
Durham E-Theses

Spanish generation in the NLP system 'LOLITA'

Fernández, Miquel A.

How to cite:

Fernández, Miquel A. (1995) Spanish generation in the NLP system 'LOLITA', Durham theses,
Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5276/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5276/
 http://etheses.dur.ac.uk/5276/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

University of Durham

Spanish Generation in the NLP
System 'LOLITA '

Miguel A. Fernandez

Laboratory for Natural Language Engineering.
Department of Computer Science.

University of Durhaw., U.K.

Submitted for the degree of Master of Science,

October 1995

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

Miguel Angel Fernandez

Spanish Generation in the NLP System ' L O L I T A '

Master of Science, 1995

Abstract

The aim of this research has been to modify the NLG module in the NLP system

L O L I T A to enable i t to produce Spanish utterances. Natural Language Generation

(N L G) is the production of text in a surface language by the computer in order

to meet communicative goals. The NLG module of L O L I T A is currently able to

generate English utterances. I t provides the generation capabilities required for

the prototype applications buil t onto L O L I T A . The module also aids in the devel­

opment and debugging of the system as NL utterances are easier to understand

than the semantic network representation. The L O L I T A generator receives as in­

put the whole L O L I T A semantic network,'SemNet',(the system knowledge base)

and adopts the traditional two components architecture. However, the distribution

of task between the planner and plan-realiser (planner and realiser in other sys­

tems) differs f rom that in traditional systems as the plan-realiser can perform tasks

such as the selection of content traditionally performed by a planner. The Spanish

generator is based upon the same theoretical principles as the current English gen­

erator. SemNet forms the input of the generator and has been expanded for this

purpose by the addition of Spanish lexical entries and information associated wi th

them. The existing planner module has been used while the plan-realiser has been

modified by developing new solutions where the existing ones were not adequate for

producing correct Spanish utterances. The generator has been implemented in the

pure functional language Haskell, taking advantage of several features of this lan­

guage and, like L O L I T A , i t has been built following Natural Language Engineering

IDrinciples. These two aspects influencing the research are also described.

Declaration

The material contained wi th in this thesis has not previously been submitted for a

degree at the University of Durham or any other university. The research reported

wi th in this thesis has been conducted by the author unless indicated otherwise.

The copyright of this thesis rests w i th the author. No quotation f rom i t should be

published without his prior wri t ten consent and information derived f rom i t should

be acknowledged.

Contents

1 Introduct ion 1

1.1 Problem Outline 1

1.2 Generation Process 2

1.3 Thesis Structure 3

2 Context of the work 4

2.1 . The L O L I T A system 4

2.1.1 L O L I T A semantic network 5

2.1.2 L O L I T A applications 7

2.1.3 Role of generation in L O L I T A 10

2.2 Natural Language Engineering 11

2.2.1 Aspects of N L E 11

2.3 Functional Languages 12

2.3.1 Features of Functional Languages 13

2.4 Chapter Summary 15

3 Re la t ed Work 17

3.1 Input 18

3.2 Architecture - • 18

3.2.1 Planning 20

3.2.2 Realisation 24

3.3 Other Aspects of Generation 29

3.3.1 Control 29

3.3.2 Generation Gap 29

C O N T E N T S

3.4 Generating f rom Semantic Networks or Graphs 31

3.4.1 Generating f rom CDT 32

3.4.2 Generation f rom Conceptual Graphs 34

3.5 Generation f rom SNePS 36

3.5.1 Generation f rom M T M 36

3.6 Current Generation in L O L I T A 37

3.6.1 Input 38

• 3.6.2 Planner 38

3.6.3 Plan-Reahser 40

3.6.4 Generation Gap 41

3.6.5 Abstract Transformations 41

3.7 Chapter Summary 45

4 Generat ing Spanish wi th L O L I T A 46

4.1 Adding information to the Semantic Network 47

4.1.1 New Syntactic Features 47

4.1.2 Irregular Forms 48

4:-2 Integration Witii: the Current Plain-realioer 49

4.3 Generation in Spanish 50

4.3.1 Generation of Entities 50

4.3.2 Generation of Events 55

4.3.3 Generation of Actions 66

4.3.4 Genera,tion of personal pronouns 68

4.4 Implementation overview 73

4.4.1 Data Types 74

4.5 Chapter Summary 78

5 E v a l u a t i o n and Resul ts 80

5.1 Introduction 80

5.2 The evaluation experiment 81

5.3 Evaluation Results 82

5.3.1 Human or Computer 82

CONTENTS

5.3.2 Acceptability' 83

6 Conclus ion 84

A Utterances used for the evaluation 86

B Variat ions for generator output 90

List of Figures

2.1 Structure of the L O L I T A system 5

2.2 A portion of SemNet 6

2.3 A fragment of SemNet 7

2.4 Example of the contents scanning application 8

2.5 A n example output f rom the Chinese Tutor 9

2.6 Example of a dialogue wi th L O L I T A 10

3.1 Generator architectures 19

3.2 The constituency schema 22

3.3 A RST schema f rom P E N M A N 23

3.4 A n A T N and associated grammar 25

3.5 A simple example of unification of two FDs 26

3.6 Text Structure for "Karen likes watching movies on Sundays" . . . 31

3.7 Example of a formal and informal text produced by PAULINE . . . 33

3.8 Example utterance graph input 34

3.9 Example of a complemented action pair transformation 43

3.10 Examples of uses of de-lexical verbs 44

4.1 A simplified portion of SemNet 48

LIST OF FIGURES vu

4.2 Articles in Spanish 51

4.3 Example of an event in the L O L I T A representation 59

4.4 Table of the Spanish personal pronouns 69

4.5 Simplified portion of the NLG Haskell code 76

4.6 Simplified portion of the N L G Haskell code 79

Chapter 1

Introduction

1.1 Problem Outline

The aim of Natural Language Processing (NLP) is to develop a computer system

capable of understanding human language. Therefore, the system must be capable

of analysing, understanding and communicating in natural language.The last task

means that a NLP system should, be a.blc to produce NL text and this is the .aim of

Natural Language Generation (NLG) . N L G is the automatic generation of Natural

Language by computer in order to meet communicative goals. However, there is

not an unique natural language and a system, as well as humans, should be able to

cope wi th more than one natural language. The differences and similarities of two

natural languages affect the way a generator, capable of producing both of them,

is bui l t : a single process can be used where the languages coincide while language-

dependent processes are necessary where they diverge. The aim of this project was

to allow the generation module in the L O L I T A system, which is currently able to

produce English utterances, to generate Spanish utterances.

C h a p t e r 1: Introduct ion

1.2 Generation Process

As stated above, the aim of NLG is to produce an utterance in a particular natural

language. The definition of the task carried out by a generator differs amongst

researchers depending on the input the generator receives and the activities i t has

to perform. The most common activities that a generation process carries out

Meteer, 1993] are:

• Content Del imitat ion: Choosing what information the utterance should

express.

• U n i t Organisation: Determining a coherent organisation of the units de­

l imi ted by the chosen content by the above activity.

• L e x i c a l Selection: Choosing the content words.

• Syntact ic Structures Selection: Choosing the syntactic constituents of

the text.

• Morphology a n d R e a d Out: P.roducing. the actua.] text from a syntactic

representation wi th lexical items inserted. The main function of this process

is to produce the correct morphological forms of the words.

• Focus: Determining which entities are most relevant at a given point and

how they affect the choices made in the generator.

Many researchers group these activities by adopting a distinction between two

stages of natural language generation: deciding 'what to say' and deciding 'how

to say i t ' . While there is general agreement on the activities and components

described, there is less agreement on which activities go into which components,

differing f rom system to system.

C h a p t e r 1: Introduct ion

1.3 Thesis Structure

The thesis is composed of the following chapters:

, C h a p t e r 2: Context of the w^ork, provides details of the L O L I T A system

and how i t uses the generator module, together wi th an overview of the NLE

principles and the main features of the functional programming language Haskell.

C h a p t e r 3: Re la ted Work, includes an overview of the different problems

and approaches in the area of NLG. Systems receiving a similar input to the

L O L I T A generator are presented. Finally, the current L O L I T A generation module

is described.

C h a p t e r 4: Generat ing Spanish with L O L I T A , provides details of how

the Spanish generator has been merged wi th the current English generator in the

L O L I T A system. Details are provided of the solutions adopted in the plan-reahser

module for Spanish generation and heuristics and examples are provided. Finallji.;.

some implementation details are provided together wi th examples of how the fea-.

tures of the programming language Haskell have influenced the solution.

C h a p t e r 5: Eva luat ion and Results , presents a simple experiment which

evaluates the generator by comparing human generated descriptions wi th those

produced by L O L I T A .

C h a p t e r 6: Conclusions, summarises the project's practical success and it

also suggests possibilities for further work.

Chapter 2

Context of the work

This chapter w i l l introduce some aspects which have influenced the development of

the work presented in this paper. Firstly the Natural Language Processing system

L O L I T A , of which the generator is a component, wi l l be described. LOLTTA has

been developed following the principles of Natural Language Rii^'ineering (NLE)

Garigliano and Tate, 1995]. This methodology wi l l be introduced in the next sec­

t ion. The functional programming language Haskell [Hudak et a/., 1994] has been

used in the implementation of the solution. The properties and features of Func­

tional Programming, and more specifically Haskell, which are not found in other

programming languages w i l l be presented.

2.1 The L O L I T A system

The L O L I T A (Large-scale, Object-based, Linguistic Interactor, Translator and

Analyser) system [Garigliano et a/., 1992][Long and Garigliano, 1994][Hazan et al,

1993] has been under development at the University of Durham since 1986. LOLITA

is a NLP system based on N L E principles (see Section 2.2) able to parse complex

texts, semantically and pragmatically analyse the resulting parse trees and add the

information to the semantic network (SemNet). The system can also reason about .

and answer natural language queries about the knowledge stored by generating

natural language f rom the network. The overall structure of the LOLITA system

C h a p t e r 2: Context of the work

is showed in Figure 2.1.

Morphological
Analysis

Misspelt and
unknown word

recovery
Structure
Analysis

Feature
Analysis

P A R S E R N O R M A L I S E R

I N F E R E N C E

I N T E R A C T I O N D- S E M A N T I C

N E T W O R K

S E M A N T I C
A N A L Y S I S

1, I ^

C O N T E N T S
S C A N N E R

P R A G M A T I C
A N A L Y S I S

D I A L O G U E
A N A L Y S I S

G E N E R A T I O N

Figure 2.1: Structure of the L O L I T A system.

L O L I T A is defined as a general purpose base system. This definition is an exten­

sion of the terminology presented in [GaUiers and Sparck Jones, 1993]. A generic

system is defined as a system designed to perform a task in different domains. A

general purpose system is categorised as one that can be used for any task in any

domain without further modifications. I t is at the intersection of these two types

of systems that general purpose base systems, including L O L I T A , belong.

2.1.1 L O L I T A semantic network

The knowledge representation used in L O L I T A is important as the whole system

is bui l t around i t . I t js particularly important for the generator, as, the semantic

network (SemNet) provides its input.

This representation forms a semantic network [Long and Garigliano, 1994] (sim­

ilar to Conceptual Graph Theory [Sowa, 1984]) in which concepts are represented

by nodes and relationships (links between concepts) by arcs. This structure holds

world information and data, as well as some linguistic information. The concepts ,

C h a p t e r 2: Context of the work

for example entities or events, are arranged in hierarchies wi th entities and events

lower in the hierarchy inheriting properties f rom those higher up. Figure 2.2 shows

a simplified portion of SemNet representing the event 'the taxi burned fiercely'.

EVENT

instance specialisation

TAXI

instance synonym action

TAXI BURN PAST

Figure 2.2: A portion of SemNet

Attached to each node is a set of control variables which contain basic infor­

mat ion about the node. This information is essential for many components of the

system (including generation) and i t needs to be accessed often and quickly.

Defining the meaning of a concept requires reference not only to the relevant node

but also to the whole semantic network.

In this representation the concepts have a smaller 'grain size' than words (where

words are any lexical entry in a surface language). For every word there is at least

one different concept, more than one in the case of more than one meaning, but

there are many concepts not corresponding to a particular word. How the generator

can produce natural language f rom this representation is described in Section 3.4.3.

The L O L I T A semantic network currently comprises around 100,000 nodes and

i t is continuously being extended (e.g by the addition of linguistic information to

enable L O L I T A to cope wi th Spanish).

C h a p t e r 2: Context of the work

2.1.2 L O L I T A applications

Analys i s of texts

The main operation of L O L I T A is to analyse text in order to build a repre­

sentation of its meaning. The information added f rom the input is identified in

or added to SemNet. A n example of parsed tree and resulted portion of semantic

network is seen in Figure 2.3

ROBERTO

subject
act

/ : ^........-v. . . ROBERTO E V E I v f T ^

' OWN" • det . comnouji
; • • . • : I . • • - . M O T O R B I K E

ROBERT!© V- - • M O T O R B I K E
. . ' - * s • • • . yr-

PARSE TREE SEMA.NTIC NET

Figure 2.3: A fragment of SemNet.

Q u e r y

This application allows the users to interrogate L O L I T A using NL utterances

about the knowledge i t holds.

Contents scanning

Contents scanning in L O L I T A [Garigliano et a/., 1993] involves the analysis of

texts and the completion of templates to summarise the information identified

in the input texts. Contents scanning is a standard test for natural language

systems [Long and Garighano, 1994]. An example of contents scanning in LOLITA

is presented in Figure 2.4.

The input is parsed and semantically analysed and then the representation of

its meaning is stored in SemNet. A domain dependent module then searches the

network in order to find the relevant information for each of the template slots.

C h a p t e r 2: Context of the work

A car bomb exploded outside the Cabinet Office in Whitehall last night, 100 yards
f r o m 10 Downing Street. Nobody was injured in the explosion which happened
just after 9 am on the corner of Downing Street and Whitehall . Police evacuated
the area. First reports suggested that the bomb went off in a black taxi after the
driver had been forced to drive to Whitehall . The taxi was later reported to be
burning fiercely.
(T H E D A I L Y T E L E G R A P H 31/10/92)

Template: I n c i d e n t
I n c i d e n t : A bomb explosion.
Where : On the corner of Downing S t r e e t and W h i t e h a l l .

Outside'Cabinet O f f i c e and out s i d e 10 Downing S t r e e t
I n a black t a x i .

When : 9pm.
Past.
Might.
When a f o r c e f u l person f o r c e d a d r i v e r t o d r i v e a
black t a x i t o W h i t e h a l l .

Responsible:
Target: Cabinet O f f i c e .
Damage: Human: Nobody.

Thing: A black t a x i .
Source; t e l e g r a p h
Source_date: 31 October 1992
Certa;inty: Facts.
Relevant I n f o r m a t i o n

P o l i c e evacuated 10 Downing S t r e e t .

Figure 2.4: Example of the contents scanning apphcation.

This information, in the form of SemNet nodes, is then passed to the generator

which produces the output. Recent work has concerned the use of the LOLITA

scanner wi th domain independent templates.

Chinese tutoring

This application [Wang and Garigliano, 1992] [Wang, 1994] involves tutoring

English-speaking students learning Chinese. One of the main problems in this

learning process is the influence of the mother tongue, known as negative transfer

Selinker, 1969 .

Chinese grammar rules have been added to the existing English parser to pro­

duce a mixed grammar. The tutoring module asks the student to translate an

C h a p t e r 2: Context of the work

7b
We have breakfast at eight.
Please enter answer and hit return: Difl] llg ^W. A &
I'm sorry to say that you haven't translated the sentence correctly.
There may be more than one way of translating the sentence:

mi A ^ Bg.^tg. A m ^ts.
The problem with your translation is that you have translated the
sentence according to the English word order. Please compare your
translation with the standard one(s) in order to find out the dif­
ferences between the structures and try again!
They (male) have lunch at one.
Please enter answer and hit return: I
nXmA (ASCII input)

Figure 2.5: An example output f rom the Chinese Tutor

Enghsh sentence into Chinese. This translation is then parsed using the grammar

rules. In the case of failure the English parser is used in order to identify transfer

errors.

Trans la t ion

A small prototype has been developed by adding a few rules to the LOLITA

parser to enable i t to cope wi th Italian texts, enabling the system to add the

inforrnation contained in the text to SemNet. Since the generator can produce

English [Smith, 1995], translation f rom Itahan to Enghsh is produced.

The completion of the work described in this thesis allows L O L I T A to perform

translation f r o m Italian or English to Spanish.

Dialogue

A prototype has been developed which enable the user to carry out a dialogue

w i t h L O L I T A [Jones, 1994]. The dialogue system takes into account factors such

as the emotional state of the participants, motives, and the relationship of one

participant to the other.

The dialogue module utilises a Dialogue Structure Model [Garigliano and Jones,

1992], which is a template-Uke schema containing the basic information about

the dialogue situation. This information is used to structure the responses that

L O L I T A generates.

C h a p t e r 2: Context of the work 10

YOU: I l i k e you.
LQLITA: I know.
YOU: You are b e a u t i f u l .
LOLITA: I am g l a d because you t h i n k I am b e a u t i f u l
YOU: Do you l i k e me?
-LOLITA: Yes, I l i k e you.
YOU: Why do you l i k e me?
LOLITA: I do not know why I l i k e you.
YOU: I am t i r e d .
LOLITA: I understand.
YOU: Are you t i r e d ?
LOLITA: "Nof
YOU: T e l l me i f you b e l i e v e t h a t I cun t i r e d .
LOLITA: Yes, you are t i r e d .

Figure 2.6: Example of a dialogue wi th LOLITA.

2.1.3 Role of generation in L O L I T A

Generation is involved in most of the applications built onto the LOLITA system.

The basic.operation of the generator is to rebuild surface language expressions f rom

SemNet. As well as being used by most of the apphcations, these expressions are

useful for the development of the semantic network and fer debugging purposes as

they are easier to understand than the SemNet representation.

• Query. The generator produces NL utterances for answering questions as well

as utterances for the original questions.

