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Abstract

In this thesis my emphasis is on the resolution of the singularities of fibre products
of Arithmetic Surfaces.

In chapter one as an introduction to my thesis some elementary concepts re-
lated to regular and singular points are reviewed and the concept of tangent cone
is defined for schemes over a discrete valuation ring. The concept of arithmetic
surfaces is introduced briefly in the end of this chapter.

In chapter 2 my new procedures namely the procedure of Mojgan' and the
procedure of Mahtab® and a new operator called Moje are introduced. Also the
concept of tangent space is defined for schemes over a discrete valuation ring.

In chapter 3 the singularities of schemes which are the fibre products of some
surfaces with ordinary double points are resolved. It is done in two different
methods. The results from both methods are consistent.

In chapter 4, I have tried to resolve the singularities of a special class of
arithmetic three-folds, namely those which are the fibre product of two arithmetic
surfaces, which were very helpful to achieve my final results about the resolution
of singularities of fibre products of the minimal regular models of Tate.

Chapter 5 includes my final results which are about the resolution of singu-

larities of the fibre product of two minimal regular models of Tate.

'In the Persian Language Moje means eyelash and Mojgan is its plural.

*In the Persian Language Mahtab means moonlight.
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Chapter 1

introduction

The basis of this thesis is the resolution of singularities of the fibre product of
Arithmetic Surfaces. The blowing-up of a point of a variety or a subvariety of a
variety is discussed before, see for example [11], [4], [9], [10] and [20]. We can find
about the blowing-up of a noetherian scheme with respect to a coherent sheaf of
ideals in [11]. Some discussions about the blowing-up are purely algebraic, see for
example [14], [28] and [11]. My research work started with proposition 2.0.2 and
remark 2.1.2 in Scholl’s paper (see [21]), and lemma 5.5 in Deligne’s paper (see
[7]) and I tried to find a resolution for the singularities of a fibre product of the
arithmetic surfaces with ordinary double points and could find the answer when
our surfaces are over Spec k[t], where k is an algebraically closed field. Later on,
[ realized that the results carry through without change if &£ is replaced by an
arbitrary regular ring R. Then there was an attempt for the substitution of R[]
by a discrete valuation ring R with an algebraically closed residue field k = R/()
and i1t was possible. These results are collected in chapter 3. The rest of my thesis
1s mainly about the resolution of singularities of the fibre product of arithmetic
surfaces of genus one.

Before introducing more details about the research work, let’s have a quick
review on the history of the resolution of singularities, the question which has

always been interesting to mathematicians.
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The resolution of curves was known earlier. Walker proved it for surfaces
over C in 1935. The first algebraic proof for resolution of surfaces and then
the embedded resolution for surfaces and resolution for three-folds over a field k
(Char. k=0) was given by Zariski, 1939 and 1944 respectively, see [28] for the
first one.

Hironaka proved the resolution and embedded resolution in all dimensions in
characteristic 0, see [12].

In 1966 Abhyankar proved resolution of three-folds in characteristic p > 7.

The resolution of singularities of arithmetic schemes (eg of schemes of finite
type over Z or a dvr) is in general unknown. But it is known for arithmetic
surfaces (see [23]). For arithmetic surfaces of genus one there is a nice algorithm
to obtain the minimal regular model (due to Tate), see [25] for details.

The aim of this thesis is to investigate the case of those Arithmetic 3-folds
which are fibre products of two arithmetic surfaces. The simplest case is when
the singularities in the fibres of the surfaces are ordinary double points, so locally
for the etale topology isomorphic to Spec R[z,y]/(zy — ). In this case we can
find an explicit desingularisation for the fibre products of an arbitrary number
of surfaces. The existence of such a desingularisation (at least in the geometric
case) has been known for a long time. In 1969 Deligne gave a sheaf of ideals
which under blowing-up, would resolve such a singularity. In chapter 3, Deligne’s
method is reproduced with details. We also give another method to desingularise
a product of double points, following Scholl’s remark (see [21]) and prove that
these two methods give the same answer.

In the last section of chapter 3 we imitate the methods of Deligne and Scholl
in the arithmetic case, and prove that they give a (common) desingularisation
over a dvr.

The final results in this thesis are in chapters 4 and 5, where we show that
(under certain hypothesis) the fibre product of two arithmetic surfaces of genus
one has a regular model, by taking the product of two Tate models and applying

birational transformations.
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1.1 Definitions + Conventions

Recall that a noetherian local ring A of dimension d and with maximal ideal m
and residue field k = A/m is regular if dimzym/m? = d (see [3]), or equivalently
the maximal ideal of A is generated by d elements, which also means that the
associated graded ring G,,, = @nzom"/m"“ is a polynomial ring in d variables
over the field A/m, see [27].

Also recall that for a commutative ring A with identity and a prime ideal P
of A, the localization of A at P is called the local ring of Spec A at P and the
field Ap/PAp is said to be the residue class field of Spec A at P and is denoted
by k(P) which is actually the field of fractions of A/P, see [13] and [11].

When A is a commutative ring with identity and has the spectrum (Spec A, O),
the stalk Op of the sheaf O is isomorphic to the local ring Ap , see [11]. A scheme
X is regular if all of its local rings are regular local rings. If for P € X, Op is
not regular we say that P is a singular point of X.

Recall that for a scheme X the Zariski tangent space to X at P € X is
the dual of the k(P)-vector space mp/m%, ie, Homyp)(mp/mp, k(P)) which is
described completely in [17]. If k is an algebraically closed field and X is a scheme
of finite type over k and P is a closed point of X and U C X is an affine open
neighbourhood of P, a closed immersion ::U — A} makes U isomorphic with
a subscheme Spec (k[zy,...,zs)/A) of AL. Then by using suitable translation
we can assume that z,,...,2, € [{P) or equivalently :(P) = P, the origin in
A%, For each f € k[z,,...,z,) we use f* to denote the leading form of f, ie, if
J = Y fi, where f; is homogeneous of degree ¢ (and f, # 0), then f* = f, and
we use A” for the ideal of [z, ..., z,] generated by all polynomials f* (for f € A)
and call Spec(k[z,, ..., z,)/A*) the tangent cone of X at P. It is the same as
Spec(Gr(Op)), see {17], page 216. Recall that a point P € X is a regular point
if the tangent cone and the Zariski tangent space at P are the same.

For example if k is an algebraically closed field of Char. 0 and X =Speck{z,y]/
(y? — z*(z + 1)), then at Py=(0,0) the tangent cone consists of the line pair
Speck(z,y]/(y*> — z?) and the tangent space is A%. So P, is a singular point.
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Remark 1.1 In the above discussion we cannot substitute & by an arbitrary
ring, but if R is a discrete valuation ring with algebraically closed residue field
k = R/(m) we can define the tangent cone at P € X in a similar way.

Here a closed point on the special fibre A} of A} say P = (ay,...,a,) cor-
responds to the maximal ideal Mp = (2, — a4, ..., Zn — an, ) of R[z), T3, ..., Ty
where a; € R and &; = ai, e, a; is the reduction of a; (mod ).

Now let X be a scheme of finite type over R and P be a closed point of X
and U C X be an affine open neighbourhood of P and i : U — A%, be a closed
immersion making U isomorphic with the subscheme V =Spec (R[z),...,z,]/A)
of A% and use suitable translation such that :(P) = Py, where F, is the origin of
the special fibre of A%, 1€, A}.

Let f be a non-zero polynomial in A. Since i(P) = Fy € V, we have f =
0(mod M) (ie, Py € A7 lies on f = 0), where M = (7, 2y, ..., Z,). So there exists
r > 0 such that f € M" and f¢M"*!. Suppose that f = (X!_,g;) + h where g; is
a monomial in R[z,,...,z,] and g; € M" \ M™*! and h € M"*1,

If g; = wym@oz]" .. .z%n~ (where u; € R*), then oy, + @, + ... + o, = r and

*u; is well-defined (mod ) as g; is well-defined (mod M"*!). Now replace = by an

indeterminate say zo. Let gf = u4;z8°z'...2%" € k[zo,...,Ts] and f* = X' g7.

Then f* is a homogeneous polynomial of degree r in k[zo,z,...,z,] Which is

determined uniquely by f. Let A* be the ideal of k[zo, z1, ..., z,] generated by all
*'s (for f € A). Now we define the tangent cone at P € X as follows:

Definition 1.2 With the above notation
Tangent cone of X at P =Speck[zq, 1, ..., Tn)/ A*

Remark 1.3 In definition (2.5) of chapter 2 we introduce the concept of tangent

space and then we give an example about tangent cone and tangent space.

Convention 1.4 In this thesis valuation ring means a discrete valuation ring

with uniformisor 7 and algebraically closed residue field k = R/(~).

Remark 1.5 In [23] the concept of arithmetic surfaces is defined over a Dedekind

domain, but since singularity is a local property and the localization of a Dedekind
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domain at any of its non-zero primes is a discrete valuation ring, we study our

arithmetic surfaces over a discrete valuation ring.

Convention 1.6 Let R be a discrete valuation ring. By an arithmetic surface

we mean a regular scheme V purely of dimension 2, which is flat over R.

Remark 1.7 Let X — Spec R be a separated integral scheme which is flat
and of finite type. By a desingularisation of X we mean a birational, proper

morphism X’ — X such that X’ is flat over Spec R and is a regular scheme.

Remark 1.8 For more details and several examples of arithmetic surfaces see pp
311-318 in [23]. The blowing-up of an arithmetic surface over a discrete valuation
ring is discussed in remark 7.7, pp 345-347 in [23].

The theorem related to the resolution of singularities of arithmetic surfaces
and also existence of minimal proper regular models for arithmetic surfaces is
discussed in theorem 4.5, page 317 in [23]). For nice examples over a discrete
valuation ring see Tate’s algorithm in [25].

All schemes which I have used in this thesis as components in the fibre prod-

ucts, are examples for arithmetic surfaces.




Chapter 2

Procedures

2.1 Introduction

To determine the singular points of a geometric scheme, one uses the Jacobian
criterion. In the arithmetic case there is no Jacobian criterion, but we find an
analogous procedure to determine the singular points, which we call the procedure
of Mojgan (§2.2 and §2.3). For resolution of singularities we mainly use a sequence

of blowings-up. To do these with a tidy method, we employ a procedure which
we call Mahtab (§2.4).

2.2 The Procedure of Mojgan

As it was mentioned in chapter one, the tangent cones and tangent spaces are
helpful for the determination of singular points. Here we try for another method.
We start with another interpretation of Jacobian which would be generalized
later on.

Let k be an algebraically closed field and X = Speck|zy,...,z,]/
(filz1, s Tn), oo, fr(21, ooy T0)) and P = (ay, ..., an) € X. Then define Moje( P, f;)

as follows:
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Moje( P, f;)=Linear form of f;(Ty + a1,..., Tn + an),
say
Moje(P, f;) = CuTi + CieTy + ... + Cin Ty, and let C = (C;) where

l<:<mand1<j<n,and P corresponds to the maximal ideal
Mp = (z1 — a1,T2 — @2y ey Tn — )/ (f1s ey fim) (2.1)
of T(X,Ox) and
Mp|/ M = (Ty,...., T)[((T1, -, Tn)* + Span(Moje(P, £:))1cicm)- (2.2)

Let 7 = rank(C;;). Then dimMp/M?% = n—r. If n—r=dimX, then by Jacobian

criterion P is a regular point, otherwise it is singular, see [11].

Remark 2.1 For the calculation of singular points of schemes over a field of
characteristic zero, or determination of singular points of the special fibre (when

our schemes are over a dvr) and also for solving the system of equations, I have

used WMAPLES3.
Example 2.2 Let X = Speck(zy,y1,Z2, Y2, T3,Y3)/(Z1y1 — T2Y2, Z1y1 — 23y3). Then

fl(xl,yl,wz,yz,ms,ya) = I1H%h — T2Y2

fz(zl,yl,mz,ymzz,ys) = Tiy1 — T3ys.
If P=(ay,b1,as,b2,a3,b3) € X, then it corresponds to

Mp = (xl_al,yl“bla---,x3—a3ay3_b3)/(f17f2)
= (11, 51,...,T3,83)/(fi(T1 + a1, S1 + by, ..., Ts + a3, S5 + b3),
f(Ty + a1, 51 + by, .., Ts + a3, S3 + b3)) (2.3)

but

AT+ ay, S+ by, ., T + a3, 853 + b3) =
T151 — TaSy + (a1S1 + biTy — a252 — b, Th), (2.4)
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e,
Moje(P, f]) = blTl + (1151 - b2T2 - (1252. (25)

Similarly we can check that

Moje( P, f2) = /Ty + a1 51 — bsT5 — a35s, (2.6)
SO
by a1 —by —ay 0 0
C(P) = . (2.7)
b1 ay 0 0 —bg —das

If we equate the minor determinants to zero and use them as the equations of a

system, we see that P is singular if at least two pairs (a;, b;) are zero (1 <: < 3).
Example 2.3 Let
X = Spec k‘[ml, Yty -3 Tn,y yn]/(‘zlyl - $iyi)2§,~Sn, (28)

and P = (a1,b1,...,an,b,) € X. Consider f; = z,y; — ziy; where 2 <1 < n. Then

Moje(P, f,) = b7, + a1 51 — b;T; — a;5;, (2.9)
i€,
(bl ay —'bg —a9 0 0 0 0 \
b] aq 0 0 —b3 —das 0 0
\bl a 0 0 e 00 b, —a,

This matrix shows us that if at least two pairs (a;, b;) are zero where 2 < <mn,

then P is a singular point.
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2.3 Generalization

Let R be a discrete valuation ring with algebraically closed residue field k = £

(m)
and

X =Spec R[zy, ..., xn]/([1(Z1y s Tn)y ooey frn(T15 oy Th))- (2.11)

Then the closed points of X are on the special fibre of X, i€, on the scheme

X, = Speck|zy, ..., zn]/(Fi(Z1, ooy Tn)y vy Frn(T1yees Tn)),s (2.12)

where f; denotes the reduction of f;(modn). Let P = (ai,...,as) € Xr be a
closed point of X and choose ay,...,a, € R such that & = a;(modw). Then
as a point of X, P corresponds to the maximal ideal of I'(X, Ox) generated by
Ty — Qq,y..., Ty — ap and 7, e,
Mp = (21— Q1,82 = Qg .ccy T — O, )/
(fl(lfl,...,.’En),...,fm(l'l,...,xn)). (213)

By using the translation T; = z; — «;, we get

Mp = (T\,Ty,....,Ts, )/
(fl(Tl + g, ,Tn + an), '--7fm(T1 + ag, ...,Tn + an)) (214)
So
'/\AP/M}’ = (T15T27'-'7T'm7r)/
(T, Tay ooy ) + (T4, Ty oo, Ty )N
(fl(Tl + Yy ey Tn + an), ceey fm(Tl + Ay -eny Tn + an))), (2.15)
te,
'/\AP/M?’ = (T17T2a "'7Tn’ﬂ-)/
(Th, Ty ey Toy )" + {(Moje(P, f) }rcicm), (2.16)

where Moje( P, f;) is the linear part in T, ..., T, and 7 of fi(T\ + o, ..., T + an),
say

MOje( P, f,) = d,’oﬂ' + dilTl + d,‘ng + ...+ d,‘nTn, (217)
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where 1 < ¢ < m and d;; € R, ie, Moje(P, f;) = fi(Ty + au,..., T, + an)
mod(Tl,...,Tn,w)2.

Now consider the matrix

( (210 Jll (_1_12 Jln
J2Q (Zgl d—zg Jgn
dno dm1 dmz o o oo don

where d;; is the reduction of d;; (mod 7). If r = rank D(P), then
dimMp/M% =n+1—r. (2.19)
Thus we obtain:

Proposition 2.4 (Procedure of Mojgan)

P is a regular point of X if n + 1 —r = dimX, otherwise it is singular.

Definition 2.5 By using the same notation as above we consider

moje( P, f;) = dioTo + dy Ty + ... + din T,
corresponding to Moje(P, f;) (T corresponds to 7), and define
Tangent space of X at P=Speck{To, T\, T3, ..., T,]/({moje(P, fi)}1<i<m)

Example 2.6 Let X = Spec R[z),y1, T2, y2)/(z191 — y2 + 23,2131 — 7). Con-
sider fi = z1y1—~yi+z3, fo = ziyi—7. Then f7 = zyy1—yZ and f; = —7 := —2z,.
Hence

Tangent cone of X at Py=Speck[zq, T1,y1, T2, ¥2)/(T1y1 — Y2, 2o)=

Spec k[z1, Y1, T2, y2]/(z1y1 — y3). But

moje( Py, fi) = 0 and moje( Py, f2) = —To, te,

Tangent space of X at Po=Speck[Ty, T, 51,12, 52)/(0,To) =

Spec k[T1, S1, T2, S2) = A}, so Py is a singular point.
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Lemma 2.7 Let Y be a regular scheme. Then A} = A" Xgpe.zY is regular.

Proof : Let Y = Spec R, where R is a regular ring. Then A} = A"Xg,. .z
Spec R = Spec (Z[z,,...,z,|®zR) = Spec R[z,, ..., z,] which is regular (see theo-
rem 40, page 126 in [15]).

If Y is non-affine, then we consider Y as a union of affine schemes and use
the above result for the product of A™ with the afhne pieces and then glue them
together. O

Theorem 2.8 Let f : X — Y be etale. If Y is regular, then X is regular.
Proof : See page 27, prop. 3.17-(c) in [16]. O

Theorem 2.9 Let Y be a regular scheme and X be smooth over Y. Then X is

a regular scheme.

Proof : Let f : X — Y be the smooth morphism. Then by definition (see
definition (1.1), page 128 in [1]), each £ € X has an open neighbourhood U such
that U —> A} is etale and A} — Y is the projection on the second factor and

the following diagram is commutative:

U ? = A%XSpecZY

flv .
Y

Since Y is regular by lemma (2.7), A} is regular. By using theorem (2.8) we

conclude that U is regular. O

Remark 2.10 Note that the other definition of smooth morphism as it is stated
in page 304 of [17] or page 305 in [23] is equivalent with definition (1.1), page 128
in [1] (for the proof see prop. 3.24, page 31 in [16]).

Corollary 2.11 Let X and Y be schemes over S. If Y is regular and X is

smooth over S, then X XsY is a regular scheme.
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Proof: X — S is smooth. After base extension we get X xsY — Y. Now Y
is regular and X xgY — Y is smooth (see [1], page 129, prop. (1.7)-(ii7)). By

using theorem (2.9) we conclude that X xgY is regular. O

Here we will have an application of the procedure of Mojgan which is very

useful in coming chapters.

Lemma 2.12 Let R be a discrete valuation ring and f(zy,22,...,2,)
be a non-constant monomial in R[z;,z,,...,,) such that f is not divisible by

7. Then X = Spec R[z1,22,...,2.)/(f(21, T2, ..., zn) — 7) is a regular scheme.

Proof : If f does not contain z,,z3,...,z; (for { < n), then we get

X = A%xspeCRSpec R[zig1, g2y oo To) [ (f(Zi41, Tig2y ooy Ta) — ). (2.20)

So without loss of generality we can assume that f contains all z;’s, say
flzy, @0y .y zn) = 21 2722 Now let g(z1,zq,...,2n) = f(z1,29,...,2,) — 7,

1€, g(T1, Ty ..ey Tn) = Ty 25 2.2 — w. Then the special fibre of X is

X. = Speckzy,za,...,xa)/(g(21,22, ..., Tn)) =

my ,.m2

Speck[z1, za, ..., T /(2T 22 ...xi™). (2.21)

We can find the singular points of X, by using the Jacobian criterion. Let
Q = (ay,aq,...,a,) € X;. Then as a point of X, @ corresponds to the ideal of

['(X,Ox) generated by z; — oy, 22 — a2, ..., 2, — a, and m, ie, ) corresponds to
/VlQ = (271 —Q1, Ty — A2y ...i Tyy — Oy, ﬂ')/(g(.'l'l, T2y ueny .’L‘n)), (222)

L]
where a; € R and &; = a;(modr). Since Q) € X, we have [] a; = 0, which means
i=1
that at least one a; is zero. Without loss of generality assume a, = 0, i¢, 7|y,
say oy = wym. According to the values of m; we consider two different cases as

follows:

Case one my =1
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We get g(z1, 22, ..., n) = z125%...2™" — 7. Hence

g(Tl + alv T2 + a‘z, ...,Tn + an) =
(Y +um)(Te+ a2)™ (T + an)™ — 1 =

m

(mimag?...op™ — )+ ay?..onn T +

-1 _m ma m3—1 _m
mo(urm)ag? ™ ag?..apt Ty + mg(uym)ay?ag® ™ agt...anTs +

et mn(ulﬂ')a;"?...azz(fl_)”a’,:‘""lTn + ... (2.23)
1€,

Moje(@, g) = (wiaz?...ai™ — L) + a3 ...anTy +

ma(wym)ay? oyt . al Ty + ma(uym)ag? a3 Lot ...a Ts +

ot Mg (uym)ag? o ol T, (mod (T, ..oy Ty m)°). (2.24)
So

DQ) = (wmad?.a™—1 af.a™ 0 0 .. 0 0) (2.25)
This means that @ is singular if ¥ya3?...al” — 1 = a3%...a? = 0 which is

impossible, so () is a regular point.
Case two my > 1

In this case we get

9N+ a, T+ as,....Tu+a,) =

(Tl + unr)"” (TQ + ag)m2...(Tn + a,,)m" - T =

(ey™ 7™ ay?. .ol —7) + ml(ulw)m‘_la;"’...a:'“Tl +
my mo—1_m3 my meo m3—1_my

ma(uym)™ ay? T ag . apg Ty + ma(uim) " ag et T agt el T +
o+ mp(um)™ g Lo el T T, (2.26)
ze,
Moje(Q, g) = (ﬂm‘"lulm‘a’;?...a?" -+ ml(ulﬂ)m"la;”z...a;""Tl +
ma(um)™ a2 ..o Ty + ma(uym) ™ a2 oyt et .ot T +

ot M (um)™ a2 ol @ T, (mod (T, ..., Ty, ). (2.27)
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Hence

DQ)=(-1 0 0 ... .. .. 0 0), (2.28)
which has rank 1. So dimMg/M% = (n+ 1)~ 1 =n = dimX, ie, Q is a regular

point. O

Corollary 2.13 The scheme X = Spec R[x1, 22,y .oy Tac1, Tny Yn)/

(($1$2...$n_1)2$nyn — 1) is a regular scheme.
Now we generalise lemma (2.12) as follows:

Theorem 2.14 Let g¢i(z1,...,2n), e, gm(Z1, -, Tn) € R[z1,...,T4] such that
f(z1, ., 22) = 1(x1, oovy Tn)eo-Gm (T4, -y Tn) 18 DOt divisible by 7 and h(zq, ..., z,) =
f(z1,...,zz) — m. If for each i, the polynomial g; is a linear form or the k-variety

W, = Specklzy, ..., )/ (gi(z1, ..., Tx)) is non-singular, then

Y = Spec R[z1, ...,z /(g1(T1ys s Tn) oo Gm(T 1y coey Tn) — T) (2.29)
is a regular scheme.

