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A b s t r a c t 

The work in this thesis is concerned w i t h the study of dynamics, scattering and stabili ty 

of solitons in planar models, i.e. where spacetime is (2+l)-dimensional. We consider both 

integrable models, where exact solutions can be wri t ten in closed fo rm, and nonintegrable 

models where approximations and numerical methods must be employed. For theories 

that possess a topological lower bound on the energy, there is a useful approximation in 

which the kinetic energy is assumed to remain small. A l l these approaches are used at 

various stages of the thesis. 

Chapters 1 and 2 review the planar models which are the subjects ot this thesis. Chap­

ters 3 and 4 are concerned wi th integrable chiral equations. First we exhibit an inf ini te 

sequence of well-defined conserved quantities and then we construct exact soliton and 

soliton-antisoliton solutions using analytical methods. We f ind that there exist solitons 

that scatter in a different way to those previously found in integrable models. Further­

more, this soliton scattering resembles very closely that found in nonintegrable models, 

thereby providing a l ink between the two classes. Chapter 5 develops a numerical sim­

ulation based on topological arguments, which is used in a study of soliton stability in 

the (unmodified) 0 (3 ) model. This confirms that the solitons are unstable, in the sense 

that their size is subject to large changes. The same results are obtained by using the 

slow-motion approximation. 
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Chapter 1 

In t roduct ion 

A n exciting and extremely active area of research during the past th i r ty years has been 

the study of a certain class of nonlinear partial differential equations known as soliton 

equations. The key of these equations is that they possess special types of elementary 

solutions (taking the fo rm of localized disturbances, or pulses), which retain their shape 

even after interactions among themselves (at least in the integrable systems), and thus 

they act like particles. These localized disturbances have come to be known as solitons. 

Before any detailed discussion, and to avoid confusion later on, i t is worthwhile clearing 

up a point of terminology: the word soliton was introduced by mathematicians to describe 

lumps of energy which were stable to perturbations and did not change either velocity or 

shape when colliding wi th each other. However, in recent literature all sorts of localized 

energy configurations have been called solitons. We shall go w i t h this looser definition. 

By a soliton we shall mean a lump of energy that moves but we shall not imply stabili ty 

of the shape or the velocity or a simple behaviour in collision. 

The theory of solitons is attractive, since not only are they interesting mathematical 

structures but their applications in the natural sciences are immense. Solitons occur 

in many areas of physics including nonlinear optics, hydrodynamics, superconductivity, 

cosmology, plasma and particle physics, and even in biophysics. The major breakthrough 

in these theories is the discovery of the so-called inverse scattering method [4] which 

provides a recipe for wri t ing down soliton solutions to a large number of equations. 

3 



Introduction 4 

The major i ty of equations possessing soliton solutions occur in one space dimension, so 

that soliton dynamics is confined to motion along a line. In fact in the integrable systems, 

they occur when dispersion effects are exactly balanced by nonlinearities, for i t is only 

then that a lump moves without changing shape or velocity. I t should be stressed that, 

for an equation picked at random, this is very much the exception rather than the rule. 

The simplest equation w i t h the above property is the wave equation, which is both linear 

and dispersionless, but in general the balance is much more delicate. In any case, the 

wave equation has only wave-like solitons (as its name implies) and not lump-like ones. 

I n more than one dimension the situation is far less understood. There are examples of 

equations possessing soliton solutions but most are simple extensions of famil iar examples 

f rom one space dimension. Some higher dimensional systems which possess soliton solu­

tions have originated in the area of elementary particle physics. The localized structure 

of solitons together w i t h their collision properties make them ideally suited to describe 

elementary particles. 

The aim of this thesis is to discuss the important properties of sigma models in (2+1) 

dimensions, i n which an important features is the existence of solitons. I n particular, we 

w i l l investigate the dynamics of localized solitons in the plane, i.e. in three-dimensional 

spacetime. Systems admit t ing such solitons may be grouped into two distinct classes: 

• Systems admit t ing topological solitons, the stability of which depend on nontr ivial 

topology; these includes vortices in the Abelian Higgs model [5], and lump solutions 

of sigma models (wi th various possible modifications) [6]. These solutions can be 

studied using topological methods. ( In topology, two geometric surfaces are consid­

ered equivalent i f they can be smoothly deformed into each other without cut t ing). 

Moreover, they may be assigned an integer valued topological charge, which is con­

served as the solitons evolve in t ime and also in a collision of two or more solitons. 

The topological charge has a natural physical interpretation. One can th ink of the 

solitons as subatomic particles, and of the topological charge as one of the conserved 

quantities of particle physics. For example, in (3+1) dimensions the soliton solutions 

of the Skyrme model [7, 8] are thought of as baryons, in particular protons and 

neutrons; and the topological charge is taken to be the conserved baryon number. 

These are not solitons in the strictest sense; for example, the collision of two solitons 
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is not elastic (some radiation is emitted). The feature of topological systems which 

is relevant here, is that a head-on collision results in 90° scattering. In other words, 

i f two solitons approach each other along the a;-axis and collide at the origin, then 

two solitons emerge, traveling in opposite directions along the t/-axis (wi th slightly 

less speed, because of inelasticity). When they overlap at the origin, they fo rm a 

ring rather than a single lump. 

# The integrable systems which admit localized solitons. The earliest examples of 

integrable systems admit t ing soliton solutions are considered in (1 + 1) [9, 10] and 

(2+0) dimensions. Solutions in (2+0) dimensions are the static configurations for 

the same theory in (2+1) dimensions. In (1 + 1) dimensions some of the known 

systems, such as the sine-Gordon equation and the principal chiral field equation [9] 

are Lorentz invariant, which means that they are invariant under the action of the 

group S O ( l , l ) . 

Up to now, there has been much investigation of f inding analogous systems, that are 

both integrable and Lorentz invariant, in higher dimensions. In (2+1) dimensions, 

there are examples of integrable systems such as the Kadomtsev-Petviashvili [11], 

the Konopelchenko-Rogers [12] and the Davey-Stewartson [13, 14] equations, but all 

these are long away f rom being Lorentz invariant. 

There are some examples of systems wi th both properties; they arise f r o m the self-

dual Yang-Mills (sdYM) equations in four dimensions, which are Lorentz invariant 

(relativistic) and integrable [15]. As a result on the one hand, i t is a beautiful ex­

ample of extending total ly integrable systems into four dimensions and on the other 

hand, many integrable systems in lower dimensions; specially i n (1 + 1) dimensions, 

may be obtained as reductions (dimensional or algebraic) of these equations by using 

a unifying framework [16]. 

In integrable systems the scattering of solitons is usually t r iv ia l , w i th a phase shift 

being the only ( i f any) effect upon solitons which collide. Such a t r iv ia l elastic 

collision behaviour is one of the properties of solitons in integrable systems that 

allows the analytic construction of exact mult isoli ton solutions. In integrable planar 

systems the possibilities for soliton dynamics are much greater than in (1+1) di­

mensions, where solitons are confined to motion in a line. The inelastic scattering of 

solitons in nonintegrable systems, is far f r o m simple, and although i t usually involves 
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radiation components this can be extremely small. Whether this type of nontr ivial 

soliton scattering can occur in integrable models is an interesting question, which 

lies at the heart of connecting solitons of integrable and nonintegrable systems. 

This thesis deals exclusively w i t h classical theory of sigma models. Since most physical 

applications employ quantum theories, the most direct relevance w i l l not be in these areas, 

but i n more mathematical areas, especially the theory of solitons. On the other hand, 

classical theories may be thought of as just the first approximation to the corresponding 

quantum theory; so i t is possible that the results presented here might well t u rn out to 

have consequences for physics. 

The main body of the thesis is laid as follows. In chapter 2 we shall review particular-

examples of two modified sigma models; which are dimensional reductions of the sdYM 

equations, and therefore are integrable; in particular that procedures exist for wr i t ing 

down explicit mult isoli ton solutions. These are the integrable chiral models in (2+1) di­

mensions. Although these models do not have any obvious application in physics they 

are very interesting f r o m the soliton theoretic point of view. To begin w i t h , the equa­

t ion of motions are presented along wi th known procedures for constructing mult isol i ton 

solutions. Roughly speaking, these configurations represent rational solitons which look 

like lumps, and exponential solitons which look like waves. In fact, each lump-like soliton 

moves w i t h an independent speed, undergoes mult iple collisions and emerges intact wi th 

an unchanged speed; while extended wave-like solutions suffer a phase shift upon scatter­

ing although again there is no change in velocity. To close the chapter we shall discuss the 

stabili ty of the one-soliton solution and also the soliton head-on collision. By connecting 

the aforementioned model w i th the 0 (3 ) sigma model and using numerical simulations, 

i t was observed that no unstable modes can be found wi th many varied perturbations. 

This is compelling evidence for the stability of these solitons under radially symmetric 

perturbations. Also, nontrivial scattering may occur between two solitons and between a 

soliton an antisoliton. 

In chapter 3 we w i l l exhibit infini te sequences of well-defined conserved quantities that 

exist for the planar integrable chiral models, and have a simple explicit fo rm. Inf ini te 
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sequences of conservation laws involving nonlocal densities have been known for some 

time; but do not necessarily yield conserved quantities, since the relevant spatial integrals 

may diverge. We also discuss some local conserved quantities, including Noether charges, 

arising f r o m symmetries of the Lagrangian. 

In chapter 4 i t is described how exact soliton and soliton-antisoliton solutions may be 

obtained for one of the aforementioned planar models, by using analytic methods. The 

behaviour of solitons in integrable theories is strongly constrained by the integrabili ty 

of the theory; i.e. by the existence of an infinite number of conserved quantities which 

these theories are known to possess. One usually expects the scattering of solitons in such 

theories to be rather simple, i.e. t r iv ia l . By contrast, in this chapter we generate new 

soliton solutions for the planar integrable chiral model whose scattering properties are 

highly nontrivial ; more precisely, in head-on collisions of iV indistinguishable solitons the 

scattering angle (of the emerging structures relative to the incoming ones) is ir/N. The 

indication seems to be that the internal degrees of freedom in the chiral field allow the 

behaviour of its solitons to be rather rich. We also generate soliton-antisoliton solutions 

w i t h elastic scattering; in particular, a head-on collision of a soliton and an antisoliton 

resulting in 90° scattering. 

Chapter 5 concentrates on lump-like solitons in the (unmodified) 0 (3 ) sigma model. 

A central question is that of soliton stability. Since there is no natural scale i n the model, 

the solitons can take any size (although they have the same general shape). There is the 

possibility that as a result of small perturbations they could either expand indefinitely, 

eventually covering the whole plane, or else shrink, so becoming infini tely ta l l spikes. I t 

seems that to answer these questions, one must evolve the soliton configuration numer­

ically on a lattice, since the 0(3) model is not integrable. A n important consideration 

in any numerical evolution is the choice of in i t i a l data. Specifically, to look at small 

perturbations, one wants to begin w i t h a discrete (lattice) static solution. This chapter 

shows that by taking proper account of the topological aspects in the theory (i.e., Bo-

gomol'nyi bound on the energy of the configuration), one is led to a natural evolution 

scheme containing explicit static lattice solitons. Using them as the basis for a study of 

soliton stability, we find that the 0 (3 ) lumps are unstable. In fact, numerical simulations 

show that these lattice solitons tend to change (shrink or expand) linearly, w i t h t ime. 



Introduction 

Finally, chapter 6 outlines work currently in progress, and also suggest some possibl 

avenues for fu ture research. 



Chapter 2 

Planar Intestable Chiral Models 

2.1 The Self-Duality Equations and their Reductions 

Considerable progress has recently been made towards understanding various nonlinear 

systems which are integrable. They are very special; roughly speaking, almost every 

equation is not integrable. They turn up in the study of nonlinear phenomena, and are 

associated wi th beautiful mathematics. 

The word integrability refers to a special property which certain equations have. In 

the case of classical mechanics, for example, i t implies that one can transform to action-

angle variables. I n addition to classical mechanics (ordinary differential equations), partial 

differential equations w i l l also be considered; examples of these are the integrable field-

theory equations such as the self-dual Yang-Mills and the two-dimensional sigma models. 

Let us first recall the situation w i t h regard to ordinary differential equations. For 

Hamil tonian systems wi th n degrees of freedom the classical Liouville definition of inte­

grabil i ty is in terms of the existence of sufficiently many constants of motion. Namely, 

there should exist on phase space (n — 1) independent functions which Poisson-commute 

with the Hamiltonian and with each other. Consequently, a continuum system must have 

an inf ini te number of conserved quantities in order to be integrable. Hamiltonian systems 

which satisfy the above hypotheses are called completely integrable. 

Let us now study the meaning of integrability for a system of partial differential equa-

9 
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tions (cf. Ward [17]). 

o By analogy wi th the Liouville definition, one may specify that the system admits an 

infini te number of conserved currents. 

o One may require that the system has the Painleve property; which, roughly speaking, 

would say that its solutions should be meromorphic functions of the complexified 

independent variables. 

0 Many integrable systems are closely associated wi th Lie algebras, and in particular 

w i t h infinite-dimensional (Kac-Moody) Lie algebras. Algebraic structure is also 

important in integrable quantum field theories and statistical-mechanics systems. 

But i t is not clear whether this algebraic background applies to a specific class of 

integrable systems wi th specific boundary conditions. 

® Finally, one could require that the system of equations be the consistency condition 

for an overdetermined system of linear equations. However, this linear system has 

to have some special property. 

Hence, when one attempts to formulate a precise definition for integrability, many 

possibilities appear, each wi th a certain theoretic interest. For our purposes we shall 

consider a system to be integrable i f i t can be wri t ten as the compatibi l i ty condition for 

an overdetermined linear system of a suitable type. Such systems of nonlinear differential 

equations can be solved exactly. 

A basic example of an integrable system is that of the self-dual Yang-Mills equations 

in four dimensions. Its solutions can be described in terms of holomorphic vector bundles, 

or, equivalently, in terms of a Riemann-Hilbert problem. 

I t is standard to define the Yang-Mills field as 

Fmn — &n\An 0nAm [y4. m , .A n ] , (2.1) 

where xm, m = 1,2,3,4, are the coordinates in Euclidean space R 4 , dm = djdxm\ Am 

are the Yang-Mills potentials and take values in some Lie algebra g (associated w i t h a Lie 

group Q). From now on, take Q = SU(2) for simplicity. 
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Consider a flat space in which one defines new spacetime coordinates, i.e. a, a, r , r , 

i n such a way that the spacetime metric is 

ds2 = da da + dr d f . (2.2) 

The overbar may denote complex conjugate, but equally may not, depending on the 

spacetime signature. 

Therefore, i f the signature is + + + + (. 

T = xi + ix2, 
f = Xi - zx 2 , 

which can well be considered in + H si 

On the other hand, i f the signature is + + 

r = Xi + x2, 
f = xt - x2, 

The corresponding gauge potentials are 

AT = A i + zA 2 , 
Af = A x - iA2, 

for the Euclidean space, and 

Ar = A1 + A2, 
Af = Ai - A2, 

for the R 2 + 2 space. For the coordinates (2.3), the self-duality equations (sdYM) are given 

by 

Fra = 0, 

Ffa = 0, (2.7) 

FTT ~t~ F — 0. 

The above equations are a set of three independent Lie-algebra-valued equations and 

the inverse scattering transformation [18] can be applied to them in order to evaluate 

their local solutions. I n fact, they are invariant under the gauge transformation 

Am -> A Am A " 1 - (dmA) A " 1 , Fmn -> A ' ^ ^ A , (2.8) 

for any A{xm) e SU(2). 

The inverse scattering transform is a nonlinear analogue of the Fourier transform, and 

relies upon the fact that the sdYM equations can be wri t ten as the compatibi l i ty condition 

Euclidean space R ) then 

a = x3 + ix4, 
a = xs — ix4. 

a = x3 + x4, 
a = x3 — x4. 

Aa = A3 + iA4, 
A„ = A3 - i A 4 , 

Aa = A3 + A 4 , 
A-a = A3 - A4l 

(2.3) 

gnature by substituting ( d T , d f ) —> (idT,idf). 

— ( R 2 + 2 ) then 

(2.4) 

(2.5) 

(2.6) 
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of an overdetermined linear system. Consider the following system 

(dT + \d9)V = (Ar + \ A , ) V , 
(2.9) 

( d a - \ d f ) * = { A a - \ A f ) V , 

where A is a complex constant known as spectral parameter. The compatibi l i ty condition 

is expressed as a polynomial in A, i.e. 

(dT -{- Xda) (Aa — X Af) — (da — Xdf) (AT + A As) = [AT + X A9 , Aa - A Af]. (2.10) 

Equating coefficients of powers of A yields (2.7). Equations (2.9) are known as the Lax 

pair [19]. 

I t has been conjectured by Ward (cf. [16]) that every completely integrable equation 

arises as a reduction of some main equations, i.e. 

"many of the ordinary and partial differential equations that are regarded as being 

integrable or solvable may be obtained from the self-dual gauge field equations (or its 

generalizations) by reduction.'1'' 

Recently i t has been shown that the sdYM equations admit reductions to well known 

soliton equations i n ( l+l ) -d imensions , e.g., the Sine-Gordon and the Toda Lattice equa­

tions [16, 20]; additionally i t has also been shown that several classical systems of or­

dinary differential equations including the Euler-Arnold equations for free motion of an 

n-dimensional r igid body about a fixed point, and a generalization of the Nahm equa­

tion which is related to a classical th i rd order differential equation possessing a movable 

natural boundary in the complex plane, arise as one-dimensional reductions of the sclYM 

equations [21]. Moreover, Mason et al [22] have shown that the Korteweg de Vries and 

the nonlinear Schrodinger equations arise as reductions of the sdYM equations; increasing 

the validity of the conjecture. 

There are two types of reduction that may be performed on the sdYM equations (cf. 

[17] and [23]): 

(i) First , one can reduce the number of independent variables by factoring out by a 

subgroup of the Poincare group, i.e. dimensional reduction. 

( i i ) Secondly, one can reduce the number of dependent variables by imposing algebraic 
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conditions on the gauge potential i n a consistent way, i.e. algebraic reduction. 

In general, in order to obtain a particular integrable system requires a combination 

of both of these reductions. A complete analysis of all reductions of the system (sdYM) 

looks like a large problem, because there are so many possibilities for both (i) and ( i i ) . 

The sdYM equations are often wr i t ten in the following fo rm [24, 25] 

dT ( j ~ l d T j ) + d9 ( j - x d a J ) = 0, (2.11) 

which is called the left sdYM-J equations; or equivalently can be wr i t ten as 

dT ( d f J J - 1 ) + da (d^JJ-1) = 0, (2.12) 

which is called the right sdYM-J equations, where J G g. To show this, suppose that 

AT = D~1dTD, Af = D-1drD, , . 
Aa=D~xdaD, A-a = b-xd-aD, [ Z - L 6 ) 

w i t h D and D in the complexified gauge group SL(2,C). I t is readily seen that the 

first two equations of (2.7) are identically satisfied (i.e., integrability condition of (2.13)). 

Substituting (2.13) in the last equation of (2.7) and setting J = DD-1 yields (2.11). 

Although, the J-formulation is a neat fo rm of the equations, i t is not as general as 

the original f o r m (2.7) since the SO(4)-invariance, which was present in (2.7), and the 

geometrical interpretation ( in terms of connections and curvatures) have been lost [SO(4) 

is the Lie group of matrices A such that det A = 1 and AAT = 1, where AT is the 

transpose of A]. 

