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A B S T R A C T 

The L D 5 0 of 10-day-old blowflies differed significantly in two different stocks, and 

were found to be 38.12 ± 0.07°C for the Durham stock and 40.8 ± 0.18°C for the 

Cambridge stock. 

A transitory increase in heat resistance occurred following the exposure of adult 

blowflies to a sublethal heat shock. This thermotolerance was apparent l h after the 

application of heat shock, was maximal 2-3 h later and had disappeared after 6 h. 

Oxidative phosphorylation by flight muscle mitochondria from non-thermotolerant 

control flies was impaired by an L D 5 0 dose in vivo. Respiration using glycerol-3-

phosphate was more heat sensitive than that with pyruvate plus proline. State I I I 

respiration was markedly inhibited, acceptor control (RCI) was lost with (G 3P) as 

substrate and so ADP:0 ratios were not measurable; whereas with pyruvate + proline as 

substrates, although State I I I respiration was inhibited by 50% and acceptor control was 

significantly reduced, ADP:0 remained measurable. Uncoupling of oxidative 

phosphorylation was obvious only with pyruvate + proline where State IV was 

significandy increased. 

The development of thermotolerance protected oxidative phosphorylation against 

heat damage. With G-3-P respiration State I I I was largely restored and acceptor control 

was not significantly different from controls, but ADP:0 remained lower. With pyruvate 

+ proline as substrates State I I I respiration was inhibited, but State IV was also lower 

without evidence of uncoupling of oxidative phosphorylation. Acceptor control was 

restored to control levels but ADP:0 values were lower. The lower ADP:0 ratios 

indicate some impairment of mitochondrial function occurred. 

The effect of experimental temperature in vitro on respiratory performance of 

mitochondria from non-pretreated control and thermotolerant L D 5 0 flies was also 

determined between 19 and 39°C. State I I I respiration was markedly temperature-

dependent in mitochondria from non-pretreated control flies with both substrates; it was 

maximal at 24-29°C and fell progressively at higher measuring temperatures. In 

mitochondria from thermotolerant flies, State I I I respiration was less temperature 
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dependent with both substrates, but this effect was more marked for G-3-P. The effect of 

experimental temperature on State IV respiration was similar in mitochondria from non-

pretreated control and thermotolerant L D 5 0 flies with the same substrate, but differed 

between the two substrates. With G 3P as substrate, respiration rate rose with 

temperature with a Q 1 0 of approximately 1.5; however, with pyruvate + proline as 

substrate, the trend was for respiration rate to fall as experimental temperature rose. 

Differences in the temperature sensitivities of mitochondria from control and 

thermotolerant flies, in terms of acceptor control, were found. Using G-3-P, acceptor 

control was lost in mitochondria from control flies above 29°C, but was still measurable 

at 34°C in mitochondria from thermotolerant flies. With pyruvate + proline as substrate 

acceptor control was demonstrable in mitochondria from both non-pre-treated control 

and thermotolerant flies at all experimental temperatures. 

The thermal sensitivities of the respiratory complexes were studied using the 

inhibitors rotenone and antimycin A. In mitochondria from L D 5 0 treated control flies 

respiration uncoupled with FCCP was not restored to State I I levels. However, in L D 5 0 

treated mitochondria from thermotolerant flies respiration uncoupled with FCCP was not 

different from State I I I respiration. These data suggest that the reduction in State I I I 

respiration after heating is owing to an inhibition of oxidation rather than 

phosphorylation. Complex I , NADH coenzyme Q reductase, was shown to be the most 

temperature sensitive of the respiratory complexes. 
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C H A P T E R I 

G E N E R A L I N T R O D U C T I O N 

The influence of temperature on aiiimals has been the subject of many reviews (see 

Prosser and Heath, 1991; Precht, Christophersen and Hensel, 1973; Cossins and 

Bowler, 1987). Heat injury is experienced by plant and animal cells, as well as by 

microorganisms, at temperatures that are elevated only slightly above their normal 

range. Heat is peculiar, amongst possible physical and chemical insults that organisms 

may experience, in that it is all pervasive (Bowler, 1987). 

The normal temperature range of a species is fairly well-defined, and is that within 

which the organism can function normally. This range depends upon evolutionary 

thermal experience and is genetically determined (Prosser, 1973). Exactly what causes 

death at the limits of this range remains still in doubt, but it is likely that the causes of 

cold death and heat death will differ. Indeed, Bursell (1964) has argued that since the 

point at which death occurs varies between species over so wide a range, it is unlikely 

that the cause of death could be the same or could be simple. 

The damaging effects of high temperatures on organisms are dose dependent and 

so it is not possible to quote a single lethal temperature for an animal without 

stipulating the exposure period. A high temperature that is tolerated for a few minutes 

by an animal may become lethal over a longer period. Even within the genetically set 

limits the actual temperatures tolerated by an animal may be influenced by such factors 

as developmental stage and history, age and sex. Thermal tolerance is also dependent 

on previous thermal history, acclimation and acclimatisation to temperature resulting in 

phenotypic changes in thermal resistance (Cossins and Bowler, 1987). The dependency 
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of the heat death point of a population of animals on acclimation was called resistance 

adaptation (acclimation) by Precht et al, (1973). The mechanisms conferring resistance 

acclimation are not understood, but it is a phenomenon demonstrated in species from 

all phyla of the Animal Kingdom. It is therefore considered to be an important adaptive 

strategy in the responses animals make to changes in environmental temperature 

(Cossins and Bowler, 1987). 

It is usual that heat death points remain unchanged as long as culture temperature 

is also unchanged. However, Davison (1969), working with Calliphora 

erythrocephala, confirmed earlier studies on other holometabolous insect species that a 

dramatic fall occurred in heat death point during the early adult period even though 

culture temperature was unaltered. This phenomenon was first described by Burnett 

(1957) in Glossina. Later Baldwin (1954) reported a similar decline in tolerance in 

young chalcids Dahlbominus fuscipennis, but attributed it to the fact that the animals 

were not fed during the period of the experiment. Hollingsworth and Bowler (1965, 

1966) showed that this phenomenon also occurred in Drosophila subobscura, and 

suggested that this loss of heat tolerance was a developmental change. They argued 

that the high tolerance of the newly emerged adult was carried over from the immobile 

pupal stage, but was lost because it was unnecessary in the mobile adult stadium. 

The decline in early adult blowflies is markedly temperature dependent (Bowler, 

1981), which suggests the change in tolerance is dependent on the metabolism of the 

blowfly. For example, Bowler, (1981) reported on the L D 5 0 points, 5 and 10 days after 

emergence, when flies were transferred to a temperature between 5 and 34°C. At 5°C 

no decline in L D 5 Q had occurred after 10 days, but as the temperature of transfer rose 

the rate of decline increased, to reach a maximum at 29°C. The expected acclimation 

effects on L D 5 0 did not occur until the temperature transfer rose to 32° and 34°C, only 
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at these higher rearing temperatures is the developmental decline in L D 5 Q overcome by 

acclimation. 

These reports, from a variety of species of endopterygote insects, suggest these 

changes in physiological resistance in the early adult may be a general phenomenon. 

These developmental changes in the thermal tolerance of blowflies have been taken into 

consideration in the planning of the present experimental work. 

Much of previous literature describes the establishment of heat death points and 

factors affecting them, but few studies have concerned the mechanisms involved in 

heat death. As a consequence of the wide variety of these and other studies, much 

confusion occurs in the literature as to the causes of heat death . The problem can be 

stated as follows: as heat injury is a universal feature throughout the Animal and Plant 

Kingdoms, as well as in microorganisms, are there fundamental mechanisms involved in 

heat injury that are common to all organisms ? 

The precise mechanisms of heat death are not understood and the sequence of 

physiological events which leads to death when animals are exposed to a high 

temperature is still poorly known. The underlying causes of heat death have been 

studied for a long time and in a variety of organisms, yet the literature has produced a 

number of theories, some mutually exclusive, as to the causes of heat death. 

The general problem of cause and effect makes the identification of the 

mechanisms of heat death difficult, and the separation of those lesions which initiate 

heat death from the secondary and tertiary consequences of those lesions is often 

unclear, however, as heat injury is experienced by all organisms (and cells) it is 

reasonable to consider that the primary lesion may be common (Bowler, 1987). 

The influence of temperature in ectotherms has stimulated a multitude of studies 

on the mechanism of adjustment to changing thermal environments (Prosser, 1973; 
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Precht et al 1973; Hutchison and Maness, 1979). White and Somero (1982) have 

pointed out that while both resistance and capacity adaptations of ectotherms have 

been extensively studied under steady state acclimation conditions, little is known 

about either rapid changes in their physiology, such as may occur during diurnal 

temperature fluctuations, or transition phases that occur during the course of 

acclimation. Thermal tolerance and adjustment of thermal tolerance are of interest 

because survival under changing thermal conditions is thought to be a prime 

determinant of the presence or absence of a species in a particular geographical area or 

habitat (Brett, 1956; Hutchison, 1961; 1976; Brattstrom, 1968; Fry, 1971; Spotila, 

1972; Hutchison and Maness, 1979). Ectotherms respond to environmental 

temperature changes with a variety of behavioural and/or physiological responses. 

Resistance acclimation and thermal hardening are two such physiological 

responses (Hutchison and Maness, 1979). Although both involve compensatory shifts 

in temperature tolerance, the temporal aspects of the two phenomenon are quite 

distinct (Hutchison and Maness, 1979). Acclimation is a slow but long lasting response 

to long term temperature change. It typically occurs within the range of temperatures 

normally experienced by the species, and is reversible. Thermal hardening is rapid 

requiring only minutes to a few hours for completion. It has been proposed that 

hardening is a rapid transitory response following brief exposure to near lethal 

temperatures (Precht et al., 1973; Hutchison, 1980); and multiple exposures do not 

increase thermal hardening over the level induced by a single shock (Hutchison and 

Maness, 1979). More knowledge concerning the mechanism of hardening may lead to 

increased insight into mechanisms of heat injury. 

Clear evidence now exists, for a variety of ectothermal vertebrates, for heat 

hardening under field conditions. The initial evidence came from the desert pupfish 



Cyprinodon niacularis (Lowe and Heath, 1969). These fish experience diurnal 

temperatures of 40-41 °C that are close to their thermal limit. Maness and Hutchison 

(1980) also report that periods of peak heat hardening coincided with the periods of 

higher environmental heating in a number of fish and amphibians. A similar findings 

was reported for two species of lungless salamanders by Rutledge, Spotila and Easton 

(1987). Hutchison and Maness (1979) have clearly drawn a distinction between 

resistance acclimation and heat hardening, based on the very different time-courses of 

the two phenomena. 

Cold hardening is induced by exposure to low temperature and aids survival 

against exposure at lower temperatures. Recently a "rapid-cold hardening" response 

has been reported in a number of insects, particularly the flesh fly Sarcophaga 

crassipalpis, which confers protection against injury due to "cold shock" at 

temperatures above the supercooling point (Lee, Chen Mecham and Denlinger, 1987; 

Chen, Lee and Denlinger, 1991). For instance, when pharate adult pupae of 

Sarcophaga crassipalpis were transferred from 25 to -10°C for 2 h there was 100% 

mortality, however, when pharate adult pupae were transferred from 25 to 0°C for 2 h 

prior to exposure to -10°C there was >91% survival (Chen, Denlinger and Lee, 1987). 

A similar rapid increase in cold tolerance has also been investigated in other insects 

including the house fly Musca domestica (Coulson and Bale, 1990), Drosophila 

melanogaster (Czojka and Lee, 1990), Gypsy moth, Lymantria dispar (Denlinger, Lee, 

Yocum and Kucal, 1992). Direct transfer of the various life cycle stages of these 

insects from their culture temperature to a particular sub-zero temperature causes 

"cold-shock" mortality. In contrast, if the insects are pre-exposed to a higher subzero 

temperature first most survive the subzero exposure. Thus whilst prior exposure to 

sublethal high or low temperatures can cause a rapid biological response that affords 
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protection against subsequent heat or cold injury, the nature of these responses remains 

largely undefined. 

The physiological basis of heat hardening is obscure. It has been demonstrated not 

only at the organism level, but also in isolated tissues and in cultured cells of both 

invertebrates and vertebrates. Heat hardening in response to a sudden heating, is also 

referred to as thermotolerance. This phenomenon (thermotolerance) originally reported 

by Gerner and Schneider (1975) and Henle and Leeper (1976) has been substantiated 

by many investigators (Landry, Lamarche and Chretien, 1987; McAlister and 

Finkelstein, 1980; Mivechi and Li , 1985; Subjeck, Sciandra and Johnson, 1982). The 

various studies in this field of acquired thermotolerance have been reviewed by Hahn 

and L i (1990) and Hightower (1991). The biochemical mechanisms involved in 

thermotolerance have been subject to intense investigation. 

It is significant that in a variety of cells, ranging from yeast to mammalian cell 

lines, a family of proteins is synthesised in response to sublethal heat shock, these are 

known as the heat shock proteins (HSPs). This induction is called the heat shock 

response, and is an ubiquitous phenomenon, from bacteria to man. These proteins 

(HSPs) which are well conserved in evolution are generally grouped according to their 

molecular weight: The HSPs 83-90KD family, the HSPs 68-70 kD family, and the 

small HSPs 30-40 KD molecular weight whose molecular weights (MWs) are variable 

and which show less conservation in evolution (Schlesinger, 1990). Some of the 

members of these families are constitutively expressed and their production is simply 

'up-regulated' during stress. Other members are not normally present and are produced 

only as a result of the induction of gene expression producing mRNAs which are then 

translated. 
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Although their original discovery by Ritossa (1966) in Drosophila passed almost 

unnoticed, HSPs response has been vigorously investigated by numerous laboratories 

during the past 15 years. HSPs were purified from Drosophila by Tissieres et al 

(1974). For about 20 years, this selective induction of proteins by heat-shock was 

thought to be unique to the fly. In 1978, however, an analogous response in avian and 

mammalian tissue culture cells to heat shock was discovered (e.g. Kelley and 

Schlesinger, 1978) as well as in E.coli (Neidhart, Lemaeax, Herendeen and Bloch, 

1978). 

The function and significance of these heat shock proteins is not fully understood, 

but they appear to be involved in a general mechanism that helps organisms to survive 

physiological insult, and, depending on the experimental system under study, various 

HSPs have been implicated as contributing in the acquisition, maintenance and decay of 

thermotolerance (Lee and Dewey, 1987; 1988; Laszlo, 1988). This is mainly based on 

the close temporal correlation between the accumulation of heat shock proteins and the 

development of thermotolerance (Hahn and Li , 1990; Hightower, 1991; McLennan and 

Miller, 1990; Parsell and Lindquist, 1993; Bosch et al, 1988; Landry et al., 1982). 

However, the relative importance of different heat shock proteins in thermotolerance 

varies between organisms. Stephanou & Alahiotis (1982), indicated that HSPs could be 

a major target of temperature-induced selection. I f this is true then HSPs can be 

considered to be as another important molecular mechanism through which insects 

respond to temperature. 

Studies seeking to correlate the induction and synthesis of HSPs with the 

development of thermotolerance have largely been carried out on cells in culture. That 

HSPs are connected with the acquisition, maintenance and decay of thermotolerance in 

mammalian cells was indicated from experiments of Landry et al., (1982), in which 
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synthesis and degradation of heat shock proteins was followed during development and 

decay of thermotolerance. In addition the level of certain HSPs, particularly the HSP70 

in murine tumours (Li and Mak, 1985), murine embryos (Muller, Li , and Goldestein, 

1985) , Xenopus embryos (Heikkila, Kloc, Bury, Schutz and Browder, 1985) and 

Chinese hamster fibroblasts (Li and Werb, 1982) have been reported to correlate with 

thermotolerance. 

There have been, however, some investigations which contradict a direct 

correlation between the accumulation of heat shock proteins and the development of 

thermotolerance. For example, tolerance has been induced in the absence of HSPs 

synthesis (Carper, Duffy and Gerner, 1987); furthermore, Smith and Yaffe (1991) 

showed that HSPs induction is not required for thermotolerance acquisition in yeast. 

Moreover, some studies have failed to show a correlation either between specific HSPs 

or general protein synthesis and thermotolerance (Loomis and Wheeler, 1980; Hall, 

1983; Widelitz, Magun and Gerner, 1986). HSPs may therefore not be the only 

protective agents in tolerance (Laszlo, 1988; Boon-Niermeijer, Tyl and Van de Scheur, 

1986) . 

Heat shock proteins are not only important in situations of heat shock (and other 

stresses), where they were detected first, and where their name originates, but they also 

appear to be essential for cell survival in normal situations. HSPs and their cognates 

have been implicated in various roles, and evidence has emerged over the last few 

years, that HSPs have been shown to play crucial roles in intracellular protein 

metabolism, dynamics and also one of the most prominent roles is in protein folding 

and degradation (Dice, Chiang, Terkecky and Olson, 1991). This has led to the 

concept of HSPs as chaperones. Furthermore, ubiquitin, a member of a HSPs family, 

binds to unfolded proteins which will then be degraded during protein turnover in cells 
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(Mayer, Arnold, Laszlo, London and Lowe, 1991), as it was proposed that HSP70 

unfolds partially folded polypeptides, so that they can be translocated through 

membrane pores. HSP60 also facilitate the proper folding and assembly of the newly-

transported proteins in mitochondria (Horwich, Hartl, and Cheng, 1991). Consistent 

with this role are data showing that an HSP70 -like protein can bind to and, in the 

presence of ATP, dissociate protein complexes (Schlesinger, 1990). They also 

participate in the degradation of proteins. This activity serves to protect the cell, for 

not only is proteolytic turnover an essential activity in normal cell, but accumulation of 

denatured protein could be toxic (Schlesinger, 1990). 

The likely involvement of HSPs in protein metabolism is interesting because 

historically, heat death has been attributed to protein coagulation and enzyme 

inactivation. For example, Ushakov, (1964) reported on the similarity in Arrhenius 

values ( E a ) for cellular heat death and protein denaturation, and concluded that heat 

injury resulted from the latter effect. However, as most enzymes tested had a greater 

thermostability than the cells or organism from which they were extracted, Ushakov, 

(1964) suggested that heat sensitivity of cells is determined by their least resistant 

proteins. Rosenberg, Kemeny, Switzer and Hamilton (1971) have produced evidence 

on thermodynamic grounds, that heat death in yeast, bacteria and viruses was due to 

denaturation of proteins. However, Read (1967) gave a clear lead in this field when he 

argued considerable caution in relating heat resistance of an organism to the 

thermo stability of its proteins, unless it could be demonstrated that the temperatures at 

which protein function fails, closely coincides with those at which metabolism fails. In 

very few cases has this criterion been met. The best documented work has been in 

myosin ATPase in lizard (Licht, 1964), on an amylase from a thermophilic bacterium 

(Manning and Campbell, 1961) and on M g 2 + dependent ATPase from crayfish muscle 
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sarcolemma (Bowler and Duncan, 1967; Gladwell, Bowler and Duncan, 1976). More 

recently the Ca 2 + M g 2 + ATPase from crayfish muscle sarcoplasmic membranes has 

been shown to be heat sensitive at the same temperature range as caused heat death; 

(Cossins and Bowler 1976 ). 

Hochachka and Somero (1973) remarked that protein (enzyme) function may be 

affected at temperatures well below denaturing temperatures, e.g. as a result of 

temperature changes in enzyme-substrate aifinity. In allosteric enzymes this may also 

apply to temperature dependent changes in the sensitivity of the enzyme to its allosteric 

effector. Thus, heat death may result from temperature induced reversible inhibition of 

activity, through changes in tertiary and quaternary structure of a critical enzyme(s). 

The hierarchical sequence, referred to earlier, indicates that the sensitivity to heat in 

animals followed the pattern whole organism-organ system- cell - organelle-enzyme 

(Ushakov, 1964), that is to say, the organism is found to be the most sensitive to heat, 

and the functioning of an organ is less sensitive, and that of cells are less sensitive still, 

whilst individuals proteins are the least sensitive. This sequence indicates that heat 

death is a complex phenomenon and not easily explained simply in terms of protein 

stability. 

Although in recent times research in this field has focused on heat injury to cells, 

this approach avoids the complicating factors associated with physiological integration 

as a factor in organism death. In spite of an extensive search for the exact target(s) for 

hyperthermic cell death has been carried out, the critical target (primary lesion) and the 

molecular mechanism(s) of heat induced cell killing remain unsolved. A further 

complicating possibility in the search for the primary damage is that its perturbation by 

heat may last only for the duration of the heat application, but that resulting secondary 

and tertiary damage may be the damage observed and these may be cell or organism 
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specific. A schematic representation shown in Figure 1.1, by Bowler (1987), suggested 

that primarily heat damage (lesion) which need not be, (or become) irreversible, caused 

a cascade of secondary and tertiary "knock-on" effects which, in a time-dependent 

manner, will cause irreversible injury and lead to death. Recently Jung (1991) 

suggested, from data analysis of survival curves, using mathematical models, that 

cellular heat damage is a two step process, where primary damage is converted to 

permanent damage in a time-dependent fashion. This is in agreement with the model 

for cellular heat sensitivity proposed by Bowler (1987) mentioned above. 

Evidence has been presented that the nucleus is affected at hyperthermic 

temperatures, in particular, Warters and Roti Roti (1982) observed that the 

condensation of material into the perinuclear region was a prominent feature which was 

accompanied by an increase vessiculation of the nuclear membrane (Heine, Severak, 

Kondratick and Bonar, 1971; Welch and Suhan, 1985; Warters, Yasui, Sharma and 

Roti Roti, 1986). The nucleolus was reported to be a very heat sensitive organelle, 

undergoing marked changes (Simard and Bernard, (1967). The increased nuclear 

protein content observed following hyperthermia was a large and rapid effect, that 

correlated with heat-induced cell killing (Roti Roti, Henle and Winward, 1979).The 

presence of excess nuclear proteins may be involved in inhibition of DNA replication 

(Wong & Dewey, 1982; Laszlo, 1992). Furthermore, Dewey, Harpwood, Sapareto and 

Gerweck (1971) have suggested that chromosome aberrations are involved in heat cell 

death. 

The evidence so far also indicates that heat i) induced direct alterations in 

cytoskeletal components, interfering with their ability to self-assemble (Alberts et al., 

1984; Welch and Suhan, 1985; Coss, Dewey and Bamburg, 1979; 1982) or ii) modifies 

mechanisms involved in the overall in vivo control of the assembly of the cytoskeleton 
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(Coss et al, 1982). The exact mechanism of heat induced alterations in cytoskeletal 

organisation are yet to be elucidated. It was suggested that the cytoskeleton may 

provide a structural continuity between the plasma membrane and the nucleus, and as 

hyperthermia induced changes in at least one skeletal element in all cell types studied so 

far, hyperthermia-induced disruption of the cytoskeleton may play a role in the heat-

induced increase in nuclear protein content (Roti Roti and Laszlo, 1988). 

