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The Non-Commutative Standard Model 

Rebecca Asquith 

In this work aspects of the classical Connes-Lott non-commutative 

standard model are examined. In particular the relationship be­

tween the chiral structure of the standard model and the condition 

of Poincare Duality is investigated. Then the natural prediction of an 

additional force in the non-commutative standard model is explained 

and the consequences calculated. Finally the attempts at grand uni­

fication within the non-commutative framework are reviewed and 

extended. 
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c eir 1 

I d. t r o ucti e o n 
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Non-commutative geometry can be loosely described as the study of spaces whose 

algebra of functions is non-commutative. This has been an area of interest to 

both mathematicians (see for example Gelfand [68]) and physicists (see for example 

Dirac [69]) throughout this century. However compared w i t h 'classical' geometry 

(the geometry of spaces whose algebra of functions is commuting) non-commutative 

geometry was very under developed. Recently this has begun to change w i t h the 

introduct ion by Connes [1][2] and Dubois-Violette [32] of (independent) generalised 

de Rham differential algebras on the "non-commutative man i fo ld" 1 . Since then, 

non-commutative geometry has been enhanced and refined un t i l , in its present state 

[7] [9] i t is highly developed and contains many of the tools of classical geometry. 

Non-commutative geometry was first applied to physics in 1990 by Dubois-

Violet te et al [33]. The use of non-commutative geometry in physics and in particular 

for constructing gauge theories 2 has become something of a growth industry in the 

last five years. Work in this field can be roughly split into three main groups. The 

first one, based around the southern Paris group [33]-[35][41] uses the differential 

algebra first constructed in [32]. The second, the Marseille-Mainz group [36]-[40] 

works w i th in a framework first introduced by Coquereaux et al [36]. The th i rd 

grouping [10]-[26] takes as its starting point the Connes-Lott model [5] (later re­

fined [8],[9]). This thesis falls into the th i rd category - i t is an exploration of the 

Connes-Lott standard model. 

The aim of this thesis is to help elucidate and develop the Connes-Lott standard 

model , to answer the questions 

• What are non-commutative gauge theories? 

• How do the intricacies of the standard model follow f r o m non-commutative 

geometry ? 

1 terms such as this will be explained in the following chapter 

2non-commutative geometry is also being used to describe phenomena in solid state physics 



o What are the strong and weak points of the Connes-Lott standard model and 

can any of the weak points be improved upon? 

Throughout this thesis, unless specified otherwise 'non-commutative geometry ' 

refers to Connes formulation of non-commutative geometry [7] [8]. A list of defi­

nitions and conventions is provided at the end of this thesis in Appendix A . 
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Chapter 2 

The Basic Mathemat ica l 

Concepts 
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2.1 Summary of this Chapter 

I n this thesis non-commutative geometry is used essentially as a tool for building 

Yang-Mills models and the mathematics is largely taken on trust. As explained in 

the introduction non-commutative geometry can be viewed as a rewrit ing of classical 

geometry so that a much larger class of manifolds can be described. This chapter 

outlines the non-commutative formulation of some of the tools you would expect 

in a mathematical system calling itself a geometry. The tools that are dealt w i t h 

are those necessary for applying non-commutative geometry to physics -namely a 

notion of manifold, metric, differential and integral calculus. A far more detailed 

explanation can be found in [7] or [23]. 

Classical differential geometry can be reformulated in algebraic rather than 'spa­

t ia l terms', switching the emphasis f rom the local properties of the compact manifold 

to a (uni tal , involutive) algebra .4. Gelfand showed [62] (see section 2.2 below) that 

a manifold X can be dealt w i t h algebraically by considering a commutative alge­

bra A such that X is in one to one correspondence wi th the spectrum of A. The 

generalisation of this concept to a non-commutative algebra is the starting point of 

non-commutative geometry. 

Section 2.3 deals w i th Connes' 'quantised calculus' [7], the calculus of non-

commutative geometry. The quantised calculus is a new, purely algebraic calculus 

that replaces the usual classical differential and integral calculus. The basic infor­

mation needed for this is a pair (Ti, F) , K a Hilbert space and F an operator on 

H. 

To use this quantised calculus on a space (described at this level by an algebra 

A) i t is necessary to f ind a pair (7i, F) and a representation of A on 7i that sat­

isfy certain criteria. I t transpires that these criteria are exactly the definition of a 

Fredholm module over A (section 2.4). Sections 2.3 and 2.4 are very brief and are 

only included to give a feeling for how the notion of a Fredholm module arises in 
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non-commutative geometry. They are by no means rigorous or complete. 

In section 2.5 a metric is then defined on this space. This is done most naturally 

using a K cycle -a Fredholm module wi th additional structure. Section 2.6 describes 

a differential algebra on the non-commutative manifold, the generalisation of the 

differential algebra of de Rham forms. 

No information is lost in this reformulation and standard Riemannian differential 

geometry can be recovered by taking the Dirac K-cycle (A,H,T>) where A = C°°(M) 

the algebra of inf ini tely differentiable functions on a Riemannian manifold M, 

7i = L2(S) the Hilbert space of square integrable spinors and D is the ordinary Dirac 

operator. However Connes' approach is much more powerful than this because i t can 

be extended to a much wider class of spaces (that is not just Riemmanian) simply 

by taking an algebra A other than A = C ° ° ( M ) or D other than the Dirac operator. 

I f A is taken to be a non-commutative algebra then a 'non-commutative geometry' 

w i l l be derived. In section 2.7 two manifolds are described using non-commutative 

geometry to illustrate some of the points of this chapter. The first example is the 

f iat Euclidean manifold and the second is a discrete two point space. 

2.2 The Non-Commutative Manifold 

Classically, given a compact Hausdorff space X , a commutative C* algebra A can be 

associated to i t . This algebra is A = C ( X ) , the algebra of complex valued functions 

on X wi th the involution given by complex conjugation in C ie 

a*(x) := a(x) a 6 A x € X 

and the norm given by the supremum norm 

||a|| : = sup \a(x)\ a G A . 

This algebra contains all the information necessary to reconstruct the space X . 
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For a general Banach Algebra A (the algebra A = C ( X ) discussed above being a 

C* algebra -a special case of a Banach algebra) the Gelfand Transform A is a map 

between A and C(Sp(^4)) [62]. Where Sp(^4) is the spectrum or character space of 

A - the set of complex homomorphisms on A 

SP(A) = { x | x •• A ^ C } . 

The Gelfand transform is given by 

A : A —» C(Sp(A)) 

a i—> a 

where 

a:Sp(A) —> C 

X *-> a(x) = X(") a£ A . 

I t can be shown that i n general the Gelfand transform is a surjective homomorphism, 

i f A is semi-simple then i t is an isomorphism and i f A is a B* algebra then i t is a 

*-isomorphism (ie the isomorphism respects the involution). 

Returning to the specific case of interest A = C ( X ) , A is a semi-simple C* algebra 

so the Gelfand transform is a *-isomorphism between A = C ( X ) and C(Sp(*4)). In 

fact there is a one-to-one correspondence between X and Sp(^4): 

X <—> Sp{A) 

x <—• Xx 

where the homomorphism Xx is defined on A as 

Xx:A = C(X) — . C 

a H-> a{x). 

I t can be shown that all elements of Sp(^4) are of this fo rm, so the one-to-one 

correspondence holds. The situation is summarised in the following diagram: 
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r 
compact space 

X <-> Sp(A) 
commutative C* algebra 

A =C{X)^C(Sp{A)) 

J 

Two commutative C* algebras are isomorphic i f and only i f their spectra are home-

omorphic. So, i t can be seen that no information is lost i f the algebra A rather than 

the space Sp(«4) is worked wi th . 

Non-commutative geometry rests on the heuristic generalisation of the above 

argument to a non-commutative algebra. A non-commutative manifold is defined to 

be the 'manifold ' associated to a non-commutative C* algebra i n exactly the same 

way as a classical manifold is associated to a commutative C* algebra. 

As explained in the introduction to this chapter Connes' quantised or spectral cal­

culus is an algebraic reformulation of the usual differential and integral calculus. 

I t is the next logical step down the road to a completely algebraic geometry after 

the description of a manifold in terms of a C* algebra as described in section 2.2. 

The quantised calculus is based on a pa,\r ( ? i ,F ) , where H is a Hilbert space and 

F is an operator on Tt such that F = F * and F2 = 1. Connes [7] then gives the 

following 'dictionary' -translating the familiar concepts of classical calculus into the 

corresponding concepts in quantum calculus. 

2.3 Quantised Calculus 
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CLASSICAL QUANTUM 

topological space C* algebra 

complex variable operator in Ti 

real variable self-adjoint operator in 7i 

differential of variable df=[F,f] 

infinitesimal compact operator in Ti 

integral Dixmier Trace 

The first entry in the above table has already been explained in the preceeding 

section. The next three entries go towards explaining why Connes uses the name 

'quantised' calculus. A quantum mechanical description associates an operator on 

Ti. to a variable and in particular associates a self-adjoint operator to an observable 

(real variable). Similarly the substitution of df=[F,f] for the classical definition 

of a differential is considered by Connes [7] to be analagous to the quantisation 

process in which the Poisson bracket {f,g} of classical mechanics is replaced by the 

commutator [f,g]. This explains at least part of the origin of the name quantised 

calculus. Note that since [F,fg] = [F, f]g + f[F,g] the Leibniz rule holds for this 

new differential. As summarised in the table the role of infinitesimals is played by 

compact operators. An infinitesimal is said to be of order a if the eigenvalues //„ of 

the corresponding compact operator satisfy [in = 0(n~a) as n —> oo (the fin are 

ordered by decreasing size). In Connes' scheme the role of the integral is taken by 

the Dixmier trace. The Dixmier trace is defined on all operators T £ Cloo(H) in 

terms of a generalised limiting process u>. 

Tr„(\T\) = Urn, 

where T is a positive element of C CH)i fJ-n{T) are the eigenvalues of T 
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Mo > Mi > • ' ' a n d £ l o o ( f t ) is the ideal of order one infinitesimals: 

Clco(H) = { T ; T compact operator on U , n n ( T ) = 0 ( n - 1 ) } . 

£ l o ° is sometimes referred to as the Dixmier ideal in the literature. A proper ex­

planation of the Dixmier trace is beyond the scope of this thesis but can be found 

in [7] [23] and the references within. The important equalities needed for calculating 

non-commutative integrals are quoted below without proof. 

The Dixmier trace has the following properties (for T > 0,T 6 £ l o o (7Y)) that 

would be expected of an integral 

1. Positivity: Trw(T) > 0 

2. Finiteness: Trw{T) < oo 

3. Unitary Invariance: Trw{UTU*) = T r w ( T ) for every unitary U 

4. Linearity: Tr„(S + T) = Trw(S) + Trw(T) for S> 0, S G £1+(H) 

5. The Dixmier trace is zero on infinitesimals of order greater than 1 

Clearly in general the value of the Dixmier trace will depend on the limiting process 

u. However, there is a certain class of operators known as measurable operators for 

which it can be shown [3] that their Dixmier trace is independent of u. In all the 

applications of non-commutative geometry to physics that will be dealt with in the 

following chapters T will be measurable. 

In fact, the only non-commutative manifolds that will be dealt with in this thesis 

are the Euclidean four-space, discrete point spaces and the product of these two 

manifolds 1 . The Dixmier trace on such manifolds reduces to an extremely simple 
1 A description of the K cycles associated to these non-commutative manifolds can be found in 

section 2.7. An explanation of how K cycles relate to non-commutative manifolds can be found in 

section 2.5. 

13 



form. For the Euclidean four-space (described by the Dirac K cycle) the Dixmier 

trace reduces to the usual integral over Euclidean space 

Trw(T\$n = 3 ^ / Tr,{T)d*x (2.1) 

where Tr1 denotes the trace over the Clifford algebra. For a finite (zero dimensional) 

K cycle associated to a discrete space the Dixmier trace reduces to the ordinary trace 

Tru(T) = Tr(T). 

For the product of two K cycles (A\, Tii, D\) of dimension pi and (A2, 'Hi-, D2) of 

dimension p2 the Dixmier trace can be written as a product of Dixmier traces: 

Tr^Ti ®T2)\D\-^+p^} oc T r ^ T ^ D ^ ^ T r ^ T ^ D ^ ) (2.2) 

where Tx € B(Hi) and T2 G B(H2). 

2.4 Fredholm Modules 

To apply the above quantised calculus given by (H,F) to a (possibly non-commutative) 

manifold X it is necessary to use a Fredholm module over the algebra A associated 

to X (as outlined in section 2.2). 

Definition Fredholm Module 

A Fredholm Module {Ti ,F) over an algebra A consists of 

1. M a Hilbert space 

2. F a self-adjoint operator on Ti with F2 = 1 

3. A a unitary, involutive algebra 

4. A an involutive, injective representation of A into B(7i) (the bounded opera­

tors on Ti) such that da is an infinitesimal for all a £ A, that is, such that the 

operator [F, A(a)] is compact for all a G A. 
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2 o 5 Metr ic Space 

Next Connes defined [6] a metric on this space this is done using a K-cycle or spectral 

triple (A,H,B), a Fredholm module with extra structure. 

Definition Spectral Triple 

A Spectral Triple or K cycle (A,H,D) consists of 

1. A a unitary, involutive algebra 

2. 7i a Hilbert space 

3. D a self adjoint operator on H, (D2 + compact 

4. A a faithful, involutive representation of A into B(H) such that [D, A(a)] is 

bounded for all a G A. 

Definition Graded Spectral Triple 

A graded spectral triple is a spectral triple (A,"H,D) with grading T written 

(A,H,D,T) such that 

1. T is a grading operator on the Hilbert space, r 2 = 1 

2. H is Z 2 graded. That is H = H 0 ® H \ H 0 and H 1 closed, mutually 

orthogonal subspaces. YH® = H°, TH1 = -H1. 

3. 11(a) is even for all a e A TU(a) - U(a)T = 0 

4. D is odd TD + DT = 0 

Given a K cycle a metric can then be defined on the manifold (corresponding to 

the algebra A). The geodesic distance between two 'points' x a n d £i Xi( £ Sp(A) 

is given by 

d(x,Q = sup{\ x(a) - £(o) | : a e A; \\ [D,a] \\< 1} (2.3) 
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where the norm || • || is the Hilbert space norm. Note that unlike the Riemmanian 

geodesic this definition does not rely on the notion of a path between the two points. 

That is the space does not have to be arcwise connected for a meaningful and 

consistent definition of distance. 

2.6 Graded Differential Algebra 

A classical manifold has a differential algebra -the algebra of de Rham forms as­

sociated to it . In this section the generalisation of the de Rham algebra to a 

non-commutative manifold is discussed. The properties that are required of this 

generalised algebra are that 

1. it is Z graded 
CO 

if <j> G W(A), u> € W(A) then </>u G W+q{A) 

2. there exists a linear map d 

d:ttp(A) — • np+1{A) 

such that d2 = 0 and d obeys the graded Leibniz rule 

d{<}>Lo) = (d<f>)u + (-1)P</>(<M <j> G np{A),u G W(A) 

3. Sl°(A) = A. 

For every algebra A there exists at least one such system of differential forms the so 

called universal algebra Q,UA. The universality of fluA means that there exists a 

unique degree preserving homomorphism p between SluA and any other differential 

algebra admitted by A . 

p : ttuA —> ttA 
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such that pdu = dp where du is the exterior derivative associated to the universal 

algebra SluA and d is the exterior derivative associated to flA. This means that 

all the differential algebras associated to A can be obtained as quotients of ftuA. 

The Universal Differential Algebra 

The universal differential algebra ( f t u A , d u ) can be written in the following way: 

The space of p forms fi£«4 is generated by symbols a, dua a € A with 

du(ab) = (dua)b + a(dub) a,b£A 

dul = 0 

dl = 0. 

fl^A consists of a finite sum of terms of the form aodua,i...duap 

WUA = {Y^a3

0dua{...duap | a0,...ap <E A}. 

j 

I t is easily checked that du obeys the graded Leibniz rule and that 0°«4 = A. The 

involution * on A is extended to QUA by putting (dua)* := du(a*) := dua*. Given 

this identification it follows simply that (du(f>)* = (-l)ndu(<j)*) for <f> £ ^ A . 

The universal differential algebra is represented on the Hilbert space by a homo-

morphism IT obtained by extending the representation A of A on 7i. 

LT : nuA — • B(H) 

aQduax...duav i-> (-i)p\(a0)[D, X(a1)}...[D, A(a p)]. 

However the representation IT is ambiguous. There exist forms <j>u G £luA such that 

n(<^„) = 0 but U(du(j)u) is not necessarily zero, such forms need to be quotiented 

out. Such a differential algebra can be constructed by quotienting out the graded 

differential ideal J 

k 

Jk = (kerllf + du{kerll)k-1. 
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In doing this we are moving from the space of 'formal differential forms' to one of gen­

uine differential forms so it is the elements of the differential algebra £IA = ViuA/ J 

that are of physical interest, ie that are the genuine connections and curvatures. 