Before proceeding any further , let us mention a subtle difference between the signature 

+ + + + and + H which stems f rom the fact that the gauge potentials Am may be 

thought of as 2 x 2 anti-hermitian matrices. I n + + + + , this means that A\ = -Af 

(where * denotes the complex conjugate transpose matr ix) and, therefore, D = 

This has the result that J is hermitian, in addition to having a unit determinant. In 

contrast, for + H , AT, Af, Aa and A5 are themselves anti-hermitian, so D and D, and 

hence also J , may be taken to lie in SU(2). 

I n order to obtain 3-dimensional static systems (such as the monopole equations), the 

metric is taken to have signature + + + + • For example, the solutions of the simplest 
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reduction f r o m R 4 to R 3 + 0 are the Bogonomolny-Prasad-Sommerfield (BPS) monopoles. 

The remaining possibility is therefore to consider a metric w i t h signature + + + - ( R 3 + 1 ) . 

W i t h this choice the self-duality equations only allow complex gauge groups, and not real 

forms such as SU(N). One consequence of this is that they do not appear to admit a 

positive-definite, conserved energy functional, and this makes the situation rather hard 

to interpret. A l l the equations obtained in this way are integrable, by vir tue of the fact 

that the self-duality equations f rom which they are derived are themselves integrable. 

2.2 Chira l Models w i t h Torsion Term 

Start w i t h (2.11) in +-\ and assume that the field is invariant under a non-null trans­

lation in R 2 + 2 : this then yields an integrable chiral equation in (2+1) dimensions. But 

there is more than one way of doing this, since the original equations in (2+2) dimensions 

are not SO(2,2)-invariant. The reduced equation involves a choice of unit vector Va, and 

has the f o r m 

d^J-'J,) - \ea^Va [J^J,, J-lJ„] = 0. (2.14) 

Here Greek indices range over the values 0, 1, 2, x^ = (t, x, y) are the space coordinates, 

J is a 2 x 2 mat r ix funct ion of the coordinates x M w i t h det J = 1, = djL J denotes part ial 

derivatives, e^" is the total ly skew tensor w i th e 0 1 2 = 1, and Va is a constant unit vector 

in spacetime, i.e. VaVa = 1. Indices are raised and lowered using the (inverse) Minkowski 

metric -q^u = diag( —1,1,1). I f there are no further conditions on J , then solutions of 

(2.14) would correspond to sdYM fields w i t h gauge group SL(2,C). To reduce to the 

gauge group SU(2), we need to impose a reality condition on J , the precise nature of 

which depends on the choice of Va. 

Before any further discussion notice that, when Va = (0,0,0) (2.14) corresponds to 

the (unmodified) chiral model in (2+1) dimensions, i.e. 

n^d,{J-ldvJ) = 0, (2.15) 

which is Lorentz invariant but not integrable. In addition, i f J is restricted to be a diagonal 

matr ix d i ag [e^ ' , e^ - '* '] , (2.14) reduces to the planar wave equation. A more important 
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consequence is that this equation may be thought of as a nonlinear generalization of the 

wave equation i n (2+1) dimensions. 

The existence of the non-zero vector Va explicit ly breaks the Lorentz invariance of the 

chiral model by picking out a particular direction i n spacetime. Due to the fact that the 

vector Va is unit , two cases of particular interest occur when either Va is a real spacelike 

unit vector, or when i t is an imaginary unit vector. The two cases we shall deal w i t h in 

the next two chapters, are as follows: 

# Take Va to be spacelike, specifically Va = (0 ,1,0); and require J to be unitary, i.e. 

J e SU(2). W i t h u = (t + y)/2 and v = (t - y)/2, then (2.14) can be rewrit ten as 

S : d v ( J - [ J u ) - dx{J~lJx) = 0. (2.16) 

This follows f rom (2.11) by setting 84 = 0 and relabeling the other three coordinates 

(2.4) so that x1 —> ?/, x2 —• t and a;3 —• x. I t is the (2+l)-dimensional SU(2) 

modified chiral model, formulated by Ward [26]. 

Taking Va to be spacelike means that the symmetry which remains is an S O ( l , l ) 

symmetry. Equation (2.16) has many of the properties of an integrable system. 

For example, i t arises as the consistency condition for a pair of linear equations, 

and this description can be used to generate multi-soliton solutions [26, 27]; an 

inverse scattering transform [28] can be set up; i t satisfies the Painleve property for 

integrabili ty [29]. A stricter characterization of integrability involves the existence 

of sufficiently many conserved quantities in involution, and hence a description of 

action-angle variables. But such an infinite set of conserved quantities is not known. 

• Take Va to be i times a timelike unit vector, specifically Va = (—i,0,0) ; and require 

J to be hermitian (wi th positive eigenvalues). Put t ing z = (x + iy)/2, we can wri te 

the resulting equation as 

T : d t ( J - 1 J t ) - d s ( J - 1 J x ) = 0 , (2.17) 

where bar denotes complex conjugate. This equation is a reduction of (2.11) by 

setting 83 = 0 and relabeling (2.3) (after the translation R 4 —> R 2 + 2 ) so that 

x1 —• x, x2 —> y and x4 —• t. 

Due to the fact that the vector Va is now a timelike vector the residual group is SO(2). 

This model has been proposed by Manakov and Zakharov [30]. These authors have 
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found localized soliton solutions (see below) which do not scatter. Moreover, they 

have tackled the in i t i a l value problem by employing the well known inverse scattering 

method. 

Note that each equation is equivalent to its hermitian conjugate; i n other words, the 

reality condition on J is consistent w i t h the equation. We impose the boundary condition, 

J = J 0 + Jx{e)r-1 +0(r~2), as r -> oo, (2.18) 

where x + iy = rexp(i6). Here Jo denotes a constant matr ix and J\ depends, only on 9 

(no t ime dependence). This implies finite energy. 

The energy-momentum tensor of the unmodified chiral model (2.15), is 

= ( - r T ^ + ^ T r t t r ( J ' 1 JcJ-'Jp), (2.19) 

and its divergence, for the modified equation (2.14) is 

d ^ v = - \ v / e ^ t v i J - ' J a J - ' j f f J - 1 ^ ) , (2.20) 

where t r denotes the trace. So is not conserved and neither, in general, is the energy-

momentum vector = JHm°. Clearly, the divergence of this energy-momentum vanishes 

i f and only i f Vq = 0. For (2.17) one needs something else (see section 3.3). By contrast, 

the aforementioned energy is conserved for (2.16): i t is the integral over x and y of the 

energy density 

P° = " ^ t r [ ( J " 1 J , ) 2 + ( J - V , ) 2 + (J-'Jy)2} . (2.21) 

Note that, the energy for the modified chiral model (2.16) is the same as the one for 

the unmodified chiral model, hence the additional term in (2.14) proportional to VA (so-

called torsion term), does not affect the energy. In fact, i t is analogous to a background 

magnetic field i n classical mechanics [31]. 

The differences i n the inverse scattering transform for equations (2.16) and (2.17) are: 

• for equation (2.16) i t is formulated as a Riemmann-Hilbert problem on the real line 

[28], whereas for equation (2.17) i t is formulated as a Riemmann-Hilbert problem 

on the unit circle [32]. 
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o for equation (2.16) the evolution of the scattering data is pure imaginary, whereas 

for equation (2.17) the evolution is real exponential decay (or growth). 

2.3 iVfuitisoliton Solutions 

The method for generating soliton solutions of (2.16) is that of the Riemann problem tuith 

zeros [26]. Let A be a complex parameter, and (u,v,x) real variables; i.e. coordinates on 

R 2 + 1 . Let A and B be 2 x 2 anti-hermitian trace-free matrices, depending on u , v, x but 

not on A. Consider the set of linear equations 

Li> = (Xdx - du)4> = A4>, . . 
M4> = (\dv - dx)*i> = Btp, 

where ip(\,u,v,x) is an unimodular 2 x 2 matr ix funct ion satisfying det tp = 1, and the 

reality condition 

ip(X, u, v, x) ip(X, u, t>, x)^ = / , (2.23) 

where / is the 2 x 2 identi ty matr ix . I t is easy checked that (2.23) is consistent w i t h 

(2.22). However, the system (2.22) is over determined, and in order for a solution ^ to 

exist, A and B have to satisfy the integrability conditions, which are 

BX = AV, Ax - Bu - [A, B] = 0. (2.24) 

I f we put J(u,v,x) = 0(A = 0, u, v, x)^1 where tp is a solution of the system (2.22), we 

get by comparing (2.22) and (2.24) that 

A = J " 1 J „ , B = J~lJx. (2.25) 

Therefore, the integrability condition for (2.22) implies that there exists a field J which 

satisfies the equation of motion (2.16); and moreover, the reality condition on ip ensures 

that J is unitary. 

This means that solutions of (2.16) can be generated wi th the aid of the overdetermined 

linear system (2.22). To obtain the solution that we want, one may assume that has 

the f o r m 

^ ( A ) = / + E ^ - . ( 2 - 2 6 ) 

where Mk are 2 x 2 matrices independent of the complex parameter A, n is the number of 

solitons, and the complex parameter Hk determines the velocity of the k-th soliton. The 
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components of the matr ix Mk are given in terms of a rational funct ion fk of the complex 

variable 

u>k = x + fj,ku + f i k

l v . (2.27) 

Roughly speaking, fk(^k) describes the shape of the k-th soliton. In fact, the mat r ix Mk 

has the f o r m 

^ = - E ( r _ 1 ) ^ W . (2-28) 
i=i 

wi th r _ 1 the inverse of 

a=l 

Here m\ are holomorphic functions of u>k, given by mk

a = ( m ^ r a ^ ) = (1,/fc). 

The solution ip therefore depends on n constants pLk (which must all be different and 

nonreal) and n holomorphic functions fk = fk{wk)- The above is not quite in its f inal 

fo rm, since, as i t stands, 

*(A) = d e t V > = n ^ - ^ 4 . ( 2 ' 3 ° ) 
Jfe=l ( A _ Pk) 

Therefore, by dividing by the square root of this funct ion 6(X) achieves det ip = I. 

So, finally, the expression for the inverse of J may be obtained by evaluating 0(A) at 

A = 0, i.e. 

J - 1 = ^ O ) " 1 / 2 ( / - — V (2.31) 

Clearly, the expression for (2.31) becomes very complicated very quickly as n is in­

creased. Such a solution corresponds to n solitons, each moving at constant velocity and 

experiencing no scattering (not even a phase shift) when i t interacts. For these solutions 

the field J is a rational funct ion of t, x, y. For example, one may take fk to be 

fk{uk) = <xkuk + ck. (2.32) 

Here ak £ R and ck £ C . Another way is to choose a solution so that ak w i l l take values 

also in C , but this is a l i t t l e trickier to analyze i t as introduces many complications. The 

parameters ak, fj,k, ck have simple physical interpretations: fxk = mke'ek specifies the 

soliton velocity via the formula 

K , ^ ) = ( - ^ ^ , ^ 4 ) , (2.33) 
1 + mk 1 + m£ 
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Ck determines the position of the peak at t = 0 and, finally, ctk fixes the ratio of the height 

of the lump to its wid th . Evidently, the soliton speed is 

, 4m? sin 2 6k 

The simplest fami ly of lump solutions may be obtained by considering n = 1, in which 

case the solutions are specified only by a complex number f.i and a meromorphic funct ion 

f(u>). Hence, the inverse of (2.31) simplifies to give 

i f v + fi\f\2 ( M - / 0 / (2.35) 

which represent the one-soliton solution. Wr i t ing /i = me%6', the energy density becomes 

3 0 2(1 + m 2 ) 2 s i n 2 0 | / " 2 

P ~ m 2 ( l + l / l 2 ) 2 ' ( 2 ' 3 6 ) 

where / ' denotes the derivative of / as a funct ion of LO. Keeping things simple, let us 

choose f(to) = OLLO + c, thus the factor | / ' | 2 in the numerator becomes just a2. So i t is 

seen that the solution looks like a single lump at the point where / ( w ) = 0. Note that 

in the static case (fi = i) one may easily integrate P° over x and y to obtain the total 

energy. The result is 

/

co roo 
/ P°dxdy = 8TT, (2.37) 

-co J—oo 

independent of a. 

A fami ly of extended wave solitons have been constructed for (2.16), by Leese [33]. 

Ward showed that taking / to be any rational funct ion of degree N leads to a configuration 

w i t h N peaks, which in the static case has energy 8-/V7T. A n extended wave must have 

infini te energy and so no funct ion of finite degree w i l l do. Thus, by taking f to be an 

exponential funct ion of to, i.e. 

f(u) = exp(bu + c), (2.38) 

w i t h c G R and b G C , leads to an energy density 

= 2 ( l + m 2 ) 2 s i n 2 f l H 2 | / [ 2 

m 2 (1 + | / | 2 ) 2 

( l + m 2 ) W 0 m 2 _ u 2 

2 m 2 
\b\'sech\$(buj) + c). (2.39) 

The energy density P° is constant along each of the lines 9£(6u;) + c = const. In fact, 

the wavefront lies along $t(buj) + c = 0; which is the equation of a straight line i n the xy-
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plane, for any t. As t varies, the wave maintains its shape and simply moves at constant 

velocity. 

I t has, also, been found that as two waves interact, they do not change shape or velocity, 

but each has a phase shift across the region of intersection, which may be dependent upon 

internal parameters. In addition, a wave and a soliton interact in a non-tr ivial way, but 

after the interaction both the wave and the soliton recover their in i t i a l shapes w i t h no 

radiation emission. 

We conclude this section by mentioning the corresponding results for (2.17). Equation 

(2.17) arises as the consistency conditions for a pair of linear equations, which are 

Lj = (Xdz + = -Afa . 
M$ = (Xdt + dz)$ = -B$, { ' ' 

w i t h A = J~xJt and B = J~XJZ. Therefore, one can apply the inverse scattering transform 

to i t . 

This system possesses a great variety of soliton solutions having quite unusual proper­

ties. These solitons can be constructed in the same way as above (cf. [34, 35]). A soliton 

is described by a single-pole funct ion ?/>(A), i.e. 

$(\) = I - ^ T ^ R ( t , z , z ) , (2.41) 
A — fi 

w i t h R2 = R. For such a funct ion to be a solution of (2.40) i t is necessary and sufficient 

that the vector 7T; which define a one-dimensional hermitian projector R, 

Rik = k ' l 2 ) " 1 ' (2.42) 

satisfy the system of linear equations 

(dz + fidt)*i = 0, (dt + fi^d^i = 0. (2.43) 

In fact, 7T,- are entire functions of the complex variable £ = flz + jl~lz — t, i.e. 7T; = 7r,-(£). 

A solution J of (2.17) is given by the expression 

J = | j 3 | - 1 ( / + ( | / i | a - l ) i 2 ) . (2.44) 

Here |/2| > 1 is the complex parameter which determines the soliton velocity via the 

relation 
2\u\ 
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whereas — arg/I is an angle between v and x-axis. 

Wi thou t loss of generality, for the one-soliton solution one can put -K\ = 1 and iti = 

7r(£). The requirement that J should be regular on the whole plane implies that w is a 

rational funct ion of the complex variable £, that is 

The parameters c', a[,..., a'n, b[, b'm are arbitrary, and correspond to certain intrinsic 

degrees of freedom. I t is easy to produce other interesting solutions by choosing proper 

expressions for the funct ion 7r(£). For example, i t is easy to produce the extended wave 

solitons by choosing 

where again c and a are arbitrary complex parameters. 

Expl ic i t mult isol i ton solutions of (2.17), can also be constructed by a standard pro­

cedure. They are described by a factorized function ^ ( A ) of the fo rm tp(X) = Y\ipi(X), 

where tpi(X) are functions like (2.41). Note that in this model, two-soliton solutions inter­

act t r iv ia l ly . That means, on scattering the solitons suffer no change in velocity and no 

phase shift . Unfortunately, as we are going to see in the next chapter, there are no static 

solutions of (2.17). 

2.4 Soliton Stability and Nontrivial Scattering 

One of the most important questions about solitons is whether or not they are stable. 

The question is: i f one starts w i t h a soliton at a fixed point and perturbs its shape, does 

the solution stay close to the in i t i a l configuration for all i? In this section the stability of 

the one-soliton solution (2.35) under radially symmetric perturbations, is discussed. 

The static soliton solutions of (2.16) are simply the embedding of the static lump 

solutions of the C P 1 sigma model, and so i t is worth comparing the stability of this 

model w i t h that of lumps in the C P 1 model. Before going any further , let us briefly 

describe the C P 1 model which is an alternative description of the 0 ( 3 ) sigma model. 

*(0 2.46) 

7r(£) = c exp(a£) , (2.47) 

The field of the 0 ( 3 ) model is a real three vector which is constrainted to have unit 
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length, i.e. cf> = (</>l5 <f>2, ^3) w i th the constraint (f)-(j> = 1 . The target manifold is therefore 

a two sphere, i.e. M = S 2 . The name 0 ( 3 ) refers to the symmetry of the field <j> under 

rotation by a constant 0 ( 3 ) matr ix . The equation of motion is 

d^cfy + (drf • d»(j>) <f> = 0, (2.48) 

which is derived f r o m the free field Lagrangian 

£ = l-d»ct> • d»cf>, (2.49) 

and the nonlinearities are due to the constraint cj) • <j> = 1 . This model w i l l be the subject 

of chapter 5. 

The static lump solutions are most easily wri t ten in terms of a complex field W, which 

is the stereographic projection of <f> f rom the point cf>3 = 1 onto the complex plane, i.e. 

W = *±±*p., ( 2 . 5 0 ) 
1 - 0 3 

which is an element of the coset space C P 1 ; where 

_ SU(w + l ) 
C P " S U W x U ( l ) ' ( 2 > 5 1 ) 

This alternative C P 1 description of the 0 ( 3 ) model is possible because C P 1 is iso­

morphic to S 2 . The Lagrangian in the C P 1 formulation is 

c=ifww- (2'52) 

The static solitons are the lumps (anti-lumps) of the 0 ( 3 ) model and are given by W 

a holomorphic (anti-holomorphic) funct ion of z = x + iy (cf. [ 3 6 , 3 7 ] ) . 

The C P 1 model is conformally invariant in ( 2 + 0 ) dimensions, which is reflected in the 

fact that the static one-lump can have an arbitrary size. The total energy is independent 

of this size. Lumps of the C P 1 model in ( 2 + 1 ) dimensions, possess a topological stability, 

due to the topological nature of the target manifold. Only field configurations w i t h finite 

energy are considered, which requires that the field must take the same value at all points 

of spatial inf ini ty . The upshot of this is that the space may be compactified f r o m R 2 to 

S 2 , so at any fixed t ime the field configuration may be considered as a map f r o m S 2 into 

C P 1 . The homotopy group relation 

T T 2 ( S 2 ) = Z , ( 2 . 5 3 ) 
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then implies that to each field configuration there may be associated an integer, known 

as the topological charge, which is conserved and represents the winding number of the 

field as a map f r o m space to the target manifold. A n ?^-lunlp configuration is defined to 

be a field configuration wi th topological charge n . This means that the one-lump solution 

cannot decay to vacuum, since the vacuum has zero topological charge. This topological 

stability implies that the lumps of the C P 1 model by themselves have no negative modes. 

However, i t was found [38] that the lumps do possess zero modes (due to the conformal 

invariance of the model), which are modes of instabili ty in which the wid th of the lumps 

become either inf ini te or zero. In other words, under small perturbations the size of the 

soliton tends to expand or shrink, depending on the exact fo rm of the in i t ia l disturbance. 

Now for the (2-f l)-dimensional modified chiral model (2.16) there is no topological 

stability. This is due to the fact that the field J takes values in the gauge group SU(2), 

which has group manifold S 3 . The corresponding homotopy relation in this case is that 

TT 2 (S 3 ) = 0. (2.54) 

There is no winding number for such a map, and hence no topological charge. This means 

that the solitons of this model may possibly possess both negative modes (i.e. they may 

decay to the vacuum), and zero modes in a way similar to those found for the C P 1 lumps. 