Increasing attention has been focused on membranes as being a site for 

hyperthermic damage to cells (Hahn, 1982; Bowler, 1987; Konings, 1988; Yatvin and 

Cramp, 1993; Bowler and Manning, 1994). The question arises why membranes and 

membrane function should be susceptible to perturbation by heat? Both the lipid and 

protein moieties of membranes should be considered from this respect. The current 

accepted model of biological membrane is a modification of the fluid mosaic model 

proposed by Singer & Nicholson (1972), with lipid molecules forming a fluid bilayer 

matrix in which proteins are dispersed. Lee and Chapman (1987) and Cossins and 

Raynard (1987) both emphasise that a change in temperature will pertubate both the 

lipid and protein moieties that make up membranes. 

Lee and Chapman (1987) reported that a change in temperature has two effects on 

membrane lipids. First, by gradually increasing temperature the molecular motion of the 

lipids present will increase, the result will be a progressive increase in fluidity. The 

second effect is to cause a change in phase from gel to liquid-crystalline. Below the 

transition temperature the fatty acyl chains of the phospholipids are packed in an 

ordered form, and melting occurs because of the thermally-induced flexing of their acyl 

chains. Above the transition temperature the bulk of the lipids are liquid-crystalline and 

this state is considered to be essential for the function of, and lateral mobility of, 

integral membrane proteins (see Stubbs, 1983). 
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Poikilothermic animals respond to change in environmental temperature by altering 

the degree of saturation of their membrane lipids (Hazel and Prosser, 1974; Cossins 

and Sinesky, 1984), in response to a change in rearing temperature. Acclimation to low 

temperature leads to incorporation of unsaturated fatty acids into phospholipid fraction 

in the tissue, whereas at higher environmental temperatures, a great proportion of 

saturated fatty acids are incorporated, an effect that occurs in a graded response to 

temperature change (Hazel and Zerba, 1986). This is interpreted as a compensatory 

adaptive response to the temperature change which preserves membrane lipid order, 

and has been termed homeoviscous adaptation (Sinesky, 1974). The functional 

importance of this response is that the properties of plasma membranes are buffered, 

over the medium term, against the direct effect of temperature change. This implies 

that membrane protein function is responsive to the lipid environment (Cossins, 

Beham, Jones and Bowler, 1986). This idea that organisms change the lipid 

composition of their cell membranes to compensate for direct effects of temperature on 

membrane physical properties, was an important step in appreciating that temperature 

has a powerful modulating influence on membrane structure, (Halm, 1982; Dewey, 

1983). Furthermore, there is considerable evidence of changes in the degree of cellular 

lipid saturation in response to temperature change in diverse organisms e.g. in 

poikilofherms (Cossins, 1994). 

Implicit in the concept of homeoviscous adaptation is that normal cellular function 

requires cell membranes to possess a specific level of fluidity. Thus, the functioning of 

membrane proteins might be regulated by, and be dependent on, membrane fluidity, 

(Cossins and Sinesky, 1984). I f lipids are involved in cellular heat killing then clear 

evidence argues against this being a consequence of a gel to liquid-crystalline phase 

change of the bulk membrane lipid (Lepock, Cheng, Al-Qysi and Kruuv, 1983), 
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although such phase transitions have been shown to correlate with hypothermic cell 

death, impaired growth and cell division at low temperatures, in mammalian cells 

(Lepock et al., 1983; Kruuy, Glofcheski, Cheng, Al-Qysi Nolan and Lepock et al., 

1983), and in microorganisms (McElhany, 1985). However, it can not be excluded that 

a small critical fraction of membrane lipids are involved in gel to liquid-crystalline 

transitions at hyperthermic temperatures. 

An interesting extension of the fluidity hypothesis suggests that hyperthermic 

temperatures have a deleterious hyperfluidizing effect on membrane lipids (Overath, 

Schaiier & Stoffel, 1970; Yatvin 1977). Dennis and Yatvin (1981) have produced a 

good correlation between microviscosity (fluidity) and sensitivity to hyperthermia in an 

unsaturated fatty acid requiring mutant of Escherichia coli. The relationship in 

eukaryotic cells in much less clear, Lepock, Massicote-Nolan, Rulle and Kruuv (1981); 

Yatvin, Vorphall, Gould and Lyte (1983). 

It is debatable however whether there is a causal relationship between membrane 

fluidity and susceptibility of cells to hyperthermia for it would be expected that there 

should be a direct relationship between cell survival and measurement of membrane 

fluidity in response to the heating (Lepock, 1981; Konings, 1985; 1988). However, 

Dynlacht and Fox (1992) have recently shown that whilst there is no relationship 

between cell survival and initial membrane fluidity in a variety of Chinese hamster 

ovary (CHO) cell lines exposed to heat, there is a positive correlation with the extent 

to which fluidity is increased by the heating. 

A number of workers have found a positive correlation between growth 

temperature and cell heat resistance, and this adaptation response is marked in fish 

FHM cells (Schmidt, Laudien and Bowler, 1984). Anderson, Minton, L i and Hahn 

(1981) have also shown that mammalian cells show this adaptation response to growth 
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temperature. Gonzalez-Mendez, Minton and Hahn (1982) have also reported that 

Chinese hamster ovary fibroblasts grown at 32, 37, 39 or 41°C show a progressive 

increase in thermal resistance to exposure at 43°C. These workers also found that 

growth at higher temperatures (39 & 41°C) caused a decrease in membrane fluidity 

that correlated with the increase in thermal resistance. These studies show that animal 

cells, both mammalian and ectotherm alter their plasma membrane lipid composition in 

response to a change in growth temperature, and that this is associated with a 

predictable change in membrane lipid order, and also a change in the tliermosensitivity 

of cells (Bowler and Manning, 1994). 

Changes in cell calcium may affect blebbing of the plasma membrane, which is a 

common cellular response to hyperthermic injury as well as other forms of injury 

(Trump and Berezesky, 1987). However it is not clear whether calcium is involved in 

cellular heat damage for significant discrepancies exist between various studies (Vidair 

and Dewey, 1986; Yi , Chang, Tallen, Bayer and Ball, 1983; Ruifrok, Kahon and 

Konings, 1985). 

Based on the findings reported for bacterial, ectothermal and mammalian cells it 

seems that membrane lipid composition, cholesterol content or membrane fluidity are 

not in themselves the primary factors which detennine hyperthermic sensitivity. 

Several investigators have pointed towards membrane proteins as the critical 

target for heat. This conclusion is supported from a variety of reports. Lepock et al., 

(1983) demonstrated irreversible membrane protein unfolding in heated Chinese 

hamster ovary cells, membrane active agents interacting with membrane proteins and 

inhibiting the activity of the sarcolemma membrane bound enzymes, Na+ K + ATPase 

and Ca2+ ATPase (Roed and Brodel, 1981). Furthermore, crayfish muscle membrane 

ATPase was inhibited in the temperature range lethal to the animal (Cossins and 
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Bowler, 1976). In subsequent studies it was also shown that the thermal inactivation 

of synaptic membrane Na + K + ATPase and acetylcholinesterase were dependent on 

organism acclimation (Cossins, Bowler and Prosser, 1981; Bowler, 1987). 

Lepock et al (1983) have reported from the measurement of intrinsic protein 

fluorescence of the energy transfer from protein fluorophobe to transparanaric acid 

demonstrated the existence of an irreversible transition in protein structure above 40°C, 

both in mitochondrial and in plasma membranes (Lepock et al., 1983). The latter 

authors hypothesised that the alterations in the structure of the protein above 40°C 

could cause many of the observed changes in the plasma membranes and may be 

involved in hyperthermic cell killing. 

Alteration in organelles such as lysosomes and mitochondria during heating have 

been reported by several groups and these organelles have been suggested as possible 

targets in heat-induced cell death (Hahn, 1982). For example, morphological changes 

are observed in mitochondria which may be related to the inhibition of respiration in 

heated cells (Mondovi, Agro, Rotilio, Strom, Moricca and Rossi-Fanelli, 1969; 

Christiansen and Kvamme, 1969; Dickson and Calderwood, 1979). Structural changes 

within the mitochondrial membranes of blowfly flight muscle, following exposure to 

lethal heat, were observed by Davison (1971b), and it was suggested that these 

morphological changes may be related to the inhibition of respiration in heated cells. 

Welch and Suhan (1985) also have reported a number of structural changes in rat 

fibroblasts mitochondria exposed to 42°C for 3 hours; mitochondria were swollen, the 

cristae were more prominent, and the intracisternal spaces appeared enlarged. Similar 

alterations in the structure of the mitochondria have been noted in chick myoblasts 

exposed to various uncouplers of oxidation phosphorylation (Buffa, Guarriera-

Bohyleva, Muscatello and Pasquali-Ronchetti, 1970). Chinese hamster ovary (CHO) 
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cells grown as a monolayer also were found to have swollen mitochondria after 

exposure at 41.5°C (Coss, Dewey and Bamburg, 1979). These observations suggest 

that heating may cause disruption of the inner mitochondrial membrane function, 

destroying the proton motive force, which is implicated in the energy conserving 

synthesis of ATP (Mitchell, 1979). 

The phenomenon of thermotolerance in cells was originally reported by Gerner 

and Schneider (1975) and Henle and Leeper (1976) and it has been substantiated by 

many investigators (Landry et al, 1987; McAlister and Finkelstein, 1980; Mivechi and 

Li , 1985; Subjeck, Sciandra and Johnson, 1982). The various studies in this field of 

acquired thermotolerance have been reviewed by Hahn and L i (1990) and Hightower 

(1991). The biochemical mechanisms involved in thermotolerance have been subject to 

intense investigation. 

The present study continuous earlier work of Davison and Bowler (1971) and 

Bowler and Kashmeery (1981) who reported that in vivo heating of adult blowflies 

caused the impairment of the functional efficiency of flight muscle mitochondria. 

Davison and Bowler (1971) showed that sarcosomes have an equivalent thermal 

sensitivity to that of the whole animal. Using both pyruvate and glycerol-3-phosphate 

as substrates, it was found that sarcosomes, isolated immediately following sub-lethal 

heat treatment, were dramatically affected as compared with sarcosomes isolated from 

control untreated animals (Davison and Bowler, 1971; Bowler and Kashmeery, 1981). 

After lethal heat treatments ( L D 5 0 and LDJQQ) they reported that respiratory control, 

phosphorylation and oxidation were impaired . 

Since glycerol 3-phosphate is known to be one of the major substrates of flight 

muscle sarcosomal respiration (Sacktor, 1958; Van den Bergh, 1962), a breakdown of 

the phosphorylation process coupled with the oxidation of this substrate, could result in 
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serious effects on the animal. Furthermore, Davison (1971b) demonstrated that there is 

a correlation between the physiological lesions observed with the sarcosomes isolated 

from animals exposed to lethal heat treatments and morphology impairment of the 

sarcosomes, as revealed by electron microscopy. This damage consisted of the 

disruption of the lamellate cristae and the appearance of a considerable amount of 

electron dense granules which was attributed to the precipitation of inorganic ions. 

These results led to the suggestion that sarcosomal sensitivity may be one of the 

primary causes of heat death in the adult insect. Moreover, these results satisfied one of 

the criteria for a primary lesion in that a very close correlation existed between the age-

specific heat sensitivity of the flies, and the thermal damage caused to the sarcosomes 

by a particular heat dose. Furthermore they reported that recovery from sub-lethal 

(LD 0 ) and the lethal exposure of blowflies required between 2 and 3 days at 24°C. 

After this recovery period the flies had flight muscle sarcosomes with the same QO2 

values and RCI and ADP:0 ratios as did sarcosomes from control unheated flies. 

It is significant in the earlier work that in flies that recovered from L D 5 0 dose the 

ability to fly and the restoration of normal mitochondrial function had the same time 

course (Davison and Bowler, 1971) and the same temperature dependency (Bowler 

and Kashmeery, 1979). This implies that the mitochondrial impairment observed in 

vitro is also expressed in vivo. 

The purpose of the present study was to demonstrate that heat shock induces 

thermotolerance in blowflies, and also that in the thermotolerant state mitochondrial 

function is protected from the subsequent in vivo lethal heat exposure. 

In the fust instance, studies on recovery from lethal and sublethal heat treatments 

were carried out. Secondly, biochemical work on the thermal sensitivity of isolated 

sarcosomes is presented. 
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Mgere 1.1 Scheme to show possible sequence of events during the thermal death of 

animal cell. (Bowler, 1987). 
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CHAPTER I I 

G E N E R A L MATERIALS AND METHODS . 

The insects used for the majority of this study were male and female Calliphora 

vicina from a stock maintained in our laboratory for at least thirty years, which was 

originally obtained from a mass-mated stock at the Pest Infestation Laboratory, 

Slough. Late in this study this stock was lost and was replaced from a stock obtained 

from the Department of Zoology at Cambridge University. Studies using this latter 

stock are specifically identified in Chapter 6. 

2.1 Culture of stock flies: 

The stock culture used for breeding were kept in cages covered with muslin, 

approximately 70 cm x 50 cm x 35 cm, with corrugated cardboard placed in the 

bottom to allow the flies to right themselves. These cages were kept at room 

temperature (24 ± 1°C) and the stock cultures were replaced at two monthly intervals. 

The flies were fed sugar and water ad libitum and ox liver was provided regularly as a 

source of protein and to allow oviposition to occur. 

2.2 Breeding of experimental and stock cultures. 

Liver covered with eggs was removed from the stock cage and placed in a 

crystallising dish (15 cm diameter) for incubation. The liver was covered with a wet 

filter paper to provide a high relative humidity (R.H), Davies (1949). The crystallising 

dish was covered with muslin and transferred to an incubator maintained at 24 ± 0.5°C 

to ensure larval emergence during the next 12 hours. 
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Newly hatched larvae were placed on fresh liver in a crystallising dish filled with 

sawdust and the previous incubation process was repeated. Larvae were fed for 4-5 

days on liver, which was replenished as required. Pupation took place in the sawdust 8-

9 days after oviposition. After 24 hours the puparia were collected and placed on fresh 

dry sawdust in a 750 cm 3 conical flask, plugged with cotton wool, and incubated at 24 

± 0.5°C. Emergence occurred between 8 and 10 days later. 

2.3 Acclimatisation of experimental flies. 

After Emergence male and female adults were placed in cages housed in a constant 

temperature room maintained at 24 ± 0.5°C. The air circulation was maintained by an 

air conditioning unit. Continuous iUumination was provided by miniature fluorescent 

lights. RH. was 30 ± 15%. Where groups of 100 or less were used, they were housed 

in smaller 22 cm x 22 cm x 22 cm cages constructed from commercial biscuit tins with 

three sides removed. Two sides were covered with polyglaze and a third had a muslin 

sleeve attached. 

2.4 Chemical reagents: 

The chemical reagents used in the present study were either AnalaR grade or were 

of the highest purity which could be obtained commercially. Solutions were made up in 

glass distilled water. 
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CHAPTER I I I 

HEAT DEATH POINTS AND THE ESTABLISHMENT 

OF THERMOTOLERANCE IN THE BLOWFLY 

CALLIPHOMA VICINA. 
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3.1 INTRODUCTION 

Temperature is commonly believed to be an important factor in limiting the 

distribution of animals. In view of the sensitivity of animals to extreme temperatures 

and the manifold strategies employed by them to survive exposure, it can hardly be 

denied that it is important. Yet the evolution of species, communities and ecosystems is 

the result of a great variety of influences, both biotic and abiotic, which operate in all 

sorts of subtle ways, (Cossins and Bowler, 1987). Thus reports of a major role of 

temperature in limiting distribution usually rely on a circumstantial relationship between 

a climatological factor and species abundance. However, this is not the only issue, as 

temperature may have its effect not from a direct lethal effect upon the adult or sub-

adult form of a species, but indirectly through effects upon the food supply or upon a 

predator, parasite or competitor. Thus, although many animals live close to their lethal 

limits, temperature is seldom the primary determinant of their distribution. 

Various parameters have been used to establish the temperature limits of 

organisms, the upper and lower lethal temperatures for species define the temperature 

limits for survival on exposure to high or low temperatures for a fixed period of time 

(Bursell, 1964; Fry, 1967; Cloudesly-Thompson, 1970). They are regarded as the 

physiological limits for the organism beyond which recovery is impossible. 

Lethal temperature studies are time consuming and require large number of 

animals. It is also often difficult to determine whether the animal is actually dead or 

simply comatose. Consequently there has been a tendency to replace lethal temperature 

studies with the estimation of critical thermal maxima (CTMax) and minima (CTMin). 

The critical thermal maximum of a species is a measure of its thermal tolerance and can 

be used to determine its ability to acclimate to changes in temperature and 

photoperiod. The initial definition of CTM by Cowles & Bogert (1944) was modified 
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by Lowe and Vance (1955), who stated that the CTM of a population is the arithmetic 

mean of the collective thermal points at which locomotory activity becomes 

disorganised and the animal loses its ability to escape from conditions that, if 

continued, will quickly lead to death. This has been redefined by Hutchison (1961) and 

revaluated by Paladino et al (1980). The C T M a x should be considered of ecological 

value since all animals can fully recover from an exposure to CTM, if removed to a 

lower temperature immediately after exposure. The lethal temperatures are therefore 

distinct from the CTM because they form the point at which the animal is 

physiologically dead and cannot recover if placed at a moderate environment 

temperature, (see Fry, 1967). Whilst CTM gives a measure of thermal resistance, 

which may have more relevance to the experience of animals in their normal 

environment than does L D 5 0 , it has the disadvantage that the change in temperature is 

so slow that the resistance of an animal may actually change during the experiment. 

The commonest method of defining the lethal conditions of temperature and time 

for a group of animals is to determine the combination of temperature and exposure 

time which kill a given percentage, say 50% of the sample, this can be done in two 

ways; a) by exposing the animals to a single lethal temperature and monitoring 

mortality with increasing periods of time, or b) to monitor the mortality of animals 

exposed to different lethal temperatures for a given exposure period. In each case the 

percentage mortality is plotted as function of time or temperature respectively, and the 

time or temperature for 50% (the median lethal dose or L D 5 0 ) is estimated graphically. 

In the case of time mortality, sigmoidal graphs are usually obtained which illustrate 

the statistical nature of thermal mortality, i.e. most of the animals die over a fairly 

restricted range of lethal conditions, but some succumb quickly whilst others are less 

susceptible. 
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A second problem with the L D 5 0 type of experiment is difficulty in the 

establishment of a suitable criterion of death. Clearly, the most unequivocal procedure 

is to expose samples of animals to a lethal temperature for a specific period and then 

return them to their holding temperature so that the proportion killed can be estimated 

by counting the number that foil to recover. This has the disadvantage of requiring 

large numbers of animals as each temperature-time combination requires a separate 

sample of animals. However, it is unavoidable when the lethal conditions of eggs or 

other immobile stages of a life cycle are being determined. 

Alternatively, it is possible to use a symptom of thermal death, such as the loss of 

righting response or the cessation of respiratory movements, and to determine the time 

taken for that point to be reached. 

The influence of temperature on the survival of insects has been investigated by 

many workers, and the literature contains a great deal of data concerning the ability of 

insects to withstand exceptionally high temperatures (e.g. Uvarov, 1931; 

Wigglesworth, 1965; Cloudesly-Thompson, 1970). 

It is widely reported that the temperature tolerance limits of insects are influenced 

by a number of factors, such as age (Baldwin, 1954; Hollingsworth and Bowler, 1966; 

Davison, 1969), previous thermal history (Bowler and Hollingsworth, 1965), sex 

(Anderson & Horsfall, 1965) as well as environmental conditions such as humidity 

(Aelian and Ecksrand, 1975) and stadium (Davison, 1969). These factors must be 

taken into consideration in designing techniques for testing temperature tolerance of a 

species. 

Adaptive responses that permit normal activity over an environmental range can 

occur only within limits imposed by the genotype. Within these limits, animals are 

capable of acclimation or acclimatisation, which can also complicate studies of thermal 
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resistance. The ability to acclimatise has been demonstrated in a variety of insect 

species, however compared to other poikilotherms they acclimatise relatively poorly 

(Bursell, 1964). Walche (1948) showed that chironomids collected from streams below 

15°C had less resistance to heat than individuals taken from still water at 20°C. 

Fraenkel and Hopf (1940) showed that flesh fly larvae reared at 18°C higher than the 

controls had, for the same exposure period, lethal temperatures higher by one degree 

than larvae reared at the lower temperature. Baldwin (1954) showed that Dahlbominus 

fuscipennis when reared at 29°C was more resistant to temperatures between 40 and 

46°C than when reared at 17 or 23°C. Annila and Perttunen (1964) showed that the 

resistance of Blastophagus piniperda, to high temperatures also depended on 

acclimation. 

In a comprehensive study on the thermal tolerance of two species of dragon fly 

nymphs (Libellula auripennis and Macromia illinoiensin) Martin, Garten and Gentry 

(1976) demonstrated a variety of factors affected the measurement. They showed that 

acclimation temperature accounted for about one-third of the variation found. Other 

factors such as body size, time of the day and rate of heating had significant affect on 

thermal tolerance. 

Mutchmore and Anderson (1971) showed that the rate of temperature acclimation 

could also relate to life style in insect species. They described that Tribolium confusurn, 

which lives in a stable environment, attained acclimation slowly, whereas Musca 

domestica, which inhabits variable thermal habitats, attained acclimation rapidly. 

Maynard Smith (1957) proposed two types of resistance adaptation in adult 

Drosophila subobscura. First, developmental acclimatisation, which is dependent upon 

the temperature at which the pre-adult stages have been maintained. It is carried over 

into the adult and seems to be developmentally fixed, for it is long lasting. Secondly, 
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physiological acclimatisation, is attained in the adult stage as a result of being placed in 

a new temperature regime. It is transitory lasting only as long as the new thermal 

conditions and seems to be reversible. Both forms of acclimation can contribute to heat 

resistance of the adult stage. 

