's original behaviour

An essential property of any profiler is that the profiling information gathered must

be faithful to normal execution [Sansom and Peyton Jones, 1994]. In particular:

• The evaluation order of expressions must not be modified;

• Actual events during execution should be considered, an instrumental inter

preter would not prove satisfactory;

• The profiling scheme must be reasonably cheap, additional costs created by

the profiler should not prevent larger examples from being profiled in an

acceptable time;

• The additional cost of profiling should not distort the information gathered

about the execution.

It would not be acceptable for the program's behaviour to change between profiled

and un-profiled versions as the monitored version would then be a misrepresentation

of the program's original behaviour. A program's behaviour can be influenced in

a number of ways. Firstly, the effect of having a profiler running in parallel with

a program should not aflfect the way in which the program's results are calculated;

the profiler should, as far as possible, be an unobtrusive observer. Secondly, when

the program is run it must have exactly the same run-time flags as the non-profiled

version of the program. This must include the preservation of the same garbage

collection scheme and the same compiler optimisations, the latter making relating

the costs back to the source code a difiicult task. The solution to this problem is to

Chapter 2: Efficiency Analysis of Programs 24

build profilers around program compilers so that they can recognise or compensate
for any changes in code during the optimisation stage of compilation. Finally, the
profiling overheads themselves should not be included in the final results. Previous
profilers have had overheads of between thirty and one hundred percent on the
execution time of a program. These overheads are far less important if the results
of the program's execution and the results of the profiler's execution are kept
separate.

2.3 Different programming paradigms

There are a number of features common to different profilers, both those specifically

written for imperative languages and those written for declarative languages. Many

of the differences between profilers for different language paradigms are created by

the necessity to compensate for any unique language features which the source code

exhibits. There will also be a difference in basic program 'units' and the allocation

of resource costs to them.

2.3.1 Imperative Languages

Profilers have long been available to programmers of imperative languages. There

exist many instances of the use of profilers with languages such as Fortran, Ada,

Pascal and C [Bentley 1988].

Profilers for imperative languages have produced impressive results. For exam

ple, Kernigham used a line-count profiler supplied with the AWK interpreter on

a 4000 line C program. The results showed that most of the functions had been

annotated with a few thousand calls, but that one part of the code, an initialisation

routine, had over a million calls. By changing these six lines the program speed

was doubled. Knuth described how a line-count profiler was applied to itself. The

profile showed that half the runtime was spent in two loops. Changing a few lines

of code doubled the speed of the profiler in just a few hours' work.

Chapter 2: Efficiency Analysis of Programs 25

More specifically Knuth concluded from a collection of examples that "less than
four percent of a program generally accounts for more than half of its running time".

Designing profilers (especially those which measure how often code is called)

has been shown to be simple for imperative languages. Imperative languages have

a defined sequential order of instruction execution and are evaluated strictly rather

than on demand. This strictness means that it is valid to insert points in the

code and measure the time that it takes to execute the code between the two

points. In this way it is possible to work out how much resource has been used

'so far'. By measuring the resource usage before and after a segment of code, it

is possible to determine how much resource is used in that part of the program.

This simplifies the construction of tools to monitor program behaviour since it is

possible to identify code blocks and the order in which the code will be executed.

Once the results from profiling an imperative program have been gathered,

relating the results back to the original source code is a straightforward task. A

direct relationship exists between the object code and the imperative source code,

as the very nature of the imperative code means that it is related to the underlying

execution engine.

2.3.2 Logical Languages

Traditional computer architecture is not particularly suited to a logical style of

program execution, that is, satisfying a list of goals. Therefore logical program

mers may quickly find that time and space usage may prevent the development of

practical applications. This is perhaps contrary to the actual system development

time, as logical programs tend to gravitate towards a symbolic non-numeric pro

cess, based on data objects and relations between them. This, it is argued, speeds

up the time in which a system prototype can be produced [Bratko, 1990].

Often efficiency improvements to logical programs can be achieved by changing

the programming structure: the better ordering of clauses or procedures and goals;

avoiding unnecessary backtracking or stopping the execution of useless alternatives

as soon as possible; and changing the data structure representation.

Chapter 2: Efficiency Analysis of Programs 26

Profilers have similarly been constructed for logical languages with a moderate
amount of success. More recently profilers have been used to partition parallel
Lisp programs so that effective mapping to a massively parallel architecture can
be performed [Soden and Bock, 1995 .

2.3.3 Functional Languages

Considerations for profiling

It is considerably more difficult to profile functional languages than it is to profile

imperative languages. The diflBculties can be categorised according to the following

observations on the nature of the language:

1. Defining semantics to show the mapping of costs to program units — The

abstract properties of lazy functional programs and the use of many small

functions in programming means that it is not always clear where the re

sources involved in the evaluation of an expression should be attributed.

This problem is reduced with semantic definitions which state that, given

a certain specific computation there will be some definition of how the costs

of evaluation will map to the different program units.

2. Ease of comprehension — It is not straightforward to predict the semantic

behaviour in 1 (above), as predicting the behaviour of functional programs is

difficult. Consider for instance the different space behaviour of the functions

fo ld l and foldr. For functions such as + and *, that are strict in both

arguments and can be computed in constant time, fo ldl is more eflScient. For

functions such as the logical 'and', &&, or the list operator ++, that are non-

strict in the first argument, foldr is more efficient [Bird and Wadler, 1988].

Making predictions about large programs on the basis of such observations is

not a trivial task.

3. Difficulty of obtaining profiling information — Lazy functional languages, by

their nature, are difficult to gather profiling information for. It is therefore

Chapter 2: Efficiency Analysis of Programs 27

difficult to implement the specification presented in 1. Methods of compila
tion by transformation mean that the resulting executable code bears little
resemblance to the structure of the original source code. Maintaining pro
gram units and allocating resource usage to these units becomes a difficult
task.

These issues are supported by more specific language features which are listed

below.

• Functional programs are designed to have -igh levels of abstraction; this

means that the code produced resembles the problem specification. It is

argued that this high level of abstraction makes coding easier, and indeed

faster. Although it is a clear programming advantage, this high level of ab

straction does mean that the executable form of a functional program is not

a clear representation of the original source code. There are a number of

difficulties that this causes in relation to efficiency analysis. Firstly, the extra

levels of abstraction impose additional overheads when the program is run;

secondly, the execution behaviour of the program is far less predictable. This

issue is considered to support all three of the above categories.

• The explicit use of automatic memory management oflFers the programmer

freedom from low-level issues such as the allocation of space for data struc

tures. This method also introduces severe memory difficulties. The program

mer is unaware of when memory is allocated and deallocated. Therefore,

memory problems often only manifest themselves when the program runs

out of heap space. Predicting how much memory space is used is difficult;

the space taken by a list of 1000 integers may be a simple calculation in a

language such as C, involving the number of bytes for each integer plus the

number of bytes for the pointer or array structure in which it is stored. In a

lazy functional language such a calculation is not possible, as the implemen

tation of the list is reliant upon the implementation of lazy list constructors

such as 'cons' operators as well as the integer representations themselves.

This relates to program comprehension, the second category above.

Chapter 2: Efficiency Analysis of Programs 28

• The use of higher-order functions offers another distinct programming advan
tage, though again this benefit is counterbalanced by the fact that higher-
order functions cause profiling difliculties, as the function being applied may
not be known at compile time. Rather, the function is passed as an argu
ment or extracted from a data structure. This makes the task of attributing
costs to the current section of code diflScult. Consider also the definition 'f
= foldr (+) [] xs'. It is not easy to determine whether the costs of the
function + should go to the function foldr or to the function f. This relates
to 3, above.

• Functional programming advocates the use of many small functions; it is

partly because of this that functional programs are described as easier to read

than their imperative counterparts. Having profiling costs displayed in terms

of thousands of small functions may not be useful to the programmer. Instead

it may be more appropriate to display the results at a more meaningful part

of the program. For example, where Pi, P^, Ps-.-Pn are sub-functions of an

operation parse, rather than displaying profiling costs at the level of these

sub-functions, it may be more appropriate to display the costs at the level of

the parse operation. Methods of aggregating costs to parent functions mean

that the mapping of costs to important parts of the code can be done with a

reasonable amount of success (though this is discussed in more detail later).

This relates to categories 1 and 3.

• Polymorphic functions such as map and fold encourage function reuse. These

very basic functions can generate a large proportion of costs in a program

by repeatedly applying the same function. It is not very useful however to

know that your program spends 30% of its time in the function map as the

map function will be used in a number of places in the program. What is

needed in such a situation is the information which explains which calls to

map cause the majority of these costs. This also relates to 1 and 3.

• Not all functional languages are lazy, but those which are offer additional

problems. These are discussed in more detail below.

Chapter 2: Efficiency Analysis of Programs 29

Lazy and Strict evaluation

In a strict language the way in which an expression is written, its source level

definition, corresponds closely to its evaluation order at runtime. So for example^

the expression:

X = /strict expi,..,expn

would be evaluated as follows:

1. The arguments expi to expn are evaluated independently of the definition of

the function /strict

2. The function /strict and any sub-expression within it are evaluated

3. The result of this evaluation is bound to x

This scheme is termed call by value. The resources used by a function are easy to

record. The result is the difference between the resources recorded at the start of

the execution and those recorded at the end of the execution. There are no extra

costs which occur after the execution of the function which should be included in

the final results.

Lazy evaluation operates using an call by need scheme. Evaluation is delayed

from the point where an expression is defined to the position in the code where its

value is required. This is demonstrated by a further example:

y = /lazy expi,..,expn

With lazy evaluation the order of evaluation of such an expression cannot be pre

dicted without the definition of /lazy and the context in which y is used. All that

can be stated about the run-time behaviour is that the results of calling /lazy will

be bound to y. A function call may invoke evaluation of any of the arguments or

may leave them unevaluated. The result may contain references to some of the

arguments which may then be evaluated at a later time.

^This example is based on [dayman, Clack and Parrott, 1995].

Chapter 2: Efficiency Analysis of Programs 30

This problem is further complicated by the fact that a number of expressions
may demand the results of a shared expression. Only the first function which calls
the expression will bear the cost of evaluating the code. The remaining expressions
get the result, in effect, for free. This presents a problem when profiling as there is
no certainty as to exactly where the costs of the evaluation should be attributed.
Dividing the costs between all the expressions which demand the results may seem
like a sensible idea, though recording the statistics to be able to do this is difficult.
For example, if

fiazy CLrgi,..,argn = {argi,argn)

in which the result is a pair containing the values of the first and the last arguments,

further predictions can be made about the run-time behaviour. It is now certain

that this pair can be evaluated without having to evaluate any of the further

arguments. If the result y later appears in an expression of the form

z = (fsty) + (sndy)

then it can be demonstrated that the arguments expi and expn will be needed

in the evaluation of y and will therefore be evaluated. It is clearly not so easy to

reason about exactly where expressions might be evaluated. In large lazy functional

programs this problem becomes even more apparent as unevaluated objects may

be passed through many function calls before evaluation occurs.

Diff"erent roles of programmers

A 'programmer' is a general term. Programmers may work at the machine code

level, the operating system level or at an application level. There are many more

distinctions which can be made, but this coarse characterisation is made to show

that some programmers may find different profiling results more use than others.

This point is illustrated with an example presented by [Clayman, Clack and

Parrott, 1995], demonstrating that a fundamental difference exists between the

way in which applications programmers and system programmers (implementors)

naturally reason about the execution costs of their programs. An application pro-

Chapter 2: Efficiency Analysis of Programs 31

grammer's attention is focussed on the expense of particular expressions, especially
those exhibiting degenerate behaviour. For example, in the following definition:

/ g X = g expensive x

where g is non-strict in the first argument, lazy evaluation will cause expensive to

be evaluated in ^ or in a function called from g (if it is evaluated at all). Strict

evaluation however would have caused expensive to be evaluated in / , prior to

calling g. If expensive is still treated as a lazy argument, but its execution time

is attributed to / , then, should the expensive expression exhibit degenerate be

haviour, the application programmer's attention will be drawn immediately to its

declaration within / .

A system implementor may take a very different view of the situation. The

actual behaviour of the program at runtime may be more important than the

lexical relationship within the original source code. The effects of lazy evaluation

must now be reported exactly as they occur, so that the knowledge can be used to

improve the compile time and run-time heuristics (eg. dynamic scheduling.)

The different requirements and viewpoints of applications programmers and

system implementors makes the connection between the definition of lazy functional

source code and its eventual run-time behaviour a problematic task. Clayman

and Clack describe this behaviour in stating that: the application programmer

observes the run-time behaviour of the program and attempts to map this back to

the original definitions in the source code; and the system implementor analyses

the source program and attempts to predict its run-time behaviour. The run-time

behaviour is also observed by the implementor in order to verify the success of

the prediction. Analysis of the run-time behaviour is made with respect to the

run-time domain, hence it is not necessary to map the run-time behaviour back to

the lexical structure of the source code.

It is possible that the profiling behaviour of the systems implementor is different

from the applications programmer, though from experience we believe that this is

not necessarily true. Rather, the issue is not do with how these programmers profile

their program, but at what level the profiling results are displayed to be of greatest

Chapter 2: Efficiency Analysis of Programs 32

benefit to each programmer.

Application programmers are likely to find the results helpful if they are dis

played at the level at which they program. Profiling results can be displayed in

terms of the abstract data types or functions which he has written.

Programmers with a lower-level knowledge of the system, or with detailed

knowledge of the language implementation may also find such results useful. They

may also benefit from results which refer to a lower level in the programming

language, such as numbers of closures, or heap constructors and producers.

The result of a function application may, in the first instance, be more useful

if it is assigned to the unit of code in which the function is defined; in the second

instance, the results may be more useful if they are assigned to the unit of code in

which the function is evaluated.

Lexical vs Evaluation scoping

The difference in the examples above between the lazy and the strict case is sig

nificant. For a straightforward performance evaluation, applications programmers

might find it simpler to reason about the behaviour of strict programs rather than

that of lazy programs, as expressions are always evaluated by the functions in which

they are declared.

To simplify the reasoning about lazy functional programs, the cost of evaluating

expressions can be reported to the programmer with respect to the lexical structure

of the source code. This method of program profiling is termed lexical profiling.

The difference between this method and the second form of program profiling

called dynamic or evaluation scoping is subtle. With a strict language the two

styles differ merely by the fact that one profiles functions and the other profiles

expressions, but with a lazy language the differences are more fundamental. Lexical

profiling measures whether work happens, and how much work happens, with the

results being presented with respect to the source code. In contrast, evaluation

profiling measures how much work is done and when the work is done.

Chapter 2: Efficiency Analysis of Programs 33

In the example:

X — /strict expi, .., expn

using a lexical profiling scheme, the costs of evaluating the arguments expi to expn

are attributed to the function x. In effect lexical scoping is similar to profiling a

strict language; the difference is that only the cost of the actual evaluation per

formed on an argument is assigned to the enclosing function.

Using an evaluation-scoping profiling scheme, however, the results are very dif

ferent. In the example:

y = /lazy expi,..,expn

where

/lazy argi,..,argn = {argi,argn)

and the function y is used in the definition,

z = { / s t y) -H {sndy)

the cost of evaluating the arguments argi and argn are attributed to the function

in which the evaluation took place, exactly when the work is done; the cost is

attributed to the function z in this example.

In summary, lexical profiling assigns the costs of the evaluation of an expression

to the function which built the expression; evaluation profiling assigns the cost of

the evaluation of an expression to the first function which required its evaluation.

The following example programs illustrate the difference between the different

profiling schemes. The examples, taken from [Clayman, Clack and Parrott, 1995],

demonstrate the importance of understanding on which of the profiling methods

the programmer's chosen profiler is based. A lazy evaluation scheme is assumed

throughout.

Chapter 2: Efficiency Analysis of Programs 34

Function in
Number of primitive operations

which X is
Lexical profile Dynamic profile

Program declared reduced f g h f g h

1 f h 1 +P
J

1 1 1 1 1 + P
X

2 g h 1 I 1 1 1 + P
X

3 f g 1 +P 1 1 1 1

Figure 2.1: Number of primitive operations counted for the functions in each of
the example programs.

Program 1

Program 2

Program 3

f = {gx)/18
where x = < expression >

g X = {h x) * 10
hx = X ^ 12

f = {g 20) / 28
gy = (hx) * y

where x — < expression >
hx = X + 22

f = {gx)/38
where x = < expression >

g X = X * {h 30)
hx = X + 32

The three programs above perform the same arithmetic operation but differ in

the way in which x is declared and evaluated. Figure 2.1 contains a summary

of the number of primitive operations counted for the functions in each program,

using both the lexical and evaluation profiling schemes. The results of the lexical

scheme always show the cost of x associated with the function in which x is lexically

defined. The results of the dynamic scheme highlight the presence and effect of

laziness, and the cost of x is shown associated with the function which required it.

Chapter 2: Efficiency Analysis of Programs 35

The results are displayed not because one scheme is necessarily better than the
other. More recently both schemes have been implemented wi th in a single profil ing
tool; the user can then select either method depending on his requirements.

Graph reduction and profiling

Before a program is executed i t is stored a computer's memory There are many

different ways that this program can be represented; a functional program is usually

represented as a graph.

The goal of the execution of a functional program graph is to reduce the graph to

normal form, pr int ing the results as they become available. Most compilers perform

this graph reduction by a method called programmed graph reduction. During the

reduction graph nodes are consumed and detached f rom the graph; these nodes are

replaced w i t h new nodes unt i l the graph has been completely reduced.

A n example, taken f rom [Runciman and WakeHng, 1995], begins in Figure 2.2.

This shows how the graph of the code, sqr (5+2), is reduced to normal form. The

sqr funct ion is wri t ten sqr x = x * x. Functions and primitive operations serve

as rewri t ing rules for parts of the graph. These rewriting rules can be implemented

in machine code and w i l l , when each rule is encountered, manipulate the graph

accordingly.

Thus the technique has an internal representation and a 'machine' of instruc

tions to manipulate this internal representation according to a certain reduction

scheme. One implementation of this 'machine' is the G-machine, [Peyton Jones,

1987 .

The G-machine code for the function sqr is:
sqr: PUSH 0

PUSH 1
PUSHFUN mul
MKAP
MKAP
UPDATE 2
POP 1
UNWIND

Chapter 2: Efficiency Analysis of Programs 36

+ 5

Figure 2.2: Graph reduction of sqr (5 + 2).

Execution of the expression sqr (5+2), seen in Figure 2.3, begins by pushing the

pointer to the original graph onto the stack, part (i) of the figure. The 'spine' of the

stack is then unwound by pushing pointers to the vertebrae of the spine onto the

stack (i i) . When the head of the spine is reached, the stack is rearranged so that

efficient access to the arguments is possible (i i i) . The machine code instructions for

the sqr funct ion are then executed in sequence, unt i l graph rewriting is no longer

possible without the execution of individual functions (iv)-(xi) .

Program graph reduction is an ideal mechanism for bridging the gap between

abstract functional language programs and their low-level implementation. Many

implementation ideas such as garbage collection and profil ing can be based on the

graph implementation and reduction mechanisms. However, the graph representa

t ion and transformation cause the representation of the program to move further

away f rom the source code. This can often complicate relating resource costs back

to the source program. This problem, together w i th the implementation of current

profilers based on graph reduction is discussed in section 2.6.2.

2.4 Types of profiling tool
A closer look is taken at the types of profil ing tools available. The first and simplest

method of profi l ing to be discussed is occurrence profiling. Further categories of

profi l ing tools correspond to the complexity measures discussed earlier; profilers

which record t iming behaviour are examined, as well as profilers which record

memory usage of programs. There are many sub-categories of these methods,

distinguished by the chosen method of data sampling.

Chapter 2: Efficiency Analysis of Programs 37

(ii) UNWIND (lu) Rearrange

(iv) PUSH 0 (v) PUSH 1 (vi) PUSHFUN mul

7
mul

(vii) MKAP (viii) MKAP (ix) UPDATE 2

@

mul

®

mul

(x) POP 1 (xi) UNWIND..

Figure 2.3: Programmed graph reduction of sqr (5 + 2)

Chapter 2: Efficiency Analysis of Programs 38

2.4.1 Occurrence profiling
A simple C program^ which calculates prime numbers is considered.

p r ime(n)
i n t n ;
{

i n t i ;
f o r (i=2; i < n ; i++)

i f (n 7, i == 0)
r e t u r n 0;

r e t u r n 1;
}

mainO
{

i n t i , n ;
n = 1000;
f o r (i = 2 ; i <= n ; i + +)

i f (p r i m e (i))
p r i n t f (' " / . d \ n " , i) ;

The simplest investigation into the behaviour of this program would be to consider

the parts of the code which were called the most; the rate of occurrence at which

sections of code were called. A simple occurrence profile may produce a copy of

the code annotated w i t h the number of times that code was called. For example:

p r ime(n)
i n t n ;

999
78022
831
168

1
1
999
168

}
mainO
{

i n t i ;
f o r (i=2; i < n ; i++)

i f (n y. i == 0)
r e t u r n 0;

r e t u r n 1;

i n t i , n ;
n = 1000;
f o r (i=2; i <= n ; i++)

i f (p r i m e (i))
p r i n t f ("y.d\n" i) ;

^and results, both of which are taken from the seminal paper by Bentley [Bentley, 1982].

Chapter 2: Efficiency Analysis of Programs 39

The results te l l us that the function main was called once and that i t tested 999
integers w i t h the function prime. By knowing that the function prime was called, i t
is possible to make predictions about what parts of the program have been executed
and how many times these parts of the program have been visited, this is termed
the coverage of the program. Coverage predictions about the above program show
that its behaviour does correspond to the expected behaviour.

The program results can also be calibrated; number 1 was printed 168 times

and the number 0, 831 times. I t can be observed that most of the time was spent

testing factors. The testing could be reduced to test only those factors up to the

square root of n, rather than n. By changing the test accordingly and re-profiling,

the results can be compared to decide which method is more satisfactory. This

change to the program brings about a fourteen-fold improvement.

root(n)
i n t n;

5456 { return (i n t) s q r t ((f l o a t) n); }
prime(n)
in t n;
{

in t i ;
999 for (i=2; i<==root(n); i++)
5288 i f (n 7, i == 0)
831 return 0;
168 return 1;

}
mainO
{

in t i , n;
1 n = 1000;
1 for (i=2; i <= n; i++)
999 i f (prime(i))
168 p r i n t f ("7.d\n", i) ;

Occurrence profi l ing is particularly effective for investigating the coverage of a

program.

Chapter 2: Efficiency Analysis of Programs 40

2.4.2 Time profiling

A more sophisticated method of profil ing may record not only how often parts of the

code were called but also the time spent in those parts of the program. Improving

the occurrence count of sections of the code w i l l often lead to improvements in

performance. However, i t may only be possible to reduce the occurrence count by

performing a more complex calculation prior to calculating the relevant section of

code, thus bringing the expensive computation forward in the order of the program

evaluation. A time profile gives more insight into the CPU time needed by a

program.

I n the above example we may receive results such as:

7otime cumsecs # c a l l ms/call name
82.7 4.77 _sqrt
4.5 5.03 999 0.26 .prime
4.3 5.28 5456 0.05 _root
2.6 5.43 _frexp
1.4 5.51 doprnt
1.2 5.57 write
0.9 5.63 mcount
0.6 5.66 _creat
0.6 5.69 _pr i n t f
0.4 5.72 1 25.00 _main
0.3 5.73 .close
0.3 5.75 _ e x i t
0.3 5.77 _ i s a t t y

The t ime is displayed in cumulative seconds and the procedures are listed in de

creasing order of the percentage of execution time. Assumptions can be made about

the t ime spent in each of these procedures and also how much time was spent per

forming activities such as output and housekeeping. The four th column gives the

t ime (in milli-seconds) spent performing one execution of the function. This may

also be a useful measure, but i t w i l l later be demonstrated that this division of the

percentage of execution time by the number of function calls can be misleading.

Chapter 2: Efficiency Analysis of Programs 41

2.4.3 Allocation and heap profiling

Memory concerns in computing have almost gone a f u l l circle. In the 1950s and

1960s programmers worked on small machines wi th a few kilobytes of memory.

These machines contained a small number of instructions to allocate and deal

locate parts of the computer's memory. The scarcity of the memory forced the

programmers to develop neat and efficient ways to program, maximising the re

sources that they had in order to get the most computational power out of their

machines.

By the 1970s memory had become an affordable commodity and as the price of

thousands of kilobytes of memory dropped, so the size of software systems grew.

Dur ing the following decade huge amounts of memory could be bought. The em

phasis on programming changed f rom the 1960s paradigm of designing programs

which were memory efficient, to the 1970s paradigm of producing orderly code,

albeit in huge quantities. The literature of these times reflects these particular

paradigms.

This view is changing once again as programmers have become more aware

of the redundancies in their code and the unnecessary expense which is frequently

incurred. There are often ways in which the memory consumption can be improved

at l i t t l e expense to the structure or the readability of the program code.

W i t h this concern for memory use, there is a need to understand how memory

is consumed by different parts of a program. A profile of the program's memory

behaviour is required. There are many diflFerent ways in which to analyse this

behaviour; these are categorised below:

Allocat ion Profi l ing — This is the simplest form of dynamic memory profiling;

i t records the number of memory cells allocated to the execution of a piece of code,

even i f these cells are only retained briefly. Each memory cell is marked by a label

which indicates the code unit which allocated this part of memory. W i t h these

labels the number of cells allocated for a particular function can be determined. I t

is also possible to calculate the tota l number of memory cells allocated at any one

Chapter 2: Efficiency Analysis of Programs 42

t ime by counting all of the cells w i t h a label.

Labels can be recorded at each memory cell w i th only a small change to the

underlying compiler. This method identifies those parts of the code which cause the

allocation of large amounts of memory. This is of concern, but may be expected

w i t h large computations. Rather i t is those memory cells which are allocated

and then persist for a long time which are more worrying to the programmer and

this information is not provided by the allocation profile. Detecting the source

responsible for allocating the long-lasting data requires a more advanced profile

called a heap profile.

Heap Profi l ing — Heap profil ing is specific to functional languages. This peri

odically monitors the number of heap cells currently in use. Intermittent interrupts

sample the heap every t seconds, where the value t can be specified at runtime.

When the sample interval has passed and is detected by test code placed by the

compiler at every code block, then the execution is suspended and the memory

scanned. The cells in memory are tested to see i f they are 'live' (currently being

used by a part of the code). During this monitoring the profiling label associated

w i t h these live cells can be noted. These notes are later compiled into a results file.

The profi l ing label can include information such as the cell's construction (what i t

represents in terms of symbols occurring in the source program) and its producer

(which part of the program caused i t to be produced). When the data is displayed

as a final profile graph, the user can specify whether he wishes to have the heap

identified as a constructor or a producer graph.

Separating the profil ing overheads f rom the program data is easy, as although

the system clock continues during these interrupts, this elapsed time is simply

ignored. However, i t was mentioned earlier that any method of sampling generated

by external signals was likely to produce slightly different results each time the

profiler was run. This heap profil ing method is also prone to these sampling errors.

Heap Profi l ing (implemented wi th a Garbage Collector) — Functional program

ming languages offer a method of automatic memory management. A t intervals in

the program the execution w i l l be interrupted, so that memory cells which are no

Chapter 2: Efficiency Analysis of Programs 43

longer i n use can be reclaimed. This process, termed garbage collection, can be
combined w i t h the heap profil ing method, as garbage collection is effectively a nat
ural break in the program's execution. When the cells in the heap are monitored
for their longevity their profil ing marker can also be identified. When the garbage
collection is completed the results can be collected and wri t ten to a results file.

Heap Profi l ing (implemented wi th Garbage Collector and Timeouts) — I t may

be noted that garbage collection w i l l not necessarily take place at regular intervals,

so to avoid the samples taken during garbage collection being irregular, a timeout

method is implemented which determines whether a garbage collection has taken

place. I f a garbage collection has not taken place a memory sweep w i l l be done to

sample the live cells on the heap and record the appropriate profil ing information.

Leak Profi l ing — A memory leak is a general term given to the dynamic allo

cation of memory which is not reclaimed during the execution of a program. Leak

profiles have been developed for C programs which identify heap objects which are

never deallocated. A report on the call sequences responsible for allocating them

is produced.

Lifet ime Profi l ing — Recently a new method of heap profil ing has emerged.

This new method is based on the principle that heap cells are static; that is, the

profi l ing labels associated wi th each cell remain fixed f rom the time the cell is

allocated un t i l i t is garbage collected. Lifetime profil ing records w i t h the label the

t ime in the execution at which the cell was created. W i t h this information two

attributes can be considered: the profile graph can display the heap objects broken

down by the length of time each object lived, their lifetime; and a retainer profile

displays the heap objects broken down by the set of producers which reference the

object.

This information is intended to help the programmer identify not only 'who

uses what memory' (the information that the regular heap profiler would supply),

but also 'why the memory is retained' and what parts of the program are holding

onto those parts of the memory.

Chapter 2: Efficiency Analysis of Programs 44

2.5 Theoretical considerations for profiler design
2.5.1 Methods of Propagating Profile Times

There is a question in relating the measurement of resources to source code units

of whether a cost of a function is simply its own cost or whether i t includes the

cost of any sub-functions which i t calls.

I f a funct ion is to include the costs of a shared sub-function, then this issue

is fur ther complicated by the fact that the costs of the shared function must be

accurately divided between the parent functions according to how costly each call

was.

For a profiler to be completely accurate in its allocation of costs to source code

units, i t would have to be able to reconstruct the entire call path for all function

calls, and store w i t h this call path the costs incurred at this part of the program.

This would enable the exact cost of shared sub-functions to be included in the costs

of their parent functions.

Al though this has been demonstrated to be practical for small example pro

grams, on a larger scale this method has been dismissed as too costly.

I n practice the information recorded at runtime is restricted to the calls made

by a funct ion to its immediate children [Graham, Kessler and Kusick, 1982]. For

profi l ing tools this restriction presents a problem as they must estimate the execu

t ion t ime of more remote generations of sub-functions. For example, consider the

following code:

f a = h a + 1

gb = hb - 1

hx = ix + ix

i X = X + 1

and the call-graph segment for this code, see Figure 2.4, in which a function i is

called by funct ion h, which itself may be called by functions f or g.

I t is uncertain exactly how much time is spent in or below function / , since the

Chapter 2: Efficiency Analysis of Programs 45

funct ion g may also call upon / i , which itself calls upon function i.

One solution to this problem, which is termed the statistical approach, divides

the t ime spent i n funct ion i according to the ratio of calls between functions / to

h and functions g to h. For example i f there are 8 calls f rom f to h and only 2

calls f r o m g to h then the time spent in (or below) h w i l l be divided 8:2, function

/ receiving the greater of these two figures. This method is unsatisfactory however

as some calls to h may have a higher cost than others.

©.

0
Figure 2.4: The program call-graph segment.

I t is not always realistic to split costs according to the ratios based on the the

number of times individual functions are called. For example:

f = h 1000000

g = hlO

h X = factorial x

Divid ing the costs of the factorial function evenly between the two functions / and

g would not be representative of the amount of resources used for each function call.

A programmer would be more interested in the expensive call. In this example the

dist inction is easy to spot, but w i t h hundreds of shared functions this task becomes

extremely diff icul t .

A n alternative solution is to allow the code for i to be subsumed by the code for

h so that as far as profi l ing statistics are concerned i is an integral part of h; this

is termed inheritance profiling^. This profiling method states that sub-function i

ôr a subsumed profile if you read Sansom's thesis [Sansom, 1994]. It is important to note the
distinction between this use of the term inheritance, forcing all shared functions to be treated as
profiled functions and propagating any costs of the children of shared functions up to this part

Chapter 2: Efficiency Analysis of Programs 46

is simply an extension of its parent, therefore the total amount of time spent in or
below h due to f or g is determined absolutely; i t is presented as a complete figure
incorporating all costs for h and i.

Using this method i t is diff icult for a programmer to assimilate t iming informa

t ion for i or the profiled sub-functions of as z w i l l seem to have no data relating

to it—these results having been attributed directly to h. Even i f the programmer

is aware that this process is taking place the results can appear very misleading,

part icularly i f most of the functions in the code are shared or are called by shared

functions. Thus w i t h inheritance profil ing the code outlined would be profiled as

though i t had been wri t ten as

f a = h a + 1

gb = hb - 1

hx = ix + ix

where

i X = X + 1

where the profiler only supplied results for those functions which were defined

globally. W i t h a more complicated call-graph many such functions may be inherited

and the results may become restricted and misleading.

Inheritance profi l ing avoids the problems associated wi th shared children by

refusing to propagate their time costs any higher than the shared child itself. This

is achieved by forcing all shared children to be treated as profiled functions.

A profiler implementing inheritance profiling is s t i l l able to provide the equiva

lent of a statistical profil ing technique. The profiling information can be presented

statistically by post-processing the inheritance profile results. To achieve this all

functions are profiled using inheritance mode, then the function call count infor

mat ion (which records not only how many times a function is called, but also the

functions which called i t) is used to statistically manipulate the results for the

functions which the programmer wishes to profile. This does not entail the con-

of the code; and the use of inheritance adopted in this thesis, which describes the (accurate)
subsuming of all costs to parent functions, whether the funtions are shared or not.

Chapter 2: Efficiency Analysis of Programs 47

struction of a complete call-graph segment and is a relatively inexpensive way of
providing statistical profil ing.

Recursion groups

Functional programming adopts a style which is often recursive. The examples so

far have concentrated on functions called in a serial manner; no mention has been

made of recursion or mutual recursion (also referred to as a cycle).

Simple recursive functions should not cause a problem in the at t r ibut ion of

costs. A cycle on a single function can just have all the costs attributed to that

particular function. The diff iculty occurs wi th mutually recursive functions, as i t

can not be certain to which of the two (or more) functions the cost should be

at t r ibuted.

One simple solution to this problem is to use static analysis on the program to

collapse the costs of mutually recursive functions into one and record the results

as such. Al though this results in a loss of information, the results can show the

relationship between the functions and therefore point towards this cycle in the

code.

2.6 Current Profiling Tools

The discussion continues w i t h some of the profilers for imperative languages which

motivated the development of tools for functional languages. The examples f rom

the imperative context are chosen because they represent developments in the the

ory, or because they are widely available and extensively used. A l l profilers for lazy

functional languages are discussed.

Chapter 2: Efficiency Analysis of Programs 48

2.6.1 Profilers for imperative languages

P R O F 1982

One of the earlier U N I X profil ing tools PROF produces an execution profile of a

program by correlating the symbol table in the executable image file to a separate

file containing execution time statistics [UNIX, 1979]. For each external symbol the

percentage of time spent between that symbol and the next is printed in decreasing

order, together w i t h the number of milli-seconds per call. For example consider a

simple Fibonacci program, shown in Figure 2.5.

i n t f i b (x)
int x;

{
i f ((x ==0) II (x == D)

return 1;
el s e

return ((f i b (x-1)) + (f i b (x - 2))) ;
}

i n t mainO
{

p r i n t f ("Fibonacci 25 i s '/.d \n" ,f i b (2 5)) ;
}

Figure 2.5: A simple Fibonacci program wri t ten in C.

The program is defined as a recursive f i b function and the function main; the

results demonstrate (after some interpretation) that 65.6% of the time can be

a t t r ibuted to the function f i b , results which are not considered unexpected in the

circumstances. The remainder of the time can be attributed to the profiler itself;

PROF does not use a scheme which separates the profiling costs f rom the rest of

the program costs.

Chapter 2: Efficiency Analysis of Programs 49

7.Time Seconds Cumsecs #Calls msec/call Name
65.6 0.21 0.21 242785 0.0009 f i b
34.4 0.11 0.32 _racount
0.0 0.00 0.32 1 0. main
0.0 0.00 0.32 4 0. atex i t
0.0 0.00 0.32 1 0. _ p r o f i l
0.0 0.00 0.32 1 0. p r i n t f

The monitor ing of program symbols by the PROF profiler must be done wi th care

as sometimes the static functions are not correctly located and the profiling results

are at t r ibuted to the wrong function.

The profi l ing times reported f rom identical runs of the PROF profiler on a

program may be different because of the varying cache-hit ratios that result f rom

sharing the cache w i t h other processes. This may happen even i f the program

seems to be the only one using the machine. Hidden background processes may

s t i l l distort the data. Occasionally the system clock ticks w i l l cause the profiler to

'beat' in program loops. In such cases the results w i l l be greatly misleading.

No attempt is made in the profiler to spht the cost of shared functions between

the parent functions. Indeed no attempt is made to show the inheritance of any of

the costs f rom lower level functions in the call-graph to the higher level functions.

Changing the Fibonacci program above to include two functions a and b which

separately call the f i b function wi th the arguments 25 and 5 respectively produces

the following PROF results.

7,Time Seconds Cumsecs #Calls msec/call Name
66.7 0.18 0.18 242800 0.0007 f i b
33.3 0.09 0.27 _mcount
0.0 0.00 0.27 1 0. a
0.0 0.00 0.27 1 0. b
0.0 0.00 0.27 1 0. main

No information is recorded about what call to the f i b function is the most expen

sive. The profile information s t i l l remains useful but the programmer should be

aware of the very many restrictions imposed in its collection.

Chapter 2: Efficiency Analysis of Programs 50

The profiler can be categorised as follows:

• The profi l ing results are presented in a tabular form. A simple plot of the

same results can also be requested.

• The results have no form of inheritance. They are ' f lat ' profiles.

• PROF only measures time profiles and makes no attempt to record any in

formation about memory behaviour.

• The resource usage is recorded by the execution sampling method described

earlier.

G P R O F (and MPROF) 1982

A similar U N I X tool GPROF [Graham, Kessler and Kusick, 1982] produces a

profile of a program based upon the call-graph of a program's execution. Results

are presented w i t h an entry for each function together w i th its call-graph parents

and call-graph children. The execution profile of a program is again produced by

correlating the symbol table in the executable image file w i th a call-graph profile

file i n a two stage process.

In i t i a l ly execution times for each routine are propagated along the edges of the

call graph. Cycles are discovered and calls into a cycle are made to share the time

of the cycle.

A GPROF profile is taken of the extended Fibonacci program. The first list

ing shows the functions sorted according to the time they represent, including the

t ime of their call-graph descendants. Below each function entry is shown its direct

call-graph children and how their times are propagated to this function. A similar

display above the function shows how this function time and the time of the de

scendants are propagated to its direct call-graph parents. This profile information

is described as a call-graph profile.

C h a p t e r 2: Eff ic iency Analys i s of Programs 51

grcinularity: each sample h i t covers 4 byte(s) for 2.22% of 0.45 sees
c a l l e d / t o t a l parents

index %time s e l f descendants called+self name index
c a l l e d / t o t a l children

[1] 64 .4 0 .29 0 .00 internal _mcount

242798 f i b [2]
0 .08 0 .00 1/2 a [5]
0 .08 0 .00 1/2 b [6]

[2] 35 .6 0 .16 0 .00 2+242798 f i b [2]
242798 f i b [2]

0 00 0 16 1/1 . s t a r t [4]
[3] 35 6 0 00 0 16 1 main [3]

0 00 0 08 1/1 a [5]
0 00 0 08 1/1 b [6]

[4] 35 6 0 00 0 16 _ s t a r t [4]
0 00 0 16 1/1 main [3]

0 00 0 08 1/1 main [3]
[5] 17 8 0 00 0 08 1 a [5]

0 08 0 00 1/2 f i b [2]

0. 00 0. 08 1/1 main [3]
[6] 17. 8 0. 00 0. 08 1 b [6]

0. 08 0. 00 1/2 f i b [2]

GPROF employs' a statistical method of passing on the inherited costs of shared

functions to the parent functions. The results above show that the cost of the f i b

funct ion are split evenly between the functions a and b; each is given 17.8% of the

costs. I n this case the profil ing results simply do not represent the resources used

by the functions of the Fibonacci program. The programmer must be aware that

quantisation errors in GPROF profil ing are rife.

Another problem associated w i t h GPROF is that i t does not monitor space

usage and so cannot provide complete information for programs which make f u l l

use of dynamic memory allocation. Finally i t is noted that GPROF does not

provide useful information for mutually recursive functions, as i t collapses each

strongly connected component in the syntax graph to a single point.

C h a p t e r 2: Eff ic iency Analys i s of Programs 52

A later experimental version of tiiis tool named MPROF [Zorn and Hilfinger,
1988] attempted to attr ibute memory allocation data to all the parents of functions
up to a depth of 5. The results of the MPROF tool were recorded in the same
manner as those of the GPROF profiler; the overheads of such a scheme were
therefore enormously high which finally meant that i t was not possible to develop
this idea in any more detail. As part of the research in this thesis we return to this
idea, but w i th in the scope of an efficient implementation; see chapter 5.

GPROF, despite its difficulties, has motivated a great deal of the work on the

profi l ing of lazy functional languages and has itself been a useful tool to program

mers of imperative languages.,

The profiler can be categorised as follows:

• The profi l ing results are presented in a tabular form. A simple plot of the

same results can also be requested.

• The profi l ing results are presented as 'call-graph' profiles and ' f la t ' profiles.

• GPROF only measures time profiles and makes no attempt to record any in

formation about memory behaviour (although MPROF does profile memory

consumption).

• The resource usage is recorded by the execution sampfing method.

• Statistical inheritance is used to pass the inherited costs of shared functions

to their parents.

T C O V 1988 and P R O F I L 1990

While discussing imperative profil ing tools available under the U N I X operating

system i t is worth noting the tool T C O V (Test COVerage analysis) which produces

a statement by statement occurrence profile, prefixing the statements wi th the

number of times they have been executed. The profile produced however includes

only the number of times each statement was executed, not the execution times

themselves [UNIX, 1979].

C h a p t e r 2: Eff ic iency Analys i s of Programs 53

This profi l ing tool:

• Provides occurrence counts of programs.

• Provides no time or memory profiles.

• Presents its results by annotating the source code.

• Uses a procedure t iming method of producing the occurrence profiling results.

P R O F I L produces run-time execution profiles based on t iming behaviour. This

profiler uses a procedure t iming method of collecting its profiling results. PROFIL

is implemented as a function which samples the program counter at set intervals.

A t each interval the program counter is recorded so that the t iming results can be

related to the part of the program currently executing.

P R O F I L :

• Provides t ime profil ing based on ' f la t ' profiles.

• Presents results by annotating the source code.

• Uses a procedure t iming method of producing time profiling results.

Bo th methods introduce statistical coverage at a very low level which, though

useful for systems programmers, provides l i t t le help to applications programmers

working on large-scale systems.

2.6.2 Profilers for functional languages

Stat is t ics Prov ided by Funct ional Language Implementations

Many functional language implementations (eg. Miranda [Turner, 1985]) provide

simple statistical information dealing w i t h such things as the number of reductions

performed and the tota l number of heap cells allocated during an evaluation. These

can be used to choose between diflFerent program designs; i f we wish to determine

C h a p t e r 2: Eff ic iency Analys i s of Programs 54

which of two programs is more efficient we can compare their run-time behaviour
for a given input .

The execution of a simple Miranda program produces the following statistical in

formation.

501

reductions = 12027, c e l l s claimed = 20035, no go's = 2, cpu = 1 . 7 7

These measures produce useful comparative statistics but they do not correspond

directly to the amount of resource used. The number of reductions recorded can be

a deceptive figure in the analysis of a program's behaviour, as i t is closely tied to

the implementation of the language. The number of cells claimed and the number

of garbage collections do provide useful information about reclaimed memory, but

they do not say exactly how much memory is used. These statistics are basic and

provide l imi ted resource analysis.

T h e N e w Jersey S M L Profi ler , 1988

The New Jersey version of Standard M L [Appel, Duba and MacQueen, 1988] is

noted for the fact that i t also supplied a profiler which extended the basic statistical

information to include results about individual functions and not just the program

as a whole.

The profi l ing system works by the programmer choosing a subset of functions to

profile. The children of these functions, for the purpose of profiling, are subsumed

into their parents, the method previously described as the inheritance profiling

technique.

The New Jersey profiler only works for strict evaluation and makes no attempt

to profile heap space. The results themselves are not completely clear because of a

number of schemes adopted to produce the results. For instance higher-order func

tions have the costs of all their arguments attributed to special identifiers rather

than the actual funct ion names. Tolmach and Dingle (who developed debuggers

C h a p t e r 2: Eff ic iency Analys i s of Programs 55

of SML) state that having these slightly ambiguous results should make l i t t le dif
ference to the interpretation of the results of small programs, where a higher-order
funct ion may only be called once or twice. Guessing to which function the special
name refers may be simple for smaller programs, though performing this mapping
is not so easy for larger programs.

I t is suggested in the profiler's accompanying manual that the programmer

select different groups of functions during a collection of profile experiments in

order to produce an accurate picture of the results. Changing these groups of

selected functions is a useful idea when profiling; often the programmer w i l l prefer

to see parts of the results rather than all of the results at one time. Re-running

the profi l ing experiments again and again to collect these different results can be

a t imely task, particularly i f the program being profiled is large.

The profiler falls into the following categories:

• Timed profi l ing results are produced. No memory profile is available.

• The results are produced in tabular form.

• The profiler uses an inheritance approach to subsume the costs of sub-functions.

In l ine Cos t P r i m i t i v e Prof i ler , 1990

One of the earlier attempts at profil ing lazy functional programs began at UCL

Parrott and Clayman, 1990] wi th the introduction of inline cost functions. Using

the cost function, which is similar in behaviour to the identity function, i t is possible

for a funct ion to measure the cost of evaluating its own arguments. This is achieved

using evaluation transformers and forcing the correct amount of evaluation for the

particular argument to occur inside the cost function. The results are wri t ten to a

special output stream which cannot be accessed by the program.

For such a pr imit ive to work properly i t was necessary to ensure that the eval

uation of expressions took place at the right time for the results to be meaningful.

Normally an application of the identity function would not cause its arguments to

C h a p t e r 2: Eff ic iency Analys i s of Programs 56

be evaluated. However, i t is desirable that the argument of the cost function is
evaluated to the extent demanded by the context of the application occurrence.
A n example is taken f rom Clayman, Parrott and Clack's paper [dayman, Parrott
and Clack, 1991]. I n the expression:

n -\- fst (cost expr)

expr is a pair whose first element is a number. In this context the cost to be

measured is that of constructing the pair and evaluating the first element. To force

the evaluation to occur inside the cost primitive, a method is used which is based

on Burn's evaluation transformers [Burn, 1987 .

The fundamental problem wi th this profil ing technique is that i t takes a 'micro

scopic' view of the program. The information supplied by the cost function is

dependent on its context at runtime, making the results very diflficult to interpret

unless the f u l l effects of laziness are understood. Furthermore, the cost functions

do not provide information about space usage or function call-counts.

The Inline Cost Primit ive Profiler:

• Produces t iming information for lazy functional programs wri t ten in the in

termediate language F L I C .

• Uses a procedure t iming method of producing time profil ing results.

This work was a prelude to the U C L Lexical Profiler, below.

T h e U C L L e x i c a l Prof i ler , 1991

The U C L Lexical Profiler [Clayman, Parrott and Clack, 1991] is a tool for profiling

lazy, higher-order functional programs. This profiler introduced the lexical profiling

technique described in section 2.3.3, providing profiling information related to the

way in which the program was wri t ten rather than the way in which the program

was evaluated. The profiler records time information, occurrence counts and also

heap residency.

C h a p t e r 2: Eff ic iency Analys i s of Programs 57

F = N Colour 1

\

G = / \ Colour 2

Colour 1 B = Colour? c = Colour 2

1̂ 1̂

Figure 2.6: A n example of an un-profiled function which is shared by two profiled
functions.

To relate the resource information back to the source code program, each func

t ion which is profiled is given a unique label termed a 'colour'. This label is assigned

the t ime and space costs of those expressions defined wi th in the lexical scope of

the function.

Each program in the U C L compiler is represented internally as a parse-graph,

similar to the graph form seen in section 2.3.3. To keep track of the association

between the parse-graph as i t is transformed and the source program, each of the

graph nodes is assigned a colour f rom its source function. A colour is typically a

unique integer.

As the high-level function names are not stored in the internal parse-graph,

a table is collated containing the colours and the source code functions to which

these refer. This then means that the profil ing information can be mapped back

to the original source code.

The colours are propagated to other areas of the graph not assigned a colour

so that a l l the parts of the graph have an associated colour. The costs of reducing

all the parts of the graph can then be assigned to these colours.

Unfortunately, propagating these colours to other areas of the graph can cause

potential problems. For example. Figure 2.6 illustrates the problem of an un-

profiled shared function shared by two (or more) profiled functions.

To overcome this problem the UCL profiler requires all shared functions to

be profiled separately (the inheritance profiling technique); this then prevents the

costs of shared functions f rom being inherited incorrectly. This is clearly a major

C h a p t e r 2: Eff ic iency Analys i s of Programs 58

drawback w i t h the scheme as many of the costs incurred by a program would be
due to the use of low-level shared functions. By preventing these costs f rom being
propogated up the call-graph i t is very difficult for programmers to get a higher
level profile of their program.

To some extent this problem was recognised and in response a method of profiled

pairs was suggested. By storing the colour of the function and the colour of its origin

(its parent funct ion), run-time pairs could be recorded. These pairs were proposed

to fo rm the basis of statistical inheritance for the profiler. This would have gone

some way towards solving this problem, however i t was never implemented.

The U C L profiler uses the procedure t iming method of profiling, where instruc

tions inserted into the program code initiate sampling of the system clock. There

are two principal drawbacks wi th this scheme (introduced in section 2.2.2); firstly,

this method is an expensive, time-consuming approach and secondly, the accuracy

of the sampling method is based upon the accuracy of the system clock. These two

problems w i l l be exacerbated by the evaluation scheme. Under a lazy evaluation

scheme there w i l l be a large amount of interleaving between evaluating functions

and therefore the elapsed intervals w i l l often be very short.

The authors state in [Clayman, Clack and Parrott, 1995] that the prototype

was not extended to allow the profiUng of standard functional source code. As

i t stands the profiler uses F L I C code [Peyton Jones and Joy, 1989] as its input;

although Haskell code can be profiled, i t must first be converted into this FLIC

intermediate code.

I n summary:

• Occurrence, t imed and heap residency profiling results are produced by the

Lexical profiler. These are displayed in graphical and tabular form.

• The results are collected by a procedure sampling method.

• The propagation of results is done by inheritance profil ing described in sec

t ion 2.5. No form of statistical inheritance is adopted.

C h a p t e r 2: Eff ic iency Analys i s of Programs 59

• The functional program must be converted to F L I C code before i t can be
profiled.

H e a p Prof i l ing , 1992

Runciman and Wakeling [Runciman and Wakeling, 1992a] describe a serial profiler

which monitors heap usage (residency) of lazy functional programs, but which does

not measure other factors such as call counts or the time spent in functions.

Their method similarly uses a graph reduction technique. When the execution

of a particular functional program requires large amounts of memory, i t is possible

to sample which nodes (or which type of node) in the graph occupy the most space

for the longest time, and which functions were the immediate cause of those nodes

being introduced into the graph.

The first part of the tool is a modified compiler which attaches two tags to

every cell in the heap, identifying the function that produced the graph node and

the constructor that the graph represents. The second component of the tool is a

program which displays the heap profil ing statistics in the form of a graph.

The presentation of the results of the profiler is impressive, but the product of

(t ime * space), used as a measure of the cost of the whole program, is deUberately

not analysed w i t h respect to individual functions.

W i t h experience a programmer can, when using these profile graphs, success

fu l l y isolate critical definitions which may be using disproportionate amounts of

heap space. Runciman and Wakeling have shown gains of factors of 2 or 3 on large

programs, impressive results by any means. However, the user must understand

how the run-time system works. A t the current level of implementation i t is nec

essary for the user to display a wider knowledge of the underlying implementation

than would be expected of a typical applications programmer.

The Runciman and Wakeling profiler is undoubtedly a major step forward,

but, as Clayman [Clayman, Clack and Parrott, 1995] points out, i t is deficient in a

number of areas:

C h a p t e r 2: Eff ic iency Analys i s of Programs 60

• The producer profile can indicate that certain functions (eg. map) are respon
sible for producing disproportionate amounts of cells, but there may be many
applications of the function in a program and the producer profile cannot dis
tinguish between the different applications; the profiler does not produce any
method of aggregation for these low-level functions.