By using the method of discretization (i.e. replacing derivatives by symmetric finite 

difference), Sutcliffe [39] found that there are no negative modes present for the one-soliton 

solution (2.35) for (2.16). Under small perturbations, the wid th of the soliton oscillates 

around its in i t i a l value wi th the amplitude of the oscillation decaying exponentially. This 

oscillation is accompanied by a ring of radiation (i.e. moving w i t h the speed of l ight) that 

spreads f r o m the centre of the soliton. Not only are negative modes not excited by these 

perturbations but there are also no zero modes excited, so i t appears that the soliton is 

stable. 

As shown in the previous section multisoliton solutions of (2.16) have been found which 

correspond to solitons that interact in a t r iv ia l way. On scattering the solitons suffer no 

change in velocity and no phase shift. The static solitons of this model (2.16) are the 

embeddings of the C P 1 static lumps, so i t would be interesting to see the relationship 

between the t r iv ia l scattering of multisoliton solutions and the lumps of the C P 1 model 

in (2+1) dimensions. The lumps of the latter model have nontrivial scattering [40, 41] in 
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Let us consider soliton collisions governed by the modified chiral model (2.16). The 

known soliton solutions (inverse of ) (2.31) pass each other without any change of velocity 

or shape. However, the chiral field has internal degrees of freedom, and these can affect 

the scattering of solitons: one can get nontrivial scattering, despite the fact that the 

system is integrable. This was discovered in numerical experiments [42]. 

The numerical procedure was tested on the two-soliton exact solution, and this con­

firmed its reliabil i ty (and the absence of scattering). Then different in i t i a l data (st i l l 

representing two solitons fired at each other) was used: this t ime, the two solitons col­

lided to fo rm a ring, and separated at 90°. In other words, one gets highly nontr ivial 

scattering, similar in nature to that occurring in nonintegrable systems. In addition, nu­

merical simulations of soliton-antisoliton collisions in the integrable system also reveal 90° 

scattering. I n this case, the integrability preserves the solitons (unlike in nonintegrable 

models, where they annihilate, i.e. after head-on collision, only radiation remains) but 

permits nontr ivial scattering. 

I n principle, one should be able to use the techniques of inverse scattering to analyze 

the problem, but this does not appear to be straightforward. I n contrast, Ward [44] 

recently, using an analytic method, has generated an explicit solution (since the model is 

integrable) representing nontrivial soliton interaction; in particular, in a head-on collision 

two solitons undergo 90° scattering. In chapter 4 we w i l l further investigate this scheme, 

by studying the nontrivial interaction of multisoli ton solution; and modify i t . I n fact, we 

w i l l see how to deduce families of soliton solutions w i t h nontrivial scattering as well as 

soliton-antisoliton solutions w i t h elastic scattering (no radiation is emitted). 



Chapter 3 

Conserved Quantities 

3.1 Introduction 

The four dimensional self-dual Yang-Mills equations (2.7) have many of the properties 

of an integrable system: Backlund tranformations [25]; nonlocal conservation laws [45]; 

and the corresponding linear system [24]. Infini te sequences of nonlocal conservation 

laws (continuity equations) have been known for many years [24, 25], but these do not 

necessarily yield conserved quantities, since the relevant integrals may diverge. 

This chapter deals w i t h integrable chiral equations in (2+1) dimensions. Recall that 

these are equivalent to the self-dual Yang-Mills equation, reduced f rom (2+2) to (2+1) 

dimensions. This two dimensional version is known to possess an infini te number of 

conservation laws since i t admits a Lax pair formulat ion as well as an auto- and non-auto-

Backlund transformation (see later). Up to now, most of the known conserved densities 

do not yield f ini te conserved charges: the spatial integrals either diverge, or when they 

do converge they are equal to zero. In fact, for these equations the solitons are localized 

in space, but the localization is only polynomial, and the conserved densities referred to 

above do not f a l l off fast enough at spatial inf ini ty, and so cannot be integrated to give 

finite conserved quantities. Here we exhibit many conserved quantities that do exist, and 

have a simple explicit fo rm. 

In this chapter, we demonstrate the existence of inf ini te sequences of well-defined 

conserved quantities for the integrable chiral equations. These may help to throw fur ther 

26 
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light on the dynamics of solitons in this system, such as their stability [39] and the fact that 

they can scatter either t r iv ia l ly [26] or nontrivially [42, 44]. We also discuss local conserved 

quantities, including Noether charges, arising f rom symmetries of the Lagrangian. For 

simplicity, we take the gauge group to be SU(2); but the infini te sequences of conserved 

quantities extend automatically to arbitrary gauge group. 

3.2 Integrable Chiral Equations 

Recall the two versions of the integrable chiral equation (2.14) of section 2.2: 

S : d v { J - x J u ) - d x { J - l J x ) = 0, (3.1) 

w i t h u = (t + y)/2 and v = (t - y)/2. 

T : d t ( J - 1 J t ) - d , ( J - 1 J z ) = 0, (3.2) 

w i t h z = (x + iy)/2. 

The issue of boundary conditions is crucial, and we shall be using boundary conditions 

which are natural for the chiral equation fo rm, rather than the gauge-theory fo rm. We 

impose the boundary condition given by (2.18), i.e. 

J = J0 + J1{6)r-1 + O(r-2), (3.3) 

as r —> oo, where x + iy = rexp(i9). This condition allows the existence of finite-energy 

soliton solutions. 

Equation (2.14) has a global symmetry, in that J can be mult ipl ied on both sides by 

constant matrices. I f we require the reality conditions to be preserved, then this global 

symmetry is SO(4) in the case of the S'-equation (3.1), and SO(l ,3) in the case of the 

T-equation (3.2). 

To proceed further, let us remark on the static solutions of (3.1). Static solutions 

of (3.1) are harmonic maps f r o m R 2 into SU(2)= S 3 (due to boundary condition) and 

they look like n localized solitons (lumps of energy) in the .ry-plane. Given the boundary 



Conserved Quantities 28 

condition (3.3), these are all known [46]: up to the global symmetry mentioned above, 

they are 

j - » ( 1 ' I / I 2 2 / \ 

(1 + l / l 2 ) I 2 / | / | 2 - 1 J ' (3-4) 

where J is smooth everywhere and satisfies the boundary condition at inf ini ty , provided 

/ is a rational funct ion of either z or z. [This follows f r o m (2.35) w i t h \i = i.] 

The corresponding energy-momentum tensor (2.19) relevant to (3.1), as already 

mentioned, is not conserved, and neither in general is the energy-momentum vector P^ = 

T M ° . More precisely, f r o m (2.20) i t is obvious that the energy and the t/-momentum are 

conserved. Although, in general, the x-momentum is not conserved. For the one-soliton 

solution (2.35), however, the x-momentum happens to be conserved as w i l l now be shown. 

The x-momentum can be computed directly by the formula 

X = J j T w d x d y , (3.5) 

and we find that dX jdt = 0. Furthermore, we can compute i t explicitly, i.e. its final fo rm 

turns out to be 

8a\(3\Tr 

where fi = a + i(3 is the complex parameter which determines the soliton velocity. Note 

that the x-momentum is independent of t, as expected and depends, only, on the soliton 

velocity. 

Let us present an analysis of the two-soliton interaction, pointing out the main features. 

I t seems like that the general case w i l l be very similar. The two-soliton solution given 

by (2.31) for n — 2, depends on the two complex constants Hi and f.i2, and on the two 

holomorphic functions / i and / 2 . Take these functions to be of the fo rm (2.32). Then, 

the corresponding solution represent two lumps L\ and L2, where Lk travels at a velocity 

determined by Specifically, Lk travels along a straight line determined by Hk and ck: 

but the two lumps do not scatter off each other. There is no change of direction or phase 

shift when they pass each other. One can see this as follows. 

Let us consider the case of a soliton L2 incident on a stationary lump L\. I n terms of 

the input to the two-soliton solution, let us take a a = a2 = 1; C\ — c 2 = 0; fix = e^71"/2) 

and ji2 = e^^/ 4). Therefore, by taking fk{uk) = wk then the unitary matr ix J is given in 
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terms of the two holomorphic functions u>i and u>2 as 

J12 = { i - l ) ( x / t A ) - 1 [ o ; 2 ( l + | W l | 2 ) - v ^ w x C l + | i o 2 | 2 ) ] , 

J 2 2 = J n , J 2 i = —J\2i 

(3.7) 

where 

A = (\/2 - 1)(1 + | w , | 2 ) ( l + M 2 ) + 2|w! - u> 2 | 2. (3.8) 

Since A is nowhere zero, J is smooth everywhere; and i t satisfies the required boundary 

condition (3.3) at spatial inf ini ty , as can be easily checked . 

Figure 3.1 shows a series of snapshots of the two-soliton interaction. The physical 

picture is this: the shape and velocity of the solitons are the same long before and long 

after the collision, and they suffer no phase shift. In fact, the first lump L\ (taller one) 

remains stationary at the origin, while L2 moves along the x-axis w i t h speed 1/2. A t 

t = 0 the two lumps coincide, and fo rm a single sharp peak w i t h height (maximum of 

the energy density) approximately eight times the original height of the stationary lump. 

Although, the tota l energy remains unchanged. However, this is the only effect of the 

interaction (no phase shift; no radiation). In spite of the fact that the model is not 

rotationally symmetric, the same features occur when the second lump L 2 moves along 

the y-axis while the first lump L\ remains stationary at the origin (cf. [26]). 

3.3 Lagrangian and Local Conserved Quantities 

The classical conserved quantities arise, via Noether's theorem, f r o m symmetries of a 

Lagrangian. As we are going to see, a Lagrangian can be obtained for the chiral f o r m of 

the s d Y M equations, but then the global symmetry [24] of the model is broken. Let us 

concentrate on the T-equation (3.2) for the t ime being, to see the explicit expressions. 

Following a well-established technique, we parametrize J w i th the help of Poincare 

coordinates 

' = * - ' ( J < 3 - 9 > 
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Figure 3.1: A series of snapshots of the energy density for the two-soliton interaction. The 

one lump is stationary in the origin (in the middle of the square) and the other one is moving 

towards it along x-axis. 
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Note that <f> is well-defined and real, owing to the positivity of J, while p is a complex 

function of the coordinates (z,z,t). Substituting this parametrized formula of J to the 

T-equation (3.2), the latter transforms to the following set 

ttht - hz) -<fi + | 2 + \pt\2 - \Pz\2 = 0, 
HPu - Pzz) - 2<f>tpt + 2<f>zp-z = 0, (3.10) 
<j>(ptt - Pzz) - 24>tpt + 2(f>zP; = 0, 

where the subscripts denote differentiation and \pt\2 = ptpt denotes the norm-squared of 

pt. Equations (3.10) are the Euler-Lagrange equations for the following Lagrangian 

c = r2(<t>2-\<t>z\2 + \ p t \ 2 - \ P z \ 2 ) . ( 3 . i i ) 

An obvious symmetry is the four-parameter family 

0 - | « # , P^bp + c, (3.12) 

where b and c are complex constants. This is part of the global symmetry noted pre­

viously, after the dimensional reduction. It follows from the fact that although in the 

(unmodified) chiral model we have an SO(l,2) spacetime symmetry, for the T-equation 

(3.2) this symmetry no longer exists due to the timelike vector Va; instead, there is a 

residual symmetry group, which is SO(2). 

The corresponding conserved Noether densities are components of J~lJt. In fact, it 

is already clear that J - 1 J f is a matrix of conserved densities, since (3.2) has the form 

of a conservation law. However these densities go like 0(r~2) as r —> oo, and so the 

corresponding charges are not, in general, well-defined. 

The next obvious symmetries of (3.11) are the spacetime translations, and these lead 

to a conserved energy-momentum tensor, which is 

= g»ar2K(2</>a<f>t + papt + Ptpa)-Sttfc<t>a + PzP^ (3-13) 

where x,{1 = (x'°, x ' l , x ' 2 ) = (t, z, z) and the components of the metric tensor are g00 = 1, 

g12 = g21 = —(1/2) and all the rest are equal to zero. Clearly, we find an energy-

momentum tensor which is conserved; and also is the corresponding energy-momentum 

vector, i.e. <9^PM = d^T^0 = 0. Consequently, the energy density is 

P o = r 2 ( 0 2 + | ^ | 2 + | ^ | 2 + | ^ | 2 ) , (3.14) 



Conserved Quantities 32 

which is 0(r~4) as r —• oo. So the energy (the spatial integral of P°) is a well-defined 

positive-definite functional of the field. The momentum is also well-defined; the x-

momentum and (/-momentum densities are 

Pl = - t i ( J - l J x J - 1 J t ) 

= -<f)~2(2(f)t(t>x + ptpx + PiPx)-

= - t i p ' 1 Jy J t ) ( 3 - l 5 ) 

= -4>~2{Ht<t>y + PtPy + PtPy)-

Note that the momentum densities are invariant under the ful l SO(l,3) global symme­

try, whereas the energy density is not; although it is invariant under the reduced symmetry 

(3.12). 

By way of example, let us examine the one-soliton solution. The field J (2.44) takes 

the simple form 
j 1 ( ^ l 2 + H 2 ( l f l a - i ) * A f 3 1 6 . 

where 7r is a rational meromorphic function of 

^ = Jiz + f i ~ l z - t , (3.17) 

and p is a complex constant with \p\ > 1. This solution represents a single lump located 

at £ = 0. This locus is a point in space which moves in a straight line with constant speed 

v = 2 | / i | / ( l + \p\2)- The direction of the motion is determined by the phase of p. 

Note that there are no static solitons for the T-equation (3.2), contrary to the S-

equation (3.1). The velocity v is equal to zero (static solitons), when the complex pa­

rameter p, is either infinite or zero; but then, in both cases the complex variable £ and 

accordingly the field J are ill-defined. Additionally, note that (3.2) with Jt = 0 implies 

that J ~ l J z = 0, since J ~ l J z tending to zero at infinity; and this is true only when J = Jo 

constant; by Liouville's theorem. 

By equating (3.9) and (3.16) the values of the fields <f>, p are 

\m + w\2) 4> = 
[\pr -1- F H 

(3.18) 
+ k l 2 ) ' 
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For the sake of simplicity, take 7r(£) = £. Then 

p 0 = ( l ^ l 2 - l ) 2 ( ^ | 2 + l ) r , i q l 

i / W P + m a + iei2)" 1 j 

The energy of the soliton, expressed as a function of v, is E = 87rsech_1u. This has 

the anti-relativistic feature of decreasing as v increases: E —> 0 as t> —» 1, and i? —» oo 

as t> —> 0, which is consistent with the absence of static solitons. [Note that, we have set 

the speed of light, c, equal to unity, in order to use dimensionless quantities in all our 

calculations]. 

There is also a conserved angular momentum, corresponding to the rotation symme­

try z —y zexp(ix)- This, together with the energy and momentum, are the only local 

conserved quantities of which we are aware; and their existence is not really connected 

with the integrability of the equation. 

In [47] a process is described for deriving infinite sets of local conserved densities 

for the sdYM fields with arbitrary gauge group. These are constructed from differential 

operators acting on J~1JI1. The analogous process utilizes a set of constructed Backlund 

transformations for the ^-equation (3.1). [Similar process exists for the T-equation (3.2)]. 

This particular construction of auto-Backlund transformations is possible due to the fact 

that the chiral equations can be placed in the form of conservation laws. 

The set of eight parametric Backlund transformations, which upon integration, pro­

duce new solutions J' of (3.1) from old ones J, is 

J- •yJ'u 
= J-

J- = J-~lJx + A<9M(J - 1 J x ) , fi = u,v 

J- -VJ'u = J--XJU + A(l + udu + x d x ) { J - l J u ) i 

J- •VJL = J-~lJx + Hudu + xd^iJ'1 J x ) , 

J- -VJL = J-~lJu + X(vdv + x d x ) ( J ~ l J u ) , 

J- -VJ'X 
= J-' X J X + X(vdv + xd^iyJ'1 J x ) , 

J- = J-- 1 J u + X(l+udv + x d x ) ( J - 1 J u ) , 

J- -l'J'x 
= r ' l J x + X(udv + x d x ) ( J ~ l J x ) , 
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J-UJ'T = 

J-VJ'u = 

J~VJL = 

r x j u + \(xdv + u d x ) { j ^ j u ) + \ { J - 1 J X ) , 

J ~ l J x + X(xdv + udx)(J~lJx), 

J~lJu + \{xdv + v d x ) ( J - x J u ) + A(J - X J x ) , 

J - V u + A ( J - J J u ) + \{xdv + v d x ) { J - l J x ) . (3.20) 

(3.21) 

Evidently, all eight Backlund transformations are of the general form 

J~lJ'u = J~xJu + A [L^J-1 Ju) + L2(J-XJX)}, 

J-XJ'X = J - l J x + A [LsiJ-1 J u ) + L4(J~lJx)], 

where L i , L 4 are local linear operators. Thus we have eight families of equations of the 

above form, the members of each family having the same set of operators L \ , L 4 , but 

different values of A. The above equation can be written in matrix form of the Backlund 

transformations B A : 

J'-'J'X 

J Ju 

J-1 Jr. 

where M A is the operator-valued matrix 

1 + ALi XL2 

XL3 1 + XLA 

(3.22) 

(3.23) 

Let us denote with ^(J) the two-dimensional column vector with components 

Bu = J-'Ju, Bx = J'1 Jx. (3.24) 

Multiple application of the Backlund transformations B A on J, will produce a new 

function $()C) such that 

tf(/C) = ( M A ) " * ( J ) . (3.25) 

It follows from this that the quantities K~lK,u and IC~lfCx are expansions in power of 

A, i.e. 

(3.26) 
r = 0 r = 0 

Now, since fC is a chiral field, it satisfies the continuity equation (3.1), i.e. dv{K,~lKu) — 

dxilC^JCj;) = 0. Substituting from (3.26) and equating coefficients of powers of A to zero, 

we obtain the (n + 1) local continuity equation, 

dv(PT) - dx{Rr) = 0, r = 0 , l , . . . , n . (3.27) 
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By letting n ^ o o w e obtain an infinite set of local conservation laws from each family of 

Backlund transformations, B A . 

The corresponding number of conserved charges are 

/

co roo 
/ Prdxdy, r = 0 , l , . . . , n . (3.28) 

-co J—CO 

The local property of these conservation laws follows from the fact that the densities 

PR and RR are obtained directly from (3.26) for all values of r; and thus their derivation 

does not require knowledge of lower-order charges. 

By virtue of (3.25) we find that PQ = Bu, for each family of Backlund transformations. 

In addition, for r = 1 , 2 , n we obtain 

P r = ( n

r ) M ' ^ , 

j L?{~l\LiBu + rBx), (3.29) 

pr = \[ I I [(1 + LiY(Bu + Bx) + (Xa - l)r{Bu - Bx)}, 
r 

(3.30) 

where the binomial is given by the expression 

f n \ _ n(n- l ) . . . . (n - r - 1) 
\ r J ' r l • 

The first equation of the set (3.29) corresponds to the first six families of Backlund trans­

formations, while the other two correspond to the seventh and eight family, respectively. 

Consequently, the first conserved charge for all Backlund transformations is 

/

co roo 
/ Budxdy. (3.31) 

-CO <J — CO 

By vising the boundary condition (3.3) and integrating by parts, we deduce that the 

remaining conserved charges {Qr} (for r = l , . . . ,n ) are equal to zero for each family of 

transformations, except: the seventh and eight. For these cases, the conservation laws are 

given by the inductive relations 

Qr — Qr — li 
r 

Qr = ( W ~ r + 1 ) Q r - i , r>l, (3.32) 
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respectively. Unfortunately, if we attempt to verify the above set for the soliton solutions, 

they diverge in the same way as the integral of J - 1 Ju. Even if a boundary condition were 

chosen which ensured convergence, integration by parts gives relations between these local 

conserved charges which indicate that very few, if any, of them are independent and new. 