Davison (1970) has shown in Calliphora erythrocephala that acclimation was 

partially obscured by the changes in temperature tolerance which occurred in the young 

adult. He observed that the L D 5 0 of adult Calliphora erythrocephala declined after 

eclosion at a rate which was dependent upon the temperature at which the adult is 

maintained. The temperature dependence of this loss in resistance indicated that it is 

metabolically dependent. Thus, when flies were transferred on emergence at 2 4 ° to 5° 

C, no decline in L D 5 Q had occurred after 1 0 days, but when transferred from 24° to 

29°C the L D 5 0 has declined to give a minimum value after 2 days. However, transfer to 

a higher temperature still (32-34°C) allowed acclimation to overcome the 

developmental decline in L D 5 0 (Davison, 1970). Bowler ( 1 9 8 1 ) explained this as an 

example of paradoxical resistance acclimation. 

A number of intrinsic and extrinsic factors have been shown to affect the thermal 

tolerance of insects. Age and stadium are such factors. In a very early study Baldwin 

(1954) presented evidence which indicated that the heat death point of Dahlbominus 

fuscipennis was related to the age of the emerged adult. Davison (1969) found the egg 

stage of Calliphora erythrocephala is the most sensitive to temperature and the 

puparium stage most resistant. In the 1-day adult heat death is as great as in 1-day 

puparium. As has been discussed above these changes may be part of more general 

physiological changes in resistance to both physical and chemical stresses. 

Furthermore, Davison and Bowler (1970) have interpreted this decline in tolerance as a 

loss of pupal heat resistance. It is not peculiar to the blowfly, for it has also been 
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described in Drosophila. Bowler and Hollingsworth (1965), during work on the effect 

of inbreeding in Drosophila subobscura, observed a decline in resistance to 34°C after 

7 days of age in the inbred B & K strains. Later work by Hollingsworth and Bowler 

(1966), on these inbred insects confirmed that a rapid decline in resistance to 34°C 

occurred in the young adult clearly as a result of developmental changes rather than 

from senescence. Bowler (1967) has also shown similar but more dramatic changes in 

temperature tolerance in Tenebrio molitor, this suggested that these changes may well 

be a widespread phenomenon in endopterygote insects. Evidence also shows that heat 

tolerance in insects decreased with increasing age. For example, Lamb & McDonald 

(1973) showed that heat tolerance changed with age in normal and irradiated 

Drosophila melanogaster kept at 35°C in dry air. More recently, Niedzwiecki, 

Kongpachith and Fleming (1991) studied the effect of cellular ageing on adult mortality 

in Drosophila melanogaster under thermal stress. Their results showed that flies 

exposed to 37°C for various time intervals had reduced survival rate with age, which 

suggested that old flies are more sensitive to thermal stress than young ones. 

Humidity also affects tolerance to high temperatures in insects. A number of 

examples quoted in Edney (1957), have demonstrated higher temperature tolerance in 

dry air than in saturated air over short exposure periods, however, with longer 

exposure periods the effect is reversed, as the harmful effects of desiccation begin to 

outweigh the beneficial effects of cooling from evaporation of water. Small arthropods 

tolerate high external temperatures better in moist environments, this is because the 

volume of body water available for evaporative cooling is to too small to be an 

effective protection against high temperature, By contrast large insects can use 

evaporation of water for cooling, and therefore withstand higher air temperature 

exposure in dry air. It is estimated that a large insect can afford to loose up to 20 -40% 
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of its body weight before desiccation became a crucial factor. Periplaneta, for instance, 

dies at 38°C at high humidities, but can survive up to 48°C if the air is dry. Blatta also 

can survive for 24 h at 37-39°C if the air is moist, but die as a result of similar 

exposure in dry air (Appel, Reierson and Rust, 1983). Thus, exposure to high 

temperatures can be associated with the risk of desiccation, and evidence suggests that 

death occurs as a result of cumulative loss of water (Maynard Smith, 1956). 

Furthermore, the effectiveness of evaporative cooling decreases as humidity increases 

(Prange and Pinshow, 1991; Toolson, 1987; Toms, 1986; Seymour, 1974). For this 

reason all heat exposure in our experiments were made with humidity controlled at 

about 50% R.H. 

Thermotolerance can be distinguished from acclimation mainly on temporal 

grounds. The former is triggered by short exposure to high lethal or sub-lethal 

temperatures and usually requires time at a viable temperature to develop the resultant 

transient increased heat tolerance (Schlesinger, Tissieres and Ashburner, 1982; Subject 

and Shyy, 1986; Rutledge et al., 1987). Acclimation, on the other hand develops 

following a rise in environmental temperature within viable limits, over a relatively long 

time course. In insects it may take only a few hours at the new temperature (Colhoun, 

1960) but more usually it requires days or weeks to develop (Bowler and 

Hollings worth, 1965). 

Early studies on thermotolerance in insects, as a result of exposure to supra-

optimal temperatures, has been clearly demonstrated in flies (Ritossa, 1962; Milkman, 

1962; Mitchell et al., 1979). Ritossa (1962) described that temperature and DNP shock 

in Drosophila caused activation of some genes, whereas others were less active in the 

2L and 15 regions of salivary gland giant chromosomes of Drosophila bucksii. These 

changes were visible as the appearance or disappearance of so-called puffs. Later, the 
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protection products of these activated genes were purified from Drosophila by 

Tissieres et al (1974), and called heat shock proteins (HSPs).The heat shock response 

has been characterised in other (Diptera) Chironomus tentans (Vicent and Tanguay, 

1979); Sarcophaga bullata (Bultman 1986); Aedes albopictus (Carvallo and Rebello, 

1987); in Locusta migratoria (Orthoptera) (Whyard, Wyatt & Walker, 1986); in 

Periplaneta americana (Dicyoptera) (Ruder, Ovsenek, Heikkila and Downer (1989); 

and in a few lepidopteran species e.g., Calpodes ethlius, Dean and Atkison, 1983). 

The induction of thermotolerance has also been observed in the pharate adults of 

the flesh fly Sarcophaga crassipalpis after the brief exposures to supraoptimal 

temperatures (35-45°C) (Yokum and Denlinger, 1992). Ninety minute exposure to 45° 

C was normally lethal to flies reared at 25°C, but a brief pretreatment at high 

temperature generated protection from subsequent heat shock injury. In 

Sarcophaghaga crassipalpis the induction of thermotolerance was dependent upon 

both temperature and duration of the pretreatment, it was induced by a 2 h exposure to 

40°C and decayed slowly over 72 h at 25°C. Additional evidence of this phenomenon 

has been described in other insect species e.g. in the Mediterranean fruit fly Ceratatis 

capitata (Stephanou, Alahiotis, Mamarus and Christodoulou, 1983). In this work, 

exposure of larvae at 37-43°C for 40 min. did not affect survival rate, but heat shock at 

45°C for 40 min. reduced it, and at 47°C all larvae were killed. However, if the animals 

were preheated at a mild temperature 35°C for 30 or 60 min and then subjected to a 

nearly lethal temperature (45°C) a dramatic enhancement of survival was observed. 

Parallel to this effect, when Ceratitis capitata received pretreatment of a mild 

temperature 35°C for 40 min a great enhancement of HSPs production was observed. 

The description and characterisation of these protein patterns in Ceratitis capitata has 

been studied in detail by Stephanou et al. (1983). 
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The phenomenon of thermo tolerance was related, by Mitchell, Moller, Peterson 

and Lipp-Sarmento (1979) with the induction of HSPs during hyperthermic treatment. 

They found that preheating at a non-lethal temperature (30 min at 35°C) improved 

both the ability of Drosophila melanogaster larvae, adults and cell lines to survive a 

normally lethal heat stress and the prevention of the induction of developmental defects 

(phenocopies). This dramatic effect on survival and phenocopy prevention were 

correlated with a much more rapid recovery of protein synthesis in the animals that had 

received the 35°C preheating (Mitchell et al, 1979). 

The present study continues earlier work of Davison and Bowler (1971) and 

Bowler and Kashmeery (1981), the main objectives of the work described in this 

chapter were: 

1. To determine the L D 5 0 point for the stock of adult Calliphora vicina used. 

2. To determine if thermotolerance can be induced by pretreatment at sub-lethal high 

temperatures. 

3. To follow the time-course of any induced thermotolerance. 
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3.2. MATERIALS AND METHODS. 

3.2.1 Rearing of experimental animal: 

Throughout this part of the study animals were reared as described in chapter 2, at 

a constant temperature of 24 ± 0.5°C in a R.H. of 50%. 

3.2.2 Determination of the heat death points: 

Groups of 100, 10-day old flies from both stocks were given a standard 40 rnin 

exposure to a series of temperatures, at 0.5°C intervals, within the range of 36.5 to 40° 

C, for Durham or 41°C for Cambridge stocks. Control mortalities were determined 

using flies held under the same conditions, but without heat treatment. Heat treated 

flies were returned to culture conditions to allow their recovery. 

Evidence from preliminary experiments showed that deaths in adults caused by 

heat treatment occurred on the 2 days following heat exposure. Survivors were then 

fully active and behaving normally. Animals showing no movement and no reaction to 

stimulation, two days after treatment, were counted dead, and the heat death point was 

determined as the temperature dose that kills 50% of the experimental flies, see section 

3.2.5. 

3.2.3 Method of exposure of flies to high temperatures . 

The animals were placed in a series of 7.5 cm x 2.6 cm glass vials, which were 

completely immersed in a water bath at the required temperature. Racks were 

constructed to hold 50 vials. Each vial fitted to a rubber bung, connected by glass and 

rubber tubing as shown in Figure 3.1. Air was brought to a R.H . of 47.5 - 50.5 per 

cent by bubbling through a saturated solution of Mg ( N O 3 ) 2 (Winston and Bates, 
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1960) before circulation through the vials at 600 cm3 per min. These exposure 

conditions were chosen to maintain consistency with earlier work (Davison & Bowler, 

1971 and Bowler and Kashmeery, 1981). 

The temperature of the water bath was maintained at ±0.05°C using an immersion 

heater (Templete Junior TE-8J). The water bath was continuously stirred. In the 

temperature range used, 15 min. was required for equilibration of the air and water 

bath temperature (Davison, 1970). This 15 min period was included in the 40 min. 

exposure period. During the remainder of the exposure the air temperature was 

maintained at the temperature of the water bath ± 0.05°C. After exposure to 

experimental temperatures the flies were transferred into small cages 22 cm x 22 cm 

and placed in the same room as the same stock of flies (i.e.) at 24 ± 0.1°C 50% R.H., 

sugar and water were provided. Typical temperature / mortality curves are shown in 

Figures 3. 2 and 3.3 and Table 3.1. 

3.2.4 Establishment of thermotolerance: 

These experiments were designed to determine the extent and time-course of the 

development of thermotolerance. Male and female blowflies of both Durham and 

Cambridge stocks were used in these experiments and were reared and maintained at 

24 ± 0.5°C using culture methods previously described in Chapter 2. 

One hundred and twenty 10-day old flies were used in this study. These were 

exposed for 40 min. to 36 + 0.1°C (sublethal or shock temperature) for Durham stock 

and 37°C for Cambridge stock, again following methods previously described in 

section 3.2.3 of this chapter. Following the completion of the heat-shock flies were 

transferred to 24°C for a period of time varying from 1 hour to 6 hours. After the 

specified recovery period the flies were again placed in vials and given the L D 5 0 dose of 
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38.12°C (Durham stock), or 39.54°C for 40 min (Cambridge stock). A second batch of 

120 control flies were heated simultaneously with the heat-shocked flies, after which 

they were returned to 24 ± 0.1°C and allowed to recover. The recovery period allowed 

was 2 days at 24°C and the number of dead flies were counted. This experiment was 

repeated 10 times and the data were combined. The mean values were scored and 

plotted as a function of recovery at each temperature, Figure 3.4 and Table 3.2. 

3. 2.5 Method of analysis of results: 

Mortality alter heat treatment was recorded, as described previously. The heat 

treatments were given over a range of temperatures and the relationship of mortality to 

temperature was obtained. In both stocks of flies the graphs gave a sigmoidal curve 

(Figure 3.2). The fact that, the temperature mortality relationship is similar to a typical 

dosage effect observed with toxicological and pharmacological data, this allowed the 

following simple method of conversion of the sigmoid curve to a straight line. The 

mortalities of unheated control flies was negligible, but was deducted from the 

mortality recorded after heat treatment. Where M is the mortality after a heat treatment 

of 100 animals, C is the mortality observed in the untreated control group of 100 

animals, and H is the mortality caused by the heat treatment, then 

H = M-C; 

H expressed as percentage H' 

ffxlOO 
~ 1 0 0 - c 
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Mortalities below 1 or above 99 per cent were not considered, so that the slope of 

the sigmoidal curve could be converted into a straight line using probit analysis 

(Finney, 1952), originally developed in toxicity testing, and has come to be widely 

applied in the determination of lethal temperatures. The statistical treatment of these 

data was carried out as described in Appendix 1. This analysis permitted the estimation 

of the thermal dose giving 50% mortality (probit 5) and also the determination of 95% 

confidence limits for the 50% mortality dosage. 
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3 3 R E S U L T S : 

The Durham stock of flies was lost late in the programme and replaced with 

different stock obtained from Cambridge. For this reason it was necessary to establish 

the L D 5 0 of both stocks of flies. 

The untransformed data of the heat death of adult blowflies from both stocks are 

shown in Table 3.1 and Figure 3.2. As can be seen from Figure 3.2 the heat dose 

survival curves were sigmoidal, and that for the Cambridge stock was displaced to a 

higher temperature range than the curve for Durham stock. These data are shown in 

Figure 3.3 in the form of probits. The median heat dose can be obtained by 

construction from probit 5, and was also determined to be 38.16 ± 0.47°C (Durham) 

and 39.47 ± 0.18°C (Cambridge) for the two stocks of flies, using the method 

described in Appendix 1. The L D 5 0 obtained by construction and also by probit 

analysis clearly indicate that the Cambridge stock of blow flies is more resistant to high 

lethal temperature than the original stock of blow flies. But, in general, both stocks of 

flies show that the survival times decline significantly with increasing temperature. 

Figure 3.4 compares the mortality of control flies with those that were subjected 

to a heat shock prior to testing, for both the original and Cambridge stocks of flies. The 

test heat dose applied was the appropriate L D 5 0 and in both stocks the mortality of 

control flies did not significantly differ from the expected 50%. However, in both 

stocks, pretreatment with a non-lethal heat shock led to a time dependent increase in 

tolerance to exposure to the L D 5 0 treatment. The time course of the development and 

decay of thermotolerance is very similar for the two stocks of flies. 
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Significant thermotolerance has already developed 1 h after the heat shock, but the 

full development of this protection required a period of 3 to 4 h at 24°C between the 

two treatments, when a 30% increase in survival over the equivalent control group was 

observed. There was then a progressive decay of the developed tolerance which 

disappeared 6 hours after the heat shock. The experiment has been repeated with the 

second stock of flies under the same experimental conditions. The initial heat shock 

was 37°C and maximal acquired thermotolerance is also seen by 3 to 4 h, showing no 

difference in behaviour from the original stock of flies, while longer intervening periods 

e.g. 6 also resulted in a gradual decay of the induced thermotolerance. 
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Figtwire 3.1 Heating apparatus. Diagram showing the arrangement of the vials on the 

heating rack. 

a, rubber stopper; b, glass vial; 

c, rubber tubing; d, glass tubing. 
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Table 3.1. Heat death points for 10-day-old adult Calliphora vicina, using two different 

stock cultures. 

Percentage mortality over the temperature range 36.5° to 41°C for 40 min 

exposure. Survival determined after 2 days recovery at 24°C. Means ± S.E.M. (N= 10). 



Table 3.1. Heat death point for 10-day-old adult Calliphora vicina, using 
two different stock cultures. 

Temperature (°C) 

Percentage mortality 

Temperature (°C) Original stock Cambridge stock 

42.0 - 96.0 ± 0.42 

41.5 - 84.0 ± 0.35 

41.0 94.0 ±0.51 72.16 ±0.33 

40.5 92.0 ± 0.44 58.42 ±0.21 

40.0 85.0 ± 0.40 50.83 ±0.18 

39.5 70.0 ± 0.43 40.16 ±0.19 

39.0 59.0 ± 0.28 35.82 ± 0.22 

38.5 53.0 ± 0.22 30.60 ±0.16 

38.0 45.0 ±0.18 22.50 ±0.14 

37.5 34.0 ± 0.26 20.00 ± 0.26 

37.0 31.0 ± 0.16 17.90 ± 0.22 

36.5 29.0 ±0.15 14.83 ±0.34 



Figoire 3.2 Dose mortality curve for the two stocks of 10-day-old adults of Calliphora 

vicina as a function of high temperature exposure. The number of survivors was 

determined after a 2 day recovery period at 24°C. Data from Table 3.1. 
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Fsgimre 3.3. Probit analysis of heat death data for the two stocks of adult Calliphora 

vicina. 

The percentage mortality data presented in Table 3.1 were converted into probits 

and lines of best f i t were calculated according to the method shown in Appendix I . 
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TaMe 3.2. The time course for the development of thermotolerance. 10-day-old adult 

blowflies were subjected to a 40 minute exposure at 36°C (original stock) or 37°C 

(Cambridge stock). Blowflies were then returned to 24°C for 1 to 6 h, to allow the 

development of thermotolerance, before being subjected to an L D 5 Q heat dose (38°C for 

40 min, original stock or 39.54°C for Cambridge stock). Data are shown as mean 

percentage mortality ± S.E.M. N = 10. Control flies were not subjected to heat shock 

but were exposed to the L D 5 0 dose simultaneously with experimental blowflies. 



Table 3.2. Time course for the development of thermotolerance. 10-day 

adult blowflies were subjected to a 40 min exposure at 36°C (original 

stock) or 37°C (Cambridge stock). 

Time at Percentage survival 

24 °C Original stock Cambridge stock 

(h) Experimental Control Experimental Control 

1 55.1 ± 1.30 50.2 ± 1.10 54.20 ± 1.26 50.8 ± 1.00 

2 64.1 ± 1.46 52.5 ± 1.30 62.32 ± 1.30 53.2 ± 1.21 

3 72.8 ± 0.90 51.9 ± 1.30 70.96 ± 1.00 52.4 ± 1.10 

4 72.6 ± 1.00 52.7 ± 1.24 74.60 ± 1.20 54.2 ±1.30 

5 68.0 ± 0.98 50.9 ± 1.80 67.20 ±1.01 50.2 ± 1.22 

6 54.2 ±0.91 51.6 ± 1.45 52.12 ±0.89 52.0 ± 1.41 



Figraire 3.4. A: Time course of the development of thermotolerance in 10 day-old adult 

blowflies, following pretreatment for 40 min at 36°C (Durham) as determined from 

changes in the L D 5 0 of 10-day-old blow flies. The pretreated flies were taken at 1, 2, 3, 

4, 5 and 6 h and their L D 5 0 determined coincidentally with that of a batch of control 

flies that had not been pre-treated. Data from Table 3.2. Values are mean 1 ± S.E.M. 

(N=10). 

B: Time course of the development of thermotolerance in 10 day-old adult blowflies 

following pretreatment for 40 min at 37 °C (Cambridge stock) as determined from 

changes in the L D 5 0 of 10 day-old blowflies, the flies were taken at 1, 2, 3, 4, 5 and 6 h 

and their L D 5 Q determined coincidentally with that of a batch of control flies that had 

not been pretreated. Data from Table 3.2. Values are mean 1 ± S.E.M ( N = 10). 



85 O Experimental 

© Control A 

75 

65 so C3 

U 

55 

45 

4 1 

Hours at 24°C after 36°C treatment 

85 • Experimental 

B O Control 

75 

13 

65 so 

55 

45 

4 0 

Hours at 24°C after 37°C treatment 



3.4 DISCUSSION, 

The data obtained for LD50 for the original stock of 10 day-old blowflies 

Calliphora vicina developed and maintained at 24°C was 38.16 ± 0.47°C and is 

significantly lower than that determined for a similar stock of blowflies using the same 

protocol reported by Davison (1969) and by Bowler and Kashmeery (1981). The 

cause of this difference is not clear, but it may result from an inadvertent selection of 

less resistance stock over the intervening period, whereas, the results obtained from 

the Cambridge stock of flies which was 39.47 ± 0.47°C agreed with those of Davison 

(1969) and Bowler and Kashmeery (1981) in the earlier studies. 

Davison (1969) observed that during the heat treatment of Calliphora 

erythrocephala only newly emerged adults showed a significant water loss. One-day-

emerged adults lost 5 per cent more water at 43°C than 30-day-old adults. The 

additional water loss in the young adult may be due to relatively poor waterproofing of 

the cuticle or poor spiracular control. The fact that the water loss in young adults may 

represent a more efficient method of evaporative cooling has been discounted. Edney 

and Barrass (1962) reported that the spiracles of teneral Glossina morsitans open 

above 40°C, and at 45°C they were able to cool their bodies by 1.66°C, when the air 

was completely dry. In moist air they observed no difference between body and 

ambient temperature. However, larva and puparia of Calliphora erythrocephala posses 

a higher heat death point than 30-day-old adults and show no water loss (Davison, 

1969). It is therefore suggested that the higher heat death point in young emerged 

adults is due to similar factors to those involved in the heat death point of larvae and 

puparia. The additional water loss in I-day-emerged adults is of secondary importance. 

Water loss during L D 5 Q treatment was not determined in this present study, but it is 

unlikely that heat death reported in this study was due to changes in water content, as 
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this parameter has been reported to be unaffected by heat treatment in this species 

(Davison, 1969). The results presented here demonstrate that thermotolerance can be 

induced in blowflies, as heat damage in Ca.lliph.ora vicina caused by an L D 5 0 exposure, 

was clearly reduced by previous exposure to a sublethal temperature. However, such 

protection was found to be transitory and time dependent; similar transient 

thermotolerance due to exposure to supraoptimal temperature has been observed in 

other insects (Milkman, 1962; Mitchell, et ai, 1979; Tissieres et al, 1974; Chen, 

Richard, Lee and Denlinger, 1991; Carretero, Carmona and Dietz, 1991). The kinetics 

of the induction of thermotolerance in blowflies indicated that this protection started 1 

h after the conditioning exposure, reached a maximum between 3 -4 h and had decayed 

by 6 h. The description of the heat shock in the insect under investigation has revealed 

similarities and differences in comparison to that of Drosophila and other taxa in terms 

of the optimum response, the time course of thermotolerance, and its decay. A similar 

response is well documented, especially for Drosophila melanogaster (Mitchell et al, 

1987) and Chironomus thumni (Carretero et al., 1991). 

Tissieres et al., (1974) showed heat shock caused a cessation of the normal 

protein synthesis. This was followed by the synthesis of specific new proteins which 

correlate with the changes in the puffing pattern of the chromosomes. The development 

of puffs on chromosomes is known to be associated with gene transcription, and these 

workers concluded that heat shock extensively altered gene transcription and 

consequently gene expression. It is probably for these reasons that the period at which 

the thermal shock is applied determines the type of phenocopy. 