Consider obtaining the space of one forms Q}A from the space of universal one 

forms Sl\A 

to\A={Y,aidua{ | ale A} 
i 

ttlA 0 M = 
J 1 

J 1 = (kern)1 so n ( J l ) = {0} , therefore n ( f t M ) = n ( f t ^ ) . 

Similarly for the space of two forms 

Sl\A = {^a^duaidua^ \ a\ € A} 
i 

tt2A = n l A 

J2 

n2A ^ u(n2A) = 2 A ~ m n 2 ^ _ n ( f t M ) 

So 

Il(J2) 

n(J 2 ) = n((fcern)2 + ^(fcern) 1) 

= Il(du(kerll)1). 

and in general 

U((du(kerUy) 

* A a u ^ = n « £ n ) > - ) - ( 2 ' 4 ) 

The forms of the differential algebra II(f i*.4) constructed by quotienting are 

equivalence classes of operators on H.. A method of selecting a unique representative 

from any given equivalence class is needed so that a form is a unique operator rather 

than a class of operators. This is done via an inner product (•, •) on B(7Y) 

(x,y) := Trw(x]y). 
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Once this inner product has been defined U(Q,UA) can be written as the direct sum 

of two orthogonal vector spaces J and V, where J is the differential graded ideal 

defined above and 

v-.= {veii{nuA)\(v,j) = o V j e J } . 

Let P be the orthogonal projection from I I ( f} u , 4 ) onto V 

P : u{nuA) —+ V 

v + j i—• v. 

Using P a map P can be constructed 

1 • n(j) (2.5) 
[v] ^ P(v). 

It can be shown that P is an isomorphism so the algebras H(£luA)/Tl(J) and V can 

be identified and P(v) can be selected as the unique representative of the equivalence 

class [v]. 

As mentioned in the introduction, the non-commutative generalisation of the 

de Rham algebra is not unique, Dubois-Violette [32] has constructed a different 

generalisation based on Der A the space of derivatives of A. 

2.7 Examples 

1) E u c l i d e a n Manifo ld 

For non-commutative geometry to be consistent with classical geometry it would 

be expected that the non-commutative description of a (compact, flat) Euclidean 

manifold yields the same result as the classical description (though of course via 

different methods), this is indeed the case. 

The algebra A associated to the Euclidean manifold X is the commutative C* 

algebra C°°(X). This is represented on the Hilbert space H = L2(S), the space of 
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square integrable spinors. The generalised Dirac operator D is the genuine Dirac 

operator i$. Given this K cycle the generalised differential algebra of section 2.6 

is isomorphic to the de Rham algebra and the metric 2.3 reproduces the geodesic 

separation. 

Metric Structure 

The geodesic separation dg(p,q) of two point p and q is reproduced by the metric 

formula 2.3. It can be shown that \\da 11̂ =11 [D,a] \\2

L2 so 2.3 can be rewritten as 

d(p, q) = sup{\ a(p) — a(q) \: a G A; || da\\oo< 1}-

Note that the one-to-one correspondence between X and Sp(.4) for A = C°°(X) 

has been used. Now 

K p ) - ° ( ? ) I = fp\^a-ds\ 

< \\ da Woo dg(p,q), 

so d(p,q) < dg(p,q). Conversely if a(q) := dg(p,q) (a valid choice since for this 

choice ||c?a||oo= 1) then 

d(p,q) = sup dg(p,q). 

Therefore it can be seen that d(p, q) is equal to the geodesic separation of p and q. 

The Differential Algebra 

The differential algebra formed (after quotienting) from the Dirac K cycle can be 

identified with the de Rham algebra of differential forms. This is done via the 

isomorphism 7 (first noticed by Kahaler) between differential forms with the vee 

(V) or Clifford product and the Clifford algebra [64] 

7 : basis of differential forms —> matrix representation of the 

multiplication given by V basis of the Clifford Algebra 

dx" i-> Y 

dx" V dx" •-> 7 / i 7 1 / 

dx" V dx" V dxa
 h - > 

20 



where 

dx» V dx" = dx11 A dx" + g"" 

and 

dx» V dxv V dx° = dx* A dx" A dx° + cfvdxa - g»°dx" + g^dx". 

It is worth spelling out exactly how the identification between de Rham forms 

and the non-commutative forms of the Dirac K cycle works. Consider the two form 

cru = daQda\ in the universal differential algebra constructed from the Dirac K cycle, 

it is represented on the Hilbert space L2(S) by 

n(cr u) = (i$aQ){i$ai) 

= -l/27* i7"(5Mao9, /ai - d ^ o d ^ i ) - <9Ma0c>ai 

On quotienting (see section 2.6) the scalar term is eliminated and the two form in 

the genuine differential algebra is 

11(a) = - l /27^7 i / (5 A J a 0 5 i / a 1 - dua0d^ai). 

Equally using the map 7 above we can write 

n(<ru) = 7 (^0)7(^1) 

= ^{dlla0dx'1)j(dl/aidx,/) 

— ^(d^aod^dx^1 V dx") 

- •y(dtla0dua1dx>1 A dxu) + ^(d^aod^ai) 

which, on quotienting yields the two form realised by the Clifford algebra 

n(cr) = l/2^((dlla0dl/ai - d^a0d^ai)dx^L A dxu). 

So it can be seen that the de Rham two form (d^aod^ai — duaodlla,\)dx'1 A dx" can 

be identified with the non-commutative two form — 7/i71/(<9/1ao<9„ai — d^aod^ai). 
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2) Discre te T w o Point Space 

The two point space X is described in non-commutative geometry by a zero-dimensional 

K cycle (A,H,D): 

A = Cff i 

n = C © € 

D 
0 

D 
0 

(i € € 

A : A —> B(H) 

{aua2) h - > 

The space X is in one-to-one correspondence with Sp(A) = {(pi,P2)} 

where P l : A ^ € p 2 : A ^ <D 

(ai ,a 2 ) >-> «i («i,G2) ^ «2-

Metric Structure 

The separation of two "points" of Sp(*4) is given by the metric formula 2.3. Let 

a = (ai , a 2) then 

0 -fi 
[D,a] = (ax - a2) 

JL 0 

and ||[£>,a]|| = K - « 2 | ( ^ ) 1 / 2 so r i ( P l , p 2 ) = 1 / ( ^ ) 1 / 2 . 

The Differential Algebra 

Calculating the Hilbert space representation of forms in the universal differential 

algebra is just a matter of matrix multiplication. For instance, a general one form 

pu = adub is represented explicitly on the Hilbert space C © <D as 

n09 u) = -i\(a){D,\(b)} 

0 f.iai(b2 - h) 

Jia^b-L - b2) 0 
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Similarly a general element au e Sl\A , au = adubduc is represented as 

n ( a u ) = -\(a)[D,\(b)][D,\(c)] 

/ipa-ifa - 6i)(c! - c2) 0 

0 7T/ia2(6i - fc2)(c2 - c x) 

Transfer to genuine differential forms is achieved by quotienting by the graded 

differential ideal J as described in section 2.6. For concreteness consider Q,2(A) 

Tl(tfuA) 
n ( f i M ) ri(J 2) 

A general element a in (Kerll)1 is of the form Y l j a3dub3 subject to the conditions 

X > i ( & j - &j) = 0 and X > a * ( & i - &£) = 0 (2.6) 

II(c/ucr) = I f ( ^ j du&dub3) subject to constraints 2.6 

/ ^ ( a j - a J

2)(^2 - b{) 0 subject to 

constraints 2.6 

= 0 

so U(du(kerUY) = 0 and (in this case) U(0,2

uA) = n ( f l M ) . 

The product of two non-commutative manifolds is found by multiplying the 

associated K cycles using the theorem[18][7] below. 

Theorem 

Given two manifolds X\ and X 2 , described by the K cycles (Ai, 7i\, D\) and 

(A21 'Hi-, D2) respectively and with H\ having a Z 2 grading T j , then the product 

manifold X\ • X2 is associated to a triple (A,7i,D) with 

A = Ai®A2 

H = - H i ® ^ 2 

D = A ® 1 + I \ ® D 2 . 
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In fact all the non-commutative manifolds discussed in this thesis will have this 

product form. They will all be the product of a flat Euclidean space associated 

to a K cycle with an infinite, commuting algebra henceforth denoted (Ai,Ti.i, Dj) 

and a discrete space associated to a K cycle henceforth denoted {AFI'H.FI DF)- For 

example the product space obtained by multiplying the Euclidean manifold (example 

1 above) by the discrete two point space (example 2 above) will be associated with 

a K cycle (A,H,D) where 

A = Ai®AF 

H = Hi® HF 

D = £>/®l + r/® DF 

with 

Ai = 

Di = 

r, = 

C 0 0 ( M 4 ) 

L\S) 

i$ 

75-

AF = 

Ti-F — 

DF = 

cec 
o n 

71 0 

This product space can be visualised as two copies of a Euclidean manifold separated 

by a small distance ( l / (^7 i ) 1 / ' 2 ) and described by the K cycle (^4,7Y,D), 

A = (<D 0 C) ® C°°(M4), H = (<D 0 <D) ® L2{S), D = i0 ® 1 + 7 5 ® DF. 
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Chapter 3 

Noe=Com.muitative Geometry amid 

Physics 
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S o l Summary of this Chapter 

Ultimately, the main aim of applying non-commutative geometry to physics is to 

reformulate quantum field theory in terms of non-commutative geometry. At the 

moment this goal is a long way off. 

In the short term however Connes' non-commutative geometry has provided some 

very interesting developments in the area of classical particle physics in particular 

when applied to the problem of the standard model [5] [11] [13]. 

As already discussed (section 2.6) it is possible to develop a non-commutative 

analogue of de Rham cohomology. And so, via, as usual the curvature of a Lie 

algebra valued one form a Yang-Mills action can be defined (section 3.2). As non-

commutative geometry is able to describe many more spaces than classical geometry 

it is possible to construct Yang-Mills actions over previously untreatable spaces. 

One such space, the product of a continuous Euclidean 4-manifold and a discrete 

two point space is of particular interest to particle physicists. This is because when a 

pure Yang-Mills action with gauge group SU(2) x U( l ) is constructed over this space 

the Glashow-Weinberg-Salam Lagrangian [60] (with leptons as the only fermionic 

matter) is retrieved but this time with the Higgs terms (that is the Higgs-gauge, 

kinetic Higgs and quartic potential terms) arising naturally: the complete bosonic 

sector of the Lagrangian can be derived as a pure Yang-Mills theory. This is clearly 

a great improvement on the usual formulation of the standard model. Details of the 

Connes-Lott formulation of the 'non-commutative Glashow-Weinberg-Salam model' 

are given in section 3.3. Section 3.4 discusses the ful l Connes-Lott non-commutative 

standard model (including the strong force) and 3.5 outlines the advantages and 

problems of this formulation compared to the usual formulation of the standard 

model. In the last section of this chapter (section 3.6) the most recent development 

in the application of non-commutative geometry to particle physics is outlined. 
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3 S 2 Construction Of Yang-Mills Models Over A 

Non= Commutative Manifold 

Classically, a Yang-Mills Lagrangian is constructed by squaring the curvature of an 

anti-hermitian one form that is valued in the Lie algebra of the gauge group of the 

model. This is exactly the method that is used for the construction of a Yang-Mills 

model over a non-commutative manifold. 

Consider constructing a Yang-Mills model on a non-commutative manifold X 

specified by a C* algebra A as outlined in section 2.2. It is necessary to know the 

K cycle (A,7i,D) associated to X. The Hilbert space 7i is the Hilbert space of 

Euclidean fermions and so must be chosen to match the desired fermionic content 

of the model. The 'generalised Dirac operator' D, contains information about the 

masses of the fermions and of course the metric structure of the manifold X. 

Given the above inputs a Yang-Mills model can then be constructed. From 

A the graded differential algebra £IA is formed as outlined in section 2.6. An anti-

hermitian one form p G fl{A) will be valued in u the Lie algebra of the gauge group 

U and can be considered as a vector potential. The curvature of p is defined as usual 

to be 0 — p2 + dp. 

The Yang-Mills action is then defined to be 

A Y M = Tr^{6)2D-A). 

The gauge group U of the Yang-Mills action is the group of unitary elements of A 

U = {u | uu* = u*u = 1; u G A }. 

As expected the curvature 9 transforms homogeneously and the Yang-Mills action 

is invariant under the gauge transformation 

p —> udu^ + upu\ 
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By imposing algebraic conditions the gauge group of the model can be re­

duced to a subgroup of the group of unitaries of A. The representation A of A on 

H determines the representation of the gauge group U . The requirement that the 

representation of the gauge group on H is a restriction of the representation of 

A greatly reduces the number of group representations that are available for model 

building. This is to be compared wi th the usual formulat ion of the standard model 

where any irreducible group representation is allowable. This point w i l l be expanded 

on in section 3.5. 

3.3 Construction of a Non-Commutative Glashow-

Weinberg-Salam Model 

The simplest physically interesting model to illustrate the construction of a non-

commutative Yang-Mills is the non-commutative Glashow-Weinberg-Salam (GWS) 

model w i t h leptons as the only fermionic matter. 

The non-commutative GWS model is constructed over the non-commutative 

manifold given by the product of a Euclidean manifold (described, -see example 

1 section 2.7, by the infinite commuting algebra Ai = C°°{Mi)) by the space of 

the internal degrees of freedom of the model. I n this case the internal degrees of 

freedom are SU(2) weak isospin and U ( l ) hypercharge, the (finite, non-commutative 

) algebra which must therefore be used to describe this internal space is AF = H©<D. 

Therefore the algebra associated wi th the product manifold is 

A = A i ® A F 

= c , o o ( M 4 , n t ) ® ( ] H e < D ) . 

The Hilbert space is the space of Euclidean fermions 

H = L\S) <g> [ (C 2 ® l N ) © ((C ® C) ® 1N))} 
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corresponding to a fermionic content of 
/ „ \ 

( v e \ ( \ 
V R 

V R 
for N = 2, etc. 

\ 6 R ) 
for N = 1; 

The representation A of A on H is given by 

A : A —> B{H) 

f <8> q ® IN 

where C / G C ° ° ( M 4 , I R ) , g e e , c G C . 

Note that a right handed neutrino has been included. This is so that C can be 

represented as a quaternion, i t w i l l be projected out at a later stage. 

The generalised Dirac operator D is taken to be 

D = i$ ® 1 + 7s ® DF 

where the Euclidean gamma matrices (7^, fi — 0, • • • , 3) are taken self-adjoint and 

where Dp is the leptonic mass matr ix 

DF = 

or more explicit ly for one generation 

/ 

DF = 

0 M 

M f 0 

eL VR CR 

0 0 mv 0 

0 0 0 m e 

ml 0 0 0 

0 ml 0 0 

that is M = 

I \ 
mv 0 

0 mP 
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The Yang-Mills action can then be calculated explicitly. This example is outlined 

in some detail to establish notations and conventions. Similar calculations can be 

found in [23] [10] [16]. 

Consider pu £ a general pu w i l l be of the fo rm pu = aJ

0dua{ then, 

dropping the j summation to ease the notation (though this w i l l always be implied) 

n(p) = n(p u) 

= -iX(a0)[D,X(ai)} 

/ o ( 0 / i ) ® go9 i ® I N 7 5 / 0 / 1 ® [go(Ci - 9 1 ) <8> l j v ] A f 

7 5 / 0 / 1 <8> M t [ C 0 ( 9 i - d ) ® IAT] / O ( 0 / , ) ® C o d ® 1/v 

—z 
^ 1 <8> 1/v 7 5 ( / i ® 

7 5 M t ( 5 ® l j V ) A2®lN 

We wish n(/)) to be Lie algebra valued so impose Tl(p) anti-hermitian ie impose 

A\ — A i , A\ = A2 and g = . The curvature of p is 0 — dp + p2 so i t is necessary 

to calculate H(dp) and H(p2): 

il(/9 2) = n(/?)2 (since I I is a homomorphism) so 

n ^ 2 ) = - A ( a 0 ) P , A ( a 1 ) ] A ( a 0 ) [ A A ( a 1 ) ] . 

Both these terms can easily be calculated using matr ix mult ipl icat ion. For instance 

n(d u /9 u ) is found to be 
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11 

- / o / i ® [(Co - g 0) ® l w ] M M t [ ( 9 l - d ) (8) 1/v] 

U(dupu) 

TL(dupu) 

U(dupu) 

12 

22 

21 

- W o h s / i ® [?o(C1 - 9i) ® 1 A T ] M + 

-75/0W1) ® [(Co - 9o)Ci ® 1JV]M 

-Ts/o W i ) ® M t [ ( g 0 - C0)<?i ® 1*] + 

- W o h s f i ® M t [ C 0 ( 9 i - C i ) ® 

+(0/O)(0/I)®C , CA<8>1JV + 

(3.1) 

-/0/1 ® M + [ ( 9 o - C 0 ) ( C i - ?j) ® 1 N ] M 

I t is then necessary to pass to the space of 'genuine forms' by quotienting by I I ( J 2 ) . 