Proof : Let P = (ay,...,a,) € Yr and ay,...,a, € R such that a; = a;(mod ),
(for 1 = 1,...,n). Surely f(a,...,a,) = 0(mod ) and %(al,...,an) = 0(mod )
if P € Y ins,

Now let P € Y58 and T; = z; — o;. Then 7r|a%€(a1, .es 0y ) and so

of |

(@t s ) Ti = 0(mod (T3, oy Ty 1)) (2.30)
z;
But
n af
f(T] + Ay eeny Tn + an) = f(al, veny an) + Z —a?(al, aeey an)T,- + ... (231)
i=1 4
Hence
n af

Moje(P. k) = {{f(en, -ran) =T} + T 5

= {f(a,...,an) — 7} (mod 7?). (2.32)

(@1, -y cn) T }(mod (T, ..., T, )°)
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So P € YS"& if f(ay,...,a,) — ™ = 0(mod 7?) which means that 7| f(a1, ..., an)
and 7% f(ai, ..., an). Without loss of generality assume that n|g)(c, ..., a,) and

mlg2(0r, ..., Qn).c.gm{ay, ..., ). Note that

of _ 0g dga Ogm
oz ‘a?t_gzgsmgm + 91{(8:“ )g3-+-Gm + .+ g2"'gm_1(8_x,-)}' (2.33)

So

0 0

%{i(al, ey Q) = B—Zt_(al, o o) o, oy ). gm(ar, ..., ) (mod ). (2.34)
If P e YSn8 we get %(al, ey @z) = 0(mod ) which implies that %%(al, ey Otn)
= 0O(modm) (recall that mfgz(ai,...,an)...gm(1,...,as)) and gi(ey, ..., )
= 0(mod ), hence P € w,Sme O

Example 2.15 Let
Y = Spec Rlz1,y1, 22, y2)/ (2 (y2 + 23 + 1)(2] + y2) — 7). (2.35)

By USiIlg gl(‘rlayhz?)y?) = 92(171,y1,932,y2) =T and 93(331,3117$2’y2) = y% +
z3 + 1 and gs(21,y1, T2, ¥2) = 2 + Yy, and applying theorem (2.14), we conclude

that Y is a regular scheme.

2.4 The Procedure of Mahtab

Let X be a noetherian scheme and J be a coherent sheaf of ideals on X and
S = @dzojd (where J¢ is the dth power of the ideal J with J° = Ox). Then
S is a quasi-coherent sheaf of Ox-modules which has a structure of a sheaf of
Ox-algebras. The scheme X = ProjS is called the blowing-up of X with respect
to J. If Y is a closed subscheme of X corresponding to 7, then X is called the
blowing-up of X along Y or with centre Y. For more details see [11].

As a trivial example we can consider the case X = A} and blow-up P, =
(0,0,...,0,0) € X. Let A = [(X,0x) = kl[z1,z2,...,24]). Then Py corre-

sponds to the ideal [ = (z,,z2,...,z,) of A and X is isomorphic with a closed




CHAPTER 2. Procedures 19

subscheme of ProjA[u1, ta, ..., ttn] =P =Spec Axspeck P}~ defined by Kera =

({zip; — wju;})lsi.,jsﬂ, where « is the following epimorphism:

a Ay, foy ey ftn) — S = @dzold
i > ;.
When we are involving with a scheme X over a field of characteristic zero and
blow-up a suitable subscheme Y of X, by Hironaka’s proof there exists a regular

scheme X birational to X such that X — E is isomorphic to X — Y, where E is

the exceptional divisor.

Remark 2.16 After blowing-up a scheme X we get some open pieces for the
covering of X and then glue them together. For more details about the gluing
of schemes see [11], [13], [20] vol I, and [8]. If we continue using the process of
blowings-up, we use X1, X2,...,Xn, for the result of ghiing of the open pieces after

first,second,...,nth blowings-up.

Remark 2.17 Let R be aring and M be an R- module. A sequence z,, z3, ..., T\
of elements of R is called a regular sequence for M if z, is not a zero divisor in
M, and for all: = 2,...,r, z;is not a zero divisor in M/(zy,...,zi-1)M. For more

details see {11], page 184.

Remark 2.18 Recall that a scheme X is normal if all of its local rings are
integrally closed domains. Let X be an integral scheme and for each open affine
subset U/ = Spec A of X, let A be the integral closure of A in its quotient field
and let U = Spec A. By gluing the schemes U we obtain a normal integral scheme
X called the normalization of X, see [11] and [13].

If a scheme is not normal after blowing-up the singular part would be worse
than the singular part of the original scheme. So before each blowing-up, if the
scheme is not normal we find its normalization and then blow-up this normalized
scheme. In some cases just after normalization we get a regular scheme. For
instance the normalization of the singular scheme X = Spec k{z,y]/(y* — z°) is

isomorphic with A}. Of course I don’t use it in my examples except in example
(2.21).
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In coming chapters we will use several times the procedure of Mahtab . Here
we introduce this procedure.

Let X = Spec R{z1,z2, ..., &)/ ( f1, .-, fm) such that X is flat over Spec R, and
Y be a subscheme of X and ¢y, ¢2,...,9. be a regular sequence generating the
ideal I = I(Y) of Y in A = ['(X,Ox). Define

a Al e ) — S = ®4201d
pi — gi.
Then a is an epimorphism and
Kerar = ({pig; — 1igi})1<i j<r
and Alpy, pa, ---, pr]/Kera =2 S, which induces an isomorphism
¢ : X = ProjS — Proj(Aluy, g2, ..., pr)/Ker a).
The right hand side scheme is a closed subscheme of
ProjAlu, 2, ..., tr) = P’y = Spec AxspecRP'}{l. (2.36)
The standard open covering of P75, ie,

Uy = SpecR[&,&,...,”—r],
Bt Ha “

U° = Spec R[%, % %}, (2.37)

induces an open covering for X, say X = V2 U ...U V° where
VP2 = Spec(A®grI(U},O)(mod Kera)) =

Spec Rz, ..., z,, &, ey fL—r]/(fl(:z:l, ey Ty eeey S (T15 oeey Tn),
231 H1

Bz 92 #s 98 B9 o
PR TR /TR TR TPR T
SpeCR[.’L’l,JEz,...,CEn,le,T13,...,Tlr]/

(fi(Z1y ey Tn)y ooy frn(@ry )y {Thjg1 — gj}2Ser)' (2.38)
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Similarly for 2 < i < r we get

V2 = Spec(A®grI'(U?, O)(mod Kera)) =

B pa o

Spec Rz, ...,:x:n,—l, —2,...,—]/(f1(:v1,...,:vn), ceoes fra( @1y oovs Th),
i [ Hi

LRI N R DA

i gi’ﬂf gi’m’ﬂi gi’”
SpeCR[mh“wxnaﬂbﬂ%"‘9Ti'i-1’Tii+lv"-7T‘ir]/

(1(@1y o0 ), o Fon(@1y s @)y (T = Gitrgyrr 3 #)e (2:39)

If all the pieces V2 are regular, their gluing gives us the regular scheme X.If
any V0 is singular after normalization we blow-up its singular part or a subscheme
of its singular part and continue this process until getting all pieces regular and
then glue them through their overlap.

We call the above procedure, the procedure of Mahtab.

Example 2.19 Let k be a field and X = Speck|zy, y1, T2,y2)/(z1y1 — T2y2). By
using the Jacobian criterion we can check that Py = (0,0,0,0) is the only singular
point of X and as a point of X it corresponds to the maximal ideal [ of A =

['(X, Ox) generated by z;,y;,z; and y,. Now consider the ring homomorphism

a: Algy,m,pe,m2) — S = ®d201d (2.40)
Hi —r T
i — Y.
Then «a is an epimorphism and Kera is the ideal of A[uy,n1, p2, 72] generated by
{zip; — zjpi, zin; — yip, yin; — yj’?i}lsi,jQ (2.41)
and we have

Alpr, M,y po, 2] /Kera =2 S, (2.42)

which induces an isomorphism

X = ProjS — ProjA[u, n, pt2, 72)/ Kera. (2.43)
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The right hand side scheme is a closed subscheme of

PijA[Nlﬂh,M”h’] = SPeCAxspeckPIOjk[ﬂl,771»#2,772]
= SpecAXspeckPi. (2.44)

So we have the following diagram for blowing-up:

X Spec AXSpecsz

L

X = Spec A

The standard open covering of P} = Projk[u1,m1, p2, 72, 1€,

UO—Sp k[nl .LL2 7’2] (2.45)
pr g

Ul = Spec k[EL, £2 12 (2.46)
Mm T M

U2 = Speck[2L, 1L 12 (2.47)
H2 ﬂz H2

Ul = Speck[£2, 1t £2 2.48

pee [772 N2 772] ( )

induces an open covering for X, say W, W}, W) and W} where

Iy Y2

wy # 0, WP = Spec k[z,, —, " (2.49)
T Ty
m # 0, W, = Speck[y, ]:2, Y2 (2.50)
B %
0 Iy '
p2 # 0, W, = Speck[—, =, z1] (2.51)
Ty T2
1 1
2 # 0, W, = Speck[—, =, 3. (2.52)
Y2 Y2

The schemes WD, W}, W2 and W, are all regular schemes and are pieces for the

‘ covering of X. 0O
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Example 2.20 Let k& be a field and

X = Speck(zi,y1, 22, yo) /(Y5 — v — niT} + ya23). (2.53)

By using the Jacobian criterion we can check that P, = (0,0,0,0) is the only
singular point of X which corresponds to the ideal of A = I'( X, Ox) generated

by T1,Y1, T2 and Y2, iea

I=Mp, = (xl,y1,$2,y2)/(y12 - y% - yl:cf + yzwg). (2-54)

Now we blow-up F. Consider the epimorphism

a : Alp,n, pa, el — S = Ede)Id
Hi —> T
N > Yi-

If we use the the procedure of Mahtab, we get four pieces for the covering of X,

say V2, Vi1,V and V! as follows:

Chart 1

- Yo T2 Yo YLt Y23t Wt Y2y Z2%
W= Speckle, 27 212y - (2) e+ (BT =

Spec k[ X1, Y1, X, Y2} /(Y - Y — Xy Y + X, Y, X3). (2.55)

Let f(Xl'/Y'l7X27}/2) = }/12 - }/22 - XIYVI + XI}/2X22 If Q = (aliblaa%b?) € ‘/loa
then

Moje(Q, f) = (agbg - bl)Tl + (2b1 - al)Sl + 2ala2b2T2 + (alag - 2b2)52, (256)

e,
C(Q) = (a%by— b1 2by —a; 2aiazb; aja —2b;). (2.57)

We can check that C'(Q) has rank zero if and only if a; = b, = b, = 0. Hence

(VIO)Sing = {(01,51,02,132) € (‘/10),r|01 =b =b; = 0} = S. (2-58)
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Now we blow-up S. Let A=I'(V?, OEIVP) and [ be the ideal of A generated by
Z1,%,y2 and define

o Alp, ] — S = @bo[d
H1 —> Zy.

If we use the rest of details about the the procedure of Mahtab we get three pieces

for the covering of V2, say V%, V! and V' as follows:

Chart 1.1

0 _ Vo Wy 1 B R M e
Vih = SpeCk[ml’ml’xz’xl]/((xl) (331) (:1:1)+$2(a:1))—

Speck[X1, Y1, Xo, V2] /(Y = ¥j — Y — X3Yy). (2.59)
Let @ = (a1,b1,as,b2) € VP and f(X;, Y1, Xz, Y2) = Y2 - YE—Y, — X2Y,. Then
Moje(Q,f) = (2b1 - ].)Sl — 2(1262T2 - (ag + 2b2)52, (260)

SO

Hence C'(Q) has rank zero if b = %, ay = by = 0 which is impossible. This means

that @ is a regular point and consequently V{;° is a regular scheme.

Chart 1.2
V! = Speck[X1, Y1, X2, Yol /(1 — Y3 — X, + X Y, X3), (2.62)

which is a regular scheme (look at C'(Q)).

Chart 1.4

Vi = Speck[X1, Y1, X0, Vo) /(Y = 1 — X\ Y1 + X1 X3) (2.63)
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which is a regular scheme (look at C(Q)). The gluing of V5, V3! and V3! gives

us the regular scheme 1716,

Chart 2
1 zy T2 Y2 Y22 T2 Y2.,T2.%,
Vi = Speck[—,y1,, =, =l/(1 = (55) —wi(—=) +un(=)(—) )=
hn ANt n hn AN
Speck[X,, Y1, Xo, Ya)/(1 = Y2 =1 X2+ V1Yo X3). (2.64)

Let f(leylaX27Y2) =1- }/'22 - )/IXIZ + K)/?X22 a'nd Q = (G],bl,dz,bg) € ‘/10-
Then

Moje(Q, f) = —2a:b, T\ + (byal — a3)S; + 2b1azb;Ts + (byas — 2b5) S,  (2.65)
SO
C(Q) = (—2a1b; bra2 —a? 2biazb, b’ — 2by), (2.66)

which has rank zero if —2a,b; = baaZ — a? = 2bjazb, = bia? — 2b; = 0. This
system has the solution a; = b, = b, = 0 or a¢; = a; = b; = 0. Considering
fla1,b1,a2,b2) = 0, we find out that none of these solutions are acceptable.

Hence @ is a regular point and consequently V! is a regular scheme.

Chart 3

“ T 2 2 Tr1.2
VO = Speck[=, L 2 /(Y — (&) — (I E) + 242 =
Ty I T2 T2 T T2 T2 Ta

Spec k[ X1, Vi, Xa, Ya] /(Y2 — Y2 — XoVi X2 + XoYa). (2.67)

Let f(Xla}/l,XZ,)/Z) = )/12 - Yv22 - 4X2}/1‘X12 + X2Y2 and Q = (al,bha?ab?) S ‘/20-
Then

Moje(Q, f) = (—2(11¢12b1)T1+(2b1 —(l?(lz)sl +(b2—a3b1)T2+(a2 —2b2)32, (268)

i€,

C(Q) = (—2a1a2by 2by —afay by —aiby a3 —2by). (2.69)
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So @ is singular if —2aya:b, = 2by — a?a; = by — a®b; = ay — 2b; = 0. This system
has the solution b; = a3 = b, = 0 (note that a; = by = a3 = by = 0 is also a

solution for the system, but actually it is a special case of by = ay = by = 0), ie,
(‘/20)53118 — {(al,bl,ag,bz) € ‘/10 ] bl =qa, = b2 = O} (270)

Now we blow-up (Vzo)smg. By using the procedure of Mahtab we get three pieces

for the covering of \7), say VO,V and V3! as follows:
g 2 211722 22

Chart 3.2
V2011 = Speck[Xl,Yl,Xg,YQ]/(l - Y;z — XzXf + ){2}/2)1 (271)

which is a regular scheme (just check C(Q)).

Chart 3.3
Var' = Speck[X,, Yy, Xa, Y2l /(Y - Yy! — ViX] + V). (2.72)
Let f(X(,Y1,Xo,Y2) = Y2 —Y2—Y1X?+Y; and Q = (a1, b1,ay,b;) € VY. Then
Moje(Q, f) = —2a1b: Ty + (2by — a?)S; + (1 — 2b3)Ss, (2.73)

SO

C(Q) = (—2aby 26y —a? 0 1—2by). (2.74)

So @ is singular if —2a,6; = 2b; — a? = 1 — 2b, = 0. But this system has the
solution @, = b, = b, — % = 0 which is not acceptable. Hence () is a regular point

and as a result V3 is a regular scheme.

Chart 3.4
Vo' = Speck[Xy,Y:, X, Vo] /(Y2 — 1 — Xo Vi XE + X)), (2.75)

which is a regular scheme (just check C(Q)). The gluing of V), V3? and V3! gives

us the regular scheme V7.
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Chart 4

V) = Speck[X1, Y, Xo, Yal /(Y2 — 1 — VRV X2 + Yo X2), (2.76)

which is a regular scheme (just check C(Q)). The gluing of ‘716, Vi ‘7;0 and V}!

gives us the regular scheme X.

Example 2.21 Let R be a discrete valuation ring and U = Spec R[z,y]/
(x? + 7%y® — 7). Since (2)* +y® — n? = 0, (2) is integral over ['(U,Op). We
get V = U = Spec R[Z,y]/((%£)* + y° — 7?)= Spec R[X,Y]/(X? + Y — n?).

By using the Jacobian criterion we can check that
VS8 — {(a,b) € V,]a = b =0}. (2.77)
Let f(X,Y)=X?+Y?—x?and P, = (0,0) € V;. Then for v and v in R we get
f(T +um, 8+ vr) = (T +ur)’* + (S + vm)® — n? (2.78)
So Moje(Fo, f) = 0. Hence
D(P)=(0 0 0), (2.79)

which has rank zero, ie, Py = (0,0) € V, is the only singular point of V.
Let A = I'(V,Ov). Then as a point of V, Py corresponds to the maximal

ideal [ = (z,y, ) of A. Now we blow-up F,. Consider the ring homomorphism

¢ Alp.n, 0] — S =P, 1
p—
nr—y
0— 7.

By using the rest details of the procedure of Mahtab, we get three pieces for the

covering of V as follows:
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Chart 1

Ve = specRle, L D)0+ oY) - (5)) =

Spec R[X,Y,Z)/(1 + XY® — 7%, X Z — ).

So
(WD), = Speck[X,Y,Z])/(1 + XY? - Z%,XZ).

By using the Jacobian criterion, we can check that
04 Sing
(‘/1 )1r = qs'

which means that (Vlo)Sing = ¢, te, V is a regular scheme.

Chart 2

W = Spechly, gl/((gfw—(gf)

Spec R[X,Y, Z|/(X*+Y — Z*YZ — )
Spec R[X, Z]/(Z° — X?Z — T),

SO

(V3™ = {(a,c) € (V) e = z = 0}.

™

Let ¢(X,Z) = Z® — X*Z — n. Then

9(T +ur, W + wr) = (W 4+ wr)* = (T + un)*(W + wr) — .

So Moje(Q, g) = —m, ie,
D@Q)=(-1 0 0),

28

(2.80)

(2.81)

(2.82)

(2.83)

(2.84)

(2.85)

(2.86)

which has rank one. Hence @ is a regular point of V! and consequently V! is a

regular scheme.

Chart 3

Ve = Spec B, L((E) + () 1) =
Spec R[X,Y]/(X* + nY® 1),

(2.87)
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and we get

V), = Spec k[X, Y]/(X? - 1). (2.88)

By using the Jacobian criterion we can check that ( Vf)iing = ¢, so ( V;’)Si"g = ¢,
te, VJ is a regular scheme. The gluing of V), V! and V/ gives us the regular

scheme V.

Remark 2.22 In the rest of this thesis each time that we are involving with a
scheme of the form X = Spec R[:Ely Y1, 22, y2]/(F(ml’ Y1, L2, y2)7 G(II’ Yi, L2, y2))1
we use f; and f, rather than F and G respectively. If we have an additional

indeterminate Z and

X = Spec R[$1,y17$27y27Z]/
(F(xla y1,$27y2’Z),G($l7yl7x27y2’ Z),H(fﬂl,yl,x% y2,Z)), (289)

we use fi, fo and f3 instead of F', G and H respectively.

For the calculation of Moje at a point P = (ay,b;,az,b2,¢) € Xy, we use
ay, Bi, az, B2, ¥ € R such that ¢; = ai(mod7) and §; = b;(mod ) and
vy =c(modm). If a; =0 or b; = 0 or ¢ = 0 we use o; = u;m or 3; = v;mw or vy = wr.
For new indeterminates after translation we use T;, S; and W corresponding to
x;, ¥; and Z respectively.

The lower and upper index show us the indeterminate involving with the
blowing-up. To be more precise, we use X? to show that the involving indeter-
minate in the blowing-up is 21, X{ when it is y;, XJ when it is z5, X when it is

y, and finally X? when the involving indeterminate is Z.



Chapter 3

Product of ordinary double

points

3.1 Introduction

In this chapter R always denotes an arbitrary regular ring (except in §3.5 where
R denotes a dvr). We introduce Y2 in the second section and try to resolve its
singularities later. We find this desingularisation in two different methods. The
results from the both methods are the same. In the last section of this chapter,
we introduce X'?" and consider our schemes over SpecR where R is a discrete

valuation ring with algebraically closed residue field & = %.

3.2 Proposed schemes
Consider the surface
Y* = Spec R[t)[zi, vi]/(ziyi — t) = A2, 1<i<n, (3.1)

over Spec R[t]. Then Y"* over Spec R|[t] is smooth everywhere except at z; = y; =

0, where Y has an ordinary double point on the fibre corresponding to t = 0,

30
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but Y is a regular scheme. The fibre product of

Y' = Spec R[t][z1,y1]/(z1y1 — 1) (3.2)
and
Y? = Spec R[t][x2, y2]/(z2y2 — 1) (3.3)
1s
Y'? = Spec R[t|[z1,y1, T2, ¥2)/ (2191 — T2y2, T1y1 — 1)
= Spec R[$1,y1,$2, y?]/BZ (34)

where B, is the ideal (z,y1 — z2y2) of A2 = R[z1, 1, T2, y2)- Inductively for each
n € N we get

yl2.n _ Spec R[z1,y1,- - -, Try Yn)/(T1Y1 — T2Y2, T1y1 — T3Y3, -, TaY1 — TpYn)
= Spec R[z1, Y1, Tn, Yn)/ (2141 — Tilli)2<i<n
:=Spec R[xl’ylv" ' axnayn]/Bny (35)

where
B, = (z\n -$iyi)2§5n. (3.6)

In fact in the affine space A", Y'2-™ is determined by the equations

TiY1 = T2y = ... = Tyln- (3.7)

Remark 3.1 In the other sections of this chapter we will try to find singular
points and also a desingularisation of Y!%*" in two different methods. These

desingularisations would be the results of some successive blowings-up.

3.3 First Method

In this section we will find the singular points of the scheme Y!2-" and by suc-
cessive blowings-up, we will try to resolve its singularities. This is the resolution

described (without proof) in Scholl’s paper (see [21]).
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Convention 3.2 In the rest of this section we consider Y2 as
Y!2" = Spec R[T1, Y1, s Tns Yn]/ Bn (3.8)
where
By = (21y1 — TaY2, T1Y1 — T3Y3, s T1Y1 — Tnln)- (3.9)
We also use A, for the polynomial ring k[zy,y1,...,Zn,¥n] and Ajs._, for the

quotient ring A,/B, = ['(Y'*" Oyiz..n).

Lemma 3.3 Let X and Z be schemes over S such that Z is flat over S, and Y is
a closed subscheme of X. Then the blowing-up of X xsZ at Y xsZ is isomorphic
to X xsZ, where X is the blowing-up of X at Y.

Proof :  We prove it in the affine case. Let X = SpecA, Y = SpecA/I,
Z = Spec B and S = Spec R, 1€,

Ry
ICA B
which induces
Y=SpecA/I=—-)X:SpecA\ Z = Spec B
S = Spec R,

The following diagram shows us the scheme of the proof.
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XxsZ XxsZ
Y XX5Z
% A

NS

5]

Since B is flat over R;, [ — A implies that /® g, B — A®g, B is an injection.
Let J be the image of I®g, B in AQpg,B. Then J = I®g, B. Now notice that
X x5Z=(Proj@usol?)xsSpec B and X xsZ= Proj@us0J® = Proj@®aso(I®r, B)*
= Proj((DBuzol*)®r, B) = (Proj@asol?) X spec r, Spec B =X Xspecr, Z.