The development of thermotolerance has also been demonstrated in Sarcophaga 

crassipalpis by Yokum and Denlinger (1992) Their studies demonstrated that the 

induction of thermotolerance was dependent on both the temperature and duration of 
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the heat shock. The period over which thermotolerance lasted in S. crassipalpis was 72 

h, considerably longer than the 5 h period found for blowflies in the present study, 

which is similar to that reported for Sarcophaga crassipalpis by Chen et al, (1991). 

The extent and duration of the thermotolerance developed may be dependent not only 

on the conditions of the heat shock, but also on the severity of the lethal temperature 

used. 

The present study also demonstrated similarities to Ceratitis capitata (Stephanou 

et al., 1983) where pretreatment at a mild temperature followed by heat shock resulted 

in an enhancement of survival. Some differences, however, can be seen, in terms of the 

optimum pre-treatment temperature, that temperature Ls 37-41 °C for Ceratitis 

capitata, while it is 36-38°C for Calliphora vicina. This difference may reflect 

differential preference of the optimum environmental temperature between the two 

species. A shock of 40°C for 40 min usually kills Calliphora vicina, while this stress 

did not reduce survival of Ceratitis capitata (Stephanou et al., 1983). 

Whyard et al., (1986) reported similar data to those in this study using Locusta 

migratoria. Adults reared at 27-30°C died after 2 h at 50°C, but they survived this 

temperature stress if first exposed to 45°C for 0.5 to 4.5 h. The authors suggested that 

the acquisition of thermotolerance during exposure to elevated sublethal temperatures, 

must be the result of relatively rapid cellular modification which may be related to the 

biochemical changes observed during heat shock. 

The phenomenon of thermotolerance is not restricted to insects, it has been shown 

in a wide variety of organisms, for example yeast (McAlister and Finkelstein, 1980); 

amphibians (Mosley, 1994); crustaceans (McLennan and Miller, 1990); coelenterates 

(Bosch et al., 1988); sea urchin (Roccheri et al., 1983); reptiles (Maness and 

Hutchison, 1980); fishes (Otto; 1973); mammalian cells (Henle and Dethlefsen, 1978; 
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Li and Werb, 1982, Landry et al., 1982). In all cases subjection to a temperature shock 

prior to that which could kill the animals or (cells) resulted in an enhancement of 

survival. 

Thermotolerance appears to be important for survival under natural stress 

conditions. A fine example of the latter is the comparison of two species of hydra, 

Hydra oligactis and Hydra attenuata (Bosch et al., 1988). The former species is 

extremely sensitive to temperature and is incapable of acquiring thermotolerance, 

whereas the latter species is thermoresistant and can become thermotolerant. For 

example, after pretreatment at 30°C, H. attenuata polyps developed thermotolerance 

and were protected against the deleterious effects of the high temperature. Moreover, 

after thermal shock Hydra attenuata makes a large amount of 60 kD a protein, which 

is not normally found in Hydra attenuata. 

Heat hardening may be found routinely in animals which experience large natural 

diurnal fluctuation in their environmental temperature. Maness and Hutchison (1980) 

have reported variations throughout the day in hardening in a number of amphibians 

and fish. The periods for peak hardening were found to correspond with the periods of 

highest environmental temperatures which supports the adaptive role of hardening. 

Rutledge et al (1987) demonstrated that the increase in resistance to CTM a x that 

occurred, in two species of salamander, following heat shock was related to the 

induction of heat shock proteins. Rutledge et al (1987) have expanded the definition of 

heat hardening suggested by Maness and Hutchison (1980), to include other relatively 

brief shocks, ones at sub-CTMax temperatures, but of longer duration (up to one or a 

very few hours). This Rutledge et. al. (1987) included in the phenomenon of heat 

hardening not only the increases in thermal tolerance following the C T M ^ , but also 
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those following one hour sub-CTM a x exposures as well as those following several 

hours of high field temperature. 

Lowe and Heath (1969) have also demonstrated evidence of hardening under field 

conditions in the desert pupfish, Cyprinodon mascularis. Fish frequently entered water 

at 40-41 °C, temperatures that were uncomfortably close to their summer C T M a x 

(43°C) and well above winter C T M a x (37°C) but, more importantly, higher than the 

fish can be acclimated to in the laboratory. It is suggested, therefore, that the ability of 

this fish to enter and spend time at 40°C may be a heat-hardening effect of considerable 

ecological value. 

The data presented for thermotolerance in Calliphora are in broad agreement with 

similar research in other species. However, intra and interspecific variability may exist 

with regard to optimum treatment, rapid acquisition of thermotolerance and other 

factors. Despite a great deal of published work dealing with thermotolerance, the 

molecular basis of this phenomenon remains in debate. The transient development of 

thermotolerance has been correlated with the production of a set of proteins known as 

heat shock proteins (HSPs) which were first identified in Drosophila (Ritossa, 1962). 

Drosophila at various developmental stages (adult, larvae, tissue or cultured cells) 

exposed to an acute heat stress have altered patterns of protein synthesis (Ashburner 

and Bonner, 1979; Tanguay, 1983). The results of Stephanou et al (1983) provided 

excellent correlation between the ability of the fly to survive thermal injury and the rate 

of the general protein and the heat shock protein synthesis. 

Although the biological role of the heat shock proteins has not been elucidated, 

several lines of evidence show that these proteins are involved in the process for the 

acquisition of thermal tolerance Mitchell et al., 1979, suggested they protect cells 

against stress (reviews by Lindquist and Craig, 1986). Nevertheless, the importance of 

41 



these proteins (HSPs) in thermotolerance remains controversial and may depend upon 

the system or organism being studied. Initiation and decay of thermotolerance in 

Chironomus thumni corresponded closely to the induction and degradation of heat 

shock proteins (Carretero et al., 1991). In contrast, the role of heat shock proteins in 

thermotolerance of yeast Saccharomyces cerevisiae is questionable. Neither culturing 

Saccharomyces cerevisiae with amino acid analogues (which should result in synthesis 

of non functional proteins) nor with cycloheximide (which blocks protein synthesis) 

prevented the induction of thermotolerance by exposure to supraoptimal temperature 

(Hall, 1983). Smith and Yaffe (1991) have also reported that HSPs production is not 

required for thermotolerance acquisition in yeast. 

The prolonged thermotolerance in pharate adults of the flesh fly Sarcophaga 

crassipalpis (which decay slowly over 72 h) also appeared not to be dependent upon 

the synthesis of HSPs (Yokum and Denlinger, 1992). These workers reported that heat 

shock protein synthesis stopped, and normal protein synthesis was resumed within the 

first hour after a 2 h exposure to 40°C. This was clearly shown using pulse-chase 

experiments because heat shock proteins were synthesized during the exposure period, 

but were degraded within 24 h after removal from 40°C. Yet thermotolerance persisted 

beyond 48 h. They then concluded that neither the continuing synthesis nor persistence 

of heat shock proteins appeared critical in maintaining thermotolerance. The major 

conclusions drawn from the work described in this chapter as the follows: 

1. The heat death point obtained for 10-day-old Calliphora vicina stock was 38.16 ± 

0.47°C whilst that obtained for the Cambridge stock was 39.47 ± 0.18°C. 

2. Development of a transitory thermotolerance in the blowfly Calliphora vicina, after a 

brief exposure to elevated temperatures was demonstrated with the same 

characteristics in the two stocks. 
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4ol INTRODUCTION 

Most cells and tissues express their full range of functions only within permissive 

thermal limits, and the effects of elevated temperatures on mitochondrial respiration 

and the activities of selected mitochondrial enzymes have been measured for several 

invertebrates (Smith, 1973; Robb, Hammond and Bieber, 1972; Davison, 1971; Newell 

and Northcroft, 1967). Such measurements indicated that the functional behaviour of 

these organelles was drastically impaired by high temperature treatment. Moreover, it 

was suggested that the thermostability of some mitochondrial enzymes appeared to be 

correlated with temperature range of the species and that actual enzyme denaturation 

usually requires unphysiologically high temperatures. 

Many enzyme pathways are structurally associated with cell membranes, and the 

integrity of the bilayer-enzyme relationship is known to be important in conferring 

orientation upon the constituent enzymes of a pathway and as a consequence, 

membrane enzymes may be particularly sensitive to thermal perturbation of their 

function (Bowler, 1987; Yatvin, Dennis, Elegbede and Elson, 1987; Bowler and 

Manning, 1994). Smith (1973a) has shown that the thermostability of some 

mitochondrial respiratory enzymes was correlated with the environmental temperature 

range of the species. This suggests that natural selection is operating on these enzymes 

at the cellular level. 

Mitochondria therefore provide an opportunity to study a more intact system than 

is available from isolated enzymes, multienzyme complexes, or membrane preparations. 

The mitochondrion, in particular, represents a highly organised membrane-enzyme 

system whose functional efficiency is known to be dependent upon the structural 

integrity and juxtaposition of component enzymes (Lehninger, 1964). Furthermore, 
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mitochondrial efficiency, as measured by tightness of coupling of oxidation and 

phosphorylation, can be readily determined. Moreover cellular energy production 

requires participation of mitochondrial enzymes, and oxidative phosphorylation. 

Consequently, studies that make use of isolated mitochondria minimise disruption of 

enzyme-enzyme, enzyme-membrane and enzyme-transport interactions, they are useful 

in assessing transport capacities, metabolic flux rates, enzyme activities in situ and 

regulation of mitochondrial pathways (Moyas et al, 1990). 

Pioneering studies of Lewis and Slater (1954); Sacktor (1954); Van den Berg 

(1962), demonstrated that mitochondria isolated from insect flight muscle carried out 

oxidative phosphorylation just as do mitochondria isolated from various mammalian 

tissues. Oxidative phosphorylation in insects was first demonstrated in mitochondria 

from Musca domestica (Sacktor, 1954), and by Lewis and Slater, (1954) in Calliphora 

erythrocephala mitochondria. That early work has been confirmed by other workers, 

for example the efficiency of oxidative phosphorylation in respect to the activity of 

enzymes in insect tissue has been studied in isolated mitochondria of adult insect wax 

moth Galleria mellonella (Wojtczak, et al., 1968), blowflies, Calliphora 

erythrocephala (Tribe, 1967; Davison, 1969; Bowler and Kashmeery, 1981), and 

Phormia regina (Sacktor and Wormser-Shavit, 1966) and cockroach, Periplaneta 

americana and Blaberus giganteous (Wojtczak, et al., 1968). These studies all showed 

that insect mitochondria function similarly to mammalian mitochondria. However, 

different substrates may be utilised, reflecting the different permeability characteristics 

of mitochondria from different sources. As a consequence, Chefurka (1966) 

emphasised some of the parameters that may affect the stability of mitochondria and 

consequently their respiratory activity, 1) Composition of the isolation and reaction 

media, 2) Extent of homogenisation, 3) Ageing of mitochondria 4) Other parameters 
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such as age of insect, concentration of mitochondrial suspension, the order of addition 

of reactants. 

Three different parameters are widely used to characterise the efficiency of 

oxidation phosphorylation in flight muscle mitochondria. These are the latent ATPase 

activity, the RCI, and the ADP:0 ratios. Mitochondrial damage is often associated with 

a loss of structural and functional integrity of the inner membrane. This can result in an 

increase in ATPase activity (later in intact mitochondria), and also an decrease in RCI. 

This occurs because State IV respiration is increased by damaged mitochondria and 

State I I I respiration is usually unaffected, (Van den Berg, 1962). 

Glycerol-3-phosphate was used as substrate, because the very high oxidation rates 

obtained approached the amounts of oxygen consumption during the flight of the 

blowfly (Sacktor, 1970). For this reason glycerol-3-phosphate has often been 

suggested as the principal physiological substrate in dipteran flight muscle 

mitochondria (Sacktor, 1970). On the other hand, other workers (Gregg, Heisler and 

Remmert, 1962) have maintained that pyruvate also plays a major role in supplying 

energy for flight, because of the high level of respiratory control obtained. The other 

Krebs-cycle acids are poorly oxidised by these mitochondria because the mitochondrial 

membrane is relatively impermeable to them (Van den Bergh and Slater, 1962); this 

may be due to a lack of carrier molecules (Hansford and Chappell, 1967). It is deduced 

that both glycerol-3-phosphate and pyruvate must be important in flight muscle 

metabolism and in consequence a comparison has been made between the two systems 

to see whether both behave similarly with respect to elevated temperatures. 

Mitochondrial function has been reported to be especially sensitive to in vitro 

heating. Morris and King, (1962) first provided evidence that the cytochrome b of the 

respiratory chain of heart mitochondria was particularly sensitive. This was confirmed 
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for mouse brain and liver mitochondria by Christiansen and Kvamme (1969). In 

addition, they also reported differences in thermal sensitivity from different tissues with 

brain mitochondria being more resistant than those from liver and Ehrlich ascites cells. 

At the lower temperature used (41°C) they described the first signs of heat injury as 

being a decline in respiratory control without fall in P : O ratio values, at higher 

temperatures (45 °C), however, they found that the mitochondria become uncoupled 

and phosphorylation was more seriously affected than oxygen consumption. They also 

reported that, under these conditions, the cytochrome c content of the medium 

increased which they interpreted as a result of damage to the mitochondrial membrane. 

Kallapur, Downer, George and Thompson (1982) studied the effect of 

temperature on the phase properties and lipid composition of flight muscle 

mitochondria of Schistocerca gregaria, they observed that elevated temperatures 

resulted in depressed levels of some phospholipids and they suggested that it is possible 

that some of the observed effects of temperature on insect metabolism may result from 

temperature-induced alterations in mitochondrial membranes. 

O'Brien, Dahlhoff and Somero (1991) have also reported that incubation at 

elevated temperatures caused inactivation of mitochondrial respiration and caused the 

activities of several mitochondrial enzymes either to increase or decrease sharply in the 

hydrothermal vent tube worm Riftia pachyptila. 

When isolated mitochondria are provided with a substrate and phosphate in an 

oxygenated medium, the esterification of ADP to ATP is coupled to oxygen 

consumption, and the ADP:0 ratio gives a direct measurement of coupling efficiency. 

Since mitochondria are the most important sites of energy production in aerobic cells, 

any damage to this system is likely to have a serious effect upon the level of ATP and 
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other high energy molecules which may lead to the impairment of energy requiring cell 

processes, and the consequent breakdown of cellular metabolism. 

In this study the mitochondria of the flight muscle of Calliphora vicina have been 

used. These mitochondria are easily accessible and isolation time is relatively short. 

However, in some respects mitochondria are unsatisfactory for their morphological 

integrity and functional behaviour can be altered during isolation (Balboni, 1965; 

Carney, 1966); structural damage occurring during isolation will markedly affect 

coupling (Van den Bergh, 1962). Sarcosomes can be "aged" by grinding during 

isolation or by leaving them for long periods of time after isolation (Lewis and Slater, 

1954; Van den Bergh, 1962). However, paying attention to these facts and using gentle 

isolation procedures, good mitochondria whose coupling capacities approach 

theoretical values can be isolated (Van den Bergh, 1962). Furthermore, ensuring 

standardisation of isolation procedure, intact sarcosomes can be obtained, which are 

satisfactory for use in comparative physiological studies. 

Earlier work on heat injury and death in blow flies has shown a good correlation in 

Calliphora erythrocephala with the loss of flight ability (Davison and Bowler, 1971). 

They presented data that showed that the mitochondria from flight muscle had a 

thermal sensitivity equivalent to that of the intact organism. Furthermore Davison and 

Bowler (1971) and Bowler and Kashmeery (1981) also reported that in vivo ( L D 5 0 ) 

heat treatment of blowflies caused impairment in the functional efficiency of 

sarcosomal respiration when glycerol-3-phosphate was the substrate. The mitochondria 

from heated flies had poor respiratory control and in many instances ADP:0 ratios 

could not be demonstrated. This work satisfies one of the criteria for a primary lesion 

in that, a very close correlation existed between the age-specific heat sensitivity of the 

flies and the thermal damage caused to mitochondria by a particular heat dose. In a 
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more complete study on the recovery of blowflies from sublethal heat injury Bowler 

and Kashmeery (1981) using the time for the return of normal mitochondrial function 

as the index of repair, have shown that the repair itself is temperature sensitive. 

The results from the previous chapter show that adult heat death points were 

changed by pretreatment (heat shock). The question, therefore arose whether 

sarcosomal oxidative phosphorylation would be protected from impairment during the 

development of thermotolerance following heat shock. 
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42 MATERIALS AND METHODS. 

Male and female 10-day old flies of Durham stocks used in this study were 

developmental^ acclimatised to 24 + 0.5°C and the heat treatments were given using 

the methods described in chapter 3. 

Flight muscle mitochondria were isolated after the procedure Tribe and Bowler 

(1968); Davison and Bowler (1971) and Bowler and Kashmeery (1981). 

4. 2.1 Preparation of mitochondria. 

Thirty to forty 10-day old flies were immobilised with carbon dioxide. Thoraces 

were transferred to a small glass cold, loosely fitting, flat-bottomed glass rod. Care was 

taken to avoid twisting or grinding the rod, and so damaging the sarcosomes. The 

resulting pulp was transferred with a further 1 cm 3 of sucrose medium I . The pulp 

squeezed through the muslin by hand and the filtrate was collected in a centrifuge tube 

on ice. The filtrate was centrifuged at 4°C in an Europa 24 centrifuge at 6000 g for 10 

min. The resulting pellet was suspended in 2 cm 3 of ice cold sucrose medium I I . It was 

then recentrifuged at 6000g for another 10 minutes and the final pellet of washed 

mitochondria suspended in 0.5 cm 3 of resuspension medium of I I I . The average time 

for the whole preparation period was approximately 50 min. 

Twenty separate preparations were made for each of the control, L D 5 0 treated 

control and L D 5 0 treated thermotolerant flies. 

Isolation media used: 

(i) Isolation medium I 

0.32 M sucrose, 10 mM EDTA, 2% BSA, 10 mM Tris/HCl, buffered at pH 7.3 

50 



(ii) Isolation medium II 

As sucrose medium I without the BSA 

(iii) Isolation medium III 

0.15 M KC1, 1 mM EDTA, 10 mM Tris/HCl buffered at pH 7.3 

4.2.2 Measurements of oxidative phosphorylation 

Oxidative phosphorylation was measured at 24°C (unless stated otherwise) using 

the Clark oxygen electrode (Clark, 1956). The reaction medium was the same as that 

used by Davison (1969) and Kashmeery (1979) and was: 

50 mM KC1, 30 mM phosphate buffer (Sorensen) pH. 7.3, 5 mM MgCl 2 6H 2 0 , 1 mM 

EDTA, 20 mM Tris/HCl buffered at pH 7.3 

The medium was thoroughly equilibrated to 24°C for several hours to saturate it 

with atmospheric oxygen. 

4.2.3 Description of the oxygen electrode 

The electrode has a perspex reaction vessel surrounded by a water jacket and this 

unit screws onto a perspex base where a platinum cathode and silver anode are 

situated. When in use both electrodes are covered with a few drops of 1 M KC1 and 

this electrolyte is separated from the reaction vessel by a teflon membrane. The perspex 

screw cap fitted to the top of the reaction vessel had a small hole bored through the 

centre to allow additions to be made to the reaction media. The medium in the reaction 

vessel was continuously stirred using a small magnetic stirrer and a "flea". 
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The principle of the oxygen electrode has been described by Davies & Brink 

(1943). When a polarising voltage of -0.6 volts is imposed across the two electrodes, 

the platinum negative to the silver, oxygen undergoes an electrolytic reduction 

Q 2 + 2e + 2H+ -> H 2 Q 2 

H 2 0 2 + 2e + 2H+ -> 2 H 2 0 

and the current flowing is directly proportional to the oxygen content of the medium. 

Chappell (1964) has pointed out that the Clark electrode measures activity and not the 

concentration of the oxygen present in the reaction medium. Therefore in this study the 

electrode has been calibrated by determining the oxygen content of the reaction 

medium (Davison, 1970). 

The current flowing through the electrode was passed through a helical 

potentiometer in series with the platinum electrode and the voltage developed across 

this resistance was fed into a recorder (Goerz Electro) set at 2 mV sensitivity. The 

recorder baseline was set by reducing the medium in the reaction vessel of the oxygen 

electrode with sodium dithionite. This effectively reduced the current across the 

electrode to zero. Reaction medium saturated with oxygen was pipetted into the 

reaction vessel and the potential adjusted with the helical potentiometer to give a full 

scale deflection on the recorder. 

4.3.4 Polarographic measurement of oxygen consumption 

3 cm 3 of reaction medium was pipetted into the reaction chamber of the oxygen 

electrode, the perspex screw cap was replaced such that all air bubbles were expelled. 

The surface of the reaction medium was allowed to rise about 1 mm up the central hole 

of the stopper to minimise the contact between the reaction medium and atmospheric 
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oxygen. After about one or two minutes the recorder was adjusted to give a full scale 

deflection of the pen recorder. Oxygen uptake from this 3 cm 3 of reaction medium was 

followed by deterrnining the change of deflection of the recorder after the following 

additions: 

50 j.il of 2 M glycerol-3-phosphate solution were added (final concentration 33 

mM) and oxygen consumption was followed for about one minute to give the substrate 

rate respiration. Then 10 yl of 50 mM ADP (in 30 mM phosphate buffer at pH 6.8) 

was added and the ADP-stimulated respiration (state HI) was observed after this 

addition. At the expenditure of added ADP State IV respiration was then followed for 

up to one minute. The experiments was then repeated with a fresh mitochondrial 

sample but with the addition of 50ul of 1M pyruvate + proline (final concentration, 2 

mM each). 

Endogenous rates were negligible. Measurements of oxidative phosphorylation 

were repeated several times, but not later than 1 hour after isolation, for results after 

this time became inconsistent, indicating sarcosomal ageing. Respiratory rates were 

determined from the slopes of the polarographic traces as indicated by the construction 

lines in Figure 4.2, trace 1.Respiratory rates were expressed as ug AO mg protein ^ h ' 1 

see Figures (4.2 and 4.3). 

Respiratory Control Index (RCI) 

For polarographic studies Chance and Williams (1955) have defined the 

respiratory control index as the ratio of the respiratory rate in the presence of added 

ADP to the rate following its expenditure i.e.: 

Statelll 
RCI = 

StatelV 
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However, in some experimental conditions e.g. following heat treatment to the 

whole animal, no respiratory cut-off occurred after the addition of ADP, consequently 

it was not possible to measure RCI according to the Chance and Williams definition. 