• Content scanning. The template filling module wi l l require the generator to

build N L utterances in order to fill the slots of the template.

• Translation. The generator w i l l rebuild language expressions f rom a semantic

representatidn corresponding to an input text in a language other than the

one generated.

• Dialogue. The generator produces NL utterances. The dialogue module

interfaces wi th i t to generate appropriate responses.

C h a p t e r 2: Context of the work 11

2.2 Natural Language Engineering

The development of the L O L I T A system is concerned wi th Natural Language En­

gineering (NLE) rather than the more traditional computational finguistics. The

field of Natural Language Engineering is composed of a number of interconnecting

disciplines. I t is an engineering activity and is thus pragmatic by nature, though

its scientific and technical background is based on Descriptive and Computational

Linguistics, Lexicology and Terminology, Formal Languages, Computer Science,

Software Engineering and other relevant subject areas.

There are only a small number of systems which have the properties of a large-

scale system compared wi th the great number of smaller systems performing specific

tasks in defined domains. Whereas the central ideas formulated by computational

linguistics have been successfully applied to small systems, difficulties have been

experienced in their application to large-scale systems (those not highly restricted

in their task or domain).

The following subsection w i l l describe important properties of N L E according

to which L O L I T A has been developed.

2.2.1 Aspects of N L E

• Scale - The size of the system must be sufficient for supporting realistic

large-scale applications (i.e. vocabulary size, grammar coverage).

• Integration - The system components should be buil t so that they can be

combined wi th the system as a whole. These components should not make

unreasonable assumptions about other parts of the system.

• Feasibi l i ty - For example, hardware requirements must not be too great and

the execution speed must be acceptable. This process includes making the

system efficient.

• Maintainabi l i ty - The usefulness of the system over a long period of time

must be ensured.

C h a p t e r 2: Context of the work 12

• F lex ib i l i ty - The system has to be able to perform different tasks in different
domains. The applications described (section 2.1.2) give an example of the
flexibihty of L O L I T A .

• Usabi l i ty - The solution of the system must f u l f i l the requirements of the

user. This solution should be user-friendly.

• Robustness - This is a critical aspect of large-scale systems. Robustness

.. . concerns..not only linguistic scope but also the abil i ty of the system to deal

w i t h incorrect input without crashing.

• U s e of a wide range of techniques - Systems following the NLE approach

should use a f u l l range of A I techniques. This implies the use of long-standing,

reliable, general or locahsed theories f rom computational linguistics and logic

(i.e. set-based semantics), knowledge based approaches, individual heuristics

and adaptative or evolutionary techniques.

2.3 Functional Languages

L O L I T A is wri t ten in the functional language Haskell [Hudak et a/., 1994]. The

system consists of over 40.000 lines of source code equivalent to about 400,000

lines of imperative code [Turner, 1982 .

Functional languages are a subset of the Declarative programming languages.

The main feature of a Declarative language is that i t has no ' implici t state' (global

variables, program counter, etc). Any information needed must be handled explic­

i t ly .

A program consists of expressions, msie&d of sequencing of commands as in

imperative languages. I t has often been argued that i t is easier to write in a

functional programming language than in an imperative language.

Declarative languages are subdivided into the following types:

• Specification: (i.e. Z , V D M) They are not used to program, but to specify

C h a p t e r 2: Context of the work 13

the behaviour of a system.

• Logical: (i.e. Prolog) They use the concept of relations (predicates).

• Functional: They use the concept of functions.

Haskell is a pure functional language wi th non strict semantics (i.e. lazy evalua­

tion) and a polymorphic type-checking system. I t was developed following a confer­

ence.in 198,7 as the definitive functional language. The next subsection wi l l present

the features of functional programming, and more specifically Haskell, which are

different f r o m other programming languages. The effect of these features on the

implementation of the generator wi l l be discussed in Chapter 4.

2.3.1 Features of P\inctional Languages

Referent ia l Transparency:

Referential transparency rules out the use of assignment statements and the

explicit concept of a program state based on the values of variables and constants

avoiding side-effects. This means that the value of an expression depends solely

on the values of its subexpressions and there are no hidden effects influencing its

value. Also, different occurrences of the same variable always have the same value,

unlike in imperative languages, where a variable may be assigned several different

values wi th in an expression.

This property makes functional programs easier to be understood and easier to

be developed, therefore allowing a better integration of the system.

Funct ion Appl icat ion and C u r r y i n g

A factor which improves readability is the syntax of function application in Haskell.

The operation of function application is represented by simple juxtaposition of the

function and its arguments. Thus a function f applied to two arguments x and

y, represented in most imperative languages as f (x , y) is represented in Haskell

C h a p t e r 2: Context of the work 14

as f X y. This enables a program to use far fewer brackets. Associated with this
is a device known as currying. Currying involves the replacement of structured
arguments w i th a list of simple ones. We shall take the example of the function
p l u s . This function gives the sum of two numbers. Consider the two definitions:

p l u s ' (x,y) = X + y z

and

plus X y = X + y

In an ordinary imperative language, the definition p l u s ' would be used. However,

Haskell also allows the definition p l u s to be wri t ten. The difference is that p l u s '

takes the single, structured argument of a tuple of two numbers; the function p lus

takes two simple arguments. One can therefore write p l u s 1 2 which is equiva­

lent to the expression 1 + 2. Function application in Haskell is left associative;

p l u s 1 2 is therefore interpreted as ((p l u s 1) 2). Thus the expression (p l u s 1)

is a funct ion in its own r ight—it takes a single argument and adds 1 to i t . Without

currying, the function to add 1 to a number would.have to be writ ten as a separate,

new function. This simple but useful feature allows functions to be greatly simpli­

fied merely by leaving out arguments when they are not necessarily required, thus

aiding readabihty. Currying therefore allows parameter hiding in abstract types.

Higher-order Functions:

Higher-order functions are functions which take other functions as part of their

input or return functions as results.

The definition of the map function is shown below as an example of a higher-

order function, 'map' takes as its arguments a function and a list of elements. I t

returns a list containing the results of applying the given function to each of the

elements of the input list.

map f [] = []

map f (x : x s) = f x : map f xs

C h a p t e r 2: Context of the work 15

A b s t r a c t T y p e s :

Abstract Data Types (ADTs) are data types whose representation is hidden to

the rest of the system. They can only be accessed using a set of provided functions.

The data types can be modified without affecting the parts of the system using

them.

L a z y Eva luat ion:

Lazy Evaluation allows an expression to be evaluated when its value is actually

needed. That is, the expression is evaluated on demand. So lazy evaluation allows

unevaluated expressions to be passed to functions as parameters and i f the value

of a expression is not being used the expression w i l l not be evaluated.

Lazy evaluation also allows the programmer to handle very large (even infinitely

large) expressions when complete evaluation of them is not required. For example

in a search problem i t is possible to build all the possible solutions (even an infinite

number of them) and then a set of functions to decide on the chosen solution.

2.4 Chapter Summary

This chapter has presented the main aspects influencing the development of the

Spanish generator (the current L O L I T A generator wi l l be described in the next

chapter).

The generator w i l l be integrated in L O L I T A . This NLP system has been de­

scribed paying particular attention to the semantic network (which forms the

knowledge representation of the system) as i t is the core of the whole system and

more especially the. input for the generator. Prototype applications developed 'on

top' of L O L I T A have been introduced to show the capabilities of the system. Some

of these applications (Query, Content scanning. Translation, Dialogue) make use

of the generator to perform their operations.

The rest of the chapter has presented aspects affecting not only the generator

but the whole system. The L O L I T A system has been buil t wi th in the domain of

C h a p t e r 2: Context of the work 16

Natural Language Engineering (NLE) so NLE principles have been adopted for the
development of L O L I T A .

Functional languages and particularly Haskell, together with its features, have

been introduced. Chapter 4 wi l l show how these features have been used in the

implementation of the Spanish generator.

Chapter 3

Related Work

Natural Language Generation (NLG) is a subfield of Natural Language Processing

(NLP) but its boundaries are not easy to define as researchers define the NLG task

differently depending on the input received and the processes performed. Follow­

ing these different views, diverse approaches have hitti adopted to cope wi th the

dilferent aspects and assumptions considered in the generation of natural language.

However, two stages are commonly identified during the natural language genera­

t ion process; planning and realisation, but the tasks carried out in each stage differ

f r o m system to system. This chapter discusses aspects such as the input a genera­

t ion system assumes, different architectures adopted to build them and approaches

to realisation, planning, and the interface between the modules (the problem of the

generation gap). The chapter also pays special attention to those systems which

receive the same type of input as the L O L I T A generator, a semantic network or

graph. Finally the generation module in L O L I T A is introduced.

Some crit icism applied to the field of NLG in general (this does not mean that

all these criticisms apply to all the systems) are:

- Systems tied to hmited domains

- Small scale of the systems

- Restriction to a particular natural language

- Lack of information in the form of example outputs

C h a p t e r 3: Re la ted W o r k 18

3.1 Input

One of the most important factors which determine a generator's characteristics

is the input i t assumes. The type of input dehmits the tasks a generator must

perform. Generation systems can be roughly split in two groups: systems assuming

the content as a side effect of the application program (typical of 'active' programs

such as simulations and expert systems) and systems taking on the responsibility

of extracting the. content f rom the apphcation prograrn (typical of 'static' programs

such as databases).

The most common inputs can be classified in the following types:

• Input containing a knowledge base and a communication goal. The generator

module must retrieve knowledge f rom the knowledge base according to the

goal.

' • ^ ' ^ i •

• Input in the fo rm of clause-sized chunks. The generator must order the clauses

into sentences.

• Input assuming a detailed specification of the utterance. The tasks to be

pei-formed by the generator differ f rom system to system depending on the

level of detail of the specification. These tasks comprise grammatical and

lexical choices.

• Input containing a semantic representation of the information to be generated

in the fo rm of a network or graph. This is the type of input assumed by the

LOLITA ' s generator.

3.2 Architecture

Generation involves three main activities: determining the information to commu­

nicate, ordering this information and realising the information in a surface NL.

These three activities have generally been divided in two processes:

C h a p t e r 3: Re la ted W o r k 19

• 'what to say': involving the two first activities. This part is commonly called

the Text P lanning component.

• 'how to say i t ' : i t involving the th i rd activity. This component is commonly

referred as the Real isat ion module.

Other terms used to refer to this division are: Strategic and Tactical levels,

Deep and Surface generation, Text planning and Plan execution., Message and Form

levels. Functional and Positional levels and Conceptual and Grammatical levels.

Following this distinction between planning and realisation modules, [Kantrowitz

and Bates, 1991] claim that there are two types of generation architecture: inte­

grated systems and separated systems, w i th the latest type subdivided into pipelined

and interleaved systems.

(a) PIPELINED

Input

Text Planning

Realization

Output

(b) I N T E R L E A V E D

Input

Text Planning

Realization

Output

(c) I N T E G R A T E D

Input

Planner

Output

Figure 3.1: Generator architectures

Integrated Systems

Some researchers argue against the modularisation of a generator into text

planning and realisation. Systems following an integrated approach t ry to overcome

C h a p t e r 3: Re la ted Work 20

the problems derived f rom the interface between planner and realiser by integrating
both modules in one component.

Examples of integrated generators are:

• K A M P [Appelt, 1985

• DIOGENES [Nirenburg et a/., 1988;

• - • G L I N D A [Kantrowitz and Bates, 1992] - • .- • ,

Separated Systems

Most of the generation systems follow a separated components approach. The

first module, the planner, selects and order the information to be generated in

terms of the input received. The realiser determines which linguistic resources

w i l l be used for expressing the information. The problem arises when follow­

ing tM&^'approach because semantic and syntactic structures are not isomorphic

Elhadad and Robin, 1992] so the interface between planner and realiser is not a

t r i v i a l step. This problem is called 'generation gap' [Meteer, 1993 .

There are two different approaches to the interface between the two components:

• Pipelined systems. In this systems the planner makes decisions indelibly.

Therefore, i t must assure that the decisions i t makes can be realised in the

surface language.

• Interleaved systems. These systems use a backtracking mechanism or con­

strain the process by passing information and control between the compo­

nents.

3.2.1 Planning

Early computational systems, f rom the 1970's to the beginning of the 1980's, gener­

ating multi-sentence text ignored the issue of text structure [Hovy, 1993] and some

C h a p t e r 3: Re la t ed W o r k 21

of the more modern generators are st i l l domain restricted and often rely on domain
dependent organisations to plan their discourse.

However, two common methods for the structuring of text above the level of

sentence are used in a variety of systems: text schemas and rhetorical structure

theory (RST).

T h e Schema Approach

' . Text schemasr descvihe conventional textual structures in terms of patterns

which specify the overall structure of a text.

McKeown's T E X T system [McKeown, 1985] was developed to produce para­

graph length texts i n response to users' queries about an underlying knowledge

base. This knowledge base contains information about mil i tary vehicles and weapons.

T E X T uses its knowledge about 'discourse strategies', represented in predefined

schemas, and follow the assumption that people use certain discourse patterns to

express certain discourse goals. Therefore, for each 'communicative goal' the sys­

tem might have, there is a corresponding schema representing a discourse strategy.

The schemas are made up of 'rhetorical predicates' such as "identification", "at t r i ­

but ion", "analogy". A n example of a schema and the output generated f rom i t by

the T E X T system is shown in Figure 3.2

More examples using a schema based planner are A N A [Kukich, 1988], EDGE

Cawsey, 1990], W E I B E R [Horacek, 1990] and T A I L O R [Paris, 1993].

Rhetor i ca l S tructure T h e o r y

Rhetorical Structure theory (RST) was ini t ial ly developed for the descriptive

analysis of relations in text [Mann and Thompson, 1987]. RST is a descriptive

forrrialism that attempts to capture the organisation of natural text through the

relations that hold between parts of the text. The relations in RST are embodied

in schemas. Each schema consists of a NUCLEUS and zero or more SATELLITES

whose function is to support the nucleus. Satellites are linked to the nucleus by

a R E L A T I O N which indicates how the sateUite supports the nucleus. A satellite

can also be discomposed into a nucleus and satellites of its own. Each relation

C h a p t e r 3: Re lated Work 22

SCHEMA

Constituency
C a u s e - e f f e c t * / A t t r i b u t i v e * /

{ D e p t h - i d e n t i f i c a t i o n / D e p t h - a t t r i b u t i v e
{ P a r t i c u l a r - i l l u s t r a t i o n / e v i d e n c e }
{Comparison/analogy}}+

{ A m p l i f i c a t i o n / E x p l a n a t i o n / A t t r i b u t i v e / A n a l o g y }

' { } ' indicates optionali ty, ' / ' indicates alternatives, '-H' indicates that the i tem may
appear 1-n times, and '* ' indicates that the i tem may appear 0-n times.
E X A M P L E : ,

"Steam and electric torpedoes. (1) Modern Torpedoes are of 2 general
types. (2) Steam-propelled models have speeds of 27 to 45 knots and
ranges of 4000 to 25,000 yds.(4,367-27,350 meters). (3) The electric
powered models are similar (4) but do not leave the telltale wake
created by the exhaust of a steam torpedo"

CLASSIFICATION OF E X A M P L E :

1. Constituency

2. Depth-identification; (depth-attributive)

3. Comparison

4. Depth-identification; (depth-attributive)

Figure 3.2: The constituency schema.

has constraints on the nucleus, constraints on the satellite(s), constraints on the

combination of nucleus and satellite(s) and an effect. These constraints have to be

satisfied before a relation can be applied to a text. The complete analysis of a text

is a tree wi th a single schema at the top level.Figure 3.3 shows an example of a

RST schema f rom the P E N M A N system.

C h a p t e r 3: Re la t ed W o r k 23

S E Q U E N q E ^

CIRCUMSTANCE

\
ELAB-ATTRIB ELAB-ATTRIB

/ \ / \
/ \ / \

E105-ENROUTE READNSS1I408 POSTN11410 HEADNGI14I6

N

SEQUENCE

/ \

\
ARRVE11400 E l 07-LOAD

5 6

Knox, which is C4, is en route to Sasebo. It is 79W 18E heading SSW. It will arrive on 4/24.

lA 2 IB

It will load for 4 days.

Figure 3.3: A RST schema f rom P E N M A N .

Using RST for generation, an abstract specification of the utterance has to be

provided via a discourse goal and the planner must choose what information to

include. Some of the work using RST based planners include:

• Hovy [Hovy, 1991] was one of the first researchers to apply the descriptive

RST formalism for building a text structure planner. The planner assumes as

input one or more communicative goals and a set of clause-sized predicates.

I t proceeds by recursively applying RST relations, whose effects match the

communicative goals, to units of the input and other RST relations in order

to build a tree which represents the paragraph structure (non-terminals are

RST operators, the leaves are the input predicates). The final tree is traversed

f r o m left to right forming the input for the sentence generator NIGEL.

• The Explainable Expert System (EES) [Paris et ai, 1991] uses an RST-based

text planner to construct short explanatory dialogues of an expert system.

• Other examples of work which uses text planning based on RST can be

found in [Scott and de Souza, 1990], the C O M M U N A L project [Fawcett and

C h a p t e r 3: Re la ted W o r k 24

Tucker, 1992], T E C H D O C [R6sner and Stede, 1992], I M A G E N E [Vander-
Lindenet al, 1992], [Granville, 1994], [Defin et ai, 1994] and [Wanner, 1994 .

3,2.2 Realisation

Internal representations are mapped into surface NL at the reahsation stage. The

module must contain linguistic information of the resources of the surface natural

language: That is, grammatical rules of-that language- and a lexicon, as well as a

mechanism to produce correct text f rom the input representation by applying the

linguistic information. The type of input, the control of the process and the internal

organisation of the module are some of the factors that determine the method to

apply at the realisation stage. Some of them are presented below.