• There is (deliberately) no information about the time spent in functions or

the number of times each function is called.

• The profihng statistics are calculated by visiting the program-graph at pre

determined intervals, the results of which are displayed as heap consumption

in bytes. For large heaps the delay caused by these visits to the call-graph

may be long, thus, for practical reasons, an upper-bound is imposed upon the

sample frequency. This may have an adverse effect on the results produced,

since the changes in the sample frequencies can cause proflled data to be

inaccurate.

I n summary:

• The profiler produces serial heap profiles of Haskell programs compiled wi th

HBC (the Haskell ' B ' compiler).

• The results are deliberately displayed at a low level. I t may therefore be

necessary to have a wider knowledge of the programming language and im

plementation than the average applications programmer.

• The results are displayed in a PostScript graph. The graph can be selected

to display a constructor or a producer profile.

• The resource usage is recorded by the execution sampling method,

nhc heap profiler

nhc (nearly a /iaskell compiler) [Runciman and Rojemo, 1996] is a subset of Haskell

wr i t t en for a machine w i t h a small amount of memory (less than 4Mb) . I t is

C h a p t e r 2: Eff ic iency Analys i s of Programs 61

based on the H B C / L M L compiler and provides only the essentials of a G-machine
implementation.

Two profilers are implemented on this compiler; the first is a lifetime profile

which shows dynamic information about heap cells. Each heap cell is marked

w i t h its creation time, which allows a post-processor to determine the age of the

cells. The second profiler is a retainer profile. This begins to explore not only the

producers of heap cells, but also the consumers or retainers. This then allows the

user to see not only what is on the heap but also what is retaining these objects^.

Our experience of using the Runciman and Wakeling heap profiler has demon

strated a number of occasions where such a profil ing method would have been very

useful; see case study I I of chapter 4. The retainer profile has potential to resolve

many of the space leaks experienced in the development of lazy functional pro

grammed systems. I t is thought that this approach w i l l offer a promising insight

into heap profil ing.

' C o s t - C e n t r e ' Prof i l ing , 1994

The 'cost-centre' profiler [Sansom and Peyton Jones, 1994,1995] [Sansom, 1994

specifically addresses the problem of at t r ibut ing data gathered during the program's

execution back to the source code. Distributed wi th the Glasgow Haskell Compiler

Peyton Jones, Hal l and Hammond, 1993] the profiler offers occurrence counts,

t imed and heap profi l ing, including serial profiling of time and memory usage.

The source code is annotated either by hand or automatically wi th cost cen

tres, labels to which the costs of executing the enclosed expression are attributed.

Associating the cost centre w i t h an expression is made explicit by extending the

syntax of a Haskell expression wi th an sec (set cost centre) construct.

Operationally the sec expression attributes the cost of evaluating the expression

to the cost-centre label (which is either a user specifiable string or a function name).

Semantically however, an sec expression simply returns the value of an expression.

^These methods of profiling were described in section 2.4.3.

C h a p t e r 2: Ef l i c i ency Analys i s of Programs 62

sec expressions are scoped so that

raapg X 1 = (sec "mapping" map expr) (g x) 1

w i l l a t t r ibute the cost of evaluating the map, and any non-profiled function below

that, to the label "mapping". Any other costs w i l l be attributed to another cost

centre, which perhaps encloses the function mapg for instance^.

A l l the instances of evaluating an sec-annotated expression are lexically (or

dynamically, i f specified by the user) attributed to its cost centre. Any un-profiled

expressions are subsumed into the surrounding cost centre. There is however no

method of inherit ing the cost of profiled sub-functions; costs are only attr ibuted to

a single cost centre and the results produced are flat profiles.

The profiler is implemented as an integral part of the Glasgow Haskell Compiler

(GHC) . A n see expression can be included in the original source of the Haskell

code by the programmer. Alternatively these see expressions can be automatically

included in the code by selecting the option to profile all global functions. Every

pass of the compiler had to be extended to account for this extension to the Haskell

language.

GHC is an optimising compiler which transforms the code during compilation

to an intermediate Core language and finally to a resulting program graph, sec

t ion 2.3.3. A n important part of the cost-centre profiler is that i t preserves the

scope of the cost centres during these program transformations so that evaluation

is not moved f rom the scope of one cost centre to the scope of the next. The code

generated by the compiler is based on the Spineless Tagless G-machine model of

graph reduction [Peyton Jones, 1992 .

Recording the costs during program execution is not diflftcult. Three STG-level

extensions are implemented to enable run-time profiling: A current cost centre

is added to the machine state, this current cost centre w i l l continuously change

throughout the execution of the program and any execution costs are attr ibuted to

^The reader will note that the cost-centre scheme is similar to that of the profiling colours
described in the U C L Lexical profiler.

C h a p t e r 2: Eff ic iency Analys i s of Programs 63

this current cost centre; all heap closures have a cost centre attached to them, so
whenever a closure is entered its cost centre is loaded into the current cost centre;
during program evaluation enclosing cost centres are stored on the return stack,
these are restored whenever the constructor is returned, and the associated code
continues to be evaluated in the scope of the correctly enclosing cost centre.

This system has had a large amount of success and produced a number of

improvements to the profil ing of large systems, [Sansom, 1994] [Morgan, Garigliano,

Jarvis and Parker, 1994]. The cost-centre profiler:

• Profiles Haskell programs to produce flat results in a tabular, graphical and

serial t ime manner.

• Profiles programs for occurrence, time and heap usage.

• Records the resource usage by the execution sampling method.

2.7 Chapter summary

This chapter has introduced literature and previous research concerning the effi

ciency analysis of programs. In particular the chapter has presented issues related

to practical methods of measuring resource usage in programs. Practical methods

may be more useful in the analysis of large programs as their measurements can

deal w i t h average-case analysis which is often a more useful means of evaluation.

I t is necessary to consider a number of issues when designing practical com

plexity analysis tools. For example, i t is important to carefully select what w i l l be

measured by the tool , how these metrics w i l l be recorded and then how they w i l l

be presented in the final results to the programmer. Relating the resource usage

back to the original source code is a non-trivial task.

Profi l ing tools have to overcome a number of specific design issues related to

different programming paradigms. Profilers for imperative and logical languages are

easier to construct as the evaluation of programs wri t ten in each of these paradigms

C h a p t e r 2: Eff ic iency Analys i s of Programs 64

follows a strict order. Resource usage can be measured between two points in the
program to determine the overheads for individual parts of the code.

Profi l ing functional programs, especially those which use lazy evaluation, is

more diflScult. Functional programs are abstract, allowing the programmer to con

struct code which bears l i t t le resemblance to the underlying machine representation

and evaluation mechanisms. The problems of profiling lazy functional programs

were discussed.

The different types of profil ing tools were described. These included occurrence

profi l ing, t imed profil ing and memory profiling.

A theoretical design issue in the development of profil ing tools is whether to

include in the cost of functions the costs of any sub-functions. I f the costs of sub-

functions are not included, the results may be difficult to interpret as they may only

be displayed in terms of low-level functions. This is described as a flat profile. Some

profilers attempt to inherit the results of profiled sub-functions by differing means

of subsuming costs. I f the program includes shared functions then compromises

are made about how the results are recorded or how they are inherited to parent

functions.

The chapter ended by presenting some of the more common profilers for im

perative languages, some profilers for strict functional languages and finally all of

the profilers for lazy functional languages. These were arranged in the theoretical

categories into which they fa l l and their benefits and drawbacks were discussed.

Chapter 3

Large-Scale Functional Systems

3.1 Introduction

There are aspects of large programmed systems which make them fundamentally

different f rom small programs. As a system increases in size, the programmer is

forced to respond to a number of conditions; the evolving program changes and

its structure becomes more complex unless active efforts are made to avoid this

phenomenon (the law of increasing complexity ^).

I f the program is used in a real-world environment then i t must change in

order to become progressively useful in that environment (the law of continuing

change). The growth and continued change w i l l often be a self regulating process

and the measurement of system attributes such as size, t ime between releases and

the number of reported errors reveals significant trends and invariances (law of

program evolution).

The rate of change is governed by the amount of resources devoted to system

development, (law of organisational stability) and over the lifetime of the system the

incremental change in each release is approximately constant (law of conservation

of familiarity).

^of program evolution dynamics [Sommerviile, 1992].

C h a p t e r 3: Large-Scale Funct ional Systems 66

The programming style w i l l change as the system evolves. A programming
language is more than just a means for instructing a computer to perform tasks;
the language also serves as a framework wi th in which we organise our ideas about
processes. Thus when a language is described, particular attention should be paid
to the means provided by the language for combining simple ideas to form more
complex ideas. Every powerful language has three mechanisms for accomplishing
this:

• primitive expressions, which represent the simplest entities w i t h which the

language is concerned,

• means of combination, by which compound expressions are buil t f rom simpler

ones, and

• means of abstraction, by which compound objects can be named and manip

ulated as units.

These methods w i l l be employed by programmers to progressively build up the

systematic structure of the developing project. Different programmers may develop

different methods in order to implement their abstract levels, separated f rom, and

utilised by, another part of the code by means of abstraction barriers.

The programmers of a system w i l l also change as a result of the increasing

development. Different levels of expertise w i l l be needed by different parts of

the system, f rom the knowledge of low-level implementation details to higher-level

application details. These programmers may have l i t t le to do wi th the others' code,

in some cases being completely separated f rom other programmers by progressive

levels of code detail.

This chapter deals w i t h the development of large-scale functional systems. In

particular the chapter is based on the development of the L O L I T A system at the

University of Durham.

The Laboratory for Natural Language Engineering at the University of Durham

has developed the L O L I T A system for natural language processing applications

Chapter 3: Large-Scale Functional Systems 67

[Garigliano, Morgan and Smith, 1992,1993][Garigliano and Long, 1994] [Jarvis,
Poria and Morgan, 1995] [Morgan, Garigliano, Jarvis and Parker, 1994, 1996]. The
system consists of 50,000 lines of source code (not including comments; with com
ments, the system consists of approximately 80,000 lines), equivalent to about

500.000 lines of imperative code [Turner, 1982], divided between 170 modules. In

addition there are around 450 data files. Although the system was initially devel

oped by one person, a team of approximately twenty people is currently engaged

in developing various aspects of LOLITA. The LOLITA system is written entirely

in Haskell.

The LOLITA system may therefore be described as a large-scale program within

the functional programming community. Traditionally the description of large-scale

systems has focussed around developments based upon imperative languages, but

with the more recent development of large-scale functional systems this field can be

extended. There has been a recent drive to identify real-world functional systems

(see next section), though little has been done to explore the construction of these

systems on a larger scale. This chapter endeavours to explore the issue of large,

real-world functional programs. I t is the work on a large-scale program and the

investigation of the principal differences between large- and small-scale functional

programs which promotes this thesis.

3.2 Functional Programming at Large

3.2.1 Real-World systems

There are simple criteria for systems being classed as 'Real-World', that is they

must be written primarily to perform a task, rather than to experiment with a

programming language.

In May 1994, Giegerich and Hughes organised a successful workshop on Func

tional Programming in the Real World [Gill and Wadler, 1995]. I t was identified

that there were a number of real-world appHcations of functional programming.

Chapter 3: Large-Scale Functional Systems 68

Twenty-three different real-world systems were identified at the workshop and
described in some detail by their representatives. Of these twenty-three systems
eleven were written in some form of ML [Milner, 1990 .

ML, which stands for Meta-Language, is a family of advanced programming

languages with functional control structures, a polymorphic type system and pa-

rameterised modules. ML has strict semantics although there are several imple

mentations of ML including the Standard ML (SML) and also a version with lazy

semantics (LML). ML is a well-established and well-documented language, i t con

tains a supportive tool-kit and has users both in industry and academia. Of the

eleven cited real-world systems written in ML, ten were implemented in a strict

version of the language. Seven of these real-world systems had been developed at

Carnegie Mellon University in the US.

One of the more prominent examples of a real-world system written entirely in

ML is the Isabelle generic theorem prover, a 16,000 line SML program, written in

1986 by Larry Paulson of the University of Cambridge [Paulson, 1986 .

Ten of the real-world systems presented were written in Haskell. The Haskell

language is the result of a language design committee set up in 1987 to prevent the

spread of a collection of non-standard, non-strict, purely functional programming

languages, a problem which was facing the community in the mid-1980s [Hudak

and Fasel, 1992]. By ML standards Haskell is a young language and the fact that

ten recognised real-world systems have been written in Haskell testifies to its suc

cess. Five of these systems however (Anonymous FTP Client, Cherry, Equational

Reasoning Assistant, Happy and Network Tool-kit for Haskell) are written by a

single team, Andrew Gill and Darren Moffat from Glasgow University in the UK.

The Glasgow Haskell Compiler (GHC) is also cited as one of the real-world func

tional systems written in Haskell. Though a compiler is clearly a real-world system,

there is some debate as to whether a compiler should be classed in this discussion

alongside systems such as LOLITA for example. Rather, there should possibly

be a distinction between those systems which are written by people with a vested

interest in the use of functional languages and those written by people who simply

Chapter 3: Large-Scale Functional Systems 69

choose a functional language because i t is suitable for a certain problem, or simply
as an arbitrary choice. This distinction is made by redefining real-world systems
to include two groups:

• Related Real-World Systems^ — the system designers and writers have a

particular interest and expertise in functional programming languages. The

development of the system in a specific programming language may be mo

tivated by this interest.

• Unrelated Real- World Systems — written primarily to perform a task, rather

than to experiment with functional programming languages. The choice of

a functional programming language reflects the task at hand (e.g., mathe

matical or rule-based), or is arbitrary. A large amount of the expertise in

functional programming is built up during development.

The Standard ML compiler of New Jersey and the Haskell Compiler (HBC) of

Chalmers University would, with GHC, fall into the first category. The three

remaining Haskell systems are the Mitre Speech Recognition System [Goblirsch,

1993], Ebnf2ps railroad diagram drawing tool from Tiibingen [Thiemann, 1994]

and the LOLITA system from Durham; these should fall into the latter category.

The remaining two systems presented at the Dagstuhl workshop were written

in Miranda, a non-strict, polymorphically-typed purely functional language. The

first of these systems, MC-SYM, computes the 3D shape of a piece of nucleic acid

molecule given the sequence of nucleotides and a set of constraints to satisfy. This

system, from the University of Montreal [Major, Lapalme and Cedergren, 1991],

has also been implemented in Scheme, Multilisp, and C. Finally, Smart-Card, from

the University of Amsterdam, is a prototype of a smart-card operating system

[Hartel and de Jong, 1994 .

The Dagstuhl workshop highlighted a number of real-world systems, although

analysis of these systems shows that there are less unique examples of real-world

systems than it first appears:

^Clearly this choice of terminology is flexible.

Chapter 3: Large-Scale Functional Systems 70

Development Centre

Implementation Language Used

Development Centre M L Haskell Miranda Other

Glasgow University 6

C M U 7

Chalmers University 1 1

Other 3 3 2

Figure 3.1: Summary of the results of the Dagstuhl workshop on Functional Pro
gramming in the Real World.

• three of the twenty-three systems are functional programming compilers and

may be more accurately categorised as Related Real-World Systems;

• thirteen systems had been developed at Glasgow or Carnegie Mellon univer

sities;

• twenty-one of the systems had been written in either Haskell or ML (or a ML

derivative), the remaining two systems are written in Miranda;

• eleven systems are written in a strict functional language, twelve are written

in a lazy language; of the twelve lazy systems only five are not written at

Glasgow or Chalmers Universities.

These results are summarised in Figure 3.1.

The results of the Dagstuhl workshop are not complete; there are many other

systems programmed in functional languages which were not represented at the

workshop. In particular the language Erlang has been used in software development

projects at Ericsson since 1990, [Armstrong, Williams and Verding, 1993]. Erlang

is a concurrent functional programming language which has a significant use in

the development of large industrial real-time systems. The language, though not

strictly functional, is untyped and uses a pattern matching syntax. I t also utilises

recursion equations, explicit concurrency and asynchronous message passing. It is

Chapter 3: Large-Scale Functional Systems 71

relatively free from side-effects. This language offers 'functional properties' and the
experience gained in the development of many substantial projects may yet prove
to be valuable in the development of similar 'purely functional' systems.

The recent book by Runciman and Wakeling [Runciman and Wakeling, 1995

discusses some applications of functional programming. These applications were

developed as part of the FLARE project, collaborative work within the UK's In

formation Engineering Advanced Technology Programme, whose aim was to put

functional programming into the hands of potential users of real applications. One

notable application is the Veritas proof assistant [Hanna, Daeche and Howells,

1992]. Implemented in both SML (12,500 lines) and Haskell (11,500 lines), the

project has provided useful information on the efficiency (in space and time) of

Haskell programs. I t also considers at great length the problems of error handling

in functional programs and provides some effective alternatives to the exception

handling mechanism.

Despite the encouraging results recorded in the Runciman and Wakeling book

and other texts, the results of the Dagstuhl workshop do point to a surprisingly

small number of Unrelated Real-World Systems developed independently of the

main universities established as functional programming research centres.

The LOLITA system is an Unrelated Real-World System written in a lazy

functional programming language. There are few examples of such a system and the

results of the Dagstuhl workshop would suggest that the experiences of developing

the LOLITA system are perhaps unique. Its scale and the period of time over

which i t has been developed have given a large amount of experience and insight

which is elaborated upon throughout this chapter.

3.2.2 Program comprehension

Most people accept that the choice of an ideal programming language for a certain

task depends greatly on the nature of that task. There is therefore no notion of a

universal programming language which is well suited to all programming tasks; the

Chapter 3: L2u*ge-Scale Functional Systems 72

vast number of languages in existence is evidence of that. There must, therefore,
be features of functional programming languages which make them suitable for
system development, features which will make the software engineer adopt a func
tional programming language rather than an imperative language when he codes
his system.

Despite the relative lack of unrelated real-world systems, it has often been

argued that i t is easier to write in a functional programming language than in an

imperative language. Higher-order functions and lazy evaluation allow new levels

of modularity to be attained [Hughes, 1989]; this in turn enables programs to be

more easily read and understood. The lack of side-effects make the properties of

the program easier to reason about and the similarity to mathematical notation

can be considered an advantage to those with this formal knowledge. In addition,

programmers do not need to concern themselves with storage management; the

program is thus free from memory allocation statements and variable declarations

Jarvis, Glaser and van Eekelen, 1995 .

The reader will be familiar with many of these topics, including referential

transparency, function application, currying, higher-order functions and lazy eval

uation. Detail is paid however to abstract types, descriptions of which are used in

the discussion of the LOLITA system which is found in the next section.

Abstract types

When using the mechanism of type definitions to introduce a new type, we are

in effect naming its values. With the exception of functions, each value of a type

is described by a unique expression in terms of constructors. Using definitions

by pattern matching as a basis, these expressions can be generated, modified and

inspected in various ways. It follows that there is no need to name the opera

tors associated with the type. Types in which the values are prescribed, but the

operations are not, are called concrete types.

Chapter 3: Large-Scale Functional Systems 73

Abstract types operate in the reverse—an abstract type is defined not by naming
its values, but by naming its operations. How values are represented is therefore
less important than which operations are provided for manipulating them. The
meaning of each operation has to be described either by algebraic specification,
stating the relationship between the operations as a set of algebraic laws, or by
models, describing each operation in terms of the most abstract representation
possible^.

In order to implement an abstract type, the programmer must provide a repre

sentation of its values, define the operations of the type in terms of this representa

tion and show that its implemented operations satisfy the prescribed relationships.

Apart from these obligations, the programmer is free to choose between different

representations on the grounds of efficiency or simplicity.

Important to the design of large programs is the concept of abstraction barri

ers [Bird and Wadler, 1988], the mechanism of hiding the implementation of an

abstract type so that the reference to the concrete representation is not permitted

elsewhere in the program. In particular, this approach allows the representation to

be changed without affecting the validity of the rest of the program. Programming

of the system can in effect take place entirely at one of the predefined abstract

levels and the maintenance of individual modules can be structured in terms of the

abstract operations and types. This is particularly important when the semantics

are intuitive from the operations on the type itself; these can be understood with

out having to understand the mechanics of the underlying implementation. The

abstraction may hide a particularly complex implementation, but despite these

underlying complexities the model that it produces is an independent language

of operations which is convenient and easy to understand. An abstract language

may for example be developed for a simple logical language, containing functions

for the binary operators and, or and not. This simple language can be under

stood and used by a variety of programmers, undaunted by the complex model of

semi-conductor behaviour which has been programmed below.

^These descriptions are taken from [Bird and Wadler, 1988].

Chapter 3: Large-Scale Functional Systems 74

Abstract types permit the specification of the data type together with opera
tions which can be performed upon it . In effect this allows a separate sub-language
to be designed (since we can only use the provided functions to manipulate the
structure) to tackle the given problem. In an imperative language, such sub
languages would normally be implemented with a separate program to parse this
language and transform it into code which could then be handled with an impera
tive language compiler (e.g. the UNIX tool YACC [Johnson, 1975]). The difficulty
with this approach is that the tool is difficult to implement in the first place and
is subsequently inflexible. I t cannot easily be changed to accommodate new or old
features. The syntax of the sub-language is different for each tool.

In this thesis the term domain-specific sub-language is used to refer to such a

programming style. The term sub-language is used in preference to the term lan

guage; although it may seem that new language constructs are being defined, they

are still part of Haskell rather than being entirely new languages, and the Haskell

syntax still applies. However, if well defined, a domain-specific sub-language can

appear to the programmer to be a new language specially tailored to a certain

situation.

There are two approaches to designing such sub-languages. The first approach

involves identifying commonly used patterns in existing code and creating new sub

language constructs to capture these. The second approach, used in the LOLITA

system, involves designing a sub-language best suited to the task and then trying

to fit the necessary features into Haskell. Examples of this approach are explored

in relation to LOLITA in section 3.4.1.

3.3 The LOLITA NLP System

3.3.1 Natural Language Engineering

The LOLITA system is a Natural Language Processing (NLP) application built

within the domain of Artificial Intelligence, or more specifically within the domain

Chapter 3: Large-Scale Functional Systems 75

of Natural Language Engineering (NLE). The field of Natural Language Engineer
ing is composed of a number of interconnecting disciplines. I t is an engineering
activity and is thus pragmatic by nature, though its scientific and technical back
ground is based on Descriptive and Computational Linguistics, Lexicology and Ter
minology, Formal Languages, Computer Science, Software Engineering and other
relevant subject areas.

The engineering of Artificial Intelligence systems, particularly on a large scale,

may differ from the construction of large systems built in an alternative domain.

There are a number of criteria which are considered in the construction of these

systems. Garigliano [Garigliano and Tate, 1995] describes the aims of Natural Lan

guage Engineering by emphasising that the systems which this method produces

will have, amongst others, the following attributes:-

• Objectives: Much of the work produced in the domain of computational

linguistics has followed a more traditional approach of modeling small-scale

solutions using computer systems. Though these models may be sizable, the

solutions which they present may only be small fragments of larger linguistic

theories. They may therefore demonstrate a small practical fragment of some

idea, though offer no wider solution to the field at large. Natural Language

Engineering aims to produce solutions which deal with natural language as

a whole. I t should also produce solutions which offer a number of pragmatic

possibilities (these are expanded upon in the following points), and may lead

to systems which are forseeably useful to the general public.

• Usability: The usability of a system is characterised by the number of people

who are able to successfully use the system. Each of these users will aim to

use the system to benefit them in some way, whether i t be to reduce work or

to extend results and ideas which they may have. These will be the users'

needs, of which the system will offer a proper subset of solutions. Usability

will also include the costs incurred in using the product, this may not simply

be in terms of raw monetary value, but also include the time spent installing

and learning how to use the new system.

Chapter 3: Large-Scale Functional Systems 76

• Resources: This is usually considered in terms of what the user is prepared
to pay for the system, including hardware, software and data costs. I t also
includes the human costs such as maintenance and learning mentioned above.
Such a figure would normally be calculated through a form of cost-benefit
analysis.

• Scale: The size of a system will have an influence on all the other parameters

mentioned. The scale of a system itself may be divided into a number of sub

parts. For example a Natural Language Engineered system may be built with

a need for a wide grammar coverage, but without suitably robust handling

of ungrammatical input; such a system would typically be over-engineered.

In the same way selecting a small-scale, basic-domain model will require,

for most applications, that the data be taken from somewhere else, such as

corpus statistics or larger knowledge bases for example. Increasing the size

of a system will generally increase the effectiveness of the task. Although

the complexity of the solution will remain the same, the time in which the

algorithm is executed will grow with the addition of further data and more

complex programmed solutions. This increase in the overheads required may

finally affect the validity of the solution.

• Flexibility Constructing a system for a single domain, to perform a task

which is unlikely to change, may be done with little regard to the system's

flexibility (reuse, maintenance etc.). In practice however this is rarely the

case. Small systems may be constructed in this way, since the savings made

by not making the system flexible out-weigh the costs of constructing a new

similar system; in the design of larger systems more attention must be paid to

producing methods which will ensure the reuse or modification of the system

at a later date. This principle applies as much to the core of a system as it

does to the components.

• Implementation: There is a widespread view that there are programming

languages for artificial intelligence systems, just as there are programming

languages for business systems and data bases etc. Often such a claim is

Chapter 3: Large-Scale Functional Systems 77

based on the experience of programmers within that domain, and the rel
ative expertise that they possess. For Natural Language Processing, as for
any other software engineering discipline, this is not true. The choice of
the implementation language is based on a number of parameters including
the number of developers involved, the languages already known, the data
sets used, the architecture on which the system is executed, the interfaces
and support tools available and the life-cycle models used. These metrics
allow the system designer to select one or more programming languages for
the implementation of the system. A solution may be prototyped and later
developed in a more portable language.

• Efficiency: This aspect has deliberately been left until last, as the consid

eration of efficiency in Natural Language Engineering is somewhat different

from the more traditional views of efficiency expressed in chapter 2. The

theoretical analysis of complexity is paramount in a properly engineered nat

ural language system. I t is necessary to understand the complexity of the

algorithms employed, as an oversight in this part may only manifest itself

when the system has been constructed and the operational behaviour proves

to be far from what was initially expected. In such systems however, there is

a slight anomaly with traditional methods of theoretical complexity analysis.

Complexity analysis is in most calculations worst-case analysis; average-case

analysis is usually too complex to calculate. Worst-case analysis may identify

rare scenarios which would be unlikely to occur during normal operation of

the system; this type of analysis can therefore be misleading if a large per

centage of the system time is spent in a 'better than worst' case situation.

Even when the worst case is the normal one, complexity concerns the system

behaviour as the input grows towards infinity. Most input into a natural Ian-'

guage system will have its size limited, producing with it a constant which

can be used in the estimation of the complexity behaviour of the system. This

constant is irrelevant as far as the order of complexity is concerned, yet re

mains paramount for more practical complexity analysis. For example when

considering the processing of a string of words, an algorithm of high complex-

Chapter 3: Large-Scale Functional Systems 78

ity (e.g. exponential) may perform better than one of low complexity (e.g.
polynomial) when the number of words is bound by an upper limit. Practical
complexity analysis therefore has a primary role in natural language systems.
Practical complexity analysis may use tools such as parse-graph displaying
mechanisms and programming tools such as profilers. The development and
maintenance of such systems can be monitored and influenced by the results
from these tools (see chapter 4) and they are regarded as an integral part of
the development process.

Large systems differ in their perspective as well as in their programming. The

LOLITA system at Durham follows the principles of Natural Language Engineering

discussed above.

3.3.2 LOLITA

The LOLITA (Large-scale Object-based Linguistic Interactor Translator and Anal

yser) system is a state of the art natural language processing system, able to gram

matically parse, semantically and pragmatically analyse, reason about and answer

queries on normal complex texts, such as articles from the financial pages of quality

newspapers [Garigliano and Long, 1994].

The development of the LOLITA system began in 1986 when the language

Miranda^ was used. In 1993 the system was entirely converted to Haskell [Hazan,

Jarvis, Morgan and Garigliano, 1993]. The system is now used in a number of dif

ferent research projects in both academia and industry. In June 1993 the LOLITA

system was demonstrated to the Royal Society in London.

LOLITA is an example of a large system which has been developed in a pure

functional language because it was felt that this was the most suitable type of

language to use. The functional approach was chosen originally because of the

developers' experience of logical techniques, and the logical consequences of func

tional languages. Many other large functional systems (discussed at the beginning

Miranda is a trademark of Research Software Ltd.

Chapter 3: Large-Scale Functional Systems 79

of this chapter), have been built by functional programming experts; in contrast
LOLITA developers often come to the system with little or no functional program
ming experience, or indeed with no programming experience at all. This differs
from others' experiences in developing large functional systems, whose motivation
for doing so has often been an interest in functional programming theory.

Expertise gained in the use of functional programming in the LOLITA develop

ment team has largely been gained by hands-on development of the system. Many

of the techniques documented have been developed out of necessity, rather than be

ing driven by functional programming research. The way in which the non-expert

utilises the features of a pure functional language is of interest, as it provides an

insight into how large systems would be developed in a more general, possibly

non-expert, environment.

The LOLITA system source code is continually being changed. Many of the

people currently involved in writing new pieces of code and changing existing code

are new to the system. The field in which LOLITA lies means that many of

the people working on the system are from non-Computer Science backgrounds;

researchers in the group include linguists, mathematicians, computer scientists and

economists. As expected the programming experience varies greatly from people

who have no programming experience, to those who have experience of imperative

languages, and to those who are proficient functional programmers.

In spite of these apparent obstacles, alterations to the system have been ac

complished with surprising ease and very little disruption to other parts of the

system and other LOLITA developers' work. Novice functional programmers have

relatively effortlessly incorporated their work into the system. People who previ

ously had little or no idea of how the LOLITA system worked have been able to

commence with their modifications in a matter of days. Of course the situation

is not entirely perfect, but given such an unstructured decentralised development

model, the evolution of the LOLITA system has been able to proceed remarkably

smoothly.

Chapter 3: Large-Scale Functional Systems 80

Morphological
^ Analysis

Misspelt and
unknown word

recovery

f N
Structure
Analysis

^ J

(^
Feature
Analysis

1 1
N O R M A L I S E R

I N F E R E N C E

I N T E R A C T I O N
S E M A N T I C

N E T W O R K

S E M A N T I C
A N A L Y S I S

D I A L O G U E
A N A L Y S I S

C O N T E N T S
S C A N N E R

P R A G M A T I C
A N A L Y S I S

G E N E R A T I O N

Figure 3.2: Structure of the LOLITA system.

In the following sections the LOLITA system is introduced, with a brief de

scription of some of its applications and an outline of the system design. Lazy

evaluation has been highly influential in determining the overall structuring of

the system; this is explained in Section 3.4.5. The technique of creating domain-

specific suh-languages, a feature central to the programming and development of the

LOLITA system, is introduced in Section 3.4.1; the facilities provided by Haskell

which contribute to the ease of implementing and using such sublanguages are dis

cussed. In Section 3.4.7 the handling of state in LOLITA and the contribution

of purity to the ease of implementing multiple semantic networks are examined.

Debugging and profiling tools and techniques used with the LOLITA system are

discussed in Section 3.5. Finally some conclusions drawn from the use of Haskell

to code LOLITA are presented in Section 3.6.

3.3.3 System construction

Many natural language processing systems have been built to solve specific prob

lems. These systems are restricted, either by a particular task which they perform,

or by the domain in which they work. The aim of LOLITA is to produce a general,

domain-independent knowledge representation and reasoning system.

Chapter 3: Large-Scale Functional Systems 81

E V E N T

instance speciahsaOon

acuon \ mode instance ame synonym

T A X I ^ (^ U R N) (F I E R C ^ f'pAST

Figure 3.3: A portion of the semantic network.

The overall structure of the LOLITA system can be seen in Figure 3.2. The

core of the system is a general framework which is used to map from text to

meaning and meaning to text. The main data structure used to represent this

meaning is a semantic network [Shastri, 1988] [Garigliano and Long, 1994]. This

semantic network, SemNet, is a structure which stores information independently

of any natural language representation. I t is inheritance-based and holds world

information and data, as well as some linguistic information.

Figure 3.3 shows a simplified portion of the semantic network representing the

event 'the taxi burned fiercely'. The transformation from text to meaning is carried

out by the parser, the normaliser, the semantic analyser and the pragmatic anal

yser. Each language understood by LOLITA (the system currently has dictionaries

for English, Italian, Spanish, Chinese and French) requires the construction of a

syntactic parser [Ellis, Garigliano and Morgan, 1993] to map from text to semantic

net. The English parser, for example, contains over 1,500 grammatical rules, writ

ten using the method described in section 3.4.1. After syntactic parsing the parse

tree is normalised—equivalent parse trees are mapped to a unique normal form.

The semantic analyser then transforms the parse tree provided by the normaliser

into a fragment of semantic net, and maitches the nodes it creates with those which

currently exist. The pragmatic analyser then ensures that the meaning produced

by the semantics is consistent with LOLITA's knowledge of the real world.

Chapter 3: Large-Scale Functional Systems 82

3.3.4 Applications of LOLITA

The LOLITA system has been designed to maximise flexibility. The core sys

tem, described above, comprises the majority of the code—application-specific code

makes up only 0.5% of the total code in the contents scanning example described

below. This independence of the core system from a specific domain makes the de

velopment of a new application relatively straightforward [Kazan, Jarvis, Morgan

and Garigliano, 1993]. Applications which have been developed using the LOLITA

system include:

Contents scanning

Contents scanning involves text being examined and information contained in the

text being used to fill in an outline template. Contents scanning [Garigliano, Mor

gan and Smith, 1993] is one of the standard tests of the abilities of a natural

language processing system. The most widely known and acknowledged of such

tests is that of the Message Understanding Conference (MUC), run by DARPA in

the United States^ [Morgan and Garighano et al, 1995]. An example of contents

scanning, as performed by LOLITA, is given in Figure 3.4.

In the LOLITA contents scanner, the input text is parsed and semantically

analysed in order to build a representation in the semantic network. A domain-

dependent module then searches the network for information relevant to each of

the slots. This information, in the form of semantic-network nodes, is then passed

to the realizer which produces the output.

Chinese tutoring

LOLITA has been used as the core engine for a system to aid the teaching of

Chinese to English-speaking students [Wang and Garigliano, 1992]. One of the

main problems encountered in the learning of foreign languages is the influence of

^LOLITA entered the MUC-IV competition.

Chapter 3: Large-Scale Functional Systems 83

A car bomb exploded outside the Cabinet Office in Whitehall last night, 100 yards
from 10 Downing Street. Nobody was injured in the explosion which happened
just after 9 am on the corner of Downing Street and Whitehall. Police evacuated
the area. First reports suggested that the bomb went off in a black taxi after the
driver had been forced to drive to Whitehall. The taxi was later reported to be
burning fiercely.
(THE DAILY TELEGRAPH 31/10/92)

Template: Incident
Incident: A bomb explosion.
Where : On the corner of Downing Street and Whitehall.

Outside Cabinet Office and outside 10 Downing Street,
In a black t a x i .

When : 9pm.
Past.
Night.
When a f o r c e f u l person forced a driver to drive a
black t a x i to Whitehall.

Responsible:
Target: Cabinet Office.
Dcimage: Humain: Nobody.

Thing: A black t a x i .
Source: telegraph
Source_date: 31 October 1992
Certainty: Facts.
Relevant Information

Police evacuated 10 Downing Street.

Figure 3.4: Example of the contents scanning task.

Chapter 3: Large-Scale Functional Systems 84

He have breakfast at eight.
Please enter anaver and h i t return: HsffJ ^tg A >4.
r m sorry to say that you haven't translated the sentence correctly. There may be more than one way of translating the sentence:
mi A Dg.¥tfe A m m b^. w
The problem with your translation as that you have translated the sentence according to the English word order. Please compare your tran s l a t i o n with the standard one(s) i n order to find out the d i f ferences between the structures and t r y again!
They (male) ha/e lunch at one.
Please enter answer and h i t return: I
^:*:^^A (ASCII input)

Figure 3.5: An example output from the Chinese Tutor.

the mother tongue, known as negative transfer [Selinker, 1969]. This is the use of

native language rules or patterns which leads to an error or inappropriate use in

the target language.

The Chinese tutor makes use of a technique of mixed grammar. When the

parse of a Chinese sentence fails, a partial English grammar rule is invoked for the

next part of the sentence. A backtracking algorithm is used in order to cope with

incorrect parsing.

The mixed grammar of Chinese and English has been modelled in such a way

as to allow the parser to locate complicated transfer errors, not only by examining

the error itself, but also by checking its hnks with other constructs in the sentence.

Moreover, the grammatical rules in the mixed grammar of Chinese and English

can be used to pinpoint arbitrary transfer errors made by students, without prede

termining where the errors might occur. The student can then be informed of any

errors, and the system can recommend remedial work.

Dialogue analysis and generation

I t is possible for a user to carry out a dialogue with LOLITA [Jones and GarigUano,

1993]. This dialogue takes the form of a rich natural language interaction between

LOLITA and the user. The dialogue system takes into account factors which

influence everyday dialogue between humans, such as the emotional state of the

Chapter 3: Large-Scale Functional Systems 85

YOU: I l i k e you.
LOLITA: I know.
YOU: You are b e a u t i f u l .
LOLITA: I am glad because you think I am bea u t i f u l
YOU: Do you l i k e me?
LOLITA: Yes, I l i k e you.
YOU: Why do you l i k e me?
LOLITA: I do not know why I l i k e you.
YOU: I am t i r e d .
LOLITA: I understaind.
YOU: Are you tir e d ?
LOLITA: No.
YOU: T e l l me i f you believe that I eun t i r e d .
LOLITA: Yes, you are t i r e d .

Figure 3.6: Example of a dialogue with LOLITA.

participants, their motives and the relationship of one participant to the other.

The LOLITA system utilises a Dialogue Structure Model [GarigUano and Jones,

1992], which is a template-like schema containing the basic information for the di

alogue structure pertaining to a given situation, for example having a chat or

attending a job interview. This information is then used to structure the responses

that LOLITA will give, so that they are applicable to the current situation. The

parameters of the dialogue are optimised to an intended script using an evolution

ary programming algorithm [Nettleton and Garighano, 1994]—this exemplifies the

eclecticism of the methods used within the system. A sample dialogue between

LOLITA and a user is shown in Figure 3.6.

Other applications

• Query application — This allows the user to have a 'question and answer'

session with LOLITA. I t is possible to 'tell' LOLITA information and then

ask questions about this information or other information already held in the

semantic net. This diff'ers from the dialogue feature in that the style of the

interaction is plain—no account is taken of the context of the protagonists

involved in the exchange.

Chapter 3: Large-Scale Functional Systems 86

• Machine translation — Although this was not part of the original system,
it has been possible to add the functionality of a prototype translator from
Italian to English to the system with relatively little effort. Sentences can be
parsed according to the rules of Italian grammar and the information added
to the semantic network. LOLITA's generation system [Smith, 1995], which
takes sections of the semantic network and produces the English text, can
then produce the English from this network.

• Story application — This is intended for use by physically handicapped peo

ple. The user is presented with a list of events, in the form of short sentences.

The user is able to select events for inclusion in his story, these events are

then processed by LOLITA, which will generate a paragraph based upon

them.

3.4 Aspects of Large-Scale F P

The extension of the core system for each application is possible due to the different

programming practices employed. Developers of the individual applications may

not know how other parts of the system work and they rely on a set of interfaces

which supply the necessary functions.

I t would be expensive in terms of time and effort to teach each of the new

members of the group a comprehensive selection of functional programming prac

tices, perhaps including primitive data type mechanisms, defining algebraic types,

monadic definitions and state threading. However, i t is clearly necessary to teach

the programmer some aspects of functional programming; for example function

construction and application, and primitive data types might be two useful mech

anisms. These can then be combined with the programmer's knowledge of the

abstract data types he is employing. Additional knowledge of more advanced func

tional programming techniques such as defining algebraic types and monadic defi

nitions need not be taught.

Chapter 3: Large-Scale Functional Systems 87

o
a u
,0

<
U
0X1!

Layers of Abstraction

Application developers

e.g., Language Tutoring Systems,

Dialogue etc.

Models of Parsing, Semantics,

Language Generation

Dictionaries

Lookup Tables for Words,

language constructs

The Haskell Language

Knowledge Required

How to make effective use of
the underlying domain specific
sublanguages

Primitive data types
Function application and construction

Creation of domain specific

sublanguages. ADTs, modules

Primitive Functions - Function Composition

HOFs, Currying and Monads

Comparative speeds of data structures
and algorithms

Complexity analysis and detailed
knowledge of language and implementation

Defining Algebraic Data Types

Monads, State Threading

Function construction and application

Primitive I/O, C and UNIX interfacing

Abstraction layers

Domain
Specific
sublanguages

Figure 3.7: A diagram showing the various levels of abstraction that exist. The
column on the left shows the layers of abstraction (based on the Haskell language) at
which applications are developed. People developing at lower layers support those
at higher layers by providing tools and/or creating a level of program abstraction.
The second column shows the knowledge that those working at each level require.
Each level of abstraction can be bridged by the use of a Domain-Specific Sub
language. The real power of Functional Languages lies in the way in which the
boundaries between these levels of abstraction can be drawn [Jarvis, Poria and
Morgan, 1995 .

Chapter 3: Large-Scale Functional Systems 88

> reported_typesentence :: Parser
> reported_typesentence
> = prephrases
> +++
> typesentence &? exclamation_mark » exclamativeN
> +++
> typesentence & question_mark » questionN

Figure 3.8: An example grammar rule.

This approach of instructing the developers at various abstract levels aims to

minimise the amount of teaching which needs to be done. With developers work

ing at different levels of abstraction a hierarchy of programmers is created. This

hierarchy has naturally developed into the levels seen in Figure 3.7. Functional pro

gramming techniques allow these levels of abstraction to be created with a number

of different features which are examined in the following sections.

3.4.1 Abstract types for Domain-Specific Sub-languages

One technique which is used throughout the system is the use of abstract data types

to create domain-specific sub-languages appropriate to specific natural language

tasks (introduced in section 3.2.2 and expanded upon here). This is particularly

appropriate for parts of the system which rely on large numbers of rules. For

example. Figure 3.8 shows one of approximately 1,500 grammar rules currently

contained in the system.

Although this rule is actually a piece of Haskell code defining a value of type

Parser, i t directly corresponds to the standard formulations of grammatical rules.

In particular, when the semantics of the various operators are explained, the rule

has clear declarative semantics. The definition given in Figure 3.8 states that a

reported-typesentence is either a prepositional phrase, a typesentence followed

by an optional exclamation mark symbol or a typesentence followed by a question

mark. I t also states that if the second form is found, a parse tree should be built

Chapter 3: Large-Scale Functional Systems 89

full_propern<?un transvp •

ROBERTO

subject

comptra.«sv. depth *. ROBERTO E V E N T ^ .
p r opernoun

comnoixn
I • ^ \ - . v-^ - object^

M O T O R B I K E

M O T O R B I K E ^ R O B E R T O

P A R S E T R E E S E M A N T I C N E T

Figure 3.9: A fragment of the semantic net.

with the label exclamativeN and i f the third form is found, the parse tree should

be labelled as questionN.

I t can be seen that the identifier reported_typesentence and the identifier

exclamation.mark correspond to non-terminal and terminal symbols respectively;

the +++ operator is used to indicate alternatives; & indicates sequencing; &? indi

cates sequencing with an optional right part and the » operator gives the label to

be used in the resulting parse tree.

As well as the domain-specific sub-language for the parser, other domain-specific

sub-languages have been designed for different tasks in the LOLITA system, most

notably for semantic analysis and natural language generation. The following sec

tion briefiy describes the semantic parser and gives an overview of the domain-

specific sub-language used to implement i t .

3.4.2 The semantic parser

The semantic parser is a central feature of the LOLITA system. The input to

the semantic parser is a syntactic parse tree and its output is the corresponding

semantic-net structure. The semantic parsing stage therefore involves the trans

formation of information from the parse-tree structure to the semantic-net data

type. An example fragment of the semantic net, corresponding to the sentence

Chapter 3: Large-Scale Functional Systems 90

"Roberto owns a motorbike", is shown in Figure 3.9. Each node in the parse tree
is labelled with its grammatical construct. For instance the root node of the parse
tree is labelled with sen, representing the complete sentence structure. For each of
these labels, there is a corresponding semantic rule which transforms the parse-tree
structure into the semantic-network structure.

One type of semantic rule is used for leaves in the parse tree and another

is used for branches. The parse-tree leaf rules are represented by the abstract

type Leaf Rule; a function metaLeaf takes a parse-tree leaf label and returns the

corresponding leaf rule. Similarly, a function metaBranch takes a parse-tree branch

label and returns the corresponding branch rule, of type breinchRule:

> metaLeaf : : ParseTreeLabel -> LeafRule

> metaBranch : : ParseTreeLabel -> BranchRule

The semantic representation of a node in the parse tree is thus determined according

to its label and the semantics of the subtrees below it . Taking the transvp node of

Figure 3.9 as an example, the left subtree produces the concept of ownership and

the right subtree produces the concept of a particular (but unspecified) motorbike.

Because these are linked together by a branch labelled transvp, the ownership

must be an action and the motorbike must be an object. This rule is specified in

the semantic analysis domain-specific sub-language as follows:

> metaBranch "transvp"

> = labelBoth Act Obj

Although the rule for transvp can define the semantic representation of a node

entirely in terms of the semantic representation of its subtrees, other rules must

take into account contextual information available at that point, such as the set

of referents, nodes which may be referred to in later pieces of text by pronouns

(e.g. 'he' or ' i t ') . I t must be possible to mark points in the parse tree which may

correspond to new nodes in the semantic network as well as points which may be

Chapter 3: Large-Scale Functional Systems 91

referred to later in the text, additional operators and functions are provided for
this purpose.

Another feature which is necessary for semantic analysis is the ability to combine

two or more rules. The operator compose does this, applying the first rule to the

result obtained from the application of the second; it is the semantic rule equivalent

of function composition. The following example creates a branch rule for proper

nouns by combining the three smaller rules l abe lLef t , newnode and addref:

> metaBranch "full_propernoun"
> = addref
> newNode object .
> l a b e l L e f t Univ

This rule specifies the semantics for fu l l .propernoun as a unique new object

node related to the semantics of the left subtree by a universal link. This branch

contains no right subtree, as can be seen in the example of Figure 3.9, hence the

l a b e l L e f t rule is used. The newNode rule is used to distinguish between a specific

instance of the object (ROBERTO in the example) and the concept of the universal

set of ROBERTOs. The addref rule ensures that this new node is available as a

referent; this would be used in the sentence "Roberto owns a motorbike and he

cleans i t almost every day" to enable the semantic analysis to work out that he

refers to Roberto.

3.4.3 Semantic analysis implementation

Semantic analysis specified in the manner described above is implemented as a fold

ing operation on the parse tree. Since the sub-language needs to support context

and allow for the construction and joining together of pieces of semantic network,

this tree folding operation must be performed in the presence of a state which is

threaded from left to right in the parse tree. The rules themselves are represented

as functions which modify this state as well as producing the appropriate semantic

result to be made available to the level above.

Chapter 3: Large-Scale Functional Systems 92

The major benefit of the use of this abstract data type is that it protects the
person writing the semantics from the need to plumb the state explicitly between
different semantic rules. I t has also allowed for the addition of new features, such as
semantic alternatives and rejection of parse trees which are semantically incorrect.
These new additions only aff'ect the implementation of the abstract data type and
the rules which need to take advantage of the new facilities.

3.4.4 Analysis of the domain-specific sub-language approach

I t can be seen from the above examples that sets of rules such as grammatical

and semantic rules are defined at an abstract level, rather than at the level of

primitive data structures. In LOLITA each domain-specific sub-language is imple

mented using layers of abstract data types, with inner layers describing lower-level

operations and the outermost layer being the domain-specific sub-language itself.

An alternative to the approach used in the LOLITA system would be to define a

completely new sub-language in which the rules could be written and then write

appropriate tools to deal with the sub-language, either by generating code for i t or

by performing some form of analysis and interpretation, using tools such as YACC.

This alternative method of implementation would give two significant advan

tages over the current approach. It would allow the designers of the rule sets

complete notational freedom and would also allow the rules to be preprocessed

off-line. However, the current approach does have significant advantages:

• Initial Cost — Although the cost of implementing the semantics of the sub

language under either approach is similar, as both could be done in Haskell,

the cost of dealing with the syntax would be much greater if a completely

separate sub-language were used, as i t would involve writing a new parser, at

the very least.

• Flexibility — A domain-specific sub-language may be changed simply by

adding new functions or altering existing ones. This is something which has

occurred frequently during the development of LOLITA.

Chapter 3: Large-Scale Functional Systems 93

• Power — Domain-specific sub-languages are extremely useful when an ap
propriate set of constructs can be devised to cover all of the rules without
becoming too complex. However, in a substantial rule set there are often
certain rules which require special treatment. With the current approach it
is easy to revert to the full power of Haskell, albeit with the loss of some ab
straction at isolated points. In the external sub-language approach this would
be far more difficult to achieve, as i t would require either the implementa
tion of ad hoc primitives or some facility to interface with a more powerful
sub-language.

• Scale — The overheads in setting up new language tools mean that the exter

nal approach is only feasible for substantial rule sets. The internal approach

has very small overheads and is thus applicable to much smaller rule sets.

I t would certainly be possible to use this domain-specific sub-language approach

in other languages. Most recent languages provide facilities for the creation of

abstract data types; these are essential to the use of domain-specific sub-languages

as they prevent the user of the sub-language from accessing the implementation of

the types used in the sub-language directly. The ability to define operators with

specified precedence and associativity is also provided in other languages.

However, two features of Haskell make it particularly suitable for creating and

using domain-specific sub-languages. The first feature is lazy evaluation. The use

of lazy evaluation in domain-specific sub-languages is discussed in the next section.

The other important feature, the use of higher-order functions to provide a further

level of abstraction, is then discussed.

3.4.5 Lazy Evaluation

An important application of lazy data structures in the LOLITA system is the

handling of the parse forest from the LOLITA parsing stage. The LOLITA system

uses the Tomita parser [Tomita, 1986] to produce a set of parse trees, known as

a parse forest, for a particular sentence or group of sentences. A post-parse stage

Chapter 3: Large-Scale Functional Systems 94

Singular feature

AND nodes in the graph contain
optional penalties to direct the search.

Plural feature

Feature analysis

forces labels below

. to be labelled plural

AND node

Feature analysis
forces labels below

to be labelled
singular

Further graph nodes

This node is identified as being
both singular and plural by the
sharing in the graph. A penalty
is added to this node to indicate
this problem

Figure 3.10: Feature analysis during the post-parse stage of analysis.

builds a collection of parse trees from this parse forest, performing feature analysis

on the parse graphs at the same time.

Feature analysis considers parts of the parse graph and forces other parts of the

graph to adopt the same syntactic feature. For example if a node in the parse graph

has the feature singular attached to it , then feature analysis forces other parts of

the graph around this node to have singular features too. The nature of the parse

graph structure means that it may be possible that the node in the graph is also

referred to by another part of the graph, which may itself have a plural feature

attached. This makes the analysis considerably more complicated, see Figure 3.10.

Feature analysis occurs from the top of the graph and forces features down the

graph depending on what feature analysis is needed at that point in the graph. If

the features do not match at a single point in the graph then penalties are added

to indicate the likelihood of that feature analysis being correct or incorrect.

Chapter 3: Large-Scale Functional Systems 95

Optional penalties are also included at the AND nodes in the graph. These
penalties are used to control the search.

During the post-parse stage a table data structure is built which will have

reference to any node in the graph. I t is possible to look up nodes in the graph

under any particular combination of forced features. There may therefore be a

version of a graph node where the feature singular is forced and also a version of

the same node where the feature plural is forced. Including all the possibilities of

nodes creates a potentially huge table.

To reduce the amount of computation necessary to construct parse trees from

the table, the table is defined as a cyclic structure. Computing the node at one

point in the graph is aided by using the look-up table to reference the nodes lower

down in the graph. Using this look-up table there is no need to build the sub

graphs from scratch; if the node has already been visited by some other route, then

the computation of its value is no longer necessary.

