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Abstract 

We investigate the infrared behaviour of the gluon propagator in Quantum Chromo­

dynamics (QCD). A natural framework for such a non-perturbative study is the complex 

of Schwinger-Dyson equations (SDE). 

The possible infrared behaviour of the gluon, found by self-consistently solving the 

approximate boson SDE, is studied analytically. We find that only an infrared enhanced 

gluon propagator, as singular as 1/ p4 as p2 ---+ 0, is consistent and demonstrate why softer 

solutions, that others have found, are not allowed. Reassuringly the consistent, enhanced 

infrared behaviour is indicative of the confinement of quarks and gluons, implying, for 

example, m·ea-law behaviour of the Wilson loop operator and forbidding a Kallen-Lehmann 

spectral representation of both quark and gluon propagators. We then briefly consider 

the implications of these results for models of the pomeron. 

The enhancement of the gluon propagator does however introduce infrared divergences 

in the SDE and these need to be regularised. So far model forms of the enhanced gluon 

propagator have been used in studies of dynamical chiral symmetry breaking and hadron 

phenomenology. Though very encouraging results have been obtained, one might hope 

to use the gluon propagator obtained directly from non-perturbative QCD to calculate 

hadron observables. 

We therefore attempt to eliminate the infrared divergences in the SDEs in a self­

consistent way, entirely within the context of the calculational scheme. To do this we 

introduce an infrared regulator ). in the truncated gluon SDE in quenched QCD. We find 

that this regulator is indeed determined by the equation and bounded by the QCD-scale 

AQCD· Thus it is possible to perform the regularisation within the SDEs. However, we 

have not been able to choose ). < AQCD· 
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Chapter 1 

Introduction 

Elementary Particle Physics has provided us with a comprehensive theory of particle 

interactions, the Standard Model which, with the exception of gravity, embodies all the 

fundamental interactions of nature. Quantum Chromodynamics (QCD) is one of the 

three pillars of the Standard Model, being the accepted theory of the strong force; the 

other two are the theory of the weak and electromagnetic forces. Nevertheless QCD is 

distinguished from the other interactions forming the Standard Model, by describing only 

the interaction of elementary particles (quarks and gluons) which so far have not been 

observed experimentally. 

The success of QCD is that, using perturbation theory, it predicts and explains the 

high energy phenomena of the strong interaction, from jet production in e+e- collisions to 

scaling violations in deep inelastic scattering, where quarks and gluons behave as though 

they are free. Yet away from the high energy region of such processes, perturbation theory 

fails and quarks and gluons are confined inside hadrons, the strongly interacting particles 

we actually observe in our detectors. Unfortunately, confinement and consequently prop­

erties of hadrons, such as their masses, lifetimes, decay modes and interactions, are not 

yet understood on the fundamental level of QCD. However, if QCD is to be regarded as 

the theory of the strong interactions, there clearly should be the possibility of describing 

hadronic properties in terms of the parameters of the theory itself. For this, it is necessary 

to understand the behaviour of basic quantities, such as the propagators and coupling, 

1 



CHAPTER 1. INTRODUCTION 2 

not only in the high energy region, but also at low energies. 

This thesis documents a non-perturbative study of the low energy behaviour of the 

gluon which can provide us with a better understanding of how confinement really happens 

within QCD. The structure of the thesis is as follows: 

Chapter 2 contains a general introduction to QCD explaining in particular the prop­

erty of confinement and what can be learnt about it from the behaviour of the gluon 

propagator. In chapter 3 we introduce the Schwinger-Dyson equation (SDE) approach 

to studying QCD non-perturbatively and derive the field equation for the gluon - the 

underlying tool in all the calculations carried out in this study. 

Extensive work has previously been performed studying the gluon SDE, however differ­

ent low energy (infrared) behaviours have been proposed in the literature and clarification 

is needed. For this reason, in chapter 4, we investigate which infrared behaviour of the 

gluon can be found as a self-consistent solution to the SDE. We determine that the low 

energy behaviour of the gluon is enhanced and discuss the implications for confinement. 

We also study the consequences of this infrared behaviour of the gluon for the modelling 

of the pomeron in terms of dressed gluon exchange. 

However, the infrared enhanced gluon propagator which we find to be the only con­

sistent solution to the truncated SDE leads to infrared divergences in the SDEs for both 

the gluon and the quark and these need to be regularised. To continue our study of the 

infrared behaviour of the gluon we address the problem of regularising these divergences 

in chapter 5. Introducing an infrared regulator in the gluon SDE we demonstrate that 

this regulator is determined by the equation studied providing us with a possibility of per­

forming the regularisation within the calculational scheme of the SDE. We then highlight 

the problems that remain open and deserve to be addressed in future studies. 

Finally, in chapter 6 we summarise all the results obtained in this study and describe 

how we can apply them to hadron phenomenology. 



Chapter 2 

QCD- a Quantum gauge theory 

In this chapter we give an introduction to Quantum Chromodynamics (QCD), which 

is generally believed to be the theory of the strong interaction. We start with a brief 

review of how QCD developed historically from strong-interaction studies. In section 2.2 

we define the QCD Lagrangian, set up the path integral formalism and give the QCD 

generating functional, which defines the quantum field theory of QCD. We then go on to 

describe two remarkable properties of QCD: asymptotic freedom and confinement. Since 

the purpose of this thesis is to study how confinement really happens within QCD, we 

shall explain this property in some detail. 

2.1 Introduction 

Historically, QCD originated as a development of the quark model. In the early 1960s 

many strongly interacting particles were observed, which could be classified according to 

the representations of what today we would call flavour SU(3)F· The light mesons occur 

only in SU(3)F singlets and octets, the light baryons in singlets, octets and decuplets. 

Gell-Mann [1] and Zweig [2] recognized in 1964 that this symmetry would naturally 

arise if hadrons were composite objects, made up of more fundamental constituents. Cell­

Mann called these quarks and they belong to the fundamental representation of SU(3)F. 

By postulating mesons to be composites of a quark and an antiquark and baryons to be 

3 
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made up of three quarks this simple model reproduced the observed spectrum, predicting 

mesons and baryons in the following SU(3)F representations: 

Meson: 3 ® 3 = 8 EB 1 

Baryon: 3 ® 3 ® 3 = 10 EB 8 EB 8 EB 1 

However this naive quark model could not explain why only these combinations of 

quarks and antiquarks were observed and, in particular, why quarks did not appear as 

free particles in detectors. 

Both theses phenomena were to be explained by colour. It was realised that the lowest 

mass spin ~ baryons, (e.g . .6. ++) made from three fermionic spin t quarks could give rise 

to a totally symmetric state, which is of course forbidden for fermions. This spin-statistics 

crisis was resolved by the introduction of a new quantum number, colour (3]. Allowing 

each species of quark to come in any of three colours removes the unwanted symmetry. 

The new theory was based on the symmetry group colour SU(3)c. Furthermore the 

nonexistence of free quarks can be explained by demanding all physical asymptotic states 

be colourless, i.e. only singlet representations of colour SU(3)c appear in 3c ® 3c ® 3c 

(baryons) and 3c ® 3c (mesons). This is known as the confinement hypothesis: quarks 

carry colour and therefore they are confined within colour-singlet bound states. 

In the late 1960s the famous SLAC deep inelastic lepton-nucleon scattering (DIS) 

experiment revealed that hadrons are really made up of more fundamental constituents. 

The DIS cross-sections satisfy Bjorken scaling which could be successfully interpreted by 

Feynman's parton model (4] (1969). It only took one step to identify these partons with 

quarks, which appear to be free at short distances. 

In 1973 Fritzsch et al. [5], Gross and Wilczek (6] and Weinberg [7] extended the 

global SU(3)c colour model to a gauge theory, QCD, in which quarks are assumed to 

be bound together by exchanging gluons. These gluons are in the adjoint representation 

of SU(3)c. They carry colour and therefore interact not only with the quarks but also 

among themselves. It was then discovered by Politzer [8] and Gross and Wilczek [9] that, 

in such a non-Abelian gauge theory, the coupling constant decreases at short distances 
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and increases at large distances. This explained the success of the parton-model and the 

fact that free quarks have not been observed, leading to the belief that QCD is indeed 

the correct theory of the strong interaction. 

2.2 QCD, the Theory and its Gauge lnvariance 

2.2.1 The QCD Lagrangian 

Quantum chromodynamics is a non-Abelian gauge theory composed of fermionic fields 

in the fundamental representation and gluonic fields in the adjoint representation of the 

group SU(3)c. It's Lagrangian is defined as: 

(2.1) 

which is a function of the quark fields 1jJf, gluon fields A11 and ghost fields w, and the 

parameters g0 and mf, where g0 is the QCD (strong) co~pling constant and m 1 are the 

quark masses. 

Linvar is the basic Lagrangian of QCD, invariant under local SU(3) transformations 

and has the usual Yang-Mills form: 

(2.2) 

With the covariant derivative: 

and the field strength tensor: 

ra = ~-\a are the Gell-Mann -\-matrices. Their commutator, 
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defines the structure constants rbc of the SU(3) algebra. 

It is now easy to show that Linvar as given in Eq. (2.2) is invariant under local gauge 

transformations of the form: 

----t U(x )7jJ1 (x) 

----t U(x)A 11 (x)U- 1 (x) + _!__U(x)811 U- 1 (x) 
9o 

where 

with oa(x) the space time dependent parameters of the local SU(3)c gauge transformation 

U(x). 

Quantization of QCD requires the two extra terms L 9 auge-fix and Lghost in the La­

grangian, Eq. (2.1). There are many different gauge-fixing terms possible, the most com­

mon choices being: 

1<~<oo (2.3) 

defining the set of covariant gauges, and 

b.) Lgauge-fix = -~ (nJ1A~) 2 
~ --+ 00 (2.4) 

where n 11 is a fixed vector defining the axial gauges. 

In axial gauges there is no need for ghost fields. However, in the covariant gauges we 

must add the ghost Lagrangian: 

(2.5) 

2.2.2 Path Integral Formalism 

In this section we introduce Feynman's path integral formalism (10], which is the frame­

work we will use in chapter 3 to derive the field equations (Schwinger-Dyson equations) 

of QCD. Furthermore using path integrals, the motivation for Lgauge-fix and Lghost terms 

in the QCD Lagrangian can be explained. For a detailed account see e.g. Ref. (11]. 
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In the path integral formalism, the transition amplitude between initial and final state 

is expressed as the sum, or rather the functional integral, over all the possible paths in 

phase space connecting the initial and final states, weighted by the exponential of the 

action for each particular path. 

Scalar Field Theory 

For purposes of illustration we will consider a scalar field theory, defined by the generating 

functional: 

where N is a normalisation factor which ensures Z [0] = 1, 

L( ¢) is the Lagrangian density, 

J ( x) is a source term and 

(2.6) 

f [d¢] represents the functional integral over all classical field configurations ¢(x ). 

Generally in quantum field theory we are interested in the n-point Green's functions. 

These Q(n) correspond to probability amplitudes connecting n external states via the 

interactions of the theory. In general, there are two possible processes, those where all of 

the external states contribute to one single extended interaction (connected diagrams); 

and those where two or more subsets of the external states are involved in simultaneous 

but independent interactions. Then-point Green's functions are the vacuum expectation 

values of time-ordered products of fields: 

(2.7) 

Differentation of Eq. (2.6) with respect to the source J brings down a factor of i¢ from 

the exponent, giving : 

~ 8Z[J] = ¢(x) 
Zi8J(x) 

(2.8) 

Thus we can obtain these Green's functions from the generating functional by func-
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tional differentiation: 

(2.9) 

So far the Green's functions G(n) include contributions from both connected and dis­

connected vacuum to vacuum diagrams. However, the interactions of a field theory are 

described by the connected Green's functions only. As we shall see, we can always write 

G(n) in the form of sums and products of connected Green's functions G~~~n· It is therefore 

desirable to introduce a new functional W [J], defined by 

Z [ J] = exp W [ J] (2.10) 

which generates only the connected Green's functions. Thus connected Green's functions 

are given by: 

(2.11) 

Taking repeated derivatives of W [J] one can find the following relationship between 

Z and W: 

1 8Z 8Z 1 o2 Z 

Z 2 8J(xt) 8J(x2) Z 8J(x1 )8J(x2) 

Taking J = 0 this gives: 

G (2) ( ) _ G(2)( ) conn X1,X2 - X1,X2 

as expected since the propagator is a two-point connected diagram. 

For the four point Green's function, we find 

G~!~n(x1,x2,x3,x4) = {G(2
)(xbx2)G(2

)(x3,x4) +permutations} 

-G(4)(xl, x2, x3, x4) 

which is shown diagrammatically in Fig. (2.1). 

We should note that there is a more fundamental subset of connected Green's func­

tions, the proper vertices f(n) (or one particle irreducible Green's functions). These are 
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• + • 
Figure 2.1: Relationship between the full and connected Green's functions. 
A long line represents a full propagator, a circle a full Green's function and a C inside a 
circle denotes a connected Green's function. 

diagrams which cannot be split into two parts by cutting a single propagator. Hence one 

can construct any connected graph from just the propagator Gi~~n and the proper vertices 

r<nl(xll x 2 , ••• xn)· We would like to find the generating functional for these f(n), which is 

often called the effective action r ( J]. First we define J, the classical field, by 

, 8HI (J] 
<P= 8J(x) (2.12) 

where J can be interpreted as the expectation value of the quantum field <P in the presence 

of a source J. 

The effective action f (J] is then the functional Legendre transform of W [J] 

(2.13) 

and we have: 

(2.14) 

We obtain the proper vertices from the effective action r ( J] by functional differenti­

ation 

(2.15) 

With 

8J(x) 
---

8J(x)8J(y) 8J(y) 
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8J(x) 
- 8J(y) 

10 

which can be obtained by differentiating Eq. (2.12) and Eq. (2.14) with respect to J and 

J appropriately. This gives the following functional identity: 

J d4 yG(2 ) (x y)f(2l(y z) = j d4 y8J(x) 8-:(y) = 8(4)(x- z) (2.16) 
conn ' ' 8J(y) 8</>( z) 

and f( 2) ( x, y) is the inverse of the full propagator G(2
). 

Taking the derivative of Eq. (2.16) with respect to J again, we obtain the following 

relationship between w [J] and r [ J]: 

J 83W 82r 
d

4

y 8J(x)8J(u)8J(y) 8J(y)8J(z) = 

J J4 82W J d4 'G(2) ( ') 83f 
Y 8J(x)8J(y) Y conn u,y 8J(y)8J(z)8J(y') 

where we have used the fact that: 

_8_- j d4 ,8J(y') 8 -- j d4 'G(2) (u ')-8-
8J(u)- Y 8J(u) 8J(y')- Y conn ,y 8J(y') 

Simplifying Eq. (2.17) further, we find: 

83 W 
8J(x)8J(y)8J(z) 

(2.17) 

J "' 'd4 'd4 'G(2J ( ')G(2J ( ')G(2J ( ') 83f (2 18) - a- X Y Z conn X' X conn Y' Y conn Z' Z A A A ' • 

8¢>( x')8¢>(y')8 ¢>( z') 

where we see that the diagram for the connected Green's functions can be built from a 

tree-structure of propagators G~~~n and proper vertices f(n). Graphically this is shown in 

Fig. (2.2). 

Fermions and Path Integral Formalism 

Thus far we have only considered scalar fields. Now we want to include fermions, which 

have Green's functions that are antisymmetric in their indices and therefore require us 
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(2) 
Gconn 

(2) 
Gconn 

Figure 2.2: The relationship between Gcann and r for the 3-point Green's function. 

11 

to perform the functional integral over anticommuting fields. This can be done by using 

Grassmann (anti commuting) variables for the fermion fields -1/J, 1/J and their sources ij, 17· 

A fermion field theory is then defined by the generating functional: 

where again N is a normalisation factor ensuring that Z [0, 0] = 1. 

Differentiating the above with respect to 17 brings down a factor -i-1/J from the expo­

nent, whereas differentiation with respect to ij gives a factor of i?jJ. Now we can generate 

the n-point Green's functions from the generating functional in the same way as before. 

In general we have: 

The generating functionals for both connected Green's functions, W [17, ij], and proper 

vertices, r [-1/J, 1/J], can be introduced as before. Here, because of the anticommuting nature 

of the fields, we have as the parallel of Eq. (2.12) and (2.14): 
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1/;(x) 
8W 

{;(.r)= 
8W 

ibfJ( X) ' -i8ry(x) 
8f 8r 

(2.21) ry(x) -8{;(x)' fJ(x) = 81/;(x) 

2.2.3 The Generating Functional of QCD 

Here we introduce the QCD generating functional with a source J~-' for the gluon field, 

anticommuting sources fJ and "' for the quark-antiquark fields and anticommuting E and 

E sources for the ghost fields. 

The QCD generating functional is defined as: 

Z [fJ, ry, J~-', E, E) = j [d~, d<fy, dA, dw, dw] eia (2.22) 

where C/ is: 

and SQcD is the gauge-fixed action for QCD, given by: 

SQcD [{;1 ,1/;1,w,w,g0 ,mf] = j d4 xLQcD [{;1,1f;1,w,w,go,mf] 

A normalisation factor N ensuring that Z [OJ = 1 is understood. 

2.3 Asymptotic Freedom 

As mentioned earlier, to a high momentum probe in DIS, quarks appear as freely moving, 

non-interacting particles, with a coupling which is effectively small. This property of QCD 

is called asymptotic freedom and it is this, which explains why perturbative QCD can be 

used successfully to describe high-energy, large momentum-transfer cross-sections. 

Let us consider the effective quark-gluon vertex, which we calculate perturbatively. 

While to lowest order this is just the bare coupling of LQcD, to calculate higher orders 

we have to include loop corrections (see Fig.(2.3)). 
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~ , ' 
I I 

+ 

1:3 

+ 

Figure 2.3: The effective quark-gluon coupling g to one loop in perturbation theory. The 
dashed line represents the ghosts. 
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Each of these loops involves one totally unconstrained momentum, which has to be 

integrated over. These integrals are divergent because of the behaviour of the integrand 

at high virtual momenta (ultraviolet divergences). In order to give a meaning to the 

integrals, one introduces an ultraviolet cut-off 1\,
2. Keeping leading logarithms only, the 

effective quark-gluon coupling, g( Q2), becomes: 

where g0 is the bare coupling which appears in LQcD Eq. (2.1), 

Q2 is the incoming gluon momentum and 

1\,
2 is the ultraviolet cutoff introduced to make the loop-integrals finite. 

Explicit calculation shows 

where Nc is the number of colours and 

nf is the number of quark flavours. 

(2.23) 

(2.24) 

The coupling diverges as the ultraviolet cutoff 1\,
2 ---+ oo and hence Eq. (2.23) has no 

physical meaning. We need to renormalise g(Q2), i.e. make it independent of K
2. This 

can be done by defining its value at some momentum scale Q2 = p2. We then find: 

(2.25) 

The renormalisation group equation, which is based on the fundamental observation 

[12] that a physical quantity cannot depend upon our (arbitrary) choice of p2, the renor­

malisation scale, gives the evolution of g under a change of p2: 

og(p) = !3( ( )) = _ _§___ -3 + o(-s) 
1-l op 9 1-l 161r29 9 

This differential equation can be solved to give: 

as(Q2) = as(p2) 
1 + f30/(47r)a5 (p2) ln(Q2fp2) 

(2.26) 

where we have defined a 5 (Q 2 ) = g2(Q2)/47r. 
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That as( Q2 ) is now independent of JL 2 can be seen by taking the inverse of the above: 

where C is a constant independent of Q2 and JL 2
, which we define to be: 

Thus the running coupling constant becomes: 

2 47r 
as(Q )= !3o ln(Q2/Abcv) 

(2.27) 

AQcD is the momentum scale characteristic of the theory which has to be determined 

from experiment. 

It is important to notice here that at large momenta, Q2 ~ Abcv the running cou­

pling constant a 5 becomes smaller and smaller, so that well above Abcv perturbation 

theory gives a reliable approximation to QCD. Correspondingly a 5 increases as Q2 be­

comes smaller so that, although Eq. (2.27) will not be valid, nevertheless, it is plausible to 

suppose that a 5 may become very strong for sufficiently small Q2
, confining quarks per­

manently into hadrons. However, without going beyond perturbation theory, we cannot 

know the behaviour of the coupling at small momenta at all. The momentum dependence 

of as is sketched in Fig. (2.4). 

To understand the physical meaning of the momentum dependence of the coupling 

let us contrast the effects of charge screening in both QED and QCD. In the case of 

QED, we know that at large distances, the effective coupling constant a gets smaller. 

This is because any charged particle is surrounded by a cloud of electron-positron virtual 

pairs which tend to screen the charge of the particle. At smaller distances, and at higher 

energies, a probe can penetrate through this virtual cloud, and hence the QED coupling 

constant gets larger at short distances. 

