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Abstract 

The subject of this thesis is ground based gamma ray astronomy using the 

atmospheric Cerenkov technique. Chapter 1 defines the gamma ray region 

of the electromagnetic spectrum, introduces celestial gamma rays as a 

component of the flux of energetic particles known as cosmic rays and 

considers the physical mechanisms by which celestial gamma rays may be 

produced and absorbed. The phenomenon of Cerenkov radiation, and Its 

production within the extensive air showers which result from the Interaction 

of energetic cosmic rays with the atmosphere. Is the subject of Chapter 2. 

Chapter 3 introduces the early Durham telescopes, and considers the 

possible improvement to instrument sensitivity afforded by invokatlon of 

more sophisticated background rejection strategies. The Mk.5 telescope, 

which is the subject of Chapter 4, Is the vehicle by which the Durham group 

has sought to assess the relative merits of various signal enhancement 

strategies, and prove the viability of a design for a high resolution Imaging 

detector with the additional capacity to make observations at very low 

energies; the Mk.6 telescope. Chapter 5 introduces a novel concept of 

background rejection based upon the stereoscopic Imaging of extensive air 

showers, and describes modifications to the Mk.3 necessary to provide a 

complement to the Mk.5 in this capacity. Chapter 6 presents the analysis of 

a burst of periodic gamma ray emission from AE Aquarii, which 

demonstrates the efficacy of the medium resolution 'mono' Imaging and 

stereoscopic imaging signal enhancement techniques employed by the Mk.5 

and modified Mk.3 telescopes. The culmination of the evolution of the 

Durham telescopes is the Mk.6, described in Chapter 7. Its sensitivity Is 

enhanced by high resolution imaging and the capacity to make observations 

at energies deficient in background events. Chapter 8 summarises the 

contemporary status of atmospheric Cerenkov astronomy. 
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CHAPTER 1 

GAMMA RAY ASTRONOMY 

1.1 introduction 

Cosmic rays were first detected as a flux of ionising radiation at the 

Earth's surface. The existence of this ionising radiation was inferred from 

the results of an experiment demonstrating that charge leakage from an 

electroscope is greatly reduced if the instrument is shielded with metal 

(Rutherford and Cooke, 1903). The radiation was initially assumed to be 

terrestrial in origin and due entirely to decay of radioactive materials in the 

Earth's crust. This explanation was soon discredited with the demonstration 

that the rate of charge leakage did not decrease with altitude above the 

ground at the anticipated rate (eg. Goeckel, 1910; Hess, 1911). Indeed, 

above a certain altitude, ionisation increases with altitude. Subsequently 

the radiation responsible for this phenomenon was termed cosmic radiation, 

in deference to its extra terrestrial origin. The study of cosmic rays and 

speculation as to the nature of their progenitors has continued unabated 

since their discovery. 

The quest to identify discrete sources of cosmic rays is daunting as the 

vast majority of the flux is composed of charged particles, mainly protons. 

Over interstellar distances all but the highest energy particles deviate from a 

straight path due to the influence of the galactic magnetic field (lO'^G), 

consequently losing any information about their source direction. As a 

result, what is seen at the Earth is a highly isotropic cosmic ray flux. 

Neutral components of the cosmic radiation, which travel undeviated 

through the intergalactic magnetic field, comprise neutrons, neutrinos and 



gamma rays. Neutrons have too short a lifetime to provide any significant 

flux when travelling galactic distances, whilst neutrinos have such a weak 

interaction with matter that their fluxes are detectable only in extreme cases. 

Gamma rays, however, are readily detectable and have an interaction 

length, at certain energies, of intergalactic distances. 

The utility of gamma ray astronomy, then, is due to the fact that the 

gamma rays carry no charge and hence, unaffected by the galactic 

magnetic field, retain directionality. Also, being constrained to travel the 

same path from source to observer, photons can provide temporal 

information about their production. This information is invaluable in the 

study of variable and periodic sources. 

1.2 Observation Technigues and the Gamma Rav Spectrum 

The gamma ray region of the electromagnetic spectrum extends over 

almost 15 decades in energy. It is often arbitrarily defined as beginning at 

0.511 MeV (the rest mass of the electron) and is constrained in maximum 

energy only by the highest energies observed. Obviously over such a large 

spectrum of energies different physical processes are utilised for photon 

detection. Low to high energy gamma rays (0.5 MeV - 30 GeV) are 

absorbed early in the atmosphere and their energy dissipated through an 

electromagnetic cascade. Detection at these energies is therefore only 

possible in instruments placed above the Earth's atmosphere. At very high 

energies (> 30 GeV) the electromagnetic cascade contains particles of 

sufficient energy to radiate a detectable amount of Cerenkov light as they 

traverse the atmosphere (The mechanism of Cerenkov radiation is 

described in Chapter 2). The atmosphere is transparent to Cerenkov light 

facilitating detection of gamma rays of these energies from the ground. At 



higher energies still (> 50 TeV) a large proportion of the electromagnetic 

cascade persists to ground level and is detectable in scintillation detectors. 

Arrays of these detectors allow reconstruction of the arrival direction of the 

primary and its energy. 

A subdivision of the gamma ray spectrum has evolved to reflect the 

sensitive ranges of the various detectors employed. This subdivision is 

illustrated in Table 1. 

Energy Range Classification Technique 

0.5 - 5 MeV Low Energy 

(LE) 

Scintillation Detector 

(Satellite) 

5 - 30 MeV Medium Energy 

(ME) 

Compton Telescope 

(Satellite) 

0.03 - 30 GeV High Energy 

(HE) 

Spark Chamber 

(Satellite) 

0.03 - 50 TeV Very High Energy 

(VHE) 

Atmospheric Cerenkov Detector 

(Ground Based) 

0.05-10^PeV Ultra High Energy 

(UHE) 

Scintillation Detector Array 

(Ground Based) 

Table 1.1: A subdivision of the Gamma Ray Spectrum in temis of the 

instruments used for their detection within each of the energy bands. 

The subject of this thesis Is the technique of atmospheric Cerenkov 

astronomy, also known as Very High Energy (VHE) gamma ray astronomy. 



1.3 Verv High Energy Cosmic Gamma Ray Production Mechanisms 

1.3.1 Introduction 

Many astronomical objects have been proposed as potential sources of 

cosmic gamma rays. These include; the galactic centre, the galactic plane, 

other galaxies (AGNs), supernova remnants, pulsars and primordial black 

holes. It is probable that different mechanisms of gamma ray production 

predominate in each of these predicted sources. However, in all of the 

models cun-ently proposed, the production of high energy gamma rays is 

restricted to the same few physical processes. 

Gamma ray production has been reviewed in detail by a number of 

authors (Fazio, 1967,; Hillier, 1984; Ramana-Murthy and Wolfendale, 

1986); the generic form of the production process is the interaction of a 

relativistic electron or nucleon with other matter or a magnetic field. The 

specific processes believed to be important at the energies pertaining to the 

atmospheric Cerenkov technique are considered below. 

1.3.2 Gamma Ray Production Via Meson Decay 

Neutral pions, the product of nucleon-antinucleon annihilation or the 

inelastic collision of cosmic ray protons with interstellar matter, decay into 

two gamma rays. Neutral pion decay is illustrated in Figure 1.1 below. 

The resultant gamma ray energy spectrum is a function of the proton 

(cosmic ray) energy spectrum and the matter density. Individual photons 

are typically an order of magnitude lower in energy than the incident proton, 

with the source region intensity proportional to the product of the proton flux 

and matter density. 



p, n, charged pions 

Nudeon 

Y 
Figure 1.1: Gamma ray production via neutral pion decay. 

The flux, particularly at the high energies pertinent to Cerenl<ov astronomy, 

is augmented by the decay of K mesons and hyperons which are product of 

a small proportion of the nucieon interactions. 

1.3.3 Gamma Ray Production by Accelerated Charged Particies 

1.3.3.1 Introduction 

Within this group are three distinct mechanisms of gamma ray production, 

these being; Bremsstrahlung, synchrotron and curvature radiation. All are 

important in astrophysical processes. 

1.3.3.2 Bremsstrahlung Radiation 

Gamma rays are radiated via the Bremsstrahlung mechanism as a high 

energy electron is accelerated in the electrostatic field of a nucleus or other 

charged particle (see Figure 1.2 below). 



Figure 1.2: The Bremsstrahlung mechanism of gamma ray production. 

The energy of the radiated gamma ray is dependent upon the extent to 

which the electron deviates from its path in the charge field of the nucleus, 

and can be comparable to that of the electron in extreme cases. This 

mechanism is Important in regions of high matter density, with gamma ray 

intensity proportional to the product of the matter density and electron flux. 

1.3.3.3 Synchrotron Radiation 

Synchrotron radiation, illustrated in Figure 1.3, results when a relativistic 

electron is subject to a transverse component of a magnetic field. The 

electron is accelerated perpendicular to its instantaneous velocity and to the 

field, and emits gamma rays of energy several orders of magnitude lower 

than that of the electron. 

Figure 1.3: The mechanism of synchrotron radiation. 

No gamma rays produced by the synchrotron process are of sufficient 

energy to be of direct interest to atmospheric Cerenkov astronomers. 



However, their detection elsewhere in the electromagnetic spectrum betrays 

the presence of relativistic electrons which have the potential to produce 

very energetic gamma rays via other mechanisms. 

1.3.3.4 Curvature Radiation 

Curvature radiation is a phenomenon unique to the study of pulsars due to 

the requirement for an intense magnetic field. The essence of this 

mechanism is that relativistic electrons are constrained to move along 

curved magnetic field lines by the extreme fields present in the vicinity of the 

pulsar (10^T surface field). 

Figure 1.4: Curvature radiation of gamma rays in an intense magnetic field. 

Close to the surface of the pulsar the gamma rays emitted as curvature 

radiation can be almost as energetic as the radiating electron. 

1.3.4 Promotion of Photons to Gamma Ray Energies Via the Inverse 

Compton Process 

A low energy photon may be accelerated to gamma ray energies through 

elastic collision with a relativistic electron. The electron loses the majority of 



its energy in the interaction. In the interstellar medium the photon is lil<ely to 

be from starlight, or the 3K background. Within a discrete source the target 

photon may be a product of the synchrotron process. In the case where 

E,»(rnec2)2 

hv 

where Ee is the energy of the electron and hv is the energy of the ambient 

photon, the resultant gamma ray energy can approach that of the incident 

electron. Figure 1.5 illustrates this, the Compton effect. 

Relativistic particle Low Energy Photon 

Figure 1.5: Promotion of a low energy photon to gamma ray energies via 

the the inverse Compton process. 

1.4 Very High Energy Cosmic Gamma Rav Absorption Mechanisms 

1.4.1 Introduction 

One can imagine that cosmic gamma rays may be absorbed through their 

interaction with interstellar and intergalactic matter, photons and magnetic 

fields. It transpires, however, that for gamma rays of energy > 100 KeV, the 

collision cross section for pair production with atomic hydrogen is negligible. 

The radiation length of a typical photon is 25 g cm*̂  compared with a typical 

intergalactic column density of <10"̂  g cm'^ Mpc*V This leaves the 

8 



absorption due to photons and magnetic fields. 

1.4.2 Absorption by Photons 

Gamma rays are absorbed via the electron-positron pair production 

process as a result of their interaction with the interstellar and intergalactic 

ambient photon flux. For the transition 

hvi + hv2 -> e* + e' 

to occur (the threshold condition) the combined photon energies must 

exceed (meC^)^. The cross section for interaction with starlight is very small 

and therefore only important over intergalactic distances. However, It is 

predicted that gamma rays with energy in excess of 10 TeV will be 

susceptible to pair production with the thermal microwave background which 

pervades the universe (Gould and Schreder, 1966; Jelley, 1966). 

Absorption via this mechanism becomes important for sources within the 

galaxy for gamma ray energies in excess of 50 TeV (see Figure 1.6). Below 

50 TeV the majority of the absorption is due to pair production with photons 

of the IR and visible starlight background. This effect is only important for 

extremely distant objects but may have important implications for the study 

of active galactic nuclei at TeV energies (Stecker, De Jeger and Salamon, 

1992). 
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1.4.3 Absorption by Magnetic Fields 

This is essentially the same process as that described above, with the 

gamma ray being scattered by a "virtual photon" from the magnetic field. 

Pair production by gamma rays within an intense magnetic field is discussed 

by Erber (1966) and Ogelman et al. (1976). For VHE gamma rays this 

process is only important in extreme magnetic fields (10" T). Magnetic fields 

of this magnitude only exist near the surface of neutron stars making this an 

unimportant mechanism of absorption over galactic distances. It is, 

however, an important constraint on the production sites of gamma rays 

emitted from neutron stars. 

1.5 Summary 

The gamma ray region of the electromagnetic spectrum was the last to be 

exploited as an astronomical window. A paper by Morrison (1958) 

prompted much experimental work and is generally recognised as the 

inception of gamma ray astronomy. All astronomical disciplines provide 

information on the behaviour of physical law in extremes of temperature and 

pressure. Gamma ray astronomy is the study of the highest energy light 

quanta and as such provides inforrnation about the physical processes 

which prevail in the most extreme environments. Of particular interest are 

the massive black holes which are the engines of active galactic nuclei, the 

emission regions in the vicinity of massive compact objects and the as yet 

unidentified source of cosmic rays. 

The mechanism of the radiation of Cerenkov light and its production within 

the atmosphere is the subject of Chapter 2. The instnjments used in its 

observation are introduced in Chapter 3. 
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CHAPTER 2 

GROUND BASED GAMMA RAY ASTRONOMY 

2.1 Introduction 

The phenomenon of atmospheric Cerenl<ov radiation allows the 

exploration of a region of the electromagnetic spectrum that would 

otherwise be impractical to study. Energetic gamma rays (> 100s MeV) can 

be detected above the earth's atmosphere in spark chamber experiments, 

the most sensitive contemporary example is the Energetic Gamma Ray 

Experiment Telescope (EGRET) instrument on the NASA Compton Gamma 

Ray Observatory (CGRO) satellite. However, the celestial gamma ray 

spectrum approximates to a power law and consequently the collecting area 

of the largest spark chamber instrument that could be placed into earth orbit 

rapidly becomes inadequate to investigate the highest energy gamma rays 

(> 10 GeV). Atmospheric Cerenkov astronomy provides the facility to 

extend this astronomical window to higher energies. This chapter 

introduces the Cerenkov radiation mechanism and then describes the 

production of such radiation within the atmosphere. 

2.2 Cerenkov Radiation 

Production of light via the Cerenkov mechanism was proposed by 

Heaviside (1890), and it is probable that Marie Curie was the first to notice 

the bluish white light characteristic of Cerenkov radiation emanating from 

glass phials containing concentrated radium solution. Since this 

observation made around 1910, concomitant with the discovery of nuclear 
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radiation, Cerenkov light has been observed in various dielectric media in 

the vicinity of radioactive materials (eg Mallet, 1926). The prerequisite 

properties of particles to allow production of the radiation within a dielectric 

is that they are charged and very energetic. Cerenkov radiation can be 

viewed as an electromagnetic shock wave propagating within a dielectric 

medium in a manner directly analogous to an acoustic shock wave, the 

shock advancing as a conical wavefront with the perturbing particle at its 

apex. A fuller description of Cerenkov radiation is given in Section 2.3. 

The early pace of investigation was slow with most effort being directed at 

the rapidly developing field of radioactivity, and the more conspicuous 

associated phenomena of fluorescence and phosphorescence. Ultimately 

though, it was through the study of these other fomis of luminescence that 

Cerenkov radiation became recognised as an independent mechanism for 

production of electromagnetic radiation within the visible spectrum. 

The first systematic study of the Cerenkov effect was made by Mallet 

(1926,1928 and 1929) who was able to show that the spectrum was 

continuous, which distinguishes it from the spectra due to fluorescence. 

Cerenkov then conducted a series of experiments between 1934 and 1938 

(Cerenkov, 1937) during which he demonstrated that the site of production 

of the radiation was modified by the presence of a magnetic field (Cerenkov 

emission in the vicinity of a source of uncharged ionising radiation must be 

due to charged secondary particles). The results of the experimental work 

of Cerenkov subsequently proved to be in excellent agreement with a 

theoretical electromagnetic treatment of the mechanism proposed by Frank 

and Tamm (1937). A natural progression was provided by Ginzberg (1940) 

who contributed a quantum mechanical treatment and also coined the 

expression Cerenkov radiation. 
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2.3 The Physical Basis of Cerenkov Radiation 

A lucid, qualitative physical description of the Cerenkov effect has been 

given by Jelley (1967), and forms the basis of the following description. 

As a charged particle moves through a dielectric the atoms of the medium 

in the locality of the particle become polarized. The distorted atoms behave 

as elementary dipoles, each aligned with its axis pointing at the particle. 

Figure 2.1 illustrates the instantaneous local polarization of molecules within 

a dielectric when traversed by, (a) a slowly moving negatively charged 

particle, and (b) the same particle moving relativistically. 
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(a) V < c/n (b) v > c/n 

Figure 2.1: Polarization of molecules within a dielectric when traversed by a 

charged particle with a velocity, (a) less than the phase velocity, and (b) 

greater than the phase velocity of light in the medium. 

If the particle is moving relatively slowly, the polarization field surrounding 

the particle is completely symmetric, both axiaily and azimuthally, and so 

there is no resultant field at distances significantly larger than the extent of 
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the local polarization. However. In the case of a very energetic particle 

moving with a speed comparable to the phase velocity of light in the 

medium, the axial symmetry Is lost. At any point considered along the path 

of the particle there exists a resultant dipole field whose influence will be 

apparent away from the perturbing particle. 

The electromagnetic pulse generated by the instantaneous dipole field 

can be understood as being due to a retarded electric potential. As the 

dipole field moves past each point within the dielectric the axial component 

of the polarization vector is perturbed, first in one direction relative to the 

path of the particle and then in the reverse direction, taking the form of the 

first derivative of a delta function with respect to time. 

The electromagnetic pulses can then be imagined to propagate on a 

spherical wavefront from each point on the particle track. If the velocity of 

the particle is less than the phase velocity of light in the medium then the 

wavefronts interfere destructively at all angles to the particle path. If, 

however, the velocity of the particle exceeds the phase velocity of light then 

there exists a conical wavefront on which "wavelets" from each point on the 

particle track are coherent in phase, such that at a distant point there exists 

a resultant field. Figure 2.2 is a simple geometrical construction which 

illustrates each condition. From the figure it is evident that radiation will be 

observed exclusively at one angle to the direction of travel of the particle. 

That angle is given by; 

Cose = J _ 

Pn 

which is widely referred to as the "Cerenkov relation" with 6 known as the 

Cerenkov angle, p is the ratio between the velocity of the particle and the 
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velocity of light (p = v/c) and n is the refractive index of the medium the 

particle traverses. 

(a) v = 0.8c/n (b) v = 1.25c/n 

Figure 2.2: The different physical environment which prevail for radiation 

emitted by a charged particle with a velocity, (a) less than, and (b) greater 

than the phase velocity of light in the dielectric medium. 

The classical electromagnetic treatment due to Frank and Tamm, (1937) 

gives an expression for the energy radiated dE, at a frequency ©, in 

frequency bandwidth dto (rad s'^), from a path length dl, which in its most 

general form is given by; 

dE = ZVsin20.to.dco.dl/c2 

This equation and the Cerenkov relation above illustrate some of the 

constraints upon the characteristics of Cerenkov radiation. We can see that 

the spectrum of the radiation is proportional to {odtofor values of oj for which 

the Cerenkov relation is satisfied (pmin= 1/n is the threshold velocity below 

which Cerenkov radiation ceases, this velocity is unattainable in the X ray 

region where n is less than unity). We would therefore expect most of the 

radiation to be emitted at higher frequencies (the blue end of the visible 
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spectrum). Quantum mechanical treatments give essentially the same 

results (Ginzberg, 1940). 

2.4 Cerenkov Radiation in the Atmosphere 

2.4.1 Introduction 

Blackett (1948), during a study of the brightness of the night sky, was the 

first to recognise that Cerenkov radiation may be produced within the 

atmosphere. The refractive index of air in the atmosphere is everywhere >1 

for visible light, taking the value 1.00029 at standard temperature and 

pressure (STP). As a consequence of this values proximity to unity, the 

associated parameters describing emission are severely constrained. The 

threshold energies of the particles are very high and the emission is strongly 

beamed (the maximum possible value for the Cerenkov angle within the 

atmosphere is 1.3° at STP). It is these features which give the effect its 

utility in ground based gamma ray astronomy. 

2.4.2 Extensive Air Showers (EAS) 

So far we have considered the Cerenkov effect on the basis of a single 

charged particle traversing a homogeneous dielectric. Cosmic rays and 

very high energy gamma rays which interact with the atmosphere do so 

catastrophically creating a cascade of daughter particles and energetic 

photons. These cascades are known as extensive air showers (EAS). 

The evolution of showers is complex. The primary may be either a 

gamma ray, an electron or a nucieon. The first interaction of a gamma ray 

with the atmosphere involves electron-positron pair production in the vicinity 
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of an atomic nucleus. The electron pair, each with almost half of the energy 

of the incident gamma ray, emit further energetic gamma rays by the 

Bremsstrahlung mechanism as they encounter further atomic nuclei. As the 

interaction lengths for pair production and Bremsstrahlung are comparable, 

simplistically we can say that after n interaction lengths there are 2" 

individual components to the shower, comprising electrons, positrons and 

gamma rays. Their average energy is Eo/2". This exponential growth 

continues until ionisation replaces Bremsstrahlung as the dominant energy 

loss mechanism of the electrons and positrons. This occurs when the 

particle energies fall below 84 MeV. 

The eariy development of an extensive air shower with a nucleon as its 

progenitor is a succession of strong interactions as hadrons collide with air 

nuclei. An avalanche of secondary nucleons and mesons results, the 

development of which is arrested when the particle energy is insufficient to 

allow multiple pion production (< 1 GeV). Pions are the ultimate product of 

the nuclear cascade. Neutral pions decay almost instantaneously into 

gamma rays, each initiating an electromagnetic cascade. High energy 

charged pions, with protracted lifetimes due to relativistic effects, undergo 

further interactions. Lower energy charged pions decay into muons. The 

muons have a spectrum of energies, with the higher energy particles 

surviving to greater atmospheric depths. The muon decay products are 

electrons and positrons which may be the seeds for further low energy 

electromagnetic cascades. Muons which do decay will be at the lower end 

of the muon energy spectrum, thus few of the electrons and positrons 

produced as decay products will exceed the threshold for Bremsstrahlung 

radiation. Neutrino production is associated with both pion and muon decay 

and the neutrino flux forms an important hidden component of the shower. 

The electron cascade initiated by a photon emanates from one point and 
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then develops and degrades in a predictable manner. In contrast, 

electromagnetic cascades in a hadron initiated shower emanate from the 

points of decay of many mesons created in the preliminary nucieon 

cascade. Figure 2.3 illustrates the complexity of a hadron initiated EAS. 

Incident primary 
particle 

N, P = high energy 
nucleons 

n, p = low energy 
nucleons 

(0 
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0) 
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Electromagnetic 
or "soft-

component 

Meson 
or"hard" 

component 

I Nucleonic component 

± 
Energy feeds across from nuclear 
to electromagnetic interactions 

I 
I Small energy feedback from 

meson to nucleonic component 

Figure 2.3: Schematic representation of hadron initiated EAS development. 

(After Simpson, Fonger and Treiman, 1953) 

Cerenkov light is produced by all of the charged components of the EAS 
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which have energy in excess of the threshold for Cerenkov radiation 

production. These threshold energies, which are a function of mass, are for 

an electron 21 MeV, a muon 4.4 GeV and a proton 39 GeV at sea level. Its 

occurrence in large numbers and its relatively low threshold energy conspire 

to make the electron the predominant source of Cerenkov light in an EAS 

(Boley, 1964). 

The majority of Cerenkov radiation production then, occurs within a 

window in the shower's development bounded by the initiation of the first 

electromagnetic cascade, and the point at which the last cascade succumbs 

to ionisation loss. In the case of a gamma ray initiated shower this window 

is well defined. The maximum intensity of Cerenkov production is achieved 

just as the 84 MeV threshold is reached, at which ionisation supersedes 

Bremsstrahlung as the predominant mechanism of energy dissipation within 

the air shower. For a 300 GeV gamma ray this occurs after about 8 

radiation lengths which corresponds to an atmospheric depth of 300 g cm-^ 

(Longair, 1992). 

Atmospheric density decreases exponentially with height, thus by 

integrating from infinity (effectively the top of the atmosphere) down, we can 

show that for a vertically incident gamma ray this depth of maximum 

corresponds to a height above sea level of 10km (the total column density of 

the atmosphere is approximately 10* kg m"̂ ^ The variation of the refractive 

index of air (ri), with height (h), being proportional to density, is given by; 

Ti(h) = 1 +(Tio-1)exp(-h/ho) 

where T\O is the refractive index of air at STP and ho is the atmospheric scale 

height (-7.1 km). Figure 2.4 illustrates trends in the characteristics of 

Cerenkov emission through the atmosphere. 
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The figure shows values for a vertically incident gamma ray. yield being 

related both to path length within the atmosphere and to the local refractive 

index (which is dependent upon the height above sea level). 

2.4.3 The Cerenkov Light Pool on the Ground 

2.4.3.1 Lateral Distribution 

Secondary cascade particles are strongly beamed due to their extrerhe 

energies, and on average retain the directionality of the primary. As a 

consequence of the logarithmic density distribution of the atmosphere the 

cascade develops rapidly, with many interaction lengths traversed in a short 

time. This serves to constrain the secondary particles to a very thin disc 

(almost a plane wave), the lateral extension of which is due to the opening 

angles of the interaction processes and multiple coulomb scattering. 

Coulomb scattering dominates the electron distribution and thus is the 

predominant mechanism defining the form of the light pool produced by the 

purely electromagnetic, gamma ray initiated, cascade. Conversely an 

additional process of importance when considering the more massive 

hadrons is the angle of emission, more specifically the incipient transverse 

momentum of the pions. The opening angles of the nuclear processes are, 

in general, small on the scale of the electromagnetic cascade, thus the 

hadronic component of a cascade constitutes what is effectively a line 

source for particles which will initiate further electromagnetic cascades. 

A gamma ray initiated shower is wholly electromagnetic and one might 

imagine a horizontal particle distribution around the axis which is Gaussian 

in section. If the atmosphere were of uniform density the Cerenkov 

radiation intensity on the ground would mirror this distribution. However, the 
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distribution In the Cerenkov light pool at ground level Is modified by the 

variation of the Cerenkov angle with altitude. If one considers the cascade 

as lying close to the direction of beaming in comparison with the Cerenkov 

opening angle, then one can conceive of an intensity distribution which is 

deficient towards the axis and enhanced at a range of larger radii. For 

certain shower configurations this effect Is quite mari<ed (Hillas,1982). 

Figure 2.5 is a schematic illustrating this condition. 

Shower particles 

Cerenkov light 

Figure 2.5: Schematic illustrating production of the "Cerenkov shoulder" in 

the gamma ray light pool. The increase in Cerenkov angle with refractive' 

index of the atmosphere is compensated for by the reduced height of 

emission along the axis. This results in a deficiency of light close to the 

axis, and an annulus of enhanced intensity at a radius of about 150m. 
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In the case of a hadron initiated extensive air shower the energy in the 

electromagnetic component of the shower is concentrated more towards the 

shower axis, with the electromagnetic cascade continually replenished on 

the axis by the hadronic core. As a result, a proportion of the Cerenkov light 

from the electromagnetic cascade is produced lower in the atmosphere than 

for a cascade initiated by a gamma ray of similar energy. This gives a 

Cerenkov profile with a definite peak on the axis and a significant fall off in 

intensity with radius. Figure 2.6 shows the results of Monte Carlo 

simulations of the lateral distribution of Cerenkov light for gamma ray and 

hadron initiated extensive air showers at sea level. The gamma ray initiated 

event has a relatively flat plateau extending out to a radius of about 150 m, 

with a rapid fall off of intensity external to this area. There is evidence of the 

Cerenkov shoulder. In contrast, the nucleon initiated event has a profile 

with a narrow peak, with several randomly distributed subsidiary peaks. 

These smaller peaks are due to Cerenkov light from local penetrating 

muons, or sub showers initiated by the decay products of high transverse 

momentum charged pions. 

(b) 

Figure 2.6: Cerenkov photon densities at ground level from Monte Cario 

simulations of EAS initiated by, (a) a 320 GeV gamma ray, and (b) a 1 TeV 

hadron. Grid spacing is 50 m. (After Hillas and Patterson, 1987) 
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2.4.3.2 Temporal Distribution 

if we consider a group of reiativistic particles constrained to a region 

around the sliower axis, then the intensity profile of the Cerenl<ov signal 

produced by these particles on the shower axis is a function of the refractive 

index of the atmosphere (assuming all the particles continue to travel at 

close to the speed of light). The Cerenkov light emitted closer to the ground 

arrives first, with the light emitted eariier being delayed by a time which is 

proportional to the column density of atmosphere traversed. Now consider 

moving away from the shower axis. The increasing path length for the 

Cerenkov light produced near the ground to the corresponding point on the 

light front serves to compress the time profile. Thus, for a gamma ray, the 

Cerenkov pulse width reaches a minimum at the radius con-esponding to the 

Cerenkov shoulder, outside this radius the time sequence inverts with the 

light produced early in the shower arriving first. This is a simplistic picture 

which takes no account of the finite thickness of the shower front or the 

lateral extent of the shower, but nonetheless provides a useful illustration. 

2.5 Summary 

The gamma ray flux above a few GeV is so small as to render the 

collecting area of satellite borne instruments inadequate. However, at 

energies in excess of a few tens of GeV, the EAS precipitated in the 

atmosphere by the energetic gamma rays comprise particles with sufficient 

energy to radiate by the Cerenkov mechanism whilst traversing the 

atmosphere. Directionality of the primary is retained due to the narrow 

opening angle of the Cerenkov cone and so the atmosphere can be 

incorporated as an active component of instrument design. The efficacy of 

25 



the method is due to the extent of the light pool on the ground which defines 

the possible collection area of the telescope. For example, a Cerenkov 

angle of 1° defines a collection area of slightly less than 10^ m^ for a shower 

which maximises 10 km from the detector. This collecting area is 5 orders 

of magnitude larger than the most sensitive satellite borne spark chamber 

experiment, offering the potential to turn an intrinsically low flux into an 

acceptable count rate. The atmospheric Cerenkov technique therefore 

opens the window on the gamma ray spectrum from tens of GeV to tens of 

TeV. 

At higher energies (> 50 TeV) substantial numbers of extensive air shower 

particles persist to ground level and are detectable by scintillator arrays. 

The atmosphere serves to dissipate the energy of the incident particle or 

photon amongst a multitude of daughter particles which collectively retain 

the directionality of the primary. The field of view of a scintillator array 

incorporates most of the sky and its collection area is limited only by the 

area of the an-ay. Thus reasonable statistics can be obtained from the 

extremely small flux of primaries of these energies. 

Chapter 3 introduces the instrumentation used in the detection of 

atmospheric Cerenkov radiation and considers the optimisation of such 

equipment to the application of ground based gamma ray astronomy. 
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CHAPTER 3 

THE PERFORMANCE OF GROUND BASED GAMMA RAY 

T E L E S C O P E S 

3.1 Introduction 

The physical basis of the phenomenon of Cerenkov radiation in general, 

and its production within the atmosphere in particular, has been outlined in 

Chapter 2. The aim of this chapter is to introduce the equipment which is 

used to detect atmospheric Cerenkov radiation in ground based gamma ray 

astronomy, and to discuss the relative merits of competing detection 

philosophies. 

The chronological development of the telescopes operated by the Durham 

group is used as the central theme to this chapter. The group has been 

active in gamma ray astronomy for 15 years and its hardware development 

programme, evolving with the field, reflects the status of contemporary 

ground based gamma ray astronomy projects. 

Initially, the broad properties of atmospheric Cerenkov radiation from EAS 

and the comparative brightness of the night sky will be discussed, and their 

bearing on the choice of photosensitive device and associated electronics 

considered. A brief account of the Dugway experiment, operated by the 

Durtiam group between 1981 and 1984, gives an indication of the operating 

conditions and performance of a simple atmospheric Cerenkov detector. 

The leap in sensitivity gained in the progression from operation of the 

Dugway Mk.1 and Mk.2 detectors to the Mk.3 telescope in Narrabri 

demonstrates the merit of large flux collectors and introduces a simple 

method of noise rejection based on constraining the Cerenkov signature of 
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EAS to lie within a small aperture. The remainder of the chapter 

concentrates on more sophisticated rejection strategies based on the 

differences between the Cerenkov signatures of gamma ray and hadron 

initiated extensive air showers. These strategies were devised using data 

derived from detailed Monte Carto models of extensive air showers (Turver 

and Weekes, 1977; Hillas, 1985). 

3.2 Very High Energy Gamma Rav Detection From the Ground 

3.2.1 A Ground Based Gamma Ray Telescope 

An atmospheric Cerenkov detector comprises a photosensitive device at 

the focus of a reflector. The reflector, which serves to collect the Cerenkov 

flux and afford directionality, can be of several different forms, each with 

advantages in different detection strategies. Competing detection 

philosophies have evolved from this mdimentary detector, each with its own 

advantages and potential for signal enhancement. 

3.2.2 The Photosensitive Device 

The principal challenge in the telescope design is to effectively resolve the 

Cerenkov component of the night sky above the background of ambient 

stariight. This may seem like a difficult task when one considers that 

Cerenkov radiation contributes only 10"^ of the total integrated photon flux. 