ADP:0 ratio: 

The ADP:0 ratio is the number of moles of ADP esterified for each gram atom of 

oxygen consumed. When pyruvate is the substrate, electrons are donated to the 

electron transport chain before the flavine nucleotides and consequently there are 3 

phosphorylations before the reduction of oxygen (ADP:0 = 3). Glycerol-3-phosphate 

donates electrons via a specific dehydrogenase and electrons enter the electron 

transport chain after the flavine nucleotides so that only two phosphorylations occur 

with this substrates ( ADP:0 = 2). 

The ADP:0 ratios have been calculated throughout this study using the method 

described by Chance & Williams (1955). When a known amount of ADP is added to a 

mitochondrial suspension in the presence of substrate, the respiration rate increases 

and a quantity of oxygen is consumed. The uptake of oxygen can be measured from 

the trace by extrapolating the ADP- stimulated rate and the rate after its expenditure. 

The distance between the point of addition of ADP and the extrapolated point of its 

extinction, represents the quantity of oxygen required by respiration, when 0.5 |imoles 

of ADP were converted to ATP. 

Figure 4.2 shows a typical trace indicating how state I I I and state IV respiration 

were determined and how RCI and ADP:0 ratios were calculated. 

4.2.5 Determination of sarcosomal protein: 

54 



The concentration of sarcosomal protein was determined using the Coomassie 

brilliant Blue-G250 method described by Bradford (1976), BSA fraction V was used as 

a standard. 

Protein reagents: 

0.01% (WW) Coomassie Blue G250 

47% ethanol 

8.5 % phosphoric acid 

A 200 ug / ml solution of BSA was prepared, this was diluted to give solutions 

within the range 40- 200 |ig / ml. A typical calibration curve is shown in Figure 4.1. 

Procedure: 

The unknown samples taken from the sarcosomal isolations were dissolved in 1 

cm 3 0.1M NaOH. 100 ul of each sample was taken, and 100 ul of 1.1 M NaOH added. 

These were mixed, 5 ml of Coomassie blue was then added to each sample, mixed and 

allowed to stand for 15 minutes at room temperature. The solutions were poured into a 

glass cuvette, and the absorbancy was measured against water at 595 nm in a LKB 

Biochrom. Ultraspectrophotometer. 

From the standard solutions prepared, a calibration curve of absorbance against 

protein concentration was plotted, Figure 4.1 and the unknowns were determined from 

this curve. 

4 .2.6 Chemicals 

The chemical reagents used in the present study were AnalaR grade where 

possible, or were of the highest purity which could be obtained commercially. Solutions 

were made up in glass distilled water. 
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Adenosine -5'-diphosphate (disodium salt), sodium pyruvate, proline, EDTA, 

bovine serum albumin, rac Glycerol 3-phosphate (sodium salt) were purchased from 

Sigma Chemical Co., Ltd. 

ADP was stored as a frozen solution buffered at pH 6.8, at -20°C for a maximum of 

six weeks. 

4.2.7 Statistical treatments: 

Al l values are presented as means ±S.E.M. Student's f-tests or the Mann- Whitney 

U-test were used to determine the levels of significance as appropriate. 
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4.3 RESULTS; 

A typical electrode recording for control (not L D 5 0 treated), L D 5 0 treated and 

L D 5 0 treated thermotolerant flies are presented in Figures 4.2 and 4.3 using both 

glycerol-3-phosphate and pyruvate plus proline as substrates. 

It should be emphasised that the traces obtained for the two substrates were from 

different samples of the same mitochondrial preparations. Furthermore, in all cases 

mitochondrial respiratory performance was measured at 24°C. 

4.3.1 Glycerol 3-phosphate as substrate 

(i) Non pretreated (control flies): 

The QO2 values for endogenous respiration (without added substrate) were 

usually not measurable. The addition of substrate glycerol-3-phosphate caused an 

immediate rise in respiratory rate, as indicated by downward deflection of the oxygen 

trace, and this was further stimulated by the addition of 0.5 umoles of ADP, which 

initiated state I I I respiration, and after the utilisation of the added ADP, the rate of 

respiration decreased and state IV respiration was obtained. Further addition of ADP 

produced the same effect until the oxygen in the reaction medium was exhausted. From 

these traces respiratory rates, ADP.O ratio and respiratory control indices (state I I I / 

state IV) were estimated. The respiratory rates observed with these non-pretreated 

control mitochondria are recorded in Table 4.1. 

The substrate rate oxidation was 35.93 ± 0.57 ug AO mg protein^h"1. This 

respiration was stimulated by the addition of ADP to give the Q 0 2 value of 81.83 ± 

2.53 ug AO mg protein^h - 1 (The ADP-stimulated rate). After the expenditure of the 

added ADP, the rate of respiration decreased to give the value of 37.45 ± 2.03 ug AO 
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mg protein - 1 h"1 that is state IV. This resulted in obtaining good values for RCI (mean 

= 2.18 ) and mean ADP:0 of approximately 2 as expected, this implies a high level of 

oxidation and phosphorylation. 

(ii) Non-pretreated LB50 flies 

The mitochondria isolated from flies after an L D 5 0 heat treatment have impaired 

respiratory performance. Substrate rate respiration was significantly lower than that of 

control (non-pretreated) mitochondria (P < 0.001), it was approximately half the value 

of that of control mitochondria as it fell from 35.93±0.5 to 22.1 ± 1.67 ug AO mg 

protein _ 1 h"1 , this suggested that mitochondrial electron transport is inhibited. The 

ADP-stimulated rate (state III) respiration rate showed a decline of about 75% and was 

significantly reduced from 81.83 ± 2.53 in the control group to only 22.21 ± 1.67 \ig 

AO mg protein - 1 h"1 (P < 0.001). State IV respiration was also reduced, it fell from 

37.45 ± 2.03°C in the control group to only 22.21 ± 1. 67 ug AO mg protein"1 I r 1 (P 

< 0.001). The state I I I respiration in these mitochondria was the same as state IV 

respiration. In such mitochondria the ADP stimulation was not demonstrable, hence an 

RCI value of one was obtained, and consequently ADP:0 was not measurable. The 

results obtained are entirely consistent with data produced by other workers on flight 

muscle mitochondria. Moreover, these results suggest that L D 5 Q heat treatment 

markedly affect oxidative phosphorylation using glycerol-3-phosphate as substrate. 

(iii) Thermotolerant LD50 flies 
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Generally these mitochondria have a respiratory performance similar to that of non 

pretreated control mitochondria, the improvement over non-thermotolerant L D 5 0 

control flies was pronounced when glycerol-3-phosphate is the substrate. 

The substrate respiration (before the addition of A D P ) showed a trend towards a 

significant decline as compared with the control non-pretreated flies, It fell from 35.93 

+ 0.57 (in the non-pretreated control) to 27.23 ± 1.74 ug A O mg protein"1 h"1 in these 

thermotolerant control flies. However, it is still significantly higher than the L D 5 0 

control mitochondria that is 22.1 ± 1.67 ug A O mg protein"1 h"1 (P < 0.001).The state 

I I I respiration rate in these thermotolerant control flies being 70.48 ± 2.12 ug A O mg 

protein"1 h"1 is significantly higher as compared with that of the L D 5 0 control group 

which is 22.21 ± 1.67 ug A O mg protein"1 h"1- However, it is still significantly lower 

than that of the control group 81.83±2.53 (P < 0.001). State IV respiration rate 

which is 32.78 ± 1.68 ug A O mg protein - 1 ^ 1 is similar to that of non-pretreated 

control mitochondria, but was significantly higher than that of 22.21 ± 1.67 ug A O mg 

protein - 1 h"1 found for mitochondria of the L D 5 0 control group (P < 0.001). The RCI 

value is not different to that of non-pretreated control, but it rose from 1 in L D 5 Q 

control flies to 2.22 ± 0.07 in these mitochondria of thermotolerant control flies. 

Measurable A D P : 0 values were obtained from mitochondria from L D 5 0 treated 

thermotolerant flies, however, they were significantly lower than those of non-

pretreated control mitochondria (P < 0.001). 

Pyruvate plus proline as substrates 

(i) Non pretreated control flies: 
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The results of measurement of oxidative phosphorylation of mitochondria from 

control flies are also recorded in Table 4.1. Generally when pyruvate plus proline were 

used as substrates Q 0 2 values were lower than with glycerol-3-phosphate. The QO2 

value obtained for substrate respiration is 4.8 ± 0.19 ug AO mg protein - 1 h" 1. This 

respiration was stimulated by the addition of ADP. The state I I I respiration obtained 

was 50.19 ± 2.62 ug AO mg protein - 1 t r 1 and after the exhaustion of this added ADP, 

state IV respiration had fallen to 8.75 ± 1.09 ug AO mg protein - 1 h - 1 . These data gave 

a high mean value for the RCI of 5.75 but the mean value for ADP:0 ratio was found 

to be 2.75 which in close to the expected value. 

(ii) Non-pretreated LD50 flies: 

As compared with non pretreated controls substrate rate respiration was 

significantly increased (P < 0.001) in mitochondria following an L D 5 0 treatment. The 

Q 0 2 value rose from 4.8 ± 0.18 in the controls to 6.98 ± 0.18 ug AO mg protein - 1 h - 1 

in the L D 5 0 treated mitochondria. The state I I I respiration rate, however, was 

significantly reduced from 50.19 ± 2.62 to 23.99 ± 1.63 ug AO mg protein - 1 h - 1 (P < 

0.001), but state IV respiration showed only a small but significant increase over the 

non pretreated control mitochondria (P < 0.05) rising from 8.75 ± 1.09 to 12.77 ± 

1.54 ug AO mg protein - 1 h - 1 . The increased state IV respiration and the reduction in 

state I I I respiration, caused a sharp reduction in RCI from 5.75 in the non pretreated 

controls to 1.93 (P < 0.001). The ADP:0 ratios were still measurable, although a 

reduction in their values was observed (P < 0.01). This is in agreement with the 

prehminary results reported by Davison (1969). Thus pyruvate plus proline supported 

60 



respiration is less sensitive to in vivo L D 5 0 heating than that supported by glycerol 3-

phosphate. 

(iii) Thermotolerant LD50 flies 

In these mitochondria we can note a significant protection from heat damage has 

occurred, see Table 4.1. The substrate rate respiration is significantly increased 

compared with the control LD5Q treated mitochondria. It rose from 6.98 ±0.18 to 7.38 

± 0 . 2 ug AO mg protein" 1^ 1. However, state E I respiration remained significantly 

lower in these mitochondria as compared with control L D 5 0 non-pretreated 

mitochondria, the Q 0 2 was calculated to be only 23.99 ± 1.27 ug AO mg protein"1 h _ 1 

(P < 0.001). However, state IV respiration was restored to the lower values obtained 

for non-pretreated control mitochondria. Values calculated for RCI correspondedly 

increased from 1.93 ±0 .16 to 3.62 ± 0. 25 in thermotolerant mitochondria, the latter 

value was still significantly lower than that obtained for non-pretreated control 

mitochondria (P < 0.001), but higher than for non-pretreated L D 5 0 mitochondria. 

Once again, however ADPiO ratios were less affected and a mean of 2.70 ± 0.08 was 

obtained which did not differ from non-pretreated control values. 

In contrast to the use of glycerol-3-phosphate, as a substrate ADP:0 ratios were 

measurable in mitochondria from all treatment groups using proline plus pyruvate 

substrate, see Table 4.1. 

Thus the indices of the quality of function of the isolated mitochondria (RCI and 

ADPiO) were both significantly reduced by exposing the flies to an L D 5 0 treatment, 

showing that oxidative phosphorylation was impaired. This damage is more 

pronounced when glycerol-3-phosphate was the substrate than with pyruvate plus 

proline. Table 4.1 shows that pretreatment with a heat shock that induces 
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thermotolerance, protected the mitochondria from damage caused by the subsequent 

L D 5 0 dose, because the values obtained for RCI and ADP:0, with both substrates 

conditions, were restored closer to the values from control mitochondria. This raised 

the question whether the induction of thermotolerance in vivo will protect 

mitochondrial respiratory function against an in vitro exposure to high measuring 

temperature. 
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Figure Typical calibration curve for protein using Cooraassie Brilliant Blue-

reagent Bradford (1976). BSA (fraction V) was used as standard. 
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Taluk 4.1. The effect of in vivo L D 5 Q treatment on the respiratory efficiency at 24°C of 

mitochondria from normal and thermotolerant blowfly flight muscle. 

Respiratory rate is measured in u,g AO mg protein"1 h" 1. The mean value for L D 5 Q 

and L D 5 Q thermotolerant groups were compared with those from control (none) 

mitochondria. Statistical differences were derived using Students's t-test or Whitney-

Mann U-test as appropriate; * P < 0.05; ** P < 0.01; ***P < 0.001. 

N = 20 in all cases. 

RCI = State IE / State IV (see Figure 4.2). 

ADP:0 is the ratio of the number of moles of ADP esterified to ATP for each gram of 

added ADP. 

NM = non measurable. 
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Figure 4.2 Typical polarographic records obtained showing the rates of oxygen 

consumption of isolated flight muscle mitochondria at 24°C with glycerol-3-phosphate 

as substrate. 

Arrows indicate additions of mitochondria (M) , substrate (S) and 0.5umole of 

A D P . 

Trace I shows results from mitochondria from control flies 

Trace I I shows results from mitochondria isolated from thermotolerant flies after in 

vivo L D 5 0 dose. 

Trace I I I shows results from mitochondria isolated from control flies after an L D 5 0 

dose. 

The method of estimation of State I I I and State IV respiration is shown from which 

RCI and ADP:0 can be calculated (Chance and Williams, 1955) 
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Figuare 43. Typical polarographic records obtained showing the rates of oxygen 

consumption of isolated flight muscle mitochondria at 24 °C with pyruvate plus proline 

as substrate. 

Arrows indicate additions of mitochondria (M), Substrate (S) and 0.5 jimol of ADP 

Trace I shows results from mitochondria from control flies 

Trace II shows results from mitochondria isolated from thermotolerant flies after in 

vivo LD50 dose. 

Trace I E shows results from control mitochondria from control flies after an L D 5 0 

dose. 

The method of estimation of State III and State IV respiration is shown from which 

RCI and ADP:0 can be calculated (Chance& Williams, 1955). 
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4.4 DISCUSSION: 

In this study, and in studies by others (for example Danks and Tribe, 1979) state 

III and state IV respiration rates after the second addition of ADP have been shown to 

be higher than after the first addition. It is therefore questionable whether all state III 

or all state IV respiration rates should be grouped to give a mean value, and in the 

present study means were only obtained from the first addition of ADP. However, it 

should be emphasised that different aliquots of the same mitochondrial suspension were 

used for both substrates glycerol-3-phosphate and pyruvate plus proline. Therefore the 

data obtained for the two substrates can be compared. 

The functional performance of the mitochondria from this stock of flies was very 

similar to that obtained in earlier studies (Davison and Bowler, 1971; Bowler and 

Kashmeery, 1981). What is also significant is that, notwithstanding the difference in 

L D 5 0 (see chapter 3) the data obtained for flies given an L D 5 Q treatment was also 

effectively the same (Bowler and Kashmeery, 1981). Glycerol-3-phosphate respiration 

was found to be differentially sensitive to in vivo heating as compared to respiration 

using pyruvate plus proline. Respiratory control was lost with glycerol-3-phosphate 

respiration, but in the same mitochondrial sample, respiratory control although 

reduced, was still demonstrable, when pyruvate plus proline were used as the substrate. 

Furthermore, ADP:0 also shows a significant if less dramatic fall with pyruvate plus 

proline respiration. The reduction in state III respiration with both substrates however 

indicates that either the respiratory chain was inhibited by heating in vivo and/or 

phosphorylation was inhibited with oxidative phosphorylation remaining coupled. In 

the case of glycerol-3-phosphate there was no evidence of uncoupling of oxidation and 

phosphorylation, because there was no increase in state IV respiration. However, with 

pyruvate plus proline as substrate some uncoupling is suggested because State IV 
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respiration is significantly increased in mitochondria isolated from L D 5 0 non pretreated 

flies. 

A similar differential sensitivity of these two respiratory pathways has been 

reported by other workers, Van den Berg and Slater (1962) and Tribe and Ashhurst 

(1972). The differential response of mitochondria from heated flies to the different 

substrates makes the identification of the primary lesion a problem. It could be argued, 

as proposed by Davison and Bowler (1971), that the loss of respiratory control and the 

reduction in State IV respiration, and together with the inhibition of State III 

respiration, resulted from heat damage to the ATP synthesising enzymes, without any 

uncoupling of oxidation and phosphorylation. 

Floridini et al. (1987) have shown in mitochondria isolated from hyperthermia-

treated Ehrlich ascites tumour cells that State III and State IV respiration were both 

decreased, whilst RCI and phosphorylation remained normal. Their work suggested a 

general inhibition of the electron transport chain because heating affected different 

segments of the respiratory chain at all energy conserving sites. A reduction in ATP 

synthesis would also be predicted because Lunec and Cresswell (1983) reported that 

heating S5178YS cells resulted in a rapid reduction in ATP levels, a result confirmed 

by Jaing et al., (1991) from 3 1 P NMR studies. 

The induction of thermal tolerance afforded significant protection to the 

mitochondria during a subsequent L D 5 0 heating. In the case of glycerol-3-phosphate 

respiration, respiratory control was restored to control levels, although ADP:0 remained 

significantly lower. State m respiration was restored to about 90% of that of controls. In 

the case of pyruvate plus proline respiration the protection afforded was to reduce State 

IV respiration, rather than increase State III respiration, which remained inhibited, this 

suggested that the protection served to prevent uncoupling. Lunec and Cresswell (1983) 
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have also shown that the development of thermotolerance in L 5 1 1 7 8 Y S cells also 

protected the ability to maintain ATP levels in cells subjected to a second heat treatment, 

a response that depended upon the time course of the appearance and the decay of 

thermotolerance. The reason for the observed differential effect on heat on respiration 

using the two different substrates, with the same mitochondrial sample, is not clear, 

(Bowler and Kashmeery, 1981). Glycerol phosphate dehydrogenase is thought to be the 

rate limiting step for glycerol phosphate oxidation by the respiratory chain, (Lardy et al., 

1962), this enzyme is allosterically stimulated by 10"5 g. ionH C a 2 + (Hansford and 

Chappell, 1967). In an earlier work it was shown that whilst the catalytic properties of 

the enzyme are affected, V m a x was reduced by 50%) in the L D 5 Q treated mitochondria, 

its allosteric properties (Hill exponent) were not significantly affected. Furthermore the 

enzyme was shown to be relatively thermostable (Bowler and Kashmeery, 1981). Several 

earlier studies indicated that, in mitochondria from other sources, a temperature sensitive 

site exists in the vicinity of coenzyme Q and site II (Morris and King, 1962; Christiansen 

and Kvamme, 1969) which might account for the particular sensitivity of glycerol-3-

phosphate respiration in blowfly flight muscle mitochondria which have a high capacity 

for respiration using this substrate. It is clear that phosphorylation is impaired by in vivo 

heating, for there is a significant reduction in respiratory control, with both substrates, 

without a rise in state IV respiration to the level obtained for state III respiration in 

control mitochondria, which would be expected if oxidative phosphorylation was 

uncoupled, Table 4.1. O'Brien et al. (1991) reported that a number of mitochondrial 

oxidative enzymes, from different species, were inactivated by heat in a way that parallels 

the differences in organism body temperature. Treatment of the preparations with 

chaotropic agents, that disrupt hydrophobic interactions between membrane lipids and 

proteins, markedly increased the thermal sensitivity of the proteins. These authors 
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concluded that this suggested that thermal inactivation of mitochondrial function results 

from the perturbation of the hydrophobic interactions between lipids and proteins, a 

conclusion which is in agreement with the current view that membranes are a primary 

target in cellular heat injury (Bowler et ah, 1973; Bowler, 1987; Bowler and Manning, 

1994). This work also showed that membrane dependent processes are susceptible to 

thermal damage and are sensitive in the same temperature range as that which impairs 

function in the intact organism. 
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CHAPTER V 

THE EFFECT OF MEASURING TEMPERATURE ON 

RESPIRATORY PERFORMANCE, EN VITRO, OF 

MITOCHONDRIA FROM CONTROL AN© 

THERMOTOLERANT BLOWFLIES, 
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Sol ENTEODUCTEON 

For ectotherms the maintenance of physiological function over a range of body 

temperature requires seasonal, even daily, adjustment in both the rates of physiological 

processes and the biochemical composition of the organism (Hochachka and Somero, 

1984; Hazel and Williams, 1990). However, acclimatory ability has its limits in all 

species and no one species has been discovered that is able to remain metabolically 

active over the entire range of environmental temperature that may be experienced 

(Cossins and Bowler; 1987, Prosser and Heath, 1991). 

A large literature exists demonstrating temperature dependence of respiration in 

many insect species, indeed Keister and Buck in their 1964 review, reflect that this is 

perhaps the most over demonstrated phenomenon in insect physiology. In most studies 

the respiratory rate (per individual or per unit rate) classically depends on temperature 

and is low at low temperatures and increases rapidly through the midrange 

temperatures, but then breaks sharply as lethal temperatures are approached. Such data 

have been recorded for one or more stages of Calliphora (Davison, 1970), Phormia 

(Keister and Buck, 1961), Galleria (Burkett, 1962), Periplaneta and Blaberus 

(Wojtczak, et al., 1968), Musca and Protophormia (Wood and Nardin, 1980), Rana 

(Feder, 1982), Desmognathus (Feder, Gibbs, Griffin and Tsuji, 1984). 

The effect of experimental temperature on mitochondria has been followed by 

many workers. Frequently, such studies have only concerned the determination of 

oxidation rates, with the data presented as Arrhenius curves, e.g. Lyons & Raison 

(1970), Smith (1973c). However, when oxidative phosphorylation is strongly coupled, 

oxidation rates will be limited by the availability of ADP, as can be already seen in 

Figures 4.2 and 4.3, and may not respond fully to changes in temperature. As a case in 

point adenine nucleotide translocase is reported to be very sensitive to low temperature 
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Heldt & Klingenberg (1968). This enzyme exchanges cytosolic ADP for mitochondrial 

ATP, so supplying the mitochondrial ADP pool. In fact this translocation process has 

been reported to be rate limiting in oxidative phosphorylation in rat liver mitochondria 

in the temperature range 0-23°C (Kemp, Groot and Reistma, 1969). In consequence, 

the temperature sensitivity of oxidation rates in coupled mitochondria is likely to reflect 

the effect of temperature on processes that supply ADP to the mitochondrial pool, 

rather than an affect on the activity of respiratory enzymes. 