This look-up table is defined using lazy evaluation. The potentially large table

is only built where i t has been visited by the search; this is determined by the

penalty scores which control the route of the search. Using lazy evaluation also

allows parse trees which have already been constructed to be included in the new

parse trees built higher up in the graph. Sharing can take place so parse trees

higher in the graph may refer to those created below. Lazy evaluation allows such

a process to take place.

This process is defined in terms of a function, x, which creates the look-up

table, mkLookupTable, which in turn takes the same function x as its argument.

This cyclic definition is necessary because as a particular node in the look-up table

is being built, it might also be necessary to access nodes from the look-up table

which have already been built^.

X = mkLookupTable x

®This piece of code is simplified for the sake of the example; the actual code is recorded over
the page.

Chapter 3: Large-Scale Functional Systems 96

> mkFeatureForests :: ParseForest -> FeatureForests
> mkFeatureForests pf
> = f f
> where
> f f = FeatureForests (length f f s) $
> [listToFM $ map (mk.entry (p f . f f)) f s I fs <-gramFeatSets]

Figure 3.11: The mkFeatureForests function takes a parse forest as an argument,
this is the result of the LOLITA Tomita parser. I t builds as its result a feature
forest with the set of features (gramFeatSets) supplied. The function has a lazy
cyclic structure which can be identified by the reference to the feature forest f f in
the definition of the feature forest itself.

> data GenVal a b = Val (a -> b)

> ifGen :: GenVal a Bool -> Generator a
> -> Generator a -> Generator a

> ifGen (Val cond) thenPart elsePart
> = Generator (\w -> (f w) w)
> where
> f x I cond X = thenPart
> f x I otherwise = elsePart

Figure 3.12: The generator conditional function.

Lazy evaluation firstly makes such a definition feasible; in a strict language i t would

not be possible to pass the look-up table x as an argument until i t had been built.

Secondly, the lazy definition means that only those parts of the look-up table which

are needed are built. This is very important since the table is potentially very large.

Lazy evaluation makes cyclic definitions such as these possible. The actual code

for this definition is found in Figure 3.11.

This is not an isolated example within the LOLITA system. The abstract type

used in the generator part of LOLITA also relies upon the laziness of function

application. The Generator abstract type provides a conditional construct called

ifGen. This construct evaluates either its second or third argument depending

upon the value of its first (Figure 3.12).

Chapter 3: Large-Scale Functional Systems 97

3.4.6 Higher-order functions and parameter hiding

When using domain-specific sub-languages, a programmer will often apply a func

tion to a value without realizing that these values are themselves functions.

The LOLITA generator provides an interesting example. The generator takes

information from the semantic net of the LOLITA system and combines this with

planning instructions in order to generate text. A simplified version of some of the

generator code is shown in Figure 3.13.

The code fragment shows a number of domain-specific functions which program

mers of the generator are able to use in the creation of their code. These functions,

including i f _ and ' or_else ' (1,2), are not Haskell constructs but functions in their

own right.

The function i f _gen (3) queries the hidden parameter passed by the Generator

type; the say_ functions (4) generate phrases for each role event in the semantic

net. Each of these functions returns a Generator function and the function before-
(5) is used to compose these generator functions together. Despite being complex

higher-order functions, they are used as basic constructs to the generator language.

The result of using this form of representation is to make functions written using

these abstract types easier to write and clearer to read. Currying allows the input

parameter to be omitted from function definitions; this can be seen in the generator

examples which are written as rules rather than functions. The programmer is thus

writing at a functional level without realizing it; each function appears to be a rule

or a language construct rather than a function.

3.4.7 Purity and referential transparency

In this section some of the more noteworthy consequences of choosing a pure func

tional language to code the LOLITA system are discussed. Purity may sound

intuitively like a 'good' property for a programming language to possess, but to

many people this appears not to be true, as Hughes points out in [Hughes, 1989 .

Chapter 3: Large-Scale Functional Systems 98

say.meeming :: GenVals -> Meaining -> Generator
say.meaning gv n
= i f _ (is_event_m n) (1)

(i f _ (forced_closed_event_gv gv)
say_event_as_noun gv n

'or.else' (2)
say_event gv n

)
'or_else'

say_entity gv n

etc

say_event :: GenVals -> Meaning -> Generator
say.event gv e
= if_gen (i s . s t y l e active) (3)

say_active_event gv e
'or_else'
if_gen (i s _ s t y l e passive)

say_active_event gv e (4)
say.entity gv n

etc

say_active_event :: GenVals -> Meaning -> Generator
say_active_event gv e
= say_subject gv e

'before' (5)
say_action gv e
'before'
say_object gv e

say.entity gv n

etc

Figure 3.13: Simplified portion of the generator code.

Chapter 3: Large-Scale Functional Systems 99

Indeed in LOLITA it has proved to be necessary to incorporate certain impure
features, for example for retrieving the current system time and date and for de
bugging (Section 8.2)^. However, apart from impurities such as these, LOLITA is
coded entirely in a pure fashion. Many of the benefits of purity are widely known,
ease of proving the properties of programs and implementing correctness-preserving
transformation being two examples. However the example which follows is one in
which the use of a pure functional language led to a surprising advantage over the
use of an imperative language.

Multiple semantic nets

The operation of the semantic net was initially conceived as an abstract state

machine and would have been implemented as such had an imperative language

been used—a single copy of the semantic net would have been operated upon and

altered by a set of procedures. Naturally, in a language possessing the property of

referential transparency, this implementation is not possible, as it relies on the use

of side-effects to alter the semantic net.

The technique used to implement the semantic net in LOLITA involves passing

the state explicitly as a parameter from one function to the next. This was initially

seen as a serious disadvantage of using a functional language. However, although

the state is a very large data structure, there is very little loss of efficiency in

doing this, as the language implementation means that only a pointer is passed

each time. In fact, the outcome of using this approach has been that altering

LOLITA to use multiple, different copies of the semantic net has been rendered

very straightforward.

The semantic analysis stage involves adding information to the semantic net

and altering existing information. There are often a number of alternative anal

yses which must be explored and hence a different semantic net is required for

each. This was not a feature that had been thought of when LOLITA was first

''̂ Note that it is possible to do this in a pure manner using monads to 'plumb' this behaviour;
however it would require a substantial amount of effort in terms of re-writing the code.

Chapter 3: Large-Scale Functional Systems 100

implemented; the semantic-net implementation had not been designed with the
possibility of this additional functionality taken into consideration. I f LOLITA
had been implemented in an imperative language, with the semantic net as an
abstract state machine, much alteration would have been required in order to in
troduce this new feature: each function which used the semantic-net data structure
would have needed to keep track of which semantic net was being used at the time
and a large amount of extra storage would have been needed for the new copies of
the semantic net. In the actual implementation, however, passing a different copy
of the semantic net to a function does not affect any other parts of the program.

To include this additional requirement in the LOLITA system, it has not been

necessary to alter the implementation of the semantic net in any way. So easy

is this feature to incorporate that it is not even necessary to know whereabouts

in the program multiple copies of the semantic net are being used; i t is a facility

which is taken for granted. Without the explicit references to the semantic net,

dealing with multiple versions would have been much more difficult, especially in

the presence of lazy evaluation, which would have prevented any clear notion of a

'current' semantic network.

Impact on programming style

An obvious consequence of programming in a pure functional language is that those

developers who are used to programming in an imperative language must learn

to change their programming style. Although many of the LOLITA developers

initially found i t difficult to adjust, i t would appear that this was soon overcome.

Indeed, i t is interesting to note that once they became used to programming in a

lazy functional language, many found that the new style of programming influenced

their writing of code in imperative languages—an increased use of recursion is one

effect that has been mentioned.

Chapter 3: Large-Scale Functional Systems 101

3.5 Programming tools for L O L I T A development

Programming tools are an essential part of the imperative programmer's toolkit.

Large, real-world systems in particular benefit from mechanisms which allow the

developer to see what the program is doing at different instances in time; this may

indicate why the program is not working, by supplying some debugging information,

or why the program is using large amounts of memory or takes an unexpected

amount of time to execute, a mechanism demonstrated by profiling tools.

I t could be argued that the success of imperative languages is partly due to

the ambitious collection of tools, the armory, with which the developer can work.

Functional programming languages also benefit from these tools; profiling tools for

functional programs were discussed in detail in the previous chapter.

Programming tools provide the LOLITA developers with an important set of

means to improve and maintain existing code, and to aid the development of new

code. Although the LOLITA development team at Durham have had a certain

amount of success with existing programming tools^, it has been necessary to de

velop our own more advanced set of tools to meet the needs of the multi-skilled

programmers at Durham.

3.5.1 Debugging

Debugging pure lazy functional programs is often regarded as being much more

difficult than debugging imperative programs. This is mainly because most of the

debugging methods available to programmers in other types of language cannot be

used in lazy functional programming.

Because of this, new methods of debugging have had to be devised for use with

the LOLITA system. Most of these involve manually altering the source code to

provide extra debugging functionality; however, an automated debugging tool has

also been developed. A majority of the methods have been developed for use with

^The analysis of using profiling tools in the maintenance and development of the LOLITA
system is discussed in chapter 4.

Chapter 3: Large-Scale Functional Systems 102

specific modules or for debugging specific types of error.

Although Haskell does not enforce it , specifying the type of each function is

an important aid to debugging—if the type of the function inferred by the type-

checking system is not the same as that specified by the programmer, this is re

ported as an error, which saves time later on as the programmer does not have to

decide whether the error is in the function itself or in the calling function.

I t is occasionally stated that the provision of strong typing in pure functional

languages means that debugging tools are not required. Although many of the er

rors are indeed caught by the type-checking system, there will be errors remaining

in the logical behaviour of the program which need to be detected and fixed. Expe

rience with Miranda has shown that using an interpreter can be very helpful when

isolating errors, enabling the testing of individual functions much more easily than

with a compiled program, but this by itself is still not sufficient. In many cases it

can be very time-consuming; several different methods have thus been devised to

aid the debugging.

Imperative-style traces

The difficulties of tracking the application of grammar rules in the syntactic parser

led to the development of a system of imperative-style traces to help in debugging

the grammar rules. These involve the use of side-effects to print out the name

of a grammar rule when i t is applied. The trace pseudo-function, which takes a

grammar rule and a string argument and returns the grammar rule, is used to cause

this side-effect. Tracing may be turned off by substituting a dummy definition for

the trace function.

Although this form of tracing can be useful, it involves the use of side-effects

and i t can generate far too much information, forcing the programmer to devote

a large amount of time to interpreting the debugging output. The program must

also be recompiled in order to turn the tracing on or off.

Chapter 3: Large-Scale Functional Systems 103

Distinguished Path Debugging Tool

A tool which avoids the problem of too much output has been developed [Hazan

and Morgan, 1993]. A class of run-time error which was found to be occurring

frequently in the LOLITA system was the exception error type. An exception error

is one which results in termination of the program and the printing of an error

message. Examples of this type of error in Haskell are

F a i l : head{PreludeList}: head []

which results from passing the head function an empty list and

F a i l : (! !)-[PreludeList}: index too large

which occurs when the list indexing operator is passed a subscript which is outside

the bounds of the list. These exception errors give the programmer no indication

of whereabouts in the program the error occurred. This is a problem as functions

such as head and the list indexing operator are used many times in many different

parts of LOLITA. Previously, this problem had been approached by providing a

customised version of each function capable of generating an exception error for

each module. This new version of the function would report the name of the module

when i t generated an exception error. However simply knowing the name of the

module in which the exception was generated is not sufficient—the exception error

may be in a function which called the exception-generating one, or even some way

back in a chain of functions each calling the other with the exception-generating

function at the very end of the chain.

The distinguished path debugging tool allows the display of these chains of func

tions, termed distinguished paths. The path displayed is the route taken through the

dependency graph of the functions in the program. The tool works by transform

ing each function to take an extra parameter, a representation of the distinguished

path, which is built up from one function call to the next. When an exception error

is encountered, the value of this extra parameter is displayed. Unlike the previous

Chapter 3: Large-Scale Functional Systems 104

method of debugging such errors, which involved altering the source code by hand,
the tool works automatically by transforming each source module.

Unfortunately the development of the distinguished path debugging tool has

been based on the Miranda system and when the conversion of the LOLITA system

to Haskell took place it was updated to the Gofer system. I t is not possible to run

LOLITA using the Gofer system, as the size of the system and the environmental

interaction (see section 3.6) insist that it needs compiler support. The development

of debugging tools for the LOLITA system will be revisited in chapter 8 as the

creation of a more detailed profiling tool (described in this thesis) has produced

the necessary support to re-implement the distinguished path debugging tool on

the Glasgow Haskell Compiler.

3.5.2 Profiling

The subject of this thesis is the development of a more advanced profiling tool for

use on the LOLITA system. Chapter 4 describes the use of current profiling tools

during the development and maintenance of the LOLITA system and the problems

which were encountered. The LOLITA development provides a unique example

for the testing of such tools and from the experience gained a new profiling tool is

proposed, developed and tested; chapters 4, 6 and 7.

3.6 Conclusions

The Dagstuhl workshop on Functional Programming in the Real World identified

a number of large-scale systems developed in a functional programming language.

Many of these systems were written in the strict functional language ML (or an

M L derivative); of the remaining systems, written in a lazy functional programming

language, only five were written outside the main functional programming research

universities. The LOLITA system at Durham appears to be the largest of these

systems.

Chapter 3: Large-Scale Functional Systems 105

There are a number of facilities which our own experience of program devel
opment in lazy functional languages have identified. There are also a number of
possible areas for the enhancement of functional programming languages in general,
and Haskell in particular, which have been noted:

• An interpreter system — The conversion from Miranda to Haskell brought

a number of problems, one of which was the lack of a fully operational in

terpreter system for the language. The design of new sections of code and

system functionality was clearly aided by the use of the Miranda interpreter;

functions at any level in the system could be tested quickly and easily by any

member of the development team. Once the designer was satisfied that the

functionality was correct the integration proved to be a simple task. Whilst

accepting that HBI and HUGS [Jones, 1995] provide a basic interpreter for

Haskell and that code can be tested at a very low level, these systems do not

fully support the features required for large-scale implementations: HUGS

does not support the Haskell module system and HBI does not deal with

recursive modules or low-level system support. There would be a number of

benefits of a fully supportive interpreter for the Haskell language particularly

for applications programmers.

• Abstract form of pattern matching — would add further support to the

domain-specific sub-language approach which is paramount in the develop

ment of the LOLITA system.

• Preprocessing by compiler — for example grammar transformations, would

also add further support for the creation of domain-specific sub-languages

without creating the need to write code transformation tools.

• Timeouts and exception handling— are a useful support for systems which

are based in the real-time reactive environment. The purity of a functional

language must be supported with environmental features offered by other

programming paradigms. Without these features functional languages will

not support the development of large systems and many programmers will

Chapter 3: Large-Scale Functional Systems 106

be forced to integrate with other languages such as C. Development on the
LOLITA system has forced the Haskell designers to provide this support
which is now found in Haskell 1.3.

• Operating System interface — Interface with machine code and C. The

LOLITA development has again provided material to necessitate the inte

gration of these features into the Haskell compilers. The integration of these

features has been provided, however no standardisation has yet been pro

posed.

• Environment support tools — It has been necessary to create our own sup

port environment during the development of the LOLITA system. A systern

of elaborate Makefiles, RCS archiving, local and global file updates and the

checking in and out of working modules has been developed. This support

is necessary in the development in a large system with a sizable number of

programmers. Haskell offers little in terms of a development support envi

ronment; it would be desirable to have standard debugging tools, standard

compilation and linking mechanisms {HBC make is certainly a step in the

right direction), more advanced tracing mechanisms, larger code libraries,

larger availability (PCs etc.), a shell environment and function-orientated

editor in which to work. This would improve the chances of functional lan

guages becoming more popular.

• Debugging and profiling tools — are necessary on a wide scale if multi-skilled

programmers are to be able to develop systems in functional languages. These

tools should not be restricted to those programmers with a detailed under

standing of the underlying implementation, or those who recognise low-level

implementation details. Rather, they should operate at all levels of abstrac

tion and oflfer support for the successful interpretation of their results.

• Compilation problems — Although extensive improvements are being made

to the time in which functional code takes to compile, in the worst case (when

the system needs completely re-compiling) the LOLITA system still takes a

considerable amount of time in which to compile. There are also a number of

Chapter 3: Large-Scale Functional Systems 107

incompatibilities between different implementations of the Haskell compiler^
which mean that i t is not possible to successfully move between versions
without careful attention and alterations to the code.

Despite the problems with the current functional program implementations which

have been highlighted, the development of the LOLITA system has also identified a

number of features of lazy functional programming languages which are particularly

good for these types of system.

It is argued that functional programming languages are easier to comprehend

than their imperative counterparts. Features such as referential transparency, func

tional application and currying, abstract data types and higher-order functions

make the code more compact and easier to understand. The comprehension of

existing code is essential in the maintenance and development of a large system.

Purity is a useful aid for the integration of new code and offers programming tech

niques which could not be easily achieved in an imperative language.

I t was noted that functional languages are particularly good for the implemen

tation of domain-specific sub-languages, which in turn play an essential part in the

development of the LOLITA system. I t is incorrect to generalise this conclusion to

the creation of domain-specific sub-languages in the development of all large-scale

lazy functional systems. However, conclusions can be drawn which can either be

supported or not in the development of similar systems in the future.

The way in which the LOLITA developers use abstract data types offers a pow

erful and flexible approach which can be used with a fall-back to the standard

Haskell system in special circumstances. This has proved successful in an enor

mous amount of the system development and enables non-programming experts to

become effective programmers within a domain-specific environment.

Programming support tools have been developed in the LOLITA development

environment. These tools offer information to a variety of multi-skilled users. They

"The Chalmers Haskell Compiler (HBC) and the Glasgow Haskell Compiler (GHC) interface
files in particular.

Chapter 3: Large-Scale Functional Systems 108

also offer information about the practical complexity of the natural language sys
tem, an issue which is paramount in the development of a successful real-world
system within the domain of Natural Language Engineering.

3.7 Chapter Summary

This chapter deals with functional programming on a large-scale. A number of real-

world functional programmed systems were introduced, supported by the results

of the Dagstuhl workshop on Functional Programming in the Real World. The

distinction between a Related Real-World System and an Unrelated Real-World

System was made.

The majority of the Unrelated Real-World Systems cited were written in a

version of the ML language; of those which were written in Haskell the LOLITA

system was the largest.

The LOLITA Natural Language processing system is currently being developed

at Durham University. I t consists of 50,000 lines of Haskell code. I t has 20 develop

ers who vary in their functional programming ability. A large percentage of these

developers are not Computer Scientists, some have had no programming experience

prior to joining the development team.

There are a number of features of functional languages which have been adopted

to make programming the system an easier task. The creation of domain-specific

sub-languages, together with higher-order functions and currying, has enabled a

number of levels of programming to be created in LOLITA. Languages have been

built which support the problem domain, examples were demonstrated with the

LOLITA post-parse stage of analysis and the LOLITA generator.

Our experience of developing a large-scale application in Haskell has allowed a

number of improvements to be made to the Haskell language and specifically to

the Glasgow Haskell compiler. The work has also determined the introduction of

methods enabling the successful development of an unrelated real-world system.

Chapter 4

Profiling LOLITA: Case Studies

4.1 Introduction

This chapter is based on a record of profiling experiments carried out on the

LOLITA system over a two-year period. The Haskell profiling tools used in these

experiments were the Runciman and Wakeling heap profiler [Runciman and Wake-

ling, 1993] for the HBC compiler and the Sansom and Peyton Jones cost-centre

profiler [Sansom and Peyton Jones, 1995] for the GHC compiler; section 2.6.2.

The cost-centre profiler was used to measure time and memory usage. The heap

profiler was used to record memory usage.

Information about memory usage is of particular interest to members of the

LOLITA development team; storage management is not controlled directly by the

programmer and a seemingly innocuous change to a function during development

can make a big difference to the amount of memory used. The heap profiler displays

the amount of heap space used by each function, constructor or module, as a serial

profile graph; in this way a developer can see how much heap is consumed as the

execution of LOLITA progresses.

Both time and serial time profiles are useful in the development of an efficient

system. The constraint on execution time is not as rigid as that on heap usage. A

program will fail i f it runs out of heap space, but it is possible to wait longer for

Chapter 4: Profiling L O L I T A : Case Studies 110

an execution to complete. This said, i t is essential that the system remain time
efficient i f i t is to meet its NLE specification, see section 3.3.1.

The profiling experiments had three main objectives. The first was to improve

the efficiency of the LOLITA system, creating a system which would require less

space and time to execute, and which would nevertheless retain its modularity,

readability and maintainability.

The second objective was to identify and experiment with a number of methods

used in the profiling of a large system. Attempts have been made to identify

different profiling methods and requirements. Clayman, Clack and Parrott make

the distinction between application programmers and system implementors, section

2.3.3 [Clayman, Clack and Parrott, 1995]. This distinction is coarse and seemingly

based on conjecture. Sansom and Peyton Jones by contrast experiment with a top-

down approach in profiling the Glasgow Haskell Compiler, section 2.6.2 [Sansom

and Peyton Jones, 1994]. The case studies carried out on the LOLITA system

allow us to study what developers do when profiling an unrelated real-world Haskell

system.

Finally the experiments aimed to identify any weaknesses which might exist in

the current profiling tools, and any enhancements or new tools which might improve

the efficiency analysis of the system. By studying maintainers and developers in

action, it is possible to study the specification of both existing and new tools.

4.1.1 Managing the case study information

Such a study was clearly going to produce an enormous amount of information; the

LOLITA system contains a large number of operations and once the performance

of these operations had been recorded, changes would invariably be made to the

code. The performance of the system would then be re-analysed and the resulting

improvements collected. The changes made to the system during this profiling

cycle would provide valuable results for the study; however, recording information

on such a large scale was impractical.

Chapter 4: Profiling L O L I T A : Case Studies 111

I t was clearly important to develop criteria which would represent the changes
and decisions made during the profiling task. This would avoid having to store
a large number of data files and different versions of the system, and would also
structure any desirable reconstruction.

The following machine-based parameters were recorded:

• Haskell compiler options used — This includes compile time flags; the optimi

sations used -0*; heap and stack sizes -H and -K; the garbage collector used

-gc-* and other options including compiler extensions, C pre-processors and

interfaces.

• Haskell profiler options used — This includes profiler flags; creating cost cen

tres automatically -prof - au to - a l l , or by annotating the code -prof; and

the method of profiling, -pT/A/C and -P for time profiling, -hC/M/G/D/Y/T^

for heap profiling.

• Machine used to perform experiments — Although this should not affect the

profiling results to any great extent, subtle differences have been experienced

between different machines^.

• Output from the the profiler — The raw results including tables and graphs,

and the directories and files in which these results are stored.

• Run-time options — Exactly what is being profiled. This includes the LOLITA

command which is executed, for example 'parse', and the data given.

• Version of source code — Each file in the LOLITA system has a version num

ber; these were recorded. The system data used was also recorded, as diflPerent

data sets would clearly affect the results. Modifications to the source code

and data were also recorded, so that progressive changes could be monitored.

^These flags are based on GHC. Similar HBC flags are also available.
^For example when switching between a SPARC Centre 2000 with 6 cpus, 256Mb of memory

running Sun OS 5.3 with a swap space of 1 Gb, and a SPARC ELC with 64 Mb of memory and
200 Mb of swap space running Sun OS 4.1.3.

Chapter 4: ProfiHng L O L I T A : Case Studies 112

Parameters were also recorded which showed the reasoning behind various de
cisions made during profiling. For example, why a particular change was made to a
section of code, or why the programmer's attention focussed on a module, function
or expression. This allowed the behaviour of the programmer and the decisions
taken to be understood in response to a set of profiling results.

4.2 Case study I; Low-level functions

4.2.1 Aims

Some profiling tools decide independently which parts of the program are profiled,

so the starting point of profiling a program is predefined.

Those profiling tools, such as the cost-centre profiler, which allow the program

mer to decide which parts of the program they should investigate during profiling,

make the profiling starting point more uncertain. The programmer can either an

notate functions which he is interested in profiling, or alternatively the programmer

can profile the whole program and begin the investigation based on these results.

The first case study investigates the time profiling of LOLITA using the cost-

centre profiler. I t begins by profiling the complete system, utilising a facility in the

cost-centre profiling tool which allows all top-level (globally-defined) functions to be

profiled. This facility is specified at compile time using the - a u t o - a l l compilation

flag. A flat profile is produced.

Profiling all top-level functions in the system allows the profiling to begin with

the assumption that the user is not an expert in the LOLITA code or with the

system functionality. An alternative and equally valid starting-point would have

been simply to annotate the top-level system functions, such as the parsing, se

mantic analysis and generation functions. The latter approach would require the

programmer to identify those important components of the system, a process which

would be prone to errors without a detailed knowledge of the system.

Chapter 4: Profiling L O L I T A : Case Studies 113

An overall profile of the system also demonstrates what sort of results the
automatic profiUng produces.

4.2.2 Analysis

Run-time data and operations were carefully chosen to utilise a large number of

system operations during the execution of the LOLITA system. The LOLITA

template analysis task is well-suited to profiling, as it utilises most of the core

operations of the system.

When the LOLITA system is executed, the internal semantic-net structure is

loaded. This operation makes heavy use of the readvals function. Developers of

the system are aware that this operation is expensive, yet it is a one-off cost. It

is the execution costs of the system after this set-up which are more interesting to

the programmers.

The profiling results are displayed as a percentage of the total run-time costs.

Therefore, to avoid the system set-up skewing the results of the template analysis,

the execution of the program during template analysis must be long enough to

stabilise the results. This is done by balancing the number of executions of template

analysis against the time required to perform the system set-up.

Profiling the system in terms of all the top-level functions is likely to show

the basic core functions which are called thousands of times. Each execution of

these functions is unlikely to use much system time, but the reliance of many of

the LOLITA operations on these core functions will mean that they are utilised

widely throughout the system, and hence account for a high percentage of the total

execution time. The early results, some of which are shown in Figure 4.1, show

that this is indeed the case.

By highlighting these functions it was possible to optimise these small portions

of the code, creating initial improvements of 7.8%. This was surprising, as no

detailed algorithmic analysis was needed—simply recording the number of times

each function was called and the total execution time of each was sufficient.

Chapter 4: Profiling L O L I T A : Case Studies 114

Tue Feb 22 11:12 1994 Time and Allocation P r o f i l i n g Report (F i n a l)
(L e x i c a l Scoping)

l o l i t a . e x e c +RTS -pT -H230000000 -RTS

t o t a l time = 381.44 sees (19072 t i c k s 0® 20 ms)
t o t a l a l l o c = 464,314,036 bytes (34922110 closures)

COST CENTRE MODULE GROUP sec subcc y.time •/.alloc
updateElem Stdenv2 Stdenv2 7225 0 9 .6 6.5
member Stdenv Stdenv 83 39780 4 .7 7.9
readvals Stdenv2 Stdenv2 4 516 3 .8 14.0
hash Hashdict Hashdict 22154 0 2 .4 3.5
hashin Hashdict Hashdict 1 0 2 .1 4.4
linkob2 Total Total 1 0 2 .1 1.6
dot2 Stdenv2 Stdenv2 6 9988 1, ,5 3.4
indexLA LArray LArray 195230 390460 1. .5 1.5
f l a t . o r d e r Stdenv2 Stdenv2 232335 151000 1. .4 4.5
sel_meanings A_raecLning A.meaning 49880 106390 1. .4 1.6

CAF:ds LArray LArray 0 0 23. 2 0.0
CAF Prelude Prelude 0 0 5. 5 10.7
CAF:ds Stdenv2 Stdenv2 0 0 4. 3 0.0
DATA Prelude Prelude 0 0 1. 3 0.0

Figure 4.1: Example of the initial profiling results.

Improvements to the system at a low level manifest themselves as overall im

provements simply because they are called a large number of times.

Despite initial improvements to the LOLITA system, this method of profiling

is limited. Consider the following example.

The profiler displayed the member̂ function as having a high proportion of

system costs. Despite the fact that the function was only five lines long, it recorded

nearly five percent of the system costs. An improvement to the definition of this

function had potential benefits.

The code for the member function, however, appeared efficient. In this case.

^This is a LOLITA membership function and not the Haskell prelude membership function.

Chapter 4: Profiling L O L I T A : Case Studies 115

therefore, the low-level approach was simply not enough to enable any improve
ments to this part of the system; further information was needed to interpret the
results and develop an understanding of the problem. The member function is a
generic piece of LOLITA code used throughout the system and analysing the effi
ciency depends on the way in which it is used, rather than simply on the quality
of its algorithm.

From experience, i t was known that one of the places in the system where

the LOLITA generic membership function is used is in the classification of proper

nouns. With over two hundred different word endings the task of checking the

ending of each word parsed with this list is a lengthy task. The use of the LOLITA

generic membership function in this example means that the search is 0(n log n).

A significant improvement to the time spent in the membership function was

produced by re-implementing the list of word endings as a tree, thus reducing the

search time to 0(log n).

4.2.3 Concluding remarks

In this example we were able to apply our knowledge of the system to the problem.

The profiling tool was clearly useful in identifying the general problem, but with

out any in-depth knowledge of the system a solution was not obvious. Essentially

the list of word endings needed re-implementing and separating from the LOLITA

generic membership function. A simple re-programming of the membership func

tion would have had no effect.

The membership function is shared between many higher-level functions. To

identify which of these higher-level functions was responsible for a large proportion

of the costs, it would have been necessary to add cost centres to all the places

where the membership function was called. This process would then have had to

be repeated on the higher-level functions until the path of expensive calls to the

member function was identified.

I t is noted that changing the cost centres in the code requires re-compilation

Chapter 4: Profiling L O L I T A : Case Studies 116

of those modules in which the changes are made. This method of moving the
profiling costs to higher-level functions in the program could prove a lengthy task.
In this case an accurate method of cost inheritance, (alongside the flat profiles
produced by the cost-centre profiler), would have been useful. It would then have
become obvious to the programmer which calls to the membership function were
particularly expensive.

Post-processing a single set of results rather than re-compiling and re-running

the program a number of times would have also allowed these results to be collected

in less time.

4.3 Case study II: Grammar transformations

4.3.1 Aims

The second case study investigates a memory problem experienced in the devel

opment of the grammar transformations in the LOLITA system. The grammar

transformation program takes the grammar of the LOLITA system and applies a

series of transformations to it , producing a new grammar as the result.

I t was clear that such a process was going to take a reasonable length of time,

though once fully operational it could be installed on-line as part of the compilation

process and need only be run once. I f any of the grammar rules were changed then

a re-compilation would be necessary in any case.

During development the issue of how long the transformation process took to

complete was not of primary concern. However, these transformations seemed to

be consuming large amounts of memory to the extent that there was a shortage

of memory while the transformations were taking place. An investigation ensued

using the GHC heap profiler to discover why so much heap space was being used.

Chapter 4: Profiling L O L I T A : Case Studies 117

4.3.2 Analysis

The transformation grammar is represented as a graph and the transformations

performed on i t are essentially operations on segments of the graph. It was clear

that one of the major costs involved in the process was the storing of the graph

itself, which was implemented as an array. I t was possible to determine how much

memory space the graph required by performing calculations on the number of

nodes stored in the graph. The results of the transformation process showed that

the memory consumption far exceeded our expectations.

The investigation began by producing a heap profile of the operation. The

transformation process had initially run out of heap space before reaching the end

of the grammar files, therefore the data set was reduced for the first set of profiling

experiments. By profiling the grammar transformations with a single grammar file,

rather than a collection of files, the results could be examined on a smaller scale

and then scaled up.

The initial profiling results highlighted the function applyToAnyGood in the

TranEngine module. This function simply applies the given transformation to any

node in a list of so called 'good nodes', returning the first successful transformation

result (or alternatively failing).

> applyToAnyGood:: ShowTransF -> [([Char].Transform)] -> Graph ->
> TraceM (Bool,Graph)

As well as returning the new graph, a pool of new 'good nodes' is calculated by

subtracting from the old 'good nodes' any of the non-terminals matched against

constructs on the left hand side of the transformation, and then adding all new

or updated non-terminals from the right hand side of the transformation. For

example, in a simple 'normalise or' transformation.

Chapter 4: Profiling L O L I T A : Case Studies 118

a= + a=+
/ \ / \

/ \ => / \
b= + A A c= +

/ \ / \
/ \ / \

B C B C

a, b] are removed from the pool of good nodes and [a, c] must be added, since they

are referenced in the new graph. The net effect is that b is deleted from the pool

and c is added, whilst a remains in i t .

The function applyToAnyGood, in Figure 4.2, is large, and although the profiler

had identified this function as being the main consumer of large amounts of space, i t

was still necessary to pinpoint exactly where in the function the problem occurred.

Cost centres were added to the function by hand to reduce the function into a

number of expressions, with the aim of finding the exact location of the problem in

the function. The definition in Figure 4.2 includes the cost centres added by hand.

The heap profiling graph in Figure 4.3 shows that the added cost centres reduce

the heap problem to the code identified with the stats cost centre.

The second heap profile graph in Figure 4.4 shows the constructor profile for the

same execution; the list constructor : is clearly the main user of the heap^.

The section of the function identified with the stats cost centre builds a string

of statistics about the particular transformations, indicating how much of the trans

formation process has taken place. Its result is simply a list of characters. So the

part of the program where the efficiency problem manifests itself has been identi

fied, but this is only half the battle. Once the problem code has been identified i t

is then necessary to calculate exactly what is wrong with the code and how this

efficiency problem can be solved.

The immediate reaction to these results was that the problem might be in the

append file operation. The statistics produced by the transformation process were

*It is noted that the investigation uses full-heap producer and constructor/closure profiles and
not profiles of selected slices of the heap. The latter method is an alternative and equally effective
method of profiling.

Chapter 4: Profiling L O L I T A : Case Studies 119

> applyToAnyGood st ntrs g
> = apTAG (I s (nonterms g)) g
> where
> apTAG good g
> I (good == eraptys) = sec "emptyTrace" (emptyTrace (False,g))
> { - I is_And nt_node && member n t _ l e f t _ c h i l d r e n nt
> = error
> ("cycle found\n"++showgraphs g n t _ l e f t _ c h i l d r e n) -}
> I t r s / = []
> = (i f nt==9 && f s t (head ntrs) == "Complex Unify [2] "
> then trace ("UNIFY 9, ORS: "++show or_children++"\n\n"++
> showgraph g)
> else id) $
> mapTR (apply_fst (const True)) $
> addTrace (st (f s t (head t r s)) mg mnts g' rnts ++stats) $
> apTAG new.good (clear.pool g')
> I otherwise = {- addTrace ("FAILED nt= "++shownonterm nt ++
> "new_good= "++shownum
> (card new.good')) $ -}
> apTAG ({ - traceFun (\s -> "apTAG f a i l e d : "++
> show good++
> "\n new = "++show s) $ -}
> new.good') g

> where
> nt = hd_set good
> t r s = [(tnO.tr) I (tnO,trO)<-ntrs, tr<-applyTopTrans
> tnO trO g n t]
> ((mg,mnts),(g',rnts)) = sec "mgmntsgrnts"
> (snd (head t r s))
> new_good = Is (get_pool g') 'sunion' good ' s d i f f
> (Is mnts ' s d i f f ' units nt)
> new_good' = t l _ s e t good ' s d i f f ' unmatchableNodes
> g nt ntrs
> or_children
> = sort (orChildren g nt [])
> stats = sec "stats" (" nt="++shownonterm nt++
> " new_good="++
> {- show (take 10 (s i new_good))++ -}
> shownum (card new_good)++
> " size="++showniim (get_size g')++
> showTreuas ntrs (mg.mnts) (g',rnts)
>)
The following code checks f o r or lev e l cycles of a special type:
> n t _ l e f t _ c h i l d r e n = leftChi l d r e n g
> [head (subts nt_node)] []
> nt_node = snd (get_node g nt)

Figure 4.2: The function applyToAnyGood.

Chapter 4: Profiling L O L I T A : Case Studies 120

gtians.aitea +RTS -hC -i1.0 - R T S -QiarnTap QiamTop.hsp

fil^aa.Sat bytsa z s « a n d s Sun J l f 1 9 2 1 : 4 2 1 8 9 4

1 .SOOk.

1 .*aak..

1 .OOOk.

TrBiCngincslaD

Preluil*:CAF

|>>>| ArrB)i_liipdBta

DQraphBiB.noi lB

LL1 PBrssrnllnpiilUpTo

TranEngineiBifclTrBce

U Bpping :Bitl_m apl at

AirBj_tmkartB)r

QraphBu2de:Bftl_noflB_ussNI

QmphBuids:naiiiNaile2

TrBiiEngiii«:iiatiarChn*en

QrBphBuiIde:neij)Nada3

RvBdQrammBrihipToQraph

D TrBnEngilwrbuibd

AllBindB :ni Bfe hNevnode

LLIPBrasrA

Sldan*:CAF3haiii.BZ

VBrBiniiiRgiAiDd

OTHER

Figure 4.3: First grammar transformation profiling result.

stored in a file (in fact in this instance the appendChan was used to write the results

to the standard output). I t was possible that appending these results to the file

was causing some sort of space leak; that is, when the program was appending the

results to a file i t was not discarding part of the graph.

The appendChain code was analysed and modified so that the suspected bug

was removed. The system was recompiled and the profiler executed once more on

the transformations. The results of this execution are displayed in Figure 4.5 and

shows that this first attempt at a fix was unsuccessful.

The code needed further analysis and a re-investigation was required. The

stats identifier was the source of a second lead, as i t was also used as part of a

trace.

The LOLITA system has a separate module for a trace which implements the

programmer's own version of the tracing function. This tracing function is imple

mented using a monad:

Chapter 4: Profiling L O L I T A : Case Studies 121

gnana.exec +RTS -hD -il.Q - R T S -QranTap QrainTap,hsp

49,918,249 bytes x s e c o n d i Sun Jun 10 21:44 1994

i.aooii J

1 .BOOkJ

.wok

LoakDoisn

20DkJ

OTHER

Figure 4.4: Second grammar transformation profiling result.

gtiana,exsc +RTS -liC -i1.Q - RTS -QiarnTap QramTap.hsp

Efi,a4a,26Q bytes x seconds Sun Jun 19 22:08 1994

1 ,aook J

I.CODk

TrBi£iigiBii»RB

Prelude :CAF

AfTBi.nipdBls

Go 'BphiBi t l .nade

LLIParaendbiinilUpTa

TrBnEngDe:aiin'raEe

Uepping :aifcl_rn splat

ArrB]r_t7nkana)r

Q raph Bu ilde iBiU.nads.uiieNl

TrBi£name:aanOrChilit'en

QtHphBuildeinaiiNodeZ

Q iBph Bu 9d« iiHoi NadeS

ReBdQmmmeriiapTeQmpti

I I TrBnEogineJMjild

UtPBrserA

Sel2.alzdif

Trace prependTrsce

AUBindBimBBhNewmde

Sldeiw£AF:ahaiii.g2

OTHER

Figure 4.5: Third grammar transformation profiling result.

Chapter 4: Profiling L O L I T A : Case Studies 122

> emptyTrace
> thenTrace:
> thenTrace.

: a -> TraceM a
TraceM a -> (a -> TraceM b) -> TraceM b
: TraceM a -> TraceM b -> TraceM b

> traceMsg:: [Char] -> a -> TraceM a
> addTrace:: [Char] -> TraceM a -> TraceM a
> getTraceRes:: TraceM a -> (a,[[Char]])

> data TraceM a = TM a [[Char]]
> selTrVal (TM a t r) = a
> selTrMsg (TM a t r) = t r

> emptyTrace x = TM x []
> thenTrace (TM a t r) t f = prependTrace t r (t f a)
> thenTrace. (TM a t r) t f = prependTrace t r t f
> traceMsg m v = TM v [m]
> addTrace m t r = TM (selTrVal t r) (m:selTrMsg t r)
> getTraceRes (TM v ms) = (v,ms)
> prependTrace xs t r
> = TM (selTrVal t r) (xs ++ selTrMsg t r)

Further analysis ensued and a problem with this version of the trace monad was

identified. The program outputs a trace as it runs but the trace contains not

only the trace but also the associated piece of graph that is being transformed.

Ideally when the trace is output the piece of graph should be discarded; however

the implementation of the program held onto this trace, and the associated section

of graph, each time it was executed. Only when the whole expression had been

evaluated could all these trace/graph pairs be discarded. The profiling results

seemed to support this hypothesis.

Interestingly the implementation was not as lazy as we had hoped; the trace

monad needed redefining:

> data TraceM a = TR String (TraceM a) I TV a

> emptyTrace x = TV x
> thenTrace (TR m t r) t f = TR ra (thenTrace t r t f)
> thenTrace (TV a) t f = t f a
> thenTrace. (TR m t r) t f = TR m (thenTrace. t r t f)
> thenTrace. (TV a) t f = t f
> traceMsg m v = TR m (TV v)

Chapter 4: Profiling L O L I T A : Case Studies 123

Stians.exes +RTS -tiC -il.0 - R T S -QramTop QianiTap,hsp

20,970,366 bytes xseconds Sun Jun 19 22:62 1994

500k.

e o k .

40ak.

asok.

aook.

2Sak.

200k. i i i l i l l
ISOk.

lOOk.

SOk.

Ok.

Oi

Ok.

Oi) S.0

Preludo:CAF

Arrar^tupdalB

Qraph BdU.noda

G LLIParierTdlnpudJpTa

U Bpping :Bdd_ni apl at

Arrajr.lnikarrBy

Q raph BuildesilJ_D(]de_u leNl

QiaphBuDdensuNodeZ

Q raph Bu ilde :neiii Nodes

ReadO ram m Br;ti apToQ raph

LL1Parier:&

Sel2.ol:idil

li TranEnginerbuild

I I AlfflindamaKhNetirnade

Var6lndingB:bind

r~l TraiCngiiie:mBlshOrBujld

VarSlndingBupifatBNanlBrrn

Sldai«:CAF:da

LLIParaerrolura

OTHER

ISO 20.0 2&.0 400 aecenda

Figure 4.6: Fourth grammar transformation profiling result.

> addTraee m t r = TR m t r {- Note addTrace has been modified -}
> getTraceRes (TR m t r) = (v,m:ms) where (v.ms) = getTraceRes t r
> getTraceRes (TV v) = (v , [])

In Figure 4.6 the results show that this new trace monad was far more successful

than the first; it more than halved the heap usage.

The results in Figure 4.7 show the execution of the grammar transformations on

the fu l l data set of all the grammar files. The results show the heap space levelling

out to become constant over the last 30 seconds of the execution. Figure 4.8 shows

this execution extended to 180 seconds of execution time. As expected, the increase

in the space used by the cons constructor simply reflects the increase in the size of

the transformation graph. The heap problem was solved by removing the space leak

in the trace monad, allowing more of the grammar transformations to be executed

and reducing the heap space required.

Chapter 4: Profiling L O L I T A : Case Studies 124

gtrars.exsc ^ R T S -hD-ilO.O - R T S -QramTopQramTap.hspQramUiddla.htpQrainSan.hsp

170,769,392 b/tsa X seconds Man Jun 20 09:02 19S4

2.aaak.

IfilBkeWhae

Sgenar

Bdd nads

OTHER
Ok,

5.0 10.0 15.0 20.0 25.0 00 Jl 05 J iajD KM 50.0 55.0 60.0 ssmnds

Figure 4.7: Fif th grammar transformation profiling result.

gtian3,exss +RTS -hO -ilO.O - RTS -QiarnTap QianTap.hap Qiam MiddleJiap QranSsn.r i tp

1,Qai,gaa,aE2 brtsa x aecandi T u s J u n 21 13:19 1994

gaelTrVal

l@IBk«Whil«

@ update

ragenar

a?addlB
OTHER

0.0 20.0 40.0 EO.O 80.0 100.0 120 J) 140.0 160.0 180fl

Figure 4.8: Sixth grammar transformation profiUng result.

Chapter 4: Profiling L O L I T A : Case Studies 125

4.3.3 Concluding remarks

Using the profiler in this example does eventually allow the problem to be identified.

The profiling results do show that storing the statistics generated by the grammar

transformations is causing the problem in the code, but they do not indicate, which

part of the code is responsible for retaining the space which is a further problem

to be solved.

Such results point to the usefulness of the work being carried out by Runciman

and Rojemo on the retainer profiler [Runciman and Rojemo, 1996], section 2.6.2.

The cost-centre profiler is limited in this respect. Annotating every function in

the trace module would have narrowed the problem down to an individual func

tion. However, i t would not have indicated that the space was caused by holding

onto parts of the graph and trace string specifically, or what piece of code was

responsible.

Chapter 4: Profiling L O L I T A : Case Studies 126

4.4 Case study III: The transformation engine

4.4.1 Aims

The third case study follows the continuing development of the grammar transfor

mations. The grammar transformations are divided into a number of sections and

the initial problems with the trace monad were experienced in the first stage of

these transformations. After fixing the space leak in the trace monad the grammar

transformations were proceeding much further than they had before, but at the

second stage of the transformations further problems were identified.

Figure 4.9 demonstrates a massive improvement on the first set of grammar

transformation profiling results; the first stage of the transformations with the

complete set of grammar transformations finishes after 250 seconds. I t is at this

point in the profile graph, as the second stage of the transformation begins, that

further problems become apparent. Figure 4.10 shows this problem broken down

according to the program constructors.

4.4.2 Analysis

Attention was drawn to the function matchOrBuild, the fifth function down in the

profile graph of Figure 4.9 and defined in the module TrainEngine. The results in

Figure 4.10 show the constructors involved in building this part of the heap; the

add-node function closure and the Or constructor are particularly worrying.

The heap size increased to give the heap profile shown in Figure 4.11. The

larger heap size enables profile graphs to be produced which imply that the prob

lem must be caused by the matchOrBuild function. Figure 4.12 shows the con

structor/closure profile of the same problem, confirming initial worries about the

add-node function closure and the Or constructor.

The add-node construct adds new nodes to the transformation graphs. Initial

conclusions were that i t was this construct and a desugaring which were causing

Chapter 4: Profiling L O L I T A : Case Studies 127

glrana.exac +RTS -liC -110.0 - R T S -QiamTap QiamTap.hap QramUiddlsJiip QiamSsn.hap

1,813,799,168 bylBS X aecanda Wed Jun 22 08:40 1994

B TraJiEjtgiiiBi»uad

I UBiniCAFmaiD

m AIIBioik:CAF:VBrBiiidiqi.

\ [TrBnEngineiTiBIEhOTBijiJd

K arBphBuilde:CAF:S>OntfBl

TranEoglnsBpplrToAoirQaad

H arBph£AF:Su2_olxdif

^ TrBnEnginainBIehOr

HAnBr.I:CAF:ik

Hsid*n«£AFdi

I I I 1 W i l l
}.0 20.0 400 80.0 SOD 100.0 IZOi) 140.0 160.0 180.0 200.0 220.0

Figure 4.9: The first stage of the grammar transformations are complete by 250
seconds of execution. At this point in the profile graph further problems become
apparent.

g1iara.exec +RTS -liD -ilQ.Q - R T S -QramTap QramTap.hap QiainUiddla.hap QtamSen Jiap

1,973,040,768 bytsa X aeconda Wed Jun 22 09:11 1994

m Bin

^TupS

L]s®'dB 2(111 J

II^Bdd.niide
1GMJ

Binita

fflTupa

And

laupdBBVBiUap

»g«ivar

0.0 20.0 40.0 60.0 80.0 100 J 120.0 140.0 160 J laOJ 2M.0 220J 24nil BBCOllda

Figure 4.10: The heap problem after 250 seconds of execution time, broken down
according to its constructors.

Chapter 4: Profiling L O L I T A : Case Studies 128

gnans.exee +RTS -hC -itQ.O - R T S -QianiTap QiamTcpi isp QrainUiddle.lisp Qiain Sen l isp

2,147,483,647 bytes X seconds Wed Jun 22 09:27 1984

15MJ

H TranEnglneniatEhOrfiuDd

1̂ Tran Engine bund

HI PreludeCAF

H Uain £AFmain

B AISindaAAFYarBindingB.

I I TranEnginemalchOr

^ QraphBuildeCAFietOnVBl

TranEnglneapplfToAnraood

Ho'BP'<:CAF:Sel2.olJdf

^ S l d e n v £ A F : d s

I AirarjAAFrda

I TranEnglnebuDiDHS

aecanita

Figure 4.11: Increasing the heap size to extend the length of the serial heap profile
to » 300 seconds.

glrans,exB(i +RTS -liD -110.0 - R T S •QraniTopQrainTep.lispQrainMtddle.tisparainSen.hsp

2,147,483,647 bytes Xseconds Wed Jun 22 09:48 1994

• ll®Bdd.node

IfiupdabVaiUap

@gelvBr

OTHER

secandB isa.a

Figure 4.12: The results of the extended serial heap profile shown in terms of the
constructors.

Chapter 4: Profiling L O L I T A : Case Studies 129

the increase in heap usage. The add-node function was strictified to ensure that
i t completely updated the graph. Some other small program improvements were
made and the code was profiled once again.

The next profiling graph showed no improvements in the heap usage, indicating

that this was a false alarm once again. (Since this did not solve the problem with

the code the profiling output has not been included.) The vast amount of heap

space (around 50Mb) was still being used by something and there was little idea

at this stage what i t was. Continuing the analysis the matchOrBuild function was

also strictified.

> matchOrBuild m [] nt
> matchNt m nt
> matchOrBuild m (o:os) nt =
> matchOrBuild m os 'matchNewnode' (Or o nt)

This did not make any difference to the profiling results either, so an sec expression

was added to the function matchNewnode in the alternate variable bindings module

AltBinds which uses the grammar graph. This narrowed the problem down further,

see Figures 4.13 and 4.14, but did not go any further towards identifying what the

problem actually was.

Chapter 4: Profiling L O L I T A : Case Studies 130

glrana.exec +RTS -hC -ilQ.Q - R T S -QiauiTap QiainTap.hap QramUiddle.riap Qrain Sen Jiap

2,147,483,847 bytes X aecanda Wed Jun 22 13:49 1994

a o u j

m AIlBindavnatchNflwnade:_Bd

H TranEnginebuild

m PreludaCAF

I I Main :CAF:mBin

B A»Bind9:CAF;VBrBindinga.

n QisphBijildeCAF:guOnVBl

I QiBph:CAFSst2.al.aiif

^ TrsnEflgineniBldiOieuad

H TranEngineapplrToAnirQaiid

I AirBr.l£AF:ds

50.0 100.0 200.0 250il Bscanife

Figure 4.13: The results of an sec expression to the function matchNewnode.

glrars.exec +RTS -hD -ilO.O - R T S -QramTapQiamTap.hap QiamMiddle.hap QiamSen.hsp

2,147,433,647 bytes xseconds Wed Jun 22 12:31 1994

4aM

OOM

jjTupa

IfiupdabVartlap

BgeUBT

200.0

25MJ

20MJ

Figure 4.14: A constructor profile of the same program.

Chapter 4: Profiling LOLITA: Case Studies 131

> matchNewnode f n
> = AB (concmap f_b)
> where
> f_b ((g,ms),b)
> = selAB (f nt) [((g',ms),b)]
> where
> (nt.g') =
> add_node_lazy AllowGC (getAllNts b++ms) ("",n) g

The fact that strictifying these functions was making no difference to the overall

heap usage suggested that these functions were having their evaluation forced by

a parent function. The process of analysis was therefore altered to consider the

behaviour of the parent functions of matchNewnode and matchOrBuild. Experience

of this part of the system helped the analysis and soon it was possible to trace a

sequence of function calls back to the function applyTopTrcins in the TranEngine

module. This function seemed to be the cause of the problem.

> applyTopTrans g s t nt
> = trace ("applyTopTrans (attempt): "++show nt) $
> l e t res = applyTrans g t [GSform n t]
> i n i f n u l l res
> then {- trace "applyTopTrans f a i l e d " -} res
> else {- trace ("applyTopTrans count: "++
> show (get.size $ f s t $ f s t $ head $ res)) -} res

The complete set of transformations was being evaluated because the length of the

list was calculated before the first element of the list was chosen. The erroneous

definition of the function, shown above, shows that the last line of the function

calculates the size of the remainder of the list, with, as it turned out, disastrous

results.

The final profiling graphs show an impressive improvement to the grammar

transformation program and the massive saving in space, around 50Mb in the first

250 seconds of execution(!), which these changes made.