As we have seen in QCD the situation is precisely the opposite. Having colour instead 

of electric charge means that, at large distances the presence of a cloud of virtual par­

ticles creates an a.ntiscreening effect. Note that it is the quantity {30 , Eq. (2.24), which 
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Figure 2.4: The running coupling o:s. Here the solid line represents the perturbative 
result, and the dashed lines indicate that we do not know for certain what the behaviour 
of the coupling is at low momenta where perturbation theory is inapplicable. 
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determines the running of the coupling. The term proportional to n f comes about from 

the fermion loop contribution to the effective quark-gluon vertex and has qualitatively 

the same effect as in QED in that it tends to enhance the coupling constant at short 

distances (screening). However, the contribution due to the gluon self-coupling (propor­

tional to Nc) is of the opposite sign and tends to decrease the strength of the interaction 

at short distances ( antiscreening). It is this which makes QCD crucially different from 

QED. 

To conclude this short discussion we stress agam that asymptotic freedom implies 

that at high energies perturbative QCD is theoretically consistent. Higher order calcula­

tions have been performed for many processes, and good agreement has been found with 

experiment. For a recent review of perturbative QCD see e.g. Ref. [13) and references 

therein. 

2.4 Confinement 

The flip side of asymptotic freedom is that at smaller and smaller energies, the coupling 

constant becomes increasingly large. This implies that the quarks bind more tightly 

together, giving rise to confinement. This property of the strong interaction is well known 

empirically, for quarks and gluons have not been observed as free particles in nature, 

however some fundamental questions are still open: 

• How does confinement happen within QCD? 

• How can hadronic properties be understood in terms of QCD? 

To answer these questions it is necessary to formulate a non-perturbative framework in 

which we can study the low energy properties of QCD. In particular we have to understand 

the behaviour of the basic quantities of the theory, e.g. propagators and couplings, not 

only in the high energy region, where perturbation theory is reliable, but also in the low 

energy region. This thesis will discuss one non-perturbative framework which permits 
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such a study: the Schwinger-Dyson equation approach to QCD, which we will introduce 

in chapter 3. 

In the following we first give a brief qualitative discussion of quark confinement. Then 

we introduce a more formal criterion for confinement which has been derived in the context 

of lattice gauge theory. Finally, we discuss what we can learn about confinement by 

studying the behaviour of the gluon propagator, which will be of particular importance 

for the rest of this thesis. 

2.4.1 Intuitive Picture of Confinement 

One can obtain an intuitive idea about the nature of confinement by picturing quarks as 

being bound by strings, as first proposed by Nambu in 1974 [14], or tubes of colour flux. 

Let us imagine the quark and antiquark inside a meson to be held together by a string. 

At short distances, i.e. distances much smaller than the size of a meson, the string is 

slack and the quarks move as if they are free. The potential between them is just the 

well-known Coulombic one: 
1 

"Vshort ( r) ex -
r 

where r is the separation between the quarks. However, if we imagine trying to move the 

quarks apart from each other, then as the separation between them becomes bigger, the 

string gets stretched. Hence the total energy of the quark-antiquark system is linearly 

proportional to the distance. This means quarks are confined by a linearly rising long­

distance potential: 

Vlong( r) ex I< r 

where f{ is a constant, which is often referred to as the string tension. 

To achieve this string model of confinement it has been suggested that the QCD vac­

uum is analogous to the ground state of a superconductor [15], so that the properties of 

a quark in the physical vacuum are analogous to a magnetic monopole in a supercon­

ducting medium. To illustrate this picture, let us imagine placing a magnetic monopole­

antimonopole pair ( mm) inside a superconductor. Due to the Meissner effect, which tries 
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to eliminate magnetic fields from the superconductor, the field caused by the mm-pair 

is channeled into a thin flux tube extending from the monopole to the antimonopole. If 

we try to separate the mm-pair, we find that the energy required is proportional to the 

distance between them. A single monopole in a superconducting medium has a flux tube, 

or string running from it to the boundary of the superconductor where the magnetic field 

can escape. If the medium fills all space the energy of the monopole is infinite. Hence we 

can say that monopoles are confined and cannot exist as single particles. This picture has 

been further investigated in the context of monopole condensation [16] and the formalism 

of dual QCD [17]. 

In Fig. (2.5) we depict the colour force lines between a quark and an antiquark. 

Imagining the QCD vacuum to be a chromomagnetic superconductor, the colour (electric) 

flux is confined to a string-like configuration joining the quark-antiquark pair. 

qc( 

Figure 2.5: Lines of force between a quark and an antiquark. When the quarks are 
separated, the string breaks producing a further quark- antiquark pair. (Figure taken 
from Cheng and Li [18]) 

It is worth mentioning here that adding the two contributions to the interquark po­

tential, "Vahort and Viong from the string or flux tube model, we can reproduce heavy quark 

spectra rather well. A non-relativistic quantum mechanical approach to the spectroscopy 

of heavy quark flavours, where bound states of heavy quarks ( quarkonium) are described 

in analogue to the e+ e- -system (positronium), gives detailed information about the form 

of the quark-antiquark interaction potential. The simplest potential model consistent 
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with experimental data is the so-called funnel-potential, given by: 

4 as 
V(r) = --- + ar 

3 r 

20 

which is exactly of the form Yshort + Vlong, we have described. For a review of QCD 

potential models see e.g. Ref. [19]. 

2.4.2 Wilson Criterion for Confinement 

In 1974, Wilson [20] proposed that QCD be defined on a Eulidean hypercubicallattice of 

space-time points in order to calculate effects that lie beyond the reach of perturbation 

theory, such as the confinement of quarks. Once the gauge theory of QCD is formulated 

on a finite, four-dimensional lattice, one can, in principle, calculate the basic properties 

of the low-energy, strong interaction spectrum numerically. Rough qualitative agreement 

between the theory and experimental data have been already obtained. The only apparent 

limitation facing lattice gauge theory is the available computer power. 

In this section, however, we shall not go into the technical details of lattice gauge 

theory, instead we shall only be interested in setting up the Wilson loop operator, because 

this gives us a criterion for confinement. 

Let us start by defining the link operator between two neighbouring sites of the lattice 

by: 

w(y, x; C) = Pc exp { ig 1Y A(z)dz} (2.28) 

This is the integral of the gauge field along a curve C connecting two lattice sites x and 

y, where Pc indicates that the exponential is to be path ordered along C. 

A gauge transformation of this link operator is given by: 

w(y,x;C)- u- 1(y)w(y,x;C)U(x) 

The Wilson loop is a gauge invariant operator built with this string operator Eq. (2.28) 

(2.29) 
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where the trace is taken over colour indices and where we take the integral of the gauge 

field around a closed loop C in space time. 

Now let us consider a heavy quark-antiquark pair to be taken around a rectangular 

loop with width R in one spatial direction and length T in the time direction, in the limit 

of large T (as in Fig. (2.6) ). 

(T, 0) (T, R) 

Q 

(0, 0) (0, R) 

Figure 2.6: Quarks taken around the Wilson loop 

One can show that the Wilson loop operator is related to the interquark potential, 

V(r), by: 

W(C) "'exp { -TV(r)} (2.30) 

For a derivation of this equation see e.g. Ref. [21]. 

As we have argued before, confinement implies that the interquark potential grows 

without bound 

V(r)--+ oo as r--+ oo 

and we shall assume linear growth here. So with V(r) = Kr, we find: 

W(C) ""'exp { -KT R} "'exp { -K Ac} (2.31) 

where Ac is the area enclosed by a rectangular loop C. 
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This is the Wilson criterion. An area law behaviour of the Wilson loop gives confine­

ment. We should note here, that in Eq. (2.31) the quarks are treated merely as external 

colour sources and do not appear in the condition on W(C). Thus using the Wilson loop 

it is possible to study confinement in a pure gluon theory. 

In the strong coupling approximation of lattice gauge theory one can demonstrate that 

the Wilson loop does obey an area law and hence quarks are confined in lattice gauge 

theory (see Ref. [18]). However the continuum limit of the theory is not well defined, 

preventing us from rigorously proving quark confinement for QCD. 

We shall come back to area-law behaviour of the Wilson loop in the next section, where 

we will discuss what we can learn about confinement by studying the behaviour of the 

gluon propagator in the low-momentum (infrared) region. 

2.4.3 Confinement and the Gluon Propagator 

The gluon propagator, 111.w(p2
), is gauge dependent and as such is not experimentally 

observable. However its infrared behaviour has important implications for quark confine­

ment: (i) gluons control the interquark dynamics and we expect that their propagators 

have a peculiar low-energy behaviour so that gluons confine quarks by having very strong 

long range interactions, (ii) gluons themselves are confined particles and we expect this 

to be apparent from their propagator. 

In this section, we shall discuss two different infrared behaviours of the gluon propa­

gator and their implications for confinement. These are: 

• an infrared enhanced gluon, as singular as 1/ p4 for p2 --+ 0 

• an infrared softened gluon, not having a mass pole in the propagator 

After introducing the Schwinger-Dyson approach to QCD in chapter 3 we will come back 

to these different gluon propagators and investigate whether it is possible to derive them 

from non-perturbative QCD. 
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a.) l/p4-Behaviour of the Gluon 

One obtains an intuitive feeling for the meaning of a gluon propagator as singular as 

ljp4 for small p2 by considering the one-gluon exchange contribution to the interquark 

potential, i.e. neglecting multi-gluon exchanges, which due to the self-coupling of the 

gluons are present in QCD. It is well known that the one-gluon exchange contribution to 

the potential is related to the 3-dimensional Fourier transform of the time-time component 

of the gauge boson propagator b.00 (p2
) by: 

V( ) C 2 J cfk A (k2) -ikr 
r =- F9 (27r)3uoo e (2.32) 

where k and rare three-vectors in momentum and configuration space respectively. 

Therefore the long distance behaviour of the potential is determined by the behaviour 

of the propagator near k = 0. A gluon proportional to k-a leads to an interquark potential 

that behaves like 

V(r) <X ra-3 

and we see that a linearly rising, confining interquark potential comes about from a l/p4 

infrared behaviour of the gluon propagator. 

Most importantly, West [22] derived a relation between the Wilson loop operator, 

Eq. (2.29), and the full gluon propagator. He proved that 

W(C) :s; exp { -~
2 f dx 11 f dy 11 b.::(x, y)8ab} 

He showed that if in any gauge the gluon propagator is as singular as l/p4 the Wilson 

loop operator falls exponentially to zero with the damping factor proportional to the area 

of the loop 

lV (C) :s; exp {-Ac} 

This area law behaviour is, as we have discussed in the previous section, a signal for 

confinement. 

West's result is so important because it relates the gauge dependent propagator to a 

gauge invariant quantity, which itself is related to the interquark potential. Thus, if we 
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could rigorously prove that the full gluon propagator in QCD indeed has a l/p4 infrared 

behaviour in any gauge, we would be able to demonstrate quark confinement. 

Furthermore it should be noted that a gluon propagator which is as singular as 1/p4 

when p-----+ 0, does not only confine quarks, but can also be shown to correspond to gluons 

being confined themselves. 

Based on Lorentz invariance, causality and the assumption that there exist stable 

single particle states one can derive the Kallen-Lehmann spectral representation of the 

propagator [23]: 

~(p2) = J djl? ~(J12) 2 
p -f-l 

where ~(p2 ) is the scalar coefficient of the propagator, ~JL"' and p(J12
) is the spectral 

weight function, defined by: 

n 

where Jn) are eigenstates of the energy- momentum operators p~t and the energy of all 

the intermediate states p~ > 0. If we assume that the field <P creates a single particle 

state of mass m as well as creating multiparticle states, we can separate out the one 

particle state contribution to the spectral weight function p(J12). This is proportional 

to c5(4 l(J12 
- m 2

). Thus the propagator has a single pole at the physical mass of the 

particle and a more complicated structure for momenta beyond the threshold energy of 

multi-particle production. 

One can show that any physical asymptotic state must have this Kallen-Lehmann 

spectral representation of the propagator. However, the propagator of a confined particle 

does not have a spectral representation. Analytic structures of the gluon propagator 

which do not allow this spectral representation correspond to confined particles and it 

has been shown that the infrared enhanced propagator is one such structure. 

We conclude this section by stressing once more, that a 1/p4 behaviour of the full 

gluon propagator in QCD would demonstrate confinement. Gluons confine quarks by 

having very strong long range interactions and are themselves confined by not having a 

Kallen-Lehmann representation that any physical asymptotic state must have. 
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In contrast, it is sometimes argued that ~(p2 ) must be less singular than l/p2 to 

ensure that gluons themselves do not propagate over large distances and we shall briefly 

discuss this in the following section. 

b.) Absence of a Mass Pole in the Propagator 

Another sufficient condition for confinement is that there should be only colour singlet 

on-shell states. Then a propagator, which does not have any mass singularity on the real 

positive p2 axis will effectively confine the particle, in the sense that it can never be on 

mass-shell, and thus never be observed as a real, asymptotic particle. Here again the 

analytic structure of the propagator, i.e. the absence of a mass singularity, corresponds 

to the absence of a Kallen-Lehmann representation. For a discussion of this see [24]. 



Chapter 3 

Schwinger-Dyson Equation 
Approach to QCD 

3.1 What are the Schwinger-Dyson Equations? 

The Schwinger-Dyson equations (SDEs) [25] are coupled integral equations, which inter­

relate the Green's functions of a field theory. It is well known that a field theory is 

completely defined when all of its Green's functions are known and hence solving these 

integral equations provides us with a solution of the theory. Unfortunately, the SDE's are 

impossible to solve exactly since they build an infinite tower of coupled, non-linear integral 

equations, one for each Green's function. In general, for a non-Abelian field theory, the 

( n + 1) and the ( n + 2) point function enter the equation for the n-point function and we 

can write the full hierarchy of equations symbolically as 

(3.1) 

where F stands for the relevant combination of Green's functions r. 

Thus truncations are unavoidable in any study based on SDE's. This means that the 

26 



CHAPTER 3. SCHWINGER-DYSON EQUATION APPROACH TO QCD 27 

tower of equations must be limited to some number m, where m is the maximum number 

of legs on any Green's function included in the self-consistent solution of the equation. 

An ansatz must than be made for the omitted n-point functions. An approximation 

is required, which incorporates the main properties of the theory, including the various 

global and local symmetries, and the known perturbative behaviour in the weak coupling 

limit. Once the SDE's have been truncated in a self-consistent way, they provide us with 

a non-perturbative approximation to the field theory. 

It is important to note that the SDEs are non-perturbative in nature, where non­

perturbative means more than just a resummation of all orders in perturbation theory. 

Since the SDEs are the field equations of the quantum field theory, they contain all its 

dynamics. So any inherently non-perturbative effects in the theory, not accessible to a 

perturbative expansion, are included in the SDEs. One example of such an effect is fermion 

mass generation through dynamical symmetry breaking. We know that in perturbation 

theory the corrected fermion mass is proportional to the bare mass, appearing in the 

Lagrangian, and hence a theory which is originally massless remains so at each order in 

perturbation theory. However, dynamical mass generation has been shown to happen [26] 

provided the coupling is larger than some critical value, and this can be studied in the 

continuum using the SDEs. 

In this thesis, we study the gluon propagator and we derive its SDE in detail in 

section 3.2. This derivation is somewhat mathematical, but is included because of the 

importance of the SDE to the research of this thesis. As we shall see explicitly, the gluon 

SDE involves not only the full gluon propagator, but the full triple and quartic gluon 

interactions too, as well as the propagator and coupling for the quarks and the ghosts. 

These in turn satisfy equations which involve yet higher point functions and so on. In 

order to make a study of the gluon propagator tractable simplifying assumptions are 

clearly necessary. We are going to describe the approximations used and discuss their 

justification in chapter 4. Here we shall just point out that using the Slavnov-Taylor 

identities [27] of the theory we can truncate the SDE in a natural hierarchical way, as 

was first done by Baker, Ball and Zachariasen [28]. The Slavnov-Taylor identities are a 

property of gauge theories and, for our example of the gluon propagator, allow the triple 
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gluon vertex to be constrained in terms of the gluon propagator. This allows us to model 

the behaviour of the propagator without having to solve an infinity of equations. 

We first derive the gluon SDE using the path integral formalism which we have intro­

duced earlier and then turn to the relevant Slavnov-Taylor identities we will need for the 

truncation of this equation. 

3.2 Derivation of the Schwinger-Dyson Equations 

In this section we derive the Schwinger-Dyson equation of the gluon propagator of QCD 

in a covariant gauge, i.e. in an environment where ghosts are present. We start from the 

QCD generating functional, which we introduced in section 2.2.2, Eq. (2.22). Consider 

the functional derivative of the QCD generating functional with respect to the gluon field. 

Since the particle fields vanish at infinity the integral of the derivative must vanish too. 

The expression in square brackets can be taken outside the integral by replacing every 

occurence of a field by a derivative with respect to its source (see Eq. (2.8)). 

where 

85QcD [¢1,1jlf,AIL,w,w] 

8A~(y) 

(3.2) 

-gofabcA~(oPA:) + gofabco~-'(A:A~) + g6facdreb A~A;A~ 

+( Opwa)gofabcWc 
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(3.3) 

Eq. (3.3) is in principle the SDE of the gluon propagator. However, as previously 

explained, Z is the generating functional for disconnected Green's functions as well as 

connected ones. In order to relate physical quantities we must express Eq. (3.3) in terms 

of the generating functional for connected Green's functions only, W. This is defined by, 

Some useful relations are, 

-. 
{) w[- J - l {)W w --e ,.,,1), ~",€,€ = --e 

i{)Jf-1 i{)Jf-1 

• 

• 

• 

• 
{) {) {) w 

------e 
i{)Jf-1 i{)Jp i{)Jf-1 

8 [ 8 ( 8W) w 8W 8W w] -- -- -- e + ----e 
i{)Jf-1 i{)Jp i{)Jf-1 i{)Jp i{)Jf-1 

8 ( 8 ( 8W ) ) w 8W 8 ( 8W ) w 
i{)Jf-1 ibJP ibJf-1 e + ibJf-1 ibJP ibJf-1 e 

b ( bW bW) w bW bW 8W w +--. ---- e + ------e 
i{)Jf-1 i{)Jp i{)Jf-1 i{)Jf-1 i{)Jp i{)Jf-1 ' 
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• 

where the above space-time derivatives act on everything to the right. 

Using the above results and dividing by Z, we can rewrite Eq. (3.3) in terms of W, to 

g1ve: 

We want relations between the connected proper vertices of the theory. These are given 

by derivatives of the effective action with respect to the fields in the limit of vanishing 

sources (Eq. (2.15)). Thus we now perform a Legendre transformation and express our 

equation in terms of the effective action: 

satisfying: 

A11 (x) 
oW oW - oW 

ioJil(x) ' ¢(X) = iOiJ( X) ' ¢(x) =- io17(x) 

w(x) 
oW oW 

iOt( X) ' w(x) =- ibt(x) ' 

Jll(x) 
or or or 

ioAAx) ' 1J( X) = - io¢( X) iJ(x) = io¢(x) ' 

t(x) 
or or 

iow(x) ' t(x)= .0 () 
Z W X 
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Inserting this into Eq. (3.4) gives: 

6f 
c5A~(x) 

Finally we must take the limit of vanishing sources. 

Consider the fermion term 

where o:, f3 are spinor indices. 

We have, 

Furthermore, 

62W 
(!~)a~6~a(x)6ry~(x) 

Thus in the limit of vanishing fermion sources, 



CHAPTER 3. SCHWINGER-DYSON EQUATION APPROACH TO QCD 32 

Equivalently for the ghost term in the limit of vanishing ghost sources, 

Thus Eq. (3.5) becomes: 

Now take the derivative of the above with respect to Aj(y) and set A = 0. We will 

look at the terms separately. 

( 
(0) ]-1 flvp(x,y) (3.7) 

where llS~(x,y) is the bare gluon propagator. 

M~(y) [-igoT'tr (-y, (6¢(:;;,P(x)) -l) l 
= ig6 j d4 z1d4 z2 tr [Tb /p S(x,zi) A[(x,z1 ,z2) S(z2,x)] (3.8) 



CHAPTER 3. SCHWINGER-DYSON EQUATION APPROACH TO QCD 33 

Here we have used, 

where S(x, z) is the full fermion propagator, 

A£(x, z1 , z2 ) is the full fermion gluon vertex function and 

Equivalently: 

.IA~(y) [ -igof.>ot.r (a, ( bW(:;;w(x)) _,)] 

= ig~ j d4 z1d4 z2 tr [!abc ap B(x,zt) A~c1 (x,z1 ,z2) B(z2,x)] (3.9) 

where B(x, z) is the full ghost propagator, 

A~cf ( x, z1 , z2 ) is the full ghost gluon vertex function and 

A acf(O)(x z z ) = facfa o(x - z )b(z - z ) 
v ' 1' 2 J1. 1 1 2 

Now we rewrite the gluon term in Eq. (3.6) introducing the bare three and four gluon 

vertices: 

gof"'" {a, li~;~: + A~a,A; +a, b~;~~- A~8,A~- 8' b~;~{ + 8' A~A~} 

Jd4 d4 9orabc(o)( )( 0
2

W AJJ.( )Aa( )) 
X1 X2 2! JJ.Up X, Xt, X2 oJz( X

1 
)OJ~( X

2
) + c X1 a X2 

where 
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Similarly, 

where 

( rbc rde [8J.IT8Up - 8UT8J.Ip] 

+red reb [8J.IT8Up- 8TP8J.IU] 

+ rce rdb [8uT8J.IP- 8J.IU8Tpl ) 8(x- Xt)8(x2- x3)8(x1- x2) . 