An interesting feature of Arrhenius plots of oxidation rates of mitochondria is that, 

in most cases, breaks, or discontinuities occur. However, some differences of opinion 

are held concerning the causes of, and therefore interpretation of 'breaks' in Arrhenius 

curves. The breaks have been interpreted as sudden transitions from one rate limiting 

step to another, each with quite different values for activation energy. Other, more 

contrasting views argued that such interpretations are unlikely to hold for multienzyme 

reactions such as occur in respiration, which also involves physical processes, such as 

diffusion, (see Cossins and Bowler, 1987 for a fuller discussion). 

Newell & Walkey, (1966) and later Newell & Pye (1971) reported a temperature-

independent plateau for respiration of mitochondria from a variety of species. The 

dominant role of mitochondria in cellular respiration had led Newell and his co-workers 

to seek an explanation, at the biochemical level, of temperature independent 

metabolism they had demonstrated in intertidal animals (Newell and Pye, 1971). Such 

an explanation was necessary for a priori reasoning would suggest metabolic rate 

should obey the Arrhenius law. This mitochondrial work of Newell and Walkey (1966) 

has also been criticised by Tribe and Bowler (1968) and Davies and Tribe (1969) not 

only in the choice of inappropriate substrates, but also the use of atypical isolation 

procedures, furthermore, in no case was the functional state of the isolated 
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mitochondria determined. Davies and Tribe (1969) have investigated the effect of 

temperature upon the oxygen consumption of intact poikilotherms and their tissues, 

and also of mitochondria from poikilotherms and a homeotherm. Their investigation 

also included preparations of flight muscle tissue and mitochondria from Calliphorara 

erythrocephala. They concluded that in neither the intact animal at rest, nor 

endogenous oxygen uptake by isolated cells, and tissues was there evidence of a 

plateau of temperature independent respiration as suggested by Newell (1966). 

Indeed, work on mitochondria, from a variety of tissue and organism sources, 

show respiration to be very sensitive to temperature (Kemp et al., 1969; Smith, 1973c 

and Lee and Gear, 1974) and adenine nucleotide translocation (Heldt and Klingenberg, 

1968). This earlier work provided a basis for subsequent studies of the effect of 

temperature on mitochondria. Most notable is the work by Raison on the influence of 

temperature on respiratory enzymes (Raison, 1973). These investigations were carried 

out on mitochondria isolated from homeothermic and poikilothermic animals (Lyons 

and Raison, 1970, Kumamoto, Raison and Lyons, 1971) measuring State III and State 

IV of succinate oxidation. The Arrhenius plots showed a discontinuity in both State III 

and State IV respiration at 24°C in homeothermic animals whereas the relationship was 

linear for poikilothermic animals. From spin-label studies Raison and his co-workers 

concluded that the cause of the sharp change in activation energy (E a ) was a 

consequence of a temperature-induced phase change in membrane lipids (Raison et al 

1971). Such a phase change was proposed to affect the rate of functioning of the 

members of the electron transport chain. Similar studies were also carried out by Smith 

(1973c) on mitochondria from fish liver tissue, and confirmed that both State I E and 

State IV gave a linear plot, but non-linear plots were obtained with mammalian 

mitochondria (Smith, 1973c). 
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The effects of elevated temperatures on mitochondrial respiration and the activities 

of mitochondrial enzymes differ among species in accordance with their differences in 

their maximal body temperatures as shown in the recent study of (Dahlhoff, O'Brien, 

Somero and Vetter, 1991) using acute exposure times, they showed that mitochondrial 

respiration and the activities of the membrane associated enzymes of mitochondria 

were inactivated by temperatures that exceed the upper habitat temperature of the 

species by approximately 10-20°C. In a similar study O'Brien, Dahlhoff and Somero, 

(1991) examined the causes of thermal disruption of mitochondrial respiration, the 

method used in their study was designed to examine the irreversible or long-term 

effects of high temperature on mitochondrial function, i.e. they measured the rates of 

succinate-supported respiration and activities of cytochrome c oxidise, succinate 

dehydrogenase and malate dehydrogenase in mitochondria from hydrothermal vent 

tube worm Riftia pachytila and the coastal bivalve Solemya reidi. Their results 

suggested that loss of respiratory activity of intact mitochondria, and large changes in 

activities of membrane-associated mitochondrial enzymes at elevated temperatures may 

be a consequence of disruption of hydrophobic interactions in the membrane-protein 

and their closely associated lipids, or between proteins themselves. 

More recently Dahlhoff and Somero (1993) studied the effect of temperature on 

mitochondrial oxygen consumption, membrane fluidity and cytochrome c oxidase 

activity of five species of eastern Pacific Abalone. Their results showed that the 

temperature at which Arrhenius plots of respiration rate of mitochondria from freshly 

collected Abalone exhibited sharp breaks in slope correlated with the habitat 

temperature at the time of capture of each species. 

In a comparative study on fishes Johnston et al. (1994) have investigated the 

thermal tolerance and the respiratory properties of isolated red muscle mitochondria in 
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the fish Oreochromis grahami, from the alkaline hot-springs, Lake Megadi, Kenya 

where water ranged in temperature from 30 to 40°C. In order to assess evolutionary 

temperature adaptation of maximal mitochondrial oxidative capacities, the rates of 

pyruvate and palmitoyl carnitine utilisation in red muscle mitochondria were measured 

from species living in other temperature conditions. They found that fishes were 

observed to be resident in lagoons with temperatures of up to 42.8°C, which is higher 

than the upper temperature limit reported previously. Their results suggested that 

acclimatisation and acclimation can extend the thermal tolerance as has been reported 

for numerous other ectotherms (Cossins and Bowler, 1987), the ability of mitochondria 

to utilise glutamate at high rates may reflect the unusual pattern of nitrogen metabolism 

in this species. Their results described only modest evolutionary adjustments in the 

maximal rates of mitochondrial respiration in fish living at different temperatures. 

Furthermore, Blier and Guderly (1993) determined the effect of temperature and 

pH on the sensitivity of mitochondrial respiration in vitro. To reproduce the 

physiological conditions in which mitochondria normally function, they chose pyruvate 

and malate as substrates and the kinetics of ATP synthesis by mitochondria from 

rainbow trout red muscle were studied at three temperatures and under two pH 

regimes. The apparent Michaelis constant ( K m ) for ADP decreased with increasing 

temperature whilst the V m a x increased . It was suggested that reduced temperature 

decreased mitochondrial sensitivity to control ADP availability . Apart from the studies 

of Newell and Pye (1967) already mentioned, where mitochondria were isolated from 

Schistocerca gregaria, less attention has been paid to isolated insect mitochondria. The 

results of that work can be discounted because insect mitochondria lack the ability to 

metabolise exogenous succinate, the substrate chosen by Newell and Pye (1967). 
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In a more substantial study, Davison (1971a) using blowflies showed a marked 

and complex temperature sensitivity of State III sarcosomal respiration using glycerol 

3-phosphate as a substrate. The following experimental work was designed to 

determine the direct effect of temperature on mitochondrial function using both 

glycerol-3-phosphate and pyruvate plus proline as substrates. 

The experiments were carried out comparing mitochondria from control and 

thermotolerant blowflies. The data will be related to the comparable data obtained from 

mitochondria of blowflies heated in vivo. 
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5o2 MATERIALS AND METHODS . 

5.2.1 Maintenance of flies: 

The blowflies used in this study were male and female 10 day-old adults 

developmentally acclimatised to 24°C. The rearing methods were the same as described 

in chapter 2. 

5.2.2 Thermotolerant flies rearing: 

Batches of 100 10-day-old flies (Durham stock), were subjected to a sublethal 

thermal shock (36°C or 40 min) and then returned to their culture temperature (24°C) 

for 4 h to allow maximal development of thermotolerance (see Figure 3.4 in Chapter 

3). 

5.2.3 Mitochondrial isolation and oxidative phosphorylation: 

Mitochondria were isolated from control (not pre-treated) and thermotolerant flies 

following the methods set out in Chapter 4. Oxidative phosphorylation was determined 

polarographically using 33 mM rac glycerol-3-phosphate or 2 mM pyruvate plus 2 mM 

proline, all final concentrations. Measurements of State III were made in the presence 

of 0.5 |imole ADP and State IV was determined following the esterification of the 

added ADP . RCI and ADP:0 values were determined as described in Chapter 4. 

5.2.4 Effect of temperature on isolated mitochondrial preparations: 

Oxidative phosphorylation was followed at 5°C intervals in the temperature range 

19 to 39°C, the water bath was maintained at the selected temperature ± 0.1 °C. This 

water was circulated around the reaction chamber, maintaining the reaction medium at 

the selected temperature. The oxygen concentration of the reaction medium was 

obtained from data presented by Davison (1970). An aliquot of the mitochondrial 
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suspension was used to determine State III and State IV respiration using Glycerol 3-

phosphate. A second aliquot was taken to determine the respiratory rates using 

pyruvate + proline. The temperature of the water bath was reset for the next 

temperature and further aliquots of mitochondrial suspension were used to establish 

mitochondrial State III and State IV respiration at the new temperature with each 

substrate. Each preparation of mitochondria could be used in this way to follow 

respiration at not more than three experimental temperatures, because no preparation 

was used beyond 30 min after isolation. Forty separate preparations were used to 

obtain the data presented in Table 5.1 and Figure 5.1 and 5.2 In this way the mean data 

for each experimental temperature was obtained from 10 different mitochondrial 

preparations. 
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5o3 RESULTS. 

In these experiments the endogenous respiration of mitochondria was not 

influenced by the experimental temperature and the oxygen consumption values were 

small, in agreement with the results presented in Chapter 4, Van den Bergh (1962), 

Davison and Bowler (1971) and therefore these values were not presented. 

The data obtained for the effect of in vitro temperature on mitochondrial 

respiration are shown in Table 5.1 and Figures 5.1 and 5.2. 

5.3.1 Effect on State III and State IV oxidation: 

Non-pretreated control flies: 

(i) Control mitochondria when glycerol-3-phosphate is used as substrate: 

Table 5.1 shows the mean data for substrate rate oxidation and as can be seen, it 

was not very temperature dependent. It increased only from a QO2 of 30.15 ± 2.7 at 19 

°C to 38.85 + 2.71 ug AO mg protein"1 h' 1 at 34°C ( Q 1 0 = 1.23). At 39°C, however, a 

sharp increase in Q 0 2 occurred to 58.91 ± 3.54 ug A O mg protein"1 h"1 < 0.001) 

over the Q 0 2 at 34°C ( Q 1 0 = 2.3). 

In contrast the mean data for State III respiration was markedly affected by 

temperature Figure 5.1 and Table 5.1. As compared with the rate at 24°C 

determination at 19°C sharply reduced the Q 0 2 from 81.83 ± 2.53 to 47.66 ± 1.79 ug 

AO mg protein -1 h"1 (P < 0.001) with a Q ] 0 of about 3. Increasing the temperature to 

29°C, however, had an insignificant effect on the rate and Q 0 2 equalled 89.74 ± 7.64 

ug AO mg protein -1 h"1. A further rise in measuring temperature to 34°C caused a 

marked fall on Q 0 2 to 51.34 ± 4.86 ug A O mg protein"1 h"1 (P < 0.001). Increasing 
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the temperature to 39°C did not lead to a further decrease in respiration and a QO2 of 

61.52 ± 3.54 ug A O mg protein - 1 h"1 was obtained. 

The mean data for State I V respiration followed the same pattern as described for 

substrate respiration between 19°C and 29°C, Table 5.1 and Figure 5.2. Respiration 

increased from a Q 0 2 of 28.88 + 2.26 at 19°C to 40.25 ± 1.74 ug AO mg protein'1 h"1 

at 29°C, a Q 1 0 of 1.3. However, at 34°C and 39°C State I V respiration could not be 

established as coupled respiration was not observed. The mean values used are 

therefore those obtained for respiration in the presence of ADP. 

(ii) Control mitochondria when pyruvate + proline were as substrate: 

Table 5.1 also shows the mean data obtained using pyruvate plus proline. 

Substrate respiration was significantly higher when measured at 19°C as compared to 

24°C, Q 0 2 values obtained were 10.15 ± 0.83 and 4.48 ± 0.18 jag AO mg protein"1^1 

respectively {P < 0.001). Substrate rate respiration rose significantly from a Q 0 2 of 

4.47 ± 0.44 at 29° to 6.23 + 0.33 jag A O mg protein- 1^ 1 at 39°C (P < 0.01). 

Figure 5.1 and Table 5.1 show that maximal mean values for State III respiration 

was obtained at 24°C ( Q 0 2 = 50.10 ± 2.65 ug A O mg protein- 1lr 1). At 19°C the mean 

Q 0 2 was 39.25 ± 4.68 (P < 0.05), and the mean also fell significantly to 24.3 ± 1.55 

jag AO mg protein"1 h 1 at 29°C (P < 0.001) and progressively to 17.16 ± 1.84 jag AO 

mg protein- 1^ 1 at 39°C. 

The mean data for State I V respiration followed the pattern described for substrate 

rate respiration with pyruvate plus proline. The highest mean value for Q 0 2 was 

obtained at 19°C, 12.25 ± 1.3 which fell to 5.43 + 0.06 ug AO mg protein-lh"1 at 39° 

C . 
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5.3.2 Pretreated Thermotolerant flies: 

(i) Thermotolerant mitochondria using glycerol-3-phosphate as substrate: 

Table 5.1 shows the mean data obtained for substrate rate, which is little affected 

by temperature between 19 and 29°C, with QO2 increasing insignificantly from 30.88 ± 

2.26 at 19°C to 32.17 ± 1.52 ug A O mg protein"1^1 at 29°C. However, a rise in 

temperature to 34°C significantly increased mean Q 0 2 to 42.38 ± 2.52 (P < 0.001), 

which rose again to 55.61 ± 3.13 ug A O mg protein^h"1 at 39°C (P < 0.001), a Q 1 0 of 

1.7 (29-39°C). 

Figure 5.1 and Table 5.1 show the effect of measuring temperature on State HI 

respiration. What is interesting about these mean data is their relative temperature 

independence. The mean Q 0 2 value obtained at 19°C was 69.13 ± 7.19, and at 24°C it 

was 67.17 ± 1.83 ug AO mg protein -'h - 1- A small rise occurred at 29°C when the 

mean Q 0 2 was 76.38 ± 1.41 ug AO mg protein - 1 ^ 1 , which was not increased further 

when the temperature rose to 34°C. A Q j 0 of 1.07 was obtained for the mean State III 

respiration between 19 and 34°C. A further rise in temperature to 39°C, however, 

caused a fall in mean Q 0 2 to 59.44 ± 3.31 ug A O mg protein"1 h"1 (P < 0.001). 

The mean data for State IV respiration are shown in Figure 5.2. These data follow 

a very similar pattern as described for substrate rate respiration with a marked 

temperature independence of Q 0 2 over the range 19 to 34°C ( Q 1 0 = 1.2). State IV 

respiration was not demonstrated at 39°C and oxidative phosphorylation was not 

coupled. 

(ii) Thermotolerant mitochondria when pyruvate plus proline were substrates: 
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Substrate rate respiration gave the highest mean value at 19°C with a QO2 of 

11.73 ± 3.1 ug AO mg protein"1 h"1. The mean value fell progressively to give a low 

value of 1.83 ± 0.07 ug A O mg protein"1 h"1 at 29°C. However, between 24 and 39°C 

substrate rate respiration was relatively temperature insensitive. 

State III respiration in mitochondria from thermotolerant flies was also relatively 

temperature independent, (see Figure 5.1 and Table 5.1) The highest mean value for 

QO2 was obtained at 24°C, 28.26 ± 1.6 ug AO mg protein"1 h"1, not significantly 

different for the Q 0 2 at 19°C. There was a tendency for mean Q 0 2 to fall with rising 

measuring temperature to give lowest value at 39°C of 17.18 ± 1.95 ug A O mg 

protein"1 h"1. The Qjq over the temperature from 24 to 39°C was 0.72. 

Figure 5.2 and Table 5.1 showed that the effect of temperature on mean State I V 

respiration closely follows that described for the substrate rate. The highest mean value 

obtained for Q 0 2 was 10.32 ± 1.43 ug AO mg protein 1 h"1 at 19°C. This fell to give 

the lowest mean value for Q 0 2 of 2.70 + 0.13 ug A O mg protein"1 h"1 at 29°C. 

Higher mean values were obtained at 34°C (5.14 ± 0.31 ug AO mg protein -1 h"1) and 

39°C (3.16 ± 0.86 ug AO mg protein"1 t r 1 ) , but overall mean State I V respiration fell 

with measuring temperature increase with a Q 1 0 of 0.55. 

5.3.3 The effect of measuring temperature on ADP:0 and RCI values: 

Respiratory control is widely used as index of the tightness of coupling of 

oxidative phosphorylation. Values of these parameters are summarised in Table 5.2 

Nom-pretreated control mitochondria: 

(5) With glycerol-3-phosphate as substrate: 
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The mean value of R C I was not affected by a reduction in experimental 

temperature from 24°to 19°C. Increasing the temperature above 29°C resulted in 

reduced mean R C I values, compared with 24°C, so that at 34°C the value was 

significantly lower (P < 0.001) and at 39°C they were not significantly different from 1, 

(see Table 5.2).The theoretical maximum value for ADP:0, when glycerol-3-phosphate 

as substrate is 2. As can be seen (Table 5.2) the highest value was obtained at 24°C 

were ADP:0 was found to be 1.92 ± 0.06. ADP:0 values were significantly lower at 

19° and 29°C than that at 24°C (P < 0.01). It is not possible, using polarographic 

techniques to determine ADP:0 when very low values for R C I are obtained, 

consequently ADP:0 values were not demonstrable at higher experimental 

temperatures, i.e. at 34 and 39°C. 

(ii)With pyruvate plus proline as substrates: 

Reduction in experimental temperature from 24 to 19°C caused a significant fall in 

the value of mean R C I (P < 0.01 ), (see Table 5.2). R C I values fell progressively from 

5.75 ± 0.13 at 24°C to 4.1 ± 0.54 at 29°C (P < 0.05), then to 3.57 ± 0.42 and 3.15 ± 

0.4 at 34 and 39°C, respectively (P < 0.001, in both cases ). Compared with the value 

at 24°C, ADP:0 fell significantly with increasing temperature (P < 0.01, in all cases) 

and but was still 2.18 ± 0.3 at 39°C (P <0.01). 

Thermotolerant mitochondria: 

The effect of temperature on mean values of R C I and ADP:0 mitochondria from 

flies made thermotolerant are also shown in Table 5.2. 

(i)With gIycero!=3=phosphate as substrate: 
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Analysis of data from these mitochondria showed that reducing measuring 

temperature from 24 to 19°C did not affect the mean values obtained for R C I . In 

contrast to control mitochondria, R C I was still demonstrable (i e. significantly different 

from 1) at 34°C although it had fallen significantly to 1.69 ± 0.14 from the values of 

2.24 obtained at 24 and 29°C (P < 0.01). However, at 39°C respiratory control was 

not demonstrable (RCI =1) . The mean R C I of the thermotolerant mitochondria was 

significantly higher than that of control mitochondria at 34°C (P < 0.05). An increase 

in experimental temperature caused a reduction in mean ADP:0 values below those 

obtained at 24°C. However, this was only significant at 29°C (P < 0.01). An ADP:0 of 

1.56 ± 0.06 was obtained at 34°C in contrast to control mitochondria where it was not 

measurable, but ADP:0 could not be measured at 39°C in thermotolerant mitochondria 

either. 

(ii) With pyruvate plus proline as a substrate: 

Reducing temperature from 24 to 19°C the mean value for R C I was significantly 

lower (P < 0.01) but ADP:0 values were unaltered. The highest value for R C I (7.84) 

was obtained for thermotolerant mitochondria at 29°C, which was significantly higher 

than the value obtained at 24 (P < 0.01), 34 and 39°C (P < 0.001 and 0.01 

respectively). ADP:0 values fell with increasing experimental temperature above 24°C, 

but were significantly lower only at 34 and 39°C (P < 0.01 in both cases). At no 

temperature did the ADP:0 values differ between the control and thermotolerant 

mitochondria when pyruvate plus proline were substrates. 
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Table 5.1 The effect of experimental temperature on State III and State IV respiratory 

rate of mitochondria isolated from flight muscle of control (non-pretreated) and 

thermotolerant (pre-treated) blowflies. The data are shown as means ± S .E .M for 

respiration using glycerol 3-phosphate and pyruvate + proline as substrates. 

Tests for the significance of differences betweeen the mean values obtained at 

24°C and other experimental temperatures were made using Students's f-test of Mann-

Whitney [/-test as appropriate; 

*P < 0.05; **P < 0.01; ***P < 0.001. 
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Figure S.l The effect of experimental temperature on State III respiration rate of 

mitochondria isolated from flight muscle of control (open symbol) and thermotolerant 

(filled symbols) blowflies. The data are shown as means ± S .E.M for respiration using 

glycerol 3-phosphate as a substrate (squares) and for pyruvate + proline (circles) . See 

Table 5.1 for N values. 
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Figuure B.2. The effect of temperature on State IV respiration rate of mitochondria 

isolated from flight muscle of control (open symbols) and thermotolerant (filled 

symbols) blowflies. The data are shown as means +S.E.M for respiration using glycerol 

3-phosphate as a substrate (squares) and pyruvate + proline (circles ).See Table 5.1 for 

N values. 
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TaMe 5.2 The effect of experimental temperature on R C I and ADP:0 of mitochondria 

isolated from flight muscle of control (non pretreated) and thermotolerant (flies given a 

40 min pretreatment at 36°C followed by 3h period at 24°C to allow thermotolerance to 

develop). 

Values are means ± S. E . M. 

Tests for the significance of differences between the mean values obtained at 24°C 

and other experimental temperatures were made using Student's f-test or Mann-Whitney 

[/-test as appropriate; 

*P < 0.05; **P < 0.01; ***P < 0.001. 
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5A DISCUSSHON 

The experimental work carried out in this chapter was planned to address two 

issues. First, to establish the effect of temperature on respiratory performance of 

mitochondria in vitro, and to relate this to their in vivo thermal sensitivity. Secondly, 

the work considered whether the induction of thermotolerance, which protects 

mitochondria from in vivo heat damage, also protected mitochondria in vitro. 

The effect of reaction temperature on mitochondrial performance has been 

followed by many workers. Frequently such studies have been concerned with the 

determination of oxidation rates, presented as Arrhenius curves, e.g. Lyons and Raison 

(1970) and Smith (1973c). Relatively few earlier studies, however, have considered the 

effect of measuring temperature on other mitochondrial functions. 