If X and Z are not affine, then we consider them as the union of affine schemes

and use the above result for the affine pieces and then glue them. O

Example 3.4 Consider the scheme Y'?® = Spec R[z1,y1, ---, Z3, y3]/(f1, f2) where

Sl Y, T3, y3) = 21y — T2y2 (3.10)
and

f2(21, 41,5 -, T3, ¥3) = T2y — T3y, (3.11)
By using the Jacobian criterion we can check that the singular points of Y!23 are
points of the form (a1, by, as, bs, as, b3) such that at least two pairs (a;, b;) are zero
(see example(2.2)). In particular Py = (0,0,0,0,0,0) is a singular point. Now we
blow-up Fy. The following diagram is related to this blowing-up:
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iz ;
Yl 23 Spec A123XSpecRPR

o

Y123 = Spec A123

By using the procedure of Mahtab we can check that the standard open cov-

ering for P%, = ProjR[u1,m, ..., 43,73, te,

771 H2 H3 73
U{’ = Spec R[ ...,—,——]
#1 M1 H1

Ul = SpecR[Z, L, .12 K3y (3.12)
ns 773 N3 13

induces an open covering for Y,'%3, say W2, Wl ... W2 W1 where

1 7& 0’
W10 = AEXSpecRSPeCR[M,yz,ﬂfa,ya]/(ﬁ?h—$3y3)
= AhLXspecrY S, (3.13)

and Y? has P, = (0,0,0,0) as its only singular point. Hence (W?)*"8 =
AL Xspecr{Po} In Al XgpecrY?. According to lemma (3.3), the blowing-up of
W? along (W?)>™ is isomorphic to

AL XspecRY B 2 Ab Xspecr(WE U WL U W2 U WYL
(ARXspecAW3) U (AR XspechWy ) U (AR Xspec RWS) U (AR XspecaW3 ) &

Spec R[z1]Xspec ROPEC R[22, ; ys] U ... U Spec Rz} Xspec nSPEC R[ 22 32 Y
2 3
T T
= Spec R[Q?l, —2, _3y_3] U...uU Spec R[(L‘l, —2', _?{3’ y_B] =
Ty Iz Ys Ys T

WEUWL uWEuwy. (3.14)
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Using the same method for the resolution of singularities of W', W2, ... W. we

get
B = WRUWRUWR U W U WL UWLUWR WY, (3.15)

where W P are 24 pieces for the covering of Y‘23 and

WIOZO = SpeCR[ml’2’$_37y_3]
Iy ITg I9g
Wy = SpecR[a:l,g?— =2 ﬁ]
Iy Y2 Y2
T
Wi = SpecRl I (3.16)
yz Y3

are all regular schemes. So after two successive blowings-up we get the regular

scheme Y3122,

Remark 3.5 By using the Jacobian criterion we can check that points of the
form P = (ay,by,...,a4,b,) € Y'?2+" such that at least two pairs (a;, b;) are zero,

are singular (see example (2.3)).

Theorem 3.6 After n — 1 successive blowings-up of Y'**" we get a regular

scheme Y,E'“ as the gluing of 2"~!(n!) open pieces of its covering.

Proof : We use induction on n. For n = 2 and 3 we already have checked
(examples 2.19 and 3.4). Suppose it is true for n < m (with m > 4) and recall
that P, = (0,0,...,0) € Y'*~™ is a singular point of Y'*+™ which corresponds
to the ideal I13_., of [(Y?™ Oy1:..m ) generated by z1,y1, ..., T, Ym, 1€, Mp, I8
the maximal ideal of A,, generated by z,,y1, ..., Zm, Yym. We blow-up the origin in
Y12-m t5 obtain a scheme Y12-m. By the procedure of Mahtab, it has an open
covering W2, W, ..., W2 W} where

pm#0, WP =

Spec (R[- £2 | Em Tm) e

i o R R[z1,y1, oy Tm, Ym]/ Bm) (mod Relations)
Lo 1
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il

SpecR[r]1 ,u2 ,um Im
pl T
(T1y1 — T2Y2, T1Yy — T3Y3, -, 1Y) — TmYm, Relations)

] Tm Ym
= Spec R[=— vy =y =y T, YLy oy Ty Ym) /
T T Iy Ty

sy L1y Yty - xm,ym]/

(T1y1 — T2y, T1Y1 — T3Y3y ..oy T1Y1 — mmym)
T2 Y2 Tm Ym
= SpecR[a:l,——,— = =]/
Ty T Iy Ty Ty

(B - (32 &), 2 (3 &), L - (Ey )

3l Ty Ty Ty ry Iy - Ty I Ty
= SpecR[xl,y—l-,m—?,yl,...,x—m,yL"
Ty $1 1 T Iy
2., Y2 Y, T2, Y2 Ta,, Ya T2\, Y2 Im\, Ym
() = CHED G = CHED, - () = ()

= A;{XSpecRSpeC R[Xla )/1’ sy Xm, Ym]/(X2Y'2 - XSYEBa sy XQ}/Z - XmYm)
= AL XspecrY ™. (3.17)

Note that (W?)*™® = ALx, ..p(Y?™)""8 and P, = (0,0,...,0,0) € Y™ is a
singular point. Let S = A% Xspecr{Fo} C (Wlo)Si"g. If we find the blow-up of W}
at S, by lemma (3.3), the blowing-up of W? is isomorphic to A}QXSPCCRYEW.

By using the same calculations as above we can check that

W:) — A}{ XSpecRyzamm

Wll — A;QXSpecRYZB'“m

Wr?1, — A;QXSpecRylzm(m—l)

W) = AhXsperY ! ™D, (3.18)

If we use the assumption of the induction for Y237 _ Y'2-(m-1) after m — 2
successive blowings-up we can resolve the singularities of each piece (Note that all
of these pieces are isomorphic) and for each of them we find 2™~%(m — 1)! open
pieces for the covering, so totally we get 2m(2™~%(m — 1)!) = 2™~ 1(m!) open
pieces for the covering of Y12 ™ and their gluing through their overlap gives us
yizm O
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Remark 3.7 As we have seen in theorem (3.6), we can use successive blowings-
up for desingularisation of Y!?™ and get 2™~!(m!) open pieces for the covering.
To get an explicit formula for each piece we index the open pieces as W 122--2m—s

where each «; € {0,1} and n; € {1,2,...,m};= I, and n; # n;. Let 7 be the

remaining element of I, and Z} = z;if t =0, y; if t = 1. Then

yn—
Zs: Z,,?:‘ Zom-1 Tq Ya

Wi = Seee RO zo Ty T Ty T O
We find it convenient to express it by using the following matrix
o a; oy ... anp_; 01
QL O —
W ey o (3.20)
Ny N2 o Moy N N
For instance if a; = a3 = ... = a1 = 0and n, =t for 1 <t < m — 1, then
n = m and we get
00 .. 0 0 1
ngiﬁﬁg—z)(m-u — (3.21)
1 2 (m—1) m m
and
Iy T3 Tm-1 Tm Ym
W?g’_ﬁg_”(m_l) = Spec R{z,,—,—, ... ] (3.22)

? b bl b
Iy T2 Im—2 Tm—-1 Tm-1

Example 3.8 Let n = 8. Then

011100101
Wisarais «— : (3.23)
453721866

hence

Y7 L2 T Ys Te Ys
WOLI00L _ g por. ,2-"’_, _y_3, yl, =, ==, =4, 3.24

4537218 p [ 4 22 Us' u3' 91 T2 %1 U8 ys] ( )
which is one of 5160960(= 27(8!)) pieces which appears in the collection of the

open pieces for the covering of 7th blowing-up of Y8 je, Y.,?{'"S.
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3.4 Second Method

In this section we will try to blow-up a specific ideal and show that just one
blowing-up of this ideal gives us the same result as we got in theorem (3.6). For
case n = 2 this method gives us the same result as we had in example (2.19).

This ideal was given by Deligne in [7].

Convention 3.9 Let J, be the ideal of F(Y”"'”, Oy12..n ) generated by the ele-

ments of the form 22,7, ... ;‘(n) where Z means Z,(; to power t — 1 and
Za(t)=To(t) OT Yorr), t = 1,2,...,n and o € Sn. Since Zg(l)zl this term is not
effective and so J, is generated by 2"~ !(n!) elements of this form. There are a

lot of relations between the generators of J,, which we will use later.

Theorem 3.10 Let Y'*-"=Spec R[zy,y1, -, Tn, Yn]/ Bn. If we blow-up the ideal

Jn, then we get the regular scheme Y1z,

Proof : Let N = 2*~!(n!), ¢ € Sp and 1,12,...,in—1 € {0,1}. We consider N
variables y'!2-in-1(corresponding to the generators of J, say Al'2--in-1’s) and

define the ring homomorphism

. ‘412 nLu‘OO 00 7,“,171, 11] 512 no__ ®d>0 4 (3.25)

11,82,00in—1 11132 e eesbn—1
Ho — A} .

Then «, is an epimorphism and we have

12... 00...00 1111
S " @d)o n 412 n[ﬂ 5. 7#0 : ]/Keran, (326)
where
00...00 00 .00 00...00,,00.. 00 11...11 11..11 11...11 ,,11...11
KeI‘Cln - (/‘t A A lu'¢72 ’”G(nl) 1" Cnt U(n') l'uan' ),

and a, induces an 1som0rphism
Y12n = Proj§'% " = Proj(Ays. alpoy % et [Keray,), (3.27)
which. is a closed subscheme of

Plezln = PI‘OjA]g_‘ "[“2? 00 7/1';'1. 11] = Spec Al?...nXSpecRPg—l- (328)
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The standard open covering of PY ™! ie,

00...00 11...11

ua #Unv
pf,’? 00 £, U},’? % — Spec R[~Z —1,

00...00° """ /,00...00
[} /‘tal

”oo,_,go Mll...ll
11...11 1.1 _ ay Ont—1
[T | U,.. = SpecR|

On!

induces an open covering for Y12, say

Y12.n Y’lZ...nXSpecRPI}\{—l
Y12...n

12..n — 1,700...00 11...11
Yizen = V20U LUV,
where
1400-00 uu...u
00...00 __ a2 Tyt
Vo, = Spec R[z1, Y1, -y Tny Yns 5050 03...001/
ud] iuo'l
1 )
(z1y1 — T2Y2y -+ T1Y1 — Tn¥n, ———(Relations))
£100...00
a1
00...00 11..11
.11 _ . Ha, oy
Vonz = Spec R[z1, Y1, s Tny Yn, 11..11° " 11..‘11]/
Ot o

00...007 ""7? “11...11]’
Ont

39

(3.29)

(3.30)

1 )
(z1y1 — T2Y2y s T1Y1 — Tnln, —-—M“'”“ (Relations)), (3.31)

Tn!
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By using the relations in our calculations as it is stated in Deligne’s paper (see

lemma (5.5) in [7]), we get

00..00 _ T1 T2 Tn-1 9
v, = SpecR[mZ, 7 ,xn,wz]. (3.32)
The regularity of V%% is also stated in lemma 5.5 in {7]. We can do the same

calculations for the other pieces of the covering of Yizon, O

Remark 3.11 To get an explicit formula for pieces of the covering of Yiz.n

stated in theorem (3.10), we index the open pieces as V/1P2-Fn-1 where each

B: € {0,1} and 0 € Sy. Then

Tﬁl Tﬂz“ Tﬁs“ Tﬁn—-—lu Tﬁ;
Vf“@?'"ﬁ"—‘ = Spec R[ a(1) “a(2) “a(3) a{n—1) T/an—l a(l)]’ (333)

Ty T Ty ™ iy 0 Thy
where
B =1-p0, (3.34)
Bi' = B (3.35)
and

Bi Za(j) 2f /Bj =0
T, = (3.36)

Yo (j) of  Bi=1.

We can use a diagram to get VP182-r a5 follows:

a(l) o(2) a(3) g(4) o(n—1) o(n)

T

N

4, B, B3 Bn-1
Vobrtns e [N/ \/ \ ' /A

Which means that we start from (3; and consider Tf(‘l) corresponding to [,
and o(1) and divide it by Tf(‘z) corresponding to the arrow between 3; and o(2).

Then we start with 3, and divide T% 2“) by Tﬁ’B) and continue this process up-to

o(2
]
division of T f(’;"_‘l ) by Tf(';l')l. Later on, we write the term Tf(’;:)‘ alone and finally

we find the division of Tf(‘ul) by Taﬁ(l2)'
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For instance if 1 = 82 = ... = Bn—; = 0 and
1 23 ... n
o= , (3.37)
1 2 3 ... n
then
VO = Spec R, ZEZ, | Tl g o
Iz T3 I4 Tn Iy
Tn-1 Tn-2 T3 T2 T gl] (3.38)

Spec R[z,, —,

3000y ) 3 3
Ty Tn- Tq T3 T2 I3

Lemma 3.12 By using the same notation as it was used in theorem (3.6) and

theorem (3.10), we get

W et = Vimotaee, (3.39)
where
1 2 3 .. m
o= : (3.40)
N Nyl Mmoo T

Proof : Let o € S,,, say

1 2 3 .. m
o= ( ) (3.41)

(1) Nm—-1 Nm-2 ... N

and 3; = ayu—;. Then

Vam—lam—2~-~0'20'1 — Vﬁlﬁz---ﬂm—l —
o - Vo

Soec R{T,,Z 0y T%;, | T%’3) » T%';‘,;fz, | T%;;fl, o ?ijﬂ |-
Tooy Toiy Toty  Totmzyy Toimy Toy
Brm—2 m—3 B1 51 ?
Shee TS5 o, T, ., 0, 1o, Jo Ty
o U(chza U(Zma_’:l ;(4) ;(3) o(2) 1o(2)
SpeCR[Z:*I’Z;?’Z}}""’ :l‘,’:';:';’ ’ 5,;:," ;?,,,:::]z
W naZ (3.42)

where n = o(1). O

JA/ 100100010111 yand V = V111010001001 here

Example 3.13 Compare W = (13)2578(11)(10)6143(12
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1 2 3 4 5 6 7 2 9 10 11 12 13
o (3.43)
9 12 3 4 1 6 10 11 8 7 9 2 13
Solution
We have

1 600100 0 10111 01 |
W o . (3.44)
13257811 10614312939

and

I 1 1 0 1 0 0 0 1 0 0 1
NN NINININSNININSNSNN
9 12 3 4 1 6 10 11 8 7 5 2 @

l

so we get
Yo Y12 Y3 Ya Tr Ye¢ T Ti11 Tg Yr Ts Ty Tg
V= SPeC R[_ T Ty T T Ty T Ty Ty Ty Ty Ty T s T, Y1, _]7 (345)
Y12 Y3 Ya T1 Ys T10 Ti1 T8 Y7 Ts T2 Y13 Y12
1€,
W = V.

3.5 Over a dvr

Convention 3.14 In this section we will introduce X'?-™ and try to resolve
its singularities later. R always denotes a discrete valuation ring with field of

fractions K, prime ideal (7) and algebraically closed residue field k& = %.
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Now consider the arithmetic surface X' = Spec R[z:, yi|/(ziyi — 7), 1 <
i < n, over Spec B. Then X' over Spec R is smooth everywhere except at
2; = y; = 0 where the special fibre has an ordinary double point, but X" is
a regular scheme. The fibre product of X' = Spec R[z\,y1]/(z1y1 — 7) and
X? = Spec R[zs, y2|/(zay2 — ) is X'? = Spec [z, y1, 22, y2]/(T1y1 — T2y2, 2131 —
m) := Spec R[z,, y1, T2, y2)/ B’y where Bj is the ideal (z,y1 — z2y2, z1y1 — ) of
Ay = Rlzy,y1, 22, y2] -

Inductively for each n € N, n > 2 we get X'*-" = Spec R[z1,y1, ., Tn, Yn)/
(T1Y1 — TaY2, <., T 1YL — Taln, T1Ys — T) = Spec R{z1, Y1, ..., Tny Ynl/(Tiys — TI')ISz-Sn
:= Spec R[z1,y1, ..., Zn, Yn]/ B'n where B’ = (21y1 — TaY2, ... T1Y1 — TulYn, T1Y1 —

7). In fact in the affine space A%, X'?-" is determined by the equations
Y1 = TYz = .. = TplYp = T. (3.46)

Remark 3.15 In the rest of this section we will try to find the singular points
and also a desingularisation of X'?*" in two different methods. These desin-
gularisations are the results of some successive blowings-up, analogous to those

performed in the geometric case.

Lemma 3.16 The only singular point of the scheme X'? is the point P € (X'%)_

(ie, $1:y1:$2:y2:ﬂ':0).

Proof : Recall that X% = Spec R[z1, y1, T2, Y2]/(T1y1 — T2Y2, T1y1 — 7). Let A =
Rlz1,y1]/(z1y1 — 7). By using theorem (2.14) (or just by using Moje) we can
check that A is a regular ring. Note that

X'? = Spec Alza, yo] /(211 — T2y2). (3.47)
Let ¢(z2,y2) = z,y1 — 22y3. Then {?Tqi = ~—y, and g% = —z,. The system
j—% = g% = 0 has the solution z, = y; = 0. So X'? is smooth over A everywhere

except at those points where o = y; = 0.

Now let B = Spec R[z2,y2]/(z2y2 — 7). By using theorem (2.14) (or just by
using Moje) we can check that B is a regular ring. Note that X'? = Spec Blzy, y;]/
(ziyh — Tay2). Let ©(xq,y1) = z1y1 — z2y2. Then %’T = y; and %”— = z1. The
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system % = a%":— = 0 has the solution z; = y; = 0. So X'? is smooth over B

everywhere except at those points where z; = y; = 0. Considering the above
discussion we can conclude that X'% is regular everywhere except possibly at
T1 =y = 22 = y2 = 0. But Moje(Fo, f1) = 0, so P is the only singular point of
X12 e,

(X' = (R)}. O
Lemma 3.17 After one blowing-up of X'? at P, we get the regular scheme X,

Proof: If we do exactly the same with whatever we did in example (2.19) for the
scheme X3 = Spec R[z1,y1,Z2, Y]/ (191 — T2y2) := Spec A? over Spec R[t], with

the structure morphism induced by the ring homomorphism

Rt} — Rlz1,y1, T2, 9]/ (2191 — 22y2) = A’ (3.48)

t— 1Yy

we get a regular scheme X, which is the gluing of the following open pieces of

the covering:

m#0, WP = SpecRlay, =, 2]
Ty

1

m#0, W' = SpecRly, =, 2
i
pe #0, WP = SpecR[ 't
m#0, Wi = SpecR[: ol z‘ ya). (3.49)
2
Now consider the ring homomorphism

¢:Rit] — R

t— .

which induces the structure morphism
¢ : Spec R — Spec R[t] .

So we have
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R[]
/ \
42 R

which induces

X, = Spec A? Spec R

S

Spec R|t]

and we get X'? = X, Xgpec ppsg pr5pec R
By using the lemma (3.3), we have )?11,2 = zxspecR[tL&Spec R.

To find the affine open pieces of the covering of )F(IT? we can do as follows:

J?z Y2

Vl W X Spec R[], d)ﬂspec R = Spec R[zla ] X SpecR{t], qﬂspec R=

Spec R[:cl, o ;—]/(l'gyz — ) = Spec R[XI,X2,Y2]/(X12X2Y2 — ),
1Ty

which is a regular scheme (by corollary 2.13).

Using the same method, gives us
W' = SpecR[Y, Xz, 1}/ (Y XY — )
VY = SpecR[X,,Y1, Xo]/(X3X Yy —7)
V! = SpecR[X,, YV, Y]/ (Y X\Y; — 7). (3.50)

which are all regular schemes and their gluing through their overlap, gives us the

desired regular scheme X{?. O
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Lemma 3.18 Let P = (ay, b1, ...,an,bs) € (X'?")_ such that between ay, by,...,

@n, b, at least two pairs (a;, b;) are zero. Then P is a singular point of X!%-",

Proof : Without loss of generality let a; = by = a; = b; = 0 (for a fixed 7,
2<j<n).

Now consider

X12m _ Spec R[ml,yl, ...,xn,yn]/(fl,fg, ey fn)s (3.51)

where
filZy, Y1y oy Thy Yn) = T4 — TitaYiqr, forz=1,2,...,n—1 (3.52)

and fo(Z1,Y1, 0, TnyYn) = T1Y1 — 7.
Note that for points of the form @ = (0,0,az,b2,...,a,,b,) € (X”"'“)ii"g,
Moje(Q, fi) = —Bit1Ti1 — €ip1Si1 (for 1 < i < n—1) and Moje(Q, f,) = —m,

1€,

0 0 0 —by —az 0 0 0 0\
0 0 0 0 0 —b3 —as 0 0
DAQ)=| . o o | (353
0O 0 0 0 0 0 0 —b, —a,
-1 0 0 0 0 /

Now let Q = P, te, a; = b; = 0. Then Moje(Q, f;—1) = 0. So rank D(P) < n.

Hence P is a singular point. O

Theorem 3.19 After n — 1 blowings-up of X!*-" starting with Py (te, z, =
Y1 = ... =Tp = yo = 7 = 0) we get 2" !(n!) regular pieces such that their gluing

through the overlap gives us the regular scheme Xizon,
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Proof : If we do exactly the same with whatever that we did in theorem (3.6) for

the scheme
X, = Spec R[z1, y1, T2, Y2y s Try Yn )/

(Z1yh — T2Y2, T1Y1 — T3Y3, ooy T1Y1 — TnYn) := Spec A", (3.54)
over Spec R|t], with the structure morphism induced by the ring homomorphism
R[t] — A"
t—> Ty,

after n — 1 successive blowings-up we get 2"~!(n!) open pieces for the covering of

the regular scheme X,, say W2192-n—1 where o; € {0,1} and m; € {1,2,...,n}.

mym...Mp—1

Consider ¢* : Spec R —» Spec R|[t] as it was defined in lemma (3.17). Then we

have

R[t]

A" R
which induces

X, = Spec A" Spec R

S

Spec R][t]

By using lemma (3.3) we have

—

-Y«rﬁz_l“ — ‘Xn ><Spec R[t],¢aspeC R (355)
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The affine pieces for the covering of XE{“ are of the form

Y ore2Qn-l - — P/ X102.On—| XspecR[t]@nSpeCR (356)

mymo..Mp—1 myma...Mp—1

The gluing of these open pieces together through their overlaps, gives us the

regular scheme X 2™ 0O

Example 3.20 As it is shown in example (3.8) for the case n = 8 we get

1 1 T T T
WOl — Spec Rlzy, 22, %2 41 22 T 98 T6 156y (3.57)

) ) 4 ? ) b
T4 Ys Y3z Y7 Tz I Ys Ys

So

0111001 __ 1770111001 —
Vissrais = Wasarais XspecR[t],qsﬂSPeC R =

Ys Ys Y7 T2 T1 Ys ZTe y6]/(
w4,y5’!/37y7’1"271'1,y8’y8
Ys Ys Y7 T2 T1 Ys Tse ya/
$4’ys’y3’y7’wz’mx’ys’ys
2, Y52 Y32, yr .2, 2.2 1.2 Ys.%2 T, Y6
(D ED ) () () () —m) =
Spec R[X4, Y5, Y3, Y, Xo, X1, Ys, Xe, Y]/

(X4YsYaY7 Xo X, Ys)* XeYs — 1), (3.58)
which is a regular scheme by corollary (2.13).

Remark 3.21 Now we will try to blow-up a specific ideal and show that just
one blowing-up of this ideal gives us the same result as we got in theorem (3.6).
For the case n = 2 this method gives us the same result with what we had in

example (2.19) (just by using R rather than k).

Remark 3.22 We use J,, to show the ideal of [(X'%™ Ox12..n ) generated by the
elements of the form Zg( I)Z;(Q)Zg(:,)...Z;‘(_n; with the details stated in convention

(3.9).