Using the functional identity: 

and only keeping the gluon terms which will remain when we set A = 0 after we have 

taken the derivative with respect to Aj(y ), we find for the triple gluon term: 

where r~:~u'(:r~' x;, y) is the full three gluon vertex function 

and where we have used 

83
W - -jd4 x'd4 'd4 z'6(x x')6( ')6( ') 

83r 
8J(x)8J(y)8J(z) - y - y- y z- z 8A(x')8A(y')8A(z') · 

Similarly we obtain for the quartic gluon term: 
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A rr'( 1) A aa'( 1)fgjc ( 1 )fgae ( 1 1 1) u x3 - x3 u z- z avJJ.' z, y, x 1 a'(I'r' z, x 2 , x3 

2 

+ ~~ f~~;~O) (X, X1, X2, X3)6_~: ( X1 - X2) 

where f~~~;'r'( X~, X~, x;, y) is the full four gluon vertex function 

and where we have used 

84W 

8J( w )8J(x )8J(y)8J( z) 

J d4 ld4 ld4 ld4 I 84f 
w x y z 8A( w1)8A(x1)8A(y1)8A(z1) 

6.( w- w1)6.( x - x1)6.(y - y1)6.( z- z1
) 

J 4 4 4 I 4 I~ I 4 I b
3
f 8

3
f 

+ dud vd w d x y d z 8A(u)8A(w1)8A(x1) 8A(v)8A(y1)8A(z1) 

(3.11) 

6.( w - w1)6.(y - y1)~( x - x1)6.( z - z')~( u - v) + cyclic permutations 

On adding up the separate contributions, Eq. (3.8) - (3.11 ), we obtain the SDE for 

the inverse gluon propagator. This equation is displayed diagrammatically in Fig. (3.1). 

The SDE's for the quark and ghost propagator can be derived in a similar way, by 

taking the functional derivative of Eq. (2.22) with respect to the quark and ghost fields 

respectively. 
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Figure 3.1: The Schwinger-Dyson equation for the gluon propagator. 
Here the solid line represents the quark propagator and the broken line the ghost prop­
agator, the • denote full quantities and stand for inclusion of all possible one particle 
irreducible diagrams. 
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Here we restrict ourselves to the study of quenched QCD, i.e. a world without quarks. 

This is reasonable since we expect the non-Abelian nature of QCD to be responsible for 

confinement. 

3.3 Slavnov-Taylor Identities 

A very important aspect of a gauge theory is that gauge invariance imposes relationships 

between Green's functions with different numbers of external legs. These relations, in 

general called Slavnov-Taylor identities, are exact, they have to be satisfied not only 

order by order in perturbative calculations but also, since they relate the full (n +I) 

point function to the full n-point functions, in any non-perturbative approach to QCD. 

Hence they can be used to truncate the SDEs. In the following we present the basic steps 

in the derivation of these Slavnov-Taylor identities, if one drops the fermion fields in the 

QCD Lagrangian, i.e. we are considering a pure gauge theory here. 

The important thing to note first is that the gauge-fixed QCD Lagrangian, Eq. (2.1), 

is not invariant under a general gauge transformation, but instead it is invariant under the 

Becchi-Rouet-Stora (BRS) transformations. The variations of the different fields under 

these transformations are given below: 

(3.12) 

where 8 is an infinitesimal, constant real Grassmann number. This had to be introduced so 

that the BRS transformations do not alter the character of the fields, i.e. the transformed 

w and w fields are still Grassmann variables. 

It is now convenient to introduce two extra, new sources u~ and va for the composite 

operators D~bwb and fabcwbwc that appear in the BRS transformation. The generating 

functional becomes: 

(3.13) 
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where now a is given by: 

and SqQCD is the action for quenched QCD. 

Next we perform a BRS (infinitesimal) transformation of the fields in Eq. (3.13). It 

can be shown that both the measure [dA, dw, dW] in the path integral formalism and the 

terms involving the newly introduced sources are invariant under such a transformation 

[11) and so, of course, is SqQCD· The only terms which are not BRS invariant are the 

source terms for the gluon and ghost fields. However, the generating functional Z is BRS 

invariant. (Transforming the variables of integration does not change the value of the 

integral itself). Thus the contributions from the source terms must vanish. Performing 

the BRS transformations, Eq. (3.12), on the generating functional gives: 

Expanding the exponential to first order in B, we find: 

and hence: 

We can rewrite the above as a functional differential equation: 

where we have used the following functional relations: 

~ bZ [JJl, t, €, uJl, v] 
Z ibu~(x) 

1 bZ [JJl, t, €, uJl, v] 
Z ibv(x) 

D JL a - 1 CAll 
abw - (j 0 a 

(3.14) 
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This equation is a Slavnov-Taylor identity. To derive identities for specific one particle 

irreducible Green's functions one proceeds exactly as we described in detail for the SDE. 

First one would perform the Legendre transform on Z to obtain the generating functional 

for the proper vertices. Then, by functionally differentiating the resulting expression 

with respect to the external sources and afterwards putting them to zero, one obtains 

the Green's functions one is interested in. We will not give the actual manipulations in 

obtaining specific Slavnov-Taylor identities here, they can be found in Ref. [27]. Instead 

we shall simply state some of the simplest identities. 

First we introduce the Slavnov-Taylor identity for the full gluon propagator: 

IT J.W l 1/ 2 C 
PJ..L ab = zp p Uab (3.15) 

where Il~-'v is the inverse gluon propagator. 

This identity determines the tensor structure of the gluon and in a covariant gauge 

can be solved to give: 

or, 

where G(p2
) is the gluon renormalisation function, containing the full non-perturbative 

content of the propagator, and is equal to 1 for the free gluon propagator. 

We now separate the gluon propagator into a longitudinal and a transverse piece, where 

the transverse piece is defined to vanish when contracted with the external momentum, 

I.e. 

where 

The Slavnov-Taylor identity, Eq. (3.15), thus only implies that the longitudinal part of 

the full gluon propagator, fl'L"(p), is equal to that of the free propagator. The transverse 

piece, flj,v(p), is unconstrained by Eq. (3.15). 
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This last statement is in fact a general property of the Slavnov-Taylor identities. They 

only determine the longitudinal part of a ( n + 1 )-point Green's function in terms of the 

n-point functions, their generic form being 

where F stands for a combination of the lower Green's functions and where obviously the 

transverse part, as defined, is unconstrained. 

If we now define the full ghost propagator to be 

.H(q2) 
Bab(q) = z--

2 
-bab 

q 

and decompose the full ghost-gluon vertex, A~-', as: 

then the Slavnov-Taylor identity for the triple gluon vertex is: 

vrabc ( ) q 1-'va p,q,r = H(q2) {- G(~2) (gTar2- rTra) A:bc(p,q,r) 

1 ( 1-'T 2 1-' T) A T<7 ( ) } - G (p2) g P - P P abc r' q' P (3.16) 

Demanding that the longitudinal part of the vertex function should be free of kinematic 

singularities, Eq. (3.16) can be solved uniquely to determine the longitudinal part of the 

three-gluon vertex in terms of the ghost-gluon vertex and the ghost and gluon propagator, 

see Ref. [29]. 

It is worth stressing here that defining the transverse part of a Green's function as we 

demonstrated in Eq. (3.3) and demanding it to be free from kinematic singularities, the 

transverse piece fr itself vanishes in the limit of external momenta becoming zero. This 

can be seen by taking the derivative of 

1-'ifl-'1···1-'i···l-'n ( ) 0 Pi T PI···Pi···Pn = 

with respect top'[ giving: 

fl-'1···/.1···1-'n + J!'i_!!_fl-'1···1-'i···l-'n = 0 
r P. a~.~ r 

P; 



CHAPTER 3. SCHWINGER-DYSON EQUATION APPROACH TO QCD 41 

If fr is free of kinematic singularities, then, in the limit pf; --t 0, the second term 

vanishes and hence the transverse part of the vertex function vanishes when the external 

momenta approach zero. This result is very important for the SDE approach to QCD. 

It means that the longitudinal part of the vertex, which is determined by the Slavnov­

Taylor identity, contains all the low-momentum (infrared) behaviour of the vertex. Hence 

truncating the infinite set of SDEs, Eq. (3.1), at some r m, approximating r m+l by its lon­

gitudinal part and setting r m+2 = 0, we get a closed set of equations. In non-perturbative 

studies, where we are interested in the infrared behaviour of the theory, this should be a 

valid approximation. 



Chapter 4 

Infrared Behaviour of the Gluon: 
An Analytical Calculation 

In this chapter we study the possible infrared behaviour of the gluon propagator analyt­

ically, using the SDE. We concentrate on the two solutions proposed in the context of 

confinement (chapter 2.4.3): 

• the infrared enhanced propagator, as singular as ljp4 when p2 ~ 0 

• the infrared softened propagator, less singular than ljp2 when p2 ~ 0. 

As discussed above, a gluon propagator which is as singular as ljp4 when p2 ~ 0 indicates 

that the interquark potential rises linearly with separation and leads to an area law 

behaviour of the Wilson loop operator, often regarded as a signal for confinement. Gluons 

confine quarks by having strong, long range interactions and are themselves confined as 

they do not have a Kallen-Lehmann spectral representation. 

Alternatively a gluon that does not have a pole on the real, positive p2-axis describes 

a confined particle and has been suggested by Landshoff and Nachtmann [30] on purely 

phenomenological grounds. This is needed for their model of the pomeron in order to 

reproduce experiment. 

Clearly, (Fig. ( 4.1) ), the gluon propagator cannot both be more singular and less 

singular than 1 j p2 as p2 ~ 0, but which is correct ? 

42 
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Figure 4.1: Possible behaviour of the gluon propagator ~(p2 ), which is the coefficient of 
the g1111 or fi1111 component of ~1111 (p). 
(a) confining gluon, ~"' (p2t 2

, 

(b) confined gluon, ~ "' (p2tc with c very small, 
(c) infrared vanishing gluon ~ rv p2 • 

All are matched to the perturbative behaviour for p larger than a few GeV. 
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The SDEs provide the natural starting point for a non-perturbative investigation of 

this infrared behaviour of the gluon propagator. We shall derive a closed equation for the 

gluon renormalisation function, G(p2 ), following the procedure outlined in chapter 3 in 

both the axial and the Landau gauges. As mentioned before, in order to derive a closed 

equation for G(p2
) and hence make a study of the infrared behaviour of the gluon possible, 

we must make approximations. We discuss in detail what these approximations are and 

how they are justified. 

Extensive work has been previously performed in both the axial gauge [28], [31]­

[33] and the Landau gauge [34]-[36]. (For a comprehensive review see Roberts and 

Williams [37].) A confining solution as singular as l/p4 has been shown to exist in both 

gauges [28]-[32] and [34]-[36], whereas a confined solution for the gluon propagator, i.e. 

less singular than l/p2
, has only been claimed to exist in the axial gauge [33]. The purpose 

of the study presented in this chapter is to explore why these two different behaviours 

have been found. Fortunately, in studying just the infrared behaviour, there is no need to 

solve the SDE at all momenta. It is this that greatly simplifies our discussion and allows 

an analytic treatment. 

In section 4.1 the axial gauge studies are reviewed and the possible, self-consistent 

solutions for the infrared behaviour of the gluon are reproduced analytically. We discuss 

the difficulties in justifying the approximations made in the axial gauge and then turn 

to covariant gauges and the Landau gauge in particular. We investigate the possibility 

of a gluon propagator less singular than 1/p2 when p2 -----+ 0 in the Landau gauge in 

section 4.2. We find that this infrared softened, confined behaviour of the gluon propagator 

is inconsistent; only an infrared enhanced, confining gluon, as singular as 1/p4 when 

p2 
-----+ 0 is consistent with the truncated SDE. In section 4.3 we discuss the differing forms of 

the SDEs used in the axial and Landau gauge calculation to deduce these results. We then, 

in section 4.4, briefly review a third possible behaviour of the gluon, the infrared vanishing 

gluon (see Fig. ( 4.1)), proposed by Stingl et al. [38] in a completely different approach to 

solve the SDE. However, as we shall discuss, the infrared vanishing gluon propagator does 

not lead to quark confinement [39, 40] and hence the full gluon propagator in QCD cannot 

have this behaviour. An infrared behaviour of the gluon which is a consistent solution of 
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the SDE, and hence is possible in non-perturbative QCD, has implications not only for 

confinement, as we showed in chapter 2.4.3, but also for the modelling of the pomeron. 

This will be illustrated in section 4.5. In section 4.6 we state our conclusions. 

4.1 Axial Gauge Calculation 

In the axial gauge the gluon propagator is transverse to the gauge vector nw 

Axial gauge formalism : n ~-'A a~-t = 0 

Studies of the axial gauge SDE have the advantage that ghost fields are absent and thus, 

considering a pure gauge theory the gluon SDE relates the gluon propagator to the three­

and four-gluon vertex functions only. This is displayed diagrammatically in Fig. ( 4.2). 

-1 -1 
I~' = < OOIXXXXXXXXX)' + l 

2 

Figure 4.2: The Schwinger-Dyson equation for the gluon propagator in the axial gauge 
(neglecting quark loops). 

Furthermore the four-gluon vertex terms, Fig. ( 4.2), may be projected out of the SDE. 

However the drawback of the axial gauge is that the gluon propagator depends not only 

on p2
, but also on the unphysical gauge parameter/, defined as 
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Since the full gluon propagator, l:i~-'v' is transverse with respect to the axial gauge 

vector, i.e: 

n~-' l:i~-'v = 0 ( 4.1) 

the most general tensor structure for l:i~-tv is: 

(4.2) 

with the tensors given by: 

and therefore the full axial gauge gluon propagator must depend on the two scalar func­

tions, F and H. The full gluon vacuum polarisation II>.~-t(p2 , 1) in the axial gauge is 

defined by: 
>. 

II >.I-' A - >. - n Pv 
U11-v- 9 v 

n·p 

since contraction with nv must be zero from Eq. (4.1) and II>.~-' has to be orthogonal to 

P>.· Then its general form is: 

with the tensors given by: 

The free quantities, /:i~~ and II >.~-t(O), are obtained from Eq. ( 4.2) and Eq. ( 4.3) by substi­

tuting F = 1 and H = 0. 

In principle, the SDE for the gluon propagator can be written as a set of two coupled 

equations for F and H. However, in all previous axial gauge studies it has been assumed 
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that any infrared singular part of the propagator has the same tensor structure as the free 

one (though importantly, as we shall see later, this contradicts the results of West [41]) 

and consequently H(p2
, 1) has been neglected. Thus for p2 -+ 0 it is assumed that 

( 4.4) 

which corresponds to the statement that as p2 -+ 0 the gluon vacuum polarisation, 

Il.xJ.L (p2
, 1), becomes 

(4.5) 

Projecting the integral equation with nJ.Ln11 /n
2 the loops involving the four gluon vertex, 

apart from the tadpole term, give an identically zero contribution. This is because of the 

tensor structure of the bare 4-gluon vertex, which is defined by: 

r:~c:;o) = -i96 [rab rcd(9J.Lp9.\u- 9J.Lu9.Xp) 

+rae rbd(9J.Lu9.\p- 9J.L.\9pu) 

+ rad rbc(9J.L.\9pu - 9J.Lp9.\u)] 

and the fact that the gluon propagator is transverse to the axial gauge vector: 

For illustrative purposes consider: 

This holds similarly for the other tensor parts of the 4-gluon vertex. 

Thus the relevant part of the SDE of Fig. ( 4.2) becomes: 

II = rr<o) - 92 J d4k r(O) (- k ) 1:1 o{J(k) 1:1 -y6( ) r ( k ) J.Lll J.lll 2 (27r)4 J.Le>D p, ,q q {3-yv- ,p,-q 

9
2 J d4

k (0) a{J 
2 (21r)4 rJlliC>{J(p,k,-k,-p) 1:1 (k) ( 4.6) 
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where q = p - k. The last term is the tadpole contribution and all colour indices are 

implicitly included in the vertices. Once the full 3-gluon vertex is known, we have a 

closed equation for the gluon vacuum polarisation IIJLv· 

As we discussed in detail in chapter 3.3 the Slavnov-Taylor identities impose a re­

lationship between the 3-gluon vertex, the gluon propagator, the ghost propagator and 

the ghost-gluon vertex, Eq. (3.16). However, in the absence of ghosts the Slavnov-Taylor 

identity for the 3-gluon vertex, Eq. (3.16), reduces to the much simpler Ward-Takahashi 

identity, which constrains the vertex in terms of the vacuum polarisation only: 

(4.7) 

Separating fJLvp into transverse and longitudinal parts, where the transverse part is 

defined to vanish when contracted with any external momentum, the Slavnov-Taylor 

identity exactly determines the longitudina.l part [29) if it is to be free of kinematic sin­

gularities. One should note that this longitudinal part in general depends upon both the 

axial gauge gluon renormalisation functions F and H (see Kim and Baker (29]). Making 

the assumption H(p2
, 1) = 0 the gluon vacuum polarisation, Eq. ( 4.5), and hence also the 

longitudinal part of the vertex determined by Eq. ( 4. 7) gets simplified drastically. Having 

made this approximation, fL is given by: 

+ cyclic permutations (4.8) 

Ball and Chiu [29) showed that this longitudinal part is responsible for the dominant 

ultraviolet structure of the vertex. Moreover, as we have discussed in chapter 3.3, it 

is assumed that it entirely embodies the infrared behaviour, and so the transverse part 

can be neglected. This assumption is motivated by the fact that the transverse part (as 

defined) vanishes, when the external momenta approach zero. 
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Using the explicit expressions, Eq. ( 4.4) for ll 1.w and Eq. ( 4.8) for r 11vp and multiplying 

with n 11 nv/n2
, we find in Euclidean space: 

( 4.9) 

This is the equation first found by Baker, Ball and Zachariasen [28] who studied its solution 

numerically. They came to the conclusion that the only consistent infrared behaviour for 

the function F(p2
) is 

2 1 2 F(p ) ex 2 as p -t 0 
p 

and that this is independent of 1 as a numerical approximation. 

Schoenmaker [32] simplified the BBZ equation (Eq. ( 4.9)) further by exactly setting 

1 = 0. Doing this the contribution of the tadpole diagram vanishes as we now demon­

strate. Consider the tadpole term alone, which from Eq. (4.9) is: 

If we assume that 1 = 0 the gluon renormalisation function depends only on the mo­

mentum p2 and thus we can perform the angular integration of the integral above. As 

explained in more detail in Appendix A, Eq. (A.3), the four dimensional integration can 

be written as: 

J r= PdP r r 1211: 
d4 k = lo -2- lo sin2 1/J d¢ lo sin() d() lo d<P 
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where here we define the angle 1/; to be the angle between k and n. Thus: 

Tadpole= 2~ j (~:~ 4 F(k
2

) fo1r sin
2

1/; d1j; ( 2 + n 2 k:
2

c::2 1/;) 

The tadpole term requires the integral 

l
1r l1r sin

2 
'1/' 2 sin2 1/; d1j; + ~ d1j; . 

0 0 cos 'f/ 

Clearly the second term in the integral diverges at 1/; = ~ /2. Schoenmaker regulates this 

divergence by taking the principle value. Then 

2 r sin2 1/; d1j; + r sin: 1/J d1j; I"V [1/; - ~sin 21/; + sin~. - 1/;]7r = 0 
lo lo cos 1/; 2 cos 'f/ 0 

and we find that the tadpole term vanishes. 

Schoenmaker [32], moreover, approximates F(q2
) by F(p2 + k2

), which since q2 = 

(p - k )2 should be exact in the infrared limit when either p or k is small. This allows 

the angular integrals to be performed analytically. Consequently, Schoenmaker found the 

following simpler equation: 

P2 (F(~2) -1) = 

where 

F(p2 +e) 
F(p2 + J..~2)- F(k2) 

F(p2 + k2)F(P) 
F(p2) 

( 4.10) 

In general, this equation has a quadratic ultraviolet divergence, which would give a mass 

to the gluon. Such terms have to be subtracted to ensure the masslessness condition 
' 

p2 
jJ~0 II,w = 0 , I.e. F(p2) = 0 for p

2
---+ 0 (4.11) 
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is satisfied. This property can be derived generally from the Slavnov-Taylor identity [28] 

and always has to hold if the vertices are free of massless scalar singularities. 