Augmented Trans i t ion Networks

The Augmented Transition Networks (ATNs) [Woods, 1970] is a formalism for

wr i t ing parsing grammars. ATNs were originally developed for N L analysis but

they have also been used in generation. Some of the researchers who use ATNs

in generation are Simmons and Slocum [Simmons and Slocum, 1972], Goldman

Goldman, 1975], Shapiro [Shapiro, 1982] and McKeown [McKeown, 1985]. Fig­

ure 3.4 shows a context free grammar and its A T N representation.

Chapter 3: Related Work 25

NP VP

PP

Pronoun

PP

S ^ NP + VP

NP ^ (DET) + (ADJ*) + N + ((ADJ*)+(PP*)*)

NP ProperN

NP Pronoun

VP ^ V + (NP) + (PP*)

PP PREP + NP

notation: () :optional * :one or more occurences

Figure 3.4: An ATN and associated grammar.

Use of ATNs has been particularly common in systems which receive the input

in the form of a semantic network or graph (Section.3.3).

Chapter 3: Related Work 26

iFlinctional Unification

Realisation modules following a functional unification method combine a unification

grammar approach ([Kay, 1979]) with a unification formalism.

A unification grammar contains the descriptions of particular linguistic objects

in the form of functional descriptions (FDs) which associate values with 'objects'

features. The input to the realisation process is another FD which specifies the

content of the required utterance.' The process is performed by 'unifying' the

input FD with the grammar description. The unification of two FDs merges the

features from both of them to produce a more specific FD. The main disadvantage

of this approach is that the process of unification is non-deterministic and therefore

inefficient. A simple example of unification is shown in Figure 3.5.

FDl = { a r t i c l e : { d e f i n i t e : y e s } , h e a d : { l e x : ' c a t ' } }

FD2 = { a r t i c l e : { l e x : ' t h e ' } , m o d i f i e r : { l e x : ' b l a c k ' } }

unify(FDl,FD2)= { a r t i c l e : { d e f i n i t e : y e s , l e x : ' t h e ' } ,
h e a d : { l e x : ' c a t ' } ,
m o d i f i e r : { l e x : ' b l a c k ' } }

Figure 3.5: A simple example of unification of two FDs.

Some of the systems which use a unification approach are:

• A functional unification grammar (FUG) was used for the realisation stage

of the TEXT system [McKeown, 1985 .

• Appelt's TELEGRAM [Appelt, 1983] modified the unification process by al­

lowing the planner to be re-invoked at various choice points in the grammar

in order to overcome the problem of efficiency caused by the non-determinism

of this approach.

• McKeown et al. Functional Unification Formalism (FUF), used in their

COMET system is an expansion of functional unification grammars. They

Chapter 3: Related Work 27

expanded the idea of FUG grammars to include a unification stage for lex­
ical selection and for deciding when to explain information graphically or
textually.

Systemic Grammars

Systemic functional linguistics [Halliday, 1985] divides language not just into syntax

and semantics but on three functional lines of analysis .: [jMeteer, 1993

• ideational: the content of the utterance and the organisation of the speakers

experience in terms of processes, things, qualities, etc.

• interpersonal: The relation of the speaker and hearer.

• textual: The organisation and cohesion of text.

A systemic grammar has two basic components - a network of systems and

realisation rules (related to the functional lines of reasoning listed above). The

systems of the network represent a choice point where a feature must be selected

from a set of alternatives. Realisation rules are used to decide the selection.

The main generative systemic grammars in existence are: NIGEL [Mann, 19S3a]

(the systemic grammar of the PENMAN project [Mann, 1983b]), GENESYS [Fawcett

and Tucker, 1992] (part of the COMMUNAL project) and SLANG [Patten, 1988].

Use of a Formative Lexicon

Another approach to realisation is to contain formative information in the lexi­

con. In some systems the lexicon groups grammatical rules and lexical information

together (for example PAULINE [Hovy, 1988b]) relating to the combination of par­

ticular words with others. In other systems information about semantic relations

among the lexical entries is also included in the lexicon (i.e. MTM).

A problem adopting this approach is that of scale. If a system is limited to

a domain with a large number of lexical entries then inclusion of formative and •

Chapter 3: Related Work 28

semantic information for every entry may prove unrealistic.

M U M B L E

McDonald's Hnguistic realisation component MUMBLE [McDonald and Bole, 1988

uses the linguistic specification of the input message (MUMBLE is message di­

rected, see Section 3.3.1) to build the surface structure of the text. McDonald also

developed a specification language which allows interfacing MUMBLE to some

underlying programs and planners (i.e. those using the SPOKESMAN represen­

tation). Another feature of the MUMBLE component is that it rehes on indelible

processes, so decisions cannot be retracted once they have been made.

M U M B L E ' S grammar is based on a Tree Adjoining Grammar (TAG, [Joshi, 1987])

defined in terms of elementary trees and rules for their composition. The generation

process comprises three subprocesses:

• Attachment: assigns plan units to positions within the tree representing the

surface structure. This surface structure has attachment points to which new

structures can be added. The attachment is performed according to various

grammatical constraints and stylistic rules.

• Phase Structure Execution (PSE). After a partial tree has been attached,

the PSE takes over. PSE performs a depth first traversal of the tree perform­

ing transformations or invoking syntactic constraints indicated by tree labels.

If plan units are found in the tree then realisation is invoked to determine

how they should be realised. If an attachment point is encountered then

Attachment is called to determine if there are additional plan units to be

attached at this point.

• Realisation: Reahsation selects appropriate words or phrases to 'realise'

plan units.

Chapter 3: Related Work 29

3.3 Other Aspects of Generation

3.3.1 Control

Meeter [Meteer, 1993] distinguishes between two types of control:

• In a grammar directed (or declarative [Paris and McKeown, 1987]) system,

control lies in the reference knowledge, that is, it is governed by some prede­

termined body of tests that gate and order actions (i.e. the NIGEL realiser).

• In a message directed [ov procedural [Paris and McKeown, 1987]) system, con­

trol lies in the input itself and is interpreted by some general control loop

within the process (i.e. SPOKESMAN).

Message directed processing is considered more efficient [McDonald et ai, 1987

as the action sequence is already implicitly determined by the process that built

the input and no effort needs to be expended on control decision. Other researchers

(i.e. [McKeown and Swartout, 1988]) arguing against this approach, say that the

procedural control affects the clarity of a system and the absence of a explicit

grammar makes the grammatical process more difficult to understand, judge and

modify.

A declarative control is more typical in generators with static underlying process

or those that receive inputs such as clause size predicates. On the other hand,

a procedural control is commonly adopted by generators with active underlying

programs or input containing rich information (i.e temporal or causal).

3.3.2 Generation Gap

As stated in Section 2.2, the separated components approach leads to the prob­

lem at the interface between components. This problem arises because semantic

and syntactic levels are not isomorphic. It has been called the 'generation gap'

problem. This section described how the generation gap has been tackled in the

SPOKESMAN planner.

Chapter 3: Related Work 30

S P O K E S M A N

Meeter [Meteer, 1993] first named this problem the 'generation gap' and she has

been the researcher who has tackled the problem in most detail.

The SPOKESMAN planner is built on the MUMBLE realiser. It addresses

the problem of the expressibility: as the system relies on indelible processes, once

a decision is made it can not be withdrawn or modified. The text planner must

assure that it will not compose an utterance that cannot be realised in the surface

language. Meeter overcomes the problem of the generation gap and fills the ex­

pressibility requirements by designing an intermediate level of representation, the

Text Structure, which is used by the planner in composing the utterance. The

input objects drive the building of the text structure using rnappings associated

with their types. The text structure also takes part in its own construction by

constraining further decisions depending on the decisions already made.

Text Structure is represented as a tree capturing tlie following kinds of infor­

mation:

• Constituency: The nodes in the Text Structure represent the constituents

of the utterance.

• Structural relations among constituents: The relations of each node

with its parent and children.

• Semantic Category of the constituents of the utterance.

The Text Structure plays two important roles:

-I t provides a bridge between the structures of the application program and

the linguistic structures needed by the realisation component.

-It constrains the planning process to ensure that what is planned is expressible

in language.

Once the text structure has been built using the input information, the tree is

Chapter 3: Related Work 31

traversed to build the linguistic specification required by the MUMBLE realiser.

Figure 3.6 (from [Meteer, 1993]) shows an example of Text Structure.

MATRIX

Like ::State

HEAD

ARGUMENT

Arg-realtion: Agent

Karen "named

ARGUMENT

Arg-relation: Patient

activity

COMPOSITE

MATRIX

Watch -activity

HEAD

ADJUNCT

on ::temporal-relation

HEAD

ARGUMENT

Arg-relation: Patient"*'

movie ::sample-of-a-kind

ARGUMENT

Sunday ::sample-of-a-kind

Figure 3.6: Text Structure for."Karen likes watching movies on Sundays"

3.4 Generating from Semantic Networks or Graphs

As stated in Section 2.1 the input is a critical aspect determining the further design

of the system. Similar input often means similar design. Some of the advantages

of taking a semantic network or graph as input are as follows:

• Such input can be a knowledge rich representation.

• The input allows for a message directed control approach which is often more

efficient (see Section 2.2.3)

• The knowledge rich input can lead to the variation in the utterances which

can be achieved separately from the reahsation process.

Chapter 3: Related Work 32

This section describes some of the systems that take a simular input to the
LOLITA generator.

3.4.1 Generating from C D T

Schank's Conceptual Dependency Theory (CDT) adopts a method of knowledge

representation that intends to capture the meaning underlying NL utterances. CDT

uses ""semantic primitives to conipose meaning-representations: In particular, ac- •

tions are decomposed in a small set of primitive acts such as INGEST, ATRANS

(movement of a physical object) and MTRANS (movement of a non-physical ob­

ject) are three of the twenty four primitive acts. Schank later extended such a

restricted set of primitives and defined higher level primitives which however was

too restricted for a large scale system.

B A B E L -^^i-

The BABEL system [Goldman, 1975] produces English sentences from Schank's

CDT. Goldman uses word-sense discrimination networks to make word choices.-

The discrimination networks are binary trees whose nodes comprise predicates

which determine the child path to follow.

The first step is to find the main verb to express the CDT representation by

applying discrimination networks. At the leaves of the trees are pointers to concex-

ion entries (or to other nodes which will lead to more concexions) which are used

to build a syntactic network of the utterance. This is realised into a NL utterance

using an ATN (Section 1.2.2).

PAULINE

Hovy's PAULINE (Planning And Uttering Language In Natural Environments)

Hovy, 1988b] aims to produce different output text from the same semantic in­

put (in the form of CDT representation) according to parameters which describe

Chapter 3: Related Work 33

pragmatic settings. These include conversational settings, speaker and hearer's
characteristics and the relationship between them. Depending on the value of
these parameters the output text is constrained in different ways. However, Hovy
considers that these factors are too general and describes some rhetorical goals in
order to provide rules to constrain the generation. Examples of these rhetorical
goals are formality (with associate values: highfalutin, normal, colloquial), sim­
plicity (simple, normal, complex), force (forceful, normal, quiet), colour (facts

' only, with'colour) and respect (arrogant, respectfulv neutral, cajohng).

The values of the rhetorical goals are determined on the basis of supplied values

of the conversational parameters. Figure 3.7 shows an example of highfalutin and

informal texts generated by PAULINE(the rhetorical goals affect decisions such as

the content selection, sentence organisation and word choice).

H I G H F A L U T I N :

"In early April, a shanty-town - named Winnie Mandela city - was
erected by several students on Beinecke Plaza, so that Yale University
would divest from companies doing business in South Africa. Later, at
5:30 A M on April 14, the shanty town was destroyed by officials; also
at that time, the police arrested 76 students. Several local politicians
and faculty members expressed criticisin of Yale's action. Finally, Yale
gave the students permission to reassemble the shanty town there and,
concurrently, the university announced that a commission would go
to South Africa in July to investigate the system of Apartheid."

I N F O R M A L :

" Students put a shanty town, Winnie Mandela City, up on Beinecke
Plaza in early April. The students wanted Yale university to pull their
money out of companies doing business in South Africa. Officials tore
it down at 5:30 on April 14, and poHce arrested 76 students. Several
local politicians and faculty members criticised the action. Later, Yale

- • - • allowed the students to put it up.there.again. The university said that
a commission would go to South Africa in July to study the system of
Apartheid."

Figure 3.7: Example of a formal and informal text produced by PAULINE

Chapter 3: Related Work 34

3.4.2 Generation from Conceptual Graphs

Conceptual Graph (CG) [Sowa, 1984] is a knowledge representation that was pri­

marily developed by Sowa aiming to represent natural language semantics.

D R I N K

A G N T

B A B Y : {*}

(PART) A T T R

B E L L Y : {*

A T T R

F A T

M I L K

(C O N T)

1 1
B O T T L E : {*}

\

N E W

Figure 3.8: Example uttera.nce graph input

A CG is a finite, connected graph with nodes representing either concepts or

conceptual relations that relate two concepts. Figure 3.8 shows an example of CG.

The concepts are represented by boxes and the relations by circles.

Sov/a's work in generation

Sowa's generation process concerns the mapping of conceptual graphs into words.

The sequence of nodes and arcs traversed in mapping a graph to a sentence is called

the utterance path. For complex graphs, the utterance path may visit a concept

more that once and depending on the type of language (pre-order, postorder or

in-order language) words should be produced at the first, last or some intermediate

visit to the node. However, independently of the number of visits, a concept can

only be uttered at one of the visits.

Chapter 3: Related Work 35

The same graph can be expressed in many different sentences, depending on
the starting point and direction of the utterance path. For example, the following
sentences can be generated from the graph of Figure 3.8:

B l i t h e babies w i t h f a t b e l l i e s d r i n k f r e s h m i l k i n new b o t t l e s

Fresh m i l k i n new b o t t l e s i s drunk by b l i t h e babies w i t h f a t b e l l i e s

B l i t h e babies t h a t d r i n k f r e s h m i l k i n new b o t t l e s have f a t b e l l i e s

D r i n k i n g f r e s h m i l k i n new b o t t l e s i s done by b l i t h e babies w i t h f a t

b e l l i e s

As not all word orders are possible, Sowa defines six universal grammar rules

for translating a CG into a sentence. These rules are claimed to be language inde­

pendent and are complemented by language dependent rules. These rules decide

which arc to follow when there is a choice and also insert function words and word

inflections. These grammar rules are encoded in an Augmented Phrase Structure

Grammar (APSG). APSG is an extension of a context-free grammar augmented

with conditions to be tested and actions to be performed. The rules are applied in

a top-down goal directed manner. " ' •

Other CG generation works are:

• Nogier and Zock's work [Nogier and Zock, 1992] on generation is used in the

information retrieval system Kalipsos.

• Dogru and Slagle [Dogru and Slagle, 1992

• Rijn [van Rijn, 1992] uses a special kind of graph called a conceptual depen­

dency graph which contains low-level primitives.

A common problem in the systems cited above is that of the simplicity of the

input graphs (i.e can be expressed as one sentence).

Chapter 3: Related Work 36

3.5 Generation from SNePS

The SNePS (Semantic Network Processing System) [Shapiro and the SNePS Im­

plementation Group, 1993] is 'a knowledge representation and reasoning system

that allows one to design, implement, and use specific knowledge representation

constructs, and that easily supports nested beliefs, meta-knowledge, and meta-

reasoning'.

With respect to generation, Shapiro describes a generalised ATN (see Section

2.2.2) that supplies consistent semantics for a combined parsing-generation gram­

mar. This allows an ATN grammar to be constructed so that the 'parse' of a NL

question is the NL statement that answers it . The goal of the generation part of

this process is, given a node, to express the concept represented by that node as a

NL surface string.

Another system based on SNePS is the KALOS system [Chne, 1994]. This sys­

tem generates descriptions of the M68000 processor. It first produces very simple

sentences and then a revisor component passes revisions suggestions back to the

deep generator (for conceptual revisions) aind the surface realiser (for stylistic revi­

sions). The system uses SNePS representations to represent a Domain Knowledge,

to encode a simple schema approach (see Section 2.2.1), to represent the grammar

rules of a unification based approach (see Section 2.2.2) and to perform revision

stages. A weakness of the system is that the domain and application are very

restricted.

3.5.1 Generation from M T M

The Meaning Text "Model (MTM)", which is based on the Meaning Text Theory

Mel'cuk and Polguere, 1970], is a lexicon-based approach which describes the bidi­

rectional mapping between linguistic meanings and texts which carry those mean­

ings.

During the generation process, this approach assumes that nodes and arc labels

Chapter 3: Related Work 37

in the semantic network input correspond directly to lexemas. A M T M model
contains a M T M lexicon which has a very rich lexical information which aim to
cover all possible linguistic knowledge about constrains on the combinations of
words. Output utterances are produced in MTM by performing transformations
that restructure the network using the information contained in the lexicon.

A limitation in this approach is the assumption that the generator receives

sentence sized portions of semantic representation as input.

The GOSSIP system (Generation of Operating System Summaries in Prolog)

lordanskaja et a/., 1991] is based on the M T M approach. This system makes the

assumption that some other process has built a sentence-sized semantic network

from which it will realize a sentence. It also receives as input a communicative

structure which marks the theme and rhyme of the utterance to be produced.

Generation comprises four transformation stages: Semantic network reductions.

Root lexical node choice. Deep syntactic structure paraphrasing using lexical func­

tions and surface realisation (choosing alternatives syntactic structures).

Another system following this approach is the Joyce system [Kittredge et al,

1991 .

3.6 Current Generation in LOLITA

This section presents a description of the LOLITA generator [Smith, 1995],

Garigliano et ai, 1992] and its components. The generator receives as input the

whole LOLITA semantic network (SemNet) and like the majority of the NLG sys­

tems, adopts a 'separated architecture'. However the distribution of tasks between

the two components, the planner and the plan-realiser, differs from other systems

as the plan-realiser can undertake tasks more commonly performed by planners.