This is an interesting example; the profiler again shows that a problem exists

but does not identify its cause. The process of profiling and improving the grammar

transformations program took a total of four days to complete.

Chapter 4: Profiling LOLITA: Case Studies 132

gHana.exec +RTS -hD -ilO.O -RTS -QiainTapQramTap,hspQrainMiddle.hspQiainSsn.hsp

2,147,483,647 by » s x s e c a r d a Wed Jun22 t6:2Z 1S94

IfiuDdBbvaniap

Figure 4.15: A constructor profile showing the huge improvement to the grammar
transformation program with a corrected version of the applyTopTreuas function.

4.4.3 Concluding remarks

As has been seen, the profihng results in this case study, though not entirely mis

leading, made the task of identifying the problem in the code very difficult. This

highlights a fundamental problem which is illustrated in the functional dependency

graph for this portion of the L O L I T A program (over page). This graph shows the

relationship between the profiling results, bringing to the attention of the program

mer the matchOrBuild function, and the function where the problem in the code

actually was, in the applyTopTrans function.

It could be argued that placing cost centres higher and higher in the call-graph

would have eventually found the problem but this is not the case. Propagating

costs up the call-graph would not in fact make any difference and the large costs

displayed at the raatchNewNode level would also be displayed at the higher levels,

culminating eventually at the main function.

Chapter 4: Profiling LOLITA: Case Studies 133

applyTopTrans
1

(TranEngine module)

1
applyTrains

1
(TranEngine module)

1
matchPars

1
(TranEngine module)

1
matchPar

1
(TraiiEngine module)

1
matchNt

1
(TranEngine module)

1
match

1
(TranEngine module)

1
matchOrNC

1
(TrcinEngine module)

1
matchOr

1
(TranEngine module)

1
matchOrBuild (TrcinEngine module)

the code actually i s

I
matchNewNode

results are displayed

(AltBinds module) Adding cost centres
presents the costs at
a lower-level

When using cost centres it is usual to work down in the call graph to lower-level

functions in a top-down process.

function a
I

function b
I

function c

If a large cost were displayed at level a, then these costs could be traced by further

annotating functions at the next level down in the function dependency graph, at

level b. This would continue to level c, until the problem in the code was narrowed

down. However, if the problem was displayed at a low level then with a shared

function it would not be easy to move the costs up the function dependency graph

without knowing in which direction to head.

Chapter 4: Profiling LOLITA: Case Studies 134

Improving the situation would require a method of profiling which could in
herit costs to parent functions. The cost-centre profiler provides flat profiles and
therefore makes no attempt to inherit costs to higher-level functions in the call
graph. Implementing a statistical approach to inheriting costs may provide an ad
equate solution to this problem in a number of simple cases, though it also has
the potential of making the results even more misleading if functions are heavily
shared.

Accurate inheritance would allow the programmer to follow the costs back

through the program to the point in the program where the offending code ap

peared. In this case study a method of accurate inheritance profiling may well

have helped identify the problem quicker. It would certainly have helped to nar

row down the search.

The length of time that this analysis needed is also open to improvement.

Changing code and re-writing cost centres in the code requires re-compilation.

This time can quickly add up and make profiling frustrating. A post-processing

scheme of manipulating profiling results after program execution would reduce the

time needed for profiling.

It seems feasible that the efficiency of the program could be monitored in a

single execution and the programmer could then decide, at a later date, in terms of

which functions or expressions he wanted the results displayed. This would allow

the programmer to speed up the profiling process and perhaps be more adventurous

with the analysis of the program. Such schemes are developed in chapter 5.

4.5 Other Case Studies

The case studies presented have been chosen from a set of data collected over a

period of two years. They illustrate some of the recurring problems experienced

during the profiling of the L O L I T A system.

Chapter 4: Profiling LOLITA: Case Studies 135

There are a number of general points which can be made regarding other case
studies which have been carried out and whose results are not included in this
thesis. They highlight potential hazards with the cost-centre profiler and the H B C
heap profiler and offer ways in which these tools may be improved.

Functional programs have a tendency to heavily reuse functions:

Polymorphism means that functions can be overloaded and used in many dif

ferent situations. In such cases separating the profiling results of a function for

each type of functionality is a difficult task. Often the programmer will just be

faced with a single compound cost for a member function or a read function and,

since splitting these costs between parent functions is difficult, it is hard to iden

tify which usage of the function is responsible for consuming the most resources.

Trying to split these compound costs using the G H C cost-centre profiler requires

much time and effort; with the H B C heap profiler the task is nearly impossible.

Functional programs often use a number of recursive definitions. Monitoring

and predicting the cost of a recursive function is simple. When functions become

mutually recursive however, such a task becomes more complicated. Separating

the costs of these functions, or more specifically identifying which of the mutually

recursive functions is responsible for the large costs, is difficult.

Functional programs are composed of a large number of smaller expressions:

A functional program is often composed of a number of smaller functions. This

can be a disadvantage when setting cost centres and trying to trace high profiling

costs through programs. In many case studies it became a tiresome task, a large

proportion of the effort being spent moving cost centres and recompiling the pro

gram to isolate parts of the code which were expensive. Once the problem code

had been narrowed down most of the changes to the code itself were simple and

required very little effort.

Moving cost centres in the code and recompiling is often carried out to narrow

down the search for an expensive expression. Such a scheme is also used to identify

why an expression is expensive, that is to identify the calling functions which

Chapter 4: Profiling LOLITA: Case Studies 136

cause this. The cost-centre profiler allows a certain amount of flexibility in the
gathering of costs as cost centres can be included around 'interesting expressions'.
This method, though flexible, still requires a considerable amount of effort. The
H B C heap profiler is not so flexible and does not allow individual expressions to
be profiled. Inheriting costs is not therefore possible and the results are limited to
low-level function definitions.

Profiling a program can take a long time:

The profiling task takes a long time. The L O L I T A system takes a number of

hours to compile and profiling slows this compilation process down quite consider

ably. For instance, current statistics show that compiling the system from scratch,

using G H C with the profiling option, takes up to six times longer than without the

profiling option. Of course it is rare in a functional programmed system that the

whole program needs to be compiled from scratch; normally individual modules

are recompiled and re-linked into the working system. However, switching between

profiled and non-profiled versions requires a complete recompilation.

Once a profiled version of the system has been established, changes to the cost-

centre annotations must be re-compiled into the executable system. Although this

gives the programmer control over which parts of the program are profiled, it does

mean that recompilation is required each time a change in the cost centres is made.

The program must then be re-run and the new profiling results produced. It is con

ceivable that this process of changing the cost-centre annotations, recompiling and

then re-running may need to be repeated a number of times before the expensive

function (or functions) is identified. For this reason profiling a large program can

quite possibly take a number of weeks!

Profiling overheads:

The G H C system of profiling is successful, although there are a number of large

overheads which often make profiling difficult. The executable files are generally

fifty percent larger than the un-profiled versions of the system. The amount of

heap space needed to run the L O L I T A system can be up to four times that of the

un-profiled version (heap profiling with G H C 0.22); this can make large programs

Chapter 4: Profiling LOLITA: Case Studies 137

almost un-profilable on some machines^. The execution time of the L O L I T A system
is also greatly increased when profiling the system. These overheads are generally
around one hundred and fifty percent, although, due to the large heap sizes needed
to run the code, paging can increase the overheads to hundreds of percent.

These overheads would be acceptable if they were indeed one-oflP costs. How

ever, these costs are imposed each time the profiling is done. It is proposed that

the profiling task should be a one-off collection of costs which can then be post-

processed. It would then matter less if the collection of costs took five minutes

extra than normal execution because the costs could quickly be manipulated later.

Potential profiling hazards:

C A F s — The G H C cost-centre profiler is particularly sensitive to Constant

Applicative Forms, top-level values which are not functions. For example the ex

pression 'numbers = [1, 2, 3, . .] ' is an arbitrarily large C A F representing

the infinite set of positive integers greater than or equal to 1. Such programming

techniques are to be avoided as the G H C garbage collectors do not collect the heap

reachable form of the C A F , leaving open the possibility of space leaks. Profiling

is also obscured by the presence of C A F s . It is possible to trace some of the C A F

costs, which can be responsible for up to 40% of run-time costs in L O L I T A , but

those identified as prelude C A F s are effectively untraceable, as it is not possible to

profile the library and prelude modules of the system (G H C 0.22).

Choice of profiling scheme — There are advantages and disadvantages to using

both automatic profiling (using the -auto - a l l compiler option) and user-annotated

profiling (using the -prof compiler option) with the cost-centre profiler. The au

tomatic profiling approach does avoid the problem of where to place a cost-centre

expression but results are presented at a low level. Alternatively, complete control

is given to the profiling process by the hand-annotation profiling method. The

integrated use of both schemes brings about the most impressive benefits.

^Implementing the profiler with the generational garbage collector is expected to reduce this
problem [Sansom, 1994].

Chapter 4: Profiling LOLITA: Case Studies 138

4.6 Proposed Improvements to Profiling Tools

With the results of these case studies as a basis, a number of proposals are made

to extend the field of profiling. These proposals are based on improvements to the

profiling tools, which in themselves will add further support to the task of profiling.

The ability to profile time and heap space is a major advantage over just heap

profiling. Cost-centre profiling is also more flexible than the H B C heap profil

ing scheme as the code to be profiled can be identified by the programmer. The

proposals therefore take the form of improvements to cost-centre profiUng.

The time in which profiling experiments can be performed could be greatly

reduced by the introduction of a post-processing scheme which would allow results

which had previously been collected from a profiled program to be analysed. Much

of the time spent profiling with cost centres is needed because cost centres have to

be re-positioned in the code and then the system has to be recompiled. A post

processing scheme is proposed so that compilation is only required once, even if

cost centres are changed; the post-processor will simply manipulate the existing

results accordingly.

Together with this post-processing scheme, an accurate method of cost inheri

tance is proposed. With off-line cost-processing more attention can be paid to the

aggregation of costs in the call-graph. By modifying the current profiling scheme

to provide more detailed information, cost inheritance can be combined within a

post-processing environment. This will prevent users from having to move the cost

centres each time they want to see how the cost information is distributed between

functions. The collection of more detailed profiling information, based on stacks of

functions, is described in the next chapter.

Profiling a program in terms of stacks of functions will produce more program

information which should help the programmer to follow costs through the program

correctly. Identifying costly calls to functions will not be based on intuition and

the lazy evaluation behaviour of the program can be identified by particular stacks.

This should speed up the identification of problems and prevent the programmer

Chapter 4: Profiling LOLITA: Case Studies 139

from following any blind alleys in the identification of efficiency bugs.

The proposal of further profiling information may seem pointless in the light of

current large profiling costs^, but these schemes will be effective if an efficient im

plementation is considered. Particular attention is paid to this in the next chapter.

4.7 Conclusions

The study of profiling the L O L I T A system over a two-year period has produced a

number of unique case studies. The L O L I T A system is developed by a variety of

programmers who have varied programming experience. Many of the programmers

work on applications based on the core of the L O L I T A system; they are not expert

functional programmers or experts on the detailed construction of the L O L I T A

system. Many of their experiences of profiling have therefore been unique tests of

the current tools available; this applies with respect to the users of the tools and

also the system on which these tools were tested.

The results from the series of profiling case studies performed on the L O L I T A

system were recorded. Particular attention was paid to the recording of criteria

from which the case studies could be structured and re-constructed. The results of

these case studies have been incorporated to provide a basis on which proposals can

be made to improve the current profiling tools to make their use more effective in

the L O L I T A environment. It is hoped that the benefits which these changes bring

about will also be useful to application and system programmers who program

other large lazy functional systems.

The case studies presented are selected to demonstrate the use of the profiling

tools in the maintenance of existing L O L I T A code. They cannot show the time

involved in the profiling of the L O L I T A system, which is one of the prime moti

vations for the development of a post-processing tool. L O L I T A is such a sizable

system that any improvement to the analysis of its code, requiring less compilation

t̂hough it is noted that the most problematic of these overheads is the re-compilation needed
each time the cost centres are changed.

Chapter 4: Profiling LOLITA: Case Studies 140

and modifications to the compile and run-time parameters, will be of enormous
benefit to the development team.

The proposals suggested at the end of the chapter form the basis of changes

made to the Glasgow Haskell Compiler which are documented in the remainder of

this thesis. The implementation of these improvements and an extension to the

current profiling theories are discussed in this context.

4.8 Chapter Summary

This chapter documents three of the case studies of profiling the L O L I T A system.

These were selected from a collection of case studies gathered over a period of two

years.

The first of these case studies describes the results gained from profiling the

complete system. Using the - a u t o - a l l compiler fiag of the cost-centre profiler

all globally-defined functions were profiled. The profiling results, using a balanced

set of input data, highlighted those low-level functions which were heavily used.

Improvements to these sections of code allowed overall improvements to be made

to the execution time. This method of profiling quickly showed limitations as it

did not demonstrate the relationship between low-level functions and their parent

functions. Consequently it was not always clear why the use of a low-level function

was expensive. An accurate method of cost inheritance would have improved the

profiling results and may also have reduced the time needed to perform this case

study.

The second case study was based on the heap profiling of the L O L I T A grammar

transformations. The transformations were faiUng because they quickly ran out of

heap space. The signs were that there was a space leak though it was not certain

where in the code this was. The case study demonstrates how, using the profiler,

the part of the code causing the space leak was identified. Although the profiler

indicated what was causing the large amount of heap, it did not identify which

part of the code was responsible for retaining the space. It is proposed that the

Chapter 4: Profiling LOLITA: Case Studies 141

retainer profiler currently being developed by Runciman and Rojemo would help
solve such problems.

The final case study followed the continuing development of the grammar trans

formations. This also focussed on heap profiling. The heap profiling graphs again

indicated what part of the code was responsible for a large increase in the heap

usage, though once more it was not certain why this should be the case. A number

of strictifying operations were performed on the code as it was thought that these

parts of the code were causing the problem. These changes made no difference to

the heap results. Experience of the system finally led to the identification of the

problem, a function eight generations away from where the profiling results were

displayed. The debugging of this part of the code took four days to complete.

Much of the time spent was because of the recompilation needed each time cost

centres were moved in the code. In response to this a method of inheriting results

using a post-processor is proposed.

These case studies and the others performed lead to a number of proposed

improvements to the cost-centre profiler. A post-processing scheme would reduce

the amount of time spent moving costs centres in the code and recompiling the

L O L I T A system. An accurate inheritance scheme would reduce the ambiguity

caused by the costs of shared functions. These two ideas combined should bring a

number of improvements to the problems identified with the current profiling tools.

Chapter 5

Cost-Centre Profiling

5.1 Introduction

Profiling the L O L I T A system has allowed a number of problems with the current

profiling tools to be identified. From the identification of these problems can be

proposed methods which may help in the profiling of large systems. In particular

it is desirable to offer two new facilities:

• The possibility of fully accurate inheritance profiles.

• The possibility of obtaining new flat and inheritance profiles without recom

piling or re-running the program. This will allow the user to select and des

elect cost centres in the code to obtain new results, while impose no further

compilation or execution overheads.

The first of these facilities will offer an alternative way of displaying the profiling

results. The user may view the profiling costs as a flat profile or as an inherited

profile. The inherited profile will aid the programmer in his search for inefficient

parts of the program by displaying the propagated costs at a higher level in the

function hierarchy. This will not only help to identify which part of the program

is expensive, but also the particular order of function calls which might show why

it is expensive.

Chapter 5: Cost-Centre Profiling 143

The second of these facilities will allow the user to select and de-select parts of
the code just as he can with the current cost-centre profiler, but without having to
re-compile and re-run the program each time the cost centres are changed. Instead,
a post-processing facility will allow the movement of cost centres, and thus the
associated results, after a single execution of the program. The benefit here is the
time gained by not having to re-compile and re-run the program. These time gains
are particularly important with large systems such as L O L I T A which can take a
number of hours to compile.

A new design for a profiler is proposed based on an extension to the existing

Glasgow cost-centre profiler. The cost-centre profiler was introduced in chapter 2.

This chapter pays more detailed attention to the raw details of the construction of

the cost-centre profiler, to its formal semantics and its integration with the Glasgow

Haskell Compiler. These need to be understood before the proposed changes to

the profiler and compiler can be documented.

5.2 Profiling with Cost Centres

When profiling, the programmer is required to identify the portion of the program

which he is interested in analysing in terms of its run-time costs. This identifi

cation of parts of the program may be performed automatically [Runciman and

Wakeling, 1992] or more explicitly by the programmer annotating the source-level

code [Sansom and Peyton Jones, 1992]. It is argued that the latter approach gives

the programmer more control over selecting the parts of the code in which he is

interested, though automatic annotation can prove to be particularly useful for

profiling large programs. Cost-centre profiling makes use of both these techniques

and thus offers a balanced and flexible approach.

A cost centre is described as a label to which costs are assigned. During profiling

the programmer may annotate the code with an sec expression (set cost centre)

which is followed by the cost-centre name. For instance

Chapter 5: Cost-Centre Profiling 144

function x = sec "costOfFunction" (map expensivePunction x)

will assign to the cost centre costOfFunction the costs of the evaluation of the

expression (map expensiveFimction x).

In large programs such a scheme could become quite difficult, so to avoid the

programmer annotating every function definition, he is also able to select all top-

level functions, functions in a named module or just those explicitly added by

hand.

5.2.1 Cost-attribution semantics for cost-centre profiling

Costs are allocated to a single cost centre which is currently in scope according to

a set of cost-attribution rules. Such rules state that given an expression, "sec cc

exp", the costs attributed to cc using a lexical profiling technique are the entire

costs of evaluating the expression exp as far as the enclosing cost centre demands it,

excluding, firstly the costs of evaluating the free variables of exp, and secondly the

costs of evaluating any see expressions within exp (or within any function called

from exp).

This means that any costs incurred by functions within the scope of the en

closing cost centre are aggregated (except those which are themselves profiled) and

that the lazy evaluation order of the expression is maintained.

The behaviour of cost aggregation is specified using cost semantics [Sansom,

1994] which are based upon Launchbury's natural semantics for lazy evaluation

Launchbury, 1993]. Since these cost semantics avoid any ambiguity that an in

formal description might introduce, they are employed in the description of the

cost-centre profiler. A judgement form is written to describe the semantic state of

evaluating an expression:

cc, r : e -il-fl A : z, cc^

This reads that, in the context of heap F and the current cost centre cc, the

Chapter 5: Cost-Centre Profiling 145

expression e evaluates to the value z, producing a new heap A and a new current
cost centre cc^.

The costs of this evaluation are recorded in 9, a set of mappings between cost

centres and costs; cc A, for instance, would represent the cost of an application

charged to the cost centre cc. The operator l±l is used to tally up the total costs for

cost centres.

Therefore,

^lW^2(cc) = ^i(cc)+^2(cc) ,

where, if we define

e = {cci ^ m , c c f c 1-̂ rifc},

then the following holds

^(cc) - rii, i f cc = ccj else = 0.

Costs are recorded in the domain of the cc i-> cost mappings with the following

constants:

Rx: is the cost of returning a lambda abstraction;

Re', is the cost of returning a closure;

H: is the cost of allocating a closure in the heap;

V: is the cost of evaluating a variable;

U: is the cost of an update;

A: is the cost of a curried application;

C : is the overhead of a case expression;

P: is the cost of a primitive application.

Semantic rules for the evaluation of lambda and constructor expressions, ap

plication rules, variable let and case rules, are defined in Sansom's thesis [Sansom,

1994] and shown in Figure 5.1.

Chapter 5: Cost-Centre Profiling 146

ccscc, r : e -U-̂ A : 2:, cc^
cc, r : sec ccgcc e -H-̂ ^ • •2, ccz

s e c

cc, r : \ x . e ^cc^R^} r : Ax.e, cc

Lambda

cc, r : e Jj-ĝ A : \y.e', ccx {cc 0 cc;̂), A : e'[x/y] 6 : z,cc^

cc, r : e a: -̂ |̂(cc e cc;̂)h4A}i±)̂ li±ie2 ® ' ^' "̂̂ ^

Application

SUB{cce,cc), r : e i^o A : z, cCz
cc, { r , x'f^e)} : X i^Ores WHNF{e, xS^e, x^z)} : z, cc^

where ^res = {cc F } W {cc^ WHNF{e, O, U)} W 0
Pyi7iVF(Aa;.e, n,u)=n SUB{"Sm",cc) = cc
WHNF{C xi...Xn,n,u) = n SUB{cCe,cc) ^ cc^
WHNFie,n,u) = u

Variable

cc, { r , xi^ei,...,Xn^en} : e 4J-fl A : cc^
cc, r : l e t xi=el,...,Xn=en i n e ^{co^n*H}[i)e ^ '• ^Cz

Let

C C , r -.Cxi-.-Xn ^{cc^Rc) T : C Xi...Xn, CC

Constructor

cc, r : e A : Cfc xi-Xm^., ccc cc, A : efc[x^/y^]^=l 6 : ^, cc^
n

cc, r : ease e of { C j yi...ymj - > e i } i = l D-{cch^(7}w»lWd2 ® ' ^' ^̂ -̂

Case

cc , r : ei -il-ĝ A : z i , ccj cc, A : 62 6 : ^2,

cc, r : ei ® 62 4{CCH-F}W^II±I02 ® • ^ 1 ® ^ 2 , cc

Primitive

Figure 5.1: Cost Augmented Semantic Rules for Haskell.

Chapter 5: Cost-Centre Profiling 147

5.2.2 Reduction rules and reduction sequences

The sec rule in Figure 5.1 evaluates the expression e to the new expression z in

the context of the annotating cost centre ccscc and the heap F. This rule ensures

that the cost reported from the evaluation of expression e will respect the scope

of the sec expression. The costs will be stored in the set of costs 6, although no

costs are given for the reduction of the sec expression itself. The resulting heap is

shown as A and the cost centre as cc .̂

The rules for Lambda and Constructor expressions simply reduce lambda ab

stractions and constructors to themselves within the context of an enclosing cost

centre. The cost of the evaluation is attributed to the enclosing cost centre with

the mapping cc ^ Rx, where x refers to either A, the cost of returning a lambda

abstraction, or C, the cost of returning a constructor.

Similar rules exist for applications. The term on the left is reduced to a A-

abstraction, the argument is substituted for the A-variable and the reduction con

tinues. Interestingly the distinction between evaluation and lexical scoping can be

defined here. The cost of evaluating the body of the lambda expression can be

attributed to cc, the cost centre enclosing the application, or ccx, the cost centre

of the A-abstraction.

The Variable rule describes a heap binding shown using the notation x i-)-

(cce) e. The cost of evaluating the bound expression e is attributed to the cost

centre cCe; this is the cost centre annotated by the declaration site. A distinction

is made however i f the cost centre is a "SUB" cost centre; that is, the cost centre

is attached to a top-level function in Tinu- Here the "SUB" is used to capture this

choice. The components V and U refer to the cost of demanding the value of the

variable and the cost of performing the update respectively.

The Let rule is simpler, extending the heap with the new bindings. The costs

are calculated by multiplying the cost of allocating a closure, H, by the number of

bindings, plus the costs of evaluating e itself.

Chapter 5: Cost-Centre Profiling 148

The Case rule reduces the body and each arm of the case in the context of the
reducing cost centre cc. The primitive rule evaluates each argument in the context
of cc and applies the primitive operator ®. The cost of this application is also
mapped to cc.

The semantic rules are defined as premises, the sequents above the line, and

the conclusion, the sequent below the line. An instance of the application of a

logical rule is called an inference i f i t is applied from the premise to the conclusion.

Such an instance is called a reduction i f it is applied in an inverted fashion from

the conclusion to the premises. Now that these rules have been described, they

can be used in reduction sequences for expressions written in Haskell. Reduction

sequences of this nature are expressed as proof trees. Rather than showing them in

tree form, Sansom chose to stress the sequential nature of the reduction by setting

out the proofs vertically. So for example, cc, F : e 1].̂ A : z, cc^ is written:

1 cc, {r} : e

2^ a sub-proof

3^ another sub-proof

4^ { A } : z, cc„ e
The notation in this thesis is adopted from the work by Launchbury and Sansom

with subtle diflPerences included to make the reading of the proof easier. Each

reduction step is numbered so that parts of the proof can be referred to individually.

The rules employed in the derivation are indicated by the exponent of each proof

step, eg. 2^ indicates that the second step in the reduction is attained by applying

the rule x.

Each derivation may be made up of many smaller derivations. This is demon

strated in lines 2 and 3. At any one point in the derivation a cost centre is currently

in scope i f the costs of the reduction are associated with that particular cost centre.

As the reduction proceeds, the current cost centre in scope will change and thus

different parts of the program have their evaluation attributed to different cost

centres. In the example above, the cost centre cc is in scope for the derivation

steps 2 and 3. This simple case is expanded upon.

Chapter 5: Cost-Centre Profiling 149

An example is considered which specifically makes use of the SCC^ rule. The
sec rule evaluates the expression e to the new expression z in the context of the
annotating cost centre ccgcc and the heap F.

Working from the conclusion of the rule to the premises (reduction), this rule

states that the current cost centre, cc, is replaced with the cost centre following

the sec annotation. So for example, in the code:

see "plus" 2 + 3

The reduction of the sec annotation sets the current cost centre to the new cost

centre plus. The costs of evaluating the primitive + and the constructors 2 and

3 are attributed to the cost centre plus, as the expression is in the scope of see.
The proof of the judgement: cc, F: sec "plus" 2 + 3 ij-e" A:5, "plus", follows

the form:

1 current cost centre cc. Heap F: sec "plus" 2 + 3
2"̂ '̂ "plus", F:2 + 3

S*""*"̂ a sub-proof of the primitive -I - returning 5' = ^ tt) {plus P{+)}

A"^^* a sub-proof of the constructors 2 and 3

returning 6" = ^' W [plus M> ((7(2) + C(3))}

5PHm Hgap A:5, "plus" 6"
Qscc ^.5^ "plus" d"

The resulting set 9" of reduction costs is:

{plus ^ P{+),plus ^ iC{2) + C(3))}2

A slightly more complicated expression:

see "times" 2 * 46 * (sec "plus" 4 + 8)

^This choice is not made arbitrarily. In fact it is this rule which is modified later in the thesis.
^Where P returns the costs incurred in reducing the primitive operator found as its parameter,

and C returns the cost of reducing the constructor found as its parameter.

Chapter 5: Cost-Centre Profiling 150

will follow the scoping rules shown in the following proof of the judgement:
cc, T: sec "times" 2*46*(scc "plus" 4+8) Ĵ g A: 1104, "times":

1 cc. Heap F: sec "times" 2 * 46 * (sec "plus" 4 + 8)
2*'='= "times", T: 2 * 46 * (see "plus" 4 + 8)
3̂ '"*'" a sub-proof of the primitive * returning 6^ = 6\i) {times ^-^ P{*)}

4^°"^' a sub-proof of the constructors 2 and 46

returning 6^ = 9^\i) {times ^ (C(2) + C(46))}

5Prim Hg^p A : 92 * (s e e "plus" 4 + 8), "times" 9^

6 '̂"''" a sub-proof of the primitive * returning 6^ = 0^\i){times i-> P{*)}

T"" "plus", r : 92 * : 4 + 8
BP'""" a sub-proof of the primitive -I-

returning = 3̂ y j ^ ^ ^ ^ ^ p (+) }

9̂ °̂"** a sub-proof of the constructors 4 and 8

returning = 4̂ y j ^ ^ ^ ^ ^ (̂ ^^^^ ̂ C(8))}

10^"'" Heap A : 92 * 12, "plus"

IV" Heap A:1104, "times"

12*'='= Heap A:1104, "times" Gr'

The resulting set of reduction costs is:

{plus H> (C(4) -I-C(8)),p/us P{+), times ^ P{*), times ^

(C(2) + C(46)), times P(*)}

These semantic rules describe a complete language within which any reduction of

a Haskell expression can be demonstrated whilst describing exactly where the cost

of the reduction should go.

These cost semantics are extended later on in the thesis when our new profiler

is described.

Chapter 5: Cost-Centre Profiling 151

5.2.3 Push-enter reduction semantics

Throughout the execution of a program a current cost centre register, the cost

centre in the context of the expression currently being executed, is stored. This

register allows the costs of an expression to be attributed to the correct cost centre

during a program's execution. This register is also used to return the resulting cost

centre cĉ with the result of an expression.

The idea of having a current cost register is common to most profiling schemes,

though the method by which the current register is loaded and restored is of most

interest. The GHC compiler has cost-centre profiling defined for lexical, evaluation

and hybrid (combining the two) methods of profiling. These schemes offer very

different techniques for the loading and storing of the current cost centre register.

Much attention has been dedicated during the development of the cost-centre pro

filer to the actual value of the current cost centre at a particular point during the

execution of a program.

The STG-machine implementation [Sansom and Peyton Jones, 1992], on which

the Glasgow Haskell Compiler is based, rehes on a push-enter model of reduction.

Semantics for a push-enter model of reduction differ from the eval-apply method of

reduction, shown in the semantics of section 5.2.1, since the treatment of function

application is significantly different. The eval-apply model of reduction evaluates

the A-abstraction being applied and then evaluates the body of an expression.

The push-enter model of reduction pushes the argument being applied on to an

argument stack and then enters the function expression; when the evaluation of

the function is complete the argument is retrieved from the stack and the body

evaluated without returning the A-abstraction.

This difference caused Sansom to define a further set of semantics, based on

an abstract push-enter reduction model, to describe the implementation of the

current cost centre register. These definitions can then be mapped directly onto

the architecture of the STG-machine.

Chapter 5: Cost-Centre Profiling 152

The difference between the push-enter semantics and the eval-apply semantics
is characterised by the addition of the argument stack. The argument stack is an
ordered sequence: () is used to represent the empty stack and a : as is used to
represent the stack obtained by pushing the argument a onto the top of the stack
as. A judgement form for the push-enter semantics, with cost-centre information,
is similarly defined:

cc, T as : e ij^e A : z, ccz

This is read: the term e in the context of the set of (annotated) bindings F,

argument stack os and enclosing cost centre cc, reduces to the value z together

with the (modified) set of (annotated) bindings A and the resulting cost centre

cc^, attributing reduction costs to 6.

During the course of the evaluation the argument stack will be consumed by the

expression being evaluated and the heap may be extended with new bindings or may

have old bindings updated with their results. A-abstractions are only returned if

there are no arguments available to apply; this is therefore where the two evaluation

models differ, as in the eval-apply semantics there is no argument stack and a A-

abstraction is always returned to an application site before being applied.

The difference in the reduction rules between the eval-apply and the push-enter

models is demonstrated in [Sansom, 1994]. The difference between the two mod

els is simple and the changes which are implemented in the eval-apply semantics

are simply translated to the push-enter semantics. For this reason these further

semantics are not included.

5.3 Compilation by transformation

A number of compilers are characteristically defined to perform compilation by

transformation. That is, as much of the compilation process as possible is expressed

as correctness-preserving transformations, each of which transforms a program into

a semantically-equivalent program which should ideally work more quickly or in less

Chapter 5: Cost-Centre Profiling 153

space [Peyton Jones and Santos, 1994]. Functional languages are particularly re
sponsive to this process because they have a rich family of possible transformations
based on the principle of referential transparency.

The Glasgow Haskell Compiler is an optimising compiler. This means that

during compilation transformations are performed on the code for i t to reach an

efficient executable form.

Compilation by transformation is autonomous; that is, it uses transformations

which can safely be applied automatically by a compiler. This is a method derived

from an alternative manual method of programming by transformations, which is

supported by programming environments while being directed by an experienced

programmer.

Automatic program transformations fall into two broad categories:

• Global transformations — also referred to as Glamorous transformations. Ex

amples of these include lambda lifting, full laziness, closure conversion, de

forestation, transformations based on strictness analysis and so on.

• Local transformations — also referred to as Humble transformations. Indi

vidually these may look trivial

l e t X = y i n E[x] ==> E[y]

case (x:xs) of (y:ys) -> E[y,ys] ==> El[x,xs]
• -> E2

The notation E [] stands for an arbitrary expression with zero or more holes.

The notation E[e] denotes E[] with the holes filled in by the expression e.

Although global transformations may seem naturally desirable, i t is important to

bear in mind that local transformations are simple, that there are many more of

them to consider, and many more opportunities to apply them.

Chapter 5: Cost-Centre Profiling 154

In the Glasgow Haskell Compiler all local transformations are performed by the
simplifier.

Whilst recognising that these transformations make the compilation process

more effective, it was necessary to consider how this mechanism would affect the

scope of cost centres in the code. Sansom recognised that most of the transforma

tions performed would not affect the cost centres in the code, and saw that it was

also possible to transform code around the cost centres, provided that none of this

code passed the cost-centre boundaries. It was only when these boundaries were af

fected that suitable rules which would preserve the cost-centre scoping would have

to be considered. At worst these optimising transformations would simply be ig

nored, producing slightly less efficient code yet producing the profiling information

which was true to the code.

5.3.1 The C O R E language

The simplifier performs transformations on the Core language, see Figure 5.2. This

is described as a desugared version of Haskell, that is a simpler language with,

for example, list comprehensions and pattern matching already transformed into

simple constructs. In more graphic terms the Core language is also described as

being a variant of the second-order lambda calculus augmented with the constructs

le t (ree) , ease and see.

The concrete syntax in the Core language is conventional: parentheses are used

to disambiguate; application associates to the left and binds more tightly than any

other operator; the body of the lambda abstraction extends as far to the right as

possible; the usual infix arithmetic operators are permitted; the usual syntax for

lists is allowed, with the infix ' : ' and ' • ' ; and where the layout makes the meaning

clear, semi-colons may be omitted between bindings and ease alternatives.

Bindings in let expressions are all simple; the left hand side of the binding is

always just a variable. Function bindings are expressed by binding a variable to

a lambda abstraction. Similarly the patterns in a ease expression are all simple;

Chapter 5: Cost-Centre Profiling 155

Program

Bindings

Expression

prog —>• binds

binds bindu ..•,bindn>i
bind —>• var = expr

expr l e t bind i n expr
letree binds i n expr
\ vari...varn>i -> expr
expr atom
A tyvar -> expr
expr ty
ease expr of alts
constr atomi...atomn>i
prim atomi...atomn>\
sec cc expr
literalU^
var

Local definition
Local recursion
Lambda abstraction
Application
Type abstraction
Type application
Case expression
Saturated constructor
Saturated built-in op
Set cost centre
Unboxed object

Alternatives

Algebraic alt
Primitive alt
Default alt

Atom

alts -)• aalti, ...•,aaltn>\\ [def] Algebraic alts
palti] ...•,paltn>i; [def] Primitive alts

aalt —> constr vari..varn>i -> expr
palt -> literalij^ -> expr
def var -> expr

atom literal^ var

Figure 5.2: Syntax of the Core language.

Chapter 5: Cost-Centre Profiling 156

nested pattern matching has been compiled to nested case expressions.
Other important points about the Core language are that:

• it is based on the second order lambda calculus (i.e. with type abstractions

and type applications), extended with the constructs let(ree), case and, in

the case of the profiler, see constructs.

• arguments are atomic, i.e. variables or literals.

• i t supports un-boxed types and un-boxed classes.

• constructors and primitives are always saturated.

• the Core language has direct operational reading: allocations are represented

by lets and evaluation by cases.

The Core language is used to aid program transformation by making expressions

explicit:

1. A l l application arguments are made atomic; this forces the creation of argu

ment closures to be made expficit using let-bindings.

2. Boxing and un-boxing of values are made explicit; this enables many low-level

transformations usually relegated to the code generator to be expressed as

Core to Core transformations.

At the centre of the compiler are a set of local transformations which simplify Core

expressions. Most of the optimising program transformations in the compiler are

performed on the Core language. As well as these, there are some more specialised

transformations aimed at particular optimisations:

1. let-bindings may be floated outwards to increase sharing or inwards to avoid

unnecessary allocation.

2. The worker/wrapper transformations arrange for strict functions' arguments

to be passed un-boxed.

Chapter 5: Cost-Centre Profiling 157

3. Intermediate list data structures are eUminated using foldr/build deforesta
tion.

sec constructs are dealt with at every pass in the compiler, and the program

transformations have been carefully considered so that they do not distort the

scoping of the see expressions.

5.3.2 The Glasgow Haskell Compiler simplifier

The transformation of Core to Core definitions is performed by the compiler sim

plifier. This proceeds as follows:

1. Analysis of the program determines the way each value is used; this includes

occurrence counts and strictness information. These metrics can then be used

to determine whether particular transformations are satisfied and will identify

the let-bindings to be inlined. The inlining transformation is simply:

l e t X = R i n B[x] ==> B[R]

Inlining is more conventionally used to describe the instantiation of a function

body at its call site, with arguments substituted for formal parameters. The

Glasgow compiler treats this as a two-stage process: inlining followed by beta

reduction, the latter of which is defined as:

(\x -> E [x]) arg ==> E[arg]
(/\a -> E[a]) t y ==> E[ty]

Working with a higher-order language means that not all the arguments may

be available at every call site. By separating inlining from beta reduction,

one process at a time can be concentrated on.

2. This information determines how the program is simplified based on a set of

transformations. Figure 5.3.

Chapter 5: Cost-Centre Profiling 158

Name Before After
Unfolding or InUning l e t V = Ey in E E \Ey/v]
Case Elimination ease Ey of v -> E E [Ey/V]
/^-reduction (Xv.E) X E [x/v]

Let to Unboxing Case l e t V = Ey in E ease Ey of
C Vi...Vn -> l e t

V = C Vi...Vn
in E

Let to Case l e t V = Ey in E case Ey of v -> E

Constructor Reuse I l e t V = C Vi...Vn
in ... C Vi...Vn •••

l e t V = C Vi...Vn
in ... V ...

Constructor Reuse I I ease v of

C Vi...Vn -> C Vi...Vn

case V of

C Vi...Vn -> ••• V ...

Case of known
constructor ,

ease Cj vi...Vn of

Ci Vi...Vn -> Ei Ei [Vi/Vii...Vin/Vn]

Let Floating from Let l e t V = l e t w = Eiu
in Ey

i n E

l e t w = Eyj
in l e t V = Ey

in E

Let floating from Case case (l e t v = Ey in E)
of ...

l e t V = Ey in case E
of ...

Let floating from App (l e t V = Ey in E) X l e t V — Ey in E X

Case Floating from Let l e t V = case Ec of
alti -> El

altn ~> En
in E

ease Ec of
alti -> l e t

V = El in E

altn -> l e t
V = En in E

Case Floating from case

(Case of Case)

/ ease Ec of \
altci -> Eel -ease of

V alt cm Ecm /

alti -> El

altn ~> En

case Ec of
altci -> case Ed of

alti -> El

altn ~> En

(litem ~> case Ecm of
alti -> El

altn -> En

Case Floating from App

/ ease Ec of \
alti -> El

\ altn -> En)

V

case Ec of
alti -> El V

altn -> En V

Figure 5.3: Local Transformations.

Chapter 5: Cost-Centre Profiling 159

sec expressions impose a restriction on these transformations, as evaluation must
not be moved from the scope of one cost centre to the next i f the cost centres are
to record accurate results. Most local transformations can be performed without
affecting the sub-expressions within them. However, there are two situations in
which the cost centres and see annotations affect these local transformations:

• Unfolding and case elimination perform substitutions on the complete expres

sion. This may move the evaluation into the scope of another sec annotation.

• The applicability of transformations which match patterns consisting of more

than one language construct may be hindered by an intervening sec con

struct.

To reduce this problem during the development of the cost-centre profiler, fewer

optimisations were applied in these two cases (depending on the placement of cost

centres). This did not impose much of a restriction on most of the transformations,

although i t was noted that a large number of let-floating transformations were

hindered.

Sensibly, rules were introduced by Sansom which would allow let-floating within

the cost-centre context, thus preserving a large number of these compiler transfor

mations.

5.3.3 Let floating transformations

There are both local and global let-floating transformations in the Glasgow com

piler. The global transformations come in two forms:

Outward Floating — Floating let-bindings out of lambda abstractions to improve

sharing (similar to the ful l laziness transformation).

Inward Floating — Floating let-bindings inwards to avoid allocating the binding

unnecessarily.

Chapter 5: Cost-Centre Profiling 160

So that these transformation would succeed in the cost-centre framework, two
further transformations, T l and T2, were added. These rules annotate the right
hand side of a let-binding with an sccsub when it is floated past an sec:

(T l) see cc l e t v — Ey in E l e t v = {sccgub cc Ey) in (sec cc E)

The first transformation, T l , floats an see expression into a let-binding (or

floats a l e t out of the sec expression). The cost of reducing the expression E

remains within the scope of the cost centre see. The costs of reducing the ex

pression Ey must also be kept within the scope of the cost centre cc. This is done

using the seCŝ fc annotation to indicate that although this sub-expression has been

moved into the scope of a different cost centre, the costs of evaluation must still be

attributed to the cost centre cc. Evaluating a scc5„6 expression does not increment

the count of the expression instances evaluated; this is only incremented when the

original see expression is entered.

Therefore the costs of evaluating both E and Ey are attributed to the cost

centre cc. This is the behaviour that would be expected in these circumstances.

There is a slight anomaly with this rule as the cost of the let-binding is no longer

in the scope of the cost centre see, though this movement of a single reduction to

the scope of another cost centre is unlikely to affect the results much.

(T2) l e t V = Ey in (see cc E) =>• see cc l e t v = {sccgub ecc Ey) in E

The second transformation, T2, floats a let-binding into an sec annotation.

The let-binding and the expression E are in the scope of the cost centre cc on the

right of the transformation rule. The right hand side of the transformation must

also be annotated with a sec sub expression, enclosing the expression Ey with the

enclosing cost centre (ecc). This prevents the costs of evaluating the expression Ey

from being incorrectly attributed to the cost centre cc.

I t is important to note that this second transformation can only be performed

if the enclosing cost centre ecc is known. I t is later discovered that this is not

implemented in GHC, as there is no way in the Glasgow compiler of keeping track

of the enclosing cost centre.

Chapter 5: Cost-Centre Profiling 161

Further optimisations are possible on the resulting code to effectively tidy up
the results of the let-floating transformations. For example the following transfor
mation, r3 , is applied by the simplifier to remove the redundant cost centres in
the code.

(T3) If Ey has an see expression on i t then scCgub cc (sec cc' Ey) see cc' Ey

This transformation preserves the immediately enclosing cost centre, but re

moves any of the other cost centres, as in the cost-centre profiler these are seen as

redundant.

These let-floating transformations allow the compiler optimiser to operate suc

cessfully and with little hindrance from the cost-centre profiler. In adding these

transformations the scoping of the cost centres is preserved during compiler optimi

sation, so that the results of the profiler are indeed accurate and the programmer

is able to profile optimised code as required.

5.4 Chapter summary

The Glasgow cost-centre profiler forms the basis on which a new profiler is con

structed. In order to discuss the development of this new profiling system, i t is

necessary to consider the implementation of the cost-centre profiler in more detail.

This chapter introduced the details needed for the discussion of the new work,

which is presented in the next chapter.

The formal semantics used to describe the behaviour of the cost-centre profiler

have been presented. These semantics allow reasoning about the mapping between

program costs and the cost centres in the code. Some example reduction sequences

were demonstrated.

The Glasgow Haskell Compiler is an optimising compiler. Optimisations are

performed during compilation by a sequence of transformations to the code to

produce effective executable code. I t is important for the profiler writer to consider

these transformations carefully so that expressions are not moved from the scope of

Chapter 5: Cost-Centre Profiling 162

one cost centre into the scope of another. I f this were to happen the profile results
would be inaccurate.

Those transformations which would move program costs past cost-centre bound

aries were considered. The simplest way to prevent these transformations from

altering the profiling costs was to remove the transformations from the compiler.

This had a limited effect on the eflSciency of the program in all cases except the

let-floating transformations.

These let-floating transformations were redefined by Sansom so that they pre

served the cost-centre-scoping rules. The new let-floating transformations were

discussed.

Chapter 6

Cost-Centre-Stack Profiling

6.1 Introduction

The method of profi l ing w i t h cost centres discussed in the previous chapter is

extended to include the notion of cost-centre stacks. These cost-centre stacks w i l l

f o rm the basis of a new profil ing scheme which w i l l allow accurate cost inheritance

and also profi l ing results which are amenable to post-processing.

The notion of a cost-centre stack as opposed to a cost centre is defined as follows.

When program costs are recorded by the profiler they are attributed to the cost-

centre stack which is currently in scope. The cost-centre stack is composed of the

current cost centre and all those cost centres through which this cost centre was

reached. This provides not only a record of what part of the program is current,

but also the path that the program took in reaching this part of the program. The

profi l ing results then take the form of many cost-centre stacks for which methods

of cost inheritance and post-processing are defined.

Drawbacks w i t h this method are contingent. The idea of recording this kind

of informat ion during the execution of a program is potentially disastrous, as the

overheads may be huge and the quantity of results overwhelming. A n important

component of the work is therefore the way in which the profiler is implemented

and integrated w i t h the existing cost-centre profiler and Glasgow Haskell Compiler.

C h a p t e r 6: Cos t -Centre -S tack Profi l ing 164

This chapter is composed of the following parts:

• The cost-centre profil ing technique formally defined in the previous chapter

is extended to include the notion of cost-centre stacks. The cost propagation

techniques needed to implement cost inheritance are also formally defined in

this chapter.

• The cost-centre-stack profil ing scheme relies heavily on the efficiency of its

implementation. I t w i l l only be eff'ective i f the results can be collected in

a reasonable amount of time and the heap needed to execute the program

is practical. The detailed implementation of cost stacks is discussed and

examples are introduced.

• The Glasgow Haskell Compiler, on which the cost-centre-stack profiler is de

fined, is a complex system and inevitably the changes involved to include

the new profi l ing scheme are detailed. The complexities of retaining com

piler optimisations are discussed, enabhng the cost-centre-stack profiler to be

implemented and used on programs compiled w i t h the GHC optimiser.

• Final ly the post-processor is described. The display of the enhanced results is

discussed and the method of inheritance and cost manipulation is introduced.

6.2 Cost-Centre Stacks

The current cost-centre system is extended to include the notion of a cost-centre

stack [Morgan and Jarvis, 1995]. The objective of the cost-centre stacks is to record

not just the immediately enclosing cost centre but all the enclosing cost centres to

a certain part of a program.

Many of the failings of effectively producing inheritance profiles have been

caused by the schemes used to inherit costs. The statistical inheritance method,

for instance, does not account for calls to functions w i t h very different arguments

and, in order to produce more accurate results, i t is necessary to record all the

C h a p t e r 6: Cos t -Centre -S tack Prof i l ing 165

enclosing cost centres to an expression; in this way costs can be unambiguously
assigned to those parts of the program which cause them.

This scheme of recording all of the enclosing cost centres to an expression is

created using cost-centre stacks. A n earlier example (first seen in chapter 2) is

used. Consider each function in the example to have a cost centre attached of the

same name.

"The cost of a shared function h would be split between its calling functions,

/ and depending on how many calls were made to the shared function. For

example i f there are 8 calls f rom f to h and only 2 calls f rom g to h then the time

spent i n (or below) h w i l l be divided 8:2".

Realistically these results might not be true: g may have called h twice wi th a

list argument of size 100,000; / may have called h eight times wi th a list argument

of size 10. By storing the function calls of h f rom g and h f rom / , i t is possible to

assign the costs of h to the two pairs {h, f) and {h, g); the programmer then knows

exactly which pair caused the most costs and his attention is drawn to the correct

part of the code.

I t is possible to extend such a scheme to the parent function of the parent

funct ion and so on, unt i l the results are in fact an accurate collection of all the

results in the program's execution. For instance the above example may produce a

set of results containing the stacks, {h, f,main), {h,g,'main), (/ , mam) etc., each

w i t h their own associated costs. The question as to how a particularly expensive

funct ion call came about is made easier, the programmer can investigate what the

functions arguments were, and f rom where they originated. Clearly some scheme

must be adopted to display such results; this is achieved by using post-processing

which can be implemented so that the results are displayed either as a standard

flat profile, or as an accurate inheritance profile. Variations to these schemes are

possible; the important th ing to recognise is that a complete set of results is now

available which can be manipulated after the execution of the program.

There are a number of design criteria (^ 1 — A 6) which are drawn up for this

profi l ing scheme:

C h a p t e r 6: Cos t -Centre -S tack ProfiHng 166

Al. Tha t during compilation and program execution all top-level functions are
deemed to be cost centres. The phrase "top-level functions" comes f rom
[Sansom, 1994], i t means lexically defined top-level functions, for example

functionA x = functionB (functionC x)

where functionC = hd x

functionB x = x ++ x

functionA and functionB are top-level functions; functionC is not. This

applies to any level in the program structure. A l l program costs w i l l be

recorded w i t h regard to these top-level functions.

A2. Dur ing post-processing, the stage at which profiling results are manipulated,

cost centres may be selected or not by the programmer. Those cost centres

which are not selected are called subsumed cost centres.

A3. Profi l ing, at execution t ime, uses a cost stack rather than a single cost centre.

Profi l ing results are therefore produced in terms of cost-centre stacks as well

as cost centres. The cost stacks are used as input to the post-processor.

^ 4 . A cost stack is a sequence of cost centres ordered in such a way that its

costs are at tr ibuted to the uppermost selected cost centre in the stack. For

instance costs are at tr ibuted to the function thirdFunction in" the cost stack

{thirdFunction, secondFunction, firstFunction), as this is currently at the

top of the cost-centre stack.

Ah. When entering a new cost centre at execution time, i t should be pushed onto

the stack. Any previous entry of the same cost centre is removed f rom the

stack. This proposal is prompted by the need for an efficient implementation

which is discussed in section 6.3. The resulting cost-centre stack replaces the

current cost-centre stack.

^ 6 . When producing a profile during post-processing, the user is given a choice as

to which cost centres he wishes to select and also whether he requires results

C h a p t e r 6: Cos t -Centre -S tack Profi l ing 167

to be inherited or not (^ 2) . When inheriting costs the system locates the
top-selected cost centre on each stack and adds the costs of the subsumed cost
centres on the stack to the costs for that selected cost centre. This process
is described in more detail in a later section.

6.2.1 Cost-attribution semantics for cost-centre stacks

The cost-centre stacks are introduced as an extension to the semantic rules; rather

than modeling a single cost centre, cCgcc, a cost-centre stack is proposed (AS).

Sequence notation, (a;„,a;„_i, is used to represent a stack. Catena

t ion of a cost centre, X4, to a cost-centre stack, {x3,X2,Xi), is performed using

X4^{x3,X2,Xi), and results in the sequence {xi,X3,X2,xi) [Spivey, 1989]. The cost

centre X4 is said to be at the top of the stack; this corresponds to the current cost

centre of Sansom's cost-centre profiler.

The cost-centre-stack extension is modelled in the semantic rules by modifying

the reduction rule for the sec annotations. I t is enough to modify this single rule

and use the remainder of the rules in their current form.

The sec rule states that to evaluate sec ccscc e, we evaluate the expression e

to the new expression z i n the context of the annotating cost centre cc^cc and the

heap r . The cost reported f rom the reduction of e w i l l respect the scope of the

sec expression and w i l l be stored in the set of costs 9 (no costs are given for the

reduction of the sec expression.) The resulting heap is shown as A and the cost

centre cc^.

The original SCC rule appeared as:

cCscc, T : e i}.f) A : z, ccz

cc, r : see cCscc e A : z, ccz

To create a cost-centre stack the SCC rule is modified:

ccscc^cc, r : e JJ-̂ A : z, ccz
cc, r : sec cCgcc e Jj-^ A : cCz

SCC

s e c

C h a p t e r 6: Cos t -Centre -S tack Profi l ing 168

This allows the current cost centre to be pushed onto the top of the cost-centre
stack. The following proof shows how the example shown in the previous chapter
then scopes w i t h the new SCC rule.