Quotienting 

As discussed in section 2.6 this is done using a map P 

where V = {v 6 H ( f 2 u > 4 ) | (v,j) — 0 V j (E J } . So an explicit description of the 

map P is needed. Consider a generic element t = H{aoduaidua2) of 11(0^^4) then 

t u = +l/2rY[fo(dJ1)(dJ2)-fo(dJ1)(d,f2)}®qoqiq2®lN+ 

+h(d»hWh) ® <MK?2 ®IN~ f o f i h ® 9o(Ci - ? i ) ( 9 2 - C 2 ) ® S + 

- /0 /1 /2 ® 9o(Ci - 71)^3(72 - C 2 ) ® A 

<i2 = - [ 7 5 / 0 ( ^ / 0 / 2 ® 9o9i(<72 - C 2 ) ® l jv + 75 /0 /1 (^ /2 ) ® 90(Ci - 9 i )C 2 ® lN]M 

hi = - T s ^ t / o / i l ^ ) ® Co( i , - C j f t ® 1 , - / o ( ! | / , ) / 2 ® C 0 C , ( 9 2 - C 2 ) ® l iv] 

t22 = +l/2rr[fo(dJl)(dJ2)-fo(dufl)(dJ2)}®CQC1C2®lN+ 

+fo(dJi)(d»f2) ® CQC,C2 ® l N - /0/1/2 ® M t [ C 0 ( 9 i - C\)(C2 - q2) ® 1N]M 

where the identi ty MM^ = / ® E + < 7 3 ® A has been used. W i t h £ and A defined 

p: u(nuA) = j © y v ^ n (aA) 

j + V 1—• u 
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to be £ = l / 2 ( M , A f / + MvMv]) and A = 1 / 2 ( M , M / - M„M^) where 

Mi : = 
m , 

and My 
m VjJ, 

So a generic element of I I ( f ^ . 4 ) has the fo rm 

A®lN + B®lN + C®Z + iD®A ( 7 5 F ® 1 N ) M 

A f T ( 7 5 £ (8) l j v ) G ® IAT + iT ® 1JV + A f t ( i T O l j v J M 

where A G fi2(M) <g> H ; i?, C, D G C°°(M, IR) <g> H ; E , F G fta(M) <g> IH 

G G ft2(M) <g> H d i o f l ; # G C ° ° ( M , IR) <g> M d i o f f and i f G C ° ° ( M , IR) <g> IH. 

Similarly a generic element j G I I ( J 2 ) , j = n ( d u a 0 d u a i ) subject to U(a0duai) •• 

has the fo rm 

J n = +{0fo){$fi)®qoqi®lN+ 

- / o / i ® [(Co - <fo) ® l ] v ] M M t [ ( ? 1 - C i ) ® l j v ] 

Ji2 = -Wohsfi®[qo(Ci-q1)®lN]M+ 

-7s/o W i ) ® [(Co - ? 0 ) d ® 1JV]M 

J21 = - 7 s / o { i $ h ) ® M*[(q0 - C 0 ) q i <g> l jv ] + 

- W o ) 7 5 / i ® M t [ C 0 ( ? i - d ) <g> lyv] 

J22 = + (# /o) (# / i ) ® d > d <8> 1 * + 

- /0 /1 <S> M t [ ( g o - C 0 ) ( d - q i ) <g> l i v ] M 

subject to the constraints 

/ o @ / i ) = 0 

C o ( g i - d ) = 0 

9 o ( d - 9 i ) = 0 
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le 

i n = - / o D / i ® ?o?i ® l jv - / o / i ® ( C 0 - 20)0-3(41 - C a ) <g> A 

J12 = 0 

J21 = 0 

J22 = - / o ° / i <S> Cod ® IN-

So every element of IT ( J 2 ) is of the fo rm 

J i ® l N + 1J2® A 0 

0 J 3 ® IJV 

where J u J2 € C ° ° ( M , IR) <g> H , J 3 G C ° ° ( M , R ) ® l d i a s . 

Then, imposing 

( j ,< ) = fd4xTr~/®Tr2®Tr2®TrN (jH) 

= 0 V j e n ( j 2 ) 

i t immediately follows that j and t are orthogonal i f 

(3.2) 

B = N 

Tj _ TrN(MMl) 
N — N 

a 

a 

D = 0 

where a = [ -^]n-

So P the map projecting f rom the universal two forms onto the two forms of interest 

is given by 

A ® l N + B ® l N + C®E + iD®A (i5F®lN)M 

M \ L 5 E ® \ N ) G®IN + H ® I N + M \ K ® \ N ) M 

A ® l N - I n f ) £ ® IN + C ® S ( 7 5 ^ ® 1N)M 

M \ ^ E ® l N ) G ® 1 N - r ^ y M t ) 
a 

a 

1N + M\K ® \N)M 

(3-3) 

a = [K] 11 • 
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Applying this map to 3.1 and to the equivalent expression for Il(p) yields 

n ( 0 ) n = - l / 2 ^ i F l ® l N - { ^ - l ) ^ ^ + ^ j ^ ( ^ - l ) ® l N 

I I ( 0 ) i 2 = - ( D $ 7 5 ® 1JV)M 

n(6»)2i = Mt ( (D$) t 7 s ® i„ ) 

n ( 0 ) 2 2 = - i / 2 Y Y i F l ® i N - Mt($t$ _ I ) M + T r ^ y M t ) [ $ t $ _ i] (g, i 
only 

(3.4) 

w i t h 

$ ;: 

£>$ : = 

/ i + I 

The Yang-Mills action can then be calculated 

A y M = (n ( f l ) , n (0 ) ) 

= ^ f d 4 x T r 1 ® T r 2 ® T r 2 ® T r N [ I I ( 0 ) T I ( 0 ) ] 

w i t h the physical identifications 

At = -l/2ga-Wfl 

( 

A! 

$ = 
( \ 

K - f a fa j 
4> = 

( f a 
the genuine Higgs doublet. 

This yields the Yang-Mills Lagrangian (after projecting out the right handed neu­

tr ino) 

C Y M = Ng2W,u • W>™ + 2Ng'2BlluB^ + lMr{ML) (D ^ {D» fa+ 

+ 6 [ ^ ( E 2 ) - ^ f l i ] [ ( ^ ) 2 _ 2 ^ _ ! ] 

where 

Ku = d.Wl-dvWl-gS^W^W* 

B^v = d^Bv — duB^ 

= id^ + g ' B ^ - l ^ g a - W ^ 
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and £ (after removing the right handed neutrino) is 

S = 1/2 

nif.m 

The fermionic action is defined to be 

A/r = (0 J (D + i n ( ^ ) 

giving (for N = l ) 

where / L = 
/ \ 

\ e L J 
The Lagrangian £ y M + £F is of roughly the correct fo rm. However i t should 

be noted that the left handed leptons have the incorrect hypercharge (zero instead 

of -1 /2 ) and that the Higgs-gauge boson interaction is incorrect (D^ — - f 

g'B^ - \j2ga • instead of Dfi(f> = idfi(j) - l/lg'B^ - l/2ga • W^). 

These problems are solved by introducing quarks and the strong force (-please see 

the next section). Interestingly the coefficient of the Higgs potential is 

t r N ( X 2 ) - ^ ( E ) 2 

which is clearly zero for the case N = 1. So the non-commutative standard model 

gives a reason for why (at least i f we require massive particles) there should be 

more than one generation of fermions, i t answers I I Rabi's question "who ordered 

the muon?". I t should also be noted that the coefficient of the Higgs potential is 

positive for mT » m M > > m e as would be expected in a Euclidean Lagrangian. A 

further comment should also be made on the subject of the non-commutative GWS 
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Lagrangian: i f the fermionic Lagrangian is Wick rotated then i t can be seen that 

half of the fermionic mass terms w i l l have the incorrect sign. This is an, as yet, 

unresolved problem in all Connes-Lott models. 

One subtlety that has been ignored in the above calculation is the question of the 

choice of scalar product. The scalar product that has been used on the differential 

algebra associated to the finite algebra AF is 

Whi ls t this is a very natural choice i t is not the most general one and since the Hilbert 

space of fermions Tip is not irreducible its use art if icially imposes relationships 

between the different parts of the representation. A more general scalar product has 

been proposed [6] 

= Tr(zu]ri) u , t j e n k ( A F ) (3.5) 

where z, 'the non-commutative coupling constant' has the following properties 

8 [z, A(a)] = 0 a e AF 

• [z, JXi^J-1} = 0 

• [z,DF]=0. 

I t has been shown [42] that the above properties are necessary to insure that i f the 

scalar product 3.5 is used then the map P (equation 2.5) is s t i l l an isomorphism of 

involutive algebras. 

To summarise, the input to the non-commutative GWS model is 

1. a double sheeted space 

2. the gauge group of the model SU(2) x U ( l ) 

3. the fermionic content of the model 
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4. the fermion masses, Yukawa coupling constants and the Cabbibo-Kobayashi-

Maskawa constants. 

Given this input and using the Connes-Lott recipe for building non-commutative 

Yang-Mills models, the unique output is (upto Higgs hypercharge) the Glashow-

Weinberg-Salam Lagrangian. 

3.4 Real Structure -Incorporating the Strong Force 

into the Connes-Lott Model 

I n this section the revised Connes-Lott non-commutative standard model [8] which 

includes quarks and the SU(3) strong force is outlined. 

Introducing quarks and the strong force into the non-commutative standard 

model is a non-trivial step. There are two problems, both have their origin in the 

fact that the gauge group of the model and the representation of this gauge group 

that acts on the fermions is derived f rom the algebra (as the group of unitaries and 

as a restriction of the algebra representation respectively). This is a construction 

that is particular to non-commutative geometry and whilst i t is in general a strength 

(see section 3.5 on advantages of the non-commutative standard model) i t does make 

the extension to SU(3) quarks rather diff icul t . The first of the two problems is that 

SU(3) is the group of unitaries of no algebra and so i t does not fit naturally into 

the non-commutative framework. This can be got around by choosing A = M 3 ( C ) 

whose group of unitaries is U(3) , this is then broken down to SU(3) by imposing 

what Connes calls the unimodulari ty condition -essentially a tracelessness condi­

t ion. The second problem is much harder to solve but throws up some very rich 

and interesting structure i n the non-commutative standard model. Consider the left 

/ \ 
handed up quark UL- I t sits in an SU(2) weak isospin doublet and in an 

V d L ) 
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SU(3) colour tr iplet 

/ \ 
UR 

uG ie the representation of SU(2) x SU(3) that acts on i t 

\ U B J 

is 25(7(2) x 3_s[/(3) ~ a product of two group representations. This presents no problem 

in the usual formulation of the standard model since any irreducible uni tary group 

representation can be used and the product of two group representations is indeed 

a group representation. I t does however present a problem in the non-commutative 

standard model where the group representation used is a restriction of the algebra 

representation A used: 

A : A —* B(H) 

X\u: B(H). 

I t is easy to check that the product of two algebra representations is not i n general 

an algebra representation (i t doesn't preserve the linear structure of the algebra). 

I n fact this is also the reason that the hypercharges of the left handed leptons i n the 

non-commutative GWS model are zero. The left handed leptons in the standard 

model are acted upon by a product representation of S U ( 2 ) x U ( l ) . For the reasons 

explained above i t is not possible to realise this wi th in the simple Connes-Lott model 

introduced in section 3.3 and the leptons are taken to be in an SU(2) doublet only 

-that is their hypercharge is zero. To accommodate quarks and the left handed 

leptons correctly a more complicated algebra bimodule structure [7] [6], a Poincare 

dual spectral t r iple needs to be introduced. 

Defini t ion Poincare dual spectral triple 

A Poincare dual spectral triple (B ® B',H, D) is defined to be a spectral t r iple w i t h 

B and B' in Poincare duality that is they satisfy the algebraic Poincare duality 

conditions 

1. [A(6),A'(6')] = 0 b£B ,V eB' 

2. [[£),A(6)],A'(6')] = 0 beB ,b'eB' 
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where A and A' are representations of B and B' respectively on a common Hilbert 

space: 

A : B —• B{H) 

b t-> b®Y 

A ' : B' —> 

6' H-f 1 ® 6'. 

To reproduce the standard model a Poincare dual spectral tr iple over the algebras 

B = < D f f i ] H a n d 5 ' = (Dffi M 3 ( C ) is taken. B = <D © IH reflects the electroweak 

structure of the model and B' = C © A f 3 ( C ) the strong structure. A non-commutative 

Yang-Mills model bui l t using this algebra wi l l have gauge group UQ X Ugi = U{V) x 

5C/(2) x t / ( l ) x U(3). This is broken down to SU(2) x [ 7 ( l ) y x SU{3) by two 

unimodulari ty conditions which essentially identify (upto scalar multiples) the three 

U ( l ) factors. 

This rather clumsy Poincare dual structure consisting of two separate algebras 

can be reduced to a spectral triple over one Poincare self-dual algebra w i t h an 

interesting extra structure that reflects physics. This is done using the theorem [18] 

below 

Theorem 

A real spectral t r iple (A,7i, D, J) can be obtained f r o m a Poincare dual spectral 

t r iple (B <g> B',H,D) i f B is of the fo rm B = A 0 C and i f B>' is of the fo rm 

B' = A® C' by setting 

A = A®6®6' 

n = H ®n 
D = b@b 

\{A) = \{A®C)®\\A®C') 

where H denotes the conjugate Hilbert space of Ti and S © T is shorthand for 

S © 0 + J(T © 0) J . 
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Defini t ion Real Spectral Triple 

A real spectral tr iple is a spectral tr iple (A,H,D) w i t h real structure J. Where J 

is an operator on the Hilbert space 

J :H ®H —• H ®H 

which satisfies the following conditions 

1. JD = DJ 

2. J2 = ± 1 

3. [A(a), JA(a ' ) J " 1 ] = 0 a,a'eA 

4. [[D,\{a)],J\(a')J-1]=0 a,a'£A 

Defini t ion Real Graded Spectral Triple 

A real graded spectral tr iple is a graded spectral tr iple (A,7i, D,T) w i t h real struc­

ture J which satisfies the above conditions as well as the additional condition 

5. JT = ± T J T the K cycle grading. 

I f the real spectral tr iple corresponding to Riemannian space is considered then 

the real structure can be seen to be charge conjugation J = C The real structure 

on a generalised non-commutative manifold is therefore the non-commutative gen­

eralisation of charge conjugation. So in t rying to incorporate quarks into the non-

commutative standard model deeper links between non-commutative geometry and 

physics have been uncovered. Other features of the physics of the non-commutative 

standard model that are revealed by incorporating quarks using a real spectral t r iple 

are discussed in chapter 4. 

The non-commutative standard model (including quarks and the strong force) 

is then obtained by building a non-commutative Yang-Mills model over the real 

spectral tr iple (AjTi, D, J) 
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w i t h 

A = C 0 0 ( A f ) ® [ H © < D © A f 3 ( ( D ) ] (3.6) 

H = H L @ H R © H C

L ® H C

R 

H L = ( € 2 ® € N <g> <D3) © ( C 2 ® <DW ® C) , 

ftR = ((C © C) ® ® C 3 ) © (C ® C N ® C), 

where superscript c denotes charge conjugation. Corresponding to the following 

basis of 7i 

I \ ( e \ 
UL 

, UR, dp,, eR, 

( V I - \ v UL 

d 

L C JC c 
' uR-> aRi eR 

for N = 1. The generalised Dirac operator D is 

D = i$ ® 1 + 75 ® DF (3.7) 

w i t h 

DF = 

For N = l 

0 M 0 0 

A f t 0 0 0 

0 0 0 M f 

0 0 M 0 

where M 
Mq ® 1 3 

0 

me 

A n d the real structure J is 

J = C 
' o i N 

1 0 

where C denotes charge conjugation on the spinor space, that is mult ipl icat ion by 

the charge conjugation matr ix C followed by complex conjugation. A is represented 

on TL by the f a i t h fu l homomorphism A 

X(a) = Xw(a) © Xs(a)* 
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Ijv <8> I3 

q ® l jv 

Aw (a )= / 
lyv ® I 3 

c l 

I 2 ® IAT ® m 

Xs(a) = f 
c l 2 ® IN 

l 2 ® IN ®m 

c l 

The Yang-Mills action is calculated as before, the fermionic action is now defined 

to be 

Ap = (iJ),(D + A + J AJ~l)ip). 

Using the properties of J i t is easy to check that this new action is gauge invariant. 