However, as a consequence of the near parity of the phase velocity of light 

in the atmosphere and the velocity of the radiating charged cascade 

particles, and the fact that the shower develops and propagates as a well 

defined shower front, this energy is concentrated into very short bursts. The 
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rise time of the Cerenkov signal is typically a few nanoseconds, and close to 

the shower axis Its duration rarely exceeds ten nanoseconds. This is much 

shorter than the characteristic duration of any other atmospheric or 

astrophysical process which produces visible light. Thus, by matching the 

time constant of the detection system to that of the Cerenkov flash, an 

acceptable signal to noise ratio can be achieved. The sample of light 

intercepted by the flux collector is typically of the order of a few tens or 

hundreds of visible photons per square metre. The requirement is then for a 

photosensitive detector with an exceptionally fast response and a high 

intrinsic gain. The photomultiplier (PM) tube is ideally suited to this 

application. It has a fast rise time (typically 2 ns), a high gain (of between 

1 and 10^, negating the need for significant further amplification), and the 

requirement for a suitable spectral response is easily satisfied. The rest of 

the electronic equipment making up a gamma ray telescope comprises fast 

analogue and digital electronics to select the Cerenkov signal and record 

the output of the PM tubes. 

3.2.3 Photomultiplier Noise 

Observation of the night sky is an unusual application for PM tubes in 

which they are subject to comparatively high illumination. If they are to be 

run in a state where individual photoelectrons can be resolved their gain will 

be very low. In practice the PM tubes are run with appreciable gain and 

operate in a condition of photoelectron 'pile up' in which the background flux 

is manifested as a DC offset in the tube output. Fluctuations in this 

background are Poissonian and the Cerenkov flashes are observed 

superimposed on this noise. 

Consider a simple Cerenkov telescope comprising a single PM tube at the 
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prime focus of a flux collector. The number of photoelectrons due to the 

night sky background is the product of the effective Collector area A, the PM 

tube quantum efficiency e, integration time x, the solid angle subtended by 

the photocathode Cl, and the night sky background flux ^. The noise, N, in 

the system is the square root of this function. 

N = (AEtfi(|>)»^ 

The number of photoelectrons due to the Cerenkov radiation, the signal, is 

given by; 

S = Aep 

where p represents the Cerenkov photon flux. This assumes that £1 and x 

are both large enough to encompass the whole Cerenkov signal. The signal 

to noise ratio is therefore 

S = (Ae)'^p 

N {xQ^y^ 

The minimum detectable flux is proportional to the inverse of this function. 

3.2.4 The Fast Coincidence Triggering Technique 

The tenet that has underpinned the work of the Durham group has been 

the conviction to operate its telescopes at a high gain and consequently low 

energy threshold. In order to achieve this, a triple fast coincidence system 

has been adopted to allow the photomultiplier tubes to be operated with 
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high individual tube noise rates. Three independent paraxial flux collectors 

are used with photomultipliers at the prime focus of each viewing the same 

region of sky. A condition is imposed that for an event to be recorded the 

output of the tubes viewing each of the three dishes must each exceed a 

discrimination threshold within a narrow coincidence time interval. This fast 

coincidence technique formed the basis for the eariiest observations and 

has been shown, by recent simulations, to be particulariy efficient when 

combined with an appropriate field of view (Patterson and Hillas, 1989). 

The rate R (Hz), at which the noise from each PM tube will fulfil this three 

fold coincidence criterion by chance is given by 

R = 3!nM2 

where n is the count rate for a single PM tube in Hz and t is the coincidence 

gate width in seconds. 

The choice of the number of independent flux collector / PM tube units to 

be used in coincidence, for a given area of available collector, is a 

compromise between the potential increase in gain and the reduction in 

individual flux collector area with increase in fold of coincidence. The 

optimum configuration is dependent upon the variation of noise with gain at 

particular illuminations of the PM tubes. In the case of the design of the 

Mk.3 telescope the performance from an n fold coincidence system was 

evaluated (with a constant low accidental rate) on the basis of empirically 

determined noise rates as a function of illumination and gain. Figure 3.1 

shows the results with the expected telescope background count rate 

approaching a maximum value asymptotically (Brazier, 1991). The rate for 

a three fold coincidence system is within 15% of the maximum but is 

significantly greater than that for a two fold coincidence system. The rather 
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meagre improvement in performance achievable by the increase to four fold 

coincidence is offset by the accompanying increase in complexity in the 

electronics. The Durham group therefore chose three fold coincidence as a 

cost effective, compromise solution. 
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Figure 3.1: Estimated relative count rates versus number of detectors in 

coincidence for unit flux collector area (after Brazier, 1991). 

A gate width of 10ns, comparable to the duration of the Cerenkov signal, 

would allow the tubes to be run with noise rates of 10 kHz with an accidental 

coincidence count rate of one per hour. This is negligible in comparison 

with the background counts due to the hadronic cosmic ray flux. 

An additional advantage associated with the triple fast coincidence system 

is the suppression of background events due to local muons. Charged 

muons passing through the window material of the PM tubes will radiate 

Cerenkov light, in some instances of sufficient intensity to exceed the 
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discrimination threshold. An instrument which employs a single detector 

package, with a trigger requirement for two or more tubes to exceed 

threshold within a specified gate interval, will be troubled by spurious events 

generated by the passage of muons through the windows of adjacent PM 

tubes (Vacanti et al., 1993). A multiple coincidence telescope with 

separated detector packages will not suffer this problem. 

3.2.5 Conclusion 

The triple fast coincidence system has formed the basis for the telescope 

development programme of the Durham group, allowing the PM tubes to be 

operated at high gain giving the optimum energy threshold for a telescope of 

given flux collector area. This is believed to be important when seen in the 

context of possible soft gamma ray source spectra and a harder proton 

background spectrum. 

3.3 A Brief Summary of the Duqwav Telescopes 

3.3.1 The Durham Facility at Dugway, Utah 

The Dugway Proving Grounds (40.2° N, 112.8° W) are at an altitude of 

1450m above sea level. An an-ay of four telescopes was commissioned at 

this site in Utah by the University of Durham in May 1981, and operated until 

October 1984. The detectors were arranged at the apices and centre of an 

equilateral triangle of side 100m. This configuration was chosen, on the 

basis of computer simulations of the Cerenkov flash anticipated from 1 TeV 

gamma rays, as a compromise between effective area for multiple telescope 

response to individual Cerenkov showers and angular resolution of an array 

33 



of telescopes. A smaller separation between detectors would have given a 

larger rate of multiple responses but would have degraded the angular 

resolution of the anray. 

3.3.2 The Mk.1 Telescope 

Each Mk.1 telescope comprised three paraxial 1.5 m diameter searchlight 

min-ors on a computer controlled alt-azimuth mount. Positional infomriation 

was provided by incremental shaft encoders and drive by DC servo motors; 

the pointing accuracy was good to 0.1". The f number of the searchlight 

min-ors of 0.43 defined a very small image scale at the prime focus and 

gave an inappropriate aperture for the large diameter (RCA type 4522) PM 

tubes available. A cassegrain system was adopted to overcome this 

limitation. Secondary mirrors with a diameter of 25 cm and focal length 115 

cm were fabricated from aluminium and the PM tube was masked down to 

an aperture of 5cm, which defined a geometrical field of view of 2°. A 

complete description of the Mk.1 telescope and the Dugway array is given 

by Macrae (1985). 

3.3.3 The Mk.2 Telescope 

In 1983 an experiment in low cost mirror manufacture was made and one 

of the telescopes was remirrored with purpose-built, polished, solid Dural 

min-ors. Seven circular mirrors were arranged in a hexagonal pattem to 

form each collector. Each mirror facet, of spherical form, had a diameter of 

60cm and a focal length of 2.21m. A 2" diameter RCA 8575 PM tube was 

placed at the prime focus of each collector, eliminating the need for the 

secondary mirror and defining a geometrical aperture of 1.1**for the 
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photocathode. Anode current response to a passage of a star through the 

field of view showed the physical aperture to a point source to be 1.3° at 

FWHM. Light transmission losses were significantly reduced due to the 

removal of the need for the second reflector. The Mk.2 telescope is 

described in detail in Dowthwaite (1987). 

3.3.4 Performance of the Dugway Telescopes 

A useful yardstick by which telescopes may be compared is their energy 

threshold, often derived from the response of the telescope to the isotropic 

and relatively well defined cosmic ray spectrum. For simple telescopes the 

relative energy thresholds are a function of count rate. For reliable 

comparisons of threshold to be made however, the count rate of any 

telescope must be qualified by specifying the field of view and the assumed 

collecting area of the telescope. As the intensity profile of the Cerenkov 

light pool produced by a proton shows a marked gradient away from the 

shower axis, the collecting area will be a function of primary energy. 

However, because of the steep integral spectrum for cosmic ray protons it is 

adequate to use an estimate for the collection area at the threshold of the 

telescope. In the case of the Dugway experiment this can be estimated 

from the observed single and multiple telescope responses of the array. A 

collection area of radius 45 m was assumed for the Mk.1 detectors 

(Dowthwaite, 1987). Computer simulations of 1 TeV gamma rays showed 

the aperture function for the telescope to be Gaussian in form with a FWHM 

of 2.2° +/- 0.2° (Macrae,1985). Once normalized for collection area and field 

of view, count rates can be compared with the cosmic ray flux to derive an 

energy threshold for cosmic rays. Dowthwaite (1987) has estimated the 

proton threshold of a Mk.1 detector to be about 2500 GeV based on a zenith 
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count rate of 16.9 counts per minute. In order to calculate the gamma ray 

threshold recourse must be made to computer simulations modelling the 

relative response to gamma ray and proton initiated Cerenkov events. 

Simulations have shown that above 1000 GeV gamma rays are twice as 

efficient as protons at producing Cerenkov photons (Zatsepin and 

Chudakov, 1962; Turver and Weekes. 1977). A gamma ray threshold of 

1300 GeV has been quoted for the Mk.1 telescope. Following the same 

reasoning a threshold of 800 GeV was assigned to the Mk. 2 telescope 

(Chadwicket al., 1985). 

Mk.1 Mk.2 

Collector Area 1.77m2 2.04m2 

PM Tube Diameter 50mm 46mm 

Focal Length 1.5m 2.21m 

Geometrical Aperture 20 i . r 

Reflectivity 35% 55% 

Typical Count Rate 15c.p.m. 11 c.p.m. 

Y Threshold 1300 GeV 800 GeV 

Table 3.1: Physical characteristics of the telescopes of the Dugway array. 

3.4 The Mk.3 and Mk.4 Telescopes 

3.4.1 The Narrabri Facility 

The Dugway telescopes were very successful, with detections of TeV 

gamma rays being claimed for a number of isolated and binary pulsars. It 

became evident, though, that the fluxes involved were at the limit of 
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detectability, and that an instrument could be designed and built that would 

offer a significant improvement in sensitivity. Evidence from the results of 

the Dugway experiment, suggesting that the X-ray binary systems (which 

were an unexpected source type) had the highest luminosities, prompted 

the decision to make observations in the southern hemisphere. Also, 

objects such as the Vela pulsar and Centaurus A, for which early claims of 

emission were made (Bhat et al., 1980 and Grindlay et al., 1975 

respectively), are available for observation. The southern skies, as well as 

containing the majority of X-ray binaries, also incorporate the galactic centre 

and the large and small magellanic clouds, all of which are of enormous 

astrophyslcal interest. 

The site chosen for the new telescope was the Bohena Settlement, 

Narrabri, N.S.W., Australia. Having previously been occupied by the 

University of Sydney giant air shower array (SUGAR) the site fulfilled all 

logistical requirements. Narrabri is situated in a region favoured by optical 

astronomers because of the high proportion of stable cloud free nights (50% 

according to staff at the Anglo Australian Telescope, 100km south of 

Nan-abri). Rainfall is infrequent and skies in this rural environment are dark 

and clear. The altitude is 260m above sea level and geographical position 

149° 49' E, 30° 29' S. The Mk.3 telescope was installed during 1986 and is 

still in use today as a platform for an instrument of significantly enhanced 

optics and electronics. 

3.4.2 The Mk.3 Telescope 

3.4.2.1 Introduction 

The design of the Mk.3 telescope is a simple evolution of the Dugway 
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telescopes with refined optics. It follows from the decision to use the largest 

practical area of mirror on the mount available. PM tube packages were 

placed at the prime foci of three tessellated dishes of approximately 

parabolic section. The packages differ from those used in the preceding 

Dugway experiment in that a number of peripheral, off-source monitoring, 

channels were incorporated sun-ounding the on source channel. These 

channels are important in the verification of results, being sufficiently far 

from the optic axis to preclude their being triggered by gamma rays from the 

source region and so provide a continuous measure of the background flux. 

They subsequently proved to be of value in nan-owing the effective aperture 

of the telescope, enhancing sensitivity to gamma rays by rejecting 50% of 

the cosmic ray background by acting as a guard ring. 

3.4.2.2 Flux Collectors 

The specification of a flux collector is inevitably a compromise between 

engineering practicality and the concept ideal. The requirements were for a 

large collecting area with a field of view (defined by the physical aperture 

function) close to the empirically suggested optimum for this system which 

is 1.3° FWHM. In the light of experience gained with the Mk.2 telescope it 

was thought that the 46 mm diameter photocathode of the RCA 8575 PM 

tube viewing a mirror with a focal length of 245 cm would be appropriate. 

The solid Dural mirrors used for the Mk.2 telescope had the required shape 

and image quality but had a moderate reflectivity (55 %) and were heavy 

and laborious to produce. An alternative method was developed based on 

that used to manufacture the antenna sections for the James Clerk Maxwell 

millimetre wavelength telescope. A thin (0.5mm) anodised aluminium 

(Alanod) sheet forms the reflective surface, bonded to a honeycombed 
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supporting structure. The reflectivity, of about 80 % between 300 and 500 

nm, is a significant improvement on that of the polished Dural. The Aianod 

skin was stretched over a spherically figured steel former before the 

honeycomb and a sheet aluminium backing plate were bonded using an 

epoxy resin. Individual mirrors suffered significant aberration off axis, image 

size increasing from 1cm on axis to 5cm when 200cm off axis; this 

effectively constrained the dish diameter to around 4m. The total 

complement was 130 mirrors, each of 60cm diameter, giving each collector 

an effective area of 11 m .̂ There has been no noticeable change due to 

min-or degradation throughout the life of the experiment, which is now 

approaching 10 years, showing the mirrors to be very durable. 

The physical aperture to a point source for a complete tessellated 

collector was found to be 1.5° +/- 0.2° FWHM which is close to the 

specification (Chadwick, 1987). The system offers a 5 fold increase in flux 

collector area and a 45% increase in reflectivity over the Mk.2 telescope. 

Optic axis alignment was effected utilising the anode current response of 

the on axis PM tubes to a raster scan over a second magnitude star. Peak 

anode currents in each of the on axis tubes was noted relative to the 

position of the image of the star produced by an analogue camera. The 

required adjustment was achieved by manipulating the structure supporting 

the detector packages. The reflectors were subsequently shown to be 

paraxial to within one steering bit, which corresponds to less than a tenth of 

a degree. 

3.4.2.3 Photomultiplier Packages 

Four triple coincidence channels were operated initially. One channel was 

dedicated to the three PM tubes which lie on the optic axis and under 
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normal operating conditions view the region of sky which includes the target 

source. The three remaining channels were originally conceived as off 

source monitors. Three sets of PM tubes arranged at 120° intervals around 

the central tube, viewing adjacent regions of sky 2° removed from the 

source, A further nine PM tubes in three channels were added later to give 

coverage at 60° intervals around the source. 

The count rate of the telescope is given by the area under the cosmic ray 

energy spectrum above the threshold energy of the telescope. Because the 

spectrum is so steep, with the majority of events being around threshold, the 

count rates of these instruments are very susceptible to changes in gain. 

Gain variations of a few percent cause a similar percentage increase in 

count rate at threshold and in ground based gamma ray astronomy this is of 

the same order as the signal excesses expected above background for 

quite a strong source. In order to achieve a stable PM tube gain an 

automatic gain control system was employed. This consisted of a green 

LED close to the face of each PM tube servoed to its anode current. The 

additional illumination provided by the LED, typically 10% of the total 

illumination, could be offset against a brightening sky (brighter region of sky 

or a decreasing angle to zenith) or the passage of a star through the field of 

view, without significant increase in the accidental rate. 

3.4.2.4 The Telescope Platform and Steering 

An alt-azimuth platform, which was developed from a Royal Navy surplus 

gun mount, forms the mechanical base of the Mk.3 telescope. The mount 

comprises a box structure, steerable independently in the vertical and 

horizontal sense, to which the superstructure which supports the dishes is 

fixed. Drive specification for the telescope was for a maximum slew rate of 
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1°s'\ and the ability to achieve this from rest in 10 s (the greatest moment 

of inertia, of about 10* kg m*. is about the azimuth axis). A D.C. servo motor 

with an output torque of 20 Nm and integral gearbox was chosen to achieve 

this. Attitude of the telescope is sensed to a resolution of 5 arc minutes in 

altitude and azimuth using orthogonal 12 bit shaft encoders. Configuration 

of the steering was performed after the optic axes had been aligned. The 

shaft encoders provide absolute position and were zeroed by noting the 

encoder values for a number of widely separated stars (centred on the field 

of view using the anode cun-ent response of the PM tubes to the increase in 

illumination) and solving for the angular offsets in altitude and azimuth. The 

offset of the telescope's azimuthal axis from local vertical can also be 

calculated, this is allowed for by the tracking software as an offset in 

geographical location. Positional information is recorded for each event 

within the data stream. Pointing accuracy is monitored using a CCTV sky 

camera mounted paraxial with the flux collectors. 

3.4.2.5 Time Keeping 

The specification adopted for the timing accuracy for the Nan-abri facility 

was that it should be adequate to retain phase on a 1 ms pulsar over the 

nine or ten months which constitute the duration of one observing season 

(ie accurate to within 1 part in 3 x 10^). A Rubidium atomic oscillator was 

chosen as the timing standard. The Efratom model FRK-L Rb oscillator 

provides a 10 MHz output signal allowing events to be time stamped to ^s 

accuracy. A battery back-up power supply, sufficient to bridge a ten day 

interruption in mains supply, is provided and the unit has internal batteries to 

allow it to be transported to compare it with time standards. The Rb clock 

was first synchronised with an off air radio time signal in January of 1987 
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and a broadcast time signal has been used regularly to measure the 

systematic drift of the oscillator. The clock is very stable, having a constant 

drift rate. As an oscillator which loses its power and is restarted is prone to 

drift at a different rate such interruptions are avoided. It has only been 

necessary to restart the clock twice, in July 1990 and August 1993. Drift 

rate since the latest intermption has been 0.05287 +/- 0.00005 ms day^ 

(Roberts, priv. comm.). A Global Positioning Satellite (GPS) system 

replaced the off-air radio signal as the reference time signal in April 1992. 

Figure 3.2 is a graph demonstrating the remarkably stable drift rate relative 

to the value of UT (Universal Time) received from the Global Positioning 

Satellite system. 
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Figure 3.2: The drift of the rubidium clock delay measured relative to UTC. 

3.4.2.6 Environmental Monitoring and Data Logging 

The nucleus of the Mk.3 control electronics system is a Motorola 68000 

based microcomputer. This computer was developed by the Durham 

University Microprocessor Centre which allowed its mode of operation to be 
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tailored for this application. As a result a very fast and versatile, high 

capacity logger / CAMAC electronics system was evolved. A low system 

dead time was considered paramount in the specification of the system and 

so the software was made interrupt driven, with a rank of priorities headed 

by data collection. This system, allied to the provision of 1 Mbyte of RAM 

buffer for data collection, facilitates the recording of transient bursts of 

intense activity. An event comprises; the amval time to us accuracy, the 

integrated charge from each of the PM tubes, a record of which of the 7 

channels has achieved the condition for three fold coincidence, the target 

and actual zenith and azimuth pointing angles and the instantaneous anode 

current for selected PM tubes. The recording of this information occupies 

the processor for 350 ^s. During this dead time the arrival times of a burst 

of 16 further events can he stored for recording, each with an individual 

dead time of 6 ̂ s. 

A Local Area Network (LAN), accessible to the 68000, is responsible for 

the control and monitoring of the telescope. One master microcomputer 

acts as the interface between the 68000 and the LAN, while 5 dedicated 

computers within the network perform the tasks of steering, telescope 

performance and environmental monitoring. 

3.4.2.7 Overview of Telescope Electronics 

The high voltage required for operation of the PM tubes is provided by a 

multi-channel LeCroy HV4032A E.H.T. unit. Every PM tube signal is 

passed to Automatic Gain Control (AGC) units which isolate the D.C. 

component of the analogue output of the PM tubes. The anode current of 

each PM tube is compared with a reference cun-ent generated by the 

68000, and the error signal used to drive a LED in the servo loop which 
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stabilizes the anode current. The value of the measured anode current is 

passed to an analogue to digital converter. Anode current values of all 21 

tubes are displayed at all times as these are an important measure of the 

operating condition of the telescope. 

At the input of the AGC unit the signal from each PM tube is A.C. coupled 

to a W100 amplifier within a LeCroy model 612A amplifier unit. After ten 

fold amplification the signal path is split. One of the signals goes to a 

voltage discriminator which has a peak voltage threshold which can be set 

by the 68000 via its CAMAC intertace. The usual value is 50 mV. When 

this threshold is exceeded an output is generated and passed to a 3 fold 

coincidence unit. If the three signal paths which together constitute a 

coincidence channel each provide a signal within a narrow (10ns) gate then 

the channel is deemed to have fired. This generates an event signal. Each 

event signal initiates the charge to time converter (QT) units in the second 

signal path. The QT units are LeCroy model 2249A analogue to digital 

converters which digitise the charge integrals of the signals from all of the 

PM tubes during a 30 ns gate interval. The outputs of the QT units are 

scaled, and then logged by the 68000. An additional logic unit, the 

coincidence register, records which of the channels have fired for each 

event and its output is recorded in the event record. 

3.4.3 The Mark 4 Telescope 

This telescope is similar in design to the Mk.3 telescope, but with a 

reduced flux collector area of 3 x 6 m .̂ Focal length and aperture are 

identical and the steering and electronics have similar specifications. The 

telescope was designed to be portable and was first deployed at the 

Observatorio del Roque de los Muchachos (18°E, 28°N, 2500 m above sea 
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level) on La Palma in the Canary Islands. It operated on La Palma from 

June to October of 1988 and 1989. In May 1990 it was assembled in 

Narrabri and operated in conjunction with the Mk.3 telescope until the 

summer of 1993. 

3.4.4 Performance of the Telescopes 

When the specification for the Mk.3 telescope was drawn up a count rate 

of 75 min'̂  per channel was predicted based upon a model of telescope 

perfomiance. This proved to be a faithful representation of initial count rate, 

lending weight to the telescope performance model. The collection area 

was predicted to be IxlO^m^, and single channel aperture 0.8 sq. degrees. 

With improvements to the optics and optimisation of the PM tube operating 

parameters this count rate has increased to almost 2 Hz. The count rate at 

the inception of the experiment translates to an energy threshold at zenith of 

300 GeV (Brazier et al., 1989). This has been revised downwards to 250 

GeV in light of the increase achieved in the count rate. This energy 

threshold is confirmed by results of simulations and it is believed that the 

uncertainty in this threshold is no greater than 50 GeV. 

The count rate is a function of zenith angle, and in the case of the Mk.3 

telescope this function has been shown to be of the form 

N(e)=NoCOS"e 

where n is 2.3 +/- 0.5 (Chadwick, 1987). This is consistent with the 

response of the Dugway telescopes and is an inherent characteristic of the 

triple fast coincidence system. The index in the above function tends to 

differ widely between telescopes employing different detection strategies. 

45 



The corresponding function for the Whipple telescope, for example, with a 

trigger system relying entirely on the response within a camera viewing a 

single large collector, has an index of 0.9 (Punch, 1993). 

The Mk.4 telescope has a count rate of about 60% of that of the Mk.3 

telescope, a consequence of its reduced mirror area. An energy threshold 

to gamma rays of 450 GeV has been assigned (Bowden, 1993). 

Mk.3 Mk.4 

Collector Area 11 m* 6m2 

Photomultiplier Diameter 46 mm 46 mm 

Focal Length 2.45 m 2.45 m 

Physical Aperture (FWHM) 1.5 +/- 0.2 1.5+/-0.2° 

Reflectivity 80% 80% 

Count Rate (at Zenith) 120 c.p.m. 70 c.p.m. 

Gamma Ray Threshold 250 GeV 450 GeV 

Table 3.2: Physical characteristics of the Mk.3 and Mk.4 telescopes. 

3.4.5 Conclusion 

The eariy gamma ray telescopes described above, which have been 

referred to as the first generation, had little or no capacity to differentiate 

between gamma ray and hadron initiated events on the basis of the detail of 

the Cerenkov light produced. The majority of the effort was directed 

towards optimising the spatial and temporal response of the telescope to the 

typical Cerenkov event, which has a characteristic size and duration. 

Aperture functions of the telescopes were adjusted to achieve maximum 

sensitivity (a compromise between rejection of night sky noise and loss of 
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Cerenkov light) and electronic integration times matched to the duration of 

the events. 

A first generation system is therefore simply a counting device typifying a 

brute force approach to source detection. Long exposures to potential 

sources are performed in the hope of eventually revealing a periodicity 

within a strong background, and / or a small count rate excess over a 

control background rate. The count rate of the telescope is of paramount 

importance and these simple telescopes, requiring only that the trigger 

criterion is satisfied, count at a rate which is a function of the integrated flux 

above energy threshold. A modest decrease in telescope threshold energy 

produces a significant increase in count rate. Therefore, much attention 

was paid to maximising the system gain leading, in the case of the Durham 

group, to the adoption of the threefold coincidence system to minimise 

threshold energy. Even so, within the energy range over which these 

instruments are sensitive, the method is hamstrung by the hadronic 

background. Second generation systems have evolved to meet the 

challenge of discrimination between gamma ray and hadron initiated events. 

3.5 Possible Enhancement of Response to Gamma Rays 

3.5.1 introduction 

Prior to the advent of detailed Monte Cario simulations of extensive air 

showers, insufficient information on the relative morphologies of gamma ray 

and hadron initiated showers was available to invoke rejection criteria based 

on the form of the Cerenkov events. However, one method which was 

adopted by the Durham group appeals to the directionality of the gamma 

rays (Brazier, 1991). A 'guard ring' of PM tubes surrounds the tube which 
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has the source at the centre of its field of view and effectively constricts the 

aperture of the central channel. This method appeals to the more compact 

and regular nature of Cerenkov images produced by on axis gamma rays, in 

comparison with their hadron initiated counterparts. This method also 

discriminates against showers which appear within the centre of the field of 

view but are due to off axis hadrons with a compensating perpendicular 

distance between detector and shower core (the impact parameter). These 

images will be extended in one dimension and so will be prone to trigger 

peripheral channels as well as the centre. This rejection strategy was 

operated in both hardware and software modes. In its simplest fonn only 

events which satisfy the discrimination threshold solely for the on source 

channel are accepted as emanating from the source direction. There has 

been evidence for the validity of this method from data recorded by both the 

Mk.3 and Mk.4 telescopes, with detections in the on source channel data 

always having no counterpart in the guard ring data. The guard ring was 

initially configured with a separation of 2°from the centre channel, with the 

proportion rejected being 40 % to 50 %. A reduction in separation to 1.5°, 

effected in March 1991, increased this proportion to 50 % to 60 %. 

A limitation of the hardware rejection criterion is its inflexible response to 

events displaying a spectrum of energies. Small showers are less 

constrained in arrival direction as peripheral light partially incident on a 

guard ring tube is less likely to exceed the discrimination threshold. This 

effect is min-ored in the response to variation in zenith angle. Due to 

geometrical effects showers at larger zenith angles appear smaller and the 

proportion of rejected events decreases. In response to these deficiencies 

the method was adapted to reject events during analysis on the basis of the 

pulse integrals for each of the PM tubes. Rather than require that a guard 

ring tube exceeds a constant threshold, the condition is imposed that the 
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pulse integral of a guard ring channel must not exceed a specified fraction 

of that of the on source channel. This ameliorates the detrimental effects of 

the energy spectrum and zenith angle dependencies (Brazier, 1991). 

Since the centroid of the image at the focal plane migrates away from the 

optic axis as the impact parameter increases, an aperture rejection criterion 

obviously constrains the axis of the shower to lie within a smaller radius of 

the detector than would othenwise be the case. This effect reduces the 

collecting area of the telescope, rejecting gamma rays with large impact 

parameters. However, the optimum collection area for gamma rays is 

obviously that defined by the extent of the flat lateral distribution of 

Cerenkov light at the altitude of the detector. Expansion of the collection 

area necessitates a wide field of view. The maxima of showers falling with 

impact parameters of up to 50 m will fall within the field of view of a 1° 

aperture instrument, defining a collection area of 10* m^ This could be 

improved by almost an order of magnitude by increasing the extent of the 

detector package to a size which would confine events with impact 

parameters of up to 150 m. Whilst this increases the rate of collection for 

gamma rays it leads to an even more significant increase in the observed 

hadronic flux, due to the wide solid angle of acceptance. In order to make 

this detector configuration viable one must be able to discriminate between 

the Cerenkov signatures of gamma ray and hadron initiated air showers. 

Eariy analytical simulations of the gamma ray cascade by, for example, 

Zatsepin (1965) failed to highlight differences between gamma ray and 

hadron initiated Cerenkov events which could be exploited in a rejection 

strategy. It took the rapid development in microcomputer technology and 

more optimistic Monte Cario simulations, particulariy by Browning and 

Turver (1975,1977), to rekindle interest in the detailed shower 

characteristics. Simulations can provide information on the three principal 
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parameters of consequence to detection strategies. 

- The lateral distribution of Cerenkov light as it is incident on the ground, 

defining the sensitive area of a telescope. It is also possible to 

estimate the photon flux within this light pool as a function of energy, 

providing a measure of the photon flux through the detector. 

- The angular extent and distribution of the Cerenkov light on the sky 

relative to the optic axis of a detector, and the projection of this image 

onto a camera on the focal plane. 

- The time profile of the Cerenkov event at specific points on the shower 

front, and the delay of the light front as a function of impact parameter. 

Several observational strategies designed to exploit differences between 

parametric representations of gamma ray and hadron generated Cerenkov 

events have evolved in response to the results of these simulations. These 

can be grouped broadly into two categories, imaging and wavefront 

sampling, utilising spatial and temporal shower information respectively. 

Telescopes employing these more sophisticated strategies have been 

referred to as second generation instruments. 

3.5.2 Imaging 

This approach was pioneered by the Whipple collaboration in the eariy 

1980's (Fegan et al, 1983). Discrimination between gamma ray and hadron 

events is achieved on the basis of the distribution of the Cerenkov light 

projected onto a pixellated camera system at the prime focus of the flux 
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collector. The details of the Cerenkov production processes are 

unimportant when considering the nature of this image. An event is viewed 

as a projection of the particle track over the distance during which it 

radiates. The image length is predominantly defined by geometrical 

perspective, with the aspect of the shower being progressively 

foreshortened as impact parameter decreases. With the optic axis aligned 

with the source, images of showers developing parallel to the axis possess 

a radial symmetry which is not displayed by the off axis background an'iving 

from random directions. 

The Whipple flux collector is a purpose built tessellated dish of 10 m 

diameter. It has 248 hexagonal facets of spherical section, each with a 

width of 61 cm. The optics are of an unorthodox (Davies Cotton) design. 

The individual mirrors are configured on a 7.3 m radius spherical surtace, 

with the nomial to the mirrors directed at a point 14.6 m along the optic axis 

(Cawley et al, 1990). The focal surface is at the centre of curvature of the 

dish. This system was adopted to minimise the detrimental effects of coma 

for images off the optic axis, these images only being marginally larger at 

FWHM than those on axis. Quoted FWHM point spread functions on axis 

and 1.25° off axis are 0.12° and 0.14° respectively. This advantage is 

achieved at the expense of the isochronicity offered by a collector of 

parabolic section. The spread of travel times is 6 ns, sufficient to mask any 

differences inherent in the time profiles of gamma ray and hadron initiated 

events. 

The first imaging device to be deployed on the focal plane was a camera 

consisting of 37 hexagonally close packed two inch PM tubes with a pixel 

size of 0.5°. This defined an aperture of 3.5°. Simulations of the response 

of the 37 element camera to both gamma ray and hadron initiated events, 

within the framework of the Whipple optics and incorporating appropriate 
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night sky noise, were performed by Hilias (1985). In order to make 

comparisons the images were parameterised. using standard moment fitting 

procedures appealing to the elliptical nature of the images. Figure 3.3 is a 

schematic illustration of the Hilias parameterisation of the image on the focal 

plane. The parameters and their interpretations are listed below (adapted 

from Fegan, 1992). 

WIDTH : The maximum rms spread of light along the axis 

perpendicular to the major axis of the image, a measure of 

the lateral extent of the cascade at shower maximum. 

LENGH : The rms spread of light along the major axis of the image, a 

projection of the extent of axial cascade development. 

MISS The perpendicular distance between the major axis of the 

image and the centre of the field of view, a measure of 

shower orientation. 

DISTANCE: The distance from the centroid of the image to the centre of 

the field of view, a measure of the displacement on the sky 

of the shower maximum from the source direction. For 

gamma rays, constrained to emanate from the source 

direction, distance translates to impact parameter. 

AZWIDTH : The rms spread of light perpendicular to the line connecting 

the centroid of the image to the centre of the field of view, 

an amalgamation of size and orientation parameters. 
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ALPHA a = Sin-' (Miss/Distance). The angle between the major 

axis of the image and the line joining the centroid of the 

image to the centre of the camera. 

Significant differences were predicted between gamma ray and hadron 

initiated events, gamma events being almost a factor of two smaller and 

possessing the radial symmetry mentioned earlier. Multi-parameter cuts 

based on the data from simulations predicted that rejection of > 98 % of the 

background was possible whilst retaining 65 - 70 % of the signal. This 

confidence was borne out by a detection of the Crab Nebula at the 9a 

significance level (Weekes, 1989). The 0.5" pixel pitch camera was 

replaced in 1988 with a camera with a similar field of view but with 0.25° 

resolution (Cawley et al.,1990). Flux sensitivity was increased by a factor of 

3 and the Crab Nebula detected at a level of significance of 20 to 30a. 