1 cc. Heap T: sec "times" 2 * 46 * (sec "plus" 4 + 8)

2*̂ =̂' {times), F: 2 * 46 * (see "plus" 4 + 8)

3 '̂'*"̂ a sub-proof of the primitive * returning 9' = d\ii{{times) H-> P (*) }

4^̂ °"** a sub-proof of the constructors 2 and 46

returning 9"^ = d'^ {{times) ^ (C(2) + C(46))}

S^"'" Heap A : 92 * (s e e "plus" 4 + 8), {times) 9^

e*"""" a sub-proof of the primitive *

returning 6^ = 9'^ \±) {{times) P (*) }

7*"' {plus, times), F : 92* : 4 - I - 8

8 '̂"̂ '" a sub-proof of the primitive - I -

returning 9^^ = 6^ \S {{plus, times) P{+)}

g'̂ ""** a sub-proof of the constructors 4 and 8

returning 9^ = 0^^^ {{plus, times) ^ (C(4) + C(8))}

^Qprim f j g ^ p A : 92 * 12 {plus, times) 9^

11*" ' Heap A : 1104, {times) 9^

12*'='̂ ' Heap A : 1104, {times) 9^

The results of a f u l l example of the semantic reduction and inference, using both

the original cost centres and the cost-centre stacks, are considered for the function

definit ion:

f = see " f i r s t " 1 + (see "second" 2 + 3)

C h a p t e r 6: Cos t -Centre -S tack Prof ihng 169

The first proof, which uses the original cost centres and cost-centre semantics:

1 I N I T , F : f = see " f i r s t " 1 + (see "second" 2 + 3)

2*cc " f i r s t " , F : 1 -(- (sec "second" 2 + 3)

3Prim " f i r s t " , F : 1

i'^orist A . 1̂ " f i r s t " w i th 9 ^ M '

5''"'" " f i r s t " , F : (see "second" 2 + 3)

6'^ "second", F : 2 - f 3

TP"'" "second", F : 2

8'=°""* A : 2, "second" wi th 9 = {second C(2)}

9""^ "second", F : 3

10=°"** A : 3, "second" wi th 9 = {second >-> C(3)}

I I P " ' " A : 5, "second" w i t h 9 = M

12'^^ A : 5, "second" w i t h 9 = M

13pHm A . i.f i r s t " w i t h 9 = M"

l^scc A . " f i r s t " w i t h 9 = M"

where:

M = {second ^ C (2) } W {second H> C (3) } W {second P{+)}

M' = { f i r s t s C{1))

M" = {first M- P (+) } W M ' W M

gives the resulting set 9 of associated costs:

{first ^ (P (+) + ^ (1)) , second ^ (P (+) + C{2) + C(3))}

Where P returns the costs incurred in reducing the primitive operator found as its

parameter, and C returns the cost of reducing the constructor found as a parameter.

C h a p t e r 6: Cos t -Centre -S tack Profi l ing 170

The proof using the extended semantics created for the cost-centre stacks:

1 (INIT), F : f = see " f i r s t " 1 + (see "second" 2 + 3)

2SCC' y P . J _̂ (g^^ "second" 2 + 3)

gprim 5', F : 1

4^°"^' A : l , 5 ' w i t h ^ = M '

5^""* 5 ' ,F : (see "second" 2 + 3)

6^̂ '̂ (second)^5' ,F : 2 + 3

Tf'-''" {second)-S', F : 2

8^°"^' A : 2, {second)-S' w i th 9 = {{second)^S' ^ C{2)}

9 "̂-™ {second)-S', F : 3

10^=°"** A : 3, {second)-S' w i th 9 = {(second)^5" C (3) }

I F " ' " A : 5, (seconc/)^5'with ^ = M

12"̂ ^̂ ' A : 5, {second)-S' w i th 0 = M

igprim A : 6, 5 ' w i t h ^ = M "

14*̂ =̂' A : 6 ,5 ' w i t h ^ = M"

where:

5 ' = (/ i r s t , INIT)
M = {{second)-S'^C(2)} \ii {{second)-S'^C(3)}^

{{second)-S' ^ P{+)}

M' = {S' M- C (l) }

M" = {S' ^ P (+) } WM'\±)M

returns the set 0 of associated costs:

{{first, INIT) H+ (P (+) + C (l)) , (second, / i r s t , INIT) ̂ {P{+) + (7(2) + C(3))}

Where INIT is used to indicate the in i t ia l state of the system, this w i l l have no effect

on the results themselves. By extending the existing cost semantics to produce cost

centres as sequences, i t is now possible to develop a theory of cost inheritance, which

is later implemented in the profil ing post-processor. Secondary semantics are also

considered for the cost-inheritance theory.

C h a p t e r 6: Cos t -Centre -S tack Profi l ing 171

6.2.2 Secondary semantics for cost inheritance

The resulting set of cost-centre stacks can be used to output the results in post-

process form. A cost-centre stack contains cost centres which w i l l be both selected

by the user as 'interesting functions' and those cost centres for which results should

simply be subsumed; these are referred to as selected and non-selected functions

respectively. The selected functions w i l l be stored in a set SELECTED.

The inheritance semantics are ini t ia l ly defined to deal w i th two types of post

processing, the first producing its output as non-inherited costs (a flat profile),

and the second producing its output as inherited costs. The choice between these

schemes is made by the user, A2.

Firs t ly the non-inherited semantics. Each cost stack in the set 9 w i l l contain a

top-selected cost centre, defined as the selected cost centre nearest the top of the

stack. The costs associated wi th that particular cost stack are attr ibuted to that

top-selected cost centre. Consider for instance the stack (c, b, a) and the associated

costs, say 10. The cost 10 is added to the selected cost centre c. The cost centre

c w i l l eventually contain all the costs for the stacks on which c is the top-selected

cost centre; i t is then printed as a post-processed result.

As an example consider the set 9 of

{{b, a) M- 10, (a) 20, (c, a) ^ 10, (c, b, a) ^ 50}.

Under this scheme the non-inherited post-processed results,

a = 2 0 , & = 1 0 , c = 60,

would be produced. I f the cost centre b was not selected, then the results

a = 30,c = 60,

would be printed instead. Such a scheme is defined more formally as:

C h a p t e r 6: Cos t -Centre -S tack Profi l ing 172

V cc : cost centre; 6 : {seq cost centre) -v-* N •

COST cc = sum { cost | V 5, T : seq cost centre; 3 stack : seq cost centre; cost: N •

{{stack cost} e 9) A

{S-{cc)-T = stack) A

(cc G SELECTED) A

(V cc' : cost centre • cc' in S =^ cc' 0 SELECTED) }

The operator ^ represents an injective function and N represents the set of

natural numbers.

I t is possible to prove that using this scheme produces the same results as a flat

cost-centre profile. A l l cost centres which are included in the original flat cost-

centre profile are included in the set SELECTED for the cost-centre-stack profile.

The inherited costs are a simple variation on the above. Rather than adding

the cost associated w i t h a cost stack to the top-selected cost centre, the cost is

added to all the selected cost centres wi th in the cost stack. The results

a = 90,6 = 60, c = 60,

are produced when the above example is considered under this inheritance scheme.

Again a formal definition of the scheme is off'ered:

V cc : cost centre; 9 : {seq cost centre) ~» N •

INHERITED.COST cc = sum { cost | V 5, T : seq cost centre; 3 stack :

seq cost centre; cost: N •

{{stack !->• cost} e9) A

{S-{cc)-T = stack) A

{cc e SELECTED)}

This ensures that all selected cost centres have their costs inherited.

C h a p t e r 6: Cos t -Centre -S tack Prof i l ing 173

6.3 An Efficient Implementation

Profi l ing a program wri t ten using thousands of functions is potentially an expensive

business. The cost-centre information recorded for each function w i l l increase the

execution time, which in turn may cause large programs to be almost un-executable.

Introducing cost-centre stacks may therefore seem a l imited exercise, as cost

stacks require more information to be stored than the original cost-centre model.

A n efficient implementation must therefore be considered to make such a scheme

feasible.

Two efficiency problems were considered key in the implementation of cost-

centre stacks; the first was the space needed to store these stacks during the exe

cution of the program, the second was the time needed to build these cost-centre

stacks and to access and add the profil ing data to the stacks.

Space saving mechanisms

Cost-Centre-Stack Codes:

To produce a practical implementation, applicable to large as well as small pro

grams, cost-centre stacks are replaced wi th Cost-Centre-Stack Codes; each cost-

centre-stack code is derived f rom a Cost-Centre-Stack Table. The cost-centre-stack

code acts as a pointer to the relevant stack entry in the cost stack table, so at any

one t ime the cost-centre stack is simply a code which addresses an entry in the

cost-stack table. See Figure 6.1.

The top left of the figure shows a reference to a cost-centre-stack code at an

arbi t rary point in a program's execution. This code, 0003, refers to the current

cost-centre stack. This code references a point in the cost-stack table, the larger

box below. Inside the cost-stack table (bottom right) a reference to the code 0003

is found; this is the representation of a stack. On the top of this stack is the cost

centre B. A back pointer shows the reference to the cost-centre stack onto which

B was pushed; this was the stack {MAIN). Therefore, the stack referred to by the

C h a p t e r 6: Cos t -Centre -S tack Profi l ing 174

Execution time

0003 Showing a reference to the stack, <B, MAIN>

Current Cost Centre Stack

Implemented as a Cost Stack Code

COST STACK TABLE

0001 This entry represents the stack <MA1N>

Cost Centre = MAIN
Costs = 10

Back pointer = NIL

Function Pointer to Cost S t j ^ ^

A

B

C \ \ ,

Cost Centre = A
Costs = 5

Cost Centre Stack Code

Cost Stack Index Table

Back pointer y

to previous '

cost centre stack

<A,MAIN>

Back pointer = 0001

Function Pointer to Cost Stack
Further
Cost Stacks

•> 0005

0006

'0003 <B, MAIN>

Cost Centre = B
Costs = 2 Back pointer = 0001

Function Pointer to Cost Stack

0007

0008

0009

0010

Figure 6.1: Implementation of Cost Stacks.

C h a p t e r 6: Cos t -Centre -S tack Profi l ing 175

cost-centre-stack code 0003 is {B,MAIN).

In the cost-centre-stack table references to other cost-centre-stack codes are

found. As an example i t can be seen what cost-centre stacks these codes represent;

the cost-centre-stack code 0001 represents the cost-centre stack {MAIN), 0002

represents the cost-centre stack {A, MAIN), 0006 represents the cost-centre stack

{F, A, MAIN) and so on.

Compressed Stacks:

The cost-centre stacks themselves can be compressed. Consider the simple case

of a funct ion a which calls function b, this latter function then calls function a

again^. To avoid this leading to an arbitrari ly large number of stacks of the form

{a, b, a, b,..), only the top instance of a function call can be stored in a cost-centre

stack (previously mentioned in ^ 5) .

When a funct ion is pushed onto the cost-centre stack, a previous instance of

the funct ion is removed f rom the stack. Such a scheme allows an infinite number

of stacks to be stored in what is actually a very small, and finite, number of stacks.

The example using two functions a and b requires two such stacks, {a, b) and {b, a),

to represent an infinite number of stacks. Such stacks are referred to as Compressed

Stacks.

This would seem a good mechanism for keeping the sizes of the stacks small.

However, what would be the effect on the results themselves? Some figures are

given for the example above to illustrate the behaviour of this model.

Dur ing the duration of the stack (a) 3 units of time are accrued. This is wri t ten

as { (a) i - > 3 } , to represent the cost-centre stack and the costs attributed. When

the funct ion b is called, the cost-centre stack {b, a) is produced. During this part

of the program 7 units of time are accrued. Finally the function a is called once

again producing the compressed stack (a, b) and a further 1 unit of time is accrued.

^In the case of this example, and the others which follow, it is assumed that all top-level
functions have a cost centre associated with them.

C h a p t e r 6: Cos t -Centre -S tack Prof i l ing 176

This produces the set of cost-centre stacks:

{(a) M- 3, (6,a) ^ 7, {a,b) ^ 1}

Using the secondary semantics for cost inheritance defined earlier COST{a) pro

duces the result 4 and COST{b) produces the result 7; these are the non-inherited

costs for each of these cost centres. INHERITEDjCOST{a) produces the inher

ited result for cost centre a, which is 11; IN MERITED JCOST{b) produces the

result 8.

These results can be compared wi th the results produced by using uncompressed

cost-centre stacks. The function calls above would produce the following set of

uncompressed stacks:

{{a) I -) - 3, {b, a) ^ 7, {a, b, a) i - > 1}

The difference between the two models is determined by the cost-centre stack

{a,b,a) 1. The non-inherited results are the same for this uncompressed

stack as they are for the compressed stack; COST{a) is 4, COST{b) is 7. For

the inherited results however the results are INHERITED.COST{a) is 12 and

INHERITED.COST{b) is 8. I t w i l l be noticed that the inherited costs for a are 1

greater than before. The reason for this is that in the cost-centre stack (a, 6, a) 1

the inheritance function adds 1 to cost centre a twice.

Is this really what is required? Should costs be added more than once to a cost

centre in the inheritance? I f a were in the cost-centre stack 50 times then these

inherited results would become 61. This is certainly not desirable.

Using compressed stacks allows mutually recursive functions to be modelled

w i t h a fixed number of stacks. I t also allows costs to recursive functions to be

inherited once rather than a number of times, producing the inheritance results

which are representative of the program's actual costs. The definition of cost

inheritance therefore works precisely because of the fact that compressed stacks are

used. I f uncompressed stacks were used then the definition of inheritance would

have to be re-written to prevent the multiple addition of a single cost.

C h a p t e r 6: Cos t -Centre -S tack Profi l ing 177

T i m e issues

The second problem was that of time. Using the cost-centre-stack codes, shown

i n Figure 6.1, movement between cost-centre stacks can be achieved by simply

referencing the centre-stack code to locate the next cost-centre stack. The expensive

operation is i n the building of new stacks, though, as the above example shows, this

w i l l occur relatively infrequently. There may be many thousands of calls between

functions a and b, but once the two stacks representing them have been buil t they

need only be referenced on any further calls by their cost-stack codes, so the only

cost incurred here is by the look-up in the cost-stack table.

Each cost-centre stack stores profil ing data representing the amount of the pro

gram's execution t ime which has been spent in that part of the program. Other

profi l ing statistics can also be stored in the cost-centre stack such as heap profiling

informat ion and occurrence counts, but for the time being the discussion concen

trates on t ime profil ing. The time profil ing information is continually updated

during the execution of the program. The updating of these statistics in the cost-

centre stacks as well as in the cost centres is not thought to cause any significant

increase i n the amount of time spent profiling.

6.3.1 The Push operation

The Push operation is wri t ten Pushfcost centre, cost-stack code). When performing

a Push, the cost-stack code is used to reference the relevant entry i n the cost-stack

table. The table entry w i l l contain the name of the top cost centre on the stack,

a pointer to the previous cost-centre-stack table entry, and a Cost-Centre Index

Table.

C h a p t e r 6: Cos t -Centre -S tack Profi l ing 178

Notat ion is adopted to describe this:

Represents a cost-centre-stack table entry n wi th X as the cost

centre at the head of the stack.

X " Indicates the cost-centre-stack index table entry f rom cost-

centre stack n to cost-centre stack m , given a push of Y onto n.

X " <— Indicates a back pointer f rom cost-centre stack m to cost-

centre stack n .

The cost-centre stack is represented simply as the head of the stack, as the remain

der of the stack can be accessed by the back pointer. Effectively, calls to Push are

memoised.

There are a number of cases which need to be considered in the construction of

cost centre stacks. Each individual case w i l l help to demonstrate how the choice

of structure is key in the implementation of efficient stacks and how neatly the

scheme can be constructed.

Consider the cost-centre-stack table represented by the following:

MAIN^ ^ A ^ ^ B ^

C^

The cost-centre stack which contains the cost centre MAIN is represented by

the cost-centre-stack code 1; the cost-centre stack referred to by the code 4 is,

{C, A, MAIN); the back pointer f rom this stack points to the cost-centre stack

{A, MAIN).

Some examples of the push operation using this cost-centre-stack table can now

be considered in turn .

Case 1

I t has previously been mentioned that cost stacks are memoised. That is, once

they have been created they continue to exist throughout the life of the program.

C h a p t e r 6: Cos t -Centre -S tack Profi l ing 179

The first case considers reinstating a cost centre which aheady exists. For
instance, in the cost-centre-stack table seen previously,

MAIN^ ^ ^ 2 ^ 5 3

pushing the cost centre B onto the cost stack represented by the cost-stack code

2, results in the cost-stack code 3.

This is a nice neat case since the stack which is required already exists. The

overheads involved in such a case are of 0{n) for time and space, where n is the

number of memoised entries contained in the cost-stack index table of cost-centre

stack 2; this is typically between 1 and 20 (see chapter 7).

Case 2

In the second case the cost-stack index table would have no reference to that

particular cost centre (there will have been no previous attempt to push this cost

centre onto the current cost stack) and the cost centre would not have appeared

anywhere in the cost stack. In this situation it is enough to add the new cost centre

to the index table of the current stack table entry and thus create a reference to a

new cost stack.

In the previous cost-centre-stack table, pushing the cost centre C onto the cost-

centre stack with the code number 3 results in the following cost-centre-stack table

and the cost-centre-stack code 5.

The back pointers are used during this case to check to see if the cost centre C

already exists in the cost-centre stack 3. The overheads of this case are therefore

O(n-l-m), where n is the number of memoised entries contained in the cost-centre-

C h a p t e r 6: Cos t -Centre -S tack Profi l ing 180

stack index table of stack 3 and m is the depth of the cost-centre stack.
Case 3

The third case considers a cost centre already existing in a current stack.

First subcase:

The first subcase which is considered demonstrates that stacks can be built without

any intermediate stacks having to be created.

Consider the case where the cost centre B is pushed onto the cost-centre stack

identified by the code 5 in the following cost-centre-stack table.

The resulting cost-centre-stack table will, perhaps surprisingly, be as follows:

MAIN^ ^A^^B^^C'

^ B^

The resulting cost-centre-stack code is 6. The subtlety lies in the fact that from the

cost-centre-stack code 5 a new cost-centre stack is built, 6, with B as the top cost

centre. The duplicate copies of the cost centre B are avoided in this cost-centre

stack by the fact that the back pointer from cost-centre stack 6 points to 4 and not

5. This results in the stack {B, C, A, MAIN) and not {B, C, B, A, MAIN), results

which were expected. This maintains the compressed stacks.

Second subcase:

A second subcase is introduced with the following example:

Push the cost centre B onto the cost-centre stack 4 in the following cost-centre-

stack table:

MAIN' ^A'^B'^C^

C h a p t e r 6: Cos t -Centre -S tack Profi l ing 181

The cost centre B already exists on the cost-centre stack. According to our rules
introduced by the compressed stack scheme, only one instance of the cost centre
can appear in the cost-centre stack at any one time.

The previous stack pointers make such an operation possible. They allow pre

existing stacks to be located and new stacks to be created if necessary. It is now

feasible to follow the previous stack pointers back and check to see if the cost

centre B had already been pushed on the stack. (This checking process will also

have taken place in case 2, although an assumption that 'the cost centre has not

been pushed on that stack before' was possible there, since the previous stack

pointers are followed back until the first cost centre on the stack is reached).

Once the previous reference to B has been identified, the new stack is built

with the previous occurrence of the cost centre effectively removed from the stack.

This results in the cost-centre stack 6 in the following cost-centre-stack table:

MAIN' ^A^^B^^C

Again from cost-centre stack 4 the cost centre B is added without a back pointer to

the cost-centre stack 4. Instead it points to a cost-centre stack 5, an intermediate

stack which needed to be built to support the new cost-centre-stack table. The

cost-centre stack 6 produced in this case is {B,C,A,MAIN), the intermediate

stack which is built is (C , A, MAIN).

It is possible that this intermediate stack will have needed to be built at some

previous stage in the program's execution. If so, then the stack will already exist,

as in subcase 1 above. Of course it might be possible that such a stack will not

need to be built. Intermediate stacks can therefore be constructed with reduced

storage, without explicit profiling details such as time and heap usage.

Third subcase

It is possible that once the occurrence of the new cost centre in the cost-centre

C h a p t e r 6: Cos t -Centre -S tack Profi l ing 182

stack has been identified, the resulting new stack already exists^. A reference to
this stack is produced as the result.

Extending the example seen above,

MAIN' ^A^^B^^C^

^ B^

and pushing the cost centre C onto the cost-centre stack 6 produces the cost-centre-

stack code 4 in the following cost-centre-stack table.

MAIN' ^A^^B^^C^

^ B^

From the cost-centre stack {B, C, A, MAIN) the function C is called again. The

crude approach to creating the new cost centre would have been to remove C

from the stack and build the stack (C, B, A, MAIN) again, however, this is not

necessary as this stack already exists. The previous stack pointers allow the lo

cation of the stack (A, MAIN), {B,A,MAIN), and finally the cost-centre stack

(C , B, A, MAIN) to be identified, all of which exist in this case.

The previous stack pointers allow 'the stack which came before' to be identified.

They also allow previous occurrences of cost centres to be found, and found in an

economical manner. The backtracking procedure which has been described need

only be followed until the previous occurrence of a cost centre is found; the cost

centre may be discovered through the first previous stack pointer (in a recursive

call to a function), or after fifty previous stack pointers, although it is certain that

if the previous stack pointers are exhausted and the first cost centre is found then

the cost centre has not been pushed before. Most of the time the backtracking

will not need to go all the way back to the first cost centre, as the previous stack

pointers ensure that the search is done as efficiently as possible.

If n is the number of cost centres in the current cost-centre stack and m is the

^This is a slightly more complicated example of case 1.

C h a p t e r 6: Cos t -Centre -S tack Profi l ing 183

H I J
Figure 6.2: Example call-graph.

total number of entries in the cost-centre index tables for all rii, then the complexity

of this last case is 0{n + Tn).

6.3.2 Two examples

Consider the call-graph in Figure 6.2. The current cost-centre stack, after calls

from F to G and then successful calls from G to H and / , would simply be {G, F)

at some instance in time when / had been executed and G was still executing. The

corresponding index table to this cost-centre stack would have references to the

functions H and / and pointers to their corresponding cost-stack codes.

The cost-stack code 2 may represent this cost-centre stack in the cost-centre-stack

table:

/ 4

The cost-stack table will also include references to the cost-stack codes 3 and 4.

Cost-centre-stack code 3 represents the cost-centre stack {H, G, F)

Cost-centre-stack code 4 represents the cost-centre stack (/, G , F)

These codes, plus the cost-stack code 1 for the cost-centre stack (F) make up the

cost-stack table which we will refer to as T .

C h a p t e r 6: Cos t -Centre -S tack Profi l ing 184

On calling function J , the operation Push{J, 2), the cost-centre-stack system will:

1. Look up the cost-stack code 2 in the cost-stack table and return the state.

2. Determine whether its index table has a reference to the cost centre.

3. If there is a reference to the cost centre, then the pointer to the corresponding

cost-stack code is returned as the new cost-centre stack. Function ends.

4. Otherwise, the previous stack pointers are followed back to determine whether

there is a previous reference to the cost centre in the cost-centre stack. The

code of each cost-centre stack visited is recorded on a conventional stack

until the previous reference to the cost centre is identified or the top cost-

centre stack, (MAIN), is reached. If the pushed cost centre is identified,

its parent state is found; from here the recorded list is followed again in

ascending order, creating new cost-centre stacks where necessary. At best

this cost-centre stack already exists, in which case its cost-centre-stack code

is returned as the current cost-centre stack; function ends. At worst we must

create a new cost-centre stack, stage 6, the new code of which is returned as

the current cost-centre-stack code.

5. If there are no previous references to the cost centre in the cost-centre stack

then a new code is allocated and the cost-centre stack is copied to the new

item in the cost-stack table, pushing the new cost centre onto the front of

the stack. An index table is created in this new instance containing a back

pointer to the parent cost stack, and this new cost-stack code is returned as

the new current cost stack. Function ends.

6. Stage 5 is repeated for all cost centres on the conventional stack. When this

is empty the cost-centre stack is returned as the result. Function ends.^

^The code for these steps is shown in Appendix B.

C h a p t e r 6: Cos t -Centre -S tack Profi l ing 185

MAIN

Call Graph which Cost Stack
Table represents

Cost Stack Index Table

Cost Centre MAIN
Backpointer NIL
Costs ?

A 2 —
B 3

Cost Centre A

Back pointer 1

Cost Centre B
Costs 7
Back pointer I

Cost centre D
Costs ?
Back pointer 3

Cost Centre C
Costs ?
Back pointer 3

Cost Centre B
Costs 7
Back pointer 2

Cost Centre A
Costs 7
Back pointer 7

Cost Centre D
Costs ?
Back pointer 5

COST STACK TABLE

Figure 6.3: Example cost-centre-stack table.

The resulting situation in the example is:

u

I^

The example considers function calls in a simple situation. It is more likely that

a call-graph of a program execution is far more complicated, with calls to previously

called functions and recursive definitions. The cost-stack implementation responds

equally well in such situations. Consider the call-graph and cost-stack table in

Figure 6.3.

An interesting case is presented when function D calls function A which is

already in the current cost stack, state 6 in the example cost-stack table. The

cost-stack rules state that a function can only appear in the cost stack once (^5).

It is therefore necessary to delete the previous reference to function A and create

a new cost stack.

C h a p t e r 6: Cos t -Centre -S tack Profi l ing 186

The back pointers are followed until cost centre A is found, creating as this
process is taking place a list of the descending cost centres.

From the current cost stack indexed by the number 6 in Figure 6.3, the back

pointers are followed starting with the current function at the head of the stack

D. The descending stack {B, D) is recorded before the previous call to A is found.

This previous reference to A is not added to the descending stack and its parent

function MAIN is found. From the MAIN function the descending stack {B, D)

is unwound to create the new cost stack. It is quite possible that part, or all, of

the new cost stack already exists. For instance in the example the function B has

already been called from the function MAIN and this cost stack already exists.

Likewise the function D has already been called from the function B so there is no

need to create a new cost stack {D,B,MAIN). Finally the function call to A is

added to the cost stack. This creates state 8 in the figure.

There will in general be many cases when the cost-centre stack which is ref

erenced already exists and it is only the exception when a new stack must be

created. For most of the time, therefore, updating the current cost-centre stack

simply means using a reference to another cost-centre stack in the cost-centre-stack

index table; the expense is simply the look-up in the cost-centre table, an operation

which is easily optimised.

6.4 Integration with GHC

The cost-centre-stack profiler is implemented on the Glasgow Haskell Compiler

version 0.22. The cost-stack code is written in C and is included with the G H C

run-time code. A large amount of effort has been spent on making this code

efficient.

The implementation is based upon a number of components.

• Though it need not always be the case, it is sensible that the source-code

expressions are identified using the - a u t o - a l l compiler profiling option. This

C h a p t e r 6: Cos t -Centre -S tack Profi l ing 187

ensures that all top-level functions are identified as cost centres and included
in the profiling results. Should the programmer annotate the code with cost
centres by hand, the information supplied to the post-processor will be less
detailed^. The results themselves may be equally valid but fewer cost centres
will be included during post-processing.

• The current cost-centre stack is maintained throughout the program execu

tion.

• The run-time system is extended to include the cost-centre-stack table.

• Compiler optimisations are maintained within the cost-centre-stack context.

• A post-processor manipulates the profiling results according to the program

mer's requirements.

These components are discussed in turn.

6.4.1 Identifying source-level expressions

During profiling cost centres are set using the - a u t o - a l l run-time flag. This

records profiling costs in terms of all top-level functions. The advantage of such a

scheme is that all top-level functions are made available for post-processing. The

programmer is able to follow the cost-centre stack function by function until the

expensive part of the code is identified.

Adding further cost centres will simply add more detail to the cost-centre stacks.

Adding cost centres to local definitions as well as all top-level functions will increase

the granularity of the stacks, that is the stacks will include references to the cost

centres describing local and global definitions. Reducing the number of cost centres

when profiling will simply reduce this effect.

^Unless the programmer places more cost centres in the code that the -auto-all profihng
flag.

C h a p t e r 6: Cos t -Centre -S tack Prof i l ing 188

6.4.2 Maintaining the current cost-centre stack

Costs must be attributed to the correct cost-centre stack during execution. This is

achieved by recording in a current cost-centre-stack register the cost-centre stack

which, in the context of the expression, is currently being executed. This register

is also used to return the resulting cost-centre stack with the result of an

expression. Any costs incurred within the expression are attributed to the current

cost-centre stack.

6.4.3 The extended run-time system

Many of the abstract machine-level modifications are implemented by a selection

of simple, low-level, code modifications to the existing cost-centre profiler of the

Glasgow Haskell Compiler.

Cost -centre-s tack program code

The interface of the cost-stack code with the remainder of the compiler is supported

by two functions, the push operation, for pushing new cost centres onto the cost-

centre stack and the print operation which allows cost-centre stacks and their

associated costs to be printed.

A cost-centre stack is implemented as a pointer to the cost-centre label at the

head of the stack^, a pointer to the cost-stack index table, a pointer to the previous

stack, and integers recording the time and heap allocated to that cost centre.

A cost-centre stack therefore contains 3 pointers and two integer values for

time and heap usage. This is designed in such a way as to minimise the profiling

overheads. This is equivalent to approximately 20 bytes per entry^ on the cost

stack. Cost-centre-stack codes are effectively replaced by pointers to improve the

^This label is part of the already existing cost-centre information. It is possible to access the
location in memory where this label is stored. The overheads involved in storing this label for
the cost-centre stacks are therefore only the price of a pointer.

^Based on gcc version 2.5.8.

C h a p t e r 6: Cos t -Centre -S tack Profi l ing 189

TTie cost centre profiler
current cost centre
refers to a single cost centre
data structure

Current Cost Centre/Stack

Cost Centre
Costs

The cost centre stack profiler
refers to a cost centre stack,
this is implemented by pointing
to an entry in the cost centre stack
table

The current cost centre and
the cost centre at the head of
the cost centre stxk share the
same name.
The costs which they store may
be different.

Cost Centre
Costs

It

Cost Centre Cost Centre <

Costs Costs
1

Cost Centre Cost Centre Cost Centre
Costs Costs Costs

A
1

Cnst Centre Cost Centre
Costs Costs

Cost centre Stack table

Figure 6.4: Implementation of the current cost-centre stack.

efficiency of the implementation.

The cost-stack index table contains a pointer to a cost-centre label, a pointer to

the associated cost-centre stack and a pointer to the next cost-centre index table

item. This structure therefore contains 3 pointers (12 bytes) for each item stored

in it.

In the results chapter the effect of this implementation is discussed, particu

larly whether the considerations made when designing cost-centre stacks actually

produce an effective implementation.

A l t e r i n g the G H C cost centres

The discussion of semantic definitions in section 6.2.1 shows the movement from the

current cost centre to the current cost-centre stack. This change was implemented

at a low level by changes to the current cost-centre code supported by C macros

in the G H C compiler:

C h a p t e r 6: Cos t -Centre -S tack Profi l ing 190

In Figure 6.4 the modifications made to the run-time system can be seen. The
implementation of the current cost centre in the cost-centre compiler pointed to
a single cost centre; this can be seen to the left of the figure. To the right of
the figure are the extensions made. The current cost centre (now appropriately
renamed 'current cost-centre stack') points to an entry in the cost-stack table; this
entry is the current stack.

It would be possible to remove the old cost centre from the current cost-centre

stack, thus directly replacing the notion of a current cost centre with a current

cost-centre stack. However, the current cost centre is retained. This leaves open

the possibility of improving the eflBciency of the cost-centre-stack profiler, but for

the time being additions are made to the existing profiler rather than any of the

previous information being removed.

It may have been noticed that there is no reference to the cost-centre-stack code

in the implementation. In fact this code is replaced by an actual code in memory

where the cost-centre stack is stored. In other words, it is represented as a pointer!

Now it does not matter how many stacks are created, the cost-centre-stack code

will always be 4 bytes.

Each cost centre is registered at run-time by traversing the module dependency

graph at the start of execution. In each module a small routine is declared which

registers the cost centres declared in that module; it also calls the registering routine

of all the imported modules, thus ensuring the registration of all modules in the

system. The declaration of a cost centre calls a small piece of code, CC_DECLARE, to

reset the cost counts. This registering procedure is used in the cost-centre profiler

so that all cost centres in the code are declared.

The current cost-centre stack is initialised to (). The cost-centre-stack table

is built dynamically as the execution of the program proceeds. The cost-centre

stacks are implemented in a single module written in C . This resets the appropriate

counters and labels as the cost-centre stacks are built.

C h a p t e r 6: Cos t -Centre -S tack Profi l ing 191

Current Cost Centre/Stack

Current cost centre stack <A>

Current Cost Centre/Stack

Set_Cost_Centre (New_CC, Current_CC)
New_CC.Stack = Push(New_CC.Label, Cuirent.CC.Stack)
Current_CC = New_CC

B Current cost centre stack <B,A>

Figure 6.5: Implementation of Push.

T h e implementat ion of the P u s h operation

The cost-centre-stack profiling scheme is implemented by adding the notion of

a cost-centre stack to the cost-centre profiler in the STG-machine. All costs of

function evaluation are attributed to the current cost-centre stack.

In the implementation of the cost-centre profiler an execution of an sec expres

sion would set a new current cost centre. The old cost centre would be saved on

the return stack so that when a constructor was restored, the correct cost centre

would be returned as the current cost centre. In this way the scoping of the cost

centres was achieved.

Profiling using cost-centre stacks rather than just cost centres works in a similar

way. The addition to the cost-centre system is that when a cost centre is set it is

also pushed onto the current cost-centre stack.

Figure 6.5 shows how this works. At stage 1 in the diagram the current cost

centre/stack refers to the cost centre A; the current cost-centre stack is also referred

to, in this case it is (a).

When the current cost centre is set (the pseudo code 'Set.Cost.Centre' in the

diagram) the current cost centre and the current cost-centre stack are updated.

Updating the current cost-centre stack uses the push operation.

C h a p t e r 6; Cos t -Centre -S tack Prof i l ing 192

The new cost-centre stack is created with the operation push{B, (A)), resulting
in the cost-centre stack {B,A).

R e c o r d i n g costs

The underlying mechanism for recording costs in the G H C profiler is implemented

using U N I X signals. The execution of the program is interrupted every 20ms using

the s e t i t imer system call. Each of these interrupts is handled using the s ignal

system call, during which the interrupt handler increments the time_tick counter

of the current cost centre and also of the current cost-centre stack.

When the cost centres and their results are printed at the end of a program's

execution, the cost stacks are also printed. A discussion of the results is left until

later in the chapter.

6.5 Maintaining Compiler Optimisations

Some of the first results from the cost-centre-stack profiler were recorded without

any further changes to the Haskell compiler. The results showed the interesting

behaviour of the Glasgow compiler optimisations which were performed on the

code.

Consider the call-graph in Figure 6.6, which is derived from one of the test

programs. It is quite clear to the user which call stack refers to a certain part of

the program. For instance, a visit to the function g would have come from stacks

{d, b, a, main) or (e, b, a, main). The user would not expect anything different.

The first results however included the stack (e, a). From looking at the call-

graph it is clear that such a stack should not exist, unless of course it in fact

represented the stack (e, b, a, main), which to all accounts it did. The complete set

of initial results are shown for reference^:

'̂ These results will be discussed in more detail in chapter 7.

C h a p t e r 6: Cos t -Centre -S tack Prof i l ing 193

m a i n

Figure 6.6: Call-graph of an experimental program.

A cost stack <Main_j,Main_h,Main_f,Main_c,> with 1462 TICKS X
A cost stack <Main_f,Main_c,> with 353 TICKS X
A cost stack <Main_i,Main_f,Main_c,> with 8 TICKS X
A cost stack <Main_h,Main_f,Main_c,> with 0 TICKS X
A cost stack <Main_g,Main_e,Main_a,> with 12 TICKS X
A cost stack <Main_j,Main_g,Main_e,Main_a,> with 12 TICKS X
A cost stack <Main_a,> with 20 TICKS
A cost stack <Main_e,Main_a,> with 0 TICKS X
A cost stack <Main_b,Main_a,> with 14 TICKS
A cost stack <Main_d,Main_b,Main_a,> with 0 TICKS
A cost stack <Main_g,Main_d,Main_b,Main_a,> with 25 TICKS
A cost stack <Main_j,Main_g,Main_d,Main_b,Main_a,> with 28 TICKS
A cost stack <MAIN,> with 0 TICKS
A cost stack <Main_c,> with 0 TICKS X

The results contain a collection of 'broken stacks', annotated in the results with

the extra column and the Xs. These broken stacks contain instances of the form

{z,x) or {z,y) where they should have been represented as {z,y,x).

The program was compiled and executed with the —O flag and consequently the

cost stacks were being incorrectly constructed. This could be tested by switching

C h a p t e r 6: Cos t -Centre -S tack Profi l ing 194

the optimiser off. The non-optimised program produced the following results*:

A cost stack <Main_j,Main_h,Main_f,Main_c,Main_a,> with 1429 TICKS
A cost stack <Main_f,Main_c,Main_a,> with 359 TICKS
A cost stack <Main_j,Main_g,Main_e,Main_b,Main_a,> with 13 TICKS
A cost stack <Main_g,Main_e,Main_b,Main_a,> with 10 TICKS
A cost stack <Main_a,> with 0 TICKS
A cost stack <Main_i,Main_f,Main_c,Main_a,> with 9 TICKS
A cost stack <Main_b,Main_a,> with 0 TICKS
A cost stack <MAIN,> with 0 TICKS
A cost stack <Main_h,Main_f,Main_c,Main_a,> with 0 TICKS
A cost stack <Main_g,Main_d,Main_b,Main_a,> with 23 TICKS
A cost stack <Main_j,Main_g,Main_d,Main_b,Main_a,> with 32 TICKS
A cost stack <Main_d,Main_b,Main_a,> with 0 TICKS
A cost stack <Main_c,Main_a,> with 0 TICKS
A cost stack <Main_e,Main_b,Main_a,> with 0 TICKS

These demonstrate that without the compiler optimisations the cost-centre stacks

produced are un-broken and therefore correct. The implementation of an accurate

post-processor relies on the fact that cost-centre stacks are complete; any post

processing would be very difficult if the cost-centre stacks needed to be patched or

repaired. The results produced may also be inaccurate or misleading.

The development of the cost-centre-stack profiler could have relied on the fact

that the code could only be compiled or executed without compiler optimisations.

The idea of profiling a system without any optimisations does however seem rather

contradictory, as, assuming that the programmer would wish to run his code with

the optimisations present, the code executed would be different to the code profiled.

It was therefore necessary to consider changes to the compiler optimiser to

maintain correctly-constructed cost-centre stacks. These changes aimed as much

as possible at retaining the existing optimisations to the code and producing an

executable which was comparable in size and execution speed to the original cost-

centre profiled optimised code.

*The function main was not profiled.

Chapter 6: Cost-Centre-Stack Profiling 195

6.5.1 Lazy evaluation

Lazy evaluation forces the interleaving of the evaluation of an expression with the

evaluation of the inputs which i t demands. Since an expression itself is in demand,

i t will also be interleaved with the execution of its demander. For this reason,

stated in Sansoms's thesis, the resulting order of execution does not have a direct

correspondence with the code to which the results must be mapped. The call stacks

will not therefore be explicit call stacks at run-time but rather 'demand' stacks.

These demand stacks will accurately record the order of evaluation in the pro

gram. I t should be considered, however, that optimisations performed by the com

piler may affect the order of the evaluation. These fall into two categories: firstly,

hidden functions are introduced by a high-level translation of syntactic sugars such

as list comprehensions; and secondly, auxiliary functions and definitions are intro

duced as expressions are transformed.

The combined effect of all the transformations may change the structure of

the original source code. These code transformations may therefore change the

appearance of the cost-centre stacks. The creation of the stack (e, a), found in the

earlier results, is in fact an optimised demand stack.

The compiler transformations, presented in chapter 5, are re-examined and re

defined to work correctly in the context of the cost-centre stacks. The correctness

of the new transformations in the preservation of cost scoping is also investigated.

6.6 Compilation by transformation revisited

Recall the optimisation rules investigated in chapter 5. The first transformation

rule explored, T l , floated an sec expression into a let-binding.

(T l) sec cc l e t V = Ey in E => let v = {sccsub cc Ey) in (sec cc E)

The cost of reducing the expression E remains within the scope of the cost centre

sec. The costs of the expression Ey must also be kept within the scope of the cost

Chapter 6: Cost-Centre-Stack Profiling 196

centre cc. This is done using the sccsub annotation to indicate that although this
sub-expression has been moved into the scope of a different cost centre, the costs
of evaluation must still be attributed to the cost centre cc. Evaluating an scc^u;,
expression does not increment the count of the expression instances evaluated, this
is only incremented when the original sec expression is entered. Therefore both
the costs of evaluating E and are attributed to the cost centre cc.

(T2) l e t V = Eyin (sec cc E) ^ see cc l e t v = (sces„6 ecc Ey) in E

The second transformation, T2, floated a let-binding into an sec annotation.

The let-binding and the expression E are in the scope of the cost centre cc on the

right of the transformation rule. The right hand side of the transformation must

also be annotated with a sccgub expression, enclosing the expression Ey with the

enclosing cost centre (ecc). This prevents the costs of evaluating the expression Ey

from being incorrectly attributed to the cost centre cc.

I t was noted that this second transformation can only be performed if the

enclosing cost centre ecc is known.

The transformation, T3, was applied by the simplifier to remove the redundant

cost centres in the code.

(rs) I f Ey has an see expression on it then see^u;, cc (see cc' Ey) see cc* Ey

This transformation preserves the immediately enclosing cost centre, but re

moves any of the other cost centres, as in the cost-centre profiler these are seen as

redundant.

I t is this transformation which is in fact responsible for the compiler optimiser

breaking the cost-centre stacks of the cost-centre-stack profiler.

6.6.1 The source of broken stacks

The transformation, T3, preserves the immediately enclosing cost centre within

optimised code but, as the results of the cost-centre-stack profiler show, prevents

the stack of cost centres from being accurately recorded. This optimisation creates

Chapter 6: Cost-Centre-Stack Profiling 197

the broken stacks in the initial results.

I t is therefore possible to accurately record the cost-centre stacks of a program

if the optimisation transformation, T3, is removed. The let-floating code in the

simple Core language of GHC is altered to reflect this analysis.

As expected the results received from the modifications to the compiler opti

miser show the correct construction of cost-centre stacks. The compiler optimiser

remains active throughout the compilation and execution of this program. The

results are:

A cost stack <Main_j,Main_h,Main_f,Main_c,Main_a,> with 1471 TICKS
A cost stack <Main_f,Main_e,Main_a,> with 366 TICKS
A cost stack <Main_j,Main_g,Main_e,Main_b,Main_a,> with 15 TICKS
A cost stack <Main_g,Main.e,Main_b,Main_a,> with 11 TICKS
A cost stack <Main_a,> with 0 TICKS
A cost stack <Main_b,Main_a,> with 0 TICKS
A cost stack <Main_i,Main_f,Main_e,Main_a,> with 10 TICKS
A cost stack <MAIN,> with 1 TICKS
A cost stack <Main_c,Main_a,> with 0 TICKS
A cost stack <Main_g,Main.d,Main_b,Main_a,> with 26 TICKS
A cost stack <Main_j,Main_g,Main.d,Main_b,Main_a,> with 34 TICKS
A cost stack <Main_d,Main_b,Main_a,> with 0 TICKS
A cost stack <Main_e,Main_b,Main_a,> with 0 TICKS
A cost stack <Main_h,Main_f,Main.c,Main_a,> with 0 TICKS

The transformation, T3, is not an essential transformation operation. I t was in

cluded in the original GHC code to remove any unnecessary see annotations in

optimised code. Removing this transformation will therefore have a minimal effect

on the efficiency of the resulting code.

I t is necessary to consider whether removing this transformation will have any

effect on the scoping of cost centres, that is whether the program costs will be

correctly attributed to the cost-centre stacks according to the cost-centre-stack

semantics specified earlier.

Chapter 6: Cost-Centre-Stack Profiling 198

6.6.2 Preserving the semantics of cost-centre stacks

The compiler optimisations are modified so that they preserve the embedding of the

cost centres, thus enabling the correct construction of cost-centre stacks. As well

as identifying the correctness of the embedding of cost centres i t is also necessary

to consider the cost-scoping behaviour of the cost-centre stacks.

Altering the compiler optimisations may preserve the order in which the cost

centres are pushed onto the cost-centre stacks, but for the costs to remain accurate

the costs must also be assigned to the cost-centre stacks correctly.

The investigation follows the effect of the let-floating transformation rules de

scribed earlier on a stack of cost centres. These compiler transformation rules have

been analysed in terms of single enclosing cost centres for the cost-centre profiler;

this section endeavours to judge whether the rules preserve the scope of the cost

centres in the context of cost stacks.

The correctness of the transformation rules applied to a cost-centre stack of

size 1 is unquestionable, this is just the correctness of the transformation rules as

applied to single cost centres. This work has been considered in [Sansom, 1994].

The more interesting case is the analysis applied to a cost-centre stack greater than

size one. The exploration is extended and applied in the context of two enclosing

cost centres, thus presenting the compiler transformations in terms of a cost-centre

stack of size 2 or more^.

In each left-hand side of the transformation rules there are three important

constituents; the cost centre, the value inside the let-binding expression Ey and the

expression E itself. The investigation of correctness examines the effect of applying

the transformations T l and T2 to the expressions with the surrounding cost-centre

stack (5^a^S. a and ^ represent any cost centres and S represents any cost-centre

stack. In each case the cost-centre stacks surrounding the expressions Ey and E,

before and after the transformations have been applied, should be equivalent.

^This leaves open the possibility of a complete mathematical proof on the correctness of the
transformations over a stack of size n. The base case is supplied by Sansom, the inductive case
is supplied in this thesis.

Chapter 6: Cost-Centre-Stack Profiling 199

Analysis of let-floating transformation (T l)

From the see expressions i t can be seen that the cost-centre stack over Ey before

the transformations is P ^ c x ^ S , over E it is also P ^ a ' ~ ^ S :

sec a. (see 15 (l e t v = Ey'm E))

Applying T l over ^

see a (l e t v = (see^ut (3 Ey) in (sec (3 E))

Applying Tl over a

l e t V = {scCsub OL {scCsub P Ey)) in (sec a (see P E))

The cost-centre stack over Ey after the transformations is P ^ a ' ~ ' S , over E i t is

This demonstrates that the transformation Tl preserves the semantics for the

cost-centre stacks when the transformation T3 is removed.

Preserving the cost-centre stack requires T3 to be removed, otherwise the result

is the enclosing cost centre P , and not the cost-centre stack P ^ a ^ ^ S . With TS

removed the correctness of the cost-centre-stack semantics is preserved

•

Analysis of let-floating transformation (T2)

The same analysis is performed on the transformation T2. The cost-centre stack

is also represented as P ^ a ^ S .

Cost-centre stack over Ey before the transformations = S, over E = P ^ a ^ S

l e t V — Ey in (see 0!(sce P E))

Applying T2 over a

^°It is recognised that the reduction of the let is moved outside the scope of the cost centres.
This is the same problem which was recognised in the cost-centre profiler and considered to have
little effect on the results. We therefore make the same assumption that the movement of this
single reduction between cost-centre stacks is not considered to affect the results in any significant
way.

Chapter 6: Cost-Centre-Stack Profiling 200

see a (l e t v — {zzCsub S Ey) in (sec /3 E))

Applying T2 over P

see a (see j3 (l e t v = {scCsub a {scCgub S Ey)) in E))

Cost-centre stack over Ey after the transformations = a'^S, over E = { P , a) " " S .

Therefore in this case the transformation T2 does not preserve the enclosing cost-

centre stacks. I t is not correct to have a in the cost-centre stack of the expression

Ey. When the costs of evaluating Ey are inherited to the cost centres in the cost-

centre stack in the scope of Ey they will incorrectly be attributed to a. The cost

centre a did not begin in the scope of the expression Ey and the transformation

T2 moves i t into the scope of this cost centre, leading to potentially misleading

results.

•

The transformation T2 will not correctly preserve the cost-centre-scoping se

mantics when used in the context of the cost-centre-stack profiler on optimised

code. To find some way of solving this problem it is necessary to understand in

what context this second rule is used as moving the see outside of the let expression

seems to be contradictory to rule T l .

6.6.3 Cost-centre-stack transformation rules

The transformation rules T l and T2 allow lets to be floated out and floated in

respectively, both of these are desirable depending upon the situation.

When performing let-floating operations there are two basic ideas to be re

spected. Firstly, i t is always good to float lets out past lambdas (loop reduction),

and secondly, it is best to float them in as far as possible (provided that sharing is

not lost) as allocation will be avoided i f an alternative path is taken. I t is desirable

therefore to be able to propagate lets into and out of see's.

The cost-centre-stack work is supported by the fact that at present the Glasgow

Haskell Compiler does not perform the let-floating transformation T2 as part of its

Chapter 6: Cost-Centre-Stack Profiling 201

compiler optimisations; instead the propagation of lets into an see is prohibited.

I t may seem strange that the transformation T2, despite being documented, is

not implemented as part of GHC. Propagating lets into see's is still a desirable ac

tivity, but there is no way in the Glasgow compiler of keeping track of the enclosing

cost centre ecc. Therefore, although this optimisation was able to be suggested, no

method of implementation was achieved.

However, with the cost-centre-stack theory this problem can be solved. With

cost-centre stacks i t is not necessary to keep track of the enclosing cost centre ecc

since i t will already be on the stack. A modified version of T2, within the context

of cost-centre stacks, can be defined.

(T2 stacks) l e t v = Ey in (sec cc E) =^ sec cc l e t v = (scCpop Ey) in E

Here 'seCpop Ey' means evaluate Ey in the context of a cost-centre stack with

the current cost centre, cc, popped off the top of the stack. As the cost-centre stack

is recorded at run-time the compiler problem is solved, as it is not necessary to

know the ecc at compile time. This new rule also preserves the cost-stack-scoping

rules which T2 did not.

As well as extending the methods of profiling available, the cost-centre-stack

profiling theory may also have other benefits; in this case allowing proposed opti

misation transformations to be implemented in practice.

These transformations supported by the notation of cost-centre stacks can be ex

tended. A valid optimising transformation which would arise i f a let was floated in

and then out again would be:

{T4 stack) scCsub cc (sccpop e) e

Another proposed transformation could be:

(T5 stack) sccout cc (scCpop e) ^ scCpop2 e

This, for example, would evaluate e with two cost centres popped off the stack.

There are a number of possibilities with this new approach.

Chapter 6: Cost-Centre-Stack Profiling 202

6.6.4 The cycle problem

Although the above scheme does seem promising this is not the end of the story.

Using compressed stacks means that it is not true that \/s»ye»pop{push{e, s)) = s;

that is, a push followed by a pop does not always get you back to the original stack.

Consider this example. Beginning with the cost-centre stack (6, a) the opera

tion push{a,{b,a)) produces the cost-centre stack {a,b). Applying the operation

pop{{a,b)) to this cost-centre stack returns (b). Conventionally we would expect

this to return the original cost-centre stack, but because of stack compression this

is not the case.

The rule {T2 stacks) will not work if the seCpop operation is defined as a stan

dard stack pop, unless the see on the left hand side of the rule is forced to create

an uncompressed stack at the point at which cc is added.

I f this is the case, for notational convenience, the see on the right hand side of

the (T2 stacks) rule is underlined to demonstra,te that this represents an uncom

pressed rather than a compressed push.

(T2 stacks) l e t v = Ey in (see cc E) =̂ sec cc l e t v = (seCpop Ey) in E

This will preserve the uncompressed stack for the standard pop operation. Once

the secpop operation occurs then the nesting of the rules will ensure that the stacks

then revert back to the system of compressed stacks.

I t is therefore feasible to have a cost stack which is made up of compressed and

non-compressed stacks.

This is a solution based on the fact that compressed stacks are not 'popable'

because each cost centre only appears on the stack once.

There are some questions which this method presents:

• I f the cost-centre-stack scheme is augmented with uncompressed stacks, will

this mean that all the stacks are uncompressed? i.e. how often will this

un-compression occur.

Chapter 6: Cost-Centre-Stack Profiling 203

• Using uncompressed stacks requires the post-processing semantics to be re
defined to include multiple occurrences of cost centres. Uncompressed stacks
wil l not then affect the correctness of the algorithm, though they will impose
some extra overheads on the post-processing part of the code.

• W i l l the uncompressed stacks become huge? This may effectively create the

problem which was first avoided by the creation of compressed stacks. Some

compromise can be made to try and prevent the problem: For instance it

is possible to avoid using the transformation rule {T2 stacks) when the let

expression is recursive; having a locally recursive definition in the context of

uncompressed cost stacks is potentially disastrous. I t is possible to identify

in the compiler whether the let is recursive or not and therefore restrict the

algorithm to only those non-recursive cases.