Given 

if) —• ij)u = utpu* = uJuJ^ 

A —> Au = uAu* + u[D,u*} 
since 

Ju*Jiu*DuJuJ] = u*[D,u] + Ju*[D,u]Ji + D 

Ju*J^u*(uAu* + u[D, u*])uJuJi = A + [D, u*]u 

Ju*Jiu*{JuAu*Ji + Ju[D,u*]JY)uJuJ^ = JAJ^ + J[D,u*]uJi 

then 

(</>", (D + Au + J A V " 1 ) ^ ) = W,(D + A + JAJ-1)^). 
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This model yields the following predictions [20] 

. Higgs Mass m\ « 3 K / m ; ^ + 2 K / m w ) 2 - 1 = 2 g g ± 

{ m t / m w ) + 3 ^ 

22GeV 

o Weinberg Angle sm2(6>iy) < — 2

2 . — - — g i v i n g s m 2 ( ^ ) < 
3(1 + ( m i y / ? 7 i t ) 2 + ( f t / 3 5 3 ) 2 ) 6 6 v y 

0.54 

o W Boson mass m e < M w < mt/\/3 giving 0.5 < M w < 103 x 10 3 MeV 

where the following notation has been used 

me electron mass 0W Weinberg angle 

mt top quark mass g2 weak coupling constant 

Mw W boson mass g3 strong coupling constant 

rax Higgs boson mass. 
Comparing these 'predictions' w i t h experimental results [67] 

s in 2 (0 V K) = 0.2319 

M w = 80.22 GeV 

mH > 58.4 GeV 

i t can be seen that there is no conflict between the predictions and the experimental 

results. However the range of the predictions for the W mass and the Weinberg 

angle is so wide as to be vir tual ly meaningless. The best judge of the quality of 

these predictions w i l l be made when the Higgs mass is known. 

Of course these constraints are classical and therefore subject to quantum cor­

rections. Quantisation of non-commutative Lagrangians is s t i l l an open question, 

i t is felt by some that a new quantisation procedure that reflects non-commutative 

geometry needs to be developed. I f the non-commutative Lagrangian is treated as 

a normal Lagrangian and is quantised in the usual way then the above constraints 

can be shown [22][26] to vary weakly under the renormalisation flow. 
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3.5 Advantages and Problems of the Non-

Commutative Standard Model 

3.5.1 Advantages 

To better illustrate the advantages of the non-commutative standard model a very 

brief outline of the usual formulation of the standard model and its problems is 

given. 

Usual Formulation Of The Standard Model 

The standard model Lagrangian consists of the sum of five pieces: the Yang-Mills La-

grangian, the Dirac Lagrangian, the Higgs potential, the Klein-Gordon Lagrangian 

and the Yukawa terms. 

To obtain the Yang-Mills Lagrangian a gauge group (out of the infinite number 

of finite dimensional compact Lie groups) must be selected. There is no a priori the­

oretical reason for choosing SU(2) xU(l)x SU(3). Given this gauge group the Yang-

Mills Lagrangian is constructed, it is well motivated geometrically. To construct the 

Dirac Lagrangian a representation of the gauge group SU(2) x U(l) x SU(3) must 

be chosen -out of the infinite number of unitary, irreducible representations that 

are available to build a model with. Nature, as shown by experiment, selects the 

fundamental representation, again there is no a priori reason for this choice. 

So far, the Lagrangian constructed, that is the sum of the Yang-Mills and Dirac 

Lagrangians results in massless gauge bosons and fermions. To break the group 

symmetry and introduce mass terms the Higgs potential, Klein-Gordon Lagrangian 

and Yukawa terms need to be added. This is a totally ad hoc procedure with no 

theoretical motivation. 

Even given the basic form of the standard model Lagrangian as described above 

it is still necessary to fine tune so that its predictions agree with experimental 

results. It is necessary to input that the weak force is parity violating; that the 
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strong force is vectorial, that its carriers (gluons) are massless and that there are 

three generations of fermions. It is also necessary to input eighteen parameters -the 

three gauge couplings, the W mass, the Higgs mass, nine fermion masses (assuming 

the neutrinos to be massless) and four Cabbibo-Kobayashi-Maskawa parameters. So 

to summarise, the arbitrary features of the standard model that, in many peoples 

minds debar it from being a fundamental theory are 

1. arbitrary gauge group 

2. arbitrary group representation 

3. no theoretical motivation for the introduction of the Higgs 

4. arbitrary force structure (weak non-vectorial, strong vectorial) 

5. arbitrary masslessness of the gluons 

6. arbitrary choice of three generations of fermions 

7. 18 free parameters 

Having said all this the standard model does agree with experiment to a high degree 

of accuracy and at least part of i t , the Yang-Mills Lagrangian, is well motivated. It 

would be foolish to just abandon i t , especially given the lack of alternative theories. 

The main achievement of the non-commutative standard model is in solving 

problem (3) - i t gives a very natural, geometric explanation for the existence of the 

Higgs particle. It also explains (4) and (5):- given that the weak force is maximally 

parity violating it asserts that the strong force is vectorial, that the SU(2) gauge 

group is broken (so its gauge bosons W± and Z are massive) and that the SU(3) 

gauge group is unbroken (so the gluons remain massless). The non-commutative 

standard model helps to a certain extent with (2) and (6) but is essentially no 

improvement when it comes to (1) and (7). 
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Existence of the Higgs 

The main advantage of the non-commutative formulation of the standard model is 

conceptual -it provides a geometric interpretation of the Higgs. The Higgs boson 

arises naturally as an extra gauge boson associated with the discreteness of the 

space. It is unified with the other usual gauge bosons of the model (photons, W ± 

and Z) and appears on exactly the same footing as them. This is precisely because in 

non-commutative geometry, unlike in classical geometry the discrete space is treated 

on the same footing as the continuous space. 

Structure of the Strong Force and Masslessness of the Gluons 

It can be shown [43] that, because of the requirement of Poincare duality in the non-

commutative standard model, given the parity violating structure of the weak force 

the strong force must be vectorial (see chapter 4 for more details). Furthermore it 

follows from the non-commutative standard model that the gauge group associated 

to a vectorial force remains unbroken (and its bosons therefore remain massless). 

This is because the Higgs boson arises as a one form in the differential algebra ft A F 

constructed from the finite algebra, but in the case of a vectorial force we have 

^L{AF) — ^R{AF) a n d [\L{AF), M] = 0 so the differential algebra is trivial 

n°AF = AF 

nPAF = o P>i 

therefore there are no Higgs terms and vectorial forces remain unbroken. That is, in 

the case of the standard model, non-commutative geometry explains why the W± 

and Z bosons are massive and the gluons are massless. 

Gauge Group Representation 

In the usual formulation of the standard model the fermions can be placed in any of 

the infinite number of unitary irreducible representations of the gauge group. In the 

non-commutative formulation of the standard model the representation of the gauge 

group is a restriction of the representation of the algebra. This is a very limiting 

condition -typically an algebra has only one or two possible representations. This 
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point was analysed by Schiicker and Iochum [13], their results are summarised below 

Gauge Group U Possible Representations of U 

0(n,]R) fundamental representation 

U(n) fundamental or conjugate fundamental representation 

Sp(2n) fundamental representation. 

For the case of the standard model gauge group SU(2) x U(l) x SU(3) this compels 

us to work in the fundamental (or conjugate fundamental representation). It can 

be seen that the possibility of constructing non-commutative grand unified theories 

based on SU(5) or SO(10) is ruled out as both these schemes utilise representations 

which are neither fundamental nor conjugate fundamental. 

Number of Generations of Fermions 

As already discussed (section 3.3) the existence of the Higgs potential requires at 

least two generations of fermions. It has also been noted [27] that, since the mass 

of the top quark is thought to be 174GeV, the non-commutative constraint 

mt > y/Nrriyj constrains the number of fermions to be less than five. 

Choice of Gauge Group 

Here the non-commutative standard model has little advantage over the usual for­

mulation, almost any compact Lie group can be used though the exceptionals can 

be ruled out as they are not the group of unitaries of any semi-simple algebra. 

Number of Free Parameters 

The non-commutative standard model has a marginally improved free parameter 

count as the Higgs mass and the Weinberg angle are both constrained. 

3.5.2 Problems 

There are three main problems associated with the non-commutative standard model 

(apart from the fact that non-commutative geometry doesn't uniquely select the 

standard model). Firstly, as mentioned earlier the problem of quantisation. Sec-
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ondly, the fact that the non-commutative standard model Lagrangian is in Euclidean 

space. And thirdly the requirement of the unimodularity condition. 

Quantisation 

It is not known how to quantise non-commutative Lagrangians in a 'non-commutative 

way'. Al l the renormalisation analysis that has been applied to the non-commutative 

standard model [22][26] is based on the conventional quantisation process. There 

is no reason to believe that this is the method that should be applied in the non-

commutative case. 

Euclidean Space 

Al l the non-commutative standard model Lagrangians that have been constructed 

are essentially in Euclidean rather than Minkowski space. This is because non-

commutative geometry is firmly rooted in a Hilbert space setting: the fundamental 

building block of non-commutative geometry, the K cycle is a Hilbert space notion. 

If we consider the space of spinors in Minkowski space where the inner product is 

then, since this inner product is not positive definite the vector space is not a Hilbert 

space. Unlike the Euclidean case where the inner product 

is positive definite so we do have a Hilbert space -the space L'2(S). For this reason 

we are compelled to work in Euclidean rather that Minkowski space. 

Furthermore, the operator D in a K cycle (A,7i,D) is required to be elliptic. 

However the Dirac operator \$, necessary for building non-commutative models over 

space-time is not elliptic for Minkowski space-time (although it is for Euclidean 

space-time). This is another reason why constructing a Minkowski space formulation 

of non-commutative geometry will be extremely difficult. 

The most commonly used method to get around this problem is to Wick ro­

tate the final Lagrangian. Alternatively it has been argued [26] that since, in the 

(</>!, </>2) = / V>l(z)W>2(zK X 

( 0 i , ^ ) = JM*)*M*)* 
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calculation of the non-commutative standard model after the one form has been cal­

culated and integration defined (in this case just the usual Euclidean integration), 

the calculation of the Lagrangian just proceeds in the usual way (without any fur­

ther reference to non-commutative geometry) it is possible to introduce integration 

over a Minkowski space and a Minkowski rather than Euclidean Dirac operator. 

Essentially amounting to 'Wick rotation' at an earlier stage. Neither method is 

particularly satisfactory. 

Unimodularity 

As mentioned earlier it is necessary to reduce the 'natural' gauge group of the 

standard model to the correct gauge group via a unimodularity condition. This is 

a rather ugly and ad hoc process. This subject will be covered in more depth in 

chapter 5. 

Non-commutative geometry has recently [9] been extended in such a way that the 

Dirac action and the Yang-Mills action can be naturally unified with the Einstein-

Hilbert action [30] [31]. This unified action can be written as 

'(D + A + JAJ^f 
+ (^,{D + A + J A J ^ ) 

A 2 

where T is the characteristic function of the unit interval [0,1], A is a cut off and 

D + A-\-JAJ^ is as defined in section 3.4 with D being the generalised Dirac operator, 

iA = i Y,j ^[D, fr7] an anti-hermitian one form (a, b 6 A ) and J the real structure. 

The standard model action unified with the Einstein-Hilbert action is obtained by 

defining A and D as in section 3.4 (equations 3.6 and 3.7 respectively). 

This unification occurs at high energies, A in the range 10 1 5 — 10 1 9Gey. At low 

energies the universal action just reduces to the usual Connes-Lott standard model 
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action. For this reason these new developments do not, on the whole, impinge on the 

topic of this thesis. There is one exception to this -the formulation of the universal 

action could perhaps give an explanation for the unimodularity condition, this is 

explained in section 5.3 of chapter 5. 
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Chapter 4 

Polmcare Dual i ty and the Chiral 

StractiLiLre of the 

Norn-Commutative Staedard 

Model 

51 



4.1 Summary of this Chapter 

The most convincing argument for non-commutative geometry being the natural 

setting for the standard model is undoubtedly the geometric explanation for the 

Higgs that it provides. But it also has many other interesting features, some of which 

are summarised in section 3.5, which are surprisingly consistent with the standard 

model. This chapter deals with one of these features, namely how non-commutative 

Poincare duality dictates the chiral structure of the standard model. To be more 

precise i t can be shown that given the structure of the weak force Poincare duality 

asserts that the strong force must be vectorial, and conversely given the form of 

the strong force the weak force is constrained to be parity violating. Section 4.2 

introduces the notion of Poincare duality both in the classical and non-commutative 

setting. Section 4.3 explains the calculations that constrain the strong force to be 

vectorial. Section 4.4 briefly examines the converse statement namely that given 

the structure of the strong force in the non-commutative standard model Poincare 

duality constrains the weak force to be parity violating. In section 4.5 the chiral 

structure of more general non-commutative Yang-Mills models is examined. Section 

4.6 is a short conclusion. 

The aim of this chapter is not to explain the non-commutative formulation of 

Poincare duality which is mathematically complicated and beyond the scope of this 

thesis (please see [7] for an in depth discussion); but rather to examine what, as­

suming Connes' formulation of non-commutative Poincare duality, its implications 

are. 
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4.2 Poincare Duali ty in Classical and Non-

Commutative Geometry 
For all classical compact orientated manifolds there is a duality [61] between homol­

ogy and cohomology known as Poincare duality. That is there exists an isomorphism 

7 

7 : i T ( M ) — • # n _ f ( M ) 

for M an n dimensional compact orientated manifold. Poincare duality can alterna­

tively be expressed as the requirement that the map 

W(M) x Hn~l{M) —+ IR 

is nondegenerate. 

Connes argues [7] that for a non-commutative space, described by a spectral 

triple {A,'H,D) to be a smooth manifold it is necessary that Poincare duality is 

satisfied by the triple. The conditions required for the existence of the Poincare 

duality isomorphism are 

[\{a),J\(a')J-1} = 0 Va,a'eA' (4.1) 

[[D,X{a)}, J\{a')J-1) = 0 Va,a'e A' (4.2) 

Tru(T[D, A(a°)][£>, A(a 1)]...[ JD, A(a n)] \D\~n) = 0 Va j € A'. (4.3) 

From these conditions it can be clearly seen that not every spectral triple is equiv­

alent to a non-commutative manifold (as has been implicitly assumed until now). 

Indeed whether or not the algebra A is Poincare self-dual depends not only on the 

algebra but also on the representation A of the algebra. 

At this point it should be noted that the requirement that a non-commutative 

space be a non-commutative manifold (that is the requirement of non-commutative 

Poincare duality) is precisely the requirement necessary to incorporate the strong 
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force into the non-commutative standard model as discussed in section 3.4. So in 

the non-commutative standard model the strong and weak algebras are Poincare 

dual to one another. That is there can be considered to be a geometric relationship 

between the strong and the weak force. 

4 o $ Poincare Duali ty and the Strong Force 

Claim: If, within the framework of the non-commutative standard model, the form 

of the electroweak sector is assumed then the condition that the algebra A must 

be Poincare self-dual (that is there exists the Poincare duality isomorphism on the 

non-commutative space) constrains 

1. the strong force to be be vectorial. 

Additionally, it forces 

2. the strong force to be blind to isospin 

3. the action of the strong force on each generation of quarks to be the same. 

Proof of (1) and (2) 

(1) and (2) will be shown first, for convenience (3) will be assumed at first but 

proved in a later section. 

Notation and Assumptions: In these calculations only the finite part (AFI'HF, Dp) 

of the fu l l K-cycle is worked with. The ful l model is then obtained by tensoring with 

the infinite sector. Ap is taken to be 

AF = H © C © M 3 ( C ) . 

For the present it is assumed that the action of the strong force is the same on every 

generation of quarks so 

Xw(a) <g> 1N 

A s(a) <g> ljv 
A(a) = a <E AF 
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where a - (q,c,x) € HI © C © M 3 ( ( D ) . The electroweak sector is assumed so Xw(a) 

is taken to be 

L R 

Xw(q,c,x) = 
Ai(9) 

\ 

A2(c) 

with 

/ 

M ? ) = 
g ® I 3 

\ 

V 

/ 

and A2(c) 
C<g>l3 

\ 
, c 

J 

(The basis for the first generation of fermions is given as an example). From experi­

mental evidence [63] it is known that quarks exist in 'threes' (ie what we call colour 

triplets) of identical mass so the form of the fermionic mass matrix is known. The 

form of the mass matrix in the above basis is awkward due to (Cabbibo-Kobayashi-

Maskawa) quark mass mixing. The following notation is used 

particles antiparticles 
I 

DF = 

M \ 

with Da 

M 

0 Mi 

M} 0 

M = 

D IN 

D 

and Mi = 

Nl 

M\® 1 3 

D NN 

Mi 
(4.4) 

where i = l , . . . N denotes generation number. Jp, the non-commutative generalisation 

0 1 
of charge conjugation (on the finite algebra) is taken to be Jp = 

1 0 

The aim is then to prove statements (1) and (2) given the conditions 4.1 and 4.2. 