Theorem 3.23 Let [, = (z1y;1 — Zay2, T1Y1 — T3Y3, ..., T1Y1 — TnlYn, T1Y1 — ) and
X12-n=Spec R[x1,y1, 22, Y2y -+, Tny Yn]/ [n- If we blow-up the ideal .J,,, then we
get 2"~!(n!) open pieces of regular schemes and their gluing gives us the regular

scheme X127,
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Proof : Let

X, = SpecR[T1,Y1, s Tn,Yn)/

(Z1y1 — T2Y2, T1Y1 — T3Y3, ..., T1Y1 — TalYn) 1= Spec A", (3.59)

If we do exactly the same with what we did in theorem (3.10) for the scheme
X, = Spec A" over Spec R[t], with the structure morphism induced by the ring
homomorphism

Rt] — A"
t—> 11

and blow-up the ideal (J, + Bn)/Bn of R[z1,Y1,...,Tn,Yn]|/Bn, we get 2"~ 1(n!)
pieces for the covering of X12-n which are all regular schemes, say V 3192n-1’g
where a; € {0,1} and o/ € Sy, as they were calculated in theorem (3.10). Con-
sidering ¢ and @' as in lemma (3.17), we have X'*™ = X, Xgpec gy, ps5pec R.
By using lemma (3.3) we have Xizon = X:XSPCCR[t],¢nSpec R. Note that the
open pieces for the covering of X12.m (which are 2"~!(n!) pieces) are of the form
Vorer-an—t g mpropec R for 4,5 € {0,1} and [ € {1,2,...,n!}, oy € Sy, and
each piece is isomorphic with one V7152--%n-1 calculated in theorem (3.19). Recall

myima...Mn

that V192@n-t’s are calculated in theorem (3.10). O

Example 3.24 As we have seen in example (3.13) for the given ¢ in that example

we get
T
/111010001001 _ g0 R[_yi @ _y_3 . z2,y1 3 —]. (3.60)
yiz’ ¥y3 Y4 Yis Y12
So we have
z Zg
V' = SpecR{y9 iz y ey 2,y13, —|/(zoye — ) =
Yiz Y3 %3 Y12
Ty X T
SPCC [6[31137_17_‘rl "'3&7—952]
Yis T2 Ys Y1z Y2
2 (T2,% T5.2 2.2 To., Yo
Yia(—) (=) ...(—/) (—)(=)—7m) =
(U3 (2) (22 () (22 — )

Spec R[K;},Xg, X5, ciey Ylg, Xg, }/9]/(Y1231¥22X52}/122X9}/9 — 71')7 (361)

which is regular by corollary (2.13).



Chapter 4

Desingularisation of a special

class of arithmetic three-folds

4.1 Introduction

As before R denotes a discrete valuation ring with field of fractions K, maximal
ideal (7) and algebraically closed residue field k = %. By an arithmetic surface
over Spec R we mean a regular scheme V purely of dimension 2, which is flat
over Spec R. Our aim in this chapter will be to attempt to settle the resolution
of singularities of a certain class of arithmetic three-folds, namely those which
are the fibre product of two Arithmetic Surfaces. Let V; and V, be arithmetic
surfaces over Spec R, where R is a discrete valuation ring and consider the fibre
product X = V] XgspecrV2. This is an arithmetic three-fold. In general it will
not be regular. [t may have some singularities at points (yi1,y2) if fi(y1) =
faly2) = (m) := £ (where f; : Vi — SpecR, f; : Vo — Spec R are the
structural morphisms and both y, and y; are singular points of the special fibres
V1), = f7'(€) and (V2), = f5'(€). In this Chapter we mainly try to resolve the

singularities of some three-folds of this sort which are useful in chapter 5. The

30
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arithmetic surfaces which we use in this chapter have one of the following forms:

I, +— Spec R[z,y]/(zy — 7)

I, +— SpecR[z,y]/(y* —z° — 1)

Is +— SpecR[z,y)/(y(y — z*) — 7)

Iy «— Spec R[z,y]/(zy(z —y) —m)

Is > Spec Rlz,y]/(z"™y" — 7) (4.1)

We can summarize our results as follows:

Theorem 4.1 Let R be a dvr and p = chark # 2,3 and V; and V; be arithmetic
surfaces of the forms /; and [; respectively, where either 1 <i < j <4, (i,7) #
(2,2), (3,4) or (¢,7) = (1,5). Then there exists a desingularisation for X =

Vi Xspecr V2
Lemma 4.2 Let a,3 > 0 and g(23,y2) € R|zs,3:] such that 7/g and
V = Spec Rlz1,y1, 22, ¥} /(2191 — G222, 2), T1y125y5 — 7).
If A= R[zs,12)/(23y2g(z2,y2) — 7) is regular, then
Vg = {(0,0,a2,b,) € V,,|§—i(a2,62) = g—i(az,bz) =0},
where g denotes the reduction of g (mod).

Proof : We have

V = Spec Alzy, y1]/(z1y1 — g(22, 12)). (4.2)

Let ¢(z1,y1) = T1y1 — g(z2,y2). By using the Jacobian criterion we find out that
V is smooth over A everywhere except at those points where % = 6%% =0, e,
zy = y1 = 0. Considering ¢(x1,y;) = 0, we get g(z2,y2) = 0. To have these

points on the special fibre, we need g(z;,yz) = 0. So

VSinS - {P = (alabl.,a2,b2) eV, | a =b = g(az’b2) = 0} =
{P = (Ovova%b?) € V7r 'g(a% b2) = 0} = S C VW. (43)
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Let P = (0,0,a2,b2) € S and a2,0; € R such that a; = az(mod ) and 8, =
b2(m0d T). Considering fl(Il,yl,mey'z) =1t —g(iﬂz,yz) and f?.(l?l,yl,mz,y:») =

3
T1y1Z5Y, — T we get

[T+ wm, S; +uim, Ty + aq, 52 + B2) = filuim,vim, az, B2) +

d J J
Oil(um wmm, 02,r32)T1 + 5@%(“1” mm, 02,52)51 am;(ulﬂyvlﬂ,azaﬁz)Tz
dfi
+a—f(u17r o1, a2, B2)Sa + . = (wrm)(vym) — gz, Ba) + 0nw Ty + ugmSy —
Y2
J d
5—5—2(02,ﬂ2)T2 — %(ag,ﬁz)sa + ... (44)
So
dg
Moje( P, f1) —{ g(az, B2) — 924 (042,32)T2 - ——(ag,ﬁg)Sg}(mod(T2,S2,7r)2)
(4.5)

and Moje(P, f,) = —, ie,

(—g(az,bz) 0 0 —%(02,52) %(M,bz))
-1 0 0 0 0

(4.6)

So @ is singular 1f ((12,b2) = g%(a2,bg) = 0 (since P is on the special fibre,
g(az,by) =0). O

Convention 4.3 For the most cases in this chapter the second row of D(Q)
corresponding to the point @ is (=1 0 0 0 0). For abbreviation we use
D(Q),, for the first row of D(Q). In the cases that the second row is different
from(—1 0 0 0 O0) we write down D(Q).

4.2 One component is [;

In this section our arithmetic three-folds are those which are the fibre products

of two arithmetic surfaces such that one of them is of the form I,.

Lemma 4.4 Let V; = Vo = Spec R[z,y]/(zy — m). Then X = V] XgpeerV2 is

singular and just after one blowing-up we can resolve its singularity.
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Proof: See lemma (3.17). O

Lemma 4.5 Let p = chark # 2 and Vi = Spec R[z,y]/(zy — 7) and V, =
Spec R[z,y]/(y* —2® — 7). Then X = V] XspecrV2 is singular and after one

blowing-up we can resolve its singularity.

Proof : In fact X = Spec R[z1,y;, T2, y2)/(z191 — v3 + 23, z1y1 — 7). By using
corollary (2.11) we can show that F; is the only singular point of X. Now we
blow-up Fy. Using the procedure of Mahtab gives us four open pieces for the

covering of X as follows:

Chart 1
VO = Spec R[Xi, Xa, Yl (X?Y2 — X3 X3 — ). (4.7)

By using the Jacobian criterion we can check that
(V2),"® = {(a1, a2,b2) € (V) lay = Ooray = b, = 0} (4.8)
Let Q € (V). Then
D@)=(-1 0 0 0 0), (4.9)

ie, @ is a regular point. So V? is a regular scheme.

Chart 2
V! = Spec R[Y:, Xz, Y3l /(Y2YE — Y2X3 —m) = V2. (4.10)

Chart 3
‘/20 = SpeC R[XI,Y'I, X2, YVQ]/(X1Y'1 — Y;z + X2 3 ‘X22X1)/1 — 71'). (411)

Let A = R[X2, Ya/(X23(YZ — X,) — 7) and g(X,,Y,) = Y — X,. Then A is a
regular ring (by theorem (2.14) and V;? = Spec A[X1, Y1]/(X1Yh — 9(X32,Y2)). By
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using lemma (4.2) we get

(V)™ = [P = (0,0, a3, b5) € (V). | (a2,62) (53 (az,b) = 0} =
((0,0,a3,b2) € (V) [2bs = L} = {P = (0,0, a2, ~3) (0, ) = 0} =
(P=(0,0.a-2)1(}) =0} =9 (412
So V2 is a regular scheme.
Chart 4
V! = Spec R[Xy, Y1, Xo, Ya]/(Xa Y1 — L+ V2 X3, YIX\ Y, — ). (4.13)

Let A = R[X,,Ys]/(YH1 — Y2X3) — ) and g(X2,Y2) = 1 — Y2X?. Then A is
regular (by theorem (2.14)) and

Vy = Spec A[X,, Yi]/(X1Y1 — g(Xo, Y2)).

By using lemma (4.2) we get

0g ag

(V)" = {P = (0,0,a3,b2) € (), | 35 (an,b2) = 70-(an,b2) = 0)

{P =(0,0,a3,b;) € (W), laz =0} =
{P =(0,0,0,b;) € (V2)_|g(0,by) = 0} = ¢. (4.14)

So V,! is a regular scheme. The gluing of V°, V]!, V;? and V! gives us the regular
scheme X which is the blowing-up of X at P,. O

Lemma 4.6 Let p = chark # 2 and V| = Spec R[z,y]/(zy — 7) and V2 =
Spec R|z,y]/(y(y — z%) — 7). Then X = ViXspecrY2 Is singular and after two

blowings-up we can resolve its singularity.

Proof : The fibre product of Vj and V; is

X = Spec Rlz1, y1, T2, y2} [ (z191 — Vs + ya225, 191 — 7). (4.15)

By using corollary (2.11) we can check that F; is the only singular point of X.
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Now we blow-up FPy. By using the procedure of Mahtab we get four open

pieces for the covering of X as follows:

Chart 1
Vlo = Spec R[ X, X5, Yg]/(Xsz2 — Xf’Xr_,ng — ). (4.16)

By using theorem (2.14) we can check that V{° is a regular scheme.

Chart 2

V} = Spec R[Y1, Xo, Ya)/(Y2YE — VYo X2 —m)y = VP, (4.17)

Chart 3
V2° = Spec R[X,, Y], Xy, Yo} /(X1 V) — Yf + XY, X;XIYI — 7). (4.18)

Let A = R[X,, Y]/ (X2Y,(Y, — X2) — 7) and ¢g(Xs,Y2) = Ya(Ya — X,). Then A
is regular (by using theorem (2.14)) and

V' = Spec A[Xy, i]/(X1Y — 9(X2, Ya).
By using lemma (4.2) we get
g

in 09
(VZO)S ¢ = {P = (0707a?7b2) € (V20)1r'_6792(a2’b2) = 5?(0'27()2) = 0} =

{P =(0,0,a4,b2) € (V})), b2 = a3 —2b, =0} = {R}.  (4.19)
Now we blow-up FP,. By using the procedure of Mahtab we get four open pieces

for the covering of V2 as follows:

Chart 3.1

V2 = Spec R[ X1, X2, Vo) /(XFX3Y) — X} X3Y, — ). (4.20)
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By using theorem (2.14) we can check that V) is a regular scheme.

Chart 3.2
Vﬁl = Spec R[Y}, Xz, %]/(Y’{"X%Yf — Y14X23Y2 — ) = V2°1°. (4.21)

Chart 3.3
VZ%O = Spec R[X,, Y, X3, Vo) /(XiYh — Y; +Ys, X;XlYl — ). (4.22)

Let A = R[X;,Ys)/(X7Ya(Y2 — 1) — ) and ¢g(X2,Y2) = Ya(Y2 — 1). Then A is
regular (by theorem (2.14)) and

Vay = Spec A[X, i}/(X1 Y1 — g(Xa2, Y2)).

By using lemma (4.2) we get

in Jg dg

(VD)™ = (P = (0,0,a2,b0) € (Vi) | 55-(an,ba) = (an,bn) = 0} =

[P = (0,0,a2,b) € (V&) I26: — 1 = 0} =
1 1
{P = (0,0,&2, E)lg(a% 5) = 0} = ¢ (423)
So V)R is a regular scheme.
Chart 3.4
VO = Spec R[X,1, Y, 3]/ (Y2 XY (1 + X7YE — 2X,Y)) — ). (4.24)

By using theorem (2.14) we can check that V3 is a regular scheme. The gluing

of VP, V!, VX and V) gives us the regular scheme \726.

Chart 4

V! = Spec R[X1, Y1, Xy, Y2l /(X1 Vs — L + Va2 X7, YIX 1Y) — ). (4.25)
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Let A = R[X,Y2]/(Y2(1 — Y2X2) —7) and g(X2,Y2) =1 — Y3 X2, Then A is
regular (by theorem (2.14)) and

Vzl = Spec A[leyl]/(XlYl - Q(X2Y2))-

By using lemma (4.2) we get

ing 1 04 8’
(VY™™ = (P =(0,0,a5,b5) € (V3), |a§ (a2, b2) = ayz(“%”?) 0} =
{P =1(0,0,a,b2) € (V) laz =0} = . (4.26)

So V! is a regular scheme. The gluing of VIO,VIL,\A/;0 and V! gives us the regular
scheme X. O

Lemma 4.7 Let p = chark # 2 and V| = Spec R[z,y]/(zy — 7) and V, =
Spec R[z,y]/(zy(z — y) — 7). Then X = Vi XgpecrV2 is singular and after three

blowings-up we can resolve its singularity.
Proof : In fact
X = Spec R[z1, Y1, 22, 2] /(211 — T2yz + Tay? , Tin — 7). (4.27)

By using corollary (2.11) we can check that P, = (0,0,0,0) € X, is the only
singular point of X. Now we blow-up P. By using the procedure of Mahtab we

get four pieces for the covering of X; as follows:

Chart 1

W = Spec R[X1, Y1, X2, Y]/ (Y1 — Xi X7Yz + X1 XoY)?, X2V, — ) =
Spec R[X,, Xy, 2]/ (X? X2Y, — X3 X, Y7 — 7). (4.28)

By using corollary (2.14) we can check that V) is a regular scheme.

Chart 2

V! = Spec RIY, Xo, Vil (Y2X2Ya - V2Xo VP - m) 2 V0. (4.29)
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Chart 3
‘/20 = Spec R[Xl, K,Xg, YQ]/(XIK - X2Y2 + X2Y22 s X;lel - 71'). (430)

Let A = R[X,,Y5])/(X3Y3(1 — ¥2) — ) and g(X2,Y2) = Xo¥o(1 = Y3). Then A is
regular (by theorem (2.14)) and

V20 = Spec A[le Yl]/(-XIYI - g(X2vY'2))'

By using lemma (4.2) we get

dg 0g

(V)™ = {P = (0,0,02,02) € (W), l55-(a2,ba) = 7y-(az, ba) = 0} =
{P =(0,0,as,b3) € (V;),[ba(l — bz) = aa(l — 2by) = 0} =
{(0,0,0,0),(0,0,0,1)}. (4.31)

We will try to resolve the singularities of V' later on.

Chart 4
V) = Spec R[X1, Y1, Xy, Yo /(XaYh — Yo X2 + XoYa, VP Xi Y —m) 2 V. (4.32)
Recall that
VP = Spec R[ X, Y1, Xo, V2] /(X1 Vi — Xo Yo + Xo V), X2X1Y) — ) (4.33)

is singular and P, = (0,0,0,0) is a singular point of V). Now we blow-up F.
By using the procedure of Mahtab we get four pieces for the covering of ‘7;(’ as

follows:

Chart 3.1

Vot = Spec R[ X1, Y1, Xa, Yol /(Y1 — XoYa + X1 XoY7, X{ X3V, — ) =
Spec R[ X1, X, Vo] /(X X3Ys — XP X3P — ). (4.34)

By using theorem (2.14) we can check that V) is a regular scheme.
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Chart 3.2

V2011 = Spec R[X,, Y1, X2, Vo] /(X1 — XoYa + Y1X2er ) Y14X22X1 — )=

Spec RIY:, Xo, Val/[(ViEX3Y, — YEX3YE — m) 2 VY. (4.35)
Chart 3.3
V2O20 = Spec [Xl-;}/l, X2, Yg]/(XIK - Y2 + X2Y'22,X;X1Y1 — Tl'). (436)

Let A = R[Xz, Y3]/(X3Y2(1l — X,Ya) — m) and ¢g(Xa, Y2) = Ya(1 — X,Y2). Then A
is regular (by theorem (2.14)) and

V2 = Spec A[X1, 1]/(X1Y1 — 9(X2, Y2)).

By using lemma (4.2) we get
99

Sin. ag
(Vi) = {P=1(0,0,a5,b) € (‘G%D)Aa—&(a?,bz) = 8—},2(02’%) =0} =

{P =(0,0,a2,b2) € (Vo) b2 =0 and 2azb, = 1} = ¢.  (4.37)

So V¥ is a regular scheme.

Chart 3.4
‘/’2(')21 = Spec R[Xla Y13X2a Ya]/(xl}/l - X2 + X21/2 ) 1/'244X§‘X1Y'l — 7")- (4-38)

Let A = R[X,,Y2]/(Y'X3(1 — Y2) — m) and g(X3,Y2) = X2(1 — Y2). Then A is
regular (by theorem (2.14)) and

Vir = Spec A[X, Y1]/(XiYh — g(Xa, V7).

By using lemma (4.2) we get

Sin 0g 0g
(V)" = {P = (0,0, a3, b5) € (%%I)AR(%!’?) = a—g(azvbﬁ =0} =

{P =(0,0,az,by) € (V) |az =0 and b, = 1} = {(0,0,0,1)}. (4.39)
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Hence the only singular point of V3! is @ = (0,0,0,1). Now we blow-up Q €

(Vg)smg. For convenience first we use the translation Y2 = y2 + 1 to get the

scheme
Wi =
Spec Rz 1, y1, x2, Yol /(Z1y1 — T2 + z2(y2 + 1), (y2 + 1) *ziz s — 1) =
Spec R[$1,y1’$2,y2]/($1y1 + z2y,, (yz + 1) mQIlyl - 71’) (4-40)
and surely
Sin
(W33)"" > {Po € (W), }. (4.41)

Now we blow-up F,. By using the procedure of Mahtab we get four pieces for

the covering of W as follows:

Chart 3.4.1
W =
1 T2 Y2 hn T2 Y1, Z2.%
Spec Alzy, £, 72 B/ 4 (2)(2) i) + 1) (E)E) -
= Spec B[X,, Xz, Y]/ (X} (X, Y2 +1)*X3Y; — w) (4.42)

which is a regular scheme (use theorem (2.14)).

Chart 3.4.2

T Lo 2 1
Ws’;fzspecR[, e 2 ”1/( + (- 2)( o), w2+ ()& -
1 1 n Y1
= Spec R[Y,,Xz, Y2]/(—Y1 (Y1Y2 + 1) X§Y2 — )= WL (4.43)
Chart 3.4.3
W =
_1 Yoo Yy B Y Y e B iy
Spec R, oo, PN + 2w HENE >+1><I2)<$2 ™)

= Spec R[Xl, Y1, Xl /(X=X Y Xz + 1) X, Y, — ) (4.44)
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which is a regular scheme (use theorem (2.14)).

Chart 3.4.4
W =
T T T T To 2 X
Spec RIZL L 22 w1 () + 2 wtwe + V() (&) - )
Y2 Y2 Y2 Y2 Y2 Y2 Y2 Y2 Y2
= Spec R[X1, Y1, Ya) /(Y (Yo + 1) X3Y? — ) (4.45)

which is a regular scheme (use theorem (2.14)). The gluing of W2, Wil W9
and W1} gives us the the regular scheme W3, If we glue all regular schemes

which we have had so far, we get the desired regular scheme X. O

4.3 One component is /[y

In this section our arithmetic three-folds are the fibre products of two arithmetic
surfaces such that one of them is of the form I, and apart from the cases discussed
in section two. When V; and V; are both of the form I, the output of the
MAPLE in calculations related to the singular points of the special fibre of X =
Vi XspecrV2 shows us that after two blowings-up the resolution of singularities
of the charts is much more complicated than other cases. It is part (a) of open

problem (4.21).

Lemma 4.8 Let p = chark # 2,3 and V; = Spec R[z,y]/(y? — z° — 7) and
V2 = Spec R[z,y]/(y® — yz* — 7). Then X = Vi XspecrV2 is singular and after

some blowings-up we can resolve its singularity.

Proof : In fact
X = Spec R[z1,y1, 22, 9] /(4] — 1 — y3 + 223, i — 2} — 7). (4.46)

By using corollary (2.11) we can check that P, is the only singular point of X.
Now we blow-up Fy. By using the procedure of Mahtab we get four pieces for

the covering of X as follows:
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Chart 1

W = Spec B[ X1, Y1, Xa, Va) /(Y — X1 = YV + Xi Yo X5, X7V - X3 —m).
(4.47)
Let A = R[X,,V1])/(X(Y? — X1) — 7). By using theorem (2.14) we can check
that A is a regular ring. Note that

VP = Spec A[Xq, V2] /(Y] = Xi = Y7 + XiYaX3). (4.48)

Let ¢(Xs,Y;) = Y — X; — Y7 + XiY2X]. Then £& = 2X,Y;X; and £2 =
—2Y; + X1 XZ. Since p = char k # 2, the system %?2— = ;’—}Z = 0 can be written
as 2X,Y2 Xy = -2, + X1 X2 = 0. So V{ is smooth over A everywhere except
at those points where 2X,Y,X,; = —2Y, + X; X2 = 0. To have the points on the
special fibre of V), we need X2(Y? — X,) = 0. Considering ¢(X5,Y,) = ;—)‘?; =
aa% = X2(Y? - X;) = 0 we get (V2)*™8 C S C (V{?), where S contains points of
the form (a1, b1,az,b2) € (V), satisfying one of the following conditions:

(1) ay =b, =b=0;

(2) ar— b0 =ay=1b,=0.

Let @1 = (0,0,a2,0) € S. Then

Moje(Q1, fi) = —uym — T and Moje(Q, f2) = —, (4.49)
1€,
So rank D(Q),) = 2. Hence @, is a regular point.

Let Q2 = (al,bl,0,0) € S such that ay — b% = 0. Then Moje(Qg, fl) =
—T1 + 2/615'1 and

Moje(Qs, f2) = (Qalﬂf - 3af)T1 + 261028, — T, (4.51)

e,

0 -1 % 0 0
. (4.52)

D(Q2) =
—1 2a;b} —3a? 2bal 0 O
So rank D(Q;) = 2. Hence D(Q:) is a regular point. This means that V}° is a

regular scheme.
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Chart 2

V! = Spec RIX1, Vi, Xa, il /(1 - ViX? = Y2 + ViV, X2, Y7 = Y3X? — )
(4.53)
Now let A = R[X,,Yi]/(Y? — Y2X? — 7). By using theorem (2.14) we can check
that A is a regular ring. Note that

V{' = Spec A[X,, Y5]/(1 — V1 X} - Y2 + ViV X)). (4.54)
Let ¢(Xs,Yy) = 1 = ViX} — ¥ + Yi¥3X3. Then 7 = 2Vi¥;X; and 3 =
—2Y, + Y1 X2. Since p = char k # 2, the system 3—%(‘9; = a%% = 0 can be written

as 2Y1Y2 Xy = —2Y, + Y1 X? = 0. So V{! is smooth over A everywhere except
at those points where 2Y,Y;. Xy = —2Y; + Y1 X2 = 0. To have the points on the
special fibre, we need Y?*(1 — Y; X?) = 0. Considering ¢(X3,Y3) = afi'?; = 53},1; =
YZ(1 - Y1 X3) = 0 we get (V,1)*™® € S C (V}!), where S contains points of the

form (ay,by,a2,b2) € (V') satisfying the following condition:

a2=b2:a?b1—1=0.