The proposed solution to this problem is to optimise the compressed and uncom

pressed activity so that uncompressed stacks are only used within the l e t and not

the l e t - r ee expressions of optimised code.

The author is indebted to Patrick Sansom of Glasgow University for his advice

regarding compiler optimisations.

6.7 Post-Processing Cost-Stack Results

The cost-centre stacks results are amenable to two forms of post-processing. Firstly,

they can be used to produce an accurate inheritance profile and secondly, they can

be used to select and deselect cost centres.

6.7.1 An accurate inheritance profile

A flat profile

Initially the cost-centre stacks are used to produce a flat time profile, similar to

the results of the cost-centre profiler. This is displayed as a text file and also in

Chapter 6; Cost-Centre-Stack Profiling 204

the graph-tool environment (see later section).

The flat profile is created according to the secondary cost semantics seen in

section 6.2.2 using a script program written in C. As an example consider the

following three stacks produced as output from the cost-centre-stack profiler:

<Main_f,Main_j,Main_MAIN,> with 10 Ticks

<Main_g,Main_j,Main_MAIN,> with 20 Ticks

<Main_f,Main_MAIN,> with 15 Ticks

Calculating the flat profile involves collecting those cost centres at the head of

each of the cost-centre stacks, Main_f, Main_g and Main_f, and adding up their

associated costs. These results,

Main_f = 25 Ticks

Main_g = 20 Ticks

can then be calculated as a percentage of the total number of time ticks recorded;

55.55% and 44.45% respectively. Any remaining cost centres in the stacks are given

zero costs.

The script program takes the file containing the cost-centre stacks as its input

and after processing the costs it produces two text files as its output. The first is

the flat profile of the following form:

F r i Nov 3 15:39 1995 Time and Allocation Profi l ing Report (Final)
(Hybrid-Cost-Staek Scheme)

run +RTS -pT -RTS

COST CENTRE MODULE GROUP see subec '/otime
Main_f Main Main 2 0 55.5
Main_g Main Main 1 0 44.4
Main_j Main Main 2 2 0.0
Main_MAIN Main Main 3 3 0.0

The second is the input to the graph-tool.

Chapter 6: Cost-Centre-Stack Profiling 205

object) 0 0 0 0 0 (Main.j)(cost) (0.0) (_) (_) object
object) 1 0 0 0 0 (Main.f)(cost)(55.5) (_) (_) object
object) 2 0 0 0 0 (Main.g)(cost)(44.4) (_) (_) object
object) 3 0 0 0 0 (Main.MAIN)(cost)(0.0) (_) (_) object
l ink) 0 2 0 0 0 0 0 0 (- l) (directed) (LineSolid) l ink
l ink) 0 1 0 0 0 0 0 0 (- 1) (directed) (LineSolid) l ink
l ink) 3 0 0 0 0 0 0 0 (- l) (directed) (LineSolid) l ink
l ink) 3 1 0 0 0 0 0 0 (- 1) (directed) (LineSolid) l ink

This file produces enough information to allow a call-graph to be displayed. The

objects in the file correspond to the nodes of the call-graph. These nodes are

uniquely numbered so that links can be created between the nodes.

An inherited profile

The accurate inheritance profile is produced using the post-processing script file

in accordance with the inheritance semantics of section 6.2.2. The previous three

cost-centre stacks produce the inherited results:

Main_MAIN = 45 Ticks

Main-j = 30 Ticks

Main_f = 25 Ticks

Main_g = 20 Ticks

These can also be presented as percentage figures, 100%, 66.6%, 55.5%, 44.4%

respectively. They can be displayed in a table, in a similar manner to the flat

profile, and also in the graph-tool environment.

6.7.2 Selecting and deselecting cost centres

Cost centres can be selected and deselected within the post-processing tool. It is

currently possible to toggle this facility so that the programmer can either select

or deselect the cost centres according to whether he is interested in profiling them.

This facility could easily be extended to include modules or groups of cost centres.

Those cost centres which are selected are included in the profiling results. In

the above example, selecting the cost centres Main_MAIN and Main_j produces the

Chapter 6: Cost-Centre-Stack Profiling 206

following inherited results:

Main_MAIN = 15 Ticks

Main_j = 30 Ticks

This accurately subsumes the cost of Main_f to the correct calling function. I t also

inherits all the costs below Main.j to that point in the program and no higher,

unless Main_MAIN is directly responsible for its costs.

Running the post-processing script on even detailed cost-centre stacks only

takes a matter of seconds to produce the required results.

6.7.3 Displaying call-graphs

A substantial amount of work has been done on the display of functional call-graphs

by the Centre for Software Maintenance at the University of Durham, [Boldyreff,

Burd and Hather, 1995] [Kinloch and Munro, 1994]. The AMES (Application

Management Environments Support) project^^ has developed a suit of tools which

allow the functionality of a program to be analysed interactively. This helps the

programmer in the program comprehension process and also with application un

derstanding, a broader concept which allows the programmer to understand not

only the functioning of the code but also the functionality of the application itself.

The AMES programming tool includes a method of displaying call-graphs for

programs [Bodhuin, 1995]. Both automatic and manual layout can be performed

on these graphs; call-graphs can also be automatically manipulated within this

tool. Operations allow call-graphs to be simplified and displayed hierarchically,

progressive changes are stored and a history of the call-graphs during analysis is

displayed within the NCSA Mosaic environment. The graph-tool is described in

more detail in section 6.7.4.

This programming environment has been modified to include a method for

"ESPRIT Project: number 8156. Partners: Cap Gemini Innovation, Cap Programmator,
Intecs Sistemi Spa, Matra Marconi Space, OPL-TT, Space Systems Finland, Valtion Teknillinen
Tutkimuskeskus and University of Durham.

Chapter 6: Cost-Centre-Stack Profiling 207

displaying the cost-centre-stack profiler results.
Cost-centre-stack profiling results

The call-graph results are displayed in graphical form. There are a number of

points to note about this form of display.

• The graph is presented with function names at each individual node. These

function names correspond to cost centres in the code, so as extra cost centres

are added these will also appear as nodes in the call-graph. Function calls

are represented by the arcs in the graph.

• The cost-centre name (function name) and the corresponding percentage of

execution time are displayed at each node.

• The costs at each node of the graph may be inherited or non-inherited costs.

These are selected by the programmer using the post-processing tool. Each

time a post-processing function is run, the call-graph must be reloaded for

the updated results.

• The most expensive cost-centre stack can be selected and highlighted. This

is useful when the call-graph is very large. The programmer is immediately

pointed towards that part of the program where the largest percentage of

the costs manifest themselves. From this the programmer can work out not

only where an expensive function in the call-graph is, but, if the function is

shared, in which direction his attention should be focussed.

• The graph is interactive and may be arranged using the mouse. This enables

parts of the graph that are interesting to the programmer to be brought into

the foreground. The graph-tool also has a virtual display which allows parts

of the graph to be displayed at any time.

• A l l functions on the graph-tool and post-processor are selected from the win

dow based menu system. This gives the programmer control over how he

manipulates and views the results (see next section).

Chapter 6: Cost-Centre-Stack Profiling 208

• The post-processor, which controls the results to the graph-tool, is written
in Tk and run under the wish interpreter.

6.7.4 Further facilities

A number of further facilities are provided to aid the programmer. Call-graphs can

be simplified in a number of ways: specific nodes can be removed; specified nodes

can be retained while the remainder of the call-graph is removed; leaf nodes can be

removed; fan-in functions can be removed (these are functions which are called by

a large number of other functions but call no other functions themselves); fan-out

functions can also be removed (these are functions which call a large number of

other functions but may themselves only be called once). These last two operations

greatly simplify the call-graphs; sub-graphs can also be removed.

The HTML tool also allows the source code to be viewed. This enables the

programmer to select the code from inside the profiling environment.

Al l these facilities and the resulting call-graphs which they produce can be

stored in the profiling history of a program. They can be referred to by the pro

grammer to aid the profiling and code-comprehension process.

6.8 Chapter Summary

The extensions to the cost-centre profiling approach are based on the experience

of profiling the LOLITA system, a large real-world system written in Haskell, over

a number of years.

The use of cost-centre stacks in profiling is described. This method allows

more accurate profiling results to be produced with the use of a post-processor.

Inheritance of costs is based on actual calls to functions and not on statistical

averaging.

The eval-apply semantics developed by Sansom to describe cost-centre profiling

Chapter 6: Cost-Centre-Stack Profiling 209

theory are extended to describe the cost-centre-stack profiling approach. These
semantics allow the costs involved in evaluating a Haskell expression to be as
signed unambiguously to cost-centre stacks. A new theory of cost inheritance is
mathematically defined.

The cost-centre-stack technique is only made possible with an effective imple

mentation. The use of cost-stack tables and cost-stack codes allow codes, rather

than larger stacks, to be passed in the execution of a program. The stacks them

selves are compressed so that an infinite number of stacks can be addressed in a

finite representation. This means that the solution is always feasible, even when

profiling large functional systems.

The implementation of the cost-centre-stack profiler required the analysis and

re-design of compiler optimisation rules. Transformations in the Core language were

producing incorrect cost-centre stacks. New transformation rules were designed to

avoid the stacks becoming broken and also to preserve the effectiveness of the

optimisations.

A post-processor was implemented using Tk and part of the AMES program

maintenance tool. This offers an automated scheme to display the results of pro

filing in terms of a post-processor and call-graph. The costs of functions can be

automatically inherited in this environment. The call-graph can also be automat

ically simplified and the expensive arms in the call-graph highlighted. A profiling

history is kept which allows the programmer to refer to the previous profiling results

produced.

Chapter 7

Results and Evaluation

This chapter presents and evaluates some of the results from the cost-centre-stack

profiler and the accompanying post-processor. Although the emphasis of the thesis

is on the analysis of large-scale systems, the results begin with some smaller example

programs. This allows the results of the cost-stack profiler and the cost-centre

profiler to be compared for programs which use shared and higher-order functions.

The first example demonstrates the effect which the cost-centre-stack profiler

has on the results of shared functions. I t is difficult to illustrate the benefits

of accurate cost inheritance when working with larger programs; the quantity of

code means that it is not always easy to see why the results are so different.

Therefore, the first program is only 15 lines long. The results gained from the cost-

centre profiler and the cost-centre-stack profiler are significantly different. This

first example is also used to explain the post-processing procedure.

The second set of results were collected from the Clausify program, now re

garded as one of the profiling benchmarks. Runciman and Wakeling chose the

Clausify program to demonstrate the results achieved using their heap profiler.

They were able to make substantial improvements to the program. The modified

program was later used by Sansom to identify further improvements, not previ

ously discovered using the heap profiler. The program is therefore profiled using

the cost-centre-stack profiler and the results are discussed.

C h a p t e r 7: Resu l t s and Eva luat ion 211

Results are then presented f rom some larger examples. The first is a 10,000 line
subset of the L O L I T A system which tests the information held in the semantic net
of the system. The second set of results is taken f rom the L O L I T A system itself; this
extends the results by including a program which contains hundreds of thousands
of funct ion calls. The final set of data is collected f rom the nof i b benchmark suite
supplied by Glasgow University; this allows some general conclusions to be drawn.

A n important element in evaluating the results is the consideration of the cost-

centre profiler overheads. The success of the profiling scheme is dependent on

the conclusion that the overheads of collecting these more detailed results during

program execution are acceptable.

7.1 Introductory Example

The first set of results were collected f rom a simple program, designed to be com

putat ionally expensive. The program, which repeatedly reverses lists of numbers,

makes use of a number of shared functions. These functions illustrate the differ

ence in the results achieved using a method of cost inheritance, produced by the

cost-centre-stack profiler, and a method of flat profiling, produced by the original

cost-centre profiler. The example is clearly contrived, but serves to illustrate the

basic differences between the two sets of profil ing results.

The program

> module Main where
> main = p r i n t (l e n g t h a)
> a = (b 1) ++ (c 1)
> b X = (d x) ++ (e x)
> c x = f X

> d X = g (x - 10)
> e X = g X

> f X = (h x) ++ (i x)
> g X = (j [X . . 1 0 0]) ++ (rev (rev (rev (rev [x . . l O O]))))
> h X = j [-1000 . .100]
> i X = r e v (r ev (r e v (r ev [x . . l O O])))
> j 1 = r ev (r ev (rev (rev (rev (rev (rev 1))))))
> r ev = f o l d l (f l i p (:)) • — A reverse f u n c t i o n

C h a p t e r 7: Resu l t s and Eva luat ion 212

main

••b'-(l)

> f̂ (1) d (-10)

g'^^a-ia.ioo]) h ([-1000..100]) i ([1..100])

Very expensive
Expensive

Figure 7.1: Call-graph of experimental program.

is depicted in the call-graph in Figure 7.1. The shared functions g and j serve

to illustrate expensive functions, i f called wi th suitably large arguments. I t is a

funct ion call f rom h to j which causes the largest amount of computation; the

funct ion call f rom g to j causes significantly less. The arguments passed to the

called function are shown in brackets in the figure; for example function e calls

funct ion g w i t h the argument 1.

The program is time-profiled w i t h the cost-centre profiler^ and the results are

displayed in Figure 7.2. As expected, the reverse function rev (from the program

Main) accounts for nearly all of the execution time, 99.7% in total^. The remaining

0.3% of costs are at tr ibuted to the functions f (0.1%) and the prelude (0.2%). This

last figure is due to the catenation function (++) used throughout the program. The

remaining functions show execution costs of 0.0% as they have not registered any

t ime samples during the execution of the program.

^Compile-time flags: -prof -auto-all; Run-time flags: -pT.
2 The reverse function is included in the Main program to prevent costs being assigned to the

PRELUDE hbrary.

C h a p t e r 7: Resu l t s and Eva luat ion 213

Thu Jun 20 14:46 1996 Time and Allocation P r o f i l i n g Report
(Hybrid Scheme).

run +RTS -pT -H60M -RTS

(Fin a l)

COST CENTRE MODULE GROUP sec subcc "/.time '/.alloc
Main.rev Main Main 20867 20834 99, .7 99.8
Main_f Main Main 3 2 0, .1 0.0
Main_a Main Main 2 3 0, .0 0.0
Main_b Main Main 2 2 0, .0 0.0
Main_g Main Main 2 12 0, ,0 0.0
MAIN MAIN MAIN 1 0 0, ,0 0.0
Main_c Main Main 1 3 0, ,0 0.0
Main_d Main Main 2 1 0, ,0 0.0
Main_e Main Main 1 1 0, .0 0.0
Main_h Main Main 1 2 0, .0 0.0
Main_i Main Main 1 4 0, ,0 0.0
Main_j Main Main 6 21 0, ,0 0.0
PRELUDE Prelude Prelude 0 0 0, ,2 0.1
Main_main_CAF Main Main 0 0 0 ,0 0.0
CAP.Main Main Main 0 3 0, .0 0.0
Main_h_CAF Main Main 0 0 0, .0 0.0
Main_g_CAF Main Main 0 0 0 .0 0.0
Main_i_CAF Main Main 0 0 0 .0 0.0

Figure 7.2: Results of the cost-centre profiler.

The flat cost-centre profile presented in this example does not provide the pro

grammer w i t h very useful information. I t is not clear which of the functions g, j

and i , which share the function calls to the u t i l i ty function rev, is responsible for

the highest proportion of the costs. Wi thout any re-compilation and re-profiling

fur ther results are impossible to calculate.

The cost-centre-stack profiler produces two sets of results. Firstly, a flat profile

is produced in the same way as for the cost-centre profiler. This is possible as

the implementation maintains the existing current cost centre, as well as the cur

rent cost-centre stack. The fiat profile produced by the cost-centre-stack profiler

demonstrates that the cost-centre-stack profiler preserves the original fiat profile

results; this is shown in Figure 7.3. A comparison of these results is important, as

C h a p t e r 7: Resu l t s and Eva luat ion 214

Thu Jun 20 15:01 1996 Time and Allocation P r o f i l i n g Report
(Hybrid-Cost-Stack Scheme)

run +RTS -pT -H60M -RTS

(Final)

COST CENTRE MODULE GROUP sec subcc y.time '/.alloc
Main_rev Main Main 20867 20834 100.0 100.0
Main_f Main Main 3 2 0.0 0.0
Main_a Main Main 2 3 0.0 0.0
Main_b Main Main 2 2 0.0 0.0
Main_g Main Main 2 12 0.0 0.0
MAIN MAIN MAIN 1 0 0.0 0.0
Main_c Main Main 1 3 0.0 0.0
Main_d Main Main 2 1 0.0 0.0
Main_e Main Main 1 1 0.0 0.0
Main_h Main Main 1 2 0.0 0.0
Main_i Main Main 1 4 0.0 0.0
Main_j Main Main 6 21 0.0 0.0
PRELUDE Prelude Prelude 0 0 0.0 0.0
Main_main_CAF Main Main 0 0 0.0 0.0
CAE.Main Main Main 0 3 0.0 0.0
Main_h_CAF Main Main 0 0 0.0 0.0
Main_g_CAF Main Main 0 0 0.0 0.0
Main_i_CAF Main Main 0 0 0.0 0.0

Figure 7.3: Results of the cost-centre-stack profiler.

i t shows that the results of the original cost-centre profile w i l l not be distorted by

the inclusion of the cost-centre stacks in the compiler. The 0.3% error is due to

sampling differences.

C h a p t e r 7: Resu l t s and Eva luat ion 215

The cost-centre-stack profiler also produces the following cost-centre-stack results:

<Main_rev,Main_j,Main_h,Main_f,Main_c,Main_a,Main_main,>
<Main_j,Main_h,Main.f,Main_c,Main_a,Main_raain,>
<Main_f,Main_c,Main_a,Main_main,>
<Main_j,Main_g,Main_e,Main_b,Main_a,Main_main,>
<Main_rev,Main.j,Main_g,Main_e,Main_b,Main.a,Main_main,>
<Main_g,Main_e,Main_b,Main.a,Main.main,>
<Main_rev,Main_g,Main_e,Main.b,Main_a,Main.main,>
<Main_a,Main.main,>
<Main_b,Main_a,Main.main,>
<Main_i,Main_f,Main_c,Main.a,Main.main,>
<Main_rev,Main_i,Main_f,Main_c,Main_a,Main.main,>
<Main_main,>
<Main_c,Main_a,Main_main,>
<Main_g,Main_d,Main_b,Main_a,Main_main,>
<Main_rev,Main_g,Main_d,Main_b,Main_a,Main_main,>
<Main_j,Main_g,Main_d,Main.b,Main_a,Main_main,>
<Main_rev,Main.j,Main.g,Main.d,Main.b,Main.a,Main.main,>
<Main_d,Main.b,Main.a,Main.main,>
<Main.e,Main.b,Main.a,Main.main,>
<Main.h,Main.f,Main.c,Main.a,Main.main,>
Prelude no stack

1181 TICKS
0 TICKS
0 TICKS
0 TICKS
16 TICKS
0 TICKS
10 TICKS
0 TICKS
0 TICKS
0 TICKS
7 TICKS
0 TICKS
0 TICKS
0 TICKS
11 TICKS
0 TICKS
12 TICKS
0 TICKS
0 TICKS
0 TICKS

Each cost-centre stack recorded is displayed with the units of time spent computing

values within its scope. These results are useful as they immediately indicate the

cost stack of the most computationally expensive part of the program. As expected,

function rev is at the head of this stack:

<Main.rev,Main.j,Main.h,Main.f,Main.c,Main.a,Main.main,> 1181 TICKs

The function rev is also at the head of five further cost-centre stacks:

<Main_rev,Main.j,Main.g,Main.e,Main.b,Main.a,Main.main,>

<Main.rev,Main.g,Main.e,Main.b,Main.a,Main.main,>

<Main.rev,Main.i,Main.f,Main.c,Main.a,Main.main,>

<Main.rev,Main.g,Main.d,Main.b,Main.a,Main.main,>

<Main.rev,Main.j,Main.g,Main.d,Main.b,Main.a,Main.main,>

16 TICKS

10 TICKS

7 TICKS

11 TICKS

12 TICKS

C h a p t e r 7: Resu l t s and Eva luat ion 216

These show the path of cost centres to the function rev via d, e and i . The
programmer is presented wi th a complete set of unambiguous results which avoids
there being any misunderstanding when they are interpreted.

The first stage of post-processing involves the cost-centre stacks being trans

formed, using a C script, into a format which can be interpreted by the graph-tool.

The to ta l number of t ime ticks is calculated for each of the functions at the head

of each cost-centre stack. This figure is divided by the total number of t ime ticks

recorded to obtain a percentage. This is equivalent to calculating a flat profile.

Total Number of Time Ticks = 1237

Cost centre Ticks as head of CC stack Total time t i c k s "/.time

1237 100.0
0 0.0
0 0.0
0 0.0
0 0.0
0 0.0
0 0.0
0 0.0
0 0.0
0 0.0
0 0.0
0 0.0
0 0.0

The second stage of post-processing involves the programmer selecting those func

tions which he is interested in profiling^. This activity has been moved f rom pre-

prof i l ing to post-profiling. For the sake of this in i t ia l example all functions are

selected.

This task is implemented in a second C script, taking the graph-tool input

file and producing an augmented input file depending on which cost centres are

selected. The resulting file is then loaded into the graph-tool; this is the th i rd

stage of post-processing.

^Remembering that there is a one to one correspondence between top-level functions and cost
centres in this example.

Cost centre Ticks

Main_rev 1237
Main_main 0
Main_a 0
Main_b 0
Main_c 0
Main_d 0
Main_e 0
Main_f 0
Main_g 0
Main_h 0
Main_i 0
Main_j 0
Prelude 0

C h a p t e r 7: Resu l t s and Eva luat ion 217

F i l d Graph I V c CoMwnds \Coste»7tir9 stackpost-proc«ssoT\[\

^ Help FVBfBbq o p t l o R S Graph-tool j CPmmand Bne | Conunand: []]

Cost csntre stack post-processor for GHC (0 ^) vendon l a .
Last revtetonZ7An 996. FOr further hiroimatlon contact Stephen.Jarvts@conHaajx.ac.ufc.

jCost
ICost
ICost
iCost
;cost
iCost
Co S t
Co S t
Co S t
Co S t
Co S t
Co S t

c e n t r e
c e n t r e
c e n t r e
c e n t r e
c e n t r e
c e n t r e
c e n t r e
c e n t r e
c e n t r e
c e n t r e
c e n t r e
c e n t r e

Main_r€
Main_j
Main_h
Maln_f
Ma±n_c
Main

V has
has 0
has 0
has 0
has 0
has

Maln_raain has Main
Maln_
Maln_b
Main_±
Main d

has

1237
c o s t s
c o s t s
c o s t s
c o s t s
c o s t s
0 CO

c o s t s
c o s t s
c o s t s
c o s t s
c o s t s

c o s t
f o r
f o r
f o r
f o r
f o r

s t s
f o r
f o r
f o r
f o r
f o r

f o r graph t o o l
graph t o o l
graph t o o l
graph t o o l
graph t o o l
graph t o o l

f o r graph t o o l
graph t o o l
graph t o o l
graph t o o l
graph t o o l
graph t o o l

Main_b

H a ^ f I a
c o s t

Maln_d

by Stephen Jarirls. This copy is registered copyright 199S/G

c o s t c o s t

End Perforw LojfotJt.

Figure 7.4: Non-inherited post-processed results.

The structure of the program becomes clear when the results are displayed in the

graph-tool. I n this example the programmer is presented wi th the call-graph of the

program containing all top-level functions. These results are shown in Figure 7.4.

Each node in the graph contains the cost-centre name and the associated costs

(in t ime ticks or as a percentage; the figure shows the former). Each arc in the call-

graph^ is annotated w i t h a number. This number indicates in how many cost-centre

stacks this arc was found.

The results are simultaneously displayed in the cost-stack post-processor. The

programmer can view the cost-centre stacks, select cost centres or choose different

profi l ing options f rom this window. A l l functions are executed wi th in a couple of

seconds without any further execution or compilation of the program.

The post-processing tool is also able to perform inheritance of results, accurately

inheri t ing the profi l ing results to all the selected functions. This is achieved by

adding the costs associated w i t h each cost-centre stack to every function in the

cost-centre stack. This mechanism is demonstrated below:

*An 'arc' connects two nodes.

C h a p t e r 7: Resu l t s and Eva luat ion 218

Total Number of Time Ticks = 1237

Cost centre Ticks i n (:C stack Total time t i c k s '/time

Main_raain 1181 + 16 + 10 + 7 + 11 + 12 1237 100.0
Main_a 1181 + 16 + 10 + 7 + 11 + 12 1237 100.0
Main_b 16 + 10 + 11 + 12 49 4.0
Main_c 1181 + 7 1188 96.0
Main_d 11 + 12 23 1.9
Main.e 16 + 10 26 2.1
Main_f 1181 + 7 1188 96.0
Main_g 16 + 10 + 11 + 12 49 4.0
Main_h 1181 1181 95.5
Main_i 7 7 0.6
Main_j 1181 + 16 + 12 1209 97.7
Main_rev 1181 + 16 + 10 + 7 + 11 + 12 1237 100.0

Prelude

These results can also be displayed by reloading the graph-tool w i th the new input

file, see Figure 7.5. I f i t was not already clear in the previous results, the expensive

arm of the graph now becomes immediately obvious wi th these inherited results.

To emphasise this fact, i t is possible to highlight the expensive arm of the graph

(or display this arm of the graph only). This may prove to be a useful function in

graphs which contain a large number of nodes.

There are two issues which must be addressed in the analysis of these results.

The first is the usefulness of the cost-centre-stack data and the post-processing

techniques for presenting this data. The second is that of the overheads involved

in collecting this extra data.

7.1.1 Usefulness

The cost-centre stacks allow the construction of call-graphs using dynamic analysis

of the actual execution of the program; as each function calls another, a stack of

cost centres is constructed showing the sequence of calls to a particular part of the

program.

C h a p t e r 7: Resu l t s and Eva luat ion 219

lCt>sic»ntr» staahpost-pro<;«ssor\f,''\

Naln_Mln

Main Cost
Cost
Cost
Cost
Cost
Cost
Cost
Cost
Cost
Cost
Cost
Co St

cent Main c e n t r e Main c e n t r e Main c e n t r e Main c e n t r e Main main Main Main c e n t r e Main c e n t r e Main
Main c e n t r
M a i n

NOTE: T h i s has a l l c o s t c e n t r e s a
Main_f
cost
1188

Hain_i
cost

rlain_9
cost

Haln_h
cost
1181

cost
1209

I Quit I Help profiling opttons Graph-tool | cnmmand una | command: Q

cost centra stack post-processor fOr GHC version l a .
Last ravfsion 27/5/193G. For f w t l i e r taifonnaUon contact Stephen » l a r v i s e > c o m l a b . o x ^ j i k .

has 1237 c o s t
s 1209 c o s t s
5 1161 c o s t s
s 1188 c o s t s
s 1188 c o s t s
s 1237 c o s t s
has 1237 cos

s 49 c o s t s fo
s 26 c o s t s fo
s 49 c o s t s fo:
s 7 c o s t s f o r
5 23 c o s t s fo

f o r graph t o o l
f o r graph t o o l
f o r graph t o o l
f o r graph t o o l
f o r graph t o o l
f o r graph t o o l
t s f o r graph t o o l

graph t o o l
r graph t o o l
r graph t o o l
graph t o o l

r graph t o o l
e l e c t e d

copyright 1995/B by Stephen Jarvls. TWs copy Is regtstered.

Figure 7.5: Inherited post-processed results.

The cost-centre-stack information allows a call-graph of the program (such as

those seen in figures 7.4 and 7.5) to be displayed. Even i f the programmer is familiar

w i t h the code this makes the task of determining the relationships between parts

of the code easier, particularly in the context of a large program. This information

has not previously been shown in the profile of a program.

Profi l ing w i t h cost-centre stacks allows the complete set of program costs to be

recorded. They are an accurate record of the program's computational behaviour

and therefore a true profile of the program in the sense that no statistical averaging

has been used to produce the results.

The post-processor allows these results to be explored instantaneously and wi th

out any further execution or compilation of the program. This has not previously

been possible when profil ing a program. Figure 7.5 shows the complete set of in

herited results. These results can be interpreted outside the context of the actual

program code; the program graph allows the expensive portion of the code to be

identified, leaving the programmer free to identify its cause.

There are a number of profil ing and graph-tool options available to the pro-

C h a p t e r 7: Resu l t s and Eva luat ion 220

grammer which allow, amongst other things, the most expensive arm of the graph
to be displayed, cost centres to be selected, and flat and inheritance profiles of
the program to be produced. None of these options take more than three or four
seconds to execute.

The graph in Figure 7.5 clearly shows the distribution of costs in the program,

focusing the attention of the programmer on the functions c, f , h and j . The pro

grammer can quickly identify the function call f rom h to j as causing a significant

amount of computation.

Using the post-processor i t is also possible to select and de-select cost centres.

I n the example the programmer might have chosen to view the flat profile w i th the

cost centre Main_rev de-selected. The post-processor would accurately subsume

the costs of Main_rev to its calling functions, again highlighting Main . j as part

of the expensive arm of the program. Repeating this exercise on Main_j would

confirm that the call f rom MainJ i to Main_j was instigating most of the program

costs.

A similar top-down (as opposed to bottom-up) approach to profil ing can be

performed using the post-processor. This is easy to achieve without re-profiling

and re-compiling the program and the time benefits are considerable.

7.1.2 Overheads

The study of the overheads for the cost-centre-stack profil ing scheme is impor

tant. Previous profil ing literature has shown that earlier attempts at similar cost-

collection methods were abandoned because of the extremely high overheads. The

success of the cost-centre-stack method of recording results relies on the fact that

the overheads are low enough to make such a system practical.

There are a number of overheads to consider:

• The size of the cost-centre-stack table should not become so large that cost-

centre-stack profi l ing becomes impossible on normal workstations;

C h a p t e r 7: Resu l t s and Eva luat ion 221

• The t ime that the program takes to compile and any extra heap space needed
during compilation should be acceptable. That is, the extra compilation
overheads should be small enough to make cost-centre-stack profiling prefer
able to repeated compilations of a cost-centre profile. Although most of the
changes to the Glasgow Haskell Compiler have been to the run-time system,
the changes to the compiler optimiser and the generation of extra run-time
code are likely to increase the compilation overheads;

• Finally, the execution-time costs should be small enough to make the collec

t ion of costs practical. The run-time overheads should not be unacceptably

high and the extra heap needed for execution should not be unacceptably

large.

These overheads are discussed in turn .

S u m m a r y of the cost-centre-stack table

The results of the cost-centre-stack profiler show that 20 cost-centre stacks were

produced during the execution of the first example program (when using the - p r o f

- a u t o - a l l compile time option); there are 12 cost centres in this code.

The structure of the cost-centre-stack table can be displayed by printing the

cost-centre stacks and their corresponding index tables. Of these 20 cost-centre

stacks the largest was 7 cost centres deep. The index tables of these cost centres

were of size 0 (for 1 cost centre), size 1 (for 7 cost centres) and size 2 (for 4 cost

centres).

Since each cost-centre-stack table entry stores a pointer to the cost-centre label,

a pointer to its index table, pointers to each entry in the index table, their pointers

to fur ther stacks and an integer value, the size of the cost-centre-stack table for

this example program is 528 bytes. Compared wi th the total size of the executable

which GHC produces, 696320 bytes, these extra bytes are almost insignificant.

C h a p t e r 7: R e s u l t s and Eva lua t ion 222

C o m p i l a t i o n overheads

Heap space needed for compilation:

There is no detectable difference in the size of the heap needed for compilation

between the cost-centre profiler and the cost-centre-stack profiler. The GHC default

of 4 Megabytes is used.

Time needed to compile the program:

The cost-centre profiler takes a total of 94.3 seconds to compile and link the pro

gram. This t ime is taken f rom an average of ten compilations using the unix system

time command.

Using the same method of analysis, the cost-centre-stack profiler takes a total

of 98.5 seconds to compile and link the code. This gives a time overhead of 5.57%.

These compilation overheads are acceptable.

E x e c u t a b l e differences

Size of the two executable files:

The cost-centre profiler produces an executable file of 696320 bytes. The cost-

centre-stack profiler produces an executable file of 712704 bytes. This gives a 2.35

% size overhead when using the cost-centre-stack profiler.

Run-time speed and memory usage:

The execution t ime measured using the unix time command is averaged over 10

executions of the program. The cost-centre profiler produces an executable which

runs i n 130.5 seconds; the cost-centre-stack profiler runs i n 133.5 seconds. These

run-time overheads are 2.29 %. The size of the heap needed to execute the program

is the same for both profilers.

These results are encouraging for small programs, but the results of some larger

programs must also be considered.

C h a p t e r 7: Resu l t s and Eva lua t ion 223

7.2 The Clausify Program

The Clausify program (found in Appendix A) has emerged as a classic benchmark

in the analysis of profi l ing tools. Runciman and Wakeling used this example to

demonstrate the results of their heap profil ing tool; they also produced improve

ments to the code by reducing the memory needed for the execution of the program

f r o m 1.3Mb to 7Kb. Similarly Sansom profiled the resulting program f rom Runci

man and Wakeling and improved the code by a further 25 percent. This study is

extended by profi l ing the program wi th the cost-centre-stack profiler.

The Clausify program takes a series of propositional formulae as its input and

produces the clausal form equivalents as its results^. The transformation of each

proposition to a set of clauses is specified by the following rules:

• elim eliminates equivalence and implications:

p = q {p ^ q)A{q ^ p)

p =^ q -ipV q

• negin makes negations the innermost connectives:

- n ^ p p

- i (p y q) - i p A - ig

- i (p A g) ->• ->p y ->q

• disin pushes disjuncts wi th in conjuncts:

p V {q A r) {p W q) A {p V r)

(p V r)A r -> {p V r)A{q V r)

• The funct ion split splits up the conjuncts:

p A q ^ p

q

^This description is based on the original one by Runciman and Wakeling [Runciman and
Wakeling, 1993].

C h a p t e r 7: Resu l t s and Eva luat ion 224

• The funct ion unicl forms a set of unique non-tautologous clauses:

PlV ...VpnV-^Qiy ...V^Qm {{Pu ••; Pn}, {QUQm})

A clause {ps,qs) is tautologous i f {ps Dqs) 7̂ 0

The propositional formulae are represented by the following data type:

Sym Char

Not Formula

Dis Formula Formula

Con Formula Formula

Imp Formula Formula

Eqv Formula Formula

The transformation rules are implemented wi th this data structure. The rules are

combined using the following pipeline:

c lauses = u n i c l . s p l i t . d i s i n . neg in . e l i m

7.2.1 A cost-centre profile

The Clausify program has already been used as a benchmark experiment for the

cost-centre profiler. A time profile, similar to those seen in [Sansom, 1994], is shown

in Figure 7.6.

These results are collected using the - a u t o - a l l run-time flag, so that all top-

level functions i n the code are annotated wi th a cost centre.

A hybrid profil ing scheme is used which allows the costs of dictionary or l ibrary

functions and the costs produced by CAFs to be subsumed by the function in which

they are lexically defined. This is useful in this example because a lexical profile

of the program produces a cost centre u n i c l w i th zero costs attr ibuted to i t .

C h a p t e r 7: Resu l t s and Eva luat ion 225

This is because the function

u n i c l = f i l t e r s e t (not . t a u t c l a u s e) . map clause

is a OAF. A lexical scheme of cost a t t r ibut ion assigns the costs of applying this

funct ion to a C A F introduced by the compiler. In a similar way, the costs accrued

by l ibrary or dictionary functions are also attributed to CAFs which are used to

construct the dictionary. The hybrid profil ing scheme was developed by Sansom in

response to the difficulties experienced in deciphering these C A F costs.

I n Sansom's thesis, the results of profiling the Clausify program are analysed.

To allow the profi l ing results to be compared, Sansom adopts the same input data

as Runciman and Wakeling. The proposition

(a = a = a) — (a = a = a) (a = a = a)

reduces to the single clause (a, 0), although a substantial amount of work is pro

duced in the process.

Sansom identified t ime spent in the clause, i n s e r t and t au t c l ause functions

as being a significant problem w i t h the code. Much of this time was due to the

throwing away of the clauses and duplicate symbols during execution.

Using this analysis, Sansom was able to rewrite the program using unboxed

characters, a method of code optimisation buil t into the Glasgow Haskell Compiler.

The removal of the clauses and duplicate symbols relied on comparing characters.

B y introducing unboxed characters, the program was improved by 25%.

7.2.2 A cost-centre-stack profile

To produce a cost-centre-stack profile of the Clausify program, the program is also

profiled w i t h the - a u t o - a l l run-time profi l ing flag. The non-zero cost-centre-stack

results are shown in Figure 7.7.

C h a p t e r 7: Resu l t s and Eva luat ion 226

COST CENTRE MODULE GROUP sec subcc %time "/.alloc
i n s e r t Main Main 52398 0 20. 9 0.0
clause Main Main 110142 : 157194 18. 6 51.6
CAF:unicl Main Main 5347 10693 12. 8 15.8
d i s i n ' Main Main 12214 12164 9. 3 12.0
tautclause Main Main 5346 0 5. ,8 8.8
Ma i n _ f i l t e r s e t Main Main 2 5347 5. ,8 0.0
s p l i t Main Main 10692 10691 4. ,7 5.3
f i l t e r s e t Main Main 1 5346 3. 5 0.0
Main_insert Main Main 52398 52398 3. ,5 0.0
f i l t e r s e t ' Main Main 5347 0 2. ,3 5.3
negin Main Main 231 230 2, ,3 0.3
elim Main Main 199 198 0, ,0 0.3
MAIN MAIN MAIN 1 1 0. .0 0.2
d i s i n Main Main 199 248 0. ,0 0.2
c l a u s i f y Main Main 2 3 0, ,0 0.2
parse' Main Main 28 43 0, .0 0.0
while Main Main 12 20 0, .0 0.0
red Main Main 8 0 0, .0 0.0
CAF:clausifyline Main Main 2 4 0, ,0 0.0
interleave Main Main 9 6 0, .0 0.0
CAF:main Main Main 1 2 0, .0 0.0
disp Main Main 1 2 0, .0 0.0
parse Main Main 1 1 0, .0 0.0
CAF:clauses Main Main 2 5 0, .0 0.0
CAF:redstar Main Main 12 12 0, .0 0.0
Ma i n _ f i l t e r s e t Main Main 1 1 0. .0 0.0
Main_opri Main Main 26 26 0, ,0 0.0
Main_spri Main Main 20 20 0, ,0 0.0
Main_tautclause Main Main 5346 5346 0, .0 0.0
opri Main Main 52 26 0 ,0 0.0
s p r i Main Main 22 20 0 .0 0.0
CAF.Main Main Main 0 2 10 .5 0.0
PRELUDE Prelude Prelude 0 0 0 .0 0.0
CAF:main_CAF Main Main 0 0 0 .0 0.0
CAF:redstar_CAF Main Main 0 12 0 .0 0.0
CAF:spaces_CAF Main Main 0 0 0 .0 0.0
disp.CAF Main Main 0 0 0 .0 0.0
parse'_CAF Main Main 0 0 0 .0 0.0
clause.CAF Main Main 0 0 0 .0 0.0
f i l t e r s e t . C A F Main Main 0 0 0 .0 0.0
parse_CAF Main Main 0 0 0 .0 0.0
split.CAF Main Main 0 0 0 .0 0.0

Figure 7.6: Results of the cost-centre profiler.

C h a p t e r 7: Resu l t s and Eva luat ion 227

<insert,Main_insert,Main_clause,CAF:unicl,Main_clauses,
CAF:clausifyline,Main.clausify,Main.main,>

<clause,CAF:unicl,Main_clauses,CAF:clausifyline,
Main_clausify,Main_main,>

<CAF:unicl,Main_clauses,CAF:claus ifyline,Main.clausify,
Main_main,>
<CAF.Main,>
<Main_filterset,filterset,CAF:unicl,Main.clauses,
CAF:clausifyline,Main_clausify,Main_main,>

<disin',disin,Main_clauses,CAF:clausifyline,Main_clausify,
Main_main,>

<Main_insert,clause,CAF:unicl,Main_clauses,Main_clausifyline,
Main_clausify,Main.main,>

<split,Main_clauses,CAF:clausifyline,Main.clausify,
Main_main,>

<negin,Main.clauses,CAF:clausifyline,Main_clausify,
Main_raain,>

<CAF:clausifyline,Main.clausify,Main_main,>
<tautclause,Main.tautclause,CAF:unicl,Main_clauses,
CAF:clausifyline,Main_clausify,Main_main,>

<Main_claus ifyline,Main.clausify,Main_main,>
<filterset,Main_filterset,CAF:unicl,Main_clauses,
CAF:clausifyline,Main_clausify,Main_main,>

<Main_tautclause,CAF:unicl,Main_clauses,Main_clausifyline,
Main_clausify,Main_main,>

<Main_insert,insert,Main_clause,CAF:unicl,Main_clauses,
CAF:claus ifyline,Main_clausify,Main_main,>

<parse',parse,CAF:clausifyline,Main_clausify,Main_main,>
<split,Main_clauses,CAF:clausifyline,Main_clausify,
Main_main,>

<Main_insert,insert,Main_clause,CAF:unicl,Main_clauses,
CAF:clausifyline,Main_clausify,Main.main,>

Prelude no stack

130

126

88
60

44

43

35

32

16
16

15
15

Figure 7.7: Non-zero cost-centre-stack results.

C h a p t e r 7: Resu l t s and Eva luat ion 228

A flat profile is produced at the first stage of post-processing. These results can

again be compared w i t h the flat profile produced by the cost-centre profiler. The

flat profile is summarised to include only those cost centres which have non-zero

costs.

Total Number of Time Ticks = 643

Cost centre Ticks as head of CC stack Total time t i c k s '/.time

Main_insert 35 + 2 + 1 38 5, ,9
CAF.Main 60 60 9. ,4
parse' 1 1 0. •2
s p l i t 1 + 32 33 5, ,1
clause 126 126 19, .6
in s e r t 130 130 20, .2
M a i n _ f i l t e r s e t 44 44 6 .8
CAF:clausifyline 16 16 2 .5
Main_clausifyline 15 15 2 .3
d i s i n ' 43 43 6 .7
f i l t e r s e t 11 11 1, ,7
CAF:unicl 88 88 13, .7
Main_tautclause 7 7 1 ,1
tautclause 15 15 2, .3
negin 16 16 2 .5

These results are displayed in f u l l i n Figure 7.8 ^.

The non-inherited results can be inherited using the post-processing tool . Again,

for the sake of this example, all top-level functions are deemed to be cost centres.

Figure 7.9 summarises the inheritance process for all the cost-centre stacks wi th

non-zero costs.

The cost-centre stacks are loaded into the post-processor and the graph-tool

is invoked displaying only those stacks wi th non-zero costs^. The post-processor

display for the non-inherited results is found in Figure 7.10. These results can then

^References to insert and Main-insert should be combined as they refer to the same part of
the source code.

•̂ Some cost centres will not therefore appear in the graph, so that the programmer can focus
his attention on only those parts of the program which register some costs.

C h a p t e r 7: Resu l t s and Eva luat ion 229

COST CENTRE MODULE GROUP sec subcc '/.time
i n s e r t Main Main 52369 0 20 .2
clause Main Main 110142 157194 19 .6
CAF:unicl Main Main 5347 10693 13 .7
CAF.Main Main Main 0 2 9 .4
Ma i n _ f i l t e r s e t Main Main 2 5347 6 .8
d i s i n ' Main Main 12214 12164 6 .7
Main_insert Main Main 52398 52398 5 .9
s p l i t Main Main 10692 10691 5 .1
CAF:clausifyline Main Main 2 4 2 .5
negin Main Main 231 230 2 .5
Main_clausifylineMain Main 2 4 2 .3
tautclause Main Main 5346 0 2 ,3
f i l t e r s e t Main Main 1 5346 1 .7
Main_tautclause Main Main 5346 5346 1 ,1
parse' Main Main 28 43 0 .2
Main_spri Main Main 20 20 0, .0
Main_opri Main Main 26 26 0, .0
Main_insert Main Main 52398 52398 0, ,0
s p r i Main Main 22 20 0, .0
red Main Main 8 0 0, .0
while Main Main 12 20 0, ,0
opr i Main Main 52 26 0, ,0
parse Main Main 1 1 0. ,0
elim Main Main 199 198 0. .0
interleave Main Main 9 6 0. .0
d i s i n Main Main 199 248 0. .0
CAF:clauses Main Main 2 5 0. .0
cla u s i f y Main Main 2 3 0. .0
f i l t e r s e t ' Main Main 5347 0 0. ,0
Ma i n _ f i l t e r s e t Main Main 1 1 0. ,0
CAF:redstar Main Main 12 12 0, .0
Prelude no stack Prelude (n u l l)

Figure 7.8: Flat profile results of the cost-centre-stack profiler.

C h a p t e r 7: Resu l t s and Eva lua t ion 230

be automatically inherited to all the cost centres in the call-graph, giving overall
inherited results for the program; Figure 7.11.

Sansom identified that time spent i n the clause, i n s e r t and t au t c l ause func

tions accounted for a large amount of the time spent executing the program, due

to clauses and duplicate symbols being thrown away.

The cost-centre-stack results indicate similar behaviour. The non-inherited re

sults show that the functions i n s e r t and clause are together responsible for 40%

of the to ta l execution time. The cost-centre profile does not immediately suggest

that the function t a u t c l a u s e might be amongst those undertaking extra work,

and Sansom's conclusions may have been based on careful analysis of the program

as well as the profil ing results.

The non-inherited cost-centre-stack results also show that the function u n i c l

is responsible for a large proportion of the total costs. I t is therefore the functions

CAF:unicl, i n s e r t and clause on which the programmer's attention w i l l in i t ia l ly

be focused.

The inherited results extend these observations by showing a bottleneck at the

CAF:unicl cost centre; after this point i n the graph all the inherited costs are large.

There are two observations which can be made about inherited results:

• I f a cost centre has a small number of inherited costs and is itself inexpensive

then there is no way that any change to this function w i l l help to improve the

program This is not true of the cost-centre profiler where cost centres w i t h

low or even zero costs may st i l l contain a performance bug;

• Conversely, i f a cost centre has a large inherited cost and is itself inexpensive

then i t may well be worth some attention, as this function may be the cause

of large costs lower down in the program graph. This is different to the way

in which the programmer would interpret a flat profile of the program.

The cost centre Main_clauses satisfies the second of these two observations

therefore the programmer's attention can be focused on the clauses pipeline.

C h a p t e r 7: Resu l t s and Eva luat ion 231

Cost centre Ticks i n CC stack Total time t i c k s '/.time

Main.main 130 + 1 2 6 + 8 8 + 4 4 + 1
+ 43 + 35 + 32 + 16 + 16
+ 15 + 15 + 11 + 7 + 2 +
1 + 1 583 90.7

Main.clausify 130 + 126 + 8 8 + 4 4 + 4 3
+ 35 + 32 + 16 + 16 + 15
+ 1 5 + 1 1 + 7 + 2 + 1 +
1 + 1 583 90.7

CAF:clausifyline 130 + 126 + 8 8 + 4 4 + 4 3
+ 35 + 32 + 16 + 16 + 15
+ 1 1 + 7 + 2 + 1 + 1 + 1 568 88.3

Main.clauses 130 + 126 + 8 8 + 4 4 + 4 3
+ 35 + 32 + 16 + 15 + 11
+ 7 + 2 + 1 + 1 551 85.7

CAF:unicl 130 + 126 + 8 8 + 4 4 + 3 5
+ 1 5 + 1 1 + 7 + 2 + 1 459 71.4

clause 126 + 35 161 25.0
Main.insert 1 3 0 + 3 5 + 2 + 1 168 26.1
Main.clause 1 3 0 + 2 + 1 133 20.7
inse r t 1 3 0 + 2 + 1 133 20.7
CAF. Main 60 60 9.4
Ma i n _ f i l t e r s e t 4 4 + 1 1 55 8.6
f i l t e r s e t 4 4 + 1 1 55 8.6
d i s i n ' 43 43 6.7
d i s i n 43 43 6.7
s p l i t 3 2 + 1 33 5.1
Main.tautclause 1 5 + 7 22 3.4
negin 16 16 2.5
tautclause 15 15 2.3
Main_clausifyline 15 15 2.3
parse' 1 1 0.2
parse 1 1 0.2

Figure 7.9: Table summarising the inheritance of the Clausify results.

C h a p t e r 7: Resu l t s and Eva luat ion 232

I B
F i l e Graph Arc CoMP»and»

CfV.Haln
cost cost
0.0 9.4

[Hain_clsu3iry
cost
0.0

4 !
!M«ln_clau«lfallr»

cost
2.3

CflF:cl««lfaline
cost
2.5

Haln_clsu3cs 1 ^ porsB
cost cost
0-0 0.0

parse
cost
0.2

s p l i t |r>e9ln| cnF:unlcl
cost 1 cost 1 5.1 1 2.5 1 13.7

:unlcl » Idlslni 1 j
I cost I ^ V !
0.0

d l s i n '
cost
6-7

hlaln^clause
cost
0.0

clause
cost
19.6

Haln_tautc lauSB
coat
1.1

I1aln_filters8
cost

F l l t o r s o t
cost
1.7

I

chll<>-en wanaged..

\Co^cantra stackpojt-proc»ssor\pi^,

o p t t o n s G r a p h - t o o l | C o m m a n d Dne | C o m m a n d : [_

c e n t r a s t a c k p o s t - p r o c a s s o r f o r G H C (0 ^) v m t o n 1 a .
39G. For f u r t h e r b i f o r m a t t o n c o n t a c t 3 t « p t i e n . J a r v i s @ c o n t f a b . o x . a c . (d c

raovod from the c a l l - g r a p h . P l e a s e l o a d the
he graph-tool again. I f you want to remove t he

m the d i s p l a y then you w i l l have to s e l e c t
;- from the command window of the graph-tool.

3sn t r f g n t ISSS/B b y s t o p l i e n J a r v l s . T i n s c o p y ta r e g l s l a n n l .

I m&m

Figure 7.10: Non-inherited Clausify results f rom the cost-centre-stack profiler.

F i l e Graph ftrc Coiwtands
LHI-.Plain

Haln_clausiFy
cost
90-7

CAF:clau3lfali
cost

.3
Haln_clauslFyllne

2-3

Nain_cleuses
cost
65.7

Haln_clause
cost
20.7

haln_tautcIaLi$e
cost

Maln_Fil
cost

a.6

n a l n _ i n s e r t
cost
2S.1

tautclause
cost
2-3

f i l t o r s e t
cost
9.G

End Perforw Layout-

I
b r o c e s s i n g component of the c o s t c e n t r e s t a c k

p a r t of the Glasgow H a s k e l l Compiler v e r s i o n
l i m i t e d amount of f u n c t i o n a l i t y i n t h i s alpha
d d e s c r i p t i o n of the a v a i l a b l e o p e r a t i o n s can
ng "Help^'. The graph-tool f o r d i s p l a y i n g the
g r a p h i c a l l y i s a v a i l a b l e by p r e s s i n g "Graph-

n r e g a r d i n g t h i s t o o l can be a c q u i r e d by
n J a r v i s a t the Oxford U n i v e r s i t y Computing

t a i l address i s found above.

g jfggft pQst-process<3r\.__

o p t i o n s G r e p h ' t o o l

c e n t r a s t a c k p o s t - p n i c e s s o r f o r G H C (0.22) v e r s i o n l a .
3 9 S . For f u r t h e r t n r o r m a t l o n c o n t a c t S l e p h e n - J a r v t s e c x m S a t) J J X ^ O I K .

IS
t r t f l h t 1 9 9 5 i B b y S t e p h e n J a r v t s . TOs c o p y I s rogtstered.

Figure 7.11: Inherited Clausify results f rom the cost-centre-stack profiler.

C h a p t e r 7: Resu l t s and Eva luat ion 233

CAF:unicl also has a large inherited cost so this is also considered in the anal
ysis of the program.

It should be noted that, since there are no problems with shared functions in
this program, the inheritance observations (above) are used in the analysis of the
program costs.