A multi-parameter cut based on moment fitting of images is not the sole 

method applied to the data in order to discriminate between gamma and 

hadron initiated Cerenkov images. In order to be able to compare the 

various analysis techniques the Whipple collaboration have defined a 

quantity Q, the quality factor (Fegan, 1992), given by 

h\-1« Q = (nV N^ (nV N'') 

where n̂  is the number of gamma rays passing the particular cut applied 

from an initial sample of N ,̂ and n*' is the number of hadron initiated events 

surviving from a total of N". An indication of the achievable improvement in 

signal to noise can be gained from the Whipple collaboration's various 

efforts at background rejection, applied to their 1988-89 Crab Nebula 

dataset which are summarised in Table 3.3 {taken from Fegan, 1992). 
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3.5.3 Wavefront Sampling 

Wavefront sampling has become the generic term which encompasses all 

experiments which use the temporal information within a shower front. They 

can be subdivided into two groups, one of which uses the relative arrival 

times of the shower at a number of distributed points to reconstruct the 

shower front and derive an arrival direction. This can be compared with the 

source direction, effectively improving the angular resolution of the detector. 

The other method relies upon intrinsic differences in the time profiles of 

gamma and hadron initiated events across the whole shower front, sampling 

the shower at a single point. 

The Durham group was the first to achieve significant results using a 

distributed array of atmospheric Cerenkov telescopes. Two 15 minute 

bursts of pulsed emission were observed from the Crab pulsar 

(PSR0531+23) within 34 hours of data taken between 25th September and 

2nd November 1981 (Gibson et al, 1982). A further 103 hours of exposure 

between September 1992 and November 1993 revealed steady emission 

with a narrow peak in the light curve, coincident with the main pulse at other 

wavelengths (Dowthwaite et al., 1984). It was demonstrated that the excess 

counts in the main pulse were concentrated around the source direction and 

that they had a disproportionate amount of multiple telescope responses, 

the aperture function of the array being narrower for such events. Applying a 

condition for multiple telescope response preferentially selects gamma rays 

as a result of their flat intensity profiles. 

Multiple point wavefront sampling will not be considered further. However, 

pulse profile discrimination is being investigated by the Durham group for 

use both in a stand alone context and in conjunction with high resolution 

imaging. 
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The longitudinal development of the shower is represented by the range in 

arrival time of the Cerenkov photons. Photons from a gamma ray initiated 

event, having solely an electromagnetic cascade origin, are emitted 

predominantly from close to the core of the shower. A very narrow and 

uniform pulse profile results, in contrast, the nucleon and meson cascade 

which is the precursor to the electromagnetic component of a hadron 

initiated event gives these events much more structure. Photons emitted 

away from the core have a greater range of arrival times at any point of 

observation and are, in general, delayed relative to those produced near the 

core. The penetrating muon component emits Cerenkov light deep into the 

atmosphere which arrives in advance of light from the main body of the 

shower, accentuating the leading edge of the pulse profile. The 

parameterisation of the pulse profiles may prove more difficult than that of a 

two dimensional image on the focal plane. Parameterisation of the pulse 

shape is more subjective and probably a lot more sensitive to instrument 

design. 

Tumer et al. (1990), when observing near vertical showers from the 

direction of the Crab Nebula, characterised the showers on the basis of the 

number of secondary maxima on the pulse profile, the majority appearing on 

the trailing edge and on the offset of the trailing edge. This technique is 

very labour intensive, 3000 events taking 200 man hours to categorise, but 

led to a 4.2a detection of the Crab Nebula from only 100 minutes of on 

source data. It is claimed that up to 95% of hadronic background can be 

rejected, which represents a quality factor of about 4 if all of the gamma ray 

candidates are included. A second measurement failed to confirm the 

result. 

Roberts (1993) of the Adelaide group has parameterised time profiles in a 

less subjective manner, principally describing the profiles in terms of their 
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rise time, fall time and full width at half maximum. This method would 

appear to be more robust than that involving identification of secondary 

maxima, in that it is less sensitive to sky and electronic noise. The 

parameterisation is performed automatically. No results have been quoted 

but Monte Carlo simulations suggest Q factors of around 2 could be 

expected using a combination of pulse rise time and full width half maximum 

cuts, rejecting around 95 % of the hadron events whilst retaining more than 

50 % of gamma rays. 

3.6 Towards a Lower Threshold Energy 

3.6.1 Introduction 

The aim of this section is to describe the benefits of improving the 

sensitivity of telescopes to lower energy gamma rays and then outline how 

this might be achieved. 

3.6.2 The Utility of a Low Energy Threshold 

A reduction of energy threshold is important in the first instance because 

the cosmic ray energy spectrum falls steeply. Event yield increases 

dramatically as threshold decreases, with corresponding improvement in 

statistics and sensitivity. One reservation is that some observed gamma ray 

source spectra have been shown to be harder than the ubiquitous hadronic 

energy spectrum, making the move to lower energies less attractive than 

might othenwise be the case. However, gamma ray sources with steep 

energy spectra in the VHE region do exist, and a push to lower energy may 

reveal many such sources. 
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It has been assumed, on the basis of early work by Zatsepin and 

Chudakov, (1962), that above 1000 GeV gamma ray Initiated showers are 

twice as efficient in production of Cerenkov radiation as those initiated by 

hadrons, and that light intensity normalized to the primary energy is a 

constant. Turver and Weekes (1977) have shown, through Monte Carlo 

simulation of extensive air showers, that below 1000 GeV the situation 

becomes markedly different as the energy decreases. Figure 3.4 shows the 

average lateral light intensity distributions from proton initiated air showers 

of energy 100,1000 and 10,000 GeV normalized by energy. 
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Figure 3.4: Average lateral Cerenkov photon density distribution of (n) 

Monte Carlo simulations of proton initiated extensive air showers of 10^, 10^ 

and 10^ GeV. (after Turver and Weekes, 1977) 
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ngure 3.4 shows that the intensity distributions of the 1000 and 10,000 Gev 

showers are very similar but the 100 GeV average has suffered a five fold 

decrease in Cerenkov light production efficiency. Figure 3.5, which 

illustrates equivalent distributions for gamma ray initiated showers, shows 

no such severe degredation of intensity with energy. 

10 

100 GeV (25) 
Gamma Ray Primaries 

10 GeV (9) 

100 200 
Distance R (m) 

300 

Figure 3.5: Average lateral Cerenkov photon density distributions of (n) 

Monte Carlo simulations of gamma ray initiated EAS of 10 and 100 GeV 

(after Turver and Weekes, 1977). 

The physical explanation of this effect is bound up in the development of 

the nucleon cascade which generates the electromagnetic component of a 

hadron initiated extensive air shower. Energy is transferred to the 

secondary electromagnetic cascade via neutral pion decay, the decay 

product being a gamma ray. Charged pions are longer lived and their fate 

is subject to competing mechanisms, either decaying to charged muons or 
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undergoing further strong interactions with nuclei of the atmosphere. The 

latter interaction, which is preferred for higher energies, is the more efficient 

producer of Cerenkov light, producing more neutral pions. Due to relativistic 

effects lifetime to decay is longer at higher energies, thus favouring collision, 

production of further pions and hence electromagnetic cascading. As the 

energy decreases, however, more charged pions decay to muons and 

progressively more energy is lost to the production of low energy muons, 

whose energies fall below the threshold for Cerenkov radiation production. 

This results in a Cerenkov light deficit. Figure 3.5 demonstrates that even 

below 100 GeV, where the intensity of Cerenkov light from hadron initiated 

cascades is severely attenuated, gamma ray initiated showers are still very 

efficient producers of the radiation. The simulated 10 GeV gamma ray 

produces 50 % of the light anticipated by extrapolation from higher energies. 

This smaller deficit is due to an ever increasing proportion of the charged 

components of the electromagnetic cascade having lower energies and 

being produced in higher, less dense regions of the atmosphere where they 

are more likely to have energies below the Cerenkov threshold. The results 

of these early calculations have been supported by more recent work. 

Figure 3.6 shows the Cerenkov yield for EAS with gamma ray and proton 

primaries as a function of energy (Pare, 1993). Below 1000 GeV the 

Cerenkov light production of EAS with proton primaries decreases 

dramatically and the effects of the problematic cosmic ray background 

should decrease significantly. 
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Figure 3.6: Cerenkov yield of EAS with gamma ray and proton primaries as 

a function of energy (after Pare, 1993). 

3.6.3 The Optimisation of the Design of a Low Energy Telescope 

3.6.3.1 Introduction 

The energy threshold of a Cerenkov telescope is limited, ultimately, by the 

size of the flux collector. However, given a flux collector of a particular 

area, the lowest possible threshold is achieved by the optimisation of all 

design parameters. Factors such as the efficiency of the optics, effective 

collection area, choice of PM tube, suppression of background light, trigger 

efficiency and bandwidth of electronics can be considered independently 

and all have a bearing on instrument performance. 
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3.6.3.2 Optics 

Ground based gamma ray astronomy using the atmospheric Cerenkov 

technique requires flux collectors of large area, with good reflectivity and 

adequate optical quality. The detector package is usually placed at the 

prime focus of a flux collector, minimising light loss by requiring the light to 

undergo only one reflection. An appropriate choice of reflective surface is 

important and is dictated by the Cerenkov light emission spectrum. The 

light intensity is proportional to X'^, increasing to shorter wavelengths until 

absorption within the atmosphere becomes important. This absorption is 

about 50 % at 300 nm and approaches 100 % asymptotically at around 280 

nm. It is important then that the reflective surface has a high specular 

reflectivity from the near ultraviolet through the blue end of the visible 

spectrum. Silver, the material traditionally used as the reflective coating for 

glass mirrors, becomes progressively more absorbent below 400 nm 

making it a poor choice for the collection of Cerenkov light. Aluminium has 

a reflectivity (of between 80 % and 90 %, which it retains throughout the 

wavelength range of interest) but is unstable in air, forming an oxide coat 

almost immediately. This oxide coat forms as an amorphous crystal layer, 

which protects the Aluminium from further oxidation but is translucent, 

offering only very diffuse reflection. In order to achieve a stable reflective 

surface the aluminium may be subjected to an anodising process during 

which aluminium oxide is laid down on the metal in a regular lattice, forming 

a highly reflective surface. The optimal thickness of oxide layer is a half 

wavelength of the desired peak reflectivity. This thickness is about 100 nm 

for maximum reflectivity at a wavelength of 400 nm (as the refractive index 

of Aluminium oxide is near 2). The layer will be most absorptive at 200 nm, 

which is within the regime of atmospheric absorption, and 600 nm, which is 
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above the Cerenkov emission region and fortuitously at the maximum of the 

starlight background. 

A further consideration in mirror design arises from the requirement for an 

efficient trigger for the telescope. In order to achieve the lowest threshold, 

the specifications for the image must match the characteristics of the 

photosensitive device and associated electronics as closely as possible. 

Considering the three fold coincidence system favoured by the Durham 

group, the optimum image size of a gamma ray initiated event at the focal 

plane is that which matches the photosensitive area of the triggering PM 

tubes. Gamma ray initiated events have been shown to be about a factor of 

two smaller in lateral extent than hadronic events, the optimum triggering 

pixel size being approximately 0.5" (Hillas, 1985). Similarly, the duration of 

the Cerenkov pulse must be kept to a minimum to achieve the maximum 

illumination of the photocathode within the response time of the PM tube, as 

this translates to the peak voltage at the discriminator. Integration of the 

charge in the pulse is also best done over as short a time as possible to 

reduce sky noise in the measurement. The light front from a parabolic flux 

collector is isochronous and so this is the ideal surface in this respect. 

3.6.3.3 Photomultiplier Tubes 

The PM tube is still the preferred photosensitive detector for the detection 

of atmospheric Cerenkov radiation. Avalanche photo-diodes would offer a 

significant improvement in quantum efficiency (perhaps by a factor of three) 

but solid state detectors such as these are still in the concept stage of 

design for this type of application, the major problem being suppression of 

noise (Lorenz, 1993). 

Choice of suitable PM tubes is of paramount importance as these devices 
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can have quite widely differing operational parameters. Most of the gain of 

the recording system is provided by the PM tube, being determined by the 

voltage across each of the dynodes. A higher voltage per stage produces a 

larger accelerating field for the photoelectrons, these electrons then reach 

the next dynode with more energy and hence greater capacity to liberate 

further electrons. The rise time of the tube is important and should match 

as closely as possible the rise time of the Cerenkov pulse, little more than a 

few ns. Rise time is strongly dependent upon the voltage per stage of the 

device requiring the gain to be manipulated by constraining the number of 

stages used. The photoelectric current is proportional to the product of the 

illumination of the photocathode and its quantum efficiency. Yields quoted 

for the most sensitive devices can be as high as one electron for three light 

quanta, a quantum efficiency of 33%. Photocathodes are usually composed 

of the alkali metals, with the wavelength of peak response being dependent 

upon the work function of the particular metal. The peak response migrates 

to progressively longer wavelengths as one moves down the group in the 

periodic table. Even though the lighter metals. Lithium and Sodium, have 

peak response within the Cerenkov emission spectrum, the majority of the 

commercially available tubes have bi-alkali photocathodes consisting of 

complexes of the heavier transition metals with Antimony. The RCA 8575 

tube used extensively by the Durham group in the past has the complex 

KzCsSb as its photocathode with peak response at 420 nm and a quantum 

efficiency of 24 %. Ideally the windows of the tubes would be 100 % 

transmissive of UV light, the best approximation to this is a quartz window, 

but such tubes are prohibitively expensive. Pyrex and lime glass windowed 

tubes are more common. 
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3.6.3.4 Reduction of Ambient Background Light 

Background light may originate from a variety of sources. The most 

significant source is the night sky reflected in the flux collectors. This 

background arises from specular reflection of the sky within the field of view 

of the detector and diffuse reflection from the whole of the sky in front of the 

detector. The sky noise is the Polssonian fluctuations in the D.C. 

illumination of the PM tube. This background illumination is minimised with 

respect to the Cerenkov signal by matching the field of view of the detector 

to the lateral extent of the signal, and the bandwidth of the electronics to the 

duration of the pulse. In reducing the aperture of the telescope to optimise 

the signal to noise we arrive, empirically, at a compromise between the 

night sky flux through this aperture and the proportion of the Cerenkov 

signal encompassed. This background flux cannot be eliminated. A certain 

proportion of the off axis light which has suffered diffuse reflection could be 

removed using collimators beyond the focal plane, but this light is of 

secondary importance to the on axis background and engineering 

considerations preclude this. With three paraxial flux collectors, however, 

diffuse and specular reflection from adjacent mirrors will augment the light 

noise from the flux collector dedicated to each particular detector package. 

This problem can be remedied quite easily by screening all angles of view 

between collectors. If a cylinder is placed around the camera with extension 

from the focal plane towards the collector, and a complementary cylinder is 

placed around the collector extending towards the focal plane, all angles of 

view external to the dish will be shielded, eliminating light from adjacent 

dishes and the ground albedo. 
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3.6.3.5 Optimisation of the Event Trigger 

As indicated eariier it is the belief of the Durham group that the best 

compromise between coincidence fold number and individual flux collector 

area is to use three flux collectors. This judgement was originally based 

upon a configuration of three identical PM tube packages at the prime foci of 

three identical flux collectors. In the case of a system of signals from two 

dedicated triggering packages, combined with the signal from a higher 

resolution imaging camera, the situation becomes more complicated. The 

third required signal for coincidence can be generated by any one of a 

number of strategies which will be more or less stringent than for one further 

identical package. Trigger strategy is inextricably linked to the combined 

noise rates, and hence operational gain of the imaging tubes. 

A cluster of a number of the smaller imaging tubes of the camera will have 

a field of view corresponding to one channel of the triggering electronics. 

Additional electronic logic is required to provide a signal for the coincidence 

unit in the event of one or more of the outputs of these tubes achieving the 

discrimination threshold. The larger the cluster of tubes providing the 

trigger, the higher the combined noise unless gain is sacrificed. As a 

consequence of this gain constraint and the dissipation of light in the images 

between tubes, the camera may become the component of the system 

which defines the threshold. However, as the image scale on the focal 

plane is large compared with the pixel pitch of the camera, each image will 

be represented in the output of a number of adjacent camera PM tubes. 

This allows the imposition of a camera coincidence trigger, supplementary 

to the three fold coincidence trigger. If the condition is imposed that 

coincidence is required between two camera PM tubes (within a cluster of 

seven), in addition to the corresponding left and right triggering PM tubes 
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then the imaging tubes could be run at a much higher noise rate and 

consequently higher gain. Many permutations of trigger can be envisaged 

but all are subject to the compromise between gain and accidental rate. 

The optimal solution will depend upon the gain and noise characteristics of 

components of the particular detector. 

3.6.3.6 Optimisation of Discriminator Threshold 

The output of a PM tube is represented by the instantaneous voltage 

across a resistance at its anode. This signal is passed, via an operational 

amplifier, to the voltage discriminators. This voltage will be proportional to 

the instantaneous anode current which is given by 

U = LOGe 

where L is the luminescence at the photocathode, Q is the quantum 

efficiency, e is the charge on the electron and G is the gain. 

The discriminator threshold is defined by the acceptable noise rate above 

threshold. If the resolving time of the electronics is x then the number of 

photoelectrons produced at the photocathode within this time is 

Nt = LQx 

and the statistical fluctuation, obeying Poissonian statistics, is 

Ox = (LQx)-̂ '2 
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thus the anode current is uncertain by 

a={LQx)-^*eG/T 

From the aix>ve it is evident that at constant illumination, anode current is a 

direct measure of gain and that the deviation from the mean is proportional 

to the gain. For a triple fast coincidence selection system, the choice of a 

tolerable accidental coincidence rate will define the acceptable single fold 

noise rate. An increase in gain pushes more of the tail of the instantaneous 

voltage distribution above the threshold, so increasing the PM tube noise 

rate. A con'esponding increase in threshold can be made to reduce the 

noise rate to its previous value, but the increase in gain may not 

compensate for the required increase in threshold. The optimum gain and 

threshold combination for constant noise rate that which gives the highest 

three fold coincidence count rate, indicating a lower energy threshold. 

At the inception of the Mk.3 telescope experiment the three fold 

coincidence count rate close to the zenith was noted for different voltage 

discriminator thresholds at a constant single fold noise rate. The results are 

presented in Table 3.4. A similar experiment was performed on the centre 

channel of the Mk.5 telescope in March 1993. The signal from the centre 

cluster of seven one inch tubes was used for the trigger in the camera, the 

trigger requirement being that at least one of the seven PM tubes achieve 

threshold. Noise rate for the centre cluster (CC-C6) is approximately the 

sum of the single fold noise rates of the seven tubes. The results of this test 

are displayed in Table 3.5. These tests demonstrate that the three fold 

count rate is relatively insensitive to discriminator threshold if compensation 

is made in tube gain. 
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Discriminator threshold 

50 mV 30 mV 

Left Centre Right Left Centre Right 

Tube noise (kHz) 30 30 30 30 30 30 

Tube Voltage (V) 1865 1910 1885 1725 1785 1760 

Anode Current (nA) 11 20 17 7 14 12 

3 Fold count rate 70 c.p.m. 68 c.p.m. 

Tabie 3.4: Sensitivity of the telescope count rate to voltage discriminator 

threshold for the conventional Mk.3 telescope three fold coincidence. 

Discriminator Threshold 

50 mV 100 mV 

Left CC-C6 Right Left CC-C6 Right 

Tube noise (kHz) 28 200 31 23 200 24 

Tube Voltage (V) 1550 1150 1550 1650 1325 1650 

Anode Current {\iA) 21 25 16 37 55 27 

Accidental Rate (Hz) 10"' Hz 5x10 -2 Hz 

3 Fold count Rate 89 +/- 4 c.p.m. 83 +/- 4 c .p.m. 

Table 3.5: Sensitivity of a Mk.5 telescope coincidence channel count rate to 

discriminator threshold. CC-C6 represents a cluster of 7 camera PM tubes. 

In an effort to evaluate the level of amplifier noise on the system, 1000 V 

was applied to the tubes on the centre channel of the Mk.3 telescope at 

zenith, and the discriminator threshold progressively reduced in increments 

of 5 mV. The single fold noise rates proved to be negligible down to the 

minimum threshold of 15 mV suggesting that the night sky is the 
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predominant source of noise in the system. 

3.7 A Design for a New Telescope 

Within the preceding discussion of telescope performance a number of 

competing themes can be identified. It is obvious that in order to make 

progress in the field of atmospheric Cerenkov astronomy the next 

generation of instruments will have to discriminate actively against hadron 

initiated events. The three most promising concepts would appear to be; 

- imaging of the event using a high resolution pixellated camera, 

- pulse shape analysis utilising flash ADCs (or a commercially produced 

oscilloscope) to digitise the time profile of the Cerenkov pulse to 

nanosecond accuracy, 

- operating at extremely low threshold energies to take advantage of the 

deterioration in efficiency of Cerenkov radiation production suffered by 

proton initiated EAS at low energy. 

Each of these discrimination policies, while not being mutually exclusive, 

stress different aspects in telescope design. Adoption of the parabola as 

the section of the flux collector, in order to achieve isochronous arrival of the 

wavefront at the detector package, compromises off axis image quality due 

to coma. Dissipation of the Cerenkov signal between tubes of a high 

resolution camera has a similarly deleterious effect on the threshold energy 

of the telescope. Thus, if we wish to appeal to all of these rejection policies, 

telescope design is necessarily a compromise. 
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CHAPTER 4 

A PROTOTYPE LOW ENERGY THRESHOLD T E L E S C O P E 
4.1 Introduction to the Mk.5 Telescope 
4.1.1 Prototype for a New Telescope 

4.1.1.1 The Mk.6 Telescope Concept 

The design of the Mk.6 telescope, which is the subject of Chapter 7, was 

prompted by the diminishing returns from the "first generation" systems of 

comparatively low sensitivity, typified by the Mk.3 telescope. A simple 

qualitative specification for the Mk.6 design is for a telescope with large flux 

collector area (and consequently a low threshold energy), with the capacity 

to exploit sophisticated background rejection techniques. 

The scale of the Mk.6 telescope, 114 m^ total reflector area, allows the 

telescope to operate in an energy regime (< 100 GeV) in which the gamma 

ray signal is enhanced relative to the hadronic background due to the fall off 

in Cerenkov radiation production in hadron initiated EAS. With better quality 

optics and fast electronics the Mk.6 telescope will also to be able to 

discriminate between higher energy gamma ray and hadronic initiated 

showers utilising spatial and temporal disparaties between their respective 

Cerenkov signatures. 

4.1.1.2 The Mk.6 Telescope Prototype 

The design of the Mk.6 telescope represented a significant advance in 
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technology for telescopes operated by the Durham group, and the need was 

felt for a testbed for a number of facets of the project. 

The role of the Mk.5 telescope, as a half scale prototype, is to assess the 

viability of: 

- Developments in the process of mirror fabrication. 

- A new mechanical design and steering configuration for the alt-azimuth 

mount. 

-The operation of an imaging camera comprising a close packed array of 

PM tubes. 

- Incorporation of an imaging device into a fast coincidence triggering 

system. 

- Fast sampling of the Cerenkov pulse shape. 

4.1.2 The Scientific Potential of the Mk.5 Telescope Project 

While its principal objective is proof of concept, the Mk.5 telescope 

represents a large improvement in sensitivity in comparison with the Mk.3 

instrument. For example, the camera of the Mk.5 telescope possesses 

sufficient resolution to allow simple parameterisation of images of Cerenkov 

showers. This allows the imposition of event rejection criteria, providing the 

facility to reject those events which are obviously due to hadronic 

background. 

An additional signal enhancement strategy utilising the medium resolution 
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imaging capacity of the telescope to target gamma ray like events is 

possible with the provision of a second telescope of similar resolution to the 

Mk.5 telescope. "Stereoscopic Imaging" of Cerenkov showers, an analysis 

of the longitudinal cascade development, has the potential to increase 

sensitivity at energies insufficient to allow accurate higher moment 

parameterisation of images. Discrimination between gamma ray and 

hadron initiated events requires only the evaluation of the lower moments of 

the light distribution. Putting this into effect required the upgrade of the 

Mk.3 telescope to a similar level of perfomiance to the Mk.5 telescope but 

provided a useful signal enhancement technique, for which the information 

provided by medium resolution imaging is perfectly adequate. The upgrade 

of the Mk.3 telescope to provide a complement to the Mk.5, and an account 

of the Durham stereo imaging programme is the subject of Chapter 5. 

4.2 An Overview of the Mk.5 Telescope Design 

4.2.1 Introduction 

The Mk.5 telescope operates as a triple fast coincidence instrument in the 

mould of its predecessors and indeed, for a brief period during 

commissioning, it functioned as a conventional Durham atmospheric 

Cerenkov telescope, with three identical PM tube packages of seven close 

packed 2" tubes. It did, however, introduce several innovations in design 

and operation of the Durham telescopes. 

A photograph of the Mk.5 telescope is presented in Figure 4.1. 

74 



Figure 4.1: The Mk.5 Telescope. 
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4.2.2 The Flux Collectors 

The flux collectors (described in Section 4.3) are composite paraboloids 

configured from 12 individual mirror sectors. Each flux collector has an area 

of 10 m^ and a diameter of 3.50 m. This aperture, together with the focal 

length of 3.32 m, defines an f number of 0.95. The non reflective area 

within the aperture of the dish has been minimised to give optimum flux 

collection for the given focal length / aperture ratio. The mirror sectors are 

the first large area mirrors produced by the Durham group, and the first with 

parabolic section. The development of these mirrors has been a major part 

of the prototyping of the new large telescope. 

4.2.3 The Telescope Mount 

The alt-azimuth mount of the Mk.5 telescope is the first such large mount 

to be built by the group. The telescope can be moved independently in 

altitude and azimuth under computer control, with independent positional 

information provided by absolute shaft encoders on each axis. The design 

was evolved to incorporate the capacity to scale the mount to a size 

appropriate to the proposed Mk.6 telescope dimensions 

4.2.4 Incorporation of a Camera Response into the Trigger System 

Provision of an imaging capacity for the central collector within a 

telescope incorporating triple fast coincidence requires the Introduction of 

additional logic into the digital electronics defining the telescope event 

trigger. The Mk.5 telescope provided an insight into to this problem, and a 

measure of the efficiency of the new trigger relative to the conventional one. 
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4.2.5 Inception of the Telescope Performance Monitoring System 

The Mk.5 telescope was the first to benefit from an independent 

comprehensive real time performance monitoring system. Instantaneous 

values of telescope operating conditions (anode currents and noise rates for 

every PM tube) and environmental conditions are displayed on monitors 

dedicated to the telescope. The values are updated every three seconds 

and each minute a complete set of values are recorded as "housekeeping" 

blocks for later analysis. These minute by minute readings are also 

displayed graphically through the microcomputers on the local area network 

allowing trends to be identified in real time during telescope operation. 

4.2.6 A New Data Logger 

The data logger of the Mk.5 telescope is based upon a standard 

commercial microcomputer in contrast to the purpose designed 68000 

processor logger of the Mk.3 telescope. This development was possible 

because of the improvement in data handling rates and capacity of modem 

microcomputers. This use of commercial equipment increases the flexibility 

of the system and reduces dependency on complicated in house designed 

equipment. 

4.2.7 The Mk.5 Telescope Pulse Profile Experiment 

A fourth, smaller area (6 m^), flux collector was included in the design of 

the Mk.5 telescope sited above the three large flux collectors. At the prime 

focus of the collector an RCA 4522 PM tube (12.5 cm diameter) defines an 

aperture on the sky of a little more than 2°. This mirror / PM tube 
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combination is independent of the trigger but has its output gated and 

electronics logged In response to any trigger provided by the seven 

triggering channels. The purpose of this additional min-or / PM tube system 

is to provide the facility to investigate pulse profile analysis as an additional 

method of hadronic background rejection, without affecting the operation of 

the telescope. The "timing dish" of the Mk.5 telescope is mounted above 

the three conventional flux collectors (see Figure 4.1). 

4.2.8 The Central Control Room • The Annex 

Prior to the introduction of the Mk.5 telescope at the Narrabri observatory, 

the telescopes were operated from control rooms housed in their respective 

shipping containers. These control rooms incorporated the processing 

electronics, which are necessarily close to the telescope to avoid 

transmission losses in the signal cables. As a result the Mk.3 and Mk.4 

telescopes, separated by 100 m, were operated as two independent 

telescopes. For ease of operation remote monitors in the Mk.3 container 

also displayed steering information, and the PM tube anode currents and 

single fold noise rates from the Mk.4 telescope. 

The increase in number and complexity of operational telescopes on the 

observatory site made it impractical to operate all of the telescopes 

independently and monitor their performance from the Mk.3 telescope 

control room. A control room dedicated to the monitoring of the 

performance of all of the telescopes was commissioned concurrently with 

the construction of the Mk.5 telescope. This control room has become 

known as the Annex. 

Each telescopes operation is controlled by a Local Area Network (LAN) of 

computers. These LAN are interconnected site wide to provide a Wide Area 
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Network (WAN) over which data can be transfenred. Within each LAN one 

computer is dedicated to the monitoring of telescope performance. Data 

displayed on each telescope performance monitor is echoed to a computer 

in the Annex over the WAN. 

It is possible to switch off power to the EHT and steering of each 

telescope from the Annex control room. Site wide facilities such as the 

timing standard and weather station are also monitored from the Annex. 

4.3 The Mk.5 Flux Collectors 

4.3.1 Introduction 

The mirrors of the Mk.3 telescope have been in service in Narrabri for 

more than eight years following exposure in Durham for 2 years. They have 

suffered negligible degradation of reflectivity and have retained structural 

integrity despite being constantly subject to the elements, including 

significant diurnal thermal cycling. This has engendered a great deal of 

confidence in the materials and method of manufacture used. The 

requirement for a significant improvement in optical quality for the mirrors of 

the Mk.5 telescope, however, places constraints upon the configuration of a 

new composite flux collector. 

The Mk.5 telescope is seen as a platform to test a number of signal 

enhancement techniques as well as prototyping a telescope of very low 

energy. One background rejection strategy employed is based upon the 

time structure of the Cerenkov signal. This time structure is only preserved 

if an isochronous paraboloidal surface is used for the flux collectors. In 

addition to facilitating this technique the signal produced is narrower 

allowing a shorter, more stringent gate to be used in the fast coincidence 
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and producing higher Instantaneous voltages at the discriminators. Both of 

these factors have positive implications for the effort to reduce the energy 

threshold. 

A tessellated, approximately isochronous surface, comprised of mirrors of 

spherical section, would necessitate the batch production of a large number 

of mirrors with differing focal lengths. This complicates the production and 

lengthens the process significantly and a viable alternative was sought. 

The solution adopted was to produce a paraboloidal surface composed of 

a number of identical sectors of parabolic radial section. The fabrication of 

such flux collectors requires the machining of only a single fomier of the 

required shape. In addition to the improvement in ease of manufacture, the 

sectors are flush fitting, minimising the proportion of non-reflective surface 

within the area of the flux collectors. 

4.3.2 Mirror Specification 

An improvement in optical quality was required in order to utilise the more 

sophisticated background rejection techniques envisaged for the telescope, 

in particular the imaging technique. Generally, an improvement in 

performance requires a change of technology and associated increase in 

cost. However, in this case a proven method of manufacture was believed 

to have significant further potential. The reflectivity of the Mk.3 telescope 

mirrors was excellent and the material cost of manufacture acceptable. The 

only requirement which remained to be satisfied was that the large area 

mirror sectors could be produced quickly, reproducibly and to a specified 

optical quality. 

In the case of Atmospheric Cerenkov Astronomy the image quality 

required is quite modest, the smallest structure within the Cerenkov images 
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being on the scale of tenths of degrees. The focal length of 3.32 m, which 

was chosen for the Mk.5 telescope optics, defines an image scale of 5.8 cm 

deg'^ at the prime focus. For complete coverage of the potential collecting 

area of the telescope, an imaging camera with an opening angle of > 2.5** is 

required to encompass images from showers with the largest impact 

parameters likely to trigger the telescope. The choice of pixel size is 

determined by scientific requirements, cost and logistical considerations. In 

this case the sensitive area can be covered, with limited but acceptable 

resolution, by a close packed (3 cm pixel pitch) hexagonal an-ay of 19 1" PM 

tubes. In turn, the extent of the Cerenkov light in the image and the pixel 

pitch defines the specification of the mirror point spread function, resolution 

much better than pixel pitch being redundant. A point spread function at 

FWHM of 2.5 cm on the focal plane was defined as the specification for 

optical performance of the flux collector. 

4.3.3 Fabrication 

4.3.3.1 Background to Technique 

The method of manufacture of the mirrors is an adaptation of that 

developed for the production of the flux collectors for the James Clerk 

Maxwell millimetre wavelength telescope by staff at the Rutherford Appleton 

Laboratory. In essence, the technique involves forming the thin reflective 

surface over an accurately figured die and then applying a rigid back plane 

to maintain the form. Any shape or size of mirror could, potentially, be 

produced by this method. The decision to fabricate mirrors in the form of 

sectors of the complete flux collectors minimises the dead area and requires 

production of only one former. The irregular shape of the mirror sectors and 
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their size does, however, present additional problems to those encountered 

in the manufacture of the circular min'ors of the Mk.3 telescope. The 

symmetry in the form of the circular mirrors allowed the reflective surface to 

be pulled uniformly down over the die using a relatively small jig. 

Significantly more force would be required to form a surface over one of the 

mirror sectors and unequal residual stresses would inevitably result. 

4.3.3.2 Former manufacture 

The former for the mirrors employed on the Mk.3 telescope, circular in 

section, was turned on a lathe from a mild steel blank and then polished. 