Let @ = (a1, ,0,0) € S such that ajb; —1 = 0. Then Moje(Q, f1) = ~3a?5,Ti—

a3S, and

Moje(Q, f2) = =323y + B1(2 — 3a36,)S) — T, (4.55)
le,
0 —3ab, —a 0 0
D(Q) = . (4.56)
1 3027 by(2—3a%) 0 0
So @ is singular if —3a}b; = —a} = a}by — 1 = 0 which is impossible. Hence Q is

a regular point and as a result V! is a regular scheme.

Chart 3

V) = Spec R[X1, Y1, Xo, Ya] /(Y2 — Xo X7 — Y2 + XoYs, X2YE - X3X3 — 7).
(4.57)
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From the first equation we get Y2 — X, X7 = Y;? — X, Y>. By using it in the other

equation we can write V) as follows:

Vy = Spec R[X,, Y1, Xy, Ya]/(Y? — Xo X7 — Y2 4+ XoY,, X2Y) — X2V, — 7).
(4.58)
Now suppose that A = R[X,, Ya]/(X2Yy(Y2 — X2) — 7). We can check that A is
a regular ring (by using theorem (2.14)). Note that

Vy = Spec A[X, 1]/ (Y — Xo X3 — Y7 + XoYa). (4.59)

Let #(X,Y1) = Y2 — X, X3 — Y2 + X,Y,. Then % = —3X,X? and g_g =

2Y;. Since p = chark # 2,3, the system %‘% = %}‘-:— = 0 can be written as

—3X,X} =2Y; = 0. So V2 is smooth over A everywhere except at those points
where —3X,X? = 2Y, = 0. To have the points on the special fibre of V2, we need
X3Y? — X3X? = 0. Considering ¢(X1,Y1) = 25 = 3¢ = X7¥? - XX} =0

e - G ¢ (V?), where S contains points of the form (a, by, as,bs) €

we get (V)
),
(1) a, =b;, =b,=0;

(2) a; =by =ag— b, =0;

(3) by =aq = b, =0.

Let @1 =(0,0,a,0) € S. Then Moje(Q1, f1) = avam+a2S2 and Moje(Qy, f2) =

—T, te,

satisfying one of the following conditions:

D(Ql)rl = ( aqUr 0 0 0 a» ) (460)

So @) is singular if a; =0, te, @; = F.
Let Q2 = (0,0, az,b;) € S such that a; — b = 0. Then

Moje(Q2, fi) = 8212 + (a2 — 232).5, (4.61)
and Moje(Qq, f2) = —, te,
D(Q2),, =(0 0 0 by (az—2by)). (4.62)

So ()2 is singular if az = b, = 0 ie Q3 = F.
Let Q3 = (a1,0,0,0) € S. Then

Moje(Qs, f1) = ~aluzm — 02Ty and Moje(Qs, f2) = -7,  (4.63)
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1e,
D(@s),, = (—adi, 0 0 —a} 0). (4.64)
So Q3 is singular if @y, = 0, 7e, Q3 = Py. Hence
(V)" = {Py € (), ).

We will try to resolve this singular point later.

Chart 4

Vi = Spec RIX, Yo, Xa, Val/ (V2 — Yo X? — 1+ Yo X, YAY? - Y2X3 — ).
(4.65)
From the first equation we get Y? — Y2 X7 = 1 — Y, X?. By using it in the other

equation we get

V2 = Spec R[Xy, Y1, Xa, Val/ (Y = V2 X7 — 1 + Yo X3, Y7/ (1 - Yo X3) — ).
(4.66)
Now let A = R[X,,Ys]/(Y2(1 — Y2X2) — ). Considering theorem (2.14), we can
check that A is a regular ring. Notice that

V' = Spec A[X1, KI/(Y? - aXP — 1 + 1aX3). (4.67)
Let ¢(X1,Y1) = Y2 — Yo X3 — 1 4+ Yo X2, Then 5%% = —3Y,X? and Z%% = 2Y;.
Since p = char k # 2,3, the system %,‘3]- = ;—)‘f’l- = 0 can be written as —3Y, X2 =
2Y; = 0. So V3! is smooth over A everywhere except at those points where

—3Y,X? = 2Y, = 0. To have the points on the special fibre of V}}, we need
Y2Y? - Y7 X} = 0. Considering ¢(X1, Y1) = 7 = 25 = YV - Y X} =0 we
get (V)™ c S ¢ (V3), where S contains points of the form (ay,b,a2,b;) €

(V3!), satisfying the following condition:
a,:b1=a3b2—1=0.

Let Q@ = (0,0, a4,b;) € S such that a2b; — 1 = 0. Then Moje(Q, fi1) = 2a20.T> +
aiS,; and Moje(Q, f2) = —, ie,

D(Q), =(0 0 0 2ab, d}). (4.68)



CHAPTER 4. Special class of Arithmetic three-folds 66

So @ is singular if a3 = 2a3b; = a2b; — 1 = 0 which is impossible. So Q is a
regular point and as a result V! is a regular scheme.

Recall that

Vy = Spec R[X,, Y., Xo, Yol /(Y — XoX? - Y7+ XoYo, X2Y? - X5 X7 — )
(4.69)
is singular and F, is its singular point. Now we blow-up F,. By using the

procedure of Mahtab we get four pieces for the covering of V? as follows:

Chart 3.1

Val =
Spec R[X1, Y1, X, Yol /(Y2 — X2X, — Y2 + XoYs, X2X2Y? — X6X3 — 7).
(4.70)

From the first equation we get Y2 — X2X, = Y2 — X,Y;. By using it in the other

equation we can write V,)° as follows:

VE = Spec RIX,, Vi, X, Val/ (Y~ XEX, — Y+ XoYa, XEXV(Y; — Xy) — ).

(4.71)
Suppose that A = R[X}, X3, Y2]/(X{XZYa(Y2 — X2) — 7). We can use theorem
(2.14) to check that A is a regular ring. Note that

VP = Spec A[Vi]/(Y2 — X2Xz — Y2 + XaY2). (4.72)

Let ¢(Y1) = Y — X7 X, — Y7 + X, Y5 Then 5% = 2Y;. Since p = char k # 2, the
equation ;—% = 0 can be written as 2Y; = 0. So V;? is etale over A everywhere
except at those points where Y; = 0. To have the points on the special fibre of V°,
we need X{X2Y}* — X7 X3 = 0. Considering ¢(Y;) = & = X{X7Y2 - X{X] =0
we get (V20)*™8 ¢ § ¢ (V). where S contains points of the form (ay, by, az, b) €
(VSP)., satisfying one of the following conditions:

(1) ay =by = b, =0;

(2) ay =by =aqy — by =0;
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(3) b1=a2=b2:0.
Let @ = (0,0,a2,0) € S. Then

Moje(Q1, f1) = agvam + @252 and Moje(Qy, f2) = —, (4.73)

le,
D(Ql)rl=(a252 0 0 0 ag). (474)

So @ is singular if a; = 0, te, Q, = Po.
Let Q2 = (0,0, az,b;) € S such that a3 — b, = 0. Then

Moje(Qs, f1) = BTz + (a2 — 26)S and Moje(Qa, fo) = —m,  (4.75)

D(Q2)r1 = (0 0 0 bg as —ng ) (476)

So Q7 is singular if a; = by = 0, ie, Q2 = Po.
Let Q3 = (a1,0,0,0) € S. Then

Moje(Qs, fi) = —cjusm — &jT, and Moje(Qs, fo) = —, (4.77)
e,
D(Q3), =(—ajaz 0 0 —a} 0). (4.78)
So Q3 is singular if a; = 0, ie, @3 = Py. This means that

(V)™ = {Ry}.

We will try to resolve this singular point later.

Chart 3.2

Vil =
Spec R[X:, Y1, X2, Ya)/(1 — Y2Xo X7 — Y7+ XoYy, YAXE - YEX3XE — ).
(4.79)
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Let A = R[X1, Y1, Xo]/(YPX3(1 - Y?X2X?) — 7). By using theorem (2.14) we
can check that A is a regular ring. Note that

Vil = Spec A[Y3]/(1 — Y2Xo X? — Y2 + X, 1a). (4.80)
Let ¢(Y2) = 1 — Y2X, X} - Y2 + XpY2. Then 22 = —2Y; + X,. Since p =
char k # 2, the equation ;—{‘,‘; = 0 can be written as —2Y; + X; = 0. So V) is
etale over A everywhere except at those points where X; — 2Y; = 0. To have the
points on the special fibre of V!, we need Y*X2(1 — Y?X,X}) = 0. Considering
#(Y2) = 55 = VEXH(1 - Y2Xo XP) = 0, we get (V}')™™® € S C (V)), where §
contains points of the form (ay, by, a2, b2) € (V3!), satisfying the following condi-

tion:

by=a;—2b;=4+a}=0.
Let @ = (a1,0,a2,b2) € S such that az — 2b; =4 + a2 = 0. Then Moje(Q, f1) =
B2Ts + (a2 — 20,)S2 and Moje(Q, f2) = —, ie,
D(Q),, =(0 0 0 by (az—2by)). (4.81)

So @ is singular if by = a; — 2b; = 4 + a2 = 0 which is impossible. Hence Q is a

regular point and as a result V! is a regular scheme.

Chart 3.3

Var = Spec RIX1, Y1, X, Yol /(Y] — X3 X7 — Y7 + Y2, X3Y7 — X5X] —m).
(4.82)
From the first equation we get Y2 — X2X} = Y? — Y;. By using it in the other

equation we get
Vi = Spec RLX\, i, Xa Vol (Y]~ X3X? = ¥ + Vi, XH(Y} — ¥i) — 7).
(4.83)

Now let A = R[X,, Y2]/(X; (Y — Ya) — 7). By using theorem (2.14) we can check
that A is a regular ring. Notice that

VP = Spec Xy, Vil/(Y? — X3X3 — V2 4+ Ya). (4.84)
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Let ¢(X1, Y1) = Y — X3X? — Y} + Y. Then Z& = —3X7X} and £ = 2Y,.
Since p = char k # 2, 3, the system %‘5’1 = % = 0 can be written as —3X2X? =
2Y; = 0. So V;? is smooth over A everywhere except at those points where
—3X2X? = 2Y; = 0. To have the points on the special fibre of V;}, we need
X3Y2— X$X? = 0. Considering ¢(X1, Y1) = g = 52 = X;¥? = X§XP = 0, we
get (V2 S8 - § ¢ (Vay), where S contains points of the form (ai,b1,az,b;) €
(Vay), satisfying one of the the following conditions:

(1) by = ay = by = 0;

(2) by =a, =by—1=0;

(3) ay =by = by, =0;

(4) a,=b=b—-1=0.

Let @1 =(¢1,0,0,0) € S. Then
Moje(Qn, fi) = S2 + vor and Moje(Qs, f2) = —m, (4.85)

So D(Q:) has rank two. Hence Q) is a regular point.
Let Q2 = (a1,0,0,1) € S. Then MOje(Q"),fl) = (1 - 262)52 where ﬁg =
1(mod ) and Moje(Qz2, f2) = —, te,

D(Qz),, =(0 0 0 0 —1). (4.87)

So D(Q:) has rank two. Hence (), is a regular point.
Let @3 = (0,0,a4,0) € S. Then

Moje(Qs, fi) = vem + S2 and Moje(Qs, f2) = —, (4.88)
e,
D(Qs), =(w 0 0 0 1) (4.89)

So D(Q3) has rank two. Hence (3 is a regular point.
Let Q4 = (0,0,a;,1) € S. Then Moje(Qq, f1) = (1 — 206;)S2 where §; =
I(mod m) and Moje(Qa, f2) = —, te,

D(Q4), =(0 0 0 0 —1). (4.90)
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So D(Q4) has rank two. Hence @4 is a regular point and as a result V;3? is a

regular scheme.

Chart 3.4

701 __
‘/22 -

Spec R[X1, Y1, Xa, Vol /(Y = Y Xo X5 — 1+ X2, V' XG5V — YR X3X7 — ).
(4.91)

From the first equation we get Y2 — Y2 X3 X? =1 — X,. By using it in the other

equation we get

Vi = Spec R[X1, Y, Xo, Ya]/ (Y2 — Y2 Xo X3P — 14+ Xo, VI X2(1 - X3) — 7).
(4.92)
Now suppose that A = R[X3, Ya]/(Y3*X3(1 — X3) — 7). We can check that A is
a regular ring (by using theorem (2.14)). Note that

VO = Spec A[X,, Yi]/(Y? — Y2Xo X3 — 1 + X). (4.93)

Let ¢(X1,Y1) = Y2 = Y X, X7 — 1+ Xp. Then & = -3V’ X, X} and $¢ =
2Y;. Since p = chark # 2,3, the system 5’%— = %,4’7 = 0 can be written as
—3Y7X; X2 = 2Y; = 0. So V2! is smooth over A everywhere except at those
points where —3Y2X,X? = 2Y, = 0. To have the points on the special fibre of
Vo, we need Y X2Y? — YEX3X? = 0. Considering ¢(X,,Y;) = 63741 = 5‘9% =
YAX2Y? — YEX3X? =0, we get (V™™ < § C (V). where S contains points
of the form (a1, by, a2, b:) € (V3y), satisfying one of the following conditions:

(1) by =a;—1 =b; =0

(2) ar=bi=ay—1=0.

Let @1 = (a1,0,1,0) € S. Then

Moje(@1, f1) = Tz and Moje(Qy, f2) = —, (4.94)

1€,

D(Q1), =(0 0 0 1 0). (4.95)
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So @1 is a regular point.
Let Q2 = (0,0,1,62) € S. Then Moje(Q2, fi) = Tz and Moje(Q3, f2) = -7

where az; = 1(mod 7), te,
D(Q2),, =(0 0 0 1 0). (4.96)

So rank D(Q;) = 2. Hence Q) is a regular point and as result V3! is a regular

scheme.

Recall that
v =
Spec R[Xy, Y, X3, V) /(Y — 23Xy — Y2 + Xo Yo, X{X2Y? — X8X3 )

(4.97)

is singular and Fp is its singular point. Now we blow-up F,. By using the

procedure of Mahtab we get four pieces for the covering of 172710 as follows:

Chart 3.1.1
Vo =
Spec R[ X\, Y1, X3, Y2/ (Y2 — X1 Xy — Y7 + XoY5, X?X%Yf - X7X3 —m).
(4.98)
From the first equation we get Y? — X, X, = Y? — X,Y,. By using it in the
equation we get
Var =
Spec R[Xl,Yth, er]/(Y—lz - X X5 — Y22 + X,Y;, 4X18X22Y2(Y; - Xz) - 7T).
(4.99)

Assume that A = R[X), X, Y2}/ (X} X2Y,(Y2 — X2) — 7). We can use theorem
(2.14) to check that A is a regular ring. Note that

Vo = Spec A[Y1)/ (Y — X1 Xz — Y7 + XoYh). (4.100)
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Let ¢(¥1) = Y2 — X1 X, — Y7 + XoY;. Then 2& = 2Y;. Since p = char k # 2, the
equation %}"T = 0 can be written as 2Y; = 0. So V)° is etale over A everywhere
except at those points where Y; = 0. To have the points on the special fibre of
V2, we need X¥X2Y? — X?X3 = 0. Considering #(Y)) = g% = X3X2Y? -
X9X3 = 0 we get (V2%)*™8 ¢ § C (V2%)  where S contains points of the form
(a1,b1,a2,b9) € (V). satisfying one of the following conditions:
(1) ay = by =b; =0;
(2) a1:b1=a2—b2:0;
(3) b1=a2=b2:0.
Let @1 =(0,0,a,,0) € S. Then

Moje(Q1, fi) = az(v2 — ui)m — 2Ty + 25, (4.101)
and Moje(Qla f2) = —-m, ie7

D(Ql)rl = ( ag(?_)z - 'L_LI) —day 0 0 as ) (4102)

So @ is singular if a; = 0, 1e, @1 = Fp.
Let Q2 = (0,0, as,b;) € S such that a; — b, = 0. Then

MOje(QQ, f]) = —O0UITT — ang + ,BzTQ + (02 - 2ﬂ2)52 (4103)
and Moje(Qz, f2) = —, ie,
D(Q2),, =(—a2ts —az 0 by az—2by). (4.104)

So Q2 is singula.r if ag — ng = b2 = 0, ie, Qz = P().
Finally let Q)3 = (a4,0,0,0) € S. Then

Moje(Qs, fi) = —ajuam — a; T2 and Moje(Qs, f2) = —, (4.105)

1e,
D(Qg)rl = ( —a1ﬂ2 0 0 —ay 0 ) (4106)

So @ is singular if a; = 0, 1e, 3 = P. Hence

Sin
(Va), & = {Po}.

™
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We will try to resolve this singularity later.

Chart 3.1.2

Vot = Spec R(X), Y1, Xa, Y3/
(1 -V XXy — Y2+ XoYa, YEXIXZ —YEXPX3 — 7). (4.107)

Now assume that A = R[X,,Y), Xo]/(Y2X{XZ(1l — Y1 X} X3) — 7). Considering
theorem (2.14) we can check that A is a regular ring. Notice that

Vo = Spec A[Y;]/(1 = ViX1X, — Y7 4+ X0 Y5). (4.108)

Let ¢(Y2) = 1 -V X{ Xy — Y+ X3 Y;. Then £& = —2Y;+ X,. Since p = char k #
2, the equation 6%% = 0 can be written as X, — 2Y, = 0. So V0! is etale over A
everywhere except at those points where X; —2Y; = 0. To have the points on the
special fibre of V33!, we need Y2X?X? — Y?X?X3 = 0. Considering the system
$(Y2) = B& = YSBX{XZ — Y2X$X3 = 0, we can check that (VI3)™™ C S C
(VR3!), where S contains points of the form (ay,by,a2,b2) € (V). satisfying
one of the following conditions:

(1) ay = ay —2b; =4 + a2 = 0;

(2) by = a3 —2b; =4+ a3 =0.

Let @, = (0,by,a2,b2) € S such that a; = 2b; and 4 + a2 = 0. Then

Moje(Q1, £1) = BaTh + (e — 262)S5 (4.109)
and Moje(Qy, fo) = —, ie,
D(Q), =(0 0 0 b ag—2by). (4.110)

So @, is singular if by = a3 — 2b; = 4 4+ a2 = 0 which is impossible. Hence @ is
a regular point.

Let Q2 = (a;,0,a2,by) € S such that az — 2b; =4 + a3 = 0. Then

Moje(Qg, fl) = —afagvlﬂ' — afazsl + ,62T2 + (ag —_ Qﬂz)SQ (4.111)
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and MOje(Qg,fg) = —m, ?:6,
D(Q2),, = (—alastr 0 —afay by az —2by). (4.112)

So Q2 is singular if a2ay = by = a3 — 2by = 4+ a3 = 0 which is impossible. Hence

@2 is a regular point and as a result V;})! is a regular scheme.

Chart 3.1.3

Varz = Spec R[X1, Y1, Xo, Yal/(Y) — Xo X7 = V) + Yo, Xo X7V — X0X7 — ).
(4.113)
From the first equation we get Y2 — X2 X? = Y2 — Y;. By using it in the other

equation we can write

VAP = Spec BIX1, i, X, Yol /(Y2 = Xo X2 = Y2 + Y, XEXA(Y2 = Y5) — ).
(4.114)
Now suppose that A = R[X), X2, Ya]/(X5X}(Y? — Y2) — 7). We can check that
A is a regular ring (by using theorem (2.14)). We can write

Vaiz = Spec AV1]/(Y? — X, X7 — Y7 + Y3). (4.115)

Let $(Y1) = Y — XoX} — Y7 + Yz Then Z& = 2Y,. Since p = chark # 2, the
equation a%%' = 0 can be written as 2Y; = 0. So V3 is etale over A everywhere
except at those points where Y; = 0. To have the points on the special fibre of
Vay, we need X3X{Y? — X7X7? = 0. Considering ¢(Y1) = & = X;X{Y? -
X2X8 =0, we get (V)™ C § C (VAP)_ where S contains points of the form
(a1,b1,a2,by) € (ViY), satisfying one of the following conditions:

(1) bi=a;=b;,=0;

(2) by=a;=0b,—-1=0;

(3) by = ay = by = 0;

(4) by =a;=b,-1=0.

Let @y = (a1,0,0,0) € S. Then

Moje(Qq, fi) = (vy — afug)w — ang + 52 and Moje(Qy, f2) = -7, (4.116)
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ie,
l)(Ql)r1 = ( ('172 - afflg) 0 0 —af 1 ) (41]_7)

So D(Q,) has rank two. Hence (Q, is a regular point.
Let Q2 = (a1,0,0,1) € S. Then

Moje(Qz, fi) = —iuam — 3Ty + (1 — 26,)S, (4.118)
where 3; = 1(mod 7) and Moje(Q2, f2) = —, 1€,

So D(Q2) has rank two. Hence () is a regular point.
Let @3 = (0,0,a2,0) € S. Then

Moje(Qs, f1) = var + S, and Moje(Qs, f2) = —, (4.120)

So D(@3) has rank two. Hence ()3 is a regular point.
Let Q4 = (0,0,a,,1) € S. Then

Moje(Q4, f1) = (1 — 23;)S: and Moje(Qq, f2) = —, (4.122)

D(Q4),,=(0 0 0 0 —1). (4.123)

So D(Q2) has rank two. Hence @) is a regular point and as a result V% is a

regular scheme.

Chart 3.1.4

‘/201021 = Spec R[Xla }/17 X27 Y'2]/
(Y2 = Vo X2Xo — 1+ X, YEXIXIY? —VEXOX — 1) (4124)
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From the first equation we get Y2 — Y2 X?X; =1 — X,. By using it in the other

equation we get

VIS = Spec R[ X1, Y1, X, Yo /(Y2 = VaX7 X — 1+ Xo, YRX?XE(1 - X3) — 7).

(4.125)
Let A = R[X,, X2, Y2]/(YRX!X2(1 — X;) — 7). By using theorem (2.14) we can
check that A is a regular ring. Note that

Vi = Spec A[V1}/(Y — VaXPXa — 1+ X;). (4.126)

Let ¢(Y1) = Y? — Y2X2X; — 1+ X;. Then 3¢ = 2Y,. Since p = chark #
el

2, the system ;& = 0 can be written as 2¥; = 0. So 1,13 is etale over A

everywhere except at those points where Y| = 0. To have the points on the
special fibre of Voy, we need YEX}X2Y? — Y2 XP X2 = 0. Considering ¢(Y;) =
5‘%’] = Y3X4X2Y? — YPX5X? = 0, we can check that (V%)™ c § c (V%)
where S contains points of the form (ay, b1, a2,8y) € (V3R), satisfying one of the
following conditions:

(1) by =a;—1=b, =0;

(2) ay=b,=a;—1=0.

Let @1 = (a,0,1,0) € S. Then

Moje(Q1, fi) = —a2apvem + Tz — @22 Sy (4.127)
where a; = 1(mod 7) and Moje(Qy, f2) = —, te,
D(Q),, =(—altz 0 0 1 —af). (4.128)

SO D(Q;) has rank two. Hence @, is a regular point.
Let @2 =(0,0,1,b2) € S. Then

Moje(Q2, f1) = Tz and Moje(Q2, f2) = —m, (4.129)
D(Q2),, =(0 0 0 1 0). (4.130)

So D(Q,) has rank two. Hence (), is a regular point and as a result V) is a

regular scheme.
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Recall that
Van =
Spec R[X1,Y1, Xg,Yg]/(Yl2 - X, X3 — Y22 + X, Y,, XfX;le — XfXg — )
(4.131)

is singular and P, is its singular point. Now we blow-up F;. By using the

procedure of Mahtab we get four pieces for the covering of V)3 as follows:

Chart 3.1.1.1

0000 __
‘/2111 -

Spec R[X1, Y1, X2, Ya)/ (Y2 = Xy — Y2 + Xo Y2, XP2X2Y? — XB X3 — 7).
(4.132)

Let A = R[Xy, Y1, Xo]/(X}2X2Y? — X2X3 — 7). By using theorem (2.14) we
can check that A is a regular ring. Note that

Vot = Spec A[Ya]/ (Y] — X, - Y7 4+ X, Y5). (4.133)

Let ¢(Y2) = Y? — X — Y7 + XaY3. Then Z = —2Y; + X;. Since p = char k # 2,
the equation a%% = 0 can be written as X3 — 2Y; = 0. So VP is etale over A
everywhere except at those points where X; — 2Y; = 0. To have the points on
the special fibre of V3P, we need X}2X2(Y? — X;) = 0. Considering ¢(Y;) =
2 = XPPXHY? ~ X2) = 0, we can check that (VIER)*™ c § C (V%),
where S contains points of the form (ay, b1, az, by) € (VI3Y), satisfying one of the
following conditions:

(1) a1 = ag — 2by = 4b? — 4a,y + a2 = 0;

(2) by =az =b,=0.