Chapter 3: Related Work 38

3.6.1 Input

The generator in LOLITA receives the whole SemNet as its input. There are other

systems with similar input but they generally delimit the content by 'cutting out'

apportion of the net. In LOLITA, SemNet is accessible throughout the whole

generating process. This is based on the assumption that the meaning of a node is

represented by the whole of the semantic network.

3.6.2 Planner

The role of the planner in the LOLITA generator is to provide the plan-realiser

with instructions about the content and style of the utterance to be produced. The

content will be given by passing one or more references to nodes in SemNet. The

instructions refer to issues outside the scope of the surface language. The reference

to at least one node should be passed to the plan-realiser.

A completed planner has not yet been implemented; instead the operation of

the planner is simulated. For this purpose the system has been provided with:

• Operation methods Node by node is an operation method where the plan­

ner is not required. The plan-realiser is passed SemNet with a reference to

a particular node inside it and generates an utterance corresponding to the

content of the node. This operation has been useful in the debugging and

development of LOLITA as natural language utterances are easier to under­

stand than the SemNet representation itself.

• Realisation Parameters Realisation parameters are switches which affect

the manner in which the • plan-realiser produces the utterance. They can

be set by the planner (or simulated planner) or the underlying application.

There are four types of realisation parameters:

-Grammatical: affect the grammatical style, i.e. Active/Passive, Dative/Non-

Dative.

Chapter 3: Related Work 39

- Style: affect the generic style, i.e. length of sentences, number of adjectives,
use of synonyms.

-Content: Affect 'what' should be said in the utterance.

-Abstract Transformations: affect which abstract transformations should be

produced.

• Commands The 'story' command allows the user to play the role of the

.. planner. The user inputs to the plan-realiser event node references and a

list of realisation parameters to be applied to the nodes. The user also pro­

vides information about each node such as 'Must describe separately'/'Must

describe'/ 'May describe'/'Do not describe'.

Smith claims that a real planner with the features described above is achievable

because:

• The planner is not always needed for the generation system and the demands

on it need not necessarily be high. Some applications could by-pass the

. planner even i f . i t did.exist. • , • • .. .:

• An intermediate planner already exists for the dialogue application. It com­

prises two elements, a template defining the current situation in terms of

dialogue structure elements and a based reactive element which models the

'individuality' in the dialogue situation.

• The planner will not have to find the optimal solution.

• The planner does not have to know linguistic details. The planner only makes

decisions on a conceptual level.

• Other components of the LOLITA system will aid the planner in its tasks.

• A planner is already being developed using state of the art hierarchical ab­

straction planning methods [Long and Fox, 1995] [Fox and Long, 1995 .

Chapter 3: Related Work 40

3.6.3 Plan-Realiser

The module has been called plan-realiser to differentiate it from realisers in more

traditional approaches. It may perform tasks traditionally performed by the plan­

ner in other systems (i.e. content selection, sentence organisation).

The role of the plan-realiser is to produce utterances in a surface language (the

current generator is currently able to produce English utterances) following the

instructions passed to it by . the planner. As seen in the previous section these

instructions will at least contain references to one or more nodes in SemNet.

The plan-realiser generates an expression for that node taking into account the

rest of the planner instructions. If this set of instructions is not detailed or does

not exist, then there are some default instructions to apply to the input nodes.

So the plan-realiser can perform tasks that in other approaches correspond to the

planner. In case of conflict in applying all the instructions the plan-realiser takes

decisions by itself. It decides which instructions have more priority and it could

even decide not to apply some instructions.

Tl'je plan-realiser must relate concepts, contained in the nodes, to lexical items

corresponding to the surface language. Concepts have a smaller grain-size than

words in the approach followed by LOLITA (see Section 2.1) so only some concepts

have a link to a single lexical entry; they are named 'language-isomorphic' concept

nodes. For those concepts not corresponding to a lexical entry the plan-realiser

must search for 'language isomorphic' concepts in SemNet in order to adequately

describe them. This search depends on:

• The current content of the network. SemNet is the input of the generator so

the most influential factor. The search depends on what is actually present

in the network (in terms of arcs and nodes). This represents the procedural

control (see Section 3.3.1).

• Grammar. The plan-realiser contains grammatical rules that constrain the

search in order to produce correct utterances. Obviously, there are different

grammatical rules depending on the surface language.

Chapter 3: Related Work 41

• The realisation parameters. These parameters represent planner instructions

and affect the order of the search across the arcs.

A more detailed solution of the plan-realiser will be given in the next chapter

when describing the solution for the generation of Spanish utterances. The Spanish

plan-realiser has been integrated with the existing English one using some of its

solutions for similar structures in the two surface languages.

3.6.4 Generation Gap

The problem of the 'generation gap', relating to the interface between planner and

realiser, has been overcome in this approach as responsibility has been shifted from

the planner to the plan-realiser.

As seen in Section 3.2.3 this can be a serious problem in other architectures, as

there are complex interactions between planner and realiser (interleaved systems),

or the planner responsibility is overloaded in order to make sure that its decision

can be realised (pipelined systems).

In the architecture of the LOLITA generator the planner does not make deci­

sions on the linguistic level so that simplifies the interface between the modules.

Furthermore the realiser can make decisions by itself in the case of conflicting

instructions or the lack of detailed ones to ensure the production of a correct ut­

terance.

3.6.5 Abstract Transformations

Another aspect of the solution to NLG adopted in LOLITA is the use of Abstract

Transformations. These transformations act on the SemNet input before it is

passed to the plan-realiser. Abstract transformations change the SemNet repre­

sentation from normal forms to alternative forms which represent the same or a

very similar meaning. They lead to changes in the utterance produced on surface

language; Abstract transformations can produce variation which apart from being

Chapter 3: Related Work 42

more natural, can satisfy stylistic constraints.

The normal forms used in the SemNet representation are not as restricted as

other normalised forms (for example Schank's CDT). They have been chosen in such

a-way as to allow the generator to produce more than one utterance to express an

event.

The transformations described below will also be available when generating

Spanish. . . • ...

Substitution of an Antonym Action

This abstract transformation can be performed when the action concept of an

event is deemed by the semantics to have an antonym. The event can be negated

and the action replaced by its antonym. Events which have actions rather than

non-actions have been chosen as normalised forms.

Transformations on Copula Actions .

Copula actions are those which take complements. I f the complement has

an antonym a transforrnation can be performed replacing the complement by its

antonym and negating the action of the event.

That man is tall —>• That man is not small

Velvet feels smooth —Velvet does not feel rough

Transformations on Complemented Verb Pairs

Some actions which describe a transfer from an origin to a destination have a

complement which can be used to describe the same event in the opposite direction.

A transformation can be carried out by changing the action to its complement and

swapping the roles of the origin and destination of the event.

Chapter 3: Related Work 43

John bought a car from the salesman —^ The salesman sold a car to John.

Event 1 Event 2

Subject_: Subject_:

John \ y the salesman

action_: ^aaion_:

buy chai] cnmplempm > ^̂ jj

object_: object_:

a car X a car

origin_: / \destination_:
the salesman ^ John

(other roles) (other roles)

Figure 3.9: Example of a complemented action pair transformation

This transformation is only valid iMhe concepts representing the origin and

the destination are of a compatible 'family"' type (family is one of the controls

attached to the nodes in SemNet, see Section 2.1.1). An example of an incorrect

transformation is:

/ bought some fruit from the shop —>• The shop sold me some fruit

Transformations on Multi-subject Events

Events with more than one subject can be transformed changing some of these

subject links to co-subject links. The normalised form of the semantic network

contains multiple subjects rather than co-subjects.

Steven and Paul went to play football

Steven went to play football with Paul

De-lexical Transformations

De-lexical verbs are those that add very little meaning to a sentence (i.e. 'to

have', 'to make', 'to give'); most of the meaning is given by the noun which is

the object of the verb. The normal form in the semantic network doesn't contain

Chapter 3: Related Work 44

actions which are realised using de-lexical verbs.

Joh72 kissed Sally —John gave Sally a kiss

You showered —)• You had a shower

Steven arranged to meet Paul in London —>• Steven made an arrangement to meet

Paul in London

Figure 3.10: Examples of uses of de-lexical verbs

However, those de-lexical verbs have another meaning which is not de-lexical.

For example Martin has a nice car, The bomb made a big noise.

Generalisation or Specialisation of concepts

• Generalisation of concepts. The plan-reahser already has the ability to

find paraphrases therefore a transformation can be performed by removing

the relevant lariguSge link from a node. As the plan-realiser will not be able

to find a lexical entry for the concept represented in that node it must search

for a more general concept which is LI and realise that concept together with

other information which differentiates the meaning of the original and the

more general concept.

remove LI link to 'motorbike' ^ 'motor vehicle with two wheels'

• Specialisation of concepts These transformations work in the opposite

direction to the previous ones. An event can contain enough information

to allow a move further down the event hierarchy to find a more specialised

action. This information may then be dropped. The example involves an

instrument role as the relevant information to allow the substitution of the

action.

/ wounded you with a gun —>• / shot you .

Chapter 3: Related Work 45

3.7 Chapter Summary

This chapter has presented an overview of the state of the art in Natural Language

generation. It has concentrated on the areas of research that are the most relevant

to that which is involved in the LOLITA generator. The chapter has also con­

centrated on systems which take semantic rich information similar to the SemNet

representation used in the LOLITA system.

The latter part of the chapter has' discussed the architecture of the LOLITA

NL generator.

Chapter 4

Generating Spanish wi th LOLITA

This chapter presents the solutions adopted to generate Spanish within the LOLITA

system. The goal of this research was not to build a new specific Spanish generator,

but aimed instead at modifying the existing generator in order to enable it to

generate both English and Spanish. Therefore, the Spanish generator is based

upon the same theoretical principles as the current English generator. The same

input, SemNet, and planner module (see Section 3.3.2) are considered for both

generation processes. Spanish linguistic information and data have been added to

SemNet to enable LOLITA to cope with Spanish. The plan-realiser module has

been modified by developing new solutions for those grammatical features where

English and Spanish languages differ. This chapter discusses the solutions adopted

to produce correct Spanish utterances and describes implementation details to show

how the features of Haskell have been utilised in the development of the Spanish

Generator.

Chapter 4: Generating Spanish with L O L I T A 47

4.1 Adding information to the Semantic Network

The LOLITA semantic network, SemNet, is formed by a hierarchy of concepts

linked by arcs. Concepts have a smaller 'grain-size' than words (lexical entries in

any surface language) (see Section 2.1) and those concepts that can be described by

a lexical entry are called 'language-isomorphic' (LI) concepts (see Section 3.4.3).

LI concepts in Spanish are linked to the appropriate Spanish word by the link

Spanish-. -- , , ; . •

Two new commands were added to the LOLITA's interface to input these lexical

entries. These commands allow either the input of a new word linking it to a

concept of SemNet or the linking of an existing word to more than one concept.

The interface also allows the input of lexical information related to the new words in

the form of controls (see Section 2.1). The next section describes the new controls

added to the existing set because of the nature of the Spanish grammar.

4.1.1 New Syntactic Features

The Spanish grammar contains some features which are not found in the English

grammar. New controls have been added to SemNet to cope with these features.

They are as follows:

• Gender. Al l nouns in Spanish are either masculine or feminine in gender^and

adjectives agree with nouns and pronouns in number and, if possible, gender.

• Adjective position. The position of adjectives in relation to nouns or

pronouns is not fixed like in English. Some of them can only either precede

or follow the noun.

• Verb forms. The Spanish verb system contains more tenses than the English

system. A control indicates the tense of a particular verb form.

^there are one or two nouns of undecided gender.

Chapter 4: Generating Spanish with L O L I T A 48

• Irregular Forms. The irregular plural form of nouns, irregular forms of

verbs and other irregular forms in the Spanish grammar are now present in

the linguistic part of SemNet.

4.1.2 Irregular Forms

Exceptions to the normal transformations can be found in cases such as forming the

plural of a noun,' changing the gender of an adjective and conjugating verb forms.

These irregular forms are present in the linguistic zone of SemNet linked to the

root form of the corresponding word by the link root-. The infinitive form has been

chosen as root form for verbs so the nodes containing the infinitive of a verb are

linked to the concept representing its meaning. Masculine for the gender control

and singular for the number control have also been chosen as root forms for those

words that can change their gender or number. Figure 4.1 shows an example of

a simplified portion of SemNet for the demonstrative adjective aquel (that) which

has irregular feminine and plural forms.

gender: feminine
number: s i n g u l a r

A Q U E L L A

[T H A T ^
Spanish root

A Q U E L \ '• [AQUELLOS

A Q U E L L A S

gender: m a s c u l i n e
number: p l u r a l

gender: feminine
number: p l u r a l

Figure 4.1: A simplified portion of SemNet.

Regular transformations are produced by the plan-realiser from the SemNet

root forms (see Section 4.3.1 for nouns and adjectives and Section 4.3.3 for verbs)

by apialying morphological rules.

Chapter 4: Generating Spanish with L O L I T A 49

4.2 Integration with the Current Plan-reaHser

The Spanish generator has been merged with the English generator in the plan-

realiser module. Both generation processes receive the same input, the whole Sem­

Net, so linguistic information about both languages is accessible for the generation

module.

The same planner is also used by both generation processes. A completed

planner has riot yet been implemented but the operations provided to simulate it

(see Section 3.4.2) are valid for Spanish generation as the planner makes decisions

according to issues which are not surface language specific.

The work in this project has dealt mainly with the integration of the Spanish

generation process in the current plan-realiser module. The Spanish generator has

been built based upon the same theoretical principles as the English generator, the

same approaches have been followed and a good deal of the same code has been

utilised.

The plan-realiser must either relate concepts to lexical items corresponding to a

particular surface language or search for LI concepts to describe adequately non-LI

concepts. This search depends on three factors: the SemNet content, realisation

parameters and the grammar (Section 3.4.3). The two first aspects are common

to both generation processes as they correspond to the input and planner module

and Spanish and English grammatical rules are merged in the plan-realiser module

composing the third factor. New grammatical rules are applied to produce correct

Spanish utterances when the existing rules are not valid for this purpose.

For example when generating the sentence 'Roberto wants a motorbike' the

same word order^ can be applied in English and Spanish.

Roberto wants a motorbike (SVO)

Roberto quiere una moto (SVO)

^Although compared with English word order in Spanish is free, the Subject-Verb-Object
(SVO) order is usually considered as the 'normal' order.

Chapter 4: Generating Spanish with L O L I T A 50

Instead, if the entity motorbike has already been mentioned and can be prouom-
inalised then different rules are applied for each language as the pronoun is shifted
before the verb in Spanish.

, Roberto wants it (SVO), ' i t ' ^ 'motorbike'

Roberto la quiere (SOV), 'la' =^ 'moto'

The next section provides details about the solutions adopted to produce Span­

ish besides relevant examples generated by the LOLITA generator.

4.3 Generation in Spanish

4.3.1 Generation of Entities

Theoretically every concept in SemNet is defined by the whole of the network

(Section 2.1.1). However, it is impractical and unnecessary to realise the whole

network each time an entity is to be expressed. What is required is to generate an

expression which defines a particular entity in sufficient detail and the uniqueness

of the entity generated must be assured. The default in the LOLITA generator is

to produce the most specific realisation of the concept (i.e. if the concept is LI

then the lexical entry linked to it will be generated).

The problem of deciding when to generate an alternative paraphrase to express

a concept has not yet been tackled in the LOLITA generator. The decision will be

further distributed between the planner and plan-realiser [Smith, 1995 .

If an entity concept node is LI (it has a link to a lexical entry) then the plan-

realiser can generate this lexical item with the correct quantification (given by

the rank control). For example if a concept represents a set of entities then the

root of the lexical item has to be pluralised. Morphological rules produce regular

plurahsations. For words with irregular plurals, these are present in the Unguistic

part of SemNet.

If a concept is not LI then the plan-realiser has to search for an alternative

Chapter 4: Generating Spanish with L O L I T A 51

expression. If the node has more than one universal concept then the plan-realiser

has to move across the universal links (this process may be recursive if any of the

universals is not LI) to find the lexical items for each of the universal concepts of

the original concept. Heuristics can be used to order these concepts. In particular,

if any of the universal is linked to an adjective, its position in relation with the

noun of the entity (which will be represented by another universal concept) has to

be controlled as some adjectives are restricted in their position. The next examples

show how the adjectives can be positioned before' or after the noun:

iLii gran coche (a great car)

suelos limpios y brillantes (clean and bright floors)

'el poderoso ejercito romano' (the powerful Roman army)

Another feature of the Spanish grammar is that the adjectives must agree in

gender and number with the noun involved in the same entity.

un buen cocinero (a good cook)

una buena cerradura (a good locker)

buenos amigos (good friends)

buenas comidas (good meals)

Determiners

D e f i n i t e a r t i c l e s I n d e f i n i t e a r t i c l e s

Masculine Feminine Masculine Feminine

s i n g u l a r el io un una

P l u r a l los las unos Unas

Figure 4.2: Articles in Spanish.

A determiner may also be required to correctly realise an entity. The plan-realiser

must ensure that a correct determiner is used (although in some cases more than

one determiner could be correctly used).

Chapter 4: Generating Spanish with L O L I T A 52

There seems to be little discussion in the NLG hterature about rules for the
generation of articles. The uses of the definite article treated in the current
LOLITA's English generator ([Smith, 1995], [Garigliano, 1992]) are vaUd for the
generation of Spanish utterances:

• The definite article is used to refer to an unique element in the external world

or at least to an unique element in the common knowledge of the writer and

reader. For exarriple, 'la luna' (The Moon), 'el gobierno' (The Government).

I t will be up to the planner to mark concepts as being uniquely defined by

the context.

• The definite article is used to show the uniqueness of a concept when it is

defined in the sentence. For example, 'la moto que yo guardo en mi garage'

(the motorbike that I keep in my garage).

• The definite article is used to refer to something that has been introduced

before and is unique in the focus of discourse. For example, 'Yo encontre un

perro, el perro me mordio' (1 met a dog, the dog bit me).