Although, one still has the obvious local conservation laws, irrespective of convergence. 

We conclude this section by mentioning the corresponding results for the S'-equation 

(3 .1 ) . If we parametrize the chiral field J, as 

by regarding <j>, p, p as arbitrary functions of the variables (t,x,y), ( 3 . 1 ) reads 
G * A ( # K A + ^ \ - < ^ A ) = 0, 

G K A ( ^ A - 2 ^ / ) A ) = 0, (3 .34) 

G K A ( # K A - 2<f>xpK) = 0. 

Here GKX = T ] K X + e"A is the metric with T } K X = diag( —1,1,1) and the constant tensor 

E K X is the dual vector, i.e. e"A = £ A K X V A . The above equations are the Euler-Lagrange 

equations for a variational problem with Lagrangian 

£ = <f>-2GKX{<l>K<l>x + P«P\)- (3-35) 

Accordingly, the energy-momentum tensor relevant to the original system (3 .34) is 

= V ^ L _ ^ - ^ " V V ^ + G ^ p r f a + G ^ p M - (3-36) 

Obviously, this tensor is non-symmetric in p and v but it is conserved. 

It is evident from the ^-equation that J~lJu is a conserved density; but as before, 

the corresponding charges diverge. The energy and y-momentum are well-defined, their 

densities are 

p° = - \ t v [ ( j - i j t y + ( j - l j x ) 2 + ( j - ' j y ) 2 ) 

= -<t>~2{$l + 4>l + <th + PxPx + PyPy + PtPt), 

P2 = tl {J'1 Jy Jt) 

= <j)'2(2(j)t4>y + PyPt + PtPy). (3 .37) 

A conserved rc-momentum density can also be obtained from the Lagrangian (3 .35) , 

i.e. 

P1 = 4>~2{2(})x(j)t + ptpx + pxpt - pypx + pxpy). (3 .38) 
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But the functions appearing in it have singularities in general (in particular, this is the 

case for the soliton solution); and as a consequence, the x-momentum is divergent. The 

problem occurs because of singularities in a parametrization such as (3.33) in this case. 

It is not obvious whether one can find a parametrization which avoids these singularities. 

For the one-soliton solution (2.35), however, it happens to be conserved as will now be 

shown. 

Compared to the densities which correspond to the energy-momentum tensor (2.19) 

of the (unmodified) chiral model; notice that, although the energy and the (/-momentum 

density are the same, the ^-momentum density P 1 = 4>~2(2(f)x<f>t + ptpx + pxpt) is different 

from the one given by (3.38) by the function X(x,y,t) = 4>~2{Pxpy — Pypx)-

It is easy to verify that the fields </>, p and p, for the one-soliton solution (2.35), take 

the values 

, = H Q - + l / l 2 ) 
* M + M I / I 2 ' 

(p - P)f 
p = 

p + p\ 12' 

P = {j^Mi> (3-39) 
P + P\f\ 

where / is a rational meromorphic function of UJ = x + pu + p~lv. In the remainder of this 

section and for the sake of simplicity, let us take f(u>) = u and substitute the complex 

parameter p by the analytic form p = a + i/3. 

In this case, the x-momentum which is the integral of the density P1 given by (3.38) 

over the spacelike plane x° = const, becomes 

* = - ^ T f 2 + JJx(x,y^t)dxdy, (3.40) 

with 
Y ( r v f ) ( p - p T ( \ p \ 2 + V ( p - p \ f \ 2 ) m n 

2 I H (i + \ f \ ) \P + p\i\ ) 

In order to simplify things, let us introduce the new variables (w, v) so that the function 

/ becomes: / = w + iv, with 

(a* + p - 1 ) ( y + ^ + n 
W = X + a 2 (a ' + /3') V + a 2(a» + /?>) *' 
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Hence, (3.40) yields 

8al/?|7r 8(3\/3\i f f (a + i(3 - (a - if3){w2 + v2)) dw dv 
(a 2 + /?2) ' (a 2 + /?2) 7 7 (1 + w2 + v2)2 (a+ 1/3 +(a- i/3)(w2 + v2))' { ' 

Eventually, to make the situation even more transparent, one can replace (w, v) with polar 

coordinates. 

By way of illustration, if a = 0 then (3.40) transforms to 

\P\ y°° rdr 

T J-oo (1 - r 4 ) ' 

and therefore the ^-momentum diverges. Hence the i-momentum density becomes 

discontinuous when /J, is a pure imaginary number. 

On the other hand, if a ^ 0 the s-momentum may be readily calculated explicitly, 

i.e. 
X = - 8 ? r ^ arctan , (3 ± 0. (3.45) 

Thus the momentum is well-defined, real and independent of t, as was expected. 

The upshot is that, in the one-soliton sector, one has soliton solution with definite and 

finite ^-momentum when the complex parameter fi which determines the velocity has a 

real non-zero part and arbitrary imaginary part. In general though, the ^-momentum 

diverges. 

3.4 Nonlocal Conserved Quantities 

An infinite sequence of nonlocal conserved currents for the sdYM equations was first ex­

hibited by Prasad et al [25, 45], and independently by Pohlmeyer [24]. This was motivated 

by an analogous sequence for the two-dimensional chiral model. A different sequence of 

nonlocal currents was later given by Leznov (cf. [48]), and independently by Papachris-

tou [49]. A third sequence was mentioned by Sutcliffe [39]. For the time being, let us 

concentrate on the S'-equation (3.1) to see the explicit expressions. 



Conserved Quantities 39 

o Prasad et al exhibited a set of nonlocal conservation laws for the sdYM equations, 

by using an inductive procedure. Let us describe the one-dimensional reduction of 

this procedure. 

Consider the Bu and Bx of (3.24) to be the first conserved currents 

V<1} = Bu = dx$W, Vf.1' = BX = d v ¥ 1 ] . (3.46) 

Here exists because of (3.1). Suppose that V[n) and are chiral fields, 

therefore they satisfy the 5-equation (3.1), for arbitrary n. That means that the 

n-th current exist, i.e. 

dv(Vu

n)) ~ dx(Vx

n)) = 0, n = l , 2 , . . . (3.47) 

So this implies that there exist a 2x2 complex matrix function ^ " ' ( t / , v, x) such 

that 

V< n ) = d x ¥ n ) , V [

x

n ) = d v ¥ n \ n = 1,2,... (3.48) 

Then the (n + l ) - th currents, which imposed as an induction hypothesis, is defined 

as 

y( n+!) = D u ¥ n ) , V x

n + 1 ) = D x ¥ n \ n = 0 , 1 , ( 3 . 4 9 ) 

where Dk is the covariant derivative, defined as Dk = dk + Bk, k = u,x. Observe 

that, the induction starts with VÊ 0) = / , and thus Vu^ = J - 1 Ju and so forth. 

It is a matter of algebra to prove that y ( " + 1 ) is conserved, and satisfies the in­

equation. This is true since, 

d M n + V ) - dx{Vln+^) = (dvDu - 3 X D X ) ^ from (3.49) 
= (Dudv - D x d x ) ^ due to (3.1) 
= DUV^ - DXV™ using (3.48) (3.50) 
= [Du,Dx]¥n~V from (3.49) 
= 0 due to (3.46). 

Therefore, we can linerize the .S-equation (3.1), using the nonlocal currents (3.48) 

and (3.49) in the following way, 

d v ^ = Dx^n-1), n = l , 2 , . . , { 6 ^ > 

with consistency equation 

dv{DuqW)-dx(Dx^)=0, n = 1,2,... (3.52) 
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Multiplying both equations of the set (3.51) by A n , summing over n, and defining 

CO 

* = E A ~ " * ( n ) > ( 3 - 5 3 ) 
71=0 

we obtain the linear set 
(Ad, - A ) * = o, 

(Xdv - A ) * = o, ^- b i > 
which is the Lax pair formulation given by (2.22). 

Pohlmeyer's procedure based on the fact that the field J is invariant under rotation 

around an angle 2 • 9 in the (l,2)-plane, i.e. 

J(u, v, x) —> J ( ( ) ( u > ' , i ' ) = ¥ 6 ) J(u,v,x)¥BV, (3.55) 

where is an SU(2)-matrix-valued function of tt, v, x and of A (here A = tan(0) - 1 ) . 

The hermitian adjoint of this matrix satisfies the following system of linear differen­

tial equations 
(\dv - Dx)¥ey = o, 

(Xdx - DU)W = 0. { 6 ' 5 b } 

The approach employed is to expand the function vJ/W1 in powers of the spectral 

parameter A, i.e. 
CO 

= £ A n t f < n ) , (3.57) 
71=0 

and then, insert this expansion into the left hand sides of the system (3.56), collect 

all terms of the same order in A and set the resulting coefficient separately equal to 

zero. As a consequence, the following set of equations have been obtained 

A * * ( 0 ) = 0, 
D # ( 0 ) : 0 

= D I $ W ) n = l ,2 , . . . 

with consistency equation identically equal to (3.52). 

The conserved currents arising from (3.52) may then be used to construct the following 

infinite number of conserved charges 

an= I" r ( D u * ( n ) ) dxdy, ra = l , 2 , . . . (3.59) 
J-co J—CO 

Clearly, these currents are nonlocal as in order to determine \I/(n) from M/( n _ 1) requires the 

integration of either (3.51) or (3.58); and are divergent in general. 
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As already mentioned, using the method of Riemann problem with zeros, ^ (A) is known 

explicitly (see Ward [26]). In fact, for the one-soliton solution is given by (2.26) for n = 1 

and possess the simple form 

Note that, ^(A) is not determined uniquely (cf. [45]) due to the fact that it can be 

multipled by an arbitrary function A ( A , . t + An + A _ 1 t ; ) on the right, so that \I/(A) —> / 

at spatial infinity. By expanding \P(A) in terms of A (e.g., Taylor's expansion), one may 

evaluate the components vj/f™^ and thus the conserved charges {an}. Unfortunately, {an} 

are zero for (3.60). 

9 Papachristou's process yields an infinite number of nonlocal currents, the densities 

of which depend on an increasing number of nonlocal charges. These currents are 

obtained by an inductive process which involves various integrability conditions and 

successive introductions of nonlocal charges. To be more specific, one starts with the 

S'-equation (3.1) and finds a simple non-auto-Backlund transformation that relates 

the equation of motion with a nonlocal conservation law depending on a nonlocal 

charge. Then another Backlund transformation is introduced which relates the afore­

mentioned conservation law with a new one depending on an additional charge, and 

so forth. The above described progress can be continued infinitely; but no recursion 

relation seems to exist that allows expressions of currents densities in term of lower 

order charges. 

Let us start with the observation that, a new conservation law can be found for (3.1) 

by employing the simple Backlund transformation 

j - i Ju = $(?), r l J x = <S>M. (3-61) 

Note that, $W and fcj,1) are equal to V<1 } and of (3.67), respectively. The 

integrability condition {$x^)v = ($!^)z of the system (3.61) yields the S'-equation. 

On the other hand, the integrability condition ( J u ) x = ( J x ) u or equivalent 

du{J~lJx) - dx{J-xJu) + [J'1 Ju, J " 1 Jx) = 0, (3.62) 

yields a nonlinear equation for 

S f f i - S f f l + I ^ W H O . (3.63) 
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Equation (3.63) also arises from a Lagrangian (cf. [48]), but the corresponding en­

ergy functional is not positive-definite. Papachristou [50] called (3.63) the potential 

sdYM equations. (The reason is that, according to (3.61), is a potential to the 

corresponding law, which is the sdYM equations). He pointed out that new conser­

vation laws could be derived from symmetries of (3.63), and that such symmetries 

are in effect solutions of a novel linear system for the sdYM equations [51]. 

With the observation that 

= \ [ ? ^ { X \ *t1}] - * ™ ] ) , (3.64) 

equation (3.63) is written in the form of the continuity equation 

dv - ~ - = 0. (3.65) 

Substituting for $00 and $W from (3.61), the ab ove equation becomes 

d ^ * ? ^ ^ - ^ ^ (3.66) 

Therefore, (3.66) is a nontrivial, nonlocal (due to <f>W) conservation law which is 

satisfied on all chiral solutions J. In fact, the first conserved quantity is 

h = + dxdy. (3.67) 

Note that, the densities of the conserved current depend explicitly on the nonlocal 

charge 

The next Backlund transformation should be such that, one of the integrability con­

ditions of which yields (3.66) while another yields a higher order continuity equation, 

i.e. 
$ ( i ) _ l r $ ( i ) $ ( i ) i = $ ( 2 ) 

XL 2 L ^ 3s J 3s ^ 

$ ( i ) _ ! [ $ ( ! ) , = $00. 

The consistency condition ( $ ^ ' ) u = ($u )̂z> yields, after some calculation 

(3.68) 

- C + - + = 0. (3.69) 

Therefore, with the observation that 

[* ( 1 ), = I (0«[*(1)> ^ l l - *<1J]]) , 
(3.70) 



Conserved Quantities 43 

(3.69) takes the form of a continuity equation, i.e. 

9v OL 2 ) + | [ J - V U , $ ( 2 ) ] - ^w-'JuMn) -

d* ( * i a ) + W ~ 1 J * > $ ( 2 ) ] - l J - l J * , = 0> ( 3 T 1 ) 

where we use (3.61) to eliminate and Hence, the second nonlocal conser­

vation for the S-equation (3.1) is, 

b2 = ($12 ) + ^ [ J - V „ , $ ( 2 ' ] - ^ [ $ ( 1 ) , [ J - 1 J U , $ ( 1 ) ] ] ) dxdy. (3.72) 

To find the next conservation law, return to the continuity equation (3.71) and notice 

that this expression is a consistency condition for the Backlund transformation 

(3.73) 
<J>(2) - ! [* (*) , $(D] + i [ $ ( D , [$(D, $(D]] = $(3) . 

Then, apply the other integrability condition ($£^)« — ($! 2 ')z a n d u s e (3-61), (3.68) 

and (3.73). After a very lengthy calculation, the result is rewritten in the form of a 

continuity equation, from which may be verified the third nonlocal conservation law 

for the chiral equation. 

Thus, this process generates nonlocal conservation laws for the S'-equation. An 

infinite number of currents can be obtained in this fashion, although a rigorous 

proof of this statement requires further investigation. The constructing of higher 

order conservation laws is an increasingly hard task since it becomes excessively 

difficult to express the ensuing relations in the form of continuity equations. 

Intuitively, it is of interest to compare Papachristou's nonlocal conservation laws with 

those of Prasad et al. By expressing and in terms of ^>' n _ 1 ) by virtue of (3.49), 

then (3.46) becomes a system of equations which play a role analogous to that of the 

aforementioned Backlund transformations. The only difference with Papachristou's laws 

is that these transformations are essentially the same for all steps of recursive process (that 

is, for all values of the index n). Thus, Prasad's et al conservation laws can be evaluated 

via a recursion relation for all values of n, which is not the case with Papachristou's 

currents. Moreover, the latter are much more complicated than the former since their 

densities depend on an increasing number of charges rather than on one charge at a time. 

The nonlocal conserved densities of the charges a i , a?, ... of (3.59) and those of &i, 

fe2, ••• of (3.67) and (3.72) fall off as 0 ( r - 2 ) for soliton solution, and so these charges 



Conserved Quantities 44 

diverge; or when they do converge they are equal to zero (e.g., for the one-soliton solution 

(2.35)). But it turns out that the differences a\ — b\, a2 — b2, yield nontrivial conserved 

quantities, i.e. Qi, Q2, ... 

Let us derive the first nonlocal conservation law Q\. In order to find the correspond 

equation of motion subtract (3.66) from (3.52) with n = 1 and observe that the first 

nonlocal charges coincide, i.e. Vt^1' = Thus, we obtain 

d^J-'Ju, - d x { J ~ l J x , = 0, (3.74) 

where the curly brackets denote anticommutators. Clearly, the conservation law (3.74) is 

not trivially related (i.e. equivalent) to the familiar conservation laws of Pohlmeyer and 

Prasad et ai Moreover, it corresponds to a conserved charge of the form 

/ {J-'J^q^dxdy. (3.75) 
-OO J —CO 

But the old nonlocal conserved density involves the integral operator which 

we take to be 

d~1F{x)= f F(x')dx'. (3.76) 
J — C O 

In fact, fl/^1) = d^Bu (recall, Bu ~ J~lJu)\ and therefore, (3.75) simplifies to 

/

o o r roo 

dy / J~lJudx 
-OO L" — OO 

2 

(3.77) 

Note that, we used the relation 

Budx(d;1Bu) = - r / J~lJudx . (3.78) 
-co v ' n! U - o o 

Obviously, the first conserved charge derivation does not require knowledge of lower-

order charge. In fact, all the conserved quantities Qn are been characterized by the above 

property. 

The second conserved law of our sequence is obtained, by subtracting (3.71) from 

(3.52) with n = 2. After a lengthy calculation, the following continuity equation has been 

obtained 

dv ( { * ( ! ) , tfWtfW} - W] - [*<!>, *<*>}]) + I[VP(D, [*<!>, * (D]] ) = 

dx v t W ^ W } - - [ t tW { ^ ) , tf^}]) + i t * ^ , *(?)]]) , 
(3.79) 
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and so the corresponding conserved quantity is, 

/

oo r /-co 
dy / J_1Judx 

-co \.J—oo 
(3.80) 

It is easy to see how to generalize Q\ and Q2 to obtain a sequence {Q„}. Therefore, we 

conjecture that the Qn are essentially obtained from an — bn, but the calculations involved 

in this seem rather complicated. The expression for Qn is, as we can deduce, very simple; 

namely, 

Qn = IZo Mn+1 dy, n = l ,2 , . . . , (3.81) 

where 

/

oo 
J'lJudx. (3.82) 

-oo 

So the {Qn} form an infinite sequence of well-defined quantities, for any fixed value 

of t. This follows from the boundary condition which implies that there exists a positive 

constant K such that each component of the matrix Bu, satisfies \(Bu)ap\ < Kjir2 + 1) 

and so \Ma0\ < TrK/y/y2 + 1. As a result Mn+1 = 0{y'n^) as \y\ -> oo, and so the 

integral (3.81) converges. The case n = 0 corresponds to the local Noether density J - 1 Ju 

but diverges (as remarked in the previous section). 

In addition, the quantities {Qn} are conserved. Note that 

/

oo rco 
d^J^J^dx^ d^J-^J^dx = 0. (3.83) 

-co J—oo 

Hence dvMn+l = 0, and so 

r dtMn+i d y = r dyMn+i d y = 0 ) ( 3 8 4 ) 

(it J—oo J—oo 

as claimed. These two remarks, apply to any gauge group. 

Finally, let us investigate how many independent conserved quantities there are among 

the {Qn}- Since M takes values in the Lie-algebra su(2), we have 

M2p = (-iy\\M\\2pi, 
(3.85) 

M2?+1 = (-iy\\M\\2rM, 

where | | M | | 2 = — t r ( M 2 ) / 2 . So for n odd, there is one real conserved quantity, since Qn 

equals, the number / | | M | | " + 1 dy times / ; and for n even, three conserved quantities exist, 
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the components of J \ \M\\n M dy. A l l these conserved quantities are independent; since 

M is essentially arbitrary su(2)-valued function of y. 