Calculations: 

Firstly the constraints imposed by 4.1 are examined. From 4.1 it follows that 

[\w(a),\s(a')] = 0 . (4.5) 
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This means that Xs(a) is block diagonal, 

Xs(a) -
A 3 (a)® IN 

A 4 (a) ® IAT 

with 

and 

[\1(a),\3(a')} = 0 (4.6) 

[A 2(a),A 4(a')] = 0. (4.7) 

Inserting Xi(a) = ^(q) = (q (g) 1 3) © into 4.6 and using Schur's first lemma leads 

to 

A 3(a) = ( z i 2 ® r ) © i 2 x z , x G c, Y' G M 3 ( < D ) 

= ( i 2 ® F ) e i 2 x r : = z r . 

Using the additional fact that A(a) is an algebra representation of .4.^ = IH © C © 

M 3 (<D) it follows that the possible choices for Y and X are 

Y = a:, x or any 3 x 3 diagonal matrix whose entries are either c or c (denoted 

M 3 (c , c)) or any 3 x 3 block diagonal matrix whose entries are [q,c] (plus 

permutations)(denoted M3(<?,c)) 

X = c or c. 

Similarly, inserting A 2(a) = A2(c) = (C ® 13) © c into 4.7 and using Schur's lemma 

leads to 

A 4(a) = (W®V)@U W G M2(<C)diag, V G M 3 ( € ) , £/ G C. 

Again, using the representation properties of A(a), it follows that the possible choices 

for W,V,U are 

W = cl2,cl2, 
c c 

or 
c c 

and V = 1 3 

or 

W = 1 2 and V = a:, x, M 3 (c , c) or M3(<7,c) 

[/ = c or c. 
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So possible combinations of values for 

K(a) = A 3 ( a )©A 4 ( a ) 

= [(U®Y)®12X}®[{W®V)®U] 

are 

Y X w V U 

I c,c c l 2 , c l 2 , 
c 

c 
5 

c 

c 
1 3 

c,c 

I I M 3 (c, c) c,c c l 2 , c l 2 , 
c 

c 
) 

c 

c 
1 3 

c,c 

I I I M3(q,c) c,c c l 2 , c l 2 , 
c 

c 

c 

c 
1 3 

c,c 

IV x,x c,c 1 2 
x,x c,c 

V M 3 (c , c) c,c 1 2 
x-x c,c 

V I M3(q,c) c,c h x,x c,c 

V I I x,x c,c 1 2 
M3(q,c) c,c 

V I I I M 3 (c , c) c,c 1 2 
M3(q, c) c,c 

IX ^ 3 ( 9 , c) c,c 1 2 
M3{q, c) c,c 

X *,* c,c 1 2 
M 3 (c, c) c,c 

X I M 3 (c, c) c,c 1 2 
M 3 (c , c) c,c 

X I I M3(q,c) c,c h M 3 (c, c) c,c 

Options I I 1 , I I I , V I I I , IX, X I and X I I can be ruled out immediately because A(a) 

must represent M 3 ( ( D ) and these choices do not. 

Next the constraints imposed by 4.2 are examined to see if this rules out any of 

the other options tabulated above. Inserting Dp and A(a) into 4.2 and using the 
1 alternatively, as remarked by Martin et al [26] this option is also ruled out because it violates 

the third Poincare duality constraint. 
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shorthand A' := A (a') gives 

[[M,\W®1N],\'S®1N] = 0 

[\M,\,®1n],Xw®1N]=0. 

If 4.8 is expanded in the generation index it can be written as 

(4.8) 

(4.9) 

[[DNN, \ W ] , A 'J 

Consider the diagonal entries 

[[DNN, A W ] , A'J 

= 0. 

[ [Ai ,A t u ] ,A ' 4 ] = 0 i = l,---N. (4.10) 

The N equations 4.10 represent only one condition since all the Z)„ have the same 

structure 4.4 just with different positive entries. Substituting 4.4 into 4.10 and 

dropping the i index gives 

and 

( M A 2 - A J M ) A ; - A 3 ( M A 2 - A iM) = 0 

(M fAx - A 2 M t )Ag - A ; ( M f A i - A 2 M f ) = 0. 

(4.11) 

(4.12) 

The A are faithful representations so setting q=0 and c = l gives Ai = 0 and A 2 = 1. 

Evaluating 4.11 at q=0 and c = l gives 

M A ; = X'3M 

inserting M = (Mq® 13) © Mh A 3 (a) = ( 1 2 <g> Y) © l2X and A 4(a) = (W®V)@U 

then gives 

( M , W <g> V) © M , C / = ( M , ® y ) © I M , 

this condition yields 

U = X W = Tl2 and TV = Y T e C. 
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Comparing this with the tabulated options it can be seen that options I , V, V I , V I I 

and X are ruled out leaving only IV. The possible choices for A s(c, x) are then either 

li® x 

ch 

U ® x 
or 

1 2 ® x 

ch 

I2 ® x 

The relative sign of x (that is whether x or x is chosen) is irrelevant as Xw does not 

represent Ma(C). It can be immediately seen that the action of A associated with 

the strong force on the left handed fermions is the same as that on the right handed 

fermions ( A 3 = A 4 , upto the fact that there is no right handed neutrino assumed in 

this calculation2) and that it commutes with the mass matrix ([M, Xs] = 0) -that is 

it has been shown that the strong force is constrained to be vectorial. Additionally 

u 
is acted upon by 1 2 <8> x. So i t follows that the strong force the quark doublet 

does not see flavour. 

This concludes the proof of statements (1) and (2). 

Proof of (3) 

Aim: to show that the strong force acts in the same way on quarks of all generations. 

Notation: The same notation for Xw(a) and Dp will be used in this proof of (3) as 

in the proof of (1) and (2). Here the generational structure of Xs{a) is not assumed 

so A(a) will be taken to be 

A(a) = 
Xw(a) <g> 1N 

Rs(a) 
(4.13) 

2 a right handed neutrino could easily be included in this calculation [43] leading to an exact 

equality but since it has been shown [19] that this would violate the third Poincare duality condition 

it has been omitted. 
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where Rs is a general matr ix , its elements, expanded by generation w i l l be labelled 

-fill -R12 • • • R\N 

RNI RNN 

where each Rij w i l l have the same matr ix dimensions as \w(a). 

Calculations: Substituting 4.13 into 4.1 yields N2 equations 

[ A w ( a ) , i g = 0 

A w ( a ) = (q ® I3) © q © (C <8> I3) © c so each is of the fo rm 

Rij = ( 1 2 ® Z t j ) © ^ i l 2 © (Xij <g> Wi,-) © (4.14) 

where Z t J , W f i G M 3 ( C ) ; G C and A^- G M 2 (<D) ( i i a 3 . 

Similarly, substituting 4.13 into equation 4.2 yields i V 2 equations, the \ t h - j t h one 

being 
N 

£ [ A * , - i 4 [ D , y , = 0. (4.15) 

Consider first the off diagonal equations (i ^ j). Each i - j equation w i l l consist of 

the sum of 2N terms, 2N-2 of these terms w i l l depend on a different Dik mul t ip l ied 

by R'kj (k 7̂  j ) , each of the Dik are independent so for this sum to be zero for all 

a and a' G A each term must vanish independently ie Rij = 0 i ^ j. So, the off 

diagonal equations reduce to 

[D^ XMWJJ ~ R^ADij, K} = 0 j- (4-16) 

The Dij are the elements of the mass matr ix which contain the quark mix ing terms, 

they are therefore of the f o r m 

Rs(a) = 
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D 

generation j 

0 0 Gij 0 

0 0 0 0 

Hij 0 0 0 

0 0 0 0 , } R 

generation i 

w i th Gi 
0 0 

0 ga 
I3 and H{j = 

0 0 

0 /«,•, 

So, substituting the above, \w{a) and (equation 4.14) into 4.16 yields 

[Gij{C ® 1 3) - (q ® l 3 ) G y [A^- ® W;; - 1 2 <8> Z f i ] = 0 

and 

[ 1 2 <g> Z w - X * ® W i , - ] ^ ^ ® 1 3) - (C <g> 1 3)#,-;] = 0, 

imply ing that A j j ® VKjj = I2 <8> Za i ^ j. 

Similarly expanding the diagonal terms of the matr ix equation 4.15 gives 

Xa ® Wu = I2 ® Za put t ing these two results together gives 

I2 ® Zu — 1 2 <8> Zjj and Xu <g) H^,- = A ^ ® W}j iJ = l---N. 

By comparing w i t h equation 4.14, and bearing in mind that the 1 2 ® Za and the 

Xa®Wa terms act on the quarks, (the Yu and Vu terms act on the leptons) and that 

the subscript i is a generational index, i t can easily be seen that the strong force 

acts in the same way on each generation of quarks. Hence the proof of statement 

(3). 
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4 o 4 Poincare Duali ty and the Weak Force 

So, i t has been shown that given the weak force the Poincare duality condition 

constrains the strong force to be vectorial. A n interesting and obvious question of 

course is does the converse statement hold? That is, given the f o r m of the strong 

force that occurs in the standard model is the weak force constrained to be parity 

violating? At first glance the answer to this question appears to be no since for a 

vectorial strong force the second Poincare duality condition 4.2 is t r iv ia l ly satisfied 

for any representation associated to the weak force and the remaining constraint 4.1 

is not restrictive enough to constrain the weak force to be pari ty violating. 

However there is a th i rd Poincare duality condition which was not exploited in 

the previous calculations of this chapter. This constraint has been examined by 

Testard [19] and found to rule out the possibility of a right handed neutrino in the 

standard model. (This proof holds for any number of generations of fermions and 

assumes, apart f r o m the right handed neutrino, the usual particle spectrum and the 

usual f o r m of the weak and strong forces). I f Poincare duality is expressed in terms 

of K theory the th i rd Poincare duality constraint for a f ini te algebra can be wri t ten 

[26] as the requirement that the map 

( p t , P j ) ^ T r ( T X ( P l ) J X ( p 3 ) J ^ (4.17) 

is nondegenerate, where pi and pj are generators of the K theory group KQ{AF) of 

AF- For the algebra of interest in the standard model, namely AF — IH©C©M3((D), 

the K theory group is K0(AF) = 2 © Z © 2 . Let the generators of K0(AF) be 3 

Pi = 1(D P2 = 1 H P3 = e 

3 in [26] a different basis for the generators is used namely 

Pi = ( - l < c ) © e p2 = l<c © IJH P3 = l c 

this will not affect the calculations of whether or not the map 4.17 is invertible. 
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w i t h e 

I) 

For example, consider the representation A(g,c, in) = \w(q,c,m) © Xs(q,c, in) of 
AF = H 0 C © M3(<C) wi th g e l , c £ ( C and in G M 3 ( C ) . 

1 3 

\w(q,c,m) 
ch 

Xs(q,c,m) = 

I2 ® m 

l 2 c 

I2 <8> m 

In this representation 

A(p 2 ) 

A(P3) 

r 

(4.18) 

< / i a f l f (0 ,0 , l 6 , l ) © d i a f l r ( 0 , l 2 , 0 , l ) 

d i a f l r ( l 6 , l 2 , 0 , 0 ) © diag(0,0,0,0) 

dm#(0, 0,0,0) © diag{\2 ® e , 0 , 1 2 ® e,0) 

diag(-l6,-12,16,1) © diag(-l6,-12, le, 1) 
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then, by 4.17 

- 7Y(0,0 ,0 ,1) © ( 0 , 0 , 0 , 1 ) 

= 2 

(p2,p2) = T r ( 0 , 0 , 0 , 0 ) © ( 0 , 0 , 0 , 0 ) 

= 0 

(P3,Ps) = Tr(0, 0 , 0 , 0 ) ® ( 0 , 0 , 0 , 0 ) 

= 0 

( P l , p 2 ) = 7 Y ( 0 , 0 , 0 , 0 ) e ( 0 , - l 2 , 0 , 0 ) 

= - 2 

(P!,p 3 ) = 7 Y ( 0 , 0 , l 2 ® e , 0 ) © ( 0 , 0 , 0 , 0 ) 

= 2 

( p 2 , p 3 ) = 2 > ( - l 2 ® e , 0,0,0) © (0,0,0,0) 

= - 2 

where (a,b,c,d) denotes the mat r ix wi th diagonal entries (a,b,c,d). 

So the matr ix whose i t h — jth entry is (pi,Pj) is 

2 - 2 2 

- 2 0 - 2 -

2 - 2 0 

The determinant of this matr ix is non-zero so the representation 4.18 in this example 

satisfies the th i rd Poincare duality condition 4.17. 

The aim then of the following calculation is to see, given the algebra represen­

tat ion associated to the strong force, what constraints the three Poincare duality 

conditions place on the fo rm of the weak force representation. Firs t ly a particle 

spectrum w i t h no right hand neutrino is considered and then a particle spectrum 

including a right hand neutrino is considered. 
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Calculations (no right handed neutrinos) 

The strong force representation (no right handed neutrino) is therefore taken to be 

the usual strong force representation of the non-commutative standard model 

\s(q,c,m) = 

I2 <8> m 

ch 

I7 ® m 
q e M , c G C , m G M 3 ( C ) . (4.19) 

The first Poincare duality condition 4.1 immediately constrains the weak force rep­

resentation to be block diagonal 

\w(q,c,m) 

A 

B 

C 

D 

The possible options for A, B , C and D are listed below, [q,c] denotes the block 

diagonal matr ix 
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A B C D 

I I2 ® m l 2 c I2 0 m c 

I I I2 ® m l 2 c g ® I3 c 

I I I I2 ® m l 2 c c l 6 c 

I V I2 ® m q I2 ® ™ c 

V 1 2 ® m q g ® l 3 
c 

V I 12 ® "7 q c l 6 c 

V I I g ® 1 3 Uc I2 ® m c 

V I I I 9 ® 1 3 Uc g ® I3 c 

I X g ® 1 3 he c l 6 c 

X g <8> I3 q I2 ® rn c 

X I g ® 1 3 q g ® 1 3 
c 

X I I g ® I3 q c l 6 c 

X I I I c l 6 Uc 1 2 ® m c 

X I V c l 6 Uc q ® I3 c 

X V c l 6 Uc c l 6 c 

X V I c l 6 q I2 ® c 

A B c D 

X V I I c l 6 q g ® I3 c 

X V I I I c l 6 q C\Q c 

X I X U ® [q,c] i 2 c 1 2 ® m c 

X X U ® m Uc U ® [g, c] c 

X X I U ® [g,c] Uc I2 ® [g, c] c 

X X I I I2 ® [g,c] Uc g ® l 3 
c 

X X I I I I2 ® [g,c] Uc C l 6 c 

X X I V I2 ® [g,c] q l 2 ® [g,c] c 

X X V I2 ® [g,c] q I2 ® m c 

X X V I I2 ® m q U ® [g, c] c 

X X V I I I2 ® [g, c] q g ® l 3 
c 

X X V I I I 1 2 ® [g,c] q cle 
c 

X X I X g ® l 3 Uc U ® [g,c] c 

X X X g ® I3 q I2 ® [g,c] c 

X X X I c l 6 Uc 1 2 ® [g,c] c 

X X X I I c l 6 q U ® [g, c] c 

Note: A shorthand has been employed in the above list of weak representations. l 2 c 

(in the B column) denotes any one of the four possible algebra representations of (D 

c c c 
or 

c 

c c c c 

Similarly c ( in the D column) denotes c or c and IQC ( in the A and C column) denotes 

any one of the twelve matrices of the fo rm k ® I3 or I2 ® h where k (resp. h) is a 

2 x 2 (resp. 3 x 3 ) matr ix w i t h diagonal entries consisting of either c or c. I2 ® m , 

q, q ® 1 3 and [q,c] (columns A , B and C) similarly denote 1 2 ® m or 1 2 ® m ; q or 

g; g ® 1 3 or g ® 1 3 and 
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or 

I t is possible to use this shorthand because we are only interested in whether or 

not a representation is ruled out by the Poincare duality conditions. Consider the 

c 
four 2 x 2 matrices wri t ten above as l 2 c . I f a weak representation containing 

c 

fails to commute w i t h the strong representation (that is violates the first Poincare du­

ali ty condition 4.1) then replacing wi th or 

c c c 
by 

c c c 

w i l l not produce a weak representation that commutes wi th the strong representa­

t ion. Similarly whether or not an algebra representation violates the th i rd Poincare 

duality condition 4.17 w i l l not be affected by replacing 

or since all the generators calculated are real. The second Poincare dual­

i ty condition 4.2 does not play a role in these calculations since i t is t r iv ia l ly satisfied. 

So, 'approximating' the four matrices 
c c c c 

and 
c c c c 

by in the following calculations w i l l not result in a representation that 

does satisfy Poincare duality being ruled out as not satisfying the Poincare dual­

i t y conditions. However i f a representation containing e l 2 does satisfy al l three 

Poincare duality conditions i t is not necessarily the case that replacing 

by or w i l l result in a representation that satisfies 

Poincare duality (at this stage the three other options w i l l have to be checked by 

hand). 