This method produced a very durable former, accurate in section, but it is 

not a practical possibility for the large radius mirror sectors of the Mk.5 

telescope. Enquiries were made into having the former made commercially 

using a computer controlled machine, but cost and the lack of availability of 

a suitable milling machine proved prohibitive. It was decided to produce the 

former in the Physics Department workshop using simple manual 

techniques. 

Several alternatives to steel were considered for the material of the former 

in an effort to make the finishing less laborious. Materials were compared in 

terms of their strength, workability, damage resistance, availability and cost 

but no serious substitute for steel emerged. 

A steel former, representing a 30" sector of the complete 3.5 m diameter 

paraboloid, was cut from a 1" steel plate and pre-rolled into a parabola in 

the radial direction along the centre line of the former. The pre-rolled plate 

was fixed to a horizontal jig with the axis of the centre line parabola vertical. 

The centre line parabola was accurately finished first and would 

subsequently act as the reference template for the rest of the paraboloid. 
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Measurements were made relative to a horizontal optical bench bisecting 

the sector. The optical bench is fixed to a hub at the centre of the 

paraboloid and is free to rotate in a horizontal plane. The measuring device 

at a particular radius therefore describes circular arcs across the former. 

The former surface was worked to a condition where residual relief above 

the specification paraboloid was no greater than 0.1 mm. The whole 

surface was then progressively smoothed using a large area sanding tool 

with fine grain emery paper until all measurable relief was removed. 

Systematic errors in the measurement system represent the limit to the 

accuracy of the former and estimates of these errors are considered in the 

section describing mirror testing. 

The temperature of the room was kept stable during working periods to 

minimise effects of thermal expansion of components of the measuring 

system and the former itself. Heat generated during working of the surface 

was allowed to dissipate before further measurements were made of the 

surface. 

4.3.3.3 Mirror manufacture 

The reflective surface of the mirror is a 0.5 mm thick sheet of anodised 

aluminium (trade name Alanod 410G3, manufactured by Aluminium-

Veredlung GmbH & Co.). The total reflectivity is quoted at 88 % of which 

diffuse reflection represents 8-13 %. Specular reflectivity has been 

measured to be greater than 75 % throughout the wavelength range of 

interest (Weekes, private communication). This thin, flexible sheet of 

aluminium is pressed onto a rubber seal on the former, which is extemal to 

the area on which the mirror sector will be laid down. A vacuum pump is 

used to evacuate the space between the aluminium sheet and the former. 
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Atmospheric pressure forces the aluminium sheet to take up the shape of 

the former. The sheet has enough elasticity to avoid kinking. 

All surfaces to be bonded are abraded to increase the contact surface 

area and then cleaned with acetone. CIBA GEIGY Redux 420A/B two 

component epoxy resin adhesive is applied to the reverse surface of the 

reflective skin and a 6 mm thick perimeter frame, with sides 5 cm deep is 

applied to the surface. The frame defines the boundary of the mirror sector. 

An aluminium honeycomb material (CIBA GEIGY Aeroweb 3003) with a 

hexagonal cell size of 0.8 cm is then pressed onto the surface across the 

whole area within the frame. The paraboloidal shape is taken up quite 

easily as the foil thickness of the honeycomb is only 0.04 mm allowing some 

flexibility. The back of the honeycomb is plated with 1.6 mm thickness 

aluminium sheet, loaded with lead and left for a period to allow the adhesive 

to cure. The manufacturers specification indicates that cold curing leads to 

a significantly stronger bond, with full mechanical strength achieved after 

seven days at room temperature. The structure can, however, be separated 

from the former after 24 hours without compromising the integrity of the 

structure. Applying heat during curing would not reduce the curing time 

sufficiently to allow production of two mirrors per 24 hour period without a 

potentially damaging reduction in the ultimate bond strength and variability 

in the quality of the mirror surfaces. 

After the complete mirror is lifted from the former the border of reflective 

material required to form the vacuum seal is trimmed flush with the mirror 

frame. The border frame forms a perfect watertight seal with the Alanod 

surface as the adhesive is applied generously to this area. The back 

surface, however, is applied internal to the mirror frame and cannot be 

sealed with adhesive. In order to prevent the potentially damaging ingress 

of water, each min-or sector is sealed with an elastic car body filler. When 

84 



set, this surface is finished with sandpaper and the reverse surface of the 

mirror sector is painted white to minimise the heating effect of direct sunlight 

and thus reduce diurnal temperature variations. 

The mirror sectors are light (14 kg m'̂ ) and relatively cheap (£150 m**) to 

produce and, in the light of the evidence from the Mk.3 telescope mirrors, 

should prove to be effective and very durable. 

4.3.4 Individual Mirror Sector Testing Procedure 

Assuming that the mirror sectors can be aligned optimally, the limit to the 

flux collector performance is the point spread function of the individual 

sectors. Prototype mirrors were made during the finishing of the former to 

get an idea of the degree of improvement between iterations of the finishing 

technique. Crude measurements were made of the focal length and point 

spread function of these prototype mirrors using a distant light source. 

Although these tests demonstrated that acceptable images were produced 

at distances comparable to the specification focal length, it was difficult to 

define the optic axis of the mirror. In order to achieve a reliable measure of 

the point spread function at FWHM a system using parallel laser beams was 

devised. 

A laser is directed through a series of beam splitters on a horizontal 

optical bench. Mirror sectors to be tested are fixed to a sector of flux 

collector superstructure which is free to rotate about a hub whose rotation 

axis is horizontal, and perpendicular to the optical bench. The test 

apparatus is arranged such that the beam from the first beam splitter is in 

the same horizontal plane as the centre of the flux collector and is on the 

rotation axis. The beam from the first beam splitter is adjusted so that 

impinges on the centre of the collector, about which point the collector 
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rotates. A target board, marked at intervals corresponding to the intervals 

between the beam splitters, is then placed on the detector superstructure 

parallel to the optical bench, with the first mark at the centre of the collector 

and the board horizontal. The laser beams are then all adjusted to fall at 

their appropriate positions on the aiming board, producing a series of 

parallel beams of light which can be used to sample points on a radius of 

the mirror sector. The collector superstructure can now be rotated to bring 

the bisecting arc of a mirror sector into the horizontal plane incorporating the 

laser beams. The resulting image is brought to the focus of the dish which 

is defined as being at the specification focal length from the centre of the 

paraboloid, along the line defined by the principal laser beam. Upon the 

completion of this procedure we have defined a principal laser beam 

colinear with the optic axis of the mirror sector, and a number of other 

beams parallel to this. A plan view of the test apparatus is given in Figure 

4.2. 
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Figure 4.2: A schematic diagram of the mirror testing apparatus. Eight 

parallel beams of laser light sample the mirror surface along tangential arcs. 
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4.3.5 Performance of an Individual Mirror Sector 

The objective was to derive an estimate of the intensity profile of an image 

on the focal plane assuming uniform, on axis illumination of the mirror 

sector. The laser beams sample points on the mirror surface. Assuming 

radial symmetry, the intensity profile is given by the number density of the 

laser beams at the focal plane within annuli around the focus. 

The maximum number of parallel beams that could be produced was 

limited by the fall off in beam intensity at each successive beam splitter. 

Eight beams were used to sample the mirror surface along each radius. 

The distance of each beam splitter from the principal beam defining the 

optic axis was chosen so that each sample point represents an equal area 

of the mirror surface. The mirror was sampled on 15 radii equally spaced at 

2° intervals. Measurements were taken of the deviation of the beams, 

reflected at each sample point, from the focus. A polar plot of these 

measurements is shown in Figure 4.3. 

One can imagine that a composite image of 12 of the plots shown in 

Figure 4.3, each displaced by 30° from the preceding one, would be 

symmetrical about the focus. An approximate FWHM of 2.4 cm was 

inferred for the point spread function using the number density of points in 

successive 0.4 cm annuli as a representation of intensity. This hypothetical 

image size assumes that the mirror sectors are configured ideally using the 

image produced by the bisecting radii. On the evidence of Figure 4.3 it is 

obvious that the beams reflected from the majority of sample points fall 

below the focus. This suggests that the image produced from the bisecting 

arc of the mirror sector does not best represent the "centre of gravity" of the 

image produced by the whole sector. It is clear that the composite image 

could be improved by pushing the centroid of the distribution of points of 
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each sector to the focus, as shown in Figure 4.4, 
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Figure 4.3: The points of the polar plot represent the position on the focal 

plane to which each of the laser beams were reflected from each sample 

point on the min-or surface. The bars of the histogram represent the number 

density of points within successive annuli of the polar diagram. 
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Figure 4.4: A revised number density histogram derived from the polar plot 

shown, which has had its centre adjusted to the centre of gravity of the 

distribution of points. 
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The estimated FWHM of the revised number density distribution is 2.0 cm 

con-esponding to an aperture on the sky of 0.34". 

The data described above have also been used to estimate the accuracy 

of machining of the former. During the course of testing each laser beam 

describes an arc across the min-or surface at a particular radius. The 

circular arc sampled by the beam lies in a vertical plane normal to the optic 

axis. Any vertical displacement in the beam from the focus is due to there 

being a local deviation in the normal to the mirror surface from the 

horizontal. This deviation suggests extension of the arc on the mirror out of 

the vertical plane. A gradient in the arc can be inferred and is an error of 

manufacture. The tangential gradient at each sample point is calculated 

from the vertical displacement of the beam from the focus in the focal plane. 

The whole of the element of arc represented by the sample point is 

assumed to have this gradient. We can calculate each sample point's 

displacement normal to the arc assuming the change in gradient of the 

surface of the mirror is continuous, and does not change on a length scale 

which is short in comparison with the distance between sample points. 

Evidence that the change in gradient is continuous is provided by the 

observation that the beams can be seen to track across the focal plane with 

no discontinuities in their loci, save for those caused by local imperfections 

in the surface. 

Surface deviations above or below the paraboloid have been calculated 

for each sample point, and the deviations from each arc have been plotted 

in Figure 4.5, with the ordinate axis representing a displacement from the 

bisecting radius along the arc. This figure suggests a gradient along each 

arc relative to the perpendicular to the plane of the parabola on the bisecting 

radius. The mean gradient of the best fit straight lines to these data sets is 

0.001 (with a standard deviation of 0.0004). This would translate to a 1 mm 
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step between adjacent min'or sectors at the circumference of the flux 

collector. Steps such as these have been seen during alignment of 

adjacent sectors (configuration of flux collectors is described in Section 

4.3.6). 
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Figure 4.5: The vertical axis of this graph represents the relief of the 

surface of the former above the specification paraboloid. This relief, along 

arcs tangential to the sector radius, is calculated using data provided by the 

laser testing procedure applied to an example mirror sector. 

On the evidence of Figure 4.5 it would seem that the reference horizontal 

used during the manufacture of the former was in error by approximately 3 

minutes of arc. This systematic error has no effect on the ultimate 

performance of the mirrors. It simply causes the parabola to be "open" by a 

negligible amount. 
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Assuming that the gradient across the mirror Is a genuine systematic en-or 

in the method of manufacture then we can subtract this gradient from the 

data aind calculate the residual errors. Figure 4.6 is a plot of this residual 

relief. 
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Figure 4.6: This graph represents the residual relief, after subtraction of the 

systematic gradient evident in Figure 4.5, along tangential arcs on the 

former surface, This is effectively the relief above the "best fit" paraboloid. 

A contouring algorithm has been applied to these corrected data and the 

resultant contour plot of the residual relief is shown in Figure 4.7. 
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Figure 4.7: A contour plot representing the relief of the former surface 

above the "best fit" paraboloid. Relief on the centre line, which constitutes 

the reference arc, is constrained to be zero. Sample points are denoted x. 
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4.3.6 Configuration of Composite Collectors from Individual Sectors 

Each identical mirror represents a 30° sector of a composite flux collector. 

The min-ors are fixed to the superstructure at three points, two at the 

circumference of the collector and one at the centre. All three support 

points have adjustment parallel to the optic axis. The requirement for 

accurate field configuration of three flux collectors, each comprised of 12 of 

these large area sectors, necessitated the development of a new method of 

min-or alignment. The solution an-ived at was a development of the min-or 

testing equipment. A system of parallel laser beams was required which 

could be swept over each mirror sector in turn, imitating a distant light 

source. Obviously it was impractical to rotate the flux collectors as had 

been done in the laboratory, so a self contained, rotating laser system was 

developed within a 4 m length of aluminium channel. A centre point was 

defined within the channel and the channel fixed to a rotating hub with the 

centre point on the rotation axis. The axis of the hub was then aligned 

parallel to a heavy steel plate fixed to a tower which was adjustable in the 

vertical. A 5 mW solid state He/Ne laser was aimed down the axis of the 

channel through a series of regularly spaced beam splitters, including one 

on the rotation axis of the channel. Figure 4.8 is a photograph of the laser 

alignment system in the field. 

The beam defining the rotation axis of the channel was set first. As the 

channel was rotated the beam from the beam splitter on the optic axis 

described a circle on a target board. The centre of this circle is on the 

rotation axis and the beam was adjusted to fall at the centre of the circle. 

Once the principal beam had been adjusted to define the optic axis the 

other beams were set parallel to this using a vertical aiming board. 

With the beams set parallel, the relative attitudes of the spin axis of the 
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Figure 4.8:The mirror alignment system facing the Mk.6 telescope 
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laser system and the nominal optic axis of the flux collector were adjusted 

until the axes were colinear. The principal laser beam passes through the 

focus, which is at the centre of the cradle which supports the detector 

package at the focal plane, and impinges on the centre of the flux collector. 

Once this condition has been achieved the min'or sectors can be adjusted 

successively to bring their individual foci to the collective focus of the flux 

collector. 

4.3.7 Composite Flux Collector Performance 

The mirror sectors of the flux collectors on the Mk.5 telescope were 

aligned by adjusting the mirrors such that the centre of the cluster of laser 

spots at the focal plane fell on the optic axis. The bisecting radius of each 

mirror was used as the reference. An image size at FWHM was estimated 

in Section 4.3.4 for optics configured in this manner. The response of one 

and two inch PM tubes to the passage of a star across their field of view is 

consistent with this and Figure 4.9 shows a CCD image of a star projected 

onto a screen at the centre of the focal plane. Figure 4.10 displays the CCD 

pixel values across two perpendicular sections through the image. The 

width of the point spread function at FWHM is 2.5 cm demonstrating that the 

configuration of the mirror sectors was close to optimal, using the centre line 

of the sector as the reference. 
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4.3.8 Co-alignment of the Optic Axes of the Flux Collectors 

During the telescope build, the hexagonal cradles which support the 

detector packages have their centres plumbed vertically above their 

respective collectors. Thus the nominal optic axes are accurately paraxial. 

After alignment of the mirrors, the optic axis alignment is checked using the 

anode current response of PM tubes to the passage of a star through the 

focal plane. Minor adjustment can be made to the tripod support of the 

detector package to accommodate small errors. 

4.3.9 Conclusion 

The mirror manufacture technique proved to be very successful with the 

shape of the former being faithfully reproduced in every mirror surface. The 

limit to the utility of the technique appears to be the accuracy to which the 

former can be machined. Mirror form remains stable even without the 

added rigidity provided by the sector perimeter frame suggesting that larger 

area mirrors could be fabricated using the same method. The mirrors are 

cheap (£150 m'̂ ), light (14 kg m-̂ ), durable and have the required optical 

quality. 

4.4 Telescope Mechanics 

4.4.1 Introduction 

The Durham group have traditionally used an alt-azimuth mount for their 

telescopes. This is due to the use of ex-military engineering components as 

the platform for the early instruments, and the ease of twin axis steering 
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using microcomputer technology. The increase in scale to that proposed for 

the Mk.6 telescope necessitated the production of a purpose built mount. 

With this increase in scale, and a clean sheet for design, the opportunity 

existed to consider an equatorial system. 

The most significant advantage presented by the equatorial mount is that 

system rotates at constant angular velocity around a single axis whilst 

tracking. The angular velocities around orthogonal zenith and azimuthal 

axes in an equivalent alt-azimuth system are constantly changing within a 

large dynamic range. Unfortunately, this presents the possibility that drive 

velocities may coincide with resonant frequencies in the mechanics of the 

telescope. No serious problems in this area have been encountered with 

previous telescopes operated by the group and it was felt that any 

resonances could be suppressed by adjustment of the time constant of the 

drive. Ultimately, though, the use of an equatorial mount for the Mk.5 

telescope was not a practical possibility due to the extension of the 

telescope in the equatorial plane. The provision of complete sky coverage 

would require a heavily engineered mount incorporating a large 

counterweight. This solution was precluded by cost and lack of access to 

heavy engineering facilities. 

4.4.2 Alt-Azimuth Mount 

In contrast to the adapted gun mount used for the Mk.3 telescope the 

mount for the Mk.5 telescope was purpose built. The three dishes which 

comprise the optics are rigidly connected and are supported on a cradle by 

two bearings on a horizontal axis. The relative positions of the collectors 

are configured such that the structure is approximately in balance at all 

zenith angles. Free to move from 90° to 0° in zenith, the structure is driven 
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by a DC servo motor with integral geartjox, through a gear quadrant of 18" 

radius. The cradle is bolted on top of a 4' diameter, 1" thick circular steel 

plate on which the motor sits to drive the quadrant. This plate, supported by 

a number of pylons around its periphery, faces a similar plate. Each pylon 

is fixed to the upper plate and incorporates a brass wheel at its base which 

is in contact with the lower plate. The wheels are arranged tangentially and 

allow the plates to rotate relative to each other. The plates are centred by a 

thrust race bearing. The lower plate defines the azimuthal plane and in 

construction is set to the local horizontal. This plate is stationary and is 

fixed rigidly to the plinth. A ring gear is fixed to the lower plate concentric to 

the thrust bearing and a motor fixed to the top plate, with its axis radial to 

the plate, drives the top plate against this ring. 

4.4.3 The DC Servo Motors and Integral Gearbox 

The Mk.5 telescope is driven by Electrocraft permanent magnet DC servo 

motors. Drive is transmitted through a Gysin gearbox with a reduction ratio 

of 196:1. An additional gear train in the zenith drive, with a ratio of 2:1, 

increases the final drive ratio to 400:1 and the final drive gear diameter of 4" 

meshing with the quadrant of radius 18" increases the mechanical 

advantage to 1800:1. In the Azimuthal axis the final drive of the gearbox 

drives the telescope against a 27" diameter bevel ring gear. The total 

reduction ratio in the azimuthal axis is 3528:1. 

When a continuous current is passed through the windings of a DC motor 

a continuous torque is produced and the motor will accelerate until the 

torque matches the friction force. For effective drive and attitude control of 

the telescope the velocity of the motor and the position of the telescope 

must be sensed and provided as feedback for the motor controller. The 
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motor current is regulated in response to tlie feedback in such a way that 

the correct amount of torque is generated to effect the required movement. 

Telescope positional information is provided by absolute optical shaft 

encoders, which sense the attitude of the telescope in the azimuthal and 

zenith planes and provide positional feedback to the steering program. The 

telescope is driven independently in these planes. Motor angular velocity 

feedback is provided by tacho generators which produce a signal 

proportional to speed. The steering computer generates a velocity 

command signal, based upon the positional error in the encoder readings, 

indicating a required motor speed. This drive signal is passed to the servo 

amplifier which compares this with the feedback from the tacho generators 

and the resulting error is amplified to produce the drive current in the 

motors. Velocity changes are effected gradually to avoid placing undue 

stress on the drivetrain. The motor control boards also incorporate the 

facility for directional limit switches. At the limit the switches take a high 

resistance, passing a limit input of 0 V which reduces the motor current to a 

low value. 

4.4.4 Shaft Encoders 

The encoders (BEI model M25D-X-H4096N) used on the Mk.5 telescope 

are the same specification as those on the Mk.3 telescope. The zenith 

encoder is fixed to the cradle which supports the driven superstructure and 

provides the absolute position of a shaft passing through one of the zenith 

bearings, relative to a reference zero. This position is encoded as a 12 bit 

word. The azimuth encoder is fixed to the top one of the pair of circular 

steel plates which comprise the azimuth turntable. Its angular position is 

measured relative to a shaft which passes through the thrust bearing and is 
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clamped rigidly to the telescope plinth. Both encoders provide absolute 

positional information to one part in 4096 of a complete revolution, this 

translates to a resolution of slightly better than 0.09**. 

4.5 Telescope Steering 

4.5.1 Introduction 

The format of the steering package has not changed during the evolution 

of the Durham telescopes. This section will address the interface of the 

computer steering program with the motor control loop, routine steering 

checks and developments towards improved tracking resolution. 

4.5.2 The Steering Computer and CAMAC Steering Interface 

The telescope steering is controlled by a BBC microcomputer. Target 

azimuth and zenith positions are calculated from the source R.A. and 

declination every six seconds. The attitude of the telescope is sensed to an 

accuracy of 0.09". This angle is represented by one shaft encoder bit which 

con-esponds to the least significant bit in the steering program. Shaft 

encoder readings are passed to a CAMAC steering interface which converts 

the encoded grey scale 12 bit word into a binary word. This positional 

information is read continuously by the microcomputer and compared with 

the current target position. If the telescope position is in error compared 

with the target position the steering computer generates an appropriate 

drive voltage. The magnitude of the drive voltage passed to the steering 

interface is a function of the error, though the program contains drive 

constraints to prevent mechanical damage. Drive voltage is ramped up and 
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down to large values, restricting the maximum fate of change of drive. 

Figure 4.11 is a schematic representation of the motor drive control system. 

During tracking the updated target position rarely differs from the previous 

one by more than one bit. Thus, if the tacho gain and time constant of the 

motor controller are adjusted such that the telescope achieves the new 

desired pointing direction inside the six seconds then the telescope moves 

in a series of well mannered steps, reducing the probability of mechanical 

resonances within the structure. 

4.5.3 A Routine Checic of the Steering Integrity 

The steering integrity of the telescopes is checked regulariy using an 

automated "starcheck" procedure. A CCTV camera is mounted paraxial 

with the optic axes of the telescope and views the same region of sky as the 

detector packages. The anode current response to a star within the field of 

view of the central PM tube of the camera is used to define an isophote 

contour at half the maximum light intensity. For the Mk.5 telescope this 

contour is a circle of a diameter corresponding to a 0.5° aperture. This 

countour is marked on the CCTV monitor and is used as the reference for 

the "starcheck". The telescope is pointed at 12 stars, chosen to exercise 

the telescope over the whole of its range of movement, and the positions of 

each of these stars in the field of view of the CCTV camera are compared 

with the direction representing the axis of the central PM tube. The results 

of a typical "starcheck", performed at 11:00 UT on 30th November 1994 are 

presented in Figure 4.12. 
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a Car (-0.72) 

Azimuth 135 
Zenith 56 

aPav{1.94) 

Azimuth 28 
Zenith 59 

b Get (2.04) 

Azimuth 304 
Zenith 19 

gPhe (3.41) 

Azimuth 187 
Zenith 13 

aPsA(1.16) 

Azimuth 260 
Zenith 36 

t Get (3.50) 

Azimuth 350 
Zenith 14 

a Eri (0.46) 

Azimuth 180 
Zenith 27 

d Aqr (3.27) 

Azimuth 285 
Zenith 36 

g Get (3.47) 

Azimuth 21 
Zenith 35 

a Phe (2.38) 

Azimuth 226 
Zenith 19 

a Peg (2.49) 

Azimuth 312 
Zenith 60 

bOri(0.12) 

Azimuth 74 
Zenith 50 

Figure 4.12: The results of a typical check of telescope pointing accuracy. 

The positions of 12 stars relative to a reference circle on the monitor of the 

CGTV camera. The reference circle represents the effective aperture of the 

central PM tube of the camera and defines an opening angle of 0.5°. The 

smaller open circle marks the position of the star in each case. 
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4.5.4 The CCD Camera 

The improvement of optical resolution associated with the advent of the 

imaging technique within the Durham group has challenged the accuracy of 

the steering. The resolution of 0.09° provided by the 12 bit shaft encoders is 

barely adequate. However, rather than replace these with expensive 14 bit 

encoders, an astronomical CCD camera has been fitted to the telescope to 

observe the sky and provide an equivalent four fold increase in accuracy of 

position sensing. The sensitive area of the CCD is 2.54 mm^ comprising 

165 X 192 pixels, which translates to arc second accuracy when used with a 

f/1.4 50 mm lens. 

At the start of an observation a full frame image of the field of view of the 

CCD camera is recorded. The minimum magnitude star visible after the 

typical exposure of between 1 and 5 seconds seconds is 7th to 8th 

magnitude. The position and brightness of the brightest star within the field 

of view is then tracked and recorded as a five bit word within the event data 

for each event. During the pre-processing of data this position is compared 

with the predicted position of the brightest star within a star catalogue 

subset containing the stars within the field of view of the CCD camera for 

the target source. CCD integration time during observation is reduced to 

allow frequent measurement but allows tracking of 5th or 6th magnitude 

stars. The actual attitude of the telescope is reconstructed to an accuracy 

of larc minute and the Cartesian deviation, on the focal plane, of the 

projected source direction from the centre of the detector package is 

calculated. The encoder values of azimuth and zenith pointing angles are 

ovenwritten in the data file and the x, y deviations are recorded elsewhere 

within the event data record. Figure 4.13 is a composite of a full frame CCD 

exposure and the locus of the star in the field of view during an observation. 
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Figure 4.13: The above diagram represents the field of view of the GGD 

camera at the start of an observation of Vela X-1. A number of stars are 

evident in the full field exposure. The crosses represent the predicted 

fiducial star positions at the start of the observation. The brightest star is 

chosen by the software and its position recorded for each event. The locus 

of the star position through the field of view during an observation is 

indicated by the plotted position of the star for each event of the data file. 

4.6 Camera PMT Detector System 

4.6.1 Introduction 

In order to be able to exploit the spatial disparities between the Gerenkov 

signatures of EAS initiated by gamma ray and hadron primaries in a signal 

enhancement technique, a detector is required with a resolution comparable 

to the scale of the relevant structure in the image. In the context of the 

function of the Mk.5 telescope as a half scale prototype for a genuinely high 
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resolution detector the resolution is dictated by the optics. The point spread 

function of the Mk.5 telescope flux collectors at FWHM is 2.5 cm at the 

focus, which equates to an angular resolution of 0.43°. The latest Monte 

Cario simulations of EAS predict Cerenkov images with a typical angular 

size of 0.5° for gamma ray primaries and somewhat larger for hadrons. 

Images of showers with axes displaced from the optic axis will have 

extension in one dimension as described in Section 3.5.2. A detector 

package with granularity on a somewhat smaller scale would then be able to 

appeal to parameters such as image shape and directionality of the shower 

axis in a background rejection strategy. 

4.6.2 Photomuitiplier Tubes 

4.6.2.1 Sensitive Area and Pixel Size 

Assuming the radius of the Cerenkov light pool produced by a gamma ray 

initiated EAS to be 130 m and that every shower develops and degrades 

somewhere between 13,000 and 6,000 m above the telescope, then the 

whole image of every shower from the source direction would be contained 

within the field of view of a telescope with an opening angle of 2.5°. The 

focal length of 3.32 m of the Mk.5 telescope flux collectors defines an image 

scale on the focal plane of 0.17° per cm, thus the required sensitive area of 

the focal plane has a diameter of approximately 15 cm. This area can be 

covered by a hexagonally close packed array of 19 one inch photomuitiplier 

tubes, with a pixel pitch of 3 cm, to provide a camera with resolution on the 

half degree scale. A peripheral ring of 1.5" PM tubes has been added to the 

camera, external to the triggered area, in order to provide intensity 

information on the extremities of images whose centroids are close to the 
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edge of the camera. 

4.6.2.2 Choice of Photomultiplier 

The PM tube of choice since the inception of the Mk.2 telescope 

programme has been the 2" diameter RCA (subsequently Burle) 8575. This 

tube was designed for pulse counting applications, displaying high quantum 

efficiency, high gain, good noise characteristics and good temporal 

performance. These are the characteristics desired for the one inch PM 

tubes which will fonn the pixels of the camera, with an added requirement 

that the tubes have a good energy resolution. The Burle S83062E 1" 

diameter PM tube has been designed with fast applications in mind and its 

manufacturers specifications for the tube characteristics compare favourably 

with those quoted for the 8575. 

The ring of PM tubes peripheral to the 1" tube array does not contribute to 

the trigger. Twelve Burle C7151Q 1.5" tubes were used for this ring. 

These tubes have a rise time of 2.2 ns, which is comparable to the S83062E 

r tubes, and sensitivity over a similar spectral range. 

4.6.2.3 Comparison of the Burle S83062E and 8575 PM tubes 

The spectral responsivity of these tubes is very similar, the sensitivity of 

both peaking in the blue and extending well into the important ultra violet 

region. The typical photocathode spectral responsivity characteristics are 

reproduced in Figure 4.14. The rise time of the tube is quoted to be 2.3 ns 

for a potential difference of 1500 V over the whole dynode chain, which is 

adequate for the intended application. 
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A series of tests were performed to compare the noise and gain 

characteristics of the 8575 tube with the S83062E. A considerable amount 

of experience has been gained in the operation of the Burle 8575 PM tube 

during several years of use under night sky conditions in the telescopes 

operated by the group. A Burle 8575 PM tube of known telescope operating 

conditions was placed in a dark box. Light from a yellow LED, in series with 

a variable resistor and 5 V supply, was reflected from a piece of white card 

to simulate the starlight of the night sky. The anode current and noise rates 

of the control Burle 8575 tube and the test Burle S83062E tube were 

recorded for illuminations varying over two orders of magnitude around a 

simulated average night sky brightness. The results of these tests are 

displayed in Figures 4.15 and 4.16. 

Burle S83062E Burle 8575 

100q lOOi 

c 10 

0.1 
Illumination 

\ 10 
Illumination 

Figure 4.15: Comparison of the gain characteristics of Burle S83062E and 

8575 PM tubes. Tests were performed at three voltages under varying 

illuminations. Illumination is normalised to a typical night sky brightness. 
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Figure 4.16: Comparison of the noise characteristics of the Burie S83062E 

and 8575 PM tubes. Illumination is normalised to a typical night sky 

brightness. 
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The tests were performed at three tube voltages In each case. A 50 mV 

discrimination threshold was used, after amplification by a factor of 10, to 

define the noise rate in order to simulate the Narrabri tube operating 

conditions. 

Tube anode cun-ent is plotted against illumination in Figure 4.15 and 

Logio (Anode Current) is seen to increase lineariy with Logio (Illumination). 

The gradient of the relationship Is very similar in each case demonstrating 

that the tubes have similar gain characteristics (anode current being 

approximately proportional to gain at constant illumination). The illumination 

scale has been nonnalised to an average night sky brightness. Figure 4.16 

in which the tube noise rates are plotted against illumination, shows the 

tubes to have remarkably similar noise characteristics. 

These graphs together demonstrate that these tubes are compatible insofar 

as voltages exist at which the tubes can be operated with similar gains and 

acceptable noise rates. 

4.6.3 Mechanical Construction 

The PM tube array is housed in a hexagonal section aluminium cage 

which mates with an aperture in the cradle supported at the focal plane by 

the tripod legs. Countersunk circular holes are drilled in a polyethylene front 

plate, which forms one end of the cage, to accommodate the windows of the 

PM tubes. The tubes are also supported near their bases by a similar plate 

which is lodged in the aluminium cage in a plane parallel to the front plate. 

The EHT wires and coaxial signal cables are led from the bases of the tubes 

to connectors on a third plate which forms the back plate of the camera 

package. The coaxial signal cables connect through individual BNC 

connectors so that a continuous shield is maintained to prevent cross talk 
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between channels. For convenience the EHT leads converge and are 

accomodated by two multiway connectors. 

Each individual PM tube is magnetically shielded along the length of the 

dynode chain by the use of a ^-metal cylinder held at the potential of the 

cathode. An envelope of non conducting heat shrink material is then used 

to electrically insulate the ^-metal. 

4.6.4 Baffles 

The application of baffles to exclude extraneous light which adds to the 

noise may allow the photomultiplier tubes to be operated with higher gain 

with a consequent reduction in threshold energy, and thus in the case of the 

camera a more well defined image. 

A reflector tessellated with circular min-ors has a dead area of 21% of its 

surface, thus the light noise from the source direction is augmented by 

albedo of this dead area. The irregular perimeter shape and design of the 

superstructure of a tessellated flux collector, such as those used for the 

Mk.3 telescope, also makes screening at the perimeter of the dish difficult. 

In contrast, the flush fitting composite mirrors of the Mk.5 telescope lend 

themselves to screening of background albedo in that the detector package 

views a complete, approximately circular, reflective surface. In addition, 

extraneous light from a direction exterior to the mirror surface has been 

eliminated by the use of a cylinder projecting towards the focal plane from 

the perimeter of the dish, and a complementary baffle extending from the 

focal plane towards the reflector. The geometry of this system is illustrated 

in Figure 4.17. A photograph of the Mk.5 telescope, complete with this 

albedo protection, can be seen in Figure 4.1. Fitting of the baffles resulted 

in a 15 % reduction in background current and allowed a corresponding 
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increase in gain. 

Detector Package 

75 cm 

y 

\ \ 

\ 

1 m 

\ 

3.5 m Diameter Collector 

Figure 4.17: Schematic of the albedo protection of the Mk.5 telescope. 

The combination of the baffles projecting from the focal plane and the 

cylinder surrounding the mirror exclude all background light while allowing 

all of the PM tubes in each detector package to view the whole of the 

reflective surface. 

4.6.5 Light Gathering Cones 

In general the fast response PM tubes favoured in atmospheric Cerenkov 

astronomy have circular photocathodes and this, allied to the wall thickness 

of the tubes, restricts the proportion of area on the focal plane which is 

photosensitive to about 56 % for hexagonally close packed circular tubes. 