By way of example, let us f ind the corresponding expressions of M and {Qn} for the 

perturbed static one-soliton solution. To do so, let us take J to be of the fo rm (3.4) w i th 

/ = z + v t, evaluate the matr ix Bu — J~l Ju and finally, set t = 0. (Roughly speaking, 

the above configuration represents a moving soliton which emits radiation in order to be 

stable). Thus, the mat r ix M(t,y) is time-independent, and equal to 

while the first four conserved quantities {Qn} are 

Q i = -2v2ir3I, Q2 = -128u 3 7r 3 J /15 , 

Q3 = 5V4TT5I, Q 4 = 8192y 57r 52/315, (3.87) 

Q5 = - 6 3 u 6 t t 7 / / 4 , etc, 

where T — 
0 1 

-1 0 

Although, all these conserved quantities are related to the nonlocal currents of [24, 25], 

they do not involve repeated integrations. They are nontrivial and independent, but by 

no means complete. For example, the matr ix M vanishes for the one-soliton solution (3.4) 

and its moving version, and therefore so does {Qn}-

There is another set of well-defined conserved charges which are complementary to 

the {Qn}- They are related to the (nonintegrable) conserved densities given in [39]. The 

key point is that (3.1) which is the dimensional reduction of the left sdYM-J equations is 

equivalent to 

du{JvJ-1) - d x { J x J ~ l ) = 0, (3.88) 

which is the dimensional reduction of the right sdYM-J equations. From this, i t is easy 

to see that the following quantities are conserved 

Qn = irooMn+1dy, n = l , 2 , . . . , (3.89) 

where 
roo 

M(t,y)= / JvJ-^dx. (3.90) 
J—oo 
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Unfortunately, for the T-equation (3.2), the situation is rather different. This is not 

unexpected since, for example, the inverse scattering transform for the T-equation differs 

significantly f r o m that of the .S-equation [28, 30, 32]. Once more, the conserved densities 

of [24, 25] tu rn out to be of order r - 2 as r —> oo; in particular, this is the case for the 

soliton solution described in the previous section. So the corresponding conserved charges 

do not exist. However, one can define charges analogous to the Qn above. These are 

Rn= / d s ( y n + 1 ) d z A d z , n = l , 2 , . . . , (3.91) 
J r . 2 

where is the solution of the 3-problem 

dsV = J ' 1 J u * -> 0 as \z\ -» oo. (3.92) 

The conservation of the Rn follows f rom dt^ = J~1JZ. In fact, 

dtV = [ d t ( J - i J t ) d z = [ d - z ( r l J z ) d z = 0. (3.93) 
JdR JdR 

Hence d t ^ n + 1 = 0, and so dB^jdt = 0. 

3.5 Concluding Remarks 

We have exhibited inf ini te ly many well-defined conserved charges for the (2+l)-dimensional 

reduction of the self-dual Yang-Mills equations. We are not aware of any conserved quan­

tities that are local (in the usual sense), other than the energy-momentum vector; a 

systematic search for generalized symmetries of the Lagrangian might well uncover many 

more. 

Our (slightly) nonlocal conserved quantities, have a particularly simple fo rm , not in­

volving repeated integration. They are related to nonlocal conservation laws known pre­

viously; however the latter do not yield well-defined conserved quantities, and so cannot 

contribute to a complete set of action variables. The present sequences certainly do not 

make up a complete set: for example, the matr ix M vanishes for the one-soliton solution 

(2.35) and its moving version, and therefore so does {Qn }. 

I t seems likely that the stability of the solitons in the chiral model (or sigma model) 

is due to the existence of the infinite number of conserved quantities (as i t happen in 
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lower dimensions). There is at present no proof of this conjecture, although the reasoning 

is: i f the in i t i a l configuration consists of n soli tons then, for large t, the inf ini te number 

of conserved charges impose such constraints on the system so that the configuration is 

again n solitons. 



C h a p t e r 4 

Nont r iv ia l Scattering 

4.1 Introduction 

This chapter studies certain exact soliton solutions of an integrable system. A n interesting 

problem is to look at the scattering properties of two or more solitons colliding. In some 

known systems w i t h nontrivial topology, the collision of two solitons is inelastic (some 

radiation is emitted) and nontr ivial (a head-on collision results in 90° scattering); all this 

has been observed analytically [41], [52]-[56] and numerically [57]-[61]. One can construct 

explicit time-dependent solutions only in very special, so-called integrable models. Usually 

in these models extended objects interact t r ivial ly, in the sense that they pass through each 

other w i t h no lasting change in velocity or shape (i.e., they behave as genuine solitons). 

Some examples in (2+1) dimensions are the Kadomtsev-Petviashvili equation [62] and 

the modified chiral model [26]. The last system is the subject of this chapter and w i l l be 

described below. 

U n t i l now, nontrivial scattering of solitons occurs mostly i n nonintegrable systems 

which is far f r o m simple. The question that arises is whether this type of scattering can 

occur in integrable models too. There are some l imi ted examples of integrable systems 

where soliton dynamics can be nontrivial . In (1+1) dimensions there many models which 

possess nontr ivial soliton-like solutions (cf. [63]); like the boomeron solutions [64], which 

are solitons w i t h t ime dependent velocities. In (2+1) dimensions there are the dromion 

solutions [65] of the Davey-Stewartson equation, which decay exponentially in both spatial 

49 
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coordinates and interact in a nontrivial manner [66, 67]; and the soliton solutions [68] of 

the Kadomtsev-Petviashvili equations, whose scattering properties are highly nontr ivial . 

I n the present work we are going to construct families of soliton solutions for the 

(2+l)-dimensional modified chiral model and observe the occurrence of different types of 

behaviour. This happens since the solitons in this system have internal degrees of freedom 

which determine their orientation in space; do not affect the in i t i a l energy density; and 

are important i n understanding the evolution as a whole. Therefore, they can interact 

either t r iv ia l ly or nontrivially, depending on the orientation of these internal parameters 

and on the values of the impact parameter defined as the distance of closest of approach 

between their centres in the absence of interaction. Namely, i f two in i t i a l soliton-like 

structures are sent towards each other at zero impact parameter, then, as most numerical 

simulations have shown, the outgoing structures emerge at 90°. 

To proceed fur ther let us recall the system. The modified SU(2) chiral model studied 

by Ward is given by the field equation 

W + £ ^ V a ) d f l ( J - 1 d l l J ) = 0, (4.1) 

where Va = (0 ,1 ,0) . This is an alternative expression of (2.16). Recall that , this is the 

chiral equation wi th torsion term and has the same conserved energy-momentum vector 

as the chiral field equation. In fact, the corresponding energy density is 

£ = - | t r [ { r ' J t f + ( J ~ l J x ) 2 + ( J - 1 Jy)2} , (4.2) 

which is identical to (2.21). I t should be emphasized that £ is a positive-defined functional 

of J , and hence a conserved energy exists which is the integral of the energy density over 

the spacelike plane a;0 = const. The boundary conditions are chosen so that the field 

configuration has finite energy. Hence, we require that J be everywhere smooth and of 

the f o r m (2.18), i.e. 

J = J 0 + J^ey-1

+0{r~2), (4.3) 

at spatial inf ini ty , w i t h x + iy — r e'e. 

As we have already shown in chapter 1, equation (4.1) admits solitons, localized in 

two dimensions, w i t h t r iv ia l scattering, i.e. each soliton suffers no change in velocity and 

no phase shift upon scattering. I t is the purpose of this chapter to construct new soliton 
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solutions for (4.1), and investigate their scattering behaviour. Such solutions are localized 

along the direction of motion; they are not however, of constant size: their height, which 

corresponds to the maximum of the energy density £ , is t ime dependent. 

The rest of the chapter is arranged as follows. In the next section we shall briefly discuss 

the integrabili ty properties of (4.1), and write down a family of mult isol i ton solutions as 

configurations that are the l imi t ing cases of the ones already obtained using the standard 

method of Riemann problem with zeros [26]. In section 4.3 we construct two families of 

mult isol i ton solutions w i t h nontrivial scattering; in particular, for the first one we prove 

that in all head-on collisions the N moving structures undergo ir/N scattering. In section 

4.4 we construct a mixture of soliton-antisoliton solutions, and in section 4.5 we discuss 

their dynamics and scattering properties. We finish the chapter w i t h a short section 

containing our conclusions. 

4.2 Construction of Soliton Solutions 

The integrable nature of equation (4.1) means that there is a variety of methods for 

constructing exact solutions. Together w i th Riemann problem with zeros [26], both twistor 

techniques [27] and a f u l l inverse scattering formalism [28] have been applied to the model. 

This section indicates a general method for constructing soliton solutions of the modified 

chiral model (4.1). The technique is a variation of that in [26, 44], where Ward (following 

a pioneering idea of Zakharov and his collaborators [34, 35]), has generated an explicit 

solution representing a head-on collision of two solitons which undergo 90° scattering. 

We have seen that the nonlinear equation (4.1) is integrable in a sense that i t may be 

wr i t ten as the compatibi l i ty condition for the following linear system 

which is identical to (2.22). Recall that, ip(\,u,v,x) is an unimodular 2 x 2 matr ix 

funct ion satisfying the reality condition given by (2.23), i.e. 

and A and B are 2 x 2 anti-hermitian trace-free matrices depending on (u,v,x). The 

Lip = (Xdx - du)ip = Aip, 
Mi> = {\dv - dx)i> = B$, 

(4.4) 

ip(\,u,v,x) rp(\, u,v,x t (4.5) 
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integrabili ty conditions for (4.4) implies that there exists a J such that 

A = J ~ l J u , B = J " 1 J*, (4.6) 

and that this J satisfies the equation of motion (4.1). Comparing (4.4) and (4.6), we 

see that J can be identified w i t h ^ ( O ) - 1 . The reality condition on J follows f r o m an 

analogous conditions on namely (4.5). So the idea is that i f we can f i nd a such 

that the reality condition (4.5) holds, and such that A = (Ltp)^-1 and B = (Mip)^-1 be 

independent of A, then J = ^ ( O ) - 1 is a unitary solution of (4.1). 

I n order to construct multi-soliton solution one may assume that the funct ion ip has 

simple poles i n A, or in other words must possess the fo rm (2.26), i.e. 

n Mi 
W ) = ' + E ; H r ' ( 4 - 7 ) 

k=iA -

where Mk are 2 x 2 matrices independent of A. This leads to an n-soliton solution, i n which 

the velocity of the fc-th soliton is determined by the complex constant one consequence 

is that there is no scattering [26]. The components of the matr ix Mk are given in terms 

of a rational funct ion fk of the complex variable u>k — x + + fx^ 1v. Roughly speaking, 

/fc(cjjt) describes the shape of the k-th soliton. (For more details, see section 2.3.) 

A l l this assumes that the parameters are distinct, and also Ji^ ^ pL{ for al l k, I. 

In this chapter examples are given of two generalizations of these constructions: one 

involving higher-order poles in / i ^ , and the other where jik ^ Hi-

Let us look at an example i n which the function ip has a double pole in A, and no 

other poles. So we take tp to have the fo rm 

* = / + £ ( l ^ F ' ( 4 ' 8 ) 

where Rk are 2 x 2 matrices independent of A. [This hypothesis can be generalized by 

taking the funct ion ij) to have a pole of order n in A.] 

I t has been proved [44] that tp given by (4.8) satisfies the reality condition (4.5) i f and 

only i f i t factorizes as 

* ' - ( , - H i f ) ( ' - B ! & ) ' (4'9) 
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where qk are two-dimensional row vectors and \\qk\\2 = qk • it- The same is true i f ^ ( A ) 

has a pole of order n: the reality condition is satisfied if and only i f i f ) factorizes into n 

simple factors of the type appearing in (4.9). This is an example of a two-uniton. 

The idea of n-uniton was introduced in connection w i t h f inding SU(N) chiral fields on 

R 2 [46], and i t extends naturally to the corresponding system on R 2 + 1 [27]. For SU(2) 

chiral fields on R 2 , i.e. the static version of this system, one-uniton is enough (the static 

soliton is a one-uniton). The original reason for introducing n-unitons was that they 

are needed for static SU(N+1) chiral fields [46]. Higher unitons are also needed for the 

time-dependent SU(2) case. 

The qk have to satisfy a condition, which amounts to saying the matrices A = ( L i f ) ) ^ - 1 

and B = (Mif>)if>~x are independent of A. One way of obtaining qk w i t h this property is as a 

l i m i t of the simple-pole case (4.7) w i th n = 2. The idea is to take a l i m i t fik —• fl- In order 

to end up w i t h a smooth solution i f ) for all (u, v, x), i t is necessary that / 2 ( ^ 2 ) _ / i ( < ^ i ) - • 0 

in this l i m i t . I f we arrange things carefully the l im i t gives a solution of the double-pole 

type (4.9). 

I n our case, w i th n = 2, we put / i i = fi + e, fx2 = M — £ and wri te f\{u}\) — / ( ^ I ) , 

/ 2 ( u ; 2 ) = f(u>2), w i th / being a rational function of one variable. I n the l i m i t e —> 0, i f ) 

has the fo rm (4.9), w i t h 

91 = (1 + l / l 2 ) ( l , / ) + V (/* - / * ) ( / , - 1 ) , ( 4 < 1 Q ) 

92 = ( 1 , / ) , 

where 

? = { u - ^ v ) f \ u ) . (4.11) 

Here / is a rational funct ion of u = x + fiu + n~xv, while f'(u)) denotes the derivative 

of f ( u ) w i th respect to its argument. As a result, we have a solution J = ^ ( A = 0 ) _ 1 

depending on the complex parameter // and on the arbitrary funct ion / . In fact, i t has 

the f o r m of the following product 

j = (i + ^ ^ 4 n i r ) ( 1 + . (4-12) V A * INI 2 J V A * Ikill / 
w i t h qk given by (4.10). Notice that J takes values in SU(2); is smooth everywhere 

on R 2 + 1 (mainly because, the two vectors q\ and q? are nowhere zero since they are 

orthogonal); i t satisfies the boundary condition (4.3); and the equation of motion (4.1). 
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To start w i t h , and in order to illustrate the above family of soliton solutions, let us 

examine two simple cases, by giving specific values to the parameters f.i and f(oj). [The 

complex parameter \i determines the velocity of the "centre-of-mass" of the system.] 

o Let us take \i = i (which corresponds to the "centre-of-mass" of the system being 

stationary) and f ( u ) = u, thus u = z and ip = t, where z = x + iy; r2 = zz. 

Therefore the row vectors (4.10), become 

ft = ( l + r 2 ) ( l , * ) - 2 i t ( * , - l ) , ( 4 1 3 ) 

92 = ( M ) . 

In this time-dependent solution, for t negative, a ring structure w i t h reducing radius 

is obtained, which deforms to a single peak at t = 0 and thereafter expands again to 

a ring. Figure 4.1 presents few pictures of the corresponding energy density at some 

representative values of t ime. Ring structures occur in the soliton scattering of many 

nonintegrable planar systems [57, 59] and are an approximation of two solitons. 

This picture can be confirmed by looking at the energy density of the solution, which 

is 

r * + 2 r 2 + 4* 2 (2r 2 + l ) + l 
fc 1 0 [ r4 + 2 r 2 + 4 * 2 + l ] 2 ' 1 J 

Notice that the energy density is time-reversible and rotationally symmetric (see 

below); and also that, i t goes like £ = 0(r~4) as r —> oo, which is the case for all 

the solutions described in this chapter. 

For large (positive) t, the height of the ring (maximum of £) is proportional to 1/t, 

while its radius is proportional to y/t. This is obvious since, for r 2 < < £ 2 , the energy 

density becomes 

£ ~ 1 2 8 P T J ^ ' ( 4 ' 1 5 ) 

and its local maximum, i.e. d£/dr = 0 gives that r m a x oc y/i. Substituting, then, 

r m a x in (4.14) leads to £ m a x oc 1/t (which corresponds to the height of the soliton); 

while by solving £ = £max/2 °ne may find that the ring radius is proportional to y/i. 

o Accordingly, let us take /x = i and f(u>) = LO2. Thus, the row vectors (4.10) are 

ft = ( l + r 4 ) ( l , ^ 2 ) - 4 z ^ ( z 2 , - l ) , 

<Z2 = ( M 2 ) - ( } 

Here, for negative t, a single peak occurs w i t h an additional r ing, which changes 

to a r ing structure at t — 0 and reverts back to the original f o rm , for positive t 
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Figure 4.1: The energy density £ (4.14) at increasing time. 
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(see Figure 4.2). However, these rings are not radiation since they travel w i t h speed 

less than that of l ight. In fact, for large (positive) t, their velocity is approximately 

proportional to t~2lz. [Note that we have set the velocity of the l ight , c, equal to 

the unity, so that in all our calculations we can use dimensionless quantities.] 

This leads to an energy density, which is 

c a r10 + lSt2r8 + 2re+At2ri + r2 + 2t2 

t = 64 ~ . (4.17) 
[ r 8 + 2 r 4 + 16* 2r 2 + l ] 2 V ' 

Again, £ has the same symmetries as in (4.14). For large (positive) t, the height of 

the soliton peak is proportional to t2 and its radius is proportional to I ft; while the 

soliton ring spread out, becoming broader and broader, w i th height proportional to 

t~2/3 and radius proportional to t 1 / 3 . 

Finally, a general concluding remark should be made. Although (4.1) is not rotation-

ally symmetric i n the zy-plane; when f ( z ) = zp the field J (4.10,4.12) is invariant under 

the transformation z —> e'^z, since 

e ^ / 2 0 \ . / e-W2 0 \ 1 f i . 
0 e-i*P/2 )J[o ei*P/* j • V-l*> 

This transformation does not affect the equation of motion (4.1) due to the chiral 

symmetry J —> K JT where K and t are constant SU(2) matrices. The main features of 

this time-dependent solution may be inferred as follow. I f r is large, the field J is close 

to its asymptotic value J 0 , as long as 2 f / ' / | / | 2 —» 0. But as 2 £ | / ' | / | / | 2 ~ 1, J departs 

f r o m its asymptotic value Jo and a ring structure emerge wi th radius proportional to 

( 2 * p ) 1 / ( p + 1 ) . 

J - J ' 

4.3 Soliton-Soliton Scattering 

We now move on to the more interesting question of scattering processes. I n fact, we 

w i l l use the method of section 2 to construct solutions of (4.1) representing scattering 

solitons. We w i l l see that, in all head-on collisions of N moving solitons the scattering 

angle is 7r/Af. Moreover, when the N solitons are very close together, and in particular, 

when they are on top of each other the lumps which represent them merge together to 
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fo rm a ring-like structure. Then, instead of moving towards the centre, they emerge f r o m 

the ring in a direction that bisects the angle formed by the incoming ones. As we have 

already mentioned this nontrivial scattering is not usual in an integrable theory, but is 

exceptional. 

The scattering solutions arise i f we take a solution of the simple-pole case (4.7) w i t h n = 

2, put fii = n + e, fi2 = M ~ e a n d take the l im i t e —• 0. The constraint ^ ( ^ 2 ) — /i(<^i) —• 0 

as e —• 0 has to be imposed, in order for the resulting solution if; to be smooth for all 

(u,v,x). So let us wri te fi(ui) = / ( ^ i ) + sh(u>i), /^(u-^) = f i ^ ) — e/i(u>2), where / and 

h are both rational functions of one variable (the examples of the previous section had 

h = 0). Once again J is given by (4.12), w i th the 2-vectors qk given by 

g1 = (i + l/l a)(i,/) + *(M-M)(/,-i), ( 4 1 9 ) 

<?2 = ( 1 , / ) , 

where $ = ip + h{u>) w i t h (p given by (4.11). So this solution belongs to a large family, 

since one may take / and h to be any rational meromorphic functions of to. Note that 

J is smooth on R 2 + 1 and satisfies its boundary condition, irrespective of the choice of / 

and h. 