The complicated structure of the integral equation, Eq. ( 4.10), does not allow an 

exact analytic solution for the gluon renormalisation function, F(p2
), to be found and 

most previous studies ([28], [33], [34] and [36]) solve the equation numerically. However, 

the possible asymptotic behaviour of F(p2
) for both small and large p2 can be investigated 

analytically. 

We determine which infrared behaviour of F(p2
) can give a self-consistent solution to 

the integral equation by taking a trial input function, Fin(p2
), and substituting it into the 

right hand side of the equation. After performing the P-integration, we obtain an output 

function 1/ Fout(p2
) to be compared to the reciprocal of the input function. To do this, 

the gluon renormalisation function is approximated in the infrared region by a Laurent 

expansion in powers of p2 and at large momenta by its bare form, i.e. 

( 4.12) 

where 
00 

n=O 

to ensure continuity at p2 = f1 2
• fJ is the mass scale above which we assume perturbation 

theory applies. The exponent 7J can be negative to allow for an infrared enhancement. 

Eq. (4.12) is a sufficiently general representation for finding the dominant self-consistent 

infrared behaviour. Of course, the true renormalisation function is modulated by powers 

of logarithms of momentum, characteristic of a gauge theory. However, these do not 

qualitatively affect the dominant infrared behaviour and can be neglected. Indeed to 

make the presentation straightforward, we only need approximate F(p2 ) by its dominant 

infrared power (p2
) 11 for p2 < p 2 to test whether consistency is possible and this is what we 

describe below. However, as we shall see, if 7J is negative then potential mass terms arise 

and these have to be subtracted. Only in this case do higher terms in Eq. (4.12) play a role 

too and it is necessary to consider other than the leading term in the low momentum input. 

Otherwise higher powers make no qualitative difference as we have checked. Consequently 
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we present only the results with the lowest powers in the representation, Eq. ( 4.12). 

To illustrate the idea, let us take the trial infrared behaviour to be just 

(i.e. an = 0 for n 2 1) 

Note that the masslessness condition, Eq. ( 4.11 ), restricts "1 to be less than 1. Further­

more we demand that in the high momentum region the solution of the integral equation 

matches the perturbative result, i.e. for p2 ---+ oo, we have F(p2
) = 1, modulo logarithms. 

We now insert our trial input function in the left hand side of Schoenmaker's approx­

imation, Eq. (4.10); there are then six integrals which should be calculated. We shall in 

the following use the shorthand notation: 

I; when i = 1, 2, 3 and 

I; when i = 4,5,6 

Furthermore we set 

in those integrals for which p2 > P, and 

when p2 < k2
, since we are taking p2

, the external momentum in Eq. ( 4.10), to be small. 

We introduce a cut-off A 2 to regularise the ultraviolet divergent integrals. It should 

be pointed out that the cut-off dependance can be removed in the standard way by a 

wavefunction renormalisation, and a renormalised version of Eq. ( 4.10) can be found in 

Ref. (33]. However, for the purpose of this study we need not consider renormalisation 

and hence shall not discuss it here. 

Taking TJ = -1 for our trial input function (Eq.( 4.1) ), for example, i.e. 

2 ll
2 

F;n(P) =A 2 
p 
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in Schoenmaker's approximation, Eq. ( 4.10), gives 

This violates the masslessness condition of Eq. ( 4.11) and so has to be mass renormalised. 

As explained above, now terms in F(p2
) of higher order in p2 will generate a contribution 

to the right hand side of the equation making it possible to find a self-consistent solution 

by these cancelling the explicit factor of 1. Consequently, we can approximate Eq. (4.12) 

by 

( 4.13) 

We then find for the integrals !;: 

We see that the divergent integrals in / 1 and / 3 cancel and we get a finite result. The 

same is true for the remaining integrals in / 4 and fs. Furthermore we note that / 1 - fs in-
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elude constant terms. These violate the masslessness condition and have to be subtracted. 

We then find, adding the contributions from / 1 - 16 , after mass renormalisation: 

1 

where A is the ultraviolet cut-off introduced to make the integrals finite. 

We should point out here that the above equation contains terms which are not in­

cluded in Ref. [42] where this calculation was originally presented. This is because in 

Ref. [42] we did not cut off the infrared enhanced term A l-l2 fp2 at the momentum scale 

!-l2 . This gives an additional contribution in the large momentum region. However these 

extra terms do not qualitatively alter the result. The ultraviolet divergent constant can 

be arranged to cancel the 1 and the infrared dominant part is 1/ Fout(p2
) = p2 

/ !-l2
• Thus 

we find self-consistency modulo logarithms. It is this result that Schoenmaker found [32] 

supporting the earlier result of BBZ [28]. However, importantly, self-consistency requires 

A, Eq. (4.13), to be negative as also found by Schoenmaker. 

More recently, Cudell and Ross [33] have taken Schoenmaker's equation, Eq. ( 4.10), 

and investigated whether one can find self-consistency for a gluon renormalisation function 

which is less singular than 1/ k2 for k2 ---+ 0, i.e. which corresponds to confined gluons. The 

main motivation for their study being that this is the form of the full gluon propagator 

required for the Landshoff N achtmann pomeron model [30]. (For a discussion of this 

model requirement and the consequences of the behaviour of the gluon for the modelling 

of the pomeron in terms of dressed gluon exchange we refer to chapter 4.5.) 

The trial input function Cudell and Ross [33] use in their investigation is 

where cis small and positive to ensure a massless gluon, Eq. (4.11). Once more we want 

the integral equation for ITJLv to agree with perturbation theory in the ultraviolet region, 
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but Fin(p2 ) ex (p2 ) 1-c grows for large momenta and hence spoils the ultraviolet behaviour. 

So to check whether this input function gives self-consistency in the infrared, we input 

the trial form : 

( 4.14) 

Inserting this into Eq. (4.10), we find: 

where, for the calculation of !3 , we have used 

and W is the logarithmic derivative of the Gamma function which we define in Appendix 

B. Note that again, by combining the / 1 and h, the logarithmic divergent integrals cancel, 

and we have a finite answer. 

Similarly for 14 to ! 6 we find: 

( 
3 1 3 1 - c 2 . 2(1 -c) 

4(2- c) + 4(1 -c) + 4-~- 3\ll(2- c)- 3 w(l -c) 

- 2(2 - c) W 1 ) (p2)2-c (3 3 ) 2 
3 ( ) (f.l2)l-c + 4- 4(2- c) f.l 

( 
2 1 3) 2 (1 - c 2(1 -c)) p

4 3 2 + 3(1 -c) - 4(1- c) - 4 p + ~- 3c f.l2 - 4A 

5 21 (A2
) 2(2- c) 1~-'

2 

k2 1 +-p n - + d 
12 Jl2 3 p2 p2-k2 
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where, we have used the integral: 

and again the divergent integrals cancel between 14 and h. Adding the contributions of 

the integrals I; and using the relation, Eq. (B.3) 

. 1 
w(z+1)=W(z)+-

z 

we find, after mass renormalisation: 

where only the first few terms in the expansion for small p2 have been collected in this 

equation so that 

.5 1 11 A2 

12(1 -c) - 3 + 12 ln f.l 2 

2 ( 2 ~ 2c) + ~ ln ( ~:) 
2407 353c 3 1 1 + 2c 7 - Sc 7 + c 7 -------- + - -------,-
1440 360 8c 24(5- c) 12(4- c) 12(3- c) 12(2- c) 12(1- c) 

1 - 4c 3 - 7 c 2 4 2 
+ 6(2 _ 2c) + 6(1 _ 2c) + 3(2- c)w(1)- 3(2- c)\11(1 -c)+ 

3
(2- c)\11(1 - 2c) , 

7- 9c 
24c 
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Again the 1 can be arranged to cancel with the constant term and the dominant infrared 

behaviour is indeed 

for p2 
-t 0 

Hence a gluon propagator less singular than 1/p2 for p2 
-t 0 can be derived from Schoen­

maker's equation as Cudell and Ross [33] have found. Note that the only contribution to 

the dominant infrared behaviour comes from h. To check that once again terms in the 

gluon renormalisation function of higher order in p2 do not qualitatively alter the result 

we calculate h for the next term in Eq. (4.12). Thus with 

the infrared dominant term in Eq. ( 4.10) becomes: 

( 
1 1 1 2) (J.l2)l-c ---- + al + al -

4(1 - 2c) 3- 2c 4(2- c) p2 

This is positive for all a 1 and therefore higher order terms in the input function do not 

qua.litatively change the behaviour. 

Thus we see in the axial gauge that apparently both confined and confining solutions 

are possible for the gluon propagator. However, the singular confining behaviour must 

be an artefact of the approximation that one of the gluon functions, H, vanishes. West 

[41] has shown that in a gauge with only positive norm-states, i.e. where all the particles 

appearing are physical ones (no ghosts), the spectral functions have to obey certain posi­

tivity constraints. This leads to the conclusion that the full axial gauge gluon propagator 

cannot be more singular than ljp2 in the infrared. Recall the general tensor structure of 

the gluon propagator, Eq. ( 4.2): 

~ ( 2 ) = _ _j_ [F ( _ P11nv + Pvnll + 2 P11 Pv ) + H ( _ n 11 nv )] 
!LV p ' I 2 g J.LV n ( ) 2 g JJ-V 2 p n·p n·p n 

Therefore, though the axial gauge gluon renormalisation function F might be singular, 

as found by BBZ [28] and Schoenmaker [32], the neglected function H must cancel this 
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singularity in the infrared. This cancelation can occur even though F and H multiply dif­

ferent tensor structures, since BBZ study a particular projection of ITJ.L"' namely ni-LIT 11 vnv, 

which projects the two tensor structures on to the same direction. 

As an aside, we have in fact tried to find an explicit illustration of how this works in 

practice, but the complexity of the fully coupled two functions form of the gluon SDE has 

not allowed us to do this. 

One should note, that this result by West does not only call into question the approx­

imation of only considering one of the axial gauge renormalisation functions, but also, 

more importantly, makes it impossible to relate the behaviour of the gluon propagator 

to a gauge invariant (i.e. physical) quantity and prove confinement via the Wilson loop 

operator. 

Moreover, the approximation of setting 1 = 0 in the BBZ-equation, Eqs. ( 4.9,4.10), 

has been seriously questioned in Ref. [43]. Atkinson et al. pointed out that the gluon 

propagator, though it can be related to gauge independent, physical quantities, like the 

Wilson loop, is, of course, itself gauge dependent. There is no general argument excluding 

the dependence ofF on the axial gauge parameter I· Indeed it has been shown [43] that 

using a spectral ansatz to solve the axial gauge SDE a suppression of the 1-dependence 

leads to inconsistent results. 

Because of the difficulty in justifying the neglect of one of the key gluon renormalisation 

functions in axial gauges, we turn our attention to covariant gauges and the Landau gauge 

in particular. 

4.2 Landau Gauge Calculation 

While the axial gauge boson propagator involves two renormalisation functions, F(p2 , 1) 

and H(p2
, 1 ), the advantage of Landau gauge studies is the much simpler structure of the 

gluon propagator, involving just the single renormalisation function, G(p2 ), so that: 

~ () __ · G(p
2

) ( _ P11Pv) J.LV p - Z 2 9J.LV 2 
p p 

(4.15) 
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However other problems arise and the following approximations have to be made : 

• In any covariant gauge, ghosts are necessary to keep the vacuum polarisation trans­

verse and hence are present in the SDE of the gluon propagator, Fig. (3.1). However, 

in all previous studies [34, 36] the ghost loop diagram is only included in as much 

as to ensure the transversality of the gluon propagator, assuming that otherwise it 

does not affect the infrared behaviour of the propagator. This assumption is sup­

ported by the fact that in a one-loop perturbative calculation the ghost loop makes 

a numerically small contribution to G(p2
). (Treating the ghosts as bare makes very 

little difference.) 

• The 4-gluon terms cannot be eliminated as in the axial gauge and are simply ne­

glected. This can be regarded as a first step in a truncation of the SDEs. Further­

more, it seems reasonable to expect that, the full 3-gluon vertex already contains 

the essence of the confinement mechanism. Brown and Pennington [36] found that 

this is indeed the case. Including only the 3-gluon vertex, the SDE results in an 

infrared enhanced, confining gluon propagator. as we will show. 

With these assumptions, the SDE for the gluon propagator simplifies to Fig.( 4.3) and 

we again find a closed integral equation for the gluon vacuum polarisation, ITJ.L 11 , once the 

full 3-gluon vertex is known. 

-1 -1 
,~, = 'm:x:xxxxxxlOO' + 1 '""~ 

2 

Figure 4.3: The approximate Schwinger-Dyson equation for the gluon propagator in the 
Landau gauge 

In the Landau gauge, the Slavnov-Taylor identity for the 3-gluon vertex involves the 

ghost self-energy, which is simply set to zero (equivalent to treating ghosts as bare), and 
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the proper ghost gluon vertex function, A
11

v (see Eq. (3.16)). However, in the limit of 

vanishing ghost momentum the ghost-gluon vertex is equal to the bare one. This result 

follows from the observation that, in the Landau gauge, the gluon propagator is transverse 

and thus, in the limit of vanishing ghost momentum [44]: 

This considerably simplifies the STI, making it possible to solve the identity for the 3-

gluon vertex entirely in terms of G(p) of Eq. (4.15). These simplifications should be valid 

in the infrared region and with them the STI has the same form as in the axial gauge and 

is given in Eq. ( 4. 7). Once again approximating the full 3-gluon vertex by its longitudinal 

part, determined by the STI, and neglecting the transverse part of the vertex, we obtain 

a closed integral equation : 

(4.16) 

where again the colour indices are implicit and q = p- k. 

A scalar equation is obtained by projecting with 

1 2 PILV = -(4pllpV- p gllV) 
3p2 

(4.17) 

This projector has the advantage that the g11v term in Eq. ( 4.15), that is quadratically 

divergent in 4-dimensions, does not contribute. Thus we find 

(4.18) 

where 
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Brown and Pennington [36] studied this equation numerically and found 

2 

G(p2
) = A J.l

2 
for p2 -+ 0 

p 

to be a consistent solution. This result is in agreement with Mandelstam's study of the 

gluon propagator [34], which used a simpler approximation to the gluon SDE. We shall 

postpone a discussion of Mandelstam's approach to chapter 5, where we use this simpler 

equation as the basis of our calculations. 

Again approximating G(q2
) by G(p2 + P) allows us to perform the angular integrals 

in Eq. (4.18) analytically. Using the results of Appendix A we obtain: 
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( 4.19) 

where G1 , G2 and G3 are combinations of the gluon renormalisation function at differ­

ent momenta, which we define in the same way as we did for Schoenmaker's equation, 

Eq. (4.10), i.e.: 

G(p2 + k2) 

G(p2 + k2)- G(k2) 
G(k2)G(p2 + P) 

G(p2) 

Again we have introduced an ultraviolet cut-off A2 making all the integrals in Eq. (4.19) 

finite. Putting all this together we obtain the following equation: 

(4.20) 

Note that the integral equation has the usual ultraviolet divergences, but infrared 

divergences are also possible. The ultraviolet divergences can be handled in the standard 

way to give a renormalised function GR(p2
) - this will not be discussed here. However 

we have to make the potentially infrared divergent integrals finite in order to calculate the 

integrals1
. The infrared regularisation procedure proposed by Brown and Pennington 

[36] is to use the plus prescription of the theory of distributions, which is defined as 

1These divergences do not arise in an axial gauge when 1 is set equal to zero as Schoenmaker does, 
Eq. (4.10). 
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follows: 

for oo > k2 > 0 (4.21) 

and in the neighbourhood of P = 0 it is a distribution that satisfies: 

Simply taking 

2 (J1,2) Gin(P ) = A p2 + 

as an input function once again leads to a mass term and higher terms in the expansion 

Eq. ( 4.11) are necessary. Then we do have the chance of finding self-consistency for a 

gluon propagator as singular as l/p4 and hence confining quarks. As before1 we use the 

shorthand notation: 

when i = 1 1 2~3 and 

when i = 41 51 6 

With a trial input function of the form 

( 4.22) 
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l.s 

Again the divergent integrals cancel each other so that the sum is free of divergences, 

as it should be. Adding the contributions of J; we find, after mass renormalisation: 

1 

The ultraviolet divergent constant can be arranged to cancel the 1 and, again, we find 

self-consistency. This is the result found numerically by Brown and Pennington [36] with 

a positive infrared enhancement to the gluon renormalisation function, i.e. A > 0. 

Now we check whether it is possible in the Landau gauge, to find the behaviour Cudell 

and Ross [33] discovered using Schoenmaker's approximation in the axial gauge. With 

we find: 
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Putting everything together we obtain, after mass renormalisation: 

where 

Dt = _ (~ + 5 + 6c + 25 In (A 
2

)) 

2 1 - c 4 ft 2 

D 2 
- (4(2 ~ 2c) +~In(~:)) 

1971 29c 37 6- 13c 59- 32c 155- 64c 
D3 - ---+-+-+ + +---

60 2 20c 2(1 -c) 4(2- c) 8(3- c) 
127- 49c 23- 1lc 125 + 61c 55+ 6c 3 

+ + - +---
8( 4- c) 4(5- c) 8(1 - 2c) 8(2- 2c) 4(3- 2c) 

-8(2- c)w( -2c)- 8(2- c)W(1) 

61 + 6c 
8(1 - 2c) 
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Thus the dominant infrared behaviour is: 

and self-consistency is spoiled by a negative sign, since c is small and positive. Once 

again, as demonstrated in the axial gauge calculation, higher order terms in the Laurent 

expansion of Gin(p2
), Eq. ( 4.12), do not qualitatively alter the result. This leads us 

to conclude that the infrared softened, confined behaviour of the gluon propagator is 

inconsistent with the approximate SDE in the Landau gauge. 

4.3 "Confined" G luons 

A gluon propagator, which is less singular than 1/p2 for p2 -+ 0, and hence describes 

confined gluons appears to be a self-consistent solution only of the axial gauge SDE using 

Schoenmaker's approximate integral Eq. ( 4.10). In the Landau gauge this behaviour of 

the gluon propagator is not possible : a minus-sign spoils ·self-consistency. We should 

therefore comment on the origin of this crucial minus sign. 

Let us start by carefully looking at the approximate gluon SDE as depicted in Fig. ( 4.3). 

Working in :rvlinkowski space we can write this as: 

where 

In Minkowski space the propagator and vacuum polarisation are imaginary and we intro­

duce the notation : 

Furthermore let us write the bare 3-gluon vertex as: 

f(O)acd( f..· ) _ jacd- (0) ( k ) 
Jl-C<Ii -p, ., q - -g r Jl.-C<Ii -p, , q 
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so that all the new quantities defined with a tilde contain no more factors of i or negative 

signs, but only the relevant tensor structures. 

Recall that the 5U(3) structure constants, .fabo are antisymmetric in the exchange of two 

of their indices and 

C A {jab = L .facd.fbcd 

c,d 

Using the above notation we find: 

( 4.23) 

Note that this equation is true with the same assumptions in any gauge, and hence there 

should be no difference in sign between two gauges. 

Let us now focus on the axial gauge calculation, where, recalling Eq. ( 4.5), the gluon 

vacuum polarisation II 11" is defined by: 

and we obtain a scalar equation by multiplying Eq. (4.23) with the tensor 

Eq. ( 4.23) then becomes: 

Now we perform a Wick rotation to Euclidean space using the conversion: 

p~ -+ -p}; 

d4 kM -+ id4 kE 

Thus in Euclidean space the equation becomes: 
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We now perform the contractions under the integral. It is easiest first to multiply the 

vertex functions with the axial gauge vector n. For the bare vertex this gives: 

Note that due to the fact that the gluon propagator is transverse to the axial gauge vector, 

only the second term of the above gives a contribution to the SDE. The first term gives 

zero on multiplying with ~ o:f3 ( k) and similarly the last term vanishes on multiplying with 

~ --ro(q). 