This dead area on the focal plane has differing effects on the telescope 

115 



trigger and the capacity of the camera to form an image. In both cases the 

effect is to the detriment of telescope sensitivity. 

The triggering tubes viewing two of the three flux collectors should have a 

field of view approximately matched to the size of the gamma ray initiated 

Cerenkov event. Thus, images which fall on the axis of one trigger channel 

will fall wholly onto a photosensitive surface, while images falling between 

channels will lose the majority of their energy to the dead area. Projected 

onto the camera the image is distributed over several tubes; thus a similar 

proportion of each event's energy is lost to the dead area, reducing the 

efficacy of the camera both within the trigger and in its capacity to reproduce 

the form of the image above the night sky noise. 

It is, therefore, important that the amount of Cerenkov light lost to dead 

areas within the focal plane is minimised. One solution to this problem Is 

the application of light collecting cones to the front of the photomuitiplier 

tubes. These are reflective funnels which have a circular aperture at the 

face of the tube which matches the size of the photocathode and a 

hexagonal aperture to the dish with a width, flat to flat, equal to the pitch of 

the pixels. The cones are designed such that light from any point on the 

dish which would have fallen peripheral to the photosensitive area will suffer 

only one reflection before falling on the photocathode. Assuming 80% 

reflectivity and complete coverage of the focal plane the proportion of light 

gathered could be increased to 91% giving a corresponding decrease in 

telescope energy threshold. A test involving the addition of cones fabricated 

from Alanod resulted in a 15 % increase in background count rate. 
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4.6.6 Conclusion 

A camera detector package has been developed using a close packed 

array of PM tubes with the capacity to provide spatial information on the 

Cerenkov images from EAS. The 1" PM tubes chosen for the pixels, which 

are new to the group, have been shown to have very similar operational 

characteristics to the familiar Burle 8575 tubes which comprise the 

triggering packages of the instrument. Pixel pitch in the camera 

approximately matches the characteristic size of the smaller gamma ray 

initiated Cerenkov images, offering the opportunity to experiment with 

imaging background rejection techniques at a resolution with which the 

Whipple collaboration had success. The shielding of the detector package 

from background albedo has been effected on the telescope, and plans are 

in hand for the application of light gathering cones to the camera detector 

package at the focal plane to maximise the collection efficiency. 

4.7 Telescope Event Trigger 

4.7.1 introduction 

The ultimate goal of the project is the provision of a telescope of very low 

energy threshold (< 100 GeV) which is prototyped by the Mk.5 telescope. 

This goal is unattainable without the use of a very stringent event trigger 

criterion to allow operation of the PM tubes at high gain without causing 

pollution of the data with accidental events. Three fold coincidence is 

retained for the Mk.5 telescope as this represents the best compromise 

between electronic complexity and optimum performance. 
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4.7.2 PM Tube Packages Devoted to Event Trigger 

The detector package of seven close packed 2" tubes defines a field of 

view for the telescope of 9 square degrees, each PM tube channel having 

an aperture of slightly more than one degree on the sky. This field of view 

matches the opening angle required for the camera defined in Section 4.6. 

Three identical packages of 2" tubes were initially installed at the focal 

planes of the three flux collectors of the Mk.5 telescope, and the telescope 

operated briefly as a conventional three fold coincidence instrument with 

seven independent channels. 

4.7.3 Incorporation of the Camera Tubes into the Event Trigger 

After tests which demonstrated that the Mk.5 telescope operated with a 

conventional event trigger had a equivalent count rate per channel to the 

Mk.3 telescope, the central detector package was replaced by a camera 

composed of hexagonally packed 1" PM tubes. The mapping of the camera 

pixels onto the triggering tubes in the left and right flux collector packages is 

illustrated in Figure 4.18. 

It is evident that the field of view of seven of the camera tubes is wholly 

contained within the field of view of the corresponding trigger channels. The 

remainder, however, fall between two triggering channels and are important 

in the trigger of each. Grouping of the tubes into clusters in a selective 

trigger is impractical as the majority of tubes would each be active trigger 

elements in two adjacent clusters and the cost and complexity of the 

electronics required to effect this precludes this in the Mk.5 telescope. The 

trigger criterion was, then, relaxed to require coincidence between the two 

con-esponding 2" tubes and one of the 19 camera pixels. This trigger is 
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easy to implement but requires the camera tubes to be operated at less 

than optimum gain to restrict their combined single fold noise rate to 20 - 30 

kHz (ie 1 - 2 kHz per pixel PM tube). Nevertheless, the count rate with the 

camera incorporated into the trigger is the same as that achieved with the 

conventional three fold coincidence, demonstrating the energy threshold to 

be defined by the Left/Right triggering units. This observation vindicates the 

choice of trigger logic but suggests improvements are possible to the left 

and right triggering tubes. 

Figure 4.18: Relative field of view of camera tubes (solid circles) and trigger 

package tubes (dashed circles). Superimposed on the diagram is a 

representation of the Cerenkov image produced by a 0.1 TeV photon with 

an impact parameter of 100 m (after Rieke, 1969). Successive isophotes 

represent a factor of (10) '̂̂  reduction in intensity. 
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4.7.4 Typical Event Rate and inferred Ttiresiioid Energy 

The trigger requires corresponding pairs of 2" PM tubes in the left and 

right flux collector detector packages and 1 of the 191" PM tubes of the 

camera to achieve the discrimination threshold within an 8 ns gate. At the 

zenith the aggregate count rate for the 7 independent channels approaches 

150 cpm. This count rate is accidental free and is comparable to the count 

rate of the Mk.3 telescope from which we infer an energy threshold to 

gamma rays of around 250 GeV. 

4.7.5 Conclusion 

Incorporation of a simple camera into the trigger of a conventional three 

fold fast coincidence telescope proved to be successful. Event rate was not 

degraded by the simple camera trigger criterion indicating that it is the left 

and right flux collector PM tube packages which define the lower limit to 

signal detectability. This suggests that the signal should be well 

represented in the camera pixels even for events with energies near the 

energy threshold of the telescope. Improved left / right PM tubes would 

lower the threshold energy, but the camera images at threshold would be 

less well defined. This problem could be offset by the provision of additional 

logic within the camera trigger which would allow an increase in camera 

pixel gain restoring image definition. 
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4.8 Calibration Routines 

4.8.1 Introduction 

A prerequisite for any reliable Interpretation of image data is knowledge of 

relative pixel gain. The response of the camera to a "flat field" is dependent 

upon the relative PM tube gain, and of the pedestal and gain of the digitising 

electronics. The large number of PM tubes in the Mk.5 telescope introduces 

a requirement for quick, repeatable and appropriate pedestal and gain 

calibration procedures. 

4.8.2 Digitizer Pedestal Determination 

The pedestal values of the charge to time converters (digital readout for 

zero signal input) are measured by artificially triggering the telescope under 

normal operating conditions during observation. The trigger is generated at 

random intervals at an average rate of 5 per minute. The RMS deviation 

from the average value of the pedestal, for a number of these events, 

represents a measure of the night sky brightness. The pedestals of the 

charge to time converters are set to be about 3 standard deviations above 

the noise to avoid bias introduced by truncation of downward fluctuations of 

such noise. 

4.8.3 Gain Calibration and Fiat Fielding of the Camera 

Normalisation factors representing the relative gains between PM tubes 

are derived from their response to a calibration light source. During the 

early life of the experiment the light source has been a plastic scintillator 
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impregnated with the radioactive Isotope Americium 241. 

The scintillator is housed in a shallow well in a length of wooden dowel of 

of a diameter which matches the diameter of the outside aperture of the 

holes in the polyethylene front plate of the detector package. Therefore, the 

position of the calibration source relative to the photocathode is uniquely 

defined thus repeatable. Alpha decay of the Americium 241 generates, on 

average, 300 photons within the scintillator per event, and the average 

decay rate is 700 events per second. The PM tube signal is passed through 

the usual electronics with the trigger adjusted to operate from the relevant 

tube. A distribution of charge integrals is built up over a typical period of 

10s, giving a sample of approximately 7000 events. The mean is calculated 

for the distribution of each tube and the appropriate pedestal value 

subtracted. 

4.8.4 An Example of Calibration 

The scaled output of the charge to time converters (QT-ADC units) for all 

of the camera PM tubes is recorded in the event record for every event. 

The integrated charge in each camera tube is displayed in Figure 4.19, 

initially raw and then after each of the two stages of camera calibration. 

The raw values indicate the magnitude of the mean Cerenkov signal from 

the PM tube, superimposed on the pedestal of the digitising electronics. 

The first step of the image processing is the subtraction of the pedestal, the 

measurement of which is described in Section 4.8.2. The pedestal 

subtracted values are a measure of the signal from the individual tubes. 

The camera is then "flat fielded" by normalization of tube gains to the centre 

tube using normalization factors derived from the response of the tubes to 

the scintillator light. 

122 



(a) 

(b) 
_ , 15 ) 3 , 

so) @ @ @ @ ( 16 

23 ) (^(54) (43) (22) { 39 

0®®®© 
12 ] ( ^ 1 1 5 6 ) ( ^ ( ^ f 14 

" 3 3 1 ( ^ ( ^ ^ 2 3 ) ^ 1 0 1 0 ©@@© 0 (c) 

11 (81H162)(^58H17) 

33 64 92 24 10 

Figure 4.19: An example of the calibration of a typical medium resolution 

image: (a) Raw pixel values; (b) pedestal corrected pixel values; (c) 

pedestal and gain corrected value. 

4.8.5 Effect of Stars in Field of View 

The improvement in resolution of the optics and increase in granularity of 

the detector packages has introduced potential problems with stars in the 

field of view of the PM tubes. The majority of light from a star at the centre 

of the field of view of a 1" PM tube will be focused onto the photocathode of 
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that tube, increasing background illumination and tube noise dramatically. 

This effect will become even more marked in the Mk.6 telescope with the 

four fold increase in flux collector area and two fold increase in pixel 

resolution. The increase in PM tube noise results in an appreciable 

accidental rate in the channel whose field of view encompasses the star. 

These accidental events are, however, easy to identify and discriminate 

against during data processing and so are tolerated in the data stream 

except in extreme circumstances. In the case of a observations made of a 

target with a very bright star within the field of view of the telescope, the 

accidental rate may increase to such an extent that the dead time of the 

electronics begins to compromise the genuine count rate. Under these 

conditions the noisiest camera PM tube can be removed from the event 

trigger, reducing the accidental rate appreciably. A number of PM tubes in 

one ring of the camera will be successively removed from the trigger as the 

sky rotates in the field of view. The option also exists to turn off the EHT to 

individual PM tubes if the maximum allowable anode current is exceeded, 

although this results in loss of image information. 

4.9 Electronics and Data Logging 

4.9.1 Introduction 

The data logging and performance monitoring of the Mk.3 telescope is 

performed by the 68000 operating a very fast but highly complex 

hierarchical interrupt system. The system was highly labour intensive to 

program and is not amenable to development. In an effort to simplify the 

system the tasks of data logging and performance monitoring were 

separated and assigned to independent commercial microcomputers. 
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4.9.2 Digital and Analogue Electronics of the Mk.5 Telescope 

The signal path of the Mk.5 telescope is identical to that of the Mk.3 

telescope with the exception that additional logic is employed in the event 

trigger to provide a logic output of 1 if any of the 191" PM tube discriminator 

thresholds is exceeded. This signal is then compounded with the 2 fold 

coincidence signal from the left / right PM tube packages to form the event 

trigger. 

4.9.3 The Telescope Performance Monitoring System (TPMS) 

The TPMS is based on an Archimedes microcomputer. Environmental 

conditions, steering information and instantaneous values of the anode 

current and noise rate of every PM tube are displayed via a graphical user 

interface designed to alert observers to irregularities in the operation of the 

telescope. The displayed values are updated every three seconds and 

each minute a complete set of telescope performance data are recorded on 

the network file server. All of the recorded values are the instantaneous 

readings except those for steering residuals and wind speed for which the 

maximum value of the previous minute is taken. 

4.9.4 The Mk.5 Telescope Data Logger 

The logger of the Mk.5 telescope is based on a commercial BBC Master 

microcomputer. When interrupted by an event the computer interrogates 

the electronics via the MHz bus. The data recorded in each event record is 

listed below. 
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- An event time, recorded from the CAMAC clock. 

- The charge integrals from the ADC (QT) units for each of the PM tubes. 

- A "fire pattern" denoting which of the channels has exceeded the 

discrimination threshold and satisfied the coincidence criterion. 

- The coordinates and brightness of the brightest star in the field of view of 

the CCD camera. 

The dead time of the logger is approximately 10 ms which restricts the 

maximum resolvable burst rate to 100 Hz. 

4.10 Images From a Medium Resolution Camera 

4.10.1 Conventional Parameterisation of Medium Resolution Images 

The medium resolution images produced by the 31 pixel camera of the 

Mk.5 telescope are of the same resolution as the 37 pixel package on which 

the Whipple collaboration first achieved success with the imaging technique. 

Initially, to take advantage of the experience gained by the Whipple 

collaboration, the Whipple image parameterization technique was adopted 

by the Durham group. 

After the pixel values have been pedestal corrected and "flat fielded" to 

compensate for variation in digitiser offset and PM tube gain each tube is 

flagged as an "image tube", a "border tube" or a "noise tube" according to 

the following definitions. A tube is labelled as a image tube if the integrated 

charge in the signal is greater than 5 times the RMS background noise of 
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the tube. A tube with a signal of 2.25 RMS noise is defined to be a border 

tube if it is adjacent to an image tube. A tube which satisfies neither of 

these categories is assumed to contain no signal and its value is set to zero. 

The standard Hillas image parameters (Hillas, 1985) are calculated from the 

zeroth, first and second order moments of the light distribution. 

Distributions of image parameters are not dissimilar to those obtained by 

the Whipple collaboration while operating with a camera of similar 

resolution. Exploitation of the AZWIDTH parameter proved to be the most 

successful method of signal enhancement for the Whipple collaboration 

(Weekes et al., 1989) and so was chosen to assess the efficacy of the 

technique when applied to Durham data. An optimisation of the Q factor 

(defined in Chapter 3) for signal enhancement using the AZWIDTH 

parameter was performed on data from AE Aquarii. This data, which is the 

subject of Chapter 6, contains a burst of periodic emission. A dataset 

comprising events with an AZWIDTH between 0" and 1.0" was progressively 

reduced in size by constraining maximum AZWIDTH to successively smaller 

values. If it is assumed that the pulsed events in the sample are gamma 

rays and that the Rayleigh strength represents the gamma ray fraction of 

the dataset, then the proportions of gamma rays and hadronic background 

events remaining in the dataset can be estimated. A maximum Q factor of 

1.5 was obtained for an AZWIDTH selection of AZWIDTH < 0.2. 

4.10.2 The Concept of Simple Shape Parameters 

The limited success achieved in signal enhancement using the Hillas 

parameters is an indication of the level of improvement possible using 

medium resolution cameras in imaging. The resolution is inadequate to 

allow Identification of gamma ray images with any certainty therefore effort 
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has been directed towards the rejection of images which clearly display the 

characteristics of hadron initiated events. A target requirement of rejection 

of 75 % of the hadronic events with retention of the whole of the gamma ray 

fraction of the dataset was adopted. This requires a median cut on each of 

two parameters representing measures of shape and orientation of the 

image. A simple measure of the angular extent of the light pool has been 

developed, representing the angle subtended by the image at the centre of 

the camera. This parameter has been given the name SPAN. Gamma rays 

from the source direction produce small elliptical images with their major 

axes aligned radially on the camera and therefore have small values of 

SPAN. In contrast the larger, lumpier and randomly oriented hadron events 

are characterized by large values of SPAN. A cut at the median value of the 

distribution reduces the data set by half and it is hoped that all of the 

gamma ray signal will be retained. Examples of large SPAN and small 

SPAN events are reproduced in Figure 4.20. 

Large span 

Small span 

Figure 4.20: Examples of events with large and small values of the SPAN 

parameter. Relative tube charge integrals are denoted by the grey scale. 

The second rejection criterion is based on the traditional Hillas parameter 

describing the orientation of an image, ALPHA. Events with values of 
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ALPHA greater than 45" are rejected as being hadron like giving a further 50 

% reduction in the dataset. Chapter 6 details the analysis of a burst of 

periodic emission from AE Aquarii which includes event selection based on 

parameterisation of medium resolution images in ternis of SPAN and 

ALPHA. The selection applied resulted in an enhancement of the dataset 

equivalent to a Q factor of greater than 1.5 suggesting that the majority of 

gamma rays were retained. If the ambition to reject 75 % of the hadrons 

while avoiding rejection of any gamma rays Is eventually realised, then the 

Q factor of 2 this represents should transfonn typical hints of signal in the 

data into worthwhile detections (a 2 % periodic signal in a dataset of 10000 

events with a Rayleigh probability of chance occurrence of 10"̂  translates to 

an 8 % signal with a probability of chance occurrence of 10"*). 

4.11 Summary 

The Mk.5 telescope has been a successful element of the progression of 

the Durham group from a fast timing nan-ow aperture detection philosophy, 

to observation with a wide field of view incorporating a background rejection 

strategy based upon imaging of the Cerenkov event. In its role as a 

prototype the Mk.5 telescope shed light on many of the areas critical in the 

design of the Mk.6 telescope. 

- The large area mirror concept was proved in terms of structural integrity 

and resolution. 

- The operational characteristics of small PM tubes were examined at the 

level of night sky background illumination projected for the Mk.6. 
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- A camera comprising a hexagonally close packed array of PM tubes 

was built and incorporated into a three fold fast coincidence system. 

- A novel "in house" designed and built alt-azimuth mount and its 

associated drive and position sensing equipment was proved. 

The medium resolution imaging capacity of the Mk.5 telescope provides it 

with a signal enhancement capacity represented by a Q factor of up to 2. 

This represents a significant advance in sensitivity over the previous 

telescopes operated by the Durham group. The development of its potential 

as one component of a stereoscopic imaging pair of telescopes is the 

subject of Chapter 5. 
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CHAPTER 5 

STEREOSCOPIC RECORDS FROM A PAIR OF TELESCOPES 

5.1 introduction 

5.1.1 Stereoscopic imaging of Extensive Air Sliower Development 

Stereoscopic imaging of Cerenkov light offers the potential to discriminate 

between gamma ray and hadron initiated EAS, enhancing the sensitivity of 

medium resolution telescopes, which would have limited ability in this 

respect when operated in isolation. The basis of identification of the nature 

of the primary to be described here is a measure of the height of origin of 

the light, and disparities in the magnitude of fluctuations in this height 

between showers initiated by gamma ray and hadron primaries. 

5.1.2 The Concept of the Narrabri Stereo Facility 

High resolution cameras such as the one operated by the Whipple 

collaboration on Mount Hopkins, Arizona (Punch et al., 1992) reproduce the 

light intensity distribution faithfully, lending credence to the parameterisation 

and interpretation of the images in terms of the higher moments of the light 

distribution. These statements must be qualified with the proviso that the 

Cerenkov light is of sufficient intensity to produce a well defined image 

above the background. Thus the threshold energy for effective 

discrimination between hadron and gamma ray initiated events is higher 

than the simple trigger threshold of the instrument. If, however, we have the 

facility to observe Cerenkov events in two telescopes simultaneously we 
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may be able to appeal to the information contained in the lower moments of 

the intensity distribution in our rejection strategy. Due to the predictable 

nature of its electromagnetic cascade the Cerenkov light generated by a 

gamma ray will show; 

- a uniform brightness out to the Cerenkov shoulder, 

- a circularly symmetric intensity profile around the impact point, 

- an origin at a fixed atmospheric depth. 

Thus the position of the centroid of the image and its intensity, quantities 

available from measurements made with a telescope with only moderate 

resolution optics providing pooriy defined images, will con-elate well 

between telescopes. The more haphazard hadron initiated events will show 

no such con-elation. The energy threshold at which this method of hadron 

rejection ceases to be viable will be lower than for an equivalent, 

independent, high resolution imager with the same flux collector area. This 

statement must be qualified to a certain extent as the average energy of 

stereo events is slightly higher than single telescope threshold energy, 

although this increase in energy requirement is probably less marked for 

gamma rays than for hadronic events due to their uniform light pool 

intensity. 

The Mk.5 telescope was never envisaged as an effective stand alone 

imager, nor was it seen as merely a prototype for a low energy detector. It 

has fulfilled a pivotal role tor the Durham group in the transition between the 

first generation detectors and the more complex imaging devices. In 

proving the efficacy of the medium resolution camera in the context of three 
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fold coincidence (witli a similar energy threshold to the simple Mk.3 

telescope) it broke the ground for the upgrade of the Mk.3 telescope to 

identical imaging optics to provide the capacity for medium resolution stereo 

imaging of showers. The Mk.5 telescope was assembled 100 m east of the 

Mk.3 telescope, a distance small enough for the footprint of a significant 

proportion of gamma ray events to encompass both telescopes, and yet 

with sufficient separation to provide adequate parallax for image 

interpretation. 

5.2 Other Observatories with Multiple Cerenkov Telescopes 

5.2.1 Introduction 

In addition to the observatory of the Durham group, four further facilities 

exist which currently have, or will shortly develop the capability of recording 

images, in separated telescopes, which represent views of an extensive air 

shower from different aspects. 

5.2.2 The GRANITE Project of the Whipple Collaboration 

The observatory of the Whipple collaboration is situated on Mt. Hopkins, 

Tucson, Arizona (32° N, at 2300 m asl). The GRANITE (Gamma Ray 

Astrophysics New Imaging TElescope) experiment comprises a pair of 

telescopes with a baseline of 140 m in a North/South direction. Each 

telescope has a single flux collector, one of 11 m diameter and the other 10 

m. The 10 m flux collector is of a Davies-Cotton design with a focal length 

of 7.3 m (Cawley et al., 1990). The point spread function of the optics at 

FWHM is < 0.14° over the whole of the sensitive area at the focal plane. 

133 



The 11 m diameter flux collector is composed of hexagonal mirrors mounted 

to form an approximately paraboloidal surface of area 66.3 m^ with a focal 

length of 7.6 m (Schubnell et al., 1992). The point spread function at the 

centre of the field of view is 0.18**. Identical 91 PM tube cameras are 

deployed at the prime focus of each flux collector producing a well matched 

pair of telescopes. The trigger requirement of the telescopes is that 2 of the 

91 tubes within the camera exceed a specified level (about 40 

photoelectrons). This defines an energy threshold of 300 GeV for the 

telescopes operating independently (Cawley et a!., 1990). The event rate 

for two telescope response, hence stereo energy threshold are not yet 

reported. 

5.2.3 The HEGRA Collaboration 

The HEGRA (High Energy Gamma Ray Astronomy) collaboration operate 

at the Roque de los Muchachos observatory on La Palma (29° N at 2200 m 

asl). An array of 5 telescopes is under construction at the observatory, with 

a separation of 80 m between telescopes. Each telescope will consist of a 

high resolution (< 0.25°) camera at the focus of a single flux collector of area 

8.5 m'̂ . The telescopes will be triggered independently employing a trigger 

strategy similar to that used by the Whipple collaboration. 

The first telescope with a 5 m^ flux collector of Davies - Cotton design was 

commissioned during 1992. A 37 pixel camera at the focus of the flux 

collector has a pixel pitch of 0.4°, and an energy threshold of 1.5 TeV has 

been estimated for the telescope operating in this configuration. The 37 

pixel camera of this telescope will be replaced with a 127 pixel package to 

give resolution of 0.25°. The array is due to be completed during 1995/96 
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5.2.4 The Crimean Astrophysical Observatory 

The Crimean Astrophysical Observatory (45** N at 2100 m asl) consists of 

a pair of telescopes located on a North / South line with a baseline of 20 m. 

Each telescope has a flux collector area of approximately 13.5 m^ and is 

triggered when 2 of the central 19 PM tubes of a 37 pixel camera exceed 

threshold. The energy threshold of each telescope triggering independently 

is estimated to be 2 TeV (Vladimirsky et al., 1989). 

Preliminary results presented in Kornienko et al. (1993) indicate that the 

two telescope event rate varies between 55 % and 76 %. 

5.2.5 The CANGAROO 

The telescopes which comprise the stereo imaging system at The 

International Astrophysical Observatory at Woomera, South Australia (27° S 

160m asl) are independent instruments operated by different research 

groups. The CANGAROO (Collaboration between Australia and Nippon for 

a GAmma Ray Observatory in the Outback) experiment utilises images from 

cameras of both the BIGRAT (Bicentennial Gamma RAy Telescope), and 

the Dodaira telescope for simultaneous observations of the Cerenkov light 

from EAS. 

The BIGRAT, operated by the University of Adelaide (Clay et al., 1989), is 

a triple fast coincidence instrument. Packages comprising 3 Burie 8575 PM 

tubes are deployed at the focus of two of the three 13 m^ 2.66 m focal 

length flux collectors, with the third flux collector viewed by a high resolution 

camera. The camera consists of 3713 mm x 13mm square Hamamatsu 

photomultipliers which have a geometrical aperture to the sky of 0.15° for 

the photocathode. Pixel pitch is 0.3° giving a total camera aperture of 2.5°. 
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The telescope has operated in this configuration since September 1992. 

The energy threshold is estimated to be about 600 GeV. 

The second component of the stereo system is the Dodaira telescope 

operated by a Japanese collaboration (Hara et al., 1993). This telescope 

has a very high resolution camera at the prime focus of a single flux 

collector of 3.8 m diameter. The original purpose of the Dodaira mirror was 

lunar ranging and thus it has much better angular resolution than the mirrors 

typically used for Atmospheric Cerenkov astronomy. To do justice to the 

min-or quality a highly granular camera comprising 220 PM tubes is 

employed to give a 2.7" field of view. An energy threshold of about 1 TeV is 

estimated from the vertical triggering rate of 1 Hz. The rate of stereo events 

is estimated in early observations to be 10 to 15 % of the BIGRAT 

triggering rate (Roberts, 1993). 

5.3 The Modifications to the Mk.3 Telescope to Provide a Component 

of a Stereo Pair 

5.3.1 Introduction 

The Mk.3 and Mk.5 telescopes employ flux collectors of similar size and 

have been shown to have similar count rates, normalized for field of view, 

demonstrating that they have similar energy thresholds. In order to provide 

the capability for stereo imaging the Mk.3 telescope required upgrading to 

produce images of comparable quality to the Mk.5 telescope. 

Figure 5.1 is a photograph of the upgraded Mk.3 telescope. 

136 



Figure 5.1: The upgraded Mk.3 telescope 
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5.3.2 Upgrade of the Optics 

5.3.2.1 Introduction 

The pre-upgrade configuration of the Mk.3 telescope is described in detail 

in Chapter 3. The flux collectors, comprising three tessellated dishes of 

area 11 m ,̂ were manufactured to a specification for an event counting 

device, requiring only limited optical quality. The point spread function of 

the optics was too large to preserve any characteristics of an image, a point 

exacerbated by serious off axis aberration due to the spherical mirror 

section. In order to achieve images of similar quality to the Mk.5 telescope 

a new flux collector was required. 

5.3.2.2 Replacement of the Flux Collector 

The centre flux collector was replaced by a flux collector of the type 

developed for the Mk.5 telescope, furnishing the Mk.3 telescope with 

identical imaging optics (see Figure 5.1). 

The upgrade was effected during April 1993. With the telescope 

supported rigidly pointing at the zenith, the central tessellated flux collector 

and associated superstructure was lifted, in its entirety, from the two parallel 

U section steel girders to which it was fixed. A rectangular steel frame was 

then bolted to the girders to provide the required rigidity for support of the 

replacement flux collector. A prealigned Mk.5 type flux collector was lifted 

onto the steel frame and bolted into place (prealignment of the flux collector 

was necessary because of the inability of the Mk.3 telescope to point 

horizontally, rendering the field laser alignment system unworkable). The 

alignment was performed in the lab by an equivalent method to the field 
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laser alignment system described in Chapter 4 but using a fixed array of 

parallel laser beams and rotating the flux collector about a hub. The whole 

flux collector and detector package support was aligned and then mari<ed. 

The detector package and supporting tripod was disassembled in such a 

way that accurate reassembly was possible. Co-alignment of the optic axes 

was effected by manipulation of the whole of the flux collector and 

superstructure, successive adjustments being made in the packing between 

the steel frame and the original girder supports. 

5.3.2.3 Replacement of the Triggering PM Tube Packages 

The left and right flux collectors were retained without modification as 

triggering elements. However, due to the shorter focal length of the original 

Mk.3 telescope flux collectors, an array of close packed 2" tubes at the 

prime foci of the triggering flux collectors would have defined a field of view 

larger than that of the Mk.5 telescope, and larger indeed than the field of 

view of the camera. The ratio of focal lengths between Mk.3 and Mk.5 

telescope optics of 3:4 defines the optimum trigger tube diameter to be 1.5". 

Replacement triggering packages were, then, made up of close packed 

arrays of Burle C7151Q 1.5" tubes which define the same triggering field of 

view of 9 square degrees as do 2" PM tubes in the Mk.5 telescope. Figure 

5.2 displays the relative noise / gain characteristics of the two types of PM 

tube when subject to night sky illumination in their respective telescopes. 

Flux through the tubes is similar, as the 1.5" at the focus of a Mk.3 

telescope tessellated flux collector has the same geometrical aperture to the 

sky as a 2" tube at the focus of a paraboloidal Mk.5 telescope flux collector. 

These measurements suggest that the C7151Q tubes are slightly noisier 

than the 8575 tubes for a given gain, and thus will cause the upgraded Mk.3 
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telescope to have a slightly increased threshold. 

10 15 
Anode Current (^A) 

Figure 5.2: A comparison of the noise / gain characteristics of the Burie 

C7151Q and 8575 PM tubes under Narrabri night sky illumination. The 

level of illumination remained stable whilst EHT was varied in each case. 

5.3.3 Installation of Camera and Associated Electronics 

The Mk.3 telescope camera is identical in every respect to the camera of 

the Mk.5 telescope. Its complement of 31 tubes represents an increase of 

24 over the detector package it replaced, so an additional 24 channels of 

fast electronics were required. Two further 12 channel commercial Le Croy 

NIM amplifiers and three 8 channel NIM discriminator units were added. 

The output of the discriminators is passed to an additional digital logic unit, 

which constitutes the camera element of the revised trigger of the telescope. 
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Two supplementary fast ADC (OT) CAMAC units digitise the output of the 

amplifiers for the additional channels. The output of the OT units is scaled 

and recorded by the reprogrammed 68000 logger in the new data stream. 

Additional slow ADC units and scalers are dedicated to the monitoring of 

PM tube anode cun-ent and single fold noise rates respectively. The output 

of these units is monitored by an Archimedes microcomputer and forms the 

Telescope Performance Monitoring System (TPMS) of the new components 

of the upgraded Mk.3 telescope. The TPMS information is echoed to the 

Annex control room. 

5.3.4 Steering information from a CCD Camera 

In order to exploit fully the potential of stereo imaging it is desirable to 

know the position of the telescope to an accuracy of perhaps +/- 0.025". 

This problem was addressed in Section 4.5.4 in connection with the 

improvements to positional accuracy required for effective medium 

resolution mono imaging. This improvement in positional information, 

desirable for medium resolution imaging, is essential if the relative position 

of centroids of the images are to be compared between cameras. The 

upgraded Mk.3 telescope was, then, provided with an identical CCD system 

to that employed on the Mk.5 telescope providing telescope attitude 

information good to arc minute accuracy. 

5.4 Data from a Stereo Pair of Telescopes 

5.4.1 Introduction 

The telescopes are located 100 m apart on an East - West line. This is 
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the preferred configuration for the telescopes as the baseline of the system 

is constant for all objects at culmination. The distance between the 

telescopes is a compromise between the overiap of the sensitive areas of 

the telescopes and the degree of parallax afforded by their separation. The 

effective separation varies with azimuthal pointing angle of the telescopes. 

5.4.2 Typical Stereo Data 

Examples of pairs of stereo events recorded at a zenith angle of 30° are 

displayed in Figure 5.3. 

Mk.3 Mk.5 Mk.3 Mk.5 

Mk.3 Mk.5 Mk.3 Mk.5 

Figure 5.3: Example pairs of stereo events. The signal within the PM tubes 

of each of the cameras is represented as a linear grey scale with maximum 

intensity representing a signal of 5a above noise. The bottom right example 

appears to be an event whose shower axis passes close to the Mk.5 

telescope, while that top right is a small shower falling between the two. 

The images on the left are of typical intensity. 
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5.4.3 Inter-telescope Gain Calibration 

As the telescopes are to be operated in tandem, with direct comparisons 

being made of Cerenkov light intensity at the focal planes of the two 

detectors, it is important that the relative gain of the cameras and digitising 

electronics is known. During routine flat fielding of the cameras the gains of 

the PM tubes are normalized to the central tube using the scintillation 

source (see Section 4.8). This source was also used to provide a gain 

factor to normalize one camera to the other. The signal from the central 

tube of the camera of the Mk.5 telescope was passed through a coaxial 

cable to the Mk.3 digitising electronics, where its pulse height spectrum was 

recorded. Vice versa for the central PM tube of the Mk.3 camera. The 

response of the PM tubes through their own electronics was also recorded. 

Comparison of the means of all of these pulse height spectra allow the 

affects of attenuation within the cable between the telescopes to be 

eliminated and the relative gain to be established. The response of the 

central PM tube of the Mk.3 telescope and its associated electronics was 

found to be approximately 20 % higher than that of the Mk.5 telescope. 

5.4.4 Proportion of Single Telescope Events With a Stereo Counterpart 

Recognition of a common (stereo) event is effected at the data analysis 

stage by matching of the microsecond time (taken from the CAMAC clocks 

of the respective telescopes) in the event record. These clocks are slave 

clocks of the site wide time standard which is checked daily to microsecond 

accuracy against the signal from a GPS receiver. The telescopes are very 

similar in terms of field of view and triggering requirements; thus the count 

rates, which are similar, imply that the telescopes have much the same 
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energy threshold. The proportion of events at zenith in each telescope 

which have a stereo counterpart in the other is about 45 %. This fraction 

roughly corresponds to a single telescope sensitive area to hadronic events 

of radius 110m. 