• The definite article is used to refer to something that is imphcitly unique in

the focus of discourse. For example, 'Yo fui a un restaurante. La camarera

era bonita' (I went to a restaurant. The waitress was pretty).

• The definite article is used as a determiner for universal sets. For example,

'El caballo es un animal precioso' (The horse is a beautiful animal).

• The definite article can be used in a situation where there is no 'script' but

it is used to trigger one. For example, 'Estuve buscando a Russell. La oficina

estaba vacia' {\ was looking for Russell. The office was empty). This complex

use of the definite article has not been considered in the LOLITA's generation

proccess.

Additionally, the Spanish generator uses the definite article in other different

grammatical cases. Some examples are as follow:

Chapter 4: Generating Spanish with L O L I T A 53

• The definite article is required before generic nouns, i.e. nouns than refer to
something in general. These are typically

- Abstract nouns: la democracia (democracy).

- Substances in general La sangre no tiene precio (Blood has no price)

- Countable nouns which refer to all the members of their class:

'Tom ama los coches' (Tom loves cars)

•^/lmo/as y?07-es^ (I love flowers)

The article is omitted before nouns that refer not to the whole but only

to part of something. *Yo quiero cerveza* (I want beer), *Ellos nos dieron

lapiceros* (they gave us some pencils).

• I f two or more nouns appear together, each has its own article if they are

individually particularised:

'el padre y la madre' (the father and mother)

'el agua y la leche' (the water and milk).

There are some special transformations when using articles:

• El and un are always used immediately before singular feminine nouns be­

ginning with stressed a- or ha-, despite the fact that all the adjectives and

pronouns that modify these nouns must be in the feminine form. The femi­

nine forms of the article are used with the plural forms of these words.

el agua (water)

el/un alma humana (the human soul)

el/un dguila (eagle)

• De plus el is shortened to del (of the). A plus el is shortened to al (to the).

This rule is not used when the article is part of a proper name.

'Puedo ver al elefante' (I can see the elephant)

Wo cojas cosas del suelo' (Do not take things from the floor)

Chapter 4: Generating Spanish with L O L I T A 54

Proper Nouns

Entities with a rank control of value Named Individual are realised as proper

nouns. Currently the plan-realiser assumes that a named individual is adequately

specified generating its name. In the future the planner will decide whether the

name is sufficient or more information is required.

Entities with Relative Clauses

An entity may be involved in events which may define that entity more fully.

Relative clauses or 'special' relative clauses may be used to describe those events.

The decision of when a relative clause is needed to define a concept will be a job

for the planner [Smith, 1995]. In the absence of instructions from the planner, the

plan-realiser generates relative clauses for entities depending on the information

of SemNet, the grammar and the value of the rhythm realisation parameter. The
» .

rhythm parameter limits the number of nested clauses to zero, one or two (a greater

number leads to complex and incomprehensible utterances) and a separate sentence

can be used if an event has to be mentioned and can not be produced as a relative

clause. Details about the generation of relative clause events are provided in the

next section.

Some events can not be expressed using normal relative clauses and need special

rules for their realisation. Some examples are as follow:

• Possessive clauses. If an entity is the object of an event with the action

'poseer' (to own) or the internal action poss_relate then the plan-realiser

can link the object and subject (the owner) with de to express the event or

can generate a possessive adjective if the owner has been mentioned. The

event can also be realised as a normal event:

event: 'Paul posee un libro' (Paul owns a book)

'El libro de Paul' (Paul's book)

'El libro que Paul posee' {The book that Paul owns)

Chapter 4: Generating Spanish with L O L I T A 55

event: 'Posees dos relojes' (You own two watches)
'Quiero tus relojes' (I want your watches)

'Quiero los dos relojes que posees' (I want the two watches that you own)

A possessive article agrees with the owner in the person and with the object

in the number.

• Noun co-locations. Some internal events can be realised using a collocation

of nouns. For example:

- action is_part_of: If an entity is the subject of an event with such a

action the object can be used as a collocation before the entity: For

example 'coche bomba' (ca,r bomb).

- action controls.: For example 'mecdnico de coches' (car mechanic),

conductor de trenes (train driver).

- action is_a: if the object of the event is an attribute (marked by the

control type) then the object can be expressed as an adjective. For

example 'Yo cogi los tomates verdes'[l took the green tomatoes) instead

of 'Yo cogi los tomates que estabari verdes'[I took the tomatoes that were

green)

4.3.2 Generation of Events

The relationships between entities are expressed as events in SemNet. These events

can be generated by realising the entities involved in them together, assigning each

entity a different role (i.e. subject, verb, object).

Word order can be considered â free in Spanish. The factors that call for a

particular word order depend on considerations such as style, context and rhythm.

The planner may provide instructions (with these considerations) which limit

the number or order of clauses (a role in the event is realised by a clause) to be

expressed. In the absence of such instructions, and depending on the length and

rhythm realisation parameters, the plan-realiser will normally generate all clauses

Chapter 4: Generating Spanish with L O L I T A 56

(although it is unhkely that every clause will be present in a particular event) in
the following order (It should be noted that this is the same order already followed
by the current generator which has been found valid for the generation of Spanish
utterances): certainty, time, subject, verb, object, co-subject, origin, destination,
instrument, location and goal. However, different word orders will be considered
in questions, passive sentences, some relative clause events, events with certain
actions ('gustar' (to like), 'disgustar' (to dishke), 'importar' (to care), etc) and
when using pronouns to' express some of the clauses.

Generating Event Roles

Since the same clauses are considered by the Spanish and English generator and

both processes receive the same input, the existing algorithm has also been applied

in the process of generating Spanish. This algorithm, that realises the roles asso­

ciated with an event, is an example of procedurah.control within the plan-realiser.

The plan-realiser will only attempt to realise clauses corresponding to roles if these

roles are actually present in the input event. There may be cases, however, when

a clause for a role that is not explicit in a particular event is required, in this case.

the role has to be inherited from an event higher in the hierarchy.

• Subject clause (subject.). The subject can be omitted in some cases where

pronominalisation is allowed; in particular, the pronouns corresponding to the

first and second persons (yo/tu) are always omitted (except for the purpose

of emphasis). More details about pronouns are provided in Section 4.3.4.

• Object clause (object_). If a pronoun is used to realise the object clause

the word order is altered as object pronouns are shifted before the verb or

attached to the verb if the infinitive or gerund forms are required, Me amas'

(you love me), 'Estabas gritdndome ' (yon were shouting at me), (more details

about pronouns are provided in Section 4.3.4). In some cases where the object

is an event a pronoun representing the subject of this event can also be shifted

before the verb of the main event (i.e.Te force a golpear el balon' (I forced

you to hit the ball).

Chapter 4: Generating Spanish with L O L I T A 57

The preposition 'a' is used before objects denoting human beings or animals.
For example,

'Llevo a las ninas al zoo' (He took the girls to the zoo)

'Odias a tu jefe' (You hate your boss)

Regue las flares* (I watered the flowers) ('a' not required)

• Time clause (time_). If the time clause is not an event then simple heuristics

are used to produce the correct linking phrases for explicit times; for example

"El martes A las 9pm', E n 1995' etc) ^. If an event appears in a

time slot, then depending on whether the event is to be 'opened' or 'closed'

(see events in events), the phrases 'cuando' or 'al tiempo de' will be used

(e.g.,'Cuando la bomha exploto, el taxi fue destruido' or 'Al tiempo de la

explosion de la bomha, el taxi fue destruido' ('When the bomb exploded,

the taxi was destroyed' or 'At the time of the bomb explosion, the taxi was

destroyed')). The plan-realiser is recursively called to generate the clause.

• Certainty clause (certainty.). The certainty link can be added to events by

the LOLITA's analysis process (e.g., using inference methods such as analogy

Long and Garighano, 1994], or source control [Bokma and Garighano, 1992J)

and is a measure of LOLITA's acceptability of the truth of an event. The

plan-realiser uses phrases (dependent on their value of certainty and the plan­

ning instructions) such as 'hay una ligera posibilidad de que', "es probable que..'

etc.

• Co-subject clause (co_subject_). Co-subject clauses are reahsed using the

preposition 'con' and a recursive call to the plan-realiser.

'Fui con Mike a Londres' (l went with Mike to London).

• Origin clause (origin_). Origin clauses are realised using 'de' (or 'del' if the

article 'el' is to be generated after the preposition. See Section 4.3.1) and a

recursive call to the plan-realiser. For example:

^When the time representation of LOLITA is improved these heuristics will be more precise.

Chapter 4: Generating Spanish with L O L I T A 58

'Recibi un regalo de Carol' {I received a present from Carol)
'Ayer vine de Madrid' (Yestevday I came from Madrid)

If the origin represents a human being and a pronoun can be used to stand

for it (i.e. the origin has already been mentioned) then depending on the rest

of roles to be generated a 'prepositional pronoun' or an 'object pronoun' is

reahsed (Section 4.3.4). For example, Ella me compro un libro (she bought

a book from me).

• Destination clause (destination-). Destination clauses are reahsed using

'a' or ('al' if the article 'el' is to be generated after the preposition. See

Section 4.3.1) and a recursive call to the plan-realiser. For example:

'Compre una flor a Mary' {I bought a flower to Mary)

'Conte un cuento a los ninos' (I told a tale to the children)

I f the destination represents a human being and a pronoun can be used to

stand for it (i.ei'ftie destination has already been mentioned) then depending

on the rest of roles to be generated a 'prepositional pronoun' or an 'object pro­

noun' are reahsed (Section 4.3.4). For example, Te did una moneda' {she/he

gave you a coin). If the destination represents a location and pronominalisa-

tion is allowed then 'alii ' can be used.

• Instrument clause (instrument-). If the instrument clause is not an event

then it can be realised using 'con' and a recursive call to the realiser. For

example 'Paul mato a Steven con una daga' (Paul killed Steven with a dag­

ger). I f the instrument is an event then it can be realised using the gerund

form in the action, 'la gente puede reservar habitaciones llamando al hotel'

(people can book rooms by calling the hotel).

• Location clause (location-). Location clauses are realised by generating the

correct preposition before the location. More details about the location clause

are further provided in this chapter (see Positions).

• Goal clause (goal_). If the goal clause is not an event then it can be realised

with 'por' and a recursive call to the plan-realiser. For example

Chapter 4: Generating Spanish with L O L I T A 59

* event: 28949 *
u n i v e r s a l . :

event - 7688 - rank: universal (happen.) - d e f i n i t i o n ,
cause.:

event - 28946 - rank: universal (i s . a)
event - 28944 - rank: universal (i s . a)

sub jec t . :
roberto - 19845 - rank: najned i n d i v i d u a l

a c t i o n . :
give - 3936 -

o b j e c t . :
t i p - 28948 - rank: i n d i v i d u a l

d e s t i n a t i o n . :
d r i v e r - 28945 - rank: i nd iv idua l

t i m e . :
pas t . - 20991 -

date:
12 June 1993

source.:
roberto - 19845 - rank: neoned i n d i v i d u a l

* > | c * + * ; (c * * * * * * * * * * * *

Diste una gran propina al conductor porque el taxi que Uamaste era acogedor.
Estabas cansado asi que te fuiste a tu casa.

Figure 4.3: Exarhple of an event in the LOLITA representation

'Robe el banco por dinero' (I robbed the bank for money)

'Mataria por ella' (I would kill for her/it)

If the goal is an event and the subjects in both events are different then 'para

que' and a recursive call to the plan-realiser can be used. For example:

'John venderd la bicicleta para que Steven pueda comprar una moto' (John

will sell the bicycle so that Steven can buy a motorbike)

If the subjects are the same 'para' can be used and the event generated with

a forced infinitive. For example:

'Escrihi la carta para felicitarla' (I wrote the letter to congratulate her)

Chapter 4: Generating Spanish with L O L I T A 60

Passive

Sentences in passive voice can be generated when the action of the event is transitive

(and it is not a sentential action with an 'open' event required), there is an explicit

object and the event is not marked as a command.

There is more than one construction for the passive:

• Using the appropriate tense and person of'ser' ('to be') and the past participle

of the original verb, which agrees in number and gender with the subject of

'ser' (the object of the original event). The subject can be generated by using

the preposition 'por' (by) for each subject involved in the event.

'Sally es amada por John y por David' (Sally is loved by John and David).

• When there is no an explicit subject and the verb is in third person the

passive can be produced with the 'passive se'

'Los cangrejos se cuecen en vino bianco' (The crabs are cooked in white wine).

Questions

Questions without a question pronoun are represented as normal events with the

status- of question. They are produced by generating the verb before the subject.

I Vino el chico a mi casa? (Does the boy come to my house?)

Questions with a question pronoun are represented using normal events with the

role to which the question relates marked. A question pronoun is realised ('que,

quienes, quien, cual, cuales, donde, cuando, por que') followed by the question

event omitting the role denoted by the pronoun. For example:

'^Donde estd el gato?' (Where is the cat?) for location

'iPor que no comes el polio?' (Why do you not eat the chicken?) for cause

'^Quienes fueron a la fiesta?' (Who went to the party?) for animate subject.

Chapter 4: Generating Spanish with L O L I T A 61

Relative Clause Events

As described in Section 4.3.1 an entity can be defined in more detail by describing

events in which the entity is involved. Relative clauses are attached to the entity

to reahse these events. The plan realiser must first generate a relative pronoun

according to the role the entity plays in the event to be expressed:

• .The entity js the subject of the event: the pronoun que is generated.

'El chico que rompio el cristal' (The boy who broke the glass)

'El coche que gano la carrera' (The car which won the race)

• The entity is the object of the event: the pronoun que or a quien/quienes is

generated when the entity is animated (marked by a control) and the pronoun

que when the entity is inanimate. The verb is generated before the subject

to keep the verb close to the relative pronoun:

'La mesa que usaste' (the table that you used)

'El hombre que ama Sally' (the man whom Sally loves)

'El chico a quien diste una camisa' (the boy whom you ga,ve.a shirt)

If the entity is the object of an 'is_a' event then the plan-realiser produces

the following: 'de quienes' or 'de los/las cuales' (animate or not) followed by

the subject, followed by the correct present form of 'ser' (is/are), followed by

'uno/una' (singular) or 'miembros' (plural):

'Hombres locos de quienes Rasputin es uno' (Mad men of whom Rasputin is

one)

• If the entity plays other roles the preposition corresponding to those roles

(see generation of event roles) followed by 'qtiien/quienes' (depending on

the number of the entity) when the entity is marked animate or followed

by 'el/la/los/las' 'cual/cuales' (depending on the gender and number of the

entity) are realised.

'La chica a quien compre un caramelo' (the girl for whom I bought a sweet)

'El cuchillo con el cual corto la cebolla' (the knife with which he/she chopped

Chapter 4: Generating Spanish with L O L I T A 62

the onion)

After the relative pronoun the plan-realiser generates the relative clause event

similarly to a normal event (although as described above in some cases the order

can be altered). The entity being defined by the relative clause does not have to

be expressed again.

Events within Events

Events can appear playing any of the roles of other events. Sometimes those em­

bedded events have to be expressed with a noun phrase ('close' events). Some

heuristics are adopted to decide when to generate an 'open' or a 'close' event.

• Close events: Closed events may be realised depending on:

- The context of the utterance: when the event to be realised is part of

a dialogue, an answer or the slot of a template are situations where

expressing a close event may be more natural.

- The verb of the main event: verbs like 'describir' (to describe) require the

event objects to closed: 'Describi la explosion de la bomba' (I described

the bomb explosion)

- Events inheriting most of its roles from the prototypical event: 'la ex­

plosion' instead of 'dispositivos explosivos explotaron' (the explosion, ex­

plosive devices exploded).

• Open events:

- The verb of the main event: verbs like 'pensar' (to think), 'sugerir' (to

suggest) require the event objects to be open: 'Pienso que el hombre

murio' (I think that the man died)

- Infinitive verbs as 'forzar' (to force), 'querer' (to want) which require

the object event to be open and the verb of the embedded event to be in

the infinitive or any subjunctive form: 'Te force a comprar el periodica'

Chapter 4: Generating Spanish with L O L I T A 63

(I forced you to buy the newspaper), 'Quiero que vengas' (I want you
to come).

— Events not inheriting most of its roles from the prototypical event: 'En

1963, Oswald asesino a Kennedy en Dallas'\s better than 'El asesinato

de kennedy por Oswald en Dallas' (In 1963, Oswald murdered Kennedy

in Dallas, The 1963 murder of Kennedy by Oswald in Dallas)

Some heuristics are adopted to 'open' a close event and to 'close' an open event

when this is required because of the nature of any of the events:

• A close embedded event can be 'opened' by using the correct form of the verb

'suceder' (to happen)

'Un hombre sugirio que una explosion sucedid' (A man suggested that an

explosion happened)

• An open embedded event can be 'closed' by using the gerund form of its verb

'Vi la bomba explotando' (I watched the bomb exploding)

Causal events

Events being the cause of other events are linked in SemNet by the arc cause-.

These events are realised as follow:

• Event l has a cause, link to Event2: if event2 is hypothetical then the

structure 'eventl si event2' is used to realise the events with the verbs of the

actions in the following forms:

— If the action of eventl is in the future tense then the action of eventl is

realised in the future form and the action of event2 in the present form:

'Me quedare si viene' (I will stay if he comes).

Chapter 4: Generating Spanish with L O L I T A 64

— If the tenses are in the present tense then the action of eventl is realised
in the conditional form and the action of event2 in the imperfect sub­
junctive form: 'Trabajaria si no estuviera cansado' (I would work if I
was not tired).

— If the tenses are in the past tense then the action of eventl is realised in

the perfect conditional form and the action of event2 in the pluperfect

subjunctive form: 'Habrias tenido dinero si hubieras vendido tu casa'

(you would have had money if you had sold your house).