Analysis of the profiling results would suggest that something in the pipeline

clauses = u n i c l . s p l i t . d i s i n . negin . elim

is causing clauses to have huge inherited costs. It is also causing CAF:unicl to be
expensive in its own right, therefore indicating that it might be before this point
in the pipeline that the problem occurs. Analysis of the program is now simple,
the programmer just tests to see what result is produced by each function in the
pipeline. The results of the pipeline are demonstrated with a Gofer version of the
Clausify program.

A parse of the prepositional formulae, (a=a=a) = (a=a=a) = (a=a=a),

parse "(a = a = a) = (a = a = a) = (a = a = a)"

produces the following expression:

Eqv (Eqv (Sym 'a') (Eqv (Sym 'a') (Sym 'a')))
(Eqv (Eqv (Sym 'a') (Eqv (Sym 'a') (Sym 'a')))
(Eqv (Sym 'a') (Eqv (Sym 'a') (Sym 'a')))) :: Formula

(415 reductions, 770 c e l l s)

Applying the elim function to this result

(elim.parse) "(a = a = a) = (a = a = a) = (a = a = a)"

to remove the connectives, other than ->, V and A, results in a formula requiring
the following amount of computation:

C h a p t e r 7: Resu l t s and Eva luat ion 234

(1150 r e d u c t i o n s , 3884 c e l l s)

Note the number of reductions needed for this operation. Applying the d i s i n

funct ion, which moves disjunctions wi th in conjunctions, explodes this formula to

output which is enormous! The Gofer session produces the following execution

statistics which indicate the size of such a result.

(220603 r e d u c t i o n s , 1472673 c e l l s , 28 garbage c o l l e c t i o n s)

As a consequence of this, the u n i c l part of the program becomes expensive and

the i n s e r t funct ion (via clause) , which is used in CAF:unicl, is also expensive.

This problem can be fixed in a number of ways. Sansom identified a problem

w i t h the clause, i n s e r t and t a u t c l a u s e functions and produced a fix using un

boxed integers to reduce the comparison operation during list insert. This produced

improvements of 25% to the code. I t is noted that this is a low-level improvement

which may not be immediately obvious to an applications programmer.

Alternatively the fix can be implemented at a higher level, for example in the

actual algorithm of the program. Using the cost-centre-stack profiler to identify the

general problem w i t h the size of the formula being produced, a more comprehensive

fix was sought which would reduce the size of the formula being produced.

The point at which this program starts to become expensive is after the call to

the d i s i n function, a function which is moderately expensive itself, but more im

portant ly produces a result which causes the rest of the program after this function

call to be hugely expensive.

Runciman and Rojemo were also able to identify this part of the program as

expensive w i t h their retainer heap profiler [Runciman and Rojemo, 1996]. The fix

which they proposed to reduce the heap space used during program execution is

used in this context to reduce the time taken during program execution.

Runciman and Rojemo's proposed program fix was based on the idea that,

rather than d i s i n reconstructing the disjunctive trees (since they were found in its

C h a p t e r 7: Resu l t s and Eva luat ion 235

argument), i t would normalise them so that some pruning could take place earlier
in the pipeline; this, they state, is known as filter promotion. These improvements
were transferred to the program in terms of: a normalising constructor d i s which
is used in place of Dis ; a function to compare literals, compl i t ; and an extra
Formula constructor Tru . The two versions of the Clausify program are included
in Appendix A .

The changes to the Clausify program reduce the execution time of the program

f r o m 14.80 seconds to 0.04 seconds; this is an improvement of 370%.

7.2.3 Usefulness

The results f rom the cost-centre-stack profiler offer the programmer two alternative

ways of addressing the program's efficiency:

• Firstly, the flat profile indicates in which of the functions most of the pro

gram's execution time is spent. This gives the programmer the option of

implementing low-level improvements to those parts of the code, which w i l l

in tu rn improve the overall execution time;

• Secondly, the inheritance profile, which has the abili ty to inherit costs to

functions higher in the call-graph, may cause the programmer to look at

higher-level changes, perhaps to the algorithm of the program. I t is the time

needed to perform this task which is greatly reduced by the cost-centre-stack

profiler.

The Clausify program provides an interesting example as the changes which

are finally made to the code are to a function which in the flat profile appears to

be inexpensive. Even in the inheritance profile of the program the d i s i n function

does not appear to have a high cost. This is of course true, yet i t is not the costs

of the d i s i n funct ion which are a problem in the code, but the results produced

by this funct ion which make the calculations in the rest of the program expensive.

The advantage of the cost-centre-stack profiler is that i t gives the programmer an

C h a p t e r 7: Resu l t s and Eva luat ion 236

environment i n which to explore these results and offers the context in which to
consider high- or low-level possibilities for program improvements.

I t is important to note that the benefits of the cost-centre-stack profiler, and in

particular the post-processor, are not just l imited to programs which make exten

sive use of shared functions. This example demonstrates this fact.

The cost-centre-stack profil ing of the Clausify program was based solely on

t ime profi l ing. These results have not previously been shown wi th a time profile;

Runciman and Rojemo demonstrated similar results w i t h a heap retainer profiler.

This is also the first t ime that these results have been collected using a profiler

based on the GHC compiler.

The cost-centre-stack profiler clearly provides more of an insight into the pro

gram's behaviour than the cost-centre profiler. Sansom's results can be replicated,

demonstrating results which were not revealed by the Runciman and Wakeling

heap profiler. The post-processor allows the programmer to analyse the program

rapidly and identify problems in the algorithm permit t ing more than just low-level

fixes to the code. The code changes proposed by Runciman and Rojemo were used

to demonstrate huge improvements to the speed of the program in response to this

t ime problem. From this example, the cost-centre-stack profiling tool appears to

be very versatile.

7.2.4 Overheads

C o m p i l a t i o n overheads

Heap space needed for compilation:

There are no differences in the size of the heap needed for compilation between

the cost-centre profiler and the cost-centre-stack profiler. 4Mb of heap is specified

during compilation for both profilers.

C h a p t e r 7: Resu l t s and Eva luat ion 237

Time needed to compile the program:

The cost-centre profiler takes a total of 132.7 seconds to compile and link the

program. This time is taken f rom an average of ten compilations using the unix

system time command.

The cost-centre-stack profiler, using the same method of analysis, takes a total

of 154.4 seconds to compile and link the code. This gives a 16.6% overhead when

compiling w i t h the cost-centre-stack profiler as opposed to the cost-centre profiler.

E x e c u t a b l e diflPerences

Size of the two executable files:

The cost-centre profiler produces an executable file of 745472 bytes. The cost-

centre-stack profiler produces an executable file of 770048 bytes. This gives a 3.3%

space overhead when using the cost-centre-stack profiler.

Run-time speed and memory usage:

Both the cost-centre profiler and the cost-centre-stack profiler w i l l execute the

Clausify program in 4Mb of heap.

The t ime overheads for the execution of the program are 33.3% based on the

26 cost centres which are produced wi th the - a u t o - a l l compile flag. This is a

higher run-time overhead than those found during the execution of smaller example

programs. For the cost-centre-stack profiler to be successful, i t is important that

there is the same proportion of overheads for large programs. The remainder of

the case studies in this chapter are dedicated to large programs. The analysis and

evaluation focus on the overheads involved, in order to demonstrate the suitability

of the scheme for large functional programs.

C h a p t e r 7: Resu l t s and Eva luat ion 238

7.3 ntest— A LOLITA subset

ntest is a u t i l i t y program which allows L O L I T A programmers to interrogate nodes

in the L O L I T A semantic network. There are two basic operations which the ntest

program provides. The first is a facil i ty which allows the programmer to enter a

node number, resulting i n the concept stored at that node in the net; the second

allows the programmer to enter a concept, which w i l l be searched for in the semantic

network, resulting in the node number at which this concept is stored.

The program makes use of a substantial portion of the u t i l i ty and support

modules of the L O L I T A system. The modules included in the program contain

4036 lines of Haskell code and 6571 lines of C code, a total of 10607 lines of code.

The program also generates a further 3500 lines of C code automatically. I t is

therefore a useful test program for the lower levels of the L O L I T A system; i t is also

a substantial test case on which to test the cost-centre-stack profiler.

7.3.1 ntest results

Profi l ing the ntest program wi th the cost-centre profiler produces the results

shown in Figure 7.12. Analysis of these results shows that loading the semantic-net

structure accounts for 97.2% of the total execution time; interrogating the semantic

network accounts for only a small percentage of the overall execution time.

Part ia l results f rom the cost-centre-stack profiler are shown in Figure 7.13.

These results correspond to the flat cost-centre profile, although sampling differ

ences have given slightly more interesting results.

C h a p t e r 7: Resu l t s and Eva luat ion 239

Sat Dec 16 19:24 1995 Time and A l l o c a t i o n P r o f i l i n g Report
(Hybrid Scheme)

(F i n a l)

COST CENTRE MODULE GROUP sec subcc '/.time •/.alloc
StaticNet.loadZu StaticNet StaticNet 1 1 97, ,2 12, ,8
Main_doIt Main Main 2 10 2, ,8 20, ,2
MAIN MAIN MAIN 1 1 0, ,0 27, ,4
ContIprog_writeC ContIprog ContIprog 5 0 0, .0 4, .3
ContIprog_readln ContIprog ContIprog 4 2 0, ,0 2, ,1
ContIprog_readln ContIprog ContIprog 6 7 0, ,0 1, ,8
Main_showSize Main Main 2 2 0, .0 1, .5
StaticNet_mkIntL StaticNet StaticNet 16 11 0. ,0 1, ,2
StaticNet_ghcBui StaticNet StaticNet 10 5 0. .0 0, ,9
Sta t i cNet _badGen StaticNet StaticNet 5 10 0, .0 0, ,8
StaticNet_sNodeL StaticNet StaticNet 1 2 0. .0 0, .6
ContIprog_runCIP ContIprog ContIprog 1 0 0. ,0 0, ,5
StaticNet_sNodeA StaticNet StaticNet 6 6 0. ,0 0, ,4
ContIprog_getPro ContIprog ContIprog 2 1 0, .0 0, ,4
StaticNet_sNodeA StaticNet StaticNet 1 7 0. .0 0, ,4
Main_main Main Main 4 10 0, .0 0, ,3
Main _ i n t e r a c t i v e Main Main 5 8 0, ,0 0. ,3
Stdenv2_takeZuex Stdenv2 Stdenv2 3 0 0, ,0 0. ,3
Stdenv2_dropZuex Stdenv2 Stdenv2 2 1 0, ,0 0. ,2
StaticNet_sNodeC StaticNet StaticNet 1 3 0, ,0 0. .2
StaticNet.sNodeS StaticNet StaticNet 1 2 0. ,0 0. .2
Stat i c N e t _ s N e t S i StaticNet StaticNet 1 1 0. ,0 0, .2
StaticNet_arcsOf StaticNet StaticNet 2 2 0, .0 0, .1
StaticNet_arcsOf StaticNet StaticNet 1 3 0. .0 0. .1
ContIprog_endCIP ContIprog ContIprog 1 0 0, .0 0, .1
Main_loadIt Main Main 1 2 0, ,0 0. .1
St a t i c N e t _ m k s t r i StaticNet StaticNet 2 1 0. .0 0, ,1
ContIprog_selDia ContIprog ContIprog 6 1 0, .0 0, ,0
StaticNet_cvtBoo StaticNet StaticNet 5 0 0, ,0 0, ,0
StaticNet_genera StaticNet StaticNet 1 0 0, ,0 0, ,0
Sta t i cNet _hackln StaticNet StaticNet 5 0 0, .0 0, ,0
StaticNet_isGene StaticNet StaticNet 1 1 0, ,0 0, ,0
StaticNet_mkNode StaticNet StaticNet 5 5 0. .0 0, .0
S t a t i c N e t _ s I n i t i StaticNet StaticNet 1 0 0, .0 0. .0
StaticNet_sNetLo StaticNet StaticNet 1 1 0, .0 0, .0
Stdenv2_sTail Stdenv2 Stdenv2 1 0 0. .0 0, ,0
Stdenv2_stl Stdenv2 Stdenv2 1 1 0, .0 0 .0
PRELUDE Prelude Prelude 0 0 0, .0 16 .0
CAF.Main Main Main 0 1 0 .0 4 .0
CAF.StaticNet StaticNet StaticNet 0 0 0 .0 1 .9
CAF.ContIprog ContIprog ContIprog 0 5 0 .0 0 .3
ContIprog_readln ContIprog ContIprog 0 0 0 .0 0 .2
Main_doIt_CAF Main Main 0 0 0 .0 0 .2
Main_showSize_CA Main Main 0 0 0 .0 0 .2
Contlprog.endCIP ContIprog ContIprog 0 0 0 .0 0 .1
ContIprog_runCIP ContIprog ContIprog 0 0 0 .0 0 .1
Main_loadIt_CAF Main Main 0 0 0 .0 0 .1

Figure 7.12: Results of the cost-centre profiler.

C h a p t e r 7: Resu l t s and Eva luat ion 240

with

with

with

with

<StaticNet_load_Binary,StaticNet_sNetLoad,Main_loadIt,
Main_main,>

<StaticNet_badGeneration,StaticNet_sNodeArcTargets,
StaticNet_ghcNodeLiiiks,StaticNet_sNodeLinks,Main_doIt,
Main_interactive,Main_loadIt,Main_main,>

<StaticNet_isGenerationError ,StaticNet_load_Binary,
S t a t icNet_sNetLoad,Main_loadIt,Main.main,>

<StaticNet_hackInitialiseNumb,StaticNet_badGeneration,
StaticNet_sNetSize,Main_showSize,Main_loadIt,
Main_main,>

<StaticNet_badGeneration,StaticNet_sNodeString,Main_doIt,
Main_interactive,Main_loadIt,Main_main,> with

<StaticNet_mkstringZh,StaticNet_sNodeString,Main_doIt,
Main_interact ive,Main_loadIt,Main_main,> with

<Stdenv2_take_exclude ,Main_doIt ,Main_ i n t e r a c t i v e ,
Main_loadIt,Main_main,> with

<Main_doIt,Main_interactive,Main_main,> with
<Cont Iprog_writeCIP, Main_showSize, Main_loadIt, Main_main, >with
<ContIprog_readlnECIP,ContIprog_selDial,ContIprog_readlnCIP,
Cont Iprog_getProgArgsCIP, Cont Iprog_runCIP, Main_main, > with

<ContIprog_readlnCIP,ContIprog_selDial,ContIprog_getProgArgsCIP,
ContIprog_runCIP,Main_main,> with

<Main_showSize,Main_loadIt,Main_main,> with
< S t at i cNe t _gener at i onError , S t a t i c N e t _ i s Generat i onError,
StaticNet_load_Binary,StaticNet_sNetLoad,Main_loadIt,
Main_main,>

<StaticNet_sNetLoad,Main_loadIt,Main_main, >
<Maiii_raaiii, >
<StaticNet_sInitialiseData,Main_loadIt,Main_maiii,>
<ContIprog_readlnCIP,Stdenv2_take_exclude,Main_doIt,
Main_interactive,Main_loadIt,Main_main,>

<ContIprog_selDial, ContIprog_readlnCIP, Stdenv2_take_exclude,
Main_doIt,Main_interactive,Main_loadIt,Main_main,> with

<ContIprog_endCIP,ContIprog_selDial,ContIprog_readlnCIP,
Stdenv2_take_exclude,Main_doIt,Main_interactive,
Main_loadIt,Main_main,> with

<ContIprog_selDial,Stdenv2_take_exclude,Main_doIt,
Main_interactive,Main_loadIt,Main_main,> with

with
with
with
with

with

54 TICKS

2 TICKS

1 TICKS

1 TICKS

1 TICKS

1 TICKS

1 TICKS
0 TICKS
0 TICKS

0 TICKS

0 TICKS
0 TICKS

0 TICKS
0 TICKS
0 TICKS
0 TICKS

0 TICKS

0 TICKS

0 TICKS

0 TICKS

Figure 7.13: Partial results of the cost-centre-stack profiler.

C h a p t e r 7: Resu l t s and Eva luat ion 241

I n summary the non-zero, non-inherited results f rom the cost-centre-stack profiler
are:

COST CENTRE MODULE GROUP sec subcc 7,time
StaticNet_load_Binary StaticNet StaticNet 1 1 88. ,52
StaticNet.badGeneration StaticNet StaticNet 5 10 4, .83
StaticNet_isGenerationError StaticNet StaticNet 1 1 1 .61
StaticNet_hackInitialiseNumb StaticNet StaticNet 5 0 1, .61
StaticNet.mkstringZh StaticNet StaticNet 2 1 1, .61
Stdenv2_takeZuexclude StaticNet StaticNet 3 0 1 .61

The inherited results are not included, as attention is focused on the overheads

needed to collect these results.

7.3.2 Summary of the cost-centre-stack table

A t the end of the program execution 45 cost-centre stacks are produced. The

largest of these stacks is 7 cost centres deep. By extending the output produced

by the cost-centre-stack profiler, the index tables of these cost-centre stacks can be

analysed.

The index tables of these stacks vary f rom size 0 to size 12. 84.4% of these

index tables are of size 0 and 1, a further 6.6% of the index tables are of size 2, 3

or 4. 4.4% of the index tables are of size 6 and there is one index table of size 11

and one of size 12.

Considering the size of the program which is being profiled, the cost-centre-

stack table is small; there are a number of observations which can be made wi th

regard to this:

• The physical size of the program (measured by the number of lines) is large;

• However, the call-graph structure of the program is relatively simple. Most

of the functions i n the program call a small number of other functions - this

can be seen f r o m the program's index table;

C h a p t e r 7: Resu l t s and Eva luat ion 242

• The overheads of the program are therefore small as most of the book-keeping
needed for the cost-centre-stack profiler is straightforward. Once a stack is
created i t w i l l be memoised and reused. While the program is executing the
C code of the program, the current cost-centre stack w i l l remain static.

These observations lead to interesting in i t ia l conclusions - the overheads of the

cost-centre-stack profiler are going to be based (partly) on the structure and not

simply the size of the program. I n this particular case study the overheads are very

favorable even though the program is large. The analysis of the overheads in terms

of the structure of the program is continued in section 7.6.

7.3.3 Compilation overheads

Heap space needed for compilation:

There is no detectable difference in the heap needed during compilation for the

cost-centre profiler and the cost-centre-stack profiler. The makefiles used in each

case are the same.

Time needed to compile the program:

A typical example of the time needed to compile the modules in the supporting

directories, u t i l s , controls, and StaticNet, and the total t ime to compile the

ntest program (including the times for the supporting modules) is:

W i t h cost-centre profi l ing = u t i l s (2136.3 user 251.9 sys) - I -

controls (783.9 user 31.3 sys) -I-

StaticNet (419.4 user 44.7 sys)

Total = 3339.6 user 327.9 sys

These times are recorded using the unix time command; adding the user and system

t ime gives a to ta l compilation t ime of 3667.5 seconds.

Chapter 7: Results and Evaluation 243

With cost-centre-stack profiling = u t i l s (2672.4 user 272.5 sys) -I -

controls (647.3 user 150.6 sys) -I-

s tat icNet (501.9 user 47.4 sys)

Total = 3821.6 user 470.5 sys

Adding user and system time gives a compilation time of 4292.1 seconds.

This makes the compilation time overheads of using the cost-centre-stack pro

filer 17%. After 10 compilations of the system using the cost-centre profiler and

the cost-centre-stack profiler, the overheads average out as 17.03%. This added

overhead is considered to be quite acceptable.

7.3.4 Executable overheads

Size of the two executable files:

To analyse the size of the executable files, i t is necessary to consider the size of the

archive files in the supporting utility directories. Compilation of the u t i l s and the

controls directory produces two such archive files, u t i l s . a and controls .a.

Compiling the ntest program with the cost-centre-stack profiler produces the fol

lowing files with the respective sizes (in brackets) recorded in bytes:

Wi th cost-centre profiling = u t i l s . a (2924936) and cont ro l s .a (735436)

ntest = 3260416 bytes

Wi th cost-centre-stack profiling = u t i l s . a (3629074) and cont ro l s .a (817758)

ntest = 3448832 bytes

The difference between the two ntest executable files is therefore 188416 bytes,

which makes the executable size overheads in this case 5.77%. For a 3.5Mb exe

cutable, an extra 1.9Kb seems an acceptable overhead.

Chapter 7: Results and Evaluation 244

Run-time speed and memory usage:
Speed:

On average, execution time using the cost-centre profiler takes a total of 4.5 seconds;

with the cost-centre-stack profiler the average execution time is the same. There

are no differences in the speed at which the program executes using the two profiling

schemes.

Heap usage:

The heap usage for the cost-centre profiler and the cost-centre-stack profiler is also

the same. Each will run in 4Mb of heap space.

The results from a large functional program are extremely encouraging. The

study is strengthened with the results of profiling the LOLITA system.

7.4 LOLITA

The LOLITA system is one of the largest test cases available for profiling. The

version of LOLITA which is profiled to gather the results for this thesis contains

39094 lines of Haskell code and 10177 lines of C code. In addition, the system

contains 6.79Mb of data. The version of LOLITA is written in Haskell 1.2, i t is

compiled with GHC 0.22 and it is a version of GHC 0.22 on which the cost-centre-

stack profiler is implemented.

7.4.1 LOLITA results

First example

The LOLITA system is interactive and offers a number of operations to its user.

These operations will invoke different parts of the system and consequently will

produce different results during profiling. Before any of these operations can be

performed the system must load its semantic-net data, a process previously doc-

Chapter 7: Results and Evaluation 245

umented as a computationally expensive operation; see chapter 4. At the end of
an execution, the LOLITA system saves the semantic-network data structure. As
these two operations are required each time the LOLITA system is run, they pro
vide a suitable test case for the cost-centre-stack profiler. I t is noted that analysis
of the cost-centre profiler began with these same tests.

The cost-centre stacks are a good deal more complicated than for the previous

examples, yet even with this set of results, it is still possible to quickly identify the

stacks associated with a high cost^.

The programmer's attention is drawn to the cost-centre stack with the highest

costs:

<StaticNet_load_Binary,StaticNet_sNetLoad,StaticNet_sInitialiseData,
Total_loadData.Okf_raapOKF,IMain_go,> with 157 TICKs

At the head of this stack is the cost centre StaticNet_load_Binary. This cost-

centre stack alone accounts for 24.3% of the total execution time. These large costs

are due to the loading of the LOLITA semantic-net data structure. The sequence

of cost centres to this particular point in the program is clearly shown.

The investigation of the cost-centre-stack profile is facilitated by the use of the

graph-tool and post-processor. There are a considerable number of cost-centre

stacks to analyse and perhaps only the most diligent programmer is prepared to

look through the cost-centre-stack output to find the expensive stacks. The output

is loaded into the graph-tool. A screen dump of the graph-tool results is shown in

Figure 7.14.

The resulting graph contains 66 different nodes and 83 links between these

nodes. For this reason the graph is large and can not be seen in a single window

display. The screen dump shows the top twenty-one nodes in the graph; the virtual

display window, in the bottom right-hand corner, has a small box around the part

of the graph which is currently being displayed. This accounts for under a quarter

of the total graph size.

^The long list of cost-centre stacks is not included in this thesis.

Chapter 7: Results and Evaluation 246

i r
F l l . Graph ft-e Co««««id.

I

_ c , l
CentIpro9_9otPro9roMKaweCIP

_ c , l
0 ,0 0 .5

• IHBln_jJrelude_»>e»»agB
cost
0^0

Contlproa-TfladlnCI P
cos t
0 .0

IHa ln_* t r ipPa th
cost

CAF.Total

T o t a l . 1

lHa»n_pre ludo c a l l ^ IHa in_cred l t3 c a l l ^ I Ma 1 n_cred 1 t s_ I atfout

0 .0
cost
0 .0

c a l l ^ Total_endcoa

0 .0 0.0

I Ma 1 n_cred 1 t s_ I atfout

0 .0
cost
0 .0 0.0

1/̂ 1
S t a t l c f t o t _ B l n l t l a l l s a D a t a

cost
0 .0

Stat icNst_»H«»tLo«I
cos t
0 .0

j S t « t i c » B t _ l o « U t e c i l
cos t
24.3

End Perforw L a j j w r t .

Figure 7.14: Graph-tool display of LOLITA's cost-centre-stack profile results.

The programmer is able to move through the graph display using the scroll

bars provided. In this way the results graph can be seen section by section. This

particular display allows the programmer to see the sequence of cost centres which

account for the loading of the semantic net, and 24.3% of the total time as displayed

at that node.

Viewing the results in this way may look complicated. To improve the situation,

the graph-tool is also able to produce two orientations of the complete profiling

results; reduced copies of these views can be dumped to a printer. Viewing the

complete graph of the program gives the programmer further opportunity to explore

the results. With just a few hours experience the programmer will find that the

profiling results can be read with relative ease and the expensive parts of the

program can be rapidly identified with remarkable accuracy.

The programmer may find that the inheritance and graph-tool functions are an

easier way of managing the profiling results. Consider the following three examples

of post-processing:

Chapter 7: Results and Evaluation 247

- f yh-toof|i!!;!;'i^ii!;'|ii';!i5lffl??:st!!l'i!;!:^wr;';!;ssr;'?!!:f;5'i^i;r!i^

F i l o Graph A-c CoMwwxfe

IHaln_90
0 .0 0.0

— ^ T a t a l . l o w J B a t «

0.0

S t a t l c N o t _ s I n l t l a l l s « D a t a

0.0

S ta t lcHat_eNstLMd

0.0
_ ^ S t « t l c N M . l o o d _ n s c l l

24.3

End PtT^crm Laaout.

Figure 7.15: Graph-tool view of the most expensive cost-centre stack.

Using the post-processing tool the programmer can select the cost-centre

stack with the highest associated costs. This is effectively the most com

putationally expensive part of the code, as indicated by the profiler. This

information is straightforward to interpret. Figure 7.15 shows this function

applied to the LOLITA results; there can be no question as to where in the

program the largest amount of time was spent. Other post-processing func

tions could conceivably be developed which would add arms to the graph one

by one, corresponding to the descending order of costs from the cost-centre

stack profile.

A simplified view of the proposed function above is to display only the parts

of the graph which have non-zero costs. A reduction of the graph of the

LOLITA system, to only those cost-centre stacks with associated costs, is

shown in Figure 7.16. The graph has been reduced by more than a half; it

now contains 31 cost centres and 30 links between nodes. I t is clearly easier

to read the results in this form as they appear on a single screen. In general,

a programmer will only be interested in a profile of the program which shows

the actual program costs.

Chapter 7: Results and Evaluation 248

F i l e Cr -vh Arc Coiwands

^ 1 1

CentIproQ_runCIP

0.8

1

: a l l

CAF.IKal

Tota l . loadData
coat
0 .0

CflF.Total
cos t
18.9

Stdonv2_i8_lr
coat
0 .0

]Haln.Melnprog Tota 1_ logStat lcChangw

Sta t lcNat . s l to tLoad

|Sta t lcNet_lood_Ascl l
coat
24.3

N s t j r f « n o e s I r « D t
' cost

0 .2

4"' ^ c a l l 4"' ^
Basl c_9 lobal_9etUordI l lc ts

0.0

UordDlct3_saveH83h3
cost
0 .0

\ c a l l

Hashdlct_chan9eaInDlcti onaru Hashdi c t_s»MUordDl c t Stdonw_clpPBlr

0 .2 1.2 2.5

I

End P w f o r . Lai jout .

Figure 7.16: Graph-tool view of all stacks with non-zero costs.

• Post-processing also allows the programmer to select particular functions

in which he is interested in profiling; this was one of the earlier assump

tions made in the thesis, see chapter 6. This facility is demonstrated on the

LOLITA cost-centre-stack profile by selecting the following four cost centres:

Total-loadData, IMain_go, IMain_prelude and Total.saveData. I t may

be useful for the programmer to gather profiling costs in terms of these four

functions, as i t allows the developers to see how much time is spent loading

and saving the semantic net; how much time is spent in the prelude function

of the IMain module and how much time is spent in the main function go.
Those functions which are not selected have their costs subsumed by those

functions which are selected; see Figure 7.17. The costs do not account for

100% of the overall costs due to some of the CAF costs; this is discussed.

These post-processing facilities allow the programmer to explore the profiling

costs after program execution. In this example, the programmer is able to see that

loading the semantic-net data accounts for 31.1% of the total execution time. The

LOLITA prelude accounts for 7.4% of the program costs; this involves formatting

and printing the credit information and information regarding the authors of the

Chapter 7: Results and Evaluation 249

I F i l e Graph fire Co«»and»

IHain_prtiludD
cost

End Perform Lanoat.

Figure 7.17: Graph-tool view with selected cost centres.

system. At least 4.2% of the program's execution time is due to saving the semantic-

net structure. Some of the saving costs (18.9%) have been attributed to a CAF

in the Tota l module; this can be seen in Figure 7.16, but not in Figure 7.17. I t

is expected that later versions of the cost-centre-stack profiler will improve this

situation; later versions of the GHC cost-centre profile are more explicit regarding

the cost information for CAFs^. A further 20.2% of the program costs are subsumed

to the cost centre go; this corresponds to the main function of LOLITA.

These results show a clear mechanism by which a programmer can collect and

view profiling results. The post-processing facilities are clearly useful in such a large

example and the way in which they are able to filter large collections of results gives

the cost-centre-stack profiling scheme potential.

I t is proposed that, with continued testing and feedback, a suite of post

processing functions could be developed to make the interpretation of thet cost-

centre-stack results easier. As most of these post-processing functions are written

in C, i t is feasible for a programmer to develop his own post-processing functions.

N̂ow that the prototype has been tested and has provided satisfactory results, it is proposed
that the cost-centre-stack profiler is implemented on GHC 2.01.

Chapter 7: Results and Evaluation 250

Input Comp time Exec size Runtime Stacks Depth Push

(^)
(n)

50123.7 (10.2%)
same

Table 7.1

41279488 (7%) 110.9 (70.6%) 1807
same 55.4 (130.8%) 1766

: LOLITA results for template analysis

112
94

278081
12321

Second example

The second example considers a LOLITA function which makes use of a far greater

percentage of the total code. Template analysis takes as its input a passage of text.

This is then parsed and semantically analysed to produce a network of semantic

nodes from which information can be scanned to match a collection of templates.

Two sets of input data were tested. The first was a passage of text taken

from the Telegraph newspaper concerning one of the IRA terrorist incidents (i); it

contained 74 words. The second piece of data was the sentence "The cat sat on

the mat" (ii).

The first set of data clearly required more processing than the second, though

using these two sets of data allows the comparison of the profiling overheads re

quired for each. Most of the time taken in (ii) is due to the loading of the semantic

network.

Table 7.1 shows: the input data used; the time taken to compile the LOLITA

system using the cost-centre-stack profiler (the difference between this and the

cost-centre profiler is shown in brackets); the size of the executable file produced

by the cost-centre-stack profiler (the diflference is again shown in brackets); the

template-analysis run-time (again the difference is in brackets); the number of

cost-centre stacks produced as output; the depth of the largest cost-centre stack

and the number of Push operations performed during program execution.

As expected the larger input causes more computation and as a consequence of

this the mechanics of cost-centre profiling are considerably more detailed - this is

shown by the number of Push operations performed during each execution. The

depth of the largest cost-centre stacks are similar for both sets of input - 112 and 94

Chapter 7: Results and Evaluation 251

cost centres respectively. Since large stacks are constructed for the small input as

well as the large, many of the 265760 Push operations (the difference between the

two tests) will be performed on memoised stacks - this accounts for the reduction

in overheads when considering a larger input.

7.4.2 Compilation overheads

The compilation overheads are shown in the tables below.

LOLITA

Directory

Compilation time (seconds)

Overhead (%)

LOLITA

Directory cost-centre profiling cost-stack profiling Overhead (%)

utils 2320.7 2683.0 15.51

StaticNet 262.4 319.7 21.83

controls 550.1 615.6 11.9

tomita 141.8 149.2 5.04

haskell 40353.1 44496.3 10.27

linking 1846.2 1867.3 1.14

Total time 45481.7 50123.7 10.20

LOLITA

Directory

Archive size (bytes)

Overhead (%)

LOLITA

Directory cost-centre profiling cost-stack profiling Overhead (%)

utils 2927666 3629676 23.97

StaticNet 585456 666316 13.81

controls 750574 847792 12.95

tomita 154630 164200 6.18

haskell (lolita.exec) 38581248 41279488 6.99

The code for the LOLITA system is defined in four sub-directories. The first is for

the utilities, u t i l s ; the StaticNet directory contains the semantic-net utilising

Chapter 7: Results and Evaluation 252

functions; then there is a controls directory and a tomita directory, the latter of
which contains the tomita parser.

The first table shows the compilation time, in seconds, for each of the LOLITA

directories, for both the GHC cost-centre profiler and the new GHC cost-centre-

stack profiler. The table also shows the linking times for the complete system.

The compilation time overheads range from being negligible to 20%. These

results are taken from an average of five compilations. The largest directory of

files, LOLITA's haskel l directory, takes over 11 hours to compile all the modules.

The cost-centre-stack profiler introduces an overhead of 10%, which means that

the user would need to wait another hour for the complete system to compile.

This might seem like a long time, but i f i t is considered that linking the system

takes half an hour and compiling a single module takes on average four and a half

minutes, then changing the cost centres twice will result in the cost-centre-stack

profiler being more efficient.

Experience shows that in practice the programmer moves cost centres around

in his code a number of times even when dealing with a small part of the code.

Considering that the cost-centre-stack profiler allows the programmer to explore the

costs of the whole program after one compilation, the compilation time overheads

for the cost-centre-stack compiler are extremely encouraging.

The second table shows the size of the archive files (.a) for each of the sub

directories and also the size of the LOLITA executable (lolita.exec). The overheads

range from 6% to 23% with a total overhead of 7%. A total overhead of 7% seems

very reasonable, although this does account for 2.7Mb of extra information. In

general the overheads for the cost-centre profiler are high and any improvements

to this profiler would have obvious benefits to the size of the executable produced

using the cost-centre-stack profiler.

Chapter 7: Results and Evaluation 253

7,4.3 Executable overheads

The execution overheads vary according to the LOLITA functions utilised and the

input supplied.

The execution time overheads for the first example over an average of 15 execu

tions are in the order of 13.2%; this only accounts for an extra 2 seconds of execu

tion time. Such overheads are acceptable and show that using the cost-centre-stack

profiler will have obvious time benefits to the programmer.

The execution time overheads for the second example are higher and at worst

are in the order of 130.8%. Even this however only accounts for a further half

a minute of execution time. Using the cost-centre-stack profiler in the detailed

analysis of this example will also save the programmer a considerable amount of

time.

7.5 nof ib benchmark

The previous results are further supported by the results of testing the cost-centre-

stack profiler on the nof i b benchmark, [Partain, 1992] [Jarvis and Morgan, 1996a,

1996b]. Partain describes the testing of compilers for lazy functional programs

as a 'near-scandalous subject', referring to the ambitious claims made by some

implementors based on the results of small test programs, Squeens and f i b 20 for

example. In response to this, Partain gathered some serious benchmark programs

which he collectively called the nof i b suite.

The nof i b suite specifically consists of:

• Source code for real Haskell programs which can be compiled and run;

• Sample inputs (workloads) to feed to the compiled programs, along with the

expected outputs;

• Specific rules for compiling and running the benchmark programs and report

ing the results; and

Chapter 7: Results and Evaluation 254

• Sample scripts showing how the results should be reported.

Those programs included in the nof i b suite are divided into three subsets. Real,

Imaginary, and Spectral (between Real and Imaginary).

The Real subset is described as being the most important as i t contains pro

grams which are written by someone trying to get a job done, not by someone

trying to make a pedagogical or stylistic point. They perform a useful task and

are not implausibly small (or large). The run-times and space for the compiled

programs are selected so that they represent a reasonable amount of work and

the programs are written by a diverse set of people based at different sites, with

varying functional programming skills and styles. The programs also span many

different application areas and have varying ages. Nine of the programs from the

Real subset, whose benchmark results are displayed in this thesis, can be seen in

Table 7.2.

Programs in the Spectral subset do not quite meet the criteria of the Real

subset. Many of these programs fall into Hennessy and Patterson's category of

kernel benchmarks [Hennessy and Patterson, 1990]; they are 'small key pieces from

real programs'. Five of these programs, whose results are also included in the

benchmark tests, can be seen in Table 7.2.

The Imaginary subset contains programs such as queens and f i b etc. These

programs are not considered to be as important [Partain, 1992] and are therefore

not referred to in any more detail.

The version of the nof i b suite used in these tests dates from June 1996. Al l

the tests were performed on the same machine^". The standard optimiser (-0) was

used during the compilation and the compile-time flags were set so that all top-level

functions were profiled (-prof - au to -a l l) . The compiled programs were run with

the time profiler (-pT) and the stats option (-s) so that the heap and time usage

could be recorded.

1°System Model : SPARCcIassic, Main Memory : 96 MB, Virtual Memory : 353 MB, CPU
Type : 50 MHz microSPARC, ROM Version : 2.12, OS Version : SunOS 4.1.3C.

Chapter 7: Results and Evaluation 255

Program Description Origin

Real subset

ebnf2ps
gamteb
gg
m a i l l i s t
mkhprog
parser
pic
prolog
r e p t i l e

Spectral subset

Context free grammar translator
Monte Carlo photon transport
Graphs from GRIP statistics
Mailing-list generator
Haskell program skeletons
Partial Haskell parser
Particle in cell
"mini-Prolog" interpreter
Escher tiling program

Peter Thiemann (Tubingen)
Pat Fasel (Los Alamos)
Iain Checkland (York)
Paul Hudak (Yale)
Nick North (NPL)
Julian Seward (Manchester)
Pat Fasel (Los Alamos)
Mark Jones (Oxford)
Sandra Foubister (York)

Direct cursor input/output
A simple banner program
The classic pseudo-psychoanalyst
Tic-tac-toe
Primality testing

Wil l Partain (Glasgow)
Mark Jones (Oxford)
Mark Jones (Oxford)
Iain Checkland (York)
David Lester (Manchester)

ansi
beinner
e l i z a
minimax
primetest

Table 7.2: nof i b benchmarks: 'Real' and 'Spectral' programs

In the majority of cases the supplied input was used during program execution,

although some of the input data was extended to increase the run-time of the pro

grams. The only other changes made to the programs were for debugging purposes

(incorrect Makefiles etc.). Not all of the programs included in the suite compiled

correctly; some required a more up-to-date version of the compiler {0.24+) and

some of the programs had files missing. Al l of the programs which compiled and

ran correctly were included; that is to say, this data was not selected on the basis

that i t produced favourable results.

For each program tested, the results of compiling and running the program un

der the cost-centre-stack compiler have been recorded. The difference in the over

heads of the cost-centre-stack compiler and a standard version of GHC 0.22 (using

the -p ro f - a u t o - a l l compiler flags) is shown in brackets. Statistics recorded

include compile time, run-time, total memory consumption, the number of cost

centres in the program and the number of Push operations performed by the cost-

centre-stack profiler. These results can be seen in Table 7.3.

Chapter 7: Results and Evaluation 256

cr

CO

o

cr
O

3

>-!
<TJ
CO

(D B P (D
CD X

to 03 to to h-'
h-' 00
05 CO Cn 1—'

o to to
— ^ ^ — ^ y ^ ^ — V y—^
p 05 O 01
O 05 t- ' to ^

CD

to
00
?r cr

'oo
CO
b

^ CO
05 00 o 00
00 05 CO 05
Ji. Jî C35 00
t»r PT- !^
cr cr cr a'
'ui'co'w'o

0 ° to to
^ •'̂ ?S

CO
CO •

oi to o o
b 05 05 ^

to
01 4^
to tfî o

CO
CO
CO

CO 00 n p CO

to t j ^ I — ' CO to
I—1 O ^ 05

to 1 — ' to CO h-'
CO 1 — '

o 05 CO
05 CO .CO CO
to 00 05

O PS-

Co

e
Co

as

XS 3 3 m OT CD
(0 l-j H- m Qj cr ^ o n H| H- 3 » c+ M 01 M ct H>
H- O a> i-(M <D ro
M OT o M-
CD OT CO

c+
CO

h-' (— ' 1—' h-' 00 to
1 — ' ~q CO ~q o O I—'
1—' to CO P 05 CO 05
05 b CO h-' CO bo ;<! b 00
to CO ^

^ ^ "05 ^ ^ h-' CO ,—^ h-' ^—^
CO
CO

to
05

hi CO
CO

bo h-'
1—'

CO 1 — '

CO hi bo

— ^

to X
I - " o
O ~Q
4^ to
s»r t»r cr

O CO
h-' 05

to
O Ol
00 CD to

Ol ti^
~co

CO h-"
<35 05

CD CO

00 ^

h-i CO CD
F> 00

00 -a o
O I - "

00 to
t»r cr c r ^

05
to Ji- H-i

I - " Ki
CD ^ 0 0 ,

^ rf^ I — ' -<I O to I - "
CO CO P P

CD cn h-'
CO CO y—V y—s 4^ y—V y—v
00 CJ1 05 CO to C35 -<I

^ bo b "
00 o ^ to

^ C O O i r * ; : : g ^ t O Q

to CO

P8§
CO ^
^ 00

'~' bo

to 05 to ^
Ol 4^ 05 00
CO

CO I - '
o o

I — ' cn to
CO ~ j to
CO cji

CO 4^ 05 1 — ' Ol CO CO
o o 00 CO CO CO 05 CJi > ^

o 00 00 ~a 05 to 05 CO
cn cn -J -a h-» CO

t—' CO
Ol

to
to

cn

?0

Co

e
Co

O

i

o
o

3
a>
w
a> o

I — "

!=«5

m
B o
f-l

cn

ft)

33

d
I

3
m
Ui
CD
o

33

Q o
cn

o
3-
fC cn

1 ^

cn cr

Chapter 7: Results and Evaluation 257

7.5.1 nof ib results

Compile time - between 3.8% and 13.9% overheads. This is due to the time needed

to produce the larger executable file. These overheads are considered reasonable.

The size of the executable files was expected to be slightly larger because of the

changes made to the compiler optimiser and to the run-time system.

Memory usage - previous examples have shown that programs compiled with

the cost-centre stacks use the same amount of heap as those compiled with cost

centres. The overall physical memory usage is greater however; memory overheads

range from 0.2% to 414.8% depending on the structure of the program. This can

cause a large amount of extra memory to be needed during execution^^ However,

these overheads have never prevented a program from being executed on a normal

Sparc workstation.

Run-time difference - this is where the most overheads are anticipated, as most

of the profiler changes are to the run-time system. These range from 2.4% to

384.7%. These overheads are also dependent on the structure of the program (see

section 7.6).

Even when the run-time overheads are 384% (parser), this only means an extra

59 seconds of execution time, which accounts for just 4.4% of a single compilation

of that program.

The relation between, the number of cost centres and Push operations, and the

overheads is discussed in the next section.

These results show that the cost-centre-stack profiler should be used if the cost

centres are going to be moved once or more in the analysis of a program. This

allows a substantial amount of time to be saved.

^^An extra 23Mb in the worst case.

Chapter 7: Results and Evaluation 258

7.6 Complexity analysis

How can the difference in run-time overheads found in the testing of the cost-

centre-stack profiler be explained? The run-time overheads are dependent on the

structure and style of the program. For example,

• the complexity of the cost-centre-stack table will increase with the number

of arcs in the call-graph. The greater the functional dependency, the greater

the overheads involved in creating the cost-centre stacks;

• the more cost centres there are per unit of code, the greater the overhead of

managing the cost-centre stacks. The number of top-level functions may be

increased by the programmer's style, for example, i f the programmer is not

keen on local function definitions.

I t is important to note that it is not simply the size of a program which increases

the overheads. This is shown by the LOLITA results, for example, where the

overheads are lower than the overheads of programs hundreds of times smaller. I t

is the possibilities allowed in the call-graph, which are fulfilled at run-time, that

increase the overheads.

Of course this analysis (as in the nof i b results above) is based on the assump

tion that all top-level functions are profiled (-auto-a l l) . This need not always be

the case. The cost-centre-stack profiling method is equally valid with less cost cen

tres in the code, in fact the programmer might find high-level information, gained

from a profile containing less cost centres, more informative at the early stages of

profiling. I t would also be the case that the use of less cost centres would reduce

the overheads of the cost-centre-stack profiler.

7.6.1 Worst-case analysis

A worst-case analysis of the complexity of the algorithm can be calculated. Assume

that there are n cost centres in the program and that the worst-case scenario is

Chapter 7: Results and Evaluation 259

modelled in which every function can (and does) call every other function in every
possible way (i.e. with every possible combination of enclosing cost-centre stack).

• Space complexity. The number of cost-centre stacks becomes the number of

ways of ordering n identifiers, which is n!. Each stack must use a constant

amount of space (due to stack compression and the fact that all the other

stacks will be present). Each stack will also contain a cost-centre-stack index

table containing 0(n) entries. Hence,

Space complexity = 0(n!)]

• Time complexity (Building stacks): This figure will be at least 0(n!) because

the system would need to build all of the stacks above. The time complexity

also involves the addition of the complexity of the Push operations. I f it is

considered that the number of Push operations performed is c then:

I f the stack already exists the complexity is 0(c*n), n being the size of the

index tables;

I f the stack does not exist {0(n) to determine this) then the algorithm

searches down the stack looking to see i f that function has already been

called. In the worst case i t would have to search to the end of the stack 0{n).

I t would then have to rebuild the stack, 0(n) at worst. This makes a total

complexity in 0(c*n).

This again is working on a worst-case scenario - with more detailed analysis

i t could be calculated that not every stack would need to be searched completely,

just as every index table would not need to be searched completely.

This analysis opens the way for many optimisations of the algorithm. For

example the index tables could be ordered in such a way as to minimise the search

needed. Straight recursion could be modelled by storing a functions index pointer

to its own stack at the first reference in the index table; reducing the time needed

to Push recursive calls to a constant complexity 0(1).

I t is assumed that the number of Push operations is c; this figure is calculated:

Chapter 7: Results and Evaluation 260

• Time complexity (Push operations):

This must be at least 0(n!) to allow for every possible combination of cost-

centre stacks. This figure is only interesting however if it is proportional to

the execution time overhead, that is in terms of the original computation.

As a proportion of the execution time overheads for a normal execution of the

program, c is (c+c*3n)/c, thus making the overhead a factor, l+3n. This

gives a linear relation between the overheads and the number of cost centres

(in the very worst case).

Of course, no 'real' program would be this bad. Most programs will have this

figure limited by the possibilities allowed in the call-graph. However, this does give

an upper limit to the algorithm so it is a useful calculation to have to hand.

7.6.2 Program structure

An average-case analysis of the algorithm would not eliminate the largest figure

in the order of complexity, that is the factorial figure which corresponds to the

number of stacks produced in the execution of the program.

However, i f the shape of the program is diff'erent then this factorial figure is

already much smaller. For example if the call-graph is a tree, where each function

calls only one other function, then the number of stacks becomes n and the space

complexity is 0(n).

The results in table 7.3 show that there is not a direct correspondence between

the number of cost centres, Push operations and the overheads involved in using the

cost-centre-stack profiler as opposed to the cost-centre profiler. These overheads,

as discussed, are partly based on the structure of each individual program, detailed

analysis of which is beyond the scope of this thesis.

Chapter 7: Results and Evaluation 261

7.7 Heap profiling and serial time profiling

The results presented in this chapter are based on an implementation of the cost-

centre-stack profiler which records time profihng information. An extension to the

cost-centre stacks, to allow the additional storage of heap profiling information, is

straightforward; this too is based on the underlying cost-centre profiler.

The extra overheads which heap profiling will impose are 4 bytes per cost-centre

stack, this is represented by an integer in which the number of memory allocation

samples is stored. The run-time system will also be required to execute one extra

instruction per profile sample; this extra instruction increments the number of

memory allocation samples for the cost-centre stack. These extra overheads are

thought to be minimal.

The data structure of the cost-centre stack

s t r u c t CostCentreStack •{
costCentre CostCentre;
i n t time_ticks;
CostStackTable PreviousStack;
IndexTable CostCentreStacklndexTable;

} ;

is extended to include this extra field.

s t r u c t CostCentreStack {
costCentre CostCentre;
i n t time_ticks;
i n t mera_allocs; (* Extra heap p r o f i l i n g info *)
CostStackTable PreviousStack;
IndexTable CostCentreStacklndexTable;

Heap profiling results may similarly be produced in hp2ps format, from which

they can be displayed as a postscript graph; they may also be displayed in the

graph-tool.

From our experience, serial time profiling has not proved to be as useful as time

or heap profiling. There may be benefits in extending the cost-centre-stack profiler

Chapter 7: Results and Evaluation 262

so that serial time profiling is implemented, however without any explicit indication
from applications programmers that this is useful, i t is not proposed that this is
explored in any further detail.

7.8 Chapter summary

A prototype of the cost-centre-stack profiler, implemented on GHC 0.22, has pro

duced encouraging results for programs containing 15 to 50,000 lines of code. A

number of examples were presented in this chapter which included the Clausify

benchmark program, a subset of the LOLITA system called ntest and the LOLITA

system itself. The results of profiling the nof i b benchmark suite were also pre

sented.

A small example was introduced at the beginning of the chapter which demon

strated how the cost-centre-stack profiler recorded profiling results in such a way

as to make accurate inheritance possible. Even in a simple 15 line program the dif

ference in results between the cost-centre-stack profiler and the cost-centre profiler

was considerable.

As the size of the program grew, so the results became more complicated to anal

yse. For this reason a number of post-processing functions were developed which

enabled the programmer to filter the cost-stack results; these included functions

which would remove cost-centre stacks with zero costs and a function which would

display the cost-centre stack with the highest associated costs. The LOLITA case

studies showed that the post-processor was a useful tool in the analysis of profiling

results from a large functional program.

The overheads of using the cost-centre-stack profiler were presented. The results

showed that the cost-centre-stack profiling overheads were not based on the size

of the program but on the program structure. Never were the overheads so high

that i t was not possible, or useful, to profile a program with the cost-centre-stack

profiler. Worst- and average-case analysis of the overheads were discussed.

Chapter 7: Results and Evaluation 263

Further studies will be needed to see i f programmers use cost-centre-stack pro
filing in preference to cost-centre profiling. The case studies have shown that if
a programmer is likely to move cost centres in his code to produce successive
cost-centre profiles, then using the cost-centre-stack profiler will have considerable
benefits.

Chapter 8

Further Research

8.1 Introduction

The cost-centre-stack profiler is based on a well-formed theory; cost-centre stacks

are sequences of labels in a program which may correspond to top-level function

definitions or individual unnamed expressions. During a program's execution these

cost-centre stacks are built in such a way as to ensure that recursive programs are

represented by stacks which include only one occurrence of each cost centre. The

initial prototyping of the cost-centre-stack profiler has shown encouraging results;

in particular the overheads of the scheme are promising.

There is a need for the careful analysis of the new cost-centre-stack profiler in

a series of detailed case studies. The cost-centre-stack profiler has already been

tested on the LOLITA system; it is proposed that this study is continued and the

feedback from developers used in the tuning of the profiling tool. I t is also proposed

that the profiler is distributed with the Glasgow Haskell Compiler. This will allow

testing of the new profiler by a wide variety of programmers.

The development of this method of profiling has led to two important advances.

Firstly, profilers can be constructed which obtain a much wider range of data from

a single profile of a system. Further research includes the development of other

profilers based on this method, see the BSP tools project described in section 8.4.

Chapter 8: Further Research 265

Secondly, cost-centre stacks can be used as a basis for the development of more
tools needed in the analysis of lazy functional programs. In particular, further
research includes the development of tracing and debugging tools, two areas which
have seen a considerable amount of research interest. These areas are discussed in
sections 8.2 and 8.3.

8.2 Debugging

Chapter three (section 3.5.1) discussed the development of debugging tools which

were used in the engineering of the LOLITA system. One of these tools in particular

was the Distinguished Path Debugging Tool developed by Kazan and implemented

on the Gofer and Miranda interpreters. Since the LOLITA system requires compiler

support i t is desirable that the Distinguished Path Debugging Tool is ported to

either GHC or HBC. The following section re-introduces the Distinguished Path

Debugging Tool and gives an indication of how the cost-centre-stack profiler can be

used as a basis for an implementation of the tool on the Glasgow Haskell Compiler.