5.4.5 Parameterisatlon of Stereo Images 

5.4.5.1 Introduction 

The limited resolution afforded by cameras of the Mk.3 and Mk.5 

telescopes is barely adequate to allow parameterisation of Cerenkov 

images in terms of the Whipple parameters which are derived from the 

zeroth, first and second order moments of the light distribution. They are 

however identical detector packages viewing identical flux collectors. In this 

respect they are ideally suited to provide information on the lower moments 

of the Cerenkov light distribution in an EAS, viewed from two different 

aspects. These lower order moments, the intensity of the light and the 

position of its centroid, are sufficient to allow analysis of the longitudinal 

development of the extensive air showers based upon trigonometric 

information from stereoscopic measurements. 

Three stereoscopic measures relating the light distributions within the two 

cameras have been chosen as representing quantities which will be 

different for events with gamma ray primaries compared with those with 

hadron primaries. 

5.4.5.2 Height of the Cerenkov Light Maximum, He. 

This parameter is the simplest and most robust. The position of the 
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centroid of the light distribution defines uniquely a direction to the peak 

intensity of Cerenkov light in the shower, relative to the optic axis of the 

telescope. The height of Cerenkov maximum of the shower. He, is derived 

directly from the intersection of lines (in practice the distance of closest 

approach) from each of the telescopes projected from the centroids of their 

respective images. This procedure makes no assumptions about shower 

development and so calculation of this parameter does not require recourse 

to simulation data. Figure 5.4 shows the anticipated distributions in height 

of Cerenkov maximum derived from Monte Cario simulations performed by 

Orford (Chadwick et al., 1995). The distributions are composed of 250 

gamma ray and 800 hadron primaries. 
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Figure 5.4: Distributions of He for simulations of EAS with gamma ray 

(shaded) and hadron primaries. 
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The utility of He in a background rejection strategy is based on the 

uniformity of development of the electromagnetic cascade of gamma ray 

initiated showers. Such showers at a particular energy will maximise, with 

little variation, around a similar height. The same is not true of hadron 

initiated showers where large scale fluctuations in the transverse and 

longitudinal shower development are introduced by the hadronic cascade. 

The gamma ray candidates are therefore constrained to lie within a thin 

band and can be removed from the dataset, so rejecting a large proportion 

of the hadronic events. 

5.4.5.3 A Spatial Correlation Parameter: Umiss 

If the assumption is made that the Cerenkov light from gamma ray 

initiated showers originates from a well defined atmospheric depth then we 

can locate the position of shower maximum in space using the position of 

the centroid of the light distribution in one camera. This position can then 

be projected onto the camera of the second component of the stereo 

system and compared with the position of the centroid of the light 

distribution as detected by that camera. The discrepancy between 

predicted and observed positions for the centroid is termed Dmiw. 

DmiM should be small for gamma ray initiated events, position correlating 

well between telescopes, while hadron initiated events will display a broad 

range of values. Simulated distributions of Dmi«8 for populations of gamma 

ray and hadron primaries are displayed in Figure 5.5. 
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Figure 5.5: Dmiw distributions for simulations of EAS with gamma ray 

(shaded) and hadron primaries. 

5.4.5.3 The Brightness Ratio, Rep 

A further measure of the correlation between the images from each 

telescope, which appeals to the well ordered and predictable development 

of a shower initiated by a gamma ray primary is the ratio of estimated 

primary energies. Rep. Estimation of the energy of the primary is dependent 

upon simulation data based predictions of the characteristics of the 

Cerenkov light from the electromagnetic cascade initiated by a gamma ray. 

The Cerenkov signature of a gamma ray primary is assumed to reflect the 

form of the cascade and display; 

- a well defined image due to the well ordered and circulariy symmetric 

shower development. 
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- a good con-elation between the impact parameter and the position of the 

centroid in the field of view, and 

- a continuous and predictable lateral intensity distribution for the 

Cerenkov shower front. 

Given these characteristics a relative value of primary energy can be 

estimated with reasonable confidence. The ratio between estimates of two 

separated telescopes should be close to unity for a gamma ray primary. 

Figure 5.6 displays the distributions of primary energy ratio for the Monte 

Cario simulations of gamma ray and hadron initiated EAS. 
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Figure 5.6: Distribution of the primary energy Ratio, Rep, for simulations of 

EAS with gamma ray (shaded) and hadron primaries. 
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For hadronic cascades the position of the centroid of the image does not 

con-elate with impact parameter as the an-ival direction is not known. This, 

allied to the haphazard nature of the development of these cascades, 

renders primary energy prediction imprecise and will cause the primary 

energy ratio to have a wide range of values. The large peak in the smallest 

bin of the hadron distribution represents those simulated events whose 

lateral extent does not encompass both telescopes. 

5.5.5 Background Rejection Criteria 

It is evident from comparison of the distributions of the parameters He, 

Dmi«8 and Rep for hadron and gamma ray primaries that gamma ray regimes 

exist within each of the parameter distributions which are not heavily 

populated with the hadron background events. It is anticipated that a region 

will exist in the parameter space described by these measures of the light 

distribution which encompasses almost all of the gamma ray events whilst 

excluding the vast majority of the hadronic background. 

Use has been made of these stereo parameters in background rejection 

during the analysis of an AE Aquarii dataset which contains a short burst of 

periodic emission. This analysis, described in Chapter 6, demonstrates the 

efficacy of the stereoscopic imaging technique. 
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CHAPTERS 

ANALYSIS OF DATA FROM THE MK.3 AND MK.5 TELESCOPES 

6.1 Introduction 

VHE gamma ray data is characterised by the arrival times of a stream of 

events with an apparently random time distribution. The majority of the 

events are due to charged components of the cosmic ray flux and are 

spatially and temporally homogeneous. A small supplementary flux of 

gamma ray initiated events is anticipated from the direction of VHE gamma 

ray sources. It is expected that both extended and discrete sources of VHE 

gamma rays exist, and that the emission may be pulsed or continuous. A 

number of different observation strategies may be used, each with optimum 

sensitivity for a particular source type. The two generic modes of 

observation are described in Section 6.2. 

Section 6.3 describes a series of con-ections to the arrival times of the 

events, which are carried out as routine preprocessing of the data before 

analysis tal<es place. Analysis of the dataset which comprises statistical 

tests for periodicity and / or a D.C. excess is outlined in Section 6.4. 

The efficacy of the medium resolution and stereoscopic imaging signal 

enhancement techniques is then examined in Section 6.5, in the context of 

a pulsed burst of VHE gamma ray emission from AE Aquarii. 
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6.2 Modes of Observation 

6.2.1 Introduction 

Choice of the observational strategy for a given object is dependent upon 

the type of VHE gamma ray signal anticipated. In the case where 

continuous emission is expected a background count rate is required, which 

may then be compared with the count rate from the source direction. If a 

periodic signal is predicted, sensitive tests for periodicity can be applied to 

the dataset and measurement of a background count rate is of secondary 

importance. 

6.2.1 Cliopping 

This method of providing a control background count rate involves 

periodically displacing the telescope pointing away from the source 

direction. The telescope observes the source and background region 

alternately, with the background region being sufficiently distant from the 

source region to ensure that the source is entirely removed from the 

telescope's field of view. 

The chopping method used by the Durham group has evolved in response 

to constraints imposed by the telescopes operated by the group. The 

original cycle involved observing the source for two minutes and then a 

background region at the same zenith angle, displaced 2* right of the source 

on the sky, for the same period. This operation was then adapted to 

compensate for effects of the Earth's magnetic field, with the background 

region being alternately 2° right and 2° left of the source (Bowden et al., 

1992). This method of chopping to alternate sides of the source region also 
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helps to negate the effect of large scale gradients In the sky brightness 

(Historically the light noise In the PM tubes was padded using an Automatic 

Gain Control (AGC) system. An LED close to the face of each PM tube was 

servoed to the anode current of the tube. However, with the increase in 

tube numbers this procedure has lapsed). At small zenith angles, achieving 

a 2" displacement from the source requires a large azimuth angle movement 

which can take a large proportion of the observing interval. Observations of 

sources which culminate at small zenith angles precipitated the change to 

chopping in zenith. 

One problem associated with the use of this method, for a telescope on an 

alt-azimuth mount, is that the control regions of sky constantly change as 

the region of the sky viewed rotates around the source. 

6.2.2 Tracking of a Phantom Object 

The method used to provide the background count rate for the Whipple 

experiment is to track a phantom object at an R.A. and declination which 

appears at the same point in the sky as the start of the source observation a 

specified period of time later. This object is then tracked for the same 

period of time as the source. The Whipple observation technique is 

described by Lang (1991). The data take the form of pairs of observations 

with the same locus in azimuth and zenith, one containing the source and 

the other providing the background count rate. The time separation 

between source and background observation is chosen such that the two 

regions of sky are similar. For the Crab Nebula the separation is 30 minutes 

with the duration of each observation being 28 minutes. The time allowed to 

steer the telescope between the source and background region, and vice 

versa, is 2 minutes. 
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The relative merits of the two methods are largely subjective. Chopping, 

with its short cycle, gives a reasonable guarantee of similar sky conditions 

on and off source. Tracking the source and then a "phantom object" for 

longer periods of time, however, minimises the time spent steering between 

the two observed regions. 

6.2.3 Source Tracking 

This mode of observation is the simplest in operation and has the 

advantage that all of the time is spent observing the source, maximising 

sensitivity for periodicity searches. The source is tracked continuously 

throughout the observation, avoiding the introduction of discontinuities in the 

event record which complicate the process of periodicity searching. 

In the simple first generation atmospheric Cerenkov telescopes this 

method of observation was restricted to the search for periodic emission 

from potential sources, save for intense bursts of activity which could be 

identified above the ambient count rate. However, as confidence in the 

parameter distributions of high resolution images of Cerenkov light from 

EAS grows, then D.C. excesses in the gamma ray regimes of these 

distributions can be inferred. 

6.3 Corrections to Gamma Rav Arrival Times 

6.3.1 Introduction 

Observations lasting typically 2-3 hours with count rates of 2 to 3 Hz 

generate data files comprising several thousand events. A number of 

con-ections to the arrival times of these events must be made before any 
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test for periodicity can be applied. These connections are discussed below. 

6.3.2 Correction for Clock Drift Rate 

The event times stamped on each event record are supplied by the 

CAMAC clock dedicated to each telescope. These clocks are slaved to a 

highly accurate Rubidium oscillator, the accuracy of which is checked daily 

against the time supplied by a GPS receiver. The Rubidium clock is shown 

to have a very stable linear drift rate, which allows the event time to be 

corrected to UT by removal of the accurately detemiined clock delay. The 

site wide time standard is described in Section 3.4.2.5. 

6.3.3 Adjustment of Event Times to the Solar System Barycentre 

The time of arrival of the event at the telescope must be transformed to an 

equivalent arrival time at the Solar System barycentre to eliminate the 

effects of the motion of the telescope relative to the barycentre. This 

transformation is effected by the application of three corrections; 

- translation of the events times to the centre of the Earth, 

- translation of the event times to the Solar System barycentre, 

- application of relativistic corrections. 

The translation of the event times to the centre of the Earth eliminates the 

Doppler effect inherent in making observations from the surface of a rotating 

Earth, and corrects for the absolute position of the observatory relative to its 
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centre. This correction requires that the observatory's geographical location 

is accurately known. Information which is provided by the GPS system. The 

maximum correction will be approximately 0.021 seconds, the time taken for 

light to traverse a distance equivalent to the radius of the Earth. 

Correction of the event times to the Solar System barycentre accounts for 

the same effects introduced by the Earth's orbital motion around the Sun, 

and includes a small effect due to the orbit of Earth around the barycentre of 

the Earth / Moon system. The corrections are performed using the JPL 

DE200 Earth ephemeris (Standish, 1982), and can be as large as 500 

seconds, the time taken for light to travel from the Sun to the Earth. 

A correction is required to allow for the relativistic effects on the observers 

timescale introduced by the Earth's motion, and the difference in 

gravitational environments between the surface of the Earth and the Solar 

System barycentre. This correction can be as much as 3 milliseconds 

(Mannings, 1990). 

6.3.4 Adjustment of Event times to the Barycentre of a Binary System 

In the case of the potential source being a member of a binary system a 

con-ection is required to compensate for the effects of orbital motion of the 

source object around the centre of mass of the system. The masses of the 

binary companions can be many times that of the Sun and consequently 

their orbital angular velocities can be very large. The Doppler effect due to 

these large angular velocities is significant, which makes the process of 

event time correction important. This correction requires knowledge of a set 

of parameters which describe the binary system. This is known as the 

orbital ephemeris and is usually derived from radio. X-ray or optical 

measurements. The correction is made on the assumption that the site of 
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the VHE gamma ray emission is coincident with that of the emission region 

at other wavelengths. For a full description of this correction the reader is 

referred to Carraminana (1991). 

6.4 Data Analysis 

6.4.1 Introduction 

The substantiation of a signal within the noise is a matter of achieving a 

statistically significant D.C. excess of counts from a source direction (over a 

control background from a direction containing no such source), or 

demonstrating that periodicity exists within the dataset at a period 

associated with emission from the potential source. 

6.4.2 Searching for a Count Rate Excess Above A Control Background 

In the case where emission is expected to be continuous, or there is no 

known period to test, analysis is reduced to testing the significance of an on 

source excess over a control background in identical time intervals. A 

maximum likelihood method is used to test the significance of the on source 

excess. The test is described in detail by Gibson et al. (1982b) and 

Dowthwaite et al. (1983). 

6.2.3 Phase Sensitive Analysis 

6.2.3.1 Introduction 

A large proportion of the candidate VHE gamma ray sources studied by 
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the Durham group comprise or contain neutron stars. The majority of these 

are pulsars, which are isolated rotating neutron stars, or X-ray binaries in 

which a neutron star forms one component of a binary system. Tliese 

source types may show periodicity in one or more of the radio, visible. X-ray 

or low energy gamma ray regions of the electromagnetic spectrum. Data 

recorded in the VHE region of the gamma ray spectrum is then subjected to 

tests for periodicity at the known neutron star rotation period. This, of 

course, assumes that the VHE gamma ray emission is associated with the 

neutron star. Periodicity within a highly noise contaminated dataset is 

easier to detect than a small count rate excess, using techniques of phase 

sensitive analysis. This point is particulariy pertinent when one considers 

the difficulty in achieving a reliable background count rate with changing sky 

conditions. Thus periodicity searching facilitates the detection of gamma ray 

emission from periodic sources, allowing these sources to be tracked 

continuously. A further advantage is that no observation time is lost to the 

determination of background count rate. 

6.2.3.2 Epoch Folding 

In cases where the period of the source is known with confidence from 

observations made in other regions of the electromagnetic spectrum, a 

dataset can be tested for periodicity by binning the arrival times of the 

events by period phase. This process is known as epoch folding. 

Poincare's theorem is adopted as a null hypothesis (Mardia, 1972): a 

random time series of sufficient length, folded at an ariaitrary period, results 

in a uniform phase distribution. The events are consigned to phase bins, 

folded at the test period to produce a histogram, and Pearson's test for 

uniformity applied (Leahy, Elaner and Weisskopf, 1983). Uniformity of the 
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phase distribution is taken as an indication of the absence of periodicity at 

the test period within the dataset. 

Several problems exist with this method when applied to VHE gamma ray 

data. Generally the light curves of the sources are unknown, making the bin 

width arbitrary and hence the number of bins a free parameter. In addition, 

if absolute phase is not known then the bin origin is also arbitrary. The 

statistical significance of any detection is reduced by these limitations of the 

method. 

In circumstances where the precise period and absolute phase are not 

known circular statistics are preferred. The Rayleigh test, which is a 

statistical method derived specifically for use with cyclical phenomena, is 

described in the next section (Rayleigh, 1894). 

6.2.3.3 The Rayleigh Test 

This test is the most prevalent for periodicity searching in VHE gamma ray 

astronomy. It has been described in detail by Mardia (1972), and more 

recently by Batschelet (1981). It was introduced to gamma ray astronomy 

by Gibson et al. (1982b). The data are folded circularly with a radial vector 

describing the phase of a cyclical period (see Figure 6.1). 

The null hypothesis states that in the absence of periodicity at the trial 

period the distribution of events around the circle is random and uniform. 

Binning is not required and absolute phase is in-elevant. Periodicity at the 

trial period will be manifest as a preferred direction within the event 

distribution, which will allow rejection of the null hypothesis if the bias can be 

shown to have attained a predetermined level of significance. 
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Figure 6.1: In the above diagrams the relative phase of each event of a 

dataset, folded at a trial period, is represented as a unit vector in phase 

space. Diagram (a) shows a circular phase distribution, which appears to 

be consistent with a random probability density while (b) shows a preferred 

direction. 

The Rayleigh test is based upon the magnitude of the resultant (R) of the 

unit vectors which represent the phase of each event distributed on the 

perimeter of the circle. Figure 6.2 illustrates this using the distribution 

shown in figure 6.1. 

The Rayieigh test effectively determines the degree of correlation between 

a sine wave and the time series at the test period, hence it is most sensitive 

to broad peaked light curves. When n, the number of events, is large, which 

is invariably the case in VHE gamma ray astronomy, then the product nR^ 

has a distribution with 2 degrees of freedom. The probability of nR* 

exceeding a value Pn by chance is P(>Pn) = exp (-Pn). 
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Figure 6.2: An illustration of the resultant of the unit vectors representing 

event phase for each event for the hypothetical data displayed in Figure 

6.1(a). 

It is clear that the Rayleigh test would be insensitive to a bimodal 

distribution. However, periodicity in light curves displaying an interpulse at 

opposite phase to the main pulse would be evident in the first harmonic. As 

the ratio of signal in the pulse and interpulse is variable it is common to test 

for periodicity at both the period and half period. 

6.2.4 A Comparison of the Sensitivity of the Rayleigh Test with a Test 

for D.C. Excess 

If we consider a dataset which includes a fraction which is pulsed at a 

known period, we can compare the sensitivity of the Rayleigh test to the 

pulsed fraction with its D.C. significance. 
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For a D.C. excess to be significant at the 3a level we would require a 

signal strength, RD.C. such that 3(n)"2 = Ro c.n or 

(RD.C.)2 = 9/n 

The equivalent 3c Rayleigh probability is 1.348 x lO"'. The Rayleigh 

probability is given by exp(-nRRayteigh^), thus we have 1.348 x 10-̂  = 

exp(-nRRayiei#)^) which can rean-anged to 

(RRayleigh)̂  = -(1/n).Logn(1.348 X 10"̂ ) 

The value of Rpayieigh / RD.C. is approximately 0.855 demonstrating that, even 

assuming that no observing time is lost to establishing the background rate, 

a lower flux of periodic emission can be detected than a D.C. excess of 

similar significance. If we assume that determination of the background 

count rate halves the data rate for a D.C. observation then the ratio 

becomes, RRayieigh / RD.C. = 0.604. 
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6.5 A Burst of Pulsed VHE Gamma Ravs From AE Aquarii 

6.5.1 Introduction to AE Aquarii 

AE Aquarii is a DQ Her type magnetic cataclysmic variable. The magnetic 

white dwarf is in a tight binary orbit with a K type red dwarf from which it 

accretes via an accretion disk. The object is known to emit at radio 

(Bookbinder and Lamb, 1987), optical (Zinner, 1938) and X-ray 

wavelengths (Patterson et al., 1980). Periodic emission in the radio and 

optical regions has been associated with the white dwarf spin frequency 

which, at 33.08 s, is short for objects of this class. The system is prone to 

frequent optical and radio flaring, with outburst durations of minutes to 

hours. The quiescent accretion luminosity is around 10^ ergs s*' which can 

increase to a few times 10^ ergs s"̂  during outburst. Optical observations 

during outburst exhibit quasi periodic oscillations (QPO) at a frequency 

lower than that of the spin frequency (Patterson, 1979). 

The orbital period of 9.88 hours has been derived both from optical 

absorption and emission lines (Chincarni and Walker, 1986; Robinson et al., 

1991) and optical and X-ray pulse timing measurements (Patterson, 1979; 

Patterson et al., 1980; Meintjes et al., 1993). 

6.5.2 Previous VHE Gamma Ray Detections of AE Aquarii 

VHE gamma ray emission has been detected by two independent groups. 

Periodicity at the frequency of the quasi periodic oscillations during outburst 

was first identified by the University of Potchefstroom group working at 

Nooitgerdacht, South Africa (Meintjes, 1992). Within a dataset of 374 hours 

spanning five years periodicity was found in the period range 33.08 s to 
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33.44 s, consistent with the optical QPO period during outburst (Meintjes, 

1993). Figure 6.3 shows the Rayleigh power spectrum in a frequency range 

which encompasses the spin and QPO frequencies. 
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Figure 6.3: The power spectrum in a range of frequencies which brackets 

the white dwarf spin frequency and the OPO frequency of AE Aquarii. The 

spectrum represents a non-coherent analysis of 374 hours of data obtained 

over a 5 year period (after Meintjes et al., 1993). 

The Durham group reported the detection of a VHE gamma ray flare with 

a duration of 1 minute at the 6o level of statistical significance (Bowden et 

al., 1992a). The burst, on the 13th October 1990, was seen as an excess in 

the count rate of two independent telescopes, and displayed a 33 s periodic 

pulse structure. The light curve during the event was double peaked, an 

emission pattern corroborated by data taken by the Potchefstroom group 
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during the same period (Meintjes. 1992). Optical flares with a similar time 

structure to the gamma ray burst claimed are present in the archival data 

(De Jeger and Meintjes, 1993). 

6.5.3 The Recent Observations 

Observations of AE Aquarii were made using the Mk.3 and Mk.5 

telescopes on 5 nights between the dates 7th October and 12th October 

1993. An observing log is given in Table 6.1. 

Mk.3 Mk.5 

Date Start End No. of Start End No. of Zenith 

(UT) (UT) Events (UT) (UT) Events Angle 

Oct 7th '93 09:30 13:44 18221 09:26 13:46 14261 30° - 65° 

Oct 8th '93 09:30 13:25 16813 09:23 13:36 14137 30°-61° 

Oct 9th'93 09:22 13:21 17792 09:32 13:21 16248 30°-61° 

Oct 11th '93 09:25 12:51 15993 09:34 12:53 14379 30° - 55° 

Oct 12th '93 09:24 11:37 12363 09:24 11:38 12193 30°-41° 

Table 6.1: Log of the October 1993 observations of AE Aquarii. The date 

refers to the UT date at the start of the observations. 

6.5.4 Periodicity in the Raw Dataset 

6.5.4.1 Introduction 

The JPL DE200 earth ephemeris (Standish, 1982) is used to correct all 

event times to the Solar System barycentre. Corrections to the event times 
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to allow for the motion of the gamma ray source region within the binary 

system are made using the orbital ephemeris of Welsh et a!., (1993). The 

assumption is made that the gamma ray emitting region is co-located with 

the white dwarf. The data are divided into three independent datasets: 

- events registered solely by the Mk.3 telescope (Mk.3 "mono") 

- events registered solely by the Mk.5 telescope (Mk.5 "mono") 

- events registered by both the Mk.3 and Mk.5 telescopes ("stereo") 

Unfortunately, when the data were recorded the Mk.5 telescope had 

developed a fault. A voltage line regulator had failed on a voltage supply 

line to the charge digitizers and the unregulated voltage, which had a large 

50 Hz component, caused the pedestal of the digitizers to oscillate. This 

problem precluded background rejection on the basis of imaging of the 

events, but has no bearing on the analysis of the raw dataset. Stereo 

analysis using the height of Cerenkov maximum and Dmiss measures was 

also unimpaired as the pedestal values oscillated in phase, leaving the 

position of the centroid of the light unaffected. 

6.5.4.3 Periodicity in the Total Dataset 

The series of observations of each of the three independent datasets were 

combined and tested for persistent periodic emission using the Rayleigh test 

at periods close to the QPO period and its first harmonic. The data were 

tested both with and without the assumption of phase coherence between 

observations. If phase coherence is assumed the data are merged into a 
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gapped dataset and the Rayleigh test applied to the whole, otherwise the 

Rayleigh probabilities of individual observations are combined using the 

fomiula of Eadie et al. (1971). 

No evidence was found for persistent periodic emission at either the pulse 

period or its first harmonic in any of the datasets, combined with or without 

use of phase information. 

6.5.4.4 Periodicity in Individual Observations 

No strong periodicity was evident in any of the datasets over the timescale 

of a single observation (2-4 hours). However, the data from the observation 

made on 11th October 1993 did show some evidence for pulsed VHE 

gamma rays at a period within the range of QPO periods reported by the 

Potchefstroom group, with a chance probability of occurrence of 10"̂ . 

6.5.4.5 Short Term Periodicity Within Observations 

In order to test for transient bursts of periodicity over smaller timescales 

the data from each night in each independent dataset were tested for 

periodicity in blocks of 4200 seconds rolling forwards by 600 seconds. 

Significant periodicity was revealed within one 4200 second block (09:36:25 

UT- 09:46:25 UT). The results of phased and unphased periodicity 

searching on the relevant section of data within the three independent 

datasets is displayed in Table 6.2. There is evidence to suggest that all of 

the pulsed signal is contained in this time interval. 
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Mk.3 "Stereo" Mk.5 Unphased Phased 

"Mono" "Mono" 

No. of Events 5007 2784 5659 13450 13450 

Rayleigh strength 3.7 % 4.5 % 2.1 % 3.3 % 2.2 % 

Rayleigh prob. 1.1 x 10-̂  3.3 x 10^ 7.2 x 10 ^ 4.4 x 10'̂  1.4 x 10^ 

Period (+/-0.065 s) 16.477 16.456 16.469 16.464 16.464 

Table 6.2: Results of the analysis of mono and stereo data during the active 

4200 second interval on the 11th October 1993. 

The burst of pulsed gamma rays reported in Bowden et al., (1992a) had a 

duration of only about 60 s. The 1993 data was therefore searched, in a 

similar fashion to the analysis applied to the 4200 s intervals, for episodes of 

pulsed emission on a timescale of 66 s which represents two cycles of the 

white dwarf rotation. None was revealed. 

6.5.5 Improvement in Signal to Noise Ratio 

6.5.5.1 Introduction 

The recent progress made in atmospheric Cerenkov astronomy have been 

made as a result of the development of efficient background rejection 

strategies based upon the high resolution (0.25*" pixel size) imaging of the 

Cerenkov light from EAS using a single telescope (eg Reynolds et al., 

1993). This degree of resolution was not available to the Durham group 

when these observations of AE Aquarii were made. However, the group 

has developed simple critera for background rejection based on imaging at 

a resolution comparable to that successfully employed by the Whipple 
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collaboration (0.5° pixel size) prior to the of their high resolution camera 

(Weekes et al., 1989). The concept of Durham medium resolution imaging 

is described in Section 4.10 of this thesis. In addition to this single 

telescope approach the group has developed a background rejection 

strategy based on data provided by an pair of telescopes making 

stereoscopic observations of the development of EAS. The "stereo" method 

is described in Section 5.4. 

6.5.5.2 Medium Resolution Imaging 

The medium resolution images of the Mk.3 telescope were parameterised 

in terms of the SPAN and ALPHA parameters described in Section 4.10. 

SPAN is a measure of the angle subtended by the light pool at the centre of 

the camera. Events which have a SPAN value in excess of the median, 

typically 1 -1.5 radians are rejected as being hadron-like. ALPHA, defined 

as the angle between the major axis of the image and the radius from the 

centre of the camera through the centroid of the image, has been shown to 

be a reliable measure for discrimination between hadron and gamma ray 

events (Vacanti et al., 1991, Punch et al., 1992, Kifune et al., 1995). In our 

analysis images with ALPHA > 45" are rejected as hadronic, this is again 

around the median value resulting in rejection of approximately 50 % of the 

remaining events. 

Calculated values of ALPHA are only reliable if the image is largely 

confined within the field of view of the camera. Thus only images which 

display maximum light intensity internal to the outer ring of PM tubes are 

acceptable for parameterisation in terms of ALPHA. Therefore a 

DISTANCE cut is applied to remove all events whose centroids are within 

OA" of the centre of the field of view, as these events are not amenable to 
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discrimination. This is effectively an aperture restriction constraining the 

region of maximum intensity to within 1.25** of the optic axis of the telescope. 

The unconfined subset of data is not necessarily gamma ray poor, due to 

the limited angular extent of the camera and is retained in the analysis. 

However, the only measure of the image which can be applied is the SPAN 

cut. The event selection criteria described above were applied to the 4200 

second segment of Mk.3 telescope data from the 11th October 1993 which 

had shown evidence of periodicity in the raw data, and each subset tested 

for periodicity at the first harmonic of the white dwarf rotation period. The 

results of these background rejection cuts are presented in Table 6.3. 

Confined 

No. R(%) Prob. 

a. No selection 3851 2.7 5x10-2 

b. 0.4''< DIST< 1.0» 2723 3.2 6x10-2 

c. b + SPAN < median 1283 7.6 5x10-* 

d. c + ALPHA < 45" 707 11.6 7x10-5 

Unconfined 

No. R(%) Prob. 

1156 8.0 5x10-^ 

not applied 

552 11.9 4x10^ 

not applied 

Table 6.3: Results of the Rayleigh test for periodicity, applied to subsets of 

the Mk.3 telescope "mono" dataset selected on the basis of SPAN and 

ALPHA parameterisation of the medium resolution images of the events. 

The amalgamated dataset comprising the selected confined and 

unconfined images contains 1259 events. This dataset shows evidence for 

periodicity at the first harmonic of the white dwarf rotation period with a 

probability of chance occurrence of 6 x 10-̂ , with a Rayleigh signal strength 

of 10.7 %. The data rejected by the background rejection criteria show no 

such periodicity. The periodograms for the selected and rejected data are 
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both presented in Figure 6.4 
8 

16.0 16.2 16.4 16.6 

Period (s) 

16.8 17.0 

Figure 6.4: Superimposed periodograms showing the results of the 

Rayleigh test for periodicity over a period range which includes the first 

harmonic of the white dwarf rotation period (indicated by the arrow). The 

solid line represents data selected with SPAN < median and ALPHA < 45°. 

The broken line represents the rejected data. The bar indicates the period 

resolution of the test. 

6.5.5.3 Stereoscopic Measurements 

This background rejection technique, based on stereoscopic measures of 

the development of EAS, developed by the Durham group utilizes the two 

lowest moments of the light distribution, the brightness of the image and the 

position of its centroid. The medium resolution cameras of the Mk.3 and 
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Mk.5 telescopes have sufficient granularity to give a reliable measure of 

these moments. The height of Cerenkov maximum He, and the spatial 

correlation parameter Dmise were used in this analysis. Use of the primary 

energy ratio was precluded by the problem with the Mk.5 digitisers. 

The independent stereo dataset from the period 09:36:25 UT and 

10:46:25 UT on 11th October 1993 contained 2786 events. These "raw" 

data showed evidence for 16.5 s periodicity with a probability of chance 

occurrence of 3 x 10"̂ . 

The height of Cerenkov maximum parameter He is derived from the 

positions of the centroids of the images in the two cameras using simple 

trigonometry. A broad acceptance range in He is imposed prior to selection 

on the basis of the Dmiss parameter. Calculation of the parameter Dmiss is 

more dependent upon Monte Cario simulations but allowance can be made 

for the systematic change in the depth of shower maximum with energy. 

The basis of the utility of the parameter Dmiss is the large fluctuations in light 

intensity from hadron initiated E A S . The random errors in the position of the 

centroid of an image in each telescope will be approximately Gaussian, thus 

distribution of Dmiss will be a Rayleigh distribution. The background Dmiss 

distribution is a broad Rayleigh distribution in contrast to the small values of 

Dmiss anticipated for gamma ray events. A cut in the Dmiss distribution of Dmiss 

< 0.4 was chosen on the basis of detailed Monte Cario simulations as 

appropriate to retain most of the gamma ray events whilst rejecting 75 % of 

the hadrons. No optimisation of the Dmiss selection threshold has been 

performed. 

The periodogram of the for the Rayleigh analysis of the cut dataset is 

presented in Figure 6.5 along with a comparable cut to select events 

unlikely to be gamma rays. The probability of chance occurrence of the 

periodicity is reduced from 3 x 10"Mo 6 x 10'̂  (see Table 6.4). 
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Figure 6.5: Periodograms displaying the results of testing for periodicity 

(using the Rayleigh test) within the dataset selected on the basis of the 

parameter Dmiss. The solid line represents the data with values of Dmiss < 

0.4. The broken line represents a similariy sized dataset which satisfies 

0.4 < Dmiss < 0.8. The first harmonic of the white dwarf rotation period is 

marked by the arrow. 

No. of Events R(%) Probability 

Uncut "stereo" events 2784 4.5 3x10-3 

DmisB < 0.4" 787 11.2 6 X 10-5 

0.4° < Dmiss < 0.8° 891 3.0 3x10-^ 

Table 6.4: Results of the Rayleigh test for periodicity applied to subsets of 

the stereo data, cut on the basis of the stereo parameter Dmiss. 
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6.5.5.4 The Enhanced Dataset 

The amalgamated dataset comprising the events selected on the basis of 

medium resolution imaging and stereoscopic background rejection criteria 

contains 2080 events. A Rayleigh test of this data reveals periodicity at a 

period of 16.483 +/- 0.065 s with a chance probability of occurrence of 1.0 x 

10-^°. The perlodogram of this result is shown In figure 6.6. The 

con-esponding light curve folded at this period is illustrated in Figure 6.7. 
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Figure 6.6: The periodogram representing the results of the Rayleigh test 

for periodicity at the first harmonic of the white dwarf rotation period, within 

the dataset comprising all of the "mono" and "stereo" selected candidate 

gamma ray events. 