I t may seem strange that one can take the l im i t of a fami ly of soliton solutions w i t h 

t r iv ia l scattering, and obtain a new one wi th nontrivial scattering. Thus, i t is interesting 

to study how the solitons are affected by varying e. To do so, let us take a solution of the 

simple-pole case (4.7) w i th n = 2, put / i i = i + e, / j 2 = i — £j while taking fk = u>k] and 

study how the configuration of the two in i t ia l well separated solitons changes as e —• 0 at 

a f ixed t ime (t = —15). Figure 4.3 shows that as e —> 0 the solitons disperse, shift and 

interact w i t h each other. In other words, their internal degrees of freedom as well as the 

impact parameter change in this l i m i t , making the process highly nontr ivial . 

As an example, let us present two typical cases. 

o Let us take pL = i, f(w) = to and h(u) = u3; thus $ = t + z3. For r large, J is equal 

to its asymptotic value Jo, as long as i?/z 3 = 1 + t / z 3 « 1, but as z appi-oaches 

any of the three cube roots of —t then $ —> 0, while J departs f r o m its asymptotic 

value Jo, and three localized solitons emerge. For t negative, the three solitons 

are approximately at the points: ( ( - t ) 1 / 3 ^ ) , ( - ( - t ) 1 ! 3 , ±-y/3 ( - * ) 1 / 3 ) ; while for * 

positive, the solitons are at ( - i 1 / 3 , o ) , ( t 1 / 3 , ± y / 5 * 1 / 3 ) . 
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Figure 4.3: Energy density € at t = — 15, for soliton-soliton interaction by varying e. 
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More information can be deduced f r o m the energy density, which is 

£ = 16[2r 8 + 16 r 6 - | -19 r 4 + 2r 2 ( l4-8a;?/^) + 4 t 2 ( l + 2 r 2 ) + l + 8a:t/4t 

-8x5t - 16tx(x2 - y2)]/[4r6 + r4 + 2 r 2 + At2 + 1 + 8tx(x2 - 3y2)}2. ( > 

The density £ is symmetric under the interchange t \—> —t, x i - > — x and y i—> —y. 

For small (negative) the solitons fo rm an intermediate state having the shape of 

a ring w i t h three maxima on the direction of the incoming solitons which deforms 

to a circularly-symmetric ring at t = 0 and then energy seems to flow around, unt i l 

three other maxima are formed in the transverse direction, for small (positive) t. 

Figure 4.4 shows clearly the intermediate states w i t h three maxima. The three new 

maxima then give rise to three new solitons emerging at 60° to the original direction 

of motion. During the intermediate phase solitons lose their identity. 

Finally something has to be said about their size. For large (positive) i , their height 

is proportional to t~4/3, their radius is proportional to t1?3, while their speed is 

proportional to t~2/3: therefore, they spread out and slow down. 

e Accordingly, let us take \i = i while choose / ( w ) = u2 and h(ui) = LO3. Here J 

departs f r o m its asymptotic value Jo, when z approaches the values ±y/—2t or zero 

(since d = z(2t + z2) —> 0); and (again) three localized solitons emerge. I n this case 

though, i f t is negative, all three of them are on the x-axis at x ~ ±y/—2t and at the 

origin; while i f t is positive, they are on the y-axis at y ~ ±\/2T and at the origin. 

So the picture consists of three solitons: a static one at the origin, w i t h the other 

two accelerating towards the origin, scattering at right angles and then decelerating 

as they separate. 

This can be observed f r o m the energy density, which is 

£ = 32[ r 1 2 + 2 r 2 ( r 8 + r 6 + 1) + 3 6 t 2 r 8 + 4 r 6 + 9 r 4 + 8* 2r 4 + At2 + 12t(xw - yw) 
+4t(x2 - y2)(3 + 2x2y2 + 6x4y4) + M(x6 - y6)(9x2y2 - 2) - yw)]/[r8 + 4 r 6 

+ 2 r 4 + lQtr2(t + x2 - y2) + l ] 2 . 

(4.21) 

Here £ is symmetric under the interchange t i—• —t, x ^ y; therefore the collision 

is t ime symmetric, w i t h the only effect the 90° scattering (no phase shift; no radi­

ation). For large (positive) t, the height of the static soliton is proportional to t 2 

and its radius is proportional to I ft; while the moving solitons expand w i t h height 

proportional to t~2/3 and radius proportional to t l l 3 . 

I n Figure 4.5 we present some pictures of the total energy densities of three solitons 

during a typical nontrivial evolution. 
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Figure 4.4: Energy density at increasing time of the three-soliton system with 60° angle scat­

tering. 
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Figure 4.5: Energy density at various times of three-soliton system, with one being static at the 

origin. 
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In principle one should be able to visualize the emerging soliton structures when f(uj) = 

up and h(u>) = u>q, i.e. are rational of degree p, q £ N , respectively. In fact, for q > p 

the configuration consists of (p — 1) static solitons at the "centre-of-mass" of the system 

(if more than one, a ring structure is formed) accompanied by N = q — p + I solitons 

accelerating towards the ones in the middle, scattering at an angle of ir/N, and then 

decelerating as they separate. This follows from the fact that the field J departs from its 

asymptotic value J 0 when d = u;( p _ 1 )(p(u — \i~2v) + UJN) —> 0, which is true when either 

^(P-I) _ Q O R UN _j_ p ^u _ ^ - 2 u ) — 0; and this is approximately where the solitons are 

located. 

We conclude this section by investigating the corresponding case where has a 

triple pole (and no others). Therefore, it is taken to have the form 

« A ) = ' + £ ( i ^ - ( 4 ' 2 2 ) 

As we have already mentioned, the reality condition (4.5) is satisfied if and only if ift 

factorizes into three simple factors of the following type 

f - ^ / f ' A ( l - ? - * ^ * ? ) , (4.23) 

( A - N \m\\2 J V ( A - N \w\\ J 
for some 2-vectors q^. The requirement that the matrices A = (L^)^"1 and B = (Mtp)^-1 

should be independent of A imposes differential equations on <?/.; which are three nonlinear 

equations, and it seems difficult to find their general solution. 

One way of proceeding is to take a solution for the simple-pole case (4.7) with n = 3, 

put pL\ = i + e, jj,2 = i, H3 = i — £ and take the limit e —> 0. In order to obtain a smooth 

solution ip for all (u,v,x), it is necessary that fi(uji) — .^(u^) —• 0, f\{u>\) — ^ (u^ ) —> 0, 

^ 2 ( ^ 2 ) - /3(k>3) —• 0 as £ —> 0. So let us write /i(u>i) = f(ui) + sh(ujx) + e2 g(ui), 

f2{ui) = /(u> 2), / 3 ( ^ 3 ) = 1(^3) - eh(u3) + e2g(u>3), where / , h and g are rational 

functions of one variable. On taking the limit, we obtain a ^ of the form (4.23), smooth 

on R 2 + 1 and such that the matrices A and B be independent of A. 

Consequently, J = ^ ( O ) - 1 is a smooth solution of (4.1) of the form 



Nontrivial Scattering 64 

with qk being in terms of f ( z ) , h{z) and g(z) by 

q i = (1 + | / | 2 ) 2 ( 1 , / ) - 4i(b + id)(l + | / | 2 ) ( / , - 1 ) - 46 2 ( / 2 , - / - 2ib) - 8td6(l, / ) , 
ft = ( l + | / | 2 ) ( l , / ) - 2 t 6 ( / > - l ) , 
qs = (1 , / ) , 

(4.25) 

where 6 = i / ' ( z ) + and <f = t2f"(z)/2 + i(t - y)f'(z)/2 + i/i'(z) + 5 ( 2 ) . Note that the 

2-vectors 93 here correspond to the ones given by (4.19) for / i = i , respectively. 

Let us examine a sample example of this solution, since we may take / , h and g to be 

any rational meromorphic function of z. 

» Let us take f ( z ) = 0, h(z) = z and g(z) — z2; thus b — z and d = t + z2. This 

solution consists of two solitons coming in along the y-axis merging to form a peak at 

the origin and then two new solitons emerging along the x-axis. Figure 4.6 illustrates 

what happens near t = 0. 

The energy density of the system is, 

£ = 80r4 + 32(r 2 + t2) + 256*2r2 - 64t(x2 - y2) + 128*yr2 - 8y + 3 
[32r4 + 12r2 - 16yr2 + 16t2 + 16ty + 32t(x2 - y2) + l ] 2 ' ^ ' ' 

which has a reflection symmetry around the x-axis. For large (positive) t, £ is 

peaked at two points on the y-axis, namely y ±y/i. Moreover, the height of the 

corresponding solitons is proportional to 1/t, and their radius is proportional to y/f,; 

which means that the y-axis asymmetry vanishes at t —* 0 0 . 

4.4 Construction of Soliton-Antisoliton Solutions 

In this section we construct a large family of solutions which as we will argue later, can 

be thought of as representing soliton-antisoliton filed configurations. Roughly speaking, 

solitons correspond to / being a function of the variable z, and antisolitons correspond 

to a function of z. 

One way to generate a soliton-antisoliton solution of (4.1), is to assume that has 

the form 
T t nx ^m1 n2 ®m2 
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Figure 4.6: Energy density at increasing time when ip(X) has a triple pole (and no others). 
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Here nk, mk for k — 1,2 are complex-valued 2-vector functions of (t,z,z) (not depending 

on A). 

The idea is to find the n{,m\:... such that the reality condition (4.5) holds, and 

such that the matrices A = (Lip)^'1 and B — (Mip)^-1 are independent of A. One way 

of proceeding is to take the solution (4.7) with n = 2, put fii = i + e, /«2 = — i — e and 

take the limit e —> 0. In order for the resulting i\) to be smooth on R 2 + 1 it is necessary 

to take / i = f(tui), f2 = — 1 / / ( < ^ 2 ) — £ M ^ ) , where / and h are rational functions of one 

variable. On taking the limit e —> 0, we then obtain a ip as in (4.27) with mk — (m^m^) 

being holomorphic functions of z (or z), through the relations m 1 = (1, / ) , m 2 = (—/, 1), 

while 

1 2i(l + | / 1 2 ) 2w 
7 1 (1 + | / | 2 ) 2 + |u;| 2 m + (1 + | / | 2 ) 2 + |«;| 2 m ' 

2 2w 1 _ 2i(l + |/|2) 2 

n " " ( i + l / l 2 ) 2 + H 2 m " ( i + l / l 2 ) 2 + M 2 m ' 1 J 

with 

w = h f 2 + 2 t f . (4.29) 

So we generate a solution J = if>(\ = 0 ) - 1 , which depends on the two arbitrary rational 

functions / = f ( z ) and h = h(z). This solution has the form 

\w\2 + 2i(fw + fw) - (1 + | / | 2 ) 2 -2i(w- f2w) 

-2% (w - pw) \w\2 - 2i(fw + fw) - (1 + | / | 2 ) 2 

J = 
( i + 1 / | 2 ) 2 + H 

(4.30) 

with to given by (4.29). In general, by taking / ( z ) = z p and h(z) = zq where p is a 

positive integer and q is a non-negative integer; the energy, obtained by integrating (4.2), 

is E = (2p + q)8ir. Roughly speaking, the solution looks like (2p + q) lumps at arbitrary 

positions in the x?/-plane; which as we are going to see are a combination of solitons and 

antisolitons. 

A topological charge may be defined for the field J (4.30) by exploiting the connection 

of it with the 0(3) sigma model. Recall that, the (unmodified) chiral model (2.15) is 

equivalent to the 0(4) sigma model through the relation 

J = I(j>0 + i(r ><f>, (4.31) 

as we have already mentioned in (2.55). The only static finite energy solutions of the 

0(4) sigma model correspond to the embedding of the 0(3) sigma model [70]. Therefore 
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the only static solutions of ( 4 . 1 ) are the 0 ( 3 ) embeddings that we shall describe. This 

is because for the one-soliton solution (static or Lorentz boosted in the y-axis) the term 

in ( 4 . 1 ) proportional to V" is zero, so the system behaves like the 0 ( 4 ) model, for which 

the 0 ( 3 ) embedding is totally geodesic. [However, for time-dependent configurations, the 

term proportional to V a is non-zero and will affect the evolution of the field, which will 

in general not lie in an 0 ( 3 ) subspace of 0 ( 4 ) . ] 

To proceed further, let us mention the topological aspects of the 0 ( 3 ) and 0 ( 4 ) sigma 

models. In studying soliton-like solutions, we require that the field configuration has finite 

energy. If we compactify the fixed-time surfaces to a sphere by requiring the fields to tend 

to a constant value at spatial infinity, the classical field configurations at fixed time, are 

maps from S 2 into the target space and thus fall into disconnected homotopy classes. Now 

for the 0 ( 3 ) model, the field is a map <f> : S 2 —• S 2 , and due to the homotopy relation 

TT 2 (S 2 ) = Z , (4 .32) 

fields in different homotopy classes cannot be deformed continuously into each other. 

Though, they are classified by an integer winding number Af which is a conserved topo­

logical charge and counts how many times <f> spans S 2 as x runs all space. An expression 

for this charge is given by 

Af = (87T)-1 J d j <f> • {di<t> A dj<i>) d2x, (4 .33) 

where «' = 1,2 with x1 = (x,y). 

Although, for the 0 ( 4 ) model [the same argument is valid for ( 4 . 1 ) due to the topo­

logical aspects of the theory] the field at fixed time is a map (<^0, 4>) : S 2 —> S 3 and the 

corresponding homotopy relation is 

TT 2 (S 3 ) = 0, (4 .34) 

so there is no winding number. However, for soliton solutions that correspond to some 

initial embedding of 0 ( 3 ) space into 0 ( 4 ) , there is a useful topological quantity, as we are 

going to see. 

Consider the 0 ( 4 ) configuration which at some time corresponds to an 0 ( 3 ) embed­

ding, which we choose to be < 0̂ = 0 for definiteness. At this time the field is restricted 

to an S 2 equator of the possible S 3 target space. Suppose that the field never maps to 
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the anti-podal points { ^ 1 , ^ . 2 } = {<f>o = l ,^o = — 1} at any time, so the target space is 

SQ = S 3 — { ^ i , ^ } - Now SQ S 2 x R , and thus we have the homotopy relation 

TT^S 3,) = 7T 2 (S 2 X R ) = 7T 2 (S 2 ) © 7T 2 (R) = Z , (4.35) 

and therefore a topological winding number exists. An expression for this winding number 

is easy to give, since it is the winding number of the map after projection onto the chosen 

S 2 equator, i.e. 

Af' = (87T)-1 J etJ cj)' • A dj<l>') d2x, (4.36) 

where <f>' = (f)/\(j)\. If the field does map to the anti-podal points { ^ 1 , ^ 2 }
 a ^ some time 

the winding number is ill-defined at this time and if considered as a function of time Af' 

will be integer valued but may suffer discontinuous jumps as the field moves through the 

anti-podal points. In the following examples, before comparing the solution J given by 

(4.30) with the 0(3) embedding it is convenient to perform the transformation J —> M J 
1 1 . 

so that the evolution of the field remains close to the 0(3) with M = 

embedding. 
- 1 1 

4.5 Soliton-Antisoliton Scattering 

Usually in the nonintegrable models, there is an attractive force between solitons of op­

posite topological charge. In fact, if the solitons and antisolitons are well separated, then 

they attract each other and eventually annihilate into a wave of pure radiation which 

spreads with the velocity of light [57, 58]. However, the interaction forces between soli­

tons and antisolitons do depend on their configuration; in particular, they depend on the 

relative orientation between them in the internal space. Therefore, the cross section for the 

soliton-antisoliton elastic scattering is non-zero. [In the real world, the proton-antiproton 

elastic scattering is seen in a reasonable fraction of the cases.] This is the first example 

for which there has been constructed an explicit (since the system is integrable) solution 

of elastic soliton-antisoliton scattering in either integrable or nonintegrable model. As a 

result, it provides a major link between soliton dynamics in integrable and nonintegrable 

systems. 

The picture was, however, undetermined by some numerical solutions obtained through 

the connection of the modified chiral model (4.1) with the 0(3) sigma model [42]. This 
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reveal that soliton-antisoliton solution can also scatter at right angles. Since the system 

is integrable, one might expect there to be explicit solutions which exhibit nontrivial 

scattering. This section provided examples of such solutions. In particular, we will see 

that when a soliton and an antisoliton are moving along the x-axis towards each other at 

an accelerating rate, they merge at the origin and form a peak. Note that a peak is formed 

rather than a ring since the energy is mainly kinetic when a soliton and an antisoliton 

merge. However, rather than the peak dissipating in a wave of radiation it now reforms 

into two new structures which undergo 90° scattering. In general, in all head-on collisions 

of N moving soliton and antisoliton objects, the scattering angle is ir/N degrees relative 

to the initial direction of motion. 

Next we looked at two cases corresponding to the mixtures of solitons and antisolitons. 

[The configurations given by (4.30) when h(z) = 0 are equivalent to the ones obtained 

from (4.10,4.12) when f ( z ) = zp.} 

• First, let us take f ( z ) = z and h(z) = 1. Roughly speaking, if ?• is large, J is close 

to its asymptotic value Jo, as long as w/z2 = 1 + 2t/z2 « 1; but as z approaches 

±\/—2t then w —• 0, and J departs from its asymptotic value: this is where the 

two structures are located. More precisely, for negative t, the two objects are on the 

a?-axis, approximately at x w ± \ / — 22; while for positive t, they are on the y-axis, 

approximately at y « ± \ / 2 i . Figure 4.7 illustrates what happens near t = 0. 

The picture is consistent with the properties of the energy density of the solution, 

which is 

r _ i f . 2 r 4 + 4 r ' + 4 * 2 ( 1 + 2 r 2 ) " 4 t ( * 2 ~ y 2 ) + 1 u m 

[2r 4 + 2r 2 + U{x2 - y 2 ) + it2 + l ] 2 ' 1 ' 

Note the symmetry of £ under the interchange t i-> — t, x y; the time symmetry 

of the density confirms the lack of radiation. The corresponding localized structures 

are not however of constant size: for large (positive) t, their height is proportional 

to 1/t, while their radius is proportional to y/i. 

The projected topological charge Af' is zero throughout the scattering process and 

so at first sight it appears that the peak has reformed into a soliton-antisoliton pair. 

Indeed, this is what happens. If we examine the projected topological charge density 
q', i.e. 

Af' = J q'dxdy, (4.38) 
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Figure 4.7: Energy density at increasing time showing a 90° scattering between a soliton and 

an antisoliton. 
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we find that it has an almost identical distribution (up to a scale) to that of the 

energy density (see Figure 4.8(a)). Therefore, the configuration represents a soliton 

and an antisoliton which are clearly visible as distinct structures having respectively 

+ 1 and - 1 units of topological charge concentrated in a singe lump. 

One reason that the incoming and outcoming structures of the topological charge 

density appears quite different may perhaps be related to the asymmetry between a: 

and y coordinates in the equation of motion (4.1). 

Equation (4.1) is not Lorentz invariant and indeed is not even radially symmetric 

due to the presence of the vector Va which picks out a particular direction in space, and 

therefore one may expect to find different scattering behaviour for more general solutions; 

e.g., when the soliton and the antisoliton are moving along the x-axis rather that the 

y-axis. However, this is not true since (4.1) is a reduction of the self-dual Yang-Mills 

equation in R 2 + 2 which does have an S0(l,2) symmetry. Therefore, the S0(2) symmetry 

of the Yang-Mills system means that any given solution J, can in principle be converted to 

gauge fields by performing a coordinate rotation (together with a gauge transformation) 

and then recover the corresponding J' which will describe the same solution as J but with 

a rotated coordinate system. Indeed, this is what happens by taking 

f ( z ) = e ^ z , h{z) = 1, (4.39) 

where (f> is an angle in the aiy-plane. This picture presents a rotated version through any 

angle <f> in the xy-plane of the original one (i.e., Figure 4.7). 