In a comprehensive study on rat liver mitochondria Lee and Gear (1974) studied 

the rates of mitochondrial membrane-linked reactions as a function of temperature, 

with the results being expressed as Arrhenius plots. They found that energy dependent 

reactions involving the adenine nucleotide translocase yielded two distinct 

discontinuities in their Arrhenius plots, near 17.5°C and 27.5°C. These reactions 

included ADP phosphorylation, State III and State IV respiration, uncoupled-

stimulated respiration, dinitrophenol-stimulated adenosine triphosphatase and ATP-

supported calcium uptake. Energy-dependent reactions not involving the adenine 

nucleotide translocase also gave two breaks in their Arrhenius plots. The upper break 

was near 27.5°C. However, the temperature at which the lower break occurred was 

decreased to around 12.5°C. These reactions included respiration-dependent calcium 

uptake, valinomycin-induced potassium uptake, and phosphate induced swelling, 

studies with representative matrix, outer membrane and inner membrane enzymes 
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including ATPase, in sonicated mitochondrial particles indicated that an intact, energy-

transducting membrane is required for discontinuities in the Arrhenius plots. 

Smith(1973 a, b) also described that the thermostability of some mitochondrial 

enzymes appeared to be correlated with the environmental temperature range in lower 

vertebrates, which suggested that natural selection is operating on these enzymes at the 

cellular level. In a further study (Smith, 1973c), investigated the effect of temperature 

on integrated mitochondrial processes in which these enzymes participate in the liver 

mitochondria from cold and warm-blooded animals. He reported the temperature 

dependence over the range 5 -25°C for State III respiration, as well as succinoxidase 

and N A D H activities, was significantly less for fish than for mammals or avian 

mitochondria. Arrhenius plots of these rates of oxygen uptake by mammalian 

mitochondria show an inflection between approximately 12 and 25°C. The actual 

temperature appeared to vary between different preparations from the same species and 

with different enzyme systems in the same preparation. Similar plots for fish 

mitochondria were linear over the temperature range used. Smith (1973) interpreted 

the lower temperature dependence of fish mitochondria at low temperatures may well 

be attributed to difference in the constitution and properties of the membranes. 

Comparable work on mammalian material has been done by Kemp et al, (1969). 

They reported that the activation energy of succinate oxidation by rat liver 

mitochondria changes at a temperature of about 17°C in State III as well as uncoupled 

respiration. Over the whole temperature range investigated (0-23°C) the rate of 

phosphorylation of mitochondrial ADP during succinate oxidation exceeded that of 

added ADP. They also reported that the activation energy of the ADP-ATP and Pi-

ATP exchange reactions and of the 2,4 dinitrophenol-induced ATPase also changed at 

about 17°C. Moreover the temperature coefficients of State III oxidation and of the Pi-
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ATP and ADP-ATP exchange reactions are similar and, at temperature below 17°C, 

are high in comparison with that of phosphorylation of mitochondrial ADP. They 

therefore, concluded that the translocation of both ADP and ATP through the inner 

membrane is rate limiting for the process of oxidative phosphorylation in rat-liver 

mitochondria at all temperatures between 0-23°C. 

Christiansen and Kvamme (1969) have reported on the effect of high temperatures 

on mitochondria in vitro f rom mouse, liver and ascites tumour cells. A t the lower 

temperature used (41°C) they described the first injury as being a decline in respiratory 

control index without fall in P:0 values; at temperatures between 41 and 45°C, 

however they found that the mitochondria became uncoupled, and phosphorylation was 

more seriously affected than oxygen consumption. They also reported that, under these 

conditions, the cytochrome c content of the medium increased, which they interpreted 

as a result of damage to the mitochondrial membranes. They showed that mitochondria 

isolated f rom heat-treated ascites tumour cells were more resistant to heat than were 

mitochondria heated in vitro and they also pointed out that tumour cells showed a 

greater temperature sensitivity than do normal cells. 

The only parallel study to the present one was carried out by Davison (1969) and 

Bowler and Kashmeery (1981) on Calliphora erythrocephala (vicina), who presented 

data for glycerol 3-phosphate respiration that was essentially the same as given in 

Figure 5.1. Davison (1970) reported a complex effect of temperature on State I I I 

respiration. I t was inhibited at 19°C as compared with 24°C, and reached a plateau 

between 24 and 29°C, but respiration was inhibited at 34°C. However, respiration 

showed a marked increase at 39°C. Davison and Bowler (1971) explained this complex 

pattern in the following way. The suppression of respiration at 19°C was a Q^Q effect, 

but the suppression at 34°C was caused by the impairment of phosphorylation in a 
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coupled preparation. The subsequent increase in respiration at 39°C resulted f rom the 

uncoupling of inhibited phosphorylation f rom oxidation which then continued via the 

electron transport chain. The data present in Table 5.1 and Figure 5.1 question that 

interpretation because the same mitochondrial preparations using pyruvate plus proline 

as substrates did not show the same pattern of response. With pyruvate plus proline 

State I I I respiration was inhibited, as compared with 24°C, at 29°C and all 

temperatures above. I t is significant too that State I V respiration increased with 

temperature when glycerol-3-phosphate was the substrate, but decreased with pyruvate 

plus proline as substrate, Figure 5.2. 

Considering the differential effect of raised temperature on mitochondrial function 

using the two substrates together with the inhibitory effect of increased temperature 

on pyruvate plus proline respiration, it is likely that complex I is sensitive to raised 

temperature. The reason for the complex pattern of state I I I respiration using glycerol-

3-phosphate is not clear but it may suggest that complex I I coenzyme Q cytochrome b 

functioning is especially temperature sensitive. These questions wi l l be further 

addressed by the experimental work in chapter 6. 

The data in Table 5.2 confirm the earlier work of Davison and Bowler (1971) and 

Bowler and Kashmeery (1981). With glycerol 3-phosphate as substrate respiratory 

control (RCI) is lost at 34 and 39°C, in consequence A D P : 0 ratios were not 

measurable. In contrast respiratory control is still demonstrable at 39°C when pyruvate 

plus proline were substrates, although RCI values were significantly lower at 34 and 39 

°C (P < 0.001 in both cases) than the value at 24°C. Compared with the value at 24°C, 

A D P : 0 fell significantly with increasing experimental temperature (P < 0.01 in all 

cases) but was still measurable as 2.28 at 39°C. 
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The induction of thermotolerance reduced the marked sensitivity to temperature 

shown for State I I I respiration with glycerol-3-phosphate. I t prevented the suppression 

of respiration at 19°C and also prevented the sharp reduction seen at 34°C when 

compared with Q 0 2 values at 24 and 29°C for State I I I respiration, so that the rate at 

34°C is significantly higher in the thermotolerant group as compared with control 

group ( P < 0.001). 

With pyruvate plus proline as substrate again the response to measuring 

temperature is less marked than in control mitochondria. The maximal respiratory rates 

were obtained with control mitochondria at 24°C, and the rate fell gradually with an 

increase or decrease in experimental temperature. The induction of thermotolerance 

also reduced the temperature dependence of state I I I respiration rates, which gradually 

fell at temperatures higher than 24°C. In contrast, thermotolerance did not significantly 

alter the effect of temperature on State I V respiration (Figure 5.2); however, the 

response with glycerol-3-phosphate and pyruvate plus proline differed. Glycerol-3-

phosphate State I V respiration rate increased with rising experimental temperature in a 

predictable manner (Q 1 0 =1.5) whereas with pyruvate plus proline as substrate, it fell. 

The reason for this differential effect of experimental temperature on state I V with the 

two substrates is not evident. 

Using glycerol-3-phosphate as the substrate, the induction of thermotolerance did 

not affect either RCI or ADP:0 at 24 or 29°C; however, at 34°C, acceptor control 

could only be demonstrated and A D P : 0 determined in thermotolerant preparations. 

With pyruvate plus proline as substrate, the values obtained for RCI differed between 

control and thermotolerant preparations only at 29°C; no differences in A D P : 0 were 

determined between preparations. So the induction of thermotolerance protects 

mitochondria f rom subsequent damage and is emphasised by the increased thermal 
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resistance of both RCI and A D P : 0 for thermotolerant mitochondria in glycerol-3-

phosphate respiration. 

The data presented in this Chapter 5 demonstrate that the processes that confer 

thermotolerance are present not only in vivo but are also conserved during isolation 

and expressed during in vitro heating. This suggests that, i f heat shock proteins are the 

protective agents, then they are probably transported into the mitochondria as a result 

of the pre-treatment shock. 

The HSP60 family are the most likely stress proteins involved because they have 

been shown to be localised in mitochondria (McMullin and Hallberg, 1987). They are 

present in the matrix and are responsible for the assembly of imported protein 

complexes into that compartment (Ostermann, Horwich, Neupert and Hartl, 1989). 

Indeed members of this family of HSPs are reported to be bound to the FjFoATPase of 

Heliothus mitochondria (Miller, 1987). I f thermotolerance caused increased levels of 

HSP60 which binds to a variety of matrix proteins and the FjFrjATPase then these may 

be protected f rom the inactivating perturbation of heating. What is also possible is that 

it is this association between mitochondrial proteins and HSPs that modifies the 

temperature characteristics of the enzymes as is evident in Figure 5.1. 

This work also shows that membrane-dependent processes are susceptible to 

thermal damage and are sensitive in the same temperature range as that which impairs 

function in the intact organism. 
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CHAPTER V I 

THE EFFECT OF IN VITRO HEAT TREATMENTS ON 

BLOWFLY MITOCHONDRIAL FUNCTIONS EFFECTS 

ON PARTIAL REACTIONS OF THE RESPIRATORY 

CHAIN 
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6.1 INTRODUCTION 

The data reported in chapters 4 and 5 and show that mitochondrial functions were 

impaired by in vivo heating and also at high temperatures in vitro. The temperature 

sensitive sites however are not evident f rom these data. It is significant however, that in 

mitochondria f rom flies given an L D 5 0 heat dose, State I I I respiration was impaired 

with both glycerol 3-phosphate and pyruvate as substrates, whereas State I V 

respiration was inhibited with glycerol 3-phosphate substrate but stimulated with 

pyruvate plus proline as substrates. This suggested that heating did not generally 

uncouple oxidative phosphorylation, and that differential sensitivity of parts of the 

respiratory chain may occur. This could be approached with the use of specific 

inhibitors of the respiratory chain complexes. Figure 6.1 represents the currently held 

interpretation of the organisation of the inner mitochondrial membrane of animal 

mitochondria. The points of entry of the substrates used in these experiments are 

shown as are the sites of action of the inhibitors, rotenone, antimycin A. 

As is shown in Figure 6.1 the electron transport chain (ETC) is organised into four 

complexes. These are, 

Complex I . N A D H Coenzyme Q reductase: inhibited by rotenone. 

Complex I I . Succinate coenzyme Q reductase 

Complex I I I . Coenzyme Q - cytochrome c reductase inhibited by antimycin A 

Complex I V . cytochrome oxidase; inhibited by CN" 

Cytochrome c ( reduced ) + 1/2 0 2 - » cytochrome ( oxidised ) + H 2 0 . 

The sequence of the events in electron transport by the inner mitochondrial 

membrane has been corroborated by the determination of the standard reduction 

potentials of the redox components of the complexes, and has been used to determine 

the stoichometry of the ETC coupled ATP synthesis. The standard reduction potential 
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change along the ETC provides sufficient free energy change to drive the synthesis of 

one ATP molecule f rom ADP and inorganic phosphate at complex I , complex I I I and 

complex I V . Thus for the flow of electrons from N A D H to 0 2 three molecules of ATP 

can be generated, whereas f rom glycerol 3-phosphate only two would be generated. 

The coupling between ATP synthesis and the flow of electrons to 0 2 is obligatory 

in intact mitochondria. Therefore, i f no ADP is present to enable ATP synthesis then 

electron transfer is also reduced (State I V respiration). Associated with the flow of 

electrons to 0 2 is the extrusion of H + which creates a proton gradient across the inner 

membrane. The inner mitochondrial membrane is impermeable to protons and it is 

thought that proton re-entry across this membrane occurs via the F,F 0 ATPase. This is 

proposed to be the energy conserving process that drives ATP synthesis (Mitchell, 

1979). In consequence compounds (uncouplers) that discharge the proton gradient 

(e.g. DNP and FCCP) wi l l inhibit phosphorylation but permit oxidation to continue 

unhindered by the requirement for ADP. I t is usual that oxidation rates of uncoupled 

mitochondria are at least as high as those in the coupled State I I I respiration. 

Relatively few studies have attempted to locate the most sensitive site on oxidative 

phosphorylation to thermal perturbation. Morris and King (1962) using a heart muscle 

preparation described that inhibitors-sensitive activities for various steps in the 

oxidation of DNPH ( N A D H ) had remarkably different thermal sensitivities, with 

cytochrome oxidase being relatively thermostable whereas the step between DNPH 

flavoprotein and cytochrome c was the most sensitive. Christiansen and Kvamme 

(1969) in a similar study considered the effect of temperatures up to 45°C in vitro on 

mitochondria from mouse brain and liver and from Ehrlich ascites tumour cells. These 

workers also found that electron transport between succinate to cytochrome c was 

more sensitive to temperature than that between cytochrome c and oxygen. They 
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concluded that loss of respiratory control and uncoupling of phosphorylation were 

likely to be the primary effects of heat treatment. More recently Pobezhimova, 

Vonikov and Varakina (1996) studied the effects of elevated temperatures on the 

function of mitochondria f rom Zea mays. These workers also found that complexes I I , 

I I I and I V were thermostable, but complex I was found to be very sensitive, inhibition 

of this complex accounted for the inhibition recorded when the whole chain was 

studied. 

The aim of the present Chapter is to determine where the principal site for 

inhibition of blow f ly mitochondrial function following in vivo heating, and whether the 

development of thermotolerance protects this site f rom heat damage. 
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6.2. M A T E R I A L AND METHODS: 

6.2.1 Experimental blowflies: 

Flies were reared as stated in Chapter 2. The procedures used to give an in vivo 

L D 5 0 treatment, and to develop thermotolerance were described in Chapter 4 

6.2.2 Measurement of oxidative phosphorylation: 

Oxidative phosphorylation was measured polarographically at 24°C using a Clark 

electrode as described in Chapter 4. Oxidation in coupled mitochondria was initiated by 

the addition of pyruvate (2 mM) and proline (2 mM) , and State I I I respiration was 

restarted by the addition 0.5 umole ADP. After State I V respiration was established, 

on the esterification of the added ADP, the mitochondria were uncoupled by the 

addition of 0.4 m M Carbonylcyanide p-trifluoromethoxyphenyl hydrazone (FCCP). 

Uncoupled respiration was followed to allow determination of its rate before rotenone 

was added to inhibit activity of complex I . Respiration was then restarted by the 

addition of 33 m M glycerol 3-phosphate and was followed to establish its rate, after 

which antimycin was added to inhibit the activity of complex I I I . Respiration was then 

restarted by the addition of 100 m M potassium ferrocyanide, which wi l l donate 

electrons to cytochrome c, and respiration associated with complex I V was then 

followed. The data are shown in Figure 6.2 and Table 6.1. 

6.2.3 Mitochondrial protein determination: 

This was carried out as described in Chapter 4. 

Reagents: 

Chemical used in this study were purchased f rom Sigma chemical Co., Ltd. 
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Statistical tests: 

The means ± S.E.M. for all respiratory rates compared using Student's Mest . 
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6.3. RESULTS: 

Figure 6.2 shows a typical polarographic trace of oxidative phosphorylation in the 

presence of the various substrates and inhibitors. As can be seen control mitochondria 

from (untreated flies) showed normal coupled behaviour following their isolation. 

Values obtained for respiratory control indices (6.37 ± 1.14) and ADP:0 were similar 

to those shown earlier in Table 4 .1 , as were the values obtained for State I I I and State 

I V respiration. On the addition of FCCP State I V respiration increased f rom 7.31 ± 

0.8|lg A O mg. protein" 1 h" 1 to 44.91 ± 3 | ig A O mg. protein"1 h" 1 a value not 

significantly different f rom the State I I I level obtained (46.56 ± 2.8|ig A O mg protein"1 

h _ 1 It is notable that respiration initiated by the addition of glycerol 3-phosphate (44.36 

± 3.2 [ig A O protein - 1 h"1) also did not differ f rom State I I I respiration, whereas 

respiration supported by ferrocyanide was significantly lower at 34.25 ± 2.4 (ig A O 

mg. protein"1 h" 1 (P < 0.01). 

As was expected f rom the data presented in Chapter 4, State I I I respiration from 

mitochondria isolated f rom L D 5 0 treated flies was markedly reduced to 25.47 ± 2 . 0 6 (i 

g A O mg protein"1 h" 1 f rom that obtained in control mitochondria (P < 0.001), which 

together with a non-significant rise is State I V respiration caused a fall in the value of 

RCI to 2.62 ± 1.92 (P < 0.05) A D P : 0 values were also low in accordance with the 

data presented in Chapter 4. Uncoupling with FCCP stimulated respiration f rom State 

I V levels to 23.85 ± 3 . 1 1 | lg A O mg. protein"1 h" 1 , a level not significantly different 

from that obtained for State I I I in these mitochondria. I t is interesting that the addition 

of G 3P increased oxidation rates to 37.74 ± 3.8 u,g A O mg. protein"1 h" 1 , significantly 

higher than State I I I respiration in these mitochondria before uncoupling with FCCP (P 

< 0.01), and not different f rom state I I I respiration of control mitochondria. Antimycin 
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A inhibited this high rate of oxidation was inhibited. Potassium ferrocyanide stimulated 

respiration was 26.05 ± 2.2 (ig A O mg. protein"' h" 1 , a value lower that found using 

G3P as substrate (and also was lower than that obtained from control mitochondria (P 

<0.05) . 

Data obtained f rom L D 5 0 treated thermotolerant flies is also given in Table 6.1. As 

can be seen State I I I respiration is reduced as compared with that for control 

mitochondria {P < 0.05), but is also higher than that obtained for mitochondria from 

L D 5 0 treated control flies (P < 0.01). These data, together with the higher values 

obtained for RCI, confirm that thermotolerance protects mitochondrial function from 

heat damage. Uncoupling of State I V respiration with FCCP restored oxidation rates to 

State I I I levels ( 39.23 ± 3.2 | ig A O mg. protein - 1 hr 1 ) , which were not different from 

those obtained in uncoupled control but were significantly higher than those f rom L D 5 0 

treated mitochondria (P < 0.01) Rotenone inhibited this uncoupled respiration, and G 

3P supported respiration rates (38.73 ± | ig A O mg. protein*1 h" 1) that were not 

different from either State I I I or FCCP uncoupled respiration. Antimycin A inhibited G 

3P respiration was stimulated by the addition of ferrocyanide which was restored to the 

same level as that found for State I I I respiration, FCCP uncoupled and G 3P supported 

respiration, was significantly higher than that for LD50 treated mitochondria (P < 0.05). 
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Figure 6.1. Schematic representation of organisation of the respiratory complexes that 

make up the electron transport chain in blowfly flight muscle mitochondria. The points 

of entry of substrates are shown as are the targets of the inhibitors used. 



FDgrare 6.2. A representative polarographic traces of mitochondria respiration. Effect of 

respiratory chain inhibitors and different substrates. 

Respiration was initiated with 25^.1 pyruvate + proline. Oxidative phosphorylation was 

demonstrated with the addition of O.Sfimole ADP. Mitochondria were uncoupled by the 

addition of FCCP. 

Arrows indicate additions of pyruvate + proline (p + p), mitochondria (S), 0.5umole 

ADP (ADP), uncoupler FCCP (U), rotenone (R), glycerol-3-phosphate (G3P), 

antimycin A (A) , and K. ferrocyanide (F). 

Trace 1 shows results from mitochondria isolated f rom control flies. 

Trace 2 shows results f rom mitochondria isolated f rom thermotolerant flies. 

Trace 3 shows results f rom mitochondria isolated from LD50 treated flies. 

Complex I was inactivated with rotenone. 

Complex I I I was inactivated with antimycin A. 

Respiration through complex I I was initiated with 33 m M G 3P; through complex I V . 
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Taslble 6 .1 . The effect of in vivo heat treatment on respiratory function in blowfly flight 

muscle mitochondria: Effect on the respiration chain in mitochondria from control, 

(non-pretreated), L D 5 0 treated control and L D 5 Q thermotolerant flies. 

Respiratory rates expressed in (ig AO mg protein - 1 h" 1, means ± S.E.M. 

The mean values for L D 5 0 control and L D 5 0 thermotolerant groups were compared 

with those from control mitochondria. Statistical differences were derived using 

Student's f-test; *P < 0.05; ***P < 0.001 



5 c s o 

s 

control 
non-preheated 

Treatm
ent 

25.47 
± 

2.06*** ! 

to $ 
<-£ l + a; N i+ 5* 

OO Lft 
ON 

g 

B 

ffi 
"2. "̂ 
63 
0 
-5 
» 

© NO 
be H-
u> to 

O 00 
NO 1+ to - J 

O ; ~ J 

bo 1+ u> 
O >-> 

GO 

p 

ffi 
"2. "̂ 
63 
0 
-5 
» 

O to 
O H- U. 
ON oe 

O tO 

1+ 
— NO 

o to 
b H- b\ 
00 o 

6 

ffi 
"2. "̂ 
63 
0 
-5 
» 

2.62 
± 

1.02* 

o i+ ON 
O - 1 

_H-> ON 

h-i 1+ Lo 
-t* - J 

s 

ffi 
"2. "̂ 
63 
0 
-5 
» 

u> 
_ to 
t •+ £ 
* <vi 
* 

g l + to 
n o 

ffi 
"2. "̂ 
63 
0 
-5 
» 

O oc 
^ l+ to 
© O 

o NO 
ON l+ to to O 

a 

ffi 
"2. "̂ 
63 
0 
-5 
» 

— to 
•_ i+ ^ 
to — 1 I + £ Q 

ffi 
"2. "̂ 
63 
0 
-5 
» 

37.74 
± 

3.8* 

* l+ £ to I T 

ON 

O 

ffi 
"2. "̂ 
63 
0 
-5 
» 

10.72 
± 

1.10 ~ I T to 
o 

^ 1+ £ 
to -o -o o 

> 

ffi 
"2. "̂ 
63 
0 
-5 
» 

to ^ 
i - H- In 
-j to 

to 
b i+ '<-* w - J 

>- ^> 
bo 1 + 8 

JO 
Q 

ffi 
"2. "̂ 
63 
0 
-5 
» 

26.05 
± 

2.2* ft l + £ to 
4*. I + to u> S. B 

S- o 
CC T 

o >—» o o 2 



6,4. DISCUSSION; 

In Chapter 4 it was shown that in vivo heating impaired oxidation of substrates by 

isolated mitochondria that was accompanied by a sharp reduction in RCI. The lower 

values for RCI mainly resulted from a reduction in State I I I respiration because there 

was no marked rise in State IV respiration. This suggested that there was no significant 

loss in the integrity of the mitochondrial membrane (Chance and Williams, 1956). The 

reduction observed could result either from an inhibition of the respiratory chain or 

from an inhibition of phosphorylation, at one or more sites, with coupling remaining 

intact. 