If event2 is not hypothetical then the events are realised using the structure

'eventl porque event2':

'Eres feliz porque te amo' (you are happy because I love you)

• Event2 has a link cause.of to Eventl : if event2 is hypothetical then the

structure 'si event2, event 1' is used to realise the events with the verbs of the

actions following the same conditions than the previous case:

'Si duermes, te sentirds mejor' (if you sleep then you will feel better)

'Si poseyeras una moto, irias a Paris' {if ycm h.i.d a motorbike then you would

go to Paris)

'Si hubieras visto el raton, habrias gritado' (if you had seen the mouse then

you would have shouted)

I f event2 is not hypothetical then the events are realised using the structure

'event2 asi que eventl':

'El vendrd asi que lo verds' (he will come so you will see him)

Other Aspects of Events .,

Internal events

Some events represented in SemNet are not directly expressible in any language.

They usually represent input text which has not been fully disambiguated. Some

of these internal events can be realised as follow:

Chapter 4: Generating Spanish with L O L I T A 65

• action is-a: internal events with this action can be expressed using the verb
'ser' i f the object is an entity or an adjective referring to identity or nature,
and using the verb 'estar' for the rest of attributes. Subject and object must
agree in gender and number.

'Paul es cocinero' (Paul is a cook)

'Louise es alta' [Lomse is tall)

'Las carreteras estaban obstaculizadas' (The roads were obstructed)

• action poss_reIate: Internal events with this action can be realised using the

verb 'tener' (to have). This verb will convey the ambiguity contained in the

event.

Positions

SemNet builds explicit position nodes [Short and Garigliano, 1993] which can

be realised in isolation, as a relative clause or as a location role in a event. The plan-

realiser generates an appropriate preposition relating the entity associated with the

position. Examples of preposition used are 'entre, en, sobre, alrededor de, proximo

a, cerca de, encima, debajo, de, por, detra, enfrente, dentro', etc. The plan-realiser

can also realise more complex positions including distances ('kilometros, metros,

millas', etc)

'Entre tu casa y el hotel' (between your house and the hotel)

'El plato sobre la mesa que Mike co^io' (The plate on the table that Mike took)

'El gato se sienta en un felpudo' (The cat sat on a mat)

'Roberto pone una piedra cada 100 meiros'(Roberto places a stone every 100

metres)

Negation with 'no' . . - . -

No usually precedes the verb that it negates, but when object pronouns (Sec­

tion 4.3.4) are realised, these pronouns are generated between 'no' and the verb as

these pronouns are never separated from the verb.

Wo intento verla' (He did not try to see her)

Chapter 4: Generating Spanish with L O L I T A 66

'No te lo dije' (I did not tell it to you)

If a verb is generated in the infinitive form and requires the preposition 'a'

before i t , 'no' will be realised between the preposition and the verb:

'Te forzare a no beber cerveza' (I will force you to not drink beer)

Events with verbs such as 'gustar' (to like), 'disgustar' (to dislike), 'importar' (to care)

Events containing one of these actions are realised differently from the normal

events. The object is realised as if it was the subject and the subject is realised as

if it was the object using an object pronoun (Section 4.3.4).

'La miel les gusta a los osos' (Bears like honey)

'Me gustas' (I like you)

If the object (realised as the subject) is an event or the subject is being realised

(i.e. the event with the special verb is a relative clause) then the order of realisation

will be changed as i t will be reahsed after the verb.

Wo /es importa que no tengan dinero' (They don't care that they don't have

money)

4.3.3 Generation of Actions

The action in an event is realised as a verb and it usually conveys most of the

meaning of the event. If an action is non LI (it is not connected to a lexical entry

in the surface language), the plan-realiser will have to find the prototypical event

for that action and then find the first prototypical event above the event that has

a LLaction. The plah-realiser can generate this LI action but it will also have to

generate the roles in the original prototypical event which differ from those in the

event with the LI action in order to express the meaning of the original action.

Time and tense representation in the LOLITA system is currently under de­

velopment [Short, forthcoming 1995]. However, by using the explicit tense of the

Chapter 4: Generating Spanish with L O L I T A 67

time- slot, or by using the tense determined by looking at the relative times of
events (i.e. causal events may require to realise a different tense than the explicit
one), an adequate tense can be realised.

-: Once the correct tense for the verb expressing the action has been found, mor­

phological rules are applied to ensure that this verb agrees with the subject in

person (first person, second person, third person) and in number (singular/plural).

The plan-realiser then checks whether the verb is irregular for the chosen tense and

person. Rules for realising regular verbs are found within the plan-realiser while

irregular verb forms are present in the linguistic part of SemNet.

The following tenses can be reahsed:

present indicative: bebo cerveza (I drink beer)

imperfect indicative: bebia cerveza (I drank beer)

preterite: bebi cerveza (I drank beer)

future: bebere cerveza (I will drink beer)

conditional: beberia cerveza si ... (I would drink beer if ...)

present subjunctive: quieres que beba cerveza (you want me to drink beer)

imperfect subjunctive: si bebiera cerveza ... (if I drank beer ...)

perfect indicative: he bebido cerveza (I have drunk beer)

pluperfect indicative: habia bebido cerveza (I had drunk beer)

perfect conditional: habria bebido cerveza (I would have drunk beer)

perfect future: habre bebido cerveza (I will have drunk beer)

perfect subjunctive: que haya bebido cerveza

pluperfect subjunctive: hubiera bebido cerveza

gerund: estoy bebiendo cerveza (I am drinking beer)

infinitive: , 6e6er (to drink)

past participle: he bebido cerveza (I have drunk beer)

The rules applied to regular verbs are different depending on the conjugation

to which the verbs belong. The conjugation is distinguished by the final vowel of

the infinitive: (l)-ar, (2)-er, (3) -ir (or -ir).

Chapter 4: Generating Spanish with L O L I T A 68

The realisation of soine tenses can lead to a change in the word order of the
utterance being generated:

• reflexive or pronominal verbs: An object pronoun is generated before the

verb.

'Me estoy lavando' (I am washing (myself))

'Los prisioneros se escaparon' (The prisoners escaped)

Wo te conoces' (Yon do not know yourself)

• infinitive or gerund forms of the verbs may need the object pronouns to be

realised attached to them

'Cogi la piedra para guardarla.' (I took the stone in order to keep it)

'Estoy estudidndolo ' (I am studying it)

4.3.4 Generation of personal pronouns

When realising an entity which has already been mentioned either explicitly or

implicitly (it is in the context), the 'plan-realiser applies different rules to adequately

describe the entity. Sometimes a simple pronoun will be adequate and in other

cases a shorter noun phrase will be required. Complex handling of anaphora using

context, scripts, etc. will be the responsibility of the planner. In the absence of

the planner instructions the plan-realiser produces anaphora by keeping a record

of all the entities and events that have already been referred to. If an entity or

event is to be referred and it is the only one of its pronoun class (there are not

more entities with the same person, number and gender) from the referred record

of entities then it can be pronominalised- In some cases even the pronoun can be

omitted (see Subject pronouns).

Personal pronouns can be split in three different groups depending on the role

they play in the event and the position in which they are produced: subject pro­

nouns., object pronouns and prepositional pronouns.

Chapter 4: Generating Spanish with L O L I T A 69

PERSON EMPHATIC OBJECT PREPOSITIONAL
SINGULAR

1
2

SUBJECT

y o
t u

me
t e

m i ..
t i

3 e l l o / l a / l e e l
e l l a l a / l e e l l a
e l l o
s e

l o / l e e l l o
s i

PLURAL
1 n o s o t r o s n o s n o s o t r o s

n o s o t r a s n o s n o s o t r a s

2 v o s o t r o s O S v o s o t r o s
v o s o t r a s O S v o s o t r a s

3 e l l o s l o s / l e s e l l o s

a l i a s
s e

l a s / l e s e l l a s
s i

I

y o u
h e , i t
s h e , i t
i t (n e u t e r)
' r e f l e x i v e '

w e (m a s c)
w e (f e r n)
y o u (m a s c)
y o u (f e m)
t h e y (m a s c)
t h e y (f e r n)
' r e f l e x i v e '

Figure 4.4: Table of the Spanish personal pronouns.

Use of subject pronouns

Subject pronouns are those that stand for an entity that is the subject of an event.

The default in the plan-realiser is not to generate the pronoun (nor the entity)

as the Dsrson of t.lic subject is expressed by the verb ending. However, they may

be optionally generated to emphasise the subject of a verb but only i f they stand

for an entity representing a human being. It will be up to the planner to decide

whether a subject pronoun is to be expressed.

'Ir^ a casa con un amigo' (I will go home with a friend)

'Iras a casa con un amigo' (You will go home with a friend)

'John y Maria no vinieron porque estaban cansados' (John and Maria did not

come because they were tired)

There are some exceptions to the use of the subject pronouns of Figure 4.4. For

example, if the event plays a role in another event and the verb is realised in the

infinitive form an object pronoun is used to stand for the subject of the embedded

event. This pronoun is realised before the action of the main event.

'Sally te forzo a estudiar la grdmatica' {Sally forced you to study the grammar)

Chapter 4: Generating Spanish with L O L I T A 70

Use of object pronouns

Object pronouns are used to express some of the roles of an event such as the

object, the destination and the origin.

First and second person object pronouns

Forms of first and second person object pronouns are invariably independent of

which is their role in the event (see Figure 4.4):

'Me han visto' (They have seen me)

'Te quitaron a tus hijos' (They take your children from you)

Wos dejo una manta' (He/she left a blanket to us)

Third person object pronouns

Different forms of the third person object pronouns are used depending on the

role in the event:

• Object role. LOLITA produces the following pronouns:

— se is used when the subject and object are represented by the same

entity or entities.

'Se lava' (he is washing (himself))

'̂ e cortaron con una lata' (they cut themselves with a tin)

— la is. used when the pronoun stands for a feminine entity (except with

some verbs, see use of 'le' below).

'Maria estaba en la oficina. Yo la vi' (Maria was in the office. I saw

her)

'La mesa no es nueva, la he pintado' (The table is not new, I have

painted it)

— le is used when the pronoun stands for a singular, human and male

entity''.

*lo is acceptable to most of the native speakers of Spanish in this case

Chapter 4: Generating Spanish with L O L I T A 71

'le vi' (I saw him)

'le golpee con un palo' (I hit him with a stick)

'le' (and 'les') is also used with verbs such as 'gustar' (to like), 'disgustar'

(to dishke) and 'importar' (to care)

'les gusta el vino' (They like wine)

Wo les importa ir con Rick' (They do not care to go with Rick)

— lo stands for the singular entities where 'la' and 'le' are not used.

'Era un drbol extrao. La gente lo miraba' {It was a strange tree. People

looked at it)

'lo compre en Londres'{I bought it in London)

- las and los stand for plural feminine and plural mascuhne entities re­

spectively.

'Los oi desde el rio' (I heard them from the river)

'las bombas son peligrosas.^'X/CLS oc?2o'(The bombs are dangerous. I hate

them)

• Other roles different than the object, le and les .respectively are produced

standing for singular and plural entities.

'Le compre una muneca'{I bought him/her a doll)

'Les quereis por dinero' (You want them for money)

Oder of object pronouns

Some events are generated using more than one object pronoun. The invariable

order of object pronouns when two or more are generated is:

se te/os rae/nos l e / l o / l a / l e s / l o s / l a s

'Maria te lo dijo' {Maria told it to you)

'Me la robo' (Re stole it from me)

Chapter 4: Generating Spanish with L O L I T A 72

Substitution of le/les by se

If le or les have to be generated but they are immediately followed by an object

pronoun beginning with '1' (i.e 'lo/la/los/las), then the pronoun se is produced

instead of 'le' or 'les'.

'Se lo doy' (I give it to him/her)

'Se lo dije' (I told it to them)

Position of object pronouns

The word order produced by the plan-reahser when object pronouns are gener­

ated is different from the default order.

• Pronouns with verbs in finite tenses

If the action of the event is generated with a verb in a form other than in­

finitive, gerund or past participle then the pronoun is generated immediately

before the verb. In compound tenses the pronouns are generated before the

auxihary verb.

'Te los enviare tuego' (1 will send them to you later)

'Os las guardo' (I keep them for you)

'La has visto' { You have seen her)

• Positions with infinitives. The object pronouns are generated suffixed to

the verb.

'Vine para decirselo' (I came to tell it to him)

'Me hizo abrirla' (He made me open it)

• Position with gerunds. The object pronouns, are generated suffixed to the

verb.

'La vi golpedndola' (I saw her hitting it)

•Estuvieron esperdndonos' (They were waiting for us)

C h a p t e r 4: Generat ing Spanish with L O L I T A 73

Personal pronouns after prepositions

The forms of the personal pronouns produced after prepositions are the same as the

forms of subject pronouns except 'yo' and ' t u ' which have different prepositional

forms ' m i ' and ' t i ' .

'Compraron la camisa para ti' (They bought the shirt for you)

'Fue con ellas' (He went w i th them)

There are two special forms produced conmigo and consigo which correspond

to 'con + m i ' and 'con + t i ' .

'Paul vino conmigo' (Paul came wi th me)

'Lo vio contigo' (She saw i t wi th you)

Redundant object pronouns are produced when generating the first and second

person plural forms to clarify which entities compound the plural.

'Nos lo dio a mi y a Mark' (He gave i t to me and Mark)

'Os amo a ti y a tu hermana' (I love you and your sister)

4.4 Implementation overview

The use of the functional language Haskell in the development of LOLITA eases

program comprehension and makes the integration of new code into the system

easier [Hazan et ai, 1993]. This proved right for the integration of the Spanish

generator w i th the current L O L I T A generator. A great deal of the existing code has

been used during the implementation of the Spanish generator and, for example, the

use of ADTs (Section 2.3.1) simplified this integration by allowing the modification

of the data types without affecting the parts of the English generator using them.

C h a p t e r 4: Generat ing Spanish with L O L I T A 74

4.4.1 D a t a Types

This section briefly introduces tlie important types used in the implementation of

the Spanish generator.

• Global: The Globa l data type is perhaps the most important used in the

L O L I T A system. Functional programming languages do not allow side ef­

fects (see section 2.3.1) so the 'state' of the system has to be made explicit

and passed round between functions rather than leaving i t impl ic i t (as in

imperative languages). The Global data type corresponds to this overall

system state. I t holds, among other things, the whole of LOLITA's SemNet

representation together wi th information on how the SemNet has been most

recently changed and the planning instructions that the plan-realiser receives

f o r m the planner or an underlying application.

• Noderef: A Noderef is simply a reference to a particular unique node within

the SemNet representation.

• Meaning: The Meaning data type is simply a 'repackaging' of information

held in the Global and Noderef data-types to make i t more suitable for gen­

eration. A Meaning holds the meaning of a particular node in the SemNet

by combining a starting point node and the complete SemNet representation.

• Generator: The Generator is a data type which acts as a 'building block'

during the generation process. As an utterance is bui l t , generators represent­

ing different parts of the utterance are composed together to form a more

complete generator. This generator is then applied to the input instructions

f r o m the planner to produce a N L utterance. The generator comprises the

utterance generated so far as .weU as planning instructions and switches set

by the planner.

• GenVals : The GenVal s data type is a collection of flags set by the generator

as i t goes along which can affect the future choices that the generator can

make. Examples are a flag to force embedded events to be open or closed

and a flag to force a verb to be in a particular tense.

C h a p t e r 4: Generat ing Spanish with L O L I T A 75

G e n V a l s has been modified (i.e. more tenses were required) for use by the
Spanish generator but the functions of the existing generator using this data
type have not been altered proving the suitability of the use of ADTs.

• • The SpVals data type is a collection of flags, as is the GenVals data type,

used only by the Spanish generator. Examples are a flag to force an adjective

to be produced in its feminine fo rm and a flag indicating the person of a verb.

Generat ion Process

Figure 4.5 shows an oversimplified portion of the code. This code is included to

give an idea of how the generation process is implemented in addition to showing

how some of the Haskell features have been used.

Each function is given next to its type declaration. For example, the function

'say.event' (a simplified version of the function is shown) takes as input parameters

values of the type G e n V a l s and Meaning and returns a result of type Generator.

Assuming that a node containing an event is to be generated and the function

say_event is called the process is as follow: The function decides i f the event is

to be expressed in the passive or active voice by using the query function if_gen

(i t is a funct ion and not a Haskell constructor). This function queries the hidden

parameter of Generator type (which contains the utterance so far and the planning

instructions) by using the function is_style. I f for example the active voice is

required the function say_active_event is called. At this point the generation

process differs for English and Spanish so the function again queries the hidden

parameter of Generator type to determine which language is active. For Spanish,

the funct ion say_active_event^p is called. This function calls other functions to

generate each of the roles in the eveht. Each of these functions return a Generator

and the before_ funct ion is used to compose the generators together. Some of the

functions called to express the roles of the event can again be utilised for both

languages (i.e. say .subject).

The use of ADTs has been described in the previous section and following this

C h a p t e r 4: Generat ing Spanish with L O L I T A 76

s a y _ e v e n t : : GenVals -> Meaning -> Generator
s a y _ e v e n t gv e

= i f _ g e n (i s _ s t y l e A c t i v e)
s a y _ a c t i v e _ e v e n t gv e

' o r _ e l s e '
i f _ g e n (i s _ s t y l e P a s s i v e)

s a y _ p a s s i v e _ e v e n t gv e

s a y _ a c t i v e _ e v e n t : : GenVals -> Meaning -> Generator
s a y _ a c t i v e _ e v e n t gv e

= i f _ g e n (i s _ l a n g u a g e S p a n i s h)
(s a y _ a c t i v e _ e v e n t _ s p gv e)

' o r _ e l s e '
(s a y _ s u b j e c t gv e

'before.'
s a y _ a c t i o n gv e e
'before.'
s a y _ o b j e c t gv e
'before.'
s a y _ o r i g i n gv e
'before.'
s a y _ r e s t _ e v e n t gv e)

s a y _ a c t i v e _ e v e n t _ s p :: GenVals -> Meaning -> Generator
s a y _ a c t i v e _ e v e n t _ s p gv e

= s a y _ s u b j e c t gv e
'before.'
(i f _ (n e g a t i v e _ a c t i o n)

say_no
' o r _ e l s e '

s a y _ n o t h i n g
)

'before.'
say.pronouns gv e
'before.'
s a y . a c t i o n . s p gv e
'before.'
s a y . o b j e c t . s p gv e
'before.'
s a y . r e s t . e v e n t gv e

Figure 4.5: Simphfied portion of the NLG Haskell code

C h a p t e r 4: Generat ing Spanish with L O L I T A 77

simplified example some other of the Haskell features are found:

• Higher-order functions. if_ and if_gen are two examples of higher-order func­

tions as they both take as first parameter a function:

if_gen (is^tyle Active) ...