8.2.1 Distinguished Path Debugging Tool

A class of run-time error which was found to be occurring frequently in the LOLITA

system was the exception error type. An exception error is one which results in

termination of the program and the printing of an error message. Examples of this

type of error in Haskell are

F a i l : head{PreludeList}: head •

which results from passing the list head function an empty list and

F a i l : (! !) { P r e l u d e L i s t } : index too large

which occurs when the list indexing operator is passed a subscript which is outside

the bounds of the list. These exception errors give no indication to the programmer

Chapter 8: Further Research 266

of whereabouts in the program the error occurred. This is a problem, as functions
such as head and the list indexing operator are used many times in many different
parts of LOLITA. Previously, this problem had been approached by providing a
customized version of each function capable of generating an exception error for
each module. This new version of the function would report the name of the module
when i t generated an exception error. However, simply knowing the name of the
module in which the exception was generated is not sufficient—the error causing
the exception error to be generated may be in a function which called the exception-
generating one, or even some way back in a chain of functions each calling the other
with the exception-generating function at the very end of the chain.

The distinguished path debugging tool [Hazan, 1993] allows the display of these

chains of functions, termed distinguished paths. The path displayed is the route

taken through the dependency graph of the functions in the program, with cycles

removed by grouping together mutually recursive functions. For recursive calls,

the function is only included once in the distinguished path. The tool works by

transforming each function to take an extra parameter, a representation of the

distinguished path, which is built up from one function call to the next. When

an exception error is encountered, the value of this extra parameter is displayed.

Unlike the previous method of debugging such errors, which involved altering the

source code by hand, the tool works automatically by transforming each source

module.

The example shown in chapter 3 was that of the map colouring problem. The

dependency graph of the sample program is shown in Figure 8.1. When the ex

pression go is evaluated, the function addcol is used to produce a new colouring

scheme given the map country_map. However, evaluation terminates with a head

of empty list error. The distinguished path debugging tool causes the following

error message to be output^:

Program e r ro r : hd [] : hd lookup w i l l . c l a s h clash addc addcol

'This output is from a Miranda implementation of the tool.

Chapter 8: Further Research 267

country-map

all-coloured

update

addcol

addc colours regio:

lookup will-clash

isnotcld
\

colourof

domain member

Figure 8.1: The dependency graph of a program to solve the map colouring prob
lem.

This error message shows the distinguished path. The distinguished path may

either be searched in a top-down manner, starting from addcol, or in a bottom-up

manner, starting from hd. For the top-down search, each function is searched in

turn until a correct function is found; the function containing the error is either

the function searched immediately before this one, or another function which is

not on the distinguished path but which this function depends on. Alternatively,

the bottom-up search proceeds until an incorrect function is found. In the case

of the example program, the error is in function w i l l . c l a s h , which is on the

distinguished path itself.

Experience with this tool has shown it to be very useful in debugging exception

errors.

8.2.2 Using cost-centre stacks for debugging

I t is proposed that the cost-centre-stack profiler be modified to implement the

distinguished path debugging tool on the Glasgow Haskell Compiler. The distin

guished paths identified by Hazan can be recorded using cost centres, the cost-centre

stack being itself a distinguished or unique path through the programs execution.

When a program terminates with an execution-time error, i t is possible to

Chapter 8: Further Research 268

output the current cost-centre stack which is currently in scope. This will have the
effect of outputting the sequence of cost centres which were encountered to reach
that part of the code where the error occurred.

Recursion is tackled in a diff'erent way to the Gofer implementation of the

distinguished path debugging tool. The cost-centre-stack profiler is able to provide

information on which functions in a mutually recursive function group have been

called and which have not; the distinguished path debugging tool is unable to

provide this information, i t will simply identify the name of the recursion group.

The compressed cost-centre stacks mean that the path of cost centres does not

include repetitions of the cost-centre name, even when recursive and mutually

recursive functions are used.

The modifications to the cost-centre-stack profiler should produce better results

to that of the distinguished path debugging tool as the profiler can supply infor

mation on terminating as well as non-terminating programs. The profiler also has

the added advantage that it can be used with the Glasgow Haskell Compiler and

not just with an interpreter-based system.

8.3 Tracing lazy functional computations

Lazy functional programs are noted for the fact that the order of evaluation is

determined by the demand for results. This behaviour is hidden from the pro

grammer. Sometimes, however, i t is useful to be able to 'see' this activity and

watch the order of evaluation of expressions in the execution of a program. In the

past the only way to see the sequence of lazy evaluation was to watch the program

stack. This was not easy and was diflScult to interpret even for the experienced

programmer.

Another approach used to trace functional programs has been to provide a

visualisation aid to show the order of graph reduction in a program [Foubister and

Runciman, 1995 .

Chapter 8: Further Research 269

square

3 1

3 1

Figure 8.2: The reduction of square (3 + 1).

8.3.1 Visualisation of graph reduction

Foubister and Runciman stated that people are often unable to predict the be

haviour of lazy functional programs and, although the order of reduction is deter

ministic, i t is not always intuitive. Their proposed solution makes the details of

reduction open to inspection.

In Foubister's thesis i t is demonstrated how a visual presentation of graph

reduction can be achieved. This allows the presentation of a series of reduction

steps such as those shown in Figure 8.2.

Some of the complexity introduced by the crossing of arcs in the reduction

graphs is reduced by displaying the results as graph-trees. I t is also recognised

that the graph-trees may become quite large when more complicated programs are

introduced and that the sequence of reduction steps may also create a long series

of trees. Solutions to these problems were implemented in the form of filtering the

trees, to reduce the number of vertices, and reducing the number of graphs by only

showing 'stages of interest'.

Filter functions have been defined by Foubister and as these are simply written

in a functional code it is proposed that users can write their own filter functions.

The system is currently written using a subset of the Haskell language called h

running on an interpreter called h in t . The scaling-up of the system to ful l Haskell

has yet to be done.

Chapter 8: Further Research 270

8.3.2 Using cost-centre stacks for tracing

The cost-centre-stack profiler is currently being extended to off'er a new way of

tracing higher-order computations. The advantage of this is that a full Haskell

program can be observed during execution.

The approach to tracing using cost-centre stacks is quite different to that

adopted by Foubister for a number of reasons. Firstly, the ful l Haskell language

is used so there is no need for any scaling-up of the language; secondly, it avoids

displaying the evaluation of a program in terms of graph reduction, as i t is not clear

that this will make the evaluation of a program any more intuitive, particularly

i f an optimising compiler is used; finally, the emphasis is on programming on a

large scale and making a tracing tool which is applicable to programs which are

potentially thousands of lines long.

Wi th the cost-centre-stack tracing mechanism it will be possible to study the

sequence of evaluations by looking at the order of the cost centres in the cost-centre

stacks at diff'erent points in the programs execution. This gives programmers the

chance to watch the lazy evaluation sequences of programs. There are some obvious

benefits which this kind of tool would offer to the study of lazy computations:

• i t would allow compiler writers to experiment with different evaluation and

optimisation methods in their compilers to reduce the size of the stacks;

• functional programmers would in the same way be able to experiment with

different programming methods to optimise the way in which their programs

were executed;

• students would be able to gain a picture of how a simple program does actually

evaluate using a lazy evaluation mechanism. Al l people interested in lazy

evaluation would have a simple way to look at the method in action.

The tracing problem is receiving a good deal of attention from York and Chalmers

Universities, they recognise the value of such a tool in compiler research and also

in the development of support tools for lazy functional languages.

Chapter 8: Further Research 271

The cost-centre-stack profiler will provide the necessary mechanism for the im
plementation of such a tool on the Glasgow Haskell Compiler.

8.4 BSP tools project

The goal of the BSP tools project^ is to develop tools and libraries which facili

tate programming within the Bulk Synchronous Parallel (BSP) model. The BSP

model provides a simple, unified framework for the design and programming of all

kinds of general purpose parallel systems [McColl, 1995]. The motivation behind

this project is the need for a unified framework in which parallel software can be

developed on a diverse range of architecture.

Traditionally computer architectures have developed in many different direc

tions and produced many different kinds of memory architectures and multipro

cessing systems. Developing software which will run on any general-purpose par

allel architecture might seem an increasingly unUkely prospect. However, the BSP

project aims to produce a framework for the design and programming of general

purpose parallel systems. In addition to this the software produced should be

fully portable parallel software which is efficient, scalable and has a predictable

performance on a range of parallel architectures.

The first stage of the BSP tools project has been to provide new native imple

mentations of the Oxford BSP library for an SGI Power Challenge and an IBM

Sp2. A generic implementation has also been constructed on top of MPI (Message-

Passing Interface), a new standard for writing portable message-passing programs.

New libraries have been created for these systems: along with the new imple

mentations of the BSP library, a collection of higher-level libraries have also been

developed. In particular,

• a library of monolithic array processing operations similar to those available

^An on-going project at the Programming Research Group, Oxford University — ESPRIT
Basic Research Project 9072 - GEPPCOM (Foundations of General Purpose Parallel Computing).

Chapter 8: Further Research 272

in High Performance Fortran (HPF) and the Bird-Meertens formalism. The
motivation for such a library is to provide monolithic operations such as
filter, scan, and scatter which view a collection of distributed arrays as a
single monolithic unit.

• a library that allocates, and maintains references to, dynamic heap-allocated

objects on remote processors. Operations are provided for remote dereference,

store, and the wholesale pulling of objects from one processor onto another.

• a library that enables the farming of arbitrary tasks between processors.

The next stage of the project is to investigate profiling and debugging tools. It is

proposed that the cost-centre-stack profiling method be used as the design for these

tools. The BSP compiler uses a number of techniques adopted from the field of

lazy, higher-order functional languages. For example many of the message-passing

instructions are based on a delayed evaluation mechanism, for this reason i t is not

always easy to predict where much of the communication in a program will take

place. Run-time analysis is possible with a profiler designed for a lazy functional

language; the BSP compiler is currently being modified to output process stacks.

The post-processor is also considered to be highly desirable by BSP programmers

and developers.

Chapter 9

Conclusion

The conclusions to the thesis begin by recalling the criteria for success which were

discussed in Chapter 1.

1. The new method of profiling presented in this thesis, provides an oppor

tunity for a reduction in the time needed to profile a large lazy functional

programmed system, when the programmer selects and deselects parts of the

code for profiling.

2. The new method of profiling extends the profiling results presented by previ

ous profilers in so much as the accurate inheritance of shared program costs

can be achieved.

3. The new method of profiling provides these new facilities without imposing

an unacceptable overhead on the compilation or execution of the program

such that the new method of profiling would offer no benefit to a functional

programmer.

The development of the cost-centre-stack profiler was based on the results of a

series of case studies implemented over a two-year period. The case studies inves

tigated the profiling of the LOLITA system, a large-scale lazy functional system

written in 50,000 lines of Haskell code. This study highhghted a number of prob-

Chapter 9: Conclusion 274

lems with the current profiling tools and in response to these the cost-centre-stack
profiler was designed.

The cost-centre-stack profiler collects results which can be post-processed after

the execution of the program. Part of the post-processor implements a scheme

whereby the programmer can select and deselect cost centres in his code. This

enables the results to be viewed at different points in the program without any

further compilation or execution of the code.

Experience of using current profiling tools has shown that results are often pre

sented at a low level in the code. Those results which are displayed at a more ab

stract level in the code often require further investigation to identify exactly where

the efficiency problem occurs. The cost-centre-stack profiler will allow results to be

displayed at an abstract level in the code and will also allow the re-investigation of

costs without any further compilation or execution of the program. This will allow

the time spent profiling a program to be reduced. This statement is particularly

true as far as large functional programs are concerned, where the compilation and

execution overheads might normally be high. This satisfies criterion 1.

The cost-centre-stack profiler provides a method of cost inheritance. Program

costs are collected during execution and assigned to cost-centre stacks, an ordered

collection of cost centres which show the path of cost centres to that part of the

program. These cost-centre stacks provide the basis for a scheme of inheritance

which is implemented in the profiling post-processor. The cost-centre stack results

can be utilised to provide flat profiles, equivalent to those produced by the cost-

centre profiler, and also inheritance profile results. This allows the programmer to

investigate the costs of shared functions and leaves him in no doubt as to which

parts of the program may have caused an expensive call to a shared function. This

satisfies criterion 2.

The cost-centre-stack profiler is designed to minimize the overheads which the

collection of this new stack information might impose. A key design issue is that

of compressed stacks, which ensure that a cost centre will only appear once in

a cost-centre stack. Cost-centre stacks are created using pointers which reduce

Chapter 9: Conclusion 275

the storage overhead needed to implement the cost-centre stacks in the Glasgow

Haskell Compiler. Repeated stack push operations are implemented via a high

speed look-up table and pointer traversal mechanism. The overheads for small

and large programs are encouraging, in so much as a functional programmer would

not need to invest much more time in compiling or running his program to gain

these extra results. The increased heap usage for the cost-centre-stack profiler is

minimal. This satisfies criterion 3.

The theory of cost-centre stacks and inheritance is currently being used in the

design of a new profiling tool at the University of Oxford. It is thought that this

method of collecting and displaying the results will be useful in the design of pro

filers for imperative and functional languages in both parallel and serial contexts.

The cost-centre-stack profiler also provides the basis for a new method of debugging

and tracing non-strict functional programs.

Appendix A

Clausify 5

— CLAUSIFY: Reducing Propositions to Clausal Form
— Colin Runciman, University of York, 10/90

— An excellent benchmark i s : (a = a = a) = (a = a = a) = (a = a = a)

— Optimised version: based on Runciman & Wakeling [1993]
— Patrick Sansom, University of Glasgow, 2/94

> module Main (main) where

— the main program: reads stdin and writes stdout

> main = readChan stdin exit (\input ->
> appendChan stdout (clausify input) exit done)

— convert lines of propostions input to clausal forms

> clausify input = concat
> (interleave (repeat "prop> ")
> (map clausifyline (lines input)))

> clausifyline = concat . map disp . clauses . parse

— the main pipeline from propositional formulae to printed clauses

> clauses = unicl . s p l i t . disin . negin . elim

— clauses = (sec "unicl" unicl) . (sec " s p l i t " s p l i t) .
(sec "disin" disin) . (sec "negin" negin) .

Appendix A: 277

(sec "elim" elim)

— clauses = (\x -> sec "uniel" unicl x) .
(\x -> see " s p l i t " s p l i t x) .
(\x -> see "disin" disin x) .
(\x -> sec "negin" negin x) .
(\x -> sec "elim" elim x)

> data StackFrame = Ast Formula I Lex Char

> data Formula =
> Sym Char- |
> Not Formula I
> Dis Formula Formula I
> Con Formula Formula I
> Imp Formula Formula I
> Eqv Formula Formula

— separate positive and negative l i t e r a l s , eliminating duplicates

> clause p = l e t
> clause' (Dis p q) x = clause' p (clause' q x)
> clause' (Sym s) (c,a) = (insert s e , a)
> clause' (Not (Sym s)) (e,a) = (e , insert s a)
> in
> clause' p ([] , [])

> conjunct p = case p of
> (Con p q) -> True
> p -> False

— s h i f t disjunction within conjunction

> disin p = ease p of
> (Con p q) -> Con (disin p) (disin q)
> (Dis p q) -> disin' (disin p) (disin q)
> P -> P

— auxilary definition encoding (disin . Dis)

> disin' p r = ease p of
> (Con p q) -> Con (disin' p r) (disin' q r)
> P "> case r of
> (Con q r) -> Con (disin' p q)
> (disin' p r)
> 1 ~^ Dis p q

Appendix A: 278

— format pair of l i s t s of propositional S3rmbols as clausal axiom

> disp p = case p of
> (l , r) -> interleave 1 spaces ++ "<="
> ++ interleave spaces r ++ "\n"

—eliminate connectives other than not, disjunction and conjunction

> elim f = ease f of
> (Sym s) -> Sym s
> (Not p) -> Not (elim p)
> (Dis p q) -> Dis (elim p) (elim q)
> (Con p q) -> Con (elim p) (elim q)
> (Imp p q) -> Dis (Not (elim p)) (elim q)
> (Eqv f f') -> Con (elim (Imp f f ')) (elim (Imp f f))

— remove duplicates and any elements satisfying p

> f i l t e r s e t p s = f i l t e r s e t ' [] p s

> f i l t e r s e t ' res p 1 = case 1 of
> • -> •
> (x:xs) -> i f (notElem x res) && (p x) then
> X : f i l t e r s e t ' (x:res) p xs
> else
> f i l t e r s e t ' res p xs

— fewer reductions f i l t e r s e t !

f i l t e r s e t 2 _ p 1 = nub (f i l t e r p 1)

— insertion of an item into an ordered l i s t

> insert x 1 = ease 1 of
> • -> [x]
> (y:ys) -> i f X < y then x:(y:ys)
> else i f X > y then y : insert x ys
> else y:ys

> interleave xs ys = ease xs of
> (x:xs) -> X : interleave ys xs
> • -> n
— s h i f t negation to innermost positions

> negin f = ease f of

Appendix A: 279

>
>
>
>
>
>

(Not
(Not
(Not
(Dis
(Con
P

(Not p)) -> negin p
(Con p q)) -> Dis (negin (Not p)) (negin (Not q))
(Dis p q)) -> Con (negin (Not p)) (negin (Not q))
p q) -> Dis (negin p) (negin q)
p q) -> Con (negin p) (negin q)

-> P

— the p r i o r i t i e s of symbols during parsing

>
>
>
>
>
>
>

opri e = case e
->
->
->
->
->
->

of
0
1
2
3
4
5

— parsing a propositional formula

> parse t = l e t [Ast f] = parse' t []
> in f

> parse' cs s = case es of
>
>
>
>
>
>
>
>
>
>

[]
(' '
('('
(')'

(e:t)

' ('
('

: s)
s') = redstar s

-> redstar s
:t) -> parse' t s
:t) -> parse' t (Lex
:t) -> l e t (x : Lex '

in parse' t (x:s')
-> i f inReinge ('a','z') e then

parse' t (Ast (Sym c) : s)
else i f spri s > opri e then

parse' (c:t) (red s)
else parse' t (Lex c : s)

— reduction of the parse stack

> red 1 = ease 1 of
> (Ast P : Lex '=' : Ast q s) -> Ast (Eqv q p) : s
> (Ast P : Lex '>' : Ast q s) -> Ast (Imp q p) : s
> (Ast P : Lex '1' : Ast q s) -> Ast (Dis q p) : s
> (Ast P : Lex '&' : Ast q s) -> Ast (Con q p) : s
> (Ast P : Lex '"' : s) -> Ast (Not p) : s

— iterative reduction of the parse stack

> redstar = while ((/=) 0 . spri) red

Appendix A: 280

> spaces = repeat ' '

— s p l i t conjunctive proposition into a l i s t of eonjunets

> s p l i t p = l e t
> s p l i t ' (Con p q) a = s p l i t ' p (s p l i t ' q a)
> s p l i t ' p a = p : a
> in

> s p l i t ' p []

— p r i o r i t y of the parse stack

> spri s = ease s of
> (Ast X : Lex e : s) -> opri c
> s -> 0
— does any symbol appear in both consequent eind antecedeint

> tautelause p = ease p of
> (e,a) -> ~ [x I X <- e, X 'elem' a] /= []

> any (\x -> x 'elem' a) e

— form unique clausal axioms excluding tautologies

> uniel = f i l t e r s e t (not . tautelause) . map clause

— functional while loop
> while p f X = i f p X then while p f (f x) else x

Appendix A: 281

Clausify 6

— Reducing propositions to clausal form.
— Colin Runeiman, University of York.
— Original version, 18/10/90
— This is Version 6 (see 'New Dimensions' paper).

> module Main(main) where

— repeat x = l e t xs = x:xs in xs

— eoncat = foldr (++) []

— lines [] = []
— lines xs = l e t (l , r) = split a t '\n' xs in 1 : lines r

— s p l i t a t c • = ([] , [])
— s p l i t a t c (a:b) = i f a == e then (G.b) else

let (x,y) = splitat e b in (a:x,y)

> main :: Dialogue
> main ~(Str user : _) =
> ReadChan stdin : map (AppendChan stdout) (computer user)
> where
> computer = interleave (repeat "prop> ") . map clauses . lines

> data StackFrame = Ast Formula I Lex Char
> type Stack = [StackFrame]

> data Formula =
> Tru I
> Sym Char I
> Not Formula I
> Dis Formula Formula I
> Con Formula Formula I
> Imp Formula Formula I
> Eqv Formula Formula

> type Clause = (String,String)

— separate positive and negative l i t e r a l s , eliminating duplicates

> clause :: Formula -> Clause
> clause p = clause' p (• , •)

Appendix A: 282

— NB V6 cam use : instead of insert.

> clause' :: Formula -> Clause -> Clause
> clause' (Dis p q) x = clause' p (clause' q x)
> clause' (Sjnn s) (c,a) = (s:c , a)
> clause' (Not (Sym s)) (c,a) = (c , s:a)

— the main pipeline from prepositional formulae to printed clauses

> clauses :: String -> String
> clauses = concat . map disp . unicl . s p l i t .
> disin . negin . elim . parse

— push disjunctions beneath conjunctions

> disin :: Formula -> Formula
> disin (Con p q) = con (disin p) (disin q)
> disin (Dis p q) = disin' (disin p) (disin q)
> disin p = p

> disin' :: Formula -> Formula -> Formula
> disin' (Con p q) r = con (disin' p r) (disin' q r)
> disin' p (Con q r) = con (disin' p q) (disin' p r)

> disin' p q = dis p q

> data Cmp = Same I Oppo I Prec I Foil

— disjunctions of l i t e r a l s , with inbuilt simplification
> dis :: Formula -> Formula -> Formula
> dis Tru q = Tru
> dis p Tru = Tru
> dis p@(Dis pi p2) q@(Dis ql q2) =
> case cmplit p i ql of
> Same -> dis' p i (dis p2 q2)
> Oppo -> Tru
> Prec -> dis' pi (dis p2 q)
> Foil -> dis' ql (dis p q2)
> dis p@(Dis pi p2) q =
> case cmplit pi q of
> Same -> p
> Oppo -> Tru
> Prec -> dis' p i (dis p2 q)
> Foil -> Dis q p
> dis p q@(Dis ql q2) =
> case cmplit p ql of
> Same -> q

Appendix A: 283

> Oppo -> Tru
> Free -> Dis p q
> Foil -> dis' ql (dis p q2)
> dis p q =
> ease emplit p q of
> Same -> p
> Oppo -> Tru
> Free -> Dis p q
> Foil -> Dis q p

> dis' :: Formula -> Formula -> Formula
> dis' p Tru = Tru
> dis' p q = Dis p q

> emplit :: Formula -> Formula -> Cmp
> emplit (Sym c) (Sym d) = empchar e d
> emplit (Sym c) (Not (Sym d)) = i f c==d then Oppo else
> empchar c d
> emplit (Not (Sym c)) (Sym d) = i f c==d then Oppo else
> cmpehar e d
> emplit (Not (Sym c)) (Not (Sym d)) = empchar c d

> crapehar :: Char -> Char -> Cmp
> erapchar c d = i f e<d then Pree else i f d<c then Foil else Same

> eon :: Formula -> Formula -> Formula
> con Tru q = q
> eon p Tru = p
> eon p q = Con p q

— format pair of l i s t s of propositional symbols as clausal axiom

> disp :: Clause -> String
> disp (l , r) = interleave 1 spaces ++ "<=" ++ interleave
> spaces r ++ "\n"

— eliminate connectives other thcin not, disjunction and conjunction

> elim :: Formula -> Formula
> elim (Not p) = Not (elim p)
> elim (Dis p q) = Dis (elim p) (elim q)
> elim (Con p q) = Con (elim p) (elim q)
> elim (Imp p q) = Dis (Not (elim p)) (elim q)
> elim (Eqv f f) = Con (elim (Imp f f ')) (elim (Imp f f))
> elim p = p

> interleave :: [a] -> [a] -> [a]

Appendix A: 284

> interleave (x:xs) ys = x
> interleave [] _ = •

interleave ys xs

— s h i f t negation to innermost positions

> negin :: Formula -> Formula
> negin (Not (Not p)) = negin p
> negin (Not (Con p q)) = Dis (negin (Not p)) (negin (Not q))
> negin (Not (Dis p q)) = Con (negin (Not p)) (negin (Not q))
> negin (Dis p q) = Dis (negin p) (negin q)
> negin (Con p q) = Con (negin p) (negin q)
> negin p = p

— the p r i o r i t i e s of symbols during parsing

> opri :
> opri '(
> opri '=
> opri '>
> opri ' I
> opri '&
> opri

Char -> Int
' = 0
' = 1
' = 2
' = 3
' = 4
' = 5

— parsing a prepositional formula

> parse :: String -> Formula
> parse t = f where [Ast f] = parse' t []

> parse'
> parse'
> parse'
> parse'
> parse'
>
>
> parse'
>
>
>
>

:: String -> Stack -> Stack
[] s = redstar s

t) s = parse' t s
t) s = parse' t (Lex ' (' : s)
t) s = parse' t (x:s')

where
(x : Lex ' (' : s') = redstar s

i f 'a'<= c && c <= 'z' then
parse' t (Ast (Sym c) : s)

else i f spri s > opri c then
parse' (c:t) (red s)

' t (Lex c : s)

(' '
('('
(')'

(c:t) s =

else parse

— reduction of the parse stack

> red :: Stack -> Stack
> red (Ast p : Lex '=' : Ast q s) = Ast (Eqv q p) s
> red (Ast p : Lex '>' : Ast q s) = Ast (Imp q p) s
> red (Ast p : Lex '1 ' : Ast q s) = Ast (Dis q p) s

Appendix A: 285

> red (Ast p : Lex '&' : Ast q : s) = Ast (Con q p) : s

> red (Ast p : Lex '"' : s) = Ast (Not p) : s

— iterative reduction of the parse stack

> redstar :: Stack -> Stack
> redstar = while ((/=) 0 . spri) red
> spaces :: String
> spaces = repeat ' '

— s p l i t CNF formula into a l i s t of conjunets

> s p l i t :: Formula -> [Formula]
> s p l i t (Con p q) = s p l i t p ++ s p l i t q
> s p l i t Tru = []
> s p l i t p = [p]

— p r i o r i t y of the parse stack

> spri :: Stack -> Int
> spri (Ast X : Lex c : s) = opri c
> spri s = 0

— form unique clausal axioms excluding tautologies

> unicl :: [Formula] -> [Clause]
> unicl = mkset . map clause

> mkset :: Eq a => [a] -> [a]
> mkset = mkset' []
> mkset' s [] = []
> mkset' s (x:xs) =
> i f X 'notElem' s then x : mkset' (x:s) xs else mkset' s xs

> while :: (a->Bool) -> (a->a) -> a -> a
> while p f X = i f p X then while p f (f x) else x

Appendix B

Cost-centre-stack code

The data structures used to represent the cost-centre-stack table are shown in C.

This should allow any recreation of the code. The functions with which the cost-

centre-stack operations are defined are described in pseudo-code. This should allow

the reader to understand the functionality; a conversion to C code is then simply

a matter of syntax.

/* DATA STRUCTURES */

/* The two structures that we use to implement cost stacks are a */
/* linked l i s t , which is used to represent the index table and a */
/* cost-centre stack, which is simply a doubly linked l i s t struc- */
/* ture with an Index table, a cost centre name and a previous */
/* stack pointer. These are defined in C. */

typedef struct CostCentreStack COSTCENTRESTACK;
typedef COSTCENTRESTACK *CostStackTable;

typedef struct IndexTableltem INDEXTABLEITEM;
typedef INDEXTABLEITEM *IndexTable;

struct IndexTableltem {
costCentre CostCentre;

Appendix B: 287

CostStackTable NextStaek;
IndexTable NextlndexTableltem;

} ;

struct CostCentreStack {
costCentre CostCentre;
in t time.tieks;

{Other p r o f i l i n g information - Profilinginf0 }
CostStaekTable PreviousStack;
IndexTable CostCentreStaeklndexTable;

} ;

/* == */

COST STACK FUNCTIONS */

/* There are a number of functions needed for the manipulation of */
/* cost stacks. The supporting functions; InitialiseCostStackTable*/
/* PrintCostStaek, AddToCostStaekTable, IsInCostStack, */
/* PreviousCostCentreStaek, and NextCostCentreStack are a l l used */
/* to implement the function Push, which is the function used in */
/* GHC to create cost stacks rather than single cost centres. The */
/* Push function is implmented with a few modifications to improve*/
/* the efficiency of the operation. */

CostStackTable Push(CostStaekTable, costCentre, int);
CostStaekTable InitialiseCostStaekTableO;
void PrintCostStack(CostStackTable);
void PrintAllStacks(CostStaekTable);
CostStackTable AddToCostStackTable(CostStaekTable, eostCentre,

Profilinglnfo);
int IsInCostStack(CostStackTable, eostCentre);
CostStackTable PreviousCostCentreStaek(CostStaekTable);
CostStackTable NextCostCentreStack(CostStackTable, costCentre);

/* == */

INDEX TABLE FUNCTIONS */

/* The index table functions are used by the cost stack support */
/* functions and also by the Push operation. They are simply */
/* functions on linked l i s t s but they make the progreun simpler to */
/* understand at a higher level.The linked l i s t is created in the */
/* same order as sequences: x4~<x3,x2,xl> = <x4,x3,x2,xl>. */

Appendix B; 288

IndexTable InitialiselndexTable () ;
CostStackTable IsInIndexTable(IndexTable, costCentre);
void PrintIndexTable (IndexTable);
IndexTable AddToIndexTable(IndexTable,costCentre,CostStackTable);
IndexTable NextlndexTableltem (IndexTable);
CostStackTable FindNextStack(IndexTable, costCentre);

Specification of COST-STACK FUNCTIONS

CostStackTable Push(CostStackTable est, costCentre cc.
Profilinginf0 stats) =

i f ((cst!=Null) AND ((cst->costCentre)=cc))
{- Cost centre at the top of stack ->
Return *(CostStackTable{cc;cst->Profilinginfo+stats,

cst->CostCentreStackIndexTable})
otherwise

i f (cst!=Null) {- ie. Cost centre stack is not empty -}
X = IsInIndexTable(cst->CostCentreStackIndexTable,cc);
i f (x != NULL)

return x {- Reference to cost centre in index table -}
otherwise

i f (IsInCostStack(cst,cc)!=NULL)
{- ie. In stack already. Optimisation pos -}

BackList = InitialiseCostStackTableO ;
Previous = est;
while (Previous->ce != cc)

BackList = AddToCostStackTable(BackList,
Previous->CostCentre,
Previous->Profilinginfo);

Previous = PreviousCostCentreStack(Previous);
stats' = Previous->Profilinginfo;
Previous = PreviousCostCentreStack(Previous);

{- Remove existing occurance -}
while (BackList != NULL)

Previous = AddToCostStackTable(Previous,
BackList->CostCentre,
BackList->Profilinginfo);

BackList = BackList->NextIndexTableItem;
Return AddToCostStackTable(Previous,cc,stats+stats')

otherwise
Return AddToCostStackTable(est,ec,stats)

{- Not in stack so just add -}
otherwise

Appendix B: 289

Return AddToCostStaekTable(InitialiseCostStackTable(),
ce,stats)

{- as Cost stack is empty}

CostStackTable InitialiseCostStackTable() =
Return NULL

void PrintCostStaek(CostStackTable est) =
i f (est = NULL)
SKIP
otherwise
(print cst->CostCentre);
PrintCostStaek(cst->NextStaek)

void PrintAllStacks(CostStackTable est) =
i f (est = NULL)
SKIP
otherwise
PrintCostStack est;
PrintAllStacks NextlndexTableltem

CostStackTable AddToCostStaekTable(CostStackTable est,
costCentre ee,

Profilinglnfo stats) =
i f (est = NULL)

Return *(CostCentreStaek{cc,stats, NULL, NULL})
else

i f (IsInlndexTable(cst->indextable,cc)!=NULL)
Return FindNextStaek(cst->indextable,ec)

else
new = *(CostCentreStaek{cc,stats,est,NULL})

cst->IndexTable =
AddToIndexTable(cst->IndexTable,cc,new)

Return new

in t IsInCostStack(CostStaekTablecst, costCentre cc) =
Return (ce i n est)

CostStaekTable PreviousCostCentreStaek(CostStaekTable est) =
Return (cst->PreviousStack)

CostStackTable NextCostCentreStack(CostStaekTable est, eostCentre ce)
= Return FindNextStaek(cst->CostCentreStaekIndexTable,ce)

/* == */

Appendix B: 290

Specification of INDEX TABLE FUNCTIONS

/* == */

IndexTable InitialiselndexTable () = Return NULL

CostStaekTable IsInIndexTable(IndexTable i t , costCentre ee) =
i f (IndexTableItem{ce;nextStack;_} in i t)
Return nextStack
otherwise
Return NULL

void PrintlndexTable (IndexTable i t) =
map print i t

IndexTable AddToIndexTable(IndexTable i t , costCentre cc ,
CostStaekTable est) =

Return *(IndexTableItem{ee;est;it})

IndexTable NextlndexTableltem (IndexTable i t) =
Return (it->NextIndexTableItem)

CostStaekTable FindNextStack(IndexTable i t , eostCentre ce) =
Return IsInIndexTable(it,ee)

Bibliography

Ajisaka, 1987] T. Ajisaka, "Studies on Automatic Program Generation using
Functional Model of Specification," Ph.D Thesis Department of Infor
mation Science, Kyoto University. December 1987

[Appel, Duba, MacQueen, 1988] A. W. Appel, B. F. Duba and D. B. MacQueen,
"Profiling in the presence of optimization and garbage collection," Part
of the New Jersey SML distribution. November 1988

Armstrong, Williams and Virding, 1993] J. Armstrong, M. Williams and R. Vird-
ing, "Concurrent Programming in Erlang," Prentice Hall, ISBN 13-
285792-8, 1993

Benley, 1982] J. L. Bentley, "Writing Efficient Programs," Prentice-Hall Software
Series, 1982

Bentley, 1986] J. L. Bentley, "Programming Pearls," Addison-Wesley Publishing
Company, 1986

Bentley, 1986] J. L. Bentley, "ProgrammingPearls — Profiiers," Communications
of the ACM 30, 587-592, 1986

[Bentley, 1988] J. L. Bentley, "More Programming Pearls," Addison-Wesley Pub
lishing Company, 1988

Bird and Wadler, 1988] R. S. Bird and P. Wadler, "Introduction to Functional
Programming," Series in Computer Science, Prentice Hall International.
1988

[Bjerner and Holmstrom, 1989] B. Bjerner and S. Holmstrom, "A Compositional
Approach to Time Analysis of First Order Lazy Functional Programs,"
In Proceedings of the 1989 Conference on Functional Programming Lan
guages and Computer Architecture, pages 157-165. ACM Press, Septem
ber 1989

[Boldyreff, Burd and Hather, 1995] C. Boldyreff, E. L. Burd, R. M. Hather, R.
E. Mortimer, M. Munro and E. J. Younger, "The AMES Approach to
Applications Understanding: a case study," International Conference on
Software Maintenance, IEEE, France, October 1995

BIBLIOGRAPHY 292

[Bodhuin, 1995] T. Bodhuin, "An Interaction Paradigm for Impact Analysis,"
M.Sc. Thesis, University of Durham, 1995

[Bratko, 1990] * I . Bratko, "Prolog: Programming for Artificial Intelligence,"
Addison-Wesley, 1990

Burstall and Darlington, 1977] R. M. Burstall and J. Darlington, "A transforma
tion system for developing recursive programs," Journal of the ACM 24,
1, pp. 44-67, January 1977

Burn, 87] G. L. Burn, "Evaluation Transformers — A model for the parallel eval
uation of functional languages," In Proceedings of FPCA Conference,
pages 446-470, ACM, Springer-Verlag, September 1987

[Clayman, Parrott and Clack, 1991] S. Clayman, D. J. Parrott and C. Clack, "A
Profiling Technique for Lazy, Higher Order Functional Programs," Re
search Note RN/92/24, Department of Computer Science, University Col
lege London, November 1991

Clayman, Clack and Parrott, 1995] S. Clayman, C. Clack and D. J. Parrott, "Lex
ical Profiling: Theory and Practice," Journal of Functional Program
ming, Volume 5, Part 2, 1995

Darlington and Burstall, 1976] J. Darlington and R. M. Burstall, "A system which
automatically improves programs," Acta Informatica 6, 1, pp. 41-60,1976

[Ellis, Garigliano and Morgan, 1993] N. R. Ellis, R. Garigliano and R. G. Morgan,
"A New Transformation into Deterministically Parsable Form for Natural
Language Grammars," In Proceedings of the 3rd international workshop
on Parsing Technologies, Tilburg, Netherlands, 1993

[Foubister and Runciman, 1995] S. P. Foubister and C. Runciman, "Techniques for
simplifying the visualisation of graph reduction," Functional Program
ming, Glasgow 1994, pp. 66 - 77, Springer-Verlag 1995

[Garigliano, Morgan and Smith, 1992] R. Garigliano, R. G. Morgan and M. H.
Smith, "LOLITA: Progress Report 1," Artificial Intelligence Systems Re
search Group, Technical Report 12/92, School of Engineering and Com
puter Science, University of Durham, UK, 1992

[Garigliano and Jones, 1992] R. Garigliano and C. Jones, "Dialogue Structure
Models: An approach to dialogue analysis and generation by computer,"
Technical Report 1/92, School of Engineering and Computer Science,
University of Durham, UK, 1992

[Garigliano, Morgan and Smith, 1993] R. Garigliano, R. G. Morgan and M. H.
Smith, "The LOLITA system as a context scanning tool," In Proceedings
of Avignon, 1993

Garigliano and Tate, 1995] Journal of Natural Language Engineering, Volume 1,
R. Garigliano and J. Tate editors, Cambridge University Press, 1995

BIBLIOGRAPHY 293

Gill and Wadler, 1995] "Real World Applications of Functional Programs," A.
Gill and P. Wadler editors. Available via World Wide Web page
http://www.dcs.gla.ac.uk/fp/realworld.html, updated 1995

Goblirsch, 1993] D. M . Goblirsch, "Mitre Speech Recognition System," The Mitre
Corporation, Colshire Drive, McLean, Virginia, USA, 1993

Graham, Kessler and Kusick, 1982] S. L. Graham, P. B. Kessler and M. K. Ku-
sick, "gprof: a call graph execution profiler," ACM Sigplan Notices,
17(6):120-126, Symposium on Compiler Construction, June 1982

Hanna, Daeche and Howells, 1992] F. K. Hanna, N. Daeche and W. G. J. Howells,
"Implementation of the Veritas design logic," In Proceedings of Theorem
provers in circuit design; IFIP trans. A-10, pages 77-94. North Holland,
1992

Hartel and de Jong, 1994] P. H. Hartel and E. K. de Jong, "Prototyping a smart
card architecture in a lazy functional programming language," Depart
ment of Computer Systems, University of Amsterdam, Technical Report
CS-94-08, May 1994

Kazan and Morgan, 1992] J. E. Hazan and R. G. Morgan, "The Location of Errors
in Functional Programs," Technical Report Number 3/92, Artificial In
telligence Research Group, School of Engineering and Computer Science,
University of Durham, 1992

Hazan and Morgan, 1993] J. E. Hazan and R. G. Morgan, "The location of errors
in functional programs," In Lecture Notes in Computer Science 749, pp.
135-152, Springer-Verlag, 1993

Hazan, Jarvis, Morgan and Garigliano, 1993] J. E. Hazan, S. A. Jarvis, R. G.
Morgan and R. Garigliano, "Understanding LOLITA: Program Compre
hension in Functional Languages," In Proceedings of IEEE Conference
on Program Comprehension, IEEE Computer Society Press, pp. 26-34,
June 1993

[Hennessy and Patterson, 1990] J. L. Hennessy and D. A. Patterson, Computer
Architecture: A Quantitative Approach," Morgan Kaufmann Publishers,
San Mateo, CA, 1990

Hinchey and Jarvis, 1994] M. G. Hinchey and S. A. Jarvis, "Concurrent Systems:
Formal Development in CSP," The McGraw-Hill International Series in
Software Engineering, 1994

[Hudak and Fasel, 1992] P. Hudak, J. Fasel and The Haskell Committee, "Haskell:
Version 1.2," SIGPLAN Notices 27(5), May 1992

[Hughes, 1989] J. Hughes, "Why functional programming matters," In The Com
puter Journal, Volume 32, 1989

BIBLIOGRAPHY 294

Jarvis, Glaser and van Eekelen, 1995] "Functional Programming Languages in
Education," S. A. Jarvis, H. Glaser and M. van Eekelen editors. Avail
able via World Wide Web page http://www.cs.kun.nl/fple/ updated April
1996

[Jarvis and Morgan, 1993] S. A. Jarvis and R. G. Morgan, "Profiling the Profilers:
An Historical Review," Artificial Intelligence Research Group, University
of Durham, July 1993

[Jarvis and Morgan, 1996a] S. A. Jarvis and R. G. Morgan, "The Results of Pro
filing Large-scale Lazy Functional Programs," International Workshop
on the Implementation of Functional Languages, Gustav-Stresemann-
Institut, Bonn-Bad-Godesberg, Germany, Sept. 16th-18th, 1996

Jarvis and Morgan, 1996b] S. A. Jarvis and R. G. Morgan, "ProMng Large-scale
Lazy Functional Programs," In preparation for the Journal of Functional
Programming, 1996

[Jarvis, Poria and Morgan, 1995] S. A. Jarvis, S. Poria and R. G. Morgan, "Un
derstanding LOLITA: Experiences of Teaching Large Scale Functional
Programming," Symposium on Functional Programming Languages in
Education, Mook, Netherlands, December 1995. Proceedings in Lecture
Notes in Computer Science LNCS 1022, pp. 103-120, Springer-Verlag,
1995

Johnson, 1975] S. C. Johnson, "Yacc — Yet Another Compiler Compiler," Murry
Hil l , New Jersey, USA, 1975

[Jones, 1995] M. Jones, The Haskell Users Gofer System (HUGs), Department of
Computer Science, University of Nottingham, UK. 1995

Jones and Garigliano, 1993] C. Jones and R. Garigliano, "Dialogue Analysis and
Generation: A Theory for Modelling Natural English Dialogue," In Pro
ceedings of EUROSPEECH '93, Volume 2, pp. 951, Berlin, Germany.
1993

[Kinloch and Munro, 1994] D. Kinloch and M. Munro, "Understanding C Pro
grams Using the Combined C Graph Representation," Proceedings of
the International Conference on Software Maintenance, Victoria, Canada,
September 1994

Launchbury, 1993] J. Launchbury, "A natural semantics for lazy evaluation," in
Proceedings of 20th ACM Symposium on Principles of Programming Lan
guages, Charlotte, ACM, 1993

Long and Garigliano, 1994] D. Long and R. Garigliano, "Reasoning by Analogy
and Causality: A Model and Application," Ellis Horwood, 1994

Loveman, 1977] D. B. Loveman, "Program improvement by source-to-source
transformation," Journal of the ACM 24, 1, January 1974, pp. 121-145

BIBLIOGRAPHY 295

Major, Lapalme and Cedergren, 1991] F. Major, G. Lapalme and R. Cedergren,
"Domain Generating Functions for Solving Constraint Satisfaction Prob
lems," Journal of Functional Programming, Vol 1, No. 2, 1991, pp 213-237

McCoU, 1995] W. F. McCoU, "The BSP Approach to Architecture Independent
Parallel Programming," Programming Research Group, Oxford Univer
sity, March 1995

Morgan and Garigliano et al, 1995] R. G. Morgan, R. Garigliano, P. Callaghan,
S. Poria, M. Smith, A. Urbanowicz, R. Collingham, M. Constantino, C.
Cooper and the LOLITA Group, "University of Durham: Description
of the LOLITA system used in MUC-6," Proceedings of the Message
Understanding Conference (MUC-6), 1995

Morgan, Garigliano, Jarvis and Parker, 1994] R. G. Morgan, R. Garigliano, S. A.
Jarvis and B. S. Parker, "Maintenance and Development of Large Scale
Lazy Functional Programs," Dagstuhl Workshop on Functional Program
ming in the Real World, organisors R. Giegerich and J. Hughes. Dagstuhl,
Germany. May 16-20, 1994

Morgan, Garigliano, Jarvis and Parker, 1996] R. G. Morgan, R. Garigliano, S. A.
Jarvis and B. S. Parker, "LOLITA: A Large Scale Natural Language
Processing System written in Haskell," In preparation for the Journal of
Functional Programming, 1996

Morgan and Jarvis, 1995] R. G. Morgan and S. A. Jarvis, "Profiling Large-scale
Lazy Functional Programs," In Proceedings of High Performance Func
tional Computing, A. P. W. Bohm and J. T. Feo Editors, Lawrence Liv-
ermore National Laboratory, USA, pp. 222-234, April 1995

Milner, 1990] R. Milner, M. Tofte and R. Harper, "Tie Definition of Standard
ML," MIT, 1990. ISBN 0-262-63132-6

Nettleton and Garigliano, 1994] D. J. Nettleton and R. Garigliano, "Evolutionary
Algorithms for Dialogue Optimisation in the LOLITA Natural Language
Processor," Seminar on Adaptive Computing and Information Process
ing, University of Durham, UK. January 1994

Parrott and Clayman, 1990] D. J. Parrott and S. Clayman, "Report on 'Cost'
and 'Debug' primitive extensions to FLIC," Department of Computer
Science, University College London, 1990

Partain, 1992] W. Partain, "The nof i b Benchmark Suite of Haskell Programs,"
Department of Computer Science, University of Glasgow, 1992

[Paulson and Nipkow, 1986] L. C. Paulson and T. Nipkow, University of Cam
bridge and Technical University, Munich, Isabelle-94 available from FTP
sites at both of these sources. Also see "A Gentle Introduction to Is-
abelle", 1986-

BIBLIOGRAPHY 296

Peyton Jones, 1987] S. L. Peyton Jones, "The implementation of functional pro
gramming languages," Prentice-Hall, 1987

Peyton Jones, 1992] S. L. Peyton Jones, "Implementing lazy functional programs
on stock hardware: The Spineless Tagless G-machine," Journal of Func
tional Programming 2, 127-202, 1992

Peyton Jones, Hall and Hammond, 1993] S. L. Peyton Jones, C. V. Hall, K. Ham
mond, W. D. Partain and P. L. Wadler, "The Glasgow Haskell Compiler:
a technical overview," in Joint Framework for Information Technology
Technical Conference, Keele 1993

[Peyton Jones and Joy, 1989] S. L. Peyton Jones and M. S. Joy, "a Functional Lan
guage Intermediate Code," Internal note 2048, University College Lon
don, Department of Computer Science, August 1989

[Peyton Jones and Santos, 1994] S. L. Peyton Jones and A. Santos, "Compilation
by Transformation in the Glasgow Haskell Compiler," Department of
Computer Science, University of Glasgow, 1994

Platter and Nievergelt, 1981] B. Platter and J. Nievergelt, "Monitoring program
execution: A survey," IEEE Computer Magazine 14, 11, pp.76-93,
November 1981

Runciman and Rojemo, 1996] C. Runciman and N. Rojemo, "Heap proEling for
space efficiency," In J. Launchbury and E. Meijer and T. Sheard, editors,
2nd International School on Advanced Functional Programming, Springer
LNCS Vol. 1129, August 1996

Runciman and Wakeling, 1990] C. Runciman and D. Wakeling, "Problems and
proposals for time and space profiling of functional programs," In
S.L.Peyton Jones, G.Hutton and C.K.Hoist, editors. Functional Program
ming Workshop, Glasgow 1990, pages 237-245. Springer-Verlag: Work
shops in Computing, August 1990

Runciman and Wakeling, 1992a] C. Runciman and D. Wakeling, "Heap Profiling
for Lazy Functional Languages," Technical report no. 172, Department
of Computer Science, University of York, April 1992

Runciman and Wakeling, 1992b] C. Runciman and D. Wakeling, "Heap Profiling
of a Lazy Functional Compiler," in Functional Programming, Glasgow
1992, J. Launchbury and P. Sansom eds.. Springer-Verlag, Workshops in
Computing, Ayr, Scotland, 1992

[Runciman and Wakeling, 1993] C. Runciman and D. Wakeling, "Heap Profiling of
Lazy Functional Programs," Journal of Functional Programming, Volume
3, Part 2, 1993

[Runciman and Wakeling, 1995] C. Runciman and D. Wakeling (Eds.), "Appiica-
tions of functional programming," UCL Press, 1995

BIBLIOGRAPHY 297

Sands, 1991] D. Sands, "Time analysis. Cost Equivalence and Program Refine
ment," In Proceedings of the Conference on the Foundations of Software
Technology and Theoretical Computer Science, pages 25-39. Springer-
Verlag, LNCS 560, December 1991

Sansom, 1994] P.M Sansom, "Execution Profiling for Non-strict Functional Lan
guages," Ph.D Thesis, University of Glasgow, UK, Research Report FP-
1994-09, 1994

Sansom and Peyton Jones, 1992] P. M. Sansom and S. L. Peyton Jones, "Profiling
Lazy Functional Programs," In Functional Programming, Glasgow 1992,
J. Launchbury and P. M. Sansom, Editors, Springer-Verlag Workshops
in Computing, Ayr, Scotland, July 1992.

Sansom and Peyton Jones, 1994] P. M Sansom and S. L. Peyton Jones, "Time
and space profiling for non-strict, higher-order functional languages," Re
search Report FP-1994-10, University of Glasgow, UK, Nov 1994

Sansom and Peyton Jones, 1995] P.M Sansom and S.L. Peyton Jones, "Time and
space profiling for non-strict, higher-order functional languages," 22nd
ACM Symposium on Principles of Programming Languages, San Fran
cisco, California, January 1995

Selinker, 1969] L. Selinker, "Language Transfer," General Linguistics 9, pp. 69-92,
1969

Shastri, 1988] L. Shastri, "Semantic Networks: An evidential Formalisation and
it Connectionalist Realisation," Morgan Kaufmann, 1988

[Smith, 1995] M. Smith, "Natural Language Generation in the LOLITA System:
An Engineering Approach," Ph.D. Thesis, Department of Computer Sci
ence, University of Durham, 1995

Soden and Bock, 1995] A. C. Soden and H. Bock, "Extracting Characteristics
from Functional Programs for Mapping to Massively Parallel Machines,"
Proceedings of High Performance Functional Computing, A.P.W. Boem
and J.T. Feo eds., Lawrence Livermore National Laboratory, USA, April
1995

[Sommerville, 1992] I . Sommerville, "Software Engineering," Addison-Wesley Pub
lishing Company, 1992

Spivey, 1989] J. M. Spivey, "The Z Notation: A Reference ManuaJ," Prentice Hall
International Series in Computer Science, 1989

Thiemann, 1994] P. Thiemann, "Ebnf2ps," Universitat Tubingen, Sand 13, D-
72076, Germany, 1994

Tomita, 1986] M. Tomita, "Efficient Parsing of NL: A Fast Algorithm for Practical
Systems," KAP, Boston, Ma. USA, 1986

BIBLIOGRAPHY 298

Turner, 1982] D. A. Turner, "Recursion equations as a functional language," In
Darlington et al., editor Functional Programming and its Applications,
pages 1-28, Cambridge University Press. 1982

Turner, 1985] D. Turner, Miranda, FPCA '85, 1985

[UNIX, 1979] UNIX Programmers Manual, Bell Laboratories, Murray Hil l , N.J,
USA, 1979

[Wadler, 1988] P. Wadler, "Strictness Aids Time Analysis," In Fifteenth Annual
ACM Symposium on the Principles of Programming Languages, pages
119-131, January 1988

[Wang and Garigliano, 1992] Y. Wang and R. Garigliano, "An Intelligent Tutoring
System for Handling Errors Caused by Transfer," in Lecture notes in
Computer Science 608: Proceedings of the 2nd International Conference
on Intelligent Tutoring Systems, pp. 395-404, Springer-Verlag, Montreal,
Canada. 1992

Wilf, 1986] H. S. Wilf, "Algorithms and Complexity," Prentice-Hall, 1986

Zorn and Hilfinger, 1988] B. Zorn and P. Hilfinger, "A memory allocation profiler
for C and LISP programs," USENIX 88, pages 223-237, 1988