Approximating f' f3v--r( -k, p, -q) by its longitudinal part determined by the Slavnov­

Taylor identity (see Eq. (4.8)) and contracting this with the axial gauge vector gives: 

n"f {3v7 (- k, p, -q) = 97 {3 ( ;(~~) - ;(·q~)) 

+ k2 ~ p2 ( F/k2) - F(~2)) k. npf3(k + P)--r 

+ p2 ~ q2 ( F(~2) - F!q2)) - q · np--r(P + q )13 

+ q2~k2 (F/q2)- F!k2))(qf3k--r-9fhq·k)(k·n-q·n) 

+ terms that vanish when contracted with ~o:f3(k) or ~75(q) 

Writing the propagators as: 

~o:13 (k) = F(k2 )~(~(k) and ~75 (q) = F(q2)~(g)(q) 

we find BBZ's integral Eq. ( 4.9). This equation is Bose-symmetric (as it should be) and 

can therefore be rewritten as : 

p2 2 
F (p2) ( 1 - I) = p ( 1 - I) 

g
2CA j d4 k n·(k-q) o:/3 o:--r , 

--2- (21r)4 n 2 ~(o)(k)~(o)(q)2k · n lif37 (k,p) , (4.24) 

where 
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However, taking the starting equation of Schoenmaker's paper (Eq (3.5) of Ref. [32]) we 

find: 

(4.25) 

where 

Schoenmaker formulates his equation in Minkowski space. Performing a Wick rotation to 

transform to Euclidean space, we find that Schoenmaker's equation, Eq. ( 4.25), becomes : 

p2 2 

F (p2) ( 1 - I) = p ( 1 - I) 

+g2CA j d4k n. (k:- q) ~<>-y(k)~<>/3( )2k. n f( (k ) 
? (') )4 2 {0) {0) q -y(J 'p 
~ ~7T n 

( 4.26) 

which differs from Eq. ( 4.24) by a crucial minus sign. 

We therefore see that in the axial gauge using BBZ's integral equation for the gluon 

propagator, and simplifying the angular dependence in the way Schoenmaker does in order 

to make an analytical discussion of the infrared behaviour of the propagator possible, 

yields an integral equation very similar to the one found by Brown and Pennington [36] 

in the Landau gauge. 

Setting the gluon renormalisation function F equal to 1 in the right hand side of the 

approximate gluon SDE, we recover the one-loop perturbative contribution of the gluon 

loop to the vacuum polarisation. In this way the perturbative calculation can be used to 

double check the sign of the equation, since we know that the coefficient of the simple 

pole ofF has to be positive in order to get the right contribution to /30 (negative). Both 

the BBZ equation, Eq. (4.24), and the Brown-Pennington equation, Eq. (4.18), lead to 

the correct perturbative behaviour at large momenta. 

In contrast Schoenmaker's own equation, Eq. (4.10, 4.26), which is the starting point 

for the study of Cudell and Ross [33] for instance, has an incorrect additional minus 

sign. This should have been heralded by the self-consistent enhanced gluon of Eq. ( 4.13) 
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having a negative sign using Schoenmaker's equation. In an axial gauge this sign should 

have been a little worrying for a wavefunction renormalisation of a state with positive 

definite norm. An infrared softened, confined gluon is only found with the incorrect sign 

in Schoenmaker's equation. Correcting this error, which Cudell and Ross later confirmed, 

the axial gauge SDE does not allow a self-consistent solution of the gluon propagator 

less singular than 1/p2 for p2 ---+ 0, and hence a confined gluon cannot be found in either 

gauge. 

We also mention the related study by Alekseev (45] who comes to the same conclusion 

using a different argument from the one presented above. Alekseev's starting point is the 

renormalised version of Schoenmaker's approximation, i.e. the equation Cudell and Ross 

studied (which, as we have shown, has a wrong sign). However, Alekseev investigates the 

possibility of an infrared softened, confined behaviour of the gluon propagator, which he 

describes by the power series: 

F(p') = (::) ,_, ( <>o + "' (::) + "' (::) 
2 

+ .. .) ( 4.27) 

where 0 < c < 1. 

Note that it is assumed that the ultraviolet, i.e. perturbative behaviour of the prop­

agator does not alter the behaviour in the infrared. By studying the renormalised SDE 

Alekseev effectively only calculates the integrals up to the renormalisation scale 11 2 , as­

suming that the ultraviolet terms exactly cancel each other. Implicitly Alekseev's ansatz 

for the infrared behaviour, which grows for large momenta, is cut off at this scale and 

hence does not spoil the ultraviolet, perturbative behaviour. However, the crucial dif­

ference between Alekseev 's study and the one discussed in chapter 4.1 is that not only 

the dominant infrared behaviour is matched, but Alekseev demands the SDE be solved 

exactly by his trial function, Eq. (4.27). This clearly is a much stronger self-consistency 

constraint. 

Analytic calculation of the integrals in the SDE gives: 

F(~') =I+ C { P,(p
2

) + F(~'/'(p') +no (::r' [Ll(c) + 0 (::)]} 
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where P1 and P2 are integer power series in p2 and ~(c) is a dimensionless function. 

This, together with the assumed form of F(p2
), Eq. (4.27), has the following structure: 

J'(p') + (::) 1-c Q(p') + (::) c-1 R(p') ~ O ( 4.28) 

where again P(p2
), Q(p2

) and R(p2
) are integer power series with some coefficients Pn, Qn, rn 

with n = 0, 1, 2 ... correspondingly. Alekseev then concludes that for non-integer values 

of c the theorem of uniqueness for power series demands Pn = Qn = r n = 0 for all n 

and therefore the value of the exponent of the infrared dominant behaviour should be 

determined by the characteristic equation ~(c) = 0. This equation is shown not to have 

solutions in the interval 0 < c < 1, and hence an infrared softened gluon is found to be 

inconsistent. 

However, we should stress that it is not clear that a single power series for the gluon 

renormalisation function F(p2
), Eq. ( 4.27), should be enough to solve the SDE at all 

momenta. Thus it is questionable whether Alekseev's study really excludes an infrared 

softened gluon as a consistent solution to the gluon SDE (with an incorrect sign). However, 

as we demonstrated before, correcting the sign error in Schoenmaker's approximation leads 

to R(p2
) -:f:. 0 in Eq.( 4.28) which undoubtedly makes an infrared softened solution for the 

gluon inconsistent. 

4.4 An Infrared Vanishing Gluon Propagator 

We should also discuss the related work of the group of Stingl et al. (38]. They too start 

from an approximate, but larger, set of SDEs, which is then to be solved self-consistently. 

However, the method employed is completely different. The philosophy (38] is to obtain 

the solution of these equations as power series in the coupling, as in perturbation theory, 

and to include non-perturbative effects by letting each Green's function depend upon a 

spontaneously generated mass scale, b(g2 ). 

(X) 

r = f(O)(b2(g2)) + L lnr(n)(b2(g2)) ( 4.29) 
n=l 
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Now each of the f(n) contains an additional nonanalytic dependence on the coupling 

through b. 

We note that, as a formal power series in g2
, Eq. ( 4.29) is still basically a weak-coupling 

solution: it is useful only if the running coupling remains reasonably small over the whole 

momentum range. Stingl et al. argue that this assumption does not contradict established 

knowledge, since what is truely known about the behaviour of as (see chapter 2.3) is 

only its decrease at very large momenta. It is conceivable that non-perturbative, low­

energy effects, instead of being caused by an increase in the effective coupling constant, 

as widely believed, are due to non-perturbative terms in the Green's functions which 

become dominant at low momenta. 

Stingl et al. assume each Green's function to be of the form: 

Furthermore it is demanded that the theory remains asymptotically free. Thus for large 

momenta: 
r(n) --t r(n)pert 

Once an ansatz for the non-perturbative zeroth-order vertices f(O) is chosen it is re­

quired that this is self-consistent with the SDEs. That is, inserting this set of f(O) into 

the loop integrals constituting the SD-functional F (see Eq. (3.1)) one should not only 

generate the first order corrections g2f(I), as one would in ordinary perturbation the­

ory, but should also reproduce the non-perturbative part f(O)nonp of the input. Thus the 

self-consistency requirement is: 

In the Ansatz Stingl at al. chose, the non-perturbative zeroth-order terms take the form 

of nonleading powers of momentum p2 . 

One further restriction is made which simplifies the ghost-sector considerably. Stingl 

et al. demand that the ghost self-energy at zeroth order equals the perturbative one and 

find that then self-consistency requires the ghost-gluon vertex to be purely perturbative 
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too, so that 

and A (0) = A (O)pert = g 
~v ~v ~v 

Sting! et a!. now investigate the coupled SDE for the gluon propagator and 3-gluon 

vertex. In this study the only diagrams that survive in the SDE for the gluon are the 

3-gluon term, the tadpole diagram and the ghost loop, which is perturbative, because 

all 4-gluon terms are of higher order in g2 and fermions are neglected. The equation for 

the 3-gluon vertex function is reduced to one involving itself, the gluon propagator and 

the perturbative ghost loops. These two coupled equations are shown diagramatically in 

Fig. ( 4.4). 

The gluon vacuum polarisation is assumed to be of the form: 

rr(o)(p2) = p2 + b4 
p2 

where II(0l(p2 ) is defined by 

II~0J(p2 ) = ( b~v- p;;v) rr(O)(p2) + ~PjlPv 
and the 3-gluon vertex, f~~P(p, k, q ), depends on 9 parameters, each of which multiplies 

a ratio of p2 and/or k2 and/or q2
• One solution is found to the set of coupled SDE 

(Fig. ( 4.4)) in the Landau gauge. This yields the infrared vanishing gluon propagator of 

the form (see Fig. (4.1)): 

( 4.30) 

representing confined gluons because there are no poles on the timelike real axis, and 

thus, as we have discussed in chapter 2.4.3, an asymptotically detectable gluon does not 

exist. Furthermore, if we continue the gluon propagator to Minkowski space we find that 

it has two complex poles and hence allows the interpretation of the gluon as an unstable 

excitation which fragments into hadrons before observation (in a time of the order of 1/b). 

However, apart from these desirable properties of the infrared vanishing gluon there 

is one major drawback. Recalling the masslessness condition, Eq. (4.11): 

p2 
jJ~0 II~v = 0 , I.e. G(p2 ) = 0 for p2 ~ 0 
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Figure 4.4: Set of coupled SDEs studied by Sting! et al. (38]. Here the • stand for the 
zeroth order vertices, including their non-perturbative piece, i.e. f(O) = f(O)pert + f(O)nonp, 

and by a bare vertex we mean the purely perturbative one f(O)pert. 
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it is easy to see that the infrared vanishing gluon, Eq. ( 4.30), which when related to the 

tensor structure of the boson propagator in the Landau gauge, Eq. (4.15), gives a gluon 

renormalisation function of the form 

grossly violates this condition, giving a mass to the gluon. In general, gluon masses can 

only arise in 4-dimensions if the vertex functions have dynamical singularities themselves. 

Otherwise the Slavnov-Taylor identities sufficiently constrain the vertex functions to re­

quire the inverse of the gluon propagator to vanish at p --+ 0. Such singularities cannot 

arise in perturbation theory [29] and hence such an ansatz cannot reduce to the pertur­

bative one in the asymptotically free region. In addition, it is not clear how physically to 

interpret these singularities in the vertex. They correspond to coloured massless scalar 

states which, of course, are unphysical. Not only do the vertices of Sting! et al. have 

these massless singularities but self-consistency can only be found if the 3-gluon vertex 

is complex, when conventional understanding of its singularity structure would lead us 

to expect it to be real for momenta which in Minkowski space are spacelike. However, 

the infrared vanishing gluon propagator, Eq. ( 4.30), is judged reasonable by the authors 

on the grounds that the unphysical features in the solution for the 3-gluon vertex are 

believed to be produced by the crude approximations made in the study. 

It is interesting that the form in Eq. ( 4.30) has also been suggested by a number of 

other studies. Zwanziger [46] argued that in order to completely eliminate Gribov copies, 

and hence uniquely fix the Landau gauge in lattice studies, one must introduce new 

ghost fields into QCD, in addition to the Faddev-Popov ghosts needed in the continuum. 

Analysing the lattice action thus obtained implies that the gluon propagator vanishes in 

the infrared. Furthermore there have been a number of lattice simulations of the gluon 

[4 7] which also provide some support for this form. (Note that these studies do not make 

use of the modifications proposed by Zwanziger). However, due to the finite lattice size 

problem, lattice studies of the gluon propagator cannot yet give reliable information about 

the infrared behaviour. 

It is worth stressing here that in order to decide conclusively whether the gluon prop-
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agator in QCD can be infrared vanishing, one ha.s to investigate its phenomenological 

implications, i.e. determine whether it supports dynamical chiral symmetry breaking and 

quark confinement. These properties of QCD can be studied using the fermion SDE which 

depends on the behaviour of the gluon propagator. A fuller description of this and the 

application of SDE studies to hadron phenomenology will appear in chapter 6. Here we 

only mention that such a study has been recently carried out by Hawes, Roberts and 

Williams (39] and Alkofer and Bender (40] for the gluon propagator proposed by Stingl 

et al. (38], investigating whether this infrared vanishing gluon, Eq. ( 4.30), can confine 

quarks. Different methods to test quark confinement were employed by the two groups of 

authors, however the results obtained are similar. 

To determine if the quark propagator found as a solution to the truncated SDE rep­

resents a confined particle, Hawes et al. (39] adopt a method commonly used in lattice 

QCD to estimate bound-state masses. They Fourier transform the scalar part of the quark 

propagator. The large time behaviour of this Fourier transform then indicates asymptotic 

states of massive deconfined quarks. In contrast, Alkofer and Bender (40] analytically 

continue the quark propagator they obtain to timelike momenta. As we discussed in 

chapter 2.4, a pole on the timelike axis signals a free asymptotic state. 

Both Hawes et al. (39] and Alkofer and Bender (40] find unconfined quarks. They 

therefore also conclude that the full gluon propagator in QCD cannot vanish in the infrared 

regwn. 

4.5 Consequences for the Modelling of the Pomeron 

It has long been understood that at high energies total cross-sections for hadronic pro­

cesses are controlled by cross-channel pomeron exchange [48, 49], where the pomeron is 

believed to be a colour singlet with vacuum quantum numbers. Low and Nussinov (49] 

proposed a QCD-inspired model for the pomeron in terms of two gluon exchange and 

Landshoff and Nachtmann [30] set up an explicit framework for phenomenological cal­

culations of the resulting cross-sections. A key requirement of their model is that the 
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dressed gluon propagator, ~(p2 ), should not have the singularity of the bare massless 

boson "' l/p2 as p2 --+ 0, but should be infrared softened. 

However, as we have shown previously, the solution of the SDE for the gluon propa­

gator in QCD does not support an infrared softened behaviour. Only the confining gluon 

behaviour of ~(p2 )""' ljp4 is consistent with the truncated gluon SDE. 

How does this infrared behaviour of the gluon affect the pomeron of Landshoff and 

Nachtmann [30]? 

In the Landshoff- N achtmann model the pomeron corresponds to two gluons. Since pomeron 

exchange is a soft process the QCD coupling is not small and the gluons must be non­

perturbatively dressed. When the pomeron couples to hadrons, these two gluons couple 

to single (free) quarks with the other quarks in each initial state hadron being spectators 

(Fig. (4 .. 5a)). 

_V 

v 

(a) (b) 

Figure 4.5: Diagrammatic representation of the pomeron in meson-meson scattering: 
(The lines marked with an X are on-shell in the determination of the total cross-section.) 
(a) Exchange of a gluon pair between two quarks (Landshoff-Nachtmann model), 
(b) Exchange of a gluon pair between two hadrons. 

In this way the forward hadronic scattering amplitude is viewed as essentially quark­

quark scattering (Fig. ( 4.5a)). By the optical theorem, the total cross-section (J'tot is then 

related to the imaginary part of this forward elastic quark scattering amplitude F( s). 

When the two particles in the initial state have equal mass the optical theorem takes the 
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form: 
Im F(s) 

2q Js 
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where q is the centre-of-mass momentum of the initial state particles and s is the centre-

of-mass energy. 

In order to generate an imaginary part Landshoff and Nachtmann put the two in­

termediate state quark lines on mass-shell. By Cutkosky's rule (see e.g. Ref. [50]) this 

introduces two 8-functions, one for each quark propagator put on-shell, which then allow 

the angular integrals of the box diagram, (Fig. ( 4.5a) ), to be calculated. Here we only 

state the result of this calculation: 

atot ex laoo dk2 tl(k2)2 ( 4.31) 

A detailed derivation of the above can be found in the Appendix of Ref. [30]. 

Landshoff and Nachtmann's belief in an infrared softened, rather than enhanced, gluon 

rests on Eq. ( 4.31 ), since the total cross-section, atot, obviously has to be finite. This can 

be achieved either with a suitably regularised infrared enhanced gluon or, more easily, with 

an infrared softened gluon propagator. However, as we now explain we do not believe the 

issue of whether the integral 

laoo dk2 tl( k2)2 

is finite or not is relevant to the finiteness of total cross-sections. In the Landshoff­

Nachtmann model, we described above, the quarks in the inital state hadrons are viewed 

as essentially free particles. The fact that these quarks can be on mass-shell and hence 

have poles in their propagators, as an electron or pion, is a crucial, key assumption 

for their picture, (Fig. ( 4.5a) ), and the subsequent phenomenology. However, quarks 

are confined particles; their propagators are likely entire functions and the elastic quark 

amplitude has no imaginary part. As we have mentioned earlier only an infrared enhanced 

gluon propagator has been shown to produce a confined light quark propagator [37]. It 

is then the bound state properties of hadrons that are the essential ingredients of total 

cross-sections. It is the intermediate hadrons that have to be on-shell (Fig. ( 4.5b)) and 

not the confined quarks. Confinement requires that hadronic amplitudes are not merely 

the result of free quark interactions. Only for hard short distance processes is such a 
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perturbative treatment valid. In soft physics, the bound state nature of light hadrons has 

to be considered to compute observables. 

Subsequently, Pichowsky and Lee [51] have studied a pomeron-exchange model of ex­

clusive electroproduction of p-mesons, in which the pomeron couples to non-perturbatively 

dressed quarks which are confined within hadrons. They use a model form of the full 

quark propagator, S, which has been developed in SDE studies (37, 52] using the infrared 

enhanced, confining gluon propagator. This S(p2
) is an entire function, i.e. the quark 

propagator has no poles in the complex momentum plane, and hence represents confined 

quarks. It is shown that by modelling the photon-p-meson-pomeron vertex by a non­

perturbative quark loop, one obtains predictions for p-meson electroproduction that are 

in good agreement with experiment. It should be pointed out here that the Landshoff­

Nachtmann pomeron model has been applied earlier to study exclusive p-meson elec­

troproduction. Donnachie and Landshoff [53] represented the photon-p-meson-pomeron 

vertex by a quark loop using an on-shell approximation and therefore assume the quarks 

can be treated as free particles. They found that in order to reproduce experiment an 

additional quark-pomeron form factor had to be introduced. However, Pichowsky and 

Lee (51] found that in their approach such a form factor is unnecessary, suggesting it to 

be an artefact of the on-shell approximation. 

We conclude that quark confinement has to be taken into account to obtain a reason­

able description of the pomeron in terms of gluon exchange. Consequently, an infrared 

enhanced gluon propagator is not at variance with the pomeron, but is in fact in accord 

with quark confinement. 

4.6 Summary and Conclusion 

We have studied the SDE of the gluon propagator to determine analytically the possible 

infrared solutions for the gluon renormalisation function G(p2 ). In both the axial and 

Landau gauges, one can find a self-consistent solution, which behaves as 1/ p2 for p2 --t 0 

and hence a propagator which is as singular as 1/p4 for p2 
--t 0. This form of the gluon 
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propagator is consistent with area law behaviour of the Wilson loop, which is regarded as a 

signal for confinement 2
. Numerical studies (28], (36] have shown that a gluon propagator 

with such an enhanced behaviour in the infrared region and connecting to the perturbative 

regime at a finite momentum (as indicated by experiment) can indeed be found as a self­

consistent solution to the gluon SDE. Such a behaviour of the boson propagator has been 

shown to give quark propagators with no physical poles (54]. Furthermore, extending these 

non-perturbative methods to hadron physics, it has been found that a regularised, infrared 

singular gluon propagator together with the SDE for the quark self-energy, gives rise to a 

good description of dynamical chiral symmetry breaking. For instance, one obtains values 

for quantities such as the pion decay constant that agree with experimental results (37]. 

A gluon propagator which is less singular than 1/p2 for p2 ~ 0, and hence describes 

confined gluons, cannot be found in either the axial or the Landau gauge. Solutions of 

this type have only been found using approximations to the gluon SDE with an incorrect 

sign. 

Even softer gluons resulting from the dynamical generation of a gluon mass, though 

often claimed, only arise if multi-gluon vertices have massless particle singularities that 

stop the zero momentum limit of the Slavnov-Taylor identity being smooth. Such sin­

gularities, though they occur in the vertices of Stingl et al. (38], should not be present 

in QCD. Furthermore, as shown by Hawes et al. (39] and independently by Alkofer and 

Bender (40] an infrared vanishing gluon propagator cannot confine quarks and hence the 

gluon in QCD cannot have this behaviour. 

To summarise: 

At first sight there appears to be a distinction between a confining and a confined gluon. 

A confining gluon is one whose interactions lead to quark confinement. ~(p2 ) rv 1fp4 

behaviour is of this confining type. In contrast, it is sometimes argued that ~(p2 ) must 

be less singular than l/p2 to ensure that gluons themselves do not propagate over large 

2Though as remarked at the end of Sect. 4, a.xial gauge studies are seriously marred by the simplifying 
assumption that H = 0 in Eq. (4.2). 
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distances. However, whether gluons are confining or confined are not real alternatives. 