• Currying. The functions return a result of type Generator which is in itself

a function. The data type could be replaced by the explicit reference to the

function's type. Currying allows to make only two parameters explicit when

the function receives three. For example, (1) would be replaced by (2)

s a y . e v e n t : : GenVals -> Meaning -> GenTypeA -> GentTypeB (1)

s a y . e v e n t : : GenVals -> Meaning -> Generator (2)

• Lazy Evaluation. For example if_ and if_gen rely on lazy evaluation as only

one of their branches is required to be evaluated. For example:

i f . g e n (i s . l a n g u a g e Spanish)

(s a y . a c t i v e . e v e n t . s p gv e)

' o r . e l s e '

(...) — s a y . a c t i v e . e v e n t f o r E n g l i s h

I f the language is set to be Spanish only the branch calling the function

'say_active_event-sp gv' is evaluated.

Figure 4.6 shows a simplified and expanded portion of the code generating the

adequate verb fo rm. say_action_sp decides which is the person and number of

the verb (firstLp_sing_m and the rest of functions f rom the conditions wi l l check

which are the gender and the number of the subject of the event as subject and verb

must agree in these two aspects). say_verb_sp controls whether the form to be

produced is irregular or not (i f so, the fo rm wi l l be taken f rom the SemNet). I f the

fo rm is regular then a function for the particular tense ('present' in the example) is

called, i n this case get_tense_present_indicative. This function decides to which

C h a p t e r 4: Generat ing Spanish with L O L I T A 78

conjugation (see Section /actions) the verb belongs and calls the corresponding
funct ion, get_p_i_ar for the first conjugation. Finally this function produces the
adequate fo rm of the verb depending on the person and number.

4.r Chapter Summary

This chapter ..has discussed the integration of the Spanish generator in the L O L I T A

generation module and given details of some of the heuristics involved in the plan-

realiser component. The implementation of these heuristics, together wi th many

more that have not been detailed have resulted in a plan-realiser component that

can successfully produce Spanish utterances f rom the SemNet representation.

Finally, the chapter has given a brief discussion of the operation of the L O L I T A

generator and discussed the effects of the chosen implementation language Haskell

on the generator's development.

C h a p t e r 4: Generat ing Spanish with L O L I T A 79

s a y . a c t i o n . s p :: Tense.gen -> Meaning -> Word
s a y . a c t i o n . s p t e n s e e

= i f . (f i r s t . p . s i n g . m e)
(sa y . v e r b . s p t e n s e verb v i s . f i r s t . s i n g u l a r)

' o r . e l s e '
i f . (f i r s t . p . p l u r . m e)

. (s a y . v e r b . s p t e n s e verb v i s . f i r s t . p l u r a l)

where
v = a c t i o n . s p a n i s h e
verb = spanish.word v

sa y . v e r b . s p :: Tense.gen -> Word -> Meaning -> SpVal -> Word
sa y . v e r b . s p P r e s e n t , verb v spv

I (i s . i r r e g . p r e s e n t . m v) = g e t . i r r e g u l a r . s p P r e s e n t , spv v
I o t h e r w i s e = g e t . t e n s e . p r e s e n t . i n d i c a t i v e verb spv

g e t . t e n s e . p r e s e n t . i n d i c a t i v e :: Word -> SpVal -> Word
g e t . t e n s e . p r e s e n t . i n d i c a t i v e verb sp

I (form.ar verb) = g e t . p . i . a r w sp
I . . .
I . . .
where
w = l a s tn2 verb

g e t . p .
g e t . p .

.ar :: Word -> SpVal -> Word

.ar w sp
f i r s t . s i n g = w ++ "o"
s e c . s i n g = w ++ " a s "

Figure 4.6: Simplified portion of the NLG Haskell code

Chapter 5

Evaluation and Results

r . l Introduction

There has been l i t t l e work on NLG evaluation as researchers have concentrated

more on development. Evaluation of N L G systems is not an easy teisk. [Galliers

and Sparck Jones, 1993] state in their report on NLP evaluation:

" Evaluation for N L G remains at the discussion stage. Evaluating gen­

eration is diff icul t ; i t is hard to define what the input to a generator

should be and i t is hard to objectively judge the output." (page 98).

Evaluation has to be performed taking into consideration the particular setup

and task defined for each generation system. The environment differs f rom system

to system making i t infeasible for a comparative evaluation. Furthermore, papers

on generation systems are not usually littered wi th example output so the systems

cannot.be easily.evaluated. . .• . . i .-.

The aim of the generator is to produce correct utterances in Spanish conveying

the information contained in the nodes of SemNet. The examples provided in

Chapter 4 can be considered as a proof of the success of the Spanish generator.

These examples show how the Spanish generator is able to produce utterances for

any k ind of information (in the form of nodes and links between the nodes) found

C h a p t e r 5: Eva luat ion and Resul ts 81

in the SemNet representation.

Additionally, an experiment has been carried out for the evaluation of the Span­

ish generator in a similar way to the experiment made to evaluate the LOLITA

Enghsh generator ([Smith, 1995], Chapter 8). The idea of the evaluation is to

compare the utterances generated by L O L I T A wi th those produced by humans.

The evaluation w i l l be judged by humans and the results can be considered as a

suggestion (the experiment is not an exhaustive evaluation) of how the generator

works.

r.2 The evaluation experiment

This experiment intends to evaluate the Spanish generator not the whole L O L I T A

system or other modules of the system so examples have to be chosen which are

correct for other areas of the system (i.e. an output utterance ca^i -be incorrect

because-of a mistake in the analysis of the input text) .

The experiment involved two different tests. For both of them two simple input

texts which comprised information on twelve events and entities were provided.

F i r s t test: H u m a n or C o m p u t e r

A group of ten people were asked to produce Spanish utterances describing the

events and entities mentioned in the given texts. They were asked to write utter­

ances in different levels of detail and styles.

The L O L I T A system also did the same task. L O L I T A analysed the input

texts and bui l t an internal representation (in SemNet) of the meaning of each of

the events and entities described. Then, the Spanish generation module produced

different utterances f rom these representations (different utterances about the same

enti ty or event were produced by diff'erent setting of the realisation parameters)

Five describing utterances were collected for each entity and event f rom the set

of utterances provided by humans and L O L I T A . There were thus sixty utterances,

C h a p t e r 5: Eva luat ion and Resul t s 82

twenty produced by L O L I T A and for ty produced by humans. They were given to
another group of ten people who evaluated them. The judges had to mark each
utterance as:

• H : The utterance has been produced by a human.

• C : The utterance has been produced by a computer.

• ?: i f they cannot tell who has produced the utterance.-

Second Test: Acceptabi l i ty

A l l the output utterances produced by the Spanish generator f rom the representa­

t ion of the two input texts were used for the second test. As stated before differ­

ent utterances describing a same event or entity are produced by setting different

the reahsation parameters (Passive/Active, Short/Long generation, Short/Long

rhy thm, Abstract transformations, etc). The utterances were given to the judges

who marked them as Acceptable or Unacceptable. Comments as to why utter­

ances were marked as unacceptable were aiso collected.

r.3 Evaluation Results

5.3.1 Human or Computer

From a total of 600 marked utterances the results obtained were as follows:

446 (74%) utterances were marked as being humans or computer.

154 (26%) utterances were not marked, the judges could not tell i f the utterance

was human or computer generated.

208 (87%) of the utterances marked as human generated were correctly assigned.

99 (48%) of the utterances marked as computer generated were correctly assigned.

These results indicate that the judges were very good at deciding if an utterance

was produced by a human but poor at identifying utterances produced by the

C h a p t e r 5: Eva luat ion and Resul ts 83

computer.

5.3.2 Acceptability

From a total of 350 marked utterances the results obtained were as follows:

269 (77%) utterances were marked as acceptable.

Comments were collected to why certain utterances were marked as being un­

acceptable. One common comment was the dislike of the use of passive sentences.

Some people found sentences in passive voice unacceptable as they are not com­

monly used. Other typical occurring comment was the use of neither the imperfect

f o r m or the preterite form of the verb to generate past sentences. As stated in

Section 4.3.3, t ime and tense representation in the L O L I T A system is currently

under development so simple heuristics are used to generate the tense of the verbs.

A l l the collected comments can bi^^sed for future generator improvements as

for example, selecting carefully when to use the passive voice or implementing more

complex heuristics to produce the tense of the verbs.

Chapter 6

Conclusion

The overall aim of the project was to enable the L O L I T A system to produce Spanish

utterances. The results of the evaluation described in Chapter 5, comparing the

generator's capabilities wi th that of humans doing the same task, plus the examples

provided alongside t r f ' the solutions adopted indicate that this goal has been met.

I t was not the aim to build a separate new generator, instead the current gener­

ator was modified to generate either English and Spanish. The integration of both

generators allows the abstraction of some of the generation principles in order to

facihtate the generation of other target languages.

The procedural approach followed by the generator meant that the grammar

was not made explicit and was therefore more difficult to understand and modify.

However, the methodological principles of Natural Language Engineering such as

scale, robustness, maintainability, flexibility, integration, feasibility and usability

followed in the development of the Enghsh generator eased the integration of the

new generator in the system. Furthermore, the programming features which are

provided by the functional programming language Haskell were of particular help

in the implementation of the Spanish generator. The use of Abstract Data Types

(ADTs) and the puri ty of Haskell made i t easier to integrate new data structures

and algorithms into the existing system. The use of lazy evaluation also proved

to be a very useful feature when diverse solutions were adopted depending on

C h a p t e r 6: Conclusion 85

the different languages as only the solution corresponding to the language being
generated needed to be evaluated.

The generator has been developed alongside SemNet and each has influenced

the development of the other. This means that SemNet has to be able to cope wi th

Spanish. For this purpose work has been undertaken in two aspects. Firstly new

controls have been added to cope wi th Spanish linguistic features. These controls

refer to aspects such as the gender of the words, the position of the adjectives wi th

respect to the noun they modified and persons, numbers and tenses in the Spanish

verbs systems. The second aspect refers to the addition of lexical entries for those

concepts which are language isomorphic in Spanish. I t should be noted that they

are not exclusive for the generator. As part of SemNet, they are accessible for other

modules of the system and they can be useful for example for a further Spanish

parser.

Scope for future work.

Future work can be undertaken in order to improve the operation of the gener­

ator in the following .aspects:

• Addi t ion of more Spanish lexical entries to SemNet. The lexical coverage of

Spanish is currently underpopulated for a large-scale system.

• Coverage of the generation grammar. The coverage of the grammar is poor

compared to some generation systems. However, i t is enough to express

the meaning represented in the input but following the development of the

SemNet representation, the generation grammar has to be extended to cope

wi th possible new SemNet structures.

• Development of a planner. This aspect comprises the whole generation mod­

ule, not only the Spanish generator.

• Abstraction of some generation principles f rom the integration of the English

and Spanish generator. This abstraction wi l l aid to generate other target

languages.

Appendix A

Utterances used for the evaluation

The following utterances were given to a set of people to evaluate them. They were

asking to mark each utterance as follow:

• H : The utterance has been produced for a human.

• C : The utterance has been produced by a computer.

• ?: i f they cannot tell who has produced the utterance.

T was very t ired, so I called a taxi and went home. The cab was warm

and the driver was nice, so I gave h im a big t ip"

T A X I :

1. U n taxi que te reconforto t u cansancio camino de casa.

2. Un taxi que fue llamado por t i para que te Uevara descansado.

3. Cogiste un taxi para ir a casa.

4. Un taxi fue llamado por t i porque estabas cansado.

5. E l taxi acogedor que Uamaste.

D R I V E R :

1. E l taxista que te llevo a casa el dia que estabas cansado y llamaste a un taxi

para no andar.

A p p e n d i x A : Ut terazices used f o r t h e eva lua t ion 87

2. E l conductor amable a quien le diste una propina grande.

3. A l conductor le diste una gran propina.

4. Un conductor fue amable.

5. E l taxista que se porto muy bien y al que le diste una buena propina.

T I P :

1. La propina grande que diste a un conductor.

2. La propina que dejaste al taxista que te llevo a casa.

3. La propina que se gano el taxista por amable.

4. Una gran propina se la diste al conductor.

5. Una propina grande fue dada por t i a un conductor porque el taxi que llamaste

era confortable.

TIREDNESS:

1. Estabas cansado asi que te fuiste a t u casa.

2. Fuiste a casa en taxi por el cansancio que tenias.

3. Era mucho lo cansado que estabas por lo que decidiste ir en taxi a casa,.

4. Muy cansado te sentias.

5. Comno estabas cansado querias volver al hogar.

T H E G O I N G event:
1. Te fuiste a casa en taxi porque estabas muy cansado para ir andando.

2. Fuiste a casa en taxi por el cansancio.

3. Te fuiste a t u casa porque estabas cansado.

4. En taxi fuiste a casa.

5. Fuiste a Uamar a un taxi que te Uevaria a casa.

T H E C A L L I N G event:

1. Llamaste a un taxi para ir a casa. 2. Llamaste a un taxi porque estabas cansado

y querias volver a casa.

3. Fuiste a llamar a un taxi que te Uevaria

4. Llamaste a un taxi . Estabas cansado. Te fuiste a tu casa.

5. E l taxi que llamaste era confortable asi que diste una propina grande a un

conductor. Estabas cansado asi que te fuiste a tu casa.

A p p e n d i x A : Utterances used for the evaluation 88

' i f I had known the big and fast motorbike you gave me was owned by

her I would have hked i t , because I do love her.'

M O T O R B I K E :

1. Una moto grande y rapida de una propietaria fue dada por mi a t i .

2. La moto que era de la mujer.

3. Una moto grande y rapida de una propietaria que te di y que te habria gustado

si lo hubieras sabido que la tuvo.

4. Su moto era grande y rapida.

5. La moto grande y rapida que perteneci a la propietaria que amas.

SHE:
1. La mujer poseia una moto que era grande y rapida y que ahora amas.

2. Una propietaria tuvo la moto grande y rapida. 3. Ella era la propietaria de la

moto que te di .

4. La duefia de la moto que te d i .

5. La propietaria que tuvo la moto grande y rapida que te di y a quien amas.

T H E L I K I N G event:
L Si hubieras sabido que era de ella te hubiese gustado.

2. Si hubieras sabido que una propietaria tuvo la moto grande y rapida, te habria

gustado. Te la d i . La amas.

3. Como la amas a ella, si hubieses sabido que la moto le pertenecia, te habria

gustado.

4. T u no sabias que la moto era de ella. En caso contrario te hubiera gustado.

5. Te habria gustado la moto que te di de haber sabido que antes fue de la chica a

quien amas.

T H E G I V I N G event:

1. Te di una moto que era de su propiedad.

2. Te di una moto que te habria gustado un monton si llegas a saber que la tuvo

antes la chica que amas.

3. Te di una moto que pertenecia a la mujer que es el amor de t u vida.

4. Te di la moto de tu amada.

Appendix A: Utterances used for the evaluation 89

5. Te di una moto grande y rapida de una propietaria que te habria gustado si lo
hubieras sabido que la tuvo.

THE KNOWING event:

1.v Tu no sabias que la moto era de ella. En caso contrario te hubiera gustado.

2. Saber que la moto que te di pertenecia a ella, hubiese cambiado tu actitud

porque la amas.

3. Si hubieras sabido que la moto grande y rapida que te di fue tenida por la

prdpietaria a quien amas, seria gustada por t i .

4. Si hubieras sabido que era de ella te hubiera gustado.

5. Si hubieras sabido que una propietaria tuvo la moto grande y rapida que te di,

te habria gustado.

THE LOVING event:

1. Amas a la propietaria que tuvo la moto grande y rapida que te di. Te habria

gustado si lo hubieras sabido que la tuvo.

2. Ella es amada por t i .

3. La quieres. Desconocias que la moto grande y rapida que te di era de ella.

4. Amas a una propietaria.

5. Amas a una mujer de la cual posees ahora la moto que ella tuvo hace tiempo.

Appendix B

Variations for generator output

The following utterances produced from the giving input texts show some of the

different styles of output LOLITA is able to produce. These utterances were used

for the second part of the evaluation experiment as they were given to a group of

people who marked them as acceptable or Unacceptable utterances.

T was very tired, so I called a taxi and went home. The cab was warm

and the driver was nice, so I gave huB a big tip"

Diste una propina grande a un conductor porque el taxi que Ilamaste

era confortable. Estabas cansado asi que te fuiste a tu casa.

Una propina grande fue dada per ti a un conductor porque el taxi que

Ilamaste era confortable. Estabas cansado asi que te fuiste a tu casa.

Diste una propina grande a un conductor. Un taxi era confortable. Lo

Ilamaste. Te fuiste a tu casa porque estabas cansado.

E l taxi que Ilamaste era confortable asi que diste una propina grande a

un conductor. Estabas cansado asi que te fuiste a tu casa.

E l conductor amable a quien le diste una propina grande.

U n conductor fue amable asi que le diste una propina grande.

Un conductor fue amable.

Un conductor fue amable asi que una propina grande fue dada por ti.

L a propina grande que diste a un conductor.

Appendix B: Variations for generator output 91

Llamaste un taxi porque estabas cansado.

Una propina grande fue dada por ti a un conductor porque el taxi que

llamaste era confortable. Estabas cansado asi que te fuiste a tu casa.