» Finally, let us take f ( z ) = z and h(z) = z. The corresponding configuration consists 

of two antisolitons and one soliton (see Figure 8(b)). 

It is interesting to look at the time dependence of various energies in each process. 

The total energy, of course, is constant and it is the spatial integral of the following 

energy density 

£ = S[r8-rSr6-rllr4 + 4:r2 ~8xH + m y

2 ( x s + t) + 8t2 + ASxy2t + 2 
-16xH(x - t ) + 24xty4]/[re + r 4 + 2r 2 + U2 + ttx3 - \2xyH + l ] 2 . 

(4.40) 

Obviously, the energy density £ is symmetric under the interchanged (—> — t, x H-» —X 

and y i—> — y, only. Again all three structures come together forming a bell-like 

file:///2xyH
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Figure 4.8: Topological charge density at increasing times for (a) soliton-antisoliton scattering, 

(b) two-antisoliton one-soliton scattering. 
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structure and then emerge at an angle of 60° with respect to the original direction. 

However, by looking at the maximum of £ we observe that, for large (positive) i , 

the height of the localized structures is proportional to i ~ 4 / 3 , while their radius is 

proportional to t1^3; thus they spread out as they move apart. 

Figure 4.9 shows the results of a head-on collision of one-soliton two-antisoliton 

system. 

Let us conclude with the observation that, by taking f ( z ) = zp and h(z) = zq, J 

departs from its asymptotic value J0 when w = zp~1(2tp + z N ) —• 0 with N — p + q + 1, 

which is true when either z^p~^ = 0 or 2tp + zN = 0: this is approximately where the 

lumps are located. Therefore, J represents a family of soliton-antisoliton solution which 

consists of (p — 1) static soliton-like objects at the origin, with TV others accelerating 

towards them, scattering at an angle of 7r /TV, and then decelerating as they separate. 

4.6 Conclusion 

The infinite number of conservation laws associated with a given integrable system place 

severe constraints upon possible soliton dynamics. The construction of exact analytic 

multisoliton solutions with trivial scattering properties is a result of such integrability 

properties. In this chapter new soliton and soliton-antisoliton solutions have been obtained 

for the planar modified chiral model (4.1). These structures travel with non-constant 

velocity; their size is non-constant; and they interact non-trivially. Such results might be 

useful for connecting integrable and nonintegrable systems which possess soliton solutions. 

In addition, they indicate the likely occurrence of new phenomena in higher dimensional 

soliton theory that are not present in (1+1) dimensions. 

It seems likely that there are many more interesting solutions still to be found; an 

open question being what is the general form of the function ip when it has a higher-order 

pole in A. One could, for example, investigate the case n = 3 for ^>(A) with a single 

and a double pole; and determine the scattering properties of the emerging structures, 

in terms of their initial velocity and of the values of the impact parameter. Finally, it 

would be of great interest to deduce the general form of the function if>(\) for the soliton-
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antisoliton case (4.27) with the only constraint to satisfy the reality condition (4.5) and 

the requirement that the matrices A = (Lip)^'1 and B = ( M ^ ) ^ - 1 be independent of A. 



Chapter 5 

A Novel Discrete 0(3) Sigma Model 

5.1 In t roduct ion 

The nonlinear 0(3) sigma model in (2+1) dimensions is a popular model in theoretical 

physics; the static system is integrable and of Bogomol'nyi type (all minimal energy 

solutions can be obtained by solving the Bogomol'nyi equations). As a result, one can 

explicitly write down soliton solutions of arbitrary degree in term of rational functions 

[36]; but the model is scale invariant and therefore, its solitons have no fixed size and so 

their stability is a central question. There is a possibility that under small perturbations 

they could shrink towards infinitely tall spikes of zero width or may spread out, with this 

expansion continuing indefinitely. That this indeed happens is confirmed by numerical 

experements [38, 71]. General time-dependent solutions cannot be constructed explicitly, 

and so it is natural to investigate numerical evolution techniques which discretize the 

partial differential equations. 

Given a continuum field theory, there are many different lattice systems which re­

duce to it in the continuum limit. In systems where there are topological configurations 

(instantons, monopoles, etc) one often has a Bogomol'nyi bound which is related to the 

stability of the topological objects in question. If the bound is maintained on the lattice, 

the topological objects will be well-behaved even when their size is comparable to the 

lattice spacing. Lattice versions of these systems are important for purposes of numerical 

computations but they have, generally, not preserved the Bogomol'nyi bound. The object 

76 
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of this chapter is to present a lattice version of the 0(3) sigma model in two space dimen­

sions, in which the Bogomol'nyi bound is maintained. The primary aim is not to simulate 

the continuum system, but rather to define an alternative, genuine lattice system with 

similar properties but more convenient to study numerically. 

Few years ago, Leese [72] discretized the (unmodified) 0(3) sigma model in (2 + 1) 

dimensions. He imposed radial symmetry, made the radial coordinate r discrete and found 

a induced lattice system with Bogomol'nyi bound. But, although the topological lower 

bound can be attained, the minimum-energy configurations are not explicit. On the other 

hand, Ward [73, 74] described a lattice version of this model with Bogomol'nyi bound, 

without any symmetry constraint. In this general case, however, the lower bound cannot 

be attained. 

In this chapter, we describe an alternative discrete 0(3) sigma model in (2 + 1) dimen­

sions which maintains an important feature of the continuum model, i.e. the Bogomol'nyi 

bound, and admits explicit minimum-energy configurations. So this lattice 0(3) sigma 

model is quite different from the ones described above. Following Leese, only field config­

urations for which the energy density (and not necessarily the fields) is radially symmetric 

will be considered here, so that in effect one obtains a one-dimensional system and there­

fore, the construction of the discrete Bogomol'nyi equations is less complicated. Solutions 

of these equations (which were obtained analytically) are then used as the basis for a 

numerical study of soliton stability. 

The rest of this chapter is arranged as follows. In the next section we describe initially, 

the familiar continuum 0(3) sigma model in (2 + 1) dimensions then reparametrize the 

fields in order to impose radial symmetry and, finally, discretize the model. In section 

5.3 we study the dynamics of the 2-soliton configuration at low shrinking velocities using 

the slow-motion (or geodesic) approximation, make approximate analytic predictions of 

its behaviour, and compare these with numerical results. In section 5.4 we investigate 

the properties of the lattice 0(3) solitons numerically, i.e. using numerical procedures for 

solving the evolution scheme. Unfortunately, due to the imposed radial symmetry in the 

xy-plane, we could not study scattering processes; but the scheme is still profitable on 

studying the soliton stability. We finish the chapter with a short section containing our 

conclusions. 
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5.2 The Lattice 0(3) Sigma Model 

Let us begin w i t h a brief review of the continuum 0(3) sigma model in two space dimen­

sions. The field <j> is a unit 3-vector field on R 2 (i.e. a smooth funct ion f r o m R 2 to the 

target space S 2 ) , w i th the boundary condition tj) —> d)0 as r —»• oo in R 2 (sufficiently fast 

for the energy to converge). Here <f>0 is some fixed point on the image sphere S 2 . Hence 

there are distinct topological sectors classified by an integer k (topological charge), which 

represents the number of times R 2 is wrapped around S 2 . Roughly speaking, k is the 

number of solitons. The potential energy of the field is 

Ep = ( 8 7 T ) - 1 J[(dx<f>)2 + {dy(j>)2\ dx dy, (5.1) 

and the appropriate Bogomol'nyi argument gives the bound Ep > \k\. There are fields 

which at tain this lower bound (such minimum-energy fields w i l l be called solitons i n what 

follows). Since Ep is invariant under the scaling transformation (f)(x^) t—> dy(Xx^) these 

configurations are metastable rather than stable (their size is not fixed). 

From now on we w i l l restrict attention to fields which are invariant under simultaneous 

rotations and reflections in space and target space. Thus we assume that (f> = (d>a, 4>s) 

w i t h a = 1, 2 is of the so-called hedgehog form 

4>a = sin g(r, t) F , cf>3 = cos g(r, t), (5.2) 

characterized by its topological charge k, defining the unit vector ka — (cos k0, sin&:#) in 

(5.2) in terms of the azimuthal angle 9; and by the real funct ion g of the polar coordi­

nates and t (so-called profile function) which satisfies certain boundary conditions. The 

corresponding potential energy of the field (5.2) is 

1 f°° k2 

Er = ~A (r g,2 + -sin2 g)dr, (5.3) 
4 Jo r 

where g' = dg/dr. (This is normalized so that a static configuration has k energy). The 

boundary conditions are g(0,t) = 7r, in order to ensure a unique definit ion of <j> at the 

origin and g(r,t) —* 0 as r —> oo, so that Ev converges. 

The standard Bogomol'nyi argument [75] is 

0 < 
k 1 O O T O O 

/ {V~rg 
Jo 

g f d r + sm 
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k f°° 
Ep — — I dr(cosg) dr 

2 Jo 

— E„ — k. (5.4) 

So the energy Ep is bounded below by k; and Ep equals k i f and only i f g' = —k sing/r, 

the solution of which is the static &-soliton configuration 

g(r) = 2arctan 5 (5.5) 

located at the origin, w i t h a being a positive real constant which determines the soliton 

size. I f a is large, the soliton configuration is flat and broad; while i f a is small, i t is t a l l 

but narrow. I n fact, the height of the configuration (maximum of the energy density) is 

proportional to a~2^; while its radius (width) is proportional to a1^. Notice that, for 

k = 0 the f ield is constant and the energy density is zero everywhere; while for k = 1 the 

configuration looks like a lump peaked at the origin; and for k > 1 i t is a r ing centered 

at the origin. In what follows, we w i l l assume that in all cases k > 0, since taking k = 0 

does not test the abil i ty of the model to handle nontrivial topologies. 

So far all we have done is to re-express the fc-soliton solution in terms of a real f ield 

g, which is a funct ion of the polar radius r. I t w i l l now been seen how this description is 

useful in constructing discrete analogues of the Bogomol'nyi equations. From now on, r 

becomes a discrete variable, w i th lattice spacing h. More precisely, r = nh w i t h n > 0; 

h may be regarded as a dimensionless parameter in the model; while the real f ield g 

is defined at each lattice site. The subscript + denotes forward shift , i.e. g+(r, t) = 

g(r + h,t) = g((n-\- l)h,t); and so the forward difference is given by Ag = (g+ — g)/h. To 

obtain a lattice version of the Bogomol'nyi bound, we may begin w i t h the same funct ion 

cosg as appears in (5.4), and reconstruct the inequality. One way, (motivated by [76]) is 

to choose a factorization 

k(Acosg) = -DnFn, (5.6) 

where Dn —> \frg' and Fn —> ksmg/y/r in the continuum l im i t h —> 0. Then define the 

potential energy of the lattice 0 (3 ) sigma model field to be 

Ep = jY,{Dl + K) • (5-7) 
* 71=0 

As in the continuum case, i t follows that Ep is bounded below by k (wi th soliton boundary 

conditions); and the m i n i m u m is attained i f and only i f Dn + Fn = 0. 
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Due to the fact that k(Acosg) = — 2k/h s i n ( 2 i y ^ ) s i ^ ^ 1 ^ ) , the most natural choice 
2 

seems to be 

2f(h)y/n . fg+-g 
Dn = 7=— sin 

Vh V 2 

Fn = ^ sin ( g ± ^ , ) > n > 0 , (5.8) 
f{h)Vhn \ 2 

where / ( / i ) is an arbitrary function of the lattice spacing w i t h constraints f(h) -> 1 as 

h —+ 0 and / ( / i ) > yJk/2 (see below). Remark: this implies that k < 2. The origin must 

be treated in a special way since (5.8) are undefined when n = 0. One possibility is to 

arrange that D0 + F0 — 0 identically. So choose 

Substituting these into (5.7) gives 

£ p = fccos ( - ^ - j + g t / n s m ( ^ - ^ - j + — sin ( ^ - J ] , (5.10) 

which reduces to (5.3) in the continuum l i m i t . [Notice that, for models w i t h different 

lattice spacing the effect of f(h) is to decrease the importance of the s in 2 g term in the 

energy density, although the total energy is s t i l l the same as i n the continuum l i m i t , i.e. 

k in our units.] 

So the real-valued field g(r, t) depends on the continuous variable i , and the discrete 

variable r. The kinetic energy can be defined by the simple choice 

h2 °° 
Ek = T E n 9 \ (5 -H) 

^ n=l 

where g = dg/dt. The boundary condition on g is that i t should tend to zero at spatial 

inf in i ty ; this guarantees f ini te energy. For such fields, the total energy Et = Ep + Ek 

is bounded below by k ; and this lower bound is attained i f and only i f g = 0, and 

Dn + Fn = 0 for n > 0. [Recall that D0 + F0 = 0 identically.] 

This latter condition, i.e. Dn + Fn = 0, is called the Bogomol'nyi equation. I t is a first-

order difference equation, whose solutions (for the aforementioned boundary conditions) 

minimize the potential energy, and therefore, are also solutions (static ones) of the Euler-

Lagrange equations 
oo 2 

J2ng(nh,t) = - - - ^ - , (5.12) 
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since dEvjdg = 0 at a min imum. So using the discrete Bogomol'nyi equations one gets 

first-order equations whose solutions are also static solutions of the second-order equations 

of motion. Moreover, these solutions have energy which is at its topological m i n i m u m 

value. 

The Bogomol'nyi equation Dn + Fn = 0, may also be wr i t ten as 

g+ 2 f 2 n-k g n , 
t a n y = 2 p ^ n t a n 2 ' n > 0 ' ( 5 - 1 3 ) 

f r o m which one sees that the function f(h) should be greater than \Jk/2 i f one is to obtain 

a well-behaved solution. For k > 2, one may choose f(h) to have an appropriate f o r m 

such that a well-behaved solution to exist; however, the corresponding lattice system does 

not have the correct h —> 0 l i m i t (i.e. does not reduce to the continuum system). A n 

alternative way is to take, again, f(h) = 1 + h w i t h the additional constraint h > yJk/2 — 1. 

The solution of (5.13) can be wri t ten down explicitly, (by setting g(nh) = 2arctan2 7 l 

and solving the reduced linear difference equations wi th variable coefficients) one gets 

that 

{ 7T, n = 0, 

(5.14) 
2 a rc tan (z i^ r i ) , n > 0, 

where 
_T(n-k/2p)T(l + k/2p) 

n T(n + k/2P)T(l-k/2PY { j 

and zi is an arbitrary positive constant which specifies, as in the continuum case, the soli-

ton size. This is a static lattice k-soliton solution located at the origin; which corresponds 

to a m i n i m u m of the energy in the k sector and thus, i t is stable under perturbations which 

remain in that sector. So there are a large family of models having static solutions of the 

f o r m (5.14) since one may take / to be any function of h. Although, the corresponding 

lattice profile funct ion tends to g(nh) —> 2 a r c t a n ^ i / n ^ 2 ) as n —> oo which reduces to 

(5.5) i n the continuum l i m i t i f and only i f f(h) is close to unity; i.e. f(h) = 1 + 0(h) for 

small h. Hence, we w i l l take in the k = 1 sector the funct ion f(h) to be constant and 

equal to unity, for any h; while in the k = 2 sector to be f(h) = 1 + h, for small h. 

I t would be nice to have a lattice analogue of the configuration wid th a1/*, which 

appeared in (5.5). One possibility is to set 

an = (nh)ktsm^^-, (5.16) 
Li 
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and then to define a = l i m ^ o o an, provided this l i m i t exists. Indeed, a is proportional 

to z\ h^. I f Ep — Y^=oEpn-> t n e energy density at the origin is EPo = k(l + z 2 ) - 1 ; 

therefore, EPQ is close to the Bogomol'nyi bound as z\ —> 0 (i.e. EPo k ) while at 

all other sites EPn = 0 (highly localized soliton). In addition, EVn i—> 0 as z\ —> oo. A 

diagram i l lustrat ing the profiles of the function g(nh) and the energy densities profiles 

are represented in Figure 5.1 for k = 1 and k — 2 w i t h z\ = 15 and h = 0.19. 

The situation we wish to study is that of an isolated perturbed static £-soliton con­

figuration and investigate the effects of the perturbation. As i t costs them no energy 

to shrink or expand they can shrink to almost a zero wid th configuration in the energy 

density plot. As the soliton configuration is described by a few points on a lattice i t is 

diff icul t to decide what is meant by its wid th and how to calculate i t . I n the continuum 

systems, is defined as the radius of the soliton. In this case, the field configuration can 

shrink to almost a delta funct ion in the energy density plot. The lattice analogue w i l l be a 

field configuration w i t h g(0,t) = 7r (due to the boundary conditions) and g(nh,t) = 0, for 

n > 0. In fact, this corresponds to a spike soliton (of almost zero width) in the continuum. 

Since, there is no explicit solution in this case, one has to resort to approximation, or 

to numerical solutions of the equations of motion (5.12), namely 

1 k2 

g = [k sin g{h,t) + f2sm(g{2h,t)-g(h J))]-^j^sm(g{2h,t)+g(h,t)), n = 1, 

P\ • < \ / u • i w k2 s i n ( g + + f f ) s i n ( g + g_) 
ng = — [ n s i n ( J + - p ) - ( n - l ) S i i i ( ( / - f f . ) ] - — [ + _ - — — - ] , n > 1. 

(5.17) 

5.3 The Slow Motion Approximation 

The most important question about a fc-soliton configuration is whether or not i t is 

stable. Since the energy in the k topological sector is bounded below by k, and the 

static configuration energy satisfies this bound, the only way that g can change (roughly 

speaking) corresponds to a (or z\) changing for the continuum (or lattice) model. W i t h 

this observation in mind , one may write down a more general fami ly of radially symmetric 

configurations, by allowing a (or zi) to be a funct ion of t. So the question is i f one starts 
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Figure 5.1: (a) Profiles of g for topological charges k = 1,2. (b) Profiles of the energy densities 

EPn/(2nnh) for the charges in (a). The = 2 energy density is ring shaped. 
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w i t h a configuration located at the origin and perturbs its shape, does the soliton stay 

close to the in i t i a l configuration for all tl A n d i f i t does not, what is the rate of changing? 

There is a fundamental difference between the cases k = 1 and k > 1, which becomes 

apparent when one considers the so-called slow-motion (or geodesic) approximation; orig­

inally proposed in connection w i t h monopole scattering [77, 78]. In this scheme one 

assumes that the field g is a static solution like (5.14), but slightly perturbed. More pre­

cisely, since the energy is conserved, and due to the existence of the Bogomol'nyi bound, 

we may assume that a A;-soliton dynamics is obtained by restricting g to have the f o r m 

of (5.14), w i t h z\ now becoming a dynamical variable z\(t). [So the number of degrees of 

freedom is reduced to one.] These static solutions fo rm a manifold, which is equipped w i t h 

a natural metric coming f rom the kinetic energy, and the evolution is given by the resulting 

geodesies. Since every configuration of the fo rm (5.14) has the same potential energy, the 

kinetic energy may be taken as the Lagrangian; thus, the corresponding Euler-Lagrange 

equations are precisely the geodesic equations associated w i t h the aforementioned metric. 

This approximation is a good one i f the speeds are small (i.e. i f E^ is small compared to 

For k = 1, the requirement of finite kinetic energy means that z\ should be independent 

of t at spatial inf ini ty , so ruling out the slow-motion approximation. In other words, taking 

Z\ to be a funct ion only of t leads to a divergent kinetic energy. But when k > 1 there 

are sufficient powers of n in the denominator of (5.14) to keep the energy finite. For this 

case the slow-motion approximation has been considered in [40, 41] in order to study the 

dynamics of C P 1 (or equivalently 0 (3 ) ) lumps in (2+1) dimensions. Let us concentrate 

on the k = 2 topological sector, where two solitons are sit t ing on top of each other at the 

origin, forming a ring structure. The Lagrangian is 

Ep = k). 