Of the th i r ty- two (69312 when the shorthand is expanded) options listed all but 

four (3 x 2 1 0 when the shorthand is expanded) ( I X , X I I , X I V and X V I I ) are ruled 
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out by one or more of the Poincare duality conditions. Note that al l of the allowed 

weak representations are vectorial. So, given the strong force representation 4.19 

the conditions necessary for Poincare duality constrain the weak force to be pari ty 

violating. 

Calculations (right handed neutrino included) 

Next the analysis is repeated but this t ime including a right handed neutrino in the 

particle spectrum so that the algebra representation associated to the strong force 

is 

Xs(q,c,m) = 

I2 <8> m 

ch 

m 

ch 

? e l , c e C , m e M3((D). (4.20) 

There are sixty-four (207936 i f the shorthand detailed above is fu l l y expanded) 

possible weak representations acting on a particle spectrum w i t h a right handed 

neutrino. Everyone of these is ruled out by at least one of the three Poincare duality 

conditions. So, the rather strong conclusion can be reached that i f the strong force 

representation is of the fo rm 4.20 (as in the standard model) allowing for a right 

handed neutrino in the particle spectrum then a weak representation of any fo rm 

cannot be constructed that w i l l satisfy the Poincare duality conditions. 

4.5 Poincare Duality in a 'General' Standard 

Model 
I n section 4.3 (resp. 4.4) the representation associated to the strong (resp. weak) 

force in the non-commutative standard model was assumed. In this section neither 

representation is assumed to see i f i t is s t i l l possible in this more general model to say 

anything about the relationship between the chiral structure of the two forces. This 

work is done as a precursor to research on the much harder question of whether or not 
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any statements can be made about the chiral structure imposed by Poincare duality 

in a general non-commutative Yang-Mills model. I f nothing can be said about 

the generalised standard model then i t follows that attempts at making statements 

about a general Yang-Mills model w i l l be fut i le . 

The questions that are addressed in this section are 

1. Can any general conclusion be drawn about the necessity of having one force 

vectorial and one force parity violating? 

2. Is a lepton-quark asymmetry, as conjectured by Mar t in et al [26], necessary 

for the Poincare duality conditions to be satisfied? 

3. Is a left-right fermion asymmetry necessary for the Poincare duality conditions 

to be satisfied? 

Assumptions and Notation 

The most recent framework for the non-commutative standard model [8] as de­

tailed in section 3.4 is employed. The gauge group of the general standard model 

is taken to be, as usual, SU(2) x U(l) x SU(3) so AF is taken to be AF = 

IH © C © M 3 ( C ) . The particle spectrum (unless specified otherwise) is the usual 

one of UL, d^, v^, e^, up,, dn, en. However nothing is assumed about the weak and 

strong representations - tha t is nothing is assumed about the interaction between 

the electroweak and strong forces and the fermions of the model. Though i t is as­

sumed that \ w is associated to a different force to A s (as is the case in the standard 

model) . This is what is meant by the general standard model in this context. 

Calculations 

The three questions listed above are answered in turn . A l l details of the calculations 

are omit ted as they are very similar to those in section 4.3 and 4.4 

Question 1: 

A force is said to be parity violating i f its interaction w i t h left handed particles 

is different f rom its interaction wi th right handed particles. Because the particle 
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spectrum considered is asymmetric in left and right handed leptons (that is there 

is no right handed neutrino) i t is diff icult to define what i t means for a force to be 

vectorial on the leptons. So, in answering question 1, only the quark interactions 

are considered. 

I t is found that, in order to satisfy all three Poincare duality conditions, i t is 

necessary to have one force vectorial and one force parity violating. That is all 

combinations of the weak and strong force representations that correspond to both 

forces being vectorial or both forces being parity violating are ruled out by at least 

one of the three conditions. 

Question 2: 

In answering this and the following question the particle spectrum is altered f r o m 

the usual one to see i f their are any 'essential features' of the usual standard model 

particle spectrum that enable i t to satisfy Poincare duali ty. 

I t is found that lepton-quark asymmetry is not a necessary condition for the 

Poincare duality conditions to be satisfied. For instance the algebra representation 

\w(q,c,m) = 

q®h 
\ 

\s(q,c,m) 

UL<IL V r e R 

Is- ® m 

\ 

\ 

I 

satisfies all three Poincare duality conditions and acts on a particle spectrum of two 

leptons and two quarks. 
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Question 3: 

I t is found that left-right fermion asymmetry is not necessary for Poincare duality 

to be satisfied. For instance the representation 

uLdL uR eR 

\w(q,c,m) 

q® h 

uLdL uR eR 

Xs(q,c,m) 

li ® m 
\ 

m 

\ ) 

on the Hilbert space w i t h basis corresponding to two left handed fermions and two 

right handed fermions satisfies all three Poincare duality conditions. 

4.6 Conclusions 

I t can be concluded that, (assuming the particle spectrum UL, d^, VL, e^, UR, d R , e#) , 

a non-commutative Yang-Mills model w i th gauge group SU(2) x U(l) x SU(3) is 

constrained to have one force vectorial and one force parity violating. I t can also be 

seen that i t is impossible to bui ld any model that includes the right handed neutrino 

in the particle spectrum (assuming the usual fo rm of the strong force). 

From these calculations i t can be seen that there are deep and intr iguing links be­

tween the geometric structure of the non-commutative standard model and its chiral 

structure. This is in accordance w i t h other observations about the non-commutative 

standard model which place its chiral structure 'centre stage'. That is the chiral 

structure is an integral part of the non-commutative standard model - i n complete 
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contrast to the usual formulation of the standard model where i t is something of a cu­

rious anomaly. I t can be argued that the discrete structure of the non-commutative 

manifold used in building the non-commutative standard model (which is directly 

linked to the existence of the Higgs sector) is related to the chiral structure of the 

standard model. This is perhaps most clearly seen in the non-commutative Glashow-

Weinberg-Salam model where the left handed fermions can be interpreted as being 

on one sheet of the manifold (fibred over by SU(2)) and the right handed fermions 

on the other (fibred over by U ( l ) ) . The l ink between the chiral structure of a force 

and whether or not its gauge group is broken also supports the notion that chirality 

is a fundamental feature of the non-commutative standard model . 

I t would be interesting, given more t ime, to consider what constraints Poincare 

duali ty places on the chiral structure of a general non-commutative Yang-Mills 

model. 
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Chapter 5 

Noe° Commutative Geometry and 

the Ueimodular i ty Condit ion 
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S o l Summary of this Chapter 

I n a non-commutative Yang-Mills model the gauge group G is obtained as the group 

of unitary elements of the algebra A describing the non-commutative manifold: 

G = U(A) = {a | a*a = aa* = 1} . 

For the standard model we require this gauge group to be SU(2) x 17(1) x SU(3). 

The group SU(2) can be obtained as the group of unitaries (unitary elements) of 

the algebra of the quaternions HI, the group U ( l ) as the group of unitaries of the 

algebra of the complex numbers C but SU(3) is the the group of unitaries of no 

algebra. The nearest group that can be obtained is U(3) ( f rom the algebra Ma((D)). 

So, building a Yang-Mills model over the non-commutative manifold described by 

the algebra A = C ° ° ( M ) <g> (Hi © C © M 3 ( C ) ) yields a Lagrangian w i t h gauge group 

G = SU(2) x U(l) x U(3). Traditionally in the non-commutative standard model 

[7] the group U(3) is broken down to SU(3) essentially by ident i fying the U ( l ) 

component wi th in the U ( 3 ) 1 w i t h the U ( l ) of hypercharge. To be more specific, the 

subgroup U of G° (the connected component in G containing the ident i ty) is defined 

by 

U:={g = ex€ G% tr[A(x)} = 0 } , (5.1) 

where A(x) is the restriction of Xw(x) ffi Xs(x) to the particles. This, when applied 

to the standard model gauge group gives U — SU(2) x (7(1) x SU(3) due to the 

resulting condition trAs = A-i where A% is the U(3) gauge boson and A% is the U ( l ) 

gauge boson. This is known as the unimodulari ty condition. 

The unimodulari ty condition whilst being perhaps the most natural and simplest 

method of reducing the gauge group is not the only one. The more general definition 

of U as 

U := {g = ex € G\ tr[A(xT)] = 0} (5.2) 

xat the level of Lie Algebras u(3) = su(3) ® u(l) 
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where T = 
T 

T 

\lOL 

a e C 

also yields the required gauge group U = SU(2) x U(l) x 5*t/(3) when applied to 

the standard model but this t ime via the constraint TrA3 = aA2. And , crucially, 

while 5.1 gives the correct hyper charges namely 

UL d L v\ e L UR £R 

1/3 1/3 -1 -1 4/3 -2/3 -2 

5.2 gives the more general (and for the quarks incorrect) hypercharges 

UL d L v\ eL UR dR e# 

a/3 a/3 -1 -1 l + a/3 - 1 + a/3 -2 

Such an approach is not ideal and could be considered to be rather ad hoc. I t 

would be preferable for the gauge group of the model to be SU(2) x U(l) x SU(3) 

f r o m the beginning or at least that there was a unique method of reducing the gauge 

group f r o m SU{2) x 17(1) x U(3) to SU(2) x U(l) x SU(3) that also gave the required 

hypercharges. 

E Alvarez et al [24] have argued that the unimodulari ty condition is equivalent 

to anomaly cancellation. They have shown that given the fermions i n the SU(2) 

and SU(3) representations of the standard model (that is the left handed quarks in 

2-su(2) x 3.sc/(3) t n e r ight handed electron in l_su(2) x lsi7(3) etc.) then the requirement 

of anomaly cancellation exactly leads to the desired fermion hypercharges. 

In this chapter an alternative approach to the unimodulari ty condition is con­

sidered. This approach (discussed in section 5.2) is based on an idea of Scfnicker 

and leads to an extra gauge boson. The calculations in this section were done w i t h 

Schucker and Carminati . 
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Section 5.3 examines the unimodularity condition within the recent Chamseddine-

Connes model. Section 5.4 is a short conclusion. 

5.2 Fifth Force 

One possible way round the problem of the unimodularity condition is to choose 

not to break down G = SU(2) x U(l) x U(3) but instead to postulate a ' f i f th force' 

associated with the extra U( l ) factor. The purpose of this section is to examine 

the properties that such a fifth force would have and to see whether or not they are 

compatible with experimental data. 

Consider the subspace of su(2) ® © u(3) associated to colourless, neutral 

gauge bosons, this is spanned by three generators (iB, iW3, i Z x ) 

iB = gl 

iW3 = g2 

iZL = gz± 

0, 5, 

i /2 

V - i / 2 
0, 0 

where 

and 

v = 

w 

9(Nx + f try + f fry) 

Nx 

Nx + try 
Nx + \try + pry 

The positive real constant x and the N x N diagonal matrices y and y (with positive 

real entries) have arisen from z, the non-commutative coupling constant (described 

in section 3.3) 
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z /31 2 ® 1 3 

h <8> y 

z/312<8> 1 3 

x / 3 1 2 ® 1 3 

I2 ® y 
zs = 

x/n2 ® i 3 

iB and iVF 3 are the hypercharge and isospin generators respectively (iB is a linear 

combination of the two u(l) factors). The third generator iZx is associated with the 

additional U ( l ) gauge boson that is projected out by the unimodularity condition 

in the usual formulation of the non-commutative standard model. It too is a linear 

combination of the two u(l) factors. Rotating the basis of the (iB, iW3) vectors by 

the Weinberg angle 9w results in the basis (iQ,iZ,iZL) 

iQ 

( . 

—: e 

g2sin6u 

i/2 

/2 
\ 

-i/2 ) 
, \gicos6w, ^l3cosOv 

-i/2 
• 2 ' 6 X 3 

g2cosOu 

i/2 
\ 

cos26,. 
t/2 

\ 

-i/2 

-i/2 ) 

, -\gxsin()w, -^l3sin9v 

) 

, -\sin20w, —^l3sin20v 

and iZx as given above. 

In the usual formulation (iQ, iZ) diagonalises the mass matrix and is thus normally 
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associated with the physical bosons the photon and the Z boson respectively. How­

ever, since the %ZL boson couples to the Z boson this basis does not diagonalise the 

mass matrix if the iZL boson is included. The basis that does diagonalise the mass 

matrix is (iQ, iV, iX) . 

iV = gv 

( . 
i/2 

i/2 
X 1 1 

V = 

( »/2 

iX = gx ' 

L \ 

9(Nx + 3/Atry + 3/ttry) 

-i/2 

w = 
Nx + try 

Net Nx + l/2try + 3/2try 

and iQ as given above. 

Where the rotation matrix that has been used to rotate from the (iZ, iZL) to the 

(iV,iX) basis is 

R 
( 

\ 

-cosT —sinT 

-sinT cosT 

\ 
cosT = 9v wn I = 

iQ is the usual generator of U( l ) charge, it is vectorial and therefore (as expected) 

U(1)Q remains unbroken and the photon remains massless. Instead of the usual 

massive Z boson there are now two new bosons the V and the X. From the vectorial 

form of iV it can be seen that the V boson is massless, similarly because of the 

non-vectorial form of iX X is massive. To see if such a scheme is compatible with 

experiment it is necessary to calculate the mass of the X boson. 

Mass of the X Boson: 

Gauge boson masses come from the tr(DQfDQz) ter m in the (non-commutative) 

Yang-Mills Lagrangian, DQ = i$<d + AQ - QA (equation (72) [11]) 

1/2M2

X = tr([X{iX), G H A ^ X ) , S]zw). (5.3) 

X(iX),Q and zw are defined as follows 
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X(iX) = gx 

a <g) 1N <g) 1 3 

5 ® 1/v <g> 1 3 

0 = 

with a = 

0 

0 

MW <g> 1N) ® 1 3 

i /2 

- i / 2 
and = 

-u>i/2 

u>i/2 

0 

0 

0 

($ <g> 1 N ) M 9 ® 1 3 0 

0 {(t>®lN)Mi 

0 0 

Af/(0 ® ljv) ® 1; 0 0 

with $ 
02 01 

V -01 02 
0 

/ ^ 02 
the genuine Higgs doublet 

and the fermionic mass matrices Mq and M ; given by 

( • ( 
1 0 0 0 

Mg = 

\ 0 0 0 1 

M/ = 
0 0 

1 0 
® M e 

M„ = = CKM 

where for N=3 

mu 0 0 

0 mc 0 

0 0 m t 

Ca'M is the Cabbibo-Kobayashi-Maskawa matrix 

Vud Vus Vub 

Va Vcs Vcb 

V u Vts Vtb 

md 0 0 

0 ms 0 

0 0 m 6 

C KM 
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and 

m, 

z /31 2 ®lN®U 

Substituting these into 5.3 gives 

m. 

x/312 ® 1/v ® 1 3 

with y = 

2/1 

2/2 

2/3 

where L = (m2

u + m2

c + m2)x + [\VudMd\2 + \VUSMS\2 + | V t t 6 M 6 | 2 + 1 V c d M d \ 2 + \VCSMS\2 + 

|y c fcM 6 | 2 + | K d M d | H | K s M s | H | K 6 M 6 | 2 ] x + m2y1 + m2y 2 + m2y 3 and k is the vacuum 

expectation value of the Higgs doublet. Similarly the mass of the W boson is found 

to be 

Ml k2Lg. 

so 

Mx = (l + w)^Mw. 

The coupling constants g2 and gx are chosen so that the field strength terms in the 

Yang-Mills Lagrangian are normalised to l/AF^F*1", this yields 

g2

 2 = Nx + try 

-2 w gx- = Nx + try + —{2Nx + try + Ztry) 

so 
= 2Nx + 3/2try + 3/2try 

Nx + l/2try + 3/2trij w~ 
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Now #r 2 = Nx + 2/9Nx + l/2try + 3/2try 

and # 3 2 = 4/3Nx 

so the mass of the X boson can be rewritten as 

{Sgl-gl)gl w- { } 

Experimentally the values of these coupling constants and the mass of the W boson 

are known [67] 

gx = 0.3575 ±0.0001 

g2 = 0.6505 ± 0.0007 

g3 = 1.207 ±0.026 

Mw = 80.22 ± 0.26GeV 

substituting these into 5.4 yields Mx = 91.69 ± 0.3GeV. 

X and V Coupling Strengths: 

The X and V boson couplings are 

g~2 = Nx + try + w2/2(2Nx + try + 3try) 

and 

g - 2 = 2Nx ± 3/2try + 3/2try + 2v2Nx/9. 

Rewriting these in terms of g\, g2 and gs yields 

2 = gM - i / 6 5 l

2 ) 
gKgl-i/GgD + ghi 

and 

2 g*2 

gv = 6(<h 2 + 92 2){9x2 + g22 - 1/65J 2) 

substituting in the experimental values for gi,</2 and g^ gives 

gx ~ 0.57 

9v ~ 0.03 

81 



So, if the unimodularity condition is not imposed the gauge boson spectrum consists 

of a neutral massless gauge boson with very weak coupling (gv ~ 0.03), a massive 

gauge boson (mass=91.69 ± 0.3GeV) with moderately weak coupling (gx ~ 0.57) 

and the usual photon, W± bosons and gluons. 