Diste una propina grande a un conductor. Un taxi era confortable. Lo

llamaste. Estabas cansado. Te fuiste a tu casa.

Un taxi era confortable. Lo llamaste. Estabas cansado. Te fuiste a tu

casa. Diste una propina grande a un conductor.

Estabas eansado asi que te fuiste a tu casa.

Llamaste a un taxi. Estabas cansado. Te fuiste a casa.

E l taxi acogedor que llamaste.

U n taxi fue llamado por ti porque estabas cansado.

Un conductor fue amable. Le diste una propina grande. Un taxi era

confortable . Lo llamaste. Estabas cansado. Te fuiste a tu casa.

U n conductor te recibi una propina grande porque el taxi que llamaste

era confortable. Estabas cansado asi que te fuiste a tu casa.

Appendix B: Variations for generator output 92

' i f I had known the big and fast motorbike you gave me was owned by

her I would have liked i t , because I do love her.'

Amas a la propietaria que tuvo la moto grande y rapida que te di. Te

habria gustado si lo hubieras sabido que la tuvo.

Amas a una propietaria. Tuvo una moto grande y rapida. Te la di. Te

habria gustado si lo hubieras sabido que la tuvo.

Amas a una propietaria. - -

L a propietaria a quien amas tuvo la moto grande y rapida que te di y

que te habria gustado si lo hubieras sabido que la tuvo.

Te di una moto grande y rapida de una propietaria.

Te di una moto grande y rapida de una propietaria y que te habria

gustado si lo hubieras sabido que la tuvo.

L a propietaria que tuvo la moto grande y rapida que te di y a quien

amas.

Una moto grande y rapida de una propietaria que te di.

Si hubieras sabido que la propietaria a quien amas tuvo la moto grande

y rapida que ce di, te habria gustado.

Una moto grande y rapida de una propietaria fue dada por mi a ti.

Me recibiste una moto grande y rapida de una propietaria que te habria

gustado si lo hubieras sabido que la tuvo.

Si hubieras sabido que una propietaria tuvo una moto grande y rapida,

te habria gustado.

Una moto grande y rapida de una propietaria que te di te habria gustado

si lo hubieras sabido que la tuvo.

L a propietaria que tuvo la moto grande y rapida que te di es amada por

ti. Seria gustada por ti si lo hubieras sabido que la tuvo.
>

Una propietaria tuvo la moto grande y rapida. Te habria gustado si lo

hubieras sabido que la tuvo. Te la di. L a amas.

Bibliography

ANLP-92, 1992] Proceedings of the Third ACL Conference on Applied Natural

Language Processing, Trento, Italy, 1992.

Appelt, 1983] D. E. Appelt, "TELEGRAM: A Grammar Formalism for Language

Planning", in Proceedings of the Eighth International Joint Conference on Arti­

ficial Intelligence (IJCAI-83), pages 595-599, Karlsruhe, West Germany, August

8-12, 1983.

Appelt, 1985] D. E. Appelt, Planning English Sentences, Cambridge University

Press, Cambridge, UK, 1985.

Bird and Wadler, 1988] P. Bird and P. Wadler, Introduction to Functional Pro­

gramming, Prentice Hall International (UK) Ltd., 1988.

Bokma and GarigUano, 1992] A. F. Bokmaand R. Garigliano, "Uncertainty Man­

agement through Source Control: A Heuristic Approach", in Proceedings, Inter­

national Conference on Information Processing and Management of Uncertainty

in Knowledge-Based Systems, Mallorca, Spain, July 1992.

Butt and Benjamin, 1994] J. Butt and C. Benjamin, A New Reference Grammar

of Moderm Spanish, Edward Arnold, London, 1994.

[Cawsey, 1990] A. Cawsey, "Generating Explanatory Discourse", in Dale et al.

1990], pages 75-101.

Chne, 1994] B. E. Cline, Knowledge Intensive Natural Language Generation with

Revision, PhD thesis, Virginia Polytechnic Institute and State University,

Blacksburg, Virginia, May 1994.

BIBLIOGRAPHY 94

[Dale et a/., 1990] R. Dale, C. Mellish, and M. Zock, editors, Cxirrent Research in

Natural Language Generation, Academic Press, New York, 1990.

Dale et ai, 1992] R. Dale, E. H. Hovy, D. Rosner, and 0. Stock, Aspects of Au-

• tomated Natural Language Generation, Lecture Notes in Artificial Intelligence,

587, Springer-Verlag, Berlin, April 1992.

[Dehn et a/., 1994] J. DeUn, A. Hartley, C. Paris, D. Scott, and K. V. Linden,

.., "Expressing Procedural Relationships in Multihngual Instructions", in NLG94

1994], pages 61-70.

Dogru and Slagle, 1992] S. Dogru and J. R. Slagle, "A System That Translates

Conceptual Structures Into Enghsh", in Nagle et al. [1992].

Elhadad and Robin, 1992] M. Elhadad and J. Robin, "Controlling Content Real­

ization with Functional Unification Grammars", in Aspects of Automated Natural

Language Generation [1992], pages 89-104.

Fawcett and Davies, 1992] R. P. Fawcett and B. L. Davies, "Monologue as a Turn

in Dialogue: Towards an Integration of Exchange Structure and Rhetorical Struc­

ture Theory", in Aspects of Automated Natural Language Generation [1992],

pages 151-166.

Fawcett and Tucker, 1990] R. P. Fawcett and G. H. Tucker, "Demonstration of

GENESYS: A very large, semantically based systemic functional generator", in

Proceedings of the 13th International Conference on Computational Linguistics

(COLING-90), volume 1, pages 47-49, Helsinki, 1990.

Fernandez, 1986] S. Fernandez, Gramdtica Espanola. 4- El Verbo y La Oracion,

ARCO/LIBROS,S.A., Madrid, 1986.

Fox and Long, 1995] M. Fox and D. Long, "Hierarchical Planning using Abstrac­

tion", to appear in lEE Procs. Control Theory and Applications, May 1995.

Galhers and Sparck Jones, 1993] J. Gahiers and K. Sparck Jones, "Evaluating

Natural Language Processing Systems.", Technical Report 291, Computer Lab­

oratory, University of Cambridge, 1993.

BIBLIOGRAPHY 95

Garigliano and Jones, 1992] R. Garigliano and C. Jones, "Dialogue Structure

Models: An approach to dialogue analysis and generation by computer", Tech­

nical Report 1/92, School of Engineering and Computer Science, University of

Durham, UK, 1992

Garigliano et al, 1992] R. Garighano, R. G. Morgan, and A Î. H. Smith, "LOLITA

: Progress Report 1.", Unpubhshed Research Report 12/92, Department of

Computer Science, University of Durham, 1992.

Garigliano et al, 1993] R. Garigliano, R. G. Morgan, and M. H. Smith, "The

LOLITA System as a Contents Scanning Tool", in Proceedings of the 13th In­

ternational Conference on Artificial Intelligence, Expert Systems and Natural

Language Processing, Avignon, France, May 1993.

Garigliano, 1992] R. Garigliano, "A Computational Semantics for 'The'", Tech­

nical report. Department of Computer Science, Durham University, 1992.

[Garigliano and Tate, 1995] R. Garigliano and J. Tate, editors, Journal of Natural

Language Engineering, Volume 1, Cambridge University Press, 1995

Goldman, 1975] N. M . Goldman, "Conceptual Generation", in R. C. Schank and

C. K. Riesbeck, editors. Conceptual Information Processing, American Elsevier,

New York, NY, 1975.

Granville, 1994] R. Granville, "Building Underlying Structures for Multipara-

graph Texts", in NLG94 [1994], pages 21-28.

[Halliday, 1985] M. A. K. Halliday, An Introduction to Functional Grammar, Ed­

ward Arnold, London, 1985.

Hazan et al., 1993] J. Hazan, S. Jarvis, and R. Morgan, "Understanding LOLITA:

Program Comprehension in Functional Languages", in Proceedings of IEEE

Conference on Program Comprehension, Capri, Italy, June 1993.

Horacek, 1990] H. Horacek, "The Architecture of a Generation Component in a

Complete Natural Language Dialog System", in Dale et al. [1990], pages 193-

227.

BIBLIOGRAPHY 96

Hovy, 1988b] E. H. Hovy, Generating Natural Language under Pragmatic Con­
straints, Lawrence Erlbaum Associates, Hillsdale, NJ, 1988, Based on PhD
thesis, Yale University.

Hovy, 1991] E. H. Hovy, "Approaches to the Planning of Coherent Text", in Paris

et al. [1991], pages 83-102.

Hovy, 1993] E. H. Hovy, "Automated Discourse Generation Using Discourse

. StTncture Kela,t\ons.", .A.rtificial Intelligence, 63:341-385, 1993.

Hudak et al., 1994] P. Hudak, S. P. Jones, and P. Wadler, "Report on the Func­

tional Programming Language Haskell, Version 1.2", May 1994, ACM SIGPLAN

Notices 27.

lordanskaja et al., 1991] L. lordanskaja, R. Kittredge, and A. Polguere, "Lexical

Selection and Paraphrase in a Meaning-Text Generation Model", in Paris et al.

1991], pages 293-312.

Jones, 1994] C. Jones, Dialogue Structure Models : An Engineering Approach to

the Analysis and Generation of Natural English Dialogues, PhD thesis. Depart­

ment of Computer Science, Durham University, 1994.

Joshi, 1987] A. K. Joshi, "The Relevance of Tree Adjoining Grammar to Gener­

ation", in Kempen [1987], pages 233-252.

Kantrowitz and Bates, 1992] M. Kantrowitz and J. Bates, "Integrated Natural

Language Generation Systems", in Aspects of Automated Natural Language Gen­

eration [1992], pages 13-28.

Kay, 1979] M. Kay, "Functional Grammar", in Proceedings of the 5th Annual

Meeting of the Berkeley Linguistic Society, pages 142-158, Berkeley, CA, Febru­

ary 17-19, 1979.

Kempen, 1987] G. Kempen, editor. Natural Language Generation: New Results

in Artificial Intelligence, Psychology and Linguistics, NATO ASI Series - 135,

Martinus Nijhoff Publishers, Boston, Dordrecht, 1987.

BIBLIOGRAPHY 97

Kittredge et al, 1991] R. Kittredge, T. Korelsky and 0. Rambow, "On the need

for Domain Communication Knowledge", in Computational Intelligence 7(4).

Kukich, 1988] K. Kukich, "Fluency in Natural Language Reports", in McDonald

- and Bole [1988], pages 280-311.

[Long and Fox, 1995] D. Long and M. Fox, "A Hybrid Architecture for Rational

Agents", in C.Thornton and S.Torrance, editors. Hybrid Models of Cognition,

A I S B , . . L 9 9 5 : : • , • ; -.^r

Long and Garigliano, 1994] D. Long and R. Garigliano, Reasoning by Analogy

And Causality: A Model and Application, Ellis Horwood, 1994.

Mann and Thompson, 1987] W. C. Mann and S. A. Thompson, "Rhetorical Struc­

ture Theory: Description and Construction of Text Structures", in Kempen

1987], pages 85-96, Also appears as USC/Information Sciences Institute Tech

Report RS-86-J.74, October 1986.

Mann, 1983a] W. C. Mann, "An Overview of the NIGEL Text Generation Gram­

mar", in Proceedings of the 21st Annual Meeting of the ACL, pages 79-84,

Massachusetts Institute of Technology, Cambridge, MA, June 15-17, 1983.

Mann, 1983b] W. C. Mann, "An Overview of the Penman Text Generation Sys­

tem", in Proceedings of the Third National Conference on Artificial Intelligence

(AAAI-83), pages 261-265, Washington, DC, August 22-26, 1983.

[McDonald and Bole, 1988] D. D. McDonald and L. Bole, Natural Language Gen­

eration Systems, Springer-Verlag, New York, NY, 1988.

McDonald et al., 1987] D. D. McDonald, M. M. Meteer, and J. D. Pustejovsky,

"Factors Contributing to Efhciency in Natural Language Generation", in Kem­

pen [1987], pages 159-182.

McKeown and Swartout, 1988] K. R. McKeown and W. R. Swartout, "Language

Generation and Explanation", in Zock and Sabah [1988], chapter 1, pages 1-52.

BIBLIOGRAPHY 98

[McKeown et ai, 1990] K. R. McKeown, M. Elhadad, Y. Fukumoto, J. Lim,
C. Lombardi, J. Robin, and F. A. Smadja, "Natural Language Generation in
COMET", in Dale et al. [1990], pages 103-139.

McKeown, 1985] K. R. McKeown, Text Generation: Using Discourse Strategies

and Focus Constraints to Generate Natural Language Text, Cambridge Univer­

sity Press, Cambridge, 1985.

[Mel'cuk and.Polguere^-1970]. I . Mellcuk and A. Polguere,-"Towards a Functioning

Meaning-Text Model of Language", Linguistics, 57:10-47, 1970.

Meteer, 1993] M. Meteer, Expressibility and the Problem of Efficient Text Plan­

ning, Francis Pinter Pubhshers, London, 1993.

Nagle et al., 1992] T. Nagle, J. Nagle, L. Gerholz, and P. Elklund, editors. Con­

ceptual Structures: Current Research and Practice, Ellis Horwood, New York,

NY, 1992.

Nirenburg et al, 1988] S. Nirenburg, R. McCardell, E. Nyberg, P. Werner, E. Ken-

schaft, S. Huffman, and I . Nirenburg, "DIOGENES-88", Technical Report CMU-

CMT-88-107, Center for Machine Translation, Carnegie Mellon University, 1988.

[NLG94, 1994] Proceedings of the Seventh International Workshop on Natural Lan­

guage Generation, Nonantum Inn, Kennebunkport, Maine, June 21-24 1994.

Nogier and Zock, 1992] J. Nogier and M. Zock, "Lexical Choice as Pattern Match­

ing", in Nagle et al. [1992 .

[Paris and McKeown, 1987] C. L. Paris and K. R. McKeown, "Discourse Strategies

for Describing Complex Physical Objects", in Kempen [1987], pages 97-116.

Paris et al., 1991] C. L. Paris, W. R. Swartout, and W. C. Mann, editors, Natural

Language Generation in Artificial Intelligence and Computational Linguistics,

Kluwer Academic Publishers, Boston, 1991.

Paris, 1993] C. L. Paris, User Modelling in Text Generation, Francis Pinter Pub­

hshers, London,1993.

BIBLIOGRAPHY 99

[Patten, 1986] T. Patten, Interpreting Systemic Grammar as a Computational
Representation: A Problem Solving Approach to Text Generation, PhD thesis,
Edinburgh University, Department of Artificial InteUigence, 1986.

Patten, 1988] T. Patten, Systemic text generation as problem solving, Cambridge

University Press, New York, 1988, Based on PhD Thesis [Patten, 1986 .

Rosner and Stede, 1992] D. Rosner and M. Stede, "Customizing RST for the

-Automatic Production oLTechnical Manuals", in Aspects of Automated Natural

Language Generation [1992], pages 199-214.

Scott and de Souza, 1990] D. R. Scott and C. S. de Souza, "Getting the Message

Across in RST-based Text Generation", in Dale et al. [1990], pages 47-73.

Selinker, 1969] L. Selinker, "Language Transfer", General Linguistics 9, pp. 69-92,

1969

[Shapiro and the SNePS Implementation Group, 1993] S. C. Shapiro and the

SNePS Implementation Group, "SNePS 2.1 User's Manual", Technical report,

State University of New York at Buffalo, Buffalo, NY, 1993.

Shapiro, 1982] S. C. Shapiro, "Generalized ATN Grammars for Generation from

Semantic Networks", Computational Linguistics, 8:12-26, 1982.

[Short and Garigliano, 1993] S. Short and R. Garigliano, "The Representation of

Location in LOLITA", Unpublished research report. Department of Computer

Science, University of Durham, March 1993.

Short, forthcoming 1995] S. Short, Semantic Representation and Analysis in the

LOLITA System, PhD thesis, Department of Computer Science, University of

Durham, forthcoming, 1995i

Simmons and Slocum, 1972] R. F. Simmons and J. Slocum, "Generating Enghsh

Discourse from Semantic Networks", Communications of the ACM, 15(10):891-

903, October 1972.

BIBLIOGRAPHY 100

[Smith, 1995] M. H. Smith, Natural Language Generation in the LOLITA Sys­
tem: An Engineering Approach., PhD thesis. Department of Computer Science,
Durham University, 1995.

Sowa, 1984] J. F. Sowa, Conceptual Structures (Information Processing in Mind

and Machine), Addison-Wesley, 1984.

Turner, 1982] D. Turner, "Recusion Equations as a Programming Language", in

Darlington, editor, Functional Programming and Its Applications, Cambridge

University Press, 1982.

van Rijn, 1992] A. van Rijn, "Generating Language from Conceptual Dependency

Graphs", in Nagle et al. [1992 .

Vander-Linden et al., 1992] K. Vander-Linden, S. Gumming, and J. Martin, "Us­

ing System Networks to Build Rhetorical Structure", in Vander-Linden [1992],

pages 183-198.

Wang and Garigliano, 1992] Y. Wang and R. Garigliano, An Intelligent Tutoring

System for Handling Errors Caused by Transfer, Lecture Notes in Artificial

Intelligence, 608, Springer-Verlag, Montreal, Canada, 1992.

[Wang, 1994] Y. Wang, An Intelligent Computer-based Tutoring Approach for the

Management of Negative Transfer, PhD thesis. Department of Computer Sci­

ence, Durham University, 1994.

Wanner, 1994] L. Wanner, "Building Another Bridge over the Generation Gap",

in NLG94 [1994], pages 137-144.

Woods, 1970] W. Woods, "Transistion Network Grammars for Natural Language

Analysis", Communications of the ACM, 13(10):591-606, October 1970.

Zock and Sabah, 1988] M. Zock and G. Sabah, editors. Advances in Natural Lan­

guage Generation: An Interdisciplinary Perspective, volume 1, Ablex Publishing

Corporation, Norwood, NJ, 1988.