L = Ek — Ep 

= l(Zl)zl-2, (5.18) 

where 
CO nZ 

n (5.19) 
n=l ( 1 + ^ ) 2 ' 

I n order for (5.19) to converge, one needs f(h) « 1 (since Zn i—> n 2 ^ 2 at spatial 

i n f in i t y ) . So let us wri te f(h) — 1 + h w i t h a relative small lattice step, i.e. h £ (0, 0.2). 
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[In fact, when the lattice spacing is small compare to the size of the topological solitons, 

then one is close to the continuum l imi t . ] Graphs of l(z\) for various values of h are given 

in Figure 5.2. 

The Euler-Lagrange equation of the system is 

2 l ( Z l ) zi + l'(zx) zl = 0 =>• z\ = const. (5.20) 

This may be reduced to quadratures: 

L vt 
\ 1(c) 

= Ah{zi), (5.21) 

where zi(0) = c, i i ( 0 ) = v. Recall that, z\ determines the configuration size which evolves 

w i t h t; more precisely, yfch is the in i t i a l wid th of the configuration and, v is the in i t i a l 

rate of change of the configuration wid th in each lattice site per unit t ime. In fact, v < 0 

corresponds to an in i t i a l contraction and v > 0 to an in i t ia l expansion. 

The funct ion Ah(zi) decreasing or increasing depending on the value of Zi(£); which 

corresponds to contraction or expansion of the configuration. I t is easily inverted to give 

the t ime variation of the configuration size (Figure 5.3), i.e. 

z1(t) = A?(vt). (5.22) 

Recall that , the lattice analogue of the configuration wid th is proportional to yfzih. 

I n fact, the t ime taken for the configuration to shrink f r o m the in i t i a l w id th to zero, i.e. 

to become a spike, is 

= (5.23) 
V 

Notice that, tc depends on the in i t ia l conditions, i.e. on the values of c and v. We believe 

that this approximation of fc-soliton dynamics is accurate for small \v\. 

The accuracy of the approximation has been tested numerically using a ful ly-expl ic i t 

fourth-order Runge-Kutta algori thm w i t h fixed t ime step 0.0053. The in i t i a l condition 

was a static 2-soliton profile whose wid th we perturbed to shrink w i t h in i t i a l velocity 

0.1 lattice site per unit t ime (u = —Q.lh). Simulations of duration 2985 t ime units were 

performed for h = 0.01. Inspection of the rate of change of z\{t) = ta,n(g(h,t)/2) reveals 

close agreement w i t h z\(t) calculated f r o m (5.22) (see Figure 5.4). 
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Figure 5.4: The time variation of \z\\ in the analytic slow-motion approximation (solid line), 

and also for the numerical evolution (dotted line). 

5.4 Dynamics of the Lattice 0(3) Solitons 

The slow-motion approximation is expected to fa i l at high velocities (except for small h). 

Therefore, we incorporate the notion of lattice soliton in a f u l l numerical evolution scheme 

and compare the results w i th the continuum behaviour as well as w i t h the ones obtained 

in the slow-motion approximation, for a single soliton and a 2-soliton ring. Throughout 

the simulations, the extensive use of the difference equations (5.17) have not revealed any 

instabilities (i.e. the tota l energy is conserved). 

The lattice formulat ion necessarily has a spatial boundary at n = n m a x , say. That 

means that, al l the quantities we are going to use in order to study the soliton dynamics 

w i l l be calculated w i th in some radius ( n m a x ) . Moreover, the infini te sums on the energies 

w i l l be truncated. In fact, for k = 1 the fmiteness of the grid imposes an art i f icial cutoff 

and, therefore, provides a finiteness i n the energy. 
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On the boundary though, the fields are taken to be fixed in t ime, i.e. 

g((nmas + 1) h, t ) = g({nmax + 1) A, 0). (5.24) 

These boundary conditions (so-called fixed boundary conditions) may appear severe, but 

they seem to be a sensible choice, especially, in the k = 1 sector. Recall that , for k = 1 

the expressions for the kinetic energy are divergent and so the slow-motion approxima­

t ion cannot be used. This feature also occurs in numerical evolutions in the sense that, 

i f one attempts to apply boundary conditions which allow the field to change wi th t ime 

at arbitrary distances, then the total energy of the system for k = 1, grows rapidly and 

without bound. Although, there are other options. For example, one may choose absorb­

ing boundary conditions or may place the boundary far enough f r o m the configuration; 

and, therefore, they w i l l be no radiation effects. But , in this scheme, the choice of the 

boundary conditions do not affect the numerical results. 

Moving on to the question of in i t ia l data, there are clearly many different types of 

perturbation which we could apply to the configuration, the only restriction being that 

we do not perturb the field close to the boundary. Since the evolution equations (5.17) are 

second order the in i t i a l data must specify the field values g(nh, t) and its t ime derivatives 

g(nh,t) at t — 0. So the field configuration at t = 0 is taken to be the static lattice 

configuration (5.14) but slightly perturbed, that means z\ \—> Z\ + vt in the k = 1,2 

sector. In fact, the imposed perturbation is 

9(nh,t)\t=0 = - — ^ - . (5.25) 
1 ' 1 n 

Physically the picture is this: there is a continuous interpolation between the inner region 

where v is the amplitude of the perturbation (same as in the slow-motion approximation) 

and the outer one where there is no perturbation at all . This class of perturbation reveals 

all the qualitative types of behaviour that can occur. 

So we have a fc-soliton configuration whose centre remains fixed, but whose radius 

decreases to a m i n i m u m (close to zero) and then increases again. More precisely, the 

in i t i a l perturbation (for v < 0) tends to shrink the configuration, while large burst of 

radiation travel outwards at the speed of light (see Figure 5.5), together w i t h a residual 

motion in the central region occupied by the soliton. When the radiation reaches the 

boundary, is reflected back (due to the fixed boundary conditions); reabsorbed by the 
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Figure 5.5: Radiation emitted by the 1-soliton solution. 

configuration (which expands) and then another pulse is emitted a short t ime later; and 

so the process repeats. The data were produced by the aforementioned Runge-Kutta 

algori thm for v = —0.1 and Zi = 1, on a lattice of unit spacing (h = 1) in the k = 1 

sector. In this case, the lattice spacing can be relatively large, without compromising the 

behaviour of the solitons. 

We are interested in the speed of the shrinking in detail. This has been part ial ly done 

for the continuum model (cf. [71]); therefore, i t would be interesting to compare our 

results w i t h these ones. I n order to analyze the results of the numerical simulations, we 

use the dynamical quantity, which corresponds to the value of the field at the first lattice 

point, i.e. g(h,t). Since we are on a lattice, the soliton w i l l be highly localized (i.e. a 

spike) when the profile funct ion at the first site (n = 1) w i l l become zero. Then, the 

soliton occupies essentially only one lattice site. 

I n Figure 5.6 we present the t ime dependence of the field g(h, t), for a single soliton and 

a 2-soliton configuration. The results are derived f rom a relatively small mesh n m a x = 200 

(in fact, they do not change for larger mesh sizes), for v = —0.1 and z\ = 1. In the single 
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soliton (k = 1) case, we make the simple choice f(h) = 1 whereas h = 1; while i n the 

2-soliton case, we take f(h) = 1 + h w i th h = 0.01. [Note that, Figure 6(b) corresponds 

to Figure 3 and Figure 4.] The field configuration saturates the Bogomol'nyi bound 

throughout the numerical evolution. Looking at the graphs we note that the two cases 

give very similar results, i.e. the curves are nearly straight, confirming the power law for 

the rate of shrinking; which are consistent w i th the ones obtained f r o m the slow-motion 

approximation, and f r o m the continuum model. Note that, since the lattice spacing h in 

Figure 6(b) is small compare to the size of the topological soliton (in contrast, w i t h Figure 

6(a) where the 1-soliton size is comparable to the spacing) the corresponding curve looks 

straighter. This follows f r o m the fact that the model is closer to the continuum one. 

5.5 Conclusions 

This study has revealed that, in the context of classical soliton dynamics the lattice 0 ( 3 ) 

solitons behave very much like the ones of the continuum model; which means that they 

are unstable under small perturbations due to the absence of a natural scale. However, 

the lattice model is a much better approximation of the continuum one; since the size 

of the lattice does not affect the t ime dependence of the dynamical quantities g(h,t). 

Moreover, the results show that the slow-motion approximation works very well for small 

velocities and for small lattice sizes (i.e. for small h). 

In the continuum, a more physical model can be obtained by adding a (2+l)-dimensional 

version of the Skyrme term to stabilize against configuration collapse, and a potential to 

stabilize against spread. Then the Bogomol'nyi bound remains valid but unsaturable. 

The lattice analogue model was discussed in [79]. This involves adding next-to-nearest-

neighbour couplings between lattice sites; but a fa i r ly small perturbation can induce the 

corresponding configuration to decay. Clearly, the technique of discretizing the Bogo-

mol 'ny i bound, i n order to obtain static solutions on the lattice, may be applied to other 

models that have nontr ivial topologies; like the Maxwell-Higgs model in (2+1) dimensions 

and the Skyrme model in (3+1) dimensions. Although, in higher dimensions i t seems to 

be much more diff icul t to find a lattice version of (5.4). 
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Figure 5.6: The variation of g(h, t) over the range (a) 0 < t < 12.6 for a slowly shrinking 1-soliton 

lump and (b) 0 < t < 16 for a slowly shrinking 2-soliton ring, for the numerical evolution. 



Chapter 6 

Outlook 

The possibility of the modified chiral model to be completely integrable, in the sense of 

there being a sufficient number of conserved quantities in involution; is discussed here. 

The modified chiral model (2.16) is Hamiltonian, as may be seen by the identification 

coordinates ( J ) : J(x,y,t), 

momenta (P) : P(x,y,t) = J _ 1 J j J _ 1 , 

Hamiltonian (H) : \ JJ[(PJ)2 + { J ~ x J x f + ( J ^ J y f ) dx dy, 

where the Hamil tonian is the integral of the energy density (2.21) expressed in the phase-

space coordinates. 

Recall that , the torsion term in this model is analogous to a background magnetic field 

in classical mechanics. Hence, we define a Poisson bracket on the space J-(M-) of mat r ix 

functions on the xy-plane A4, as 

, . n l 6A SB 6A SB . T , T . . T ,6A T ,8B, ,„ 
{ A ' B ] = IP • 11" U' IP ~ ( J U ' l J IF'J IF]' ^ 

which corresponds to the Poisson bracket for a charged particle in an external magnetic 

field (cf. [80]) The scalar product a on J7, is defined as 

K • N = f [\v{KN)dxdy. (6.2) 
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The Hamiltonian equations then assume the following fo rm 

ft s ii,j} = jpj, 
dP 

— = {Ht P} = ( J ^ J t f j - 1 - {J~lJx)xJ~1 + {J-'jy^r1 + [J-lJU J " ' J , ] J " 1 , 
(6.3) 

which describe the equation of motion of the modified chiral model (2.16). 

In chapter 3, we deduced an infini te number of conserved quantities {Qn} for (2.16). 

This discussion applies specifically in the SU(2) case; where these quantities {Qn} (3.81) 

(due to the fact that the matr ix M £ su(2) given by (3.85)) take the fo rm 

Qp = Qn = J P dy, for n odd, 

Qpa = Qn = jTp tr(Maa) dy, for n even, (6.4) 

where 

r = - 2 | | M | | 2 = t r ( M 2 ) , 

M(t,y) = JiJ^Jjdx = j{PJ + r1Jy)dx. 

Then, the functional variations of the conserved quantities {QN}, for n odd, are 

= 2pTp-1JM, 

2PTp-x {MP + [M, r l J y ) J - 1 ) - 2p{Tp-1M)yJ-\ (6.5) 

SQP _ 0 „ p p - l 

6P 

6J 

while, for n even, are 

= 2prp'1JMtv{Maa) + TpJaa, 8P 

= 2ptv(Maa) (MP + [ M , J ^ J y l J - 1 ) - 2 p (V^1 M tv(Maa)) y J " 1 (6.6) 

+ F (aaP + [aa, J - V J J - 1 ) - ( T p a a ) y J - \ 

So the question arises: are these quantities in involution? That is, do the Poisson 

brackets of these quantities w i t h one another vanish? Note that, the Hamiltonian and the 
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quantities Qp and Qpa commute. In fact, after lengthy calculations we found that their 

Poisson brackets (for soliton boundary conditions (2.18)) are zero, i.e. 

{H,QP} = - JdyT"dy = 0, 

{H, Qpa} = J dy ( P tv(Mora)) dy = 0. (6.7) 

The system (6.7) is simply a statement of the fact that the {Q„}'s are conserved, i.e. 

dQn/dt = 0. By contrast, although a simple calculation of the Poisson bracket between 

the two components of Qp yields a vanishing result, i.e. {Qp, Qq} = 0, the Poisson brackets 

of Qpa and Qp, i.e. {QponQqp} and {Qp,Qqa} yield nonvanishing results. More precisely, 

they are divergent integrals; that is, they are undefined. This follows from the fact that 

the {Qn} are nonlocal and, therefore, their functional derivatives are not functionals on 

the phase-space JF. 

Therefore, the conserved quantities {Qn} are not in involution and so the complete 

integrability of the model (2.16) remains an open question. One needs to search for more 

conserved quantities in order to fully investigate this problem. 

The modified chiral model (2.16) of the first four chapters seems to be very different 

from the (unmodified) 0(3) model (2.48) considered in the last chapter; although in fact 

they are very closely related. Recall that, they possess essentially the same static solitons. 

In the formalism of the integrable model the static solutions correspond to a matrix J 

of the form (3.4). I t is easy to check that any such matrix satisfies J 2 = —/, i.e. they 

all lie on the equator of SU(2), which is precisely the condition for reduction to the 0(3) 

model. The similarity becomes even more explicit when one considers the expressions for 

the potential energy in each case. In the modified model, (2.36) shows that the static 

configuration (3.4) has potential energy 

while for the 0(3) model the corresponding expression (parametrizing the two-sphere by 

using the complex field W) is 

E w - J (1 + w d x - ( 6 - 9 ) 
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So for static solutions, / in the modified chiral model plays the same role as W in the 

0 ( 3 ) model. Therefore it is natural to ask the question: what are the stability properties 

of lumps in the modified chiral model? 

In the modified chiral model, a static lump will have the same zero modes as in the 

0 ( 3 ) model; i.e. it may shrink or expand under small perturbations. But, the absence 

of topological stability suggests the existence of negative modes (i.e. the solitons may 

decay to the vacuum), which corresponds to the field J moving off the equator of SU(2). 

Because the model is integrable, one might expect that these modes could be constructed. 

Some work has been done investigating the stability of the one-soliton solution under 

radially symmetric perturbations. No negative modes are excited by such perturbations, 

which suggest that there may be no negative modes present for the one-soliton solution. 

Although, numerical simulation can not rule out this possibility. At the moment this 

remains an open question. 

It would, also, be of great interest to investigate the stability of the soliton and the 

soliton-antisoliton solutions given in chapter 4. Bearing in mind that the scattering process 

do not appear to excite any negative mode, it is conceivable that none exist. By contrast, 

Figure 4.2 shows that the static soliton located at the origin change its shape as time 

passes. This implies that the static soliton shrinks towards tall spikes, probably, of zero 

width. Therefore, it would be of great interest, to study the potential energy density of 

this configuration and investigate its time dependence. This will through further light 

in undertsanding the dynamics of the 0 ( 3 ) solitons (since they are connected to these 

solitons). 

The work described in chapter 4 is, to my knowledge, the first example in which 

explicit elastic soliton-antisoliton scattering solutions have been constructed, at least in 

(2+l)-dimensions. Although, the present solutions do not make a complete set. It is of 

great interest to find the function if>(\) which corresponds to families of soliton-antisoliton 

solutions using only the properties that u, v, x)ip(\, u, v, x)* = / and that the anti-

hermitian matrices A = (A^)T/> - 1 and B = ( M ? / > ) ^ - 1 are independent of A. This remains 

an open question. 
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It seems likely that there are many more interesting solutions still to be revealed. 

One could, for example, ask whether a parameter exists which determines the solitons 

velocity. Then, one can study the behaviour of the corresponding static solitons, which 

in this case they are not known. In addition, it would be interesting to look for breather 

soliton-antisoliton solutions. One way to do so, is by taking the function f(uj) = ew and 

study the dynamics of the corresponding configurations. Finally, one may ask whether 

the sizes of the interacting solitons must necessarily be nonconstant. 



Appendix A 

The d Problem 

In this section we give an elementary introduction to the 9-problem [81]. We consider 

the general case of complex functions, whose domain of non-analyticity may be two-

dimensional, and, therefore, they may be even nowhere analytic in the plane. In fact, 

the main mathematical tool will be the usual differential and integral calculus on the 

zy-plane. It is convenient to replace the cartesian coordinates x and y with the complex 

variables z and z. Though, z and z are complex numbers, they should be regarded merely 

as a new coordinate system in the plane, the coordinate transformation being 

z = x + iy, z = x - i y , . . 
x = (z + z)/2, y = -i(z-z)/2. 

By means of this transformation, all formulas can be rewritten in the (2, z) coordinate 

system. Thus a complex function g(x,y), defined in a domain A of the plane, can also 

expressed in terms of the two complex variables (z,z) as 

g(x,y) = f{z,z), z e A c C , (A.2) 

The corresponding partial differential operators are 

a = I- - - [<L - a = A _ I (JL , 1\ 
dz 2\dx l d y ) ' dz 2 \ ^ x + ^ ^ y ) , 

The differential operator d is the so-called DBAR operator; and its name originated from 

the fact that d is the complex conjugate of d, with the notation convention that the bar 
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indicates the complex conjugate. This operator plays a special role in connection with 

the theory of analytic functions. In fact, if / (z , z) is analytic in a domain A, then 

B f ( z , z ) = 0, z e A , (A.3) 

which means that / does not depend on the coordinates z. Indeed, if f(z,z) = u(x,y) + 

iv(x,y), the above equation coincides with the Cauchy-Riemann condition of analyticity 

expressed by the elliptic system of two partial differential equations 

UX — Vy, Uy = ~ V X . (A.4) 

In general though, the function f(z,z) is not analytic, i.e df(z,z) ^ 0. 

The Gauss-Green integral formulae 

JlM+ai)dxdy=LPd*-Qdx' (A-5) 

or in special cases 

f 9{%, y)dx = - J J dyg(x, y) dx A dy, 

f g{x,y)dy= dxg(x,y)dx Ady, 
JdA J JA 
IdA J J A 

are of basic importance. Here, A is a simply domain of the plane, its boundary dA being 

a differentiable and clockwise oriented curve, while dx A dy is the Lebesgue measure on 

the plane. In the complex coordinates z and z, the Gauss-Green formulae take the form 

<f> f(z,z)dz = — Bf(z)dzAdz, 
JdA J JA 

I f(z,z)dz= I I df(z)dzAdz, (A.6) 

JdA J JA 

where we have set f(z,z) = g(x,y). Note that the first equation of (A.6) generalizes the 

Cauchy theorem to the class of non-analytic functions 

/ f(z,z)dz = 0, (A.7) 
JdA 

for analytic functions, to which it reduces if f(z) is analytic in A. Indeed, these formulas 

(A.6) shows that the contribution to the closed curved integral in the left hand side 

originates the departure of analyticity measured by the d derivative in the right hand 

side. The familiar residue theorem, which applies when f(z) has simple pole singularities 

in A, can be recover this way by computing the 8 derivative of such singular functions. 
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