Gluons must be both. They confine quarks by having very strong long range interactions. 

They themselves are confined by not having a Kallen-Lehmann representation that any 

physical asymptotic state must have. 

While infrared singular gluons satisfy both criteria, softened gluons though confined, 

do not generate quark confinement or dynamical chiral symmetry breaking, which are 

features of our world. Remarkably, a study of the field equations of QCD reveals this 

theory naturally exhibits these aspects with an infrared enhanced gluon propagator. 

--------------------



Chapter 5 

Infrared regularisation 

As we have illustrated in detail in the previous chapter, studies of the truncated SDE for 

the gluon propagator show that it is enhanced at low momenta- indeed at all momenta 

smaller than the scale AQCD· This 1/ p4 -behaviour of the gluon leads to an infrared 

divergence in the SDEs for both the gluon and the quark. It is therefore only defined up 

to some regularisation procedure. 

Different infrared regularisations have been followed in previous work. The infrared 

regularisation of the SDE for the gluon was first considered by Mandelstam [34] and 

incorporated in the imposition of a massless gluon -something gauge invariance requires 

if gluon vertices have no zero momentum singularities. However, in the more complicated 

gluon equation studied by Brown and Pennington (Eq. (4.18)) mass renormalisation is 

not enough to make the SD-integrals infrared safe. As discussed in chapter 4.2, Brown 

and Pennington [36] chose to treat the potentially infrared divergent integrals by using 

the plus-prescription in the definition of the gluon renormalisation function. Of course, 

this prescription is not determined by the theory but put in by hand. Furthermore, it is 

not the only possible regularisation procedure. Replacing the 1/p4 -behaviour by a 84(p) 

[55], a distribution which is integrable on any domain containing the origin, is another 

regularisation possibility. 

Moreover, in order to study quark confinement and dynamical chiral symmetry break­

ing (DCSB), which are two crucial features of QCD, one must solve the SDE for the quark 

82 
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propagator which is given diagrammatically in Fig. (5.1). 

- I - I 

• 
Figure 5.1: The Schwinger-Dyson equation for the quark propagator. 

In order to solve the quark SDE, knowledge of the behaviour of the gluon propagator 

at all momenta is required. However, the infrared enhanced, 1/p4 -behaviour leads to 

divergences in the quark equation and needs to be suitably regularised. Thus, in most 

studies of the quark SDE, a phenomenological (model) form of the infrared behaviour of 

the gluon is introduced. Again, different regularisation procedures have been followed. 

In a study by von Smekal et al. (56] the infrared behaviour of the full quark propagator 

was investigated modelling the gluon propagator by: 

G(p') = l (I ( 'C ')/A' ) +f(p') 
n + p + 11 QCD 

where C is a dimensionless parameter, 11 2 has been introduced to regulate the infrared 

singular part of G(p2
) and f(p 2

) is finite as p ~ 0. Clearly, for 11 2 = 0 this form of 

the gluon renormalisation function vanishes at least as fast as 1/p2 for p2 ~ 0 and is 

consistent with the perturbative result for large momenta. If 11 2 is chosen sufficiently 

small the regularisation procedure employed here, i.e. substitution of p2 ~ p2 + 11 2 does 

not qualitatively alter the behaviour of the gluon. In numerical calculations performed by 

the authors, 11 2 was varied over several orders of magnitude and a value of 11 = 10-4 AQcD 

was found to keep the error due to this regularisation procedure below 1%. Making the 

simplifying approximation f(p2
) = 0 this model was shown to lead to an infrared vanishing 

quark propagator, in accord with confinement, and manifest DCSB. 

A qualitatively similar study was carried out by Williams et al. [57) using the following 

model form for G(p2 ): 

G(p') = C AbeD p 2 84(p) + ( C' ) 
ln T + p2fAbcD 
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Here the first term models the dominant infrared behaviour l/p4 in the gluon propagator 

which has been replaced by the integrable singularity t54(p ). The second term repro­

duces the one-loop perturbative result, and T has been introduced to regulate its p2 
-------t 0 

behaviour. Usually T is chosen so that ln T = 1. 

Gogokhia et al. [58], in what is called the "zero mode enhancement model of the QCD 

vacuum", used the plus prescription as a regularisation procedure. Quark confinement, 

DCSB and some chiral QCD parameters are successfully described with this model. 

More recently, Frank and Roberts [59] employed a model gluon propagator in a cal­

culation of 1r- and p-meson observables using the SD and Bethe-Salpeter equations. In 

this study, the strong infrared enhancement of the gluon propagator is modelled by t54 (p), 

similar to the form used by Williams et al.. However, Frank and Roberts introduce one 

extra parameter, m~, into their model gluon propagator: 

The parameter m 1 is the mass scale that marks the transition from the perturbative to 

the non-perturbative region in this model. It is varied in the numerical calculations to 

provide a best fit to a range of Jr-observables and is found to be m 1 = 0.69 GeV. The 

second term ensures that G(p2
) has the right ultraviolet behaviour of QCD: G(p2

) -------t 1 

for large p2
, logarithmic corrections not being included. With this model gluon, Frank 

and Roberts [59] calculated the quark propagator from the fermion SDE and found it 

not to have singularities on the real p2-axis, indicating confinement. Furthermore, good 

agreement with experimental results was obtained for the hadronic observables calculated. 

All these studies illustrate that, once regulated, the enhanced gluon propagator leads 

to a quark propagator without the poles of coloured asymptotic states, but with colour­

singlet bound states with properties in accord with experiment. However, the many 

possible choices of regularisa.tion procedures seem somewhat arbitrary and unsatisfactory. 

A slightly different approach to dealing with the infrared divergences in the quark 

SDE which arise from the enhanced term in the gluon renormalisation has been proposed 

by Brown and Pennington [36]. Instead of introducing a regulated model gluon, they use 
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an infrared cutoff A to make the integrals in the quark SDE finite. The dependence of 

the quark renormalisation function on this cutoff is studied and A is found to be fixed 

entirely by the structure of the quark SDE. Remarkably, A is a constant of a few MeV, 

which does not differ very much from the masses of the light quarks. 

The introduction of an infrared regulator seems more satisfactory than the regulated 

model forms of the infrared enhanced gluon, which are somewhat arbitrary. Using an 

infrared regulator A, there is the hope of performing the infrared regularisation completely 

within the context of the SDEs studied, since the non-linearity of the equations may then 

determine this scale A. 

Here we study a truncated SDE for the gluon in quenched QCD and consider how it 

depends on the infrared regulator A, i.e. we study the equation for the gluon renormali­

sation function over the momentum range p2 E [A 2
, ,..;

2
], not down to p2 = 0. The aim is 

to eliminate the infrared divergences in the SDEs in a self-consistent way, entirely within 

the context of the calculational scheme. 

In section 5.1 the Mandelstam approximation to the gluon SDE is reviewed. We discuss 

the ultraviolet renormalisation, introduce the infrared regulator A to make Mandelstam's 

equation finite and examine how the masslessness of the gluon is enforced, when A =J. 0. 

We investigate the asymptotic behaviour of Gn(p2
) in the infrared region in section 5.2. 

We then go on in section 5.3 to set up the equation for numerical analysis. We detail 

the techniques used and illustrate numerically that with A =J. 0, the value of the infrared 

regulator is bounded by AQCD· This is explicitly demonstrated in section 5.4 in a simple 

model SDE, which can be solved analytically. In section 5.5 we discuss the implications 

of these results. 

5.1 The Mandelstam Approximation 

Throughout this chapter we study the gluon SDE in a simpler approximation first pro­

posed by Mandelstam [34] which has been shown to have, qualitatively at least, the same 

features as the more complicated Brown-Pennington equation [36] (Eq. (4.18)), we studied 
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in chapter 4.2. 

Mandelstam considered the Landau gauge SDE for the gluon in quenched QCD. Ghost 

contributions and the diagrams involving 4-gluon vertices are neglected in this approxi­

mation. Furthermore, Mandelstam [34) replaced the full 3-gluon vertex in the truncated 

SDE of Fig. ( 4.3) by its bare value, and simultaneously only used the full gluon prop­

agator for one of the internal lines in the gluon loop. This is justified on the grounds 

that the STI for the 3-gluon vertex in terms of the gluon renormalisation function, G(p2
), 

Eq. ( 4. 7), shows that there are cancellations between the corrections to the second in­

ternal gluon propagator and those to the vertex function. The longitudinal part of the 

vertex, which is determined by the STI, Eq ( 4.8), always involves terms proportional to 

1/G(p2
). The two gluon propagators in the gluon loop give a contribution of G(P)G(q2

) 

and therefore cancel some of the 1/G(p2
) terms. Mandelstam assumed these cancellations 

to be complete. In addition, he argued that if the full gluon propagator behaves like 1/ p4 

then the full 3-gluon vertex behaves like p2
. Thus replacing the full by the bare vertex 

should be matched by the softening of the 1/p4 -behaviour of the full propagator to the 

1/p2-behaviour of the bare one. 

The resulting equation for the gluon vacuum polarisation is: 

II - rr<o) c A9~ J d4 k r(O) ( k ) 1':1 a(J(k) sro ( ) r(O) ( k ) 
JW - J-LV + 321!"4 J-LOO -p, l q (0) q {J"(v - l p, -q (5.1) 

and is shown diagrammatically in Fig. (5.2). 

-1 -1 
,~' = '{)()()()()()()(' + 1 ~rN 

2 

Figure 5.2: The gluon Schwinger-Dyson equation in the Mandelstam approximation 

Mandelstam's equation has been studied extensively by Atkinson et al. [61 ]. These 

authors give an existence proof of the infrared enhanced, 1/p4 -behaviour of the gluon and 
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a discussion of the singularity structure of the solution. However, as remarked by Brown 

and Pennington [36], both Mandelstam's original equation and these studies by Atkinson 

eta.!. do not ensure that the corrections to the bare 2-point Green's function are transverse 

as gauge invariance requires. Consequently, their equations have a quadratic ultraviolet 

divergence and not the logarithmic divergence of an asymptotically free gauge theory. 

These unphysical quadratic divergences can only occur in the part of the gluon propagator 

proportional to 9~-ttn the term proportional to P~-tPv allows logarithmic divergences only. 

Therefore, Brown and Pennington [36) proposed the use of the projector P~-'v' which just 

picks out the P~-tPv term in the propagator. (P1-1v is defined in Eq. (4.17).) 

Inserting the explicit expressions for II~-'v,~a.B and f~~6 (p,k,q) in Eq. (5.1) and con­

tracting with P1-1v we find: 

(5.2) 

where 

A(k,p) 

B(k,p) 

We can now use the results of Appendix A to perform the angular integrals to obtain 

the following equation: 

1 
G(p2) = 1 + 

(.5.3) 

where we have introduced an ultraviolet cutoff /\, 2 making all the integrals in Eq. (5.2) 

ultraviolet finite. As it stands the equation logarithmically depends on the ultraviolet 

cutoff as well as containing potential infrared divergences. These must be dealt with to 

give a renormalised equation for G(p2 ). 
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5.1.1 Renormalisation 

Because of the presence of the ultraviolet cutoff /\, 2 we have really only defined G(p2
, /\,

2
). 

We now define a renormalised gluon function GR(p2
) by: 

(5.4) 

Mandelstam's equation, Eq. 5.3, is ultraviolet renormalised by first evaluating the 

integral equation at p2 = 11 2
, where 11 2 is some arbitrary momentum scale, and then 

subtracting this from Eq. 5.3. Using Eq. 5.4 and defining the renormalised coupling by 

where as usual as(l1 2
) = g2 (11 2 )/47r, we obtain the following equation: 

1 1 
---= + 
GR(P2

) GR(I12
) 

C { laP
2 

dk2GR(k2)II(e,p2) + 1:2 

deGR(k2 )12(/,~2 ,p2 ) 

- fo
112 

dk2GR(k2)!I(k2, f.1 2
) -1:2 

deGR(k2)!2(k2, 112
)} (5.5) 

where the kernels Ii( P, p2
) can be simply read off from Eq. 5.3, to be 

and I (A·2 2)- ~ (-~ !_p2) 2 . 'p - k2 3 + 24 k2 

and 

In order to avoid numerical problems in evaluating the ultraviolet behaviour, it is 

useful to perform the ultraviolet renormalisation in Mandelstam's equation under the 

integral. Consequently, we rewrite: 
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and divide the integral involving the ultraviolet cutoff K2 into a convergent and a divergent 

part: 

where obviously 

Note that the ultraviolet divergent term is independent of the external momentum 

p2 and thus renormalising the equation as described above this term exactly cancels and 

Eq. (5.5) becomes: 

1 1 
---.,...= + 
Gn(p2) Gn(~t2 ) 

C { lap
2 

dk2Gn(k2)It(k2,p2) + i:2 

dk2Gn(e)I2(k2,l) 

+ j"
2 

dk2Gn(k2)h(k2,p2
) 

1-'2 

-la~-'
2 

dk 2Gn(k2)l1(k2,tt2
) -1:2 

dk2Gn(k2 )!3(k2 ,~t:i)} (5.6) 

We can now take the limit K ~ oo for the cutoff explicitly, but we still obtain contri­

butions violating the masslessness condition of the gluon. Gauge invariance requires 

p2 
lim--= 0 

p2_ .. o G(p2 ) 
(5.7) 

as we stated earlier (Eq. ( 4.11) ). Mass terms arising from the SD integrals have to be 

subtracted and therefore a mass renormalised gluon function is defined by: 

(5.8) 

We note that gluon mass terms only arise from the infrared enhanced term in the gluon 

renormalisation function, G(p2 
). Thus, Brown and Pennington proposed dealing with 

these mass terms by writing G(p2
) = A~t2 

/ p2 + G1 (p2) and subtracting the contributions 

of the first term. Since the Mandelstam equation is linear in G(p2 ), this subtraction means 

that only G1 (p2
) appears under the integrals. 
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However, it is important to stress at this point that taking the infrared enhanced term 

out of the integral is more than just enforcing the masslessness condition, Eq. (5.7). It is 

an infrared regularisation procedure as well. 

In contrast, we will here adopt a different approach. We introduce an infrared regulator 

>. in the ultraviolet renormalised equation, Eq. (5.6), and study how the gluon renormal­

isation function depends on this >.. This procedure obviously takes care of the infrared 

divergences, however, gluon mass terms are still possible and need to be renormalised. 

In analogy with Eq. (5.8) we define the mass renormalisation by: 

(5.9) 

which in the limit >. --+ 0 goes back to the original definition, Eq. (5.8). In this respect 

p2 = >.2 can be thought of as "the gluon mass-shell". 

The fully renormalised Mandelstam equation is then: 

1 1 0- [ -------- + 
GMR(P2 ) - GMR(!-l2 ) 

2 

1 
,

2 
{p2 

( [P

2 

dk2GMR(k2 )lt(k2 ,p2
) + {t<

2 

dk2GMR(k2 )12(k 2 ,p2
) 

p - /\ 1>..2 1p2 

+ l:2 

deGMR(k2 )13(k2
, p

2
)) 

-A' ( [' dk'GMR(k2 )J,(k2 ,A2
) + ].:' dk2 GMR(k2 )l3 (k 2,A'))} 

- 2 

1 
, 2 {/-l2 

( ftL
2 

dk2GMR(k2 )lt(e,f-l2
) +J.K

2 
dk2GMR(k2 )/3(k2 ,Ji)) 

1-l - /\ 1>..2 tJ-2 

-A' ( [' dk'GMR(k2 )I,(k2 ,A2
) + [:' dk2 GMR(k')I,(k',A')) }}5.10) 

This is the equation we study throughout this chapter. Having discussed how to deal 

with ultraviolet and mass renormalised gluon functions, GMR(p2 ), we drop the subscript 

!If R henceforth. 
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5.2 Consistent Infrared Behaviour of G(p2
) 

The structure of our equation for the gluon renormalisation function G(p2
), Eq. (5.10), 

does not allow a complete analytic solution and we attempt a numerical study. Before 

doing that we investigate the possible infrared behaviour which we can then build into 

our numerical solution. In chapter 4, we determined the possible asymptotic behaviour 

of the gluon renormalisation function, G(p2), by choosing trial input functions, Gin(p2), 

and demanding that they solve the truncated SDE self-consistently. In contrast, we 

make use of the simpler structure of Mandelstam's equation here. The fact that the 

integrals only depend linearly on the gluon renormalisation function enables us to derive 

a differential equation for G(,\2
) which can be solved analytically in an approximate form. 

We demonstrate this in the following. 

To derive an equation for G(-\2
) from Eq. (5.10), we first rewrite the term proportional 

to 1/(p2 
- -\ 2 ) as: c 

p2 ~ _\2 {P21:2 dk2G(J..~2) [Il(k2,p2)- 12(k2,p2)] 

+p2 [Jl.2 dk2G(k2)12(e,p2)- -\2 [Jl.2 dk2G(k2)12(k2, -\2) 
./A2 ./A2 

+p2 i:2 

dk2G(k2)13(k 2,p2) --\2 i:2 

dk2G(k2)13 (k2,-\2)} (5.11) 
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and similarly: 

Putting all this together and noting that 

we obtain the following equation for G(,\2
): 

With 112 ~ .X2
, which should be true since the renormalisation scale 11 2 is usually chosen 

in the perturbative regime, Eq. (5.12) simplifies to: 

To derive a differential equation for G(V), we take the derivative of Eq. (5.13) with 

respect to .X2 twice. Noting that the second derivative of both I 2(P,p2 ) and h(P,p2 ) 

with respect to p2 vanishes, we find: 
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Inserting the specific forms of the functions J(P,p2
), as given in Eq. (5.5), and again 

using the fact that J.l 2 ~ .\2 the differential equation can be written as: 

Substituting 

1 
G(.\2) =H(x) , 

d 1 I ) 

dV G(,\2 ) = H (x and 

where x = V. This has the form: 

H(x)H"(x) = C (-~2_- 7 H'(x)) 
3x2 4xH(x) 

(5.15) 

With the ansatz H(x) =A [lnx]n the left hand side of Eq. (5.15) becomes 

H(x)H"(x) = _n~
2 

[lnx] 2
n-l (1- (n -1) [lnxt1

) 

which has to be consistent with the right hand side 

C (-~~ _ 7 H'(x)) = _ 7C ( 1 + 3n [lnxt 1) 

3x2 4xH(x) 3x2 4 

Only matching leading log-terms as is appropriate for .\ 2 ~ J.l 2 , we can easily see that n 

has to be equal to 1/2 and the solution to the differential equation for G(,\ 2 ) is: 

~ 
where A= VJG (5.16) 
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and M 2 is some arbitrary mass scale, introduced to keep the argument of the logarithm 

dimensionless. We will use this result in chapter 5.4, where we study a simplified equation, 

which can be transformed into a differential equation. This makes numerical analysis 

easier and enables us to determine the scale M 2 which, as we shall show, is fixed by 

AQcD, the scale of our theory. However, before doing this we study the more realistic 

gluon equation, Eq. (5.10), numerically. 

5.3 Numerical Analysis 

In this section we will set up the fully renormalised Mandelstam equation, Eq. (5.10), for 

numerical analysis. 

We evaluate the integrals in the approximate SDE using Simpson's rule at N integra­

tion points, Xi· Because of the expected behaviour of the gluon renormalisation function 

these integration points are best chosen on a logarithmic scale in momentum squared. We 

define, 

(5.17) 

where .\2 and K
2 are the infrared and ultraviolet cutoff respectively defined in arbitrary 

units so that the argument of the logarithms are dimensionless. After renormalisation 

our integral equation should not depend on the value of the ultraviolet cutoff K2 , and in 

general K
2 

-+ oo is understood implicitly. However, for numerical purposes we choose a 

value for K
2 and increase it until the result of the integrations is stable to within 0.1 %. 

Furthermore, the number of integration points N is increased until a similar numerical 

accuracy is reached. 

We change variables in Eq. (5.10) to 

dP 
dw = 7=-c:---

Pln 10 

Substituting this into Eq. (5.10) we obtain: 
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1 1 [ 
G(p2) = G(JL 2) +In 10 C 

1 {P2 ( 1v dw G(k2)Jl(k2,p2) + fb dw G(k2)J2(k2,p2) 
p2- ,\2 a lv 

+ lc dw G(k2)f3(k2,p2)) 

-A' ( l dw G(k')i,(k',A') + [ dw G(k')i3(k',A'))} 

-p' ~A' {p' ( l dw G(k')i,(k
2
,p

2
) + [ dw G(k')i3(k',p')) 

-A2 
( l dw G(k')i2(k2

,.\') + [ dw G(k2)i,(k',A'))} l , (5.18) 

where 

log ( .-2) and k2 = 1 ow C = 10 n .. 

and where we have redefined the functions I; of Eq. (5.5) to absorb the extra factor of k2 

from the integration ·messure, so that J; = P!;, i.e. 

i2(e, p2) 

i3(k2,p2) 

7 k6 17 k4 

6 p6 6 p4 

7 7 p2 

-3 + 24k2 
7 p2 

24 k2 

To enable a numerical solution of Eq. (5.18) we have to approximate the unknown gluon 

renormalisation function G(p2
). Here we choose to use an expansion in Chebyshev poly­

nomials. 