Comparison with Experiment: 

The boson spectrum calculated above is phenomenologically unacceptable. 

5.3 The Unimodularity Condition in the 

Universal Chamseddine-Connes Action 
Chamseddine and Connes argue [30] [31] that the physical gauge fields arise as fluc­

tuations of the metric where the metric is now defined as 

d{x>0 = sup{\X(a) - ((a) |: a e A; \\ [D, A(a)] | |< 1} (5.5) 

where D = D + A + JAJ\ A the gauge potential of the theory. Note the change from 

the previous definition 2.3. If the standard model is considered then the diagonal 

elements of the gauge potential restricted to the particles (before the unimodularity 

condition has been imposed) are 

A1 ® 1 3 

A, 

-A, 

1 2 ® A3 

-Aol 2J-2 

1 2 ® A3 

where iA\ is an su(2) valued gauge field, iA2 is a u(l) valued gauge field and iA3 is 
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a u(3) valued gauge field. So 

\-Ddiag |part ic /es ] \ \ 

[Ddiag\particles] 22 — ^ 

i$ ® 1 2 ® 1 3 + A1 <g> 1 3 + 1 2 

I2 + A 1 - A 2 I 2 

^2 
1 2 ® 1 3 + 

- A 2 

1 3 + 1 2 ® A 3 

Since the metric is determined by 5.5 it can be seen that removing any elements 

from Ddiag which commute with A(«) will not effect the metric of the theory as D 

enters as a commutator [D,X(a)]. So, replacing A3 (the u(3) valued gauge field) by 

Az (an su(3) valued gauge field) will not effect the metric as the u(l) component is 

proportional to the identity matrix. 

Chamseddine and Connes use this argument to give the unimodularity condition 

a more natural, less ad hoc footing. However it does not seem clear why such an 

argument would not also lead to the (phenomenologically unacceptable) removal of 

the u(l) field A2. 

5.4 Conclusions 

To date there is no satisfactory method for reducing the gauge group of the non-

commutative standard model. In previous incarnations of the non-commutative 

standard model [7] there were two unimodularity conditions (and a clumsy algebraic 

structure involving two algebras A and B that were Poincare dual to one another). 

This was later refined [8] to the current situation where there is just a single uni­

modularity condition (and a more economic algebraic structure with just one algebra 

^4). I t must be hoped that another fundamental revision of the non-commutative 

standard model removes this final unimodularity condition at some point in the 

future. 
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6 o l Summary of this Chapter 

This chapter explores the possibility of unifying weak SU(2) and electromagnetic 

U ( l ) in a single graded gauge group SU(2|1). The first section, section 6.2, surveys 

attempts at grand unification within the programme of non-commutative geometry. 

Section 6.3 contains introductory material about SU(2|1), or more precisely about 

its graded Lie algebra su(2/l), and explains the motivation of this chapter. Section 

6.4 discusses the construction of Hermitian representations. Section 6.5 contains 

the calculations aimed at unifying the weak and electromagnetic forces and the final 

section, section 6.6, is a conclusion. 

6.2 Grand Unification within Non-Commutative 

Geometry 

One very popular way to reduce the apparent arbitrariness of the standard model is 

to embed its gauge group SU(2) x U(l) x SU(3) into a larger simple gauge group with 

a single coupling constant -the concept of grand unification. A natural question to 

ask is "Can any of the Grand Unified models be realised within the Connes-Lott non-

commutative scheme?" The answer to this question [44][12] appears to be no. Below, 

the popular grand unified models [65] [66] are listed and reasons why they are not 

compatible with non-commutative geometry are outlined. It should be noted that 

this refers to a strict interpretation of the Connes-Lott Yang-Mills model building 

scheme. Other methods of constructing non-commutative models [28] [29] do permit 

grand unification. 

• SU(5) 

Minimal SU(5) is unobtainable as a Connes-Lott model since the fermions are 

required to sit in a 5 + 10 representation. Whilst the 5 is fundamental the 
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10 is not and, as already explained, in the Connes-Lott model all fermions 

appear in the fundamental representation. 

o SQ(10) 

SO(10) unification is ruled out by non-commutative geometry for two rea­

sons. Firstly, [29] [12] it is not possible to break the initial left-right symmetry 

(as required) in the non-commutative framework. Secondly as for SU(5) the 

fermions are accommodated in a non-fundamental representation. 

• E ( 6 ) , E(7 ) and E(8) 

Grand unification schemes have been proposed [66] based on the exceptional 

Lie groups E(6), E(7) and E(8). As explained in section 3.5 none of these 

are obtainable within the Connes-Lott scheme [13] as the exceptionals are the 

group of unitaries of no semi-simple algebra. 

• Unification by a Semi-Simple Group 

S U ( 4 ) P 5 x S U ( 2 ) L x SU(2)R 

This unification scheme is ruled out by non-commutative geometry [44] since 

it requires the generalised Dirac operator to contain Majorana mass terms 

which connect the particle and anti-particle sector. Such operators would 

violate the second Poincare duality condition. Furthermore the SU(4)psX 

S U ( 2 ) l X SU(2)p unified model is a left-right symmetric model and therefore 

not realisable within the Connes-Lott scheme. 

So, it can be seen that all popular grand unified theories based on simple gauge 

groups, and indeed the 'halfway house' of unification based on a semi-simple group, 

are ruled out by Connes-Lott non-commutative geometry. The aim of the chapter 

is to explore the possibility of a weaker model in which just the electromagnetic and 

the weak force are unified in a single group (the strong force is excluded) and to see 

if this is compatible with non-commutative geometry. 
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( 8 o 3 The Graded Lie Algebra Su(2/1) 

The Lie algebra su(2/l) is Z 2 graded. That is it has even generators (which close into 

themselves under commutation and therefore generate an ordinary Lie algebra) and 

odd generators (which close into the whole algebra under anti-commutation). In the 

case of su(2/l) there are eight generators. Four even ones, denoted Y, i = 1 • • • 3, 

which generate the underlying Lie algebra su(2)xu(l) and four odd ones denoted 

0 o , Q,'a a = 1,2. The commutation/anticommutation relations can be written as 

= iSijkh = l / 2 f t i 

[IuY] = 0 

[iiM = +1 /2 ( (7 1 ) 1 A [YM = n' a 

[/.-.na = -l/2{at)b2tt'b { 0 a , 0 a } = 0 

[hM = l /2 f t i { 0 a , fi(,} = 0 

[hM = - l / 2 i f t i = 0 

[hM = - l / 2 0 2 {KM} = 0 

[hM = - l / 2 f i 2 {"a,«'„} = h - i { - \ y i 2 

= -l/2iQ.'2 = i / 2 y + ( - i ) 6 / 3 

An irreducible representation (irrep) of su(2/l) has at most four su(2) x u(l) mul-

tiplets [55]. A l l finite dimensional irreps of su(2/l) contain a multiplet with isospin 

i and hypercharge y, at most one multiplet with isospin i — 1/2 and hypercharge 

y — 1, at most one multiplet with isospin i — 1/2 and hypercharge y + 1 and at most 

one multiplet with isospin i — 1 and hypercharge y. They split into five cases: 

1. the trivial one dimensional representation of su(2/l). 

2. a 4i + l dimensional representation with —y/2 = i > 0 containing the multiplets 

\y,i,h > and \y — 1/2,i3 >. 

3. a 4 i+ l dimensional representation with y/2 = i > 0 containing the multiplets 

\y,i,i3 > and \y + l,z - 1/2,i3 >. 
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4. a four dimensional representation containing the multiplets \y, 1/2, ± 1 / 2 > , 

|S/ — 1,0,0 > and \y + 1,0,0 > . 

5. an 8i dimensional representation with —y/2^±i containing all four possible 

su(2) x u(l) multiplets ie \y,i,i3 >, \y - l,i - 1/2,i3 >, \y + 1, i - 1/2, i3 > 

and \y, i — 1, i3 >. 

The special graded Lie algebras su(n/m) n > m > 1 (also denoted spl(n,m) in the 

literature) obey the condition of supertracelessness (the counterpart to tracelessness 

in the special Lie algebras su(nj). The algebra su(n/m) can be represented as the 

set of (n + m) x (n + m) matrices 

A 
a b 

c d 

a an nx n matrix, d an m x m matrix 

b an nx m matrix, c an mx n matrix. 

The Lie algebra consists of the diagonal block matrices 
a 0 

0 d 
and the odd sub-

space consists of off diagonal block matrices 

trace) is defined to be 

0 b 

c 0 
The supertrace (or graded 

str(A) = tr(a) -tr(d). 

More details of graded Lie algebras can be found in [51] [52] [53] [55]. 

SU(2\1) was first considered as a possible gauge group in the late 70's [45][46]. 

However gauging the odd sector of the group [50] leads to bosons with anti-commutation 

properties -a clear violation of the spin-statistics theorem. Attempts [47] [48] at 

avoiding this problem by introducing anticommuting supergroup parameters also 

led to the introduction of ghosts which could not be removed. So work on su(2/l), 

at least by physicists, was largely abandoned x unt i l recently when it was reintro­

duced by Coquereaux [39]. Interestingly Coquereaux et al and Ne'eman et al have 

1 w i t h the exception of Ne'email who continued to work in this field, see for example [56]-[59] 

88 



both studied su(2/l) in the context of non-commutative geometry. However the 

role that su(2/l) plays in their work is completely different from each other and 

completely different from the role that it will take here. 

Su(2/1) is of interest to particle physicists in general and non-commutative ge-

ometrers in particular for several reasons listed below. 

1. The Irreducible Representations 

The irreps of su(2/l) (as listed above) can accommodate all the particles of the 

standard model. If we take i—1/2 in case 2 a 3 dimensional representation with 

a doublet of hypercharge -1 (identifiable with the left lepton doublet (VL^L)) 

and a singlet of hypercharge -2 (identifiable with e#) is obtained. If we take 

y = l / 3 in case 4 an irrep containing a y = l / 3 doublet, a y=4/3 singlet and 

a y=-2/3 singlet is obtained. Which is suitable for describing the left quark 

doublet (uL ,d^) and the two right singlets UR and d#. Further generations 

of leptons and quarks can be accommodated by taking direct sums of these 

irreps. The gauge particles can be described by the supermultiplet of case 4. If 

y=0 and i = l then this multiplet contains an su(2) triplet of zero hypercharge 

(which can be identified with the gauge fields W i , W 2 and W 3 ) ; a singlet of 

zero hypercharge (identifiable with the gauge field B) and two doublets of 

hypercharge +1/2 and -1/2 (identifiable with the Higgs and Higgs conjugate 

fields respectively). The appearance of the Higgs boson in the same multiplet 

as the traditional gauge bosons is of course very reminiscent of the situation in 

non-commutative geometry. So, in summary all the particles of the standard 

model fit into three basic representations of one group 

/ \ 

e-L 

I \ 
UL 

dL 

UR 

\ D R ) 

B 
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as opposed to the usual inelegant formulation which fits the particles into nine 

representations of two groups 

2. The Indecomposable Representations 

In most Yang-Mills models extra generations of fermions are entered triv­

ially simply by tensoring by extra identical representations. This leads to La-

grangians in which the fermions just interact with other fermions of the same 

generation -mixing between generation (as observed experimentally) has to 

be added in by hand. Graded Lie algebras have some very interesting repre­

sentations that might yield more sophisticated methods of introducing extra 

fermionic generations that automatically lead to mixing between the genera­

tions [39]. These representations are called reducible indecomposable repre­

sentations. Unlike normal Lie groups not all reducible 2 representations of a 

graded Lie group are decomposable 3 . In particular there exists reducible inde­

composable representations that would be ideal for two (or three) generations 

2 A representation is said to be reducible if it is equivalent to a representation of the form 

3 A representation is said to be decomposable if it is equivalent to a representation of the form 

\ 

UR R 
d 

w B 

(Here W% i=1...3 is an su(2) triplet and <j> and 4>c are su(2) doublets). 

A(9) C(g) 
Dig) VoGG 

0 Big) 

A(g) 0 
Dig) VaGG 

0 Big) 
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of quarks. These representations are obtained by taking semi-direct sums of 

two (or three) copies of the 4 dimensional quark irrep previously described. 

Interestingly if we assume that there is no right handed neutrino then there 

is no similar indecomposable representation for the leptons that is this model 

cannot describe lepton mixing (unless there is a right neutrino) - i n agreement 

with experiment. 

3. Chirality 

The standard model fails to explain why the right handed particles are singlets 

under SU(2) whilst the left handed particles transform as doublets. In su(2/l) 

the chirality of matter is given by the grading of the Lie algebra and hence 

their different transformation laws are entirely natural. For example consider 

the lepton multiplet 
/ \ 

VL 

yeR j 
Its transformation as a fundamental representation ij) —>• £/?/> automatically 

leads to the correct (different) transformations for the left handed and the 

right handed particles. It should be noted that parity invariance is a funda­

mental feature of Yang-Mills models with su(2/l) gauge groups just as it is a 

fundamental feature of non-commutative Yang-Mills-Higgs models. 

For all these reasons SU{2\\) is interesting as a possible gauge group. In particular 

its use leads naturally to work [45] which it can be argued foreshadowed one of the 

major claims of non-commutative Yang-Mills models -the proposition that the Higgs 

field be regarded as a gauge boson. For this reason and because of the failure to 

incorporate any other unification scheme into non-commutative geometry I believe 

that it is worthwhile question to ask whether or not some form of unification can be 

achieved using su(2/l) within the context of non-commutative geometry. 
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( 8 o 4 Herirnltian Representations and the Quark 

Mel t ip le t 

Given the normal adjoint operation on the even elements of a graded Lie algebra 

there are two possible definitions of the generalisation of the adjoint operation to 

the odd elements [54] -the adjoint operation (denoted f ) and the graded adjoint 

operation (denoted \ ) . 

Defini t ion Adjoin t Operation 

A n adjoint operation in a graded Lie algebra L is a mapping 

L —> L 

A i—y A* 

such that 

1. the adjoint of an even (odd) operator is even (odd) 

2. (aA + bB)* = aA* + bB* 

3. ( A , B ) t = ( f l t , A t ) 

4. ( A f ) t = A 

where A and B are elements of L and a, b £ (D. 

Defini t ion Grade Adjoin t Operation 

A grade adjoint operation in a graded Lie algebra L is a mapping 

L —y L 

A t-> Ax 

such that 

1. the adjoint of an even (odd) operator is even (odd) 

2. (aA + bBY = aAt + bBt 
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3. (A, BY = ( - 1 ) ^ ( 5 * , A*) 

4. = ( - 1 ) 5 * A 

where A and B are homogeneous elements of L of degree 6A and 6B respectively and 

a,b £ €. 

This area is being explored because i t is necessary to have hermit ian operators 

in order that the physical transformations under SU(2|1) be unitary. 

The adjoint operator can be defined on the fundamental representation of su(2/l) 

i n the usual way 

/ / = / , y t = Y n\ = -n'2 ni = -sir n? = -n2 n? = 

and linear combinations of the odd operators taken so that all the generators are 

hermitian. 

However for the 4 dimensional representation (used i n model bui lding for accom­

modating the quarks) the situation is not so simple. To see why this is the case 

consider the odd generators in the 4d representation 

0 0 7 0 0 0 0 0 

0 0 0 0 0 0 7 0 
n2 = 

0 0 7 

0 0 0 0 0 0 0 0 

0 p 0 0 - £ 0 0 0 

0 0 0 e 0 0 0 0 

0 0 0 0 
n' -

0 0 0 — 6 

0 Q 0 0 a 0 0 0 

0 0 0 0 0 0 0 0 

a 7 = l / 2 + 2//2 0e = 1/2 - J//2. 

93 



Consider first the construction of the adjoint operator. The closure of the adjoint 

operation can be achieved in an infinite number of ways, or (upto positive real 

scalars) in two ways. The first of these two ways, such that 

is obtained by imposing 7 = a and f3 = — e which clearly leads to the requirement 

y > 1. The second way, such that 

= —O2 ^2 = —^1 ^2 = —^1 = —^2 

is obtained by imposing 7 = — a and (5 — e which leads to the requirement y < — 1. 

Neither of these choices of hermitian representation is suitable for describing the 

quarks since, as explained in section 6.3 i t is required that y = 1/3 in order that the 

decomposition of the 4 dimensional su(2/l) representation under su{2) x su(l) is 

such that the quarks can be accommodated. 

As i t is not possible to construct a suitable hermitian representation via the 

adjoint operation consider the possibility of constructing a grade hermitian repre­

sentation using the grade adjoint operation. I f we write a general operator in L in 

block diagonal mat r ix fo rm 

a b 

c d 

then the matr ix representation of A* is 

at _ c t 

6+ £ 

where f w i th in the bracket denotes normal hermitian conjugation of the matr ix . 