Let Q1 = (0,by1, as,b2) € S such that a; — 2b, = 462 — 4a; + a2 = 0. Then

Moje(Ql, fl) = 2ﬁ151 -+ (ﬁg — 1)T2 + (a'z — QﬁQ)SQ (4134)
and Moje(Q\, f2) = —m, ie,

D(Q1),, =(0 0 26 by—1 az—2by). (4.135)
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So @, is singular if 2b; = by — 1 = 4b? — 4a, + a2 = 0 which is impossible. Hence
(1 1s a regular point.

Let )2 = (a1,0,0,0) € 5. Then
Moje(Q2, f1) = —usm — Ty and Moje(Q2, f2) = —, (4.136)

D(Qs),, =(-iz 0 0 —1 0). (4.137)

So D(Q:) has rank two. Hence @), is a regular point and as a result V5% is a

regular scheme.

Chart 3.1.1.2

Vit = Spec R(X1, Y:, X2, Ya]/
(1—- XX, — Y2+ X,V VI2XBX2 _V12XPX2 — 7). (4.138)

Suppose that A = R[X\, Y1, Xo]/(Y* X3X2(1 — X, X;) — 7). Considering theo-

rem (2.14) we can check that A is a regular ring. Notice that
Vi = Spec A[Ya]/(1 — X1 X, — Y7 + Xp13). (4.139)

Let ¢(Y2) = 1— X, X, — Y7+ X3 Y. Then J& = —2Y;+ X,. Since p = chark # 2,
the equation {;9_}352_ = 0 can be written as X, — 2Y; = 0. So V25! is etale over A
everywhere except at those points where X; —2Y; = 0. To have the points on the
special fibre of V3)!, we need Y?X3X2(1 — X,X;) = 0. Considering ¢(Y2) =
28 = Y2X$X2(1 — X, X;) = 0, we can check that (V3951)"™ S  (V%),
where S contains points of the form (ay, by, as,b2) € (Vi11'), satisfying one of the
following conditions:

(1) by = ay — 2b; = daya; — 4 — a3 = 0;

(2) ay=as—2b; =a2+4=0.

Let Q1 = (a1,0,a2,by) € S such that a; — 2b; = 4a1a; — 4 — a2 = 0. Then

Moje(Q1, fi) = —a2Ty + (82 — on)T2 + (ag — 203,)5,, (4.140)
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and Moje(Q1, f2) = —, te,
D(Qi),, =(0 —az 0 by—ar 0) (4.141)

So @, is singular if —a; = by — a; = a2 — 2b; = 4aja; — 4 — a2 = 0 which is
impossible. Hence @); is a regular point.

Let Q2 = (0,b1,a3,b;) € S such that a; — 2b; = a3 + 4 = 0. Then
Moje(Q2, f1) = —aouim — a1y + BT + (a2 — 206,)5, (4.142)
and Moje(Qz, f2) = —, 1€,
D(Q2),, = (~asii —az 0 by 0). (4.143)

So @ is singular if —a; = by = a; — 2b; = a2 + 4 = 0 which is impossible. Hence

Q2 is a regular point and as a result V3! is a regular scheme.

Chart 3.1.1.3

Vaitz = Spec R[Xy, Y1, X, Ya/
(Y2 =X, - Y2+ Yo, XJ2XPY? — X2 X)) — ). (4.144)

Suppose that A = R[X;,Y:, Xo]/(X;?X3(Y{? — X1) — 7). We can use theorem
(2.14) to prove that A is a regular ring. Notice that

VaRy = Spec A[V3)/(Y? — X1 = Y7 + Y3). (4.145)

Let ¢(Yz) = Y — X; — Y7 + Ya. Then % = —2Y; + 1. Since p = chark # 2,

the equation f%% = 0 can be written as 2Y; — 1 = 0. So V%% is etale over 4

everywhere except at those points where 2Y, — 1 = 0. To have the points on
the special fibre of V2%, we need X}2X}¥(Y? — Xi) = 0. Considering ¢(Y2) =
% = X12X8(Y2 - X;) = 0, we can check that (V20%0)%"¢  § ¢ (Vi)
where S contains points of the form (ay, b1, a2, b2) € (Vi3 ), satisfying one of the

following conditions:

(1) ‘12=b2—%:a1—bf——i:0;
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Let @1 = (a1,61,0,b3) € S such that b‘z—%: ay — b — % = (. Then

Moje(Ql,fl) = —T1 -+ ‘ZﬁlSl -+ (1 - 2ﬂ2)52 (4146)
and Moje(lef2) = -, ie»
D(Q1), =(0 -1 2b 0 0). (4.147)

So rank D(Q;) = 2. Hence @), is a regular point.
Let @2 = (0,5, az, %) € S such that by — % =4b7 +1 = 0. Then

MOje(Qg,fl) = —u T — T1 + QﬂlSl + (]_ - 2/62)52 (4148)

where 3; = L(mod 7) and Moje(Q3, f2) = —, 1e,

=2
D(@2),, =(-u -1 26 0 0). (4.149)
So D(Q2) has rank two. Hence Q) is a regular point and as a result V3% is a

regular scheme.

Chart 3.1.1.4

Valz = Spec R[X,, Y1, X, 3]/
(Y2 - X1 Xo— 1+ X, V2XPXIY2 - Y2XP X5 — 7). (4.150)

From the first equation we get Y? — X; X2 = 1 — X;. By using it in the other

equation we get

Vyila = Spec R[Xy, Y1, Xg, Y3/ (Y2 — Xa Xz — 1+ Xy, Y2XBX2(1 — X3) — ).
(4.151)
Let A = R[X\, X, Y2]/ (Y, X?X}(1 — X;) — m). By using theorem (2.14) we can
check that A is a regular ring. Note that

Vartz = Spec AVI)/(Y? — X1 Xz — 1+ Xa). (4.152)
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Let ¢(Y) = Y — X1 X — 1 + Xa. Then 5% = 2Y;. Since p = chark # 2, the

8¢
3y, —

except at those points where Y; = 0. To have the points on the special fibre
of V1Y, we need Y?XPXFY? — Y’ XPX3 = 0. Considering ¢(Y1) = & =

Y)2XBX2Y2 — Y2 XPX3 = 0, we can check that (V)™ c § c (V2001)

equation 0 can be written as 2Y; = 0. So VJ53' is etale over A everywhere

where S contains points of the form (a1, b1, a2, b2) € (Vi3%), satisfying one of the
following conditions:

(1) by =by=aya+1—ay =0;

(2) ap=b =a,-1=0.

Let @, = (a1,0,a2,0) € S such that aja; + 1 — a2 = 0. Then Moje(Qy, fi) =
—asTy + (1 — )Tz and Moje(Qh, f2) = —m, e,

D(Q), =(0 —az 0 l—a 0). (4.153)

So @ is singular if —a; = 1 —a; = aya2 + 1 — a; = 0 which is impossible. Hence
@1 1s a regular point.

Let Q2 = (0,0,1,b,) € S. Then Moje(Q-, fi) = —asu ™ — a1y + T> where
az = 1(mod ) and Moje(Q2, f2) = —, ze,

D(Qz)r, = (—agﬂl —das 0 1 0) (4154)

So rank D(Q;) = 2. Hence @, is a regular point and as a result V}}33' is a regular
scheme. The gluing of the regular schemes which we have had so far, gives us the

regular scheme X. o

Lemma 4.9 Let p = chark # 2,3 and V| = Spec R[z,y]/(y* — 2> — 7) and
V, = Spec Rz, y]/(2*y — zy* — 7). Then X = V) XspecrV: is singular and after

some blowings-up we get a regular scheme X.

Proof : We have
X = Spec R[z1,y1, %2, y2)/ (47 — 2y — 23y2 + T2y3 , Y1 — x} — 7). (4.155)

By using corollary (2.11) we can check that Fo € X, is the only singular point of
X. Now we blow-up P,. By using the procedure of Mahtab we get four pieces for

the covering of X as follows:
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Chart 1

V2 = Spec R[X;, Y7, Xo, Ya) /(Y2 — Xo — Xa X2Y, + X XoY7, XPYE - X3 —m).

(4.156)
Assume that A = R[X,, Y1]/(X}(Y? — X1) — 7). We can check that A is a regular
ring (by using theorem (2.14)). Note that

VP = Spec A[ X5, Yo /(Y — Xi — X\ X2V, + X1 XaYY). (4.157)

Let ¢(X2,Y2) = Y — X1 — X1 X2Y; + X1 XY, Then 3—6% = -2X, XoY: + X, V7
and 59% = —X; X2 4+ 2X,X,Y;. Since p = char k # 2, the system 337‘2 = % =0
can be written as X, Ya(Y2—2X,) = X; X3(2Y2— X3) = 0. So V is smooth over A
everywhere except at the points where X Y5(Y2—2X,) = X, X2(2Y>,—X;) =0. To
have the points on the special fibre of V), we need X?(Y?— X;) = 0. Considering
H(X2,Ya) = B = B = X2(Y?— X)) = 0 we get (V)™ C S C (V), where S
contains points of the form (ay, by, as2,b2) € (V}°), satisfying one of the following
conditions:

(1) a, =b, =0;

(2) az=by=a, —b*=0.

Let Qy = (0,0, a,b;) € S. Then
Moje(@1, f1) = (@23 — a3 — L)y + (@2f3; — a3f2 — 1)Th (4.158)
and Moje(Q1, f2) = —, ie,
D(@Q)),, = ((ahd — a2by — )iy (b —a2by—1) 0 0 0). (4159

So @ is singular if @b — a2b, — 1 = 0.
Let Q2 = (a1,61,0,0) € S such that ay — b = 0. Then Moje(Q2, fi) =
—Tl + 2B151 and

MOje(Qg, f2) = (201ﬂ12 - 30?),1—'1 + 20%,@151 —m, (4160)
1e,
0 -1 26 0 O
D(Qs) = . (4.161)
-1 2albf s 3a% 20%[)1 0 0
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So D(Q)2) has rank two. Hence (), is a regular point. This means that
(Vlo)Sing = {(alabl,az,bz) € (Vlo),r lay = by = azb§ — agbz -1 =0}.

Now we blow-up (Vlo)smg. By using the procedure of Mahtab we get three pieces

for the covering of {/P as follows:

Chart 1.1
00 Y Toys — Ty — 1. 1.2 Tays — Thys — 1
‘/11 :SPGCR[xh—#U?,y% ]/((_) +( ),
Ty Iy Ty I
‘ 2
P~ 2~ m) = Spec RIX, Y, X0, Y3, Z1/(V2 + 7, X{Y? = X} — 7,
1
X, Z — XoY2 4+ XY, 4+ 1) = Spec R[X,, Y1, Xu, Y3/
(X1 Y} - XoVP + X2Y, + 1, X{Y?E - X3P — ). (4.162)

Let A = R[X,,Y\]/(X}(X.Y}? — 1) — m). By using theorem (2.14) we can check
that A is a regular ring. Note that

V% = Spec A[ X3, Yol /(= X1 Y2 — XoY7 + X2Y, +1). (4.163)

Let ¢(X3,Yy) = —X1Y? — XY + X3Y2 + 1. Then £& = —¥2 + 2X,Y; and
g—}‘% = —2X,Y; + X2. Since p = chark # 2, the system % = 38% = 0 can be
written as Y3(2X; — Y;) = Xp(X; — 2Y2) = 0. So V% is smooth over A every-
where except at the points where Y3(2X; — ¥3) = X,(X; — 2Y;) = 0. To have
the points on the special fibre of V), we need X7(X,Y? — 1) = 0. Considering
$(X2,Y2) = & = 2¢ = X}(X,Y? — 1) = 0, we can check that (V®)*™ c § C
(V) where S contains points of the form (aq, b, as, bs) € (V%) satisfying the

following condition:

agzbgzalbf——1:0.

Let @ = (a1,b1,0,0) € S such that a6} = 0. Then Moje(Q, f1) = —B32T, —
20!1,3181 and

Moje(Q, f2) = (426} — 3a3)T) + 2013, S; — T, (4.164)
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e,
0 _p? ~2a1b; 0 0
D(Q) = : (4.165)
—1 (4a3b? — 3a?) 2aib; 0 0
So @ is singular if —6f = —2ab, = a;b] — | = 0 which is impossible. Hence Q is

a regular point and as a result V" is a regular scheme.

Chart 1.2

2 2 2 2
z Toys — THYs — 1 Ty, Toys — THYs — 1
Vit = Spec By, 22,y =201 4 L)

?

W hn 3]
yl(y ) —yl(—) _Tr SpeCR[XUYhX?’ /:bZ]/(l'*"XlZv
1
YiX? - Y;’Xf T, Y17 — XoY} + X3Ys +1). (4.166)

Suppose that A = R[X,,Y}]/(X?Y2(Y, — X)) — 7). By using theorem (2.14) we
can check that A is a regular ring. Notice that

Vi = Spec A[Z, Xo, Yol /(L + Xi Z , ViZ — XY + X2V, + 1) =
Spec A[X; ][ X2, 2]/ (V) + X, X2 Y7 — Xy X2Y, — X)). (4.167)

Note that B = A[X{'] = A[Z]/(1 + X, Z) and Spec B is etale over A. So A[X["]
is a regular ring.

Let #(Xy, Yy) = Yi + X, X2 Y2 — X; X2Y, — X;. Then 2 8X = X\ Y2 -2X,X,Y,
and ﬁi = 2X,X,Y; — X1 X2, Since p = chark # 2, and X, # 0, the system
%”; = 88}’? = 0 can be written as Y7 —2X,;Y> = 2X,Y;— X2 = 0. So V! is smooth
over A[X '] everywhere except at the points where Y2 —2X,Y, = 2X,Y,— X2 = 0.
To have the points on the special fibre of V3!, we need X2Y3(Y; — X,) = 0.
Considering ¢(X»,Y2) = 56 = 5 = XiV ("1 — X)) = X1Z +1 = 0, we
can check that (V9)®™ c § C (‘/1(}1)1r where S contains points of the form
(a1,b1,a2,bs,¢) € (V!), satisfying the following condition:

al—b1=a2=b2:a1c+1:0.
Let Q = (a1,01,0,0,c) € S. Then Moje(Q, f1) = a1 W + T} and

Moje(Q, f2) = (2013 — 302 BY) Ty + (4038} — 30362) 1 (4.168)
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and Moje(Q, f3) = 751 + BiW, te,
0 c 0 0 0 a
DQy=|-1 —-a a 0 0 0 |. (4.169)
0 0 C 0 O b[

The determinant consisting of the first three columns of D(Q) is equal to ¢ =
a”? #0. So rankD(Q) = 2. Hence @ is a regular point and as a result V! is a

regular scheme.

Chart 1.5
Let Z = zoy2 — 22y, — 1. Then

Vi¥ = Spe cR[Z oo L) + 2, 24 (%) - 2By - n,
Z — zoy: + z2y; + 1) = Spec R[X1, Y1, X3, Ya, Z) /(Y + X1, 20 XEY2—
Z3X3 — 7, Z — X,V + X2Y; + 1) = Spec R[Y;, X3, Ya, Z}/
(Z = XY7 + X2Y7 +1, Z*Yf — Z°Yf — «1) = Spec R[Y;, Xy, Y3/
(XY — X2V, — 1)°YH(XaY) = X3Y, — 2) — 7).

(4.170)

Since X,Y? — X2Y, —1 =0 and X;Y? — X2Y; — 2 = 0 in A} define non-singular
k-varieties (by Jacobian criterion), by using theorem (2.14) we conclude that V}%¥

is a regular scheme.

Chart 2
3
V! = SpecR ,,ﬁyl 1-—- Iy y2+ y2,
f p [ y o 1/( yl(yl) yl(yl)(yl) y(yl)(yl)
33
Y3 —y.(yl) — ) = Spec R[X1, Y1, Xa, Y2]/
1
(1 -YX? -V XY, + VI XY Y2 -Y2X? —n). (4.171)

Now let A = R[X,,Y;]/(YZ(l — Y1 X}) — 7). We can use theorem (2.14) to show
that A is a regular ring. Notice that

V! = Spec A[Xy, Vo] /(1 — V1 X? — VX2V, + Y X, V7). (4.172)
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Let ¢( X3, Y3) = 1-Y1 X7~ Vi X7Y2+ Y1 XpY7. Then S = —2V1 X,Y;+Y1Y and
% = -Y1 X7 4+ 2Y1 X, Y. Since p = chark # 2, we can write the system 3 3¢ =
% =0as -2V, XoY, + 1Y} = -V X2 + 2V XY, = 0. So V{! is smooth over A
everywhere except at the points where —2Y; XpY, + VY72 = Y X2 4+ 2V, X, Y, =
0. To have the points on the special fibre of V]!, we need Y?(1 — Y, X3?) = 0.
Considering ¢(X3,Y:) = %?—2 = 8%% = Y1 — Y1 X}) = 0, we can check that
(VHP™ c S ¢ (W), where S contains points of the form (a1, b1, a2, b) € (V;)..

satisfying the following condition:
— — o3 —
dg-—bg—albl—l—o.

Let @ = (ay1,61,0,0) € S such that a3, —1 = 0. Then Moje(Q, f,) = —3a26, T, —
a; S and
Moje(Q, f2) = —3a3BTy + (2 — 3a} (1) S — , (4.173)

te,

0 —3alb, —a} 0 0
(4.174)

D(Q)=(
1 —3a263 by(2—3a3b) 0 0

So Q is singular if 3a2b, = @ = 6a2b?(a3b, — 1) = ajb; —1 = 0 which is impossible.

Hence @ is a regular point and as a result V;! is a regular scheme.

Chart 3
o _ LY Yay YT
V, = Spec R[ Vg T :,32]/((&7:2 “(zz) za( 2) + :rz( )
Y12 zy3
$2(£—) - ‘TQ(;) - Tl’) = Spec R[le Y, Xo, Y2]/
2 2
(Y2 — Xo X7 — XoYo + XoY2, X2YE — X3XP — ). (4.175)

From the first equation we get Y2 — X2 X? = X,Y2(1 — ¥2). By using it in the

other equation, we can write

Vy = Spec R[X1, Y1, X2, 2]/ (Y] — Xo XP — XoYo + Xo¥E, X3Ya(1 - V) — 7).
(4.176)
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Now assume that A = R[X>, ¥5]/(X3Y2(1 — Y2) — 7). Considering theorem (2.14)

we can check that A is a regular ring. Notice that
VY = Spec A[ X1, V1]/(Y? — Xo X7 — XoYs + XYV, (4.177)

Let ¢(X(, Y1) = VP — Xp X} — Xp¥; + X,V Then Z& = —3X,X} and & =
2Yy. Since p = chark # 2, 3, the system aE)Td), = 53% = 0 can be written as
—3X2X} = 2Y; = 0. So V7 is smooth over A everywhere except at the points
where —3X; X? = 2Y; = 0. To have the points on the special fibre of V), we need
X3Y? — X3X? = 0. Considering ¢(X;,Y;) = %% = % = XY - X3X3 =0,
we can check that (V2)*™ < § C (V). where S contains points of the form
(@1, b1, ag,b2) € (V7), satisfying one of the following conditions:

(1) by =a; =0;

(2) a1=by = by =0;

(3) a;=by=b,-1=0.

Let @ = (a4,0,0,b;) € S. Then

Moje(Q1, f1) = (B3 — B2 — o)uam + (B3 — B2 — o)) T (4.178)
and Moje(Q11f2) =T, ie,

So @, is singular if 2 — b, — a3 = 0.

Let @2 = (0,0,a2,0) € S. Then
Moje(Q2, f1) = —aavam — @352 and Moje(Qq, f2) = —, (4.180)

1€,

D(Q2)r1 = ( —aaly 0 0 O —day ) (4181)
So D(Q32) is singular if a; = 0 ie @, = Py. Note that P, satisfies the conditions
blzazzbg—bg—-ai’:ﬂ.

Finally let @3 = (0,0,a,,1) € S. Then

MOje(Qg,fl) = ﬂg(ﬁg - 1)T2 + Ofg(?[)'g - 1)52 (4182)
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and MOje(Qg, f?) = -, ie?
D(Qs), =(0 0 0 0 a). (4.183)

So Q3 is singular if a3 = 0, e, @3 = (0,0,0,1). Note that ()5 also satisfies the

conditions b; = ay = b2 — b, — a7 = 0. Hence
(V™™ = {(a1, b1, a2,b2) € (VP), |b1 = ay = a + by — b2 = 0}. (4.184)

Now we blow-up (VQO)Si"g. By using the procedure of Mahtab we get three pieces

for the covering of \726 as follows:

Chart 3.2
Ty TS 4y — yl Ty 23+ yp — y2
VS = SpecRley,y, 2, ATy BT T e
Yt hn Y Y

4, L2.2 I9 3
yf(y—z) - yf’(f) zi — ) = Spec R[ Xy, Y1, Xa, Y3, Z)/(1 - X2 Z,
1 1
YEXZ -YEX3XE 1, VN2 - X - Y, + YD) (4.185)

Suppose that A = R[X,,Y;, Xo]/(Y2X2(Y, — X, X3) — 7). We can check that A

is a regular ring (by using theorem (2.14)). We can write

Vol = Spec A[Z,Y3) /(1 — X2Z , 12 — X2~ Yy + Y} =
Spec A[X;Y[Y2]/ (Y — X3X, — X, Yy + Xp V). (4.186)

Note that B = A[X; '] = A{Z]/(1 — X,Z)] and Spec B is etale over A. So A[X;!]
is a regular ring.

Now let ¢(Y,) = Y, — X3 X, — XpYa + X, Y2, Then ai% = - X, +2X,Y;. Since
p = chark # 2 and X; # 0 we get 2Y; — 1 = 0. So V) is etale over A[X;]
everywhere except at the points where 2Y; — 1 = 0. To have the points on the
special fibre of V!, we need Y2 X2(Y, — X, X?) = 0. Considering ¢(Yz) = 3%% =
Y2X2(Y) — X, X3) = 1 — X,Z = 0, we can check that (V3)*™ c § c (V2!),
where S contains points of the form (ay, b, az,bq,¢) € (V3!), satisfying the fol-
lowing condition:

bI:bQ—%zl—i—éla:f:cag—l:O.

4
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Let @ = (a1,0, a2, %,c) € S. Then Moje(Q, fi) = —yT>—ayW and Moje(Q, f3) =
—7 and

Moje(Q, f3) = yuim — 33Ty +45; + (=1 + 26:)S; (4.187)

where (3, = %(mod T), te,

D@)=|-1r 0 0 0 0 0 | (4.188)
ety =3¢ ¢ 0 0 0
The 3 x 3 matrix consisting of the first, second and fourth columns of D(Q) has

determinant —3a?c # 0 (note that ca; — 1 = 0 and 1 + 4a} = 0). So D(Q) has

rank three. Hence @ is a regular point and as a result V)3 is a regular scheme.