173 



300 

250 

f 200 H 
LU 

o 150 
i 
E 
Z 100 ^ 

50 -

0 0.5 1 
Arbitrary Phase 

Figure 6.7: The light curve produced by folding the enhanced dataset at a 

period of 16.483 s. 

6.6 Conclusion 

Evidence of an outburst of gamma ray emission from AE Aquarii was 

revealed as periodic emission within a 4200 second segment of data taken 

on 11th October 1993. Background rejection criteria were applied to two of 

the three independent datasets. The Mk.3 "mono" dataset was cut using 

the SPAN and ALPHA image parameters devised for data taken using the 

medium resolution cameras of the Mk.3 and Mk.5 telescope (the Mk.5 

"mono" data was not used in the analysis due the the problem with the 

digitisers). The "stereo" dataset was cut on the basis of the Dmiss parameter. 

In each case the signal to noise ratio was significantly improved, with an 

associated decrease in Rayleigh probability. 
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CHAPTER 7 

A LOW ENERGY (< 100 G E V ) GROUND BASED GAMMA RAY 

T E L E S C O P E 

7.1 The Mk.6 Telescope Concept 

7.1.1 introduction to the Mk.6 Telescope 

The principal objective of the Mk.6 telescope was to provide the facility to 

make measurements of gamma rays at low energies (< 100 GeV). This 

would effectively bridge the gap between previous atmospheric Cerenkov 

telescopes and the highest threshold energy satellite instruments (currently 

the E G R E T experiment on the NASA Compton Gamma Ray Observatory. 

See Kanbach et al., 1988). A division has developed in the field of ground 

based gamma ray astronomy between the use of purpose designed 

instruments of relatively modest size (CANGAROO, HEGRA, GASP, 

Nooitgedacht, SHALON - ALATOO, Beijing, THEMISTOCLE, CAT) which 

are confined to TeV energies, and the utilization of the vast flux collection 

areas provided by solar concentrators (eg Tumer et al., 1993). Solar 

concentrators are effective large area flux collectors but are not optimised 

for Cerenkov astronomy. For example, large path differences across the 

wavefront result in temporal dissipation of the Cerenkov signal. The Mk.6 

telescope however, with 114 m^ of flux collector, in conjunction with efficient 

PM tube operation, could hypothetically allow detection of photon densities 

of ~3 m-2 which corresponds to gamma ray primary energies of 60 GeV, 

while retaining the facility of imaging showers produced by gamma rays of 

higher energy. 
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There are excellent physical reasons for confidence in the utility of ground 

based Cerenkov astronomy at these energies, not least the increase in 

effective collection area provided by utilisation of the atmosphere as a 

medium to disperse the energy of the primary over a large area on the 

ground. The effective area of the E G R E T instrument, a function of the cross 

section of the spark chamber, is 0.16 m* for gamma rays of energy 500 

MeV. This compares with the lateral extent of the Cerenkov light pool on 

the ground which is reasonably stable with energy and has an area of 

approximately 9x10* m ,̂ providing an effective collection area more than 5 

orders of magnitude larger at energies typically 1000 times larger. 

The increase in effective collection area presents the potential for a huge 

improvement in sensitivity. However, this potential is still subject to the 

constraints imposed by the all pervasive hadronic background, a 

background eliminated in the E G R E T experiment by the use on an anti­

coincidence scintillation dome. Fortunately, though, Cerenkov radiation 

production by hadron initiated EAS is significantly reduced below 100 GeV, 

due to the mechanism outlined eariier in Section 3.6.2. Thus a potential 

improvement in the ratio of signal to noise events within the raw data 

sample is inherent in the reduction of energy threshold. 

In a slightly higher energy regime the cascades yielding the Cerenkov light 

have sufficient density to provide relatively well defined images at the focal 

plane. Signals produced by the PM tubes are significantly above the sky 

noise. The Mk.6 telescope is provided with a high resolution camera with 

which to exploit the spatial differences between images of gamma ray and 

hadron initiated EAS, in a hadron background rejection strategy. 

The Mk.6 telescope has been assembled at Narrabri on the same East-

West line as the Mk.3 and Mk.5 telescopes, adjacent to the Mk.3 telescope. 

This provides for operation of the Mk.5 and Mk.6 telescopes as an 

176 



enhanced stereo imaging system with a separation of 80 m. Rgure 7.1 is a 

schematic diagram illustrating the layout of the Narrabri site. 

100 metres approx. 

Control Rooms 

Houses 

Figure 7.1: Plan view of the Narrabri observatory site (after Bowden, 1993). 

7.1.2 A Low Energy Threshold Ground Based Telescope 

By maximising the flux collection capacity of the Mk.6 telescope, the 

Durtiam group intends to exploit the advantages of observations made at 

low energies outlined in the previous Section. 

The Mk.6 telescope has a total flux collector area of 114 m^ equally 

divided between three paraboloidal dishes. This represents the largest area 

of mirror which could be presented to the sky, on a single mount, using the 

existing Durham mount technology. Once the flux collector area is so 

defined, the emphasis is switched to the optimisation of all other 
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components which have bearing on the performance of the telescope. 

Some important design considerations are listed below. 

- Optimisation of signal collection: Use of hexagonal PM tubes or light 

gathering cones at the focal plane, and flush fitting min'or sectors to 

minimise light loss. 

- Light noise suppression: Albedo protection using baffles and a reflective 

surface with high specular reflectivity. 

- PM tube choice: Use of tubes which display the characteristics of high 

gain, high QE, fast response and low noise, with sensitivity over an 

appropriate spectral range (matched to Cerenkov light). 

- Electronics: Provision of a stable system with adequate bandwidth and a 

large data handling capacity. 

- Effective event selection trigger: Optimisation of PM tube field of view to 

the size of a gamma ray initiated Cerenkov event. 

With rigorous attention to all areas in which potential improvements in 

sensitivity can be made, it is believed that an energy threshold can be 

achieved which will narrow the gap in the energy spectrum between space 

based (EGRET) and ground based gamma ray astronomy. 

Figure 7.2 is a photograph of the Mk.6 telescope. 
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Figure 6.2: The Mk.6 telescope. 
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7.1.3 A High Resolution Imaging Telescope 

The high resolution imaging telescope operated by the Whipple 

collaboration has proved the concept of the atmospheric Cerenkov imaging 

technique, establishing the Crab nebula as the northern hemisphere 

standard candle of the field of VHE gamma ray astronomy (Weekes et al., 

1989, Vacant! et al., 1991 and Reynolds et al.. 1993). In light of this 

success, a camera with an equivalent resolution to the Whipple camera was 

specified for the Mk.6 telescope in order that use could be made of the high 

resolution imaging technique. The design of the camera is considered in 

Section 7.2.4. 

The high resolution camera will be operated as a component of a three 

fold fast coincidence system. Design of appropriate triggering packages is 

described in Section 7.2.5 and the incorporation of the camera into the 

trigger is considered in Section 7.2.7. 

7.1.4 Enhanced Stereoscopic Observation of Cerenkov Light from EAS 

The separation of the Mk.5 and Mk.6 telescopes is slightly less than that 

of the cun-ent Mk.3 and Mk.5 telescope stereo system (80 m vs 100m). The 

Mk.6 telescope will provide a high resolution / low energy threshold 

component to the Mk.5 / Mk.6 pair of telescopes. Statistics for stereo 

events should improve significantly, with almost all of the Mk.5 telescope 

events having a stereo counterpart in the Mk.6 telescope, approximately 

doubling the present stereo event rate. The threshold energy for stereo 

events, previously higher than that of the independent Mk.3 and Mk.5 

telescope thresholds, will be defined by the energy threshold of the Mk.5 

telescope. In addition to the reduction in energy threshold, the improvement 
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in resolution wiil provide better definition of the centroid of the image in one 

component of the stereo system. 

7.2 The Design and Construction of the Mk.6 Telescope 

7.2.1 The fAk.6 Teiescope Mirrors 

7.2.1.1 Introduction 

The mirrors for the Mk.5 telescope proved to be successful and so the 

manufacturing method was extended to the provision of the mirrors for the 

Mk.6 telescope. The commitment to observations at low energies (below 

100 GeV) necessitates the use of very large flux collectors. A paraboloidal 

flux collector of nominal focal length and aperture of 7 m was specified due 

to the following considerations: 

- Three 7 m diameter dishes were seen as the maximum possible flux 

collector area for a single mounted telescope using the available Durham 

technology. 

- An isochronous surface was required in order that pulse profile 

experiments could be performed. 

- f/1 is the aperture limit if seriously debilitating aberrations are to be 

avoided. This focal length / aperture ratio also facilitates the effective 

application of albedo protection and flux collecting cones at the focal 

plane. 
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7.2.1.2 Specification 

The specification for tlie FWHM of the point spread function of the min-ors 

was defined by the image scale required at the focal plane. A resolution 

was sought which would allow the higher moments of the image to be 

reliably measured, to form a basis for background rejection. This requires 

that the image on the focal plane extends over a number of pixels. A two 

fold improvement in resolution over that of the Mk.5 telescope was 

considered to be adequate, corresponding to the pixel size of the Whipple 

telescope. 

The Mk.6 telescope has been designed to have twice the linear 

dimensions of the Mk.5 telescope retaining the focal length to aperture ratio 

of 1. Thus, pixels with the same pitch on the focal plane (3 cm) equate to 

the desired improvement in resolution to 0.25°. This image scale also 

defines the required tolerance of manufacture to be half of that achieved for 

the Mk.5 telescope. If achieved this would result in the point spread 

function matching the pixel pitch of the camera. It was believed that, with 

the benefit of experience gained from production of the mirrors for the Mk.5 

telescope, this was not an unreasonable objective. 

7.2.1.3 Manufacture 

The first requirement for the production of the Mk.6 telescope mirrors was 

the manufacture of a former with the requisite focal length. Each flux 

collector is divided into 24 mirror sectors, rather than the 12 of the Mk.5 

telescope. The dimension of the base of a mirror sector is constrained to be 

somewhat less than 1 m, as this is the maximum available width of the 

anodised aluminium reflective surface. The base of a 15° sector at a radius 
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of 3.5 m is 91 cm which leaves adequate overlap for the vacuum seal 

required in fabrication. This size of mirror doubles the number of individual 

mirror sectors in the production run but has the advantage of being only 

twice the area of a Mk.5 mirror sector rather than the four fold increase if the 

dimensions were simply scaled. This, in turn reduces the work involved in 

machining the former. 

Steel was again used for the former but 3/8" sheet was used to allow 

some manipulation of the shape of the surface before machining. The steel 

was pre-rolled in the radial direction and the spine of the surface which 

represented the reference parabola was welded to steel pylons fixed at 

intervals to a reinforced steel table. The plate was then forced down onto 

other pylons distributed at intervals over its whole area. This resulted in an 

approximately paraboloidal surface which was then finished in the same 

manner as the mirror sectors for the Mk.5 telescope (see Section 4.3.3). 

The production process was identical to that employed for the Mk.5 

telescope mirror production and the cold curing routine required the same 

turn around time of 24 hours. 

7.2.1.4 Mirror Sector Testing 

The parabolic section of the mirror was initially proved using the testing 

procedure developed for the Mk.5 telescope, using parallel beams of laser 

light. The best focus was achieved somewhere between 7.15 and 7.20 m. 

The uncertainty in the determination of the best focal length was partially 

due to the rather diffuse laser images at the focus. The light within each 

beam tended to diverge over the longer distance that each is required to 

travel, producing pooriy defined points of light at the focus. 

A method was required to give a better estimate of the best focal length 
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and derive a measure of the point spread function of the minior sectors at 

this distance. The method involving statistical treatment of a number of 

nominally parallel beams of laser light which formed the basis for early 

estimates of the point spread function of the Mk.5 telescope min-ors was 

rejected. This method has been shown to be at the limit of its utility due to 

the dispersion of the laser beam after its passage through successive beam 

splitters when projected over the distances involved. Ideally what one 

would like to achieve is illumination of the whole surface of the mirror sector 

with light parallel to the optic axis, effectively imitating an infinitely distant 

light source. The best workable approximation of this condition was 

achieved by arranging two of the mirror sectors facing each other with an 

incandescent light source at the provisional focus of one and a target screen 

at the corresponding focus of the other (see Figure 7.3). 

Light Source Foca' P'an© 

Mirror 
Sector Mirror 

Sector 

Figure 7.3: A schematic diagram of the Mk.6 mirror testing apparatus. 

In preparation, a single beam of laser light was projected from one focus 

and the mirrors manoeuvred so that the beam, successively reflected by 

both min-ors, impinged upon the focus of the other min-or. This, together 
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with other tests demonstrating that the beam is constrained to one 

horizontal plane, ensures that the optic axes of the two mirrors are parallel. 

The axes could be made colinear by constraining the laser beam to be near 

the outer edge of each mirror sector. A number of different apertures for the 

light source were used, the one ultimately chosen, as a compromise 

between size and illumination, was 6 mm. This aperture gave a uniform 

illumination of the mirror, with sufficient intensity to allow meaningful 

measurements to be made in a dimly lit environment. 

A CCD camera was used to digitise a series of images from various tests 

perfomied. A Mylar filter (a few % transmissive) was used in front of the 

camera lens to attenuate the light to a level appropriate to the CCD. This 

filter has no effect on the contrast of the image but allows a convenient 

integration time for the camera to be used. In order to ascertain their 

optimum focal length test exposures of images from inner and outer portions 

of the mirror sector were taken over a range of focal lengths. These images 

were diffuse but the centroid and half maximum contour were well defined in 

each case. For the case where the foci were arranged to be at 717 cm, the 

images from the large radius and small radius portions of the mirror fell at 

the same point on the focal plane. This focal length was adopted for 

subsequent tests. 

7.2.1.5 Mirror Sector Performance 

The result of an exposure of the whole mirror surface at a focal length of 

717 cm is reproduced in Figure 7.4. The maximum value of light intensity 

within a pixel in this image is 116 bits, with the background being 

represented by a level of 51 bits. The grey scale in the image shown is 

linear, thus the boundary between the fourth and fifth bands is the contour 
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of half maximum intensity. It is evident that there is some extension in the 

image radially with respect to the mirror sector, which is not surprising given 

the mirror geometry. 

1 1 > 107 bits 

1 1 100-107 bits 

liiM 92 - 99 bits 

84 - 91 bits 

m 76 - 83 bits 

68 - 75 bits 

60 - 67 bits 

• i < 60 bits 

Figure 7.4: A CCD exposure of the image at the focus of a mirror sector, of 

nominally parallel light from the surface of a second min-or sector with a light 

source at its focus. The test an-angement is illustrated in Figure 7.3. 

A composite of 24 such images successively rotated through 15° will be 

circularly symmetric and thus will introduce no systematic bias into images 

of Cerenkov light from EAS. Intensity profiles of sections through the 

image, both radially and tangentially (with respect to the mirror sector) are 

plotted in Figure 7.5. The full width half maxima for these sections are 28 

mm x 22 mm. Obviously the image is the result of two successive 

reflections from the geometrical surface under investigation. The intensity 

profile achieved will therefore be the product of the individual point spread 

functions and the FWHM of the observed image will be a factor of (2)"̂ ^ 

larger than that for single reflection. Thus one can infer a FWHM for the 

point spread function of a single mirror sector of 20 mm x 16 mm. This is 

within the specification. 
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Figure 7.5: Orthogonal light intensity profiles along horizontal and vertical 

sections through the image shown in Figure 7.4. 

A reservation one might have with this reasoning is that systematic en-ors 

in the min-or surface might be compounded by the successive reflections. In 

order to eliminate this concern the test was performed both with the optic 

axes colinear, and separated but still parallel. The image achieved with the 

optic axes separated was indistinguishable from that shown in Figure 7.4. 

7.2.1.6 Flux Collector Configuration 

In the field, the alignment of the min'or sectors was effected using the 

same method and equipment employed for the Mk.5 telescope mirror 

alignment. The mirror surface was sampled at intervals from close to the 

inner edge of the mirror sector out to a radius of 175 cm giving coverage 

over half of the radius of the dish. It had been shown in the laboratory tests 
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that images from the inner half of the mirror and outer half were coincident 

at a focal length of 717 cm. The cradle which supports the detector 

package at the focal plane was therefore set to be this distance from the 

centre of the paraboloid. A development incorporated in the Mk.6 telescope 

design was a common mount for the apices of the mirror sectors at the 

centre of the flux collector. This mount consists of a 2' diameter steel ring 

with 24 studs projecting radially into the mirror sectors. The ring has 

adjustment along the optic axis to allow fine tuning of the focus after 

alignment, by moving every sector simultaneously at its inner edge. 

7.2.1.7 Flux Collector Performance 

A CCD camera was used to digitise an image of a star formed at the focal 

plane. This image is reproduced in Figure 7.6. 

> 213 bits 

m 

203-212 bits 

193-202 bits 

183-192 bits 

173-182 bits 

163-172 bits 

153-162 bits 

< 153 bits 

Figure 7.6: A CCD exposure of a star image at the focal plane of a Mk.6 

telescope flux collector. The border between the 4th and 5th shades of grey 

represents the half maximum of the light intensity. 

188 



c 
g 
••5 
CO 

75 
g 
••c 
(X> > 

o o 
CM 
CM 

O 
O 
CM 

O 
00 

o 
in 

o 

8 I 
E 
c 

S 5: 

o 

A}!sua;u| 

c o 
o 
CD 

CO 

C 
o 
N 

~ 
O 

o 

o 
10 

o 

I 
§ i 
CO c 

1 
o 
CM 

OD 

C 

§ 
(0 

8) 
CO 

E 

P 

(0 
c 
g 

1 
CO 

c o 

•c 
o 
o 
CO 

® 
2 
Q. 

^ « 

CO 

c 

I 
• • 

£ 
3 
01 

O 
CM 

O 
CVJ 
CM CM 

A)!sueiu| 
189 

S o 



Intensity profiles of orthogonal sections through this image are plotted in 

Figure 7.7. The actual FWHM of the point spread function is slightly less 

than 4 cm. This is poorer than anticipated, the shortfall in performance 

perhaps due to less than ideal min'or configuration, as the laser alignment 

method was at the limit of its utility on this scale. 

7.2.2 Teiescope Mount 

7.2.2.1 Introduction 

The Mk.6 telescope alt-azimuth mount is a scaled version of that 

employed on the Mk.5 telescope. The linear dimensions of the Mk.6 

telescope are a factor of two larger but in light of the experience of the Mk.5 

telescope an increase in turntable diameter of 25 % was deemed sufficient. 

Although the diameter of the two steel plates which comprise the rotating 

turntable is increased to 5' the diameter of the ring gear against which the 

telescope is driven remains 27". 

7.2.2.2 Mechanical Design 

The concept of the Mk.6 telescope mount is identical to that of the Mk.5 

telescope. The telescope superstructure is supported by a cradle through 

two horizontal bearings and is free to move through 90** from the horizontal 

to the zenith. The cradle sits atop a 5' diameter, 1" steel plate which rotates 

relative to a similar plate supported by wheeled pylons at its perimeter. 

The increase in linear dimension was not too problematic, telescope 

rigidity proving as good if not better than previous telescopes constructed by 

the Durham group. The spine of the telescope was shown to flex by only 
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about 1 cm under the load of the mirrors and superstructure. This 

corresponds to a maximum divergence in the optic axes of less than 0.03". 

Sag associated with the detector packages was shown to be negligible over 

the operating range of the telescope. 

7.2.3 Steering 

7.2.3.1 Introduction 

Mechanically, the most significant difference in the Mk.6 telescope from 

the Mk.5 telescope is its increased mass and concomitant increase in 

moment of inertia. The mass of the steered component of the telescope is 

between a factor of three and four times greater than that of its prototype. 

This engineering consideration is exacerbated by the doubling of linear 

dimensions giving a 12 to 16 fold increase in moment of inertia. Moment of 

inertia only limits the acceleration of the telescope and in nomnal stable 

operating conditions does not feature in its operating characteristics. The 

huge moment of inertia of the telescope (estimated to be approximately 4 x 

10^ kg m )̂ may even afford some protection to the gearbox from the effects 

of short gusts of wind. It was evident from the start that the Mk.6 telescope 

would be operated only in stable weather conditions and so the motor drive 

system was lightly engineered. The mass of the telescope is large in 

comparison with the manufacturers specification for the D.C. servo motors 

and gearbox, thus it is important that the telescope is very close to neutral 

balance at all attitudes. This is easily achieved in the azimuthal plane due 

to the symmetry of the telescope but adjustment was necessary in the 

zenith. The solution to the problem of imbalance was to incorporate two 

countenweights in the design of the telescope. These comprise aluminium 
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cages which project fonwards from either side of the central flux collector. 

The cages are loaded with lead until a neutral balance is achieved at all 

angles to the zenith. 

7.2.3.2 D.C. Servo Motors and Gearbox 

The gearbox and motor chosen to drive the Mk.6 telescope represent an 

upgrade in the specification of torque compared with those used on the 

Mk.5 telescope. The motor is an Electrocraft S26-1 AT permanent magnet 

DC servo motor. The motor has a stall torque of 2.1 Nm, a peak torque of 

75 Nm and a maximum speed of 2500 RPM. The motor controller is from 

the Digiplan HFC range and has the capacity to provide a continuous motor 

cun-ent of +/-12 A at 50 V. Torque is transfen-ed through a Gysin gpl 90.3 

gearbox with a reduction ratio of 161:1. The maximum continuous torque is 

rated at 75 Nm. In the zenith an additional gear train affords a further 6:1 

reduction to a final drive gear of 8" diameter this drives a quadrant of 4' 

diameter giving a total reduction ratio in the zenith of 5796:1. The reduction 

ratio for drive in azimuth extemal to the gearbox is the same as the Mk.5 

telescope at 18:1 which gives an overall reduction ration of 2898:1. In 

response to a number of azimuth drive shaft breakages due to the effects of 

wind, a torque limiter has been introduced between the gearbox and the 

final drive to allow slippage under potentially damaging wind loading. 

7.2.3.3 Shaft Encoders 

The shaft encoders are BEI Electronics Inc. M25D absolute position 

encoders and are mounted in the same way as on the Mk.5 telescope. 

These encoders provide positional information accurate to 14 binary bits. 
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The accuracy of positional feedback provided for the steering computer is 

maintained at the same level as for the Mk.5 telescope. However, the 

additional two bits of accuracy in sensing of the attitude of the telescope are 

recorded in each event record. 

7.2.3.4 The CCD Camera 

Provision is made on the Mk.6 telescope for the tracking of stars in the 

field of view of the telescope to provide accurate pointing infomiation. A 

CCD camera identical to those employed on the Mk.3 and Mk.5 telescopes 

is fixed to the central detector package and provides, for each event record, 

the position of the brightest star within its field of view to arc minute 

accuracy. 

7.2.4 A High Resoiution imaging Camera 

7.2.4.1 Introduction 

The benchmark for detectors using high resolution imaging as a 

background rejection technique in atmospheric Cerenkov astronomy is the 

telescope operated by the Whipple collaboration on Mount Hopkins, 

Arizona. The Crab nebula has been detected repeatedly with high 

significance by this instrument. A 109 element an-ay of PM tubes is used as 

the photosensitive package at the focal plane. 91 of these tubes form a 

hexagonally close packed camera with a pixel pitch of 3.2 cm. The radius of 

curvature of the Davies Cotton design flux collector is 7.3 m, defining an 

image scale on the focal plane of 0.078" cm'\ Thus the pixel pitch of 3.2 cm 

equates to an angular resolution of 0.25° (Cawley et al., 1990). 
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7.2.4.2 Field of view 

The resolution of the Whipple camera was adopted for the specification 

minimum angular resolution of the imaging camera of the Mk.6 telescope. 

A 3 cm pixel pitch at the flux collector focal length of 720 cm defines an 

angular resolution for the detector package of 0.24°. The geometrical 

aperture to the sky for the whole width of the close packed area of the 

camera (across opposite vertices) is 2.64° for an array of 91 tubes. The 

configuration of the camera is illustrated in Figure 7.8. 

WQOOOQOOLJ 

. . 0 

2° 

Figure 7.8: Configuration of the Mk.6 telescope camera. The mapping of 

the camera pixels onto the hexagonal PM tubes of the triggering packages 

is illustrated. The isophote plot of a Cerenkov pulse produced by an EAS 

produced by a 0.1 TeV photon primary is again superimposed, (after Rieke, 

1969). Successive isophotes represent a reduction in intensity of (10) '̂̂ . 
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A peripheral ring of 2" tubes extends the photosensitive area of the 

camera beyond the triggered area in order to provide data which will confine 

images close to the edge of the higher resolution area. 

7.2.4.3 Choice of Photomultiplier Tube 

Choice of PM tube is restricted to the available 1" diameter tubes by the 

specified pixel pitch. The use of electromagnetic shielding and insulation 

along the length of the tubes, which adds to their diameter, precludes the 

use of 1.125" tubes. The Burie S83062E 1" PM tubes have performed well 

in the medium resolution cameras of the Mk.5 telescope and the upgraded 

Mk.3 telescope. However, an alternative make of 1" PM tube (the 

Hamamatsu R1924) was identified and one unit purchased to test in 

comparison with the Burie S83062E. 

Typical values of pertinent operational characteristics of the tubes, as 

presented in the manufacturers specification documents, are tabulated for 

comparison in Table 7.1 below. 

Hamamatsu R1924 Burie S83062E 

Rise Time 2.0 ns 2.3 ns 

Electron Transit Time 19.0 ns 23.0 ns 

Spectral Response 300 - 650 nm 300 - 650 nm 

Peak Response 420 nm 420 nm 

Quantum Efficiency 26 % 28 % 

Photocathode Diameter 21 mm 22 mm 

Table 7.1: Comparison of the manufacturers specifications for the 

Hamamatsu R1924 and Burie S83062E 1" diameter PM tubes. 
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It would appear that there is very little to choose between the tubes in terms 

of their specified technical performance. Logistically, though, the 

Hamamatsu PM tube presented several possible advantages. It is 

approximately half the length and weight of its Burie counterpart, requires 

significantly less voltage between the anode and photocathode and is 

supplied with an appropriate small plug-in base. The Hamamatsu tubes are 

slightly cheaper per tube, substantially so if the cost of the bases is 

considered, offering a considerable cost saving for 100 units. The 

Hamamatsu R1398 tubes (similar to the R1924) operated by the Whipple 

collaboration have performed well under night sky illumination and have 

proved to be durable. 

The Hamamatsu tubes became the preferred choice because of the 

practical considerations mentioned but as a final check of their suitability the 

test tube was incorporated in the camera assembled for the upgrade of the 

Mk.3 telescope. The test Hamamatsu PM tube was exposed to the Narrabri 

night sky at the focus of a 3.32 m paraboloidal flux collector in exactly the 

same environment as the Burie tubes in the camera. The noise/gain 

characteristics of the two tubes are plotted in Figure 7.9. Both tubes were 

initially supplied with 770 V and then the voltage incremented in steps of 10 

V. In the camera of the Mk.3 telescope an acceptable single fold noise rate 

is approximately 2 kHz. Both types of tubes draw an anode cun-ent of 8 jiA 

when operating at the voltage which produces this noise rate, indicating that 

their gains are similar. Background starlight photon flux through the tube 

should be similar in the Mk.6 telescope camera as the increase in flux 

collector area is offset by the reduction in geometrical aperture of the tube. 

The introduction of additional logic into the trigger of the Mk.6 telescope 

may allow the PM tubes to operate at a slightly higher noise rate. If the 

tubes are gated into clusters of 7 tubes the upper limit on individual noise 
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rates could be relaxed by a factor of three relative to that of the Mk.3 and 

Mk.5 telescopes. The noise/gain characteristics of the tubes in the region 

defined by anode currents between 8 and 14 (lA are very similar. This 

region, spanning an order of magnitude in noise rate, encompasses all 

probable operating conditions for the Mk.6 telescope. The Hamamatsu test 

tube has been left as an operational tube within the camera of the Mk.3 

telescope to provide further information on the relative performance of the 

Burle and Hamamatsu tubes in the longer term. 
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Figure 7.9: Comparison of noise / gain characteristics of Burle S82063E 

and Hamamatsu R1924 PM tubes when exposed to the night sky. The data 

were taken at constant illumination for a range of EHT settings. 
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100 Hamamatsu tubes were purchased and bases assembled and fitted. 

The tubes were found to be excessively noisy when new until subjected to a 

period of "burning in". All of the tubes were run, at a nominal operating 

voltage, under low level illumination for a period of three hours after which 

the tubes conformed to a reproducible and relatively short warm up 

characteristic. 

7.2.4.4 Construction of Photomultiplier Package 

91 1" PM tubes are to be packed into a hexagonal array with a pixel pitch 

of 3 cm. The Hamamatsu R1924 tubes are only 43 mm in length and so the 

twin plate method employed to mount the longer Burle PM tubes was 

deemed unnecessary. The solution adopted was to lodge the tubes in a 

deeper polyethylene front plate drilled to the configuration of the array. A ^-

metal shield was applied to the length of the dynode chain and the tube then 

insulated with heat shrink material. Self amalgamating tape was then 

wrapped around the neck of the tube until it formed a tight fit in the 

countersunk front plate. Once assembled in this manner the tubes were 

held very firmly in place but could still be replaced individually if required. 

The signal from each tube is passed to an individual BNC connector on 

the back plate of the detector package. EHT is supplied to the 1" tubes via 

three 37-way high voltage multiway connectors. The EHT required for the 

2" tubes is too high to pass reliably through multiway connectors and so is 

supplied through 18 individual EHT BNC connectors. 

The signal is passed from the detector package to the electronics in the 

control room via 50 m of 75 Q coaxial cable (type CT100) which has an 

adequate bandwidth whilst still being sufficiently flexible and light. 
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7.2.4.4 Light Collecting Cones 

A matrix of light collecting cones have been fitted to the front of the 

detector package to funnel light, which would otherwise be lost to dead 

areas of the focal plane, onto the photocathodes of the PM tubes of the 

camera. The concept of these cones is described more fully in Section 

4.6.5. Preliminary tests suggest an increase in gain of 25 - 30 %, with 

con'esponding reduction in energy threshold. 

7.2.5 Triggering Detector Packages 

7.2.5.1 Introduction 

The sensitive triggering area of the detector packages at the focal plane of 

the left and right flux collectors must match that of the camera. This area 

has an angular extent of 2.64°. The image scale on the focal plane is 12.5 

cm per degree, therefore a triggering tube pitch of 6 cm would define 

triggering channels with a geometrical aperture of slightly less than 0.5°. 

This aperture matches the size of Cerenkov images from gamma ray 

initiated E A S and is, therefore, the optimum size for a triggering channel. 

This pixel pitch is double the pixel pitch of the camera and is a pitch 

compatible with the common 2" PM tube diameter. The natural choice of 

PM tube was the Burle 8575 as a sufficient stock of these tubes was held, 

and their operational characteristics are very familiar to the group. 

However, a number of Philips XP3422 hexagonal tubes, whose dimensions 

are the optimum at 6 cm flat to flat, were made available to the group. An 

array of hexagonal tubes would eliminate the need for light collecting cones 

for optimisation of signal collection. 
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7.2.5.2 Choice of Photomultiplier Tube 

The Philips XP3422 PM tube has a hexagonal bialkali photocathode with 

a minimum size of 56mm across the flats. The tubes can be packed with a 

pixel pitch of 6 cm giving a dead area on the focal plane of only 13 % of the 

total area. The spectral responsivity of the tube is very good, extending 

below 300 nm with peak response at 400 nm. The close packing facility 

provided by hexagonal tubes is usually achieved at the expense of tube 

bandwidth, however the Philips XP3422 PM tube has an acceptable pulse 

rise time of less than 3 ns. The noise / gain characteristic of the hexagonal 

tube and the Burle 8575 PM tube are compared in Figure 7.10. 

Burie 8575 

Philips XP3422 

Anode Current diA) 

Figure 7.10: Noise / gain characteristics of the Burie 8575 and Philips 

XP3422. The data are taken at constant illumination as EHT is varied. 
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All of the data were taken under operating conditions at the Nanabri 

observatory. The graph demonstrates the Philips tube to have a remarkably 

low noise rate. Using the radioactive scintillator the relative gain between 

the tubes and the speed of tube response was measured at a nominal 

operating single fold noise rate of 10 kHz. The results of these tests are 

presented in Table 7.2 below. 

Philips XP3422 Burle 8575 

EHT(V) 1200 1800 

Amplitude (mV) 157 63 

Area(nC) 1.36 0.84 

Rise Time (ns) 2.2 3.2 

Pulse Width (ns) 7.0 8.6 

Fall Time (ns) 4.6 5.4 

Table 7.2: Relative performance of the Philips XP3422 and Burle 8575 PM 

tubes in response to the radioactive pulser scintillation source. The EHT 

values used were those which corresponded to a 10 kHz tube noise rate 

when the tubes were exposed to the Narrabri night sky. 

The data above show that the Philips tube to proved to be 1.6 times more 

sensitive to the pulser than the Burle 8575 and had a faster response, on 

the evidence that the Philips XP3422 is superior to the Burle 8575, two 

triggering packages of 19 Philips tubes were constructed. The single 

channel count rate improvement as a result of this upgrade is considered in 

Section 7.3 detailing the performance of the telescope. 
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7.2.6 Calibration 

7.2.6.1 Introduction 

The current method of calibration is the same method described for 

calibration of the Mk.5 telescope. Detennination of pedestal values 

presents no problem as this is possible from random events recorded 

during observation. However, gain calibration using the radioactive 

scintillator is a highly time and labour intensive process necessitating a 

significant period of down time for the telescope. Altemative methods of 

calibration have been considered with the intention of developing a 

calibration routine capable of providing relative gain infomriation "in flight". 

An experimental system has been implemented using scintillation light 

excited by an ultra violet laser. 