5.3.1 Chebyshev Expansion 

Chebyshev polynomials define a polynomial approximation of a given function J( x) over 

the interval [-1, 1]. 
00 

f(x) = L /'jTj(x) (5.19) 
j=O 
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where the Chebyshev polynomial of degree n is denoted Tn ( x) and is given by the formula 

[62] 
Tn( x) = cos( n arccos x) 

Using trigonometric identities we find the following polynomial forms: 

To(x) 1 

T1(x) X 

T2(x) 2x2
- 1 

T3(x) 4x3 - 3x 

T4(x) 8x4 - 8x2 + 1 

The first 4 polynomials are plotted in Fig. (5.3). Approximating a function by a Chebyshev 

expansion, the series of Eq. (5.19) is truncated at some N. 

5.3.2 Chebyshev Approximation for G(p2) 

In order to approximate G(p2
) by a Chebyshev expansion we introduce a mapping of 

variables onto the interval [-1, 1] over which the Chebyshev polynomials are defined. As 

we discussed before, 

v = loglO (P2) 
is a convenient variable to perform the numerical integrations. We now map the variable 

v E [a, c)~---* x E [-1,1] by defining: 

v- !(c +a) 
X- 2 

- t{c- a) 

Performing the necessary change of variables, Eq. (5.18) becomes: 
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where 

Figure 5.3: Chebyshev polynomial T0 (x) through T4 (x) 

1 
v = -[x( c- a)+ c +a] 

2 

97 
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and 

log10(p2
)- ~(c+a) 

x(IL) = ~(c-a) 

and both x E [-1, 1] andy E [-1, 1]. 

We now parametrise the gluon renormalisation function in terms of Chebyshev poly­

nomials in the following way: 

N 

G(p2 (x)) = L /jTJ(x) (5.21) 
j=O 

where the Chebyshev coefficients /j are to be determined by self-consistency of Eq. (5.20). 

Substituting our parametrisation for G(p2 (x)), Eq. (5.21), into Eq. (5.20), we find: 

( ) 

-1 
N 1 (c-a) N 

L /j TJ( x) = G( 2 ) + ln 10 C 2 L /j [ 
;=0 ll ]=0 

(5.22) 

To solve this equation numerically we choose a starting set of parameters and perform 

the integrals numerically. We then vary the parameters until good agreement is obtained 

over a range of values x between the left and the right hand side of Eq. (5.22). 

The advantage of using a polynomial expansion to parametrise the gluon renormalisa­

tion function is that all the integrals in our truncated SDE, Eq. (5.22), depend linearly on 

the expansion coefficients and hence they can be taken out as an overall factor, enabling 
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us to perform the numerical integrals once and store the output. This enormously short­

ens computing time. The Chebyshev expansion is used because the error generated by 

replacing the function G(p2 ) by the expansion is smeared out over the complete interval 

over which the function is defined. Note that if we had built in the behaviour of the gluon 

in the infrared which we determined in chapter 5.2 (Eq. (5.16)), we would have gained an 

extra coefficient in our parametrisation of the gluon function, namely the mass scale M 2
. 

However this is at the cost of extremely lengthening the computing time needed, since the 

dependence of our equation on M 2 is nonlinear. Furthermore, we should point out that 

Eq. (5.22) does not only depend on the Chebyshev coefficients /j, but also on the infrared 

cutoff ..\2
• However, for the same reason which made us decide not to explicitly build the 

infrared behaviour of Eq. (5.16) into our parametrisation, we vary ..\ 2 by hand instead of 

making it a parameter. That is, for a fixed value of the infrared cutoff, we now allow 

the Chebyshev coefficients /j to vary within the CERN numerical minimisation program 

MINUIT (63]. We then repeat the calculation for different values of the cutoff ..\ 2 . 

5.3.3 Results 

We choose the renormalisation scale 11 2 = 10 GeV2
, a scale we know from experiment 

to be in the perturbative region and thus we expect the gluon renormalisation function 

G(11 2
) ~ 1. However, we find that fixing G(112

) as well as the infrared cutoff ,\2 in the 

calculation, we are unable to match the right and left hand side of Eq. (5.22) to good 

numerical accuracy. This suggests that by fixing both these values we overconstrain 

the problem, indicating that the integral equation does indeed determine the scale ,\2 

as hoped. Since for numerical purposes it is easier to keep ,\2 fixed and make G(p2 ) a 

parameter to be determined by the minimisation program, we will follow this route. For 

each chosen value of the infrared cutoff ..\2 we carry out the numerical calculation for 

different values of the renormalised strong coupling constant as(p2 ). Recalling the form 

of as(l12
) Eq. (2.27): 

2) 47r 
as(l1 = (J' 1 ( 2/ A 2 ) 

0 n 11 QCD 
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this is equivalent to choosing different values of the QCD-scale AQcD, once f.l 2 is fixed and 

f3h is known. It must be pointed out here that, due to the approximations made to derive 

Mandelstam 's equation, f3b is not equal to the familiar f3o = 1
3
1 C A from perturbation the­

ory. However, the value for f3b is easily determined by studying the asymptotic behaviour 

of Mandelstam's equation for large momenta. By expanding G(p2
) = 1 + O(as(f.l2

)) and 

only working to O(as(f.l 2
)), we obtain: 

_1_= 1 +CAas(f.l2 )~ln(P2 ) 
G(p2 ) G(f.l2 ) 47r 3 f.l2 

so that 

(5.23) 

Since renormalisation must be scale invariant we have the identity: 

Inverting this, inserting Eq. (5.23) and again expanding in powers of o:s(f.l2
) we obtain: 

(5.24) 

For each value of the infrared cutoff .\2 for which we carry out the minimisation we 

choose different values for the renormalised coupling constant. 

Parametrising the gluon renormalisation function by a Chebyshev expansion, which 

we truncate at the lOth order, we find that the right and left hand side of Eq. (5.22) 

are matched to impressive numerical accuracy. However, in order to obtain the required 

G(f.l2
) ~ 1 the infrared cutoff has to be bigger than AQCD· 

We detail the solutions for .\2 = 10-4 GeV2
, 10-3 GeV2 and 10-2 GeV2 • The results 

are plotted in Fig. ( 5.4-5.6) and the values found for the parameter G(f.l2 ) are given in 

Tab. (5.1). 

We find that the solution of the truncated SDE of the gluon propagator, using Man­

delstam's approximation, does indeed determine the infrared regulator .\, which depends 
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Figure 5.4: The gluon renormalisation function G(p2 ) as a function of p2 with the infrared 
cutoff ..\2 = 10-4 GeV2 • 
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Figure 5.5: The gluon renormalisation function G(p2
) as a function of p2 with the infrared 

cutoff A2 = 10-3 Ge V2 • 
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Figure 5.6: The gluon renormalisation function G(p2
) as a function of p2 with the infrared 

cutoff .\2 = 10-2 GeV2 . 
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.>. 2 = 10-4 GeV2 .>.2 = 10-3 GeV2 .>.2 = 10-2 GeV2 

~ 

as(J12
) Abcn/GeV 2 G(J12) G(J12) G(J12) 

0.3 0.502 0.5523 0.6463 0.7827 

0.25 0.276 0.6097 0.6976 0.8396 

0.2 0.112 0.6700 0.7630 0.8953 

0.15 0.025 0.7526 0.8382 0.9450 

0.1 1.264. w-3 0.8572 0.9084 0.9828 

0.08 1.340. w-4 0.8878 0.9304 1.1995 

Table 5.1: Parameters for G(J12
) for solution shown in Fig. (5.3-5.5). 

on the scale AQCD· To investigate the relation between AQcD and the infrared regulator 

further and, in particular, check whether the results obtained here are a specific feature of 

the Mandelstam approximation or a more general property of the gluon equation, we turn 

to a simple model SDE which as we will show does indeed possess the same qualitative 

solutions as those obtained here. 

5.4 Simple Model SDE 

In this section we "derive" a simple model SDE from Mandelstam's approximation. This 

is constructed to allow the integral equation to be turned into a differential equation and 

solved using the Runge-Kutta method, which greatly simplifies the numerical analysis. 

Furthermore, studying the simple model equation has the advantage that we can explicitly 
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build in the infrared behaviour of the gluon we derived in chapter 5.2. For Mandelstam's 

equation, recalling Eq. (5.16), this has the form: 

!14:, 
where A= VTv 

and depends on the mass scale M 2 • Here we demonstrate that this mass scale is fixed by 

Abcn and, at least for the simplified equation, makes it impossible to find a solution with 

the infrared regulator .\2 < Abcn· 

We "derive" the simple model SDE by approximating the integrands in Mandelstam's 

original equation, Eq. (5.3), by their leading terms and furthermore "adjusting" the nu­

merical factors so that the integrands match at k2 = p2 • That is, the simplified "toy" 

equation takes the form: 

(5.25) 

This equation is now renormalised in the way we described in chapter 5.1.1 for Mandel­

starn's original equation. Inserting the appropriate functions Ii for our simplified equation, 

given by: 
7 1 

It=---
3 p2 

7 1 
!2 = --- and 13 = 0 

3k2 

into the fully renormalised Eq. (5.10) we obtain: 

1 1 c [ ----,-,-- + 
GMR(P2

) - GMR(J12) 

p' ~ .\' {p' ( /,~ dk
2
GMn(k

2
)I,(k

2 ,p2
) + 1:' dk

2
GMn(k2 )12 (k 2 ,p2

)) 

-.\
2 1:2 

dk2GMR(k2 )12(k2
, .\

2
)} 

(5.26) 

- p' ~ .\' {p' J,:' dk
2
GMn(k

2
)I,(k

2
,p

2
)- ~2 J,:' dk'GMn(k2 )J,(k2

, ~2)} }5.27) 

Because of the simple forms of the integrands, Eq. (5.26), we can transform Eq.(5.27) 

into a differential equation which we then solve numerically. 
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Taking one derivative of Eq. (5.27) with respect to the external momentum p2 we 

obtain: 

C [(p2 ~ V)z { ,\2 (1:2 dk2G(k2)J2(k2,.\2) 
d 1 
---
dp2 G(p2) 

- fP
2 

dk2G(k2)!1(k 2,p2)- [ll

2 

dk2G(k2)12(P,p2)) 
}),2 Jp2 

p2(p2 - ,\2
) fP

2 

dk2G(k2)_!!_!1 (k 2,p2)}] (5.28) J,\2 dp2 

where the subscript MR, indicating that we are dealing with both ultraviolet and mass 

renormalised quantities, has again been drop for notational convenience. Noting that 

P2 d~2JI(k2,pz) = -JI(kz,pz) 

Eq. (5.28) can be simplified to: 

d 1 
---
dp2 G(p2) 

C [(p2 ~ ,\2)2 { -\
2 i: 2 

dk
2
G(k

2
)Iz(e,p

2
)- p

21:2 

dk
2
G(k

2
)!1(k

2
,p

2
)} l .(5.29) 

Multiplying both sides of the above equation by (p2 
- .\

2
)

2 and taking one further deriv­

itative with respect to p2 gives: 

d [( 2 2) 2 d 1 l { zG(p
2

) ( 2 2) 2G(p
2
) ( 2 2 } 

dp2 P- ,\ dp2G(p2) = C ,\ ~/2 P ,p -p ~!1 p ,p) 

which, inserting the specific forms of the functions !;, Eq.(5.26), becomes: 

or 

(5.30) 

We now determine the initial conditions for this differential equation, these being the 

value of G(p2) and its first derivative at p2 = ,\2
• The gluon renormalisation function at 

p2 
= A2 is obtained by simply inserting Eq. (5.26) into Eq. (5.13) giving 

1 - 1 { [I-L
2 

2 2 [ 7 1 ] f1-L
2 

2 2 [ 7 1 l } G(-\2 ) - G(J12 ) + C j.\2 dk G(k ) - 3 k2 + j.\
2 

dk G(k ) - 3 Jl2 
(5.31) 
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By taking the derivative of Eq. (5.31) with respect to ,\2 and using 11 2 ~ V we find the 

following differential equation for G(,\2 ): 

d 1 7 G(,\2
) 

d,\ 2 G(AZ) = 3°----:\"2 

which is solved exactly by 

(5.32) 

We note that this is equal to the approximate form of G(,\ 2
) we found for Mandelstam's 

equation, Eq. (5.16). 

The second initial condition is easily obtained by taking the limit p2 -t ,\2 of Eq. (5.29) 

g1vmg: 

(5.33) 

The boundary conditions of the differential equation can be obtained by inserting 

2 3p2 ( 2 2 d2 1 d 1 ) 
G(p ) = 7C (p - ,\ ) dp4 G(p2) + 2 dp2 G(p2) 

from Eq. (5.30) into the right hand side of our integral equation, Eq. (5.27). We find: 
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Integrating the above by parts gives the trivial result: 

1 1 
G(p2) = G(p2) 

Thus the differential equation is independent of p 2 and hence does not know anything of 

our choice of renormalisation scale and the requirement G(p2
) ~ 1. Of all the solutions we 

find by numerically solving the differential equation, Eq. (5.27), only those which satisfy 

G(p 2
) ~ 1 are physical meaningful solution to our simple model SDE. 

5.4.1 Numerical Solution 

Eq. ( 5.30), which we want to solve numerically, is a second order differential equation. 

We rewrite it as: 

Y"( 2) [ C Y'( 2)] 1 1 P = P2 I< (p2) - 2 1 P P2 _ ,\ 2 (5.34) 

where we have defined 

c(p2) I<(p2) 

The initial conditions, Eq. (5.32) and Eq. (5.33) then take the form: 

K(A
2

) = J¥ ~ln (:,) , and 

In general, second order differential equations can always be reduced to coupled sets of 

first order differential equations. This is most commonly done by introducing the function 

Doing this we obtain the following two coupled equations from equation Eq. (5.34): 

However, for our problem this is not a good choice of the auxiliary function L(p2 ), since 

now L'(V) is infinite and a numerical solution of the system of equations as they stand 
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is not possible. Instead we define 

so that 

Now 

which is perfectly well behaved. 

The coupled set of first order differential equations we have to solve is then: 

(5.35) 

with th_e initial con~itions being: 

~~In(~',) 
-.\2 K(.\2) 

Again we discretise the problem, defining a grid of N points xi on a logarithmic scale 

in momentum squared. Recall Eq. (5.17): 

Changing variables in Eq. (5.35) to x = log10 (p2 ) this becomes: 

d~ L(p2) 

d~ K(p2) (5.36) 
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This coupled set of equations is then solved numerically using the Runge-Kutta method 

[62]. Again we choose different values for the infrared cutoff ,\2 and then change the 

unknown mass scale M 2 in our initial conditions. As mentioned before, we furthermore 

demand that the gluon renormalisation function is G(J12
) ~ 1 at the renormalisation scale 

J1 2
, which again we choose to be J1 2 = 10 GeV 2

• 

We find that, in order to fulfill this requirement, the mass scale M 2 in the gluon 

renormalisation function has to be equal to A~cD· With M 2 f:. A~cD it is not possible to 

find a value of the infrared cutoff ,\2 so that G(J1 2
) = 1. This can be compared with the 

results presented in chapter 5.3.3 for Mandelstam's equation which showed that ,\2 has to 

be bigger than A~cD in order to find a physically meaningful result (i.e. G(J12
) ~ 1), see 

Fig. (5.4-5.6). Here we have the extra parameter M 2 which, as we shall demonstrate acts, 

as a lower limit on the infrared cutoff ,\2 • Thus our simplified "toy" model SDE does in 

fact have the same qualitative behaviour as Mandelstam's equation. 

In Tab. (5.2) we give the values for ,\2 and G(J1 2 ) for a fixed M 2 = 10-4 GeV2 and 

three different values of the renormalised coupling as(J12
) = 0.25, as(J12

) = 0.1 and 

as(J12
) = 0.08, i.e. A~cD = 0.276, A~cD = 1.264. w-3 and A~cD = 1.340. w-4 GeV2

• 

In Fig. (5.7) and Fig. (5.8) we plot our results for different values of M 2 for two different 

value of as(J12
). For illustrative purposes, we use an infrared cutoff close to the scale A~cD, 

since this gives the maximal infrared enhancement of the gluon renormalisation function 

G(p2
). However, as we now discuss the infrared cutoff is only constrained by a lower limit, 

which is given by M 2 • 

It is important to note here that G(,\ 2
), Eq. (5.32), is given by 

G(A') cr [~In ( :;, ) r 
and a solution of Eq. (5.31) of the form: 

G(A 
2

) cr [ ~ In ( ~') r 
is not possible. Hence the simple model SDE, we are studying, does not allow values of 
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Figure 5. 7: The gluon renormalisation function G(p2
) as a function of p2 with the renor­

malised coupling a 5 (p?) = 0.1 and the infrared cutoff V = 1.5 ·10-3 GeV2• 
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Figure 5.8: The gluon renormalisation function G(p2
) as a function of p2 with the renor­

malised coupling o:s(f12
) = 0.25 and the infrared cutoff .\2 = 0.3 GeV2 . 
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as(fl2
) = 0°25 as(p 2

) = 001 as(fl2
) = 0°08 

,\
2 /GeV2 G(fl2

) G(fl2
) G(fl2

) 

50 w-4 0.560 0.892 0.996 

1 . w-3 0.568 0.898 1.002 

5. w-3 0.571 0.908 1.010 

1 . w- 2 0.576 0.910 1.017 

50 10-2 0.578 0.915 1.020 

1 . 10-1 0.580 0.917 1.025 

Table 5.2: Parameters for G(fl2
) for three different values of as, i.e. AQcD for a gluon 

renorma.lisation function with M 2 = 1 · 10-4 GeV2 

,\
2 < M 2 which, with M 2 = A~cD' means that we can only find solutions with p2 > A~cD· 

This is exactly the momentum region covered by perturbation theory. However, we should 

stress that our result is non-perturbative in nature in that it does not require the strong 

coupling constant to be small. The choice of ,\2 is therefore constrained to be greater than 

the QCD scale A~cD· This relation between the infrared cutoff we introduce to make the 

SDE infrared safe, and the scale AQcD is explicitly demonstrated in the next section. 

5.4.2 Analytically Relating ,\2 to A~cD 

Recalling the form of Eq. (5.31) for our "toy" model: 
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and making use of the fact J-l 2 ~ -\ 2 we rewrite the above as: 

( 5.37) 

This equation can be solved analytically without any further approximation. Making the 

ansatz 

G(k') = B (rn (~,)) -l (5.38) 

we analytically calculate the integral on the right hand side of Eq. (5.37) giving: 

' (5.39) 

and inserting our ansatz, Eq. (5.38), into the left hand side of Eq. (5.37) we obtain: 

(5.40) 

Therefore we find: 
_1 = 14c 
B 2 3 . 

Note that, recalling our discussion of the value of f3b for Mandelstam's equation (chapter 

5.3.3): 

( 5.41) 

and hence 

and our ansatz G(P), Eq. (5.38), becomes: 

G(k2) = J-l QCD 
(

ln ( 2jA2 )) t 
ln (k2 jM2 ) 

(5.42) 

Requiring G(p2
) = 1 we finally get M 2 = A~cD· 

In the limit of p2 ~ -\2 the solution of our simplified model SDE, Eq. (5.27), matches 

the renormalisation group improved perturbative result and choosing ,\2 < A~cD is not 

--------
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allowed. However, we stress again, that since in the derivation of the equation no per­

turbative expansion has been made, i.e. we are not requiring that the strong coupling 

constant is small, our results are non-perturbative in nature. Though the relation of 

a 5 (k 2 ) to AQcD we have used is that of one loop perturbation theory (see Eqs. (5.24, 

5.41) ), this has only been used for P = 11 2 where we assume perturbation theory applies. 

5.5 Conclusion 

We have studied the truncated SDE for the gluon propagator in quenched QCD and its 

dependence on the infrared regulator A. Using the Mandelstam approximation (34] A then 

turns out to be determined by the equation, giving us the possibility of performing the 

infrared regularisation entirely within the context of the SDEs. We have managed to show 

that the value of the infrared regulator is bounded by the QCD-scale AQCD· 

It is not surprising that the regulator A we introduced to make the SD-integrals infrared 

safe is fixed by AQcD, since the behaviour of the gluon propagator at all momenta does in 

fact depend on this scale when A _ 0, as noted by Brown and Pennington [36]. However, 

the fact that the infrared cutoff has to be bigger than AQcD, as we explicitly demonstrated 

in a simple analytically solvable model SDE is unexpected. 