Chart 3.3

Dty —yi 2 Tty —y:
VY = Spec Rlzy, 22, 23, yg, A2 Y2y (L) (L2 B
T I ) T

2
(L)~ afal - m) = Spec RIX0, Yi, X, Yoy Z/(V2 - 2,

?

XYE - X3X3—n, XoZ — X2~ Ya + Y2) = Spec R[X1, Y4, X, Ya]/
(XY — X3 — Yo 4+ Y2, X3P — X3X3 — ). (4.189)

From the first equation we get X,Y;? — X? = ¥; — Y2, By using it in the other

equation we get

20 = Spec RIXi, Yi, X, il/(Xa¥i = X2 = V3 + Y2, XIV3(1 - V5) — ).
(4.190)
Assume that A = R[X>, Y3]/(X;Y2(1 — Y2) — 7). By using theorem (2.14) we can
check that A is a regular ring. Note that

VP = Spec A[Xy, Vil/(XoY — X3 — Yo + V). (4.191)

Let ¢(X1,Y)) = Xo¥? — X} — Y2 + Y. Then Z& = —3X} and & = 2X,Y..

Since p = char k # 2, 3, the system & = 3¢ —

2X2Y7 = 0. So V202° is smooth over A everywhere except at the points where

0 can be written as —3X? =
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—3X? = 2X,Y, = 0. To have the points on the special fibre of V), we need
X3Y? - X3X} = 0. Considering ¢(X1,Y1) = 7& = 5% = XJY? — X3X} =0,
we can check that (V2)*™¢ c S c (V). where S contains points of the form
(ay, by, a9,by) € (V) satisfying one of the following conditions:

(1) a; = ay = by = 0;

(2)  ar=b = by =0

(3) agp=by=by—1=0;

(4) ay=a,="5b,—1=0.

Let @, =(0,61,0,0) € S. Then

Moje(Qy, f1) = (Bius — v2)m + B{T2 — S; and Moje(Qy, fo) = —, (4.192)
1€,
So D(Q:) has rank two. Hence ), is a regular point.
Let Q2 = (0,0,a2,0) € S. Then
Moje(Qz2, fi) = —vam — S2 and Moje(Qq, f2) = —, (4.194)
1€,
D(Qz),, =(-v2 0 0 0 ~—1). (4.195)

So D(Q2) has rank two. Hence @) is a regular point.
Let Q3 = (0,0,a2,1) € S. Then Moje(Q3, fi) = (202 — 1)S; where (5, =
1 (mod 7) and Moje(Qs, f2) = —m, ie

D(Qs)=(0 0 0 0 1) (4.196)

which means that D(Q3) has rank two. Hence Q3 is a regular point.
Let Q4 = (0,b1,0,1) € S. Then Moje(Q4, f1) = Biusm + B2T2 + (262 — 1)S;
where 3; = 1(mod ) and Moje(Qy, f2) = —n, i€,

D(Qu), = (b2a; 0 0 b 1). (4.197)

So D(Q4) has rank two. Hence ()4 is a regular point and as a result V.3 is a

regular scheme.
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Chart 3.5
Let Z = 2} + yo — y2. Then

V= Spec Rlei, 2, 2,00, /() - 2,248 () - 2%2) 9 -,
Z — 2} —ya + y2) = Spec B[ X, Y1, X0, Yo, Z) /(Y2 — X0, Z — X} = Yy + V2,
ZYEX; - 2°X3X) — 7) = Spec R[ X\, Y, Y2, Z)/(Z — X} - Yo + Y2, YEZ*
~XPYPZ® — 1) = Spec RIX), V1, Yal /(Y2 — Y3 + XD)’YE(Ya = Y7) — )

(4.198)

Since Y — Y7 + X? = 0 and Y; — Y = 0 in A} define non-singular k-varieties,

by using the theorem (2.14) we conclude that V) is a regular scheme.

Chart 4
T x .3 Ty 2 T
Vi = Spec [, ﬂ,,—?,yﬂ/(( > —ya(2) —ya(2D) +ya(2),
y Y2 Y2 Y2
ygﬁy’;) —yQ(y—Q) — 1) = Spec R[Xy, Y4, X5, Y3}/
(Y - VX - Vo X2 + Yo Xo, Y2YV? - Y2X? — ). (4.199)
Recall that

Vy' = Spec R[X1, Y1, Xa, Y3l /(Y = X X7 - XoYs + XoY5', XTIV — X3 X7 — ).
(4.200)

The ring homomorphism
F(V;,OVQO) — F(V;,OV;)
Xy — =Xy
Yi— Y
Xy — =Y,
Yy — Xo

is an isomorphism and induces V;} = V. Hence \721 ~ VP The gluing of the

regular schemes which we have had so far, gives us the regular scheme X. o
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4.4 One component is I3

In this section our arithmetic three-folds are the products of two arithmetic sur-
faces such that one of them is of the form /3 and apart from the cases discussed

before.

Lemma 4.10 Let p = chark # 2, 3 and V; = V» = Spec Rz, y]/(y* — yz* — 7).
Then X = VjxgpecrV2 Is singular and after some blowings-up we get a regular

scheme X.

Proof : We have

X = Spec R[z1, Y1, T2, ol / (¥} — ¥3 — 12s + vy, ys — izl — ). (4.201)

By using corollary (2.11) we can check that P, = (0,0,0,0) € X, is the only
singular point of X. We blow-up F,;. By using the procedure of Mahtab we get

four pieces for the covering of X, as follows:

Chart 1

VY = Spec R[X,, Y, Xp, Val /(Y2 — YE — X\ Y, + X, Yo X2, X2Y?2 — X3Y, — ).
(4.202)
Suppose that A = R[X;, Y1]/(X?Yi(Y1 — X1) — 7). We can use theorem (2.14)
to show that A is a regular ring. Notice that

VP = Spec R[ X, Ya)/(Y? - Y} — X\ Y1 + X, Yo X3). (4.203)

Let ¢(X,,Y,) = V2 — Y2 — XiY, + X Yo XZ. Then — =2X,Y2 X, a,nd

—2Y, + X1 X2. Since p = chark # 2, the system 3 —i —‘& = 0 can be wrltten
as 2X Y2 X2 = =2, + X, X? = 0. So VP is smooth over A everywhere except
at the points where 2X,Y, X, = -2, + X, Y22 = 0. To have the points on the
special fibre of V}?, we need X?Y,(Y, — X;) = 0. Considering ¢(X3,Y;) = 3X2 =
22 = X2Y(Y: — X,) = 0, we get (V0)*™8 ¢ § c (W), where S contains points
of the form (a1, b1, as,b2) € (V) satisfying one of the following conditions:

(1) ay =b =b,=0;
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(2) by = ay = by = 0;

(3) ay — by =a; = b, =0.

Let Q1 = (0,0,a5,0) € S. Then Moje(Qy, f1) = 0 and Moje(Q,, f;) = —7. So
D(Q,) has rank one hence @ is a singular point.

Let Q2 = (a1,0,0,0) € 5. Then Moje(Q2, fi) = —ayvim™ — 1.5, and
Moje(Qq, f2) = —(ajvs + L) — oSy, (4.204)
1€,

_alﬁl 0 —ay 0 0
: (4.205)

—(ado,+1) 0 —a; 0 0
So Q2 is singular if (@19, )(a}) — (@301 + 1)a; = 0 1e ay = 0 which means that
Q2 = Fo.

Let Q3 = (a;,5,0,0) € S such that ¢y — b, = 0. Then Moje(Q3, fi) =
=611 + (261 — 049)S; and

D(Q2) = (

Moje(Qs, f2) = =7 + a1 (28] — 31 1) T1 + (261 — ) Sy, (4.206)
e,
0 ’bl 2b1 — a; 0 0
D(Qs) = , (4.207)
—1 a;(2b% — 3ayby) a?(2b;—a;) 0 O

Since a; = b, we get

(4.208)

0 —ay a 0 O
oo )

-1 —a} a 0 0

So Qs is singular if ¢y = 0, ie, @3 = P,. Hence
(‘/IO)Sing = {(al’blsame) € (V'IO)". | a = bl = ()2 = O}

Now we blow-up (V?)*"8. By using the procedure of Mahtab we get three pieces

for the covering of \716 as follows:

Chart 1.1

Vi¥ = Spec R[X,, Y1, X2, o) /(Y = V7 = Y1 + Yo X7, XY — X{Y) — ).
(4.209)
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Now let A = R[Xy,Y1]/(X{Yi(Y1 — 1) — 7). By using theorem (2.14) we can

check that A is a regular ring. We can write
Vi¥ = Spec A[X, Y2l /(Y] = Y5 = Y1 + Y2 X3). (4.210)

Let ¢(Xa,Ys) = Y2 — Y2 — ¥, + Y3 X3. Then 75& = 2X,Y; and 5% = —2Y2 + X3.

Since p = chark # 2, the system % = 3%?—2

= 0 can be written as 2X,Y; =
-2Y, + X2 = 0. So VT is smooth everywhere except at those points where
2X,Y; = —2Y, + X2 = 0. To have the points on the special fibre of V), we need
X{Yi(Y; — 1) = 0. Considering ¢(X3,Y2) = 2% = 52 = X{Yi(Yi — 1) = 0, we
get (Vf’f’)smg C S C (V)._, where S contains points of the form (ay,b;,az,b2) €
(Vi),, satisfying one of the following conditions:

(1) by = az = b, =0;

(2) by —1 =ay =b; =0.

Let @1 = (a4,0,0,0) € S. Then Moje(Q, fi) = —vym — 51 and

mT?

Moje(Q1, f2) = —(afv, + 1) — a} Sy, (4.211)
le,

(4.212)

—1Uy 0 -1 0 O
D(Ql):( )

—(atoy+1) 0 —a! 0 O
Since ajvy — (a}?; + 1) = —1 # 0, D(Q:) has rank two. Hence @, is a regular
point.

Let @2 = (ay,1,0,0) € S. Then Moje(Qs, f1) = (26; — 1)S; and
Moje(Q2, f2) = 4alB1(B1 — V)T + (26, — 1)S) — 7 (4.213)

where 1 = 1(mod ), e,
0 0 1 0 0
D(Qs) = (4.214)
-1 0 af 0 O

which has rank two. Hence @, is a regular point and as a result V|° is a regular

scheme.
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Chart 1.2

VY = Spec RIX,, Y1, Xo, Yol /(1 — Y& — X, + X\ Yo X2, YAXE - YX3 — ).
(4.215)
Now suppose that A = R[X,, Y1]/(Y*X?(L — X1) — 7). By using theorem (2.14),

we can check that A is a regular ring. Notice that
Vit = Spec A[Xs, Y2l /(1 = Y7 — X1 + X Y2 X3). (4.216)

Let $(X7,Y2) = 1 = ¥ — Xy + XiYoX]. Then & = 2X,X,Y; and £ =
=2Y, + X1 X;. Since p = chark # 2, the system a%(% = ;’% = 0 can be
written as 2X,X2Y, = —2Y; + X, X? = 0. So V3! is smooth over A every-
where except at the points where 2X; X,Y2 = —2Y; + X;X? = 0. To have the
points on the special fibre of Vi!, we need Y*X?(1 — X,) = 0. Considering
$(X2,Y2) = F& = B = YXH(1 - X1) = 0, we get (V3™ C S c (V),,
where S contains points of the form (ay, by, as,by) € (V{}!), satisfying the follow-

ing condition:

oy —l=a;=b;=0
Let @ = (1,6,,0,0) € S. Then Moje(Q, f;) = —T; and
Moje(Q, f2) = —m + 1B (2 — 3a1)Th + 4a263(1 — a)) S, (4.217)

where a; = l(mod 7), e,
0 -1 0 0 0
D(Q) = . (4.218)
-1 b 0 0 O

So D(Q) has rank two. Hence @ is a regular point and as a result V3! is a regular

scheme.

Chart 1.4

Viy = Spec R[X\, Y1, Xo, Yol /(Y2 — 1 — Xy Yy + X0 X2, Vi X2Y2 - Y X3y, — n).
(4.219)
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Now suppose that A = R[X,, Y, Ys]/(Y;)X?2Y1(Y: — X,) — 7). Considering theo-
rem (2.14), we can check that A is a regular ring. Note that

VY = Spec A[X,) /(Y2 -1 — XY, + X, X2). (4.220)
Let ¢(Xz) = ¥ — 1 — X1Y; + X, X7. Then £ = 2X1 X,. Since p = chark # 2,
the equation :d% = 0 can be written as 2X,X; = 0. So V2 is etale over A

everywhere except at the points where 2X,X; = 0. To have the points on the

special fibre of V3, we need Y;! X?Y(Y; — X1) = 0. Considering ¢(X;) = 33)?—2 =

YAX2Y,(Y, — X)) = 0, we get (V)™ C § € (V2),, where S contains points
of the form (ai, by, as, b)) € (V)3'), satisfying one of the following conditions:

(1) ay=b—1=0;

(2) a=b+1=0;

(3) az=by=a1by —bi+1=0.

Let @1 = (0,1,a2,b2) € S. Then

Moje(Ql,fl) = (a% - ,BI)UI‘JT + (ag — ,BI)TI + 2ﬁ151 (4221)
where 8, = 1(mod 7) and Moje(Q1, f2) = —, e,
D(@Q1),, = ((e2—1)u, a3—1 2 0 0). (4.222)

So D(Q,) has rank two. Hence @, is a regular point.
Let Q2 = (0,—1,(12,()2) € S. Then

Moje(Q2, fi) = (2 = B1)uym + (a2 — BT, + 26,51 (4.223)
where §; = —1(mod 7) and Moje(Q2, f2) = —, 1€,
D(Q2),, = ((a3 + )y a*+1 -2 0 0). (4.224)

So rank D(Q)2) = 2. Hence (); is a regular point.
Let Q3 = (a1,b1,0,0) € S such that a;b; — b* + 1 = 0. Then

Moje(Qs, fi) = =BTy + (261 — a1)S1 and Moje(Q3, f2) = —, (4.225)

e,

D(Qs),.l‘;(o ~by (2by—a1) 0 0). (4.226)
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So Q3 is singular if a; = b; = a;b; — b + 1 = 0, which is impossible. Hence Q; is

a regular point and as a result V|3 is a regular scheme.

Chart 2

V' = Spec B[X,,Y), Xo, Vo] /(1 = Y2 =V X2+ V1Yo X2, Y- Y2X? — 7).
(4.227)
Let A = R[X,,Y1]/(Y2(1 — Y1X?) — 7). We can check that A is a regular ring
(by using theorem (2.14)). Notice that

V! = Spec A[ X, Ya]/(1 = Y = Vi X? + V1Yo X2). (4.228)

Now suppose that ¢(Xp,Y2) = 1 — Y72 = Y1 X7 + 1Yo X7, Then 7& = 2V Y2 X,
and % = —2Y; + Y, XZ. Since p = chark # 2, the system 887‘1 = ;% =0
can be written as 2Y; Y, X, = —2Y; + V1 XZ = 0. So V}! is smooth over A ev-
erywhere except at the points where 2Y,Y2 X, = —2Y; + Y1 X2 = 0. To have
the points on the special fibre of V!, we need Y?(1 — Y; X?) = 0. Considering
& X2, Y2) = éa—)?? = % = Y2(1 - Y1X2) =0, we get (V})>™ c S C (V{),, where
S contains points of the form (a1, b1, a2, b2) € (V}'), satisfying the following con-

dition:

agzblaf—lzbgzﬂ

Let @ = (a1,5,0,0) € S such that bja? — 1 = 0. Then Moje(@Q, f1) =
—2a,1Th — @25 and

Moje(Q, f2) = =201 8Ty + Bi(2 — 32231) S — , (4.229)

ie,

0 —2a1b1 —af 0 0
. (4.230)

D(@Q) =
(—1 —2(111):13 b1(2 - Sﬂ.%bl) 0 0

So @ is singular if —2a,b; = —a? = bja? — 1 = 0 which is impossible. So @ is a

regular point and as a result V! is a regular scheme.
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Chart 3

V) = Spec RIX,, Vi, Xo, )/ (Y = Y = XoVi X} + Xa Y, X5V~ XQViX] — ).
(4.231)
Recall that

‘/10 = Spec R[X17 Y'la‘X27 }/2]/
(V2 - Y7 = XiYi + Xo Vo X3, XiY? - XYy — ) =
Spec R[X1, Y1, X2, Ya) /(Y2 — Y7 — XoYy + X\ Y2 X2, XPY) — X2V, X2 — ),
(4.232)
(we used Y? — X Y; = Y2 — X,Y,X2). We can write
V20 = Spec R[X,, Y1, X3, Yz]/(Y,;" — Yf" - X5Y, + X2Y1X12 , X;"Yl2 - X23Y1X12 — 7).
(4.233)

The ring homomrphism
a : T(V2,0yp) — D(V5, Oys)
X, — X,
Yir— Y,
X, — Xy
Yo— Y

is an isomorphism and induces V;? = V.

Chart 4
V) = Spec R[Xy,Y:, Xy, Y2)/
(Y —1-Y2YiX{ + 2 X7, YV'V? —YVViX] — ). (4.234)
Recall that
Vi' = Spec RIX1, Y1, Xo, Vol (1 — Y2 —ViX? + YL X2, V2 - VX2 — ) =
Spec R[X1, Y1, X2, Ya]/(1 — Y2 = Vi X2 + VY, X2, Y2Y? — Y2V, X2 — 1),
(4.235)
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(we used 1 — Y\ X? = Y} — Y Y2 X2). Note that V! can be written as

V) = Spec R(X,, Yy, Xo, Yal /(1 — V2 = YaX2 + Yoo X2, V2V — YRV X2 — ),
(4.236)

The ring homomorphism
a F(‘/II,OVll) — F(‘/;,Ovzl)

X — X,
Yir— Y,
Xo — X
Yo— Y1

is an isomorphism and induces V;! 2 V;!. The gluing of the regular schemes which

we have had so far gives us the regular scheme X. 0o

4.5 One component is J,

In this section our arithmetic three-folds are the products of two arithmetic sur-
faces such that one of them is of the form I4 and apart from the cases discussed

before.

Lemma 4.11 Let p = chark # 3 and Vi = V, = Spec Rz, y]/(z*y — zy? — 7).
Then X = VjXspecrV2 is singular and after one blowing-up we get a regular

scheme X.

Proof : By using corollary (2.11) we can check that F, is the only singular point
of

X = Spec Rlzy, yn, 22, 9]/ (2iys — ©ayi — 392 + 2203, 2 — 2197 — 7).
(4.237)
Now we blow-up F;. By using the procedure of Mahtab we get four pieces for

the covering of X as follows:
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Chart 1

VLO = Spec R[Xl, Yi., x¥2, )/2]/
(Y] = Y2 = X2V, + XoY2, XY, — XDY? — ). (4.238)

Now let A = R[X;, Y1]/(X}Y: — XY — 7). Considering theorem (2.14), we can

check that A is a regular ring. We can write
V0 = Spec A[ Xy, Yo /(Y1 — V) — X2Y, + Xo¥7). (4.239)

Let ¢(X2,Ys) = ¥; — Y2 — X2Y) + X,Y2. Then

0¢ , , 0%
X = —2X,Y, + Y2 and o, = -X2+2X,Y;. (4.240)

Since p = chark # 3, the system %‘% = %’% = 0 can be written as —2X,Y,+Y,? =
— X2 + 2X,Y; = 0. So V{ is smooth over A everywhere except at the points
where —2X,Y; + Y2 = —X2 +2X,Y; = 0. To have these points on the special
fibre of V)°, we need X7(1 ~ Y;)Y; = 0. Considering (X3, Y2) = & = a%% =
X3(1 - Y1)Y: = 0, we get (VIO)Sing C S C (V?),, where S contains points of the
form (aq, b1, a2, b;) € (V)
(1) by =a; =by =0
(2) by —1=4a9=0,=0.

Let @, = (a1,0,0,0) € S. Then

, satisfying one of the following conditions:

Moje(Qy, i) = vir + 5, and Moje(Qy, fo) = aluim +alSy —m,  (4.241)

o 0 1 00
D(@) = ( ) (4.242)
(a?’l—)l - 1) 0 a% 0 0

which has rank 2. So @ is a regular point.
Let Q2 = (a,1,0,0) € S. Then Moje(Q2, fi) = (1 — 263,)S; where 8, =
1(modm) and

1€,

Moje(Q2, f2) = 3a*61(1 — B1) Ty + a3(1 — 26,)S5, — m, (4.243)
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i€,

0 0 -1 00
D(Q2) = , (4.244)
-1 0 —a} 0 0
which has rank two. So @ is a regular point. This means that V) is a regular
scheme.
Chart 2

Vi' = Spec R[X,, Y1, Xa, Vo) /(X] — Xy — X5Ya + XoV7, Y7 X — VP X, — )
= Spec R[X1, Y1, Xy, Yol /(X1 — X} — Y72 Xa + Yo X7, —YP2X) + Y2X? — 1),
(4.245)
The homomorphism
a: F(Vi(),ov;’) - F(Kl,ovg)

X — =Y

Yi— X,

Xo— Y,

Y, — X,

is an isomorphism of rings which induces

‘/11 g‘/lo

Chart 3

‘/20 = Spec R[Xl, Yl,Xz, }/2]/
(XY, — X V2 — Yo+ Y2, XOXIV, — X3 X, Y2 — 7). (4.246)

In ['(V{%, Oyo) from the first equation we get Y — Y{* = X7¥; — X, Y. So in the

other equation of V) we can use

X3V - V) = X3(X3Ya — Xo¥E) = X3X2Y: — XPXoY7,
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VO = Spec RIX\, Vi, Xa, Val/(X2Ya — Xo ¥} = Vi + V7, X3X2Y, — X3X, V2 — 7).

The homomorphism
Q. F(‘/l()?OVlo) — F(‘/2070V2°)
.-Yl — )(2
le — Y2
.Xz — X
Yz — Y1
1s an isomorphism of rings and induces

V= vy,

Chart 4

(4.247)

‘/21 = Spec R[Xl’ Ylv‘X% YZ]/(XIZK - XlY? - X‘22 + XZ, }/23X12)/1 - Y’23X1Y'12 - Tl').

Considering V{ in the form which was used in chart 3, we can write

VP = Spec R[ X1, Y1, X3, Y2/

(Y2X, - Yo X3 - Y24 Y, —X2Xo Y7 + X X2Y, — ).

The homomorphism
a : T(V?,0ye) — [(V},Oy)

‘Xl — —)/2
Y1 — Xy

_Xz'—)Yi

(4.248)

(4.249)
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Yo — X,

1s an 1somorphism and induces

‘/21 o~ ‘/10'

The gluing of V2,V}!, V2 and V' gives us the regular scheme X. O

4.6 One component is I5

In this section we will discuss about some arithmetic three-folds and then about
those arithmetic three-folds which are the products of two arithmetic surfaces

such that one of them is of the form Is.
Convention 4.12 For non-negative integers a, b, m and n, let

Vabmm = Spec R[z1,y1, T2, yal /(2191 — 'ngyg, T3 Yy — ) (4.250)
Then the fibre product of two arithmetic surfaces of the forms I; and I5 is Vi, -

Remark 4.13 We will try to find a desingularisation for V, ., » and finally we

consider the case a = m and b = n.

Lemma 4.14 The three-fold V} 1 m . is singular and just after one blowing-up

we can resolve its singularity.