There are two possible choices of the parameters (a, /?, 7, e) in the 4d irrep to make 

the grade adjoint operation close into the generators. The first choice a = 7, I = (3 

leads to the following relations 

Vl\ = O2 = —^1 ^2 = ^1 = —^2 
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and to the restriction — 1 < y < 1. The second choice a = —7, e = —/? leads to the 

relations 

r i j — — ~ ^1 ^2 ~ —^1 Q\ — ^2 

and to the restriction y < — 1, 1 < y. The first of these choices is able to accommo­

date the quarks ( y = l / 3 ) however due to the grading i t is not possible to construct a 

grade hermitian representation. Therefore i t is not possible to chose a basis (in this 

example or in general) such that the odd generators are represented by self-grade-

adjoint operators that is such that A* = A or such that A* = ( — 1)SaA. I t can be 

seen f r o m condition (4) of the definition of the grade adjoint that i t is impossible to 

construct self-grade-adjoint odd operators. So for this reason the generalised adjoint 

(the grade adjoint) is not suitable for constructing physical models. 

This results of this section effectively rule out the 4 dimensional irrep as a suitable 

representation for the quarks. This result, though in i t ia l ly disappointing, is in fact 

in complete agreement w i t h non-commutative geometry which asserts that fermions 

must only be accommodated in the fundamental representation. And perhaps makes 

physical sense as an su(2/l) theory wi th quarks would mean quarks wi th no strong 

force. I t would be interesting to see i f any of the graded Lie algebras (such as 

su(5/2) or su(7/l)) which contain su(3)x su(2) x u(l) i n their underlying Lie 

algebra have a fundamental representation that can be made hermitian and which 

can accommodate all the leptons and quarks. 

6 o 5 Calculations 

Due to the unresolved spin-statistic problems incurred on gauging the f u l l su(2/l) 

algebra an alternative approach is proposed here. Only the even part (su(2) x 

u(l)) of the graded Lie algebra w i l l be gauged, invariance under the whole group 

w i l l be global. This is achieved wi th in the context of a non-commutative model 

by tensoring the finite algebra that is associated w i t h su(2) x u(l) by the inf ini te 
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space-time dependent algebra Ai = C°°(M) but not tensoring the finite algebra 

associated w i t h the odd sector of su(2/l) by Ai. So the K cycle w i t h which the 

model is bui l t is (A,H,D). The algebra A is as described above 

A = [C°°{M) ® (H-I © <D)] © M 3 ( C ) . 

The Hilbert space 7i is two copies of the leptonic Hilbert space (for convenience 

only one generation of leptons is considered) so 

H=H®H H = X 2 ( M ) ® ( ( D 2 © C ) . 

The basis of this Hilbert space is 

The generalised Dirac operator D is given by two copies of the usual generalised 

Dirac operator: 

D = D@D 

A is f a i th fu l ly represented on H by A 

/ / \ 
VL 

\ ) ) 

D = M 
' 0 N 

X(a) = 

f®q 

f ® c 

U ® m 

f € C°°(M, IR), 9 G H , c G (D, m G M 3 ( C ) . 

The global invariance group is reduced f r o m U(3) to 517(211) by imposing super-

tracelessness. The fundamental representation of su(2/l) is worked w i t h . Note that 

the basis of the odd generators has been changed f r o m that in section 6.3 so that 
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all the generators are self-adjoint: 

0 1 0 0 —i 0 1 0 0 

1 0 0 h= \ i 0 0 / 3 = \ 0 - 1 0 

0 0 0 0 0 0 0 0 0 

Y 

1 0 0 0 0 1 0 0 0 

0 1 0 fti = 0 0 0 n2 = 0 0 1 

0 0 2 1 0 0 0 I 0 

0 0 —i 0 0 0 

0 0 0 n 2 = 0 0 —i 

i 0 0 0 i 0 

The Fermionic Lagrangian 

A one f o r m in Q,A has, as usual, the f o r m p — a§dua\ 

U(p) = - z A ( a 0 ) [ A A ( a 1 ) ] 

h(i$h)®qoq\ 75/0/1 ® go(ci - qi)M 

= ~ % Ts /o/ i ® M t c 0 ( g i - c 1 ) fo{i$h)®coCl 

0 0 

0 

0 

75 ® m0[(i,,mi\ 

where n 

—t 

A1 ibhM 0 

7 6M tflf A2 0 

0 0 75 ® C 

We wish to be valued in the graded Lie algebra su(2/l) 
0 M 

M f 0 

so we impose anti-hermiticity and supertracelessness. That is impose A\ = Ai, 

A\ = A2, = C, g = and Str(C) — 0. A^ and A2 are genuine gauge fields (they 

are space-time dependent) but C is not. Constructing the fermionic Lagrangian as 
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usual via 

yields 

CF = / 2 ( 0 ® l 2 + A l ) / L + e ^ ^ + A 2 ) e f l + / 2 ( 7 5 $ M ) e R + e l l ( 7 5 M t $ t ) / L + ^ ( 7 5 ( 8 ) C ' ) 1 / ) . 

Since C is space-time independent i t is an non-dynamical field ( i t has no kinetic 

term). Differentiat ing CF w i t h respect to C yields the constraints 

VLI&L + e / j7 5 eR = 0 

eil^e-L + e / j 7 5 e R = 0 

= 0 

= 0 

= 0 

= 0 

= 0 

= 0 

(6.1) 

These constraints are automatically satisfied once the fermionic Lagrangian has been 

Wick rotated into Minkowski space. W i t h the physical field assignments 

At = -l/2ga-W» 

\ 
At = -g'B» 

( 
$ = , 0 

02 0 1 

^ - 0 1 02 j 

this leads to the fermionic Lagrangian 

0i 

y 0 2 / 

the genuine Higgs doublet, 

+ m e / L 7 5 0 e f i + m e e ^ 7 5 0 t / L -
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The Yang-Mills Lagrangian 

To calculate the Yang-Mills Lagrangian i t is necessary to calculate the curvature 6 

of the one f o r m p using 11(0) = II(/5 2) + H(dp): 

IL(<Lp„) = -[D,\(a0)][D,\{a1)] 

giving 

n ( M n = +{0fo)(0fi)®qoqi + 

- / o / i ® (c0 - qo)MM\qv - cx) 

n(du/o)i2 = - W o ) 7 5 / i ® ? o ( c i - f t ) M + 

-75/0(^/1) ® (co - 9o)c xM 

n(4/o)i3 = 0 

n(du/£>)2i = - 7 5 / o W i ) ® M t ( g 0 - c 0 ) g i + 

- ( ^ ^ s / ^ M t c o ^ - d ) (6.2) 

n (c / u / 9 ) 2 2 = + ( # / 0 ) ( # / i ) ® c t ) C l + 

- /0 /1 ® M\q0 - c 0 ) ( C l - 9 l ) M 

n ( M 2 3 = 0 

n(d u^) 3i = 0 

WupU = 0 

n ( d u / o ) 3 3 = -\A®[n,mo[[n,m]\ 
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and U(p2) = -X(a0)[D,\(a1)]X(a0)[D,X(ai)] giving 

r V ) n = +fo(0fi)fo(0fi)®qoqiqoqi + 

- f o f i foil ® 9o(ci - ? i ) M M t c o ( ? i - ci) 

n(/) 2)i 2 = - / o W i ) 7 5 / o / i ® ? o 9 i ? o ( c i - 9 i ) M + 

-7 s /o / i / o (^ / i ) ® 9o(ci - gi)coC!M 

n(p 2 ) 1 3 = 0 

n(/9 2 ) 2 i = -~f5fofifo{i$fi)®M^c0{ql-c1)qoq1 + 

-fo(i$fihsfofi <8> M t C o C a c 0 ( g i - C l ) (6.3) 

n(/> 2) 2 2 = +/o(#/i)/o(#/i) ® c b c 1 c 0 c 1 + 

- /o / i /o / i ® M t C o ( ? i - ci)</ 0(ci - g i ) M 

L V ) 2 3 = 0 

n ( / J 2 ) 3 1 = 0 

L V ) 3 2 = 0 

n(/9 2 ) 3 3 = - i 4 ® c 2 . 

Now i t is necessary to quotient by the graded differential ideal I I ( J 2 ) . H(J2)ij 

i, j = 1 • • • 2 is as given in Section 3 equation 3.2 (so i t is possible to use an extension 

of the map P (eqn. 3.3) calculated explicit ly there), I I ( J 2 ) 3 3 is of the f o r m 

n ( J 2 ) 3 3 = 1 4 ® m me M 3 ( € ) 

and all the other n(J 2),-j are zero. So, applying the quotient map P to U(0) yields 
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n(0)n 

11(0)12 

n ( f ) 1 3 

n(0) 2 1 

n(0) 2 2 

n(0 ) 2 3 

n(0) 3 1 

n(0) 3 2 

n(0 ) 3 3 

- 1 / 2 7 ^ 7 ^ ^ - ( $ t $ _ 1 ) M L + I l £ ^ i l ( $ t $ _ 1) 

= 0 

- 1 / 2 Y Y ^ - M t ( $ t $ _ i ) M + 2

T M M ^ [ $ t $ _ 1] 

0 

0 

0 

0 

22 

where 

/» + 1 

M L : = 1/2 

mem' 

mTml 

and the identi ty MM^ = [I — a 3 ] ® has been used. I t can be seen that there is 

no contribution f r o m the odd sector of su(2/l) to the Yang-Mills Lagrangian. The 

Lagrangian is calculated to be 

CYM = Ng^W^ • + 2Ng'2BFLL/B^ + lQtr{ML) ( D ^ ) t ( J D ^ ) + 

+ 6 [ t r N ( M l ) - [(M)2 _ 2^cf> _ 1] 

where 

W;u = d»Wl-d„W^-gEl]kWlWk

v 

B du.Bu — duBn 

= id^fy + l/2g'Bll<f> — Xjlga • W^tj). 
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Gauge Invariance 

The calculated Lagrangian CYM + CF is invariant under an su(2/l) transformation 

where the even part is local and the odd part is global that is i t is invariant under 

ip i—^ utp 

A i -> uAv) + u [ D , u f ] 

where u = e

ta(x)-I+lP(x)y+lS-^ (note that a and /? are space-time dependent and that 

the 8 are not) . However this transformation needs to be examined more carefully. 

Consider the infinitesimal transformation of A. Denote the generators of su(2/l) by 

Ki and the parameters of the transformation by tl then 

K* = T i = 1 - - - 3 V = a{(x) i = 1 - - - 3 

KA = Y t 4 = P(x) 

K5'6 = tth2 V = 8> j = 5 • • • 8 

k7'8 = n ' l i 2 

where in this abbreviated notation u is wri t ten u = elK t . Then, to first order in t , 

A • K h-> A • K + [iK • t, A • K] + [iK • t, D] 

which w i l l not close into the graded Lie algebra for all K% since odd generators close 

under anticommutation not commutation. 

Generalising slightly and replacing the commutator [ , ] by a generalised bracket 

1,1 
[even, evenj : = [even, even] 

[even, odd] : = [even, odd] 

[odd ,odd] : = {odd ,odd} 

leads to a transformation 

A • K i-> A • K + [ iK • t, A • K\ + [ iK • t, £>] 

which closes under the algebra. I t can be shown, (using the constraints 6.1), that 

the fermionic Lagrangian is invariant under this transformation. However i t does 
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not appear to be possible to show that such a transformation forms a representation 

of the graded Lie algebra. 

6 « 6 Conclusions 

I t does not appear to be possible to construct a non-commutative Yang-Mills model 

based on su(2/l) . The problems met are associated wi th using a graded gauge 

group rather than w i t h non-commutative geometry. 
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Chapter 7 

Coimelunsioiri 



A t low energies non-commutative geometry appears to be an extremely satisfactory 

tool for Yang-Mills model building. I t provides a beautiful , geometric explanation 

for many features of the standard model. The Higgs particles are described ge­

ometrically as the gauge bosons associated w i t h gauging the discrete structure of 

space-time. Charge conjugation (and its non-commutative generalisation) appears 

naturally, in fact is essential, for a complete description of smooth manifolds via 

Poincare dual i ty . This in tu rn forces the algebra to have a bimodule structure -

perfect for accommodating the strong force. I t has also been shown that the chiral 

structure of the standard model has a deeply geometric origin and that this in tu rn 

is v i t a l to the process of spontaneous symmetry breaking since the existence of a 

Higgs sector is a consequence of parity violation i n the model. 

A t higher energies non-commutative physical models run into many problems. I t 

is widely believed that the standard model is only a low energy approximation to a 

' t rue ' description of particle behaviour. However the very restrictive nature of non-

commutative geometry makes i t strangely incompatible w i th most higher energies 

theories. No grand unified theory seems to be realisable wi th in the non-commutative 

geometric program. Similarly the high energy unification of the standard model and 

the Einstein-Hilbert action [30][31] contains many problems. Whils t conceptually 

the unification of gravity and gauge theories on a geometric footing is very pleasing 

the model does have its faults. First and foremost the theory is non-unitary [31], 

its numerical prediction are untenable [21] and of course the action is a Euclidean 

action. 

So non-commutative geometry is i n quite an unusual position vis-a-vis physics. 

I t provides a highly convincing description of the standard model and is a great 

improvement on the usual formulation. However extending the model in the usual 

ways famil iar to physicists appear very diff icul t . Perhaps this is a strong point of 

non-commutative geometry, that i t w i l l only admit a very small number of theories, 

that the correct high energy description has yet to be formulated and that non-
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commutative geometry w i l l indicate the way forward to such a theory. Chamseddine 

and Connes suggest that one interpretation of the problems at higher energies could 

be that the concept of space-time as a manifold may be inadequate at small distances 

and that this would also need to be described by a non-commutative algebra. 
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Appendix A 

Definitions and Conventions 

A . l Definitions 

The following definitions are taken f rom [62], [61] and [70] 

» Banach Algebra 

A Banach algebra is an algebra A that is also a Banach space (completely 

normed space) wi th respect to the norm || • || that satisfies 

i ) the multiplicative inequality || xy \\<\\ x |||| y || for all x,y i n A 

i i ) i f A contains a unit e then )| e | | = 1 

• B * Algebra 

A B * algebra is a Banach algebra A w i t h an involution * 

* : A —> A 

x i—y x* 

that satisfies || xx* || = || x | | 2 for all x in A 
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C* Algebra 

A C* algebra A is a B* algebra in which the involution is the adjoint of a 

matr ix or an operator on Hilbert space 

Semi-Simple Algebra 

A Banach algebra A is said to be semi-simple i f the intersection of the kernels 

of all irreps of A is null . A l l B* algebras are semi-simple [71] 

Symbol of a Differential Operator 

Consider D a differential operator mapping between sections of vector bundles 

(E and F) over a manifold M of dimension d 

D : T(M,E) -» r (M, F). 

Let U be a chart of M whose local co-ordinates are denoted x M over which E 

and F are t r iv ia l . Adopting the notation of [61] we wri te 

T = ( ^ i , / i 2 , . . . , ^ ) n 3 £ 2 , m > 0 

\T\ = /ii + n2 + ••• + y-d 

n _ d\T\ _ ()>'l H'2 * *>M 
U T - dxT ~ d(x^...d(x%-

Then, i f the dimension of E is k and the dimension of F is k ' the most general 

f o r m of D is 

[Ds(x)]a = E E AT

a

aDTsa(x) 1 < a < k' 

l<a<k \T\<N 

where s(x) € T ( M , E) and N is the order of D . The symbol of D is then defined 

to be the k x k ' matr ix 

\T\=N 

where if is a real d-tuple £ = (i\,£i,---,£d) a n d £T is defined to be 

£T - t f 1 + t f 2 + ••• + &• 
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o El l ip t ic Operator 

A differential operator D is said to be elliptic i f the symbol of D is invertible 

for each x € M and each £ <E Md - { 0 } . 

o Kernel and Cokernel of an Ell ipt ic Operator 

The kernel and cokernel of an elliptic operator D 

D : T(M,E) -* T(M,F) 

are defined as follows 

kerD := {s e F(M,E)\Ds = 0} 

cokerD := 

o Fredholm Operator 

A n elliptic operator D is said to be Fredholm i f ker D and coker D are f ini te 

dimensional. 

A. 2 Conventions 

A.2.1 Gamma Matrices 

Throughout this thesis the following representation of the Euclidean gamma matrices 

has been used: 

7° = -I® at 

7* = <7j ® <r2 

W i t h this notation the 7 M and 7 5 are self-adjoint and C the charge conjugation 

mat r ix is C = 02 <S> C3 . 
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A .2.2 Involutions 

The following notation for involutions has been adopted 

a denotes the complex conjugate of a 

A} denotes the hermitian conjugate of A 

x* denotes a general involution on x. 
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