In earlier studies on mitochondria from mammalian tissues Christiansen and 

Kvamme (1969) and Morris and King (1962) reported that the site most sensitive to 

elevated temperature was between the NADH flavoprotein and cytochrome c. The 

former workers described cytochrome b-complex I I I as the likely temperature-sensitive 

site, because succinate oxidation by complex I I was not inhibited by high temperature. 

The present studies confirmed work on blowfly mitochondria which demonstrated that, 

although G 3P respiration is inhibited in heated mitochondria, when measured using the 

respiratory chain enzymes, G 3P dehydrogenase (site II) was not inhibited when 

measured directly using a tetrazolium salt as the electron acceptor, (Bowler and 

Kashmeery, 1981). Both of the early studies quoted above, using mammalian 

mitochondria, also found the complex IV was relatively thermally stable. In a more 

recent study using Zea mays mitochondria Pobezhimova et ai, (1996) also found that 

complex I I and IV were comparatively thermostable. In contrast to earlier studies 

these workers also found that complex I I I was stable but complex I of the respiratory 

chain was very sensitive to elevated temperature. 
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The work presented in this Chapter differs from the earlier studies discussed 

above because mitochondria were exposed to high temperature in vivo, whereas the 

earlier studies concerned the effect of in vitro heating. Nevertheless, it is clear that in 

vivo heat dose (LD50) significantly impaired mitochondrial function as respiration of 

NAD-dependent substrates is reduced by almost 50% (Table 6.1). That this owing to 

inhibition of the respiratory chain, rather than phosphorylation is witnessed by failure 

to stimulate State IV respiration to the same level as State I I I in controls by uncoupling 

oxidative phosphorylation with FCCP. 

Rotenone inhibited the activity of FCCP stimulated respiration in both control and 

L D 5 0 treated flies to the same level. This respiration was stimulated by G 3P, and 

although that from L D 5 0 treated mitochondria was lower than that of control 

mitochondria, the difference was not statistically higher than FCCP stimulated 

respiration with NAD-dependent substrates. This indicates that oxidation of substrates 

through complex I is a major site of damage to mitochondrial function in L D 5 Q treated 

flies. A further point of significance is to compare G 3P supported respiration in L D 5 0 

treated mitochondria without, and in the presence of FCCP. In the former case (see 

Table 4.1 Chapter 4) mitochondrial respiration was substantially reduced (to 27%) as 

compared with State I I I respiration of controls, furthermore, State IV respiration was 

also reduced (to 60%) implying that the mitochondria were not uncoupled by L D 5 0 

treatment (Bowler and Kashmeery, 1981). However, in the latter case (Table 6.1) 

respiration was not impaired, thus agreeing with the earlier study which showed that G 

3P dehydrogenase was not inhibited by heat (Bowler and Kashmeery, 1981). This 

suggests that following in vivo heating the functioning of Complex I I I is also affected. 

As respiration in the presence of an uncoupler is not affected through complex I I I , 
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whereas respiration in the absence of FCCP is inhibited, suggests that in mitochondria 

from L D 5 0 treated flies oxidative phosphorylation remains coupled but phosphorylation 

is heat sensitive. Antimycin A inhibited respiration through complex I I I , but respiration 

was restored by ferrocyanide. In control mitochondria this was significantly lower that 

supported by G 3P. In L D 5 0 treated mitochondria this was further reduced, which 

suggests that complex IV may also be a site of damage in in vivo heating. 

As can be seen from Table 6.1 making the flies thermotolerant before exposure to an 

L D 5 0 heat dose protects the sensitive sites to heat damage. Although State I I I respiration 

of NAD dependent substrates was significantly lower than that of control flies it was 

significantly higher than from control mitochondria that experienced and L D 5 0 dose. 

FCCP uncoupled mitochondria had respiratory rates not different from control unheated 

mitochondria, in contrast to mitochondria from L D 5 0 treated control flies. This 

respiration was inhibited by rotenone to the same levels in the three groups. Glycerol 3-

phosphate restored respiration to the same level as found for State I I I respiration, and 

was not significantly different from G 3P respiration in the control or L D 5 0 treated 

control mitochondria. As the development of thermotolerance also protected 

mitochondria from the damaging effects of L D 5 0 heating (see Table 4.1) with Glycerol 

3-phosphate as substrate, then it follows that phosphorylation at complex I I I must also 

be protected. Antimycin A inhibits respiration through complex I I I to the same level for 

mitochondria from the three treatments. Ferrocyanide restored respiration in these 

mitochondria to initial State I I I levels and the same level as did glycerol 3-phosphate. 

Thus the suggested damage that occurred at complex IV in L D 5 0 treated control 

mitochondrion was protected by the development of thermotolerance, because 
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respiration through this complex is significantly higher after L D 5 0 treatment in 

thermotolerant as compared with mitochondria from control flies. 
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CHAPTER V I I 

G E N E R A L DISCUSSION 

The work presented in this thesis concerns the study of the effect of high lethal 

temperatures on the blowfly Calliphora vicina. Correlation of the effects of high 

temperature on the whole organism was sought at the subcellular level. The data 

collected add to the earlier studies from this laboratory (Davison and Bowler, 1971; 

Bowler and Kashmeery, 1981) on this problem. The present results are in good 

agreement with that earlier work on the Durham culture of blowflies. One interesting 

point of difference however, was that the L D 5 0 for 10 day-old adults was significantly 

lower, at 38.16 ± 0.47°C, than that reported in the earlier studies (40.9 ± 0.10°C), and 

also from that of a different culture more recently obtained from the University of 

Cambridge (39.47 ± 0.18°C). The protocol and rearing techniques used have been 

applied consistently and so it is not known what has caused the marked 1.5°C 

reduction in the death point observed. The most likely reason is that over the 30 year 

period of these studies there has been an inadvertent selection of stock with a lower 

thermal tolerance. The long period over which this research has been carried has 

brought this issue to notice and it emphasises the care that should be taken when 

similar research is being carried out with insects in long-term culture; reliance on 

existing data should not be assumed. 

A central part of this study was concerned with the phenomenon of 

thermotolerance, and whether its induction protected against previously identified, 

heat-induced, lesions in mitochondrial function, (Davison and Bowler, 1971; Bowler 
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and Kashmeery. 1981). At the level of the whole organism, we have demonstrated that 

subjecting flies to a sublethal heat-dose, afforded significant protection to a subsequent 

L D 5 0 heat dose. In common with other studies on insects (Stephanou et al., 1983; 

Whyard et al., 1986; Yokum and Denlinger, 1992), thermotolerance developed 

quickly, it was demonstrable within 1 hr of heat shock, but also was of relatively short 

duration, lasting less than 6 hr. Under the conditions used for heat shock 

thermotolerance developed maximally after 3-4 hr and produced a 30% increase in 

survival. As has been pointed out by Hutchison and Maness (1979), and more recently 

by Rutledge et al., (1987), the phenomenon of thermotolerance (or heat hardening) is 

of ecological significance, particularly in species that may be subjected to periodic high 

field temperatures (Whyard et al., 1986). The kinetics of this phenomenon in blowflies, 

its rapid induction and short duration, are therefore appropriate ecologically. It is of 

interest too that HSP production occurs in a temperature range that relates to the range 

tolerated. For example, Drosophila melanogaster HSPs are produced by exposure to 

37°C and 40°C is usually lethal, whereas in Manduca sexta HSP synthesis is maximal 

at 42°C but lethality is not reached until about 46°C. Thermotolerance is clearly a 

survival strategy distinct from acclimation and acclimatisation, which are responses to a 

change in environmental conditions within viable limits. Their time course is in order of 

days, not hours, and the phenotypic response lasts only as long as do the changed 

environmental conditions that evoked that response (Cossins and Bowler, 1986; 

Prosser, 1991). 

A major thrust of this study was to understand better the nature of the lesions 

involved in heat death. The background to the work clearly owed much to the earlier 

work of Davison 1971; and Kashmeery, 1980. It is significant that the former workers 

demonstrated that a close correlation occurred between an L D 5 Q heat dose in vivo and 
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impairment flight muscle mitochondrial function when measured at 24°C. It was also 

reported that the flight recovery from such a dose was paralleled by the restoration of 

normal mitochondrial performance. The recovery from an L D 5 0 dose took about 2-3 

days at 24°C, when the normal capacity for flight had been regained and the isolated 

mitochondria had Q 0 2 values, and RCI and ADP:0 ratios similar to those of 

mitochondria from unheated control flies. The close relationship between organism 

response to in vivo heat exposure and impairment of mitochondrial function, and the 

observed morphological damage, (Davison, 1971b) suggest that this system provides a 

good model from the study of cellular heat injury. 

The results of the present study confirm and extend the data presented by Davison 

and Bowler (1971) and Bowler and Kashmeery (1981). An LD 5 ( I dose caused the 

impairment of mitochondrial function as witnessed by the reduction RCI and a 

lowering of the ADP:0 ratios. In agreement with the earlier work oxidative 

phosphorylation with G 3P appeared more severely affected by an LD5() than with 

pyruvate + proline as substrate. In particular, respiratory control was lost and ADP:0 

was not demonstrable with the former substrate, and State I I I and State IV respiration 

were markedly inhibited. With pyruvate + proline as substrate State I I I respiration was 

also sharply reduced, but State IV respiration was increased implying that, in this case, 

some uncoupling may have resulted. Respiratory control was reduced but ADP:0 was 

still measurable. This apparent differential effect of in vivo heat on mitochondrial 

function, with different substrates, was difficult to explain. Kashmeery and Bowler 

(1981) considered that it implied that heat inactivated phosphorylation, rather than the 

enzymes of the respiratory chain, in case of G 3P, because there was no evidence of 

uncoupling of oxidative phosphorylation (i.e. no increase in State IV). The present 

results using specific inhibitors of the respiratory chain show that the interpretation was 
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too simplistic. Uncoupling of oxidative phosphorylation of mitochondria from L D 5 0 

treated flies with FCCP stimulated State IV respiration to State I I I levels, which still 

remained below those of control mitochondria. This suggested that oxidation was 

impaired by in vivo heating with mitochondria remaining reasonably well coupled. 

Furthermore, the restoration of respiration with the addition of G 3P, did restore 

oxidation rates to the same level as in control unheated mitochondria, a rate that is 

significantly higher than those obtained on uncoupling with FCCP. This confirms that 

oxidation at Complex I is sensitive to heat, but respiration through Complex I I I is not 

heat inactivated, also confirming that G 3P dehydrogenase is not heat sensitive (Bowler 

and Kashmeery, 1981). However, when G 3P stimulated respiration is considered in 

L D 5 0 treated mitochondria, without the use of FCCP, then respiration is markedly 

reduced as compared with controls (see Table 4.1). This could be interpreted to 

suggest that heating inactivated the phosphorylation process with the mitochondria 

remaining coupled at Complex I I I . There is also evidence that respiration through 

Complex IV is heat sensitive as K ferrocyanide stimulated respiration in L D 5 0 treated 

mitochondria is lower than that of controls. 

Only the studies of Floridini et al (1987) report work on the effect of in vivo 

heating on mitochondrial function. These workers have also reported that a general 

inhibition of State I I I and IV respiration occurred in Ehrlich's ascites mitochondria 

following hyperthermic treatment of the cells. They interpreted this as a general 

inhibition of the respiratory chain rather than an effect on phosphorylation as RCI 

values remained the same as for controls. Other workers have also shown that in vitro 

exposure at high temperatures impaired mitochondrial function, again with oxidation at 

Complex I being reported as particularly sensitive (Morris and King, 1962; 

Christiansen and Kvamme, 1969; Pobezhimova et al., 1996). It is also significant that 
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G3P stimulated respiration was again more sensitive to elevated temperature than 

pyruvate + proline respiration. For example, Table 5.1 showed that coupling of 

oxidative phosphorylation was lost at 34°C with the former substrate, but could still be 

demonstrated at 39°C with pyruvate + proline, albeit with reduced values for RCI and 

ADP.O as compared with 24°C. The present studies show that mitochondria are much 

more sensitive to temperatures in vitro than in vivo, Davison (1969) cultured blowflies 

at 34°C, but this measuring temperature impair G 3P respiration in vitro. 

The present work clearly demonstrated that the induction of thermotolerance 

protects mitochondria from heat damage both in vivo and in vitro. No other detailed 

comparable study exists. Mitochondrial function was largely retained following an 

L D 5 0 dose to thermotolerant flies as compared with mitochondria from control flies. 

However, damage was still evident, G-3-P and pyruvate + proline State I I I respiration 

were lower than in control, unheated mitochondria, but coupling was retained with the 

former substrate, and improved with the latter. Significantly too, the induction of 

thermotolerance protected mitochondria in vitro at higher measuring temperatures, 

particularly with G-3-P respiration. Table 5.1 clearly shows that coupling was 

demonstrable at 34°C, in contrast with control mitochondria. One of the most 

interesting outcomes of this study was that thermotolerance affected the thermal 

sensitivity of mitochondria over the whole of the temperature range measured. The Q i 0 

for the effect of G-3-P State I I I respiration was about 1.1 (19-29°C) for thermotolerant 

mitochondria as compared with a value of about 1.9 for control mitochondria over the 

same temperature range. A similar, if less dramatic effect was seen on pyruvate + 

proline State I I I respiration. A comparable effect was not seen on State IV respiration. 
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Table 6.1 clearly shows that the induction of thermotolerance protects 

mitochondria from heat damage at Complex I , both State I I I and FCCP uncoupled 

respiration are significantly higher in the thermotolerant group as compared with the 

control L D 5 0 treated group. In no case was the respiration rate different between the 

unheated control mitochondria and LD50 treated thermotolerant mitochondria. It is 

clear from these two sets of experiments that thermotolerance caused changes in the 

mitochondria that are protective in vivo and are retained during isolation so that their 

protective effects are evident in vitro. 

This research provides evidence that mitochondrial function is impaired during an 

in vivo heat dose. The question that arises is whether this can be correlated with 

cellular and organism heat death (Read, 1967). The loss of flight performance 

following heat exposure has been previously reported (Davison, 1971a), this showed 

that the observed impairment of mitochondrial performance is translated into a loss of 

function. It is likely that a significant reduction in ATP concentration occurred in heat 

damaged flight muscle, consequent on the observed reduction in respiratory control. 

Sacktor (1958) and Van den Berg (1962) report that G-3-P is a major substrate in this 

tissue, and as respiration with this substrate in heat damaged tissue is particularly 

affected, might account for the loss in flight ability. There are a number of studies that 

support this interpretation. Lunec and Cresswell (1983) have reported that heating 

L5178YS cells resulted in a rapid reduction in ATP levels, a result confirmed by laing 

et al., (1991) from 31P NMR studies during heating of human carcinoma cells. Changes 

in ATP levels have not been determined in the present study, but clearly it would aid 

the interpretation to confirm that the observed mitochondrial damage is expressed by a 

reduction in ATP levels. However, it should be stressed that the impairment of 

mitochondrial function reported is unlikely to be the only lesion suffered by the 
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blowflies subjected to an L D 5 0 heat dose. It would be reasonable to suggest, at least, 

that mitochondria from other tissues may well be similarly damaged. 

The rapid cellular modifications that must occur during the development of 

thermotolerance have been the subject of considerable investigation. The first reports 

specific effects heat shock were reported by Ritossa (1962) on chromosome puffing 

patterns in Drosophila. This work led to identification of the synthesis of a specific set 

of proteins (heat shock proteins) by Tissiers et al (1974) induced by the heat exposure. 

Since that early work several families of heat shock proteins have been identified and 

characterised on the basis of molecular size, the HSP90, HSP70, and HSP20's families. 

Even within one organism there may be several molecular forms of each of those 

families, with a potential for different subcellular localisation, Becker and Craig, 

(1994). Many of these proteins have a primary 'housekeeping' function, serving as 

'molecular chaperones', promoting folding of proteins and the refolding of unfolded 

proteins, they are also known to be responsible for the translocation of proteins 

between intracellular compartments (Shi and Thomas, 1992). Another critical aspect of 

their function, a function that directly relates to the present study, is that HSP60 and 70 

have been shown to prevent the aggregation of proteins (Pelham, 1984) and, in the 

case of HSP100, can resolubilise aggregated proteins once formed (Schirmer, Glover, 

Singer and Lindquist, 1991). There is considerable information that the application of 

stresses to cells causes protein unfolding and denaturation. 

A strong correlation is reported between the induction of HSPs and the 

development of thermotolerance (Landry et al., 1982; L i and Laszlo, 1985). Members 

of all the HSP families have been implicated in the development of thermotolerance 

(Hightower, 1991; Sanchez and Lindquist, 1990). The protective function afforded by 

HSPs in heat tolerance is considered to be that they bind to hydrophobic surfaces 
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exposed by heat denaturation, which allows the opportunity for conservation of 

function during the stress, and refolding and restoration of function after stress (Becker 

and Craig, 1994). It is therefore not surprising that cell mutants in specific HSPs are 

reported to be intolerant of heat stress compared with wild types (Schirmer, et al., 

1996), and mutants over expressing HSPs have increased heat tolerance. Not all 

studies support these proposals that HSPs are responsible for the development of 

thermotolerance, there have been reports of thermotolerance developing in the absence 

of elevated synthesis of HSPs and several states of thermotolerance some independent 

of HSPs have been postulated by Laszlo (1988); Carper et al. (1987); Tomosovic and 

Koval (1985); Hall (1983). 

There are many reports of the production of HSPs in insects as a result of heat 

shock. In addition to the ubiquitous HSP70 family, most insects also produce HSP80s 

(Martin, Blaker and Tanguay. 1994), but the presence of small molecular weight HSPs 

has not always been reported (Fittinghoff and Riddinford, 1990; Lindquist, 1980). The 

data presented in the present study, on the effects of thermotolerance on mitochondrial 

function in heat stress, are probably best explained in terms of the production of HSPs. 

Evidence has been presented in Chapter 4 and 5, that an L D 5 0 heat dose impaired the 

functioning of the complexes of the respiratory chain, and presumably some of their 

critical proteins are being structurally perturbed. The development of thermotolerance 

protects these structures from the heat damage, presumably because the HSPs 

produced are binding to the damaged sites. The evidence, presented in Figure 5.1 

Chapter 5 showing a marked temperature independence of State I I I respiration in 

thermotolerant preparations as compared with controls, could also be explained as an 

effect of the binding of HSPs to the respiratory enzymes. This would be likely to 
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reduce the conformational freedom of the respiratory enzymes so making them less 

responsive to a change in measuring temperature. Clearly an important development of 

this research would be to demonstrate that HSP production was increased as a result of 

the heat shock, and that HSPs were also present in mitochondria isolated from heat 

shocked flies. The identification of specific HSPs associated with particular 

mitochondrial proteins would further strengthen this interpretation. 

The present work shows that membrane-dependent processes are susceptible to 

thermal damage in the same temperature range that kills the intact animal, thus 

supporting the proposal that the primary site of heat damage lies at the site of cellular 

membranes (Bowler et al., 1973; Bowler, 1987; Manning and Bowler, 1994). There 

are an increasing number of reports that identify membrane proteins as the site of heat 

damage (Bowler, 1987; Yatvin and Cramp, 1994; Cheng et al., 1987), but doubt 

remains as to whether there is a role for the lipid moiety in modulating the damage 

caused by high temperature. (Konings, 1988; Lepock et al., 1981). In particular the 

latter paper raised doubt because of a failure to demonstrate an effect of 

thermotolerance on membrane fluidity. This argument has been extended to the 

premise that if cellular susceptibility to hyperthermic treatment is causally related to 

membrane order (fluidity) then there should be a direct relationship between cell 

survival and fluidity. No consistent evidence exists that this is the case. However, it is 

of interest that although Dynlacht and Fox (1992) report no relationship between 

survival and membrane fluidity in a variety of cell lines, hyperthermia caused persistent 

changes in fluidity when measured post-heating. Furthermore, the more resistant the 

cell line was to heat injury, the more resistant it was to the perturbation of the 

membrane fluidity change caused by hyperthermia. The reported persistence of the 

fluidity change resulting from hyperthermic treatment is most likely to reflect a 
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denaturational change in membrane proteins (Lepock et al., 1988). A role for lipid 

membrane order (fluidity) in the modulation of the heat denaturation of membrane 

proteins has been demonstrated using the catalytic hydrogenation of membrane 

proteins has been demonstrated using the catalytic hydrogenation of unsaturated fatty 

acids to produce a more saturated, and less fluid membrane matrix. Quinn and co­

workers have described that hydrogenated chloroplast thylakoid membranes showed a 

reduced tendency for structural disruption of membrane protein complexes following 

exposure to elevated temperatures (Gounaris et al., 1984). A similar stabilisation of 

photosystem-I complex following membrane hydrogenation has also been described 

(Vigh, Gombos, Horvath, 1989). 

The present study demonstrates that impairment of mitochondrial membrane protein 

function is directly related to the heat dose that causes heat death. Furthermore, 

thermotolerance can protect the proteins from heat damage, most likely as a result of the 

binding of heat shock proteins. In the present experimental work mitochondrial 

membrane lipid composition and fluidity were not measured. All flies were reared under 

the same conditions and so these parameters were not expected to differ between the 

various experimental and control groups, and in consequence would not have 

contributed to the different thermal sensitivities 
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Appendix 1 . 

Determination of LD50 and 95% confidence limits 

Notation: 

y, ... y„ denotes available probits, 

x ; ... xn denotes corresponding temperatures. 

Calculate 

x = (Ex)/n a n d y = &y)ln 

= — Sxy = ( Z y ) — Sxy = (^xy) . 

Procedure 

y = a + b(x — x), 

estimated intercept = a - y , 

estimated slope = b = . 
Sxx 

Median effective temperature ( LD50) = m — x + -——, 
b 

95% confidence limits set by m i s.e. (mean) x t, where t is the tabulated student 

t value ( 95% ) with n~2 degree of freedom . 

s.e. of m = 

where s2 = 

b2 
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