PT‘OOfZ Let Y = ‘/l,l,m,n = SPeC R[wlvylax%yﬂ/(mlyl - 11323/2,-7372”3/5‘ - 7T). By
using the procedure of Mojgan we can check that Py € Y5"6. Now we blow-up
P. By using the procedure of Mahtab we get four pieces for the covering of Y

as follows:

Chart 1

N T2 Y2y, Y1 T2 Y2y  min, T2\™ Y27
‘/10 = SPECR[.’BI,—,—,—]/(—‘—(—)(j_),-'lfl-*- (_) (_) —ﬂ-):
Ty Iy Iy T Ty Ty Ty A

Spec R[X1, X, Yal/(XTH" XTY] — ) (4.251)
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which is a regular scheme (by lemma (2.12)). By using similar calculation we can
check that Vi, V;? and V}! are regular schemes. The gluing of V}°, Vi, V? and V!

gives us the regular scheme Y. O
Lemma 4.15 There exists a desingularisation for V; g m.n.

Proof : We discuss it in three different possible cases as follows:

Case 1 If a =0, then
Vo,0,m,n = Spec R[z1, y1, 2, y2|/(z1y1 — 1,27y — ). (4.252)
Let A = R[z,,y2]/(z7y} — 7). Then A is a regular ring. We can write
Voo,mn = Spec Alzy, yi]/(z1n — 1). (4.253)

By using the Jacobian criterion we can check that Vg g m » is smooth over A and

so it is regular.

Case 2 If a =1, then

Vl,o,m,n = SPBC R[ml,yl,xz,yz]/(ﬂ'?lyl - -’02,3372”3/; - 7T) =
Spec R[zy,y1, y2) /(25 yy — ™) (4.254)

which is a regular scheme (by lemma (2.12)).

Case 3 If a > 1, then
Y := Vi o,mn = Spec Rlzy, 41, T2, Y2} /(131 — 23,25y — 7). (4.255)
By using the procedure of Mojgan we can check that
Y58 5 {(a),b1,a0,by) € Yp|ay =by =a; =0} := S (4.256)

Now we find the blowing-up of Y with centre S. By using the procedure of

Mahtab we get three pieces for the covering of ¥ as follows:
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Chart 1

Y1 T U _9,L2.% . T2 ™
VP = S Rlz,, —, —, = -z —=), —) Yyl —m) =
1 pec Rz, 2 T ‘U?]/(x1 Uy (331) Ty (11) Yy — )

Spec RIX,, Y1, X, Vil/(Yy — X272X3, XP XY — 1) =
Spec R[ X1, Xo, Vo] /(X" XT' Y] — 7) (4.257)

which is a regular scheme.

Chart 2
v o= SecRﬁ,‘ ,2,’ ﬂ"a—Qﬂvmﬂmn—”=
| p [y1 v yz]/(yl Y1 (yl) yl(yl) y; — )
Spec R[Y1, Xo, Vo) /(Y" XT'Y] —m) = V. (4.258)
Chart 3

1 Y L1y, Y1 a=2 .m
‘/20 = Spec R[_ —712,y2]/((—)(—) — Iy 271‘2 y; - TF) =
Ty To L2 T2

Spec R[X1, Y, X, Yal/ (X Ys = Xe™2, XP'YS — 1) = Vs 0,mn-(4.259)
If a = 2, then

‘/a—2,0,m,n = ‘/0,0,m,'n =

Spec Rlz1, y1, 21, yal/ (@11 — L, 23'y5 — ) (4.260)

which is regular (we discussed it in the case one).

If a =3 then

‘/a—2,0,m,n = ‘/I,O,m,n = Spec R[wla Yi, yQ]/(wTy;ny; - TT) (4261)

which is a regular scheme.
If @ > 3 then we continue the process of blowings-up of V; ¢, ». Each blowing-
up reduces a by two. So finally we get V5.0,m.n or V},0,m,n» which were discussed in

cases 1 and 2. Hence there exists a desingularisation for V, g ,. O
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Remark 4.16 For the three-fold V54, we can change the variables z, and y;

with each other and use lemma (4.15) for Vi gnm.
Lemma 4.17 There exists a desingularisation for
Va,l,m,n = Spec R[xlu Y1, T2, y2l/(‘7’.1yl - ;f;yg, xgly; - ﬂ').

Proof : We consider the following cases:

Case 1 If a =0, then

Vo,x,m,n = SPCC R[-Tlsylal?%lh]/(l"lyl - ya,-’vé"yg) =
Spec Rz1,y1,22)/ (23 2Tyy — ) (4.262)

which is regular.

Case 2 If a =1, then
Vitmn = Spec Rz, y1, T2, Y2)/(T151 — T2ya, 25 Yyy — 7) (4.263)

which was discussed in lemma (4.14).

Case 3 If a > 1, then we can check that

VSing D) {(al,bl, az, b2) € (‘/a,l,m,n)ﬂ- I ay = bl =az = 0} = S (4264)

a,l,mmn

Now we blow-up S. By using the procedure of Mahtab we get three pieces for

the covering of V; | m.n as follows:

Chart 1

) hn a—2 T %2 m To ™
VO = Spec Rlzr, 2 22 wal /(L — 2572 (22) Py, 2™ (22) 2 — 1) =
0 = Spec Blo, 2 2l /(L - o121 ()i - )

Spec R[ X1, X2, V2] /(X" X3 Yy — ) (4.265)
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which is a regular scheme.

Chart 2
Vl1 o Vlo. (4.266)

Chart 3

Iy T - m._n
‘/20 = Spec R[_l’ ﬂaw%y?]/((_l)(yl) - SE; 2y2vx2 Y2 — W) =
Iz Ty g T2
Spec R[X,, Y1, Xo, Ya]/(X1Y1 — X$72Ya, X3V — 7)) = Vagymm. (4.267)

For ¢ = 2, Vao21.mn = Vo1,m,n» which is regular (see case one). For a = 3,
Va—2,1,mm = Vi,1,m» Which was discussed in lemma (4.14). If @ > 3 the process of
blowings-up decreases a by two after each blowing-up. So after some blowings-up

and gluing the regular pieces of the covering we get a regular scheme Va:;n,n. O

Remark 4.18 For V|, ., we change z, and y; with each other and use lemma
(4.17) for Vi 1. mn-

Theorem 4.19 There exists a desingularisation for
‘/a,b,m,n = Spec R[wla Y1, 22, y2]/($1y1 - I;yg, .,L,;ny; - 7T).

Proof: Without loss of generality let 8 > a. If ¢ > 2 then by using the procedure
of Mojgan we can check that

Ks,li?ri,n ) {(a17blaa23b2) S (‘/a,b,m,n)ﬂ. | ay = bl = a2b2 = 0} = S (4268)

Now we find the blowing-up of V, 4, with centre S. By using the procedure of

Mahtab we get three pieces for the covering of Va;;,,,,, as follows:

Chart 1

Y1 T2Y2,,, % a—2,T2Y2\% p_q n
‘/10 = Spec R[wl, —,T2,Y2, ]/(— — I 2( ) yg 3 $;71y2 - Tl') =
Ty Ty I Ty

Spec R[X1, Yy, Xa, Ya, Z]/(Yy — X072 Z°YE™* | X\ Z — XoYy, XDV — 1) =
Spec R[X1, Xo,Ya, Z]/(X1Z — XaYa, XPY? — 1) 2 Vi tmm- (4.269)
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which was discussed in lemma (4.14).

Chart 2
z oy z ae2,T2Y2.® b0 m . n
V' = Spec RI=, y1, 22,42, —— /(= — 43 H(—==) o5, 25y} — m) =
W )1 Y1
Spec R[X17 YI’X2? }/‘2’ Z]/(*X'l - }/;a—2ZaY2b—a 3 )/1Z - )(2)/2’ ‘X;n}/(ln - 7r) =
Spec R[4, X5, Y2, Z]/(ZYy — XoYa, X3'Y —m) 2 Vi ymon- (4.270)
Chart 5

Let Z = x,y;. Then

.
Vf = Spec R[El-, y—Zl-,:rz,yg, Zl/

iy Yy _ ga—2 t2l2
(FNZ) = 27—
SPeC R[Xl7}/l’X2s }/‘2a Z]/(Xl}/l - Za_2Yr2b—a 3 Z - ‘¥2}/2 v ‘X;nYVZn - ﬂ') =
Spec R[X1, Y1, Xa, Ya) /(X Y, — X222 2l XY — ) =

Spec R[X1, Y1, X2, Yol /(Xi V1 = X372V 7%, XT'Yp — )

)yg"“,Z—mzyz,x;"yg—w)z

= Voe2p—2,mmn- (4.271)

By continuing the process of blowings-up with centre S after each blowing-up a
and b reduce by two. We continue the process of blowings-up until getting V, g.m.»
such that 3 = Oor 1. So it is enough to discuss about V4 om, and V, 1 mn. But
| the first one is discussed in lemma (4.15) and the second one is discussed in lemma

\ (4.17). O

Corollary 4.20 Let V; = Spec R[z1,y1]/(z1y1 — 7) and Vo = Spec R[z2,ya]/
(z3'ys — 7). Then X = V) XgpecrV2 is singular and after some blowings-up we

can resolve its singularities.
Proof : In theorem (4.19) put e = m and b=n. O

Open problem 4.21 There exists a desingularisation for X = V| XspecrV2 where

Vi is of the form /; and V; is of the form [; in the following cases:
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(a) i=3=2
(b) 1 =3 and j) =4
(c) 1 =5 and 5 =2,3,4,5.



Chapter &

Desingularisation of the fibre
product of mimimal regular

models of Tate

5.1 Introduction

Any non-singular cubic with a K-rational point can be transformed into Weier-

strass normal form. The affine equation of a Weierstrass normal form is
E = Spec K[z,y]/(y* + a1zy + azy — =° — asz® — aqz — ae). (5.1)

For more details about by, by, bs, c4, cs, A and j see page 36 in [25]. Recall that for
a UFD, R with K = Q(R), p € R irreducible and k(p) = Q(R/pR), the function

rp ¢ Pu(R) — Pa(k(p))

[yO’ Y1y .oy y'ﬂ] — [g()a y~17 eny y~n]

(where y; € R with no common factor), is called reduced map (modp)-function.

The representation (Yo, Y1, ..., Yn) for [yo, Y1, .., Y] is called reduced. Note that the

110
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reduction E of E is
E = Speck(p)[z, y]/(y* + a2y + aay — &° — G92% — Gqz — dg). (5.2)

If R is a discrete valuation ring with Q(R) = K, then k(§)=Q(R/(w))=k, and
we write

E = Speck(z,y]/(y® + arzy + day — 2° — d9x® — G4 — dg). (5.3)

If for some choice of Weierstrass model (5.1) with a; € R, Eis non-singular, it is

sald that F over k has good reduction, otherwise E has bad reduction.

5.2 Neron model and Tate’s algorithm

Let R be a Dedekind domain with K = Q(R) and E/K be an elliptic curve. A
Neron model for £/K is a smooth group scheme £/ R whose generic fibre is £/ K
and satisfies the following universal property:

If H/K is a smooth R-scheme (ze, ‘H is smooth over R) with generic fibre
X/K and ¢ : X/K — E/K is a rational map defined over K, then there
exists a unique R-morphism ¢p : H/R — &/R extending ¢k.

The algorithm of Tate computes the reduction type of an elliptic curve given
by Weierstrass equation. He discusses about C/k which is the special fibre of C
( C is a minimal proper regular model of E over R), ie, C=¢C X spec ROPEC k and
would be one of the types Io, I,, [1, [1I, IV, 5, [, IV* [II* and II*, see page 46
in [25] or page 365 in [23].

In this algorithm Tate starts with the given Weierstrass equation and uses a

sequence of blowings-up to produce a minimal regular model for E.

Convention 5.1 We classify the minimal regular models of Tate as follows:
Ji E is of the form I, (n > 0);
J2 1 E is of the form IT;
Js E is of the form I1I;
Jy o E is of the form IV:
Js E has one of the forms [*, I* for n > 0, IV, III" and II".

0 'n
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Remark 5.2 Let X and Y be noetherian schemes (over R) and f: X — Y
be a morphism of finite type, 2 € X, y € Y and y = f(z), such that k(z) =
k(y). By theorem 3, page 249 in [17], éX.z‘ = @y,y if and only if f is etale in a
neighbourhood of z. If X and Y are regular schemes, to check that o Xo = éY,y,

it is enough to show it for tangent spaces, ie, to show that
m,/m’ = m,/m}.
For more details see pages 249-254 in [17] and page 116 in [1].

Definition 5.3 Let X and Y be schemes over R, ¢ € X and y € Y. We say
(X, z) is an etale neighbourhood of (Y, y) if there exists a morphism f: X — Y
such that f(z) =y and f is etale at .

The smallest equivalence relation on pairs (Y,y) such that if (X z) is an
etale neighbourhood of (Y,y) then (X,z) ~ (Y, y), is called etale equivalence or

sometimes is called local isomorphism for etale topology.

Remark 5.4 With the notation as in definition (5.3) let (X, z) ~ (Y,y). Then
X is regular at z if and only if Y is regular at y.
In fact by using remark (5.2) we get Oxq @y,y. But a noetherian local ring

is regular if and only if its completion is regular (see [3], page 124, prop. 11.24).

Remark 5.5 In this section we want to show that

(a) Every minimal regular model of Tate at each singular point of its special
fibre is etale equivalent to one V;, 3 = 1,2,...,5.

(b) The same chain of blowings-up used for resolution of singularities of the
fibre products of V;’s (used in chapter 4) does the same on the fibre products of

the Tate’s minimal regular models.

Theorem 5.6 Let R be a dvr and p=char k # 2,3,d (where d = (m,n) for the
case 1=5) and W; be a minimal regular model of Tate of the form J; for (E/K)
and Q € (W;)_ be a singular point of (W;), . Then (W;, Q) is etale equivalent to
(Vi, P), for a singular point P € (V;), (where V; is an affine scheme of the form
).
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Proof : Recall that k = (—% is algebraically closed. We prove the theorem in five
possible cases as follows:

CASE ONE (z = 1)

We can choose an affine neighbourhood Z; = Spec A, of the singular point
Q € (Wy), such that A4, is a finitely generated R-algebra and Z; N (W), is the
divisor generated by uv = 0, where u, v € A,. This means that r|uv, e uv = me
for a unit element € € A; and we get u(ve™') = 7.

Now let f : Z; — Vi = Spec R|z,y]/(zy — 7) be the morphism induced by

the ring homomorphism
f': Rlz,yl/(zy — m) — Ay

T— U

y — et

Then f is of finite type and f(Q) = Fo. We can check that k(Q) = k().
Notice that Z; and V; are two-dimensional regular schemes. So Tz, g = Ty, p,
(we can also use definition (2.5) to check that tangent spaces are isomorphic),
which means that mp,/m%, = mg/m¥. This implies that Ov, p, = Oz, o, which
in turn implies that f is etale at @ (see corollary (4.5), page 116 in [1]). So it is
etale in a neighbourhood of @) (see prop. (4.6), page 116 in [1]). Now we get the

following diagram:

Zl = Spec Bl

Vi Wy

where Z;, — W), is the inclusion. Note that if k is not algebraically closed,
we can not assume that the components of the special fibres and singular points
are defined over k. They are defined over a finite separable extension k’'/k and
there exists a discrete valuation ring R', etale over R with residue field k¥'. But

by making the base change R — R’ we are reduced to the case k = k'.
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CASE TWO (i = 2)

In this case the special fibre has a cusp at @) € (W3),. As it is shown in Tate’s
algorithm (see [25] or [23]), the minimal regular model W, has the following affine
equation

v —d - 7\’((12,1u2 — a1 UV + aq3u — a3 v +ag,y) = 0. (5.4)

Let w = azu® — ay, uv + aq, 1 u — a3 v + as1 and A = Rlu,v])/(v? — u® — Tw).
Since 7fas we get mfas,, w is invertible in an open set U; = Spec Alw™!]
containing the singular point Q. Let B = A[w™,a]/(a® — w) and Z; = Spec B.
Then Z; — Spec Alw™!'] = U, is etale (by Jacobian criterion). So locally for the
etale topology (U, }) = (Spec B, Q') where ()’ is the singular point of (Z3),. Re-
call that B = Rfu,v,w™,ws]/(v? — ud — 7w) and let C = Rz, y]/(y* — 2® — 7).
Then the morphism f : Z; = Spec B — SpecC = V, induced by the ring

homomorphism
YRz, )/ (Y — 2 - 1) — R[u,v,w“l,w%]/(v2 —ud =)
T wIy
Yy — wTv
1s etale at ()’ (just compare the tangent spaces), so singularities are locally iso-

morphic for the etale topology, te, (Spec B, Q') ~ (Spec C, Fy). Now we have

Z, = Spec B

AN

Vo = Spec C U,

where both morphisms are etale. So we get (Vz, Po) ~ (Z2,Q’) and (Z5,Q’) ~
(Ua, Q) which implies that (V,, Py) ~ (Uz, @), e, (W,, Q) is etale equivalent to
(Va, Po).

CASE THREE (¢ = 3)

We can choose an affine neighborhood Us; = Spec A; (where Aj is a finitely
generated R-algebra) of ) such that Us N (W3)_ is the divisor generated by
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y'(y' — '), where z’ and y’ are reductions (mod ) of some v and v, so v(v—u?) =

0(mod ), ie, v(v — u?) = me, € € A3™ and we get

Now let Z3 = Spec As[e+] and f : Zs — V3 = Spec Rlz,y]/(y(y — z2) — )

be the morphism induced by the ring homomorphism

F*: Rlz,y)/(y(y — 2%) — 1) — Agled] (5.5)

Then f is of finite type and f(Q') = P, where @' is the singular point of
(Z3),. Now we can check that k(Q') = k() and by doing the same conclusion
as it was done in case one, Tz, o+ = Ty, p,. Since Z3 and V3 are both regular,
we get Oy, p, = Oz, 0. This implies that f is etale at Q' and so it is etale in a
neighbourhood of . We can check that Z3 = Spec As[es] — Spec A3 = Us is

etale (by Jacobian criterion). So we get

Z3

=Y

Va Us

where both morphisms are etale. Now we get (V3, Py) ~ (Z3,Q’) and (Z3, Q") ~
(Us, @), which implies that (V3, Py) ~ (Us, Q), ie, (W3, Q) is etale equivalent to
(Vs, Ro).

CASE FOUR (i = 4)

Here the special fibre consists of three rational curves passing through a point
Q@ € (W,),. We can choose an affine scheme U; = Spec A; (where A4 is a
finitely generated R-algebra) such that (U;) N (W,),_ is the divisor generated

by z'y'(z" — y'), where 2’ and y’ are reductions (mod 7) of some u and v. So
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wv(u — v) = 0(modn), ie, uv(u — v) = e, € € Ay” and we get 7 = luv(u —v) =

() = (). Now let Af = A4[€3], Z4 = Spec A, and
f+ Zy — V4 =Spec Rz, y]/(zy(z — y) — )
be the morphism induced by the ring homomorphism

'+ Rlz,y)/(ay(e —y) — 1) — Ade?]
u
T 1
€3
v
€3
Then f is of finite type and f(Q') = Py, where Q' is the singular point of (Zy),.
As we showed in case 3, we can check that f is etale in a neighbourhood of @’.
We can also check that Z, = Spec 144[631-] — Spec Ay = Uy is etale (by Jacobian

criterion). So we get

Zy

Vi o

where both morphisms are etale. By using the same discussion as we did in
case 3, we can show that (Wy, Q) is etale equivalent to (V4, Fp).

CASE FIVE (1 =5)

Here the special fibre is the union of some rational curves with multiplicities
which is a normal crossing as a divisor. Let @) € (W5s), be the intersection of two
of these rational curves. We can choose an affine scheme Us = Spec As (where
As is a finitely generated R-algebra) of () such that Us N (W5)_ is the divisor
generated by z'™y™ where z’ and y’ are reductions (modm) of some u and v. So
u™v™ = 0(modn), i€, u™v"™ = me, € € As". Let d=gcd(m,n) = am + bn (which is

1
a unit, by our assumption). Then we get u™v™ = (¢*)°r = er which implies that
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Let Al = Ag,[e?li], Zs = Spec AL and f: Zs — V5 = Spec R[z,y]/(z™y" — ) be

the morphism induced by the ring homomorphism

f*: Rle,yl/(e™y" = ) — Asled]
u
Tr— &
€d
v
€d
we can do the same conclusion as we did in cases 3 and 4, to show that f is etale
in a neighbourhood of Q' (Q' is the corresponding singular point of (Zs) ). We
can also check that Zs = Spec A5[e‘3] — Spec A5 = Us is is etale (by Jacobian

criterion). So we get

Zs

Vs Us

where both morphisms are etale. As we discussed in cases 3 and 4, this

diagram shows that (W5, Q) is etale equivalent to (V5, Fp). O

Remark 5.7 The above discussion tells us that each minimal regular model
of Tate at each singular point of its special fibre is etale equivalent to one V;},
J = 1,2,...,5. In the following theorem W, shows a minimal regular model of
Tate of the form J,, V,, is an arithmetic surface of the form I, and Z, is as it
was used in theorem (5.6). We also use W = W, XspecRWs, V = VaXspecrVs
and Z = Z, XspecrZp, for a,f € {1,2,...,5}.

Recall that so far X, was used for the n-th blowing-up of X with the centre
X5im or a subscheme of X518, Here we use Xm) = Yn ,n > 0 (where X(g) = X)
and @y, : X(ny) —> X(n_y) to show that X, is the blowing-up of X(,_,) with the

Sing
centre X(n_l).

Theorem 5.8 Let p = chark # 2,3, d (d the same as in theorem (5.6)). If we are
not in the cases Wy Xspec RW2, W3 Xspec RWa and Wy xspee W (for j = 2,3,4,5),

then there exists a desingularisation for W = W, XspecrW;s, (1 < a, 8 < 5).
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Proof: Let W = W) = W, xgpecRWp and consider 9, : Wiy — W,,_y) as the
blowing-up of W(,_;) with centre WS'" Since the product of etale morphisms
is etale, by using the results of the theorem (5.6), for each @ € W58 we get the

following diagram:

Z

7N

\% A%

where f: Z — V and g: Z — W are etale and @ € g(Z). We define Z,),
hn and also V(n), ¥, in the similar way that we defined W) and ,,. Inductively
we find f(,) and g(,) by base change and surely they are etale (note that the
blow-ups commute with flat basechange, so the squares are cartesian and we can
deduce that the top arrows are etale from the knowledge that the bottom ones

are). For n = 1 we get the following diagram:

Zy
y w‘
lhl W,
V(l) 7 lgb
1

$1 l g
/ \
w
|4

Since f(1) and g(y) are etale, we get f(l)( Smg) = Z(Sl’;'g = gm(WS'm ). If Vi
is regular we get V(l) = ¢, so g(l)(W(si')ng) @, which means that W(SI')"g o, 1e,
W(y) is regular at points P such that ¢,(P) € g(Z).

Now we do the same for other Z’s so that g(Z) covers W. If in all of such
cases W(S"lg = ¢, we are done and the gluing of these regular schemes is the

answer. Otherwise we continue the process of blowings-up and inductively we

get the following diagram:
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Z(n)
Jin) 9(n)
l hn Win
Vin) , .
b (n—1) Gty L n

Suppose that V|,_y) is not regular. Since products and base extensions pre-
serve the etale property of morphisms, so f(,) and g(,) are etale and the above

diagram is commutative. Hence

( ang) Slng Slng)

(n)(

By doing similar discussion with what we did about W,y we can conclude that if
Vin) is regular, then Wy, is regular at points P such that ¢;01)0...01,_j09n(P) €
9(Z).

If Vi, is not regular we continue the process of blowings-up. Recall that
in chapter 4 we have proved the existence of a desingularisation for V (in the
involving cases). So there exists ko € N such that for n > ko, Vsmg = ¢. By
using the same discussion as above we conclude that for n > ko, W, is regular
at any point whose image in W lies in g(Z). Now we do it for other Z’s so that
9(Z) covers W. Hence for sufficiently large n, W, is regular. This means that

there exists a desingularisation for W. O
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