Apart from showing that for A > AQcD the truncated SDE is correctly solved by per­

turbation theory, we expect that it should be possible to find a different, non-perturbative 

solution with A < AQCD· Since the truncated SDE is non-linear, it may accomodate sev­

eral solutions. However, we have not been able to find a second solution of the infrared 

regularised Mandelstam equation, Eq. (5.22). 

In analogy with Mandelstam's original approach [34] to solving the integral equation 

and infrared regularise it by enforcing the masslessness condition, which has also been fol­

lowed by Brown and Pennington [36], we have looked for a gluon renormalisation function 

G(p2
) of the form 

where Gpote(P2
) is the infrared dominant part, giving only a mass term contribution under 
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the integral. Then, since the integrals in Mandelstam's equation are linear in G(p2
) 

mass renormalisation implies that only G 1 (p
2

) appears under the integrals. This is to be 

compared with the ansatz G(p2
) = A112 jp2 + G1 (p2

) by Brown and Pennington [36] which 

we discussed in section 5.1. 

Recalling the masslessness condition, Eq. (5.9): 

we derive the following constraint for Gpole(p2
) from Eq. (5.22): 

p2 
( [P

2 

dk2Gpoie(k2 )11(k 2 ,p2) + [11-
2 

dk2Gpoie(k2)12(e,p2) + {"'
2 

dk2Gpoie(k2)13(e,p2)) 
h ~ ~ 

= A2 (1:2 

deGpoie(k 2 )12(k2,A2) + l:2 

dk2Gpole(k2 )/3(k2,A2
)) 

However, the only solution seems to be Gpole(P2
) = 0 and again >. < AQcD is not allowed. 

This indicates that the infrared regulator >. plays an important role here. Indeed, the 

limit >. --+ 0 is not analytic, so this is not the same as setting >. 0. 

One problem with our approach to solving the truncated SDE could be that by im­

posing the masslessness condition, Eq. (5.9), we assume that the gluon renormalisation 

function under the integrals of Eq. (5.22) is automatically mass renormalised as well. This 

assumption is usually made in SDE studies of the gluon propagator ([28]-[36]). However 

there is no renormalisation group equation which ensures that this is true. In general the 

mass renormalised gluon function could have the form 

with f(p2
, A2 = 0) = 1. Clearly this introduces a certain arbitrariness into our equations, 

since there are infinitely many choices for f(p2
, >. 2 ). 

We have repeated our analysis of the simple model SDE which we presented in section 

5.4 with one choice for f(p2 , >. 2 ), namely: 

--------
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Inserting this into the right hand side of our simplified equation, Eq. (5.27), the differentia.! 

equation (Eq. (5.30)) changes slightly, giving: 

(5.43) 

However, the initial conditions remain the same as before, see Eq. (5.32) and Eq. (5.33), 

and again it seems impossible to find a solution to Eq. (5.43) with .\ < AQCD· 

To summarise: 

Studying the dependence of the truncated gluon SDE on an infrared regulator .\ we 

find that, although derived in a non-perturbative calculation including contributions from 

all orders in the strong coupling constant, as, the gluon renormalisation function G(p2
) 

matches the renormalisation group improved perturbative result for .\2 > Abcv· Further­

more we find that choosing .\2 < Abcv is not allowed. There is no known physical reason 

why the truncated SDE should not have a second solution, enabling us to explore the 

behaviour of the gluon propagator at much lower momenta. However, we have not been 

able to find such a solution for the infrared regularised Mandelstam equation, Eq. (5.22). 

As explained in section 5.1, an infrared regularised form of the enhanced gluon prop­

agator is needed to study quark confinement and DCSB. However, some important ques­

tions remain open: What are the implications of our results, presented in section 5.3.3 

and 5.4.1, for confinement? Is the enhancement of the gluon propagator, once regulated 

in the way we described here, enough to confine quarks? To answer this question one 

could just insert our result for G(p2
) into the quark SDE and cut off the integrals at the 

same value of.\ determined from the gluon equation. However, without carrying out the 

calculations explicitly it is not clear what this would mean for the quark propagator. 

Perhaps more importantly, one should study the coupled set of gluon and quark SDEs. 

In fact, doing this another mass scale, the mass of the light quarks, is introduced into the 

problem and there is the possibility that this second scale then fixes our infrared regulator 

.\, allowing a different, "non-perturbative" solution. 



Chapter 6 

Summary and Conclusions 

In this chapter we summarise the results and conclusions of the work presented in this 

thesis. Furthermore, we discuss the application of a model gluon propagator which has a 

regularised infrared enhanced behaviour to SDE studies of quark confinement, DCSB and 

finally to hadron phenomenology. This is important because it highlights that although 

the infinite tower of SDEs has to be truncated to make any progress in their study and 

hence an uncertainty regarding their solution is introduced, there is a relation to physical 

observables which allows us to test the reliability of our solution. In particular, the 

application of SDE studies to hadron phenomenology means that experiment actually 

does probe the infrared behaviour of the gluon propagator. As we will highlight in section 

6.2 the results found with model forms of the gluon propagator are very promising, however 

the aim remains to use 1:11-lv obtained directly from QCD, i.e. from the gluon SDE, to 

calculate hadron observables. 

6.1 "Confining" Gluons 

In the preceding chapters we have investigated the infrared behaviour of the gluon prop­

agator using the Schwinger-Dyson equation approach to study QCD non-perturbatively. 

Extensive work had been done studying the behaviour of the gluon and three different 

solutions had been reported in the literature. However, as discussed in chapter 4.4, an 

118 
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infrared vanishing gluon had been ruled out by the fact that this behaviour does not 

lead to quark confinement. Therefore we have concentrated on the other two suggested 

solutions: the infrared enhanced, confining solution and the confined solution which has 

a singularity softer than a pole. Our analytic study of the possible infrared behaviour 

of the gluon propagator in both the Landau and the axial gauge reveals that the SDE 

of the gluon in QCD does not support an infrared softened behaviour, despite claims to 

the contrary. This confined solution had only been found in the axial gauge due to an 

incorrect sign in the approximate SDE. Only an infrared enhanced gluon propagator as 

singular as 1/p4 as p2 
-t 0 is a self-consistent solution of the truncated SDE. 

We stress again, that this enhanced infrared behaviour of the gluon is an indication 

of confinement. This can be demonstrated in a gauge invariant way by the fact that the 

Wilson loop operator obeys an area law. Hence, could we show, without approximating 

or truncating the SDE, that the exact, full gluon propagator possesses this behaviour, 

we would have proven that QCD can indeed confine quarks. Furthermore, as we discuss 

in more detail in the next s_ection, the l/p4 -behaviour of the gluon, when employed in 

studies of the quark SDE, yields a quark propagator without a pole at timelike momenta, 

corresponding to quarks being unable to propagate on mass-shell and thus being confined. 

For this reason we call the infrared enhanced gluon "confining". However, importantly, 

gluons with this behaviour are also confined themselves by not having a Kallen-Lehmann 

spectral representation that any physical asymptotic state must have. 

We then proceeded to investigate the consequences of the infrared behaviour of the 

gluon for the modelling of the pomeron in terms of dressed gluon exchange. The Landshoff­

Nachtmann pomeron model requires an infrared softened gluon propagator which cannot 

be obtained as a self-consistent solution of the SDE. Is the behaviour of the gluon found 

in this study at variance with the pomeron? We argue it is not, since Landshoff and 

Nachtmann's belief in an infrared softened, rather than enhanced, gluon results from a 

perturbative treatment of the quarks inside the hadrons to which the pomeron couples. 

However, since pomeron exchange is a soft process, perturbation theory is not valid. On 

the contrary, quark confinement should be taken into account in the modelling of the 

pomeron. An enhanced gluon propagator, as singular as 1/p4 as p2 -t 0 is not at variance 
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with the pomeron but in accord with quark confinement. 

However, as well as having all these desirable properties the enhanced, confining gluon 

propagator has one major drawback: it introduces infrared divergences in the SDE that 

need to be regulated. So far different regularisation procedures had been followed in the 

literature which we have described in chapter 5.1. This arbitrariness in regularising the 

infrared enhanced gluon causes one to question how stable and qualitatively reliable these 

procedures are. 

We therefore continued our study of the infrared behaviour of the gluon by addressing 

the problem of regularising the l/p4-behaviour. In chapter 5, we studied Mandelstam's 

approximation to the gluon SDE and how it depends on an infrared regulator, A. We 

have shown that the value of the infrared regulator is fixed by the QCD-scale AQcn, 

which in quenched QCD is the only scale in the theory. However, although our results 

are derived from the SDE which is non-perturbative in nature, we find that A2 > Abcn 

is required and that our results match the renormalisation group improved perturbative 

ones. Choosing A2 < Abcv is not allowed. 

The fact that an infrared regulator turns out to be determined by the non-linearity 

of the gluon equation holds out the possibility of performing the infrared regularisation 

entirely within the context of the SDEs. However, studying Mandelstam's approximation 

in quenched QCD we have not been able to find a second solution allowing us to investigate 

the properties of QCD at momenta smaller than AQCD· It could be necessary to include 

quarks into the theory which would provide us with another scale and the hope that A 

would then be fixed by the mass of the light quarks. 

Obviously, our study of the infrared regularisation of the SDE is far from being com­

plete and evidently open problems remain, requiring further research. We detailed these 

in section 5.5. 
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6.2 From Gluon Propagator to Hadron 
Phenomenology 

121 

There are numerous physical consequences connected with the behaviour of the gluon 

propagator in QCD. As we have mentioned a number of times throughout this thesis, the 

gluon propagator is an important element in the SDE of the quark propagator, Fig. (5.1). 

Studying the quark SDE we can determine whether the behaviour of the gluon does 

support DCSB and quark confinement, two important properties of our world which are 

responsible for the nature of the hadron spectrum and hadronic observables. 

The fermion SDE is the easiest of all the SDEs to write down. It constitutes a rela­

tionship between the full quark propagator, the full gluon propagator and the full quark 

gluon vertex function (see Fig. (5.1)) and has the form: 

( 6.1) 

Here S(p) is the full quark propagator defined by: 

(6.2) 

where Z(p2
) is the fermion renormalisation function, 

M(p2
) is the dynamical mass function of the quark and 

and 

The bare quark propagator, S(o)(p2
), is obtained from Eq. (6.2) by substituting Z(p2 ) = 1 

and M(p2
) = mbare, where mbare is the bare quark mass. CF is the appropriate colour 

factor, CF = (N~ -1)/2Nc, and fl1 (k,p) is the full quark-gluon vertex. 

Again, in a way similar to the approach followed in studies of the gluon SDE, one has 

to make an ansatz for the full vertex function which, of course, satisfies yet another SDE 

involving the complete quark-antiquark scattering (Bethe-Salpeter) kernel. However, so 

far no attemps have been made to solve the vertex SDE. Instead an ansatz is made, 
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constructed in a way not to violate any of the physical constraints which this SDE would 

satisfy. The vertex ansatz should: 

• satisfy the Slavnov-Taylor identity. 

• be free of kinematic singularities. 

• have the same C, P, T transformation properties as the bare vertex. 

• reduce to the bare vertex in the free field limit. 

• ensure multiplicative renormalisability of the SDEs. 

• be gauge covariant. 

Extensive work has been carried out in QED trying to find a suitable vertex ansatz 

which satisfies the above criteria, see Ref. [29] and [64, 65]. Neglecting the effects of ghosts 

in QCD one can make use of what has been learnt in QED and use the vertex ansatze 

obtained there. 

Choosing an ansatz for the full quark gluon vertex and using the full gluon propagator 

found in studies of the gluon SDE one can derive a pair of coupled, nonlinear integral 

equations for the two unknown quark functions, Z(p2
) and M(p2

), or equivalently av(p2
) 

and as(p2
). These equations are then solved numerically. 

The analytic structure of the quark propagator obtained from the SDE has some 

important implications: Should the quark propagator have no singularities at timelike 

momenta, i.e. should it not have a mass-pole so that the dynamical mass function of the 

quark, Eq. (6.2), has the property M 2 (p2
) =/:- p2 for any p2 ~ 0, then a sufficient condition 

for confinement is satisfied. 

In addition, the quark propagator determines whether our model supports DCSB. The 

quark condensate, (if.q), is an order parameter for DCSB and is easily related to the trace 

of the quark propagator: 
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where S ( x, y) is the coordinate space quark propagator and where the trace over spinor 

and colour indices give a factor 12. A nonzero value of the quark condensate indicates 

DCSB. 

As discussed in chapter 5.1, the infrared enhanced, confining gluon propagator, once reg­

ularised, leads to a quark propagator with no physical poles, in accord with confinement, 

and manifest DCSB (see Ref. [56)-[59]). 

Furthermore, once the behaviour of both gluon and quark propagator is known one can 

develop a phenomenology of hadrons based on the SD and the Bethe-Salpeter equations 

(BSE). The BSE relates the proper meson-quark vertex function r meson to the full quark 

propagator and the quark-antiquark scattering kernel f{ and is illustrated in Fig. {6.1). 

Figure 6.1: The Bethe-Salpeter equation for mesons. 
Here the dashed line represents a meson. 

The meson BSE has the form 

. J d4
k 1 1 f meson(p; P) = z -

2 
)4 r meson(k; P) S(k- -P) S(k + -P)K 

7r 2 2 

where P is the centre-of-mass momentum of the bound state. 

The quark-antiquark scattering kernel is usually approximated by one gluon exchange and 

so im·olves an effective single gluon propagator and two bare quark-gluon vertices, i.e. 

1/ "'-' 2 J\ Jl.V ( ) 
1\ """g lJJ. LJ.ab P /v 

Using a gluon propagator whose infrared behaviour is enhanced (but regulated) and 

whose ultraviolet behaviour matches the known perturbative result, and a quark propaga­

tor obtained from the fermion SDE with the same gluon propagator, a number of hadronic 
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observables have been calculated from the BSE and found to be in good agreement with 

experimental data. (For an extensive review see Ref. (37).) For illustrative purposes we 

detail some of the more recent results found by Frank and Roberts [59] with a confin­

ing, one parameter model gluon propagator in Tab. (6.1). We see the agreement is most 

encouragmg. 

Calculated Experiment 

m1r 138.7 MeV 138.3 ± 0.5 MeV 

f1r 92.3 MeV 92.4 ± 0.3 MeV 

r1r 0.24 fm 0.31 ± 0.004 fm 

g1roll 0.45 0.50 ± 0.02 

Table 6.1: Some hadron observables calculated in Ref. [59] compared to the corresponding 
experimental data. 

6.3 Final Conclusions 

This thesis has been concerned with the investigation of the infrared behaviour of the 

gluon propagator and its implications for confinement. We have found that the solution 

of the gluon SDE incorporates both quark and gluon confinement. Furthermore, the 

behaviour of the gluon found as the only self-consistent solution of the truncated SDE 

once infrared regulated gives good agreement for hadron observables calculated from the 

BSE. We then attempted to perform the infrared regularisation of the SDEs consistently 

within the calculational framework. This is possible with the introduction of an infrared 

regulator. However, further research is required here to allow a non-perturbative study of 
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the gluon and quark SDEs and their application to hadron phenomenology at momenta 

below the QCD-scale AQCD· 



Appendix A 

Angular Integrals 

This appendix will give a derivation of the angular integrals we have used in the calcula­

tions of chapter 4 and 5, as given in [66]. 

As menitoned before our calculations are all performed in Eucledian space. We choose 

our coordinate system so that the external momentum p is defined: 

p" = (p, 0, 0, 0) (A.1) 

and the loop momentum is: 

k" = ( k cos 1/J, k sin 'ljJ sin() cos¢, k sin 1/J sin() sin¢, k sin 'ljJ cos 0) (A.2) 

where 'ljJ E [0, 1r], () E [0, 1r] and ¢ E [0, 211-]. The four dimensional integrals over the loop 

momentum k can then be written as: 

(A.3) 

All functions in the integrand depend only on p2
, P and k · p and thus from Eq. (A .1) 

and (A.2) are indedendent of() and ¢. Thus the integration over these two angles can be 

performed trivially giving a factor of 47r. The general form of the angular integrals (over 

'ljJ) we are left to calculate is then: 
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where q = p - k. Using k · p = ikl IPI cos 1J) and q2 = a - b cos 1J), where we defined 

a = k2 + p2 and b = 2 Jkl IPI we can rewrite the above in the following way: 

( b) n r . 2 (cos 1J)) n 

J n,m = 2 Jo Sill 1j_J d1J} (a - b COS vJ )m (A.4) 

We start by considering the simplest of these integrals, / 0 ,1 : 

Io 1 = (" d1J) sin21J) 
' J o (a - b cos 1J)) 

(A.5) 

Changing variable to z = cos1J), giving 

!1 v'1- z2 
lo.1 = dz b 

-1 a- z 

and then to y = a - bz: 

1 la+b Jb2
- (a- y)2 

Io,1 = b2 dy --'------a-b Y 

We now substitute 

and where we define 

C 1 and 

.6. 4AC - B 2 = -4b2 

The integral we have to solve is then: 

1 la+b .JR 
Io,1 = 2 dy-

b a-b y 
(A.6) 

and can be calculated explicitly [67], giving: 

Io 1 - - v R + A -- + - -_ 1 { In la+b la+b dy B 1a+b dy } 
' b2 a-b a-b y.JR 2 a-b .JR (A.7) 
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where the first term vanishes by symmetry. Since A < 0 and ~ < 0 the integral of the 

second term of Eq. (A.7) is: 

l
a+b dy 

a-b yVR = 
1 [ ( 2A + B ) l a+b 

J=A arcsin yd a-b 

1 [ . (2b2 -2a
2

+2a(a+b)) arcsm 
Ja2-b2 (a+b)2b 

. ( 2b2
- 2a2 + 2a(a- b))] 

- arcsm (a_ b)2b 

Finally the integral of the last term of Eq. (A.7), since C = -1 < 0, is: 

1a+b dy = 
a-b VR 

1 [ . (2Cy+B)]a+b --- arcsm 
~ CK y-v y-L..l a-b 

[ 
. (-2(a +b)+ 2a) . (-2(a- b)+ 2a)] - arcsm - arcsin b 

2b 2 
7r 

Inserting Eq. (A.8) and Eq. (A.9) into Eq. (A.7) gives: 

(A.8) 

(A.9) 

(A.10) 

Once we have calculated this integral all the other integrals In,m are easily obtained 

from Eq. (A.lO) by differentiation. However, first we need to know the form of Ir,O· With: 

Ir,O = la1r d'ljJ sin2 1/J cosr 1/J 

.Making the substitutions z = cos'l/J and then w = z 2 we find: 

Ir,O = /_
1 

dz zrJ1- z2 = {
1 

dw w r;l v'f=UJ = B (r + 1' ~) 
-1 Jo 2 2 

where B(a, b) is the well known Beta function which can be written in terms of Gamma 

functions, which we define in Appendix B, as: 

B(a b)= f(a)f(b) 
' f(a +b) 
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Using the property of the Gamma function f(n) = (n -1)f(n -1), we finally obtain: 

r(r+1)r(~) (r-1) 
Ir,O = r(~) 

2 
= r + 2 lr-2,0 

For r odd lr,o vanishes by symmetry and furthermore 

7r 
lao=-

' 2 

so that using Eq. (A.ll) all integrals of the form Ir,o are known. 

The integrals In,m can now be calculated using the relations: 

1 a 
ln,1 = -y;In-1,0 + y/n-1,1 

and 

Using Eq. (A.l2) together with Eq. (A.lO) and Eq. (A.ll) we find: 

lo,1 

With these and the relation Eq. (A.l3) we compute: 

Io,2 

(A.ll) 

(A.12) 

(A.l3) 
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These are all the integrals needed for the calculation of this study. We have a = p2 + F 

and b = 2pk, noting that all the integrals contain the quantity: 

We introduce the following function h( x ): 

1 { X h(x) = 2(1 + x -II- xi)= 
1 

for x < 1 

for x ~ 1 

Inserting the quanti ties for a and b and making use of the function h( x) we can now 

write our integrals in the following way: 

Equivalently: 

7rp2 1 h (pk44) 
2k2 jp2- k21 
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Appendix B 

Special Functions 

In this Appendix we will give the definition of the f-function and its logarithmic derivative1 

the \]!-function. These two special functions and some of their properties 1 which we also 

give here1 have been used in the calculations of chapter 4. 

The function r( x) can be defined by : 

r(x) = 11
dye-yyx-l

1 (x > 0). (B.l) 

It has the following properties : 

f(x+l)=xf(x) 

and 

f(1) = 1 

The 7f)-function is the logarithmic derivative of the f-function which is defined by: 

and has the property: 

d 
1/J(z) = d)ln f(z )] 

1 
1f)(z + 1) = 1f)(z)--

z 
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(B.2) 

(B.3) 
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