7.2.6.2 Digitiser Pedestal Determination 

Values of the digitiser pedestals are derived from the average tube 

response to artificially generated random triggers of the telescope recording 

electronics. The random events are recorded at a rate of a few per minute 

and provide a measure of the pedestal values throughout an observation. 

7.2.6.3 Gain Calibration of Camera PM Tubes 

The gain calibration procedure developed for the Mk.5 telescope involves 

illuminating the photocathode of each PM tube with a radioactive scintillation 

source and recording a pulse height spectrum through the electronics 

dedicated to each particular tube. This is obviously a very time consuming 
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process, which restricts the frequency of repetition of calibration of the 

telescope. However, it has the attraction that the mean number of photons 

in the light pulse is known and this allows absolute calibration of the 

telescope response. The problem of the infrequency of gain calibration can 

be circumvented by the provision of a light source to flood the camera with a 

uniform blanket of light at random intervals during observation to provide 

real time relative gain calibration . The light source which has been 

implemented is a scintillator excited by the signal from a pulsed nitrogen 

laser (VSL Model 33700). The laser produces a short duration (3 ns) 40kW 

pulse of UV light of 378 nm wavelength. This light impinges on the 

scintillator and a sample of the resulting visible blue light is piped to each 

collector using optical fibres. The lengths of the optical fibres are adjusted 

so that the telescope is triggered by the light, allowing the gain calibration 

measurements to be incorporated into the data stream. Figure 7.11 shows 

a single event before and after gain calibration. Gains of all camera tubes 

are nonnalized to the gain of the central pixel PM tube which is the subject 

of extensive absolute calibration using the radioactive pulser scintillation 

source, it is not possible to assess the effectiveness of the calibration 

system on the basis of single events so an average response to the cosmic 

ray beam was sought. Figure 7.12 illustrates the average camera response 

to 1000 unselected events, before and after gain calibration using the laser 

technique derived gain normalization factors. Before calibration the 

variation in PM tube response to the average Cerenkov intensity was up to 

200 % whilst afterwards the range was no more than 30 % of the central 

pixel response. 
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Figure 7.11: An example event (a) before and (b) after gain calibration of 

the camera using nonnalization factors derived from the laser calibration 

procedure. 
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(a) (b) 

Figure 7.12: The average response of the camera to 1000 unselected 

cosmic ray events (a) before and (b) after gain nomialization using data 

provided by the laser calibration system. The grey scale represents the 

average response of each PM tube. Eleven greys represent the full range 

(5-15 bits above pedestal) of average charge digitizer values for each pixel. 

7.2.6.4 Calibration of the PM Tube Packages Dedicated to the Event Trigger 

It is desirable to have as even a response as possible in the triggering 

energy threshold over the whole field of view of the camera. Calibration of 

the triggering tubes in the detector packages at the focal planes of the left 

and right flux collectors is also perfonned using the radioactive scintillation 

source pending the introduction of the laser calibration method. Of greater 

importance, however, is the response of the telescope to the isotropic 

cosmic ray flux. Triggering PM tube gain is adjusted to give an even trigger 

rate over the 19 triggering channels. The individual coincidence channel 

count rates are presented in Table 7.3 below. 
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Zenith Angle 

lannel 10* 20* 30» 50" 60° 

1 116 106 98 73 40 28 

2 109 110 98 70 45 30 

3 100 97 92 72 38 25 

4 117 100 93 70 46 24 

5 100 96 100 68 44 26 

6 87 94 81 70 36 22 

7 132 111 108 84 58 34 

8 92 110 72 57 30 20 

9 126 87 94 78 40 24 

10 106 104 84 70 40 20 

11 115 98 102 78 46 30 

12 118 103 97 72 53 25 

13 124 108 108 82 48 31 

14 135 106 112 82 52 28 

15 136 119 108 90 53 34 

16 140 80 114 98 53 32 

17 110 86 96 62 46 22 

18 117 80 98 62 56 26 

19 100 79 81 56 46 27 

Table 7.3: Individual single channel count rates (counts per minute) for 

each of the coincidence channels, for a range of zenith angles. Trigger 

response is demonstrated to be quite uniform. 
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7.2.7 The Event Selection Trigger 

7.2.7.1 Introduction 

Three independent flux collectors were specified in the design of the Mk.6 

telescope, so that the detectors at their foci could be operated at high gain 

within a three fold coincidence system. After gain optimisation, the aperture 

of the individual PM tubes within the coincidence channels k)ecomes the 

dominant influence on sensitivity. The signal to noise ratio within a PM tube 

was considered in Section 3.2.3 and shown to decrease lineariy with 

increase in aperture, beyond the aperture which includes the whole of the 

signal. The optimum aperture is, then, the one which matches the extent of 

the Cerenkov flash. The aperture of the triggering channels of the Mk.6 

telescope, at 0.5°, are optimised to the size of the Cerenkov signature of a 

gamma ray initiated EAS. The lowest possible energy threshold 

configuration for the telescope therefore, comprises three identical 19 pixel 

detector packages at the prime foci of the flux collectors. Pixel aperture is 

optimised to the image size, and the conventional three fold coincidence, 

with gate length matched to the duration of the Cerenkov pulse allows the 

PM tubes to be operated with with the highest possible gain. 

Incorporation of a high resolution imaging camera into coincidence 

introduces complications. The individual pixels do not have the optimum 

signal to noise ratio, and so individually offer an inferior triggering threshold 

and telescope energy threshold is compromised. However, the fact that a 

number of camera pixels correspond to the field of view of each triggering 

channel presents a number of possible logic combinations for the camera 

contribution to event selection. If, by introducing further logic requirements 

into the camera trigger, the sensitivity of the central detector package can 
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be restored, then it may be possible to make low energy and high resolution 

observations simultaneously. The triggering regimes currently under 

investigation are described below. Relative performance of the various 

configurations are presented in Section 7.3.2. 

7.2.7.2 A Conventional Three Fold Fast Coincidence Trigger 

Tests have been performed using three similar detector packages, each of 

19 hexagonal tubes, at the foci of the flux collectors. This should constitute 

the ultimate low energy threshold configuration of the telescope, each PM 

tube being matched to the image size giving the optimum signal to noise 

ratio. Individual single fold noise rates are constrained to be less than 30 

kHz to provide practically accidental free data. 

7.2.7.3 Incorporation of a Camera into Three Fold Coincidence 

The number of tubes in the camera of the Mk.6 telescope makes it 

impractical to implement a similar trigger requirement to that which allowed 

the incorporation of the camera of the Mk.5 telescope into its event 

selection. The simplest solution requires that the two corresponding 

triggering tubes in the detector packages at the focus of the left and right 

flux collectors achieve discrimination threshold coincidentally with one of the 

seven 1" tubes of the camera whose field of view is wholly or partially 

enclosed by these triggering tubes. A combined noise rate of 15 kHz for 

each triggering cluster of 7 camera pixels ensures an effectively accidental 

free three fold trigger rate, constraining the individual PM tube noise rates to 

2-3 kHz. 
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7.2.7.4 A Four Fold Coincidence Trigger 

The preliminary tests of this trigger condition were performed in January 

1995. The logic unit which defines the "any one from seven" condition for 

the clusters of seven tubes in the camera is replaced with a hard wired unit 

to specify a condition of "any two from seven" for each of the clusters of 

seven camera tubes which con'espond to each triggering channel. The 

noise rate form the cluster of 7 is again held at 15 kHz, however the 

additional logic requirement allows an increase in individual PM tube noise 

rates to 200-300 kHz. 

7.2.8 Electronics 

7.2.8.1 Introduction 

Despite a significant increase in the number of PM tubes the signal path is 

almost identical to the Mk.5 telescope, the only difference being the addition 

of trigger logic for the camera. A schematic diagram of the electronics is 

displayed in Figure 7.13. 

7.2.8.2 The Telescope Performance Monitoring System 

The TPMS system employed by the Mk.5 and Mk.3 telescopes has been 

extended to provide full telescope operating conditions for the Mk.6 

telescope. The operating condition of the telescope is defined by the anode 

currents and single fold noise rates of the 147 PM tubes. Anode currents 

are provided by purpose designed ADC units while Durham-designed fast 

scalers monitor the single fold rates and coincidence rates. The ADCs and 
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Figure 7.13: Schematic diagram of the Mk.6 control and logging electronics. 
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scalers are interrogated by an Archimedes microcomputer which also 

receives steering information and weather information from dedicated 

microcomputers on the telescope's LAN. Visible and audible warnings are 

created in the event of predetermined operating ranges being exceeded. 

Signals from the PM tubes are passed to the control room via 50 m of 

CT100 coaxial cable. Inside the control room the cable is spliced onto a 

length of RG179 cable which is trimmed to adjust for signal transit time 

differences. The signal then enters an AGC unit which changes the 

impedance of the signal path from 75^ to 50CI The anode cun-ent is 

converted to a voltage for monitoring and the analogue signal is AC coupled 

for subsequent processing. AGC output is then amplified by a factor of ten 

by a LeCroy Model 612A amplifier which has two outputs. One amplifier 

output is passed to a LeCroy voltage discriminator the other is delayed by 

an appropriate amount and fed into a fast charge digitiser (LeCroy model 

2249A ADC). Each voltage discriminator channel has two E C L outputs. 

One output is passed to a scaler via an in house designed E C L - TTL 

converter and provides the single fold noise rate for each PM tube. The 

second output is passed to a LeCroy coincidence logic unit. The signals 

are grouped into channels which produce an output when a signal is 

registered from each of the corresponding left, right and camera inputs to 

the unit, within a narrow gate interval (10 ns). The coincidence and logic 

system as been designed to be flexible in order to accommodate the 

developments planned for the event selection trigger. The E C L outputs of 

the logic units are passed to a Durham designed coincidence register which 

determines which of the individual channels has achieved coincidence for 

each event. This "fire pattern" is latched for subsequent recording. Each 

channel is also scaled in a similar way to the single folds to provide the 

three fold coincidence count rate for each channel. The output of each of 
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the coincidence channels is ORed and combined with a site wide random 

trigger at a voter coincidence unit, to provide a master trigger for the 

telescope. This master trigger is fanned out to provide; 

- an interrupt to signal an event to the logging computer, 

- signals to latch the coincidence registers, the telescope steering 

information from both the shaft encoders and the CCD star tracker, 

- gate pulses for the charge digitisers. 

The logger of the Mk.6 telescope is based on an Archimedes commercial 

microcomputer. The logging system is interrupt driven, communicating with 

the CAMAC electronics via HyTec CAMAC interfaces. IkByte of data is 

recorded to the hard disk of the computer for each event. The system is 

very efficient, operating with a dead time of 1 - 2 ms. 
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7.3 Performance of Mk.6 Telescope 

7.3.1 Introduction 

The preliminary commissioning of the Mk.6 telescope was completed by 

the end of 1994 and tests of the operational characteristics of the telescope 

have been performed in the early months of 1995. A summary will be given 

below to illustrate the performance of the telescope as a low energy 

threshold telescope and as a higher energy imager. 

7.3.2 Minimum Energy Threshold 

7.3.2.1 Introduction 

As stated earlier in Section 7.2.7, it was anticipated that the ultimate low 

energy threshold configuration of the Mk.6 telescope may comprise three 

identical 19 pixel detector packages at the prime foci of the flux collectors. 

Operation of the telescope in this configuration would, however, produce 

only medium resolution images of the more energetic events which are 

amenable to high resolution image parameterization. It would be very 

desirable to be able to operate at very low energies with the high resolution 

camera incorporated into the trigger. Tests have been performed with the 

telescope operating with different triggering regimes, in order to assess the 

relative efficiency of the different detector packages and coincidence 

requirements. 
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7.3.2.2 Relative Performance of Differing Telescope Configurations 

Table 7.2 summarises the relative perfomiance of various configurations 

of the central PM tube assembly. The event rates quoted are for a single 

left / right / centre coincidence channel with a geometrical aperture of 0.5". 

Central Detector Event Rate 

Configuration (c.p.m.) 

(a) "1 of 7" Trigger 51 +/- 5 

(b) "1 of 7" + Light Cones 68 +/- 5 

(c) "2 of 7" + Light Cones 72 +/- 5 

(d) 19 Hexagonal PM tubes 75 +/- 5 

Table 7.2: Relative single channel coincidence count rates achieved from 

various configurations of the central PM tube assembly of the Mk.6 

telescope. For case (d) the detector package was identical to the left / right 

triggering packages. The data were taken at 30° to the zenith. 

The above count rates demonstrate that the telescope performance was 

initially constrained by the camera response - configuration (a). The 

addition of the light collecting cones to the focal plane of the camera 

however, resulted in an improved count rate, consistent with that achieved 

for the three identical detector packages - configuration (b). Also, it would 

appear that imposition of the "2 of T event selection criterion for the camera 

PM tubes gives only a marginal improvement in count rate. This suggests 

that the energy threshold of the telescope is now defined by the response of 

the left / right triggering packages. Thus, the "2 of T camera logic does not 

offer any further reduction in energy threshold. It does, however, allow the 
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PM tubes of the camera to be run with a slightly higher gain. This results in 

a better representation of the image in the camera, which will reduce the 

energy threshold at which high resolution imaging is viable. 

The count rate of the telescope has been improved since the data shown 

in Table 7.2 were recorded. This has been achieved by the application of 

simple baffles to the focal plane to exclude a proportion of the background 

albedo. The increased albedo protection has allowed the EHT on the PM 

tubes of the central camera of the Mk.6 telescope to be increased to the 

extent that their operating conditions are now similar to those of the Mk.5 

telescope. As the night sky flux through the con-esponding camera tubes of 

the Mk.5 and Mk.6 telescopes is identical, due to the compensating 

reduction in aperture and increase in flux collector area, this suggests that 

the tubes in the two telescopes are operating with similar gains. If this is the 

case, then the Cerenkov signal in an event will be increased fourfold for the 

Mk.6 telescope relative to the Mk.5 telescope. Conversely, the Mk.6 

telescope should be sensitive to showers of four times lower intensity. 

7.3.2.3 Estimation of Energy Threshold 

Historically, the Durham group has assigned gamma ray energy 

thresholds to their telescopes by reference to a semi-empirical model linking 

telescope perfonnance to that of the original telescopes of the Dugway 

an-ay. Count rate, for a given aperture, is a function of the energy threshold 

for hadron events and the effective collection area of the telescope. A 

detailed analysis of the response of the Dugway array yielded a well defined 

collection area for each component of the array, and the energy threshold 

for the array components was calculated using Monte Cario simulations of 

EAS. This energy threshold has been used as the baseline for estimation of 
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thresholds for subsequent telescopes. 

The effective energy threshold of the telescope can be varied by 

adjustment of the discriminator threshold, and by so doing the integrated 

count rate above energy threshold can be shown to conform to a power law 

spectrum. The index of this spectrum is a function of the cosmic ray energy 

spectrum, and the variation with energy of the lateral distribution of 

Cerenkov light from hadron initiated EAS. This spectmm can be used to 

infer an approximate energy threshold for the Mk.6 telescope, relative to 

that of the Mk.5 telescope, by comparison of the count rates of the Mk.5 and 

Mk.6 telescopes. Figure 7.14 shows the variation of Mk.6 telescope count 

rate with voltage discriminator threshold. 
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Figure 7.14: Mk.6 count rate variation with voltage discriminator threshold 

as threshold is increased from its operating value of 50 mV to 500 mV. The 

tests were performed with the telescope pointing at 30" to the zenith. 
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The index of the power law spectrum shown in figure 7.14 is -1.32. The 

count rate at the zenith for the Mk.6 telescope is 500 c.p.m., thus its 

estimated energy threshold to gamma rays, extrapolated from that ascribed 

to the Mk.5 telescope, is given by, 

R 6 / R 5 = ( E 6 / E s r 3 2 

where Re and Rs are the count rates of the Mk.6 and Mk.5 telescopes and 

Ee and Es represent their respective energy thresholds. Thus, 

-1.32 logn (Ee / 250) = logn (500 /150) 

The inferred energy threshold of the Mk.6 telescope in its current 

configuration is ~100 GeV. Estimation of energy threshold, however, is 

fraught with difficulties. An alternative approach to extrapolating the 

threshold of the Mk.5 telescope to achieve an estimation of the Mk.6 

telescope threshold is to compare the measured photon densities for events 

between telescopes. The smaller events recorded by both telescopes show 

similar integrated photon flux, suggesting that the threshold events of the 

Mk.6 telescope are a factor of four lower in energy than those recorded by 

the Mk.5 telescope. Further small improvements to the Mk.6 telescope are 

planned which will reduce the energy threshold still further (see Section 

7.4). 

If the anticipated degradation of telescope response to EAS with hadron 

primaries with energies of 200 GeV and below occurs, an equivalent count 

rate spectrum to that shown in figure 7.14 should show a deficiency of 

events at low energies. Thus estimation of telescope energy threshold to 

gamma rays, based on an extrapolation of the integrated count rate above 
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threshold, becomes invalid. In order to establish the energy threshold 

recourse must be made to simulations. The count rate variation with energy 

threshold can be modelled and compared with that achieved by variation of 

the voltage discriminator threshold. The point at which the count rate 

begins to deviate from the power law spectrum will define a known energy 

threshold for the telescope. The ultimate low energy threshold can be 

derived from this point. 

Energy threshold is obviously a function of zenith angle, the optimum 

threshold only achievable close to the zenith. Figure 7.15 shows the zenith 

angle dependency of the count rate for the Mk.6 telescope. Beyond a 

zenith angle of 30° the count rate begins to deteriorate dramatically 

suggesting that the lowest energy measurements will be restricted to less 

than 30<* to the zenith. 
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Figure 7.15: Zenith angle dependency of single channel count rate. 

218 



7.3.3 High Resolution imaging Configuration 

7.3.3.1 Introduction 

The Durham camera has an equivalent pixel resolution to that of the 

telescope operated by the Whipple collaboration. The contemporary, well 

established, Whipple analysis procedure as described by Fegan (1994) has, 

therefore, been adopted for the treatment of the preliminary data. These 

are engineering data taken at a fixed angle to the zenith of 20". 

7.3.3.2 High Resolution Images 

The standard calibration procedure described in Section 7.2.6 has been 

applied to the data. Digitiser pedestals have been subtracted from the 

response of each PM tube, and the gain of each pixel normalized to the 

response of the central pixel using relative gains derived from the laser 

calibration system. Following the procedure developed by the Whipple 

collaboration, each PM tube is labelled as; 

- an "image" pixel if the signal within the tube exceeds 4.25a of noise 

within the tube, 

- a border pixel if the signal exceeds 2.25o of noise if it is adjacent to a 

signal tube, or 

- a background pixel, set to zero, if neither of the above criteria are 

satisfied. 
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Figure 7.16 illustrates a typical image classified in this way. 

Xa: I : ^ : ^ :®©C$P 

^ ^ ^ ^ 

Figure 7.16: An example image demonstrating the classification of PM 

tubes as image (white), border (grey) and background (black) pixels, the 

average noise of the response of the tubes was +/- 6 bits. 

The charge integrals in the image and border pixels are used to calculate 

the standard parameters, introduced in Section 3.5.2, which describe the 

shape and orientation of the image (Hillas, 1985). The values of these 

parameters for the image in figure 7.16 are presented in Table 7.2. 

Parameter Value Parameter Value 

Distance 0.58° Width 0.25° 

Azwidth 0.53° Length 0.57° 

Alpha 63.7° Miss 0.52° 

Table 7.2: Image parameters values which describe the image presented in 

Figure 7.16. 
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7.3.3.3 Parameter Distributions 

Distributions of the image parameters, for the data taken at the constant 

20° zenith angle, are displayed in Figure 7.17. These data were taken using 

a trigger involving the "1 of 7" camera event selection described in Section 

7.2.7.3. No image parameter cuts have been performed on the data. The 

residual count rate of 100 c.p.m., for events which have sufficient signal to 

satisfy the requirements for image parametisation, implies an energy 

threshold for high resolution imaging of approximately 400 GeV, similar to 

the threshold of the Whipple telescope. It is encouraging to note that the 

parameter distributions are similar to those achieved using the telescope of 

the Whipple collaboration which has an equivalent resolution, with some 

allowance made for the altitude difference of the two observations. The 

variation of these parameters, over a wide zenith angle range, is shown in 

figure 7.18. The figure shows that even at large zenith angles the average 

value of azwidth is significantly larger than that of width. This demonstrates 

that the parameterization of the hadronic images retains a significant 

amount of image orientation information. If this is also true for the gamma 

ray candidates, then discrimination between hadronic and gamma ray 

primaries by high resolution imaging of EAS will be possible over a wide 

range of zenith angles. Even if the parameterization of the gamma ray 

images becomes unreliable at large zenith angles, due to their reduced size, 

some background rejection will be still be possible on the basis of image 

extent. 
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Figure 7.17: Hillas parameter distributions for 1501 hadronic background 

events observed by the Mk.6 telescope at a zenith angle of 20°. These 

parameter distributions are not dissimilar to those achieved by the Whipple 

collaboration from data treated in a similar way (Fegan, 1989). 
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Figure 7.18: Zenith angle dependence of the parameters which describe 

the size of an images. 

7.4 Future Developments 

The energy threshold of the telescope is now approaching the optimum 

for the size of flux collectors deployed. It has been demonstrated that the 

response of the left / right triggering packages are now the limiting 

component in the telescope event trigger. In an effort to force down the 

energy threshold still further, comprehensive albedo protection will be 

applied to the left and right flux collectors and further small improvements to 

the PM tube bandwidth may be possible. It is acknowledged that when this 

has been effected the gain of the tubes will be maximised and all of the 
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potential energy sensitivity of the telescope realised. 

With the sensitivity of the telescope maximised, effort will be redirected to 

exploiting fully the potential of the data. The data provided by the Mk.6 

telescope is unique in many respects. Its low energy capability affords it an 

exceptional data collection rate with the Cerenkov signature of each event 

being represented in three independent detector packages measurements. 

The medium resolution images provided by the left / right triggering 

packages provide a very interesting insight into the fluctuations of the 

lateral distribution of the Cerenkov light within the shower. The work with 

the Mk.5 telescope has shown that a 0.5° resolution image can provide 

reliable values for the total light signal and the centre of gravity of the signal. 

The Mk.6 triggering PM tubes will, therefore, provide two independent 

measures of these two quantities. These quantities should correspond well 

between flux collectors for showers with gamma ray primaries and pooriy for 

hadronic events. This provides a further method of discriminating between 

gamma ray and hadron initiated EAS. Figure 7.19 is an example of the data 

available from the triggering packages. The figure shows the multiplicity of 

triggering coincidence channel responses as a function of zenith angle and 

is an example of the wealth of information which is yet to be tapped in the 

data of the Mk.6 telescope. Completion of the commissioning of the Mk.6 

telescope will now allow the release of effort towards the gathering and 

exploration of this extremely interesting data. 

Chapter 8 outlines the contemporary state of gamma ray astronomy and 

serves to place the potential of the Durham observatory in context. 
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Figure 7.19: Multiplicity of coincidence channel response as a function of 
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CHAPTER 8 

SUMMARY AND FUTURE WORK 

8.1 Introduction 

The gamma ray region of the electromagnetic spectmm represents a 

vibrant region of astrophysical research. Further impetus has been provided 

by the spectacular success of the CGRO, which has sensitivity over the 

whole of the range of energy from 10's of keV to 30 GeV (At the time of 

writing the CGRO is still fully operational). Above 30 GeV coverage of the 

electromagnetic spectrum is fragmentary and incomplete. The atmospheric 

Cerenkov technique, which provides the next window on the spectrum and 

is the subject of this thesis has obvious potential which is yet to be fully 

exploited. Detection with high statistical significance of the Crab Nebula and 

the AGN Markarian 421, together with more marginal detections of accreting 

binaries and isolated pulsars demonstrate the breadth of utility of the 

method. However, if the atmospheric Cerenkov technique is to prove its 

worth as an astronomical tool then the sensitivities of the instruments must 

be improved to such an extent that the statistical significance of detections 

is unquestionable and the energy spectra of sources can be determined. 

This thesis describes the rapid progress made by the Durham group over 

the past four years towards the provision of a gamma ray observatory 

comprising "second generation" atmospheric Cerenkov telescopes 

employing sophisticated background rejection strategies and low energy 

capabilities. The three telescopes at the Durham Observatory in Narrabri, 

operated in a number of different configurations, provide a facility with useful 

sensitivity in the energy range 75 - 2000 GeV. 

226 



8.2 The sensitivities of the Durham Telescopes 

The sensitivity of the small, simple event counting devices that were the 

first generation of atmospheric Cerenkov telescopes is constrained by the 

hadronic background that dominates the cosmic ray flux. Source detections 

were of marginal statistical significance offering little return in terms of 

elucidation of the production mechanisms of cosmic rays. The recent 

commissioning, at the Narrabri Observatory, of telescopes with the capacity 

to employ sophisticated background rejection strategies has increased the 

sensitivity of the facility dramatically. Efficacy of the background rejection 

strategies, expressed as the quality factor Q, for the medium resolution Mk.5 

and Mk.3 telescopes is tentatively estimated to be 2 for the stereoscopic 

imaging method and 1.5 for medium resolution "mono" imaging. The large 

count rate of the Mk.6 telescope afforded by its low energy capability offers 

a two fold improvement in flux sensitivity over the raw data from the smaller 

telescopes, and its capability as a high resolution imager should prove 

equivalent to the Whipple collaboration telescope, offering Q factor 

improvements of greater than 4. 

8.3 Candidate Sources of VHE Gamma Rays 

8.3.1 Introduction 

Historically the principal astrophysical objects of interest to VHE gamma 

ray astronomers have been highly compact bodies. TeV gamma ray 

emission has been associated with the extreme magnetic fields in the 

vicinity of rotating neutron stars, which exist both as isolated pulsars and in 

accreting binary systems. The gamma ray flux from such objects is 
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inherently time variable, emission being beamed and subject to periodicities 

introduced by the neutron star rotation and binary orb'A. The detection, by 

the Whipple collatxjration, of non-periodic TeV gamma ray emission from 

the direction of the Crab Nebula has broadened the spectrum of potential 

sources, and the net must be cast still wider to encompass the Active 

Galactic Nuclei (AGN) identified by the EGRET experiment on board the 

CGRO. 

8.3.2 Accreting Systems: X-Ray Binaries and Cataclysmic Variables 

Chapter 6 of this thesis presents further evidence of VHE gamma ray 

signal from the cataclysmic variable AE Aquarii. This signal was detected 

as a short burst of periodic emission pulsed at the first harmonic of the white 

dwarf rotation period, consistent with previous detections of emission from 

this binary system (Bowden et al., 1992a). This result is the first achieved 

using data recorded by the Mk.5 and upgraded Mk.3 telescopes, and as 

such is the first to benefit from background rejection based upon imaging of 

Cerenkov showers by the Durham group. It is encouraging to note that 

analysis of the data using the medium resolution "mono" imaging and 

"stereo" imaging of Cerenkov showers resulted in enhanced datasets in 

both cases. It is hoped that a similar enhancement to the datasets for 

projected observations of sources for which marginal detections have been 

claimed in the past, will result in.detections with high statistical significance. 

AE Aquarii is unusual in being a "white dwarf pulsar", the more 

conventional binary objects of promise in the Narrabri observing programme 

are the X-ray binaries Vela X-1. Cen X-3 , Cyg X-3 and Her X-1 (Chadwick, 

McComb and Turver, 1992). The X-ray binary source group is sub-divided 

into high mass and low mass systems on the basis of the size of the 
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companion to the neutron star. Vela X-1 and Cen X-3 are high mass X-ray 

binaries (Bowden et al., 1992b, Bowden et al., 1993). Accretion by the 

compact companion is believed to occur via an accretion disk in the case of 

Cen X-3 and by a stellar wind mechanism in Vela X-1. The neutron stars in 

the low mass X-ray binary systems Cyg X-3 and Her X-1 accrete via Roche 

lobe overflow from the companion into an accretion disk. Each of these 

mechanisms is unstable and results in significant variability in emission. 

The high cout rate and sensitivity of the Mk.6 telescope is invaluable for the 

study of the transient emission typical of these sources. 

8.3.3 Isolated Neutron Stars 

Five of the seven isolated pulsars detected by the CGRO (Fierro et al., 

1993): the Vela pulsar, PSR1509-58, PSR1706-44 PSR1055-52 and the 

Crab pulsar are visible from the Narrabri Observatory. In contrast to the 

binary systems, whose VHE gamma ray emission is powered by the release 

of gravitational potential energy by the accreting matter, the energy source 

for emission from an isolated pulsar is the rotational energy of the neutron 

star. Models have been proposed for gamma raiy emission in the outer 

magnetosphere of rotating magnetised neutron stars (for example Cheng, 

Ho and Ruderman (1986). Emission is predicted to be beamed, therefore a 

pulsed flux is anticipated from isolated neutron stars. The Durham group 

reported a weak periodic signal from the Crab pulsar, manifest as a narrow 

pulse in the light curve coincident with the main pulse at other wavelengths 

(Dowthwaite et al., 1984). This evidence was supported by further 

detections of pulsed emission (Turner et al., 1985; Bhat et al., 1986). 

Subsequently, however, the pulsed VHE gamma ray flux from the direction 

of the Crab pulsar has been shown to represent less than 10 % of the total 
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flux at these energies (Reynolds, 1991). 

The production of GeV gamma rays within supernova remnants powered 

by pulsars was suggested as an explanation for the coincidence of a 

number of plerions with gamma ray sources within the COS-B source 

catalogue (Weiler and Panagia, 1980). This provides a mechanism to 

explain the unpulsed flux from the direction of the Crab pulsar. The Crab 

nebula is now accepted as a source of TeV gamma rays, D.C. signals 

having been detected by a number of independent groups. Searches for 

periodicity within the Whipple and ASGAT data at the pulsar period has 

shown the pulsed component of the signal to be less than 10 % of the total 

in contrast to the 50 % pulsed fraction for energies of a few GeV (Clear et 

al., 1987). This suggests that the production site for the majority of TeV 

gamma rays is in some region of the nebula rather than close to the pulsar. 

The CANGAROO collaboration working in the southern hemisphere 

reported a detection of a DC signal from the direction of the pulsar 

PSR1706-44 (Ogio et al., 1993). and suggested that there was evidence 

also of emission from the direction of the Vela SNR and W28. The common 

feature to all of these three potential sources is the plerion-like association 

of a SNR with an active pulsar. A more complete description of these 

sources is given by Goret (1993). 

8.3.4 Active Galactic Nuclei 

AGN are acknowledged as potential sources of cosmic rays of extremely 

high energy (>10^ eV) and contain matter and magnetic fields of sufficient 

energy density to provide an efficient target for gamma ray production. 

However, all of the AGN so far identified by the E G R E T experiment are 

blazars. It is generally accepted that the gamma ray production within these 
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sources takes place in relativistic jets directed along our line of sight. Their 

differential spectral indices above 100 MeV range from -1.7 to -2.4 and their 

redshift ranges from 0.03 to 2.17. In March 1992 detections of gamma rays 

of energy > 1 MeV were reported by the E G R E T team for three BL Lac type 

AGN. One of these, Markarian 421, is the nearest such object with a red 

shift of 0.031. The Whipple collaboration observed this object and detected 

a D.C. flux of gamma rays above 0.5 TeV significant at the 6.3c level 

(Punch et al., 1992). No evidence of emission was found from 8 other AGN 

including 3C279, an object which appeared to E G R E T to be brighter than 

Markarian 421. 3C279 was also observed, at a more favourable zenith 

angle, from the southern hemisphere by the Duriiam group (Bowden et al., 

1993a). This observation resulted in an upper limit for the flux from 3C279 

which is close to the extrapolated E G R E T spectrum. These non detections 

may be attributed to time variability of emission, which is evident in the data 

at a few GeV, or may be due to the predicted attenuation of VHE gamma 

rays by pair production with the IR and optical background photon flux. At 

z=1 Stecker et al., 1992 estimate the optical depth for gamma rays of 

energy E(TeV) to be t (E ) ~ XoB^-^^ with t o ~ 40. Consequently gamma rays of 

energy > 100 GeV would be strongly attenuated, accentuating the 

requirement for sensitivity below this energy. 

8.4 Conclusion 

The broad spectmm of source types supporting different mechanisms for 

production of VHE gamma rays places numerous constraints on the 

observational strategies employed. 

If the number of targets in the latest category of potential sources to 

emerge, the AGN, is to be increased, observations must be made in the 
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energy region below 100 GeV. The Mk.6 telescope will allow observations 

to be made of AGN at distances greater than z = 1, the typical distance to 

these sources. There is Insufficient Cerenkov light in the images at these 

energies for the imaging technique to be of value. However, showers with 

primaries of energy greater than the gamma ray cut off imposed by the IR 

background can be rejected as hadronic. The signal is further enhanced by 

the dearth of Cerenkov light produced by the lower energy hadron initiated 

EAS, leaving the smaller numbers of higher energy hadrons which mimic 

low energy gamma ray events as the only background. 

With regard to the galactic sources, the increase in count rate afforded by 

the reduction in energy threshold offers greatly improved statistics, and 

above a few hundred GeV the high resolution imaging capability of the Mk.6 

telescope should prove a very powerful signal enhancement tool. It is 

hoped that this improvement in sensitivity will prove decisive in establishing 

variable sources such as the X-ray binaries as emitters of VHE gamma rays. 

The efficacy of medium resolution and stereoscopic Imaging of EAS has 

been demonstrated using the Mk.3 and Mk.5 telescopes, with significant 

enhancement of a periodic signal from AE Aquarii. The efficiency of the 

stereoscopic imaging technique can only be improved by the introduction of 

the Mk.6 telescope as a high resolution, low energy threshold component. 

In conclusion, the Durham group is now poised to capitalize on a large 

amount of effort which has been directed towards the provision of a facility 

with sensitivity over a spectrum of energies. The low energy capability of 

the Mk.6 telescope opens the window on a region of the electromagnetic 

spectrum which is of enormous potential. The results are anticipated with 

interest. 
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